

ATlaT

UNIX® SYSTEM V
RELEASE 4
Programmer's Guide: XWIKM

Graphical Windowing System
X/ib-C Language Interface

UNIX Software Operation

Copyright 1990,1989,1988,1987,1986,1985,1984,1983 AT&T
All Rights Reserved
Printed in USA

Published by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means--graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap­
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from AT&T.

ACKNOWLEDGEMENT

Parts of this book are being reproduced with the permission of the Massachusetts Institute of Tech­
nology, O'Reilly and Associates, Inc., Hewlett Packard, Digital Equipment Corporation, and Sun Mi­
crosystems, Inc.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this documenf, AT&T
assumes no liability to any party for any loss or damage caused by errors or omissions or by state­
ments of any kind in this document, its updates, supplements, or special editions, whether such er­
rors are omissions or statements resulting from negligence, accident, or any other cause. AT&T furth­
er assumes no liability arising out of the application or use of any product or system described
herein; nor any liability for incidental or consequential damages arising from the use of this docu­
ment. AT&T disclaims all warranties regarding the information contained herein, whether expressed,
implied or statutory, including implied warranties of merchantability or fitness for a particular purpose.

AT&T makes no representation that the interconnection of products in the manner described herein
will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the
granting or license to make, use or sell equipment constructed in accordance with this description.

AT&T reserves the right to make changes without further notice to any products herein to improve re­
liability, function, or design.

TRADEMARKS

PostScript is a registered trademark of Adobe Systems
UNIX is a registered trademark of AT&T
The X Window System is a trademark of the Massachusetts Institute of Technology
XWIN is a registered trademark of AT&T

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-931874-7

UNIX
PRESS

A Prentice Hall Title

PRE N T C E HAL L

ORDERING INFORMATION

UNIX® SYSTEM V, RELEASE 4 DOCUMENTATION

To order single copies of UNIX® SYSTEM V, Release 4 documentation,
please call (201) 767-5937.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:
For bulk purchases in excess of 30 copies please write to:
Corporate Sales
Prentice Hall
Englewood Cliffs, N.J. 07632
Or call: (201) 592-2498

ATTENTION GOVERNMENT CUSTOMERS: For GSA and other pricing
information please call (201) 767-5994.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, SA, Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

AT&T UNIX<IJl System V Release 4

General Use and System Administration
UNIX" System V Release 4 Network User's and Administrator's Guide
UNIX" System V Release 4 Product Overview and Master Index
UNIX" System V Release 4 System Administrator's Guide
UNIX" System V Release 4 System Administrator's Reference Manual
UNIX" System V Release 4 User's Guide
UNIX" System V Release 4 User's Reference Manual

General Programmer's Series
UNIX" System V Release 4 Programmer's Guide: ANSI C and Programming Support Tools
UNIX" System V Release 4 Programmer's Guide: Character User Interface (FMLI and ETI)
UNIX" System V Release 4 Programmer's Guide: Networking Interfaces
UNIX" System V Release 4 Programmer's Guide: POSIX Conformance
UNIX" System V Release 4 Programmer's Guide: System Services and Application

Packaging Tools
UNIX" System V Release 4 Programmer's Reference Manual

System Programmer's Series
UNIX" System V Release 4 Device Driver Interface I Driver-Kernel Interface (DOl I DKI)

Reference Manual
UNIX@) System V Release 4 Programmer's Guide: STREAMS

Migration Series
UNIX8 System V Release 4 ANSI C Transition Guide
UNIX8 System V Release 4 BSD I XENIX8 Compatibility Guide
UNIX8 System V Release 4 Migration Guide

Graphics Series
UNIX8 System V Release 4 OPEN LOOK'" Graphical User Interface Programmer's

Reference Manual
UNIX8 System V Release 4 OPEN LOOK'" Graphical User Interface User's Guide
UNIX8 System V Release 4 Programmer's Guide: XWIN'" Graphical Windowing System

Xlib - C Language Interface
UNJX8 System V Release 4 Programmer's Guide: OPEN LOOK'" Graphical User Interface
UNIX8 System V Release 4 Programmer's Guide: Xll/NeWS8 Graphical Windowing System

NeWS
UNIX@) System V Release 4 Programmer's Guide: Xll/NeWS8 Graphical Windowing System

Server Guide
UNJX8 System V Release 4 Programmer's Guide: Xll/NeWS" Graphical Windowing System

tNt Technical Reference Manual
UNIX8 System V Release 4 Programmer's Guide: Xll/NeWS@) Graphical WindOwing System

XVIEW'"
UNIX8 System V Release 4 Programmer's Guide: XWIN'" Graphical Windowing System

Addenda: Technical Papers
UNIX@) System V Release 4 Programmer's Guide: XWIN'" Graphical Windowing System

The X Toolkit

Available from Prentice Hall

Contents

1 Introduction to Xlib
Introduction to Xlib 1-1
Overview of the XWIN System 1-2
Errors 1-5
Naming and Argument Conventions within Xlib 1-6
Programming Considerations 1-8
Conventions Used in Xlib - C Language X Interface 1-9

2 Display Functions
Introduction 2-1
Opening the Display 2-2
Obtaining Information about the Display, Image Formats, or

Screens 2-4
Generating a NoOperation Protocol Request 2-16
Freeing Client-Created Data 2-17
Closing the Display 2-18
XWIN Server Connection Close Operations 2-19

3 Window Functions
Introduction 3-1
Visual Types 3-2
Window Attributes 3-4
Creating Windows 3-15
Destroying Windows 3-19
Mapping Windows 3-21
Unmapping Windows 3-24
Configuring Windows 3-25
Changing Window Stacking Order 3-32

Table of Contents

Table of Contents _____________________ _

4

5

6

II

Changing Window Attributes
Translating Window Coordinates

Window Information Functions
Introduction
Obtaining Window Information
Properties and Atoms
Obtaining and Changing Window Properties
Selections

Graphics Resource Functions
Introduction
Colormap Functions
Creating and Freeing Pixmaps
Manipulating Graphics ContexUState
Using GC Convenience Routines

Graphics Functions
Introduction
Clearing Areas
Copying Areas
Drawing Points, Lines, Rectangles, and Arcs
Filling Areas
Font Metrics
Drawing Text
Transferring Images between Client and Server
Cursors

3-36
3-40

4-1
4-2
4-8
4-12
4-18

5-1
5-2
5-16
5-18
5-30

6-1
6-2
6-4
6-7
6-17
6-22
6-40
6-47
6-54

Xwln GWS: Xllb - C Language Interface

______________________ Table of Contents

7 Window Manager Functions
Introduction 7-1
Changing the Parent of a Window 7-2
Controlling the Lifetime of a Window 7-4
Determining Resident Colormaps 7-6
Pointer Grabbing 7-8
Keyboard Grabbing 7-16
Server Grabbing 7-24
Miscellaneous Control Functions 7-25
Keyboard and Pointer Settings 7-30
Keyboard Encoding 7-38
Screen Saver Control 7-45
ContrOlling Host Access 7-48

8 Events and Event-Handling Functions
Introduction 8-1
Event Types 8-2
Event Structures 8-4
Event Masks 8-7
Event Processing 8-9
Selecting Events 8-54
Handling the Output Buffer 8-55
Event Queue Management 8-56
Manipulating the Event Queue 8-57
Putting an Event Back into the Queue 8-64
Sending Events to Other Applications 8-65
Getting Pointer Motion History 8-67
Handling Error Events 8-69

Table of Contents Iii

Table of Contents _____________________ _

9

10

A

B

Iv

Predefined Property Functions
Introduction
Communicating with Window Managers
Manipulating Standard Colormaps

Application Utility Functions
Introduction
Keyboard Utility Functions
Obtaining the X Environment Defaults
Parsing the Window Geometry
Parsing the Color Specifications
Generating Regions
Manipulating Regions
Using the Cut and Paste Buffers
Determining the Appropriate Visual Type
Manipulating Images
Manipulating Bitmaps
Using the Resource Manager
Using the Context Manager

Xllb Functions and Protocol Requests
Xlib Functions and Protocol Requests

Xllb Font Cursors
Xlib Font Cursors

9-1
9-2
9-22

10-1
10-2
10-7
10-9
10-12
10-13
10-14
10-19
10-22
10-25
10-30
10-34
10-52

A-1

8-1

Xwln GWS: Xllb - C Language Interface

______________________ Table of Contents

c

D

E

Extensions
Extensions
Basic Protocol Support Routines
Hooking into Xlib

Hooks into the Library
Hooks onto Xlib Data Structures
GC Caching

Graphics Batching
Writing Extension Stubs
Requests, Replies, and Xproto.h
Request Format
Starting to Write a Stub Routine
Locking Data Structures
Sending the Protocol Request and Arguments
Variable Length Arguments
Replies
Synchronous Calling
Allocating and Deallocating Memory
Portability Considerations
Deriving the Correct Extension Opcode

Version 10 Compatibilty Functions
Drawing and Filling Polygons and Curves
Associating User Data with a Value

X11 Input Synthesis Extension
Preface
Conventions Used In This Document
Definition Of Terms
What Does This Extension Do?
Functions In This Extension

Table of Contents

C-1
C-2
C-3
C-5
C-11
C-13
C-14
C-16
C-17
C-18
C-21
C-22
C-23
C-25
C-26
C-29
C-30
C-31
C-32

0-1
0-4

E-1
E-2
E-3
E-4
E-5

v

Table of Contents _____________________ _

X11 Input Synthesis Extension Include File E-15

G Glossary
G-1

I Index
1-1

Manual Pages

vi Xwin GWS: Xllb - C Language Interface

1 Introduction to Xlib

Introduction to Xlib 1-1

Overview of the XWIN System 1-2

Errors 1-5

Naming and Argument Conventions within
Xlib 1-6

Programming Considerations 1-8

Conventions Used in Xlib - C Language X
Interface 1-9

Table of Contents

Introduction to Xlib

The X Window System is a network-transparent window system that was
designed at MIT. It runs under 4.3BSD UNIX, UL TRIX-32, many other UNIX
variants, V AX/VMS, MS/DOS, as well as several other operating systems.

AT&T's XWINTM Release 3.0 product is based on the MIT X Window System
XIIR3. It is streams based, includes performance enhancements, and runs on
UNIX System V Release 3.2 and SVR4.0

XWIN display servers run on computers with either monochrome or color bit­
map display hardware. The server distributes user input to and accepts output
requests from various client programs located either on the same machine or
elsewhere in the network. Xlib is a C subroutine library that application pro­
grams (clients) use to interface with the window system by means of a stream
connection. Although a client usually runs on the same machine as the XWIN
server it is talking to, this need not be the case.

Xlib - C Language X Interface is a reference guide to the low-level C language
interface to the X System protocol. It is neither a tutorial nor a user's guide to
programming the XWIN System. Rather, it provides a detailed description of
each function in the library as well as a discussion of the related background
information. Xlib - C Language X Interface assumes a basic understanding of a
graphics window system and of the C programming language. Other higher­
level abstractions (for example, those provided by the toolkits for X) are built on
top of the Xlib library. For further information about these higher-level
libraries, see the appropriate toolkit documentation. The X Protocol provides the
definitive word on the behavior of X. Although additional information appears
here, the protocol document is the ruling document.

To provide an introduction to X programming, this chapter discusses:

• Overview of the XWIN System

• Errors

• Naming and argument conventions

• Programming considerations

• Conventions used in this document

Introduction to Xllb 1-1

Overview of the XWIN System

Some of the tenns used in this book are unique to the XWIN System, and other
terms that are common to other window systems have different meanings in
XWIN. You may find it helpful to refer to the glossary, which is located at the
end of the book.

All the windows in an XWIN server are arranged in strict hierarchies. At the top
of the hierarchy is the root window, which covers the display screen. Each root
window is partially or completely covered by child windows. All windows,
except for root windows, have parents. There is usually at least one window for
each application program. Child windows may in tum have their own children.
In this way, an application program can create an arbitrarily deep tree. The
XWIN system provides graphics, text, and raster operations for windows.

A child window can be larger than its parent. That is, part or all of the child
window can extend beyond the boundaries of the parent, but all output to a
window is clipped by its parent. If several children of a window have overlap­
ping locations, one of the children is considered to be on top of or raised over
the others thus obscuring them. Output to areas covered by other windows is
suppressed by the window system unless the window has backing store. If a
window is obscured by a second window, the second window obscures only
those ancestors of the second window, which are also ancestors of the first win­
dow.

A window has a border zero or more pixels in width, which can be any pattern
(pixmap) or solid color you like. A window usually but not always has a back­
ground pattern, which will be repainted by the window system when
uncovered. Each window has its own coordinate system. Child windows
obscure their parents unless the child windows (of the same depth) have no
background, and graphic operations in the parent window usually are clipped
by the children.

The XWIN server does not guarantee to preserve the contents of windows. When
part or all of a window is hidden and then brought back onto the screen, its
contents may be lost. The server then sends the client program an Expose event
to notify it that part or all of the window needs to be repainted. Programs must
be prepared to regenerate the contents of windows on demand.

The XWIN server also provides off-screen storage of graphics objects, called pix­
maps. Single plane (depth 1) pixmaps are sometimes referred to as bitmaps.
Pixmaps can be used in most graphics functions interchangeably with windows
and are used in various graphics operations to define patterns or tiles. Win­
dows and pixmaps together are referred to as drawables.

1-2 XWIN GWS: Xllb - C Language Interface

OVerview of the XWIN System

Most of the functions in Xlib just add requests to an output buffer. These
requests later execute asynchronously on the XWIN server. Functions that return
values of information stored in the server do not return (that is, they block)
until an explicit reply is received or an error occurs. You can provide an error
handler, which will be called when the error is reported.

If a client does not want a request to execute asynchronously, it can follow the
request with a call to XSync, which blocks until all previously buffered asyn­
chronous events have been sent and acted on. As an important side effect, the
output buffer in Xlib is always flushed by a call to any function that returns a
value from the server or waits for input.

Many Xlib functions will return an integer resource ID, which allows you to
refer to objects stored on the XWIN server. These can be of type Window, Font,
Pixmap, Colormap, Cursor, and GContext, as defined in the file < Xll/X.h >.

These resources are created by requests and are destroyed (or freed) by requests
or when connections are closed. Most of these resources are potentially sharable
between applications, and in fact, windows are manipulated explicitly by win­
dow manager programs. Fonts are loaded and unloaded as needed and are
shared by multiple clients. Fonts are often cached in the server. Xlib provides
no support for sharing graphics contexts between applications.

Client programs are informed of events. Events may either be side effects of a
request (for example, restacking windows generates Expose events) or com­
pletely asynchronous (for example, from the keyboard). A client program asks
to be informed of events. Because other applications can send events to your
application, programs must be prepared to handle (or ignore) events of all
types.

Input events (for example, a key pressed or the pointer moved) arrive asynchro­
nously from the server and are queued until they are requested by an explicit
call (for example, XNextEvent or XWindowEvent). In addition, some library
functions (for example, XRaiseWindow) generate Expose and ConfigureRe­
quest events. These events also arrive asynchronously, but the client may wish
to explicitly wait for them by calling XSync after calling a function that can
cause the server to generate events.

Introduction to Xllb 1-3

OVerview of the XWIN System

1-4

The <> has the meaning defined by the II include statement of the C com­
piler and is a file relative to a well-known directory. This is /usrIX/include
on XWIN systems.

XWIN GWS: Xllb - C Language Interface

Errors

Some functions return Status, an integer error indication. If the function fails,
it returns a zero. If the function returns a status of zero, it has not updated the
return arguments. Because C does not provide multiple return values, many
functions must return their results by writing into client-passed storage.

By default, errors are handled either by a standard library function or by one
that you provide. Functions that return pointers to strings return NULL
pointers if the string does not exist.

The XWIN server reports protocol errors at the time that it detects them. If more
than one error could be generated for a given request, the server can report any
of them.

Because Xlib usually does not transmit requests to the server immediately (that
is, it buffers them), errors can be reported much later than they actually occur.
For debugging purposes, however, Xlib provides a mechanism for forcing syn­
chronous behavior (see "Enabling or Disabling Synchronization" in Chapter 8).
When synchronization is enabled, errors are reported as they are generated.

When Xlib detects an error, it calls an error handler, which your program can
provide. If you do not provide an error handler, the error is printed, and your
program tenninates.

Introduction to Xllb ,·5

Naming and Argument Conventions within Xlib

Xlib follows a number of conventions for the naming and syntax of the func­
tions. Given that you remember what information the function requires, these
conventions are intended to make the syntax of the functions more predictable.

The major naming conventions are:

1-6

• To differentiate the XWIN symbols from the other symbols, the library uses
mixed case for external symbols. It leaves lowercase for variables and all
uppercase for user macros, as per existing convention.

• All Xlib functions begin with a capital X.

• The beginnings of all function names and symbols are capitalized.

• All user-visible data structures begin with a capital X. More generally,
anything that a user might dereference begins with a capital X.

• Macros and other symbols do not begin with a capital X. To distinguish
them from all user symbols, each word in the macro is capitalized.

• All elements or variables in a data structure are in lowercase. Compound
words, where needed, are constructed with underscores (J.

• The display argument, where used, is always first in the argument list.

• All resource objects, where used, occur at the beginning of the argument
list immediately after the display argument.

• When a graphics context is present together with another type of
resource (most commonly, a drawable), the graphics context occurs in the
argument list after the other resource. Drawables outrank all other
resources.

• Source arguments always precede the destination arguments in the argu­
ment list.

• The x argument always precedes the y argument in the argument list.

• The width argument always precedes the height argument in the argu­
ment list.

• Where the x, y, width, and height arguments are used together, the x and
y arguments always precede the width and height arguments.

XWIN GWS: Xllb - C Language Interface

Naming and Argument Conventions within Xllb

• Where a mask is accompanied with a structure, the mask always precedes
the pointer to the structure in the argument list.

Introduction to Xllb 1-7

Programming Considerations

The major programming considerations are:

1-8

• Keyboards are the greatest variable between different manufacturers'
workstations. If you want your program to be portable, you should be
particularly conservative here.

• Many display systems have limited amounts of off-screen memory. If you
can, you should minimize use of pixmaps and backing store.

• The user should have control of the screen real estate. Therefore, you
should write your applications to react to window management rather
than presume control of the entire screen. What you do inside of your
top-level window, however, is up to your application. For further infor­
mation, see Chapter 9.

• Coordinates and sizes in the XWIN System are actually 16-bit quantities.
They usually are declared as an "int" in the interface (int is 16 bits on
some machines). Values larger than 16 bits are truncated silently. Sizes
(width and height) are unsigned quantities. This decision was taken to
minimize the bandwidth required for a given level of performance.

XWIN GWS: Xllb - C Language Interface

Conventions Used in Xlib - C Language X
Interface

This document uses the following conventions:

• Global symbols in Xlib - C lAnguage X Interface are printed in this spe­
cial font. These can be either function names, symbols defined in
include files, or structure names. Arguments are printed in italics.

• Each function is introduced by a general discussion that distinguishes it
from other functions. The function declaration itself follows, and each
argument is specifically explained. General discussion of the function, if
any is reqUired, follows the arguments. Where applicable, the last para­
graph of the explanation lists the possible Xlib error codes that the func­
tion can generate. For a complete discussion of the Xlib error codes, see
"Using the Default Error Handlers" in Chapter 8.

• To eliminate any ambiguity between those arguments that you pass and
those that a function returns to you, the explanations for all arguments
that you pass start with the word specifies or, in the case of multiple argu­
ments, the word specify. The explanations for all arguments that are
returned to you start with the word returns or, in the case of multiple
arguments, the word return. The explanations for all arguments that you
can pass and are returned start with the words specifies and returns.

• Any pointer to a structure that is used to return a value is designated as
such by the Jeturn suffix as part of its name. All other pointers passed to
these functions are used for reading only. A few arguments use pointers
to structures that are used for both input and output and are indicated by
using the)n_out suffix.

• Xlib defines the Boolean values of True and False.

Introduction to Xllb 1-9

2 Display Functions

Introduction 2-1

Opening the Display 2-2

Obtaining Information about the Display,
Image Formats, or Screens 2-4
Display Macros 2-4
Image Format Macros 2-10
Screen Information Macros 2-12

Generating a NoOperation Protocol
Request 2-16

Freeing Client-Created Data 2-17

Closing the Display 2-18

Table of Contents

Table of Contents ___________________ _

XWIN Server Connection Close Operations 2-19

II Xwln GWS: Xllb - C Language Interface

Introduction

Before your program can use a display, you must establish a connection to the
XWIN server. Once you have established a connection, you then can use the Xlib
macros and functions discussed in this chapter to return information about the
display. This chapter discusses how to:

• Open (connect to) the display

• Obtain information about the display, image format, and screen

• Free client-created data

• Close (disconnect from) a display

The chapter concludes with a general discussion of what occurs when the con­
nection to the XWIN server is closed.

Display Functions 2-1

Opening the Display

To open a connection to the XWIN server that controls a display, use XOpen­
Display.

Display *XOpenDisplay(d~~_name)
char "'display_name;

display_name Specifies the hardware display name, which determines the
display and communications domain to be used. On a UNIX­
based system, if the display_name is NULL, it defaults to the
value of the DISPLAY environment variable.

On UNIX-based systems, the display name or DISPLAY environment variable is
a string in the format:

hostname Specifies the name of the host machine on which the display is
physically attached. You follow the hostname with either a sin­
gle colon (:) or a double colon (::).

number Specifies the number of the display server on that host machine.
You may optionally follow this display number with a period
(.). A single CPU can have more than one display. Multiple
displays are usually numbered starting with zero.

screen number Specifies the screen to be used on that server. The
screen_number sets an internal variable that can be accessed by
using the DefaultScreen macro or the XDefaultScreen func­
tion if you are using languages other than C (see "Display Mac-
ros" in Chapter 2). .

For exampJe, the following would specify screen 2 of display 0 on the machine
named mit-athena:

Illit-athena:O.2

The XOpenDisplay function returns a Display structure that serves as the con­
nection to the XWIN server and that contains all the information about that XWIN
server. XOpenDisplay connects your application to the XWIN server through
TCP, UNIX domain, or StarLan (SVR3.2 only) communications protocols. If the
hostame is a host machine name and a single colon (:) separates the hostname
and display number XOpenDisplay connects using TCP streams. If the

2-2 Xwln GWS: Xllb - C Language Interface

Opening the Display

hostname is unix and a single colon (:) separates it from the display number,
XOpenDisplay connects using UNIX domain IPC streams. If the hostname is
not specified, Xlib uses whatever it believes is the fastest transport. A single
XWIN server can support any or all of these transport mechanisms simultane­
ously. A particular Xlib implementation can support many more of these tran­
sport mechanisms.

If successful, XOpenDisplay returns a pointer to a Display structure, which is
defined in < XU/Xlib. h >. If XOpenDisplay does not succeed, it returns
NULL. After a successful call to XOpenDisplay, all of the screens in the display
can be used by the client. The screen number specified in the display_name
argument is returned by the DefaultScreen macro (or the XDefaultScreen
function). You can access elements of the Display and Screen structures only
by using the information macros or functions. For information about using
macros and functions to obtain information from the Display structure, see
"Display Macros" in Chapter 2.

XWIN servers may implement various types of access control mechanisms (see
"Controlling Host Access" in Chapter 7).

Display Functions 2-3

Obtaining Information about the Display,
Image Formats, or Screens

The Xlib library provides a number of useful macros and corresponding func­
tions that return data from the Display structure. The macros are used for C
programming, and their corresponding function equivalents are for other
language bindings. This section discusses the:

• Display macros

• Image format macros

• Screen macros

All other members of the Display structure (that is, those for which no macros
are defined) are private to Xlib and must not be used. Applications must never
directly modify or inspect these private members of the Display structure.

I"":' Tho XDioplayW!dth, XDisplaylleight, XDiaplayCello, XDiaplayOlanoo, ~~~ijqriW XDisplayWiclth*, and XDisplayHeight!oM functions in the next sections

,!:::!rr:',:,!:!r ~~~i:~:~~:~~~ ~~~~~;:a~:!' o~~~~p~:;::!e,~~~~==~:nd
for the resulting confusion.

Display Macros

Applications should not directly modify any part of the Display and Screen
structures. The members should be considered read-only, although they may
change as the result of other operations on the display.

The following lists the C language macros, their corresponding function
equivalents that are for other language bindings, and what data they both can
return.

AllPlanuO

unsigned 10011 XAllPlanes 0

Both return a value with all bits set to 1 suitable for use in a plane argument to
a procedure.

2-4 Xwln GWS: Xllb - C Language Interface

Obtaining Information about the Display, Image Formats, or Screens

Both BlackPixel and WhitePixel can be used in implementing a monochrome
application. These pixel values are for permanently allocated entries in the
default colormap. The actual RGB (red, green, and blue) values are settable on
some screens and, in any case, may not actually be black or white. The names
are intended to convey the expected relative intensity of the colors.

BlaclcP ixIIIl (display, screen_number)

unsigned long XBlackPixel(displily, screen_number)

Display • displily;
int screen_number;

Both return the black pixel value for the specified screen.

WhitaPixIIIl (display, screen_number)

unsigned long XWhitePixel(displ4ly, screen_number)

Display ·displ4ly;

int screen_number;

Both return the white pixel value for the specified screen.

ConnectionNumber (display)

int XConnectionNumber(display)

Display • displily;

Both return a connection number for the Specified display. On a UNIX-based
system, this is the file descriptor of the connection.

DefaultColoDlap (displ4ly, screen_number)

Colormap XDefaultColormap(displ4ly, screen_number)

Display ·displ4ly;

int screen_number;

Both return the default colormap ID for allocation on the specified screen. Most
routine allocations of color should be made out of this colormap.

Display Functions 2-5

Obtaining Information about the Display, Image Formats, or Screens

DefaultDepth (displ4y, screen_number)

int XDefaultDepth(display, screen_number)

Display"display;
int screen_number;

Both return the depth (number of planes) of the default root window for the
specified screen. Other depths may also be supported on this screen (see
XMatchVisualInfo).

DefaultGC(displ4y,screen_number)

GC XDefaultGC(displ4y, screen_number)

Display"displ4y;

int screen_number;

Both return the default graphics context for the root window of the specified
screen. This GC is created for the convenience of simple applications and con­
tains the default GC components with the foreground and background pixel
values initialized to the black and white pixels for the screen, respectively. You
can modify its contents freely because it is not used in any Xlib function. This
GC should never be freed.

DefaultRootWindow(display)

Window XDefaultRootWindow(displ4y)

Display"display;

Both return the root window for the default screen.

DefaultScreenOfDiaplay (display)

Screen "XDefaultSaeenOfDisplay(displll)')

Display"displ4y;

Both return a pointer to the default screen.

2-6

ScreenOfDiaplay(displ4y, screen_number)

Screen "XSaeenOfDisplay(display, screen_number)

Display"display;

int screen_number;

Xwln GWS: Xllb - C Language Interface

Obtaining Information about the Display, Image Formats, or Screens

Both return a pointer to the indicated screen.

DefaultSoreen (display)

int XDefaultScreen(display)

Display"displ4y;

Both return the default screen number referenced by the XOpenDisplay func­
tion. This macro or function should be used to retrieve the screen number in
applications that will use only a single screen.

DefaultViaual (display, SCTre1I_ftumber)

Visual "XDefaultVIsua1(displ4y, scrtm_ftumber)

Display"displ4y;

int scrtm_ftumber;

Both return the default visual type for the specified screen. For further informa­
tion about visual types, see "Visual Types" in Chapter 3.

DillplayCella (displizy, scrtm_ftumber)

int XDisplayCe11s(displ4y, scrtm_ftumber)

Display "displ4y;
int scrtm _ ftumber;

Both return the number of entries in the default colormap.

Diaplayl'lanes (displ4y, SCTre1I_ftumber)

int XDlsplayPlanes(display, scrtm_ftumber)

Display .. displ4y;
int scrtm_ftumber;

Both return the depth of the root window of the specified screen. For an expla­
nation of depth, see the glossary.

DisplayStri.nq (display)

char "XDisplayString(display)

Display "displ4y;

Display Functions 2-7

Obtaining Information about the Dlaplay, Image Formats, or Screens

Both return the string that was passed to XOpenDisplay when the current
display was opened. On UNIX-based systems, if the passed string was NULL,
these return the value of the DISPLAY environment variable when the current
display was opened.

These are useful to applications that invoke the fork system call and want to
open a new connection to the same display from the child process as well as for
printing error messages.

LutKnotma.quelltPaIOUMCi (display)

unsigned long XLastKnownRequestProcessed(display)

Display -tlis"lIly;

Both extract the full serial number of the last request known by Xlib to have
been processed by the XWIN server. Xlib automatically sets this number when
replies, events, and errors are received.

NextRequeat (dis"lIly)

unsigned long XNextRequest(dis"l4Iy)

Display -dis"lIly;

Both extract the full serial number that is to be used for the next request. Serial
numbers are maintained separately for each display connection.

protoaolVeraioa (display)

int XProtocolVersion(tlisplay)

Display -dis"lIly;

Both return the major version number (11) of the X protocol associated with the
connected display.

protoaolReviaioa (display)

int XProtocolRevision(dis"lIly)

Display -display;

Both return the minor protocol revision number of the XWIN server.

2-8

QLangth (display)

int XQLength(displlly)

Display -display;

Xwln GWS: Xllb - C Language Interface

Obtaining Information about the Display, Image Formats, or Screens

Both return the length of the event queue for the connected display. Note that
there may be more events that have not been read into the queue yet (see
XEventsQueued).

Rootlfindow (display, screen_number)

Window XRootWindow(displ4y, screen_number)

Display ·displ4yi
int screen _ numberi

Both return the root window. These are useful with functions that need a draw­
able of a particular screen and for creating top-level windows.

S~ount (displlly)

int XScreenCount(displ4y)

Display ·displ4yi

Both return the number of available screens.

SerwrVendor (displlly)

char ·XServerVendor(disp!4y)

Display • displilYi

Both return a pointer to a null-terminated string that provides some
identification of the owner of the XWlN server implementation.

Vendo~leue (display)

int XVendorRelease(displ4y)

Display ·displ4yi

Both return a number related to a vendor's release of the XWlN server.

Display Functions 2-9

Obtaining Information about the Display, Image Formats, or Screens

Image Format Macros

Applications are required to present data to the XWIN server in a format that the
server demands. To help simplify applications, most of the work required to
convert the data is provided by Xlib (see "Transferring Images Between Oient
and Server" in Chapter 6, and "Manipulating lInages" in Chapter 10).

The following lists the C language macros, their corresponding function
equivalents that are for other language bindings, and what data they both
return for the specified server and screen. These are often used by toolkits as
well as by simple applications.

ImagaByteOrder (display)

int XImageByteOrder(display)

Display"display;

Both specify the required byte order for images for each scanline unit in X'f for­
mat (bitmap) or for each pixel value in Z format. The macro or function can
return either LSBFirst or MSBFirst.

BitmapUnit (display)

int XBitmapUnit(display)

Display"display;

Both return the size of a bitmap's scanline unit in bits. The scanline is calcu­
lated in multiples of this value.

BitmapBitOrder(display)

int XBitmapBitOrder(display)

Display"display;

Within each bitmap unit, the left-most bit in the bitmap as displayed on the
screen is either the least-significant or most-significant bit in the unit. This
macro or function can return LSBFirst or MSBFirst.

2-10

Bi~ad(display)

int XBitmapPad(display)

Display "display;

Xwln GWS: Xllb - C Language Interface

Obtaining Information about the Display, Image Formats, or Screens

Each scanline must be padded to a multiple of bits returned by this macro or
function.

DiaplaylleiC#lt (display, scram_"umber)

int XDlsplayHeight(display, screeII_"umber)
Display ·display;
int scram.JIumber;

Both return an integer that describes the height of the screen in pixels.

Diaplaylleightll((display, scram _"umber)

int XDlsplayHeightMM(display, scram_number)
Display ·display;
int scrte7I.JIumber;

Both return the height of the Specified screen in millimeters.

DiaplAyWidth(tlisplay, scram_number)

int XDlsplayWidth(display, screen_number)
Display "displlly;
int scram_number;

Both return the width of the screen in pixels.

DiaplayWidtbIM (display, screeII_ number)

int XDlsplayWidthMM(display, screeII_"umber)
Display ·display;
int scrte7I_"umber;

Both return the width of the specified screen in millimeters.

Display Functions 2·11

Obtaining information about the Dlsplay,lmage Formats, or Screens

Screen Information Macros

The following lists the C language macros, their corresponding function
equivalents that are for other language bindings, and what data they both can
return. These macros or functions all take a pointer to the appropriate screen
structure.

BlackPilalOfScreen (scrten)

unsigned long XBlackPixelOJ5creen(scrttn)

Saeen -scrttn;

Both return the black pixel value of the specified screen.

1IbitePialOfScreen (scrten)

unsigned loog XWhitePixelOiScreen(scrttn)

Saeen -scrttn;

Both return the white pixel value of the specified screen.

CellaOfScreen (scrttn)

int XCellsOfSaeen(scrttn)

Saeen -scrttn;

Both return the number of colormap cells in the default colormap of the
specified screen.

DefaultColocaapOfSaJ:een (scrten)

Colormap XDefaultColormapOfScreen(scrten)

Saeen -scrttn;

Both return the default colormap of the specified screen.

DefaultDeptbOfSaJ:een (scrten)

int XDefaultDepthOJ5creen(SCI'mI)

Saeen -scrten;

Both return the depth of the root window.

2-12 Xwln GWS: Xllb - C Language Interface

Obtaining Information about the Display, Image Formats, or Screens

DefaultGCOfSc:teen (screen)

GC XDefaultGCOfScreen(screen)

Saeen ·screen;

Both return a default graphics context (GC) of the specified screen, which has
the same depth as the root window of the screen. The GC must never be freed.

DefaultViaualOfScreen(SCrten)

Visual ·XDefaultVisualOfScreen(screen)
Saeen ·screen;

Both return the default visual of the specified screen. For information on visual
types, see "Visual Types" in Chapter 3.

DoeaBackingStoJ:e (screen)

int XDoesBackingStore (screen)

Saeen ·screen;

Both return a value indicating whether the screen supports backing stores. The
value returned can be one of WhenMapped, NotUseful, or Always (see "Backing
Store Attribute" in Chapter 3).

DoeaSaveundara(screen)

8001 XDoesSaveUnders(screen)

Saeen ·screen;

Both return a Boolean value indicating whether the screen supports save unders.
If True, the screen supports save unders. If False, the screen does not support
save unders (see "Save Under Flag" in Chapter 3).

DiaplayOfScreen (screen)

Display ·XDisplayOfScreen(screen)

Saeen ·screen;

Both return the display of the specified screen.

Display Functions 2-13

Obtaining Information about the Display, Image Formats, or Screens

BwntHaekOfSol:een (scrun)

long XEventMaskOfScreen(scrun)

Screen ·scruni

Both return the event mask of the root window for the specified screen at con­
nection setup time.

WidtbOfSareen (screen)

tnt XWidthOiScreen(scrun)

Saeen ·scrun;

Both return the width of the specified screen in pixels.

Bei.ghtOfSoJ:een (scrun)

int XHeightOiSaeen(scrun)

Screen ·scrun i

Both return the height of the Specified screen in pixels.

Widt~(scrun)

tnt XWidthMMOiScreen(scrun)

Screen ·scruni

Both return the width of the specified screen in millimeters.

BeigbtlH>fSorMn (scrun)

tnt XHeightMMOfScreen(scrun)

Saeen ·scrun;

Both return the height of the specified screen in millimeters.

MalICmapIlOfSorMn (scrun)

tnt XMaxCmapsOfScreen(scrun)

Screen ·scruni

Both return the maximum number of installed colormaps supported by the
specified screen (see "Determining Resident Colormaps" in Chapter 7).

2-14 Xwln GWS: Xllb - C Language Interface

Obtaining Information about the Display, Image Formats, or Screens

MirQaapIlOfSc:re.l (scrren)

int XMinCmapsOfScreen(SCP'UPI)
Screen -SCP'UPI;

Both return the minimum number of installed colormaps supported by the
specified screen (see "Determining Resident Colormaps" in Chapter 7).

PlanuOfScreen (scrren)

int XPlanesOfScreen(scrren)
Screen -SCP'UPI;

Both return the depth of the root window.

Root1f~ (scrren)

Window XRootWindowOfSQ'een(SCP'UPI)
Screen -SCP'UPI;

Both return the root window of the specified screen.

Display Functions 2-15

Generating a NoOperation Protocol Request

To execute a NoOperation protocol request, use XNoOp.

display

XNoOp (displily)

Display ·displ4y;

Specifies the connection to the XWIN server.

The XNoOp function sends a NoOperation protocol request to the XWIN server,
thereby exercising the connection.

2-16 Xwln GWS: Xllb - C Language Interface

Freeing Client-Created Data

To free any in-memory data that was created by an Xlib function, use XFree.

Xl!'ree (data)

char -data;

data Specifies a pointer to the data that is to be freed.

The XFree function is a general-purpose Xlib routine that frees the specified
data. You must use it to free any objects that were allocated by Xlib.

Display Functions 2-17

Closing the Display

To close a display or disconnect from the XWIN server, use XCloseDisplay.

display

XCloMDiaplay (displlJy)
Display ·displlly;

Specifies the connection to the XWIN server.

The XCloseDisplay function closes the connection to the XWIN server for the
display specified in the Display structure and destroys all windows, resource
IDs (Window, Font, Pixmap, Colormap, Cursor, and GContext), or other
resources that the client has created on this display, unless the close-<iown mode
of the resource has been changed. (see XSetCloseDownMode). Therefore, these
windows, resource IDs, and other resources should never be referenced again or
an error will be generated. Before exiting, you should call XCloseDisplay
explicitly so that any pending errors are reported as XCloseDisplay performs a
final XSync operation.

XCloseDisplay can generate a BadGe error.

2·18 Xwln GWS: Xllb - C Language Interface

XWIN Server Connection Close Operations

When the XWIN server's connection to a client is closed either by an explicit call
to XCloseDisplay or by a process that exits, the XWIN server performs the fol­
lowing automatic operations:

• It disowns all selections owned by the client (see XSetSelectionOwner).

• It performs an XUnqrabPointer and XUnqrabKeyboard if the client has
actively grabbed the pointer or the keyboard.

• It performs an XUnqrabServer if the client has grabbed the server.

• It releases all passive grabs made by the client.

• It marks all resources (including colormap entries) allocated by the client
either as pennanent or temporary, depending on whether the close-down
mode is RetainPermanent or RetainTemporary. However, this does not
prevent other client applications from explicitly destroying the resources
(see XSetCloseDownMode).

When the clo~own mode is DestroyAll, the XWIN server destroys all of a
client's resources as follows:

• It examines each window in the client's save-set to determine if it is an
inferior (subwindow) of a window created by the client. (The save-set is a
list of other clients' windows, which are referred to as save-set windows.)
If so, the XWIN server reparents the save-set window to the closest ances­
tor so that the save-set window is not an inferior of a window created by
the client. The reparenting leaves unchanged the absolute coordinates
(with respect to the root window) of the upper-left outer corner of the
save-set window.

• It performs a MapWindow request on the save-set window if the save-set
window is unmapped. The XWIN server does this even if the save-set
window was not an inferior of a window created by the client.

• It destroys all windows created by the client.

• It performs the appropriate free request on each nonwindow resource
created by the client in the server (for example, Font, Pixmap, Cursor,
Colormap, and GContext).

Display Functions 2-19

XWIN Server Connection Close Operations

• It frees all colors and colorrnap entries allocated by a client application.

Additional processing occurs when the last connection to the XWIN server closes.
An XWIN server goes through a cycle of having no connections and having some
connections. When the last connection to the XWIN server closes as a result of a
connection closing with the close_mode of DestroyAll, the XWIN server does
the following:

• It resets its state as if it had just been started. The XWIN server begins by
destroying all lingering resources from clients that have terminated in
RetainPennanent or RetainTellporary mode.

• It deletes all but the predefined atom identifiers.

• It deletes all properties on all root windows (see Chapter 4).

• It resets all device maps and attributes (for example, key click, bell
volume, and acceleration) as well as the access control list.

• It restores the standard root tiles and cursors.

• It restores the default font path.

• It restores the input focus to state PointerRoot.

However, the XWIN server does not reset if you close a connection with a close­
down mode set to RetainPemanent or RetainTemporary.

2·20 Xwln GWS: Xllb - C Language Interface

3 Window Functions

Introduction 3-1

Visual Types 3-2

Window Attributes 3-4
Background Attribute 3-7
Border Attribute 3-8
Gravity Attributes 3-9
Backing Store Attribute 3-11
Save Under Flag 3-11
Backing Planes and Backing Pixel Attributes 3-12
Event Mask and Do Not Propagate Mask Attributes 3-12
Override Redirect Flag 3-13
Colorrnap Attribute 3-13
Cursor Attribute 3-14

Creating Windows 3-15

Destroying Windows 3-19

Table of Contents

Table of Contents __________________ _

Mapping Windows 3-21

Unmapping Windows 3-24

Configuring Windows 3-25

Changing Window Stacking Order 3-32

Changing Window Attributes 3-36

Translating Window Coordinates 3-40

II Xwln GWS: Xllb - C Language Interface

Introduction

In the XWIN System, a window is a rectangular area on the screen that lets you
view graphic output. Client applications can display overlapping and nested
windows that are driven by XWIN servers on one or more machines. Oients
who want to create windows must first connect their program to the XWIN
server by calling XOpenDisplay. This chapter begins with a discussion of visual
types and window attributes. The chapter continues with a discussion of the
Xlib functions you can use to:

• Create windows

• Destroy windows

• Map windows

• Unmap windows

• Configure windows

• Change the stacking order

• Change window attributes

• Translate window coordinates

This chapter also identifies the window actions that may generate events.

Note that it is vital that your application conform to the established conventions
for communicating with window managers for it to work well with the various
window managers in use (see "Communicating with Window Managers" in
Chapter 9). Toolkits generally adhere to these conventions for you, relieving
you of the burden. Toolkits also often supersede many functions in this chapter
with versions of their own. Refer to the documentation for the toolkit you are
using for more information.

Window Functions 3-1

Visual Types

On some display hardware, it may be possible to deal with color resources in
more than one way. For example, you may be able to deal with a screen of
either 12-bit depth with arbitrary mapping of pixel to color (pseudo-color) or
24-bit depth with 8 bits of the pixel dedicated to each of red, green, and blue.
These different ways of dealing with the visual aspects of the screen are called
visuals. For each screen of the display, there may be a list of valid visual types
supported at different depths of the screen. Because default windows and
visual types are defined for each screen, most simple applications need not deal
with this complexity. Xlib provides macros and functions that return the default
root window, the default depth of the default root window, and the default
visual type (see "Display Macros" in chapter 2 and XMatchVisualInfo).

Xlib uses a Visual structure that contains information about the possible color
mapping. The members of this structure pertinent to this discussion are class,
red_mask, green_mask, blue_mask, bits..,per_rgb, and map_entries. The class
member specifies one of the possible visual classes of the screen and can be Sta­
tioGray,StatioColor,TrueColor,GrayScale,PseudoColor,or
DirectColor.

The following concepts may serve to make the explanation of visual types
clearer. The screen can be color or grayscale, can have a colormap that is writ­
able or read-only, and can also have a colormap whose indices are decomposed
into separate RGB pieces, provided one is not on a grayscale screen. This leads
to the following diagram:

Color
RIO R/W

Undecom- Static Pseudo
posed Color Color
Colormap

Decomposed True Direct
Colormap Color Color

GrayScale
RIO R/W

Static Gray
Gray Scale

Conceptually, as each pixel is read out of video memory for display on the
screen, it goes through a look-up stage by indexing into a colormap. Colormaps
can be IIl8Jlipulated arbitrarily on some hardware, in limited ways on other
hardware, and not at all on other hardware. The visual types affect the color­
map and the RGB values in the following ways:

3-2 Xwln GWS: Xllb - C Language Interface

__________________________ Visual Types

• For PseudoColor, a pixel value indexes a colonnap to produce indepen­
dent RGB values, and the RGB values can be changed dynamically.

• GrayScale is treated the same way as PseudoColor except that the pri­
mary that drives the screen is undefined. Thus, the client should always
store the same value for red, green, and blue in the colonnaps.

• For DirectColor, a pixel value is decomposed into separate RGB
subfields, and each subfield separately indexes the colonnap for the
corresponding value. The RGB values can be changed dynamically.

• TrueColor is treated the same way as DirectColor except that the color­
map has predefined, read-only RGB values. These RGB values are
server-dependent but provide linear or near-linear ramps in each primary.

• StaticColor is treated the same way as PseudoColor except that the
colonnap has predefined, read-only, server-dependent RGB values.

• StaticGray is treated the same way as StaticColor except that the RGB
values are equal for any single pixel value, thus resulting in shades of
gray. StaticGray with a two-entry colonnap can be thought of as mono­
chrome.

The red_mask, green_mask, and blue_mask members are only defined for
DirectColor and TrueColor. Each has one contiguous set of bits with no
intersections. The bits ~r Jgb member specifies the log base 2 of the number
of distinct color values (individually> of red, green, and blue. Actual RGB
values are unsigned 16-bit numbers. The map_entries member defines the
number of available colonnap entries in a newly created colonnap. For
DirectColor and TrueColor, this is the size of an individual pixel subfield.

To obtain the visual ID from a Visual, use XVisualIDFromVisual.

visual

ViaualID XViaualIDPz:gmViaual (tlislllll)
Visual -tlislllll;

Specifies the visual type.

The XVisualIDFromVisual function returns the visual 10 for the specified
visual type.

Window Functions 3-3

Window Attributes

All InputOutput windows have a .border width of zero or more pixels, an
optional background, an event suppression mask (which suppresses propagation
of events from children), and a property list (see "Properties and Atoms" in
Chapter 4). The window border and background can be a solid color or a pat­
tern, called a tile. All windows except the root have a parent and are clipped
by their parent. If a window is stacked on top of another window, it obscures
that other window for the purpose of input. If a window has a background
(almost all do), it obscures the other window for purposes of output. Attempts
to output to the obscured area do nothing, and no input events (for example,
pointer motion) are generated for the obscured area.

Windows also have associated property lists (see "Properties and Atoms" in
Chapter 4).

Both InputOutput and InputOnly windows have the following common attri­
butes, which are the only attributes of an InputOnly window:

• win-gravity

• event-mask

• do-not-propagate-mask

• override-redirect

• cursor

If you specify any other attributes for an InputOnly window, a BadMatch error
results.

InputOnly windows are used for controlling input events in situations where
InputOutput windows are unnecessary. InputOnly windows are invisible; can
only be used to control such things as cursors, input event generation, and grab­
bing; and cannot be used in any graphics requests. Note that InputOnly win­
dows cannot have InputOutput windows as inferiors.

Windows have borders of a programmable width and pattern as well as a back­
ground pattern or tile.

Pixel values can be used for solid colors.

The background and border pixmaps can be destroyed immediately after creat­
ing the window if no further explicit references to them are to be made.

3-4 Xwln GWS: Xllb - C Language Interface

Window Attributes

The pattern can either be relative to the parent or absolute. If ParentRelative,
the parent's background is used.

When windows are first created, they are not visible (not mapped) on the
screen. Any output to a window that is not visible on the screen and that does
not have backing store will be discarded.

An application may wish to create a window long before it is mapped to the
screen. When a window is eventually mapped to the screen (using XMapWin­
dow), the XWIN server generates an Expose event for the window if backing
store has not been maintained.

A window manager can override your choice of size, border width, and position
for a top-level window. Your program must be prepared to use the actual size
and position of the top window. It is not acceptable for a client application to
resize itself unless in direct response to a human command to do so. Instead,
either your program should use the space given to it, or if the space is too small
for any useful work, your program might ask the user to resize the window.
The border of your top-level window is considered fair game for window
managers.

To set an attribute of a window, set the appropriate member of the XSetWin­
dowAttributes structure and OR in the corresponding value bitmask in your
subsequent calls to XCreateWindow and XChanqeWindowAttributes, or use one
of the other convenience functions that set the appropriate attribute. The sym­
bols for the value mask bits and the XSetWindowAttributes structure are:

,. Window attribute value mask bits .,

'define CWBackP i.lIIIII.p (lL«O)

'define C'IIB&clcP ileal (lL«l)

'define CIIBorderPi.lIIIII.p (lL<<2)

'define CIIBorderPileal (1L<<3)

Ifdefine CllBitGravity (lL«4)

Ifdefine allfiDGravity (lL<<5)

Ifdefine CllBacJdngStoxe (lL<<6)

*define CEeokingPlanea (1L<<7)

Ifdefine CEeokingPileal (1L<<8)

Window Functions 3-5

Window Attributes

IIdefine ex>wrrideRedirect

IIdefine CWSawUnder

IIdefine CWBventMask

IIdefine CWDontpropaqate

IIdefine CK:oloJ:lllllp

IIdefine OCursor

/* Values */

typedef struct

P ixmap backqround ...,Pixmap;

unsigned lonq bacltqround...,pixel;

Pixmap border...,pilcmap;

unsigned lonq border...,pixel;

int bit_gravity;

int win_gravity;

int bacltin9_store;

unsigned lonq backinq...,planes;

unsigned lonq backinq...,pixel;

Bool saw_under;

lonq event_mask;

lonq do_not""propaqate_mask;

Bool owrride_redirect;

Colormap col0J:lllllP;

Cursor cursor;

} XSetWindowAttributes;

(lL<<9)

(1 L«l 0)

(lL«l1)

(lL«12)

(lL«13)

(lL«14)

/* background, None, or ParentRelative */
/* background pixel */
/* border of the window or Copy'FromI?arent */
/* border pixel value */
/* one of bit gravity values */
/* one of the window gravity values */
/* NotUseful, WbenMappeci, Always */
/* planes to be preserved if possible */
/* value to use in restorinq planes */
/* should bits under be sawd? (popups) */
/* set of events that should be sawd */
/* set of ewnts that should not propaqate */
/* boolean value for owrride_redirect */
/* color map to be &ssociated with window */
/* cursor to be displaj8d (or None) */

The following lists the defaults for each window attribute and indicates whether
the attribute is applicable to InputOutput and InputOnly windows:

Attribute Default InputOutput InputOnly

background-pixmap None Yes No
background-pixel Undefined Yes No
border-pixmap CopyFromParent Yes No
border-pixel Undefined Yes No

3-6 Xwln GWS: Xllb - C Language Interface

_______________________ Window Attributes

Attribute Default InputOutput InputOnly

bit-gravity ForgetGravity Yes No
win-gravity NorthwestGravity Yes Yes
backing-store NotUseful Yes No
backing-planes All ones Yes No
backing-pixel zero Yes No
save-under False Yes No
event-mask empty set Yes Yes
do-not-propagate-mask empty set Yes Yes
override-redirect False Yes Yes
colormap CopyFranParent Yes No
cursor None Yes Yes

Background Attribute

Only InputOutput windows can have a background. You can set the back­
ground of an InputOutput window by using a pixel or a pixmap.

The background-pixmap attribute of a window specifies the pixmap to be used
for a window's background. This pixmap can be of any size, although some
sizes may be faster than others. The background-pixel attribute of a window
specifies a pixel value used to paint a window's background in a single color.

You can set the background-pixmap to a pixmap, None (default), or ParentRe­
lative. You can set the background-pixel of a window to any pixel value (no
default). H you specify a background-pixel, it overrides either the default
background-pixmap or any value you may have set in the background-pixmap.
A pixmap of an undefined size that is filled with the background-pixel is used
for the background. Range checking is not performed on the background pixel;
it simply is truncated to the appropriate number of bits.

H you set the background-pixmap, it overrides the default. The background­
pixmap and the window must have the same depth, or a BaclMatch error
results. H you set background-pixmap to None, the window has no defined
background. H you set the background-pixmap to ParentRelative:

Window Functions 3-7

Window Attrlbut ..

• The parent window's background-pixmap is used. The child window,
however, must have the same depth as its parent, or a BadMatch error
results.

• If the parent window has a background-pixmap of None, the window also
has a background-pixmap of None.

• A copy of the parent window's background-pixmap is not made. The
parent's background-pixmap is examined each time the child window's
background-pixmap is required.

• The background tile origin always aligns with the parent window's back­
ground tile origin. If the background-pixmap is not ParentRelative, the
background tile origin is the child window's origin.

Setting a new background, whether by setting background-pixmap or
background-pixel, overrides any previous background. The background-pixmap
can be freed immediately if no further explicit reference is made to it (the XWIN
server will keep a copy to use when needed). If you later draw into the pixmap
used for the background, what happens is undefined because the X implementa­
tion is free to make a copy of the pixmap or to use the same pixmap.

When no valid contents are available for regions of a window and either the
regions are visible or the server is maintaining backing store, the server
automatically tiles the regions with the window's background unless the win­
dow has a background of None. If the background is None, the previous screen
contents from other windows of the same depth as the window are simply left
in place as long as the contents come from the parent of the window or an infe­
rior of the parent. Otherwise, the initial contents of the exposed regions are
undefined. Expose events are then generated for the regions, even if the
background-pixmap is None (see Chapter 8).

Border Attribute

Only InputOutput windows can have a border. You can set the border of an
InputOutput window by using a pixel or a pixmap.

The border-pixmap attribute of a window specifies the pixmap to be used for a
window's border. The border-pixel attribute of a window specifies a pixmap of
undefined size filled with that pixel be used for a window's border. Range
checking is not performed on the background pixel; it simply is truncated to the

3-8 Xwln GWS: Xllb - C Language Interface

_______________________ Window Attributes

appropriate number of bits. The border tile origin is always the same as the
background tile origin.

You can also set the border-pixmap to a pixmap of any size (some may be faster
than others) or to CopyFraaParent (default). You can set the border-pixel to
any pixel value (no default).

If you set a border-pixmap, it overrides the default. The border-pixmap and the
window must have the same depth, or a BadMatch error results. If you set the
border-pixmap to CopyFromParent, the parent window's border-pixmap is
copied. Subsequent changes to the parent window's border attribute do not
affect the child window. However, the child window must have the same depth
as the parent window, or a BadMatch error results.

The border-pixmap can be freed immediately if no further explicit reference is
made to it. If you later draw into the pixmap used for the border, what hap­
pens is undefined because the X implementation is free either to make a copy of
the pixmap or to use the same pixmap. If you specify a border-pixel, it over­
rides either the default border-pixmap or any value you may have set in the
border-pixmap. All pixels in the window's border will be set to the border­
pixel. Setting a new border, whether by setting border-pixel or by setting
border-pixmap, overrides any previous border.

Output to a window is always clipped to the inside of the window. Therefore,
graphics operations never affect the window border.

Gravity Attributes

The bit gravity of a window defines which region of the window should be
retained when an InputOutput window is resized. The default value for the
bit-gravity attribute is ForgetGravity. The window gravity of a window
allows you to define how the InputOutput or InputOnly window should be
repositioned if its parent is resized. The default value for the win-gravity attri­
bute is NorthWestGravity.

If the inside width or height of a window is not changed and if the window is
moved or its border is changed, then the contents of the window are not lost
but move with the window. Changing the inside width or height of the win­
dow causes its contents to be moved or lost (depending on the bit-gravity of the
window) and causes children to be reconfigured (depending on their win­
gravity). For a change of width and height, the (x, y) pairs are defined:

Window Functions 3-9

Window Attrlbut ..

Gravity Direction

NorthW8stGravity
NorthGravity
NorthEastGravity
WestGravity
CenterGravity
EastGravity
SOuthWest Gravity
SOuthGravity
SOuthEastGravity

Coordinates

(0,0)
(Width/2, 0)
(Width, 0)
(0, Height/2)
(Width/2, Height/2)
(Width, Height/2)
(0, Height)
(Width/2, Height)
(Width, Height)

When a window with one of these bit-gravity values is resized, the correspond­
ing pair defines the change in position of each pixel in the window. When a
window with one of these win-gravities has its parent window resized, the
corresponding pair defines the change in position of the window within the
parent. When a window is so repositioned, a GravityNot!fy event is gen­
erated (see Chapter 8).

A bit-gravity of StaticGravity indicates that the contents or origin should not
move relative to the origin of the root window. If the change in size of the win­
dow is coupled with a change in position (x, y), then for bit-gravity the change
in position of each pixel is (-x, -y), and for win-gravity the change in position
of a child when its parent is so resized is (-x, -y). Note that StaticGravity
still only takes effect when the width or height of the window is changed, not
when the window is moved.

A bit-gravity of ForqetGravity indicates that the window's contents are always
discarded after a size change, even if a backing store or save under has been
requested. The window is tiled with its background and zero or more Expose
events are generated. If no background is defined, the existing screen contents
are not altered. Some XWIN servers may also ignore the specified bit-gravity
and always generate Expose events.

A win-gravity of UDmapGravity is like NorthWestGravity (the window is not
moved), except the child is also unmapped when the parent is resized, and an
UnmapNotify event is generated.

3-10 Xwln OWS: Xllb - C Language Interface

Window Attributes

Backing Store Attribute

Some implementations of the XWIN server may choose to maintain the contents
of InputOutput windows. If the XWIN server maintains the contents of a win­
dow, the off-screen saved pixels are known as backing store. The backing store
advises the XWIN server on what to do with the contents of a window. The
backing-store attribute can be set to NotUseful (default), WhenMapped, or
Always.

A backing-store attribute of NotUseful advises the XWIN server that maintain­
ing contents is unnecessary, although some X implementations may still choose
to maintain contents and, therefore, not generate Expose events. A backing­
store attribute of WhenMapped advises the XWIN server that maintaining contents
of obscured regions when the window is mapped would be beneficial. In this
case, the server may generate an Expose event when the window is created. A
backing-store attribute of Always advises the XWIN server that maintaining con­
tents even when the window is unmapped would be beneficial. Even if the win­
dow is larger than its parent, this is a request to the XWIN server to maintain
complete contents, not just the region within the parent window boundaries.
While the XWIN server maintains the window's contents, Expose events nor­
mally are not generated, but the XWIN server may stop maintaining contents at
any time.

When the contents of obscured regions of a window are being maintained,
regions obscured by noninferior windows are included in the destination of
graphics requests (and source, when the window is the source). However,
regions obscured by inferior windows are not included.

Save Under Flag

The XWIN server implementation preserves the contents of InputOutput win­
dows under other InputOutput windows. This is not the same as preserving
the contents of a window for you. You may get better visual appeal if transient
windows (for example, pop-up menus) request that the system preserve the
screen contents under them, so the temporarily obscured applications do not
have to repaint.

Window Functions 3-11

Window Attributes

You can set the save-under flag to True or False (default). If save-under is
True, the XWIN server is advised that, when this window is mapped, saving the
contents of windows it obscures would be beneficial.

Backing Planes and Backing Pixel Attributes

You can set backing planes to indicate (with bits set to 1) which bit planes of an
InputOutput window hold dynamic data that must be preserved in backing
store and during save unders. The default value for the backing-planes attribute
is all bits set to 1. You can set backing pixel to specify what bits to use in
planes not covered by backing planes. The default value for the backing-pixel
attribute is all bits set to O. The XWIN server is free to save only the specified bit
planes in the backing store or the save under and is free to regenerate the
remaining planes with the specified pixel value. Any extraneous bits in these
values (that is, those bits beyond the specified depth of the window) may be
simply ignored. If you request backing store or save unders, you should use
these members to minimize the amount of off-screen memory required to store
your window.

Event Mask and Do Not Propagah! Mask Attributes

The event mask defines which events the client is interested in for this
InputOutput or InputOnly window (or, for some event types, inferiors of that
window). The do-not-propagate-mask attribute defines which events should not
be propagated to ancestor windows when no client has the event type selected
in this InputOutput or InputOnly window. Both masks are the bitwise
inclusive OR of one or more of the valid event mask bits. You can specify that
no maskable events are reported by setting NoEventMask (default).

3-12 Xwln GWS: Xllb - C Language Interface

_______________________ Window Attributes

Override Redirect Flag

To control window placement or to add decoration, a window manager often
needs to intercept (redirect) any map or configure request. Pop-up windows,
however, often need to be mapped without a window manager getting in the
way. To control whether an InputOutput or InputOnly window is to ignore
these structure control facilities, use the override-redirect flag.

The override-redirect flag specifies whether map and configure requests on this
window should override a SubstructureRedirectMask on the parent. You
can set the override-redirect flag to True or False (default). Window managers
use this information to avoid tampering with pop-up windows (see also Chapter
9).

Colormap Attribute

The colormap attribute specifies which colormap best reflects the true colors of
the InputOUtput window. The colormap must have the same visual type as the
window, or a BadMatch error results. XWIN servers capable of supporting multi­
ple hardware colormaps can use this information, and window managers can
use it for calls to XlnstallCOlormap. You can set the colormap attibute to a
colormap or to COpyFromParent (default).

If you set the colormap to COpyFromParent, the parent window's colormap is
. copied and used by its child. However, the child window must have the same
visual type as the parent, or a BadMatch error results. The parent window must
not have a colormap of None, or a BadMatch error results. The colormap is
copied by sharing the colormap object between the child and parent, not by
making a complete copy of the colormap contents. Subsequent changes to the
parent window's colormap attribute do not affect the child window.

Window Functions 3-13

Window Attribute.

Cursor Attribute

The cursor attribute specifies which cursor is to be used when the pointer is in
the InputOutput or InputOnly window. You can set the cursor to a cursor or
None (default).

If you set the cursor to None, the parent's cursor is used when the pointer is in
the InputOutput or InputOnly window, and any change in the parent's cursor
will cause an immediate change in the displayed cursor. By calling XFreeCur­
sor, the cursor can be freed immediately as long as no further explicit reference
to it is made.

3·14 Xwln GWS: Xllb - C Language Interface

Creating Windows

Xlib provides basic ways for creating windows, and toolkits often supply
higher-level functions specifically for creating and placing top-level windows,
which are discussed in the appropriate toolkit documentation. If you do not use
a toolkit, however, you must provide some standard information or hints for the
window manager by using the Xlib predefined property functions (see
Chapter 9).

If you use Xlib to create your own top-level windows (direct children of the root
window), you must observe the following rules so that all applications interact
reasonably across the different styles of window management:

• You must never fight with the window manager for the size or placement
of your top-level window.

• You must be able to deal with whatever size window you get, even if this
means that your application just prints a message like "Please make me
bigger" in its window.

• You should only attempt to resize or move top-level windows in direct
response to a user request. If a request to change the size of a top-level
window fails, you must be prepared to live with what you get. You are
free to resize or move the children of top-level windows as necessary.
(Toolkits often have facilities for automatic relayout.)

• If you do not use a toolkit that automatically sets standard window pro­
perties, you should set these properties for top-level windows before map­
ping them.

XCreateWindow is the more general function that allows you to set specific win­
dow attributes when you create a window. XCreateSirlpleWindow creates a
window that inherits its attributes from its parent window.

The XWIN server acts as if InputOnly windows do not exist for the purposes of
graphics requests, exposure processing, and VisibilityNotify events. An
InputOnly window cannot be used as a drawable (that is, as a source or desti­
nation for graphics requests). InputOnly and InputOutput windows act ident­
ically in other respects (properties, grabs, input control, and so on). Extension
packages can define other classes of windows.

To create an unmapped window and set its window attributes, use
XCreateWindow.

Window Functions 3-15

Creating Windows

display

parent
x
y

width
height

Window XCreateWindow (display, parent, ", y, width, height, border_width, depth,

clilss, TlislUll, TJIIluemuk, attributes)

Display -display;
Window TJIlmlt;

int ", y;
unsigned int width, height;
unsigned int border_width;
int depth;
unsigned int clilss;

Visual -TlislUll
unsigned long T1tIluemuk;

XSetWindowAttributes -attn'butes;

Specifies the connection to the XWIN server.

Specifies the parent window.

Specify the x and y coordinates, which are the top-left outside
comer of the created window's borders and are relative to the
inside of the parent window's borders.

Specify the width and height, which are the created window's
inside dimensions and do not include the created window's
borders. The dimensions must be nonzero, or a BadValue error
results.

border width

depth

Specifies the width of the created window's border in pixels.

Specifies the window's depth. A depth of CopyFromParent
means the depth is taken from the parent.

class

visual

valuemask

3-16

Specifies the created window's class. You can pass InputOut­
put, InputOnly, or CopyFromParent. A class of CopyFrom­
Parent means the class is taken from the parent.

Specifies the visual type. A visual of CopyFromParent means
the visual type is taken from the parent.

Specifies which window attributes are defined in the attributes
argument. This mask is the bitwise inclusive OR of the valid
attribute mask bits. If valuemask is zero, the attributes are
ignored and are not referenced.

Xwln GWS: Xllb - C Language Interface

attributes

Creating Windows

Specifies the structure from which the values (as specified by the
value mask) are to be taken. The value mask should have the
appropriate bits set to indicate which attributes have been set in
the structure.

The XCreateWindow function creates an unmapped subwindow for a specified
parent window, returns the window ID of the created window, and causes the
XWIN server to generate a CreateNotify event. The created window is placed
on top in the stacking order with respect to siblings.

The border width for an InputOnly window must be zero, or a BadMatch error
results. For class InputOutput, the visual type and depth must be a combina­
tion supported for the screen, or a BadMatch error results. The depth need not
be the same as the parent, but the parent must not be a window of class
InputOnly, or a BadMatch error results. For an InputOnly window, the depth
must be zero, and the visual must be one supported by the screen. If either
condition is not met, a BadMatch error results. The parent window, however,
may have any depth and class. If you specify any invalid window attribute for
a window, a BadMatch error results.

The created window is not yet displayed (mapped) on the user's display. To
display the window, call XMapWindow. The new window initially uses the same
cursor as its parent. A new cursor can be defined for the new window by calling
XDefineCursor.

The window will not be visible on the screen unless it and all of its ancestors
are mapped and it is not obscured by any of its ancestors.

XCreateWindow can generate BadAlloc, BadColor, BadCursor, BadMatch, Bad­
Pixmap, BadValue, and BadWindow errors.

To create an unmapped InputOutput subwindow of a given parent window,
use XCreateSimpleWindow.

Window Functions 3-17

Creating Window.

display

parent
x
y

width
height

Wi.nclow lICJ:eateSiDFleWindow (disl'lily, parent, %, y, TDitlth, height, Ixmler _width,
Ixmler, lMckground)

Display ·displllYi

Window JMrmti

int %, Yi
unsigned int TDitlth, heighti
unsigned int border _ widthi

unsigned long bar"'i
unsigned long hckgroamdi

Specifies the connection to the XWIN server.

Specifies the parent window.

Specify the x and y coordinates, which are the top-left outside
comer of the new window's borders and are relative to the
inside of the parent window's borders.

Specify the width and height, which are the created window's
inside dimensions and do not include the created window's
borders. The dimensions must be nonzero, or a BadValue error
results.

border width

border

background

Specifies the width of the created window's border in pixels.

Specifies the border pixel value of the window.

Specifies the background pixel value of the window.

The XCreateSimpleWindow function creates an unmapped InputOutput
subwindow for a specified parent window, returns the window ID of the
created window, and causes the XWIN server to generate a CreateNotify event.
The created window is placed on top in the stacking order with respect to
siblings. Any part of the window that extends outside its parent window is
clipped. The border_width for an InputOnly window must be zero, or a Bad­
Match error results. XCreateSimpleWindow inherits its depth, class, and visual
from its parent. All other window attributes, except background and border,
have their default values.

XCreateSimplewindow can generate BadAlloc, BadMatch, BadValue, and
BadWindow errors.

3-18 Xwln GWS: Xllb - C Language Interface

Destroying Windows

Xlib provides functions that you can use to destroy a window or destroy all
subwindows of a window.

To destroy a window and all of its subwindows, use XDestroyWindow.

display

w

XDeatroyWindow(d~p~/w)

Display ·d~p~;
Windoww;

Specifies the connection to the XWlN server.

Specifies the window.

The XDestroyWindow function destroys the specified window as well as all of
its subwindows and causes the XWIN server to generate a DestroyNotify event
for each window. The window should never be referenced again. If the win­
dow specified by the w argument is mapped, it is unmapped automatically.
The ordering of the DestroyNotify events is such that for any given window
being destroyed, DestroyNotify is generated on any inferiors of the window
before being generated on the window itself. The ordering among siblings and
across subhierarchies is not otherwise constrained. If the window you specified
is a root window, no windows are destroyed. Destroying a mapped window
will generate Expose events on other windows that were obscured by the win­
dow being destroyed.

XDestroyWindow can generate a BadWindow error.

To destroy all subwindows of a specified window, use XDestroySubwindows.

display

w

XDeatroySubwindowa(d~p~/w)

Display "d~pllly;
Windoww;

Specifies the connection to the XWlN server.

Specifies the window.

The XDestroySubwindows function destroys all inferior windows of the
specified window, in bottom-to-top stacking order. It causes the XWIN server to
generate a DestroyNotify event for each window. If any mapped subwindows
were actually destroyed, XDestroySubwindows causes the XWlN server to gen­
erate Expose events on the specified window. This is much more efficient than
deleting many windows one at a time because much of the work need be

Window Functions 3-19

Destroying Windows

performed only once for all of the windows, rather than for each window. The
subwindows should never be referenced again.

XDestroySubwindows can generate a BadWindow error.

3·20 Xwln GWS: Xllb - C Language Interface

Mapping Windows

A window is considered mapped if an XMapWindow call has been made on it. It
may not be visible on the screen for one of the following reasons:

• It is obscured by another opaque window.

• One of its ancestors is not mapped.

• It is entirely clipped by an ancestor.

Expose events are generated for the window when part or all of it becomes visi­
ble on the screen. A client receives the Expose events only if it has asked for
them. Windows retain their position in the stacking order when they are
unmapped.

A window manager may want to control the placement of subwindows. If Sub­
structureRedirectMask has been selected by a window manager on a parent
window (usually a root window), a map request initiated by other clients on a
child window is not performed, and the window manager is sent a MapRequest
event. However, if the override-redirect flag on the child had been set to True
(usually only on pop-up menus), the map request is performed.

A tiling window manager might decide to reposition and resize other client's
windows and then decide to map the window to its final location. A window
manager that wants to provide decoration might reparent the child into a frame
first. For further information, see "Override Redirect Flag" in this Chapter and
Chapter 8. Only a single client at a time can select for Substruc­
tureRedirectMask.

Similarly, a single client can select for ResizeRedirectMask on a parent win­
dow. Then, any attempt to resize the window by another client is suppressed,
and the client receives a ResizeRequest event.

To map a given window, use XMapWindow.

display

w

XMapWindoW' (display, w)

Display • displlly;
Windoww;

Specifies the connection to the XWIN server.

Specifies the window.

Window Functions 3·21

Mapping Windows

The XMapWindow function maps the window and all of its subwindows that
have had map requests. Mapping a window that has an unmapped ancestor
does not display the window but marks it as eligible for display when the
ancestor becomes mapped. Such a window is called unviewable. When all its
ancestors are mapped, the window becomes viewable and will be visible on the
screen if it is not obscured by another window. This function has no effect if
the window is already mapped.

If the override-redirect of the window is False and if some other client has
selected SubstructureRedirectMask on the parent window, then the XWIN
server generates a MapRequest event, and the XMapWindow function does not
map the window. Otherwise, the window is mapped, and the XWIN server gen­
erates a MapNotify event.

If the window becomes viewable and no earlier contents for it are remembered,
the XWIN server tiles the window with its background. If the window's back­
ground is undefined, the existing screen contents are not altered, and the XWIN
server generates zero or more Expose events. If backing-store was maintained
while the window was unmapped, no Expose events are generated. If
backing-store will now be maintained, a full-window exposure is always gen­
erated. Otherwise, only visible regions may be reported. Similar tiling and
exposure take place for any newly viewable inferiors.

If the window is an InputOutput window, XMapWindow generates Expose
events on each InputOutput window that it causes to be displayed. If the
client maps and paints the window and if the client begins processing events,
the window is painted twice. To avoid this, first ask for Expose events and
then map the window, so the client processes input events as usual. The event
list will include Expose for each window that has appeared on the screen. The
client's normal response to an Expose event should be to repaint the window.
This method usually leads to simpler programs and to proper interaction with
window managers.

XMapWindow can generate a BadWindow error.

To map and raise a window, use XMapRaised.

3·22

XMapRaiaed (displRy, w)

Display ·dispkly;
Windoww;

Xwln GWS: Xllb - C Language Interface

display

w

Specifies the connection to the XWIN server.

Specifies the window.

Mapping Windows

The XMapRaised function essentially is similar to XMapWindow in that it maps
the window and all of its subwindows that have had map requests. However, it
also raises the specified window to the top of the stack. For additional informa­
tion, see XMapWindow.

XMapRaised can generate multiple Badlfindow errors.

To map all subwindows for a specified window, use XMapSubwindows.

display

w

XMapSubwindova (displlly, w)

Display -displlly;
Wlndoww;

Specifies the connection to the XWIN server.

Specifies the window.

The XMapSubwindows function maps all subwindows for a specified window in
top-to-bottom stacking order. The XWIN server generates Expose events on
each newly displayed window. This may be much more efficient than mapping
many windows one at a time because the server needs to perform much of the
work only once, for all of the windows, rather than for each window.

XMapSubwindows can generate a BadWindow error.

Window Functions 3-23

Unmapping Windows

Xlib provides functions that you can use to unmap a window or all subwin­
dows.

To unmap a window, use XUnmapWindow.

display

w

XUnmapWindow (dis-p1lzy, TO)

Display ·disp1lzyi
WindoWTOi

Specifies the connection to the XWIN server.

Specifies the window.

The XUnmapWindow function unmaps the specified window and causes the XWIN
server to generate an UnmapNotify event. If the specified window is already
unmapped, xunmapWindow has no effect. Normal exposure processing on form­
erly obscured windows is performed. Any child window will no longer be visi­
ble until another map call is made on the parent. In other words, the subwin­
dows are still mapped but are not visible until the parent is mapped. Unmap­
ping a window will generate Expose events on windows that were formerly
obscured by it.

XUnmapWindow can generate a BadWindow error.

To unmap all subwindows for a specified window, use XUnmapSubwindows.

display

w

Xt1ruaapSubwindows (display, TO)

Display ·displllyi
WindoWTOi

Specifies the connection to the XWIN server.

Specifies the window.

The XUnmapSubwindows function unmaps all subwindows for the specified win­
dow in bottom-to-top stacking order. It causes the XWIN server to generate an
UnmapNotify event on each subwindow and Expose events on formerly
obscured windows. Using this function is much more efficient than unmapping
multiple windows one at a time because the server needs to perform much of
the work only once, for all of the windows, rather than for each window.

XUnmapSubwindows can generate a BadWindow error.

3-24 Xwln GWS: Xllb - C Language Interface

Configuring Windows

Xlib provides functions that you can use to move a window, resize a window,
move and resize a window, or change a window's border width. To change one
of these parameters, set the appropriate member of the XWindowChanges struc­
ture and OR in the corresponding value mask in subsequent calls to XCOnfi­
gureWinoow. The symbols for the value mask bits and the XWindowChanges
structure are:

/. Configure window value mask bits • /

Idefine

'define

'define

'define

'define

Idefine

'define

1* Valuu *1

typedef stmot (

1nt X, y;
1nt width, height;

1nt boMar_width;

Window aibling';

1nt stack_mode;
} XlfizldoliCbangu;

(1<<0)

(1«1)

(1<<2)

(1<<3)

(1«4)

(1<<5)

(1«6)

The x and y members are used to set the window's x and y coordinates, which
are relative to the parenf s origin and indicate the position of the upper-left
outer comer of the window. The width and height members are used to set the
inside size of the window, not including the border, and must be nonzero, or a
BadValue error results. Attempts to configure a root window have no effect.

The border_width member is used to set the width of the border in pixels. Note
that setting just the border width leaves the outer-left comer of the window in a
fixed position but moves the absolute position of the window's origin. If you
attempt to set the border-width attribute of an InputOnly window nonzero, a
BadMatch error results.

Window Functions 3-25

Configuring Windows

The sibling member is used to set the sibling window for stacking operations.
The stack_mode member is used to set how the window is to be restacked and
can be set to Above, Below, Toplf, BottanIf, or Opposite.

If the override-redirect flag of the window is False and if some other client has
selected SubstructureRedirectMask on the parent, the XWIN server generates
a ConfigureRequest event, and no further processing is performed. Other­
wise, if some other client has selected ResizeRedirectMask on the window and
the inside width or height of the window is being changed, a ResizeRequest
event is generated, and the current inside width and height are used instead.
Note that the override-redirect flag of the window has no effect on
ResizeRedirectMask and that SubstructureRedirectMask on the parent has
precedence over ResizeRedirectMask on the window.

When the geometry of the window is changed as specified, the window is res­
tacked among siblings, and a ConfigureNotify event is generated if the state
of the window actually changes. GravityNotify events are generated after
ConfigureNotify events. If the inside width or height of the window has actu­
ally changed, children of the window are affected as specified.

If a window's size actually changes, the window's subwindows move according
to their window gravity. Depending on the window's bit gravity, the contents
of the window also may be moved (see "Gravity Attributes" in this chapter).

If regions of the window were obscured but now are not, exposure processing is
performed on these formerly obscured windows, including the window itself
and its inferiors. As a result of increasing the width or height, exposure process­
ing is also performed on any new regions of the window and any regions where
window contents are lost.

The restack check (specifically, the computation for BottanIf, Toplf, and Oppo­
site) is performed with respect to the window's final size and position (as con­
trolled by the other arguments of the requesO, not its initial position. If a
sibling is specified without a stack_mode, a BadMatch error results.

If a sibling and a stack_mode are specified, the window is restacked as follows:

3-26 Xwln GWS: Xllb - C Language Interface

Configuring Windows

Above The window is placed just above the sibling.

Below The window is placed just below the sibling.

TopIf If the sibling occludes the window, the window is placed at the
top of the stack.

BottomIf If the window occludes the sibling, the window is placed at the
bottom of the stack.

Opposite If the sibling occludes the window, the window is placed at the
top of the stack. If the window occludes the sibling, the win­
dow is placed at the bottom of the stack.

If a stack_mode is specified but no sibling is specified, the window is restacked
as follows:

Above The window is placed at the top of the stack.

Below The window is placed at the bottom of the stack.

Toplf If any sibling occludes the window, the window is placed at
the top of the stack.

BottomIf If the window occludes any sibling, the window is placed at
the bottom of the stack.

Opposite If any sibling occludes the window, the window is placed at
the top of the stack. If the window occludes any sibling, the
window is placed at the bottom of the stack.

Attempts to configure a root window have no effect.

To configure a window's size, location, stacking, or border, use
XConfigurewinctow.

XCon!iqureWindDw (display, w, wlueJrlflsk, WIlues)
Display -display;
Windoww;
unsigned int wlue J,ulsk;
XWindowChanges -WIlues;

Window Functions 3-27

Configuring Windows

display

w

Specifies the connection to the XWIN server.

Specifies the window to be reconfigured.

value mask Specifies which values are to be set using information in the
values structure. This mask is the bitwise inclusive OR of
the valid configure window values bits.

values Specifies a pointer to the XWindowChanges structure.

The XConfigureWindow function uses the values specified in the XWin­
dowChanges structure to reconfigure a window's size, position, border, and
stacking order. Values not specified are taken from the existing geometry of the
window.

If a sibling is specified without a stack_mode or if the window is not actually a
sibling, a BadMatch error results. Note that the computations for BottanIf,
Toplf, and Opposite are performed with respect to the window's final
geometry (as controlled by the other arguments passed to XConfigureWindow),
not its initial geometry. Any backing store contents of the window, its inferiors,
and other newly visible windows are either discarded or changed to reflect the
current screen contents (depending on the implementation).

XCOnfigureWindow can generate BadMatch, BadValue, and BadWindow errors.

To move a window without changing its size, use XMoveWindow.

display

w

x
y

3-28

XMoveWindov(displlzy, w, x, y)

Display ·disl'lIly;
Windoww;
int x, y;

Specifies the connection to the XWIN server.

Specifies the window to be moved.

Specify the x and y coordinates, which define the new location
of the top-left pixel of the window's border or the window itself
if it has no border.

Xwln GWS: Xllb - C Language Interface

Configuring Windows

The XMoveWindow function moves the specified window to the specified x and y
coordinates, but it does not change the window's size, raise the window, or
change the mapping state of the window. Moving a mapped window mayor
may not lose the window's contents depending on if the window is obscured by
nonchildren and if no bacldng store exists. If the contents of the window are
lost, the XWIN server generates Expose events. Moving a mapped window gen­
erates Expose events on any formerly obscured windows.

If the override-redirect flag of the window is False and some other client has
selected SubstructureRedirectMask on the parent, the XWIN server generates
a COnfigureRequest event, and no further processing is performed. Otherwise,
the window is moved.

XMoveWindow can generate a Badlfindow error.

To change a window's size without changing the upper-left coordinate, use
XResizeWindow.

display

Duiselrindow(iisplay, 711, wiIltll, Miglat>
Display ·tlisPlilyi
WindOWfDi
unsigned int witltla, Mighti

Specifies the connection to the XWIN server.

Specifies the window. w
width
height Specify the width and height, which are the interior dimensions

of the window after the call completes.

The XResizeWindow function changes the inside dimensions of the specified
window, not including its borders. This function does not change the window's
upper-left coordinate or the origin and does not restack the window. Changing
the size of a mapped window may lose its contents and generate Expose events.
If a mapped window is made smaller, changing its size generates Expose events
on windows that the mapped window formerly obscured..

If the override-redirect flag of the window is False and some other client has
selected SubstructureRedirectMask on the parent, the XWIN server generates
a COnfigureRequest event, and no further processing is performed. If either
width or height is zero, a BadValue error results.

Window Functions 3-29

Configuring Windows

XR.esizeWindow can generate BadValue and BadWindow errors.

To change the size and location of a window, use ~sizeWindow.

display

w

x
y

width
height

XMoveReaize1findov(displtly, w, x, y, width, height)

Display -displtly;

Windoww;
int x, y;
unsigned int width, height;

Specifies the connection to the XWIN server.

Specifies the window to be reconfigured.

Specify the x and y coordinates, which define the new position
of the window relative to its parent.

Specify the width and height, which define the interior size of
the window.

The XMoveResizeWindow function changes the size and location of the specified
window without raising it. Moving and resizing a mapped window may gen­
erate an Expose event on the window. Depending on the new size and location
parameters, moving and resizing a window may generate Expose events on
windows that the window formerly obscured.

If the override-redirect flag of the window is False and some other client has
selected SubstructureRedirectMask on the parent, the XWIN server generates
a ConfigureRequest event, and no further processing is performed. Otherwise,
the window size and location are changed.

XMoveResizeWindow can generate BadValue and BadWindow errors.

To change the border width of a given window, use XSetWindowBorderWidth.

3-30

XSetWindowBorderWidth (displtly, w, width)

Display -displtly;

Windoww;
unsigned. int width;

Xwln GWS: Xllb - C Language Interface

Configuring Windows

display

w

width

Specifies the connection to the XWIN server.

Specifies the window.

Specifies the width of the window border.

The XSetWindowBorderWidth function sets the specified window's border
width to the specified width.

XSetWindowBorderWidth can generate a BadWindow error.

Window Functions 3-31

Changing Window Stacking Order

Xlib provides functions that you can use to raise, lower, circulate, or restack
windows.

To raise a window so that no sibling window obscures it, use XRaiseWindow.

~aeWindow (displlly, w)

display

w

DIsplay ·disp",Yi

Window Wi

Specifies the connection to the XWIN server.

Specifies the window.

The XRaiseWindow function raises the specified window to the top of the stack
so that no sibling window obscures it. If the windows are regarded as overlap­
ping sheets of paper stacked on a desk, then raising a window is analogous to
moving the sheet to the top of the stack but leaving its x and y location on the
desk constant. Raising a mapped window may generate Expose events for the
window and any mapped subwindows that were fonnerly obscured.

If the override-redirect attribute of the window is False and some other client
has selected SubstructureRedirectMask on the parent, the XWIN server gen­
erates a ConfigureRequest event, and no processing is perfonned. Otherwise,
the window is raised.

XRaiseWindow can generate a BadWindow error.

To lower a window so that it does not obscure any sibling windows, use
XLowerwindow.

display

w

XLowetWindow(displlly,w)

DIsplay ·displllyi
Windoww;

Specifies the connection to the XWIN server.

Specifies the window.

The XLowerwindow function lowers the specified window to the bottom of the
stack so that it does not obscure any sibling windows. If the windows are
regarded as overlapping sheets of paper stacked on a desk, then lowering a
window is analogous to moving the sheet to the bottom of the stack but leaving

3-32 Xwln GWS: Xllb - C Language Interface

Changing Window Stacking Order

its x and y location on the desk constant. Lowering a mapped window will
generate Expose events on any windows it formerly obscured.

If the override-redirect attribute of the window is False and some other client
has selected SubstructureRedirectMask on the parent, the XWIN server gen­
erates a ConfigureRequest event, and no processing is performed. Otherwise,
the window is lowered to the bottom of the stack.

XLowerWindow can generate a BadWindow error.

To circulate a subwindow up or down, use XCirculateSubwindows.

display

XCirculateSubwindows (displlly, w, direction)
Display "display;
Windoww;
int direction;

Specifies the connection to the XWIN server.

Specifies the window. w

direction Specifies the direction (up or down) that you want to circulate
the window. You can pass RaiseLowest or LowerHiqhest.

The XCirculateSubwindows function circulates children of the specified win­
dow in the specified direction. If you specify RaiseLowest, XCircula­
teSubwindows raises the lowest mapped child (if any) that is occluded by
another child to the top of the stack. If you specify LowerHighest, XCircula­
teSubwindows lowers the highest mapped child (if any) that occludes another
child to the bottom of the stack. Exposure processing is then performed on
formerly obscured windows. If some other client has selected Substruc­
tureRedirectMask on the window, the XWIN server generates a CirculateRe­
quest event, and no further processing is performed. If a child is actually res­
tacked, the XWIN server generates a CirculateNotify event.

XCirculateSubwindows can generate BaciValue and BadWindow errors.

To raise the lowest mapped child of a window that is partially or completely
occluded by another child, use XCirculateSubwindowsUp.

XCirculateSubwindowsUp (display, w)

Display .. displlly;
Windoww;

Window Functions 3-33

Changing Window Stacking Order

display

w

Specifies the connection to the XWIN server.

Specifies the window.

The XCirculateSubwindowsUp function raises the lowest mapped child of the
specified window that is partially or completely occluded by another child.
Completely unobscured children are not affected. This is a convenience function
equivalent to XCirculateSubwindows with RaiseLowest specified.

XCirculateSubwindowsUp can generate a BadWindow error.

To lower the highest mapped child of a window that partially or completely
occludes another child, use XCirculateSubwindowsDown.

display

w

XCirciUl.ateSubwindowsDown (display, TD)
Display -display;
WindoWTD;

Specifies the connection to the XWIN server.

Specifies the window.

The XCirculateSubwindowsDown function lowers the highest mapped child of
the specified window that partially or completely occludes another child. Com­
pletely unobscured children are not affected. This is a convenience function
equivalent to XCirculateSubwindows with LowerHighest specified.

XCirculateSubwindowsDown can generate a BadWindow error.

To restack a set of windows from top to bottom, use XRestackWindows.

XReatack1findowa (display, TDi7UlorDs, 7fWi7UlorDs);

Display -dis"lIly;

display

windows

nwindows

3-34

Window TDbadows[);

int nTDindows;

Specifies the connection to the XWIN server.

Specifies an array containing the windows to be restacked.

Specifies the number of windows to be restacked.

Xwln GWS: Xllb - C Language Interface

Changing Window Stacking Order

The XRestackWinciows function restacks the windows in the order specified,
from top to bottom. The stacking order of the first window in the windows
array is unaffected, but the other windows in the array are stacked underneath
the first window, in the order of the array. The stacking order of the other win­
dows is not affected. For each window in the window array that is not a child
of the specified window, a BadMatch error results.

H the override-redirect attribute of a window is False and some other client has
selected SubstructureRed1rectMask on the parent, the XWIN server generates
ConfigureRequest events for each window whose override-redirect flag is not
set, and no further processing is performed. Otherwise, the windows will be
restackeci in top to bottom order.

XRestackWindows can generate a BadWindow error.

Window Functions 3-35

Changing Window Attributes

Xlib provides functions that you can use to set window attributes. XChangeWin­
dowAttributes is the more general function that allows you to set one or more
window attributes provided by the XSetWindowAttributes structure. The
other functions described in this section allow you to set one specific window
attribute, such as a window's background.

To change one or more attributes for a given window, use XChangeWindowAt­
tributes.

XQlangaWindowAttribute. (displlly, 10, OIduemmJk, 8ttribuw)
Dlsplay"displlly;

display

w

valuemask

attributes

Window 10;

unsigned long OIduemlJS1c;
XSetWindowAtbibutes "attributes;

Specifies the connection to the XWIN server.

Specifies the window.

Specifies which window attributes are defined in the attributes
argument. This mask is the bitwise inclusive OR of the valid
attribute mask bits. If valuemask is zero, the attributes are
ignored and are not referenced. The values and restrictions are
the same as for XCreateWindow.

Specifies the structure from which the values (as specified by the
value mask) are to be taken. The value ma:sk should have the
appropriate bits set to indicate which attributes have been set in
the structure (see "Window Attributes" in this chapter).

Depending on the valuemask, the XChangeWindowAttributes function uses the
window attributes in the XSetWindowAttributes structure to change the
specified window attributes. Changing the background does not cause the win­
dow contents to be changed. To repaint the window and its background, use
XClearWindow. Setting the border or changing the background such that the
border tile origin changes causes the border to be repainted. Changing the
background of a root window to None or ParentRelative restores the default
background pixmap. Changing the border of a root window to CopyFrom­
Parent restores the default border pixmap. Changing the win-gravity does not
affect the current position of the window. Changing the backing-store of an
obscured window to WhenMapped or Always, or changing the backing-planes,
backing-pixel, or save-under of a mapped window may have no immediate

3-36 Xwln GWS: Xllb - C Language Interface

Changing Window Attributes

effect. Changing the colonnap of a window (that is, defining a new map, not
changing the contents of the existing map) generates a Coloz:mapNotify event.
Changing the colonnap of a visible window may have no immediate effect on
the screen because the map may not be installed (see XlnstallColormap).
Changing the cursor of a root window to None restores the default cursor.
Whenever possible, you are encouraged to share colormaps.

Multiple clients can select input on the same window. Their event masks are
maintained separately. When an event is generated, it is reported to all
interested clients. However, only one client at a time can select for Substruc­
tureRedirectMask, ResizeRedirectMask, and ButtonPressMask. If a client
attempts to select any of these event masks and some other client has already
selected one, a BadAccess error results. There is only one do-not-propagate­
mask for a window, not one per client.

xChangewindowAttributes can generate BadAccess, BadColor, BadCursor,
BadMatch, BadPixmap, BadValue, and BadWindow errors.

To set the background of a window to a given pixel, use XSetWindowBack­
ground.

XSetWindowBaclup:ound (displlly, w, lHu:kground ...pixel)

Display -displilYi

Window Wi

unsigned long lHu:1cground "'pixel i

display Specifies the connection to the XWIN server.

w Specifies the window.

background yixel Specifies the pixel that is to be used for the background.

The XSetWindowBackground function sets the background of the window to the
specified pixel value. Changing the background does not cause the window
contents to be changed. XSetWindowBackground uses a pixmap of undefined
size filled with the pixel value you passed. If you try to change the background
of an InputOnly window, a BadMatch error results.

XSetWindowBackground can generate BadMatch and BadWindow errors.

To set the background of a window to a given pixmap, use
XSetWindowBackgroundPixmap.

Window Functions 3-37

Changing Window Attributes

display

w

XSetW~ixIIIap (disl'liJy, III, hc1rgTourulJ1ixm1q1)
DIsplay ·displiJy;
Window III;
Pixmap hckgrormd J1ixmIqI;

Specifies the connection to the XWIN server.

Specifies the window.

background yixmap
Specifies the background pixmap, ParentRelative, or
None.

The xsetWindowBackgroundPixmap function sets the background pixmap of the
window to the specified pixmap. The background pixmap can immediately be
freed if no further explicit references to it are to be made. If ParentRelative is
specified, the background pixmap of the window's parent is used, or on the root
window, the default background is restored. If you try to change the back­
ground of an InputOnly window, a BadMatch error results. If the background
is set to None, the window has no defined background.

XSetWindowBackgroundPixmap can generate BacMltch, BadPixmap, and
BadWindow errors.

XSetWindowBacJcqround and XSetWindowBacJcqroundPixmap do not
change the current contents of the window.

To change and repaint a window's border to a given pixel, use XSetWin­
dowBorder.

display

w

3-38

XSet1findowBoJ:dar (disM, III, border J1ixel)
DIsplay ·disl'liJy;
Window III;
unsigned long border J1ixel;

Specifies the connection to the XWIN server.

Specifies the window.

Xwln GWS: Xllb - C Language Interface

Changing Window Attributes

border yixel Specifies the entry in the colormap.

The XSetWindowBorder function sets the border of the window to the pixel
value you specify. If you attempt to perform this on an InputOnly window, a
BaciMatch error results.

XSetWindowBorder can generate BadMatch and BadWindow errors.

To change and repaint the border tile of a given window, use XSetWindowBor­
derPixmap.

display

w

XSetWindowBorderPixmap (display, w, border...J1ixmllp)

Display"disp14y;
Windoww;
Pixmap border yixmllp;

Specifies the connection to the XWIN server.

Specifies the window.

border yixmap Specifies the border pixmap or CopyFromParent.

The XSetWindowBorderPixmap function sets the border pixmap of the/window
to the pixmap you specify. The border pixmap can be freed immediately if no
further explicit references to it are to be made. If you specify CopyFromParent,
a copy of the parent window's border pixmap is used. If you attempt to per­
form this on an InputOnly window, a BadMatch error results.

XSetWindowBorderPixmap can generate BadMatch, BadPixmap, and BadWindow
errors.

Window Functions 3-39

Translating Window Coordinates

Applications, mostly window managers, often need to perform a coordinate
transformation from the coordinate space of one window to another window or
need to determine which subwindow a coordinate lies in. XTranslateCoordi­
nates fulfills these needs (and avoids any race conditions) by asking the XWIN
server to perform this operation.

Bool XTranalAteCooJ:dinate. (displAy, sre_w, Ust_w, 5rc_'" 5rc .. Jf, Ust_"_,,tum,
Ust .. 11-"tum, child _ "trma)

Display -display;

int sre _", sre..JI;
int -dest_"_,,trma, -Ust..JI_"tum;
Window -child_"tum;

display Specifies the connection to the XWIN server.

src w Specifies the source window.

dest w Specifies the destination window.

src x
src..1l Specify the x and y coordinates within the source window.

dest x return

dest..1lJeturn Return the x and y coordinates within the destination window.

child return Returns the child if the coordinates are contained in a mapped
child of the destination window.

The XTranslateCoordinates function takes the src _ x and src y coordinates
relative to the source window's origin and returns these coordinates to
dest_x_return and desty_retum relative to the destination windows origin. If
XTranslateCoordinates returns zero, src_wand dest_ware on different
screens, and dest_ x_return and desty Jeturn are zero. If the coordinates are
contained in a mapped child of dest_w, that child is returned to childJeturn.
Otherwise, child_return is set to None.

XTranslateCoordinates can generate a BadWindow error.

3-40 Xwln GWS: Xllb - C Language Interface

4 Window Information Functions

Introduction 4-1

Obtaining Window Information 4-2

Properties and Atoms 4-8

Obtaining and Changing Window
Properties 4-12

Selections 4-18

Table of Contents

I ntrod uction

After you connect the display to the XWIN server and create a window, you can
use the Xlib window information functions to:

• Obtain information about a window

• Manipulate property lists

• Obtain and change window properties

• Manipulate selections

Window Information Functions 4-1

Obtaining Window Information

Xlib provides functions that you can use to obtain information about the win­
dow tree, the window's current attributes, the window's current geometry, or
the current pointer coordinates. Because they are most frequently used by win­
dow managers, these functions all return a status to indicate whether the win­
dow still exists.

To obtain the parent, a list of children, and number of children for a given win­
dow, use XQueryTree.

Status XQucy'lme (display, w, root-"etum, ""mU_rt:tllm, c1Uldrm_rt:tum, nchildrm_rt:tum>
Display ·display;
Windoww;
Window ·root_rt:tum;
Window ·""rent _ rt:tum;
Window"c1Uldrm_rt:tum;
unsigned int ·nchiltlrmJetum;

display Specifies the connection to the XWIN server.

w Specifies the window whose list of children, root, parent, and
number of children you want to obtain.

root return Returns the root window.

parent Jeturn Returns the parent window.

children return Returns a pointer to the list of children.

nchildren return Returns the number of children.

The XQueryTree function returns the root 10, the parent window 10, a pointer
to the list of children windows, and the number of children in the list for the
specified window. The children are listed in current stacking order, from bot­
tommost (first) to topmost (last). XQueryTree returns zero if it fails and
nonzero if it succeeds. To free this list when it is no longer needed, use XFree.

To obtain the current attributes of a given window, use XGetWindowAttri­
butes.

4-2

Status lIGetWindowAttribut •• (display, w, wintlow_attn111de5_rt:tum)
Display ·displlly;
Windoww;

Xwln GWS: Xllb - C Language Interface

display

w

Obtaining Window Information

Specifies the connection to the XWIN server.

Specifies the window whose current attributes you want to
obtain.

winduw attributes return
- Returns the specified window's attributes in the XWindowAttri­

butes structure.

The XGetWindowAttributes function returns the current attributes for the
specified window to an XWindowAttributes structure.

typedaf struot (
int x, y;

int width, height;

int boEder_width;

int c:Ieptb;

VillU&l *vi1lU&1;

Window root;
int cl.ua;

int bit.-9l:avity;
int win.-9l:avity;
int baoking_.tore;

unaignecl lonq baakinriJllanes;

unaignecl lonq baakinriJlixel;

Bool .. ft_under;

Colomap colomap;

Bool map_installed;
int map_state;

lonq all_.1NIllt_lIIUlca;

lonq JOUr_ewnt_lllUk;

lonq dcUX)tJl~te_ .. k;

Bool override_redirect;

Sateen *IIOXMD;

} XlfindowAttrillutu;

1* location of window *1
1* width and height of window *1
1* boEder width of window *1
1* depth of window *1
1* the .. sociated villU&l structure *1
1* root of screen containing window *1
1* II1JutOutput, II1JutOnly*1
1* ODII of the bit gravity values *1
1* ODII of the window gravity value. *1
1* IIotO_ful, 1IlenMapped, Always *1
1* planes to be preaerwd. if possible *1
1* value to be uaed 1Ihen J:8storing planes *1
1* boolean, should bits under be saved? *1
1* color map to be .. sociated with window *1
1* boolean, is color map CI.lrJ:8Dtly installed*1

1* Ist1nlllllpped., IatJnviewable, IaViewable *1
1* set of events all people haft inteJ:88t in*1
1* lIlY .wnt IIIUk *1
1* set of events that IIbould not prop&9&te *1
1* boolean value for owrri.de-rediJ:eCt *1
1* back pointer to correct: screen *1

The X and y members are set to the upper-left outer comer relative to the parent
window's origin. The width and height members are set to the inside size of
the window, not including the border. The border_width member is set to the
window's border width in pixels. The depth member is set to the depth of the
window (that is, bits per pixel for the object). The visual member is a pointer to
the screen's associated Visual structure. The root member is set to the root

Window Information Functions 4-3

Obtaining Window information

window of the screen containing the window. The class member is set to the
window's class and can be either InputOutput or InputOnly.

The bit..&1'avity member is set to the window's bit gravity and can be one of the
following:

ForgetGravity
NorthWestGravity
NorthGravity
NorthEastGravity
West Gravity
CenterGravity

EastGravity
SouthWestGravity
SouthGravity
SouthEastGravity
StaticGravity

The win..&1'avity member is set to the window's window gravity and can be one
of the following:

OmnapGravity
NorthWestGravity
NorthGravity
NorthEastGravity
West Gravity
CenterGravity

EastGravity
SouthWestGravity
SouthGravity
SouthEastGravity
StaticGravity

For additional information on gravity, see "Creating Windows" in Chapter 3.

The backin&-store member is set to indicate how the XWIN server should main­
tain the contents of a window and can be WhenMapped, Always, or NotOseful.
The backinUlanes member is set to indicate (with bits set to 1) which bit
planes of the window hold dynamic data that must be preserved in
backin&-stores and during save_unders. The backinuixel member is set to
indicate what values to use for planes not set in backinulanes.

The save_under member is set to True or False. The colormap member is set
to the colormap for the specified window and can be a colormap ID or None.
The map_installed member is set to indicate whether the colormap is currently
installed and can be True or False. The map_state member is set to indicate
the state of the window and can be IsOmnapped, IsOnviewable, or IsView­
able. IsOnviewable is used if the window is mapped but some ancestor is
unmapped.

Xwln GWS: Xllb - C Language Interface

Obtaining Window Information

The all_event_masks member is set to the bitwise inclusive OR of all event
masks selected on the window by all clients. The your _ event_mask member is
set to the bitwise inclusive OR of all event masks selected by the querying
client. The do_not-propagate_mask member is set to the bitwise inclusive OR
of the set of events that should not propagate.

The override Jedirect member is set to indicate whether this window overrides
structure control facilities and can be True or False. Window manager clients
should ignore the window if this member is True.

The screen member is set to a screen pointer that gives you a back pointer to
the correct screen. This makes it easier to obtain the screen information without
having to loop over the root window fields to see which field matches.

XGetWindowAttributes can generate BadDrawable and BadWindow errors.

To obtain the current geometry of a given drawable, use XGetGeometry.

Statu.s XGetGeClll8try(display, d, root-"elum, "-,,elum, y_relum, width-"elum,

display

d

root return

x return
YJeturn

width return
heigh~return

height _ relum, border_width -"elum, depth -"elum)
Display ·displlly;
Drawabled;
Window ·root_retum;
int ·,,_retum, ·y_retum;
unsigned int ·width_relum, ·height_retum;
unsigned int ·border_wth_relum;
unsigned int ·depth_retum;

Specifies the connection to the XWIN server.

Specifies the drawable, which can be a window or a pixmap.

Returns the root window.

Return the x and y coordinates that define the location of the
drawable. For a window, these coordinates specify the upper­
left outer comer relative to its parent's origin. For pixmaps,
these coordinates are always zero.

Return the drawable's dimensions (width and height). For a
window, these dimensions specify the inside size, not including
the border.

Window Information Functions 4-5

Obtaining Window information

border width return
- - Returns the border width in pixels. If the drawable is a pixmap,

it returns zero.

depthJeturn Returns the depth of the drawable (bits per pixel for the object).

The XGetGealletz:y function returns the root window and the current geometry
of the drawable. The geometry of the drawable includes the x and y coordi­
nates, width and height, border width, and depth. These are described in the
argument list. It is legal to pass to this function a window whose class is
InputOnly.

To obtain the root window the pointer is currently on and the pointer coordi­
nates relative to the root's origin, use XQuez:yPointer.

display

w

Boo1 ~o1nter (display, w, rootJtturrl, childJeturrl, root_,,_rtturn, root .. JLrthtm,
TDin _" _ rthtm, 'lDi1l...1 _ rtturn, m4Isk _ rthtm)

Display -displlly;
Windoww;
Window -root_rehtm, -child_rtturn,
int -root_,,_rtturn, -root...1_rthtm;
int -'lDi1l_" _ rehtrn, -TDin ...1_ rtturn;
unsigned int -m4Isk_rthtm;

Specifies the connection to the XWIN server.

Specifies the window.

root return

child Jeturn

root x return
root JJeturn

Returns the root window that the pointer is in.

Returns the child window that the pointer is located in, if any.

Return the pointer coordinates relative to the root window's ori­
gin.

win x return
win "J=return

maskJeturn

Return the pointer coordinates relative to the specified window.

Returns the current state of the modifier keys and pointer but­
tons.

Xwln GWS: Xllb - C Language Interface

Obtaining Window Information

The XQueryPointer function returns the root window the pointer is logically
on and the pointer coordinates relative to the root window's origin. If
XQueryPointer returns False, the pointer is not on the same screen as the
specified window, and XQuerypointer returns None to child Jeturn and zero to
win_xJeturn and win....YJeturn. If XQueryPointer returns True, the pointer
coordinates returned to win _ x Jeturn and win""y _return are relative to the ori­
gin of the specified window. In this case, XQueryPointer returns the child that
contains the pointer, if any, or else None to child Jeturn.

XQueryPointer returns the current logical state of the keyboard buttons and
the modifier keys in maskJeturn. It sets maskJeturn to the bitwise inclusive
OR of one or more of the button or modifier key bitmasks to match the current
state of the mouse buttons and the modifier keys.

Note that the logical state of a device (as seen through Xlib) may lag the physi­
cal state if device event processing is frozen (see "Pointer Grabbing" in
Chapter 7).

XQueryPointer can generate a BadWindow error.

Window Information Functions 4-7

Properties and Atoms

A property is a collection of named, typed data. The window system has a set
of predefined properties (for example, the name of a window, size hints, and so
on), and users can define any other arbitrary information and associate it with
windows. Each property has a name, which is an ISO Latin-l string. For each
named property, a unique identifier (atom) is associated with it. A property also
has a type, for example, string or integer. These types are also indicated using
atoms, so arbitrary new types can be defined. Data of only one type may be
associated with a single property name. Clients can store and retrieve proper­
ties associated with windows. For efficiency reasons, an atom is used rather
than a character string. XlnternAtom can be used to obtain the atom for pro­
perty names.

A property is also stored in one of several possible formats. The XWIN server
can store the information as 8-bit quantities, 16-bit quantities, or 32-bit quanti­
ties. This permits the XWIN server to present the data in the byte order that the
client expects.

if you define further properties of complex type, you must encode and
decode them yourseif. These functions must be carefully written if they are
to be portable. For further information about how to write a library extension,
see appendix C.

The type of a property is defined by an atom, which allows for arbitrary exten­
sion in this type scheme.

Certain property names are predefined in the server for commonly used func­
tions. The atoms for these properties are defined in < Xll/xatom.h >. To
avoid name clashes with user symbols, the tdefine name for each atom has the
XA _ prefix. For definitions of these properties, see "Obtaining and Changing
Window Properties" in Chapter 4. For an explanation of the functions that let
you get and set much of the information stored in these predefined properties,
see Chapter 9.

You can use properties to communicate other information between applications.
The functions described in this section let you define new properties and get the
unique atom IDs in your applications.

Although any particular atom can have some client interpretation within each of
the name spaces, atoms occur in five distinct name spaces within the protocol:

Xwln GWS: Xllb - C Language Interface

____________________ Properties and Atoms

• Selections

• Property names

• Property types

• Font properties

• Type of a ClientMessage event (none are built into the XWIN server)

The built-in selection property names are:

PRIMARY

SECONDARY

The built-in property names are:

CUT _BUFFERO
CUT BUFFERl
CUT BUFFER2
CUTBUFFER3
CUT BUFFER4
CUT BUFFERS
CUT _BUFFER6
CUT _BUFFER7
RGB BEST MAP - -
RGB BLUE MAP - -
RGB_DEFAULT_MAP
RGB GRAY MAP - -

The built-in property types are:

ARC
ATOM
BITMAP
CARDINAL
COLORMAP
CURSOR
DRAWABLE

Window Information Functions

RGB GREEN MAP - -
RGB RED MAP - -
RESOURCE MANAGER
WM CLASS
WM_ CLIENT_MACHINE
WM COMMAND
WM HINTS
WM ICON NAME - -
WM ICON SIZE - -
WM NAME
WM-NORMAL HINTS - -
WM ZOOM HINTS - -
WM_ TRANSIENT_FOR

POINT
RGB COLOR MAP - -
RECTANGLE
STRING
VISUALID
WINDOW
WM HINTS

4-9

Propertle. and Atoms

FONT
INTEGER
PIXMAP

WM SIZE HINTS - -

The built-in font property names are:

MIN SPACE
NORM SPACE
MAX_SPACE
END SPACE
SUPERSCRIPT X
SUPERSCRIPT - Y
SUBSCRIPT X­
SUBSCRIPT -Y
UNDERLlNE_POSmON
UNDERLINE THICKNESS
FONT NAME
FULL NAME

SI'RII<EOUT DESCENT
STRIKEOUT_ASCENT
ITALIC ANGLE
X HEIGHT
QUAD_WIDTH
WEIGHT
POINT SIZE
RESOLUTION
COPYRIGHT
NOTICE
FAMILY NAME
CAP HEIGHT

For further information about font properties, see "Font Metrics" in Chapter 6.

To return an atom for a given name, use XlnternAtan.

Atcm XIntemAtcm (display, atom J'/lme, only_ iL exists)

Display ·displily;
char ·GIom_1/JlIfII!;

Boo! onlyJLexists;

display Specifies the connection to the XWIN server.

atom name Specifies the name associated with the atom you want returned.

only _iL exists Specifies a Boolean value that indicates whether XInternAtan
creates the atom.

The XInternAtan function returns the atom identifier associated with the
specified atom_name string. If only Jf _exists is False, the atom is created if it
does not exist. Therefore, XlnternAtcim can return None. You should use a
null-terminated ISO Latin-l string for atom_name. Case matters; the strings
thing, Thing, and thinG all designate different atoms. The atom will remain
defined even after the client's connection closes. It will become undefined only
when the last connection to the XWIN server closes.

4-10 Xwln GWS: Xllb - C Language Interface

Properties and Atoms

XlnternAtom can generate BadAlloc and BadValue errors.

To return a name for a given atom identifier, use XGetAtanName.

oha.r *lIGeUt~ (displlJy, 1Ilom)

Display • displlJy;
Atom "tom;

Specifies the connection to the XWIN server. display

atom Specifies the atom for the property name you want returned.

The XGetAtanName function returns the name associated with the specified
atom. To free the resulting string, call XFree.

XGetAtomName can generate a BadAtom error.

Window Information Functions 4-11

Obtaining and Changing Window Properties

You can attach a property list to every window. Each property has a name, a
type, and a value (see "Properties and Atoms" in Chapter 4). The value is an
array of 8-bit, 16-bit, or 32-bit quantities, whose interpretation is left to the
clients.

Xlib provides functions that you can use to obtain, change, update, or inter­
change window properties. In addition, Xlib provides other utility functions for
predefined property operations (see Chapter 9).

To obtain the type, fonnat, and value of a property of a given window, use
XGetWindowProperty.

display

w

int XGetWindo1tProperty(display, w, property, long_offset, long}mgth, delete, relf-type,
IIChuU _ type _ retum, IICfwll..Jumuzt _ retum, nitems Jetum, lfytes _after _ retum,
prop _ retum)

Display ·displily;

Windoww;
Atom property;
long longyffset, long_length;
Bool delete;

Atom rell_type;
Atom ·1IChuU_type_retum;
int ·lICtual.Jcmnat _retum;
unsigned long ·nitems_retum;
unsigned long ·lfytes _after _ retum;
unsigned char "prop_return;

Specifies the connection to the XWIN server.

Specifies the window whose property you want to obtain.

Specifies the property name.

Specifies the offset in the specified property (in 32-bit quantities)
where the data is to be retrieved.

longJength Specifies the length in 32-bit multiples of the data to be
retrieved.

delete

4-12

Specifies a Boolean value that determines whether the property
is deleted.

Xwln GWS: Xllb - C Language Interface

Obtaining and Changing Window Properties

Specifies the atom identifier associated with the property type or
AnyPropertyType.

actual_type -,eturn
Returns the atom identifier that defines the actual type of the
property.

actual Jormat -,eturn
Returns the actual format of the property.

nitems return Returns the actual number of 8-bit, 16-bit, or 32-bit items stored
in the prop Jetum data.

bytes_after -,eturn
Returns the number of bytes remaining to be read in the pro­
perty if a partial read was performed.

prop-,eturn Returns a pointer to the data in the specified format.

The XGetWindowProperty function returns the actual type of the property; the
actual format of the property; the number of 8-bit, 16-bit, or 32-bit items
transferred; the number of bytes remaining to be read in the property; and a
pointer to the data actually returned. XGetWindowProperty sets the return
arguments as follows:

• If the specified property does not exist for the specified window, XGetWin­
dowProperty returns None to actuattype_return and the value zero to
actual_format_return and bytes_after_return. The nitemsJetum argument
is empty. In this case, the delete argument is ignored.

• If the specified property exists but its type does not match the specified
type, XGetWindowProperty returns the actual property type to
actual_type_retum, the actual property format (never zero) to
actual_formatJeturn, and the property length in bytes (even if the
actuatformatJetum is 16 or 32) to bytes_afterJetum. It also ignores the
delete argument. The nitems_retum argument is empty.

• If the specified property exists and either you assign AnyPropertyType to
the re<L type argument or the specified type matches the actual property
type, XGetWindowProperty returns the actual property type to
actuat type_return and the actual property format (never zero) to

Window Information Functions 4-13

Obtaining and Changing Window Propertle.

actual_formatJeturn. It also returns a value to bytes_after_return and
nitems Jeturn, by defining the following values:

N = actual length of the stored property in bytes
(even if the format is 16 or 32)

I = 4 It long_offset
T=N-I
L = MINIMUM(T, 4 It 10ngJength)
A=N-(l+L)

The returned value starts at byte index I in the property (indexing from
zero), and its length in bytes is L. If the value for long_offset causes L to
be negative, a BadValue error results. The value of bytes_after _ return is
A, giving the number of trailing unread bytes in the stored property.

XGetWindowProperty always allocates one extra byte in prop Jeturn (even if
the property is zero length) and sets it to ASCll null so that simple properties
consisting of characters do not have to be copied into yet another string before
use. If delete is True and bytes_after_retum is zero, XGetWindowProperty
deletes the property from the window and generates a PropertyNotify event
on the window.

The function returns Success if it executes successfully. To free the resulting
data, use XFree.

XGetWindowProperty can generate BadAtau, BadValue, and BadWindow errors.

To obtain a given window's property list, use XListProperties.

display

w

AtOlll *XListproperti .. (disl'lily, w, PlI4m..Jl"f11']etum)

Display ·disl'lily;
Windoww;

Specifies the connection to the XWIN server.

Specifies the window whose property list you want to obtain.

num yrop Jeturn
Returns the length of the properties array.

4-14 Xwln GWS: Xllb - C Language Interface

Obtaining and Changing Window Properties

The XListProperties function returns a pointer to an array of atom properties
that are defined for the specified window or returns NULL if no properties were
found. To free the memory allocated by this function, use XFree.

XListProperties can generate a BadWindow error.

To change a property of a given window, use XChanqeProperty.

XCban9ItProperty(disp14y, w, property, type,Jrmrult, mode, data, 1II!lements)

Display • displily;

display

w

property

type

format

mode

data

nelements

Windoww;
Atom property, type;

int Jrmrult;
int male;
urudgned char ·data;
int 1II!lements;

Specifies the connection to the XWIN server.

Specifies the window whose property you want to change.

Specifies the property name.

Specifies the type of the property. The XWIN server does not
interpret the type but simply passes it back to an application
that later calls XGetWindowProperty.

Specifies whether the data should be viewed as a list of 8-bit,
16-bit, or 32-bit quantities. Possible values are 8, 16, and 32.
This information allows the XWIN server to correctly perform
byte-swap operations as necessary. If the format is 16-bit or 32-
bit, you must explicitly cast your data pointer to a (char It) in the
call to XChanqeProperty.

Specifies the mode of the operation. You can pass PropModeRe­
plaoe,PropModePrepBhd,orPropMbdeAppend.

Specifies the property data.

Specifies the number of elements of the specified data format.

The XChangeProperty function alters the property for the specified window
and causes the XWIN server to generate a PropertyNotify event on that win­
dow. XChangeProperty performs the following:

Window Information Functions 4-15

Obtaining and Changing Window Properties

• If mode is PropMocieReplace, XChangeProperty discards the previous
property value and stores the new data .

• If mode is PropMociePrepend or PropModeAppend, XChangeProperty
inserts the Specified data before the beginning of the existing data or onto
the end of the existing data, respectively. The type and format must
match the existing property value, or a BadMatch error results. If the pro­
perty is undefined, it is treated as defined with the correct type and for­
mat with zero-length data.

The lifetime of a property is not tied to the storing client. Properties remain
until explicitly deleted, until the window is destroyed, or until the server resets.
For a discussion of what happens when the connection to the XWIN server is
closed, see "Oosing the Display" in Chapter 2. The maximum size of a property
is server dependent and can vary dynamically depending on the amount of
memory the server has available. (If there is insufficient space, a BadAlloc
error results.)

XChangeProperty can generate BadAlloc, BadAtom, BadMatch, BadValue, and
BadWindow errors.

To rotate a window's property list, use XRotateWindowProperties.

XRotateWindowPropertiea (displily, w, properties, numyrop, npositions)
Display -display;

display

w

properties

numyrop

npositions

Windoww;
Atom properties(];
int numyrop;
int npositions;

Specifies the connection to the XWIN server.

Specifies the window.

Specifies the array of properties that are to be rotated.

Specifies the length of the properties array.

Specifies the rotation amount.

The XRotateWindowProperties function allows you to rotate properties on a
window and causes the XWIN server to generate PropertyNotify events. If the
property names in the properties array are viewed as being numbered starting
from zero and if there are num-prop property names in the list, then the value

4-16 Xwln GWS: Xllb - C Language Interface

ObtaInIng and ChangIng Window Properties

associated with property name I becomes the value associated with property
name (I + npositions) mod N for all I from zero to N - 1. The effect is to rotate
the states by npositions places around the virtual ring of property names (right
for positive npositions, left for negative npositions). If npositions mod N is
nonzero, the XWIN server generates a PropertyNotify event for each property
in the order that they are listed in the array. If an atom occurs more than once
in the list or no property with that name is defined for the window, a BadMatch
error results. If a BadAtom or BadMatch error results, no properties are
changed.

XRotateWindowProperties can generate BadAtom, BadMatch, and BadWindow
errors.

To delete a property on a given window, use XDeleteProperty.

display

w

property

XDeleteP=PUty (disp14y, w, property)
Display ·displ4y;
Windoww;
Atom property;

Specifies the connection to the XWIN server.

Specifies the window whose property you want to delete.

Specifies the property name.

The XDeleteProperty function deletes the specified property only if the pro­
perty was defined on the specified window and causes the XWIN server to gen­
erate a PropertyNotify event on the window unless the property does not
exist.

XDeleteProperty can generate BadAtan and BadWindow errors.

WIndow InformatIon FunctIons 4-17

Selections

Selections are one method used by applications to exchange data. By using the
property mechanism, applications can exchange data of arbitrary types and can
negotiate the type of the data. A selection can be thought of as an indirect pro­
perty with a dynamic type. That is, rather than having the property stored in
the XWIN server, the property is maintained by some client (the owner). A
selection is global in nature (considered to belong to the user but be maintained
by clients) rather than being private to a particular window subhierarchy or a
particular set of clients.

Xlib provides functions that you can use to set, get, or request conversion of
selections. This allows applications to implement the notion of current selection,
which requires that notification be sent to applications when they no longer
own the selection. Applications that support selection often highlight the
current selection and so must be informed when another application has
acquired the selection so that they can unhighlight the selection.

When a client asks for the contents of a selection, it specifies a selection target
type. This target type can be used to control the transmitted representation of
the contents. For example, if the selection is lithe last thing the user clicked on"
and that is currently an image, then the target type might specify whether the
contents of the image should be sent in x.y format or Z format.

The target type can also be used to control the class of contents transmitted, for
example, asking for the "looks" (fonts, line spacing, indentation, and so forth) of
a paragraph selection, not the text of the paragraph. The target type can also be
used for other purposes. The protocol does not constrain the semantics.

To set the selection owner, use XSetSelectionOwner.

display

selection

owner

4-18

XSetSeleationOwner (display, selection, owner, time)
Display ·displlly;
Atom selection;
Window owner;
TlDle time;

Specifies the connection to the XWIN server.

Specifies the selection atom.

Specifies the owner of the specified selection atom. You can
pass a window or None.

Xwln GWS: Xllb - C Language Interface

Selections

time Specifies the time. You can pass either a timestamp or Current­
Time.

The XSetSelectionOwner function changes the owner and last-change time for
the specified selection and has no effect if the specified time is earlier than the
current last-change time of the Specified selection or is later than the current
XWIN server time. Otherwise, the last-change time is set to the specified time,
with CurrentTime replaced by the current server time. If the owner window is
specified as None, then the owner of the selection becomes None (that is, no
owner). Otherwise, the owner of the selection becomes the client executing the
request.

If the new owner (whether a client or None) is not the same as the current
owner of the selection and the current owner is not None, the current owner is
sent a 8electionClear event. If the client that is the owner of a selection is
later terminated (that is, its connection is closed) or if the owner window it has
specified in the request is later destroyed, the owner of the selection automati­
cally reverts to None, but the last-change time is not affected. The selection
atom is uninterpreted by the XWIN server. XGet8electionOwner returns the
owner window, which is reported in SelectionRequest and SelectionClear
events. Selections are global to the XWIN server.

XSet8electionOwner can generate BadAtom and BadWindow errors ..

To return the selection owner, use XGetSelectionOwner.

Window lIGetSe1ectionOlmer (display, selection)
Display ·display;
Atom se1m;tion;

Specifies the connection to the XWIN server. display

selection Specifies the selection atom whose owner you want returned.

The XGet8electionOwner function returns the window ID associated with the
window that currently owns the specified selection. If no selection was
specified, the function returns the constant None. If None is returned, there is
no owner for the selection.

XGetSelectionOwner can generate a BadAtan error.

Window Information Functions 4-19

Selections

To request conversion of a selection, use XConvertSelection.

XConvertSelection (display, selection, tRrget, property, relfUtstor, time)
Display -display;

display

selection

target

property

requestor

time

Atom selection, tRrget;
Atom property;
Window requestor;
TIme time;

Specifies the connection to the XWIN server.

Specifies the selection atom.

Specifies the target atom.

Specifies the property name. You also can pass None.

Specifies the requestor.

Specifies the time. You can pass either a timestamp or Current­
Time.

XConvertSelection requests that the specified selection be converted to the
Specified target type:

• If the specified selection has an owner, the XWIN server sends a Selec­
tionRequest event to that owner.

• If no owner for the specified selection exists, the XWIN server generates a
SelectiOnNotify event to the requestor with property None.

In either event, the arguments are passed on unchanged. There are two
predefined selection atoms: PRIMARY and SECONDARY.

XConvertSelection can generate BadAtom and BadWindow errors.

4-20 Xwln GWS: Xllb - C Language Interface

5 Graphics Resource Functions

Introduction 5-1

Colormap Functions 5-2
Creating, Copying, and Destroying Colormaps 5-3
Allocating, Modifying, and Freeing Color Cells 5-6
Reading Entries in a Colormap 5-14

Creating and Freeing Pixmaps 5-16

Manipulating Graphics Context/State 5-18

Using GC Convenience Routines 5-30
Setting the Foreground, Background, Function, or Plane

Mask 5-30
Setting the Line Attributes and Dashes 5-32
Setting the Fill Style and Fill Rule 5-34
Setting the Fill Tile and Stipple 5-35
Setting the Current Font 5-39
Setting the Clip Region 5-39
Setting the Arc Mode, Subwindow Mode, and Graphics

Exposure 5-41

Table of Contents

Introduction

After you connect your program to the XWIN server by calling XOpenDisplay,
you can use the Xlib graphics resource functions to:

• Create, copy, and destroy colormaps

• Allocate, modify, and free color cells

• Read entries in a colormap

• Create and free pixmaps

• Create, copy, change, and destroy graphics contexts

A number of resources are used when performing graphics operations in X.
Most information about performing graphics (for example, foreground color,
background color, line style, and so on) are stored in resources called graphics
contexts (GO. Most graphics operations (see Chapter 6) take a GC as an argu­
ment. Although in theory it is possible to share GCs between applications, it is
expected that applications will use their own GCs when performing operations.
Sharing of GCs is highly discouraged because the library may cache GC state.

Each X window always has an associated colormap that provides a level of
indirection between pixel values and colors displayed on the screen. Many of
the hardware displays built today have a single colormap, so the primitives are
written to encourage sharing of colormap entries between applications. Because
colormaps are associated with windows, X will support displays with multiple
colormaps and, indeed, different types of colormaps. If there are not sufficient
colormap resources in the display, some windows may not be displayed in their
true colors. A client or window manager can control which windows are
displayed in their true colors if more than one colormap is required for the color
resources the applications are using.

Off-screen memory or pixmaps are often used to define frequently used images
for later use in graphics operations. Pixmaps are also used to define tiles or pat­
terns for use as window backgrounds, borders, or cursors. A single bit-plane
pixmap is sometimes referred to as a bitmap.

Note that some screens have very limited off-screen memory. Therefore, you
should regard off-screen memory as a precious resource.

Graphics operations can be performed to either windows or pixmaps, which col­
lectively are called drawables. Each drawable exists on a single screen and can
only be used on that screen. GCs can also only be used with drawables of
matching screens and depths.

Graphics Resource Functions 5·1

Colormap Functions

Xlib provides functions that you can use to manipulate a colormap. This section
discusses how to:

• Create, copy, and destroy a colormap

• Allocate, modify, and free color cells

• Read entries in a colormap

The following functions manipulate the representation of color on the screen.
For each possible value that a pixel can take in a window, there is a color cell in
the colormap. For example, if a window is 4 bits deep, pixel values 0 through
15 are defined. A colormap is a collection of color cells. A color cell consists of
a triple of red, green, and blue. As each pixel is read out of display memory, its
value is taken and looked up in the colormap. The values of the cell determine
what color is displayed on the screen. On a multiplane display with a black­
and-white monitor (with grayscale but not color), these values can be combined
to determine the brightness on the screen.

Screens always have a default colormap, and programs typically allocate cells
out of this colormap. You should not write applications that monopolize color
resources. On a screen that either cannot load the colormap or cannot have a
fully independent colormap, only certain kinds of allocations may work.
Depending on the hardware, one or more colormaps may be resident (installed)
at one time. To install a colormap, use XInstallColormap. The
DefaultColormap macro returns the default colormap. The DefaultVisual
macro returns the default visual type for the specified screen. Colormaps are
local to a particular screen. Possible visual types are StaticGray, GrayScale,
StaticColor, PseudoColor, TrueColor, or DirectColor (see "Visual Types"
in Chapter 3).

The functions discussed in this section operate on an XColor structure, which
contains:

typedef struct {

unsigned lODCJ pi:xel; '* pillBl value *'
unsigned short red, green, blue; '* rgb values *'
char flaqs; '* 00Red., DoG~n, DoBlue *'
char pad;

} XColor;

5-2 Xwln GWS: Xllb - C Language Interface

Colormap Functions

The red, green, and blue values are scaled between 0 and 65535. On full in a
color is a value of 65535 independent of the number of bits actually used in the
display hardware. Half brightness in a color is a value of 32767, and off is O.
This representation gives uniform results for color values across different
screens. In some functions, the flags member controls which of the red, green,
and blue members is used and can be one or more of DoRed, DoGreen, and DoB­
lue.

The introduction of color changes the view a programmer should take when
dealing with a bitmap display. For example, when printing text, you write a
pixel value, which is defined as a specific color, rather than setting or clearing
bits. Hardware will impose limits (the number of significant bits, for example)
on these values. Typically, one allocates color cells or sets of color cells. If
read-only, the pixel values for these colors can be shared among multiple appli­
cations, and the RGB values of the cell cannot be changed. If read/write, they
are exclusively owned by the program, and the color cell associated with the
pixel value may be changed at will.

Creating, Copying, and Destroying Colormaps

To create a colormap for a screen, use XCreateColormap.

display

w

visual

alloc

Coloaap XCl:eateColoaap (dispLly, w, vislUll, Ill/oc)

Display ·dispLly;

Windoww;
Visual ·vislUll;

int Ill/OC;

Specifies the connection to the XWIN server.

Specifies the window on whose screen you want to create a
colormap.

Specifies a pointer to a visual type supported on the screen. If
the visual type is not one supported by the screen, a BadMatch
error results.

Specifies the colormap entries to be allocated. You can pass
AllocNone or AllocAll.

Graphics Resource Functions 5-3

Colormap Functions

The XCreateColomap function creates a colonnap of the specified visual type
for the screen on which the specified window resides and returns the colormap
ID associated with it. Note that the specified window is only used to determine
the screen.

The initial values of the colormap entries are undefined for the visual classes
GrayScale, PseudoColor, and DirectColor. For StaticGray, StaticColor,
and TrueColor, the entries have defined values, but those values are specific to
the visual and are not defined by X. For StaticGray, StaticColor, and
TrueColor, alloc must be AllocNone, or a BadMatch error results. For the
other visual classes, if alloc is AllocNone, the colormap initially has no allocated
entries, and clients can allocate them. For information about the visual types,
see "Visual Types" in Chapter 3.

If alloc is AllocAll, the entire colormap is allocated writable. The initial values
of all allocated entries are undefined. For GrayScale and PseudoColor, the
effect is as if an XAllocColorCells call returned all pixel values from zero to N
- 1, where N is the colonnap entries value in the specified visual. For
DirectColor, the effect is as if an XAllocColorPlanes call returned a pixel
value of zero and red_mask, green_mask, and blue_mask values containing the
same bits as the corresponding masks in the specified visual. However, in all
cases, none of these entries can be freed by using XFreeColors.

XCreateColomap can generate BadAlloc, BadMatch, BadValue, and BaciWin­
dow errors.

To create a new colormap when the allocation out of a previously shared color­
map has failed because of resource exhaustion, use XCopyColomapAndFree.

Colomap XCop]/ColoalllpAndFJ:ee (displily, coIormtIp)
Display -displily;

display

colormap

Colormap colormtlp;

Specifies the connection to the XWIN server.

Specifies the colormap.

The XCopyColomapAndFree function creates a colormap of the same visual
type and for the same screen as the specified colonnap and returns the new
colormap 10. It also moves all of the client's existing allocation from the
specified colonnap to the new colonnap with their color values intact and their
read-only or writable characteristics intact and frees those entries in the
specified colonnap. Color values in other entries in the new colonnap are

Xwln GWS: Xllb - C Language Interface

Colormap Functions

undefined. If the specified colormap was created by the client with alloc set to
AllocAll, the new colormap is also created with AllocAll, all color values for
all entries are copied from the specified colormap, and then all entries in the
specified colormap are freed. If the specified colormap was not created by the
client with AllocAll, the allocations to be moved are all those pixels and planes
that have been allocated by the client using XAllocColor, XAllocNamedColor,
XAllocColorCells, or XAllocColorPlanes and that have not been freed since
they were allocated.

XCopyColormapAndFree can generate BadAlloc and BadColor errors.

To set the colormap of a given window, use XSetWindowColormap.

display

w

XSetWindowColomap (display, w, colormllp)

Display ·display;
Windoww;

Colormap colDrmllp;

Specifies the connection to the XWIN server.

Specifies the window.

colormap Specifies the colorrnap.

The XSetWindowColormap function sets the specified colormap of the specified
window. The colormap must have the same visual type as the window, or a
BadMatch error results.

XSetWindowColormap can generate BadColor, BadMatch, and BadWindow
errors.

To destroy a colormap, use XFreeColormap.

XFJ:eeColormap (displ/lY, colonnap)

Display ·displlly;

display

colormap

Colormap colormap;

Specifies the connection to the XWIN server.

Specifies the colormap that you want to destroy.

Graphics Resource Functions 5-5

Colormap Functions

The XFreeColormap function deletes the association between the colormap
resource ID and the colormap and frees the colormap storage. However, this
function has no effect on the default colormap for a screen. If the specified
colormap is an installed map for a screen, it is uninstalled (see XUnin­
stallColormap). If the specified colormap is defined as the colormap for a
window (by XCreateWindow, XSetWindowColormap, or XChangeWindowAttri­
butes), XFreeColormap changes the colormap associated with the window to
None and generates a ColormapNotify event. X does not define the colors
displayed for a window with a colormap of None.

XFreeColormap can generate a BadColor error.

Allocating, Modifying, and Freeing Color Cells

There are two ways of allocating color cells: explicitly as read-only entries by
pixel value or read/write, where you can allocate a number of color cells and
planes simultaneously. The read/write cells you allocate do not have defined
colors until set with XStoreColor or XStoreColors.

To determine the color names, the XWIN server uses a color database.

Although you can change the values in a read/write color cell that is allocated
by another application, this is considered "antisocial" behavior.

To allocate a read-only color cell, use XAllocColor.

Status XAllooColor (display, co/ormap, screen_in_out)
Display ·display;
Colormap colormap;
XColor ·screen_in_out;

display Specifies the connection to the XWIN server.

colormap Specifies the colormap.

screen in out Specifies and returns the values actually used in the colormap.

The XAllocColor function allocates a read-only colormap entry corresponding
to the closest RGB values supported by the hardware. XAllocColor returns the
pixel value of the color closest to the specified RGB elements supported by the
hardware and returns the RGB values actually used. The corresponding

5-6 Xwln GWS: Xllb - C Language Interface

Colormap Functions

colormap cell is read-only. In addition, XAllocColor returns nonzero if it suc­
ceeded or zero if it failed.

Read-only colormap cells are shared among clients. When the last client deallo­
cates a shared cell, it is deallocated. XAllocColor does not use or affect the
flags in the XColor structure.

XAllocColor can generate a BadColor error.

To allocate a read-only color cell by name and return the closest color supported
by the hardware, use XAllocNamedColor.

Status XAllocNamedColor (display, colormllp, color_name, screen _ deLreturn, exact _ deLreturn)
Display ~display;

display

colormap

color name

Colormap colormllp;
char ~color _name;
XColor ~screen _ deLreturn, ~exact _deL return;

Specifies the connection to the XWIN server.

Specifies the colormap.

Specifies the color name string (for example, red) whose
color definition structure you want returned.

screen _ deLreturn

exact _ deLreturn

Returns the closest RGB values provided by the hardware.

Returns the exact RGB values.

The XAllocNamedColor function looks up the named color with respect to the
screen that is associated with the Specified colormap. It returns both the exact
database definition and the closest color supported by the screen. The allocated
color cell is read-only. You should use the ISO Latin-l encoding; uppercase and
lowercase do not matter.

XAllocNamedColor can generate a BadColor error.

To look up the name of a color, use XLookupColor.

Graphics Resource Functions 5-7

Colormap Functions

StatWt XLookupColor (display, colomulp, color-,IIl7ne, I!XIlCt_def_Tthlrn, SCTeen_def_Tthlrn)
Display -display;
Colormap colomulp;
char -color _ rum/e;
XColor -l!XIlCt_def_Tthlrn, -SCTeen_def_Ttturn;

display Specifies the connection to the XWIN server.

colonnap Specifies the colonnap.

color name Specifies the color name string (for example, red) whose
color definition structure you want returned.

exact _ deLreturn Returns the exact RGB values.

screen_deLreturn Returns the closest RGB values provided by the hardware.

The XLookupColor function looks up the string name of a color with respect to
the screen associated with the specified colonnap. It returns both the exact
color values and the closest values provided by the screen with respect to the
visual type of the specified colormap. You should use the ISO Latin-l encoding;
uppercase and lowercase do not matter. XLookupColor returns nonzero if the
name existed in the color database or zero if it did not exist.

To allocate read/write color cell and color plane combinations for a Pseu­
doColor model, use XA11ocColorCells.

StatWt XAllOClColoJ:Cell. (display, colomulP, contig, plane_mllSks_Tthlrn, "plIl1UlS,

display

colonnap

5-8

pixels _ Ttturn, "pixels)
Display -display;
Colormap colomulp;
Bool contig;
unsigned long plll1Ul_ mllSks _ Ttturn[];

unsigned int "planes;
unsigned long pixels_Ttturn[];

unsigned int "pixels;

Specifies the connection to the XWIN server.

Specifies the colonnap.

Xwln GWS: Xllb - C Language Interface

___ CO~rmapFundlons

contig Specifies a Boolean value that indicates whether the planes must
be contiguous.

plane_mask Jeturn
Returns an array of plane masks.

nplanes Specifies the number of plane masks that are to be returned in
the plane masks array.

Returns an array of pixel values. pixels Jeturn

npixels Specifies the number of pixel values that are to be returned in
the pixels_return array.

The XAllocColorCells function allocates read/write color cells. The number
of colors must be positive and the number of planes nonnegative, or a Bad­
Value error results. H ncolors and nplanes are requested, then ncolors pixels
and nplane plane masks are returned. No mask will have any bits set to 1 in
common with any other mask or with any of the pixels. By ORing together
each pixel with zero or more masks, ncolors • 2"""'" distinct pixels can be pro­
duced. All of these are allocated writable by the request. For GrayScale or
PseudoColor, each mask has exactly one bit set to 1. For DirectColor, each
has exactly three bits set to 1. H contig is True and if all masks are ORed
together, a single contiguous set of bits set to 1 will be formed for GrayScale or
PseudoColor and three contiguous sets of bits set to 1 (one within each pixel
subfield) for DirectColor. The RGB values of the allocated entries are
undefined. XAllocColorCells returns nonzero if it succeeded or zero if it
failed.

XAllocColorCells can generate BadColQr and BadValue errors.

To allocate read/write color resources for a DirectColor model, use XAlloc­
ColorPlanes.

Graphics Resource Fundlon. 5-9

Colormap Functions

Statu DllooColod'lanea (displlly, coIomuqJ, contig, piulsJetum, 7Icolors, 7Imls, 718rems,
nblues, rrruWcJetum, gm4SlcJrtum, brruWc_refum)

Display ·displ4y;
Colormap colonr/lll';
Bool contig;
unsigned long pixels_ntum[];
int 7Icolors;

int 7Imls, 7Ignms, ""'ues;
unsigned long ·rm4SIc_nfum, ·gm4SIc_ntum, ·lmuask_ntum;

display Specifies the connection to the XWIN server.

colonnap Specifies the colormap.

contig Specifies a Boolean value that indicates whether the planes must
be contiguous.

pixels Jeturn Returns an ~y of pixel values. XAllocColorPlanes returns
the pixel values in this array.

ncolors Specifies the number of pixel values that are to be returned in
the pixels_return array.

nreds
ngreens
nblues Specify the number of red, green, and blue planes. The value

you pass must be nonnegative.

rmask return
gmaskJeturn
bmask return Return bit masks for the red, green, and blue planes.

The Specified ncolors must be positive; and nreds, ngreens, and nblues must be
nonnegative, or a BadValue error results. If ncolors colors, nreds reds, ngreens
greens, and nblues blues are requested, ncolors pixels are returned; and the
masks have nreds, ngreens, and nblues bits set to 1, respectively. If contig is
True, each mask will have a contiguous set of bits set to 1. No mask will have
any bits set to 1 in common with any other mask or with any of the pixels. For
DirectColor, each mask will lie within the corresponding pixel subfield. By
DRing together subsets of masks with each pixel value, ncolors ..
2Cnrels+ngrwrs+rllll/Al> distinct pixel values can be produced. All of these are allo­
cated by the request. However, in the colormap, there are only ncolors .. 2n-

independent red entries, ncolors .. 2ngrwrs independent green entries, and ncolors

5-10 Xwln GWS: Xllb - C Language Interface

Colormap Functions

.. 2nblUlS independent blue entries. This is true even for PseudoColor. When the
colormap entry of a pixel value is changed (using XStoreColors, XStoreColor,
or XStoreNamedColor), the pixel is decomposed according to the masks, and
the corresponding independent entries are updated. XAllocColorPlanes
returns nonzero if it succeeded or zero if it failed.

XAllocColorPlanes can generate BadColor and BadValue errors.

To store RGB values into colormap cells, use XStoreColors.

XStoreColora (display, co/onnap, color, PICOZors)

Display • display;

display

colormap

color

Colormap co/onnap;
XColor color[);
int ncolors;

Specifies the connection to the XWIN server.

Specifies the colormap.

Specifies an array of color definition structures to be stored.

ncolors Specifies the number of XColor structures in the color definition
array.

The XStoreColors function changes the colormap entries of the pixel values
specified in the pixel members of the XColor structures. You specify which
color components are to be changed by setting DoRed, DoGreen, and/or DoBlue
in the flags member of the XColor structures. If the colormap is an installed
map for its screen, the changes are visible immediately. XStoreColors changes
the specified pixels if they are allocated writable in the colormap by any client,
even if one or more pixels generates an error. If a specified pixel is not a valid
index into the colormap, a BadValue error results. If a specified pixel either is
unallocated or is allocated read-only, a BadAccess error results. If more than
one pixel is in error, the one that gets reported is arbitrary.

XStoreColors can generate BadAccess, BadColor, and BadValue errors.

To store an RGB value in a single colormap cell, use XStoreColor.

XStoreColor (display, co/onnap, color)

Display • display;
Colormap co/onnap;
XColor ·color;

Graphics Resource Functions 5-11

Colormap functIons

displAy

colormap

color

Specifies the connection to the XWIN server.

Specifies the colonnap.

Specifies the pixel and RGB values.

The XStoreColor function changes the colonnap entry of the pixel value
specified in the pixel member of the XCOlor structure. You specified this value
in the pixel member of the XCOlor structure. This pixel value must be a
read/write cell and a valid index into the colonnap. If a specified pixel is not a
valid index into the colonnap, a BadValue error results. XStoreCOlor also
changes the red, green, and/or blue color components. You specify which color
components are to be changed by setting DoRed, DoGreen, and/or DoBlue in
the flags member of the XCOlor structure. If the colonnap is an installed map
for its screen, the changes are visible immediately.

XStoreColor can generate BadAccess, BadColor, and BadValue errors.

To set the color of a pixel to a named color, use XStoreNamedColor.

XStowN.-dColor (displlly, rolormap, color, pixel, flIlgs>
Display ·displllYi

display

colormap

color

pixel

flags

Colormap colCJmlllPi

char • color;
W\Signed long pixel i
intflagsi

Specifies the connection to the XWIN server.

Specifies the colonnap.

Specifies the color name string (for example, red).

Specifies the entry in the colonnap.

Specifies which red, green, and blue components are set.

The XStoreNamedColor function looks up the named color with respect to the
screen associated with the colonnap and stores the result in the specified color­
map. The pixel argument determines the entry in the colonnap. The flags
argument determines which of the red, green, and blue components are set.
You can set this member to the bitwise inclusive OR of the bits DaRed, DoGreen,
and DaBlue. If the Specified pixel is not a valid index into the colonnap, a Bad­
Value error results. If the specified pixel either is unallocated or is allocated

5-12 Xwln GWS: Xllb - C Language Interface

Colormap Functions

read-only, a BadAccess error results. You should use the ISO Latin-l encoding;
uppercase and lowercase do not matter.

XStoreNamedColor can generate BadAccess, BadColor, BadName, and Bad­
Value errors.

To free colormap cells, use XFreeColors.

XFreeColors (display, colormap, pixels, npirels, planes)
Display ·display;

display

colormap

pixels

npixels

planes

Colormap colormap;
unsigned long pixels [];
int npixels;
unsigned long planes;

Specifies the connection to the XWIN server.

Specifies the colormap.

Specifies an array of pixel values that map to the cells in the
specified colonnap.

Specifies the number of pixels.

Specifies the planes you want to free.

The XFreeColors function frees the cells represented by pixels whose values
are in the pixels array. The planes argument should not have any bits set to 1
in common with any of the pixels. The set of all pixels is produced by ORing
together subsets of the planes argument with the pixels. The request frees all of
these pixels that were allocated by the client (using XAllocColor, XAlloc­
NamedColor, XAllocColorCells, and XAllocColorl?lanes). Note that freeing
an individual pixel obtained from XAllocColorPlanes may not actually allow
it to be reused until all of its related pixels are also freed.

All specified pixels that are allocated by the client in the colormap are freed,
even if one or more pixels produce an error. If a specified pixel is not a valid
index into the colonnap, a BadValue error results. If a specified pixel is not
allocated by the client (that is, is unallocated or is only allocated by another
client), a BadAccess error results. If more than one pixel is in error, the one
that gets reported is arbitrary.

XFreeColors can generate BadAccess, BadColor, and BadValue errors.

Graphics Resource Functions 5·13

Colormap Functions

Reading Entries in a Colormap

The XQueryColor and XQueryColors functions return the RGB values stored in
the specified colormap for the pixel value you pass in the pixel member of the
XColor structure(s). The values returned for an unallocated entry are
undefined. These functions also set the flags member in the XColor structure to
all three colors. If a pixel is not a valid index into the specified colormap, a
BadValue error results. If more than one pixel is in error, the one that gets
reported is arbitrary.

To query the RGB values of a single specified pixel value, use XQueryColor.

XQueQColor (display, colormap, de{)n _out)

Display "display;

display

colormap

deLin_out

Colormap colormap;
XColor "deLin_out;

Specifies the connection to the XWIN server.

Specifies the colormap.

Specifies and returns the RGB values for the pixel specified in
the structure.

The XQueryColor function returns the RGB values for each pixel in the XColor
structures and sets the DoRed, DoGreen, and DoBlue flags.

XQueryColor can generate BadColor and BadValue errors.

To query the RGB values of an array of pixels stored in color structures, use
XQueryColors.

XQueQColora (display, colormttp, defs)n_out, ncolors)

Display "displily;

display

colormap

5-14

Colormap colormap;
XColor defs_in_out[);
tnt ncolors;

Specifies the connection to the XWIN server.

Specifies the colormap.

Xwln GWS: Xllb - C Language Interface

ncoloTS

Colormap Functions

Specifies and returns an array of color definition structures for
the pixel specified in the structure.

Specifies the number of XCOlor structures in the color definition
array.

The XQueryColors function returns the RGB values for each pixel in the
XCOlor structures and sets the DoRed, DoGreen, and DoBlue flags.

XQueryColors can generate BadColor and BadValue errors.

Graphics Resource Functions 5-15

Creating and Freeing Pixmaps

Pixmaps can only be used on the screen on which they were created. Pixmaps
are off-screen resources that are used for various operations, for example,
defining cursors as tiling patterns or as the source for certain raster operations.
Most graphics requests can operate either on a window or on a pixmap. A bit- ;:
map is a single bit-plane pixmap.

To create a pixmap of a given size, use XCreatePixmap.

display

d

width
height

depth

Pixmap lICreatePixaIIp(disl'lay, ti, width, Might, depth)
DispJay -display;
Drawabled;

unsigned int width, Might;

unsigned int depth;

Specifies the connection to the XWIN server.

Specifies which screen the pixmap is created on.

Specify the width and height, which define the dimensions of
the pixmap.

Specifies the depth of the pixmap.

The XCreatePixmap function creates a pixmap of the width, height, and depth
you specified and returns a pixmap ID that identifies it. It is valid to pass an
InputOnly window to the drawable argument. The width and height argu­
ments must be nonzero, or a BadValue error results. The depth argument must
be one of the depths supported by the screen of the Specified drawable, or a
BadValue error results.

The server uses the specified drawable to determine on which screen to create
the pixmap. The pixmap can be used only on this screen and only with other
drawables of the same depth (see XCopyPlane for an exception to this rule).
The initial contents of the pixmap are undefined.

XCreatePixmap can generate BadAlloc, BadDrawable, and BadValue errors.

To free all storage associated with a specified pixmap, use XFreePixmap.

5-16

Xl!'wePixaIIp (display, l'ixmIlp)
DispJay -displlly;
Pixmap pixmIlp;

Xwln GWS: Xllb - C Language Interface

Creating and Freeing Plxmaps

display

pixmap

Specifies the connection to the XWIN' server.

Specifies the pixmap.

The XFreePixmap function first deletes the association between the pixmap ID
and the pixmap. Then, the XWIN' server frees the pixmap storage when there
are no references to it. The pixmap should never be referenced again.

XFreePixmap can generate a BadPixmap error.

Graphics Resource functions 5-17

Manipulating Graphics Context/State

Most attributes of graphics operations are stored in Graphic Contexts (GCs).
These include line width, line style, plane mask, foreground, background, tile,
stipple, clipping region, end style, join style, and so on. Graphics operations
(for example, drawing lines) use these values to detennine the actual drawing
operation. Extensions to X may add additional components to GCs. The con­
tents of a GC are private to Xlib.

Xlib implements a write-back cache for all elements of a GC that are not
resource IDs to allow Xlib to implement the transparent coalescing of changes to
GCs. For example, a call to XSetForeground of a GC followed by a call to
X8etLineAttributes results in only a siilgle-change GC protocol request to the
server. GCs are neither expected nor encouraged to be shared between client
applications, so this write-back caching should present no problems. Applica­
tions cannot share GCs without external synchronization. Therefore, sharing
GCs between applications is highly discouraged.

To set an attribute of a GC, set the appropriate member of the XGCValues struc­
ture and OR in the corresponding value bibnask in your subsequent calls to
XCreateGC. The symbols for the value mask bits and the XGCValues structure
are:

'* GC attribute value mask bits *'
##define GCl!'unction OL<<O)

##define GCPlaneMaalt (lL«l)

##define GCl'oreg%OUlld (lL«2)

##define GC8&ak.gJ:ounci (lL<<3)

##define GCLine1fidtb (1L<<4)

##define GCLineStyle (lL<<5)

'define GCCapStyle (lL<<6)

'define GCJoinStyle (iL<<7)

##define GCl'illStyle (lL«8)

##define GCl'illJW.e (1L<<9)

'define GC'lile (1L<<10)

##define GCStipple (lL«11)

##define GC'lileStipllDriqin (lL«12)

##define GC'lileStiplOriqin (lL«13)

5-18 Xwln GWS: Xllb - C Language Interface

Manipulating Graphics Context/State

'define GCPoat

'define GCSubvindowMDde

'define GCGrapbioaBllposw:es

'define GCClipXDrig'in

ldefine GCCliplOrig'in

'define GCClipMuk

'define GCDuhOffaet

'define GCDubList

'define GCArdtode

1* Values *1

typedef struct {

int funation; 1* logical operation *1
unsigned 100; plane_lI&aIt;l* plane II&aIt *1
unsigned 100; foMCJ~; 1* foreground pial *1
unsigned 100; badtqround; 1* bacIap:ound pix8l *1

(lL<<14)

(1L<<15)

(lL«16)

(lL«17)

(lL«18)

(lL«19)

(lL<<20)

(lL<<21)

(1L<<22)

1* line widtb (in pials) *1
1* LineSolid, IJ.neOnOffDub, LinaDoub1eDub *1
1* CapHotLaat, CapButt, C~, CapProjectinq *1
1* JoinMiter, JoinRouncl, JoinBevel *1

int line _ widtb;

int line_style;

int cap_style;

int join_style;

int fill_style;

int fill_rule;

int arc _1IIDda;

Pixmap tile;

Pixmap stipple;

int ts_x_orig'in;

int tSJ_oriqin;

1* l'illSolid, l'illTilecl, l'illStippled l'illOpaqueStippled*1

1* B~e, Wi.ndi.ngRule *1
1* ArcCbord, ArcIiieSlioe *1
1* tile pixlllap for tiling operations *1
1* stipple 1 plane pixmap for stipplinq *1
1* offset for tile or stipple operations *1

Pont font; 1* default text font for text operations *1
int aubvindov_lIIDda; 1* Clipl¥:bildten, IncludeInferiors *1
Bool graphics_exposures; 1* boolean, should expGlIIUU be generated *1
int olip_x_orig'in; 1* orig'in for olipping *1
int olipJ_orig'in;

Pixmap olip_ll&alt; 1* bitmap olipping; other calla for rects *1
int dub_offset;

char daabas;

} lIGCValues;

1* pattunecVdubecl line infomation *1

Graphics Resource Functions 5-19

Manipulating Graphics Context/State

The default GC values are:

Component

function
plane_mask
foreground
background
line width
line_style
cap_style
join_style
fill_style
fill rule
arc mode
tile

stipple
ts _x_origin
tsy_origin
font
subwindow mode
graphics_exposures
clip _ x_origin
clip""y _origin
clip_mask
dash offset
dashes

Default

GXcopy

All ones
o
1
o
LineSolid

CapButt

JoinMiter

Fill Solid

EvenOddRule

ArcPieSlice

Pixmap of unspecified size filled with foreground pixel
(that is, client specified pixel if any, else 0)
(subsequent changes to foreground do not affect this pixmap)
Pixmap of unspecified size filled with ones
o
o
<implementation dependent>
ClipByChildren

True

o
o
None

o
4 (that is, the list [4,4])

Note that foreground and background are not set to any values likely to be use­
ful in a window.

5-20 Xwln GWS: Xllb - C Language Interface

Manipulating Graphics Context/Stata

The function attributes of a GC are used when you update a section of a draw­
able (the destination) with bits from somewhere else (the source). The function
in a GC defines how the new destination bits are to be computed from the
source bits and the old destination bits. GXcopy is typically the most useful
because it will work on a color display, but special applications may use other
functions, particularly in concert with particular planes of a color display. The
16 GC functions, defined in < Xll/X.h >, are:

Function Name Hex Code Operation

GXclear 0x0 0
GXand Oxl src AND dst
GXandReverse 0x2 src AND NOT dst
GXcopy 0x3 src
GXandlnverted Ox4 (NOT src) AND dst
GXnoop 0x5 dst
GXxor Ox6 src XOR dst
GXor Ox7 src ORdst
GXnor 0x8 (NOT src) AND (NOT dst)

GXequiv 0x9 (NOT src) XOR dst

GXinvert Oxa NOTdst
GXorReverse Oxb src OR (NOT dst)

GXcopylnverted Oxc NOT src
GXorlnverted Oxd (NOT src) OR dst

GXnand Oxe (NOT src) OR (NOT dst)

GXset Oxf 1

Many graphics operations depend on either pixel values or planes in a Gc. The
planes attribute is of type long, and it specifies which planes of the destination
are to be modified, one bit per plane.

A monochrome display has only one plane and will be the least-significant bit
of the word. As planes are added to the display hardware, they will occupy
more significant bits in the plane mask.

Graphics Resource Functions 5-21

Manipulating Graphics Context/State

In graphics operations, given a source and destination pixel, the result is com­
puted bitwise on corresponding bits of the pixels. That is, a Boolean operation
is performed in each bit plane. The plane_mask restricts the operation to a sub­
set of planes. A macro constant AllPlanes can be used to refer to all planes of
the screen Simultaneously. The result is computed by the following:

«src FUNe dst) AND plane-mask) OR (dst AND (Nor plane-mask»

Range checking is not performed on the values for foreground, background, or
plane_mask. They are simply truncated to the appropriate number of bits. The
lin~width is measured in pixels and either can be greater than or equal to one
(wide line) or can be the special value zero (thin line).

Wide lines are drawn centered on the path described by the graphics request.
Unless otherwise specified by the join-style or cap-style, the bounding box of a
wide line with endpoints [xl, yl], [x2, y2] and width w is a rectangle with ver­
tices at the following real coordinates:

[xl-(w*an/2), y1+(w*cs/2)], [xl+(w*8O/2), yl-(w*os/2)],
[x2- (w*an/2), y2+ (w*cs/2)] , [x2+ (w*8O/2), y2- (w*os/2)]

Here sn is the sine of the angle of the line, and cs is the cosine of the angle of
the line. A pixel is part of the line and so is drawn if the center of the pixel is
fully inside the bounding box (which is viewed as having infinitely thin edges).
If the center of the pixel is exactly on the bounding box, it is part of the line if
and only if the interior is immediately to its right (x increasing direction). Pixels
with centers on a horizontal edge are a special case and are part of the line if
and only if the interior or the boundary is immediately below (y increasing
direction) and the interior or the boundary is immediately to the right (x
increasing direction).

Thin lines (zero lin~width) are on~pixel-wide lines drawn using an unspecified,
devic~ependent algorithm. There are only two constraints on this algorithm.

1. If a line is drawn unclipped from [xl,yl] to [x2,y2] and if another line is
drawn unc1ipped from [xl +dx,yl +dy] to [x2+dx,y2+dy], a point [x,y] is
touched by drawing the first line if and only if the point [x+dx,y+dy] is
touched by drawing the second line.

2. The effective set of points comprising a line cannot be affected by clip­
ping. That is, a point is touched in a clipped line if and only if the point
lies inside the clipping region and the point would be touched by the line
when drawn unclipped.

5-22 Xwln GWS: Xllb - C Language Interface

Manipulating GraphlCl Context/State

A wide line drawn from [xl,yl] to [x2,y2] always draws the same pixels as a
wide line drawn from [x2,y2] to [xl,yl], not counting cap-style and join-style. It
is recommended that this property be true for thin lines, but this is not required.
A line-width of zero may differ from a line-width of one in which pixels are
drawn. This permits the use of many manufacturers' line drawing hardware,
which may run many times faster than the more precisely specified wide lines.

In general, drawing a thin line will be faster than drawing a wide line of width
one. However, because of their different drawing algorithms, thin lines may not
mix well aesthetically with wide lines. If it is desirable to obtain precise and
uniform results across all displays, a client should always use a line-width of
one rather than a line-width of zero.

The line-style defines which sections of a line are drawn:

LineSolid

LineDoubleDuh

LinaOaOffDuh

The full path of the line is drawn.

The full path of the line is drawn, but the even dashes are filled dif­
ferently than the odd dashes (see fill-style) with CapButt style used
where even and odd dashes meet.

Only the even dashes are drawn, and cap-style applies to all internal
ends of the Individual dashes, except CapliotLut is treated as Cap­
Butt.

The cap-style defines how the endpoints of a path are drawn:

CapButt

CapRound.

This is equivalent to CapButt except that for a line-width of zero the
final endpoint is not drawn.

The line is square at the endpoint (perpendicular to the slope of the
line) with no projection beyond.

The line has a circular arc with the diameter equal to the line-width,
centered on the endpoint. (This is equivalent to CapButt for line­
width of zero).

The line is square at the end, but the path continues beyond the end­
point for a distance equal to half the line-width. (This is equivalent
to CapButt for line-width of zero).

Graphics Resource functions 5-23

Manipulating Graphics Context/State

The join-style defines how comers are drawn for wide lines:

JoinMiter

Joinaound

JoinBevel

The outer edges cl two lines extend to meet at an angle. However, if
the angle is less than 11 degrees, then a JoinBevel join-style is used.
instead..

The comer is a circular arc with the diameter equal to the line-width,
centered on the joinpoint.

The comer has CapButt endpoint styles with the triangular notch
filled.

For a line with coincident endpoints (xl=x2, yl=y2), when the cap-style is
applied to both endpoints, the semantics depends on the line-width and the
cap-style:

CapilotLut thin The results are deviCle-dependent, but the desired effect is
that nothing is drawn.

CapButt thin The results are deviCle-dependent, but the desired effect is
that a single pixel is drawn.

CapRound thin The results are the same as for C8IlBUtt/thin.

CAFl'xojeotinq thin The results are the same as for Butt/thin.

C8IlBUtt wide Nothing is drawn.

CapRound wide The dosed path is a circle, centered at the endpoint, and
with the diameter equal to the line-width.

CAFl'xojeotinq wide The dosed path is a square, aligned with the coordinate
axes, centered at the endpoint, and with the sides equal to
the line-width.

For a line with coincident endpoints (xl=x2, yl=y2), when the join-style is
applied at one or both endpoints, the effect is as if the line was removed from
the overall path. However, if the total path consists of or is reduced to a single
point joined with itself, the effect is the same as when the cap-style is applied at
both endpoints.

The tile/stipple and clip origins are interpreted relative to the origin of what­
ever destination drawable is specified in a graphics request. The tile pixmap
must have the same root and depth as the GC, or a Ba~tch error results. The
stipple pixmap must have depth one and must have the same root as the GC, or

5-24 Xwln GWS: Xllb - C Language Interface

_________________ Manipulating Graphics Context/State

a BadMatch error results. For stipple operations where the fill-style is
FillStippled but not FillOpaqueStippled, the stipple pattern is tiled in a
single plane and acts as an additional clip mask to be ANDed with the clip­
mask. Although some sizes may be faster to use than others, any size pixmap
can be used for tiling or stippling.

The fill-style defines the contents of the source for line, text, and fill requests.
For all text and fill requests (for example, XDrawText, XDrawText16, XFillRec­
tangle, XFillPolyqon, and XFillArc)i for line requests with line-style
LineSolid (for example, XDrawLine, XDrawSegments, XDrawRectangle,
XDrawArc)i and for the even dashes for line requests with line-style LineOnOff­
Dash or LineDoubleDash, the following apply:

FillSolid Fo~ound

FillTiled

FillOpaqueStippled

FillStippled

Tile

A tile with the same width and height as stip­
ple, but with background everywhere stipple
has a zero and with foreground everywhere
stipple has a one

Foreground masked by stipple

When drawing lines with line-style LineDoubleDash, the odd dashes are con­
trolled by the fill-style in the following manner:

FillSolid Background

FillTiled

FillOpaqueStippled

FillStippled

Same as for even dashes

Same as for even dashes

Background masked by stipple

Storing a pixmap in a CC might or might not result in a copy being made. If
the pixmap is later used as the destination for a graphics request, the change
might or might not be reflected in the Cc. If the pixmap is used simultaneously
in a graphics request both as a destination and as a tile or stipple, the results are
undefined.

Graphics Resource Functions 5-25

Manipulating Graphics Context/State

For optimum performance, you should draw as much as possible with the same
GC (without changing its components). The costs of changing GC components
relative to using different GCs depend upon the display hardware and the
server implementation. It is quite likely that some amount of GC information
will be cached in display hardware and that such hardware can only cache a
small number of GCs.

The dashes value is actually a simplified form of the more general patterns that
can be set with XSetDashes. Specifying a value of N is eqUivalent to specifying
the two-element list [N, N] in XSetDashes. The value must be nonzero, or a
BadValue error results.

The clip-mask restricts writes to the destination drawable. If the clip-mask is set
to a pixmap, it must have depth one and have the same root as the GC, or a
BadMatch error results. If clip-mask is set to None, the pixels are always drawn
regardless of the clip origin. The clip-mask also can be set by calling the
XSetClipRectangles or XSetRegion functions. Only pixels where the clip­
mask has a bit set to 1 are drawn. Pixels are not drawn outside the area
covered by the clip-mask or where the clip-mask has a bit set to O. The clip­
mask affects all graphics requests. 'The clip-mask does not clip sources. The
clip-mask origin is interpreted relative to the origin of whatever destination
drawable is specified in a graphics request.

You can set the subwindow-mode to ClipByChildren or Includelnferiors.
For ClipByChildren, both source and destination windows are additionally
clipped by all viewable InputOutput children. For Includelnferiors, neither
source nor destination window is clipped by inferiors. This will result in
including subwindow contents in the source and drawing through subwindow
boundaries of the destination. The use of Includelnferiors on a window of
one depth with mapped inferiors of differing depth is not illegal, but the seman­
tics are undefined by the core protocol.

The fill-rule defines what pixels are inside (drawn) for paths given in
XFillPolygon requests and can be set to EvenOddRule or WindingRule. For
EvenOddRule, a point is inside if an infinite ray with the point as origin crosses
the path an odd number of times. For WindingRule, a point is inside if an
infinite ray with the point as origin crosses an unequal number of clockwise and
counterclockwise directed path segments. A clockwise directed path segment is
one that crosses the ray from left to right as observed from the point. A coun­
terclockwise segment is one that crosses the ray from right to left as observed
from the point. The case where a directed line segment is coincident with the

5·26 Xwln GWS: Xllb - C Language Interface

Manipulating Graphics Context/State

ray is uninteresting because you can simply choose a different ray that is not
coincident with a segment.

For both EvenOddRule and WindinqRule, a point is infinitely small, and the
path is an infinitely thin line. A pixel is inside if the center point of the pixel is
inside and the center point is not on the boundary. If the center point is on the
boundary, the pixel is inside if and only if the polygon interior is immediately
to its right (x increasing direction). Pixels with centers on a horizontal edge are
a special case and are inside if and only if the polygon interior is immediately
below (y increasing direction).

The arc-mode controls filling in the XFillArcs function and can be set to
ArcPieSlice or ArCChord. For ArcPieSlice, the arcs are pie-slice filled. For
ArCChord, the arcs are chord filled.

The graphics-exposure flag controls GraphicsExpose event generation for
XCopyArea and XCopyPlane requests (and any similar requests defined by
extensions).

To create a new GC that is usable on a given screen with a depth of drawable,
use XCreateGC.

GC lICaateGC (display, d, wlwmas1c, willeS)

Display ·disl''''Y;

display

d

valuemask

values

Drawabled;
unsigned long wlrumuJSk;
XGCValues ·wlues;

Specifies the connection to the XWIN server.

Specifies the drawable.

Specifies which components in the GC are to be set using the
information in the specified values structure. This argument is
the bitwise inclusive OR of one or more of the valid GC com­
ponent mask bits.

Specifies any values as specified by the valuemask.

The XCreateGC function creates a graphics context and returns a Gc. The GC
can be used with any destination drawable having the same root and depth as
the specified drawable. Use with other drawables results in a BadMatch error.

Graphics Resource functions 5-27

Manipulating Graphics Context/State

XCreateGC can generate BadAlloc, BadDrawable, BadFont, BadMatch, BadPix­
map, and BadValue errors.

To copy components from a source GC to a destination GC, use XCopyGC.

display

src

XCopyGC (display, sre, Nluem4S1c, dest)

DIsplay ·display;

GC STC, dest;
unsigned long Nluem4S1c;

Specifies the connection to the XWIN server.

Specifies the components of the source Gc.

valuemask Specifies which components in the GC are to be copied to the
destination Gc. This argument is the bitwise inclusive OR of
one or more of the valid GC component mask bits.

dest Specifies the destination Gc.

The XCopyGC function copies the specified components from the source GC to
the destination Gc. The source and destination GCs must have the same root
and depth, or a BadMatch error results. The valuemask specifies which com­
ponent to copy, as for XCreateGC.

XCopyGC can generate BadAlloc, BadGe, and BadMatch errors.

To change the components in a given GC, use XChangeGC.

XChangeGC (displlly, gc, NluemtlSk, Nlues)
DIsplay ·display;

display

gc

valuemask

5-28

GCgc;
unsigned long NluemtlSk;
XGCValues ·TJIllues;

Specifies the connection to the XWIN server.

Specifies the Gc.

Specifies which components in the GC are to be changed using
information in the specified values structure. This argument is
the bitwise inclusive OR of one or more of the valid GC com­
ponent mask bits.

Xwln GWS: Xllb - C Language Interface

Manipulating Graphics Context/State

values Specifies any values as specified by the valuemask.

The XChangeGC function changes the components specified by valuemask for the
specified GC. The values argument contains the values to be set. The values
and restrictions are the same as for XCreateGC. Changing the clip-mask over­
rides any previous XSetClipRectanqles request on the context. Changing the
dash-offset or dash-list overrides any previous XSetDashes request on the con­
text. The order in which components are verified and altered is server­
dependent. If an error is generated, a subset of the components may have been
altered.

XChangeGC can generate BadAlloc, BadFont, BadGe, BadMatch, BadPixmap,
and BadValue errors.

To free a given GC, use XFreeGC.

display

gc

XE'meGC (display, ge)

Display ·dis"l4y;
GCge;

Specifies the connection to the XWIN server.

Specifies the GC.

The XFreeGC function destroys the specified GC as well as all the associated
storage.

XFreeGC can generate a BadGe error.

To obtain the GContext resource ID for a given GC, use XGContextFrOllGC.

gc

GContext XGContextProaGC (ge)
GCge;

Specifies the GC for which you want the resource ID.

Graphics Resource Functions 5-29

Using GC Convenience Routines

This section discusses how to set the:

• Foreground, background, plane mask, or function components

• Line attributes and dashes components

• Fill style and fill rule components

• Fill tile and stipple components

• Font component

• Clip region component

• Arc mode, subwindow mode, and graphics exposure components

Setting the Foreground, Background, Function, or
Plane Mask

To set the foreground, background, plane mask, and function components for a
given GC, use XSetState.

XSetstate (disl'liIy, gc, foreground, background, function, pltme_mIlSk)
Display ·disl'liIy;

display

gc

foreground

background

function

plane_mask

GCgc;
unsigned long foreground, btlckground;
int function;
unsigned long pltme _ mIlSk;

Specifies the connection to the XWIN server.

Specifies the Gc.

Specifies the foreground you want to set for the specified Cc.

Specifies the background.. you want to set for the specified Gc.

Specifies the function you want to set for the specified CC.

Specifies the plane mask.

XSetState can generate BadAlloc, BadGC, and BadValue errors.

5·30 Xwln GWS: Xllb - C Language Interface

Using GC Convenience Routines

To set the foreground of a given Ge, use XSetFo~round.

display

XSetroreground(dgpky,gc,~g~d)

Display ·dgpky;

GCgc;

unsigned long ~ground;

Specifies the connection to the XWIN server.

Specifies the Gc. gc

foreground Specifies the foreground you want to set for the specified Gc.

XSetForeqround can generate BadAlloc and BadGC errors.

To set the background of a given Ge, use XSetBackground.

display

lCSetBac:IuJrou (dgpky, gc, bllckground)

Display ·dgpky;

GCgc;

unsigned long bclckg~d;

Specifies the connection to the XWIN server.

Specifies the Gc. gc

background Specifies the background you want to set for the specified Gc.

XSetBackground can generate BadAlloc and BadGC errors.

To set the display function in a given Ge, use XSetFunction.

display

gc

function

XSetFunction (dgpky, gc, function)

Display ·dgp14y;

GCgc;

int function;

Specifies the connection to the XWIN server.

Specifies the Gc.

Specifies the function you want to set for the specified GC.

Graphics Resource Functions 5-31

Using GC Convenience Routines

XSetFunction can generate BadAlloc, BadGe, and BadValue errors.

To set the plane mask of a given GC, use XSetPlaneMask.

XSetpl.anaMult (display, gc, pltme _ mtlSk)

Display ·disp1lly;

display

gc

plane_mask

GCgc;
unsigned long pltme _ mtlSk;

Specifies the connection to the XWIN server.

Specifies the GC.

Specifies the plane mask.

XSetP laneMask can generate BadAlloc and BadGe errors.

Setting the Line Attributes and Dashes !

To set the line drawing components of a given Ge, use XSetLineAttributes.

XSetLineattribut .. (displlly, gc, line_width, line_style, ClIp_style, join_style)
Display ·disp1lly;

display

gc

line width

line_style

5·32

GCgc;
unsigned tnt line_width;
tnt line_style;
tnt CIlp _style;
tnt join_style;

Specifies the connection to the XWIN server.

Specifies the Gc.

Specifies the line-width you want to set for the specified Gc.

Specifies the line-style you want to set for th~ specified GC.
You can pass LineSolid, LineOnOffDash, or LineDoubleDash.

Specifies the line-style and cap-style you want to set for the
specified Ge. You can pass capNotLast, capButt, capRound,
or capProjectinq.

Xwln GWS: Xllb - C Language Interface

Using GC Convenience Routines

Specifies the line join-style you want to set for the specified Gc.
You can pass JoinMiter, JoinRounci, or JoinBevel.

XSetLineAttributes can generate BadAlloc, BadGe, and BadValue errors.

To set the dash-offset and dash-list for dashed line styles of a given Ge, use
XSetDashes.

XSetDuhu (display, ge, diIsh_offset, dMhJist, n)

Display ·disl'lIJy;
GCgc;
int diIsh_offset;
char diIsh Jist[);
int n;

Specifies the connection to the XWIN server.

Specifies the Gc.

Specifies the phase of the pattern for the dashed line-style you
want to set for the specified Gc.

dash list Specifies the dash-list for the dashed line-style you want to set
for the specified Gc.

n Specifies the number of elements in dash_list.

The XSetDashes function sets the dash-offset and dash-list attributes for dashed
line styles in the specified GC. There must be at least one element in the
specified dash_list, or a BadValue error results. The initial and alternating ele­
ments (second, fourth, and so on) of the dash_list are the even dashes, and the
others are the odd dashes. Each element specifies a dash length in pixels. All
of the elements must be nonzero, or a BadValue error results. Specifying an
odd-length list is equivalent to specifying the same list concatenated with itself
to produce an even-length list.

The dash-offset defines the phase of the pattern, specifying how many pixels
into the dash-list the pattern should actually begin in any single graphics
request. Dashing is continuous through path elements combined with a join­
style but is reset to the dash-offset each time a cap-style is applied at a line end­
point.

Graphics Resource Functions 5-33

Using GC Convenience Routine.

The unit of measure for dashes is the same for the ordinary coordinate system.
Ideally, a dash length is measured along the slope of the line, but implementa­
tions are only required to match this ideal for horizontal and vertical lines. Fail­
ing the ideal semantics, it is suggested that the length be measured along the
major axis of the line. The major axis is defined as the x axis for lines drawn at
an angle of between -45 and +45 degrees or between 315 and 225 degrees from
the x axis. For all other lines, the major axis is the y axis.

XSetDashes can generate BadAlloc, BadGe, and BadValue errors.

Setting the Fill Style and Fill Rule

To set the fill-style of a given GC, use XSetFillStyle.

display

gc

fill_style

XSetrillStyle (display, gc, fill_style)
DIsplay -disl'lfly;
GCgc;
int fill_style;

Specifies the connection to the XWIN server.

Specifies the Gc.

Specifies the fill-style you want to set for the specified Gc. You
can pass FillSolid, FillTiled, FillStippled, or
FillOpaqueStippled.

XSetFillStyle can generate BadAlloc, BadGe, and BadValue errors.

To set the fill-rule of a given GC, use XSetFillRule.

display

gc

5-34

XSetpillRule (displfly, gc, fill_rule)
DIsplay -displfly;
GCgc;
int fill Jule;

Specifies the connection to the XWIN server.

Specifies the GC.

Xwln GWS: Xllb - C Language Interface

Using GC Convenience Routines

fillJule Specifies the fill-rule you want to set for the specified GC. You
can pass EvenOddRule or WindinqRule.

XSetFillRule can generate BadAlloc, BadGe, and BadValue errors.

Setting the Fill Tile and Stipple

Some displays have hardware support for tiling or stippling with patterns of
specific sizes. Tiling and stippling operations that restrict themselves to those
specific sizes run much faster than such operations with arbitrary size patterns.
Xlib provides functions that you can use to determine the best size, tile, or stip­
ple for the display as well as to set the tile or stipple shape and the tile or stip­
ple origin.

To obtain the best size of a tile, stipple, or cursor, use XQueryBestSize.

StatWi lIQuerJgestSize (display, cltIss, which_scrte1I, width, height, witltla-"f:tum, 1aeighIJetum)
Display -display;
int cltIss;
Drawable w1aic1a_scrte1I;

unsigned int width, height;
unsigned int ~h_retum, -Might_retum;

display Specifies the connection to the XWIN server.

class Specifies the class that you are interested in. You can pass
TileShape,CursorShape,orStippleShape.

which screen Specifies any drawable on the screen.

width
height Specify the width and height.

width return

height Jeturn Return the width and height of the object best supported by the
display hardware.

Graphics Resource functions 5-35

Using GC Convenience Routines

The XQueryBestSize function returns the best or closest size to the specified
size. For CursorShape, this is the largest size that can be fully displayed on the
screen specified by which_screen. For TileShape, this is the size that can be
tiled fastest. For stippleShape, this is the size that can be stippled fastest. For
CursorShape, the drawable indicates the desired screen. For TileShape and
StippleShape, the drawable indicates the screen and possibly the window class
and depth. An InputOnly window cannot be used as the drawable for
TileShape or StippleShape, or a BadMatch error results.

XQueryBestSize can generate BadDrawable, BadMatch, and BadValue errors.

To obtain the best fill tile shape, use XQueryBestTile.

Status ~tTile (display, which_screen, fDidth, Might, widthJetum, MighUfltlml)
DIsplay ·display;
Drawable which_screen;
unsigned int width, height;
unsigned int ·TDidt1JJetum, ·heightJetum;

display

which screen

Specifies the connection to the XWIN server.

Specifies any drawable on the screen.

width
height

width return
heigh~return

Specify the width and height.

Return the width and height of the object best supported by the
display hardware.

The XQueryBestTHe function returns the best or closest size, that is, the size
that can be tiled fastest on the screen specified by which_screen. The drawable
indicates the screen and possibly the window class and depth. If an InputOnly
window is used as the drawable, a BadMatch error results.

XQueryBestTile can generate BadDrawable and BadMatch errors.

To obtain the best stipple shape, use XQueryBestStipple.

Xwln GWS: Xllb - C Language Interface

U.lng GC Convenience Routine.

Statu. XQueryBe.tstiwle (displlly, which_scrte1I, width, height, widthJcturn, heightJetJml)
Display ·displlly;
Drawable which _ scrte1I;

unsigned int width, height;
unsigned int otwUlthJeturn, ·lreighU·eturn;

display

which screen

width

Specifies the connection to the XWIN server.

Specifies any drawable on the screen.

height Specify the width and height.

width return
heigh~return Return the width and height of the object best supported by the

display hardware.

The XQueryBestStipple function returns the best or closest size, that is, the
size that can be stippled fastest on the screen specified by which_screen. The
drawable indicates the screen and possibly the window class and depth. If an
InputOnly window is used as the drawable, a BadMatch error results.

XQueryBestStipple can generate BadDrawable and BadMatch errors.

To set the fill tile of a given Ge, use XSetTile.

display

gc

tile

XSet'lU. (displlly, gc, tile)

Display ·displlly;
GCgc;
Pixmap tile;

Specifies the connection to the XWIN server.

Specifies the Gc.

Specifies the fill tile you want to set for the specified GC.

The tile and GC must have the same depth, or a BadMatch error results.

XSetTile can generate BadAlloc, BadGe, BadMatch, and BadPixmap errors.

To set the stipple of a given GC, use XSetStipple.

Graphics Resource Function. 5-37

Using GC Convenience Routines

display

gc

stipple

XSetStipple (display, gc, stipple)
Display ·display;
GCgc;
Pixmap stipple;

Specifies the connection to the XWIN server.

Specifies the Gc.

Specifies the stipple you want to set for the specified Gc.

The stipple and GC must have the same depth, or a BadMatch error results.

XSetSt1pple can generate BadAlloc, BadGe, BadMatch, and BadPixmap errors.

To set the tile or stipple origin of a given GC, use XSetTSOriqin.

XSetTSOri9in (display, gc, ts_x_origin, tS.ll-origin)
Display ·display;

display

gc

ts_x_origin
ts .JI-origin

GCgc;

Specifies the connection to the XWIN server.

Specifies the Gc.

Specify the x and y coordinates of the tile and stipple origin.

When graphics requests call for tiling or stippling, the parent's origin will be
interpreted relative to whatever destination drawable is specified in the graphics
request.

XSetTSOriqin can generate BadAlloc and BadGe error.

5-38 Xwln GWS: Xllb - C Language Interface

_________________ Using GC Convenience Routines

Setting the Current Font

To set the current font of a given GC, use XSetFont.

display

gc

font

XSetPoat (displlty, ge, font)
Display ·displtay;

GCge;
Fontftmt;

Specifies the connection to the XWIN server.

Specifies the Gc.

Specifies the font.

XSetFont can generate BadAlloc, BadFont, and BadGe errors.

Setting the Clip Region

Xlib provides functions that you can use to set the clip-origin and the clip-mask
or set the clip-mask to a list of rectangles.

To set the clip-origin of a given GC, use XSetClipOriqin.

XSetClipOriCJi,n (displlty, ge, elip_%_origin, clip.JLorigin)

Display ·displtay;

GCge;
int clip_%_origin, elipJ_origin;

display Specifies the connection to the XWIN server.

gc Specifies the Gc.

clip _x_origin
clip .JL0rigin Specify the x and y coordinates of the clip-mask origin.

The clip-mask origin is interpreted relative to the origin of whatever destination
drawable is specified in the graphics request.

Graphics Resource Functions 5-39

Using GC Convenience Routines

XSetCl1pOrigin can generate BadAlloc and BaciGC errors.

To set the clip-mask of a given GC to the specified pixmap, use XSetCl1pMask.

display

gc

pixmap

XSetClipMask(d~p~~g~pbanap)

Display ·d~pllly;

GCge;
Pixmap pixmltp;

Specifies the connection to the XWIN server.

Specifies the Gc.

Specifies the pixmap or None.

If the clip-mask is set to None, the pixels are are always drawn (regardless of
the clip-origin).

XSetCl1pMask can generate BadAlloc, BaciGC, BadMatch, and BadValue errors.

To set the clip-mask of a given GC to the specified list of rectangles, use
XSetClipRectangles.

display

gc

XSetClipRec:tanqles (d~pllly, ge, clip _ x_origin, clip .J,-origin, rectllngles, n, ordering)
Display "d~p~y;
GCge;
int clip_x_origin, clip..JI_origin;
XRectangle rectllngles[);
int n;
int ordering;

Specifies the connection to the XWIN server.

Specifies the Gc.

clip _x_origin
clip1I_origin Specify the x and y coordinates of the clip-mask origin.

Specifies an array of rectangles that define the clip-mask.

Specifies the number of rectangles.

rectangles

n

ordering

5-40

Specifies the ordering relations on the rectangles. You can pass
Unsorted,YSorted,YXSorted,orYXBanded.

Xwln GWS: Xllb - C Language Interface

Using GC Convenience Routines

The XSetClipRectangles function changes the clip-mask in the specified GC to
the specified list of rectangles and sets the clip origin. The output is clipped to
remain contained within the rectangles. The clip-origin is interpreted relative to
the origin of whatever destination drawable is specified in a graphics request.
The rectangle coordinates are interpreted relative to the clip-origin. The rectan­
gles should be nonintersecting, or the graphics results will be undefined. Note
that the list of rectangles can be empty, which effectively disables output. This
is the opposite of passing None as the clip-mask in XCreateGC, XChangeGC, and
XSetClipMask.

If known by the client, ordering relations on the rectangles can be specified with
the ordering argument. This may provide faster operation by the server. If an
incorrect ordering is specified, the XWIN server may generate a BadMatch error,
but it is not required to do so. If no error is generated, the graphics results are
undefined. Unsorted means the rectangles are in arbitrary order. YSorted
means that the rectangles are nondecreasing in their Y origin. YXSorted addi­
tionally constrains YSorted order in that all rectangles with an equal Y origin
are nondecreasing in their X origin. YXBanded additionally constrains YXSorted
by requiring that, for every possible Y scanline, all rectangles that include that
scanline have an identical Y origins and Y extents.

XSetClipRectangles can generate BadAlloc, BaciGC, BadMatch, and BadValue
errors.

Xlib provides a set of basic functions for performing region arithmetic. For
information about these functions, see Chapter 10.

Setting the Arc Mode, Subwindow Mode, and
Graphics Exposure

To set the arc mode of a given GC, use XSetArcMocie.

XSetArcMode (displlly, gc, lire_mode)
Display"display;

GCgc;
int arc_mode;

Graphics Resource Functions 5-41

Using GC Convenience Routine.

display

gc

Specifies the connection to the XWIN server.

Specifies the Gc.

arc mode Specifies the arc mode. You can pass ArcChord or
ArcPieSlice.

XSetArcM:xie can generate BadAlloc, BadGe, and BadValue errors.

To set the subwindow mode of a given GC, use XSetSubwindo~.

XSetSubwindowH:xie (displ4y, ge, subwindow_mode)
Display ·displ4yi
GCge;
int subwindow_modei

display Specifies the connection to the XWIN server.

gc Specifies the Gc.

subwindow mode Specifies the subwindow mode. You can pass ClipByChil­
dren or Includelnferiors.

XSetSubwindo~ can generate BadAlloc, BadGe, and BadValue errors.

To set the graphics-exposures flag of a given GC, use XSetGraphicsExposures.

XSetGraphicaExposw:es (displ4y, ge, gTllphics_exposun:s)
Display ·displllYi
GCge;
Bool graphics _ exposun:s;

display Specifies the connection to the XWIN server.

gc Specifies the Gc.

graphics_exposures Specifies a Boolean value that indicates whether you want
GraphicsExpose and NoExpose events to be reported when
calling XCopyArea and XCopyPlane with this Gc.

XSetGraphicsExposures can generate BadAlloc, BadGe, and BadValue errors.

5-42 Xwln GWS: Xllb - C Language Interface

6 Graphics Functions

Introduction 6-1

Clearing Areas 6-2

Copying Areas 6-4

Drawing Points, Lines, Rectangles, and
A~ ~
Drawing Single and Multiple POints 6-8
Drawing Single and Multiple Lines 6-9
Drawing Single and Multiple Rectangles 6-11
Drawing Single and Multiple Arcs 6-13

Filling Areas 6-17
Filling Single and Multiple Rectangles 6-17
Filling a Single Polygon 6-19
Filling Single and Multiple Arcs 6-20

Font Metrics 6-22
Loading and Freeing Fonts 6-28
Obtaining and Freeing Font Names and Information 6-31

Table of Contents

Table of Contents _____________________ _

Setting and Retrieving the Font Search Path 6-33
Computing Character String Sizes 6-34
Computing Logical Extents 6-35
Querying Character String Sizes 6-37

Drawing Text 6-40
Drawing Complex Text 6-41
Drawing Text Characters 6-43
Drawing Image Text Characters 6-44

Transferring Images between Client and
Server 6-47

Cursors 6-54
Creating a Cursor 6-54
Changing and Destroying Cursors 6-57
Defining the Cursor 6-59

II Xwln GWS: Xllb - C Language Interface

Introduction

Once you have connected the display to the XWIN server, you can use the Xlib
graphics functions to:

• Clear and copy areas

• Draw points, lines, rectangles, and arcs

• Fill areas

• Manipulate fonts

• Draw text

• Transfer images between clients and the server

• Manipulate cursors

If'the same drawable and GC is used for each call, Xlib batches back-to-back
calls to XDrawPoint, XDrawLine, XDrawRectanqle, XFillArc, and XFillRec­
tanqle. Note that this reduces the total number of requests sent to the server.

Graphics Functions 6-1

Clearing Areas

Xlib provides functions that you can use to clear an area or the entire window.
Because pixmaps do not have defined backgrounds, they cannot be filled by
using the functions described in this section. Instead, to accomplish an analo­
gous operation on a pixmap, you should use XFillRectanqle, which sets the
pixmap to a known value.

To clear a rectangular area of a given window, use XClearArea.

lIClearAwa (display, w, ", y, width, Might, apoSUJ'f:s)

display

w

x
y

width
height

exposures

Display "displAyi
Window Wi

int ", Yi
unsigned int width, Mighti
8001 aposurr:si

Specifies the connection to the XWIN server.

Specifies the window.

Specify the x and y coordinates, which are relative to the origin
of the window and specify the upper-left comer of the rectangle.

Specify the width and height, which are the dimensions of the
rectangle.

Specifies a Boolean value that indicates if Expose events are to
be generated.

The XClearArea function paints a rectangular area in the specified window
according to the specified dimensions with the window's background pixel or
pixmap. The subwindow-mode effectively is ClipByChildren. If width is zero,
it is replaced with the current width of the window minus x. If height is zero, it
is replaced with the current height of the window minus y. If the window has a
defined background tile, the rectangle clipped by any children is filled with this
tile. If the window has background None, the contents of the window are not
changed. In either case, if exposures is True, one or more Expose events are
generated for regions of the rectangle that are either visible or are being
retained in a backing store. If you specify a window whose class is InputOnly,
a BadMatch error results.

6-2 Xwln GWS: Xllb - C Language Interface

ClearIng Areas

XClearArea can generate BadMatch, BadValue, and BadWindow errors.

To clear the entire area in a given window, use XClearWindow.

display

w

XClearWindow(displAy,w)
Display -displaYi
Window Wi

Specifies the connection to the XWIN server.

Specifies the window.

The XClearWindow function clears the entire area in the specified window and
is equivalent to XClearArea (display, w, 0, 0, 0, 0, False). If the window has a
defined background tile, the rectangle is tiled with a plane-mask of all ones and
GXcopy function. If the window has background None, the contents of the win­
dow are not changed. If you specify a window whose class is InputOnly, a Bad­
Match error results.

XClearWindow can generate BadMatch and BadWindow errors.

GraphIcs FunctIons 6-3

Copying Areas

Xlib provides functions that you can use to copy an area or a bit plane.

To copy an area between drawables of the same root and depth, use XCopyArea.

display

src
dest

gc

src x
src.JJ

width
height

dest x
dest.JJ

XCopyArea(display, src, dest, gc, src_x, src .. Jf, width, height, desty, dest.JJ)
Display -display;
Drawable src, dest;
GCgc;
int src _x, src.JJ;
unsigned int width, height;
int dest_x, dest.JJ;

Specifies the connection to the XWIN server.

Specify the source and destination rectangles to be combined.

Specifies the Gc.

Specify the x and y coordinates, which are relative to the origin
of the source rectangle and specify its upper-left comer.

Specify the width and height, which are the dimensions of both
the source and destination rectangles.

Specify the x and y coordinates, which are relative to the origin
of the destination rectangle and specify its upper-left comer.

The XCopyArea function combines the specified rectangle of src with the
specified rectangle of dest. The drawables must have the same root and depth,
or a BadMatch error results.

If regions of the source rectangle are obscured and have not been retained in
backing store or if regions outside the boundaries of the source drawable are
specified, those regions are not copied. Instead, the following occurs on all
corresponding destination regions that are either visible or are retained in back­
ing store. If the destination is a window with a background other than None,
corresponding regions of the destination are tiled with that background (with
plane-mask of all ones and GXcopy function). Regardless of tiling or whether
the destination is a window or a pixmap, if graphics-exposures is True, then
GraphicsExpose events for all corresponding destination regions are generated.

6-4 Xwln GWS: Xllb - C Language Interface

__________________________ Copying Areas

If graphics-exposures is True but no GraphicsExpose events are generated, a
NoExpose event is generated. Note that by default graphics-exposures is True
in new GCs.

This function uses these GC components: function, plane-mask, subwindow­
mode, graphics-exposures, clip-x-origin, clip-y-origin, and clip-mask.

XCopyArea can generate BadDrawable, BadGe, and BadMatch errors.

To copy a single bit plane of a given drawable, use XCopyPlane.

display

src
dest

gc

src x
src"'y

width
height

dest x
dest...Y

plane

XCopyPlane (display, S1C, dest, gc, S1C_X, S1C.JI, width, height, dest_x, dest.JI, plane)
Display"disp14y;

Drawable 51C, dest;
GCgc;
int STC_X, S1C.JI;
unsigned int width, height;
int dest_x, dest.JI;
unsigned long plane;

Specifies the connection to the XWIN server.

Specify the source and destination rectangles to be combined.

Specifies the Gc.

Specify the x and y coordinates, which are relative to the origin
of the source rectangle and specify its upper-left comer.

Specify the width and height, which are the dimensions of both
the source and destination rectangles.

Specify the x and y coordinates, which are relative to the origin
of the destination rectangle and specify its upper-left comer.

Specifies the bit plane. You must set exactly one bit to 1.

The XCopyPlane function uses a single bit plane of the specified source rectan­
gle combined with the specified GC to modify the specified rectangle of dest.
The drawables must have the same root but need not have the same depth. If
the drawables do not have the same root, a BadMatch error results. If plane

Graphics Functions 6-5

Copying Areas

does not have exactly one bit set to 1 and the values of planes must be less than
It 2n, where n is the depth of src, a BadValue error results.

Effectively, XCopyPlane forms a pixmap of the same depth as the rectangle of
dest and with a size specified by the source region. It uses the
foreground/background pixels in the GC (foreground everywhere the bit plane
in src contains a bit set to 1, background everywhere the bit plane in src con­
tains a bit set to 0) and the equivalent of a CopyArea potocol request is per­
formed with all the same exposure semantics. This can also be thought of as
using the specified region of the source bit plane as a stipple with a fill-style of
FillOpaqueStippled for filling a rectangular area of the destination.

This function uses these GC components: function, plane-mask, foreground,
background, subwindow-mode, graphics-exposures, clip-x-origin, clip-y-origin
and clip-mask.

XCopyPlane can generate BadDrawable, BadGe, BadMatch, and BadValue
errors.

6-6 Xwln GWS: Xllb - C Language Interface

Drawing Points, Lines, Rectangles, and Arcs

Xlib provides functions that you can use to draw:

• A single point or multiple points

• A single line or multiple lines

• A single rectangle or multiple rectangles

• A single arc or multiple arcs

Some of the functions described in the following sections use these structures:

typedef atruct {

abort xl, yl, x2, y2i

} XSegmenti

typedef atruct {
abort x, Yi

} XPointi

typedef atruct {

abort x, Yi

unsigned abort width, height i

} XReotang1ei

typedef atruct {
abort x, Yi

} Brei

unsigned abort width, heighti

abort anqlel, anqle2i 1* Degreea * 64 *1

All X and y members are 16-bit signed integers. The width and height members
are 16-bit unsigned integers. You should be careful not to generate coordinates
and sizes out of the 16-bit ranges, because the protocol only has 16-bit fields for
these values.

Graphics Functions 6-7

Drawing Points, Lines, Rectangles, and Arcs

Drawing Single and Multiple Points

To draw a single point in a given drawable, use XDrawPoint.

display

d

gc

x
y

XDrawPoint (display, d, gc, x, y)

Display"display;
Drawable d;

GCgc;
intx, y;

Specifies the connection to the XWIN server.

Specifies the drawable.

Specifies the Gc.

Specify the x and y coordinates where you want the point
drawn.

To draw multiple points in a given drawable, use XDrawPoints.

display

d

gc

points

npoints

mode

6-8

XDrawPoint. (display, d, gc, points, npoints, mode)

Display"display;

Drawable d;

GCgc;
XPoint "points;
int npoints;
int mode;

Specifies the connection to the XWIN server.

Specifies the drawable.

Specifies the Gc.

Specifies a pointer to an array of points.

Specifies the number of points in the array.

Specifies the coordinate mode. You can pass CoordModeOriqin
or CoordMxiePrevious.

Xwln GWS: Xllb - C Language Interface

Drawing Point., Line., Rectangle., and Arcs

The XDrawPoint function uses the foreground pixel and function components of
the GC to draw a single point into the specified drawable; XDrawPoints draws
multiple points this way.
CoorcM:xieOriqin treats all coordinates as relative to the origin, and CoordMo­
dePrevious treats all coordinates after the first as relative to the previous point.
XDrawPoints draws the points in the order listed in the array.

Both functions use these GC components: function, plane-mask, foreground,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.

XDrawPoint can generate BacIDrawable, BadGe, and BadMatch errors.
XDrawPoints can generate BacIDrawable, BadGe, BadMatch, and BadValue
errors.

Drawing Single and Multiple Lines

To draw a single line between two points in a given drawable, use XDrawLine.

displlly

d

gc

xl
yl
x2
y2

XDrawLine (display, d, gc, xl, yl, x2, y2)
Display ·display;

Drawable d;

GCgc;
int xl, yl, xl, y2;

Specifies the connection to the XWIN server.

Specifies the drawable.

Specifies the Gc.

Specify the points (xl, yl) and (x2, y2) to be connected.

To draw multiple lines in a given drawable, use XDrawLines.

Graphics Functions 6-9

Drawing Points, Lines, Rectangles, and Arcs

display

d

gc

points

npoints

mode

XDrawLinea (display, d, gc, points, npoints, mode)

Display ·dis"lIly;
Drawable d;

GCgc;
XPoint ·points;
int npoints;
int mode;

Specifies the connection to the XWIN server.

Specifies the drawable.

Specifies the Gc.

Specifies a pointer to an array of points.

Specifies the number of points in the array.

Specifies the coordinate mode. You can pass CoordModeOrigin
or CoordMociePrevious.

To draw multiple, unconnected lines in a given drawable, use XDrawSegments.

XDrawSegmenta (dis"lIly, d, gc, segments, nsegmmts)
Display ·dis"lAy;

display

d

gc

segments

nsegments

Drawable d;

GCgc;
XSegment ·segments;
int nsegments;

Specifies the connection to the XWIN server.

Specifies the drawable.

Specifies the Gc.

Specifies a pointer to an array of segments.

Specifies the number of segments in the array.

The XDrawLine function uses the components of the specified GC to draw a line
between the specified set of points (xl, yl) and (x2, y2). It does not perform
joining at coincident endpoints. For any given line, XDrawLine does not draw a
pixel more than once. If lines intersect, the intersecting pixels are drawn multi­
ple times.

6-10 Xwln GWS: Xllb - C Language Interface

Drawing Points, Lines, Rectangles, and Arcs

The XDrawLines function uses the components of the specified GC to draw
npoints-l lines between each pair of points (point [i), point[i+ 1]) in the array of
XPoint structures. It draws the lines in the order listed in the array. The lines
join correctly at all intermediate points, and if the first and last points coincide,
the first and last lines also join correctly. For any given line, XDrawLines does
not draw a pixel more than once. If thin (zero line-width) lines intersect, the
intersecting pixels are drawn multiple times. If wide lines intersect, the inter­
secting pixels are drawn only once, as though the entire PolyLine protocol
request were a single, filled shape. CoordModeOrigin treats all coordinates as
relative to the origin, and CoordModePrevious treats all coordinates after the
first as relative to the previous point.

The XDrawSegments function draws multiple, unconnected lines. For each seg­
ment, XDrawSegments draws a line between (xl, yl) and (x2, y2). It draws the
lines in the order listed in the array of XSegment structures and does not per­
form joining at coincident endpoints. For any given line, XDrawSegments does
not draw a pixel more than once. If lines intersect, the intersecting pixels are
drawn multiple times.

All three functions use these GC components: function, plane-mask, line-width,
line-style, cap-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and
clip-mask. The XDrawLines function also uses the join-style GC component.
All three functions also use these GC mode-dependent components: foreground,
background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin, dash-offset,
and dash-list.

XDrawLine, XDrawLines, and XDrawSegments can generate BadDrawable,
BadGe, and BaclMatch errors. XDrawLines also can generate BadValue errors.

Drawing Single and Multiple Rectangles

To draw the outline of a single rectangle in a given drawable, use
XDrawRectangle.

Graphics Functions 6-11

Drawing Points, Lines, Rectangles, and Arcs

display

d

gc

x
y

width
height

XDraMRectangle (displlly, d, gc, x, y, width, height)

Display ·displlly;

Drawable d;

GCgc;

int x, y;
unsigned int width, height;

Specifies the connection to the XWIN server.

Specifies the drawable.

Specifies the Gc.

Specify the x and y coordinates, which specify the upper-left
comer of the rectangle.

Specify the width and height, which specify the dimensions of
the rectangle.

To draw the outline of multiple rectangles in a given drawable, use XDrawRec­
tangles.

XDrawRectangles (displlly, d, gc, rectangles, nrectangles)

Display ·displlzy;

display

d

gc

rectangles

nrectangles

6·12

Drawable d;

GCgc;

XRectangle rectangles[];

int nrectll1lgles;

Specifies the connection to the XWIN server.

Specifies the drawable.

Specifies the Gc.

Specifies a pointer to an array of rectangles.

Specifies the number of rectangles in the array.

Xwln GWS: Xllb - C Language Interface

Drawing Points, LIne., Rectangle., and Arcs

The XDrawRectangle and XDrawRectangles functions draw the outlines of the
specified rectangle or rectangles as if a five-point PolyLine protocol request
were specified for each rectangle:

[x,y] [x+width,y] [x+width,y+height] [x,y+height] [x,y]

For the specified rectangle or rectangles, these functions do not draw a pixel
more than once. XDrawRectangles draws the rectangles in the order listed in
the array. If rectangles intersect, the intersecting pixels are drawn multiple
times.

Both functions use these GC components: function, plane-mask, line-width,
line-style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and
dip-mask. They also use these GC mode-dependent components: foreground,
background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin, dash-offset,
and dash-list.

XDrawRectangle and XDrawRectangles can generate BacIDrawable, BadGe,
and BadMatch errors.

Drawing Single and Multiple Arcs

To draw a single arc in a given drawable, use XDrawArc.

display

d

gc

XDrawAro (display, d, gc, x, y, width, height, angle1, angle2)
Display "display;
Drawable d;
GCgc;

int x, Yi
unsigned tnt width, height;
int angle1, angle2;

Specifies the connection to the XWIN server.

Specifies the drawable.

Specifies the Gc.

x
y Specify the x and y coordinates, which are relative to the origin

of the drawable and specify the upper-left comer of the bound­
ing rectangle.

Graphics Functions 6-13

Drawing Points, LIn.s, Rectangles, and Arcs

width
height

anglel

angle2

Specify the width and height, which are the major and minor
axes of the arc.

Specifies the start of the arc relative to the thr~'clock position
from the center, in units of degrees .. 64.

Specifies the path and extent of the arc relative to the start of
the arc, in units of degrees .. 64.

To draw multiple arcs in a given drawable, use XDrawArcs.

display

d

gc

arcs

narcs

XDravAraa (dis"lIly, d, ge, rues, narcs)

DIsplay -displlly;
Drawab1ed;

GCge;
XArc -rues;
tnt naTeS;

Specifies the connection to the XWIN server.

Specifies the drawable.

Specifies the Gc.

Specifies a pointer to an array of arcs.

Specifies the number of arcs in the array.

XDrawArc draws a single circular or elliptical arc, and XDrawArcs draws multi­
ple circular or elliptical arcs. Each arc is specified by a rectangle and two
angles. The center of the circle or ellipse is the center of the rectangle, and the
major and minor axes are specified by the width and height. Positive angles
indicate counterclockwise motion, and negative angles indicate clockwise
motion. If the magnitude of angle2 is greater than 360 degrees, XDrawArc or
XDrawArcs truncates it to 360 degrees.

For an arc specified as [x, y, width, height, an~'e 1, angle 2], the origin of the

major and minor axes is at [x+ ~th , y+ heir t], and the infinitely thin path

describing the entire circle or ell~se intersects the horizontal axis at

[x, y+ ~ht] and [x+width, y+ ¥] and intersects the vertical axis at
width width. [x+-2-, y] and [x+-2-, y+hetght]. These coordinates can be fractional and

6-14 Xwln GWS: Xllb - C Language Interface

Drawing Points, Lines, Rectangles, and Arcs

so are not truncated to discrete coordinates. The path should be defined by the
ideal mathematical path. For a wide line with line-width lw, the bounding out­
lines for filling are given by the two infinitely thin paths consisting of all points
whose perpendicular distance from the path of the circle/ellipse is equal to
lw /2 (which may be a fractional value). The cap-style and join-style are applied
the same as for a line corresponding to the tangent of the circle/ellipse at the
endpoint.

For an arc Specified as [x, y, width, height, anglel, angle2], the angles must be
specified in the effectively skewed coordinate system of the ellipse (for a circle,
the angles and coordinate systems are identical). The relationship between these
angles and angles expressed in the normal coordinate system of the screen (as
measured with a protractor) is as follows:

[width] skewed-angle = IIIIln tan(normal-angle)'t height +lUljust

The skewed-angle and normal-angle are expressed in radians (rather than in
degrees scaled by 64) in the range [0, 2n:] and where alan returns a value in the

range [- ;, ;] and adjust is:

o

211:

for normal-angle in the range [0, t]
11: 3lt

for normal-angle in the range [2' T]

for normal-angle in the range [3;, 211:]

For any given arc, XDrawArc and XDrawArcs do not draw a pixel more than
once. If two arcs join correctly and if the line-width is greater than zero and the
arcs intersect, XDrawArc and XDrawArcs do not draw a pixel more than once.
Otherwise, the intersecting pixels of intersecting arcs are drawn multiple times.
Specifying an arc with one endpoint and a clockwise extent draws the same pix­
els as specifying the other endpoint and an equivalent counterclockwise extent,
except as it affects joins.

If the last point in one arc coincides with the first point in the following arc, the
two arcs will join correctly. If the first point in the first arc coincides with the
last point in the last arc, the two arcs will join correctly. By specifying one axis
to be zero, a horizontal or vertical line can be drawn. Angles are computed
based solely on the coordinate system and ignore the aspect ratio.

Graphics Functions 6-15

Drawing Points. Line •• Rectangle .. and Arcs

Both functions use these GC components: function, plane-mask, line-width,
line-style, cap-style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-y­
origin, and clip-mask. They also use these GC mode-dependent components:
foreground, background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin,
dash-offset, and dash-list.

XDrawArc and XDrawArcs can generate BadDrawable, BadGe, and BadMatch
errors.

6-16 Xwln GWS: Xllb - C Language Interface

Filling Areas

Xlib provides functions that you can use to fill:

• A single rectangle or multiple rectangles

• A single polygon

• A single arc or multiple arcs

Filling Single and Multiple Rectangles

To fill a single rectangular area in a given drawable, use XFillRectangle.

display

d

gc

x

XFillRectangle (displily, d, gc, x, y, width, height)
Display ·displilYi
Drawable di
GCgci

int x, Yi
unsigned int width, height;

Specifies the connection to the XWIN server.

Specifies the drawable.

Specifies the Gc.

Y Specify the x and y coordinates, which are relative to the origin
of the drawable and specify the upper-left comer of the rectan­
gle.

width
height Specify the width and height, which are the dimensions of the

rectangle to be filled.

To fill multiple rectangular areas in a given drawable, use XFillRectangles.

Graphics Functions 6-17

Filling Areas

Xl!'illbotanqle. (display, d, ge, reetllngles, nreetllngles)
Display -display;

display

d

gc

rectangles

nrectangles

Drawable d;

GCge;
XRectangle -reetll1tgles;
int nrectll1tgles;

Specifies the connection to the XWIN server.

Specifies the drawable.

Specifies the Gc.

Specifies a pointer to an array of rectangles.

Specifies the number of rectangles in the array.

The XFillRectanqle and XFillRectanqles functions fill the specified rectan­
gle or rectangles as if a four-point FillPolyqon protocol request were specified
for each rectangle:

[x, y] [x+wiclth, y] [x+width, y+beight] [x, yoIheight]

Each function uses the x and y coordinates, width and height dimensions, and
GC you specify.

XFillRectanqles fills the rectangles in the order listed in the array. For any
given rectangle, XFillRectanqle and XFillRectanqles do not draw a pixel
more than once. If rectangles intersect, the intersecting pixels are drawn multi­
ple times.

Both functions use these GC components: function, plane-mask, fill-style,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use
these GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, and tile-stipple-y-origin.

XFillRectanqle and XFillRectanqles can generate BadDrawable, BadGe,
and BadMatch errors.

6-18 Xwln GWS: Xllb - C Language Interface

Filling a Single Polygon

To fill a polygon area in a given drawable, use XFillPolyqon.

display

d

XFillPolyqon (display, d, ge, points, npoints, sIulpe, mode)

Display ·displily;

Drawable d;
GCge;
XPoint ·points;
int npoints;
int sIulpe;
int mode;

Specifies the connection to the XWIN server.

Specifies the drawable.

Specifies the Cc.
Specifies a pointer to an array of points.

Specifies the number of points in the array.

Filling Areas

gc

points

npoints

shape Specifies a shape that helps the server to improve performance.
You can pass ~lex, Convex, or Nonconvex.

mode Specifies the coordinate mode. You can pass CoorcM:xieOriqin
or CoorciM?d.ePrevious.

XFillPolyqon fills the region closed by the specified path. The path is closed
automatically if the last point in the list does not coincide with the first point.
XFillPolygon does not draw a pixel of the region more than once.
CoorclModeOriqin treats all coordinates as relative to the origin, and CoordMo­
dePrevious treats all coordinates after the first as relative to the previous point.

Depending on the specified shape, the following occurs:

• If shape is Complex, the path may self-intersect.

• If shape is Convex, the path is wholly convex. If known by the client,
specifying Convex can improve performance. If you specify Convex for a
path that is not convex, the graphics results are undefined.

Graphics Functions 6-19

Filling Areas

• If shape is Nonconvex, the path does not self-intersect, but the shape is
not wholly convex. If known by the client, specifying Nonconvex instead
of Complex may improve performance. If you specify Nonconvex for a
self-intersecting path, the graphics results are undefined.

The fill-rule of the GC controls the filling behavior of self-intersecting polygons.

This function uses these GC components: function, plane-mask, fill-style, fill­
rule, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. It also uses
these GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, and tile-stipple-y-origin.

XFillPolygon can generate BadDrawable, BadGe, BadMatch, and BadValue
errors.

Filling Single and Multiple Arcs

To fill a single arc in a given drawable, use XFillArc.

display

d

gc
x
y

width
height

6-20

Xl!'illAro (displlly, d, ge, x, y, width, height, /IIlglel, rmgle2)
Display ·displlly;
Drawable d;

GCge;
int x, y;
unsigned int width, height;
int rmglel, rmgle2;

Specifies the connection to the XWIN server.

Specifies the drawable.

Specifies the Gc.

Specify the x and y coordinates, which are relative to the origin
of the drawable and specify the upper-left corner of the bound­
ing rectangle.

Specify the width and height, which are the major and minor
axes of the arc.

Xwln GWS: Xllb - C Language Interface

FIlling Areas

angle1 Specifies the start of the arc relative to the three-o' clock position
from the center, in units of degrees It 64.

angle2 Specifies the path and extent of the arc relative to the start of
the arc, in units of degrees It 64.

To fill multiple arcs in a given drawable, use XFillArcs.

display

d

gc

arcs

narcs

XJ!'illArc8 (display, d, ge, arcs, PIflres)

Display -display;
Drawabled;
GCge;
)(Arc -arcs;

int PIflrcs;

Specifies the connection to the XWIN server.

Specifies the drawable.

Specifies the Gc.

Specifies a pointer to an array of arcs.

Specifies the number of arcs in the array.

For each arc, XFillArc or XFillArcs fills the region closed by the infinitely
thin path described by the specified arc and, depending on the arc-mode
specified in the GC, one or two line segments. For ArCChord, the single line seg­
ment joining the endpoints of the arc is used. For ArcPieSlice, the two line
segments joining the endpoints of the arc with the center point are used.
XFillArcs fills the arcs in the order listed in the array. For any given arc,
XFillArc and XFillArcs do not draw a pixel more than once. If regions inter­
sect, the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style, arc­
mode, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also
use these GC mode-dependent components: foreground, background, tile, stip­
ple, tile-stipple-x-origin, and tile-stipple-y-origin.

XFillArc and XFillArcs can generate BadDrawable, BadGe, and BadMatch
errors.

Graphics Functions 6-21

Font Metrics

A font is a graphical description of a set of characters that are used to increase
efficiency whenever a set of small, similar sized patterns are repeatedly used.

This section discusses how to:

• Load and free fonts

• Obtain and free font names

• Set and retrieve the font search path

• Compute character string sizes

• Return logical extents

• Query character string sizes

The XWIN server loads fonts whenever a program requests a new font. The
server can cache fonts for quick lookup. Fonts are global across all screens in a
server. Several levels are possible when dealing with fonts. Most applications
simply use XLoadQueryFont to load a font and query the font metrics.

Characters in fonts are regarded as masks. Except for image text requests, the
only pixels modified are those in which bits are set to 1 in the character. This
means that it makes sense to draw text using stipples or tiles (for example,
many menus gray-out unusable entries).

The XFontStruct structure contains all of the information for the font and con­
sists of the font-specific information as well as a pointer to an array of XChar­
Struct structures for the characters contained in the font. The XFontStruct,
XFontProp, and XCharStruct structures contain:

typedef atruct {
abort l.bearing';

abort rbearing';

abort width;

abort aaoent;

abort deaoent;

unsigned ahort attributes;
} XCharStruct;

6-22

/* oric]in to left edge of raster */
/* oriqin to riqht edge of raster */
/*.. advance to next char's oriqin */
/* baseline to top edge of raster */
/* baseline to bottcm edge of raster */
/* per char flag's (not predefined) */

Xwln GWS: Xllb - C Language Interface

typedef atNOt (

Atom name;

unaignecl long cud32;
) XPontProp;

typedef atNOt (

unaigned char byte1;

unaigned char byte2;

) Xl:b&r2b;

typedef atruct (

XBxtData *ext_data;

Pont fid;

unaignecl direction;

unaignecl min_char_or_byte2;

unaignecl mAX_char_or_byte2;
unaignecl min_byte1;

unaignN mAX_byte1;

Bool all_chars_exist;
unaignN default_char;

int nJ>roperties;
XPontProp *properties;

XCb&rStruct min_bounds;

XCb&rStruct max_bounds;

XCb&rStruct *Per_char;
int uoent;

int desoent;

) XPontStruct;

Font Metrics

1* nomal 16 bit cb&racters ar. two byte. *1

1* hook for extension to hanq data *1
1* Pont id for this font *1
1* hint about tbe direction font is painted *1
1* first character *1
1* last character *1
1* first row that exists *1
1* last row that exiat. *1
1* flaq if all characters haw nonzero .ize *1
1* char to print for undefined. ah&racter *1
1* how many properties thew ar. *1
1* pointer to array of additional properties *1
1* IIIiniDD bounds owr all existing' char *1
1* JIIaXiDa bounds owr all existing char *1
1* first_char to last_char infomation *1
1* logical extent above baseline for spacing *1
1* logical decent below baseline for spacing *1

X supports single byte/character, two bytes/character matrix, and l6-bit charac­
ter text operations. Note that any of these fonns can be used with a font, but a
single byte/character text request can only specify a single byte (that is, the first
row of a 2-byte font). You should view 2-byte fonts as a two-dimensional
matrix of defined characters: by tel specifies the range of defined rows and byte2
defines the range of defined columns of the font. Single byte/character fonts
have one row defined, and the byte2 range specified in the structure defines a
range of characters.

Graphics Functions 6-23

Font Metrics

The bounding box of a character is defined by the XCharStruct of that charac­
ter. When characters are absent from a font, the default char is used. When
fonts have all characters of the same size, only the information in the
XFontStruct min and max bounds are used.

The members of the XFontStruct have the following semantics:

• The direction member can be either FontLeftToRight or FontRight­
ToLeft. It is just a hint as to whether most XCharStruct elements have
a positive (FontLeftToRight) or a negative (FontRightToLeft) char­
acter width metric. The core protocol defines no support for vertical text.

• If the min_byte1 and max_byte1 members are both zero,
min_char _ or _ byte2 specifies the linear character index corresponding to
the first element of the per_char array, and max_char_or_byte2 specifies
the linear character index of the last element.

If either min_byte1 or max_byte1 are nonzero, both min_char_or_byte2
and max_char _ or _ byte2 are less than 256, and the 2-byte character index
values corresponding to the per_char array element N (counting from O)
are:

byte1 = N/D + min_byte1
byte2 = N\D + min_char _ or _ byte2

where:

D = max_char _ or _ byte2 - min_char _ or _ byte2 + 1
/ = integer division
\ = integer modulus

• If the per_char pointer is NULL, all glyphs between the first and last char­
acter indexes inclusive have the same information, as given by both
min bounds and max bounds. - -

• If all_chars_exist is True, all characters in the per_char array have
nonzero bounding boxes.

• The default_char member specifies the character that will be used when
an undefined or nonexistent character is printed. The default_char is a 16-
bit character (not a 2-byte character). For a font using 2-byte matrix for­
mat, the default_char has byte1 in the most-significant byte and byte2 in
the least-significant byte. If the default_char itself specifies an undefined
or nonexistent character, no printing is performed for an undefined or
nonexistent character.

6·24 Xwln GWS: Xllb - C Language Interface

Font Metrics

• The min_bounds and max_bounds members contain the most extreme
values of each individual XCharStruct component over all elements of
this array (and ignore nonexistent characters). The bounding box of the
font (the smallest rectangle enclosing the shape obtained by superimpos­
ing all of the characters at the same origin [x,y» has its upper-left coordi­
nate at:

Its width is:

IDIIJL bounds. rllearing - min_bounds • !bearing

Its height is:

• The ascent member is the logical extent of the font above the baseline that
is used for determining line spacing. Specific characters may extend
beyond this.

• The descent member is the logical extent of the font at or below the base­
line that is used for determining line spacing. Specific characters may
extend beyond this.

• If the baseline is at Y -coordinate y, the logical extent of the font is
inclusive between the Y -coordinate values (y - font.ascent) and (y +
font.descent - 1). Typically, the minimum interline spacing between rows
of text is given by ascent + descent.

For a character origin at [x,y), the bounding box of a character (that is, the smal­
lest rectangle that encloses the character's shape) described in terms of XChar­
Struct components is a rectangle with its upper-left comer at:

[x + !bearing, Y - ascent]

Its width is:

rbearinq - !bearing

Graphics Functions 6-25

Font Metrics

Its height is:

ascent + ct.aoent

The origin for the next character is defined to be:

[x + width, y]

The lbearing member defines the extent of the left edge of the character ink
from the origin. The rbearing member defines the extent of the right edge of
the character ink from the origin. The ascent member defines the extent of the
top edge of the character ink from the origin. The descent member defines the
extent of the bottom edge of the character ink from the origin. The width
member defines the logical width of the character.

Note that the baseline (the y position of the character origin) is logically viewed
as being the scanline just below nondescending characters. When descent is
zero, only pixels with Y -coordinates less than yare drawn, and the origin is log­
ically viewed as being coincident with the left edge of a nonkemed character.
When lbearing is zero, no pixels with X-coordinate less than x are drawn. Any
of the XCharStruct metric members could be negative. If the width is nega­
tive, the next character will be placed to the left of the current origin.

The X protocol does not define the interpretation of the attributes member in
the XCharStruct structure. A nonexistent character is represented with all
members of its XCharStruct set to zero.

A font is not guaranteed to have any properties. The interpretation of the pro­
perty value (for example, long or unsigned long) must be derived from a priori
knowledge of the property. When poSSible, fonts should have at least the pro­
perties listed in the table. With atom names, uppercase and lowercase matter.
The following built-in property atoms can be found in < Xll/xatan. h >:

6-26 Xwln GWS: Xllb - C Language Interface

Font Metrics

Property Name Type Description

MIN_SPACE unsigJ\ed The minimum interword spacing, in pixels.

NORM_SPACE unsigJ\ed The normal interword spacing, in pixels.

MAX_SPACE unsigJ\ed The maximum interword spacing, in pixels.

END_SPACE unsigJ\ed The additional spacing at the end of sentences, in
pixels.

SUPERSCRIPr _X int Offset from the character origin where super-
SUPERSCRIPr_Y scripts should begin, in pixels. If the origin is at

[x,y], then supersaipts should begin at
[x + SUPERSCRIPf_x, Y - SUPFRSCRII'T_Vl.

SUBSCRIPr _ X int Offset from the character origin where subscripts
SUBSCRIPr _ Y should begin, in pixels. If the origin Is at [x,y],

then subscripts should begin at
[x + SUPERSCRIPr _x, y + SUPERSCRIPf _ VI.

UNDERLINE_POSTI10N int Y offset from the baseline to the top of an under-
line, in pixels. If the baseline is Y -coordinate y,
then the top of the underline Is at
(y + UNOERIJNE_POSTI10N).

UNDERLINE_TInCKNFSS unsigned Thickness of the underline, in pixels.

STRIKEOUf _ASCENI' int Vertical extents for boxing or voiding characters,
STRIKEOUf_DESCENT in pixels. If the baseline Is at Y-coordinate y,

then the top of the strikeout box Is at
(y - STRIKEOUf _ASCENT),

and the height of the box is
<STRII<EOUf _ASCENT + STRIKEOUf _DESCENT).

ITALIC_ANGLE int The angle of the dominant staffs of characters in
the font, in degrees scaled by 64, relative to the
three-o' clock position from the character origin,
with positive indicating counterclockwise motion
(as in XDrawArc).

X_HEIGH!" int 1 ex as in TeX, but expressed in units of pixels.
Often the height of lowercase x.

QUAD_WIUfH int 1 em as in TeX, but expressed in units of pixels.
Often the width of the digits 0-9.

Graphics Fun~lons 6·27

Font Metrics

Property Name Type Description

CAP_HElGm int Y offset from the baseline to the top of the capital
letters, ignoring accents, in pixels. If the baseline
is at Y -coordinate y, then the top of the capitals is
at (y- CAP_HElGHO.

WEIGm unsigned The weight or boldness of the font, expressed as
a value between 0 and 1000.

POINf JUE unsigned 1he point size of this font at the ideal resolution,
expressed in 1/10 points.

RESOLUTION unsigned The number of pixels per point, expressed in
1/100, at which this font was aeated.

Loading and Freeing Fonts

Xlib provides functions that you can use to load fonts, get font information,
unload fonts, and free font information. A few font functions use a GContext
resource 10 or a font 10 interchangeably.

To load a given font, use XLoadFont.

display

name

Font XLoadFont (displlly, 7UmIe)
Display ·displilyi
char ·7UmIei

Specifies the connection to the XWIN server.

Specifies the name of the font, which is a null-terminated string.

The XLoadFont function loads the specified font and returns its associated font
10. The name should be ISO Latin-l encoding; uppercase and lowercase do not
matter. If XLoadFont was unsuccessful at loading the specified font, a BadName
error results. Fonts are not associated with a particular screen and can be stored
as a component of any Gc. When the font is no longer needed, call XUnload­
Font.

XLoadFont can generate BadAlloc and BadName errors.

6·28 Xwln GWS: Xllb - C Language Interface

Font Metrics

To return information about an available font, use XQueryFont.

display

fontjD

Xl!'ontstruot *XCueryl'ont (displlly, fonUD)
Display ·displlly;
XIDfonUD;

Specifies the connection to the XWlN server.

Specifies the font 10 or the GContext 10.

The XQueryFont function returns a pointer to the XFontStruct structure, which
contains information associated with the font. You can query a font or the font
stored in a Gc. The font ID stored in the XFontStruct structure will be the
GContext 10, and you need to be careful when using this ID in other functions
(see XGContextFJ:OJ'IGC). To free this data, use XFreeFontInfo.

To perform a XLoadFont and XQueryFont in a single operation, use XLoad­
QueryFont.

display

Xl!'ontstruot *XLoadQueryI'ont (displlly, ruzme)
Display ·displlly;
char ·ruzme;

Specifies the connection to the XWlN server.

name Specifies the name of the font, which is a null-terminated string.

The XLoadQueryFont function provides the most common way for accessing a
font. XLoadQueryFont both opens (loads) the Specified font and returns a
pointer to the appropriate XFontStruct structure. If the font does not exist,
XLoadQueryFont returns NULL.

XLoadQueryFont can generate a BadAlloc error.

To unload the font and free the storage used by the font structure that was allo­
cated by XQueryFont or XLoadQueryFont, use XFreeFont.

display

Xl!'xeeI'ont (displlly, fonUtruct)
Display -displlly;
XFontStruct -font_struct;

Specifies the connection to the XWlN server.

Graphics Functions 6-29

Font Metrics

Specifies the storage associated with the font.

The XFreeFont function deletes the association between the font resource ID
and the specified font and frees the XFontStruct structure. The font itself will
be freed when no other resource references it. The data and the font should not
be referenced again.

XFreeFont can generate a BadFont error.

To return a given font property, use XGetFontProperty.

Bool :xGetFontProperty(font_struct, atom, wlueJetum}

XFontStruct "fonUtruct;
Atom Iltom;

unsigned long "fJIllueJetum;

font _struct

atom

Specifies the storage associated with the font.

Specifies the atom for the property name you want returned.

Returns the value of the font property. value return

Given the atom for that property, the XGetFontProperty function returns the
value of the specified font property. XGetFontProperty also returns False if
the property was not defined or True if it was defined. A set of predefined
atoms exists for font properties, which can be found in < Xll/xatorn. h >. This
set contains the standard properties associated with a font. Although it is not
guaranteed, it is likely that the predefined font properties will be present.

To unload a font that was loaded by XLoadFont, use XUnloadFont.

display

font

XUnloadFont (display, font)
Display "display;
Font font;

Specifies the connection to the XWIN server.

Specifies the font.

The XUnloadFont function deletes the association between the font resource ID
and the specified font. The font itself will be freed when no other resource
references it. The font should not be referenced again.

6-30 Xwln GWS: Xllb - C Language Interface

Font Metrics

XUnloadFont can generate a BadFont error.

Obtaining and Freeing Font Names and Information

You obtain font names and infonnation by matching a wildcard specification
when querying a font type for a list of available sizes and so on.

To return a list of the available font names, use XListFonts.

display

pattern

char **XLiatl'onta (displAy, pattern, 1fUI%1IIImIS, flChuIl_count_remm)

Display ·disp1layi

tnt 1JIIIX7IIIma i

tnt .flCt1uIl count rehlm· - - ,

Specifies the connection to the XWIN server.

Specifies the null-terminated. pattern string that can contain
wildcard characters.

mllXnatneS Specifies the maximum number of names to be returned..

actual count return - -
Returns the actual number of font names.

The XListFonts function returns an array of available font names (as controlled
by .the font search path; see XSetFontPath) that match the string you passed to
the pattern argument. The string should be ISO Latin-I; uppercase and lower­
case do not matter. Each string is terminated. by an ASCII null. The pattern
string can contain any characters, but each asterisk (It) is a wildcard for any
number of characters, and each question mark (7) is a wildcard for a single char­
acter. The client should call XFreeFontNames when finished. with the result to
free the memory.

To free a font name array, use XFz:eeFontNames.

lCI'wePontN .. a (list)

char ·,ist[)i

Graphics Functions 6-31

Font Metrics

list Specifies the array of strings you want to free.

The XFreeFontNames function frees the array and strings returned by XList­
Fonts or XListFontsWithlnfo.

To obtain the names and information about available fonts, use XList­
FontsWithInfo.

char **XLiatl'ont8WithInfo (dispky, fXlttmt, 1fIII%1fIl1ffIiS, anmt J'tum, info _1f!tum)

Display ·disp1lly;
char ·fXlttmt;
int 1fIII%1fIl1ffIi;

int ·COIDlt_1f!tum;

XFontStruet "info _1f!tum;

display Specifies the connection to the XWIN server.

pattern Specifies the null-terminated pattern string that can contain
wildcard characters.

maxnames Specifies the maximum number of names to be returned.

count Jeturn Returns the actual number of matched font names.

info Jeturn Returns a pointer to the font information.

The XListFontsWithlnfo function returns a list of font names that match the
specified pattern and their associated font information. The list of names is lim­
ited to size specified by maxnames. The information returned for each font is
identical to what XLoadQuexyFont would return except that the per-character
metries are not returned. The pattern string can contain any characters, but
each asterisk (It) is a wildcard for any number of characters, and each question
mark (?) is a wildcard for a single character. To free the allocated name array,
the client should call XFreeFontNames. To free the the font information array,
the client should call XFreeFontInfo.

To free the the font information array, use XFreeFontInfo.

6-32

XJ!'E8eI!'ontInfo (JIIUIIeS, free_info, lIChuIl_count)

char "1I4UIIf!S;
XFontSbuct ·free _info;
int IJCt1lllCcount;

Xwln GWS: Xllb - C Language Interface

names

free)nfo

Specifies the list of font names returned by XList­
FontsWithlnfo.

Font Metrics

Specifies the pointer to the font information returned by XList­
FontsWithlnfo.

actual count Specifies the actual number of matched font names returned by
XListFontsWithlnfo.

Setting and Retrieving the Font Search Path

To set the font search path, use XSetFontPath.

XSetFontpath (display, directories, ndirs)
Display ·displllYi
char "directoriesi
int ndirsi

Specifies the connection to the XWIN server. display

directories Specifies the directory path used to look for a font. Setting the
path to the empty list restores the default path defined for the
XWIN server.

ndirs Specifies the number of directories in the path.

The XSetFontPath function defines the directory search path for font lookup.
There is only one search path per XWIN server, not one per client. The interpre­
tation of the strings is operating system dependent, but they are intended to
specify directories to be searched in the order listed. Also, the contents of these
strings are operating system dependent and are not intended to be used by
client applications. Usually, the XWIN server is free to cache font information
internally rather than having to read fonts from files. In addition, the XWIN
server is guaranteed to flush all cached information about fonts for which there
currently are no explidt resource IDs allocated. The meaning of an error from
this request is operating system dependent.

XSetFontPath can generate a BadValue error.

Graphics Functions 6·33

Font Metrics

To get the current font search path, use XGetFontPath.

obar **lIGetl'OntPath (display, npaths -"tum)
Display ·disp14yi
int ·nTJl'lhs Jetum i

display Specifies the connection to the XWIN server.

npathsJeturn Returns the number of strings in the font path array.

The XGetFontPath function allocates and returns an array of strings containing
the search path. When it is no longer needed, the data in the font path should
be freed by using XFreeFontPath.

To free data returned by XGetFontPath, use XFreeFontPath.

list

XPweFontPath (list)
char "listi

Specifies the array of strings you want to free.

The XFreeFontPath function frees the data allocated by XGetFontPath.

Computing Character String Sizes

Xlib provides functions that you can use to compute the width, the logical
extents, and the server information about 8-bitand 2-byte text strings. The
width is computed by adding the character widths of all the characters. It does
not matter if the font is an 8-bit or 2-byte font. These functions return the sum
of the character metrics, in pixels.

To determine the width of an 8-bit character string, use XTextWidth.

int XTextWidth (frmt_struct, string, count)

6-34

char -stringi
int counti

Specifies the font used for the width computation.

Xwln GWS: Xllb - C Language Interface

string Specifies the character string.

count Specifies the character count in the specified string.

To determine the width of a 2-byte character string, use XTextWidth16.

int X'lextWidtb16 (frmt _struet, string, anlnt)
XFontSbud ·frmUtrueti

font _struct

string

count

XChar2b ·stringi
int c:wnti

Specifies the font used for the width computation.

Specifies the character string.

Specifies the character count in the specified string.

Computing Logical Extents

Font Metrics

To compute the bounding box of an 8-bit character string in a given font, use
XTextExtents.

DextBxtenta (frmt _ struet, string, ncluJrs, direction Jetum, frmUw:mU'etum,

font _struct

string

nchars

frmU2scent Jetum, wendt retum)
XFontSbud ·frmt_Strueti
char ·Stringi
int ncluJrsi
int ·direction_retumi
int ·frmUISt:ent _ retum, ·frmt _ Uscent _ retlmli
XCharSbuct ·OWTIIll_retum;

Specifies a pointer to the XFontStruct structure.

Specifies the character string.

Specifies the number of characters in the character string.

direction return
- Returns the value of the direction hint (FontLeftToRight or

FontRightToLeft).

Graphics Functlona 6-35

Font Metrics

font_ascent Jeturn
Returns the font ascent.

font_descent Jeturn
Returns the font descent.

overall return Returns the overall size in the specified XCharStruct structure.

To compute the bounding box of a 2-byte character string in a given font, use
XTextExtents16.

X'lextBxteDt.16 (frmt_struct, string, ncluJTS, dirteticm_mum, frmU,scenU'ehlm,

font _struct

string

nchars

frmUJescndJchlm, oomdl_rehlm>
XFontSbuci ·frmt _Strueti
X0tar2b ·stri1lgi
int ncluJTSi
int ·directitm_rehlmi
int ·frmt _ascent _ retum, ·frmUlescenUetumi
XChatSbuct ·OTJertIltrehlmi

Specifies a pointer to the XFontStruct structure.

Specifies the character string.

Specifies the number of characters in the character string.

direction return
- Returns the value of the direction hint (FontLeftToRiqht or

FontRiqhtToLeft).

font_ascent Jeturn
Returns the font ascent.

font_descent Jeturn
Returns the font descent.

overall return Returns the overall size in the Specified XCharStruct structure.

The XTextExtents and XTextExtents16 functions perform the size computa­
tion locally and, thereby, avoid the round-trip overhead of XQueryTextExtents
and XQueryTextExtents16. Both functions return an XCharStruct structure,
whose members are set to the values as follows.

6-36 Xwln GWS: Xllb - C Language Interface

Font Metrics

The ascent member is set to the maximum of the ascent metrics of all characters
in the string. The descent member is set to the maximum of the descent
metrics. The width member is set to the sum of the character-width metrics of
all characters in the string. For each character in the string, let W be the sum of
the character-width metries of all characters preceding it in the string. Let L be
the left-side-bearing metric of the character plus W. Let R be the right-side­
bearing metric of the character plus W. The lbearing member is set to the
minimum L of all characters in the string. The rbearing member is set to the
maximumR.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each
XChar2b structure is interpreted as a 16-bit number with byte1 as the most­
significant byte. If the font has no defined default character, undefined charac­
ters in the string are taken to have all zero metrics.

Querying Character String Sizes

To query the server for the bounding box of an 8-bit character string in a given
font, use XQueryTextExtents.

display

fontjD

string

nchars

XQuexyTextBxtenta (displily, frmljD, string, nc1ulrs, directionJetlU7l, frmUuCDltJeturn,
frmt _ desant Jet",rn, orJmJll Jeturn)

Display -displily;
XIDfrmljD;
char -string;
int nc1ulrs;
int -direction_return;
tnt -frmUucenl _return, -frmuusant _ retlU7l;
XChaIStruct -C1fIeNl,-return;

Specifies the connection to the XWIN server.

Specifies either the font ID or the GContext ID that contains the
font.

Specifies the character string.

Specifies the number of characters in the character string.

Graphics Functions 6-37

Font Metrics

direction return
Returns the value of the direction hint (FontLeftToRight or
FontRightToLeft).

font_ascent Jeturn
Returns the font ascent.

font_descent Jeturn
Returns the font descent.

overall return Returns the overall size in the specified XCharStruct structure.

To query the server for the bounding box of a 2-byte character string in a given
font, use XQueryTextExtents16.

display

fontjD

string

nchars

XQueEYlextBxtenta16 (tlispiJJy, font JD, string, ru:1um, tlirtCtitm J'tum, font _ tlSU1tt J,tum,
fonUkscenU"turn, ouertlllJ,turn)

DIsplay ·display;
XIDfonUD;
XChar2b ·string;
int "dum;
int ·directicm J'tum;
int ·font _ tlSU1tt J'tum, ·fonUkscent _return;
XChatStruct ·ouertll'-return;

Specifies the connection to the XWIN server.

Specifies either the font ID or the GContext ID that contains the
font.

Specifies the character string.

Specifies the number of characters in the character string.

direction return
Returns the value of the direction hint (FontLeftToRight or
FontRightToLeft).

font_ascent Jeturn
Returns the font ascent.

font_descent Jeturn
Returns the font descent.

6-38 Xwln GWS: Xllb - C Language Interface

Font Metrics

overall return Returns the overall size in the specified XCharStruct structure.

The XQueryTextExtents and XQue~extExtents16 functions return the
bounding box of the specified 8-bit and 16-bit character string in the specified
font or the font contained in the Specified GC. These functions query the XWIN
server and, therefore, suffer the round-trip overhead that is avoided by XTex­
tExtents and XTextExtents16. Both functions return a XCharStruct struc­
ture, whose members are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of all characters
in the string. The descent member is set to the maximum of the descent
metrics. The width member is set to the sum of the character-width Metrics of
all characters in the string. For each character in the string, let W be the sum of
the character-width metrics of all characters preceding it in the string. Let L be
the left-side-bearing metric of the character plus W. Let R be the right-side­
bearing metric of the character plus W. The lbearing member is set to the
minimum L of all characters in the string. The rbearing member is set to the
maximumR.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each
XChar2b structure is interpreted as a 16-bit number with bytel as the most­
significant byte. If the font has no defined default character, undefined charac­
ters in the string are taken to have all zero metrics.

XQue~extExtents and XQue~extExtents16 can generate BadFont and
BadGe errors.

Graphics Functions 6-39

Drawing Text

This section discusses how to draw:

• Complex text

• Text characters

• Image text characters

The fundamental text functions XDrawText and XDrawText16 use the following
structures.

typedef struct {
char *chars;
int nobars;

int delta;
Font font;

} XTextltem;

typedef struct {

XCbar2b *chars;
int ncbars;
int delta;
Font font;

} XText:lteml6;

1* pointer to strinq *1
1* number of characters *1
1* delta bet~ strinqa *1
1* Font to print it in, None don' t change *1

1* pointer to two-byte characters *1
1* number of characters *1
1* delta bet~ strinqa *1
1* font to print it in, None don't change *1

If the font member is not None, the font is changed before printing and also is
stored in the GC. If an error was generated during text drawing, the previous
items may have been drawn. The baseline of the characters are drawn starting
at the x and y coordinates that you pass in the text drawing functions.

For example, consider the background rectangle drawn by XDrawImaqeStrinq.
If you want the upper-left comer of the background rectangle to be at pixel
coordinate (x,y), pass the (x,y + ascent) as the baseline origin coordinates to the
text functions. The ascent is the font ascent, as given in the XFontStruct struc­
ture. If you want the lower-left comer of the background rectangle to be at
pixel coordinate (x,y), pass the (x,y - descent + 1) as the baseline origin coordi­
nates to the text functions. The descent is the font descent, as given in the
XFontStruct structure.

6-40 Xwln GWS: Xllb - C Language Interface

Drawing Complex Text

To draw 8-bit characters in a given drawable, use XDrawText.

display

d

gc
x

XDrawText (display, d, ge, x, y, items, nitems)
Display"display;
Drawable d;

GCge;
int x, y;
XTextItem "items;
int nitems;

Specifies the connection to the XWIN server.

Specifies the drawable.

Specifies the Gc.

Drawing Text

y Specify the x and y coordinates, which are relative to the origin
of the specified drawable and define the origin of the first char­
acter.

items

nitems

Specifies a pointer to an array of text items.

Specifies the number of text items in the array.

To draw 2-byte characters in a given drawable, use XDrawText16.

display

d

gc

XDrawText16 (display, d, ge, x, y, items, nitems)
Display"display;
Drawable d;

GCge;
int x, y;
XTextltem16 "items;
int nitems;

Specifies the connection to the XWIN server.

Specifies the drawable.

Specifies the Gc.

Graphics Functions 6-41

Drawing Text

x
y

items

nitems

Specify the x and y coordinates, which are relative to the origin
of the specified drawable and define the origin of the first char­
acter.

Specifies a pointer to an array of text items.

Specifies the number of text items in the array.

The XDrawText16 function is similar to XDrawText except that it uses 2-byte or
16-bit characters. Both functions allow complex spacing and font shifts between
counted strings.

Each text item is processed in tum. A font member other than None in an item
causes the font to be stored in the GC and used for subsequent text. A text ele­
ment delta specifies an additional change in the position along the x axis before
the string is drawn. The delta is always added to the character origin and is not
dependent on any characteristics of the font. Each character image, as defined
by the font in the Ge, is treated as an additional mask for a fill operation on the
drawable. The drawable is modified only where the font character has a bit set
to 1. If a text item generates a BadFont error, the previous text items may have
been drawn.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each
XChar2b structure is interpreted as a 16-bit number with byte1 as the most­
significant byte.

Both functions use these GC components: function, plane-mask, fill-style, font,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use
these GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, and tile-stipple-y-origin.

XDrawText and XDrawText16 can generate BadDrawable, BadFont, BadGe, and
BadMatch errors.

6-42 Xwln GWS: Xllb - C Language Interface

Drawing Text

Drawing Text Characters

To draw 8-bit characters in a given drawable, use XDrawStrinq.

display

d

gc

x
y

string

length

XDrawStrinq (dis"lay, d, ge, x, y, string, length)
Display -dis"lIIy;

Drawable d;
GCgc;
int x, y;
char -string;
int length;

Specifies the connection to the XWIN server.

Specifies the drawable.

Specifies the Cc.

Specify the x and y coordinates, which are relative to the origin
of the specified drawable and define the origin of the first char­
acter.

Specifies the character string.

Specifies the number of characters in the string argument.

To draw 2-byte characters in a given drawable, use XDrawStrinq16.

display

d

XDrawStrinql.6 (display, d, ge, x, y, string, length)
Display -display;
Drawable d;

GCgc;
int x, y;
XChar2b -string;
int length;

Specifies the connection to the XWIN server.

Specifies the drawable.

Graphics Functions 6-43

Drawing Text

gc

x
y

string

length

Specifies the Gc.

Specify the x and y coordinates, which are relative to the origin
of the specified drawable and define the origin of the first char­
acter.

Specifies the character string.

Specifies the number of characters in the string argument.

Each character image, as defined by the font in the GC, is treated as an addi­
tional mask for a fill operation on the drawable. The drawable is modified only
where the font character has a bit set to 1. For fonts defined with 2-byte matrix
indexing and used with XDrawString16, each byte is used as a byte2 with a
bytel of zero.

Both functions use these GC components: function, plane-mask, fill-style, font,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use
these GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, and tile-stipple-y-origin.

XDrawString and XDrawString16 can generate BadDrawable, BadGe, and Bad­
Match errors.

Drawing Image Text Characters

Some applications, in particular terminal emulators, need to print image text in
which both the foreground and background bits of each character are painted.
This prevents annoying flicker on many displays.

To draw 8-bit image text characters in a given drawable, use XDrawImaqe­
String.

6-44

XDrawIma.geStrinq(display, d, gc, x, y, string, length)
Display -display;
Drawable d;

GCgc;
int x, y;
char -string;
int length;

Xwln GWS: Xllb - C Language Interface

Drawing Text

display

d

gc

x

Specifies the connection to the XWIN server.

Specifies the drawable.

Specifies the Gc.

Y Specify the x and y coordinates, which are relative to the origin
of the specified drawable and define the origin of the first char­
acter.

string Specifies the character string.

length Specifies the number of characters in the string argument.

To draw 2-byte image text characters in a given drawable, use XDrawImage­
String16.

display

d

gc

x

XDrawIlaageString'16 (displRy, d, gc, %, y, string, length)
Display ·displlty;
Drawable d;
GCgc;
int %, y;
XChar2b ·string;
int length;

Specifies the connection to the XWIN server.

Specifies the drawable.

Specifies the Gc.

y Specify the x and y coordinates, which are relative to the origin
of the specified drawable and define the origin of the first char­
acter.

string

length

Specifies the character string.

Specifies the number of characters in the string argument.

The XDrawImageString16 function is similar to XDrawImageString except that
it uses 2-byte or 16-bit characters. Both functions also use both the foreground
and background pixels of the GC in the destination.

Graphics Functions 6-45

Drawing Text

The effect is first to fill a destination rectangle with the background pixel
defined in the GC and then to paint the text with the foreground pixel. The
upper-left comer of the filled rectangle is at:

[x, y - font-ascent]

The width is:

overall-width

The height is:

font-ascent + font-daacent

The overall-width, font-ascent, and font-descent are as would be returned by
XQueryTextExtents using gc and string. The function and fill-style defined in
the GC are ignored for these functions. The effective function is GXcopy, and the
effective fill-style is FillSol1d.

For fonts defined with 2-byte matrix indexing and used with XDrawlmage­
String, each byte is used as a byte2 with a by tel of zero.

Both functions use these GC components: plane-mask, foreground, background,
font, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.

XDrawImageString and XDrawlmageString16 can generate BadDrawable,
BadGe, and BadMatch errors.

6-46 Xwln GWS: Xllb - C Language Interface

Transferring Images between Client and Server

Xlib provides functions that you can use to transfer images between a client and
the server. Because the server may require diverse data formats, Xlib provides
an image object that fully describes the data in memory and that provides for
basic operations on that data. You should reference the data through the image
object rather than referencing the data directly. However, some implementa­
tions of the Xlib library may efficiently deal with frequently used data formats
by replacing functions in the procedure vector with special case functions. Sup­
ported operations include destroying the image, getting a pixel, storing a pixel,
extracting a subimage of an image, and adding a constant to an image (see
Chapter 10).

All the image manipulation functions discussed in this section make use of the
XImage data structure, which describes an image as it exists in the client's
memory.

Graphics Functions 6-47

Transferring Images between Client and Server

t;ypedef .truct _XIIIIagIa

int width, height;

int xoffset;

int fODlat;

char *data;

int byt._oxder;

int bitmap_unit;

int bitmap_bit_order;

int bitmap JI&d;
int depth;

int byt •• ..Jler_line;

int bit.yer...,Pixel;

unsigned long' J:ed_IllUk;

unsigned long' green_maak;

unsigned long blue_mask;

char *obciata;

.truct funca {

1* .ize of imaga *1
1* nuaber of pixel. offset in X direction *1
1* XlBitmap, XXPixmap, ZPixmap *1
1* pointer to imaga data *1
1* data byte oxdiar, LSBPirat, MSBPir.t *1
1* ~t. of aoanline 8, 16, 32 *1
1* LSBPir.t, MSBI!'irat *1
1* 8, 16, 32 .ither XY or ZPixmap *1
1* depth of imaga *1
1* accelerator to next aoanline *1
1* bit. per pixel (ZPixmap) *1
1* bit. in Z arrangement *1

1* hook for the object routine. to banq on *1
1* image manipulation routine. *1

struct _XImage * (*CNat._image) 0;
int (*deatroy_imaga) 0 ;

} f;

} XImage;

unsigned long (*getyixel) ();

int ("Put...,pixel) ();

struct _XImage * (*.ub_image) ();

int (*add...,pixel) ();

You may request that some of the members (for example, height, width, and
xoffset) be changed when the image is sent to the server. That is, you may send
a subset of the image. Other members (for example, byte_order, bitmap_unit,
and so forth) are characteristics of both the image and the server. If these
members differ between the image and the server, XPutImage makes the
appropriate conversions. The first byte of the first scanline of plane n is located
at the address (data + (n" height" bytes~rJine».

To combine an image in memory with a rectangle of a drawable on the display,
use XPutImage.

6-48 Xwln GWS: Xllb - C Language Interface

_____________ Transferring Images between Client and Server

display

d

gc

image

src x

src.JI

dest x
dest.JI

width
height

XPutIlaagle (displiay, d, gc, imlJge, src_x, src.JJ, desU', dest.JJ, width, height)
DIsplay -displiay;

Drawabled;
GCgc;
XJmage -imlJge;
int src_x, src.JJ;
int dest_x, dest.JJ;
unsigned int width, height;

Specifies the connection to the XWIN server.

Specifies the drawable.

Specifies the Gc.

Specifies the image you want combined with the rectangle.

Specifies the offset in X from the left edge of the image defined
by the XImage data structure.

Specifies the offset in Y from the top edge of the image defined
by the XImage data structure.

Specify the x and y coordinates, which are relative to the origin
of the drawable and are the coordinates of the subimage.

Specify the width and height of the subimage, which define the
dimensions of the rectangle.

The XPutImage function combines an image in memory with a rectangle of the
specified drawable. If XYBitmap format is used, the depth must be one, or a
BadMatch error results. The foreground pixel in the GC defines the source for
the one bits in the image, and the background pixel defines the source for the
zero bits. For XYPixmap and ZPixmap, the depth must match the depth of the
drawable, or a Ba~tch error results. The section of the image defined by the
src_x, srcJ, width, and height arguments is drawn on the specified part of the
drawable. 0

This function uses these GC components: function, plane-mask, subwindow­
mode, clip-x-origin, clip-y-origin, and clip-mask. It also uses these GC mode­
dependent components: foreground and background.

Graphics Functions 6-49

Transferring Images between Client and Server

XPutImage can generate BadDrawable, BadGe, BadMatch, and BadValue errors.

To return the contents of a rectangle in a given drawable on the display, use
XGetImage. This function specifically supports rudimentary screen dumps.

display

d

x
y

width
height

XImage *lIGetIlDll;e (dispky, d, %, y, willth, height, plIme_mtUl1c, frJmuIt)
Display "disp1llyi
Drawabledi
int %, Yi
unsigned int willth, heighti

long pllme_rrw1ci
int formati

Specifies the connection to the XWIN server.

Specifies the drawable.

Specify the x and y coordinates, which are relative to the origin
of the drawable and define the upper-left corner of the rectan­
gle.

Specify the width and height of the subimage, which define the
dimensions of the rectangle.

Specifies the plane mask.

Specifies the format for the image. You can pass XYBitmap,
XYPixmap, or ZPixmap.

The XGetImage function returns a pointer to an XImage structure. This struc­
ture provides you with the contents of the specified rectangle of the drawable in
the format you specify. If the format argument is XYPixmap, the image contains
only the bit planes you passed to the plane_mask argument. If the plane_mask
argument only requests a subset of the planes of the display, the depth of the
returned image will be the number of planes requested. If the format argument
is ZPixmap, XGetImage returns as zero the bits in all planes not specified in the
plane_mask argument. The function performs no range checking on the values
in plane_mask and ignores extraneous bits.

6-50 Xwln GWS: Xllb - C Language Interface

Transferring Images between Client and Server

XGetImage returns the depth of the image to the depth member of the XImage
structure. The depth of the image is as specified when the drawable was
created, except when getting a subset of the planes in XYPixmap format, when
the depth is given by the number of bits set to 1 in plane_mask.

If the drawable is a pixmap, the given rectangle must be wholly contained
within the pixmap, or a BadMatch error results. If the drawable is a window,
the window must be viewable, and it must be the case that if there were no
inferiors or overlapping windows, the specified rectangle of the window would
be fully visible on the screen and wholly contained within the outside edges of
the window, or a BadMatch error results. Note that the borders of the window
can be included and read with this request. If the window has backing-store,
the backing-store contents are returned for regions of the window that are
obscured by noninferior windows. If the window does not have backing-store,
the returned contents of such obscured regions are undefined. The returned
contents of visible regions of inferiors of a different depth than the specified
window's depth are also undefined. The pointer cursor image is not included
in the returned contents.

XGetImage can generate BadDrawable, BadMatch, and BadValue errors.

To copy the contents of a rectangle on the display to a location within a preex­
isting image structure, use XGetSubImage.

XImage *l!GetSubImage (dispkly, d, x, y, width, height, pklne_mllSk, {ormIlt, dest)mage, dest_x,

display

d

dest"'y)
Display"dispkly;

Drawable d;

int x, y;
unsigned int width, height;
unsigned long pllDU! _ mllSk;
int {ormIlt;
XImage "dest_imllge;
int dest_x, dest...Y;

Specifies the connection to the XWIN server.

Specifies the drawable.

Graphics Functions 6-51

Transferring Images between Client and Server

x
y

width
height

desUmage

dest x
des('y

Specify the x and y coordinates, which are relative to the origin
of the drawable and define the upper-left corner of the rectan­
gle.

Specify the width and height of the subimage, which define the
dimensions of the rectangle.

Specifies the plane mask.

Specifies the format for the image. You can pass XYBitmap,
XYPixmap, or ZPixmap.

Specify the destination image.

Specify the x and y coordinates, which are relative to the origin
of the destination rectangle, specify its upper-left corner, and
determine where the subimage is placed in the destination
image.

The XGetSublmage function updates desUmage with the specified subimage in
the same manner as XGetImage. If the format argument is XYPixmap, the image
contains only the bit planes you passed to the plane_mask argument. If the for­
mat argument is ZPixmap, XGetSubImage returns as zero the bits in all planes
not specified in the plane_mask argument. The function performs no range
checking on the values in plane_mask and ignores extraneous bits. As a con­
venience, XGetSubImage returns a pointer to the same XImage structure
specified by desUmage.

The depth of the destination XImage structure must be the same as that of the
drawable. If the specified subimage does not fit at the specified location on the
destination image, the right and bottom edges are clipped. If the drawable is a
pixmap, the given rectangle must be wholly contained within the pixmap, or a
BaciMatch error results. If the drawable is a window, the window must be
viewable, and it must be the case that if there were no inferiors or overlapping
windows, the specified rectangle of the window would be fully visible on the
screen and wholly contained within the outside edges of the window, or a Bad­
Match error results. If the window has backing-store, then the backing-store
contents are returned for regions of the window that are obscured by noninfe­
rior windows. If the window does not have backing-store, the returned contents
of such obscured regions are undefined. The returned contents of visible

6-52 Xwln GWS: Xllb - C Language Interface

Transferring Images between Client and Server

regions of inferiors of a different depth than the specified window's depth are
also undefined.

xGetSublmage can generate BadDrawable, BadGe, BadMatch, and BadValue
errors.

Graphics Functions 6-53

Cursors

This section discusses how to:

• Create a cursor

• Change or destroy a cursor

• Define the cursor for a window

Each window can have a different cursor defined for it. Whenever the pointer
is in a visible window, it is set to the cursor defined for that window. If no cur­
sor was defined for that window, the cursor is the one defined for the parent
window.

From X's perspective, a cursor consists of a cursor source, mask, colors, and a
hotspot. The mask pixmap determines the shape of the cursor and must be a
depth of one. The source pixmap must have a depth of one, and the colors
determine the colors of the source. The hotspot defines the point on the cursor
that is reported when a pointer event occurs. There may be limitations imposed
by the hardware on cursors as to size and whether a mask is implemented.
XQueryBestCursor can be used to find out what sizes are possible. It is
intended that most standard cursors will be stored as a special font.

Creating a Cursor

Xlib provides functions that you can use to create a font, bitmap, or glyph cur­
sor.

To create a cursor from a standard font, use XCreateFontCursor.

display

shape

6-54

,include <Xll/ouraorfont.b>

CUrsor lICreateFontCUrsor (display, shape)
Display -display;
unsigned int shllpe;

Specifies the connection to the XWIN server.

Specifies the shape of the cursor.

Xwln GWS: Xllb - C Language Interface

Cursors

X provides a set of standard cursor shapes in a special font named cursor.
Applications are encouraged to use this interface for their cursors because the
font can be customized for the individual display type. The shape argument
specifies which glyph of the standard fonts to use.

The hotspot comes from the information stored in the cursor font. The initial
colors of a cursor are a black foreground and a white background (see
XRecolorCursor). For further information about cursor shapes, see appendix
B.

XCreateFontCursor can generate BadAlloc and BadValue errors.

To create a cursor from two bitmaps, use XCreatePixmapCursor.

Cursor XCreatePixmapCursor (display, source, mllSk, foreground_color, background_color, x, y)

Display ·display;

display

source

mask

Pixmap source;
Pixmap mllSk;
XColor ·foreground _color;
XColor ·background _color;
unsigned int x, y;

Specifies the connection to the XWIN server.

Specifies the shape of the source cursor.

Specifies the cursor's source bits to be displayed or None.

foreground -,olor
Specifies the RGB values for the foreground of the source.

background_color
Specifies the RGB values for the background of the source.

x
y Specify the x and y coordinates, which indicate the hotspot rela­

tive to the source's origin.

The XCreatePixmapCursor function creates a cursor and returns the cursor ID
associated with it. The foreground and background RGB values must be
specified using foreground_color and background_color, even if the XWIN server
only has a StaticGray or GrayScale screen. The foreground color is used for
the pixels set to 1 in the source, and the background color is used for the pixels
set to O. Both source and mask, if specified, must have depth one (or a

Graphics Functions 6·55

Cursor.

BadMatch error results) but can have any root. The mask argument defines the
shape of the cursor. The pixels set to 1 in the mask define which source pixels
are displayed, and the pixels set to 0 define which pixels are ignored. If no
mask is given, all pixels of the source are displayed. The mask, if present, must
be the same size as the pixmap defined by the source argument, or a BadMatch
error results. The hotspot must be a point within the source, or a BadMatch
error results.

The components of the cursor can be transformed arbitrarily to meet display
limitations. The pixmaps can be freed immediately if no further explidt refer­
ences to them are to be made. Subsequent drawing in the source or mask pix­
map has an undefined effect on the cursor. The XWIN server might or might not
make a copy of the pixmap.

XCreatePixmapCursor can generate BadAlloc and BadPixmap errors.

To create a cursor from font glyphs, use XCreateGlyphCursor.

Cursor lICreateGlyphCuraor(display, sourceJont, mIlSkJont, source_cMr, mIlSk_c1u&r,

display

sourceJont

maskJont

source char

mask char

foreground_color, bGc1cground _color)
Display -display;
Font _aJont, mIlSk.Jont;
unsigned int source_char, mIlSk_char;
XColor -foreground_color;
XColor ·bGc1cground -,olor;

Specifies the connection to the XWIN server.

Specifies the font for the source glyph.

Specifies the font for the mask glyph or None.

Specifies the character glyph for the source.

Specifies the glyph character for the mask.

foreground_color
Specifies the RGB values for the foreground of the source.

background_color
Specifies the RGB values for the background of the source.

6·56 Xwln GWS: Xllb - C Language Interface

Cursors

The XCreateGlyphCursor function is similar to XCreateP ixmapCursor except
that the source and mask bitmaps are obtained from the specified font glyphs.
The source_char must be a defined glyph in source_font, or a BadValue error
results. If mask_font is given, mask_char must be a defined glyph in mask_font,
or a BadValue error results. The mask_font and character are optional. The
origins of the source_char and mask_char (if defined) glyphs are positioned
coincidently and define the hotspot. The source_char and mask_char need not
have the same bounding box metrics, and there is no restriction on the place­
ment of the hotspot relative to the bounding boxes. If no mask_char is given, all
pixels of the source are displayed. You can free the fonts immediately by
calling XFreeFont if no further explicit references to them are to be made.

For 2-byte matrix fonts, the 16-bit value should be formed with the bytel
member in the most-significant byte and the byte2 member in the least­
significant byte.

XCreateGlyphCursor can generate BadAlloc, BadFont, and BadValue errors.

Changing and Destroying Cursors

Xlib provides functions that you can use to change the cursor color, destroy the
cursor, and determine the best cursor size.

To change the color of a given cursor, use XRecolorCursor.

display

cursor

XReoolo~lIOr (displily, C'UTSOf", fureground _color, hckgrowtd _ co1Dr)

Display ·displily;
CUI'IIOI' cursor;

XColor ·fureground_color, ·hckgrowtd_color;

Specifies the connection to the XWIN server.

Specifies the cursor.

foreground_color
Specifies the RGB values for the foreground of the source.

background_color
Specifies the RGB values for the background of the source.

Graphics Functions 6-57

Cursors

The XRecolorCursor function changes the color of the specified cursor, and if
the cursor is being displayed on a screen, the change is visible immediately.

XRecolorCursor can generate a BadCursor error.

To free (destroy) a given cursor, use XFreeCursor.

display

cursor

XFreeCur80r(d~p~y,cu~)

Display ·d~p~y;

Cursor CU~;

Specifies the connection to the XWIN server.

Specifies the cursor.

The XFreeCursor function deletes the association between the cursor resource
ID and the specified cursor. The cursor storage is freed when no other resource
references it. The specified cursor ID should not be referred to again.

XFreeCursor can generate a BadCursor error.

To determine useful cursor sizes, use xQueryBestCursor.

display

d

width
height

Status XQueryBe8tCur80r(d~p~y, d, width, height, widthJeturn, height_return)

Display ·d~p~;
Drawable d;

unsigned int width, height;

unsigned int ·width_return, ·height_return;

Specifies the connection to the XWIN server.

Specifies the drawable, which indicates the screen.

Specify the width and height of the cursor that you want the
size information for.

width return
height Jeturn Return the best width and height that is closest to the specified

width and height.

Some displays allow larger cursors than other displays. The XQueryBestCursor
function provides a way to find out what size cursors are actually possible on
the display.

6-58 Xwln GWS: Xllb - C Language Interface

It returns the largest size that can be displayed. Applications should be
prepared to use smaller cursors on displays that cannot support large ones.

XQueryBestCursor can generate a BadDrawable error.

Defining the Cursor

Cursors

Xlib provides functions that you can use to define or undefine the cursor that
should be displayed in a window.

To define which cursor will be used in a window, use XDefineCursor.

display

w

cursor

XDefi.neCurllOr (display, w, cursor)

Display ·displlly;
Windoww;
Cursor cursor;

Specifies the connection to the XWIN server.

Specifies the window.

Specifies the cursor that is to be displayed or None.

If a cursor is set, it will be used when the pointer is in the window. If the cur­
sor is None, it is equivalent to XUndefineCursor.

XDefineCursor can generate BadCursor and BadWindow errors.

To undefine the cursor in a given window, use XPndefineCursor.

display

w

X1.Jnciefi.neCursor (displlly, w)

Display • displlly;
Windoww;

Specifies the connection to the XWIN server.

Specifies the window.

Graphics Functions 6-59

Cursors

The XUndefineCursor undoes the effect of a previous XDefineCursor for this
window. When the pointer is in the window, the parent's cursor will now be
used. On the root window, the default cursor is restored.

XUndefineCursor can generate a BadWindow error.

6-60 Xwln GWS: Xllb - C Language Interface

7 Window Manager Functions

Introduction 7-1

Changing the Parent of a Window 7-2

Controlling the Lifetime of a Window 7-4

Determining Resident Colormaps 7-6

Pointer Grabbing 7-8

Keyboard Grabbing 7-16

Server Grabbing 7-24

Miscellaneous Control Functions 7-25
Controlling Input Focus 7-25
Killing Clients 7-28

Table of Contents

Table of Contents ___________________ _

Keyboard and Pointer Settings 7-30

Keyboard Encoding 7-38

Screen Saver Control 7-45

Controlling Host Access 7-48
Adding, Getting, or Removing Hosts 7-49
Changing, Enabling, or Disabling Access Control 7-51

Ii Xwln GWS: Xllb - C Language Interface

Introduction

Although it is difficult to categorize functions as application only or window
manager only, the functions in this chapter are most often used by window
managers. It is not expected that these functions will be used by most applica­
tion programs. You can use the Xlib window manager functions to:

• Change the parent of a window

• Control the lifetime of a window

• Determine resident colorrnaps

• Grab the pointer

• Grab the keyboard

• Grab the server

• Control event processing

• Manipulate the keyboard and pointer settings

• Control the screen saver

• Control host access

Window Manager Functions 7-1

Changing the Parent of a Window

To change a window's parent to another window on the same screen, use
XReparentWindow. There is no way to move a window between screens.

XReparentWinc:low (display, w, parent, x, y)

Display ·display;
Windoww;
Window parent;
int x, y;

display Specifies the connection to the XWIN server.

Specifies the window. w

parent Specifies the parent window.

x
y Specify the x and y coordinates of the position in the new

parent window.

If the specified window is mapped, XReparentWindow automatically performs
an UnmapWindow request on it, removes it from its current position in the hierar­
chy, and inserts it as the child of the specified parent. The window is placed in
the stacking order on top with respect to Sibling windows.

After reparenting the specified window, XReparentWindow causes the XWIN

server to generate a ReparentNotify event. The override Jedirect member
returned in this event is set to the window's corresponding attribute. Window
manager clients usually should ignore this window if this member is set to
True. Finally, if the Specified window was originally mapped, the XWIN server
automatically performs a MapWindow request on it.

The XWIN server performs normal exposure processing on formerly obscured
windows. The XWIN server might not generate Expose events for regions from
the initial UnmapWindow request that are immediately obscured by the final
MapWindow request. A BadMatch error results if:

7-2

• The new parent window is not on the same screen as the old parent win­
dow.

• The new parent window is the specified window or an inferior of the
specified window.

Xwln GWS: Xllb - C Language Interface

Changing the Parent of a Window

• The specified window has a ParentRelative background, and the new
parent window is not the same depth as the specified window.

XReparentW!ndow can generate BadMatch and BadWindow errors.

Window Manager Functions 7-3

Controlling the Lifetime of a Window

The save-set of a client is a list of other clients' windows that, if they are inferi­
ors of one of the client's windows at connection close, should not be destroyed
and should be remapped if they are unmapped. For further information about
close-connection processing, see "X Server Connection Close Operations" in
Chapter 2. To allow an application's window to survive when a window
manager that has reparented a window fails, Xlib provides the save-set func­
tions that you can use to control the longevity of subwindows that are normally
destroyed when the parent is destroyed. For example, a window manager that
wants to add decoration to a window by adding a frame might reparent an
application's window. When the frame is destroyed, the application's window
should not be destroyed but be returned to its previous place in the window
hierarchy.

The XWIN server automatically removes windows from the save-set when they
are destroyed.

To add or remove a window from the client's save-set, use XChangeSaveSet.

XCbangeSaveSet (disp14y, w, change_mode)
Display ·displ4y;
Windoww;

int change_mode;

display Specifies the connection to the XWIN server.

w Specifies the window that you want to add to or delete from the
client's save-set.

change_mode Specifies the mode. You can pass SetMocieInsert or
SetModeDelete.

Depending on the specified mode, XChangesaveSet either inserts or deletes the
specified window from the client's save-set. The specified window must have
been created by some other client, or a BadMatch error results.

XChangesaveSet can generate BadMatch, BadValue, and BadWindow errors.

To add a window to the client's save-set, use XAddToSaveSet.

7-4

XAddToSawS.t (disM, w)

Display ·displ4y;
Windoww;

Xwln GWS: Xllb - C Language Interface

display

w

Controlling the Lifetime of a Window

Specifies the connection to the XWIN server.

Specifies the window that you want to add to the client's save­
set.

The XAddToSaveSet function adds the specified window to the client's save-set.
The specified window must have been created by some other client, or a Bad­
Match error results.

XAddToSaveSet can generate BadMatch and BadWindow errors.

To remove a window from the client's save-set, use XRemoveFromSaveSet.

display

XRemovePromSaveSet (display, w)

Display "display;
Windoww;

Specifies the connection to the XWIN server.

w Specifies the window that you want to delete from the client's
save-set.

The XRemoveFromSaveSet function removes the specified window from the
client's save-set. The specified window must have been created by some other
client, or a BadMatch error results.

XRemoveFromSaveSet can generate BadMatch and BadWindow errors.

Window Manager Functions 7-5

Determining Resident Colormaps

Xlib provides functions that you can use to install a colonnap, uninstall a color­
map, and obtain a list of installed colonnaps.

At any time, there is a subset of the installed maps that is viewed as an ordered
list and is called the required list. The length of the required list is at most M,
where M is the minimum number of installed colonnaps specified for the screen
in the connection setup. The required list is maintained as follows. When a
colormap is specified to XlnstallCOlocnap, it is added to the head of the list;
the list is truncated at the tail, if necessary, to keep its length to at most M.
When a colonnap is specified to XUninstallCOlocnap and it is in the required
list, it is removed from the list. A colormap is not added to the required list
when it is implicitly installed by the XWIN server, and the XWIN server cannot
implicitly uninstall a colonnap that is in the required list.

To install a colonnap, use XlnstallCOlocnap.

XInstallColormap (displt;ly, colormill'>
Display ·disl'lilyi
Colormap colontUll'i

display

colormap

Specifies the connection to the XWIN server.

Specifies the colonnap.

The XInstallCOlocnap function installs the specified colonnap for its associ­
ated screen. All windows associated with this colonnap immediately display
with true colors. You associated the windows with this colonnap when you
created them by calling XCreateWindow, XCreateSimpleWindow, XChangeWin­
dowAttributes,orXSetWindowCOlocnap.

If the specified colonnap is not already an installed colonnap, the XWIN server
generates a COlocnapNotify event on each window that has that colonnap. In
addition, for every other colonnap that is installed as a result of a call to Xln­
stallCOlocnap, the XWIN server generates a COlormapNotify event on each
window that has that colonnap.

XlnstallCOlormap can generate a BadColor error.

To uninstall a colonnap, use XUninstallCOlocnap.

7-6 Xwln GWS: Xllb - C Language Interface

Determining Resident Colormaps

xuninatallColomap (displRy, colomuzp)
Display ·displRy;

display

colormap

Colormap colomuzp;

Specifies the connection to the XWIN server.

Specifies the colormap.

The XUninstallColomap function removes the specified colormap from the
required list for its screen. As a result, the specified colormap might be unin­
stalled, and the XWIN server might implicitly install or uninstall additional color­
maps. Which colormaps get installed or uninstalled is server-dependent except
that the required list must remain installed.

If the specified colorrnap becomes uninstalled, the XWIN server generates a
ColormapNotify event on each window that has that colormap. In addition,
for every other colormap that is installed or uninstalled as a result of a call to
XUninstallColomap, the XWIN server generates a ColomapNotify event on
each window that has that colormap.

XUninstallColomap can generate a BadColor error.

To obtain a list of the currently installed colormaps for a given screen, use
XListlnstalledColomaps.

display

w

Coloaap *XLiatInatalledColoxmapa (displRy, w, num_refum)
Display ·displRy;

Windoww;
int "num_retum;

Specifies the connection to the XWIN server.

num return

Specifies the window that determines the screen.

Returns the number of currently installed colormaps.

The XListInstalledColomaps function returns a list of the currently installed
colormaps for the screen of the specified window. The order of the colormaps
in the list is not significant and is no explicit indication of the required list.
When the allocated list is no longer needed, free it by using XFree.

XListlnstalledColomaps can generate a BadWindow error.

Window Manager Functions 7-7

Pointer Grabbing

Xlib provides functions that you can use to control input from the pointer,
which usually is a mouse. Window managers most often use these facilities to
implement certain styles of user interfaces. Some toolkits also need to use these
facilities for special purposes.

Usually, as soon as keyboard and mouse events occur, the XWIN server delivers
them to the appropriate client, which is determined by the window and input
focus. The XWIN server provides sufficient control over event delivery to allow
window managers to support mouse ahead and various other styles of user
interface. Many of these user interfaces depend upon synchronous delivery of
events. The delivery of pointer and keyboard events can be controlled
independently.

When mouse buttons or keyboard keys are grabbed, events will be sent to the
grabbing client rather than the normal client who would have received the
event. If the keyboard or pointer is in asynchronous mode, further mouse and
keyboard events will continue to be processed. If the keyboard or pointer is in
synchronous mode, no further events are processed until the grabbing client
allows them (see XAllowEvents). The keyboard or pointer is considered frozen
during this interval. The event that triggered the grab can also be replayed.

Note that the logical state of a device (as seen by client applications) may lag
the physical state if device event processing is frozen.

There are two kinds of grabs: active and passive. An active grab occurs when a
single client grabs the keyboard and/or pointer explicitly (see XGrabPointer
and XGrabKeyboard). A passive grab occurs when clients grab a particular key­
board key or pointer button in a window, and the grab will activate when the
key or button is actually pressed. Passive grabs are convenient for implement­
ing reliable pop-up menus. For example, you can guarantee that the pop-up is
mapped before the up pointer button event occurs by grabbing a button
requesting synchronous behavior. The down event will trigger the grab and
freeze further processing of pointer events until you have the chance to map the
pop-up window. You can then allow further event processing. The up event
will then be correctly processed relative to the pop-up window.

For many operations, there are functions that take a time argument. The XWIN
server includes a timestamp in various events. One special time, called
CurrentTime, represents the current server time. The XWIN server maintains
the time when the input focus was last changed, when the keyboard was last
grabbed, when the pointer was last grabbed, or when a selection was last
changed. Your application may be slow reacting to an event. You often need

7-8 Xwln GWS: Xllb - C Language Interface

Pointer Grabbing

some way to specify that your request should not occur if another application
has in the meanwhile taken control of the keyboard, pointer, or selection. By
providing the timestamp from the event in the request, you can arrange that the
operation not take effect if someone else has performed an operation in the
meanwhile.

A timestamp is a time value, expressed in milliseconds. It typically is the time
since the last server reset. Timestamp values wrap around (after about 49.7
days). The server, given its current time is represented by timestamp T, always
interprets timestamps from clients by treating half of the timestamp space as
being later in time than T. One timestamp value, named CurrentTime, is never
generated by the server. This value is reserved for use in requests to represent
the current server time.

For many functions in this section, you pass pointer event mask bits. The valid
pointer event mask bits are: ButtonE'ressMask, ButtonReleaseMask, EnterWin­
dowMask,LeaveWindowMask,PointerMOtionMask,PointerMOtionHintMask,
ButtonlMotionMask,Button2MbtionMask,Button3MOtionMask,
Button4MOtionMask,ButtonSMOtionMask,ButtonMbtionMask,andKey­
MapStateMask. For other functions in this section, you pass keymask bits. The
valid keymask bits are: ShiftMask, LockMask, ControlMask, ModlMask,
Mod2Mask, Mod3Mask, Mod4Mask, and ModSMask.

To grab the pointer, use XGrabPointer.

display

int lIGrallPointer (display, grab_window, owner_events, event _7rUlSk, pointer_mode,
keyboard_mode, confine_to, cursor, time)

Display ·displlly;
Window grab_window;
Bool owner_events;
unsigned int event _ 7rUlSk;
int pointer_mode, keybOQrd_mode;
Window confine_to;
Cursor cursor;

Time time;

Specifies the connection to the XWIN server.

Window Manager Functions 7-9

Pointer Grabbing

grab_window Specifies the grab window.

owner eoents Specifies a Boolean value that indicates whether the pointer
events are to be reported as usual or reported with respect to
the grab window if selected by the event mask.

event mask Specifies which pointer events are reported to the client. The
mask is the bitwise inclusive OR of the valid pointer event mask
bits.

pointer_mode Specifies further processing of pointer events. You can pass
Gr~Sync or GrabM:x1eAsync.

keyboard_mode Specifies further processing of keyboard events. You can pass
Gr~Sync or GrabM:x1eAsync.

confine _to Specifies the window to confine the pointer in or None.

cursor Specifies the cursor that is to be displayed during the grab or
None.

time Specifies the time. You can pass either a timestamp or Current­
Time.

The XGrabPointer function actively grabs control of the pointer and returns
GrabSuccess if the grab was successful. Further pointer events are reported
only to the grabbing client. XGrabPointer overrides any active pointer grab by
this client. If owner_events is False, all generated pointer events are reported
with respect to grab_window and are reported only if selected by event_mask.
If owner_events is True and if a generated pointer event would normally be
reported to this client, it is reported as usual. Otherwise, the event is reported
with respect to the grab_window and is reported only if selected by
event_mask. For either value of owner_events, unreported events are discarded.

If the pointer_mode is Gr~ync, pointer event processing continues as
usual. If the pointer is currently frozen by this client, the processing of events
for the pointer is resumed. If the pointer_mode is Gr~Sync, the state of
the pointer, as seen by client applications, appears to freeze, and the XWIN
server generates no further pointer events until the grabbing client calls XAl­
lowEvents or until the pointer grab is released. Actual pointer changes are not
lost while the pointer is frozen; they are simply queued in the server for later
processing.

7·10 Xwln GWS: Xllb - C Language Interface

Pointer Grabbing

If the keyboard_mode is Gral:M:>deAsync, keyboard event processing is unaf­
fected by activation of the grab. If the keyboard_mode is Gr~Sync, the
state of the keyboard, as seen by client applications, appears to freeze, and the
XWIN server generates no further keyboard events until the grabbing client calls
XAllowEvents or until the pointer grab is released. Actual keyboard changes
are not lost while the pointer is frozen; they are simply queued in the server for
later processing.

If a cursor is specified, it is displayed regardless of what window the pointer is
in. If None is specified, the normal cursor for that window is displayed when
the pointer is in grab_window or one of its subwindows; otherwise, the cursor
for grab_window is displayed.

If a confine_to window is specified, the pointer is restricted to stay contained in
that window. The confine_to window need have no relationship to the
grab_window. If the pointer is not initially in the confine_to window, it is
warped automatically to the closest edge just before the grab activates and
enter Ileave events are generated as usual. If the confine_to window is subse­
quently reconfigured, the pointer is warped automatically, as necessary, to keep
it contained in the window.

The time argument allows you to avoid certain circumstances that come up if
applications take a long time to respond or if there are long network delays.
Consider a situation where you have two applications, both of which normally
grab the pointer when clicked on. If both applications specify the timestamp
from the event, the second application may wake up faster and successfully
grab the pointer before the first application. The first application then will get
an indication that the other application grabbed the pointer before its request
was processed.

XGrabPointer generates EnterNotify and LeaveNotify events.

Either if grab_window or confine_to window is not viewable or if the confine_to
window lies completely outside the boundaries of the root window, XGrab­
Pointer fails and returns GrabNotViewable. If the pointer is actively grabbed
by some other client, it fails and returns AlreadyGrabbed. If the pointer is
frozen by an active grab of another client, it fails and returns GrabFrozen. If
the specified time is earlier than the last-pointer-grab time or later than the
current XWIN server time, it fails and returns GrabInvalidTime. Otherwise, the
last-pointer-grab time is set to the specified time (CurrentTime is replaced by
the current XWIN server time).

Window Manager Functions 7-11

Pointer Grabbing

XGrabPointer can generate BaciCursor, BadValue, and BadWindow errors.

To ungrab the pointer, use XUngrabPointer.

display

time

XOnqrabPointer (displlly, time)
DIsplay ·displlly;

TIme time;

Specifies the connection to the XWIN server.

Specifies the time. You can pass either a timestamp or Current­
Time.

The XUngrabPointer function releases the pointer and any queued events if
this client has actively grabbed the pointer from XGrabPointer, XGrabButton,
or from a normal button press. XUngrabPointer does not release the pointer if
the specified time is earlier than the last-pointer-grab time or is later than the
current XWIN server time. It also generates EnterNotify and LeaveNotify
events. The XWIN server performs an UngrabPointer request automatically if
the event window or confine_to window for an active pointer grab becomes not
viewable or if window reconfiguration causes the confine_to window to lie com­
pletely outside the boundaries of the root window.

To change an active pointer grab, use XChangeActivePointerGrab.

XCbangaActiwPointa!:Grab (displlly, et1ent _ mIlSIc, cursor, timll)

DIsplay ·displlly;

display

event mask

7·12

Cursor cursor;
TIme time;

Specifies the connection to the XWIN server.

Specifies which pointer events are reported to the client. The
mask is the bitwise inclusive OR of the valid pointer event mask
bits.

Xwln GWS: Xllb - C Language Interface

Pointer Grabbing

cursor Specifies the cursor that is to be displayed or None.

time Specifies the time. You can pass either a timestamp or Current­
Time.

The XChanqeActivePointerGrab function changes the specified dynamic
parameters if the pointer is actively grabbed by the client and if the specified
time is no earlier than the last-pointer-grab time and no later than the current
XWIN server time. This function has no effect on the passive parameters of a
XGrabButton. The interpretation of event_mask and cursor is the same as
described in XGrabPointer.

XChangeActivePointerGrab can generate BadCursor and BadValue errors.

To grab a pointer button, use XGrabButton.

XGral:lButton (displlly, button, modifiers, grab_window, uwner J1Jents, event_mask,
pointer_mode, 1reybollrd Jnode, confine_to, cursor)

Display ·displlly;
unsigned int button;
unsigned int modifiers;
Window grab_window;
Bool UW7ler _ events;

unsigned int event_mask;
int pointer_mode, keybollrdJnode;
Window confine_to;
Cursor cursor;

display Specifies the connection to the XWIN server.

button Specifies the pointer button that is to be grabbed or AnyButton.

modifiers Specifies the set of keymasks or Any!tkxiifier. The mask is the
bitwise inclusive OR of the valid keymask bits.

grab_window Specifies the grab window.

owner _events Specifies a Boolean value that indicates whether the pointer
events are to be reported as usual or reported with respect to
the grab window if selected by the event mask.

Window Manager Functions 7-13

Pointer Grabbing

event_mask Specifies which pointer events are reported to the client. The
mask is the bitwise inclusive OR of the valid pointer event mask
bits.

pointer _mode Specifies further processing of pointer events. You can pass
Gr~Sync or GrabModeAsync.

keyboard_mode Specifies further processing of keyboard events. You can pass
Gr~Sync or GrabModeAsync.

Specifies the window to confine the pointer in or None.

Specifies the cursor that is to be displayed or None.

The XGrabButton function establishes a passive grab. In the future, the pointer
is actively grabbed (as for XGrabPointer), the last-pointer-grab time is set to
the time at which the button was pressed (as transmitted in the ButtonPress
event), and the ButtonPress event is reported if all of the following conditions
are true:

• The pointer is not grabbed, and the specified button is logically pressed
when the specified modifier keys are logically down, and no other buttons
or modifier keys are logically down.

• The grab_window contains the pointer.

• The confine_to window (if any) is viewable.

• A passive grab on the same button/key combination does not exist on
any ancestor of grab_window.

The interpretation of the remaining arguments is as for XGrabPointer. The
active grab is terminated automatically when the logical state of the pointer has
all buttons released (independent of the state of the logical modifier keys).

Note that the logical state of a device (as seen by client applications) may lag
the physical state if device event processing is frozen.

This request overrides all previous grabs by the same client on the same
button/key combinations on the same window. A modifiers of AnyModifier is
equivalent to issuing the grab request for all possible modifier combinations
(including the combination of no modifiers). It is not required that all modifiers
specified have currently assigned KeyCodes. A button of AnyButton is
equivalent to issuing the request for all possible buttons. Otherwise, it is not
reqUired that the specified button currently be assigned to a physical button.

7·14 Xwln GWS: Xllb - C Language Interface

Pointer Grabbing

If some other client has already issued a XGrabButton with the same
button/key combination on the same window, a BadAccess error results.
When using AnyM:xiifier or AnyButton, the request fails completely, and a
BadAccess error results (no grabs are established) if there is a conflicting grab
for any combination. XGrabButton has no effect on an active grab.

XGrabButton can generate BadCursor, BadValue, and BadWindow errors.

To ungrab a pointer button, use XUngrabButton.

XUnqrabButton (display, button, modifiers, grtW_window)
Display -displlly;
unsigned int button;
unsigned int modifiers;
Window grtW_window;

display Specifies the connection to the XWIN server.

button Specifies the pointer button that is to be released or AnyButton.

modifiers Specifies the set of keymasks or AnyM:xiifier. The mask is the
bitwise inclusive OR of the valid keymask bits.

grab_window Specifies the grab window.

The XUnqrabButton function releases the passive button/key combination on
the specified window if it was grabbed by this client. A modifiers of AnyM:xiif­
ier is equivalent to issuing the ungrab request for all possible modifier combi­
nations, including the combination of no modifiers. A button of AnyButton is
equivalent to issuing the request for all possible buttons. XUnqrabButton has
no effect on an active grab.

XUnqrabButton can generate BadValue and BadWindow errors.

Window Manager Functions 7-15

Keyboard Grabbing

Xlib provides functions that you can use to grab or ungrab the keyboard as well
as allow events.

For many functions in this section, you pass keymask bits. The valid keymask
bits are: ShiftMask, LockMask, ControlMask, ModlMask, ~sk, Mod3Mask,
Mod4Mask, and ModSMask.

To grab the keyboard, use XGrabKeyboard.

int lIGrablteyboa.rd (displlly, grtlb _window, t1IIlneI' Juents, pointer_mode, k4ybottrd _ mode, time)

DIsplay -displlly;

Bool t1IIlneI'_erJents;

int pointer_mode, k4ybottrd_mode;
Thne time;

display Specifies the connection to the XWIN server.

grab_window Specifies the grab window.

owner_events Specifies a Boolean value that indicates whether the pointer
events are to be reported as usual or reported with respect to
the grab window if selected by the event mask.

pointer _mode Specifies further processing of pointer events. You can pass
GrabModeSync or GratModeAsync.

keyboard_mode Specifies further processing of keyboard events. You can pass
GrabModeSync or GratModeAsync.

time Specifies the time. You can pass either a timestamp or Current-
Time.

The XGrabKeyboard function actively grabs control of the keyboard and gen­
erates Focusln and FocusOut events. Further key events are reported only to
the grabbing client. XGrabKeyboard overrides any active keyboard grab by this
client. If owner_events is False, all generated key events are reported with
respect to grab_window. If owner_events is True and if a generated key event
would nonnally be reported to this client, it is reported normally; otherwise, the
event is reported with respect to the grab_window. Both Keypress and
KeyRelease events are always reported, independent of any event selection
made by the client.

7·16 Xwln GWS: Xllb - C Language Interface

Keyboard Grabbing

If the keyboard_mode argument is GrabModeAsync, keyboard event processing
continues as usual. If the keyboard is currently frozen by this client, then pro­
cessing of keyboard events is resumed. If the keyboard _mode argument is
Gr~Sync, the state of the keyboard (as seen by client applications) appears
to freeze, and the XWIN server generates no further keyboard events until the
grabbing client issues a releasing XAllowEvents call or until the keyboard grab
is released. Actual keyboard changes are not lost while the keyboard is frozen;
they are simply queued in the server for later processing.

If pointer_mode is Gr~ync, pointer event processing is unaffected by
activation of the grab. If pointer_mode is Gr~Sync, the state of the pointer
(as seen by client applications) appears to freeze, and the XWIN server generates
no further pointer events until the grabbing client issues a releasing XAl­
lowEvents call or until the keyboard grab is released. Actual pointer changes
are not lost while the pointer is frozen; they are simply queued in the server for
later processing.

If the keyboard is actively grabbed by some other client, XGrabKeyboard fails
and returns AlreadyGrabbed. If grab_window is not viewable, it fails and
returns GrabNotViewable. If the keyboard is frozen by an active grab of
another client, it fails and returns GrabFrozen. If the Specified time is earlier
than the last-keyboard-grab time or later than the current XWIN server time, it
fails and returns GrabInvalidTime. Otherwise, the last-keyboard-grab time is
set to the specified time (CurrentTime is replaced by the current XWIN server
time).

XGrabKeyboard can generate BadValue and BadWindow errors.

To ungrab the keyboard, use XUnqrabKeyboard.

display

XUnqrabKeyboani (display, time)
Display ·display;

Time time;

Specifies the connection to the XWIN server.

time Specifies the time. You can pass either a timestamp or Current-
Time.

The XUnqrabKeyboard function releases the keyboard and any queued events if
this client has it actively grabbed from either XGrabKeyboard or XGrabKey.
XUnqrabKeyboard does not release the keyboard and any queued events if the
Specified time is earlier than the last-keyboard-grab time or is later than the

Window Manager Functions 7-17

Keyboard Grabbing

current XWIN server time. It also generates Focusln and FocusOut events. The
XWIN server automatically performs an UngrabKeyboard request if the event
window for an active keyboard grab becomes not viewable.

To passively grab a single key of the keyboard, use XGrabKey.

XGral::i(ey(displily, 1reycode, modifiers, gnW_window, owner_tfNmts, pointer_mode,
keyboard_mode)

Display ·displlzy;
int keycode;
unsigned int modifiers;
Window gnW_window;
Bool owner _ tfNmts;
int pointer_mode, keyboard_mode;

display Specifies the connection to the XWIN server.

keycode Specifies the KeyCode or AnyKey.

modifiers Specifies the set of keymasks or AnyModifier. The mask is the
bitwise inclusive OR of the valid keymask bits.

grab_window Specifies the grab window.

owner events Specifies a Boolean value that indicates whether the pointer
events are to be reported as usual or reported with respect to
the grab window if selected by the event mask.

pointer_mode Specifies further processing of pointer events. You can pass
Gra.bModeSync or Gra.bM:xieAsync.

keyboard_mode Specifies further processing of keyboard events. You can pass
Gra.bModeSync or Gra.bM:xieAsync.

The XGrabKey function establishes a passive grab on the keyboard. In the
future, the keyboard is actively grabbed (as for XGrabKeyboard), the last­
keyboard-grab time is set to the time at which the key was pressed (as transmit­
ted in the KeyPress event), and the KeyPress event is reported if all of the fol­
lowing conditions are true:

• The keyboard is not grabbed and the specified key (which can itself be a
modifier key) is logically pressed when the specified modifier keys are
logically down, and no other modifier keys are logically down.

7-18 Xwln GWS: Xllb - C Language Interface

•

Keyboard Grabbing

• Either the grab_window is an ancestor of (or is) the focus window, or the
grab_window is a descendant of the focus window and contains the
pointer.

• A passive grab on the same key combination does not exist on any ances-
tor of grab_window.

The interpretation of the remaining arguments is as for XGrabKeyboard. The
active grab is terminated automatically when the logical state of the keyboard
has the specified key released (independent of the logical state of the modifier
keys).

Note that the logical state of a device (as seen by client applications) may lag
the physical state if device event processing is frozen.

A modifiers argument of AnyMcdifier is equivalent to issuing the request for
all possible modifier combinations (including the combination of no modifiers).
It is not required that all modifiers specified have currently assigned KeyCodes.
A keycode argument of AnyKey is equivalent to issuing the request for all possi­
ble KeyCodes. Otherwise, the specified keycode must be in the range specified
by min _ keycode and max _ keycode in the connection setup, or a BadValue error
results.

If some other client has issued a XGrabKey with the same key combination on
the same window, a BadAccess error results. When using AnyM;x1ifier or
AnyKey, the request fails completely, and a BadAccess error results (no grabs
are established) if there is a conflicting grab for any combination.

XGrabKey can generate BadAccess, BadValue, and BadWindow errors.

To ungrab a key, use XUngrabKey.

display

XOngrabKey (displIIy, keyct*, modifiers, gnIh _ window)
Display ·display;
int kJeycotU;
unsigned int modifiers;
Window grtJh _ TDindmo;

Specifies the connection to the XWIN server.

Window Manager Functions 7-19

Keyboard Grabbing

keycode Specifies the KeyCode or AnyKsy.

modifiers Specifies the set of keymasks or AnyModifier. The mask is the
bitwise inclusive OR of the valid keymask bits.

grab _window Specifies the grab window.

The xungrabKey function releases the key combination on the specified window
if it was grabbed by this client. It has no effect on an active grab. A modifiers
of AnyModifier is equivalent to issuing the request for all possible modifier
combinations (including the combination of no modifiers). A keycode argument
of AnyKsy is equivalent to issuing the request for all possible key codes.

XUngrabKsy can generate BadValue and BadWindow errors.

To allow further events to be processed when the device has been frozen, use
XAllowEvents.

XAllodvants (display, event_mode, time)
Display -display;

display

event mode

time

int event_mode;
Time time;

Specifies the connection to the XWIN server.

Specifies the event mode. You can pass AsyncPointer, Sync­
Pointer,AsyncKeyboard,SyncKeyboard,ReplayPointer,
ReplayKsyboard,AsyncBoth,orSyncBoth.

Specifies the time. You can pass either a timestamp or Current-
Time.

The XAllowEvents function releases some queued events if the client has
caused a device to freeze. It has no effect if the specified time is earlier than the
last-grab time of the most recent active grab for the client or if the specified time
is later than the current XWIN server time. Depending on the event_mode argu­
ment, the following occurs:

7·20 Xwln GWS: Xllb - C Language Interface

AsyncPointer

SyncPointer

Replay­
Pointer

AsynCKey­
board

SyncKeyboard

Keyboard Grabbing

If the pointer is frozen by the client, pointer event pro­
cessing continues as usual. If the pointer is frozen
twice by the client on behalf of two separate grabs,
AsyncPointer thaws for both. AsyncPointer has no
effect if the pointer is not frozen by the client, but the
pointer need not be grabbed by the client.

If the pointer is frozen and actively grabbed by the
client, pointer event processing continues as usual until
the next ButtonPress or ButtonRelease event is
reported to the client. At this time, the pointer again
appears to freeze. However, if the reported event
causes the pointer grab to be released, the pointer does
not freeze. SyncPointer has no effect if the pointer is
not frozen by the client or if the pointer is not grabbed
by the client.

If the pointer is actively grabbed by the client and is
frozen as the result of an event having been sent to the
client (either from the activation of aX Grab Button or
from a previous XAllowEvents with mode Sync­
Pointer but not from a XGrabPointer), the pointer
grab is released and that event is completely repro­
cessed. This time, however, the function ignores any
passive grabs at or above (towards the root of) the
grab_window of the grab just released. The request
has no effect if the pointer is not grabbed by the client
or if the pointer is not frozen as the result of an event.

If the keyboard is frozen by the client, keyboard event
processing continues as usual. If the keyboard is
frozen twice by the client on behalf of two separate
grabs, AsyncKeyboard thaws for both. AsyncKey­
board has no effect if the keyboard is not frozen by
the client, but the keyboard need not be grabbed by
the client.

If the keyboard is frozen and actively grabbed by the
client, keyboard event processing continues as usual

Window Manager Functions 7-21

Keyboard Grabbing

ReplayKey­
board

SyncBoth

AsyncBoth

7-22

until the next Keyl?ress or KeyRelease event is
reported to the client. At this time, the keyboard again
appears to freeze. However, if the reported event
causes the keyboard grab to be released, the keyboard
does not freeze. SyncKeyboard has no effect if the
keyboard is not frozen by the client or if the keyboard
is not grabbed by the client.

If the keyboard is actively grabbed by the client and is
frozen as the result of an event having been sent to the
client (either from the activation of a XGrabKey or from
a previous XAllowEvents with mode SyncKeyboard
but not from a XGrabKeyboard), the keyboard grab is
released and that event is completely reprocessed. This
time, however, the function ignores any passive grabs
at or above (towards the root of) the grab_window of
the grab just released. The request has no effect if the
keyboard is not grabbed by the client or if the key­
board is not frozen as the result of an event.

If both pointer and keyboard are frozen by the client,
event processing for both devices continues as usual
until the next Buttonl?ress, ButtonRelease,
KeyPress, or KeyRelease event is reported to the
client for a grabbed device (button event for the
pointer, key event for the keyboard), at which time the
devices again appear to freeze. However, if the
reported event causes the grab to be released, then the
devices do not freeze (but if the other device is still
grabbed, then a subsequent event for it will still cause
both devices to freeze). SyncBoth has no effect unless
both pointer and keyboard are frozen by the client. If
the pointer or keyboard is frozen twice by the client on
behalf of two separate grabs, SyncBoth thaws for both
(but a subsequent freeze for SyncBoth will only freeze
each device once).

If the pointer and the keyboard are frozen by the
client, event processing for both devices continues as

Xwln GWS: Xlib - C Language Interface

Keyboard Grabbing

usual. If a device is frozen twice by the client on
behalf of two separate grabs, AsyncBoth thaws for
both. AsynCBoth has no effect unless both pointer and
keyboard are frozen by the client.

AsyncPointer, SyncPointer, and ReplayPointer have no effect on the pro­
cessing of keyboard events. AsyncKeyboard, SyncKeyboard, and ReplayKey­
board have no effect on the processing of pointer events. It is possible for both
a pointer grab and a keyboard grab (by the same or different clients) to be
active simultaneously. If a device is frozen on behalf of either grab, no event
processing is perfonned for the device. It is possible for a single device to be
frozen because of both grabs. In this case, the freeze must be released on behalf
of both grabs before events can again be processed.

XAllowEvents can generate a BadValue error.

Window Manager Functions 7·23

Server Grabbing

Xlib provides functions that you can use to grab and ungrab the server. These
functions can be used to control processing of output on other connections by
the window system server. While the server is grabbed, no processing of
requests or cloSe downs on any other connection will occur. A client closing its
connection automatically ungrabs the server.

Although grabbing the server is highly discouraged, it is sometimes necessary.

To grab the server, use XGrabServer.

display

XGrabSerwr (display)
Display ·display;

Specifies the connection to the XWIN server.

The XGrabServer function disables processing of requests and close downs on
all other connections than the one this request arrived on. You should not grab
the XWIN server any more than is absolutely necessary.

To ungrab the server, use XUngrabServer.

XUnqrabSer1Ntr (display)
Display ·display;

display Specifies the connection to the XWIN server.

The XUnqrabServer function restarts processing of requests and close downs on
other connections. You should avoid grabbing the XWIN server as much as p0s­
sible.

7·24 Xwln GWS: Xllb - C Language Interface

Miscellaneous Control Functions

This section discusses how to:

• Control the input focus

• Control the pointer

• Kill clients

Controlling Input Focus

Xlib provides functions that you can use to move the pointer position as well as
to set and get the input focus.

To move the pointer to an arbitrary point on the screen, use XWarpPointer.

XWarpPointer(dispLzy, STC_rD, dest_rD, S1C_'" S1C.]" STC_width, s1C},eight, desty,
dest.JI)

display

sre w

dest w

sre x
sre..JI
sre width
sre)eight

Display ·dispLzy;

int S1C_", S1C.JI;
unsigned int STC_width, s1C_height;
int dest _", dest.JI;

Specifies the connection to the XWIN server.

Specifies the source window or None.

Specifies the qestination window or None.

Specify a rectangle in the source window.

dest x
desi"j Specify the x and y cOordinates within the destination window.

If dest_w is None, XWarpPointer moves the pointer by the offsets (dest_x,
desty) relative to the current position of the pointer. If dest_w is a window,
XWarpPointer moves the pointer to the offsets (dest_ x, desty) relative to the
origin of dest_w. However, if src_w is a window, the move only takes place if
the specified rectangle src_w contains the pointer.

Window Manager Functions 7-25

Miscellaneous Control functions

The src_x and srcJ coordinates are relative to the origin of src_w. If src_height
is zero, it is replaced with the current height of src_w minus srcJ. If src_width
is zero, it is replaced with the current width of src_w minus src_x.

There is seldom any reason for calling this function. The pointer should nor­
mally be left to the user. If you do use this function, however, it generates
events just as if the user had instantaneously moved the pointer from one posi­
tion to another. Note that you cannot use XWarpPointer to move the pointer
outside the confine_to window of an active pointer grab. An attempt to do so
will only move the pointer as far as the closest edge of the confine_to window.

xwarpPointer can generate a BadWindow error.

To set the input focus, use xsetInputFocus.

XSetInputPOCU8 (displAy, focus, Tef1eTUO, time)
Display ·disp1lly;

display

focus

revert to

time

Window focus;
int Tef1eTUO;
TIme time;

Specifies the connection to the XWIN server.

Specifies the window, PointerRoot, or None.

Specifies where the input focus reverts to if the window
becomes not viewable. You can pass RevertToParent, Revert­
ToPointerRoot, or RevertToNone.

Specifies the time. You can pass either a timestamp or Current­
Time.

The XS8tInputFocus function changes the input focus and the last-focus-change
time. It has no effect if the specified time is earlier than the current last-focus­
change time or is later than the current XWIN server time. Otherwise, the last­
focus-change time is set to the specified time (CurrentTime is replaced by the
current XWIN server time). XSetInputFocus causes the XWIN server to generate
FocusIn and FocusOut events.

Depending on the focus argument, the following occurs:

7·26 Xwln GWS: Xllb - C Language Interface

MIscellaneous Control FunctIons

• If focus is None, all keyboard events are discarded until a new focus win­
dow is set, and the revert_to argument is ignored.

• If focus is a window, it becomes the keyboard's focus window. If a gen­
erated keyboard event would normally be reported to this window or one
of its inferiors, the event is reported as usual. Otherwise, the event is
reported relative to the focus window.

• If focus is PointerRoot, the focus window is dynamically taken to be the
root window of whatever screen the pointer is on at each keyboard event.
In this case, the revert_to argument is ignored.

The specified focus window must be viewable at the time XSetInputFocus is
called, or a BadMatch error results. If the focus window later becomes not
viewable, the XWIN server evaluates the revert_to argument to determine the
new focus window as follows:

• If revert_to is RevertToParent, the focus reverts to the parent (or the
closest viewable ancestor), and the new revert_to value is taken to be
RevertToNone.

• If revert_to is RevertToPointerRoot or RevertToNone, the focus reverts
to PointerRoot or None, respectively. When the focus reverts, the XWIN
server generates FocusIn and FocusOut events, but the last-focus-change
time is not affected.

XSetlnputFOCUs can generate BadMatch, BadValue, and BadWindow errors.

To obtain the current input focus, use XGetlnputFocus.

XGetIqJutl'OOU8 (displJJy, focusJetum, re71nUoJetum)
Display -displlzy;

Window ·focusJefllmi
int ·mInf_IoJetum;

display

focusJeturn

revert to return

Specifies the connection to the XWIN server.

Returns the focus window, PointerRoot, or None.

Returns the current focus state (RevertToParent , RevertTo­
PointerRoot, or RevertToNone).

WIndow Manager FunctIons 7·27

Miscellaneous Control Functions

The XGetlnputFocus function returns the focus window and the current focus
state.

Killing Clients

Xlib provides functions that you can use to control the lifetime of resources
owned by a client or to cause the connection to a client to be destroyed.

To change a client's close-down mode, use XSetCloseDownM:xie.

XSetCloseDownMode (displily, close_mode)

Display -displily;

int close_mode;

display

close mode

Specifies the connection to the XWIN server.

Specifies the client close-down mode. You can pass Destroy­
All,RetainPermanent, or RetainTemporary.

The XSetCloseDownMexie defines what will happen to the client's resources at
connection close. A connection starts in DestroyAll mode. For information on
what happens to the client's resources when the close_mode argument is
RetainPe:z:manent or RetainTemporary, see "X Server Connection Oose Opera­
tions" in Chapter 2.

XSetCloseDowmtxie can generate a BadValue error.

To destroy a client, use XKillClient.

display

resource

XKillClient (displily, resource)
Display -displily;

XID resource;

Specifies the connection to the XWIN server.

Specifies any resource associated with the client that you want
to destroy or AlITemporary.

The XKillClient function forces a close-down of the client that created the
resource if a valid resource is specified. If the client has already terminated in
either RetainPe:z:manent or RetainTemporary mode, all of the client's resources
are destroyed. If AlITemporary is specified, the resources of all clients that

7-28 Xwln GWS: Xllb - C Language Interface

Miscellaneous Control Functions

have tenninated in RetainTemporary are destroyed (see "X Server Connection
Close Operations" in Chapter 2). This pennits implementation of window
manager facilities that aid debugging. A client can set its close-down mode to
RetainTemporary. If the client then crashes, its windows would not be des­
troyed. The programmer can then inspect the application's window tree and use
the window manager to destroy the zombie windows.

XKillClient can generate a BadValue error.

Window Manager Functions 7-29

Keyboard and Pointer Settings

Xlib provides functions that you can use to change the keyboard control, obtain
a list of the auto-repeat keys, tum keyboard auto-repeat on or off, ring the bell,
set or obtain the pointer button or keyboard mapping, and obtain a bit vector
for the keyboard.

This section discusses the user-preference options of bell, key click, pointer
behavior, and so on. The default values for many of these functions are deter­
mined by command line arguments to the XWIN server and, on UNIX-based sys­
tems, are typically set in the /etc/ttys file.

Not all implementations will actually be able to control all of these parameters.

The XChangeKeyboardControl function changes control of a keyboard and
operates on a XKeyboardControl structure:

/* Mask bits for ChangeKeyboardControl ... /

#define KBKeyClickPercent
#define KBBellPercent
#define KBBellPitch
#define KBBellDuration
#define KBLed
#define KBLeclMode
#define KBKey
#define KBAutoRepeatMbde

1* Values *1

typedef struct {

int key_clickyeroent;

int bellyeroent;

int bellJ>itch;

int bell_duration;

intled;

int led_moc:Ie;

int key;

int auto_repeat_mode;

} XKeyboarciControl;

7·30

(1L«0)
(1L«1)
(1L<<2)
(1L<<3)
(1L«4)
(1L<<5)
(1L«6)
(1L«7)

1* LedModeOn, IBcHxieOff *1

1* AutoRepeatM:xSeOff, AutClbpea.tModaOn,

AutoRepeatHx1eDefault *1

Xwln GWS: Xllb - C Language Interface

Keyboard and Pointer Settings

The key_click J>ercent member sets the volume for key clicks between 0 (off)
and 100 (loud) inclusive, if possible. A setting of -1 restores the default. Other
negative values generate a BadValue error.

The bellJ>ercent sets the base volume for the bell between 0 (0£0 and 100 (loud)
inclusive, if possible. A setting of -1 restores the default. Other negative values
generate a BadValue error. The bell-pitch member sets the pitch (specified in
Hz) of the bell, if possible. A setting of -1 restores the default. Other negative
values generate a BadValue error. The bell_duration member sets the duration
of the bell specified in milliseconds, if possible. A setting of -1 restores the
default. Other negative values generate a BadValue error.

If both the led_mode and led members are specified, the state of that LED is
changed, if possible. The led_mode member can be set to LedM:ldeOn or Led­
MedeOff. If only led_mode is specified, the state of all LEDs are changed, if
possible. At most 32 LEDs numbered from one are supported. No standard
interpretation of LEDs is defined. If led is specified without led_mode, a Bad­
Match error results.

If both the auto Jepeat_mode and key members are specified, the
autoJepeat_mode of that key is changed (according to AutoRepeatMxieOn,
AutoRepeatModeOff, or AutoRepeatModeDefault), if possible. If only
auto_repeat_mode is specified, the global auto_repeat_mode for the entire key­
board is changed, if possible, and does not affect the per key settings. If a key
is specified without an auto Jepeat_mode, a BadMatch error results. Each key
has an individual mode of whether or not it should auto-repeat and a default
setting for the mode. In addition, there is a global mode of whether auto-repeat
should be enabled or not and a default setting for that mode. When global
mode is AutoRepeatMxieOn, keys should obey their individual auto-repeat
modes. When global mode is AutoRepeatModeOff, no keys should auto-repeat.
An auto-repeating key generates alternating KeyPress and KeyRelease events.
When a key is used as a modifier, it is desirable for the key not to auto-repeat,
regardless of its auto-repeat setting.

A bell generator connected with the console but not directly on a keyboard is
treated as if it were part of the keyboard. The order in which controls are
verified and altered is server-dependent. If an error is generated, a subset of the
controls may have been altered.

Window Manager Functions 7-31

Keyboard and Pointer Settings

XChangeKeyboaJ:dControl (displlly, tItIlue _ mtlSk, tNdues)

Display ·displilYi
unsigned long tItIlue_mtlSki

XKeyboardControl ·tNduesi

display

value mask

values

Specifies the connection to the XWIN server.

Specifies one value for each bit set to 1 in the mask.

Specifies which controls to change. This mask is the bitwise
inclusive OR of the valid control mask bits.

The XChangeKeyboardControl function controls the keyboard characteristics
defined by the XKeyboardControl structure. The value_mask argument
specifies which values are to be changed.

XChangeKeyboardControl can generate BadMatch and BadValue errors.

To obtain the current control values for the keyboard, use XGetKeyboardCon­
trol.

XGetKeyboanIControl (displlly, wlues_return)

Display ·displilYi

XKeyboardState ·wlues Jeturn i

display Specifies the connection to the XWIN server.

values return Returns the current keyboard controls in the specified XKey­
boardState structure.

The XGetKeyboardControl function returns the current control values for the
keyboard to the XKeyboardState structure.

typedef atruct {

int ltey_ elicit ...,P8roent;

int bell...,P8roent;

unsigned. int bellyitcb, bell_duration;

unsigned. long led_mask;

int qlobal_auto_repeat;

char auto_repeata[32];

} XKeyboardState;

For the LEDs, the least-significant bit of led_mask corresponds to LED one, and
each bit set to 1 in led mask indicates an LED that is lit. The

7-32 Xwln GWS: Xllb - C Language Interface

Keyboard and Pointer Settings

global_auto_repeat member can be set to AutoRepeatM::>deOn or AutoRepeat­
Medeoff. The auto_repeats member is a bit vector. Each bit set to 1 indicates
that auto-repeat is enabled for the corresponding key. The vector is represented
as 32 bytes. Byte N (from 0) contains the bits for keys SN to SN + 7 with the
least-significant bit in the byte representing key SN.

To tum on keyboard auto-repeat, use XAutoRepeaton.

display

XAut~tOn (display)
Display ·displtty;

Specifies the connection to the XWIN server.

The XAutORepeaton function turns on auto-repeat for the keyboard on the
specified display.

To tum off keyboard auto-repeat, use XAutoRepeatOff.

XAut~tOff(displtty)

Display ·displtty;

display Specifies the connection to the XWIN server.

The XAutORepeatOff function turns off auto-repeat for the keyboard on the
specified display.

To ring the bell, use XBell.

XBell (displtty, percent)

Display ·displtty;
int percent;

Specifies the connection to the XWIN server. display

percent Specifies the volume for the bell, which can range from -100 to
100 inclusive.

The XBell function rings the bell on the keyboard on the specified display, if
possible. The specified volume is relative to the base volume for the keyboard.
If the value for the percent argument is not in the range -100 to 100 inclusive, a
BadValue error results. The volume at which the bell rings when the percent
argument is nonnegative is:

Window Manager Functions 7-33

Keyboard and Pointer Settings

base - [(base. percent) / 100] + percent

The volume at which the bell rings when the percent argument is negative is:

base + [(base· percent) / 100]

To change the base volume of the bell, use XChangeKeyboardControl.

XBell can generate a BadValue error.

To obtain a bit vector that describes the state of the keyboard, use XQueryKey­
map.

display

XQue~ (display, keys -",tum)
Display ·displJly;

char keys J'tum[32];

Specifies the connection to the XWIN server.

keysJeturn Returns an array of bytes that identifies which keys are pressed
down. Each bit represents one key of the keyboard.

The XQueryKeymap function returns a bit vector for the logical state of the key­
board, where each bit set to 1 indicates that the corresponding key is currently
pressed down. The vector is represented as 32 bytes. Byte N (from 0) contains
the bits for keys 8N to BN + 7 with the least-significant bit in the byte represent­
ingkey BN.

Note that the logical state of a device (as seen by client applications) may lag
the physical state if device event processing is frozen.

To set the mapping of the pointer buttons, use XSetPointerMappinq.

display

map

7-34

tnt XSetpointerMapp1nq (display, ""'P, nmIIp)
Display ·display;
unsigned char _p[];

int """p;

Specifies the connection to the XWIN server.

Specifies the mapping list.

Xwln GWS: Xllb - C Language Interface

Keyboard and Pointer Settings

nmap Specifies the number of items in the mapping list.

The XSetPointexMapping function sets the mapping of the pointer. If it
succeeds, the XWIN server generates a MappingNotify event, and XSetPointer­
Mapping returns MappingSucoess. Elements of the list are indexed starting
from one. The length of the list must be the same as XGetPointexMapping
would return, or a BadValue error results. The index is a core button number,
and the element of the list defines the effective number. A zero element dis­
ables a button, and elements are not restricted in value by the number of physi­
cal buttons. However, no two elements can have the same nonzero value, or a
BadValue error results. If any of the buttons to be altered are logically in the
down state, XSetPointexMapping returns MappingBusy, and the mapping is
not changed.

XSetPointexMapping can generate a BadValue error.

To get the pointer mapping, use XGetPointexMapping.

int XGetpointutCappi.nq(display, -1,-,,,turn, nnuJp)

Display -displJJyi

display

mapJeturn

nmap

unsigned char """,_retum[]i

int nmIlPi

Specifies the connection to the XWIN server.

Returns the mapping list.

Specifies the number of items in the mapping list.

The XGetPointexMapping function returns the current mapping of the pointer.
Elements of the list are indexed starting from one. XGetPointexMapping
returns the number of physical buttons actually on the pointer. The nominal
mapping for a pointer is the identity mapping: map[i]=i. The nmap argument
specifies the length of the array where the pointer mapping is returned, and
only the first nmap elements are returned in map_return.

To control the pointer's interactive feel, use XChangePointerControl.

Window Manager Functions 7-35

Keyboard and Pointer Settings

display

do aceel

XCbangePointerControl (disphly, do_RCcel, do_threshold, =tnumeTillor,
=t denominator, threshold)

Display *displlly;
Bool do _ RCcel, do_threshold;

int RCcel_ numerator, Ilccel_ denominator;
int threshold;

Specifies the connection to the XWIN server.

Specifies a Boolean value that controls whether the values for
the accel numerator or accel denominator are used. - -

do threshold Specifies a Boolean value that controls whether the value for the
threshold is used.

accel numerator
Specifies the numerator for the acceleration multiplier.

accel denominator
Specifies the denominator for the acceleration multiplier.

threshold Specifies the acceleration threshold.

The XChangePointerControl function defines how the pointing device moves.
The acceleration, expressed as a fraction, is a multiplier for movement. For
example, specifying 3/1 means the pointer moves three times as fast as normal.
The fraction may be rounded arbitrarily by the XWIN server. Acceleration only
takes effect if the pointer moves more than threshold pixels at once and only
applies to the amount beyond the value in the threshold argument. Setting a
value to -1 restores the default. The values of the do accel and do threshold - -
arguments must be True for the pointer values to be set, or the parameters are
unchanged. Negative values (other than -1) generate a BadValue error, as does
a zero value for the accel_denominator argument.

XChangePointerControl can generate a BadValue error.

To get the current pointer parameters, use XGetPointerControl.

7-36

XGetPointerControl (disphly, IlCcet nUmeTillor Jeturn, RCcel_ denomintalor _return,
threshold Jeturn)

Display *disphly;
int *RCcel_numerlllor_ return, *accel_denomintaIorJeturn;
int *thresholdJeturn;

Xwln GWS: Xllb - C Language Interface

Keyboard and Pointer Settings

display Specifies the connection to the XWIN server.

acceC numerator Jeturn
Returns the numerator for the acceleration multiplier.

accel denominator return
- Returns the denominator for the acceleration multiplier.

threshold return
Returns the acceleration threshold.

The XGetPointerControl function returns the pointer's current acceleration
multiplier and acceleration threshold.

Window Manager Functions 7-37

Keyboard Encoding

Most applications will find the simple interface XLookupString, which performs
simple translation of a key event to an ASCII string, most useful. Keyboard­
related utilities are discussed in Chapter 10. The following section explains how
to completely control the bindings of symbols to keys and modifiers.

A KeyCode represents a physical (or logical) key. KeyCodes lie in the inclusive
range [8,255]. A KeyCode value carries no intrinsic information, although server
implementors may attempt to encode geometry (for example, matrix) informa­
tion in some fashion so that it can be interpreted in a server-dependent fashion.
The mapping between keys and KeyCodes cannot be changed.

A KeySym is an encoding of a symbol on the cap of a key. The set of defined
KeySyms include the ISO Latin character sets (1-4), Katakana, Arabic, Cyrillic,
Greek, Technical, Special, Publishing, APL, Hebrew, and a special miscellany of
keys found on keyboards (Return, Help, Tab, and so on). To the extent possible,
these sets are derived from international standards. In areas where no standards
exist, some of these sets are derived from Digital Equipment Corporation stan­
dards. The list of defined symbols can be found in < X11/keysyndef.h >.
Unfortunately, some C preprocessors have limits on the number of defined sym­
bols. If you must use KeySyms not in the Latin 1-4, Greek, and miscellaneous
classes, you may have to define a symbol for those sets. Most applications usu­
ally only include < Xll/keysyrn.h >, which defines symbols for ISO Latin 1-4,
Greek, and miscellaneous.

A list of KeySyms is associated with each KeyCode. The length of the list can
vary with each KeyCode. The list is intended to convey the set of symbols on
the corresponding key. By convention, if the list contains a single KeySym and if
that KeySym is alphabetic and case distinction is relevant for it, then it should
be treated as eqUivalent to a two-element list of the lowercase and uppercase
KeySyms. For example, if the list contains the single KeySym for uppercase A,
the client should treat it as if it were a pair with lowercase a as the first KeySym
and uppercase A as the second KeySym.

For any KeyCode, the first KeySym in the list should be chosen as the interpre­
tation of a KeyPress when no modifier keys are down. The second KeySym in
the list normally should be chosen when the Shift modifier is on or when the
Lock modifier is on and Lock is interpreted as ShiftLock. When the Lock
modifier is on and is interpreted as CapsLock, it is suggested that the Shift
modifier first be applied to choose a KeySym. However, if that KeySym is
lowercase alphabetic, the corresponding uppercase KeySym should be used
instead. Other interpretations of CapsLock are possible; for example, it may be

7-38 Xwln GWS: Xllb - C Language Interface

Keyboard Encoding

viewed as equivalent to ShiftLock, but only applying when the first KeySym is
lowercase alphabetic and the second I<eySym is the corresponding uppercase
alphabetic. No interpretation of KeySyms beyond the first two in a list is sug­
gested here. No spatial geometry of the symbols on the key is defined by their
order in the KeySym list, although a geometry might be defined on a vendor­
specific basis. The XWIN server does not use the mapping between KeyCodes
and KeySyms. Rather, it stores it merely for reading and writing by clients.

To obtain the legal KeyCodes for a display, use XDisplayKeycod.es.

display

XDi.splayKe~. (tlisplq, min Jreycodes _return, ""'" Jreycotles _ retum)
Display ·displq;
int ·minJreycotles_retum, """,_1reycodes_retum;

Specifies the connection to the XWIN server.

min -'ceycodes Jetum
Returns the minimum number of KeyCodes.

max -'ceycodes Jetum
Returns the maximum number of KeyCodes.

The XDisplayKeycod.es function returns the min-keycodes and max-keycodes
supported by the specified display. The minimum number of I<eyCodes
returned is never less than 8, and the maximum number of KeyCodes returned
is never greater than 255. Not all KeyCodes in this range are required to have
corresponding keys.

To obtain the symbols for the specified KeyCodes, use XGetKeyboardMappinq.

lteySym *lIGetKeyboardMappinq (displ4y, first _1reycotle, 1reycotle _count,

display

1reysyms yer _1reycotle _return)
Display ·displ4y;
KeyCode first _1reycotle;
int 1reycoU_count;
int .1reysymsyer _1reycotle_retum;

Specifies the connection to the XWIN server.

Window Manager Functions 7-39

Keyboard Encoding

firsUceycode Specifies the first KeyCode that is to be returned.

keycode _count Specifies the number of KeyCodes that are to be returned.

keysyms...JH!r }reycode Jeturn
Returns the number of KeySyms per KeyCode.

The XGetKeyboardMappinq function returns the symbols for the specified
number of KeyCodes starting with firstJ(eycode. The value specified in
first_ keycode must be greater than or equal to min _ keycode as returned by
XDisplayKeycodes, or a BadValue error results. In addition, the following
expression must be less than or equal to max _ keycode as returned by
XDisplayKeycodes:

firat_lte:yaode + lteygode_oount - 1

If this is not the case, a BadValue error results. The number of elements in the
KeySyms list is:

lteyoode _count * IteY8J1118J18r _ kayaode _return

KeySym number N, counting from zero, for KeyCode K has the following index
in the list, counting from zero:

(It - firat_code) * 1tey8J1118J18r_oode_return + H

The XWIN server arbitrarily chooses the keysyms ~r _ keycode _return value to
be large enough to report all requested symbols. A special KeySym value of
NoSymbol is used to fill in unused elements for individual KeyCodes. To free
the storage returned by XGetKeyboardMappinq, use XFree.

XGetKeyboardMappinq can generate a BadValue error.

To change the keyboard mapping, use XChanqeKeyboardMappinq.

7-40

~in9 (disl'l4y, firstJreycoU, 1reysymsJ1t:l' _ keycoU, 1reysyms, "lim_axles)

Display ·displ4y;
int first_keycoU;
tnt 1reysyms...P JreycoU;
KeySym .1reysyms;

int "lim_codes;

Xwln GWS: Xllb - C Language Interface

Keyboard Encoding

display Specifies the connection to the XWIN server.

firsU'eycode Specifies the first KeyCode that is to be changed.

keysyms yer -"eycode

keysyms

num codes

Specifies the number of KeySyms per KeyCode.

Specifies a pointer to an array of KeySyms.

Specifies the number of KeyCodes that are to be changed.

The XChangeKeyboardMapping function defines the symbols for the specified
number of KeyCodes starting with first_ keycode. The symbols for KeyCodes
outside this range remain unchanged. The number of elements in keysyms must
be:

The specified first_ keycode must be greater than or equal to min _ keycode
returned by XDisplayKeycodes, or a BadValue error results. In addition, the
following expression must be less than or equal to max_keycode as returned by
XDisplayKeycodes, or a BadValue error results:

first_keyoode + DUm_codes - 1

KeySym number N, counting from zero, for KeyCode K has the following index
in keysyms, counting from zero:

(K - first_keycode) * keysymByer_keycode + Ii

The specified keysyms yer _ keycode can be chosen arbitrarily by the client to be
large enough to hold all desired symbols. A special KeySym value of NoSymbol
should be used to fill in unused elements for individual KeyCodes. It is legal for
NoSymbol to appear in nontrailing positions of the effective list for a KeyCode.
XChangeKeyboardMapping generates a MappingNotify event.

There is no requirement that the XWIN server interpret this mapping. It is
merely stored for reading and writing by clients.

XChangeKeyboardMapping can generate BadAlloc and BadValue errors.

The next four functions make use of the XModifierKeymap data structure,
which contains:

Window Manager Functions 7-41

Keyboard Encoding

typedef struct (

int max_keypeDllOd;

KeyCoda *IDodifiemap;

} XModifieJ:Keymap;

/* This server's max nuaber of keys per modifier */
/* An 8 by max_keypeDllOd array of the modifiers */

To create an »kxtifierKeymap structure, use XNewModifiermap.

DbiifieJ:Keymap *XNetiMoclifiemap (1f/Il% }ceys yer _ mod)
Int 1f/Il% }reys yer _mod;

trUlX }reys yeT_mod
Specifies the number of KeyCode entries preallocated to the
modifiers in the map.

The XNewModifiermap function returns a pointer to »kxtifierKeymap structure
for later use.

To add a new entry to an XM:xiifierKeymap structure, use XInsert.M:xiifier­
mapEntry.

DbiifieJ:Keymap *XInsertModifiemapEntry (modmal', keycorJe _entry, modifier)
XModifierKeymap ·modmal';
KeyCode keycode _entry;
Int modifier;

modtrUlp Specifies a pointer to the »kxtifierKeymap structure.

keycode _entry Specifies the KeyCode.

modifier Specifies the modifier.

The XInsert.M:xiifiermapEntry function adds the specified KeyCode to the set
that controls the specified modifier and returns the resulting XM:xiifierKeymap
structure (expanded as needed).

To delete an entry from an »kxtifierKeymap structure, use XDeleteModifier­
mapEntry.

7-42

DbiifieJ:Keymap *XDeleteModifiemapEntry (modmal', keycode _entry, modifier)
XModifierKeymap ·modmap;
KeyCode keycode _entry;
Int modifier;

Xwln GWS: Xllb - C Language Interface

Keyboard Encoding

modmap

keycode _entry

modifier

Specifies a pointer to the XMcdifierKeymap structure.

Specifies the KeyCode.

Specifies the modifier.

The XDeleteModifiennapEntry function deletes the specified KeyCode from
the set that controls the specified modifier and returns a pointer to the resulting
XMcdifierKeymap structure.

To destroy an XMcdifierKeymap structure, use XFreeModifiennap.

modmap

XPzeelbtifiermap (mod",.,,>

XModifierKeymap -mod",.,,;

Specifies a pointer to the XMcdifierKeymap structure.

The XFreeMcdifiermap function frees the specified XModifierKeymap structure.

To set the KeyCodes to be used as modifiers, use XSetModifieJ:Mappinq.

display

modmap

int XSetMcxlifiedllppinq(displ4y, mod",.,,>
Display -displ4y;
XModifierKeymap -mod",.,,;

Specifies the connection to the XWIN server.

Specifies a pointer to the XMcdifierKeymap structure.

The XSetModifieJ:Mapping function specifies the KeyCodes of the keys (if any)
that are to be used as modifiers. If it succeeds, the XWIN server generates a Map­
pfngNotify event, and XSetModifieJ:Mapping returns MappingSuccess. X
permits at most eight modifier keys. If more than eight are specified in the XMo­
difierKeymap structure, a BadLength error results.

The modifiermap member of the XModifierKeymap structure contains eight sets
of maxJ'eypermod KeyCodes, one for each modifier in the order Shift, Lock,
Control, Modl, Mod2, Mod3, Mod4, and ModS. Only nonzero KeyCodes have
meaning in each set, and zero KeyCodes are ignored. In addition, all of the
nonzero KeyCodes must be in the range specified by min _ keycode and
max _ keycode in the Display structure, or a BadValue error results. No Key­
Code may appear twice in the entire map, or a BadValue error results.

Window Manager Functions 7-43

Keyboard encoding

An XWIN server can impose restrictions on how modifiers can be changed, for
example, if certain keys do not generate up transitions in hardware, if auto­
repeat cannot be disabled on certain keys, or if multiple modifier keys are not
supported. If some such restriction is violated, the status reply is Mappinq­
Failed, and none of the modifiers are changed. If the new KeyCodes specified
for a modifier differ from those currently defined and any (current or new) keys
for that modifier are in the logically down state, XSetModifierMappinq returns
MappinqBusy, and none of the modifiers is changed.

XSetModifierMappinq can generate BadAlloc and BadValue errors.

To obtain the KeyCodes used as modifiers, use XGetModifierMappinq.

display

DtxiifierKeymap *XGetModifiedfapping (displllY)
Display ·display;

Specifies the connection to the XWIN server.

The XGetModifierMappinq function returns a pointer to a newly created XMo­
difierKeymap structure that contaihs the keys being used as modifiers. The
structure should be freed after use by calling XFreeModifiennap. If only zero
values appear in the set for any modifier, that modifier is disabled.

7-44 Xwln GWS: Xllb - C Language Interface

Screen Saver Control

Xlib provides functions that you can use to set, force, activate, or reset the
screen saver and to obtain the current screen saver values.

To set the screen saver, use XSetScreenSaver.

display

XSetSo.reenS&wr (disp1lzy, timeout, irlterNl, prefer _ blll1lkirlg, allow_exposures)
Display ·dispUzy;
int timeout, irlterNl;
int prefer _ b1lzrlking;
int allow_exposures;

Specifies the connection to the XWIN server.

timeout

interval

prefer_blanking

Specifies the timeout, in seconds, until the screen saver turns on.

Specifies the interval between screen saver alterations.

Specifies how to enable screen blanking. You can pass DontPre­
ferBlankinq,PreferBlankinq,orDefaultBlanking.

Specifies the screen save control values. You can pass DontAl­
lowExposures,AllowExposures,or DefaultExposures.

Timeout and interval are specified in seconds. A timeout of 0 disables the screen
saver, and a timeout of -1 restores the default. Other negative values generate
a BadValue error. If the timeout value is nonzero, XSetScreenSaver enables
the screen saver. An interval of 0 disables the random-pattern motion. If no
input from devices (keyboard, mouse, and so on) is generated for the specified
number of timeout seconds once the screen saver is enabled, the screen saver is
activated.

For each screen, if blanking is preferred and the hardware supports video blank­
ing, the screen simply goes blank. Otherwise, if either exposures are allowed or
the screen can be regenerated without sending Expose events to clients, the
screen is tiled with the root window background tile randomly re-origined each
interval minutes. Otherwise, the screens' state do not change, and the screen
saver is not activated. The screen saver is deactivated, and all screen states are
restored at the next keyboard or pointer input or at the next call to
XForceScreenSaver with mode ScreenSaverReset.

Window Manager Functions 7-45

Serlin Saver Control

If the server-dependent screen saver method supports periodic change, the inter­
val argument serves as a hint about how long the change period should be, and
zero hints that no periodic change should be made. Examples of ways to
change the screen include scrambling the colormap periodically, moving an icon
image around the screen periodically, or tiling the screen with the root window
background tile, randomly re-origined periodically.

XSetScreenSaver can generate a BadValue error.

To force the screen saver on or off, use XForceScreenSaver.

display

mode

Xi'orceSc.r:eenSawr (display, mode)

Display ·display;

tnt mode;

Specifies the connection to the XWIN server.

Specifies the mode that is to be applied. You can pass Screen­
SaverActive or ScreenSaverReset.

If the Specified mode is ScreenSaverActive and the screen saver currently is
deactivated, XForceScreenSaver activates the screen saver even if the screen
saver had been disabled with a timeout of zero. If the specified mode is
ScreenSaverReset and the screen saver currently is enabled, XForceScreen­
Saver deactivates the screen saver if it was activated, and the activation timer is
reset to its initial state (as if device input had been received).

XForceScreenSaver can generate a BadValue error.

To activate the screen saver, use XActivateScreenSaver.

display

XAoctivateSc.r:eenSawr (display)

Display ·display;

Specifies the connection to the XWIN server.

To reset the screen saver, use XResetScreenSaver.

7-46

XReaetSc.r:eenSAwr(display)
Display ·display;

Xwln GWS: Xllb - C Language Interface

Screen Saver Control

display Specifies the connection to the XWIN server.

To get the current screen saver values, use XGetScreenSaver.

XGetScreenSaver (disl'liIy, timeout Jeturn, intemU _1I!turn, prefer _blimkingJeturn,
allow _ expoSU1l!S _1I!turn)

Display -dis1'1IIy;
int -timeoutJeturn, -intemUJeturn;
int -pn!fer _blilnking_1I!turn;
int -allow _ expoSU1I!S _1I!turn;

display

timeout return

Specifies the connection to the XWIN server.

Returns the timeout, in minutes, until the screen saver turns on.

interval return
Returns the interval between screen saver invocations.

prefer _blankingJeturn
Returns the current screen blanking preference (DontPrefer­
Blankinq , PreferBlankinq, or DefaultBlankinq).

allow_exposures Jetum
Returns the current screen save control value (DontAllowExpo­
sures , AllowExposures, or DefaultExposures).

Window Manager Functions 7-47

Controlling Host Access

This section discusses how to:

• Add, get, or remove hosts from the access control list

• Change, enable, or disable access

X does not provide any protection on a per-window basis. If you find out the
resource ID of a resource, you can manipulate it. To provide some minimal
level of protection, however, connections are permitted only from machines you
trust. This is adequate on single-user workstations but obviously breaks down
on timesharing machines. Although provisions exist in the X protocol for
proper connection authentication, the lack of a standard authentication server
leaves host-level access control as the only common mechanism.

The initial set of hosts allowed to open connections typically consists of:

• The host the window system is running on.

• On UNIX-based systems, each host listed in the fete/X? . hosts file. The
? indicates the number of the display.

This file should consist of host names separated by newlines.

If a host is not in the access control list when the access control mechanism is
enabled and if the host attempts to establish a connection, the server refuses the
connection. To change the access list, the client must reside on the same host as
the server and/or must have been granted permission in the initial authoriza­
tion at connection setup.

Servers also can implement other access control policies in addition to or in
place of this host access facility. For further information about other access con­
trol implementations, see "X Window System Protocol."

7-48 Xwln GWS: Xllb - C Language Interface

Controlling Host Access

Adding, Getting, or Removing Hosts

Xlib provides functions that you can use to add, get, or remove hosts from the
access control list. All the host access control functions use the XHostAddress
structure, which contains:

typedet atmct (

1* for exIIII'le l!'amilyIntemet *1
1* l~ of address, in bytes *1

int family;

int len¢b;

char *address; 1* pointer to whue to find. the addl:ess *1
} XRoatkldress;

The family member specifies which protocol address family to use. The length
member specifies the length of the address in bytes. The address member
specifies a pointer to the address. For TCP lIP, the address should be in net­
work byte order.

To add a single host, use XAddHost.

display

host

DddBost (display, host)

Display ·display;
XHostAddress ·host;

Specifies the connection to the XWIN server.

Specifies the host that is to be added.

The XAddHost function adds the Specified host to the access control list for that
display. The server must be on the same host as the client issuing the com­
mand, or a BadAccess error results.

XAddHost can generate BadAccess and BadValue errors.

To add multiple hosts at one time, use XAcidHosts.

DddBoats (display, hosts, 1IUm_hosts)
Display ·display;
XHostAddress ·hosts;

tnt 1IUm_hosts;

Window Manager Functions 7-49

Controlling Host Access

display

hosts

num hosts

Specifies the connection to the XWIN server.

Specifies each host that is to be added.

Specifies the number of hosts.

The XAddHosts function adds each specified host to the access control list for
that display. The server must be on the same host as the client issuing the com­
mand, or a BadAccess error results.

XAddHosts can generate BadAccess and BadValue errors.

To obtain a host list, use XListHosts.

XHoatAddxeaa *XLiatHoata (displlly, nhosts Jdum, stille Jdum)

DIsplay ·displltYi

int ·nhosts Jdum i

Bool ·stille Jdumi

display Specifies the connection to the XWIN server.

nhosts return Returns the number of hosts currently in the access control list.

state return Returns the state of the access control.

The XListHosts function returns the current access control list as well as
whether the use of the list at connection setup was enabled or disabled.
XListHosts allows a program to find out what machines can make connections.
It also returns a pointer to a list of host structures that were allocated by the
function. When no longer needed, this memory should be freed by calling
XFree.

To remove a single host, use XRemoveHost.

~veBoat (displlly, host)

display

host

7-50

DIsplay ·displltYi

XHostAddress ·hosti

Specifies the connection to the XWIN server.

Specifies the host that is to be removed.

Xwln GWS: Xllb - C Language Interface

Controlling Host Access

The XR.eIooveHost function removes the specified host from the access control
list for that display. The server must be on the same host as the client process,
or a BadAccess error results. If you remove your machine from the access list,
you can no longer connect to that server, and this operation cannot be reversed
unless you reset the server.

XR.eIooveHost can generate BadAccess and BadValue errors.

To remove multiple hosts at one time, use XRemoveHosts.

display

hosts

~t. (displ4y, hosts, Plum_hosts)
Display ·displ4y;
XHostAddress ·hosts;
int Plum_hosts;

num hosts

Specifies the connection to the XWIN server.

Specifies each host that is to be removed.

Specifies the number of hosts.

The XR.eIooveHosts function removes each specified host from the access control
list for that display. The XWIN server must be on the same host as the client pro­
cess, or a BadAccess error results. If you remove your machine from the access
list, you can no longer connect to that server, and this operation cannot be
reversed unless you reset the server.

XR.eIooveHosts can generate BadAccess and BadValue errors.

Changing, Enabling, or Disabling Access Control

Xlib provides functions that you can use to enable, disable, or change access
control.

For these functions to execute successfully, the client application must reside on
the same host as the XWIN server and/or have been given permission in the ini­
tial authorization at connection setup.

To change access control, use XSetAccessControl.

Window Manager Functions 7-51

Controlling Host Access

display

mode

XSeUicIoea.control (dis,J.y, mode)

Display ·dis,J.y;
tnt mode;

Specifies the connection to the XWIN server.

Specifies the mode. You can pass EnableAcoess or
DisableAccess.

The XSetAccessControl function either enables or disables the use of the
access control list at each connection setup.

XSetAccessControl can generate BadAccess and BadValue errors.

To enable access control, use XEnableAccessControl.

display

XBnabl.e.looeaaControl (dispJ.y)
Display ·dis,J.y;

Specifies the connection to the XWIN server.

The XEnableAccessControl function enables the use of the access control list at
each connection setup.

XEnableAccessControl can generate a BadAccess error.

To disable access control, use XDisableAcoessControl.

display

XDiaablekloaaaControl (dis,J.y)
Display ·dis,J.y;

Specifies the connection to the XWIN server.

The XDisableAccessControl function disables the use of the access control list
at each connection setup.

XDisableAccessControl can generate a BadAccess error.

7-52 Xwln GWS: Xllb - C Language Interface

8 Events and Event-Handling
Functions

Introduction 8·1

Event Types 8·2

Event Structures 8-4

Event Masks 8·7

Event Processing 8·9
Keyboard and Pointer Events 8·12

• Pointer Button Events 8·12
• Keyboard and Pointer Events 8·13

Window Entry/Exit Events 8·17
• Normal EntrylExit Events 8·19
• Grab and Ungrab Entry/Exit Events 8·21

Input Focus Events 8·22
• Normal Focus Events and Focus Events While Grabbed 8·24
• Focus Events Generated by Grabs 8·28

Key Map State Notification Events 8·29
Exposure Events 8·29

• Expose Events 8-30
• GraphicsExpose and NoExpose Events 8-31

Window State Change Events 8-32
• CirculateNotify Events 8-33
• ConfigureNotify Events 8-34
• Create Notify Events 8-36

Table of Contents

Table of COntenta _____________________ _

II

• DestroyNotify Events
• GravityNotify Events
• MapNotify Events
• MappingNotify Events
• ReparentNotify Events
• UnmapNotify Events
• VisibilityNotify Events

Structure Control Events
• CirculateRequest Events
• ConfigureRequest Events
• MapRequest Events
• ResizeRequest Events

Colormap State Change Events
Client Communication Events

• ClientMessage Events
• PropertyNotify Events
• SelectionClear Events
• Selection Request Events
• Selection Notify Events

Selecting Events

Handling the Output Buffer

Event Queue Management

Manipulating the Event Queue
Returning the Next Event
Selecting Events Using a Predicate Procedure
Selecting Events Using a Window or Event Mask

8-37
8-37
8-38
8-39
8-40
8-41
8-42
8-43
8-44
8-45
8-46
8-47
8-47
8-48
8-49
8-50
8-51
8-51
8-53

8-54

8-55

8-56

8-57
8-57
8-58
8-60

Xwln GWS: Xllb - C Language Interface

____________________ Table of Contents

Putting an Event Back Into the Queue 8-64

Sending Events to Other Applications 8-65

Getting Pointer Motion History 8-67

Handling Error Events 8-69
Enabling or Disabling Synchronization 8-69
Using the Default Error Handlers 8-70

Table of Contents III

Introduction

A client application communicates with the XWIN server through the connection
you establish with the XOpenDisplay function. A client application sends
requests to the XWIN server over this connection. These requests are made by
the Xlib functions that are called in the client application. Many Xlib functions
cause the XWIN server to generate events, and the user's typing or moving the
pointer can generate events asynchronously. The XWIN server returns events to
the client on the same connection.

This chapter begins with a discussion of the following topics associated with
events:

• Event types

• Event structures

• Event mask

• Event processing

It then discusses the Xlib functions you can use to:

• Select events

• Handle the output buffer and the event queue

• Select events from the event queue

• Send and get events

• Handle error events

Most applications simply are event loops: they wait for an event, decide what to
do with it, execute some amount of code that results in changes to the display,
and then wait for the next event.

Events and Event-Handling Functions 8-1

Event Types

An event is data generated asynchronously by the XWIN server as a result of
some device activity or as side effects of a request sent by an Xlib function.
Device-related events propagate from the source window to ancestor windows
until some client application has selected that event type or until the event is
explicitly discarded. The XWIN server generally sends an event to a client appli­
cation only if the client has specifically asked to be informed of that event type,
typically by setting the event-mask attribute of the window. The mask can also
be set when you create a window or by changing the window's event-mask.
You can also mask out events that would propagate to ancestor windows by
manipulating the do-not-propagate mask of the window's attributes. However,
MappingNotHy events are always sent to all clients.

An event type describes a specific event generated by the XWIN server. For each
event type, a corresponding constant name is defined in < Xll/X.h >, which is
used when referring to an event type.

The following table lists the event category and its associated event type or
types. The processing associated with these events is discussed in "Event Pro­
cessing" in this chapter.

8-2 Xwln GWS: Xllb - C Language Interface

Event Category

Keyboard events

Pointer events

Window crossing events

Input focus events

Keymap state notification event

Exposure events

structure control events

Window state notification events

Colormap state notification event

Client communication events

Event Types

Event Type

lteyPreas, lteyReleue

ButtonPre •• , ButtonReleue, MotionNotify

BnterNoti~,LeavaNOtify

I!'OCWIIn, 1!'0000Out

lteymapNotify

Expo .. , GrapbiCllBlcpo .. , NoExpo ..

CirculateRequest, Configw:eRequest, MapRequest,
ResizeRequest

CirculateHotify,ConfigureNotify,CreateNotify,
DestroyHotify,GravityHoti~,MapNotify,MappingNo­

tify,ReparentNotify,UnmapNotify,VisibilityHotify

ColormapNotify

ClientM8s&ag8,PropertyHotify, SelectionClear,
SelectionNotify, SelectionRequest

Events and Event-Handling Functions 8-3

Event Structures

For each event type, a corresponding structure is declared in < Xll/Xlib. h >.
All the event structures have the following common members:

typedef struct {

int type;

unsigned lotl9 serial;

Bool seneLevant;

Display *display;

Window window;

} XAnyBvant;

1* .. of last request processed by server *1
1* true if this ~ from a SendBvant request *1
1* Display the evant was read. from *1

The type member is set to the event type constant name that uniquely identifies
it. For example, when the XWIN server reports a GraphicsExpose event to a
client application, it sends an XGraphicsExposeEvent structure with the type
member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event carne from a SendEvent protocol request. The serial member is set from
the serial number reported in the protocol but expanded from the 16-bit least­
significant bits to a full 32-bit value. The window member is set to the window
that is most useful to toolkit dispatchers.

The XWIN server can send events at any time in the input stream. Xlib stores
any events received while waiting for a reply in an event queue for later use.
Xlib also provides functions that allow you to check events in the event queue
(see "Event Queue Management" in this chapter).

In addition to the individual structures declared for each event type, the XEvent
structure is a union of the individual structures declared for each event type.
Depending on the type, you should access members of each event by using the
XEvent union.

Xwln GWS: Xllb - C Language Interface

typedaf union _XBwnt {

1nt type;

XlnyBwnt xany;
/* IIU8t not be obanged * /

XKeyBYent xlcey;

XButtonBwnt xbutton;

XMotionBwnt lIIIIOtion;

XCJ:ossingB~t xarouinq;

Xl!'OCWICbangaBwnt xfocua;

XBxpoIldvant uxpo .. ;

XGraphiosbpo"'~t xqrapbicaexpo_;
XHoBlcpoaaBwnt xnoexpo_;

XVisibilityBwnt xvisibility;

XCzeateWi.ndiowBv.mt xcreatewindov;

XDestroyWiDdodvant lCdeatroyvindov;

xtJnaIailB~t xunaap;

XMapBvent lIIIIIlP;

XMapRaquutBvant :xmaprequut;

XRepuentB~t uepamnt;

XConfi.gurelMmt xoonfigure;

XGravityBwnt lI9ravity;
XResizeRaquestEvent xresizerequeat;

XConfi.gureRequestBvant xconfigurerequest;

XCirculateBwnt xoirculate;

XCirculateRequestBvant xoirculaterequut;

XPropertyB~t xproperty;

XSelectionCl.euZ~t xselectionc:lear;

XSelectionRequestBvant xselec:tionrequeat;

XSelecti.onBwnt xselec:tion;

XColoJ:1llBllB~t xoolomap;

XClientMassagaBvant xolient;

XMappingBwnt xmappinq;

XBrrorB~t xerror;
XKeymapBvolmt xlceymap;

long pad[24];

} XB~t;

Evant Structures

An XEvent structure's first entry always is the type member, which is set to the
event type. The second member always is the serial number of the protocol
request that generated the event. The third member always is send_event,
which is a B001 that indicates if the event was sent by a different client. The

Events and Event-Handling Functions

Event Structures

fourth member always is a display, which is the display that the event was read
from. Except for keymap events, the fifth member always is a window, which
has been carefully selected to be useful to toolkit dispatchers. To avoid break­
ing toolkits, the order of these first five entries is not to change. Most events
also contain a time member, which is the time at which an event occurred. In
addition, a pointer to the generic event must be cast before it is used to access
any other information in the structure.

Xwln GWS: Xllb - C Language Interface

Event Masks

Clients select event reporting of most events relative to a window. To do this,
pass an event mask to an Xlib event-handling function that takes an event_mask
argument. The bits of the event mask are defined in < Xll/X. h >. Each bit in
the event mask maps to an event mask name, which describes the event or
events you want the XWIN server to return to a client application.

Unless the client has specifically asked for them, most events are not reported to
clients when they are generated. Unless the client suppresses them by setting
graphics-exposures in the GC to False, GraphicsExpose and NoExpose are
reported by default as a result of XCopyPlane and XCopyArea. Selection­
Clear,SelectionRequest, SelectionNotify, or ClientMessage cannot be
masked. Selection related events are only sent to clients cooperating with selec­
tions (see "Selections" in Chapter 4). When the keyboard or pointer mapping is
changed, MappingNotify is always sent to clients.

The following table lists the event mask constants you can pass to the
event_mask argument and the circumstances in which you would want to
specify the event mask:

Event Mask

NoEventMask
KeyPressMask
KeyReleaseMask
ButtonPressMask
ButtonReleaseMask
EnterWinciollMask
LeaveWindo1lMask
PointerMOtionMask
PointerMO­
tionHintMask
ButtonlMOtionMask
Button2MotionMask
Button3MbtionMask
Button4MbtionMask

Circumstances

No events wanted
Keyboard down events wanted
Keyboard up events wanted
Pointer button down events wanted
Pointer button up events wanted
Pointer window entry events wanted
Pointer window leave events wanted
Pointer motion events wanted
Pointer motion hints wanted

Pointer motion while button 1 down
Pointer motion while button 2 down
Pointer motion while button 3 down
Pointer motion while button 4 down

Events and Event-Handling Functions 8-7

Event Masks

Event Mask

Button5MotionMask
ButtonMbtionMask
KeymapStateMask

ExposureMask
Visibili­
tyChangeMask
StructureNotifyMask
ResizeRedirectMask
SubstructureNo­
tifyMask
Substruc­
tureRedirectMask
FocusChangeMask
PropertyChangeMask
ColormapChangeMask
OwnerGrabButtonMask

8-8

Orcumstances

Pointer motion while button 5 down
Pointer motion while any button down
Keyboard state wanted at window entry and
focus in
Any exposure wanted
Any change in visibility wanted

Any change in window structure wanted
Redirect resize of this window
Substructure notification wanted

Redirect structure requests on children

Any change in input focus wanted
Any change in property wanted
Any change in colormap wanted
Automatic grabs should activate with
owner_events set to True

Xwln GWS: Xllb - C Language Interface

Event Processing

The event reported to a client application during event processing depends on
which event masks you provide as the event-mask attribute for a window. For
some event masks, there is a one-to-one correspondence between the event
mask constant and the event type constant. For example, if you pass the event
mask ButtonPressMask, the XWIN server sends back only ButtonPress events.
Most events contain a time member, which is the time at which an event
occurred.

In other cases, one event mask constant can map to several event type constants.
For example, if you pass the event mask SubstructureNotifyMask, the XWIN
server can send back CirculateNotify, ConfigureNotify, CreateNotify,
Dest~otify,GravityNotify,MapNotify,ReparentNotify,orUnmapNo­

tify events.

In another case, two event masks can map to one event type. For example, if
you pass either Pointer:MotionMask or ButtonMotionMask, the XWIN server
sends back a MotionNotify event.

The following table lists the event mask, its associated event type or types, and
the structure name associated with the event type. Some of these structures
actually are typedefs to a generic structure that is shared between two event
types. Note that N.A. appears in columns for which the information is not
applicable.

Event Mask

ButtonMotionMask

ButtonlModonMask
Button2MotionMask

Button3ModonMask

Button4ModonMask

ButtonSMotionMask

ButtonPreasMask

ButtonReleaseMask

ColormapChangeMask

EnterWindowMask

Event Type

MotionNotify

ButtonPress

ButtonRelease

ColormapNotify

EnterNotify

Events and Evant-Handling Functions

Structure

XPointerMovedEvent

XButtonPressedEvent

XButtonReleasedEvent

XColormapEvent

XEnterWindowEvent

Generic Structure

XMotionEvent

XButtonEvent

XButtonEvent

XCrossingEvent

8-9

Event Processing

Event Mask Event Type Structure Generic Structure

LeaveWindowMask LeaveNotify XLeaveWindowEvent XCrossingEvent

ExposureMask Expose XExposeEvent

GCGraphicsExposures in GC GraphicsExpose XGraphicsExposeEvent

NoExpose XNoExposeEvent

FocusChangeMask FocusIn XFocuslnEvent XFocusChangeEvent

FocusOut XFocusOutEvent XF~angeEvent

KeymapStateMask KeymapNotify XKeymapEvent

Key PressMask KeyPress XKeyPressedEvent XKeyEvent
Key ReleaseMask KeyRelease XKeyReleasedEvent XKeyEvent

OwnerGrabButtonMask N.A. N.A.

PointerMotionMask MotionNotify XPointerMovedEvent XMotionEvent

PointerMotionHintMask N.A. N.A.

PropertyChangeMask PropertyNotify XPropertyEvent

ResizeRedirectMask ResizeRequest XResizeRequestEvent

StructureNotifyMask Circu1ateNotify XCircu1ateEvent

ConfigureNotify XConfigureEvent

DestroyNotify XDestroyWindowEvent

GravityNotify XGravityEvent

MapNotify XMapEvent

ReparentNotify XReparentEvent
UnmapNotify XUnmapEvent

SubstructureNotifyMask Circu1ateNotify XCircu1ateEvent

ConfigureNotify XConfigureEvent

CreateNotify XCreateWindowEvent

DestroyNotify XDestroyWindowEvent

GravityNotify XGravityEvent

MapNotify XMapEvent

ReparentNotify XReparentEvent

8-10 Xwln GWS: Xllb - C Language Interface

Event Mask

SubstructureRedirectMask

N.A.

N.A.

N.A.

N.A.

N.A.

VisibilityOtangeMask

Event Type

UnmapNotify

CirculateRequest

ConfigureRequest

MapRequest

OientMessage

MappingNotify

SelectionCear

SelectionNotify

SelectionRequest

VisibilityNotify

Event Processing

Structure Generic Structure

XUnmapEvent

XCirculateRequestEvent

XConfigureRequestEvent

XMapRequestEvent

XOientMessageEvent

XMappingEvent

XSelectionCearEvent

XSelectionEvent

XSelectionRequestEvent

XVisibilityEvent

The sections that follow describe the processing that occurs when you select the
different event masks. The sections are organized according to these processing
categories:

• Keyboard and pointer events

• Window crossing events

• Input focus events

• Keyrnap state notification events

• Exposure events

• Window state notification events

• Structure control events

• Colormap state notification events

• Client communication events

Events and Event-Handling Functions 8-11

Event Processing

Keyboard and Pointer Events

This section discusses:

• Pointer button events

• Keyboard and pointer events

Pointer Button Events
The following describes the event processing that occurs when a pointer button
press is processed with the pointer in some window wand when no active
pointer grab is in progress.

The XWIN server searches the ancestors of w from the root down, looking for a
passive grab to activate. If no matching passive grab on the button exists, the
XWIN server automatically starts an active grab for the client receiving the event
and sets the last-pointer-grab time to the current server time. The effect is
essentially equivalent to an XGrabButton with these client passed arguments:

Argument

w
event mask

pointer_mode
keyboard_mode
owner events

confine_to
cursor

Value

The event window
The client's selected pointer events on the event win­
dow
Gr~eAsync

Gr~ync

True, if the client has selected OwnerGrabButtonMask
on the event window, otherwise False
None

None

The active grab is automatically terminated when the logical state of the pointer
has all buttons released. Clients can modify the active grab by calling XUngrab­
Pointer and XChangeActivePointerGrab.

8-12 Xwln GWS: Xllb - C Language Interface

Event Processing

Keyboard and Pointer Events

This section discusses the processing that occurs for the keyboard events
KeyPress and KeyRelease and the pointer events ButtonPress, Button­
Release, and MotionNotify. For information about the keyboard event­
handling utilities, see Chapter 10.

The XWIN server reports KeyPress or KeyRelease events to clients wanting
information about keys that logically change state. Note that these events are
generated for all keys, even those mapped to modifier bits. The XWIN server
reports ButtonPress or ButtonR.elease events to clients wanting information
about buttons that logically change state.

The XWIN server reports MotionNotify events to clients wanting information
about when the pointer logically moves. The XWIN server generates this event
whenever the pointer is moved and the pointer motion begins and ends in the
window. The granularity of MotionNotify events is not guaranteed, but a
client that selects this event type is guaranteed to receive at least one event
when the pointer moves and then rests.

The generation of the logical changes lags the physical changes if device event
processing is frozen.

To receive KeyPress, KeyRelease, ButtonPress, and ButtonRelease events,
set KeyPresSMask, KeyReleaseMask, ButtonPresSMask, and Button­
ReleaseMask bits in the event-mask attribute of the window.

. To receive MotionNotify events, set one or more of the following event masks
bits in the event-mask attribute of the window.

• ButtonlMotionMask-ButtonSMotionMask The client application receives
MotionNotify events only when one or more of the specified buttons is
pressed.

• ButtonMotionMask The client application receives MotionNotify events
only when at least one button is pressed.

• PointeJ:MotionMask The client application receives MotionNotify events
independent of the state of the pointer buttons.

• PointeJ:MotionHint If PointeJ:MotionHintMask is selected, the XWIN
server is free to send only one MotionNotify event (with the is_hint
member of the XPointeJ:MovedEvent structure set to NotifyHint) to the
client for the event window, until either the key or button state changes,
the pointer leaves the event window, or the client calls XQueryPointer or

Events and Event-Handling Functions 8-13

Event Processing

XGetMotionEvents. The server still may send MotionNotify events
without is_hint set to NotifyHint.

The source of the event is the viewable window that the pointer is in. The win­
dow used by the XWIN server to report these events depends on the window's
position in the window hierarchy and whether any intervening window prohi­
bits the generation of these events. Starting with the source window, the XWIN
server searches up the window hierarchy until it locates the first window
specified by a client as having an interest in these events. If one of the interven­
ing windows has its do-not-propagate-mask set to prohibit generation of the
event type, the events of those types will be suppressed. Clients can modify the
actual window used for reporting by performing active grabs and, in the case of
keyboard events, by using the focus window.

The structures for these event types contain:

typedef struct {
int type; /* ButtonPmss or ButtonRele ... */
unsigned long serial; /* • of last request processed by serwr */
Bool se~event;
Display *display;
Window window;

Window root;
Window subwindow;

TiDe tiDe;

int x, y;
int x_root, y_root;
unsigned int sta.te;
unsigned int button;
Bool __ ~;

} XButtonBvent;

/* true if this came fran a. SendEvent request */
/* Display the event wu read fran */
/* "event" window it is mported mlati".. to */
/* root window that the event occurred on */
/* child window */

/* milliseconds */
/* pointer x, y oooJ:di.na.tes in event window */
/* coordinates mlatt".. to root */
/* key or button mask */
/* detail */
/* s_ aomen flag' */

typedef XButtonBvent XButtonPmssedBvent;
typedef XButtonBvent XButtonReleuedBvent;

8-14 Xwln GWS: Xllb - C Language Interface

typedef stmot {
int type;

unaigned lonq .. riAl;

Bool ""Ummt;
D18puy *d1apuy;
Window window;

Window root;
Window 1IUbwindow;

Tim time;

int x. y;

int x_root, y_root;

un.signed int .tate;

unaigned int Jcaycode;

Bool _aareen;
} ~'VWIt;

Event Processing

1* Kel/Pxe •• or ~l.eue *1
1* • of last xeque.t prooe.Hd. by aerwr *1
1* true if tb18 aaID8 f~ a SendBvant r:eque.t *1
1* Diaplay the ewnt "u J:e&d f~ *1
1* "event" window it 18 xeported xelati". to *1
1* root 1ri.ndo" that the evant oocurxecl on *1
1* child "indow *1
1* IIIilli .. c0nd8 *1
1* pointer X. Y coordinate. in evant "indo" *1
1* coordinate. xelati". to root *1
1* kay or button IIIIlslt *1
1* detail *1
1* aareen flag' *1

typedef ~wnt Beyl'xeIiMdBvaat;

typedef ~wnt ~leuedBwnt;

typedef stmot {
int type;

un.signeci lonq .. rial;

Bool .. ntUmmt;
Diapuy *dispuy;

Window window;

Window root;
Window aubwindow;

TilDa tilDa;

int x. y;
int x_root, y_root;

unaignecl int state;

abar 18_bint;

Bool _acr-.;
} XMotioaBvant;

1* MotionNotify *1
1* • of last xeque.t prooe.Hd. by server *1
1* true if tb18 aaID8 f~ a SendBvent r:equest *1
1* Diaplay the evant "as J:e&d f~ *1
1* "event" window xeported xelati". to *1
1* root "indo" that the evant 0CICI1rJ:8d on *1
1* child "indow *1
1* IIIilli .. c0nd8 *1
1* pointer x. y coordinates in event vi.ndov *1
1* coordinate. xelati". to root *1
1* kay or button IIIIlsk *1
1* detail *1
1* aareen flag' *1

typedef XMotioaBvant XPointedt)wdBvent;

These Structures have the following common members: window, root, subwin­
dow, time, x, y, x_root, YJoot, state, and same_screen. The window member is
set to the window on which the event was generated and is referred to as the
event window. As long as the conditions previously discussed are met, this is
the window used by the XWIN server to report the event. The root member is

Events and Evant-Handling Functions 8-15

Event Processing

set to the source window's root window. The xJoot and YJoot members are
set to the pointer's coordinates relative to the root window's origin at the time
of the event.

The same_screen member is set to indicate whether the event window is on the
same screen as the root window and can be either True or False. If True, the
event and root windows are on the same screen. If False, the event and root
windows are not on the same screen.

If the source window is an inferior of the event window, the subwindow
member of the structure is set to the child of the event window that is the
source member or an ancestor of it. Otherwise, the XWIN server sets the
subwindow member to None. The time member is set to the time when the
event was generated and is expressed in milliseconds.

If the event window is on the same screen as the root window, the x and y
members are set to the coordinates relative to the event window's origin. Oth­
erwise, these members are set to zero.

The state member is set to indicate the logical state of the pointer buttons and
modifier keys just prior to the event, which is the bitwise inclusive OR of one or
more of the button or modifier key masks: ButtonlMask, Button2Mask,
Button3Mask,Button4Mask,Button5Mask,ShiftMask,LockMask,Control­
Mask,ModlMask,Mbd2Mask,Mbd3Mask,Mod4Mask,andMbdSMask.

Each of these structures also has a member that indicates the detail. For the
XKeyPressedEvent and XKeyReleasedEvent structures, this member is called
keycode. It is set to a number that represents a physical key on the keyboard.
The keycode is an arbitrary representation for any key on the keyboard (see
Chapter 7).

For the XButtonPressedEvent and XButtonReleasedEvent structures, this
member is called button. It represents the pointer button that changed state and
can be the Buttonl, Button2, Button3, Button4, or Button5 value. For the
XPointerM:>vedEvent structure, this member is called is_hint. It can be set to
NotifyNormal or NotifyHint.

8-16 Xwln GWS: Xllb - C Language Interface

Event Processing

Window Entry/Exit Events

This section describes the processing that occurs for the window crossing events
EnterNotify and LeaveNotify. If a pointer motion or a window hierarchy
change causes the pointer to be in a different window than before, the XWIN
server reports EnterNotify or LeaveNotify events to clients who have
selected for these events. All EnterNotify and LeaveNotify events caused by
a hierarchy change are generated after any hierarchy event (UnmapNotify ,
MapNotify, ConfigureNotify, GravityNotify, CirculateNotify) caused by
that change; however, the X protocol does not constrain the ordering of Enter­
Notify and LeaveNotify events with respect to FocusOut, VisibilityNo­
tify, and Expose events.

This contrasts with MotionNotify events, which are also generated when the
pointer moves but only when the pointer motion begins and ends in a single
window. An EnterNotify or LeaveNotify event also can be generated when
some client application calls XGrabPointer and XUngrabPointer.

To receive EnterNotify or LeaveNotify events, set the Entez:WindowMask or
LeaveWindotlMask bits of the event-mask attribute of the window.

The structure for these event types contains:

Events and Event-Handling Functions 8-17

Event Processing

typedef atmot {

int type; 1* Bnter'Notify or Leavellotify *1
unaigned long .. rial; 1* • of lut request processed by server *1
Bool send_eWllt; 1* true if this c.- frem a SeadBvent request *1
Display *display; 1* Display the event was wad. frem *1
Window window;

Window root;
Window subwindow;

! ime time;

int x, y;

int x_root, y_root;

int mode;

int detail;

1* "eWllt" window aportecl relatiw to *1
1* root window that the event oocw:red on *1
1* abild window *1
1* milliseconds *1
1* pointer x, y oooJ:dinat .. in ewnt window *1
1* oooJ:dinates relatiw to root *1
1* lIotif!Homal, lIotifJGrab, lIotifyOngrab *1

1*
* lIotifyAnoestor, lIotifyYirtual, lIotifyInferior,

* lIotifyNonlinear,lIotif!Honlinea.z:Yirtual

*1
Bool _screen; 1* screen flaq *1
Bool fOClWl; 1* boolean fOClWl *1
unaigned int state; 1* key or button mask *1

} lICrossin9Bwnt;
typedef lICrossingBwnt XBntedfindottBwnt;

typedef lICrossin9Bwnt XLeavaWindottBwnt;

The window member is set to the window on which the EnterNotify or
LeaveNotify event was generated and is referred to as the event window. This
is the window used by the XWIN server to report the event, and is relative to the
root window on which the event occurred. The root member is set to the root
window of the screen on which the event occurred.

For a LeaveNotify event, if a child of the event window contains the initial
position of the pointer, the subwindow component is set to that child. Other­
wise, the XWIN server sets the subwindow member to None. For an EnterNo­
tify event, if a child of the event window contains the final pointer position,
the subwindow component is set to that child or None.

The time member is set to the time when the event was generated and is
expressed in milliseconds. The x and y members are set to the coordinates of
the pointer position in the event window. This position is always the pointer's
final position, not its initial position. If the event window is on the same screen
as the root window, x and y are the pointer coordinates relative to the event

8-18 Xwln GWS: Xllb - C Language Interface

Event Processing

window's origin. Otherwise, x and y are set to zero. The xJoot and YJoot
members are set to the pointer's coordinates relative to the root window's origin
at the time of the event.

The same screen member is set to indicate whether the event window is on the
same screen as the root window and can be either True or False. If True, the
event and root windows are on the same screen. If False, the event and root
windows are not on the same screen.

The focus member is set to indicate whether the event window is the focus win­
dow or an inferior of the focus window. The XWIN server can set this member
to either True or False. If True, the event window is the focus window or an
inferior of the focus window. If False, the event window is not the focus win­
dow or an inferior of the focus window.

The state member is set to indicate the state of the pointer buttons and modifier
keys just prior to the event. The XWIN server can set this member to the bitwise
inclusive OR of one or more of the button or modifier key masks: ButtonlMask,
Button2Mask,Button3Mask,Button4Mask,ButtonSMask,ShiftMask,Lock­
Mask,ControlMask,MbdlMask,Mbd2Mask,Mbd3Mask,Mbd4Mask,Mbd5Mask.

The mode member is set to indicate whether the events are normal events,
pseudo-motion events when a grab activates, or pseudo-motion events when a
grab deactivates. The XWIN server can set this member to NotifyNormal,
NotifyGrab,orNotifyUngrab.

The detail member is set to indicate the notify detail and can be NotifyAnces­
tor,NotifyVirtual,Notifylnferior,NotifyNonlinear,orNotifyNon­
linearVirtual.

Normal Entry/Exit Events

EnterNotifyand LeaveNotify events are generated when the pointer moves
from one window to another window. Normal events are identified by XEn­
terWindowEvent or XLeaveWindowEvent structures whose mode member is set
to NotifyNormal.

• When the pointer moves from window A to window B and A is an infe­
rior of B, the XWIN server does the following:

Events and Event.Handllng Functions 8-19

Event Processing

- It generates a LeaveNotify event on window A, with the detail
member of the XLeaveWindowEvent structure set to
NotifyAncestor.

- It generates a LeaveNotify event on each window between win­
dow A and window B, exclusive, with the detail member of each
XLeaveWindowEvent structure set to NotifyVirtual.

- It generates an EnterNotify event on window B, with the detail
member of the XEnterWindowEvent structure set to Notifylnfe­
rior.

• When the pointer moves from window A to window B and B is an infe­
rior of A, the XWIN server does the following:

- It generates a LeaveNotify event on window A, with the detail
member of the XLeaveWindowEvent structure set to
Notifylnferior.

- It generates an EnterNotify event on each window between
window A and window B, exclusive, with the detail member of
each XEnterWindowEvent structure set to NotifyVirtual.

- It generates an EnterNotify event on window B, with the detail
member of the XEnterWindowEvent structure set to
NotifyAncestor.

• When the pointer moves from window A to window B and window C is
their least common ancestor, the XWIN server does the following:

8-20

- It generates a LeaveNotify event on window A, with the detail
member of the XLeaveWindowEvent structure set to
Not i fyNonlinear.

- It generates a LeaveNotify event on each window between win­
dow A and window C, exclusive, with the detail member of each
XLeaveWindowEvent structure set to NotifyNonlinearVirtual.

- It generates an EnterNotify event on each window between
window C and window B, exclusive, with the detail member of
each XEnterWindowEvent structure set to
NotifyNonlinearVirtual.

Xwln GWS: Xllb - C Language Interface

Event Processing

- It generates an EnterNotify event on window B, with the detail
member of the XEnterWindowEvent structure set to
NotifyNonlinear.

• When the pointer moves from window A to window B on different
screens, the XWIN server does the following:

- It generates a LeaveNotify event on window A, with the detail
member of the XLeaveW1ndowEvent structure set to
NotifyNonlinear.

- If window A is not a root window, it generates a LeaveNotify
event on each window above window A up to and including its
root, with the detail member of each XLeaveWindowEvent struc­
ture set to NotifyNonlinearvirtual.

- If window B is not a root window, it generates an EnterNotify
event on each window from window B's root down to but not
including window B, with the detail member of each XEnterWin­
dowEvent structure set to NotifyNonlinearVirtual.

- It generates an EnterNotify event on window B, with the detail
member of the XEnterWindowEvent structure set to
NotifyNonlinear.

Grab and Ungrab Entry/Exit Events

Pseudo-motion mode EnterNotify and LeaveNotify events are generated
when a pointer grab activates or deactivates. Events in which the pointer grab
activates are identified by XEnterWindowEvent or XLeaveWindowEvent struc­
tures whose mode member is set to NotifyGrab. Events in which the pointer
grab deactivates are identified by XEnterWindowEvent or XLeaveWindowEvent
structures whose mode member is set to NotifyUnqrab (see XGrabPointer) .

• When a pointer grab activates after any initial warp into a confine_to win­
dow and before generating any actual ButtonPress event that activates
the grab, G is the grab_window for the grab, and P is the window the
pointer is in, the XWIN server does the following:

- It generates EnterNotify and LeaveNotify events (see "Normal
Entry/Exit Events" in this chapter). with the mode members of
the XEnterWindowEvent and XLeaveWindowEvent structures set
to NotifyGrab. These events are generated as if the pointer

Events and Event-Handling Functions 8-21

Event Processing

were to suddenly warp from its current position in P to some
position in G. However, the pointer does not warp, and the
XWIN server uses the pointer position as both the initial and final
positions for the events .

• When a pointer grab deactivates after generating any actual Button­
Release event that deactivates the grab, G is the grab_window for the
grab, and P is the window the pointer is in, the XWIN server does the fol­
lowing:

- It generates EnterNotify and LeaveNotify events (see "Normal
Entry /Exit Events" in this chapter). with the mode members of
the XEnterWindowEvent and XLeaveWindowEvent structures set
to NotifyUngrab. These events are generated as if the pointer
were to suddenly warp from some position in G to its current
position in P. However, the pointer does not warp, and the
XWIN server uses the current pointer position as both the initial
and final positions for the events.

Input Focus Events

This section describes the processing that occurs for the input focus events
Focusln and FocusOut. The XWIN server can report Focusln or FocusOut
events to clients wanting information about when the input focus changes. The
keyboard is always attached to some window (typically, the root window or a
top-level window), which is called the focus window. The focus window and
the position of the pointer determine the window that receives keyboard input.
Clients may need to know when the input focus changes to control highlighting
of areas on the screen.

To receive Focusln or FocusOut events, set the FocusChangeMask bit in the
event-mask attribute of the window.

The structure for these event types contains:

8-22 Xwln GWS: XUb - C Language Interface

typedef struct (

int type;

unsigned. 10011 aerial;

Boo1 aend_ewnt;

Display *display;

Window window;

int mode;

int detail;

} XFocuae::bangaBwnt;

Event Processing

/* l!'ocusIn or l!'ocuaOut */
/* , of last request prooesaecl by aerwr */
/* true if this c.- fran a SendBwat :teqUest */

/* Display the ewnt was read fran */

/* window of ewnt */

/* NotifyNormal, NotifyGrab, NotifyUnqrab */

/*
* NotifyAncestor, NotifYVirtual, NotifyInferior,

* NotifyNonlinear,NotifyNonlinearYirtual, NotifyPointer,

* NotifyPointeDRoot, NotifyDetailNone

*/

typedef XFocuaCbangeEvent XFocusInEv8nt;

typedef XFocu&alanqeEvent XFocusOutBvent;

The window member is set to the window on which the Focusln or FocusOut
event was generated. This is the window used by the XWIN server to report the
event. The mode member is set to indicate whether the focus events are normal
focus events, focus events while grabbed, focus events when a grab activates, or
focus events when a grab deactivates. The XWIN server can set the mode
member to NotifyNormal, Not i fyWhileGrabbed, Not i fyGrab, or
NotifyUngrab.

All FocusOut events caused by a window unmap are generated after any
UnmapNotify event; however, the X protocol does not constrain the ordering of
FocusOut events with respect to generated EnterNotify, LeaveNotify, Visi­
bilityNotify, and Expose events.

Depending on the event mode, the detail member is set to indicate the notify
detail and can be NotifyAncestor, NotifyVirtual, Notifylnferior,
NotifyNonlinear,NotifyNonlinearVlrtual,NotifyPointer,NotifyPoin­
terRoot,or NotifyDetailNone.

Events and Event-Handling Functions 8-23

Event Processing

Normal Focus Events and Focus Events While Grabbed

Normal focus events are identified by XFocusInEvent or XFocusOutEvent
structures whose mode member is set to NotifyNonnal. Focus events while
grabbed are identified by XFocusInEvent or XFocusOutEvent structures whose
mode member is set to NotifyWhileGrabbed. The XWIN server processes nor­
mal focus and focus events while grabbed according to the following:

• When the focus moves from window A to window B, A is an inferior of
B, and the pointer is in window P, the XWlN server does the following:

- It generates a FocusOut event on window A, with the detail
member of the XFocusOutEvent structure set to NotifyAnces­
tor.

- It generates a FocusOut event on each window between window
A and window B, exclusive, with the detail member of each
XFocusOutEvent structure set to NotifyVirtual.

- It generates a Focus In event on window B, with the detail
member of the XFocusOutEvent structure set to
Notifylnferior.

- If window P is an inferior of window B but window P is not
window A or an inferior or ancestor of window A, it generates a
FocusIn event on each window below window B, down to and
including window P, with the detail member of each
XFocusInEvent structure set to NotifyPointer.

• When the focus moves from window A to window B, B is an inferior of
A, and the pointer is in window P, the XWlN server does the following:

8-24

- If window P is an inferior of window A but P is not an inferior
of window B or an ancestor of B, it generates a FocusOut event
on each window from wit\dow P up to but not including win­
dow A, with the detail member of each XFocusOutEvent struc­
ture set to NotifyPointer.

- It generates a FocusOut event on window A, with the detail
member of the XFocusOutEvent structure set to
NotifyInferior.

Xwln GWS: Xllb - C Language Interface

Event Processing

- It generates a Focusln event on each window between window
A and window B, exclusive, with the detail member of each
XFocuslnEvent structure set to NotifyVirtual.

- It generates a Focusln event on window B, with the detail
member of the XFocuslnEvent structure set to NotifyAncestor.

• When the focus moves from window A to window B, window C is their
least common ancestor, and the pointer is in window P, the XWIN server
does the following:

- If window P is an inferior of window A, it generates a FocuSOut
event on each window from window P up to but not including
window A, with the detail member of the XFocusOutEvent
structure set to NotifyPointer.

- It generates a FocuSOut event on window A, with the detail
member of the XFocusOutEvent structure set to NotifyNon­
linear.

- It generates a FocusOut event on each window between window
A and window C, exclusive, with the detail member of each
XFocusOutEvent structure set to NotifyNonlinearVirtual.

- It generates a Focusln event on each window between C and B,
exclusive, with the detail member of each XFocuslnEvent struc­
ture set to NotifyNonlinearVirtual.

- It generates a Focusln event on window B, with the detail
member of the XFocuslnEvent structure set to NotifyNon­
linear.

- If window P is an inferior of window B, it generates a Focusln
event on each window below window B down to and including
window P, with the detail member of the XFocuslnEvent struc­
ture set to NotifyPointer.

• When the focus moves from window A to window B on different screens
and the pointer is in window P, the XWIN server does the following:

- If window P is an inferior of window A, it generates a FocuSOut
event on each window from window P up to but not including
window A, with the detail member of each XFocuSOutEvent
structure set to NotifyPointer.

Events and Event-Handling Functions 8-25

Event Processing

- It generates a FocusOut event on window A, with the detail
member of the XFocusOutEvent structure set to NotifyNon­
linear.

- If window A is not a root window, it generates a FocusOut
event on each window above window A up to and including its
root, with the detail member of each XFocusOutEvent structure
set to NotifyNonlinearVirtual.

- If window B is not a root window, it generates a Focusln event
on each window from window B's root down to but not includ­
ing window B, with the detail member of each XFocuslnEvent
structure set to NotifyNonlinearVirtual.

- It generates a Focusln event on window B, with the detail
member of each XFocuslnEvent structure set to NotifyNon­
linear.

- If window P is an inferior of window B, it generates a Focusln
event on each window below window B down to and including
window P, with the detail member of each XFocuslnEvent -
structure set to NotifyPointer.

• When the focus moves from window A to PointerRoot (events sent to
the window under the pointer) or None (discard), and the pointer is in
window P, the XWIN server does the following:

8-26

- If window P is an inferior of window A, it generates a FocusOut
event on each window from window P up to but not including
window A, with the detail member of each XFocusOutEvent
structure set to NotifyPointer.

- It generates a FocusOut event on window A, with the detail
member of the XFocusOutEvent structure set to NotifyNon­
linear.

- If window A is not a root window, it generates a FocusOut
event on each window above window A up to and including its
root, with the detail member of each XFocusOutEvent structure
set to NotifyNonlinearVirtual.

Xwln GWS: Xllb - C Language Interface

Event Processing

- It generates a Focusln event on the root window of all screens,
with the detail member of each XFocuslnEvent structure set to
NotifypointerRoot (or NotiiyDetailNone).

- If the new focus is PointerRoot, it generates a Focusln event
on each window from window P's root down to and including
window P, with the detail member of each XFocuslnEvent
structure set to NotifyPointer.

• When the focus moves from PointerRoot (events sent to the window
under the pointer) or None to window A, and the pointer is in window P,
the XWIN server does the following:

- If the old focus is PointerRoot, it generates a FocusOut event
on each window from window P up to and including window
P's root, with the detail member of each XFocusOUtEvent struc­
ture set to NotifyPointer.

- It generates a FocusOUt event on all root windows, with the
detail member of each XFocusOUtEvent structure set to
NotifyPointerRoot (or NotifyDetailNone).

- If window A is not a root window, it generates a Focusln event
on each window from window A's root down to but not includ­
ing window A, with the detail member of each XFocuslnEvent
structure set to NotifyNonlinearVirtual.

- It generates a Focusln event on window A, with the detail
member of the XFocuslnEvent structure set to NotifyNon­
linear.

- If window P is an inferior of window A, it generates a Focusln
event on each window below window A down to and including
window P, with the detail member of each XFocuslnEvent
structure set to NotifyPointer.

• When the focus moves from PointerRoot (events sent to the window
under the pointer) to None (or vice versa), and the pointer is in window P,
the XWIN server does the following:

Events and Event-Handling Functions 8-27

Event Processing

- If the old focus is PointerRoot, it generates a FocusOut event
on each window from window P up to and including window
P's root, with the detail member of each XFocusOutEvent struc­
ture set to NotifyPointer.

- It generates a FocusOut event on all root windows, with the
detail member of each XFocusOutEvent structure set to either
NotifyPointerRoot or NotifyOetailNone.

- It generates a Focusln event on all root windows, with the
detail member of each XFocuslnEvent structure set to
NotifyOetailNone or NotifyPointerRoot.

- If the new focus is PointerRoot, it generates a Focusln event
on each window from window P's root down to and including
window P, with the detail member of each XFocuslnEvent
structure set to NotifyPointer.

Focus Events Generated by Grabs
Focus events in which the keyboard grab activates are identified by
XFocuslnEvent or XFocusOutEvent structures whose mode member is set to
NotifyGrab. Focus events in which the keyboard grab deactivates are
identified by XFocuslnEvent or XFocusOutEvent structures whose mode
member is set to NotifyUngrab (see XGrabKeyboard) .

• When a keyboard grab activates before generating any actual KeyPress
event that activates the grab, G is the grab_window, and F is the current
focus, the XWIN server does the following:

- It generates Focusln and FocusOut events, with the mode
members of the XFocuslnEvent and XFocusOutEvent structures
set to NotifyGrab. These events are generated as if the focus
were to change from F to G .

• When a keyboard grab deactivates after generating any actual
KeyRelease event that deactivates the grab, G is the grab_window, and F
is the current focus, the XWIN server does the following:

8·28

- It generates Focusln and FocusOut events, with the mode
members of the XFocuslnEvent and XFocusOutEvent structures
set to NotifyUngrab. These events are generated as if the focus
were to change from G to F.

Xwln GWS: Xllb - C Language Interface

_______________________ Event Processing

Key Map State Notification Events

The XWIN server can report KeymapNotify events to clients that want infonna­
tion about changes in their keyboard state.

To receive KeymapNotify events, set the KeymapStateMask bit in the event­
mask attribute of the window. The XWIN server generates this event immedi­
ately after every EnterNotify and FoeusIn event.

The structure for this event type contains:

1* generated an BntuWindow anc:lI'OCIWIIn vben Ke]rmapStat. sel.ecteci *1
typedaf stNOt {

int type; 1* KeymapHotify *1
unaignad long serial; 1* • of last nquut processed by serwr *1
Bool send_evant; 1* true if this came frail a SendBwnt teqUest *1
Display *display; 1* Display the .wrlt vas read frail *1
Window window;

char kay_vector[32];
} XKeymapBvant;

The window member is not used but is present to aid some toolkits. The
key_vector member is set to the bit vector of the keyboard. Each bit set to 1
indicates that the corresponding key is currently pressed. The vector is
represented as 32 bytes. Byte N (from 0) contains the bits for keys SN to SN + 7
with the least-significant bit in the byte representing key SN.

Exposure Events

The X protocol does not guarantee to preserve the contents of window regions
when the windows are obscured or reconfigured. Some implementations may
preserve the contents of windows. Other implementations are free to destroy
the contents of windows when exposed. X expects client applications to assume
the responsibility for restoring the contents of an exposed window region. (An
exposed window region describes a formerly obscured window whose region
becomes visible.) Therefore, the XWIN server sends Expose events describing the
window and the region of the window that has been exposed. A naive client
application usually redraws the entire window. A more sophisticated client
application redraws only the exposed region.

Events and Event-Handling Functions 8-29

Event Processing

Expose Events
The XWIN server can report Expose events to clients wanting information about
when the contents of window regions have been lost. The circumstances in
which the XWIN server generates Expose events are not as definite as those for
other events. However, the XWIN server never generates Expose events on win­
dows whose class you specified as InputOnly. The XWIN server can generate
Expose events when no valid contents are available for regions of a window
and. either the regions are visible, the regions are viewable and the server is
(perhaps newly) maintaining backing store on the window, or the window is
not viewable but the server is (perhaps newly) honoring the window's backing­
store attribute of Always or WhenMapped. The regions decompose into an (arbi­
trary) set of rectangles, and an Expose event is generated for each rectangle.
For any given window, the XWIN server guarantees to report contiguously all of
the regions exposed by some action that causes Expose events, such as raising a
window.

To receive Expose events, set the ExposureMask bit in the event-mask attribute
of the window.

The structure for this event type contains:

typedef struct {

int type;

unaignlMi 10D11 aer41;

Boo1 send_event;

Dillplay *displAy;
Window vincIov;

int x, y;

int width, height;

int count;
} XBxpoaeBvent;

1* BlIpoae *1
1* , of lAst request procesaecl by aerver *1
1* true if this came frCIIII a SendBvwlt request *1
1* Display the event " .. wad frCIIII *1

1* if nonzero, at 1eut this many more *1

The window member is set to the exposed (damaged) window. The x and y
members are set to the coordinates relative to the window's origin and indicate
the upper-left comer of the rectangle. The width and height members are set to
the size (extent) of the rectangle. The count member is set to the number of
Expose events that are to follow. If count is zero, no more Expose events fol­
low for this window. However, if count is nonzero, at least that number of
Expose events (and possibly more) follow for this window. Simple applications
that do not want to optimize redisplay by distinguishing between subareas of its

8-30 Xwln GWS: Xllb - C Language Interface

Event Processing

window can just ignore all Expose events with nonzero counts and perform full
redisplays on events with zero counts.

GraphicsExpose and NoExpose Events
The XWIN server can report GraphicsExpose events to clients wanting informa­
tion about when a destination region could not be computed during certain
graphics requests: XCopyArea or XCopyPlane. The XWIN server generates this
event whenever a destination region could not be computed due to an obscured
or out-of-bounds source region. In addition, the XWIN server guarantees to
report contiguously all of the regions exposed by some graphics request (for
example, copying an area of a drawable to a destination drawable).

The XWIN server generates a NoExpose event whenever a graphics request that
might produce a GraphicsExpose event does not produce any. In other words,
the client is really asking for a GraphicsExpose event but instead receives a
NoExpose event.

To receive GraphicsExpose or NoExpose events, you must first set the
graphics-exposure attribute of the graphics context to True. You also can set
the graphics-expose attribute when creating a graphics context using XCreateGC
or by calling XSetGraphicsExposures.

The structures for these event types contain:

typedef struct {
int type;

unaigned lonq aerial;

Bool aend_ewnt;

Display *display;

Drawable drawable;
int x, y;

int width, height;

int count;

int major_code;

int minor_code;

} XGraphicsExposeBwnt;

1* GraphicsExpose */

1* • of last nIqIlest processed by aerwr *1
1* true if this came fran a SendEwnt request */

1* Display the event was read fran *1

1* if nonzero, at least this many more */

/* core is CopyArea or CopyPlane *1
/* not defined in the core */

Events and Event-Handling Functions 8-31

Event Processing

typedef struct {

int type; 1* NoExpose *1
unsigned lonq serial; 1* t of last mquest prooesaed by server *1
Bool senci_event; 1* true if this came frail a SendBvent request *1
Display *display; 1* Display the event was J:e&d frail *1
Drawable drawable;

int major_code;

int minor_code;
1* core is CopyArea or CopyPlane *1
1* not defined in the core *1

} XNoExposeEvent;

Both structures have these common members: drawable, major_code, and
minor_code. The drawable member is set to the drawable of the destination
region on which the graphics request was to be performed. The major_code
member is set to the graphics request initiated by the client and can be either
x CopyArea or X CopyPlane. If it is X CopyArea, a call to xCopyArea initiated
the request. If it is X_CopyPlane, a callto XCopyPlane initiated the request.
These constants are defined in < XIllXproto. h >. The minor_code member,
like the major_code member, indicates which graphics request was initiated by
the client. However, the minor_code member is not defined by the core X proto­
col and will be zero in these cases, although it may be used by an extension.

The XGraphiCSExposeEvent structure has these additional members: x, y,
width, height, and count. The x and y members are set to the coordinates rela­
tive to the drawable's origin and indicate the upper-left comer of the rectangle.
The width and height members are set to the size (extent) of the rectangle. The
count member is set to the number of GraphicsExpose events to follow. If
count is zero, no more GraphicsExpose events follow for this window. How­
ever, if count is nonzero, at least that number of GraphicsExpose events (and
possibly more) are to follow for this window.

Window State Change Events

The following sections discuss:

• CirculateNotify events

• ConfigureNotifyevents

8-32 Xwln GWS: Xllb - C Language Interface

Evant Processing

• CreateNotify events

• DestroyNotify events

• GravityNotify events

• MapNotify events

• MappingNot1fy events

• ReparentNot1fyevents

• UmnapNotify events

• VisibilityNotify events

ClrculateNotlfy Events
The XWIN server can report CirculateNot1fy events to clients wanting infor­
mation about when a window changes its position in the stack. The XWIN
server generates this event type whenever a window is actually restacked as a
result of a client application calling XCirculateSubwindows,
XCirculateSubwindowsUp,orXCirculateSubwindowsDown.

To receive CirculateNot1fy events, set the StructureNotifyMask bit in the
event-mask attribute of the window or the SubstructureNotifyMask bit in the
event-mask attribute of the parent window (in which case, circulating any child
generates an event).

The structure for this event type contains:

typedaf struct (

int type; 1* Ci.raulateNotify *1
1* t of last AqI.JIIst prooessec1 by server *1 UIUIigned. 10h!J .. rial;

Bool .. ncLewnt;
Display *display;

Window ewnt;

1* true if this c.- from a SendBwnt request *1
1* Display the evant was read. from *1

Window window;

int place; 1* PlaoeOnTop, PlaoeOnBottom *1
} XCi.raulateBwnt;

Evants and Evant-Handling Functions 8-33

Event Processing

The event member is set either to the restacked window or to its parent,
depending on whether StructureNotify or SubstructureNotify was
selected. The window member is set to the window that was restacked. The
place member is set to the window's position after the restack occurs and is
either PlaceOnTop or PlaceOnBottorn. If it is PlaceOnTop, the window is now
on top of all siblings. If it is PlaceOnBottorn, the window is now below all
siblings.

ConfigureNotify Events

The XWIN server can report ConfigureNotify events to clients wanting infor­
mation about actual changes to a window's state, such as size, position, border,
and stacking order. The XWIN server generates this event type whenever one of
the following configure window requests made by a client application actually
completes:

• A window's size, position, border, and/or stacking order is reconfigured
by calling XConfigureWindow.

• The window's position in the stacking order is changed by calling
XLowerWindow,XRaiseWindow,orXRestackWindows.

• A window is moved by calling XMoveWindow.

• A window's size is changed by calling XResizeWindow.

• A window's size and location is changed by calling XMoveResizeWindow.

• A window is mapped and its position in the stacking order is changed by
calling XMapRaised.

• A window's border width is changed by calling XSetWindowBor­
derWidth.

To receive ConfigureNotify events, set the StructureNotifyMask bit in the
event-mask attribute of the window or the SubstructureNotifyMask bit in the
event-mask attribute of the parent window (in which case, configuring any child
generates an event).

The structure for this event type contains:

8-34 Xwln GWS: Xllb - C Language Interface

Event Processing

typedef struot (

int type; '* ContigureHotify *'
unaignecllonq aerial; '* t of laat r:equeat proceaaed. by aerver *'
Bool Mnd_ewnt; '* true if thia CUI8 frail a SendBvent requeat *'
Diaplay *diaplay; '* Diaplay the event wu read frail *'
Windowewnt;

Window v1ndov;

int x, y;

int width, height;

int border_widtb;

Window abow;

Bool override _J:edirect;

} XConfigureEvent;

The event member is set either to the reconfigured window or to its parent,
depending on whether StructureNotify or SubstructureNot1fy was
selected. The window member is set to the window whose size, position,
border, and/or stacking order was changed.

The x and y members are set to the coordinates relative to the parent window's
origin and indicate the position of the upper-left outside comer of the window.
The width and height members are set to the inside size of the window, not
including the border. The border_width member is set to the width of the
window's border, in pixels.

The above member is set to the sibling window and is used for stacking opera­
tions. If the XWIN server sets this member to None, the window whose state
was changed is on the bottom of the stack with respect to sibling windows.
However, if this member is set to a sibling window, the window whose state
was changed is placed on top of this sibling window.

The override redirect member is set to the override-redirect attribute of the win­
dow. Window manager clients normally should ignore this window if the
override redirect member is True.

Events and Event-Handling Functions 8-35

Event Processing

CreateNotlfy Events
The XWIN server can report CreateNotify events to clients wanting informa­
tion about creation of windows. The XWIN server generates this event whenever
a client application creates a window by calling XCreateWindow or XCreateS!m­
pleWindow.

To receive CreateNotify events, set the SubstructureNotifyMask bit in the
event-mask attribute of the window. Creating any children then generates an
event.

The structure for the event type contains:

typedef struct {

int type;

unsigned lonq 118rial;

Bool 118nc:Levoant;

Display *display;

Window parent;

Window window;

int x. y;

int width, height;

int border_width;

1* CDaateNotify *1
1* • of last NqIl8st processed by server *1
1* true if this came from a SendEvoant request */

1* Display the evoant was read from *1
1* puent of the window *1
1* window id of window created *1
1* window location *1
1* size of window * /
1* border width *1

Bool override_redirect; 1* cDaation should be overridden *1
} XCDaatewindowBvoant;

The parent member is set to the created window's parent. The window member
specifies the created window. The x and y members are set to the created
window's coordinates relative to the parent window's origin and indicate the
position of the upper-left outside comer of the created window. The width and
height members are set to the inside size of the created window (not including
the border) and are always nonzero. The border_width member is set to the
width of the created window's border, in pixels. The override_redirect member
is set to the override-redirect attribute of the window. Window manager clients
normally should ignore this window if the override Jedirect member is True.

8·36 Xwln GWS: Xllb - C Language Interface

Event Processing

DestroyNotlfy Events
The XWIN server can report DestroyNotify events to clients wanting informa­
tion about which windows are destroyed. The XWIN server generates this event
whenever a client application destroys a window by calling XDestroyWindow or
XDestroySubwindows.

The ordering of the DestroyNotify events is such that for any given window,
DestroyNotify is generated on all inferiors of the window before being gen­
erated on the window itself. The X protocol does not constrain the ordering
among siblings and across subhierarchies.

To receive DestroyNotify events, set the StructureNotifyMask bit in the
event-mask attribute of the window or the SubstructureNotifyMask bit in the
event-mask attribute of the parent window (in which case, destroying any child
generates an event).

The structure for this event type contains:

typedef struct {

int type; 1* DestroyNotify *1
unsigned lonq .. rial; 1* t of last request processed. by .. rver *1
Boo1 send_evant; 1* true if this came from a SendEvant request *1
Display *display; 1* Display the evant was read from *1
Winclow evant;
Winclow window;

} XDestroyWindowBvant;

The event member is set either to the destroyed window or to its parent,
depending on whether StructureNotify or SubstructureNotify was
selected. The window member is set to the window that is destroyed.

GravityNotify Events
The XWIN server can report GravityNotify events to clients wanting informa­
tion about when a window is moved because of a change in the size of its
parent. The XWIN server generates this event whenever a client application
actually moves a child window as a result of resizing its parent by calling XCon­
figureWindow,XMoveResizeWindow,orXResizewindow.

Events and Event-Handling Functions 8-37

Event Processing

To receive GravityNotify events, set the StructureNotifyMask bit in the
event-mask attribute of the window or the SubstructureNotifyMask bit in the
event-mask attribute of the parent window (in which case, any child that is
moved because its parent has been resized generates an event).

The structure for this event type contains:

typedaf struct {

int type;

unai9Md long aerial;

Bool send_event;
Display *display;

Window event;

Window window;

int x, y;

} XGravityBvent;

1* GravityNoti(y *1
1* • of last request prooeaaed by server *1
1* true if this ca. frail a SendEvent request *1
1* Display the event was read frail *1

The event member is set either to the window that was moved or to its parent,
depending on whether StructureNotify or SubstructureNotify was
selected. The window member is set to the child window that was moved. The
x and y members are set to the coordinates relative to the new parent window's
origin and indicate the position of the upper-left outside corner of the window.

MapNotify Events

The XWIN server can report MapNotify events to clients wanting information
about which windows are mapped. The XWIN server generates this event type
whenever a client application changes the window's state from unmapped to
mapped by calling XMapWindow, XMapRaised, XMapSubwindows, XReparentWin­
dow, or as a result of save-set processing.

To receive MapNotify events, set the StructureNotifyMask bit in the event­
mask attribute of the window or the SubstructureNotifyMask bit in the
event-mask attribute of the parent window (in which case, mapping any child
generates an event).

The structure for this event type contains:

8-38 Xwln GWS: Xllb - C Language Interface

Event Processing

typec:lef 8truct {

int type; 1* MapNotity *1
1* • of la8t PlqUest processed by .. rver *1 unaigned lonq .. rial;

Bool MDd_ewnt;

Display *display;

Winclow ewnt;

1* true if this c:::aIII8 frem a SendBvent request *1
1* Display the event vu read frem *1

Winclow window;

Bool owrri.de_Rdi.reot; 1* boolean, is owrri.de set... *1
} lIMapBvent;

The event member is set either to the window that was mapped or to its parent,
depending on whether StructureNotify or SubstructureNotify was
selected. The window member is set to the window that was mapped. The
override redirect member is set to the override-redirect attribute of the window.
Window-manager clients normally should ignore this window if the override­
redirect attribute is True, because these events usually are generated from pop­
ups, which override structure control.

MappingNotlfy Events
The XWIN server reports MappingNotify events to all clients. There is no
mechanism to express disinterest in this event. The XWIN server generates this
event type whenever a client application successfully calls:

• XSetM:x1ifi.l:Mappinq to indicate which KeyCodes are to be used as
modifiers

• XChanqElKeyboardMappinq to change the keyboard mapping

• XSetPointerMappinq to set the pointer mapping

The structure for this event type contains:

Events and Event-Handling Functions 8-39

Evant Processing

typedef struot {
int type;
unaigneci long aerial;

Bool send_event;
Display *display;

W:inc1ow window;

int request;

int first_keyoode;

int count;
} XMappi.ngBvent;

1* ~ingHotify *1
1* f of last request processed by aerwr *1
1* true if this 08lIl8 from a. SendBvent request *1
1* Display the event wu read from *1
1* unused *1
1* one of MappingModifier, ~i.ngKeyboud.,

Mappingfointer *1
1* first keyaode *1
1* defines range of change w. first_keyaode*1

The request member is set to indicate the kind of mapping change that occurred
and can be MappingMxiifier, MappingKeyboard, MappingPointer. If it is
MappingModifier, the modifier mapping was changed. If it is MappingKey­
board, the keyboard mapping was changed. If it is MappingPointer, the
pointer button mapping was changed. The first_keycode and count members are
set only if the request member was set to MappingKeyboard. The number in
first_ keycode represents the first number in the range of the altered mapping,
and count represents the number of keycodes altered.

To update the client application's knowledge of the keyboard, you should call
XRefreshKeyboardMapping.

ReparentNotify Events

The XWIN server can report ReparentNotify events to clients wanting informa­
tion about changing a window's parent. The XWIN server generates this event
whenever a client application calls XReparentWindow and the window is actu­
ally reparented.

To receive ReparentNotify events, set the StructureNotifyMask bit in the
event-mask attribute of the window or the SubstructureNotifyMask bit in the
event-mask attribute of either the old or the new parent window (in which case,
reparenting any child generates an event).

The structure for this event type contains:

8-40 Xwln GWS: Xllb - C Language Interface

typedef Kruct (
int t:ype;

UMignecl 10DljJ .rial;

&ool .. ncLewnt;
Display *display;

WindDw ewnt;
Window window;

WindDw puent;
int x, y;
&001 ovarride_reclirect;

} XRep&xentBwnt;

Event Processing

1* ~tHotify *1
1* • of laK nquut proouMCl by I18rWr *1
1* true if thi8 CUll fEta • SendBvent J:eqUeat *1
1* Display the eY8l'lt .u read frail *1

The event member is set either to the reparented window or to the old or the
new parent, depending on whether StructureNotify or SubstructureNotify
was selected. The window member is set to the window that was reparented.
The parent member is set to the new parent window. The x and y members are
set to the reparented window's coordinates relative to the new parent window's
origin and define the upper-left outer comer of the reparented window. The
override redirect member is set to the override-redirect attribute of the window
specified-by the window member. Window manager clients normally should
ignore this window if the override_redirect member is True.

UnmapNotlfy Events
The XWIN server can report UnmapNotify events to clients wanting information
about which windows are unmapped. The XWIN server generates this event
type whenever a client application changes the window's state from mapped to
unmapped.

To receive UnmapNotify events, set the StructureNotifyMask bit in the event­
mask attribute of the window or the SubstructureNotifyMask bit in the
event-mask attribute of the parent window (in which case, unmapping any child
window generates an event).

The structure for this event type contains:

Events and Event-Handling Functions 8-41

Event Processing

typedef stxuct {

int type;

unaignacl long aerial;

Bool send_event;

Display *display;

Winc10w event;

Winc10w window;

Bool from_ooofiguA;

} XUnmapEvent;

1* UnmapNotify *1
1* • of last Rquut processed by Mrwr *1
1* true if this ~ from a SendBvent request *1
1* Display the event wu read from *1

The event member is set either to the unmapped Window or to its parent,
depending on whether StructureNotify or SubstructureNotify was
selected. This is the window used by the XWIN server to report the event. The
window member is set to the window that was unmapped. The from_configure
member is set to True if the event was generated as a result of a resizing of the
window's parent when the window itself had a win...,gravity of UrunapGravity.

VisibilityNotify Events
The XWIN server can report VisibilityNotify events to clients wanting any
change in the visibility of the specified window. A region of a window is visi­
ble if someone looking at the screen can actually see it. The XWIN server gen­
erates this event whenever the visibility changes state. However, this event is
never generated for windows whose class is InputOnly.

All VisibilityNotify events caused by a hierarchy change are generated after
any hierarchy event (UrunapNotify , MapNotify, ConfigureNotify, Gravi­
tyNotify, CirculateNotify) caused by that change. Any VisibilityNotify
event on a given window is generated before any Expose events on that win­
dow, but it is not required that all VisibilityNotify events on all windows be
generated before all Expose events on all windows. The X protocol does not
constrain the ordering of VisibilityNotify events with respect to FocusOut,
EnterNotify, and LeaveNotify events.

To receive VisibilityNotify events, set the VisibilityChangeMask bit in the
event-mask attribute of the window.

The structure for this event type contains:

8-42 Xwln GWS: Xllb - C Language Interface

Event Processing

typedef atruct (
int type; /* VisibiltyNotify */
unaigned lonq .. rial; /* t of l&at requeat prooeand. by .. rver */
Bool MDCi_ewnt; /* tn. if this aa. frcm a SendBvent requeat */
Diaplay *diaplay; /* Diapl&y the ewnt v .. J:Ud. frcm */
Window windov;

int atate;
) XViaibilityBvent;

The window member is set to the window whose visibility state changes. The
state member is set to the state of the window's visibility and can be Visibili­
tyUnobscurea,VisibilityPartiallyObscured,orVisibilityFullyOb­
scured. The XWIN server ignores all of a window's subwindows when deter­
mining the visibility state of the window and processes VisibilityNotify
events according to the following:

• When the window changes state from partially obscured, fully obscured,
or not viewable to viewable and completely unobscured, the XWIN server
generates the event with the state member of the XVisibilityEvent
structure set to VisibilityUnobscured.

• When the window changes state from viewable and completely unob­
scured or not viewable to viewable and partially obscured, the XWIN
server generates the event with the state member of the XVisibili­
tyEvent structure set to VisibilityPartiallyObscured.

• When the window changes state from viewable and completely unob­
scured, viewable and partially obscured, or not viewable to viewable and
fully obscured, the XWIN server generates the event with the state member
of the XVisibilityEvent structure set to VisibilityFullyObscured.

Structure Control Events

This section discusses:

• CirculateRequest events

Events and Event-Handling Functions 8-43

Event Processing

• ConfigureRequest events

• MapRequest events

• ResizeRequest events

CirculateRequest Events
The XWIN server can report CirculateRequest events to clients wanting infor­
mation about when another client initiates a circulate window request on a
specified window. The XWIN server generates this event type whenever a client
initiates a circulate window request on a window and a subwindow actually
needs to be restacked. The client initiates a circulate window request on the
window by calling XCirculateSubwinciows, XCirculateSubwindowsUp, or
XCirculateSubwindowsDown.

To receive CirculateRequest events, set the SubstructureRedirectMask in
the event-mask attribute of the window. Then, in the future, the circulate win­
dow request for the specified window is not executed, and thus, any
subwindow's position in the stack is not changed. For example, suppose a
client application calls XCirculateSubwinciowsOp to raise a subwindow to the
top of the stack. If you had selected SubstructureRedirectMask on the win­
dow, the XWIN server reports to you a CirculateRequest event and does not
raise the subwindow to the top of the stack.

The structure for this event type contains:

typedaf struct {

int type; 1* CirculateRequest *1
unsigned long aerial; 1* • of last wquut proceaaecl by aerwr *1
Bool aencLewnt; 1* true if this cu. frail a SendBwInt J:eqU8st *1
Display *display; 1* Display the event vas wad frail *1
Window parent;

Windov vindov;

int plaQ8; 1* PlaoeOnTop, PlaoeOnBottcm *1
} XCirculateRequeatBvent;

The parent member is set to the parent window. The window member is set to
the subwindow to be restacked. The place member is set to what the new posi­
tion in the stacking order should be and is either PlaceOnTop or PlaceOnBot­
tom. H it is P laceOnTop, the subwindow should be on top of all siblings. If it
is PlaceOnBottom, the subwindow should be below all siblings.

Xwln GWS: Xllb - C Language Interface

Event Processing

ConflgureRequest Events

The XWIN server can report ConfiqureRequest events to clients wanting infor­
mation about when a different client initiates a configure window request on
any child of a specified window. The configure window request attempts to
reconfigure a window's size, position, border, and stacking order. The XWIN
server generates this event whenever a different client initiates a configure win­
dow request on a window by calling XConfiqureWindow, XLowerWindow,
XRaiseWindow,XMapRaised,XMoveResizeWindow,XMoveWindow,XResizeWin­
dow,XRestackWindows,orXSetWindowBorderWidth.

To receive ConfiqureRequest events, set the SubstructureRedirectMask bit
in the event-mask attribute of the window. ConfiqureRequest events are gen­
erated when a ConfiqureWindow protocol request is issued on a child window
by another client. For example, suppose a client application calls XLowerWindow
to lower a window. If you had selected SubstructureRedirectMask on the
parent window and if the override-redirect attribute of the window is set to
False, the XWIN server reports a ConfigureRequest event to you and does not
lower the specified window.

The structure for this event type contains:

typedef stmct (

int type; /* Configw:eRequest */
WUligned lonq aerial; /* • of last request prooesseci by aerver */
Bool aeneCevent; /* true if this came from a SendBvent request */
Display *display; /* Display the event was read. from */

Window parent;

Window window;

int x, y;

int width, height;

int border_width;

Window above;
int detail; /* Above, Below, 'l'opIf, BottcmIf, Opposite */
WUligned lonq value_mask;

} lIConfigw:eRequestBvent;

The parent member is set to the parent window. The window member is set to
the window whose size, position, border width, and/or stacking order is to be
reconfigured. The value_mask member indicates which components were
specified in the ConfigureWindow protocol request. The corresponding values
are reported as given in the request. The remaining values are filled in from the

Events and Event-Handling Functions 8-45

Event Processing

current geometry of the window, except in the case of above (sibling) and detail
(stack-mode), which are reported as Above and None, respectively, if they are
not given in the request.

MapRequest Events

The XWIN server can report MapRequest events to clients wanting information
about a different client's desire to map windows. A window is considered
mapped when a map window request completes. The XWIN server generates
this event whenever a different client initiates a map window request on an
unmapped window whose overrideJedirect member is set to False. aients
initiate map window requests by calling XMapWindow, XMapRaised, or XMap­
Subwindows.

To receive MapRequest events, set the SubstruetureRedirectMask bit in the
event-mask attribute of the window. This means another client's attempts to
map a child window by calling one of the map window request functions is
intercepted, and you are sent a MapRequest instead. For example, suppose a
client application calls XMapWindow to map a window. If you (usually a win­
dow manager) had selected SubstruetureRedireetMask on the parent window
and if the override-redirect attribute of the window is set to False, the XWIN
server reports a MapRequest event to you and does not map the specified win­
dow. Thus, this event gives your window manager client the ability to control
the placement of subwindows.

The structure for this event type contains:

typedef atruct (

int type; 1* MapRequest *1
Wl8igneci long .. rial; 1* • of laat xequut pxooeaaed by aerv.u: *1
Bool "M_evant; 1* true if thia ~ frail a SendBwnt request *1
Display *c:liaplay; 1* Display the .Wrlt was wad frail *1
Window parent;

Window window;

) XMapRequeatawnt:;

The parent member is set to the parent window. The window member is set to
the window to be mapped.

Xwln GWS: Xllb - C Language Interface

Event Processing

ReslzeRequest Events

The XWIN server can report ResizeRequest events to clients wanting informa­
tion about another client's attempts to change the size of a window. The XWIN
server generates this event whenever some other client attempts to change the
size of the specified window by calling XConfigureWindow, XResizeWindow, or
XHoveResizeWindow.

To receive ResizeRequest events, set the ResizeRedirect bit in the event­
mask attribute of the window. Any attempts to change the size by other clients
are then redirected.

The structure for this event type contains:

typedef stmct (

int type; 1* ReaizeRequeat *1
unsignecllonq .. rial; 1* • of last J:eqUUt procesHd. by server *1
Bool aend_4Mmt; 1* true if this came frcm a SendBvent request *1
Display *display; 1* Display the .WIlt " .. wad frcm *1
Window window;

int width, height;
} xaesizeRequestBvent;

The window member is set to the window whose size another client attempted
to change. The width and height members are set to the inside size of the win­
dow, excluding the border.

Coiormap State Change Events

The XWIN server' can report ColormapNotify events to clients wanting informa­
tion about when the colormap changes and when a colormap is installed or
uninstalled. The XWIN server generates this event type whenever a client appli­
cation:

• Changes the colormap member of the XSetWindowAttributes structure
by calling XChanqeWindowAttributes, XFreeColormap, or XSetWin­
dowColormap

Events and Event-Handling Functions 8-47

Event Proce88lng

• Installs or uninstalls the colonnap by calling XlnstallColomap or XUn­
installColomap

To receive ColomapNotify events, set the ColomapChangeMask bit in the
event-mask attribute of the window.

The structure for this event type contains:

typedef struct (
int type; 1* ColoJ:lllllpliotify *1
unaigned. 1009 .. rial; 1* • of last J:eqU8st p=oeuecl by .. rwr *1
Bool .. neU_WIlt; 1* true if this came fraa & Senc:lBvent mquest *1
Display *display; 1* Display the event vu mad fraa *1
Window window;

Colomap aolomap; 1* aoloaaap or Hone *1
Bool new;
int atate; 1* ColoaaapInstalled, ColomapUninatalled *1

) XColomapBvent;

The window member is set to the window whose associated colormap is
changed, installed, or uninstalled. For a colormap that is changed, installed,
or uninstalled, the colormap member is set to the colormap associated with the
window. For a colormap that is changed by a call to XFreeColomap, the
colormap member is set to None. The new member is set to indicate whether
the colormap for the specified window was changed or installed or uninstalled
and can be True or False. If it is True, the colormap was changed. If it is
False, the colormap was installed or uninstalled. The state member is always
set to indicate whether the colormap is installed or uninstalled and can be
Colomaplnstalled or ColomapUninstalled.

Client Communication Eveflts

This section discusses:

• Cl1entMessage events

• PropertyNotifyevents

Xwln GWS: Xllb - C Language Interface

Event Processing

• Select!onClear events

• Select!onNot!fy events

• Select!onRequest events

ClientMessage Events

The XWIN server generates Cl!entMessaqe events only when a client calls the
function XSendEvent.

The structure for this event type contains:

typedaf Btruct {

int tJP8; 1* ClientMass81j18 *1
unsigned long' .. rial;l* t of laBt request procesaed by aerwr *1
8001 Mnd._evant;
Display *display;
Window window;

Atcm IIIISsaga_tJP8;

int fomat;

union (

) data;

} lIClientMus8ljl8Bvent;

1* true if this came frcm & SendBvent request *1
1* Display the event was J:e&d frcm *1

char b[20];

abort s [10];

long' 1[5];

The window member is set to the window to which the event was sent. The
message_type member is set to an atom that indicates how the data should be
interpreted by the receiving client. The format member is set to 8, 16, or 32 and
specifies whether the data should be viewed as a list of bytes, shorts, or longs.
The data member is a union that contains the members b, s, and I. The b, s, and
I members represent data of 20 8-bit values, 10 16-bit values, and 5 32-bit values.
Particular message types might not make use of all these values. The XWIN
server places no interpretation on the values in the message_type or data
members.

Events and Event-Handling Functions 8-49

Event Processing

PropertyNotlfy Events

The XWIN server can report PropertyNotify events to clients wanting infonna­
tion about property changes for a specified window.

To receive PropertyNotify events, set the PropertyChangeMask bit in the
event-mask attribute of the window.

The structure for this event type contains:

typedef struct {

int type;

unaigneci lonq .. rial;

Bool lIeIId_ewnt;

Display *display;

Window vindow;

AtOll atOlD;

Time time;

int state;

} XPropertyBvent;

1* PropertyNotify *1
1* t of last wqueat proouaeci by II8J:'VU *1
1* true if thia came fJ:all a SendBwnt x.queat *1
1* Display the eWlllt v .. read fJ:all *1

1* PropertyHewValue or PropertyDeleted *1

The Window member is set to the window whose associated property was
changed. The atom member is set to the property's atom and indicates which
property was changed or desired. The time member is set to the server time
when the property was changed. The state member is set to indicate whether
the property was changed to a new value or deleted and can be Proper­
tyNewValue or PropertyDelete. The state member is set to Proper­
tyNewValue when a property of the window is changed using XChangePro­
perty or XRotateWiridOwProperties (even when adding zero-length data
using XChangeProperty) and when replacing all or part of a property with
identical data using XChangeProperty or XRotateWindowProperties. The
state member is set to PropertyDeleted when a property of the window is
deleted using XDeleteProperty or, if the delete argument is True, XGetWin­
dowProperty.

8-50 Xwln GWS: Xllb - C Language Interface

Event ProcessIng

SelectlonClear Events
The XWIN server reports SelectionClear events to the current owner of a
selection. The XWIN server generates this event type on the window losing
ownership of the selection to a new owner. This sequence of events could occur
whenever a client calls XSetSelectionOwner.

The structure for this event type contains:

typedaf IItNOt (

1m: t:ype; /* SelegtiOllC1ear */
UDaignecllon!r .. rial; /* • of ullt nqgeat proaeaMCl by aerwr */
1001 aend._ewnt; /* tme if tbia a.- fma a llendllvct nqlaat */
Diaplay *diaplay; /* Diaplay the .WIlt read. fma */
WiDdDv tdnckN;
Atea .. legtioD;

Tu. tu.;
• XSel.eCItiOllCl.eaJ:IIwnt;

The window member is set to the window losing ownership of the selection.
The selection member is set to the selection atom. The time member is set to
the last change time recorded for the selection. The owner member is the win­
dow that was specified by the current owner in its XSetSelectionOwner call.

SelectlonRequest Events

The XWIN server reports SelectionRequest events to the owner of a selection.
The XWIN server generates this event whenever a client requests a selection
conversion by calling XConvertSelection and the specified selection is owned
bya window.

The structure for this event type contains:

Events and Event-Handling FunctIon. 8-51

Event Processing

typedef struct {
int type;

unsigned long .. rial;

Bool send_event;

Display *display;
Window owner;

Window requestor;

Atcm aelection;
Atcm target;

Atcm property;

Tu. tu.;

} XSelectionRequestEvent;

/* SelectionRequest */

/* • of last request processed by server */
/* true if this came frcm a SenclBvent request */

/* Display the event wa. read frcm */

The owner member is set to the window owning the selection and is the win­
dow that was specified by the current owner in its XSetSelectionOwner call.
The requestor member is set to the window requesting the selection. The selec­
tion member is set to the atom that names the selection. For example, PRI­
MARY is used to indicate the primary selection. The target member is set to the
atom that indicates the type the selection is desired in. The property member
can be a property name or None. The time member is set to the time and is a
timestamp or CurrentTime from the ConvertSelection request.

The client who owns the selection should do the following:

• The owner client should convert the selection based on the atom con­
tained in the target member.

• If a property was specified (that is, the property member is set), the owner
client should store the result as that property on the requestor window
and then send a SelectionNotify event to the requestor by calling
XSendEvent with an empty event-mask; that is, the event should be sent
to the creator of the requestor window.

• If None is specified as the property, the owner client should choose a pro­
perty name on the requestor window and then send a SelectionNotify
event giving the actual name.

• If the selection cannot be converted as requested, the owner client should
send a SelectionNotify event with the property set to None.

8·52 Xwln GWS: Xllb - C Language Interface

Event ProC8sslng

SelectlonNotlfy Events

This event is generated by the XWlN server in response to a COnvertSelection
protocol request when there is no owner for the selection. When there is an
owner, it should be generated by the owner of the selection by using
XSendEvent. The owner of a selection should send this event to a requestor
when a selection has been converted and stored as a property or when a selec­
tion conversion could not be performed (which is indicated by setting the pro­
perty member to None).

If None is specified as the property in the COnvertSelection protocol request,
the owner should choose a property name, store the result as that property on
the requestor window, and then send a SelectiOnNotify giving that actual
property name.

The structure for this event type contains:

typedef atruct {

int t~; 1* SeleotiODNotify *1
unsigned 10Dl1 Mrial; 1* • of last wquest proaesseci by server *1
Bool send_event; 1* true if this CiIIIIIII frcm • SendBvent wqueat *1
Display *display; 1* Display the .wnt vas z:eacl frcm *1
Window wquestor;
Atcm Mleotion;
Atcm ta%get;

Atcm property;

Time tilDe;

} XSeleotionBvent;

1* .tcm or None *1

The requestor member is set to the window associated with the requestor of the
selection. The selection member is set to the atom that indicates the selection.
For example, PRIMARY is used for the primary selection. The target member is
set to the atom that indicates the converted type. For example, PIXMAP is used
for a pixmap. The property member is set to the atom that indicates which pro­
perty the result was stored on. If the conversion failed, the property member is
set to None. The time member is set to the time the conversion took place and
can be a timestamp or CurrentTime.

Events and Event-Handling Functions 8-53

Selecting Events

There are two ways to select the events you want reported to your client appli­
cation. One way is to set the event_mask member of the XSetWindowAttri­
butes structure when you call XCreateWindow and XChangeWindowAttri­
butes. Another way is to use XSelectlnput.

xs.leotIqlut (tiisl'lIIy, 10, IWPIU,uJSk)

DIsplay -tiisl'lIIyi
Winc:l0WlOi

long IWPIU".,ki

display Specifies the connection to the XWIN server.

w

event mask

Specifies the window whose events you are interested in.

Specifies the event mask.

The XSelectlnput function requests that the XWIN server report the events
associated with the specified event mask. Initially, X will not report any of
these events. Events are reported relative to a window. If a window is not
interested in a device event, it usually propagates to the closest ancestor that is
interested, unless the do _ notJ>ropagate mask prohibits it.

Setting the event-mask attribute of a window overrides any previous call for the
same window but not for other clients. Multiple clients can select for the same
events on the same window with the following restrictions:

• Multiple clients can select events on the same window because their event
masks are disjoint. When the XWIN server generates an event, it reports it
to all interested clients.

• Only one client at a time can select CirculateRequest, ConfigureRe­
quest, or MapRequest events, which are associated with the event mask
SubstructureReclirectMask .

• Only one client at a time can select a ResizeRequest event, which is
associated with the event mask ResizeRedirectMask.

• Only one client at a time can select a ButtonPress event, which is associ­
ated with the event mask ButtonPressMask.

The server reports the event to all interested clients.

XSelectlnput can generate a BadWindow error.

8-54 Xwln GWS: Xllb - C Language Interface

Handling the Output Buffer

The output buffer is an area used by Xlib to store requests. The functions
described in this section flush the output buffer if the function would block or
not return an event. That is, all requests residing in the output buffer that have
not yet been sent are transmitted to the XWIN server. These functions differ in
the additional tasks they might perform.

To flush the output buffer, use XFlush.

display

Xl!'luah (displlly)
Display ·displlly;

Specifies the connection to the XWIN server.

The XFlush function flushes the output buffer. Most client applications need
not use this function because the output buffer is automatically flushed as
needed by calls to Xl?ending, XNextEvent, and XWindowEvent. Events gen­
erated by the server may be enqueued into the library's event queue.

To flush the output buffer and then wait until all requests have been processed,
use XSync.

display

discard

XSyno (displily, disctud)

Display ·displlly;
Bool discard;

Specifies the connection to the XWIN server.

Specifies a Boolean value that indicates whether XSync discards
all events on the event queue.

The XSync function flushes the output buffer and then waits until all requests
have been received and processed by the XWIN server. Any errors generated
must be handled by the error handler. For each error event received by Xlib,
XSync calls the client application's error handling routine (see "Using the
Default Error Handlers" in this chapter). Any events generated by the server
are enqueued into the library's event queue.

Finally, if you passed False, XSync does not discard the events in the queue. If
you passed True, XSync discards all events in the queue, including those events
that were on the queue before XSync was called. Client applications seldom
need to call XSync.

Events and Event-Handling Functions 8-55

Event Queue Management

Xlib maintains an event queue. However, the operating system also may be
buffering data in its network connection that is not yet read into the event
queue.

To check the number of events in the event queue, use XEventsQueued.

int XBventlQleuad (displlly, mode)

display

mode

Display -displlly;
int mode;

Specifies the connection to the XWIN server.

Specifies the mode. You can pass QueuedAlready, QueuedAf­
terFlush,orQueuedAfterReading.

If mode is QueuedAlready, XEventsQueued returns the number of events
already in the event queue (and never performs a system call). If mode is
QueuedAfterFlush, XEventsQueued returns the number of events already in
the queue if the number is nonzero. If there are no events in the queue,
XEventsQueued flushes the output buffer, attempts to read more events out of
the application's connection, and returns the number read. If mode is
QueuedAfterReading, XEventsQueued returns the number of events already in
the queue if the number is nonzero. If there are no events in the queue,
XEventsQueued attempts to read more events out of the application's connec­
tion without flushing the output buffer and returns the number read.

XEventsQueued always returns immediately without I/O if there are events
already in the queue. XEventsQueued with mode QueuedAfterFlush is identi­
cal in behavior to XPending. XEventsQueued with mode QueuedAlready is
identical to the XQLength function.

To return the number of events that are pending, use XPending.

int XPendinq(display)

Display -displlly;

display Specifies the connection to the XWIN server.

The XPending function returns the number of events that have been received
from the XWIN server but have not been removed from the event queue. XPend­
ing is identical to XEventsQueued with the mode QueuedAfterFlush specified.

8-56 Xwln GWS: Xllb - C Language Interface

Manipulating the Event Queue

Xlib provides functions that let you manipulate the event queue. The next three
sections discuss how to:

• Obtain events, in order, and remove them from the queue

• Peek at events in the queue without removing them

• Obtain events that match the event mask or the arbitrary predicate pro­
cedures that you provide

Returning the Next Event

To get the next event and remove it from the queue, use XNextEvent.

XNextBwnt (display, eventJeturn>

Display ·displaYi
XEvent ·eventJeturni

display

event return

Specifies the connection to the XWIN server.

Returns the next event in the queue.

The XNextEvent function copies the first event from the event queue into the
specified XEvent structure and then removes it from the queue. If the event
queue is empty, XNextEvent flushes the output buffer and blocks until an event
is received.

To peek at the event queue, use XPeekEvent.

XPeekEvent (display, eventJeturn>

Display ·displaYi
XEvent ·eventJeturn;

display

event return

Specifies the connection to the XWIN server.

Returns a copy of the matched event's associated structure.

The XPeekEvent function returns the first event from the event queue, but it
does not remove the event from the queue. If the queue is empty, XPeekEvent
flushes the output buffer and blocks until an event is received. It then copies
the event into the client-supplied XEvent structure without removing it from
the event queue.

Events and Event-Handling Functions 8-57

Manipulating the Event Queue

Selecting Events Using a Predicate Procedure

Each of the functions discussed in this section requires you to pass a predicate
procedure that determines if an event matches what you want. Your predicate
procedure must decide only if the event is useful and must not call Xlib func­
tions. In particular, a predicate is called from inside the event routine, which
must lock data structures so that the event queue is consistent in a multi­
threaded environment.

The predicate procedure and its associated arguments are:

display

event

arg

Bool (*predic4ate)(display, event, arg)
Display "display;
XEvent "event;
char "arg;

Specifies the connection to the XWIN server.

Specifies a pointer to the XEvent structure.

Specifies the argument passed in from the XlfEvent,
XChecklfEvent, or Xl?eeklfEvent function.

The predicate procedure is called once for each event in the queue until it finds
a match. After finding a match, the predicate procedure must return True. If it
did not find a match, it must return False.

To check the event queue for a matching event and, if found, remove the event
from the queue, use XlfEvent.

XIfBvent (display, eventJeturn, predicate, arg)
Display "display;
XEvent "event_return;
Bool ("predicate)O;
char "arg;

display

event return

Specifies the connection to the XWIN server.

Returns the matched event's associated structure.

8-58 Xwln GWS: Xllb - C Language Interface

Manipulating the Event Queue

predicate Specifies the procedure that is to be called to determine if the
next event in the queue matches what you want.

arg Specifies the user-supplied argument that will be passed to the
predicate procedure.

The XlfEvent function completes only when the specified predicate procedure
returns True for an event, which indicates an event in the queue matches.
XIfEvent flushes the output buffer if it blocks waiting for additional events.
XlfEvent removes the matching event from the queue and copies the structure
into the client-supplied XEvent structure.

To check the event queue for a matching event without blocking, use
XChecklfEvent.

display

Boo1 XCbecItItBvant (display, eventJeturn, prediCllU, Rrg)

Display ·display;
XEvent ·eventJeturn;
Bool (·predicate)O;
char ·Rrg;

Specifies the connection to the XWlN server.

event return

predicate

Returns a copy of the matched event's associated structure.

Specifies the procedure that is to be called to determine if the
next event in the queue matches what you want.

arg Specifies the user-supplied argument that will be passed to the
predicate procedure.

When the predicate procedure finds a match, XChecklfEvent copies the
matched event into the client-supplied XEvent structure and returns True.
(This event is removed from the queue.) If the predicate procedure finds no
match, XChecklfEvent returns False, and the output buffer will have been
flushed. All earlier events stored in the queue are not discarded.

To check the event queue for a matching event without removing the event
from the queue, use XPeeklfEvent.

Events and Event-Handling Functions 8-59

Manipulating the Event Queue

XPeekIfBv.nt (displq, ewnt J,fIlm, predicate, IIrg)

DIsplay ·displqi
XEvent ·ewntJ,fIlmi
Bool (·predit:ate)()i

char ·argi

display Specifies the connection to the XWIN server.

event return Returns a copy of the matched event's associated structure.

predicate Specifies the procedure that is to be called to determine if the
next event in the queue matches what you want.

arg Specifies the user-supplied argument that will be passed to the
predicate procedure.

The XPeeklfEvent function returns only when the specified predicate pro­
cedure returns True for an event. After the predicate procedure finds a match,
XPeeklfEvent copies the matched event into the client-supplied XEvent struc­
ture without removing the event from the queue. XPeeklfEvent flushes the
output buffer if it blocks waiting for additional events.

Selecting Events Using a Window or Event Mask

The functions discussed in this section let you select events by window or event
types, allowing you to process events out of order.

To remove the next event that matches both a window and an event mask, use
XWinciowEvent.

display

XIfinciowBwnt (displq, w, ewnU"lISk, ewntJtfllm)
DIsplay ·displqi
Window Wi

long ewnU"lISki
XEvent ·ewnt_refllmi

Specifies the connection to the XWIN server.

Xwln GWS: Xllb - C Language Interface

Manipulating the Event Queue

w

event mask

event return

Specifies the window whose events you are interested in.

Specifies the event mask.

Returns the matched event's associated structure.

The XWindowEvent function searches the event queue for an event that matches
both the specified window and event mask. When it finds a match, XWin­
dowEvent removes that event from the queue and copies it into the specified
XEvent structure. The other events stored in the queue are not discarded. If a
matching event is not in the queue, XWindowEvent flushes the output buffer and
blocks until one is received.

To remove the next event that matches both a window and an event mask (if
any), use XCheckWindowEvent. This function is similar to XWindowEvent except
that it never blocks and it returns a 8001 indicating if the event was returned.

display

w

Bool XChecltWindowEvent (displtzy, w, eTIf!1It_mask, euentJeturn>
Display ·displlly;
Windoww;
long eTIf!1It _mask;
XEvent ·euentJeturn;

Specifies the connection to the XWIN server.

event mask

event return

Specifies the window whose events you are interested in.

Specifies the event mask.

Returns the matched event's associated structure.

The XCheckWindowEvent function searches the event queue and then the events
available on the server connection for the first event that matches the specified
window and event mask. If it finds a match, XCheckWindowEvent removes that
event, copies it into the Specified XEvent structure, and returns True. The other
events stored in the queue are not discarded. If the event you requested is not
available, XCheckWindowEvent returns False, and the output buffer will have
been flushed.

To remove the next event that matches an event mask, use XMaskEvent.

Events and Event-Handling Functions 8-61

Manipulating the Event Queue

XMulcBvent (display, mmunask, mmt Jdurn)
DIsplay ·tlispllly;
long mmt_mask;
XEvent ·mmt J,turn;

display

event mask

event return

Specifies the connection to the XWIN server.

Specifies the event mask.

Returns the matched event's associated structure.

The XMaskEvent function searches the event queue for the events associated
with the specified mask. When it finds a match, XMaskEvent removes that
event and copies it into the specified XEvent structure. The other events stored
in the queue are not discarded. If the event you requested is not in the queue,
XMaskEvent flushes the output buffer and blocks until one is received.

To return and remove the next event that matches an event mask (if any), use
XCheckMaskEvent. This function is similar to XMaskEvent except that it never
blocks and it returns a Bool indicating if the event was returned.

Bool lICheckMaaIcEwnt (displlly, mmt_mask, mmtJ,turn)

DIsplay • tlispllty;
long mmt_mask;
XEvent ·mmt J,turn;

display

event mask

event return

Specifies the connection to the XWIN server.

Specifies the event mask.

Returns the matched event's associated structure.

The XCheckMaskEvent function searches the event queue and then any events
available on the server connection for the first event that matches the specified
mask. If it finds a match, XCheckMaskEvent removes that event, copies it into
the specified XEvent structure, and returns True. The other events stored in
the queue are not discarded. If the event you requested is not available,
XCheckMaskEvent returns False, and the output buffer will have been flushed.

To return and remove the next event in the queue that matches an event type,
use XCheckTypedEvent.

8-62 Xwln GWS: Xllb - C Language Interface

Manipulating the Event Queue

Bool XCbeclt'J.'ypedBv8nt (displlly, euenUype, euenUehml)
Display -displlly;

display

event_type

event return

Specifies the connection to the XWIN server.

Specifies the event type to be compared.

Returns the matched event's associated structure.

The XCheckTypedEvent function searches the event queue and then any events
available on the server connection for the first event that matches the specified
type. If it finds a match, XCheckTypedEvent removes that event, copies it into
the specified XEvent structure, and returns True. The other events in the queue
are not discarded. If the event is not available, XCheckTypedEvent returns
False, and the output buffer will have been flushed.

To return and remove the next event in the queue that matches an event type
and a window, use XCheckTypedWindowEvent.

display

w

Bool lICbaolt!ypec11findowBwnt (displ4y, w, euenUype, euenuehml)
Display -displ4y;
Windoww;
int eflmUype;
XEvent -euent_retum;

Specifies the connection to the XWIN server.

Specifies the window.

event_type

event return

Specifies the event type to be compared.

Returns the matched event's associated structure.

The XCheckTypedWindowEvent function searches the event queue and then any
events available on the server connection for the first event that matches the
specified type and window. If it finds a match, XChe.ckTypedWindowEvent
removes the event from the quepe, copies it into the specified XEvent structure,
and returns True. The other events in the queue are not discarded. If the event
is not available, xCheckTypedWindowEvent returns False, and the output
buffer will have been flushed.

Events and Event-Handling Functions 8-63

Putting an Event Back into the Queue

To push an event back into the event queue, use Xl?utBackEvent.

display

event

XPutBacIcBwnt (displAy, event)

Display ·disl'lIlYi
XEvent ·eventi

Specifies the connection to the XWIN server.

Specifies a pointer to the event.

The Xl?utBackEvent function pushes an event back onto the head of the
display's event queue by copying the event into the queue. This can be useful if
you read an event and then decide that you would rather deal with it later.
There is no limit to the number of times in succession that you can call
XPutBackEvent.

8-64 Xwln GWS: Xllb - C Language Interface

Sending Events to Other Applications

To send an event to a specified window, use XSendEvent. This function is often
used in selection processing. For example, the owner of a selection should use
XSendEvent to send a SelectionNotify event to a requestor when a selection
has been converted and stored as a property.

Statua XSendBvent (displily, w, pn1pQgate, eTJe1IU""sk, eTJe1It_send)
Display "displily;
Windoww;

Bool prtJptagau;

long eTJe1IUnllSk;
XEvent "eTJe1It_send;

display Specifies the connection to the XWIN server.

w Specifies the window the event is to be sent to, PointerWindow,
or InputFocus.

propagate

event mask

event send

Specifies a Boolean value.

Specifies the event mask.

Specifies a pointer to the event that is to be sent.

The XSendEvent function identifies the destination window, determines which
clients should receive the specified events, and ignores any active grabs. This
function requires you to pass an event mask. For a discussion of the valid event
mask names, see "Event Masks" in this chapter. This function uses the w argu­
ment to identify the destination window as follows:

• If w is PointerWindow, the destination window is the window that con­
tains the pointer.

• If w is InputFocus and if the focus window contains the pointer, the des­
tination window is the window that contains the pointer; otherwise, the
destination window is the focus window.

To determine which clients should receive the specified events, XSendEvent
uses the propagate argument as follows:

• If event_mask is the empty set, the event is sent to the client that created
the destination window. If that client no longer exists, no event is sent.

Events and Event-Handling Functions 8-65

Sending Events to Other Applications

• If propagate is False, the event is sent to every client selecting on desti­
nation any of the event types in the event_mask argument.

• If propagate is True and no clients have selected on destination any of the
event types in event-mask, the destination is replaced with the closest
ancestor of destination for which some client has selected a type in event­
mask and for which no intervening window has that type in its do-not­
propagate-mask. If no such window exists or if the window is an ancestor
of the focus window and InputFocus was originally specified as the des­
tination, the event is not sent to any clients. Otherwise, the event is
reported to every client selecting on the final destination any of the types
specified in event_mask.

The event in the XEvent structure must be one of the core events or one of the
events defined by an extension (or a BadValue error results> so that the XWIN
server can correctly byte-swap the contents as necessary. The contents of the
event are otherwise unaltered and unchecked by the XWIN server except to force
send event to True in the forwarded event and to set the serial number in the
event correctly.

XSendEvent returns zero if the conversion to wire protocol format failed and
returns nonzero otherwise.

XSenciEvent can generate BadValue and BadWindow errors.

8-66 Xwln GWS: Xllb - C Language Interface

Getting Pointer Motion History

Some XWIN server implementations will maintain a more complete history of
pointer motion than is reported by event notification. The pointer position at
each pointer hardware interrupt may be stored in a buffer for later retrieval.
This buffer is called the motion history buffer. For example, a few applications,
such as paint programs, want to have a precise history of where the pointer
traveled. However, this historical information is highly excessive for most appli­
cations.

To determine the size of the motion buffer, use XDisplayMotiOnBufferSize.

unaigneci lonq XDiaplayMc)tionBufferSize (displtly)
Display "displtly;

display Specifies the connection to the XWIN server.

The server may retain the recent history of the pointer motion and do so to a
finer granularity than is reported by MotionNotify events.
The XGetMotionEvents function makes this history available.

To get the motion history for a specified window and time,
use XGetMotionEvents.

display

X'limaCocml *XGetMgtionBwnta (display, 10, sl4rt, stop, netIC1Its-"elum)
Display "displtly;
Window 10;

Time sl4rt, stop;
int "netIC1Its -"fllum;

Specifies the connection to the XWIN server.

Specifies the window. w

start
stop Specify the time interval in which the events are returned from

the motion history buffer. You can pass a timestamp or
Current Time.

nevents return
Returns the number of events from the motion history buffer.

Events and Event-Handling Functions 8-67

Getting Pointer Motion History

The XGetMotionEvents function returns all events in the motion history buffer
that fall between the specified start and stop times, inclusive, and that have
coordinates that lie within the specified window (including its borders) at its
present placement. If the start time is later than the stop time or if the start
time is in the future, no events are returned. If the stop time is in the future, it
is equivalent to specifying Current'rime. The retum type for this function is a
structure defined as follows:

typedef atruct {
Time time;
abort x, y;

} X'limaCooz:d;

The time member is set to the time, in milliseconds. The x and y members are
set to the coordinates of the pointer and are reported relative to the origin of the
Specified window. To free the data returned from this call, use XFree.

XGetMotionEvents can generate a BadWindow error.

8-68 Xwln GWS: Xllb - C Language Interface

Handling Error Events

Xlib provides functions that you can use to enable or disable synchronization
and to use the default error handlers.

Enabling or Disabling Synchronization

When debugging X applications, it often is very convenient to require Xlib to
behave synchronously so that errors are reported as they occur. The following
function lets you disable or enable synchronous behavior. Note that graphics
may occur 30 or more times more slowly when synchronization is enabled. On
UNIX-based systems, there is also a global variable _Xdebuq that, if set to
nonzero before starting a program under a debugger, will force synchronous
library behavior.

After completing their work, all Xlib functions that generate protocol requests
call what is known as an after function. XSetAfterFunction sets which func­
tion is to be called.

int (*XSetAfterl'lmction (displily, proceduu»O
Display ·displily;

display

procedure

lot (·",.aceduu)0;

Specifies the connection to the XWIN server.

Specifies the function to be called after an Xlib function that
generates a protocol request completes its work.

The specified procedure is called with only a display pointer. XSetAfterFunc­
tion returns the previous after function.

To enable or disable synchronization, use XSynchronize.

display

int (*XSyncbronize (displily, onoff»O
Display ·displilyi
Bool onoffi

Specifies the connection to the XWIN server.

Events and Event-Handling Functions 8-69

Handling Error Events

orwff Specifies a Boolean value that indicates whether to enable or dis­
able synchronization.

The XSynchronize function returns the previous after function. If onoff is
True, XSynchronize turns on synchronous behavior. If onoff is False, XSyn­
chronize turns off synchronous behavior.

Using the Default Error Handlers

There are two default error handlers in Xlib: one to handle typically fatal condi­
tions (for example, the connection to a display server dying because a machine
crashed) and one to handle error events from the XWIN server. These error
handlers can be changed to user-supplied routines if you prefer your own error
handling and can be changed as often as you like. If either function is passed a
NULL pointer, it will reinvoke the default handler. The action of the default
handlers is to print an explanatory message and exit.

To set the error handler, use XSetErrorHanciler.

XSetErrorHancUer (handler)

int (·handler)(Display ., XErrorEvent .)

handler Specifies the program's supplied error handler.

Xlib generally calls the program's supplied error handler whenever an error is
received. It is not called on BadName errors from OpenFont, LookupColor, or
AllocNamedColor protocol requests or on Ba<iFont errors from a QueryFont
protocol request. These errors generally are reflected back to the program
through the procedural interface. Because this condition is not assumed to be
fatal, it is acceptable for your error handler to return. However, the error
handler should not call any functions (directly or indirectly) on the display that
will generate protocol requests or that will look for input events.

The XErrorEvent structure contains:

8-70 Xwln GWS: Xllb - C Language Interface

Handling Error Events

typedef atruct {

int type;

Display "'display;

unaigned. lCXll1 .. rial;

unaigned. CIbar error_code;

unaigned. CIbar wqueat_CIOde;

unaigned. CIbar minor_code;

XID waouraeid;

} XBrroJ:Bvent;

1* Display the ewnt vas read freD *1
1* aerial number of failed request *1
1* error code of failed request *1
1* Major op-coda of failed request *1
1* Minor op-coda of failed request *1
1* W80urCIe id *1

The serial member is the number of requests, starting from one, sent over the
network connection since it was opened. It is the number that was the value of
NextRequest immediately before the failing call was made. The request_code
member is a protocol request of the procedure that failed, as defined in
< Xll/Xproto. h >. The following error codes can be returned by the functions
described in this chapter:

Error Code

BadAccess

BaclAlloc

Description

A client attempts to grab a key Ibutton combi­
nation already grabbed by another client.

A client attempts to free a colormap entry that
it had not already allocated.

A client attempts to store into a read-only or
unallocated colormap entry.

A client attempts to modify the access control
list from other than the local (or otherwise
authorized) host.

A client attempts to select an event type that
another client has already selected.

The server fails to allocate the requested
resource. Note that the explicit listing of

Events and Event-Handling Functions 8-71

Handling Error Events

Error Code

BadAtom

BadColor

BadCursor

BadDrawable

BadFont

BadGe

BadIDChoice

BadImplemen­
tat ion

8-72

Description

BadAlloc errors in requests only covers alloca­
tion errors at a very coarse level and is not
intended to (nor can it in practice hope to)
cover all cases of a server running out of allo­
cation space in the middle of service. The
semantics when a server runs out of allocation
space are left unspecified, but a server may
generate a BadAlloc error on any request for
this reason, and clients should be prepared to
receive such errors and handle or discard them.

A value for an atom argument does not name a
defined atom.

A value for a colormap argument does not
name a defined colormap.

A value for a cursor argument does not name a
defined cursor.

A value for a drawable argument does not
name a defined window or pixmap.

A value for a font argument does not name a
defined font (or, in some cases, GContext).

A value for a GContext argument does not
name a defined GContext.

The value chosen for a resource identifier
either is not included in the range assigned to
the client or is already in use. Under normal
circumstances, this cannot occur and should be
considered a server or Xlib error.

The server does not implement some aspect of
the request. A server that generates this error

Xwln GWS: Xllb - C Language Interface

Error Code

BadLength

BadMatch

BadName

BadPixmap

BadRequest

BadValue

Handling Error Events

Description

for a core request is deficient. As such, this
error is not listed for any of the requests, but
clients should be prepared to receive such
errors and handle or discard them.

The length of a request is shorter or longer
than that required to contain the arguments.
This is an internal Xlib or server error.

The length of a request exceeds the maximum
length accepted by the server.

In a graphics request, the root and depth of the
graphics context does not match that of the
drawable.

An Inputonly window is used as a drawable.

Some argument or pair of arguments has the
correct type and range, but it fails to match in
some other way required by the request.

An Inputonly window lacks this attribute.

A font or color of the specified name does not
exist.

A value for a pixmap argument does not name
a defined pixmap.

The major or minor opcode does not specify a
valid request. This usually is an Xlib or server
error.

Some numeric value falls outside of the range
of values accepted by the request. Unless a
specific range is specified for an argument, the
full range defined by the argument's type is
accepted. Any argument defined as a set of

Events and Event-Handling Functions 8-73

Handling Error Events

Error Code Description

alternatives typically can generate this error
(due to the encoding).

BadWindow A value for a window argument does not
name a defined window.

The BadAtom, BadColor, BadCursor, BadDrawable, BadFont, BadGC,Bad­
Pixmap, and BadWindow errors are also used when the argument type is
extended by a set of fixed alternatives.

To obtain textual descriptions of the specified error code, use XGetErrorText.

display

code

XGetBrrorText (display, rode, buffer_return, length)
Display -display;

int code;
char -buffer_return;
int length;

Specifies the connection to the XWIN server.

Specifies the error code for which you want to obtain a descrip­
tion.

buffer Jeturn

length

Returns the error description.

Specifies the size of the buffer.

The XGetErrorText function copies a null-terminated string describing the
specified error code into the specified buffer. It is recommended that you use
this function to obtain an error description because extensions to Xlib may
define their own error codes and error strings.

To obtain error messages from the error database, use XGetErrorData­
baseText.

8-74 Xwln GWS: Xllb - C Language Interface

Handling Error Events

display

name

XGetBrrorDataDue~xt (display, nAme, mesll48e, default _string, buffer _ rehml, length)

Display -displAy;
char -_, -mesll48e;

char -default_string;
char -buffer_return;
tnt length;

Specifies the connection to the XWIN server.

Specifies the name of the application.

Specifies the type of the error message. message

default_string Specifies the default error message if none is found in the data­
base.

buffer Jetum

length

Returns the error description.

Specifies the size of the buffer.

The XGetErrorDatabaseText function returns a message (or the default mes­
sage) from the error message database. Xlib uses this function internally to look
up its error messages. On a UNIX-based system, the error message database is
/usr/X/lib/XErrorDB.

The name argument should generally be the name of your application. The
message argument should indicate which type of error message you want. Xlib
uses three predefined message types to report errors (uppercase and lowercase
matter):

XProtoError The protocol error number is used as a string for the message
argument.

XlibMessage These are the message strings that are used internally by the
library.

XRequest The major request protocol number is used for the message
argument. If no string is found in the error database, the
default_string is returned to the buffer argument.

To report an error to the user when the requested display does not exist, use
XDisplayName •

Events and Event-Handling Functions 8-75

Handling Error Events

char *XOiaplayHame (string)
char ·string;

string Specifies the character string.

The XDisplayName function returns the name of the display that XOpenDisplay
would attempt to use. If a NULL string is specified, XDisplayName looks in the
environment for the display and returns the display name that XOpenDisplay
would attempt to use. This makes it easier to report to the user precisely which
display the program attempted to open when the initial connection attempt
failed.

To handle fatal I/O errors, use XSetIOErrorHandler.

handler

XSetICBrrorHandler (lumdler)

int (·Iumd1er)(Dlsplay .);

Specifies the program's supplied error handler.

The XSetIOErrorHandler sets the fatal I/O error handler. Xlib calls the
program's supplied error handler if any sort of system call error occurs (for
example, the connection to the server was lost). This is assumed to be a fatal
condition, and the called routine should not return. If the I/O error handler
does return, the client process exits.

8-76 Xwln GWS: Xllb - C Language Interface

9 Predefined Property Functions

Introduction 9-1

Communicating with Window Managers 9-2
Setting Standard Properties 9-4
Setting and Getting Window Names 9-6
Setting and Getting Icon Names 9-7
Setting the Command 9-8
Setting and Getting Window Manager Hints 9-9
Setting and Getting Window Sizing Hints 9-12
Setting and Getting Icon Size Hints 9-17
Setting and Getting the Class of a Window 9-18
Setting and Getting the Transient Property 9-20

Manipulating Standard Colormaps 9-22
Standard Colormaps 9-23
Standard Colormap Properties and Atoms 9-24
Getting and Setting an XStandardColormap Structure 9-26

Table of Contents

Introduction

There are a number of predefined properties for information commonly associ­
ated with windows. The atoms for these predefined properties can be found in
< Xll/xatom.h >, where the prefix XA_ is added to each atom name.

Xlib provides functions that you can use to perform operations on predefined
properties. This chapter discusses how to:

• Communicate with window managers

• Manipulate standard colormaps

Predefined Property Functions 9-1

Communicating with Window Managers

This section discusses a set of properties and functions that are necessary for
clients to communicate effectively with window managers. Some of these pro­
perties have complex structures. Because all the data in a single property on the
server has to be of the same format (8-bit, 16-bit, or 32-bit) and because the C
structures representing property types cannot be guaranteed to be uniform in
the same way, Set and Get functions are provided for properties with complex
structures.

These functions define but do not enforce minimal policy among window
managers. Writers of window managers are urged to use the information in
these properties rather than invent their own properties and types. A window
manager writer, however, can define additional properties beyond this least
common denominator.

In addition to Set and Get functions for individual properties, Xlib includes one
function, XSetStanciar<iProperties, that sets all or portions of several proper­
ties. Applications are encouraged to provide the window manager more infor­
mation than is possible with XSetStanciar<iProperties. To do so, they should
call the Set functions for the additional or specific properties that they need.

To work well with most window managers, every application should specify the
following information:

• Name of the application

• Name to be used in the icon

• Command used to invoke the application

• Size and window manager hints

Xlib does not set defaults for the properties described in this section. Thus, the
default behavior is determined by the window manager and may be based on
the presence or absence of certain properties. All the properties are considered
to be hints to a window manager. When implementing window management
policy, a window manager determines what to do with this information and can
ignore it.

9-2 Xwln GWS: Xllb - C Language Interface

Communicating with Window Managers

The supplied properties are:

Name Type Format Description

WM_NAME STRING 8 Name of the application.

WM_ICON_NAME STRING 8 Name to be used in icon.

WM_NORMALJ-IINTS WM_SIZE_HINI'S 32 Size hints for a window in its normal
state. The C type of this property is
XSizeHintB.

WM_ZOOM_HINI'S WM_SIZE_HINI'S 32 Size hints for a zoomed window. The
C type of this property is XSizeHintB.

WM_HINfS WM_HINI'S 32 Additional hints set by client for use by
the window manager. The C type of
this property is DMiintB.

WM_COMMAND STRING 8 The command and arguments,
separated by ASCI nulls, used to
invoke the application.

WM_ICON_SIZE WM)CON_SIZE 32 The window manager may set this pro-
perty on the root window to specify the
icon sizes it supports. The C type of
this property is XlconSize.

WM_CLASS STRING 32 Set by application programs to allow
window and session managers to
obtain the application's resources from
the resource database.

WM_TRANSIENT_FOR WINDOW 32 Set by application programs to indicate
to the window manager that a transient
top-level window, such as a dialog box,
is not really a normal application win-
dow.

Predefined Property Functions 9-3

Communicating with Window Managers

The atom names stored in < Xll/xatom.h > are named XA_PROPERTY_NAME.

Xlib provides functions that you can use to set and get predefined properties.
Note that calling the Set function for a property with complex structure
redefines all members in that property, even though only some of those
members may have a specified new value. Simple properties for which Xlib
does not provide a Set or Get function can be set by using XChangeProperty,
and their values can be retrieved using XGetWinciowProperty. The remainder
of this section discusses how to:

• Set standard properties

• Set and get the name of a window

• Set and get the icon name of a window

• Set the command and arguments of the application

• Set and get window manager hints

• Set and get window size hints

• Set and get icon size hints

• Set and get the class of a window

• Set and get the transient property for a window

Setting Standard Properties

To specify a minimum set of properties describing the "quickie" application, use
XSetStandardProperties. This function sets all or portions of the
WM_NAME, WMJCON_NAME, WM_HINTS, WM_COMMAND, and
WM _NORMAL_HINTS properties.

Xwln GWS: Xllb - C Language Interface

display

w

Communicating with Window Managers

XSetStanclardPropert ies (display, w, window _7IImze, icon _711117II!, icon yixmap, IlTg'l1, IlTgC, hints)
Display ·display;
Windoww;
char ·window_711117II!;
char ·icon_711117II!;
Pixmap icon yixmap;
char "llTgl1;

int IlTgc;

XSizeHints ·hints;

Specifies the connection to the XWIN server.

Specifies the window.

window name Specifies the window name, which should be a null-terminated
string.

icon name

iconyixmap

argv

argc

hints

Specifies the icon name, which should be a null-terminated
string.

Specifies the bitmap that is to be used for the icon or None.

Specifies the application's argument list.

Specifies the number of arguments.

Specifies a pointer to the size hints for the window in its normal
state.

The XSetStandardProperties function provides a means by which simple
applications set the most essential properties with a single call. XSetStan­
dardProperties should be used to give a window manager some information
about your program's preferences. It should not be used by applications that
need to communicate more information than is possible with XSetStandardPro­
perties. (Typically, argv is the argv array of your main program.)

XSetStandardProperties can generate BadAlloc and BadWindow errors.

Predefined Property Functions 9·5

Communicating with Window Managers

Setting and Getting Window Names

Xlib provides functions that you can use to set and read the name of a window.
These functions set and read the WM _NAME property.

To assign a name to a window, use XStoreName.

xstoJ:eH ... (tlispl4ly, w, wi1u1ow _PIIlme)
Display -tlispllly;
Windoww;

display Specifies the connection to the XWIN server.

w Specifies the window.

window name Specifies the window name, which should be a null-terminated
string.

The XStoreName function assigns the name passed to window_name to the
specified window. A window manager can display the window name in some
prominent place, such as the title bar, to allow users to identify windows easily.
Some window managers may display a window's name in the window's icon,
although they are encouraged to use the window's icon name if one is provided
by the application.

XStoreName can generate BadAlloc and BadWindow errors.

To get the name of a window, use XFetchName.

display

w

Statu. X!'etc:bNallle (/ispllly, w, window _7UIme Jetum)
Display -tlispllly;
Windoww;

Specifies the connection to the XWIN server.

Specifies the window.

window name return - -
Returns a pointer to the window name, which is a null-
terminated string.

9-6 Xwln GWS: Xllb - C Language Interface

Communicating with Window Managers

The XFetchName function returns the name of the specified window. If it
succeeds, it returns nonzero; otherwise, if no name has been set for the window,
it returns zero. If the WM_NAME property has not been set for this window,
XFetchName sets window_nameJeturn to NULL. When finished with it, a
client must free the window name string using XFree.

XFetchName can generate a BadWindow error.

Setting and Getting Icon Names

Xlib provides functions that you can use to set and read the name to be
displayed in a window's icon. These functions set and read the
WM_ICON_NAME property.

To set the name to be displayed in a window's icon, use XSetlconName.

display

w

XSetloonName (display, W, iconJ"lme)
Display ·displlly;

Windoww;

char ·icon_name;

Specifies the connection to the XWIN server.

Specifies the window.

icon name Specifies the icon name, which should be a null-terminated
string.

XSetlconName can generate BadAlloc and BadWindow errors.

To get the name a window wants displayed in its icon, use XGetIconName.

display

Status lIGetIoonName (display, w, icon_nameJeturn)
Display ·display;

Windoww;

char "icon_nameJeturn;

Specifies the connection to the XWIN server.

Predefined Property Functions 9-7

Communicating with Window Managers

w Specifies the window.

icon ruzme return - -
Returns a pointer to the window's icon name, which is a null-
terminated string.

The XGetIconName function returns the name to be displayed in the specified
window's icon. If it succeeds, it returns nonzero; otherwise, if no icon name has
been set for the window, it returns zero. If you never assigned a name to the
window, XGetIconName sets icon_nameJeturn to NULL. When finished with
it, a client must free the icon name string using XFree.

XGetIconName can generate a BadWindow error.

Setting the Command

To set the command property, use XSetCormnand. This function sets the
WM _COMMAND property.

display

w

argv

argc

XSetCoamand (display, w, argtl, argc)

Display"display;

Windoww;
char argv;

int argc;

Specifies the connection to the XWIN server.

Specifies the window.

Specifies the application's argument list.

Specifies the number of arguments.

The XSetCommand function sets the command and arguments used to invoke the
application. (Typically, argv is the argv array of your main program.>

XSetCormnand can generate BadAlloc and BadWindow errors.

9-8 Xwln GWS: Xllb - C Language Interface

Communicating with Window Managers

Setting and Getting Window Manager Hints

The functions discussed in this section set and read the WM _HINTS
property and use the flags and the XWMHints structure, as defined in the
< Xll/Xutil. h > header file:

/* Window manager hints mask bits It /

I#define InputHint

I#define StateHint

I#define lconP ixmapHint

I#define lconWindowHint

I#define lconPositionHint

I#define lconMaskHint

I#define WindotiGroupHint

I#define AllHints

1* Values *1

(lL« 0)

(lL« 1)

(1L «2)

(lL «3)

(lL «4)

(lL« 5)

(1L« 6)

(InputHint I StateHint I IronPixmapHint I
Iron WindowHint I IronPositionHint I
IconMaskHint I WindowGroupHint)

typedef struct (

long flaqs;

Bool input;

1* marks which fields in this structure are defined *1
1* does this application rely on the window manager to

get keyboaJ:d input? *1
int initial_state;

Pixmap icon..,l)ixmap;

Window icon_window;

1* _ below *1

1* pixmap to be used as icon *1
1* window to be used as icon *1

int icon_x, icon""y; 1* initial position of icon *1
Pixmap icon_mask; 1* pixmap to be used as mask for icon""pixmap *1
xm window_9X'oup; 1* id of related window qroup *1
1* this structure may be extended. in the future *1

) XlHlints;

The input member is used to communicate to the window manager the input
focus model used by the application. Applications that expect input but never
explicitly set focus to any of their subwindows (that is, use the push model of
focus management), such as XIO-style applications that use real-estate driven
focus, should set this member to True. Similarly, applications that set input

Predefined Property Functions 9·9

Communicating with Window Managers

focus to their subwindows only when it is given to their top-level window by a
window manager should also set this member to True. Applications that
manage their own input focus by explicitly setting focus to one of their subwin­
dows whenever they want keyboard input (that is, use the pull model of focus
management> should set this member to False. Applications that never expect
any keyboard input also should set this member to False.

Pull model window managers should make it possible for push model applica­
tions to get input by setting input focus to the top-level windows of applications
whose input member is True. Push model window managers should make sure
that pull model applications do not break them by resetting input focus to Poin­
terRoot when it is appropriate (for example, whenever an application whose
input member is False sets input focus to one of its subwindows).

The definitions for the initial_state flag are:

#define DontCaJ:eState 0 r don't know or care - /

#define NormalState 1 r most applications start this way - /

#define ZoomState 2 r application wants to start zoomed - /

#define lconicState 3 r application wants to start as an icon
-/

#define InactiwState 4 r application believes it is seldom
used;

some wm's may put it on inactive
menu -/

The icon_mask specifies which pixels of the icon.J>ixmap should be used as the
icon. This allows for nonrectangular icons. Both the icon .J>ixmap and
icon_mask must be bitmaps. The icon_window lets an application provide a
window for use as an icon for window managers that support such use. The
window...,group lets you specify that this window belongs to a group of other
windows. For example, if a single application manipulates multiple top-level
windows, this allows you to provide enough information that a window
manager can iconify all of the windows rather than just the one window.

To set the window manager hints for a window, use XSetWMHints.

9·10 Xwln GWS: Xllb - C Language Interface

Communicating with Window Managers

display

w

wmhints

XSetlHlinta (displRy, w, wmhints)

Display -displRy;
Windoww;

XWMHints -wmhints;

Specifies the connection to the XWIN server.

Specifies the window.

Specifies a pointer to the window manager hints.

The XSetWMHints function sets the window manager hints that include icon
information and location, the initial state of the window, and whether the appli­
cation relies on the window manager to get keyboard input.

XSetWMHints can generate BadAlloc and BadWindow errors.

To read the window manager hints for a window, use XGetWMHints.

display

w

XNMHint. *XGetWMBint.(displR~ w)
Display -displRy;
Windoww;

Specifies the connection to the XWIN server.

Specifies the window.

The XGetWMHints function reads the window manager hints and returns NULL
if no WM JIINTS property was set on the window or a pointer to a XWMHints
structure if it succeeds. When finished with the data, free the space used for it
by calling XFree.

XGetWMHints can generate a BadWindow error.

Predefined Property Functions 9-11

Communicating with Window Manager.

Setting and Getting Window Sizing Hints

Xlib provides functions that you can use to set or get window sizing hints.

The functions discussed in this section use the flags and the XSizeHints struc­
ture, as defined in the < Xll/Xutil. h > header file:

/* Size hints mask bits

ldefine USPosition

ldefine USBize

ldefine PPosition

ldefine PSize

ldefine PMinSize

ldefine PMaxSize

'define ~sizeInc

'define PAapeot

ldefine PAllBints

1* Values *1

typedaf atEUClt (
long flags;

int x, y;

int width, height;

*/

(lL « 0)

(lL « 1)

(lL « 2)

(lL « 3)

(lL « 4)

(lL « 5)

(lL « 6)

(lL « 7)

int min_width, min_height;

int lUX_width, lUX_height;

int width_inc, height_inc;

struct (

int x;

int y;

} min_aspect, lUX_aspect;
} XSizeHints;

9-12

1* WIer apeoified x, y *1

1* WIer apeoified width, height *1

1* program apeoified position *1

1* program apeoified size *1

1* program apeoified minima size *1

1* program apeoified maxiJuD. size *1

1* program specified resize increments
*1

1* program apeoifiedmin and lUX aspect
ratios *1

(ppositionIPSizeIPM1nSizeIPMaxSizel
PResizeInc IPAIIpect)

1* marks which fields in this stEUClture are defined

1* numarator *1
1* clenominator *1

Xwln GWS: Xllb - C Language Interface

Communicating with Window Managers

The x, y, width, and height members describe a desired position and size for the
window. To indicate that this information was specified by the user, set the
USPosition and USSize flags. To indicate that it was specified by the applica­
tion without any user involvement, set PPosition and PSize. This lets a win­
dow manager know that the user specifically asked where the window should
be placed or how the window should be sized and that the window manager
does not have to rely on the program's opinion.

The min_width and min_height members specify the minimum window size
that still allows the application to be useful. The max_width and max_height
members specify the maximum window size. The width)nc and height)nc
members define an arithmetic progression of sizes (minimum to maximum) into
which the window prefers to be resized. The min_aspect and max_aspect
members are expressed as ratios of x and y, and they allow an application to
specify the range of aspect ratios it prefers.

The next two functions set and read the WM _NORMAL_HINTS property.

To set the size hints for a given window in its normal state, use XSetNor­
malHints.

display

w

XSetNorm.lHints (display, w, hints)

Display -display;

Windoww;
XSizeHints -hints;

Specifies the connection to the XWIN server.

Specifies the window.

hints Specifies a pointer to the size hints for the window in its normal
state.

The XSetNonnalHints function sets the size hints structure for the specified
window. Applications use XSetNonnalHints to inform the window manager of
the size or position desirable for that window. In addition, an application that
wants to move or resize itself should call XSetNonnalHints and specify its new
desired location and size as well as making direct Xlib calls to move or resize.
This is because window managers may ignore redirected configure requests, but
they pay attention to property changes.

Predefined Property Functions 9-13

Communicating with Window Manager.

To set size hints, an application not only must assign values to the appropriate
members in the hints structure but also must set the flags member of the struc­
ture to indicate which information is present and where it came from. A call to
XSetNonnalHints is meaningless, unless the flags member is set to indicate
which members of the structure have been assigned values.

XSetNonnalHints can generate BadAlloc and BadWindow errors.

To return the size hints for a window in its normal state, use XGetNonnalHints.

display

w

,

Status XGetNoClllllHinta (display, w, hints_return)
Display ·display;
Windoww;

XSizeHints ·hints_return;

Specifies the connection to the XWIN server.

Specifies the window.

hints return Returns the size hints for the window in its normal state.

The XGetNonnalHints function returns the size hints for a window in its nor­
mal state. It returns a nonzero status if it succeeds or zero if the application
specified no normal size hints for this window.

XGetNonnalHints can generate a BadWindow error.

The next two functions set and read the WM_ZOOMJ-IINTS property.

To set the zoom hints for a window, use XSetZoomHints.

display

w

zhints

9-14

XSetZoomHinta (display, w, %hints)
Display ·display;
Windoww~

XSizeHints ·%hints;

Specifies the connection to the XWIN server.

Specifies the window.

Specifies a pointer to the zoom hints.

Xwln GWS: Xllb - C Language Interface

Communicating with Window Managers

Many window managers think of windows in one of three states: iconic, normal,
or zoomed. The XSetZoomHints function provides the window manager with
information for the window in the zoomed state.

XSetZoomHints can generate BadAlloc and BadWindow errors.

To read the zoom hints for a window, use XGetZoomHints.

Status XGetZoOlllHinta (display, w, :zhintsJelurn)
Display *display;
Windoww;

XSizeHints *:zhintsJelurn;

display Specifies the connection to the XWIN server.

w Specifies the window.

zhints return Returns the zoom hints.

The XGetzoomHints function returns the size hints for a window in its zoomed
state. It returns a nonzero status if it succeeds or zero if the application
specified no zoom size hints for this window.

XGetZoomHints can generate a BadWindow error.

To set the value of any property of type WM_SIZE_HINTS, use XSet­
SizeHints.

display

w

hints

property

XSetSizeHinta (display, w, hints, property)
Display *display;
Windoww;
XSizeHints *hints;
Atom property;

Specifies the connection to the XWIN server.

Specifies the window.

Specifies a pointer to the size hints.

Specifies the property name.

Predefined Property Functions 9-15

Communicating with Window Manager.

The XSetSizeHints function sets the XSizeHints structure for the named pro­
perty and the specified window. This is used by XSetNonnalHints and XSet­
ZoomHints; and can be used to set the value of any property of type
WM _SIZE JIINTS. Thus, it may be useful if other properties of that type get
defined.

XSetSizeHints can generate BadAlloc, BadAtom, and BadWindow errors.

To read the value of any property of type WM_SIZE_HINTS, use XGet­
SizeHints.

display

w

Statua lIGetSizeBint. (dis"lIay, w, hintsJetuni, property)
Display • dis,,14y;
Windoww;
XSizeHints ·hintsJeturn;
Atom prc1f1eI'ty;

Specifies the connection to the XWIN server.

Specifies the window.

hints return

property

Returns the size hints.

Specifies the property name.

XGetSizeHints returns the XSizeHints structure for the named property and
the specified window. This is used by XGetNonnalHints and XGetZoomHints.
It also can be used to retrieve the value of any property of type
WM _ SIZE _HINTS. Thus, it may be useful if other properties of that type get
defined. XGetSizeHints returns a nonzero status if a size hint was defined or
zero otherwise.

XGetSizeHints can generate BadAtom and BadWindow errors.

9-16 Xwln GWS: Xllb - C Language Interface

Communicating with Window Managers

Setting and Getting Icon Size Hints

Applications can cooperate with window managers by providing icons in sizes
supported by a window manager. To communicate the supported icon sizes to
the applications, a window manager should set the icon size property on the
root window of the screen. To find out what icon sizes a window manager sup­
ports, applications should read the icon size property from the root window of
the screen.

The functions discussed in this section set or read the WM _ICON_SIZE pro­
perty. In addition, they use the XlconSize structure, which is defined in
< Xll/Xutil. h > and contains:

typedef IItruct (

int min_width, min_height;

int lMX_width, lMX_height;

int width_inc, height_inc;

} XIoonSize;

The widthJnc and heighUnc members define an arithmetic progression of sizes
(minimum to maximum) that represent the supported icon sizes.

To set the icon size hints for a window, use XSetIconSizes.

display

w

size list

count

XSetloonSizea (display, w, sizeJist, count)
Display ·displilYi
WindoWWj

XIoonSize ·sizeJistj
int aJUntj

Specifies the connection to the XWlN server.

Specifies the window.

Specifies a pointer to the size list.

Specifies the number of items in the size list.

The XSetlconSizes function is used only by window managers to set the sup­
ported icon sizes.

Predefined Property Functions 9-17

Communicating with Window Manager.

XSetlconSizes can generate BadAlloc and BadWindow errors.

To return the icon sizes hints for a window, use XGetlconSizes.

display

w

Statu. lIGetIaoaSizes (displily, w, sizeJisU'etum, coamt_retum)
DIsplay ·displily;
Windoww;

XIconSize "size Jist _ retum;
int ·coamt_retum;

Specifies the connection to the XWIN server.

Specifies the window.

size list return
Returns a pointer to the size list.

count return Returns the number of items in the size list.

The XGetlconSizes function returns zero if a window manager has not set icon
sizes or nonzero otherwise. XGetIconSizes should be called by an application
that wants to find out what icon sizes would be most appreciated by the win­
dow manager under which the application is running. The application should
then use XSetWMHints to supply the window manager with an icon pixmap or
window in one of the supported sizes. To free the data allocated in
size_list_return, use XFree.

XGetIconSizes can generate a BadWindow error.

Setting and Getting the Class of a Window

Xlib provides functions to set and get the class of a window. These functions
set and read the WM_CLASS property. In addition, they use the XClassHint
structure, which is defined in < Xll/Xutil. h > and contains:

9-18

typedef struct {

char *res_naID8;
char *res _class;

} XClassHint;

Xwln GWS: Xllb - C Language Interface

Communicating with Window Managers

The res_name member contains the application name, and the res_class member
contains the application class. Note that the name set in this property may differ
from the name set as WM_NAME. That is, WM_NAME specifies what should
be displayed in the title bar and, therefore, can contain temporal information
(for example, the name of a file currently in an editor's buffer). On the other
hand, the name specified as part of WM _CLASS is the formal name of the appli­
cation that should be used when retrieving the application's resources from the
resource database.

To set the class of a window, use XSetClassHint.

display

w

XSetCl&saHint (display, w, clAssJaints>
Display -displJly;
Windoww;
XClassHint -c1llSs_hints;

Specifies the connection to the XWIN server.

Specifies the window.

class hints Specifies a pointer to a XClassHint structure that is to be used.

The XSetClassHint function sets the class hint for the specified window.

XSetClassHint can generate BadAlloc and BadWindow errors.

To get the class of a window, use XGetClassHint.

display

w

StatWi XGetClusHint (displlly, w, clAss_hints_retum>
Display -displlly;
Windoww;
XClassHint -c1llSs_hints_retum;

Specifies the connection to the XWIN server.

Specifies the window.

class_hints Jeturn
Returns the XClassHint structure.

The XGetClassHint function returns the class of the specified window. To free
res_name and res_class when finished with the strings, use XFree.

Predefined Property Functions 9-19

Communicating with Window Managers

XGetClassHint can generate a BadWindow error.

Setting and Getting the Transient Property

An application may want to indicate to the window manager that a transient,
top-level window (for example, a dialog box) is operating on behalf of (or is
transient for) another window. To do so, the application would set the
WM_TRANSIENT_FOR property of the dialog box to be the window ID of its
main window. Some window managers use this information to unmap an
application's dialog boxes (for example, when the main application window gets
iconified).

The functions discussed in this section set and read the WM TRANSIENT FOR - -
property.

To set the WM _TRANSIENT_FOR property for a window, use XSetTran­
sientForHint.

XSetTransientForHint (displRy, w, prop_window)
Display ·disp/ay;
Windoww;
Window prop_window;

display Specifies the connection to the XWIN server.

w Specifies the window.

prop_window Specifies the window that the WM _TRANSIENT_FOR property
is to be set to.

The XSetTransientForHint function sets the WM_TRANSIENT_FOR property
of the specified window to the specified prop_window.

XSetTransientForHint can generate BadAlloc and BadWindow errors.

To get the WM_TRANSIENT_FOR value for a window, use XGetTran­
sientForHint.

9-20 Xwln GWS: Xllb - C Language Interface

Communicating with Window Managers

display

w

Status XGetTranaientForHint(d~p~~w,~_wi~_return)
Display "d~p~y;
Windoww;
Window .. ~ _window Jeturn;

Specifies the connection to the XWIN server.

Specifies the window.

prop_window Jeturn
Returns the WM _TRANSIENT_FOR property of the specified
window.

The XGetTransientForHint function returns the WM _TRANSIENT]OR pro­
perty for the specified window.

XGetTransientForHint can generate a BadWindow error.

Predefined Property Functions 9-21

Manipulating Standard Colormaps

Applications with color palettes, smooth-shaded drawings, or digitized images
demand large numbers of colors. In addition, these applications often require an
efficient mapping from color triples to pixel values that display the appropriate
colors.

As an example, consider a 3D display program that wants to draw a smoothly
shaded sphere. At each pixel in the image of the sphere, the program computes
the intensity and color of light reflected back to the viewer. The result of each
computation is a triple of RGB coefficients in the range 0.0 to 1.0. To draw the
sphere, the program needs a colormap that provides a large range of uniformly
distributed colors. The colormap should be arranged so that the program can
convert its RGB triples into pixel values very quickly, because drawing the
entire sphere requires many such conversions.

On many current workstations, the display is limited to 256 or fewer colors.
Applications must allocate colors carefully, not only to make sure they cover the
entire range they need. but also to make use of as many of the available colors
as possible. On a typical X display, many applications are active at once. Most
workstations have only one hardware look-up table for colors, so only one
application colormap can be installed at a given time. The application using the
installed colormap is displayed correctly, and the other applications "go tech­
nicolor" and are displayed with false colors.

As another example, consider a user who is running an image processing pro­
gram to display earth-resources data. The image processing program needs a
colormap set up with 8 reds, 8 greens, and 4 blues (a total of 256 colors).
Because some colors are already in use in the default colormap, the image pro­
cessing program allocates and installs a new colormap.

The user decides to alter some of the colors in the image. He invokes a color
palette program to mix and choose colors. The color palette program also needs
a colormap with 8 reds, 8 greens, and 4 blues, so just as the image-processing
program, it must allocate and install a new colormap.

Because only one colormap can be installed at a time, the color palette may be
displayed incorrectly whenever the image-processing program is active. Con­
versely, whenever the palette program is active, the image may be displayed
incorrectly. The user can never match or compare colors in the palette and
image. Contention for colormap resources can be reduced if applications with
similar color needs share colormaps.

9-22 Xwln GWS: Xllb - C Language Interface

Manipulating Standard Colormaps

As another example, the image processing program and the color palette pro­
gram could share the same colormap if there existed a convention that described
how the colormap was set up. Whenever either program was active, both would
be displayed correctly.

The standard colormap properties define a set of commonly used colormaps.
Applications that share these colormaps and conventions display true colors
more often and provide a better interface to the user.

Standard Colormaps

Standard colormaps allow applications to share commonly used color resources.
This allows many applications to be displayed in true colors simultaneously,
even when each application needs an entirely filled colormap.

Several standard colormaps are described in this section. Usually, a window
manager creates these colormaps. Applications should use the standard color­
maps if they already exist. If the standard colormaps do not exist, you should
create them by opening a new connection, creating the properties, and setting
the close-down mode of the connection to RetainPermanent.

The XStandardCOlormap structure contains:

typedef atruct {
Colormap oolormap;
unsigned lonq J:ed _ max;

unsigned lonq J:ed_lllUlt;

unsigned lonq green_max;

unsigned long green _ mlt;

unsigned lonq blue_max;

unsigned lonq blue_mlt;

unsigned lonq base ...,pixel;

} XStandardColormap;

The colormap member is the colormap created by the XCreateCOlormap func­
tion. The red_max, green_max, and blue_max members give the maximum red,
green, and blue values, respectively. Each color coefficient ranges from zero to
its max, inclusive. For example, a common colormap allocation is 3/3/2 (3
planes for red, 3 planes for green, and 2 planes for blue). This colormap would
have red_max = 7, green_max = 7, and blue_max = 3. An alternate allocation
that uses only 216 colors is red_max = 5, green_max = 5, and blue_max = 5.

Predefined Property Functions 9-23

Manipulating Standard Colormaps

The red _ mult, green _ mult, and blue_mull members give the scale factors used
to compose a full pixel value. (See the discussion of the base "'pixel members for
further information.) For a 3/3/2 allocation, red_mult might be 32, green_mult
might be 4, and blue_mult might be 1. For a 6-colors-each allocation, red_mult
might be 36, green _ mult might be 6, and blue _ mult might be 1.

The base "'pixel member gives the base pixel value used to compose a full pixel
value. Usually, the base"'pixel is obtained from a call to the XAllocColorPlanes
function. Given integer red, green, and blue coefficients in their appropriate
ranges, one then can compute a corresponding pixel value by using the follow­
ing expression:

r * Eed_DUlt + q * cll:eerLDUlt + b * blue_DUlt + bueJ>ixal

For GrayScale colormaps, only the colormap, red _max, red _ mult, and
base "'pixel members are defined. The other members are ignored.

To compute a GrayScale pixel value, use the following expression:

The properties containing the XStandardColonnap information have the type
RGB COLOR MAP. - -

Standard Colormap Properties and Atoms

Several standard colormaps are available. Each standard colormap is defined by
a property, and each such property is identified by an atom. The following list
names the atoms and describes the colormap associated with each one. The
< Xll/xatom.h > header file contains the definitions for each of the following
atoms, which are prefixed with XA_.

RGB _DEFAULT_MAP This atom names a property. The value of the pro­
perty is an XStandardColonnap.

9-24

The property defines an RGB subset of the default
colormap of the screen. Some applications only need a
few RGB colors and may be able to allocate them from
the system default colormap. This is the ideal situa­
tion because the fewer colormaps that are active in the
system the more applications are displayed with
correct colors at all times.

Xwln GWS: Xllb - C Language Interface

RGB BEST MAP - -

RGB _RED_MAP
RGB _GREEN_MAP
RGB BLUE MAP - -

Manipulating Standard Colormaps

A typical allocation for the RGB_DEFAULT_MAP on
8-plane displays is 6 reds, 6 greens, and 6 blues. This
gives 216 unifonnly distributed colors (6 intensities of
36 different hues) and still leaves 40 elements of a
256-element colormap available for special-purpose
colors for text, borders, and so on.

This atom names a property. The value of the pro­
perty is an XStandardColomap.

The property defines the best RGB colormap available
on the screen. (Of course, this is a subjective evalua­
tion.) Many image processing and 3D applications
need to use all available colormap cells and to distri­
bute as many perceptually distinct colors as possible
over those cells. This implies that there may be more
green values available than red, as well as more green
or red than blue.

On an 8-plane PseudoColor display, RGB _BEST_MAP
should be a 3/3/2 allocation. On a 24-plane
DirectColor display, RGB_BEST_MAP should be an
8/8/8 allocation. On other displays, the
RGB _BEST_MAP allocation is purely up to the imple­
mentor of the display.

These atoms name properties. The value of each pro­
perty is an XStandardColomap.

The properties define all-red, all-green, and all-blue
colormaps, respectively. These maps are used by appli­
cations that want to make color-separated images. For
example, a user might generate a full-color image on
an 8-plane display both by rendering an image three
times (once with high color resolution in red, once
with green, and once with blue) and by multiply­
exposing a single frame in a camera.

Predefined Property Functions 9·25

Manipulating Standard Colormaps

RGB GRAY MAP This atom names a property. The value of the pro­
perty is an XStandardColormap.

- -

The property describes the best GrayScale colormap
available on the screen. As previously mentioned, only
the colormap, red_max, red _ mult, and base -pixel
members of the XStandardColormap structure are
used for GrayScale colormaps.

Getting and Setting an XStandardColormap Structure

To get the XStandardColormap structure associated with one of the described
atoms, use XGetStandardColormap.

display

w

Status XGetStandardColoxmap(display, w, colormilPJeturn, property)
Display -display;
Windoww;
XStandardColormap -colormtlp Jeturn;
Atom property; r RGB_BFST_MAP, etc.-'

Specifies the connection to the XWIN server.

Specifies the window.

colormap Jetum
Returns the colormap associated with the specified atom.

property Specifies the property name.

The XGetStandardColormap function returns the colormap definition associated
with the atom supplied as the property argument. For example, to fetch the
standard GrayScale colormap for a display, you use XGetStandardColormap
with the following syntax:

Once you have fetched a standard colormap, you can use it to convert RGB
values into pixel values. For example, given an XStandardColormap structure
and floating-point RGB coefficients in the range 0.0 to 1.0, you can compose
pixel values with the following C expression:

9-26 Xwln GWS: Xllb - C Language Interface

Manipulating Standard Colormaps

pixel - baseJlixel

+ «urusigned lon'1) (0.5 + r * red_max)) * red_DIllt

+ «urusigned lon'1) (0.5 + '1 * '1:teen_max)) * qreerl_DIllt

+ «urusigned lon'1) (0.5 + b * blue_max)) * blu8_mult;

The use of addition rather than logical OR for composing pixel values pennits
allocations where the RGB value is not aligned to bit boundaries.

XGetStandardColormap can generate BadAtom and BadWindow errors.

To set a standard colormap, use XSetStandardColormap.

XSetStandardColo.tmap (displRy, w, colormap, property)

Display ·display;

display

w

colonnap

property

Windoww;
XStandardColormap ·colormap;
Atom property; r RCB_BEST_MAP, etc.·/

Specifies the connection to the XWIN server.

Specifies the window.

Specifies the colormap.

Specifies the property name.

The XSetStandardColormap function usually is only used by window
managers. To create a standard colormap, follow this procedure:

• Open a new connection to the same server.

• Grab the server.

• See if the property is on the property list of the root window for the
screen.

• If the desired property is not present:

o Create a colormap (not required for RGB_DEFAULT_MAP)

o Determine the color capabilities of the display.

o Call XAllocColorPlanes or XAllocColorCells to allocate cells in
the colormap.

Predefined Property Functions 9-27

Manipulating Standard Colormaps

9·28

D Call XStoreColors to store appropriate color values in the color-
map.

D Fill in the descriptive members in the XStandardColormap structure.

D Attach the property to the root window.

D Use XSetCloseDownMode to make the resource permanent.

D Ungrab the server.

XSetStandardColormap can generate BadAlloc, BadAtom, and BadWin­
dow errors.

Xwln GWS: Xllb - C Language Interface

1 0 Application Utility Functions

Introduction 10-1

Keyboard Utility Functions 10-2
Keyboard Event Functions 10-2
Keysym Classification Macros 10-6

Obtaining the X Environment Defaults 10-7

Parsing the Window Geometry 10-9

Parsing the Color Specifications 10-12

Generating Regions 10-13

Manipulating Regions 10-14
Creating, Copying, or Destroying Regions 10-14
Moving or Shrinking Regions 10-15
Computing with Regions 1 0-15
Determining if Regions Are Empty or Equal 10-17
Locating a Point or a Rectangle in a Region 10-18

Table of Contents

Table of Contents ____________________ _

Using the Cut and Paste Buffers 10-19

Determining the Appropriate Visual Type 10-22

Manipulating Images 10-25

Manipulating Bitmaps 10-30

Using the Resource Manager 10-34
Resource Manager Matching Rules 10-36
Basic Resource Manager Definitions 10-37
Resource Database Access 10-41

• Storing Into a Resource Database 10-41
• Looking Up from a Resource Database 10-44
• Database Search lists 1 0-45
• Merging Resource Databases 10-47
• Retrieving and Storing Databases 10-47
~~~~~~~~ 1~ 

Using the Context Manager 10-52 

II Xwln GWS: Xllb - C Language Interface 



Introduction 

Once you have initialized the X system, you can use the Xlib utility functions to: 

• Handle keyboard events 

• Obtain the X environment defaults 

• Parse window geometry strings 

• Parse hardware colors strings 

• Generate regions 

• Manipulate regions 

• Use cut and paste buffers 

• Determine the appropriate visual 

• Manipulate images 

• Manipulate bitmaps 

• Use the resource manager 

• Use the context manager 

As a group, the functions discussed in this chapter provide the functionality that 
is frequently needed and that spans toolkits. Many of these functions do not 
generate actual protocol requests to the server. 

Application Utility Functions 10-1 



Keyboard Utility Functions 

This section discusses keyboard event functions and KeySym classification mac­
ros. 

Keyboard Event Functions 

The XWIN server does not predefine the keyboard to be ASCII characters. It is 
often useful to know that the a key was just pressed or that it was just released. 
When a key is pressed or released, the XWIN server sends keyboard events to 
client programs. The structures associated with keyboard events contain a key­
code member that assigns a number to each physical key on the keyboard. For 
a discussion of keyboard event processing, see "Keyboard and Pointer Events" 
in Chapter 8. For information on how to manipulate the keyboard encoding, 
see "Keyboard Encoding" in Chapter 7. 

Because KeyCodes are completely arbitrary and may differ from server to 
server, client programs wanting to deal with ASCII text, for example, must 
explicitly convert the KeyCode value into ASCII. Therefore, Xlib provides func­
tions to help you customize the keyboard layout. Keyboards differ dramati­
cally, so writing code that presumes the existence of a particular key on the 
main keyboard creates portability problems. 

Keyboard events are usually sent to the deepest viewable window underneath 
the pointer's position that is interested in that type of event. It is also possible 
to assign the keyboard input focus to a specific window. When the input focus 
is attached to a window, keyboard events go to the client that has selected input 
on that window rather than the window under the pointer. 

The functions in this section handle the shift modifier computations suggested 
by the protocol. The KeySym table is internally modified to define the lower­
case transformation of a-z by adding the lowercase KeySym to the first element 
of the KeySym list (used internally) defined for the KeyCode, when the list is of 
length 1. If you want the untransformed KeySyms defined for a key, you 
should only use the functions described under "Keyboard Encoding" in Chapter 
7. 

To look up the KeySyms, use XLookupKeysym. 

10-2 

KeySym XLooltupKeysym (key_event, index) 

XKeyEvent ·keyJoent; 
int index; 

Xwln GWS: Xllb - C Language Interface 



/ceyJvent 

index 

Keyboard Utility Functions 

Specifies the KeyPress or KeyRelease event. 

Specifies the index into the KeySyms list for the event's Key­
Code. 

The XLookupKeysym function uses a given keyboard event and the index you 
specified to return the KeySym from the list that corresponds to the KeyCode 
member in the XKeyPressedEvent or XKeyReleasedEvent structure. If no 
KeySym is defined for the KeyCode of the event, XLookupKeysym returns 
NoSymbol. 

To refresh the stored modifier and keymap information, use XRefreshKey­
boarclMappinq . 

XRaf'm8hKeyboardMappinq (mmUtIIlp) 

XMappingEvent ·mmt_map; 

Specifies the mapping event that is to be used. 

The XRefreshKeyboarclMappinq function refreshes the stored modifier and key­
map information. You usually call this function when a MappinqNotify event 
with a request member of MappinqKeyboard or MappingModifier occurs. The 
result is to update X1ib's knowledge of the keyboard. 

To map a key event to an ISO Latin-l string, use XLookupStrinq. 

int XLoolcupStr1nq(mmt_struct, bufferJtfurn, bytes_buffer, keysymJeturn, SiRtus_in_out) 

XKeyEvent ·euentytruct; 

char ·buffer J,turn; 

int bytes_buffer; 

KeySym ·keysymJ'turn; 
xComposeStatus ·siRtus)",_out; 

Specifies the key event structure to be used. You can pass 
XKeypressedEvent or XKeyReleasedEvent. 

Returns the translated characters. buffer Jeturn 

bytes_buffer Specifies the length of the buffer. No more than bytes_buffer of 
translation are returned. 

Application Utility Functions 10-3 



Keyboard Utility Functions 

keysymJeturn Returns the KeySym computed from the event if this argument 
is not NULL. 

status in out Specifies or returns the XComposeStatus structure or NULL. 

The XLookupStrinq function is a convenience routine that maps a key event to 
an ISO Latin-l string, using the modifier bits in the key event to deal with shift, 
lock, and control. It returns the translated string into the user's buffer. It also 
detects any rebound KeySyms (see XRebindKeysym) and returns the specified 
bytes. XLookupStrinq returns the length of the string stored in the tag buffer. 
If the lock modifier has the caps lock KeySym associated with it, XLookup­
Strinq interprets the lock modifier to perform caps lock processing. 

If present (non-NULL), the XComposeStatus structure records the state, which 
is private to Xlib, that needs preservation across calls to XLookupStrinq to 
implement compose processing. 

To rebind the meaning of a KeySym for a client, use XRebindKeysym. 

XRabindKeyaym(display, keysym, list, mod_count, string, bytes_string) 
Display -display; 

display 

keysym 

list 

mod_CXJunt 

string 

KeySym keysym; 
KeySym list[]; 
int mod_count; 
unsigned char ·string; 
int bytes_string; 

Specifies the connection to the XWIN server. 

Specifies the KeySym that is to be rebound. 

Specifies the KeySyms to be used as modifiers. 

Specifies the number of modifiers in the modifier list. 

Specifies a pointer to the string that is copied and will be 
returned by XLookupStrinq. 

Specifies the length of the string. 

The XRebinciKeysym function can be used to rebind the meaning of a KeySym 
for the client. It does not redefine any key in the XWIN server but merely pro­
vides an easy way for long strings to be attached to keys. XLookupStrinq 
returns this string when the appropriate set of modifier keys are pressed and 

10-4 Xwln GWS: Xllb - C Language Interface 



Keyboard Utility Functions 

when the KeySyrn would have been used for the translation. Note that you can 
rebind a KeySyrn that may not exist. 

To convert the name of the KeySyrn to the KeySyrn code, use 
XStringToKeysym. 

string 

KeySym XStringToKeysym ( string) 

char ·string; 

Specifies the name of the KeySyrn that is to be converted. 

Valid KeySyrn names are listed in < Xll/keysynrlef. h > by removing the XK_ 
prefix from each name. If the specified string does not match a valid KeySym, 
XStringToKeysym returns NoSymbol. 

To convert a KeySyrn code to the name of the KeySyrn, use XKeysymToString. 

char *XKeysymToStrinq (keysym) 

KeySym keysym; 

keysym Specifies the KeySyrn that is to be converted. 

The returned string is in a static area and must not be modified. If the specified 
KeySym is not defined, XKeysymToString returns a NULL. 

To convert a key code to a defined KeySyrn, use XKeycodeToKeysym. 

display 

keycode 

index 

KeySym XKeycodeToKeysym(displily, keycode, index) 

Display ·displily; 

KeyCode keycode; 
int index; 

Specifies the connection to the XWIN server. 

Specifies the KeyCode. 

Specifies the element of KeyCode vector. 

The XKeycod.eToKeysym function uses internal Xlib tables and returns the 
KeySym defined for the specified KeyCode and the element of the KeyCode 
vector. If no symbol is defined, XKeycod.eToKeysym returns NoSymbol. 

Application Utility Functions 10-5 



Keyboard Utility Functions 

To convert a KeySym to the appropriate KeyCode, use XKeysynil'oKeycode. 

display 

keysym 

KeyCode XKeysymToKeyoode (displlly, keysym) 
Display -displ4y; 
KeySym keysym; 

Specifies the connection to the XWIN server. 

Specifies the KeySym that is to be searched for. 

If the specified KeySym is not defined for any KeyCode, XKeysymToKeycode 
returns zero. 

Keysym Classification Macros 

You may want to test if a KeySym is, for example, on the keypad or on one of 
the function keys. You can use the KeySym macros to perform the following 
tests. 

IsCursorKey (keysym) 

Returns True if the specified KeySym is a cursor key. 

IsFunctionKey (keysym) 

Returns True if the specified KeySym is a function key. 

IsKeypadKey(keysym) 

Returns True if the specified KeySym is a keypad key. 

IsMiscFunctionKey (keysym) 

Returns True if the specified KeySym is a miscellaneous function key. 

IsM:xii!ierKey (keysym) 

Returns True if the specified KeySym is a modifier key. 

IsPFKey (keysym) 

Returns True if the specified KeySym is a PF key. 

10-6 Xwln GWS: Xllb - C Language Interface 



Obtaining the X Environment Defaults 

A program often needs a variety of options in the X environment (for example, 
fonts, colors, mouse, background, text, and cursor). Specifying these options on 
the command line is inefficient and unmanageable because individual users 
have a variety of tastes with regard to window appearance. XGetDefault 
makes it easy to find out the fonts, colors, and other environment defaults 
favored by a particular user. Defaults are usually loaded into the 
RESOURCE_MANAGER property on the root window at login. If no such pro­
perty exists, a resource file in the user's home directory is loaded. On a XWIN 

System system, this file is $HCME/ .Xdefaults. 

After loading these defaults, XGetDefault merges additional defaults specified 
by the XENVIRONMENT environment variable. If XENVIRONMENT is 
defined, it contains a full path name for the additional resource file. If XEN­
VIRONMENT is not defined, XGetDefault looks for $HCME/ .Xdefaults-name, 
where name specifies the name of the machine on which the application is run­
ning. For details of the format of these files, see "Using the Resource Manager" 
in this chapter. 

The XGetDefault function provides a simple interface for clients not wishing to 
use the X toolkit or the more elaborate interfaces provided by the resource 
manager discussed in "Using the Resource Manager" in this chapter. 

display 

obar *XGetDefault (dis"lIzy, program, option) 

Display ·dis"lIzy; 
char .prognun; 
char ·option; 

Specifies the connection to the XWIN server. 

program Specifies the program name for the Xlib defaults (usually argv[O] 
of the main program). 

option Specifies the option name. 

The XGetDefault function returns the value NULL if the option name specified 
in this argument does not exist for the program. The strings returned by XGet­
Default are owned by Xlib and should not be modified or freed by the client. 

To obtain a pointer to the resource manager string of a display, use 
XResourceManagerStrinq. 

Application Utility Functions 10-7 



Obtaining the X Environment DefauHa 

display 

char *XReaourceManagerStrinq (displlly) 

Display ·displlly; 

Specifies the connection to the XWIN server. 

The XResourceManagerString returns the RESOURCE _MANAGER property 
from the server's root window of screen zero, which was returned when the 
connection was opened using XOpenDisplay. 

10-8 Xwln GWS: Xllb - C Language Interface 



Parsing the Window Geometry 

To parse standard window geometry strings, use XParseGeometry. 

int XE'araeGeomatry(p!lr5estring, ,,_return, YJeturn, widthJeturn, heightJeturn) 
char ·p!lTsestring; 
int ·,,_return, ·y_return; 
int ·width_return, ·height_return; 

parsestring Specifies the string you want to parse. 

x return 
Y Jeturn Return the x and y offsets. 

width return 
heightJeturn Return the width and height determined. 

By convention, X applications use a standard string to indicate window size and 
placement. XParseGeometry makes it easier to conform to this standard 
because it allows' you to parse the standard window geometry. Specifically, this 
function lets you parse strings of the form: 

[-1 [<width>x<height>][{ +-}<xojfset>{ +-}<yoffset>l 

The items in this form map into the arguments associated with this function. 
(Items enclosed in <> are integers, items in [] are optional, and items enclosed 
in {} indicate "choose one of". Note that the brackets should not appear in the 
actual string.} 

The XParseGeometry function returns a bitmask that indicates which of the four 
values (width, height, xoffset, and yoffset) were actually found in the string and 
whether the x and y values are negative. By convention, -0 is not equal to +0, 
because the user needs to be able to say "position the window relative to the 
right or bottom edge." For each value found, the corresponding argument is 
updated. For each value not found, the argument is left unchanged. The bits 
are represented by XValue, YValue, WidthValue, HeightValue, XNegative, or 
YNegative and are defined in < Xll/XutH.h >. They will be set whenever 
one of the values is defined or one of the signs is set. 

If the function returns either the XValue or YValue flag, you should place the 
window at the requested position. 

Application Utility Functions 10-9 



Parsing the Window Geometry 

To parse window geometry given a user-specified position and a default posi­
tion, use XGeometry. 

int XGeoaetry(displRy, screen, position, defaultyosition, bwidth, /Width, {height, udder, 

display 

screen 

position 

yadder, x_return, YJeturn, width_return, height_return> 
Display "displRy; 
tnt screen; 
char "position, "default yosition; 
unsigned tnt bwidth; 
unsigned tnt /Width, /height; 
tnt xadder, yadder; 

tnt "x_return, "YJefurn; 
tnt "width_return, "height_return; 

Specifies the connection to the XWIN server. 

Specifies the screen. 

default yosition 
Specify the geometry specifications. 

bwidth Specifies the border width. 

fheight 
fwidth Specify the font height and width in pixels (increment size). 

xadder 
yadder Specify additional interior padding needed in the window. 

x return 
y Jeturn Return the x and y offsets. 

width return 
height Jeturn Return the width and height detennined. 

You pass in the border width (bwidth), size of the increments fwidth and 
fheight (typically font width and height), and any additional interior space 
(xadder and yadder) to make it easy to compute the resulting size. The 
XGeometry function returns the position the window should be placed given a 
position and a default position. XGeometry detennines the placement of a win­
dow using a geometry specification as specified by XParseGeometry and the 
additional information about the window. Given a fully qualified default 

10-10 Xwln GWS: Xllb - C Language Interface 



Parsing the Window Geometry 

geometry specification and an incomplete geometry specification, 
XParseGeometry returns a bitmask value as defined above in the 
XParseGeometry call, by using the position argument. 

The returned width and height will be the width and height specified by 
defaultJX>sition as overridden by any user-specified position. They are not 
affected by fwidth, £height, xadder, or yadder. The x and y coordinates are 
computed by using the border width, the screen width and height, padding as 
Specified by xadder and yadder, and the £height and fwidth times the width and 
height from the geometry specifications. 

Application Utility Functions 10-11 



Parsing the Color Specifications 

To parse color values, use XParseColor. 

Status Xi'arll8Color (displlly, colimruIp, spec, exilcUleLretum) 
Display -displlly; 

display 

colonnap 

spec 

Colormap c:olormIIp; 
char-spec; 
XColor -t!%IICtjeLretum; 

Specifies the connection to the XWIN server. 

Specifies the colonnap. 

Specifies the color name string; case is ignored. 

exact _ deLretum Returns the exact color value for later use and sets the 
DoRed, DoGreen, and DoBlue flags. 

The XParseColor function provides a simple way to create a standard user 
interface to color. It takes a string specification of a color, typically from a com­
mand line or XGetDefault option, and returns the corresponding red, green, 
and blue values that are suitable for a subsequent call to XAllocColor or 
XStoreColor. The color can be specified either as a color name (as in XAlloc­
NamedColor) or as an initial sharp sign character followed by a numeric 
specification, in one of the follOwing fonnats: 

IRGB 
IRRGGBB 
IRRRGGGBBB 
IRRRRGGGGBBBB 

(4 bits each) 
(8 bits each) 
(12 bits each) 

(16 bits each) 

The R, G, and B represent single hexadecimal digits (both uppercase and lower­
case). When fewer than 16 bits each are specified, they represent the most­
significant bits of the value. For example, #3a7 is the same as #3OOOaOOO7000. 
The colormap is used only to determine which screen to look up the color on. 
For example, you can use the screen's default colormap. 

If the initial character is a sharp sign but the string otherwise fails to fit the 
above formats or if the initial character is not a sharp sign and the named color 
does not exist in the server's database, XParseColor fails and returns zero. 

XParseColor can generate a BadColor error. 

10-12 Xwln GWS: Xllb - C Language Interface 



Generating Regions 

Regions are arbitrary sets of pixel locations. Xlib provides functions for mani­
pulating regions. The opaque type Region is defined in < Xll/Xutil. h >. 

To generate a region from a polygon, use XPolygonRegion. 

points 

n 

Region XPolygonReqion (points, n, fill_rule> 
XPoint pointsl1; 
int n; 
int fill_rule; 

Specifies an array of points. 

Specifies the number of points in the polygon. 

Specifies the fill-rule you want to set for the specified Cc. You 
can pass EvenOddRule or WindingRule. 

The XPolygonRegion function returns a region for the polygon defined by the 
points array. For an explanation of fillJule, see XCreateGC. 

To generate the smallest rectangle enclosing the region, use XClipBox. 

r 

XClipBox(r, rectJeturn> 
Region r; 
XRectangle ·rect Jeturn; 

Specifies the region. 

reet return Returns the smallest enclosing rectangle. 

The XClipBox function returns the smallest rectangle enclosing the specified 
region. 

Application Utility Functions 10·13 



Manipulating Regions 

Xlib provides functions that you can use to manipulate regions. This section 
discusses how to: 

• Create, copy, or destroy regions 

• Move or shrink regions 

• Compute with regions 

• Determine if regions are empty or equal 

• Locate a point or rectangle in a region 

Creating, Copying, or Destroying Regions 

To create a new empty region, use XCreateReqion. 

Reqion XCreateReqion() 

To set the clip-mask of a GC to a region, use XSetReqion. 

display 

gc 

r 

XSetReqion (display, gc, r) 
Display -displlly; 

GCgc; 
Region r; 

Specifies the connection to the XWIN server. 

Specifies the Gc. 

Specifies the region. 

The XSetReqion function sets the clip-mask in the GC to the specified region. 
Once it is set in the GC, the region can be destroyed. 

To deallocate the storage associated with a specified region, use XDestroyRe­
qion. 

XDeatroyRaqion(r) 
Region r; 

r Specifies the region. 

10-14 Xwln GWS: Xllb - C Language Interface 



Manipulating Regions 

Moving or Shrinking Regions 

To move a region by a specified amount, use XOffsetRegion. 

r 

dx 
dy 

XOffaetReqion(~dx,dy) 

Region r; 

tnt dx, dy; 

Specifies the region. 

Specify the x and y coordinates, which define the amount you 
want to move the specified region. 

To reduce a region by a specified amount, use XShrinkRegion. 

r 

dx 
dy 

XShrinkReqion(r,dx,dy) 
Region r; 
tnt dx, dy; 

Specifies the region. 

Specify the x and y coordinates, which define the amount you 
want to shrink the specified region. 

Positive values shrink the size of the region, and negative values expand the 
region. 

Computing with Regions 

To compute the intersection of two regions, use XlntersectRegion. 

XIntersectReqion (sm, srb, dr_return) 

Region sra, srb, drJeturn; 

sra 
srb Specify the two regions with which you want to perform the 

computation. 

Application Utility Functions 10-15 



Manipulating Regions 

dr return Returns the result of the computation. 

To compute the union of two regions, use XUnionReqion. 

sra 
srb 

XUniOllReqion (STIl, 5Th, dT -,durn) 
Region STIl, sTb, dT_return; 

Specify the two regions with which you want to perform the 
computation. 

dr return Returns the result of the computation. 

To create a union of a source region and a rectangle, use XUnionRectWithRe­
gion. 

xunicmRectWitbReqion (rectangle, STC _region, dest _region Jeturn) 
XRectangle ·Tectllngle; 
Region sTC_region; 
Region dest Jegion Jeturn; 

rectangle Specifies the rectangle. 

src Jegion Specifies the source region to be used. 

dest Jegion Jeturn 
Returns the destination region. 

The XUniOnRectWithReqion function updates the destination region from a 
union of the specified rectangle and the specified source region. 

To subtract two regions, use XSubtractReqion. 

sra 
srb 

XSubtractReqion (STIl, STb, dT Jeturn) 
Region STIl, sTh, dTJeturn; 

Specify the two regions with which you want to perform the 
computation. 

dr return Returns the result of the computation. 

10-16 Xwln GWS: Xllb - C Language Interface 



Manipulating Regions 

The XSubtractReqion function subtracts srb from sra and stores the results in 
dr return. 

To calculate the difference between the union and intersection of two regions, 
use XXOrReqion. 

XXorRegion (STIl, STb, dT Jetum) 

Region STIl, sTb, dTJetum; 

sra 
srb Specify the two regions with which you want to perform the 

computation. 

dr return Returns the result of the computation. 

Determining if Regions Are Empty or Equal 

To determine if the specified region is empty, use XEmptyReqion. 

r 

B001 XEnptyRec]ion (T) 

Region T; 

Specifies the region. 

The XEmptyReqion function returns True if the region is empty. 

To determine if two regions have the same offset, size, and shape, use 
XEqualReqion. 

r1 
r2 

B001 XBqualReqion(Tl,T2) 
Region T1, T2; 

Specify the two regions. 

The XEqualReqion function returns True if the two regions have the same 
offset, size, and shape. 

Application Utility Functions 10·17 



Manipulating Regions 

Locating a Point or a Rectangle in a Region 

To determine if a specified point resides in a specified region, use XPointInRe­
gion. 

r 

x 
y 

Bool Xl?ointInReqion (r, x, y) 

Region ri 

int x, Yi 

Specifies the region. 

Specify the x and y coordinates, which define the point. 

The XPointInRegion function returns True if the point (x, y> is contained in 
the region r. 

To determine if a specified rectangle is inside a region, use XRectInRegion. 

r 

x 

int XRectInReqion (r, x, y, width, height) 

Region ri 

int x, Yi 
unsigned int width, heighti 

Specifies the region. 

y Specify the x and y coordinates, which define the coordinates of 
the upper-left comer of the rectangle. 

width 
height Specify the width and height, which define the rectangle. 

The XRectInRegion function returns RectangleIn if the rectangle is entirely in 
the specified region, RectangleOut if the rectangle is entirely out of the 
specified region, and Rectanglepart if the rectangle is partially in the specified 
region. 

10·18 Xwln GWS: Xllb - C Language Interface 



Using the Cut and Paste Buffers 

Xlib provides functions that you can use to cut and paste buffers for programs 
using this form of communications. Selections are a more useful mechanism for 
interchanging data between clients because typed information can be exchanged. 
X provides property names for properties in which bytes can be stored for 
implementing cut and paste between windows (implemented by use of proper­
ties on the first root window of the display). It is up to applications to agree on 
how to represent the data in the buffers. The data is most often ISO Latin-l 
text. The atoms for eight such buffer names are provided and can be accessed 
as a ring or as explicit buffers (numbered 0 through 7). New applications are 
encouraged to share data by using selections (see "Selections" in Chapter 4). 

To store data in cut buffer 0, use XStoreBytes. 

display 

bytes 

nbytes 

XStowBytes (display, bytes, nbytes) 
Display -display; 
char -bytes; 

int "bytes; 

Specifies the connection to the XWIN server. 

Specifies the bytes, which are not necessarily ASCII or null­
terminated. 

Specifies the number of bytes to be stored. 

Note that the cut buffer's contents need not be text, so zero bytes are not spe­
cial. The cut buffer's contents can be retrieved later by any client calling 
XFetchBytes. 

XStoreBytes can generate a BadAlloc error. 

To store data in a specified cut buffer, use XStoreBuffer. 

display 

XSto.teBuffer (display, bytes, nbytes, byffer) 
Display -display; 
char -bytes; 

int "bytes; 
int buffer; 

Specifies the connection to the XWIN server. 

Application Utility Functions 10-19 



Using the Cut and Paste Buffer. 

bytes Specifies the bytes, which are not necessarily ASCII or null-
tenninated. 

nbytes Specifies the number of bytes to be stored. 

buffer Specifies the buffer in which you want to store the bytes. 

If the property for the buffer has never been created, a BadAtan error results. 

XStoreBuffer can generate BadAlloc and BadAtom errors. 

To return data from cut buffer 0, use XFetchBytes. 

char *XhtcbBytea (tlisplq, nbytes-",tum) 
DIsplay -tlisplq; 
int -nbytes -",turn; 

display Specifies the connection to the XWIN server. 

nbytes Jetum Returns the number of bytes in the buffer. 

The XFetchBytes function returns the number of bytes in the nbytes Jeturn 
argument, if the buffer contains data. Otherwise, the function returns NULL 
and sets nbytes to O. The appropriate amount of storage is allocated and the 
pointer returned. The client must free this storage when finished with it by 
calling XFree. Note that the cut buffer does not necessarily contain text, so it 
may contain embedded zero bytes and may not terminate with a null byte. 

To return data from a specified cut buffer, use XFetchBuffer. 

display 

char *XhtcbBuffer (tlisplq, nbytesJ,turn, buffer) 
DIsplay -tlisplq; 
int -nbytes_"turn; 
int bU/fof'; 

nbytes Jetum 

buffer 

Specifies the connection to the XWIN server. 

Returns the number of bytes in the buffer. 

Specifies the buffer from which you want the stored data 
returned. 

10-20 Xwln GWS: Xllb - C Language Interface 



Using the Cut and Pasta Buffars 

The XFetchBuffer function returns zero to the nbytes _return argument if there 
is no data in the buffer. 

XFetchBuffer can generate a BadValue error. 

To rotate the cut buffers, use XRotateBuffers. 

display 

rotate 

XRotateBuffera (displ4y, rota~) 
Display -displllYi 

int rota~i 

Specifies the connection to the XWIN server. 

Specifies how much to rotate the cut buffers. 

The XRotateBuffers function rotates the cut buffers, such that buffer 0 
becomes buffer n, buffer 1 becomes n + 1 mod 8, and so on. This cut buffer 
numbering is global to the display. Note that XRotateBuffers generates Bad­
Match errors if any of the eight buffers have not been created. 

Application Utility Functions 10-21 



Determining the Appropriate Visual Type 

A single display can support multiple screens. Each screen can have several dif­
ferent visual types supported at different depths. You can use the functions 
described in this section to determine which visual to use for your application. 

The functions in this section use the visual information masks and the 
XVisualInfo structure, which is defined in < Xll/Xutil. h > and contains: 

lit Visual information mask bits It I 

#define Vi8U&l.NcMult 0x0 

#define VisU&lIlMaak Oxl 
#define Vi8U&l.ScreenMuk 0x2 

#define VisualDepthMaak Ox4 
#define VisualClAssMaslt Ox8 
#define VisU&l.RedMaakMask OxlO 
#define VisualGreerlMaakMaak Ox20 

#define VisU&IBlueMaakMaak Ox40 
#define VisualColoDDaPSizeMaak Ox80 
#define ViaualBitaPerRGBMask OxlOO 
#define VisualAllMaak OxlFF 

1* Values *1 

typedef atruct ( 

Visual *visual; 

VisualID visualid; 

int~; 

unsigned. int depth; 

int cl.&ss; 

unsigned. long red_mask; 

unsigned. long qreen _mask; 

unsigned. long blue_mask; 

int oolormBp_size; 

int bits...Jl8r_J:gb; 

} XViaualInfo; 

10-22 Xwln GWS: Xllb - C Language Interface 



Determining the Appropriate Visual Type 

To obtain a list of visual information structures that match a specified template, 
use XGetV!sualInfo. 

XVillUA1Info *XGetVillUA1Info (displRy, vinfo _ "",sk, vinfo _template, nitems -,eturn) 
Display ·displRy; 
long vinfo _ mllSk; 
XVisua1lnfo ·vinfo _ templRte; 
int ·nitems -,eturn; 

display Specifies the connection to the XWlN server. 

vinfo JlUlsk Specifies the visual mask value. 

vinfo _template Specifies the visual attributes that are to be used in matching the 
visual structures. 

nitems return Returns the number of matching visual structures. 

The XGetV!sualInfo function returns a list of visual structures that match the 
attributes specified by vinfo _template. If no visual structures match the tem­
plate using the specified vinfo _mask, XGetVisualInfo returns a NULL. To free 
the data returned by this function, use XFree. 

To obtain the visual information that matches the specified depth and class of 
the screen, use XMatchVisualInfo. 

display 

screen 

depth 

class 

Status XMatchVisualInfo (display, screen, depth, clRss, vinfo -,eturn) 
Display ·displRy; 
int screen; 
int depth; 
int class; 
XVisua1lnfo ·vinfo -,durn; 

Specifies the connection to the XWlN server. 

Specifies the screen. 

Specifies the depth of the screen. 

Specifies the class of the screen. 

vinfo Jeturn Returns the matched visual information. 

Application Utility Functions 10-23 



Determining the Appropriate Visual Type 

The XMatchVisualInfo function returns the visual infonnation for a visual that 
matches the specified depth and class for a screen. Because multiple visuals that 
match the specified depth and class can exist, the exact visual chosen is 
undefined. If a visual is found, XMatchVisualInfo returns nonzero and the 
infonnation on the visual to vinfo Jetum. Otherwise, when a visual is not 
found, XMatchVisualInfo returns zero. 

10-24 Xwln GWS: Xllb - C Language Interface 



Manipulating Images 

Xlib provides several functions that perform basic operations on images. All 
operations on images are defined using an XImage structure, as defined in 
< Xll/Xlib.h >. Because the number of different types of image formats can 
be very large, this hides details of image storage properly from applications. 

This section describes the functions for generic operations on images. Manufac­
turers can provide very fast implementations of these for the formats frequently 
encountered on their hardware. These functions are neither sufficient nor desir­
able to use for general image processing. Rather, they are here to provide 
minimal functions on screen format images. The basic operations for getting 
and putting images are XGetImage and XPutImage. 

Note that no functions have been defined, as yet, to read and write images to 
and from disk files. 

The XImage structure describes an image as it exists in the client's memory. The 
user can request that some of the members such as height, width, and xoffset be 
changed when the image is sent to the server. Note that bytes...,perJine in con­
cert with offset can be used to extract a subset of the image. Other members 
(for example, byte order, bitmap_unit, and so forth) are characteristics of both 
the image and the server. If these members differ between the image and the 
server, XPutImage makes the appropriate conversions. The first byte of the first 
line of plane n must be located at the address (data + (n .. height .. 
bytes...,per_line». For a description of the XImage structure, see "Transferring 
Images between Oient and Server" in Chapter 6. 

To allocate sufficient memory for an XImage structure, use XCreateImage. 

XImage *lICaateImage (display, oislUll, depth, for'milt, offset, tI4t11., width, height, bitm4p...Jl'ld, 

by"s...JIe" _'me) 
Display -display; 
Visual -oislUll; 
unsigned int depth; 
int {orrruAt; 
int offset; 
char -t14t11; 
unsigned int width; 

unsigned int height; 
int bilmllp...Jl'ltl; 
int by"s..JI'T -'i~; 

Application Utility Functions 10-25 



Manipulating Images 

display Specifies the connection to the XWIN server. 

visual Specifies a pointer to the visual. 

depth Specifies the depth of the image. 

format Specifies the format for the image. You can pass XYBitmap, 
XYPixmap, or ZPixmap. 

offset Specifies the number of pixels to ignore at the beginning of the 
scanline. 

data Specifies a pointer to the image data. 

width Specifies the width of the image, in pixels. 

height Specifies the height of the image, in pixels. 

bitmap yad Specifies the quantum of a scanline (8, 16, or 32). In other 
words, the start of one scanline is separated in client memory 
from the start of the next scanline by an integer multiple of this 
many bits. 

bytes yer Jine Specifies the number of bytes in the client image between the 
start of one scanline and the start of the next. 

The XCreatelmage function allocates the memory needed for an XImage struc­
ture for the specified display but does not allocate space for the image itself. 
Rather, it initializes the structure byte-order, bit-order, and bitmap-unit values 
from the display and returns a pointer to the XImage structure. The red, green, 
and blue mask values are defined for Z format images only and are ~erived 
from the Visual structure passed in. Other values also are passed in. The 
offset permits the rapid displaying of the image without requiring each scanline 
to be shifted into position. If you pass a zero value in bytes J>er Jine, Xlib 
assumes that the scanlines are contiguous in memory and calculates the value of 
bytes yer Jine itself. 

Note that when the image is created using XCreatelmage, XGetImage, or 
XSublmage, the destroy procedure that the XDestroylmage function calls frees 
both the image structure and the data pointed to by the image structure. 

The basic functions used to get a pixel, set a pixel, create a subimage, and add a 
constant offset to a Z format image are defined in the image object. The func­
tions in this section are really macro invocations of the functions in the image 
object and are defined in < Xll/Xutil. h >. 

10-26 Xwln GWS: Xlib - C Language Interface 



To obtain a pixel value in an image, use XGetPixel. 

ximage 

x 
y 

unai9Q8d lcmq lIGetPiJaal (xi7IUIge, x, y) 

XImage "xi7IUIge; 
int x; 
int y; 

Specifies a pointer to the image. 

Specify the x and y coordinates. 

Manipulating Images 

The XGetP ixel function returns the specified pixel from the named image. The 
pixel value is returned in normalized format (that is, the least-significant byte of 
the long is the least-significant byte of the pixel). The image must contain the x 
and y coordinates. 

To set a pixel value in an image, use XPutPixel. 

ximage 

x 
y 

pixel 

int XPutPiDl (ri7IUIge, x, y, pixel) 
XImage "xi7/Ulge; 
int x; 

int y; 
unsigned long pixel; 

Specifies a pointer to the image. 

Specify the x and y coordinates. 

Specifies the new pixel value. 

The XPutPixel function overwrites the pixel in the named image with the 
specified pixel value. The input pixel value must be in normalized format (that 
is, the least-significant byte of the long is the least-significant byte of the pixel). 
The image must contain the x and y coordinates. 

To create a subimage, use XSubImage. 

Application Utility Functions 10-27 



Manipulating Imag •• 

ximage 

x 
y 

XIIIIage *lCSubIml;a (:d_ge, x, y, slibimllge_wth, slibimllge}leight) 

XImage -xbrulge; 

intx; 
inty; 
unsigned int slibi_ge_width; 
unsigned int slibimage_height; 

Specifies a pointer to the image. 

Specify the x and y coordinates. 

subimage _width 
Specifies the width of the new subimage, in pixels. 

subimage _height 
Specifies the height of the new subimage, in pixels. 

The XSubImage function creates a new image that is a subsection of an existing 
one. It allocates the memory necessary for the new XImage structure and 
returns a pointer to the new image. The data is copied from the source image, 
and the image must contain the rectangle defined by x, y, subimage_width, and 
subimage _height. 

To increment each pixel in the pixmap by a constant value, use XAddPixel. 

%image 

value 

DddPixel (xbrulge, wille) 

XImage -ximllgt:; 
long wille; 

Specifies a pointer to the image. 

Specifies the constant value that is to be added. 

The XAddPixel function adds a constant value to every pixel in an image. It is 
useful when you have a base pixel value from allocating color resources and 
need to manipulate the image to that form. 

To deallocate the memory allocated in a previous call to XCreateImage, use 
XDestroyImage. 

10-28 

int XDeatroyImage (ximllge) 
XImage -ximllge; 

Xwln GWS: Xllb - C Language Interface 



Manipulating Images 

%image Specifies a pointer to the image. 

The XDestroyImaqe function deallocates the memory associated with the Xlm­
aqe structure. 

Note that when the image is created using XCreateImaqe, XGetImaqe, or 
XSubImaqe, the destroy procedure that this macro calls frees both the image 
structure and the data pointed to by the image structure. 

Application Utility functions 10·29 



Manipulating Bitmaps 

Xlib provides functions that you can use to read a bitmap from a file, save a bit­
map to a file, or create a bitmap. This section describes those functions that 
transfer bitmaps to and from the client's file system, thus allowing their reuse in 
a later connection (for example, from an entirely different client or to a different 
display or server). 

The X version 11 bitmap file format is: 

tdafine Mme _width fDiIltli 
#define __ height htight 

#define __ x_hot" 
#define __ y-hot Y 

static char __ bits[] = { OxNN, ... } 

The variables ending with _x_hot and J _ hot suffixes are optional because they 
are present only if a hotspot has been defined for this bitmap. The other vari­
ables are required. The _bits array must be large enough to contain the size bit­
map. The bitmap unit is eight. The name is derived from the name of the file 
that you spedfied on the original command line by deleting the directory path 
and extension. 

To read a bitmap from a file, use XReadBitmapFile. 

display 

d 

filename 

int XReadBi~ile (dispky, d, filename, widtll-"t:tum, htighU't:tum, bitmap _ rt:tum, ,,}/Ot _ rt:tum, 

Y -'/Ot Jt:tum) 
Display -dispky; 

Drawabled; 

char -fi1eruune; 
unsigned int -fDiIltll_rt:tum, -htighU't:tum; 

Pixmap -bitmap_rt:tum; 

int -"_hot_rt:tum, -y_hot_rt:tum; 

Specifies the connection to the XWIN server. 

Spedfies the drawable that indicates the screen. 

Specifies the file name to use. The format of the file name is 
operating-system dependent. 

width return 
heigh'-.return Return the width and height values of the read in bitmap file. 

10-30 Xwln GWS: Xllb - C Language Interface 



Manipulating Bitmaps 

bitmap Jeturn Returns the bitmap that is created. 

x hot return 
y_hotJeturn Return the hotspot coordinates. 

The XReadBitmapFile function reads in a file containing a bitmap. The file can 
be either in the standard X version 10 format (that is, the format used by X ver­
sion 10 bitmap program) or in the X version 11 bitmap format. If the file cannot 
be opened, XReadBitmapFile returns BitmapOpenFailed. If the file can be 
opened but does not contain valid bitmap data, it returns BitmapFilelnvalid. 
If insufficient working storage is allocated, it returns BitmapNoMemory. If the 
file is readable and valid, it returns BitmapSuccess. 

XReadBitmapFile returns the bitmap's height and width, as read from the file, 
to width Jeturn and heightJeturn. It then creates a pixmap of the appropriate 
size, reads the bitmap data from the file into the pixmap, and assigns the pix­
map to the caller's variable bitmap. The caller must free the bitmap using 
XFreePbmap when finished. If name_x_hot and namey_hot exist, XReadBit­
mapFile returns them to x_hotJeturn and y_hotJeturn; otherwise, it returns 
-1,-1. 

XReadBitmapFile can generate BadAlloc and BadDrawable errors. 

To write out a bitmap to a file, use XWriteBitmapFile. 

int XifriteBitlllllPPile (display, filename, bitmap, width, height, x_hot, y -'wt) 
Display -displlly; 
char -filenllme; 
Pixmap bitmap; 
unsigned int width, height; 
int x_hot, y_hot; 

Specifies the connection to the XWIN server. display 

filename Specifies the file name to use. The format of the file name is 
operating-system dependent. 

bitmap 

width 
height 

Specifies the bitmap. 

Specify the width and height. 

Application Utility Functions 10-31 



Manipulating Bitmaps 

x hot 
y_hot Specify where to place the hotspot coordinates (or -1,-1 if none 

are present) in the file. 

The XWriteBitmapFile function writes a bitmap out to a file. While 
XReadBitmapFile can read in either X version 10 format or X version 11 for­
mat, XWriteBitmapFile always writes out X version 11 format. If the file can­
not be opened for writing, it returns BitmapOpenFailed. If insufficient memory 
is allocated, XWriteBitmapFile returns BitmapNoMeIooryi otherwise, on no 
error, it returns BitmapSuccess. If x_hot and y_hot are not -I, -I, XWriteBit­
mapFile writes them out as the hotspot coordinates for the bitmap. 

XWriteBitmapFile can generate BadDrawable and BadMatch errors. 

To create a pixmap and then store bitmap-format data into it, use XCreatel?ix­
mapFromBitmapData. 

display 

d 

data 

width 
height 

fg 
bg 

depth 

Pixmap XCreatePixmap1!'roaSitmapData (display, d, datil, width, height, 18, bg, depth) 
Display ·disp/ay; 
Drawable d; 

char -datil; 

unsigned int width, height; 

unsigned long 18, bg; 
unsigned int depth; 

Specifies the connection to the XWIN server. 

Specifies the drawable that indicates the screen. 

Specifies the data in bitmap format. 

Specify the width and height. 

Specify the foreground and background pixel values to use. 

Specifies the depth of the pixmap. 

The XCreatel?ixmapFromBitmapData function creates a pixmap of the given 
depth and then does a bitmap-format Xl?utlmage of the data into it. The depth 
must be supported by the screen of the specified drawable, or a BadMatch error 
results. 

10·32 Xwln GWS: Xllb - C Language Interface 



Manipulating Bitmaps 

XCreateplxmapFromBltmapData can generate BadAlloc and BadMatch errors. 

To include a bitmap written out by XWrlteBltmapFlle in a program directly, 
as opposed to reading it in every time at run time, use XCreateBltmapFrom­
Data. 

display 

d 

data 

width 
height 

Pixmap lICreateBitu,pf'rCld>ata (disp14y, d, utA, width, height) 
Display ·displ4y; 
Drawable d; 

char ·utll; 
unsigned tnt width, height; 

Specifies the connection to the XWIN server. 

Specifies the drawable that indicates the screen. 

Specifies the location of the bitmap data. 

Specify the width and height. 

The XCreateBltmapFromData function allows you to include in your C pro­
gram (using #include) a bitmap file that was written out by XWriteBltmapFlle 
(X version 11 format only) without reading in the bitmap file. The following 
example creates a gray bitmap: 

,include n!)ray.bitmap" 

Pixmap bitmap; 

bitmap - ICl:eateBitmapProaData(diaplay, window, gray_bits, gray_width, gray_height); 

If insufficient working storage was allocated, XCreateBltmapFromData returns 
None. It is your responsibility to free the bitmap using XFreeP1xmap when 
finished. 

XCreateBltmapFromData can generate a BadAlloc error. 

Application Utility Functions 10-33 



Using the Resource Manager 

The resource manager is a database manager with a twist. In most database 
systems, you perform a query using an imprecise specification, and you get 
back a set of records. The resource manager, however, allows you to specify a 
large set of values with an imprecise specification, to query the database with a 
precise specification, and to get back only a single value. This should be used 
by applications that need to know what the user prefers for colors, fonts, and 
other resources. It is this use as a database for dealing with X resources that 
inspired the name ''Resource Manager," although the resource manager can be 
and is used in other ways. 

For example, a user of your application may want to specify that all windows 
should have a blue background but that all mail-reading windows should have 
a red background. Presuming that all applications use the resource manager, a 
user can define this information using only two lines of specifications. Your 
personal resource database usually is stored in a file and is loaded onto a server 
property when you log in. This database is retrieved automatically by Xlib 
when a connection is opened. 

As an example of how the resource manager works, consider a mail-reading 
application called xmh. Assume that it is designed so that it uses a complex 
window hierarchy all the way down to individual command buttons, which 
may be actual small subwindows in some toolkits. These are often called 
objects or widgets. In such toolkit systems, each user interface object can be 
composed of other objects and can be assigned. a name and a class. Fully 
qualified names or classes can have arbitrary numbers of component names, but 
a fully qualified name always has the same number of component names as a 
fully qualified class. This generally reflects the structure of the application as 
composed of these objects, starting with the application itself. 

For example, the xmh mail program has a name "xmh" and is one of a class of 
"Mail" programs. By convention, the first character of class components is capi­
talized, and the first letter of name components is in lowercase. Each name and 
class finally has an attribute (for example "foreground" or "font"). If each win­
dow is properly assigned a name and class, it is easy for the user to specify 
attributes of any portion of the application. 

At the top level, the application might consist of a paned. window (that is, a 
window divided into several sections) named "toe". One pane of the paned 
window is a button box window named "buttons" and is filled with command 
buttons. One of these command buttons is used to retrieve (include) new mail 
and has the name "include". This window has a fully qualified name, 

10-34 Xwln GWS: Xlib - C Language Interface 



Using the Resource Manager 

"xmh.toc.buttons.include", and a fully qualified class, 
"Xmh.VPaned.Box.Command". Its fully qualified name is the name of its 
parent, "xmh.toc.buttons", followed by its name, "include". Its class is the class 
of its parent, "Xmh.VPaned.Box", followed by its particular class, "Command". 
The fully qualified name of a resource is the attribute's name appended to the 
object's fully qualified name, and the fully qualified class is its class appended 
to the object's class. 

This include button needs the following resources: 

• Title string 

• Font 
• Foreground color for its inactive state 

• Background color for its inactive state 

• Foreground color for its active state 

• Background color for its active state 

Each of the resources that this button needs are considered to be attributes of 
the button and, as such, have a name and a class. For example, the foreground 
color for the button in its active state might be named "activeForeground", and 
its class would be ''Foreground.'' 

When an application looks up a resource (for example, a color), it passes the 
complete name and complete class of the resource to a look-up routine. After 
look up, the resource manager returns the resource value and the representation 
type. 

The resource manager allows applications to store resources by an incomplete 
specification of name, class, and a representation type, as well as to retrieve 
them given a fully qualified name and class. 

Application Utility Functions 10-35 



Using the Resource Manager 

Resource Manager Matching Rules 

The algorithm for determining which resource name or names match a given 
query is the heart of the database. Resources are stored with only partially 
specified names and classes, using pattern matching constructs. An asterisk (It) 
is used to represent any number of intervening components (including none). A 
period (.) is used to separate immediately adjacent components. All queries 
fully specify the name and class of the resource needed. A trailing period and 
asterisk are not removed. The library supports 100 components in a name or 
class. The look-up algorithm then searches the database for the name that most 
closely matches (is most specific) this full name and class. The rules for a match 
in order of precedence are: 

1. The attribute of the name and class must match. For example, queries 
for: 

xtem. acrollbar .baolcqrowld 

XTem. Sarollbar .Baalc;'round 

will not match the following database entry: 

xterm. acrollbar:on 

(nama) 

(clan) 

2. Database entries with name or class prefixed by a period (.) are more 
specific than those prefixed by an asterisk (It). For example, the entry 
xterm.geometry is more specific than the entry xtermltgeometry. 

3. Names are more specific than classes. For example, the entry 
''''scrollbar.background'' is more specific than the entry 
''*Scrollbar.Background'' . 

4. Specifying a name or class is more specific than omitting either. For 
example, the entry "Scrollbar*Background" is more specific than the entry 
''''Background''. 

5 .. Left components are more specific than right components. For example, 
''''vtlOO*background'' is more specific than the entry 
''''scrollbar*background'' for the query ".vtlOO.scrollbar.background". 

6. If neither a period (.) nor an asterisk (It) is specified at the beginning, a 
period (.) is implicit. For example, "xterm.background" is identical to 
".xterm.background". 

10-36 Xwln GWS: Xllb - C Language Interface 



Using the Resource Manager 

Names and classes can be mixed. As an example of these rules, assume the fol­
lowing user preference specification: 

XIIh*b&ckqround: reel 

*caaaancl. font: 8x13 

*caaaancl.background: blue 

*CcaIIIand.l'oreground: green 

XIIh. toc*Coumanci. aotiY8l'oreground: black 

A query for the name "xmh.toc.messagefunctions.include.activeForeground" 
and class "Xmh.VPaned.Box.Command.Foreground" would match 
"xmh.toc*Command.activeForeground" and return ''black''. However, it also 
matches ""'Command.Foreground". 

Using the precedence algorithm described above, the resource manager would 
return the value specified by "xmh.tOC*Command.activeForeground". 

Basic Resource Manager Definitions 

The definitions for the resource manager's use are contained in 
< Xll/Xresource. h >. Xlib also uses the resource manager internally to allow 
for non-English language error messages. 

Database values consist of a size, an address, and a representation type. The 
size is specified in bytes. The representation type is a way for you to store data 
tagged by some application-defined type (for example, "font" or "color"). It 
has nothing to do with the C data type or with its class. The XrmValue structure 
contains: 

typedaf atruct { 

unsigned int size; 
caddr_t addr; 

} XrmValue, *XrmVa.luePtr; 

A resource database is an opaque type used by the look-up functions. 

typedaf atruct _XnlHashBucketRec *Xr:mDataba.ae; 

Application Utility Functions 10-37 



Using the Resource Manager 

To initialize the resource manager, use XnnInitialize. 

void XrmInitialize(); 

Most uses of the resource manager involve defining names, classes, and 
representation types as string constants. However, always referring to strings in 
the resource manager can be slow, because it is so heavily used in some toolkits. 
To solve this problem, a shorthand for a string is used in place of the string in 
many of the resource manager functions. Simple comparisons can be performed 
rather than string comparisons. The shorthand name for a string is called a 
quark and is the type XmOuark. On some occasions, you may want to allocate 
a quark that has no string equivalent. 

A quark is to a string what an atom is to a string in the server, but its use is 
entirely local to your application. 

To allocate a new quark, use XrrnUniqueQuark. 

XDI(luark xmDniqueQuark ( ) 

The XrrnUniqueQuark function allocates a quark that is guaranteed not to 
represent any string that is known to the resource manager. 

To allocate some memory you will never give back, use Xpermalloc. 

char *Xpermalloc (size) 

unsigned int size; 

The Xpermalloc function is used by some toolkits for permanently allocated 
storage and allows some performance and space savings over the completely 
general memory allocator. 

Each name, class, and representation type is typedef'd as an XmOuark. 

typedef int Xl:DQuark, *XrIIQuarkLillt; 

typedef XrmQuark XrmName; 

typedef XrmQuark XrDClasll; 

typedef XrmQuark XrmRepAsentatioo; 

Lists are represented as null-terminated arrays of quarks. The size of the array 
must be large enough for the number of components used. 

10-38 Xwln GWS: Xllb - C Language Interface 



Using the Resource Manager 

typedet XrIIQuarkList XrmNameList; 

typedet XrIIQuarkList XrDClusLiat; 

To convert a string to a quark, use XrmStringToQuark. 

string 

ldafine XrmStringToNama (strinq) XrmStringToQuark (strinq) 

ldafine XrmStringToClass (strinq) XrmStringToQuark (string) 

ldafine XrmStringToRepreaentation (strinq) XrmStringToQuark (string) 

XrIIQuark XrmStringToQuark ( string) 
char ·string; 

Specifies the string for which a quark is to be allocated. 

To convert a quark to a string, use XmQuarkToStrinq. 

ldatine XrmNameToStrinq (name) XrIIQuarkTostrinq (name) 

ldafine XrDClaasToStrinq(class) XrmQuarkToString(class) 

ldafine XrmRepreaentationToString (type) XrDQuarkToString (type) 

char *XrDQuarkToStrinq (quark) 
XrmQuark quark; 

quark Specifies the quark for which the equivalent string is desired. 

These functions can be used to convert to and from quark representations. The 
string pointed to by the return value must not be modified or freed. If no string 
exists for that quark, XmOuarkToStrinq returns NULL. 

To convert a string with one or more components to a quark list, use 
XrmStringToQuarkList. 

ldafine XrmStringToNameLiat (str, name) XrmStringToQuarkLiat «str), (name)) 

ldafine XrmStringToClas8Liat(atr,claas) XrmStringToQuarkList«str), (class)) 

void XrmStringToQuarkList (string, quarksJeturn) 

char • string; 
XrmQuarkUst quarks_return; 

Application Utility Functions 10-39 



Using the Resource Manager 

string Specifies the string for which a quark is to be allocated. 

quarks Jeturn Returns the list of quarks. 

The Xl:mStringToQuarkList function converts the null-tenninated string (gen­
erally a fully qualified name) to a list of quarks. The components of the string 
are separated by a period or asterisk character. 

A binding list is a list of type XrmBindingList and indicates if components of 
name or class lists are bound tightly or loosely (that is, if wildcarding of inter­
mediate components is specified). 

typedef eDUIII {XrmBindTightly, XrmBindLooaely} XJ:mBindinq, *XrmBinciingList; 

XIlIIBindTightly indicates that a period separates the components, and 
XIlIIBindLoosely indicates that an asterisk separates the components. 

To convert a string with one or more components to a binding list and a quark 
list, use Xl:mStringToBindingQuarkList. 

XJ:mStringToBinciingQuarkL1st (string, bindingsJeturn, quaTksJeturn> 
char ·string; 

XrmBindingUst bindings_return; 
XrmQuarkUst quarks_return; 

string Specifies the string for which a quark is to be allocated. 

bindings Jeturn 
Returns the binding list. The caller must allocate sufficient 
space for the binding list before calling Xl:mStringToBin­
dingQuarkList. 

quarks Jeturn Returns the list of quarks. The caller must allocate sufficient 
space for the quarks list before calling Xl:mStringToBin­
dingQuarkList. 

Component names in the list are separated by a period or an asterisk character. 
If the string does not start with a period or an asterisk, a period is assumed. 
For example, ""'a.b"'c" becomes: 

10-40 

quarka 

bi.ndi.nqs 

a 
loose 

b 

tight 

c 
loose 

Xwln GWS: Xllb - C Language Interface 



Using the Resource Manager 

Resource Database Access 

Xlib provides resource management functions that you can use to manipulate 
resource databases. The next sections discuss how to: 

• Store and get resources 

• Get database levels 

• Merge two databases 

• Retrieve and store databases 

Storing Into a Resource Database 
To store resources into the database, use XrmPutResource or 
XrnQPutResource. Both functions take a partial resource specification, a 
representation type, and a value. This value is copied into the specified data­
base. 

database 

specifier 

type 

value 

void XmPutResource (databl/Se, specifier, type, value) 
XrmDatabase -database; 
char -specifier; 
char -type; 
XrmValue -value; 

Specifies a pointer to the resource database. 

Specifies a complete or partial specification of the resource. 

Specifies the type of the resource. 

Specifies the value of the resource, which is specified as a string. 

If database contains NULL, XrmPutResource creates a new database and 
returns a pointer to it. XrmPutResource is a convenience function that calls 
XrmStringToBindingQuarkList followed by: 

XntQPutResouroe(database, bindinqs, quarks, XrmStringToQuark(type), value) 

Application Utility Functions 10-41 



Using the Resource Manager 

database 

bindings 

quarks 

type 

value 

void XrIIO?UtReSOUX08 (didabase, bindings, qUllTks, type, value) 

XrmDatabase ·dataluise; 
XrmBindingUst bindings; 

XrmQuarkUst qUllTks; 

XrmRepresentation type; 
Xrm Value ·value; 

Specifies a pointer to the resource database. 

Specifies a list of bindings. 

Specifies the complete or partial name or the class list of the 
resource. 

Specifies the type of the resource. 

Specifies the value of the resource, which is specified as a string. 

If database contains NULL, Xrn(lPutResource creates a new database and 
returns a pointer to it. 

To add a resource that is specified as a string, use xrmPutStrinqResource. 

database 

specifier 

value 

void XrmPutStringbsour08 (daUlbue, specifier, value) 

XrmDatabase ·database; 
char "specifier; 
char "value; 

Specifies a pointer to the resource database. 

Specifies a complete or partial specification of the resource. 

Specifies the value of the resource, which is specified as a string. 

If database contains NULL, XrmPutStrinqResource creates a new database and 
returns a pointer to it. XrmPutStrinqResource adds a resource with the 
specified value to the specified database. XrmPutStrinqResource is a conveni­
ence routine that takes both the resource and value as null-terminated strings, 
converts them to quarks, and then calls XnI(lPutResource, using a "String" 
representation type. 

10-42 Xwln GWS: Xllb - C Language Interface 



Using the Resource Manager 

To add a string resource using quarks as a specification, use 
XrmQfutStringResource. 

database 

bindings 

quarks 

value 

void XnQ'utStringResoUJ:'08 (daUlbase, bindings, quarks, TIIIlue) 
XrmDatabase ·dafll1xlse; 

XrmBindingUst bindings; 
XrmQuarkUst quarks; 
char ·TIIIlue; 

Specifies a pointer to the resource database. 

Specifies a list of bindings. 

Specifies the complete or partial name or the class list of the 
resource. 

Specifies the value of the resource, which is specified as a string. 

If database contains NULL, XrmQfutStringResource creates a new database 
and returns a pointer to it. XrmQfutStringResource is a convenience routine 
that constructs an XrrnVaIue for the value string (by calling strIen to compute 
the size) and then calls XrmQfutResource, using a "String" representation type. 

To add a single resource entry that is specified as a string that contains both a 
name and a value, use XrmPutLineResource. 

database 

line 

void XrmPutLineResource (datilbGse, line) 

XrmDatabase ·datilbGse; 

char ·'ine; 

Specifies a pointer to the resource database. 

Specifies the resource value pair as a single string. A single 
colon (:) separates the name from the value. 

If database contains NULL, XrmPutLineResource creates a new database and 
returns a pointer to it. XrmPutLineResource adds a single resource entry to 
the specified database. Any white space before or after the name or colon in the 
line argument is ignored. The value is terminated by a new-line or a NULL 
character. To allow values to contain embedded new-line characters, a "\n" is 
recognized and replaced by a new-line character. For example, line might have 
the value "xterm"'background:greenVt". Null-terminated strings without a new 
line are also permitted. 

Application Utility Functions 10-43 



Using the Resource Manager 

Looking Up from a Resource Database 
To retrieve a resource from a resource database, use xntt;etResource or 
XrnOGetResource. 

database 

Boo1 XrIIGe~aouroe (dafQbase, str _714me, str _c/Qss, str _type_return, 'Otdue _return) 
XrmDatabase database; 

char ·str_name; 
char ·str _c/Qss; 
char "str_type_return; 
Xrm Value ·'Otdue _return; 

Specifies the database that is to be used. 

str name Specifies the fully qualified name of the value being retrieved 
(as a string). 

str class Specifies the fully qualified class of the value being retrieved (as 
a string). 

Returns a pointer to the representation type of the destination 
(as a string). 

value return Returns the value in the database. 

Boo1 XrD(lGetResouroe (database, quark _714me, quark_class, quark_type Jeturn, 'DIdue Jeturn) 
XrmDatabase database; 
XrmNameUst quark_name; 
XrmOassList quark _c/Qss; 
XrmRepresentation ·quark _type_return; 
XrmValue ·'Otdue_return; 

database 

quark_name 

Specifies the database that is to be used. 

Specifies the fully qualified name of the value being retrieved 
(as a quark). 

10-44 

Specifies the fully qualified class of the value being retrieved (as 
a quark). 

Xwln GWS: Xllb - C Language Interface 



Using the Resource Manager 

quark_type Jeturn 
Returns a pointer to the representation type of the destination 
(as a quark). 

value return Returns the value in the database. 

The XrnGetResource and XrnOGetResource functions retrieve a resource from 
the specified database. Both take a fully qualified name/class pair, a destination 
resource representation, and the address of a value (size/address pair). The 
value and returned type point into database memory; therefore, you must not 
modify the data. 

The database only frees or overwrites entries on XrmPutResource, 
~utResource, or XrnMergeDatabases. A client that is not storing new 
values into the database or is not merging the database should be safe using the 
address passed back at any time until it exits. If a resource was found, both 
XrnGetResource and XrnOGetResource return True; otherwise, they return 
False. 

Database Search Lists 
Most applications and toolkits do not make random probes into a resource data­
base to fetch resources. The X toolkit access pattern for a resource database is 
quite stylized. A series of from 1 to 20 probes are made with only the last 
name/class differing in each probe. The XrnGetResource function is at worst a 
It 2n algorithm, where n is the length of the name/class list. This can be 
improved upon by the application programmer by prefetching a list of database 
levels that might match the first part of a name/class list. 

To return a list of database levels, use XrnOGetSearchList. 

typedef XrmHashTable *Xz:mSearchList; 

Bool XrDQGetSearchList (dafllbase, names, clIIsses, listJeturn, lisUength) 
XrmDatabase daflll¥lse; 
XrmNameUst 1Ulmes; 
XrmClassList classes; 
XrmSearchUst listJeturn; 
int list_length; 

Application Utility Functions 10-45 



Using the Resource Manager 

database 

names 

classes 

listJeturn 

listJength 

Specifies the database that is to be used. 

Specifies a list of resource names. 

Specifies a list of resource classes. 

Returns a search list for further use. The caller must allocate 
suffident space for the list before calling Xl:nQGetSearchList. 

Specifies the number of entries (not the byte size) allocated for 
list return. 

The Xl:nQGetSearchList function takes a list of names and classes and returns 
a list of database levels where a match might occur. The returned list is in 
best-to-worst order and uses the same algorithm as XrnGetResource for deter­
mining precedence. If list_return was large enough for the search list, Xl:nQGet­
SearchList returns True; otherwise, it returns False. 

The size of the search list that the caller must allocate is dependent upon the 
number of levels and wildcards in the resource specifiers that are stored in the 
database. The worst case length is 3" , where n is the number of name or class 
components in names or classes. 

When using Xl:nQGetSearchList followed by multiple probes for resources 
with a common name and class prefix, only the common prefix should be 
specified in the name and class list to XrnOGetSearchList. 

To search resource database levels for a given resource, use 
Xl:nQGetSearchResource. 

Boo1 ~80uroe (list, name, cltlss, type]eturn, Nlue]eturn) 
XrmSearchUst list; 
XrmName name; 

XrmClass cllass; 
XrmRepresentation -type]eturn; 
XrmValue -Nlue]eturn; 

list Specifies the search list returned by XrnOGetSearchList. 

name Specifies the resource name. 

class Specifies the resource class. 

10-46 Xwln GWS: Xllb - C Language Interface 



Using the Resource Manager 

typeJeturn 

value return 

Returns data representation type. 

Returns the value in the database. 

The XrnQGetSearchResource function searches the specified database levels for 
the resource that is fully identified by the specified name and class. The search 
stops with the first match. XrnQGetSearchResource returns True if the 
resource was found; otherwise, it returns False. 

A call to XrnQGetSearchList with a name and class list containing all 
but the last component of a resource name followed by a call to 
XrnQGetSearchResource with the last component name and class returns the 
same database entry as XrnGetResource and XrnQGetResource with the fully 
qualified name and class. 

Merging Resource Databases 

To merge the contents of one database into another database, use XrmMergeDa­
tabases. 

void Xr:uttergeDatilbases (source _db, target_db) 
XrmDatabase source_db, -target_db; 

source db Specifies the resource database that is to be merged into the tar­
get database. 

Specifies a pointer to the resource database into which the 
source database is to be merged. 

The XrnMergeDatabases function merges the contents of one database into 
another. It may overwrite entries in the destination database. This function is 
used to combine databases (for example, an application specific database of 
defaults and a database of user preferences). The merge is destructive; that is, 
the source database is destroyed. 

Retrieving and Storing Databases 

To retrieve a database from disk, use XrmGetFileDatabase. 

X!:ui>atabase XJ:uGetFileDatabase (filename) 
char -filenJlme; 

Application Utility Functions 10-47 



Using the Resource Manager 

filename Specifies the resource database file name. 

The Xrnt;etFileDatabase function opens the specified file, creates a new 
resource database, and loads it with the specifications read in from the specified 
file. The specified file must contain lines in the format accepted by 
X1:mPutLineResource. If it cannot open the specified file, Xrnt;etFileData­
base returns NULL. 

To store a copy of a database to disk, use Xr:mPutFileDatabase. 

voicl XrmPutl!'ileDatabue (database, stored_db) 

database 

stored db 

XrmDatabase database; 
char ·stored_db; 

Specifies the database that is to be used. 

Specifies the file name for the stored database. 

The X1:mPutFileDatabase function stores a copy of the specified database in 
the specified file. The file is an ASCII text file that contains lines in the format 
that is accepted by Xr:mPutLineResource. 

To create a database from a string, use Xrm;etStringDatabase. 

data 

XDOatabue XXIIGetStringDatabue (datil) 
char ·datll; 

Specifies the database contents using a string. 

The Xrnt;etStringDatabase function creates a new database and stores the 
resources specified in the specified null-terminated string. Xrnt;etStringData­
base is similar to Xrnt;etFileDatabase except that it reads the information out 
of a string instead of out of a file. Each line is separated by a new-line character 
in the format accepted by Xr:mPutLineResource. 

10-48 Xwln GWS: Xllb - C Language Interface 



Using the Resource Manager 

Parsing Command Line Options 

The XJ:mParseConmand function can be used to parse the command line argu­
ments to a program and modify a resource database with selected entries from 
the command line. 

typedef anum ( 

xmoptionNoArq, 

xmoptionIlIArq, 

xmoptionSticltyArq, 

xmopti~, 

xmoptionRAtaArg, 

xmoptionSltipArq, 

xmoptioaSltipLine 

} XrIIOptionKind; 

typedef atruct ( 

ab&r *option; 

ab&r *reaow:oeName; 

lCrDOpticmKinc1 argKind.: 

1* Value is apecified in OptionDea~c.value *1 
1* Value is the option string itself *1 
1* Value is characters immediately following option *1 
1* Value ia next argument in arqv *1 
1* Resource and. value in next aJ:9UllllK1t in argv *1 
1* Ignore thia option and. the next argument in argv *1 
1* Ignore thia option and. the reat of arqv *1 

1* Option specification atring in arqv *1 
1* Binding and resource nama (aana application name) *1 
1* Which atyle of option it ia *1 

caddr t value; 1* Value to provide if lCrIIIoptionNoArq *1 
} XrIIOptionDeacRec, *XrlIOptionDeaoLi.at; 

To load a resource database from a C command line, use XJ:mParseCommand. 

database 

table 

void Xnl?araeCoaaand(dRtabase, table, table_count, name, tzrgc_in_out, IlTg'O_in_out,) 
XrmDatabase ·dRtabase; 
XrmOptionDescUst table; 
int table_count; 
char ·name; 
int ·argc_in_out; 
char ··llTgrJ _in_out; 

Specifies a pointer to the resource database. 

table count 

Specifies the table of command line arguments to be parsed. 

Specifies the number of entries in the table. 

Application Utility Functions 10-49 



Using the Resource Manager 

Specifies the application name. 

Specifies the number of arguments and returns the number of 
remaining arguments. 

Specifies a pointer to the command line arguments and returns 
the remaining arguments. 

The XrmParseCoDlnand function parses an (argc, argv) pair according to the 
specified option table, loads recognized options into the specified database with 
type "String," and modifies the (argc, argv) pair to remove all recognized 
options. 

The specified table is used to parse the command line. Recognized entries in 
the table are removed from argv, and entries are made in the specified resource 
database. The table entries contain information on the option string, the option 
name, the style of option, and a value to provide if the option kind is Xmop­
tionNoArq. The argc argument specifies the number of arguments in argv and 
is set to the remaining number of arguments that were not parsed. The name 
argument should be the name of your application for use in building the data­
base entry. The name argument is prefixed to the resourceName in the option 
table before storing the specification. No separating (binding) character is 
inserted. The table must contain either a period (.) or an asterisk (It) as the first 
character in each resourceName entry. To specify a more completely qualified 
resource name, the resourceName entry can contain multiple components. 

For example, the following is part of the standard option table from the X 
Toolkit Xtlnitialize function: 

10-50 Xwln GWS: Xllb - C Language Interface 



atatic XtUlptionDeacRec opTable [] - { 

{ "-background" , "*backqrounc1" , 

{"-bel", "*boxderl:olor", 

{"-bq", "*backqround" , 

{"-boJ:derwidtb", "*'l'opLewlSball.boxderWidtbn , 

{"-boJ:dercolor", "*boxderl:olor", 

{"-b1l''', "*'l'opLewlSball.boxderWidtb", 

{"-cliaplay", ".diaplay", 

{"-fq", "*foJ:eqrounc1", 

{"-fn", "*font", 

{"-font", n*font", 

{"-foJ:eqrOund", n*foJ:eqrounc1", 

{"~try", " • 'lopLewlSball. geometry" , 

{"-iconic", " . 'lopLewlSball. iconic", 
("-naJDe", ".name", 

{"-rewrae", "*rewraeVideo", 

{"-rv", "*rewraeVideo", 

{"-ayncbronoua", ".ayncbronoua", 
{"-title", " • 'lopLewlSball. title", 

{ "_XJ:lll" , NOLL, 

}i 

Using the Resource Manager 

XmoptionSepArq, (caddr_t) NOLL}, 

XmoptionSepArq, (caddr_t) NULL}, 

XmoptionSepArq, (cadd.r_ t) NULL}, 

XmoptionSepArq, (caddr_t) NULL}, 

XmoptionSepArq, (caddr_t) NULL}, 

XmoptionSepArq, (caddr_t) NULL}, 

XmoptionSepArq, (caddr_t) NULL}, 

XmoptionSepArq, (caddr_t) NULL}, 

XmoptionSepArq, (caddr_t) NULL}, 

XmoptionSepArq, (cadd.r_t) NULL}, 

XmoptionSepArq, (caddr_t) NULL}, 

XmoptionSepArq, (caddr_t) NOLL}, 

XmoptionNoArq, (caddr_t) lion"}, 

XmoptionSepArq, (caddr_t) NULL}, 

XmoptionNoArq, (caddr_t) "on"}, 

XmoptionNoArq, (caddr_t) "on"}, 

XmoptionNoArq, (caddr_t) "on"}, 

XmoptionSepArq, (caddr _ t) NULL}, 

XmoptionReaArq, (caddr_t) NULL}, 

In this table, if the -background (or -bg) option is used to set background 
colors, the stored resource Specifier matches all resources of attribute back­
ground. If the -borderwidth option is used, the stored resource specifier applies 
only to border width attributes of class TopLevelShell (that is, outer-most win­
dows, including pop-up windows). If the -title option is used to set a window 
name, only the topmost application windows receive the resource. 

When parsing the command line, any unique unambiguous abbreviation for an 
option name in the table is considered a match for the option. Note that upper­
case and lowercase matter. 

Application Utility Functions 10-51 



Using the Context Manager 

The context manager provides a way of associating data with a Window in your 
program. Note that this is local to your program; the data is not stored in the 
server on a property list. Any amount of data in any number of pieces can be 
associated with a window, and each piece of data has a type associated with it. 
The context manager requires knowledge of the window and type to store or 
retrieve data. 

Essentially, the context manager can be viewed as a two-dimensional, sparse 
array: one dimension is subscripted by the window and the other by a context 
type field. Each entry in the array contains a pointer to the data. Xlib provides 
context management functions with which you can save data values, get data 
values, delete entries, and create a unique context type. The symbols used are 
in < Xll/Xutil.h >. 

To save a data value that corresponds to a window and context type, use 
XSaveContext. 

display 

w 

context 

data 

int XSawContext (displ4y, w, context, d4ta) 

Display -displ4y; 
Window Wi 
XContext context; 
caddr_t data; 

Specifies the connection to the XWIN server. 

Specifies the window with which the data is associated. 

Specifies the context type to which the data belongs. 

Specifies the data to be associated with the window and type. 

If an entry with the specified window and type already exists, XSaveContext 
overrides it with the specified context. The XSaveContext function returns a 
nonzero error code if an error has occurred and zero otherwise. Possible errors 
are XCNCMEM (out of memory). 

To get the data associated with a window and type, use XFinciContext. 

10-52 Xwln GWS: Xllb - C Language Interface 



Using the Context Manager 

int Xl!'incl:ontext (displtly, 70, context, ""14_1I1tum) 
Display ·displtly; 

display 

w 

context 

data return 

Window 70; 
xContext context; 
caddr_t ·""14-"etum; 

Specifies the connection to the XWIN server. 

Specifies the window with which the data is associated. 

Specifies the context type to which the data belongs. 

Returns a pointer to the data. 

Because it is a return value, the data is a pointer. The XFinciContext function 
returns a nonzero error code if an error has occurred and zero otherwise. Possi­
ble errors are XCNOENT (context-not-found). 

To delete an entry for a given window and type, use XDeleteContext. 

display 

w 

context 

int XDeleteContext (displtly, 70, context) 
Display ·displtly; 

Window 70; 
xContext context; 

Specifies the connection to the XWIN server. 

Specifies the window with which the data is associated. 

Specifies the context type to which the data belongs. 

The XDeleteContext function deletes the entry for the given window and type 
from the data structure. This function returns the same error codes that 
XFinciContext returns if called with the same arguments. XDeleteContext 
does not free the data whose address was saved. 

To create a unique context type that may be used in subsequent calls to 
XSaveContext and XFinciContext, use XO'niqueContext. 

XContext xuniqueContext () 

Application Utility Functions 10-53 









A Xlib Functions and Protocol 
Requests 

Xllb Functions and Protocol Requests A-1 

Table of Contents 





Xlib Functions and Protocol Requests 

This appendix provides two tables that relate to Xlib functions and the X proto­
col. The following table lists each Xlib function (in alphabetical order) and the 
corresponding protocol request that it generates. 

Xlib Function 

XActivateScreenSaver 
XAddHost 
XAddHosts 
XAddToSaveSet 
XAllocColor 
XAllocColorCells 
XAllocColorPlanes 
XAllocNamedColor 
XAllowEvents 
XAutoRepeatOff 
XAutoRepeatOn 
XBell 
XChangeActivePointerGrab 
XChangeGC 
XChangeKeyboardControl 
XChangeKeyboardMapping 
XChangePointerControl 
XChangeProperty 
XChangeSaveSet 
XChangeWindow Attributes 
XCirculateSubwindows 
XOrculateSubwindowsDown 
XOrculateSubwindowsUp 
XOearArea 
XOearWindow 
XConfigureWindow 
XConvertSelection 
XCopyArea 
XCopyColormapAndFree 
XCopyGC 
XCopyPlane 

Xllb Functions and Protocol Requests 

Protocol Request 

ForceScreenSaver 
ChangeHosts 
ChangeHosts 
ChangeSaveSet 
AllocColor 
AllocColorCells 
AllocColorPlanes 
AllocNamedColor 
AllowEvents 
ChangeKeyboardControl 
ChangeKeyboardControl 
Bell 
ChangeActivePointerGrab 
ChangeGC 
ChangeKeyboardControl 
ChangeKeyboardMapping 
ChangePointerControl . 
ChangeProperty 
ChangeSaveSet 
ChangeWindow Attributes 
CirculateWindow 
OrculateWindow 
OrculateWindow 
OearArea 
OearArea 
ConfigureWindow 
ConvertSelection 
CopyArea 
CopyColormapAndFree 
CopyGC 
CopyPlane 

A-1 



Xllb Functions and Protocol Requests 

Xlib Function 

XCreateBitmapFromData 

XCreateColormap 
XCreateFontCursor 
XCreateGC 
XCreateGlyphCursor 
XCreatePixmap 
XCreatePixmapCursor 
XCreatePixmapFromData 

XCreateSimpleWindow 
XCreateWindow 
XDefineCursor 
XDeleteProperty 
XDesttoySubwindows 
XDesttoyWindow 
XDisableAccessConttol 
XDrawArc 
XDrawArcs 
XDrawImageStting 
XDrawImageStting16 
XDrawLine 
XDrawLines 
XDrawPoint 
XDrawPoints 
XDrawRectangle 
XDrawRectangles 
XDrawSegments 
XDrawString 
XDrawString16 
XDrawText 

A·2 

Protocol Request 

CreateGC 
CreatePixmap 
FreeGC 
PutImage 
CreateColormap 
CreateGlyphCursor 
CreateGC 
CreateGlyphCursor 
CreatePixmap 
CreateCursor 
CreateGC 
CreatePixmap 
FreeGC 
PutImage 
CreateWindow 
CreateWindow 
ChangeWindowAttributes 
DeleteProperty 
DestroySubwindows 
DestroyWindow 
SetAccessControl 
PolyArc 
PolyArc 
ImageText8 
ImageText16 
PolySegment 
Polyline 
PolyPoint 
PolyPoint 
PolyRectangle 
PolyRectangle 
PolySegment 
PolyTextB 
PolyText16 
PolyTextB 

Xwln GWS: Xllb - C Language Interface 



Xlib Function 

XDrawText16 
XEnableAccessControl 
XFetchBytes 
XFetchName 
XFillArc 
XFillArcs 
XFillPolygon 
XFillRectangle 
XFillRectangles 
XForceScree~ver 
XFreeColormap 
XFreeColors 
XFreeCursor 
XFreeFont 
XFreeGC 
XFreePixmap 
XGetAtomName 
XGetFontPath 
XGetGeometry 
XGetIconSizes 
XGetImage 
XGetInputFocus 
XGetKeyboardControl 
XGetKeyboardMapping 
XGetModifierMapping 
XGetMotionEvents 
XGetNormalHints 
XGetPointerControl 
XGetPointerMapping 
XGetScree~ver 
XGetSelectionOwner 
XGetSizeHints 
XGetWMHints 
XGetWindowAttributes 

Xllb Functions and Protocol Requests 

Xllb Functions and Protocol Requests 

Protocol Request 

PolyText16 
SetAccessControl 
GetProperty 
GetProperty 
PolyFillArc 
PolyFillArc 
FillPoly 
PolyFillRectangle 
PolyFillRectangle 
ForceScree~ver 
FreeColormap 
FreeColors 
FreeCursor 
OoseFont 
FreeGC 
FreePixmap 
GetAtomName 
GetFontPath 
GetGeometry 
GetProperty 
GetImage 
GetInputFocus 
GetKeyboardControl 
GetKeyboardMapping 
GetModifierMapping 
GetMotionEvents 
GetProperty 
GetPointerControl 
GetPointerMapping 
GetScree~ver 
GetSelectionOwner 
GetProperty 
GetProperty 
GetWindow Attributes 
GetGeometry 

A-3 



Xllb Functions and Protocol Requests 

Xlib Function 

XGetWindowProperty 
XGetZoomHints 
XGrabButton 
XGrabKey 
XGrabKeyboard 
XGrabPointer 
XGrabServer 
XlnitExtension 
XlnstallColonnap 
XlnternAtom 
XKillClient 
XUstExtensions 
XUstFonts 
XUstFontsWithlnfo 
XUstHosts 
XUstInstalledColonnaps 
XUstProperties 
XLoadFont 
XLoadQueryFont 

XLookupColor 
XLowerWindow 
XMapRaised 

XMapSubwindows 
XMapWindow 
XMoveResizeWindow 
XMoveWindow 
XNoOp 
XOpenDisplay 
XParseColor 
XPutImage 
XQueryBestCursor 
XQueryBestSize 
XQueryBestStipple 

A-4 

Protocol Request 

GetProperty 
GetProperty 
GrabButton 
GrabKey 
GrabKeyboard 
GrabPointer 
GrabServer 
QueryExtension 
InstallColonnap 
InternAtom 
KillClient 
UstExtensions 
UstFonts 
UstFontsWithlnfo 
UstHosts 
UstInstalledColonnaps 
UstProperties 
OpenFont 
OpenFont 
QueryFont 
LookupColor 
ConfigureWindow 
ConfigureWindow 
MapWindow 
MapSubwindows 
MapWindow 
ConfigureWindow 
ConfigureWindow 
NoOperation 
CreateGC 
LookupColor 
PutImage 
QueryBestSize 
QueryBestSize 
QueryBestSize 

Xwln GWS: Xllb - C Language Interface 



Xlib Function 

XQueryBestTile 
XQueryColor 
XQueryColors 
XQueryExtension 
XQueryFont 
XQueryKeyrnap 
XQueryPointer 
XQueryTextExtents 
XQueryTextExtents16 
XQueryTree 
XRaiseWindow 
XReadBitmapFile 

XRecolorCursor 
XRennoveFronX5aveSet 
XRennoveHost 
XRennoveHosts 
XReparentWindow 
XResetScreenSaver 
XResizeWindow 
XRestackWindows 
XRotateBuffers 
XRotateWindowProperties 
XSelectInput 
XSendEvent 
XSetAccessControl 
XSetArcMode 
XSetBackground 
XSetClipMask 
XSetClipOrigin 
XSetClipRectangles 
XSetCloseDownMode 
XSetConnmand 

Xllb Functions and Protocol Requests 

Xllb Functions and Protocol Requests 

Protocol Request 

QueryBestSize 
QueryColors 
QueryColors 
QueryExtension 
QueryFont 
QueryKeymap 
QueryPointer 
QueryTextExtents 
QueryTextExtents 
QueryTree 
ConfigureWindow 
CreateGC 
CreatePixmap 
FreeCC 
PutImage 
RecolorCursor 
ChangeSaveSet 
ChangeHosts 
ChangeHosts 
ReparentWindow 
ForceScreenSaver 
ConfigureWindow 
ConfigureWindow 
RotateProperties 
RotateProperties 
ChangeWindow Attributes 
SendEvent 
SetAccessControl 
ChangeGC 
ChangeGC 
ChangeGC 
ChangeGC 
SetClipRectangles 
SetCloseDownMode 
ChangeProperty 

A·5 



Xllb Functions and Protocol Requests 

Xlib Function 

XSetDashes 
XSetFillRule 
XSetFillStyle 
XSetFont 
XSetFontPath 
XSetForeground 
XSetFunction 
XSetGraphicsExposures 
XSetIconName 
XSetIconSizes 
XSetlnputFocus 
XSetLineAttributes 
XSetModifierMapping 
XSetNormalHints 
XSetPlaneMask 
XSetPointerMapping 
XSetScreenSaver 
XSetSelectionOwner 
XSetSizeHints 
XSetStandardProperties 
XSetState 
XSetStipple 
XSetSubwindowMode 
XSetTile 
XSetTSOrigin 
XSetWMHints 
XSetWindowBackground 
XSetWindowBackgroundPixmap 
XSetWindowBorder 
XSetWindowBorderPixmap 
XSetWindowBorderWidth 
XSetWindowColormap 
XSetZoomHints 
XStoreBuffer 
XStoreBytes 

A-6 

Protocol Request 

SetDashes 
ChangeGC 
ChangeGC 
ChangeGC 
SetFontPath 
ChangeGC 
ChangeGC 
ChangeGC 
ChangeProperty 
ChangeProperty 
SetInputFocus 
ChangeGC 
SetModifierMapping 
ChangeProperty 
ChangeGC 
SetPointerMapping 
SetScreenSaver 
SetSelectionOwner 
ChangeProperty 
ChangeProperty 
ChangeGC 
ChangeGC 
ChangeGC 
ChangeGC 
ChangeGC 
ChangeProperty 
ChangeWindowAttributes 
ChangeWindowAttributes 
ChangeWindowAttributes 
ChangeWindowAttributes 
ConfigureWindow 
ChangeWindowAttributes 
ChangePropeny 
ChangeProperty 
ChangeProperty 

Xwln GWS: Xllb - C Language Interface 



Xlib Function 

XStoreColor 
XStoreColors 
XStoreName 
XStoreNamedColor 
XSync 
XTranslateCoordinates 
XUndefineCursor 
XUngrabButton 
XUngrabKey 
XUngrabKeyboard 
XUngrabPointer 
XUngrabServer 
XUninstallColormap 
XUnloadFont 
XUnmapSubwindows 
XUnmapWindow 
XWarpPointer 

Xllb Functions and Protocol Requests 

Protocol Request 

StoreColors 
StoreColors 
ChangeProperty 
StoreNamedColor 
GetInputFocus 
TranslateCoordinates 
ChangeWindow Attributes 
UngrabButton 
UngrabKey 
UngrabKeyboard 
UngrabPointer 
UngrabServer 
UninstallColormap 
OoseFont 
UnmapSubwindows 
UnmapWindow 
WarpPointer 

The following table lists each X protocol request (in alphabetical order) and the 
Xlib functions that reference it. 

Protocol Request 

AllocColor 
AllocColorCells 
AllocColorPlanes 
AllocNamedColor 
AllowEvents 
Bell 
SetAccessControl 

ChangeActivePointerGrab 
SetOoseDownMode 

Xllb Functions and Protocol Requests 

Xlib Function 

XAllocColor 
XAllocColorCells 
XAllocColorPlanes 
XAllocNamedColor 
XAllowEvents 
XBeIl 
XDisableAccessControl 
XEnableAccessControl 
XSetAccessControl 
XChangeActivePointerGrab 
XSetOoseDownMode 

A·7 



Xllb Functions and Protocol Requests 

Protocol Request 

ChangeGC 

ChangeHosts 

ChangeKeyboardControl 

ChangeKeyboardMapping 
ChangePointerControl 
ChangeProperty 

A·8 

Xlib Function 

XChangeGC 
XSetArcMode 
XSetBackground 
XSetClipMask 
XSetClipOrigin 
XSetFillRule 
XSetFillStyle 
XSetFont 
XSetForeground 
XSetFunction 
XSetGraphicsExposures 
XSetLineAttributes 
XSetPlaneMask 
XSetState 
XSetStipple 
XSetSubwindowMode 
XSetTile 
XSetTSOrigin 
XAddHost 
XAddHosts 
XRemoveHost 
XRemoveHosts 
XAutoRepeatOff 
XAutoRepeatOn 
XChangeKeyboardControl 
XChangeKeyboardMapping 
XChangePointerControl 
XChangeProperty 
XSetCommand 
XSetIconName 
XSetIconSizes 
XSetNormalHints 
XSetSizeHints 
XSetStandardProperties 
XSetWMHints 

Xwln GWS: Xllb - C Language Interface 



Protocol Request 

ChangeSaveSet 

ChangeWindow Attributes 

CirculateWindow 

ClearArea 

CloseFont 

ConfigureWindow 

ConvertSelection 
CopyArea 
CopyColo~pAndFree 

Xllb Functions and Protocol Requests 

Xllb Functions and Protocol Requests 

Xlib Function 

XSetZoomHints 
XStoreBuffer 
XStoreBytes 
XStoreName 
XAddToSaveSet 
XChangeSaveSet 
XRe~oveFro~veSet 
XChangeWindowAttributes 
XDefineCursor 
XSelectInput 
XSetWindowBackground 
XSetWindowBackgroundPix~p 
XSetWindowBorder 
XSetWindowBorderPixmap 
XSetWindowColo~p 
XUndefineCursor 
XCirculateSubwindowsDown 
XCirculateSubwindowsUp 
XCirculateSubwindows 
XClearArea 
XClearWindow 
XFreeFont 
XUnloadFont 
XConfigureWindow 
XLowerWindow 
XMapRaised 
XMoveResizeWindow 
XMoveWindow 
XRaiseWindow 
XResizeWindow 
XRestackWindows 
XSetWindowBorderWidth 
XConvertSelection 
XCopyArea 
XCopyColormapAndFree 

A-9 



Xllb Functions and Protocol Requests 

Protocol Request 

CopyGC 
CopyPlane 
CreateColormap 
CreateCursor 
CreateGC 

CreateGlyphCursor 

CreatePixmap 

CreateWindow 

DeleteProperty 
DesttoySub~ows 
DesttoyWindow 
FillPoly 
ForceScreenSaver 

FreeColonnap 
FreeColors 
FreeCursor 
FreeGC 

FreePixmap 
GetAtomName 
GetFontPath 
GetGeometry 

A·10 

Xlib Function 

XCopyGC 
XCopyP1ane 
XCreateColonnap 
XCreatePixmapCursor 
XCreateGC 
XCreateBitInapFromData 
XCreatePixmapFromData 
XOpenDisplay 
XReadBitmapFile 
XCreateFontCursor 
XCreateGlyphCursor 
XCreatePixmap 
XCreateBitInapFromData 
XCreatePixmapFromData 
XReadBitmapFile 
XCreateSimpleWindow 
XCreateWindow 
XDeleteProperty 
XDestroySubwindows 
XDestroyWindow 
XFillPolygon 
XActivateScreenSaver 
XForceScreenSaver 
XResetScreenSaver 
XFreeColonnap 
XFreeColors 
XFreeCursor 
XFreeGC 
XCreateBitInapFromData 
XCreatePixmapFromData 
XReadBitmapFile 
XFreePixmap 
XGetAtomName 
XGetFontPath 
XGetGeometry 

Xwln GWS: Xllb - C Language Interface 



Protocol Request 

GetImage 
GetInputFocus 

GetKeyboardControl 
GetKeyboardMapping 
GetModifierMapping 
GetMotionEvents 
GetPointerControl 
GetPointerMapping 
GetProperty 

GetSelectionOwner 
GetWindow Attributes 
GrabButton 
GrabKey 
GrabKeyboard 
GrabPointer 
GrabServer 
ImageText16 
ImageTextB 
InstallColormap 
IntemAtom 
KillOient 
ListExtensions 
ListFonts 
ListFontsWithInfo 
ListHosts 
ListInstalledColormaps 

Xllb Functions and Protocol Requests 

Xllb Functions and Protocol Requests 

Xlib Function 

XGetWindow Attributes 
XGetImage 
XGetInputFocus 
XSync 
XGetKeyboardControl 
XGetKeyboardMapping 
XGetModifierMapping 
XGetMotionEvents 
XGetPointerControl 
XGetPointerMapping 
XFetchBytes 
XFetchName 
XGetIconSizes 
XGetNormalHints 
XGetSizeHints 
XGetWMHints 
XGetWindowProperty 
XGetZoomHints 
XGetSelectionOwner 
XGetWindow Attributes 
XGrabButton 
XGrabKey 
XGrabKeyboard 
XGrabPointer 
XGrabServer 
XDrawImageString16 
XDrawlmageString 
XInstallColormap 
XInternAtom 
XKillClient 
XListExtensions 
XListFonts 
XListFontsWithlnfo 
XListHosts 
XListlnstalledColormaps 

A-11 



Xllb Functions and Protocol Requests 

Protocol Request Xlib Function 

ListProperties XListProperties 
LookupColor XLookupColor 

XParseColor 
MapSubwindows XMapSubwindows 
MapWindow XMapRaised 

XMapWindow 
NoOperation XNoOp 
OpenFont XLoadFont 

XLoadQueryFont 
PolyArc XDrawArc 

XDrawArcs 
PolyFillArc XFillArc 

XFillArcs 
PolyFillRectangle XFillRectangle 

XFillRectangles 
PolyLine XDrawLines 
PolyPoint XDrawPoint 

XDrawPoints 
PolyRectangle XDrawRectangle 

XDrawRectangles 
PolySegment XDrawLine 

XDrawSegments 
PolyText16 XDrawString16 

XDrawText16 
PolyText8 XDrawString 

XDrawText 
PutImage XPutImage 

XCreateBitmapFromData 
XCreatePixmapFromData 
XReadBitrnapFile 

QueryBestSize XQueryBestCursor 
XQueryBestSize 
XQueryBestStipple 
XQueryBestTile 

QueryColors XQueryColor 

A-12 Xwln GWS: Xllb - C Language Interface 



Protocol Request 

QueryExtension 

QueryFont 

QueryKeymap 
QueryPointer 
QueryTextExtents 

QueryTree 
RecolorCursor 
ReparentWindow 
RotateProperties 

SendEvent 
SetOipRectangles 
SetOoseDownMode 
SetDashes 
SetFontPath 
SetInputFocus 
SetModifierMapping 
SetPointerMapping 
SetScreenSaver 

SetSelectionOwner 
StoreColors 

StoreNamedColor 
TranslateCoordinates 
UngrabButton 
UngrabKey 
UngrabKeyboard 
UngrabPointer 
UngrabServer 
UninstallColormap 

Xllb Functions and Protocol Requests 

Xllb Functions and Protocol Requests 

Xlib Function 

XQueryColors 
XInitExtension 
XQueryExtension 
XLoadQueryFont 
XQueryFont 
XQueryKeymap 
XQueryPointer 
XQueryTextExtents 
XQueryTextExtents16 
XQueryTree 
XRecolorCursor 
XReparentWindow 
XRotateBuffers 
XRotateWindowProperties 
XSendEvent 
XSetOipRectangles 
XSetOoseDownMode 
XSetDashes 
XSetFontPath 
XSetlnputFocus 
XSetModifierMapping 
XSetPointerMapping 
XGetScreenSaver 
XSetScreenSaver 
XSetSelectionOwner 
XStoreColor 
XStoreColors 
XStoreNamedColor 
XTranslateCoordinates 
XUngrabButton 
XUngrabKey 
XUngrabKeyboard 
XUngrabPointer 
XUngrabServer 
XUninsta11Colormap 

A-13 



Xllb Functions and Protocol Requests 

Protocol Request 

UnmapSubwindows 
UnmapWindow 
WarpPointer 

A-14 

Xlib Function 

XUnmapSubWindows 
XUnmapWindow 
XWarpPointer 

Xwln GWS: Xllb - C Language Interface 







B Xlib Font Cursors 

Xlib Font Cursors 
Introduction 

Table of Contents 

8-1 
8-1 





Xlib Font Cursors 

Introduction 

The following are the available cursors that can be used with XCreateFontCur­
sor. 

ldafine XC_X_OIlrllOr 0 

ldafine XC_arrow 2 

ldafine XC_DaMd_arrow_down 4 

ldafine XC_DaMd_arrow_up 6 

ldafine XC_boat 8 

ldafine XC_bogo8ity 10 

ldafine XC_bottom_left_corner 12 

ldafine XC_bottom_right_corner 14 

ldafine XC_bottom_8ide 16 

ldafine XC_bottom_t_ 18 

ldafine XC_box_8piral 20 

ldafine XC_oenter-ptr 22 

ldafine XC_cirole 24 

ldafine XC_clock 26 
ldafine XC_coff __ muq 28 

ldafine XC_cr088 30 

ldafine XC_cro88_reverse 32 

ldafine XC_cro88hair 34 

ldafine XC_di&llOnd_cro88 36 

ldafine XC_dot 38 

ldafine XC_dot_box_mask 40 

IcIefine XC_double_arrow 42 

ldafine XC_drAft_large 44 

IcIefine XC_draft_ama11 46 

IcIefine XC_draped_box 48 

IcIefine XC_exchange 50 

IcIefine XC_fleur 52 

'define XC_gol:lbler 54 

IcIefine XC_quDi)y 56 

Xllb Font Cursors 

IcIefine XC_11_&nCJle 76 

IcIefine XC_lr_&nCJle 78 

IcIefine XC_man 80 

tdefine XC_middle!lutton 82 

tdefine XC_mouse 84 

IcIefine XCJl8ncil 86 

IcIefine XC-pirate 88 

tdefine XC-plua 90 

tdefine XC_que8tion_arrow 92 

IcIefine XC_right-Ptr 94 

IcIefine XC_right_8icle 96 

IcIefine XC_right_~ 98 

IcIefine XC_rightbltton 100 

IcIefine XC_rtl_logo 102 

IcIefine XC_sailboat 104 

IcIefine XC_ab_down_arrow 106 

IcIefine XC_ab_h_double_arrow 108 

tdefine XC_ab_left_arrow 110 

IcIefine XC_ab_right_arrow 112 

tdefine XC_ab_up_arrow 114 

tdefine XC_ab_v_double_arrow 116 

IcIefine XC_shuttle 118 

IcIefine XC_8izinq 120 

IcIefine XC_apicier 122 

IcIefine XC_aprayean 124 

ldafine XC_star 126 

IcIefine XC_target 128 

IcIefine XC_tCro88 130 

IcIefine XC_top_left_arrow 132 

B-1 



Xllb Font Cursor. 

ldafine XC_hand 58 
ldafine XC_handl._maak 60 

ldafine XC_heart 62 
ldafine XC_icon 64 

ldafine XC_iron_oross 66 
ldafine XC_left..,Ftr 68 

ldafine XC_left_side 70 

ldafine XC_left_tee 72 
ldafine XC_leftbutton 74 

B-2 

ldafine XC_top_left_oomer 134 

ldafine XC_top_rigbt_oomer 136 

ldafine XC_top_sidll 138 

ldafine XC_top_t .. 140 
ldafine XC_trek 142 

ldafine XC_ul_ang'le 144 

'define XC_lIIIbwll& 146 
ldafine XC_ur_ang'le 148 

ldafine XC_watch 150 

ldafine XC_xterm 152 

Xwln GWS: Xllb - C Language Interface 







C Extensions 

Extensions 
Introduction 

Basic Protocol Support Routines 

Hooking into Xlib 

Hooks Into the Library 

Hooks onto Xlib Data Structures 

GC Caching 

Graphics Batching 

Writing Extension Stubs 

Table of Contents 

C-1 
C-1 

C-2 

C-3 

C-5 

C-11 

C-13 

C-14 

C-16 



Table of Contents __________________ _ 

Requests, Replies, and Xproto.h C-17 

Request Format C-18 

Starting to Write a Stub Routine C-21 

Locking Data Structures C-22 

Sending the Protocol Request and 
Arguments C-23 

Variable Length Arguments C-2S 

Replies C-26 

Synchronous Calling C-29 

II Xwln GWS: Xllb - C Language Interface 



___________________ Table of Contents 

Allocating and Deallocatlng Memory C-30 

Portability Considerations C-31 

Deriving the Correct Extension Opcode C-32 

Table of Contents 11/ 





Extensions 

Introduction 

Because X can evolve by extensions to the core protocol, it is important that 
extensions not be perceived as second class citizens. At some point, your favor­
ite extensions may be adopted as additional parts of the X Standard. 

Therefore, there should be little to distinguish the use of an extension from that 
of the core protocol. To avoid having to initialize extensions explicitly in appli­
cation programs, it is also important that extensions perform ''lazy evaluations" 
and automatically initialize themselves when called for the first time. 

This appendix describes techniques for writing extensions to Xlib that will run 
at essentially the same performance as the core protocol requests. 

1 .....•. · ... *; .................. 1. It is. ~xpected that a given extension to X consist~ of ~ultiple reque~ts . . N91E Defining ten new features as ten separate extensions IS a bad practice. 
H) Rather, they should be packaged into a single extension and should use 

. ........ minor opcodes to distinguish the requests. 

The symbols and macros used for writing stubs to Xlib are listed in 

< Xll/Xlibint . h >. 

Extensions C-1 



Basic Protocol Support Routines 

The basic protocol requests for extensions are XQueryExtension and XListEx­
tensions. 

Bool XQueryBxtension (displRy, Mme, major _ opcode Jeturn, first JDent Jeturn, first_error Jeturn) 
Display "displRy; 
char "7Ulmei 

int "major _ DpCOde _return; 
int "firstJDentJeturn; 
int "first_errorJeturn; 

XQueryExtension determines if the named extension is present. If so, the major 
opcode for the extension is returned (if it has one); otherwise, False is returned. 
Any minor opcod.e and the request formats are specific to the extension. If the 
extension involves additional event types, the base event type code is returned; 
otherwise, False is returned. The format of the events is specific to the exten­
sion. If the extension involves additional error codes, the base error code is 
returned; otherwise, False is returned. The format of additional data in the 
errors is specific to the extension. 

The extension name should be in the ISO Latin-l encoding, and uppercase and 
lowercase do matter. 

char **XLiatBxtensions (displRy, nextensions_return) 
Display "displRy; 
int "nextensions _return; 

XListExtensions returns a list of all extensions supported by the server. 

Xl!'xeeExtenaionLiat (list) 

char .... ,ist; 

XFreeExtensionList frees the memory allocated by XListExtensions. 

C-2 Xwln GWS: Xllb - C Language Interface 



Hooking into Xlib 

These functions allow you to hook into the library. They are not nonnally used 
by application programmers but are used by people who need to extend the 
core X protocol and the X library interface. The functions, which generate pro­
tocol requests for X, are typically called stubs. 

In extensions, stubs first should check to see if they have initialized themselves 
on a connection. If they have not, they then should call XlnitExtension to 
attempt to initialize themselves on the connection. 

If the extension needs to be informed of Gelfont allocation or deallocation or if 
the extension defines new event types, the functions described here allow the 
extension to be called when these events occur. 

The XExtCodes structure returns the information from XlnitExtension and is 
defined in 

< Xll/Xlib. h >: 

typedef stJ:1,1Ct _XExtCodes 
int extension; 
int major_opcode; 
int first_event; 
int first_error; 

} XExtCodes; 

/* public to extension, cannot be changed * / 
/* extension number */ 
/* major op-code usigned by server * / 
/* first event number for the extension */ 
/* first error number for the extension */ 

XExtCodes *XInitExtension (display, name) 

Display"display; 

char "name; 

XlnitExtension determines if the extension exists. Then, it allocates storage for 
maintaining the information about the extension on the connection, chains this 
onto the extension list for the connection, and returns the information the stub 
implementor will need to access the extension. If the extension does not exist, 
XlnitExtension returns NULL. 

In particular, the extension number in the XExtCodes structure is needed in the 
other calls that follow. This extension number is unique only to a single connec­
tion. 

XExtCodes *XAddExtension (display) 

Display "display; 

Extensions C-3 



Hooking Into Xllb 

For local Xlib extensions, XAddExtension allocates the XExtCodes structure, 
bumps the extension number count, and chains the extension onto the extension 
list. (This permits extensions to Xlib without requiring server extensions.) 

C-4 Xwln GWS: Xllb - C Language Interface 



Hooks into the Library 

These functions allow you to define procedures that are to be called when vari­
ous circumstances occur. The procedures include the creation of a new GC for a 
connection, the copying of a GC, the freeing a GC, the creating and freeing of 
fonts, the conversion of events defined by extensions to and from wire format, 
and the handling of errors. 

All of these functions return the previous routine defined for this extension. 

int (*XBSetCloaeDisplay(display, extension, proc»() 

Display ·display; r display • / 
int extension; r extension number • / 
int (.proc)(); r routine to call when display closed • / 

You use this procedure to define a procedure to be called whenever 
XCloseDisplay is called. This procedure returns any previously defined pro­
cedure, usually NULL. 

When XCloseDisplay is called, your routine is called with these arguments: 

rproc)(display, codes) 

Display ·display; 
XExtCodes ·codes; 

int (*XBSetCreateGC (display, extension, proc»() 

Display ·display; /. display· / 

int extension; r extension number • / 
int (.proc)(); r routine to call when GC created • / 

You use this procedure to define a procedure to be called whenever a new GC 
is created. This procedure returns any previously defined procedure, usually 
NULL. 

When a GC is created, your routine is called with these arguments: 

rproc)(display, gc, codes) 
Display ·display; 
GCgc; 
XExtCodes ·codes; 

extensions C-5 



Hooks Into the Library 

int (*XBSetCo~(dispLay, extension, proc»() 
Display -dispLay; r display -/ 
int atension; r extension number -/ 

int (-proe)(); r routine to call when GC copied - / 

You use this procedure to define a procedure to be called whenever a GC is 
copied. This procedure returns any previously defined procedure, usually 
NULL. 

When a GC is copied, your routine is called with these arguments: 

C-proc)(display, gc, oodes) 

Display -display; 
GCgc; 

XExtCodes -codes; 

int (*XBSetrreeGC (dispLay, extension, proe»() 

Display -dispLay; r display -/ 
int extension; r extension number -/ 

int (-proe)(); r routine to call when GC freed -/ 

You use this procedure to define a procedure to be called whenever a GC is 
freed. This procedure returns any previously defined procedure, usually NULL. 

When a GC is freed, your routine is called with these arguments: 

C-proc)(display, gc, oodes) 

Display -display; 
GCgc; 

XExtCodes -oodes; 

int (*XBSetCreate!'ont (dis,zllY, extension, proe»O 

Display -dispLay; r display -/ 
int extension; r exteilsion number - / 

int (-proe)(); /- routine to call when font created - / 

You use this procedure to define a procedure to be called whenever XLoad­
QueryFont and XQueryFont are called. This procedure returns any previously 
defined procedure, usually NULL. 

When XLoadQueryFont or XQueryFont is called, your routine is called with 
these arguments: 

C-6 Xwln GWS: Xllb - C Language Interface 



Hooks Into the Library 

C'proc)(display, ls, codes) 
Display -display; 
XFontStruct -ls; 

XExtCodes -codes; 

int (*XBSetFreeFont (displily, extension, proc»() 
Display -displlly; r display - / 
int extension; 
int (-proc)(); 

r extension number - / 
r routine to call when font freed - / 

You use this procedure to define a procedure to be called whenever XFreeFont 
is called. This procedure returns any previously defined procedure, usually 
NULL. 

When XFreeFont is called, your routine is called with these arguments: 

rproc)(display, ls, codes) 
Display -display; 
XFontStruct -ls; 

XExtCodes -codes; 

The next two functions allow you to define new events to the library. 

There is an implementation limit such that your host event structure size 
cannot be bigger than the size of the XEvent union of structures. There 
also is no way to guarantee that more than 24 elements or 96 characters in 
the structure will be fully portable between machines. 

int (*XBSetWireToBvent (displlly, event_number, proc»() 
Display -displlly; r display -/ 
int event_number; r event routine to replace -/ 
Bool (-proc)O; r routine to call when converting event - / 

You use this procedure to define a procedure to be called when an event needs 
to be converted from wire format (xEvent ) to host format (XEvent ). The 
event number defines the protocol event number for which to install a conver­
sion routine. This procedure returns any previously defined procedure. 

Extensions C-7 



Hooks Into the Library 

You can replace a core event conversion routine with one of your own, 
although this is not encouraged. It would, however, allow you to intercept a 
core event and modify it before being placed in the queue or otherwise 
examined. 

When Xlib needs to convert an event from wire format to host format, your rou­
tine is called with these arguments: 

Status rproc)(display, re, event) 

Display "display; 
XEvent "rei 
xEvent "event; 

Your routine must return status to indicate if the conversion succeeded. The re 
argument is a pointer to where the host format event should be stored, and the 
event argument is the 32-byte wire event structure. In the XEvent structure you 
are creating, type must be the first member and window must be the second 
member. You should fill in the type member with the type specified for the 
xEvent structure. You should copy all other members from the xEvent struc­
ture (wire format) to the XEvent structure (host format). Your conversion rou­
tine should return True if the event should be placed in the queue or False if it 
should not be placed in the queue. 

Statua (*XESetEventToWu. (displlly, event_number, proc»O 
Display"displlly; r display" / 
int event_number; r event routine to replace .. / 
int ("proc)(); r routine to call when converting event" / 

You use this procedure to define a procedure to be called when an event needs 
to be converted from host format ( XEvent ) to wire format ( xEvent ) form. 
The event number defines which protocol event number to install a conversion 
routine for. This procedure returns any previously defined procedure. It 
returns zero if the conversion fails or nonzero otherwise. 

You can replace a core event conversion routine with one of your own, 
although this is not encouraged. It would, however, allow you to intercept a 
core event and modify it before being sent to another client. 

When Xlib needs to convert an event from wire format to host format, your rou­
tine is called with these arguments: 

C-8 Xwln GWS: Xllb - C Language Interface 



Hooks Into the Library 

(·proc)(display, re, event) 
Display "display; 
XEvent .... e; 

xEvent "event; 

The re argument is a pointer to the host format event, and the event argument 
is a pointer to where the 32-byte wire event structure should be stored. In the 
XEvent structure that you are forming, you must have "type" as the first 
member and "window" as the second. You then should fill in the type with the 
type from the xEvent structure. All other members then should be copied from 
the wire format to the XEvent structure. 

int (*XBSetBrror (display, extension, proc»() 
Display ·display; r display" / 
int extension; r extension number" / 
int ("proc)O; r routine to call when X error happens" / 

Inside Xlib, there are times that you may want to suppress the calling of the 
external error handling when an error occurs. This allows status to be returned 
on a call at the cost of the call being synchronous (though most such routines 
are query operations, in any case, and are typically programmed to be synchro­
nous). 

When Xlib detects a protocol error in _XReply, it calls your procedure with 
these arguments: 

int (·proc)(display, err, codes, ret_code) 

Display "display; 
xError "err; 
XExtCodes "codes; 
int "ret_code; 

The err argument is a pointer to the 32-byte wire format error. The codes argu­
ment is a pointer to the extension codes structure. The ret_code argument is the 
return code you may want _ XReply returned to. 

If your routine returns a zero value, the error is not suppressed, and the client's 
error handler is called. (For further information, see "Using the Default Error 
Handlers" in Chapter 8) If your routine returns nonzero, the error is suppressed, 
and _XReply returns the value of ret_code. 

extensions C-9 



Hooks Into the Library 

cb&r * (*XBSetBrrorStrinq(displlly, extension, proc»() 

Display ·displlly; r display • / 
tnt extension; r extension number • / 
char .(.proc)(); r routine to call to obtain an error string • / 

The XGetErrorText function returns a string to the user for an error. XESetEr­
rorStrinq allows you to define a routine to be called that should return a 
pointer to the error message. The following is an example. 

rproc)(display, code, codes, buffer, nbytes) 
Display ·display; 
tnt code; 
XExtCodes ·codes; 
char ·buffer; 
tnt nbytes; 

Your procedure is called with the error code for every error detected. You 
should copy nbytes of a null-terminated string containing the error message into 
buffer. 

int (*XBSetFluahGC(display, extension, proc»() 

Display ·displlly; r display·/ 

tnt extension; r extension number • / 
char .(.proc)(); r routine to call when I/O error happens • / 

The XESetFlushGC procedure is identical to XESetCopyGC except that XESet­
FlushGC is called when a GC cache needs to be updated in the server. 

C-10 Xwln GWS: Xllb - C Language Interface 



Hooks onto Xlib Data Structures 

Various Xlib data structures have provisions for extension routines to chain 
extension supplied data onto a list. These structures are Ge, Visual, Screen, 
ScreenFormat, Display, and XFontStruct. Because the list pointer is always 
the first member in the structure, a single set of routines can be used to manipu­
late the data on these lists. 

The following structure is used in the routines in this section and is defined in < 
Xll/Xlib. h >: 

typedef atruct _XBxtData ( 

tnt number; 1* number Pltw:ned by XInitBxtenaion *1 
stmct: _XBxtData *next; 

tnt (*fme) () ; 

1* next it_ on list of data for stNcture *1 
1* if definecl, aalleci to free private *1 

char *private; 1* data private to this extension. *1 
} XBxtData; 

When any of the data structures listed above are freed, the list is walked, and 
the structure's free routine (if any) is called. If free is NULL, then the library 
frees both the data pointed to by the private member and the structure itself. 

union ( Display *display; 

GC 90; 

Vi8ual. *viaual; 

ScI:een *aoreen; 

ScreenI'omat *Pixmap _fomat; 
DontStruct *font } XBbatatbjeot; 

XBxtData **XBHaadOtBxtenaionLiat (object) 

XBDataObject object; 

XEHeadOfExtensionList returns a pointer to the list of extension structures 
attached to the specified object. In concert with XAddToExtensionList, 
XEHeadOfExtensionList allows an extension to attach arbitrary data to any of 
the structures of types contained in XEDataObject. 

DddTolxtenaionLiat (stnlctrm, exUlt1tll) 
strilct _XExtData "'structrmi ,. pointer to sbucture to add·, 
XExtData ·ext _utili ,. extension data sbucture to add • / 

The structure argument is a pointer to one of the data structures enumerated 
above. You must initialize ext data->number with the extension number before 
calling this routine. -

Extensions C-11 



Hooks onto Xllb Data Structures 

XExtData *XI!'indODBxtensionList (structure, number) 

struct J(ExtData "structure; 

int number; r extension number from XInitExtension .. / 

XFindOnExtensionList returns the first extension data structure for the exten­
sion numbered number. It is expected that an extension will add at most one 
extension data structure to any single data structure's extension data list. There 
is no way to find additional structures. 

The XAllocID macro, which allocates and returns a resource ID, is defined in < 
Xll/Xlib. h >. 

XAllocID (dispkly) 
Display .. displlly; 

This macro is a call through the Display structure to the internal resource ID 
allocator. It returns a resource ID that you can use when creating new 
resources. 

C-12 Xwln GWS: Xllb - C Language Interface 



GC Caching 

GCs are cached by the library to allow merging of independent change requests 
to the same GC into single protocol requests. This is typically called a write­
back cache. Any extension routine whose behavior depends on the contents of a 
GC must flush the GC cache to make sure the server has up-to-date contents in 
its Gc. 

The FlushGC macro checks the dirty bits in the library's GC structure and calls 
_XFlushGCCache if any elements have changed. The FlushGC macro is defined 
as follows: 

F luahGC (displll1J, gc) 
Display -display; 
GCgc; 

Note that if you extend the GC to add additional resource ID components, you 
should ensure that the library stub sends the change request immediately. This 
is because a client can free a resource immediately after using it, so if you only 
stored the value in the cache without forcing a protocol request, the resource 
might be destroyed before being set into the Gc. You can use the 
_XFlushGCCache procedure to force the cache to be flushed. The 
_ XFlushGCCache procedure is defined as follows: 

_XFluahGCCac:be (display, gc) 

Display -display; 
GCgc; 

Extensions C-13 



Graphics Batching 

If you extend X to add more poly graphics primitives, you may be able to take 
advantage of facilities in the library to allow back-to-back single calls to be 
transformed into poly requests. This may dramatically improve performance of 
programs that are not written using poly requests. A pointer to an xReq, called 
lastJeq in the display structure, is the last request being processed. By checking 
that the last request type, drawable, gc, and other options are the same as the 
new one and that there is enough space left in the buffer, you may be able to 
just extend the previous graphics request by extending the length field of the 
request and appending the data to the buffer. This can improve performance by 
five times or more in naive programs. For example, here is the source for the 
XDrawPoint stub. (Writing extension stubs is discussed in the next section.) 

C-14 

#include <Xll/Xlibint.h> 

/* precompute the maximum size of batching request allowed * / 

static int size = sizeof(xPolyPointReq) + EPERBATCH * sizeof(xPoint)i 

XDrawPoint(dpy, d, gc, x, y) 
register Display *dpYi 
Drawable di 

{ 

GCgci 
int x, Yi /* INT16 * / 

xPoint *pointi 
LockDisplay(dpY)i 
FlushGC(dpy, gC)i 
{ 
register xPolyPointReq *req = (xPolyPointReq *) dpy->lastJeqi 
/* if same as previous request, with same drawable, batch requests * / 
if ( 

(req->reqType == X _PolyPoint) 
&& (req->drawable == d) 
&& (req->gc == gc->gid) 
&& (req->coordMode == CoordModeOrigin) 
&& «dpy->bufptr + sizeof (xPoint» <= dpy->bufmax) 
&& «(char *)dpy->bufptr - (char *)req) < size) ) { 

point = (xPoint *) dpy->bufptri 
req->length += sizeof (xPoint) » 2i 
dpy->bufptr += sizeof (xPoint)i 

Xwln GWS: Xllb - C Language Interface 



_____________________ Graphics Batchlng 

} 

} 

else { 
GetReqExtra(PolyPoint, 4, req); ,. 1 point = 4 bytes • , 
req->drawable = d; 
req->gc = gc->gid; 
req->coordMode = CoordModeOrigin; 
point = (xPoint .) (req + 1); 
} 

point->x = X; 
point->y = Yi 
} 
UnlockDisplay(dpY)i 
SyncHandleOi 

To keep clients from generating very long requests that may monopolize the 
server, there is a symbol defined in < Xll/Xlihint.h > of EPERBATCH on the 
number of requests batched. Most of the performance benefit occurs in the first 
few merged requests. Note that FlushGC is called before picking up the value of 
last_req, because it may modify this field. 

Extensions 0.15 



Writing Extension Stubs 

All X requests always contain the length of the request, expressed as a 16-bit 
quantity of 32 bits. This means that a single request can be no more than 256K 
bytes in length. Some servers may not support single requests of such a length. 
The value of dpy->max_request_size contains the maximum length as defined 
by the server implementation. For further information, see /IX Window System 
Protocol" . 

C·16 Xwln GWS: Xllb - C Language Interface 



Requests, Replies, and Xproto.h 

The < Xll/Xproto. h > file contains three sets of definitions that are of interest 
to the stub implementor: request names, request structures, and reply structures. 

You need to generate a file equivalent to < Xll/Xproto.h > for your extension 
and need to include it in your stub routine. Each stub routine also must include 
< Xll/Xlibint.h >. 

The identifiers are deliberately chosen in such a way that, if the request is called 
X _ DoSomething, then its request structure is xDoSomethingReq, and its reply is 
xDoSomethingReply. The GetReq family of macros, defined in 
< Xll/Xlibint.h >, takes advantage of this naming scheme. 

For each X request, there is a definition in < Xll/Xproto.h > that looks similar 
to this: 

idefine X _ DoSomething 42 

In your extension header file, this will be a minor opcode, instead of a major 
opcode. 

extensions C-17 



Request Format 

Every request contains an 8-bit major opcode and a 16-bit length field expressed 
in units of four bytes. Every request consists of four bytes of header (containing 
the major opcode, the length field, and a data byte) followed by zero or more 
additional bytes of data. The length field defines the total length of the request, 
including the header. The length field in a request must equal the minimum 
length required to contain the request. If the specified length is smaller or larger 
than the required length, the server should generate a BadLength error. 
Unused bytes in a request are not required to be zero. 

long ~estSize(display) 
Display *displaYi 

XMaxRequestSize returns the maximum request size (in 4-byte units) supported 
by the server. Single protocol requests to the server can be no longer than this 
size. Extensions should be designed in such a way that long protocol requests 
can be split up into smaller requests. The protocol guarantees the size to be no 
smaller than 4096 unit (16384 bytes). 

Major opcodes 128 through 255 are reserved for extensions. Extensions are 
intended to contain multiple requests, so extension requests typically have an 
additional minor opcode encoded in the "spare" data byte in the request 
header, but the placement and interpretation of this minor opcode as well as all 
other fields in extension requests are not defined by the core protocol. Every 
request is implicitly assigned a sequence number (starting with one) used in 
replies, errors, and events. 

To help but not cure portability problems to certain machines, the B16 and B32 
macros have been defined so that they can become bitfield specifications on 
some machines. For example, on a Cray, these should be used for all 16-bit and 
32-bit quantities, as discussed below. 

Most protocol requests have a corresponding structure typedef in 
< Xll/Xproto.h >, which looks like: 

C-18 Xwln GWS: Xllb - C Language Interface 



Request Format 

typedef struot _DoSometbingReq { 

CARDS reqType; /* X_DoSolllatbinq */ 
/* used differently in different requests */ CARDS someDatum; 

CARD16 lengtb B16; /* total t of bytes in mquest, divided by 4 */ 

/* request-specific data */ 

} xDoSometbingleq; 

If a core protocol request has a single 32-bit argument, you need not declare a 
request structure in your extension header file. Instead, such requests use 
< Xll/Xproto. h >'s xResourceReq structure. This structure is used for any 
request whose single argument is a Window, Pixmap, Drawable, GContext, 
Font, Cursor, Colormap,Atom,orVisualID. 

typedef struot _ResouroeReq { 

CARDS reqType; /* the request type, e.C]. X_DoSometbinq */ 
BYTE pad; /* not used */ 
CARD16 length B16; /* 2 (- total t of bytes in request, divided by 4) */ 
CARD32 id 832; /* the Window, Drawable, Font, GContext, etc. */ 

} lCResourceReq; 

If convenient, you can do something similar in your extension header file. 

In both of these structures, the reqType field identifies the type of the request 
(for example, X_MapWindow or X_CreatePixmap). The length field tells how 
long the request is in units of 4-byte longwords. This length includes both the 
request structure itself and any variable length data, such as strings or lists, that 
follow the request structure. Request structures come in different sizes, but all 
requests are padded to be multiples of four bytes long. 

A few protocol requests take no arguments at all. Instead, they use 
< Xll/Xproto.h >'s xReq structure, which contains only a reqType and a 
length (and a pad byte). 

If the protocol request requires a reply, then < Xll/Xproto. h > also contains a 
reply structure typedef: 

Extensions C-19 



Request Format 

typedef atruot _DoScaIethingReply { 
Bl'.rB type; 

BlTB lIOIIIeDatum: 
CARD16 sequenoeNUDber B16; 

CARD32 length B32; 

1* reqpeat-specific data *1 

1* always X_Reply *1 
1* used differently in different requests *1 
1* t of request. sent so far *1 
1* t of additional bytes, divided by 4 *1 

Most of these reply structures are 32 bytes long. If there are not that many reply 
values, then they contain a sufficient number of pad fields to bring them up to 
32 bytes. The length field is the total number of bytes in the request minus 32, 
divided by 4. This length will be nonzero only if: 

• The reply structure is followed by variable length data such as a list or 
string. 

• The reply structure is longer than 32 bytes. 

Only GetWindowAttributes, QueryFont, QueryKeymap, and GetKeyboardCon­
trol have reply structures longer than 32 bytes in the core protocol. 

A few protocol requests return replies that contain no data. 

< Xll/Xproto. h > does not define reply structures for these. Instead, they use 
the xGenericReply structure, which contains only a type, length, and sequence 
number (and sufficient padding to make it 32 bytes long). 

C-20 Xwln GWS: Xllb - C Language Interface 



Starting to Write a Stub Routine 

An Xlib stub routine should always start like this: 

llinclude "XlI /Xlibint.h" 

XDoSomething (arguments, ... ) 

r argument declarations - / 
{ 

register XDoSomethingReq -req; 

If the protocol request has a reply, then the variable declarations should include 
the reply structure for the request. The following is an example: 

xDoSomethingReply rep; 

Extensions C-21 



Locking Data Structures 

To lock the display structure for systems that want to support multithreaded 
access to a single display connection, each stub will need to lock its critical sec­
tion. Generally, this section is the point from just before the appropriate GetReq 
call until all arguments to the call have been stored into the buffer. The precise 
instructions needed for this locking depend upon the machine architecture. Two 
calls, which are generally implemented as macros, have been provided. 

C-22 

LockDi.pl&y(d~pky) 

Display ·d~pky; 

OnloakDispl&y (d~pky) 
Display ·d~pky; 

Xwln GWS: Xllb - C Language Interface 



Sending the Protocol Request and Arguments 

After the variable declarations, a stub routine should call one of four macros 
defined in < Xll/Xlibint . h >: GetReq, GetReqExtra, GetResReq, or GetEmp­
tyReq. All of these macros take, as their first argument, the name of the proto­
col request as declared in < Xll/Xproto.h > except with X_ removed. Each one 
declares a Display structure pointer, called dpy, and a pointer to a request 
structure, called req, which is of the appropriate type. The macro then appends 
the request structure to the output buffer, fills in its type and length field, and 
sets req to point to it. 

If the protocol request has no arguments (for instance, X _ GrabServer), then use 
GetEmptyReq. 

GetEmptyReq (DoSomething); 

lf the protocol request has a single 32-bit argument (such as a Pixmap, Window, 
Drawable, Atom, and so on), then use GetResReq. The second argument to the 
macro is the 32-bit object. X_MapWindow is a good example. 

GetResReq (DoSomething, rid); 

The rid argument is the Pixmap, Window, or other resource ID. 

lf the protocol request takes any other argument list, then call GetReq. After 
the GetReq, you need to set all the other fields in the request structure, usually 
from arguments to the stub routine. 

GetReq (DoSomething); 

r fill in arguments here • / 
req->argI = argI; 

req->arg2 = arg2; 

A few stub routines (such as XCreateGC and XCreateP ixmap) return a resource 
ID to the caller but pass a resource ID as an argument to the protocol request. 
Such routines use the macro XAllocID to allocate a resource ID from the range 
of IDs that were assigned to this client when it opened the connection. 

rid = req-:;-rid = XAlloclDO; 
return (rid); 

Finally, some stub routines transmit a fixed amount of variable length data after 
the request. Typically, these routines (such as XMoveWindow and XSetBack­
ground) are special cases of more general functions like 
XMoveResizeWindow and XChangeGC. These special case routines use 
GetReqExtra, which is the same as GetReq except that it takes an additional 

Extensions C-23 



Sending the Protocol Request and Arguments 

argument (the number of extra bytes to allocate in the output buffer after the 
request structure). This number should always be a multiple of four. 

C-24 Xwln GWS: Xllb - C Language Interface 



Variable Length Arguments 

Some protocol requests take additional variable length data that follow the xDo­
SomethingReq structure. The format of this data varies from request to request. 
Some requests require a sequence of 8-bit bytes, others a sequence of 16-bit or 
32-bit entities, and still others a sequence of structures. 

It is necessary to add the length of any variable length data to the length field of 
the request structure. That length field is in units of 32-bit longwords. If the 
data is a string or other sequence of 8-bit bytes, then you must round the length 
up and shift it before adding: 

req->length += (nbytes+3»>2; 

To transmit variable length data, use the Data macros. If the data fits into the 
output buffer, then this macro copies it to the buffer. If it does not fit, however, 
the Data macro calls XSend, which transmits first the contents of the buffer 
and then your data. The Data macros take three arguments: the Display, a 
pointer to the beginning of the data, and the number of bytes to be sent. 

Data (display, (char .. ) data, nbytes); 

Datal6(dispiay, (short") data, nbytes); 

Data32(dispiay, Oong") data, nbytes); 

Data, Data16, and Data32 are macros that may use their last argument more 
than once, so that argument should be a variable rather than an expression such 
as "nitems*sizeof(item)". You should do that kind of computation in a separate 
statement before calling them. Use the appropriate macro when sending byte, 
short, or long data. 

If the protocol request requires a reply, then call the procedure _XSend instead 
of the Data macro. _ XSend takes the same arguments, but because it sends your 
data immediately instead of copying it into the output buffer (which would later 
be flushed anyway by the following call on _XReply), it is faster. 

Extensions C-25 



Replies 

If the protocol request has a reply, then call_XReply after you have finished 
dealing with all the fixed and variable length arguments. _XReply flushes the 
output buffer and waits for an xReply packet to arrive. If any events arrive in 
the meantime, _ XReply places them in the queue for later use. 

Statu. _lm8ply(disp14y, rq, exlm, discard) 

Display ·displ4y; 
xReply·rq; 
Int extrA; 

Bool discard; 

r number of 32-bit words expected after the reply ./ 
r should I discard data following "extra" words? ./ 

_ XReply waits for a reply packet and copies its contents into the Specified rep. 
_XReply handles error and event packets that occur before the reply is received. 
_ XReply takes four arguments: 

• A Display It structure 

• A pointer to a reply structure (which must be cast to an xReply It) 

• The number of additional bytes (beyond sizeof( xReply ) = 32 bytes) in 
the reply structure 

• A Boolean that indicates whether _XReply is to discard any additional 
bytes beyond those it was told to read 

Because most reply structures are 32 bytes long, the third argument is usually O. 
The only core protocol exceptions are the replies to GetWinciowAttributes, 
QueryFont, QueryKeymap, and GetKeyboarciControl, which have longer 
replies. 

The last argument should be False if the reply structure is followed by addi­
tional variable length data (such as a list or string). It should be True if there is 
not any variable length data. 

i.~ This lasIargum.~ is provided fo~ upward-compatlbllity re""?"" to allow a 
~Jj<tt:E:: chent to communICate properly with a hypothetical later version of the server 
r::::~rr~~:~:~ that sends more data than the client expected. For example, some later ver­
... ... sion of GetWindowAttributes might use a larger, but compatible, xGetWin-

dowAttributesReply that contains additional attribute data at the end. 

_ XReply returns True if it received a reply successfully or False if it received 
any sort of error. 

C-26 Xwln GWS: Xllb - C Language Interface 



For a request with a reply that is not followed by variable length data, you 
write something like: 

_XReply(display, (xReply -)&rep, 0, True); 

-retl = rep.retl; 
-ret2 = rep.ret2; 

-ret3 = rep.ret3; 
UnlockDisplay(dpy); 

SyncHandleO; 

return (rep.ret4); 

} 

Replies 

If there is variable length data after the reply, change the True to False, and 
use the appropriate _ XRead function to read the variable length data. 

_XRead(displRy, dtlttl, nbytes) 
Display -displRy; 
char -dtlfll; 

long nbytes; 

_ XRead reads the specified number of bytes into data. 

_XRead16(display, dtlta, nbytes) 

Display -displlly; 
short -dtlfll; 

long nbytes; 

_ XRead16 reads the specified number of bytes, unpacking them as 16-bit quani­
ties, into the specified array as shorts. 

_XRead32 (displlly, dtlfll, nbytes) 

Display -displRy; 

long -dRfIl; 

long nbytes; 

_XRead32 reads the specified number of bytes, unpacking them as 32-bit quani­
ties, into the specified array as longs. 

_XRead16Pad(displRy, dRfIl, nbytes) 

Display -displlly; 

short -dtlfll; 

long nbytes; 

Extensions C-27 



Replies 

_XRead16Pad reads the specified number of bytes, unpacking them as 16-bit 
quanities, into the specified array as shorts. If the number of bytes is not a mul­
tiple of four, _XRead16Pad reads up to three additional pad bytes. 

_XRaadPad(display, dat4, nbytes) 
Display "display; 
char "dat4; 
long nbytes; 

_XReadPad reads the specified number of bytes into data. If the number of 
bytes is not a multiple of four, fleadPad reads up to three additional pad 
bytes. 

Each protocol request is a little different. For further information, see the Xlib 
sources for examples. 

C-28 Xwln GWS: Xllb - C Language Interface 



Synchronous Calling 

To ease debugging, each routine should have a call, just before returning to the 
user, to a routine called SyncHancile. This routine generally is implemented as 
a macro. If synchronous mode is enabled (see XSynchronize), the request is 
sent immediately. The library, however, waits until any error the routine could 
generate at the server has been handled. 

Extensions C-29 



Allocating and Deallocating Memory 

To support the possible reentry of these routines, you must observe several con­
ventions when allocating and deallocating memory, most often done when 
returning data to the user from the window system of a size the caller could not 
know in advance (for example, a list of fonts or a list of extensions). The stan­
dard C library routines on many systems are not protected against signals or 
other multithreaded uses. The following analogies to standard I/O library rou­
tines have been defined: 

XmaliocO 

XfreeO 

XcallocO 

Replaces mallocO 

Replaces freeO 

Replaces callocO 

These should be used in place of any calls you would make to the normal C 
library routines. 

If you need a single scratch buffer inside a critical section (for example, to pack 
and unpack data to and from the wire protocol), the general memory allocators 
may be too expensive to use (particularly in output routines, which are perfor­
mance critical). The routine below returns a scratch buffer for your use: 

char *_XAllocScratch(display, nbyres) 

Display ·display; 
unsigned long nbyres; 

This storage must only be used inside of the critical section of your stub. 

C-30 Xwln GWS: Xllb - C Language Interface 



Portability Considerations 

Many machine architectures, including many of the more recent RISC architec­
tures, do not correctly access data at unaligned locations; their compilers pad 
out structures to preserve this characteristic. Many other machines capable of 
unaligned references pad inside of structures as well to preserve alignment, 
because accessing aligned data is usually much faster. Because the library and 
the server use structures to access data at arbitrary points in a byte stream, all 
data in request and reply packets must be naturally aligned; that is, 16-bit data 
starts on 16-bit boundaries in the request and 32-bit data on 32-bit boundaries. 
All requests must be a multiple of 32 bits in length to preserve the natural align­
ment in the data stream. You must pad structures out to 32-bit boundaries. 
Pad information does not have to be zeroed unless you want to preserve such 
fields for future use in your protocol requests. Floating point varies radically 
between machines and should be avoided completely if at all possible. 

This code may run on machines with 16-bit ints. So, if any integer argument, 
variable, or return value either can take only nonnegative values or is declared 
as a CARD16 in the protocol, be sure to declare it as unsigned int and not as into 
(This, of course, does not apply to Booleans or enumerations.) 

Similarly, if any integer argument or return value is declared CARD32 in the 
protocol, declare it as an unsigned long and not as int or long. This also goes 
for any internal variables that may take on values larger than the maximum 16-
bit unsigned into 

The library currently assumes that a char is 8 bits, a short is 16 bits, an int is 16 
or 32 bits, and a long is 32 bits. The PackData macro is a half-hearted attempt 
to deal with the possibility of 32 bit shorts. However, much more work is 
needed to make this work properly. 

Extensions C-31 



Deriving the Correct Extension Opcode 

The remaining problem a writer of an extension stub routine faces that the core 
protocol does not face is to map from the call to the proper major and minor 
opcodes. While there are a number of strategies, the simplest and fastest is out­
lined below. 

1. Declare an array of pointers, _NFILE long (this is normally found in 
< stdio. h > and is the number of file descriptors supported on the sys­
tem) of type XExtCodes. Make sure these are all initialized to NULL. 

2. When your stub is entered, your initialization test is just to use the 
display pointer passed in to access the file descriptor and an index into 
the array. If the entry is NULL, then this is the first time you are enter­
ing the routine for this display. Call your initialization routine and pass 
it to the display pointer. 

3. Once in your initialization routine, call XlnitExtension; if it succeeds, 
store the pointer returned into this array. Make sure to establish a dose 
display handler to allow you to zero the entry. Do whatever other ini­
tialization your extension requires. (For example, install event handlers 
and so on). Your initialization routine would normally return a pointer 
to the XExtCodes structure for this extension, which is what would nor­
mally be found in your array of pointers. 

4. After returning from your initialization routine, the stub can now con­
tinue normally, because it has its major opcode safely in its hand in the 
XExtCodes structure. 

C-32 Xwln GWS: Xllb - C Language Interface 







D Version 10 Compatibilty 
Functions 

Drawing and Filling Polygons and Curves D-1 

Associating User Data with a Value D-4 

Table of Contents 





Drawing and Filling Polygons and Curves 

Xlib provides functions that you can use to draw or fill arbitrary polygons or 
curves. These functions are provided mainly for compatibility with XlO and 
have no server support. That is, they call other Xlib functions, not the server 
directly. Thus, if you just have straight lines to draw, using XDrawLines or 
XDrawSegments is much faster. 

The functions discussed here provide all the functionality of the XlO functions 
XDraw, XDrawFilled, XDrawPatterned, XDrawDashed, and XDrawTiled. They 
are as compatible as possible given X11's new line drawing functions. One thing 
to note, however, is that VertexDrawLastPoint is no longer supported. Also, 
the error status returned is the opposite of what it was under XlO (this is the 
Xll standard error status). XAppendVertex and XClearVertexFlag from XlO 
also are not supported. 

Just how the graphics context you use is set up actually determines whether you 
get dashes or not, and so on. Lines are properly joined if they connect and 
include the closing of a closed figure (see XDrawLines). The functions dis­
cussed here fail (return zero) only if they run out of memory or are passed a 
Vertex list that has a Vertex with VertexStartClosed set that is not followed 
by a Vertex with VertexEndClosed set. 

To achieve the effects of the XlO XDraw, XDrawDashed, and XDrawPatterned, 
use XDraw. 

display 

d 

gc 

vlist 

'inclucie <X11/XlO.h> 
Statua XDrav(displGy, d, gc, vlist, TICOUllt) 

Display ·displlly; 

Drawable d; 

GCgc; 

Vertex ~list; 
int TICOUIIt; 

Specifies the connection to the XWIN server. 

Specifies the drawable. 

Specifies the Cc. 
Specifies a pointer to the list of vertices that indicate what to draw. 

Vefslon 10 Compatlbllty Functions 0-1 



Drawing and FIlling Polygons and Curves 

vcount Specifies how many vertices are in vlist. 

XDraw draws an arbitrary polygon or curve. The figure drawn is defined by the 
specified list of vertices (vlist). The points are connected by lines as specified in 
the flags in the vertex structure. 

Each Vertex, as defined in < Xll/XIO. h >, is a structure with the following 
members: 

typedef atruct _Vertex ( 

short x,y; 
unaigneci short flags; 

} vertex; 

The x and y members are the coordinates of the vertex that are relative to either 
the upper-left inside comer of the drawable (if VertexRelative is zero) or the 
previous vertex (if VertexRelative is one). 

The flags, as defined in < Xll/XlO.h >, are as follows: 

D-2 

VertexRelative OxOOOl / ... else absolute'" / 
VertexDontDraw 
VertexCurved 
VertexStartClosed 
VertexEndClosed 

OxOOO2 
OxOOO4 
OxOOO8 
OxOOlO 

r else draw'" / 
r else straight'" / 
/ ... else not'" / 
/ ... else not'" / 

• If VertexRelative is not set, the coordinates are absolute (that is, relative 
to the drawable's origin). The first vertex must be an absolute vertex. 

• If VertexDontDraw is one, no line or curve is drawn from the previous 
vertex to this one. This is analogous to picking up the pen and moving to 
another place before drawing another line. 

• If VertexCurved is one, a spline algorithm is used to draw a smooth 
curve from the previous vertex through this one to the next vertex. Other­
wise, a straight line is drawn from the previous vertex to this one. It 
makes sense to set VertexCurved to one only if a previous and next ver­
tex are both defined (either explicitly in the array or through the 
definition of a closed curve). 

Xwln GWS: Xllb - C Language Interface 



Drawing and Filling Polygons and Curves 

• It is permissible for VertexDontDraw bits and VertexCurved bits both to 
be one. This is useful if you want to define the previous point for the 
smooth curve but do not want an actual curve drawing to start until this 
point. 

• If VertexStartClosed is one, then this point marks the beginning of a 
closed curve. This vertex must be followed later in the array by another 
vertex whose effective coordinates are identical and that has a VertexEnd­
Closed bit of one. The points in between form a cycle to determine 
predecessor and successor vertices for the spline algorithm. 

This function uses these GC components: function, plane-mask, line-width, line­
style, cap-style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, 
and clip-mask. It also uses these GC mode-dependent components: foreground, 
background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, 
and dash-list. 

To achieve the effects of the X10 XDrawTiled and XDrawFilled, use 
XDrawFilled. 

,include <Xl.l/XlO.b> 

Statu. XDrawFilled(displ4ly, d, ge, 'Dlist, 'DCOUnt) 
Display -display; 
Drawabled; 
GCge; 
Vertex -'Dlist; 
int 'DCOUnt; 

display Specifies the connection to the XWIN server. 

d Specifies the drawable. 

gc Specifies the Gc. 

vlist Specifies a pointer to the list of vertices that indicate what to draw. 

vcount Specifies how many vertices are in vlist. 

XDrawFilled draws arbitrary polygons or curves and then fills them. 

This function uses these GC components: function, plane-mask, line-width, line­
style, cap-style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, 
and clip-mask. It also uses these GC mode-dependent components: foreground, 
background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, 
dash-list, fill-style, and fill-rule. 

Version 10 CompatlblHy Functions 0-3 



Associating User Data with a Value 

These functions have been superseded by the context management functions 
(see "Using the Context Manager" in Chapter 10). It is often necessary to associ­
ate arbitrary information with resource IDs. Xlib provides the XAssocTable 
functions that you can use to make such an association. Application programs 
often need to be able to easily refer to their own data structures when an event 
arrives. The XAssocTable system provides users of the X library with a 
method for associating their own data structures with X resources (Pixmaps , 
Fonts, Windows, and so on). 

An XAssocTable can be used to type X resources. For example, the user may 
want to have three or four types of windows, each with different properties. 
This can be accomplished by associating each X window 10 with a pointer to a 
window property data structure defined by the user. A generic type has been 
defined in the X library for resource IDs. It is called an XID. 

There are a few guidelines that should be observed when using an 
XAssocTable: 

• All XIDs are relative to the specified display. 

• Because of the hashing scheme used by the association mechanism, the 
following rules for determining the size ofaXAssocTable should be fol­
lowed. Associations will be made and looked up more efficiently if 
the table size (number of buckets in the hashing system) is a power of 
two and if there are not more than 8 XIDs per bucket. 

To return a pointer to a new XAssocTable, use XCreateAssocTable. 

XAssocTable *XCreateAssocTable (size) 

int size; 

size Specifies the number of buckets in the hash system of XAssocTable. 

The size argument specifies the number of buckets in the hash system of XAs­
socTable. For reasons of efficiency the number of buckets should be a 
power of two. Some size suggestions might be: use 32 buckets per 100 
objects, and a reasonable maximum number of objects per buckets is 8. If an 
error allocating memory for the XAssocTable occurs, a NULL pointer is 
returned. 

D-4 Xwln GWS: Xllb - C Language Interface 



Associating User Data with a Value 

To create an entry in a given XAssocTable, use XMakeAssoc. 

XMakeAsaoc(display, W/e, x_ill, dAta) 

Display ·display; 

XAssocTable ·W/e; 

XID x_ill; 

char ·dAta; 

display Specifies the connection to the XWIN server. 

table Specifies the assoc table. 

x id Specifies the X resource ID. 

data Specifies the data to be assodated with the X resource ID. 

XMakeAssoc inserts data into an XAssocTable keyed on an XlD. Data is 
inserted into the table only once. Redundant inserts are ignored. The queue in 
each assodation bucket is sorted from the lowest XlD to the highest XID. 

To obtain data from a given XAssocTable, use XLookUpAssoc. 

char *XLookUpAssoc (display, W/e, x jd) 

Display ·display; 

XAssocTable ·W/e; 

XID x_ill; 

display Specifies the connection to the XWIN server. 

table Specifies the assoc table. 

x id Specifies the X resource ID. 

XLookUpAssoc retrieves the data stored in an XAssocTable by its XlD. If an 
appropriately matching XlD can be found in the table, XLookUpAssoc returns 
the data associated with it. If the x Jd cannot be found in the table, it returns 
NULL. 

To delete an entry from a given XAssocTable, use XDeleteAssoc. 

XDeleteAssoo (display, W/e, x jd) 

Display ·display; 

XAssocTable ·W/e; 

XID x)d; 

Version 10 CompatlblHy Functions 0-5 



Associating User Data with a Value 

display Specifies the connection to the XWIN server. 

table Specifies the assoc table. 

x id Specifies the X resource !D. 

XDeleteAssoc deletes an association in an XAssocTable keyed on its XID. 
Redundant deletes (and deletes of nonexistent XIDs) are ignored. Deleting asso­
ciations in no way impairs the performance of an XAssocTable. 

To free the memory associated with a given XAssocTable, use XDestroyAs­
socTable. 

xoutroyAsIIOOTable (table) 

XAssocTable '"tablei 

table Specifies the assoc table. 

0-6 Xwln GWS: Xllb - C Language Interface 







E X11 Input Synthesis Extension 

Conventions Used In This Document E-2 

Definition Of Terms E-3 
Input Actions E-3 
User Input Actions E-3 

What Does This Extension Do? E-4 

Functions In This Extension E-5 
AT&T Enhancements to this Extension E-5 
High L.;wel Functions E-6 

• XTestPressButton E-7 
• XTestPressKey E-8 
• XTestFlush E-9 

Low Level Functions E-9 
• XTestGetlnput E-9 
• XTestStoplnput E-11 
• XTestFakelnput E-11 
• XTestQuerylnputSize E-13 
• XTestReset E-13 

Table of Contents 



Table of Contents ____________________ _ 

X11 Input Synthesis Extension Include File E-15 

II Xwln GWS: Xllb - C Language Interface 



Preface 

This is an extension to the XII server and Xlib that provides two capabilities: 

• It allows a client to generate user input actions in the server without 
requiring a user to be present. 

• It also allows a client to control the handling of user input actions by the 
server. 

The capability to allow a client to generate user input actions in the server will 
be used by some of the X Testing Consortium Xlib tests. Both capabilities will 
be used by the X Testing Consortium client exerciser program. These capabili­
ties may also be useful in other programs. 

This extension requires modification to device-dependent code in the server. 
Therefore it is not a 'portable' extension as defined by the Xl1 Server Extensions 
document. However, the majority of the code and functionality of this exten­
sion will be implementation-independent. 

X11 Input Synthesis Extension E-1 



Conventions Used In This Document 

The naming conventions used in the Xlib documentation are followed with these 
additions: 

E-2 

• The names of all functions defined in this extension begin with 'XTest', 
with the first letter of each additional word capitalized. 

• The names of the protocol request structures follow the Xlib convention of 
'x<name>Req'. 

• The names of the protocol request minor type codes follow the Xlib con­
vention of 'X <name>'. 

• The names of all other constants defined in this extension begin with 
'XTest', with the rest of the name in upper case letters. 

• All constants and structures defined in this extension will have their 
values specified in the 'xtestextl.h' file at the end of this document. 

Xwln GWS: Xllb - C Language Interface 



Definition Of Terms 

Input Actions 

Input actions are pointer movements, button presses and releases, and key 
presses and releases. They can be generated by a user or by a client (using 
functions in this extension). 

User Input Actions 

User input actions are input actions that are generated by the user moving a 
pointing device (typically a mouse), pressing and releasing buttons on the point­
ing device, and pressing and releasing keys on the keyboard. 

X11 Input Synthesis Extension E-3 



What Does This Extension Do? 

Without this extension, user input actions are processed by the server, and are 
converted into nonnal X events that are sent to the appropriate client or clients. 

This extension adds the following capabilities: 

E-4 

• Input actions may be sent from a client to the server to be processed just 
as if the user had physically performed them. The input actions are pro­
vided to the server in the form of X protocol requests defined by this 
extension. The infonnation provided to the server includes what action 
should be performed, and how long to delay before processing the action 
in the server. 

• User input actions may be diverted to a client before being processed by 
the server. The effect on the server is as if the user had performed no 
input action. The user input actions are provided to the client in the form 
of X events defined by this extension. The infonnation provided to the 
client includes what user input action occurred and the delay between this 
user input action and the previous user input action. The client may then 
do anything it wishes with this infonnation. 

• User input actions may be copied, with one copy going to the server in 
the nonnal way, and the other copy being sent to a client as described 
above. 

Xwln GWS: Xllb - C Language Interface 



Functions In This Extension 

AT&T Enhancements to this Extension 

This section describes two additional Xlib calls added by AT&T Bell Labora­
tories to allow the testing of clients that "grab" the server. These two calls 
prevent deadlock. Without these calls to encapsulate the simulated input, it 
would be possible for the client that "grabbed" the server and the client simulat­
ing the input to both deadlock. Take for example, a window manager that 
"grabs" the server while resizing a window. When the window manager 
"grabs" the server, the server will ignore all events from other clients, including 
the client simulating the input. If the simulated button release to finish resizing 
the window is not already in the server's Input Synthesis Extension input 
buffer, the server will subsequently ignore the event containing the button 
release. The final result will be a deadlock; the window manager will be 
deadlocked waiting for a button release that will never come and the client 
simulating input will be deadlocked waiting for the server to send an ack­
nowledgement that will never come. 

By calling XTestStarlSimulation before sending simulated input, the server will 
continue accepting events from the calling client even if another client should 
"grab" the server. 

display 

int 
XTestStartSimulation ( display) 

Display *display; 

Specifies the connection to the X server. 

The XTestStartSimulation function must be called before any simulated input is 
sent to the server. If it is not called, the server will refuse all simulated input. 
Once called and accepted, only the client making the request will be able to 
simulate input. If any other client attempts to simulate input or calls XTestSimu­
iateInput, its request will be refused. 

The XTestStartSimulation function will return -1 if there is an error or the request 
is denied, and 0 otherwise. 

X11 Input Synthesis Extension E-5 



Functions In This extension 

display 

int 
XTestStopSimulation ( display) 

Display *display; 

Specifies the connection to the X server. 

The XTestStopSimulation function should be called after the client has finished 
simulating input. Once called, other clients will be able to call XTestStartSimula­
tion. If a client fails to call XTestStopSimulation, other clients attempting to call 
XTestStartSimulation will be denied until the original client terminates. 

The XTestStopSimulation function will return -1 if there is an error, and 0 other­
wise. 

High Level Functions 

These functions are built on top of the low level functions described later. 

int 
XTestMovePointer (display, device_id, delay, x, y, count) 

Display *display; 

display 

device id 

int device id; 
unsigned-long delay[]; 
int x[]; 
int y[]; 
unsigned int count; 

Specifies the connection to the X server. 

Specifies which pointer device was supposed to have caused the 
input action. This is a provision for future support of multiple (dis­
tinguishable) pointer devices,.and should always be set to 0 for 
now. 

delay Specifies the time (in milliseconds) to wait before each movement 
of the pointer. 

x 
y Specifies the x and y coordinates to move the pointer to relative to 

the root window for the Specified display. 

E-6 Xwln GWS: Xllb - C Language Interface 



Functions In This Extension 

count Specifies the number of 'delay, x, y' triplets contained in the delay, x 
and y arrays. 

The XTestMovePointer function creates input actions to be sent to the the server. 
The input actions wiIl be accumulated in a request defined by this extension 
until the request is full or the XTestF1ush function is caIled. They wiIl then be 
sent to the server. When the input actions are sent to the server, the input 
actions wiIl cause the server to think that the pointer was moved to the 
specified position(s), with the specified delay before each input action. 

The XTestMovePointer function will return -1 if there is an error, and 0 other­
wise. 

XTestPressButton 
int 
XTestPressButton (display, device_id, delay, button_number, 

button_action) 
Display *display; 
int device_id; 
unsigned long delay; 
unsigned int button_number; 
unsigned int button_action; 

display Specifies the connection to the X server. 

device id Specifies which button device was supposed to have caused 
the input action. This is a provision for future support of mul­
tiple (distinguishable) button devices, and should always be set 
to 0 for now. 

delay Specifies the time (in milliseconds) to wait before the input 
action. 

button number Specifies which button is being acted upon. 

button action Specifies the action to be performed (one of XTestPRESS, 
XTestRELEASE, or XTestSTROKE). 

The XTestPressButton function creates input actions to be sent to the the server. 
The input actions will be accumulated in a request defined by this extension 
until the request is full or the XTestF1ush function is called. They will then be 
sent to the server. When the input actions are sent to the server, the input 

X11 Input Synthesis Extension E·7 



Functions In This Extension 

actions will cause the server to think that the specified button was moved as 
specified. 

The XTestPressButton function win return -1 if there is an error, and 0 otherwise. 

XTestPressKey 
int 
XTestPressKey (display, device_id, delay, keycode, key_action) 

Display *display; 

display 

device id 

int device _id; 
unsigned long delay; 
unsigned int keycode; 
unsigned int key_action; 

Specifies the connection to the X server. 

Specifies which keyboard device was supposed to have caused the 
input action. This is a provision for future support of multiple (dis­
tinguishable) keyboard devices, and should always be set to 0 for 
now. 

delay Specifies the time (in milliseconds) to wait before the input action. 

keycode Specifies which keycode is being acted upon. 

key_action Specifies the action to be performed (one of XTestPRESS, 
XTestRELEASE, or XTestSTROKE). 

The XTestPressKey function creates input actions to be sent to the the server. 
The input actions will be accumulated in a request defined by this extension 
until the request is full or the XTestFlush function is called. They will then be 
sent to the server. When the input actions are sent to the server, the input 
actions will cause the server to think that the specified key on the keyboard was 
moved as specified. 

The XTestPressKey function will return -1 if there is an error, and 0 otherwise. 

E-8 Xwln GWS: Xllb - C Language Interface 



Functions In This Extension 

XTestFlush 

d~~y 

int 
XTestFlush(d~~y) 

Display .d~lay; 

Specifies the connection to the X server. 

The XTestFlush will send any remaining input actions to the server. 

The XTestFlush function will retum -1 if there is an error, and 0 otherwise. 

Low Level Functions 

XTestGetlnput 

int 
XTestGetlnput (display, action_handling) 

Display .d~lay; 
int action_handling; 

d~~y Specifies the connection to the X server. 

action_handling Specifies to the server what to do with the user input actions. 
(one of 0, XTestPACKED _MOTION or 
XTestPACKED _ACTIONS; optionally 'or'ed with 
XTestEXCLUSIVE). 

The XTestGeUnput function tells the server to begin putting information about 
user input actions into events to be sent to the client that called this function. 
These events can be read via the Xlib XNextEvent function. 

The server assigns an event type of XTestlnputActionType to these events to dis­
tinguish them from other events. Since the actual value of the event type may 
vary depending on how many extensions are included with an XII implementa­
tion, XTestlnputActionType is a ~ariable that will be contained in the Xlib part of 
this extension. It may be referenced as follows: 

extern int XTestlnputActionType; 

X11 Input Synthesis Extension E-9 



Functions In This Extension 

An action_handling value of 0 causes the server to send one user input action in 
each XTestInputActionType event. This can sometimes cause performance prob­
lems. 

An action_handling value of XTestPACKED_ACTIONS causes the server to pack 
as many user input actions as possible into a XTestInputActionType event. This 
is needed if user input actions are happening rapidly (such as when the user 
moves the pointer) to keep performance at a reasonable level. 

An action_handling value of XTestPACKED _MOTION causes the server to pack 
only user input actions associated with moving the pointer. This allows the 
client to receive button and key motions as they happen without waiting for the 
event to fill up, while still keeping performance at a reasonable level. 

An action_handling value with XTestEXCLUSWE 'Or'ed in causes the server to 
send user input actions only to the client. The effect on the server is as if the 
user had performed no input actions. 

An actionjlandling value without XTestEXCLUSIVE causes the server to copy 
user input actions, sending one copy to the client, and handling the other copy 
normally (as it would if this extension were not installed). 

There are four types of input actions that are passed from the server to the 
client. They are: 

key Ibutton state change 
This type of input action contains the keycode of the key or 
button that changed state; whether the key or button is up or 
down, and the time delay between this input action and the 
previous input action. 

pointer motions This type of input action contains information about the 
motion of the pointer when the pointer has only moved a 
short distance. If the pointer has moved a long distance, the 
pointer jump input action is used. 

pointer jumps 

delays 

This type of input action contains information about the 
motion of the pointer when the pointer has moved a long 
distance. 

This type of input action is used when the delay between 
input actions is too large to be held in the other input 
actions. 

The XTestGetInput function will return -1 if there is an error, and 0 otherwise. 

E-10 Xwln GWS: Xllb - C Language Interface 



Function. In Thl. Extension 

An error code of BadAccess means that another client has already requested that 
user input actions be sent to it. 

XTestStoplnput 

display 

int 
XTestStoplnput (display) 

Display .display; 

Specifies the connection to the X server. 

The XTestStoplnput function tells the server to stop putting information about 
user input actions into events. The server will process user input actions nor­
mally (as it would if this extension were not in the server). 

The XTestStoplnput function will return -1 if there is an error, and 0 otherwise. 

An error code of BadAccess means that a request was made to stop input when 
input has never been started. 

XTestFakelnput 

int 
XTestFakelnput (display, action Jist _addr, action Jist_size, 

ackJlag) 
Display .display; 

char .action Jist _ addr; 
int action Jist_size; 
int ack Jlag; 

display Specifies the connection to the X server. 

action list addr Specifies the address of an list of input actions to be sent to the 
server. 

action list size Specifies the size (in bytes) of the list of input actions. It may 
be no larger than XTestMAX_ACTION_UST_SIZE bytes. 

ackJlag Specifies whether the server needs to send an event to indicate 
that its input action buffer is empty (one of 
XTestFAKE ACK NOT NEEDED or - - -
XTestFAKE_ACK_REQUESn. 

X11 Input Synthesis Extension E·11 



Functions In This Extension 

The XTestFakelnput function tells the server to take the specified user input 
actions and process them as if the user had physically performed them. 

The server can only accept a limited number of input actions at one time. This 
limit can be determined by the XTestQuerylnputSize function in this extension. 

The client should set ackJlag to XTestFAKE_ACK_NOT_NEEDED on calls to 
XTestFake1nput that do not reach this limit. 

The client should set ackJlag to XTestFAKE_ACK_REQUEST on the call to XTest­
Fake1nput that reaches this limit. 

When the server sees an ackJlag value of XTestFAKE_ACK_REQUEST it finishes 
processing its input action buffer, then sends an event with type XTestFakeAck­
Type to the client. When the client reads this event, it knows that it is safe to 
resume sending input actions to the server. 

Since the actual value of the event type may vary depending on how many 
extensions are included with an Xl1 implementation, XTestFakeAckType is a vari­
able that is contained in the Xlib part of this extension. It may be referenced as 
follows: 

extern int XTestFakeAckType; 

There are four types of input actions that are passed from the client to the 
server. They are: 

key Ibutton state change 
This type of input action contains the keycode of the key or 
button that is to change state; whether the key or button is to 
be up or down, and the time to delay before changing the 
state of the key or button. 

pointer motions This type of input action contains information about the 
motion of the pointe): when the pointer is to be moved a 
short distance, and the time to delay before moving the 
pointer. If the pointer is to be moved a long distance, the 
pointer jump input action must be used. 

pointer jumps This type of input action contains information about the 
motion of the pointer when the pointer is to be moved a long 
distance, and the time to delay before moving the pointer. 

E-12 Xwln GWS: Xllb - C Language Interface 



Functions In This Extension 

delays This type of input action is used when the delay between 
input actions is too large to be held in the other input 
actions. 

The XTestFakeInput function will return -1 if there is an error, and 0 otherwise. 

An error code of BadAccess means that another client has already sent user input 
actions to the server, and the server has not finished processing the user input 
actions. 

XTestQuerylnputSize 
int 
XTestQuerylnputSize (display, size Jeturn) 

Display *displaYi 

display 

size return 

unsigned long *size Jeturni 

Specifies the connection to the X server. 

Returns the number of input actions that the server's input 
action buffer can hold. 

The XTestQuerylnputSize function asks the server to return the number of input 
actions that it can hold in its input action buffer in the unsigned long pointed to 
by size Jeturn. 

The XTestQuerylnputSize function will return -1 if there is an error, and 0 other­
wise. 

XTestReset 

display 

int 
XTestReset (display) 

Display *displaYi 

Specifies the connection to the X server. 

X11 Input Synthesis Extension E-13 



Functions In This Extension 

The XTestReset function tells the server to set everything having to do with this 
extension back to its initial state. After this call the server will act as if this 
extension were not installed until one of the extension functions is called by a 
client. This function is not normally needed, but is included in case a client 
wishes to clean up the server state, such as after a serious error. 

The XTestReset function will return -1 if there is an error, and 0 otherwise. 

E-14 Xwln GWS: Xllb - C Language Interface 



X11 Input Synthesis Extension Include File 

1* 
* xtestext1.h 

* 
* X11 Input Synthesis Extension include file 

*1 

1* 

1* 
* the typedefs for CARDS, CARD16, and CARD32 ue defined in XID:i.h 

*1 

1* 
* useci in the XTestpressButton and XTestpresaKay functions 

*1 
ldafine XTestPRESS 1 « 0 

ldafine XTestuLBASB 

ldafine X'l'estS'lRa(B 

1* 

1«1 

1«2 

* When doing a key or button stroke, the number of milliseconds 

* to delay bet~ the press and the release of a key or button 

* in the XTestpressButton and. XTeatpresaKay functions. 

*1 

1* 
* useci in the XTestGetInput function 

*1 
ldafine X'l'estJm:LUSIVB 

ldafine X'l'estPN:KBIUICTIONS 

ldafine X'l'estPACRBIU«>TION 

1* 
* useci in the XTestFakelnput function 

*1 
ldafine X'l'estFAKB_ ACR_ NOT_NEEDED 
ldafine X'l'estFAKB _ ACR _REQUEST 

X11 Input Synthesis Extension 

10 

1«0 
1«1 

1«2 

o 
1 

E-1S 



X11 Input Synthesis Extension Include File 

1* 
* used in the r.rest extension initialization routine 

*1 
ldefine XTestBXTENSICIf_H»B 

ldefine XTestBVBN'l'_COUN'l 

1* 
* r.rest request type values 

* 
* used in the XTe8t extension protocol requests 

*1 
ldefine X_'lestFalteInput 1 

ldefine X_'lestGetInput 2 

ldefine X_'lestStopInput 3 

ldefine X_'lestReset 

ldefine X_'lestQuuyInputSize 

1* 

4 

5 

* This defines the IIILvinnn size of a list of input actions 

* to be sent to the server. It should always be a IIIlltiple of 

* 4 80 that the entire xTestFalteInputReq structuw size is a 

* IIDlltiple of 4. 

*1 
ldefine XTestMAlUICTION_LIST_SIZE 64 

typedef struct { 

CARD8 nIq'lype; 

CARD8 r.restReqType; 

CARD16 Length 816; 

CARD32 ack 832; 

1* always r.restReqCode *1 
1* always X_'lestFalteInput *1 
1* 2 + r.restMAX_ACTICIf_LIST_SIZE/4 *1 

CARDS action_list [XTestMAX_ACTICIf_LIST_SIZE1; 

} xTestFakeInputRaq; 

ldefine sz_xTestFalteInputReq (r.restMAX~ICIf_LIS'l_SIZE + 8) 

typedef struct { 

CARDS mqType; 

CARD8 r.restReqType; 

CARD16 length B16; 

CARD32 JDOde 832; 

} xTestGetInputReq; 

E-16 

1* always XTe8tReqCode *1 
1* always X_TestGetInput *1 
1* 2 *1 

Xwln GWS: Xllb - C Language Interface 



X11 Input Synthesis extension Include File 

typedef struct { 

CARDS nq'lype; 

CARDS X'l'estReq'lype; 

CARD16 length 832; 

} xTeatStopInputRaq; 

bfine sZ_x.'l'eatStopInputReq 4 

typedaf struct 

CARDS J:eq'lype; 

CARDS X'l'eatReq'lype; 

CARD16 length 816; 

} x.'l'eatRaaetReq; 

bfine sz_xTestReaetReq 4 

typedef atruct { 

CARDS J:eq'lype; 

CARDS X'l'eatReq'lype; 

CARD16 length B16; 

} x.'l'esto-ry~tSizeReq; 

1* always X'l'es~ *1 
1* always X_TestStopIDput *1 
1* 1 *1 

1* always X'l'ea~ *1 
1* always X_TestRuet *1 
1* 1 *1 

1* always X'l'ea~ *1 
1* always X_TeatQgeryInputSize *1 
1* 1 *1 

bfine sz_x.'l'eato-ry~tSizeReq 4 

1* 
* !his is the definition of the reply for the x.'l' .. to-ry~tSize 

* requeat. It ahould. wmain the same IIIiniaD size .. other :teplies 

* (32 byte.). 

*1 
typedef atruct { 

CARDS type; 

CARDS padl; 

CARD16 ~oalfuId)er B16; 

CARD32 length 832; 1* always 0 *1 
CARD32 size_return 832; 

CARD32 pad2 832; 

CARD32 pad3 832; 

CARD32 pad4 832; 

CARD32 padS 832; 

CARD32 pad6 832; 

} x.'l'eato-ryInputSizeReply; 

X11 Input Synthesis extension E-17 



X11 Input Synthesis Extension Include File 

/* 
* 'Ibis is the definition for the iIrgut action wiw event structure. 

* 'lbis event is MDt to the client wban the Mrftr baa ODe or 

* more user input actions to report to the client. It DUSt 

* raaain the ... aize aa all other wiw events (32 bytea). 

*/ 
ldafine rrestllCTICIfS_SIZE 28 

typedaf stz:uot ( 

CARD8 type; 

CARDS padOO; 

CARD16 lIeCI1*loe1lUlllber 816; 

CARDS actions [X'lestllC'lIONS _SIZE] ; 

} xTestIrpltActionBvent; 

/* 
* 'Ibis is the definition for the x.Testl'alcaAck wiw evant stz:uoture. 

* 'Ibis event is sent to the client wban the aener baa CIOIIpletely 

* prooesaed ita input action buffer, and is ready for mow. 
* It DUSt raaain the __ aize as all other w1w events (32 bytes) • 

*1 
typedaf atruct ( 

CARDS type; /* alwaya X'leatl'alceAcltType */ 
CARDS padOO; 

CARD16 lIeCI1*loeHualber 816; 

CARD32 pad02832; 

CARD32 pad03832; 

CARD32 pad04832; 

CARD32 pad05832; 

CARD32 pad06832; 

CARD32 pad07832; 

CARD32 pad08832; 

/* 
* !be aerwr side of thia extension does not (and should not) haw 

* definitions for Display and Window. 'l'be ifndef allows the aerwr 

* aide of the extension to ignow the following' typedafs. 

*/ 
tifndef rrestSBRVBR_SIDB 

E-18 Xwln GWS: Xllb - C Language Interface 



X11 Input Synthesis extension Include File 

1* 
* This is the definition for the input action ho8t for:mat event structure. 
* This is the fOnl that a client using this extension will _ wban 

* it recei".s an input action event. 

*1 
typedef 8truct ( 

int type; 1* always X'l'estInputktionType *1 
Display *display; 

Window window; 

CARDa actions [X'l'esUCTIOHS_SIZE] ; 

} X'l'e8tInputAotioaBvent; 

1* 
* This is the definition for the x'leatFakeAck ho8t for:mat event 8tructure. 
* This is the fOnl that a client using this extension will _ wban 

* it racei".s an X'l'estFakeAck event. 

*1 
typedef struct ( 

int type; 1* always X'l'estFakeAcIt'l'ype *1 
Display *diaplay; 

Window window; 

} XTeatFakeADlcBvent; 

tenclif 

1* 
* This is the definition for the for:mat of the header byte 

* in the input action structures. 

*1 
tdafine X'l'estAC'.rIOtLftPB_MASK Ox03 

tdafine XT.stICBY_STATB_MASK Ox04 

tdafine X'l'estX_SIGlLBIT_MASK Ox04 

tdafine X'l'e8tY_SIGlLBI'l_MASK 

tdafine XTe8tDBVICI!Lm_MASK 

Ox08 

OxfO 

OxOf 

1* bits 0 and 1 *1 
1* bit 2 (key action) *1 
1* bit 2 (motion action) *1 
1* bit 3 (motion action) *1 
1* bits 4 through 7 */ 

tdefine XTestlmlU>BVICB_ID 

tdafine XTestPackDevicem (x) 

tdafine XTe8tUnpackDevlcem (x) 

« (x) , XTe8tlmX_DBVICB_m) « 4) 

« (x) , XTe8tDBVICB_m_MASK) » 4) 

X11 Input Synthesis extension E-19 



X11 Input Synthesis Extension Include File 

1* 
* Tbue are the possible action types. 

*1 
tdefine XTestDBLAY_lIC'lICII 0 

tdefine XTestDY_JCTION 1 
tdefine XTestK>'lICII_lIC'lIOH 2 

'define rleatJtJMP_lIC'lIOH 3 

1* 
* The .. ant the definitions for key/button motion input actions. 

*1 
tdefine r.reatDY_UP Ox04 

OxOO 

typedef atruot 

CARD8 header; 1* which device, key up/&nm *1 
CARD8 Iteyaode; 1* which Jcey/button to move *1 
CARD16 delay_time 816; 1* how long to delay (in lIS) *1 

} r.restKayInfo; 

1* 
* This is the definition for pointer juDp input actions. 
*1 

typedef atruot 

CARD8 header; 1* which pointer *1 
CARD8 pidl.; 1* unuaed paddinq byte */ 
CARD16 juq>x 816; /* x COOM to juq) to */ 
CARD16 juq)y 816; /* y COOM to juq) to */ 
CARD16 delay_time 816; /* how long to delay (in lIS) */ 

} r.reatJ'uallInfo; 

/* 
* The .. ant the definiti~ for pointer ntlati". motion input 

* actions. 

* 
* The sign bits for the x and. y ntlative motions are contained 

* in the beadar byte. The x and. y ntlative motions are pacIted. 

* into one byte to make tbinqa fit in 32 bits. If the ntlati". 

* motion range is larger than +/-15, use the pointer juap action. 

*/ 

E-20 Xwln GWS: Xllb - C Language Interface 



X11 Input Synthesis extension Include File 

bfine XTeatlO'l'IC»UfAX 
bfine XTUtII)'lIC*_MDI 

bfine X'1'eatX_IIBCaTIV8 

bfine X'1'eatY_IIBCaTIV8 

bfine X'1'eatX_IClIOIUfASlt 

bfine X'1'eatY_IClIQUfASlt 

15 
-15 

OX04 
Ox08 

OxOf 

OxfO 

«x) , X'l'utx_tmIQLMI\SK) bfine X'1'eatPackXMotionValue (x) 

ldafine X'1'estPacltlMotionValue (x) «(x) « 4) , XTeatY_IClIOILMASK) 

bfine X'1'eatt1npackJCMotionValue (x) «x) , X'l'utx_tmIQLMI\SK) 

ldafine X'1'eatUq)acllt'!li)tionValue (x) « (x) , XTeatY_IClIOI,-MASK) » 4) 

typedef atruct ( 

CAlU>8 beader; 1* whic::b pointer *1 
CAlU>8 Jlll)tion_data; 1* x, y relative Jlll)tion *1 
CARD16 delay_tilDe 816; 1* how l~ to delay (in DIS) *1 

} xreatMOt1onInfo; 

1* 
* The .. are the definitions for a long delay input action. It ia 

* used when Jlll)re than X'l'eatSHORT_DBLAY_TIMB milliseconds of delay 

* (approximately one minute) ia needed. 

* 
* The device m for a delay i. always set to XTeatDBIAY_DBVICB_m. 

* '!'bia guarantees tbat a beader byte with a value of 0 ia not 

* a valid buder, so it can be uaeci as a flaq to i.ndica.te tbat 

* there are no Jlll)re ~t actions in an XTeat~ion event. 

*1 

bfine X'l'eatSlllRT_DBLAY_TIMB Oxffff 

bfine X'1'eatDBLlY_DBVICB_ID OxOf 

typedef atruct 

CAlU>8 beader; 

CARD8 pad1; 

CARD16 pad2 816; 

/* alway. X'l'utDBLAY_DBVICB_ID */ 
/* unused padding byte *1 
/* unused padding 110M 

CARD32 delay_tilDe 832; /* bow l~ to delay (in DIS) 

} XTestDelayInfo; 

X11 Input Synthesis extension 

*/ 
*/ 

E-21 









G Glossary 

Glossary G-1 

Table of Contents 





Glossary 

Access control list X maintains a list of hosts from which client pro­
grams can be run. By default, only programs on the 
local host and hosts specified in an initial list read by 
the server can use the display. This access control 
list can be changed by clients on the local host. Some 
server implementations can also implement other 
authorization mechanisms in addition to or in place 
of this mechanism. The action of this mechanism can 
be conditional based on the authorization protocol 
name and data received by the server at connection 
setup. 

Active grab A grab is active when the pointer or keyboard is 
actually owned by the single grabbing client. 

Ancestors If W is an inferior of A, then A is an ancestor of W. 

Atom An atom is a unique 10 corresponding to a string 
name. Atoms are used to identify properties, types, 
and selections. 

Background An InputOutput window can have a background, 
which is defined as a pixmap. When regions of the 
window have their contents lost or invalidated, the 
server automatically tiles those regions with the 
background. 

Backing store When a server maintains the contents of a window, 
the pixels saved off-screen are known as a backing 
store. 

Bit gravity When a window is resized, the contents of the win­
dow are not necessarily discarded. It is possible to 
request that the server relocate the previous contents 
to some region of the window (though no guarantees 
are made). This attraction of window contents for 
some location of a window is known as bit gravity. 

Bit plane When a pixmap or window is thought of as a stack 
of bitmaps, each bitmap is called a bit plane or plane. 

Glossary G·1 



Glossary 

Bitmap 

Border 

Button qrabbing 

Byte order 

Children 

Class 

Client 

Clippinq reqion 

G-2 

A bitmap is a pixmap of depth one. 

An InputOutput window can have a border of equal 
thickness on all four sides of the window. The con­
tents of the border are defined by a pixmap, and the 
server automatically maintains the contents of the 
border. Exposure events are never generated for 
border regions. 

Buttons on the pointer can be passively grabbed by a 
client. When the button is pressed, the pointer is 
then actively grabbed by the client. 

For image (pixmap/bitmap) data, the server defines 
the byte order, and clients with different native byte 
ordering must swap bytes as necessary. For all other 
parts of the protocol, the client defines the byte 
order, and the server swaps bytes as necessary. 

The children of a window are its first-level subwin­
dows. 

Windows can be of different classes or types. See the 
entries for InputOnly and InputOutput windows 
for further information about valid window types. 

An application program connects to the window sys­
tem server by some interprocess communication 
(!PC) path, such as a TCP connection or a shared 
memory buffer. This program is referred to as a 
client of the window system server. More precisely, 
the client is the !PC path itself. A program with mul­
tiple paths open to the server is viewed as multiple 
clients by the protocol. Resource lifetimes are con­
trolled by connection lifetimes, not by program life­
times. 

In a graphics context, a bitmap or list of rectangles 
can be specified to restrict output to a particular 
region of the window. The image defined by the bit­
map or rectangles is called a clipping region. 

Xwln GWS: Xllb - C Language Interface 



Colormap 

Connection 

Contairunent 

Coordinate system 

Cursor 

Depth 

Glossary 

Glossary 

A colonnap consists of a set of entries defining color 
values. The colormap associated with a window is 
used to display the contents of the window; each 
pixel value indexes the colormap to produce RGB 
values that drive the guns of a monitor. Depending 
on hardware limitations, one or more colormaps can 
be installed at one time so that windows associated 
with those maps display with true colors. 

The IPC path between the server and client program 
is known as a connection. A client program typically 
(but not necessarily) has one connection to the server 
over which requests and events are sent. 

A window contains the pointer if the window is 
viewable and the hotspot of the cursor is within a 
visible region of the window or a visible region of 
one of its inferiors. The border of the window is 
included as part of the window for containment. The 
pointer is in a window if the window contains the 
pointer but no inferior contains the pointer. 

The coordinate system has X horizontal and Y verti­
cal, with the origin [0, 0] at the upper left. Coordi­
nates are discrete and are in tenns of pixels. Each 
window and pixmap has its own coordinate system. 
For a window, the origin is inside the border at the 
inside upper-left comer. 

A cursor is the visible shape of the pointer on a 
screen. It consists of a hotspot, a source bitmap, a 
shape bitmap, and a pair of colors. The cursor 
defined for a window controls the visible appearance 
when the pointer is in that window. 

The depth of a window or pixmap is the number of 
bits per pixel it has. The depth of a graphics context 
is the depth of the drawables it can be used in con­
junction with graphics output. 

G-3 



Glossary 

Device 

DirectColor 

Display 

Drawable 

Event 

G-4 

Keyboards, mice, tablets, track-balls, button boxes, 
and so on are all collectively known as input devices. 
Pointers can have one or more buttons (the most 
common number is three). The core protocol only 
deals with two devices: the keyboard and the 
pointer. 

DirectColor is a class of colormap in which a pixel 
value is decomposed into three separate subfields for 
indexing. The first subfield indexes an array to pro­
duce red intensity values. The second subfield 
indexes a second array to produce blue intensity 
values. The third subfield indexes a third array to 
produce green intensity values. The RCB (red, green, 
and blue) values in the colormap entry can be 
changed dynamically. 

A server, together with its screens and input devices, 
is called a display. The Xlib Display structure con­
tains all information about the particular display and 
its screens as well as the state that Xlib needs to com­
municate with the display over a particular connec­
tion. 

Both windows and pixmaps can be used as sources 
and destinations in graphics operations. These win­
dows and pixmaps are collectively known as draw­
abIes. However, an InputOnly window cannot be 
used as a source or destination in a graphics opera­
tion. 

Clients are informed of information asynchronously 
by means of events. These events can be either asyn­
chronously generated from devices or generated as 
side effects of client requests. Events are grouped 
into types. The server never sends an event to a 
client unless the client has specifically asked to be 
informed of that type of event. However, clients can 
force events to be sent to other clients. Events are 
typically reported relative to a window. 

Xwln GWS: Xllb - C Language Interface 



Event mask 

Event propagation 

Event synchronization 

Event source 

Exposure event 

Extension 

Font 

Frozen events 

Glossary 

Glossary 

Events are requested relative to a window. The set of 
event types a client requests relative to a window is 
described by using an event mask. 

Device-related events propagate from the source win­
dow to ancestor windows until some client has 
expressed interest in handling that type of event or 
until the event is discarded explicitly. 

There are certain race conditions possible when 
demultiplexing device events to clients (in particular, 
deciding where pointer and keyboard events should 
be sent when in the middle of window management 
operations). The event synchronization mechanism 
allows synchronous processing of device events. 

The deepest viewable window that the pointer is in 
is called the source of a device-related event. 

Servers do not guarantee to preserve the contents of 
windows when windows are obscured or 
reconfigured. Exposure events are sent to clients to 
inform them when contents of regions of windows 
have been lost. 

Named. extensions to the core protocol can be 
defined to extend the system. Extensions to output 
requests, resources, and event types are all possible 
and expected. 

A font is an array of glyphs (typically characters). 
The protocol does no translation or interpretation of 
character sets. The client Simply indicates values used 
to index the glyph array. A font contains additional 
metric information to determine interglyph and inter­
line spacing. 

Clients can freeze event processing during keyboard 
and pointer grabs. 

G-5 



Glossary 

GC 

Glyph 

Grab 

Graphics context 

Gravity 

GrayScale 

Hotspot 

Identifier 

Inferiors 

G-6 

GC is an abbreviation for graphics context. See 
Graphics context. 

A glyph is an image in a font, typically of a charac­
ter. 

Keyboard keys, the keyboard, pointer buttons, the 
pointer, and the server can be grabbed for exclusive 
use by a client. In general, these facilities are not 
intended to be used by normal applications but are 
intended for various input and window managers to 
implement various styles of user interfaces. 

Various information for graphics output is stored in 
a graphics context (GC), such as foreground pixel, 
background pixel, line width, clipping region, and so 
on. A graphics context can only be used with draw­
abIes that have the same root and the same depth as 
the graphics context. 

The contents of windows and windows themselves 
have a gravity, which determines how the contents 
move when a window is resized. See Bit gravity 
and Window gravity. 

GrayScale can be viewed as a degenerate case of 
PseudoColor, in which the red, green, and blue 
values in any given colormap entry are equal and 
thus, produce shades of gray. The gray values can 
be changed dynamically. 

A cursor has an associated hotspot, which defines the 
point in the cursor corresponding to the coordinates 
reported for the pointer. 

An identifier is a unique value associated with a 
resource that clients use to name that resource. The 
identifier can be used over any connection to name 
the resource. 

The inferiors of a window are all of the subwindows 
nested below it: the children, the children's children, 
and so on. 

Xwln GWS: Xllb - C Language Interface 



Input focus 

Input manager 

InputOnly window 

InputOutput window 

Key grabbing 

Keyboard grabbing 

KeysyJU 

Mapped 

Glossary 

Glossary 

The input focus is usually a window defining the 
scope for processing of keyboard input. If a gen­
erated keyboard event usually would be reported to 
this window or one of its inferiors, the event is 
reported as usual. Otherwise, the event is reported 
with respect to the focus window. The input focus 
also can be set such that all keyboard events are dis­
carded and such that the focus window is dynami­
cally taken to be the root window of whatever screen 
the pointer is on at each keyboard event. 

Control over keyboard input is typically provided by 
an input manager client, which usually is part of a 
window manager. 

An InputOnly window is a window that cannot be. 
used for graphics requests. InputOnly windows are 
invisible and are used to control such things as cur­
sors, input event generation, and grabbing. Inpu­
tOnly windows cannot have InputOutput windows 
as inferiors. 

An InputOutput window is the normal kind of win­
dow that is used for both input and output. Inpu­
tOutput windows can have both InputOutput and 
InputOnly windows as inferiors. 

Keys on the keyboard can be passively grabbed by a 
client. When the key is pressed, the keyboard is then 
actively grabbed by the client. 

A client can actively grab control of the keyboard, 
and key events will be sent to that client rather than 
the client to which the events would normally have 
been sent. 

An encoding of a symbol on a keycap on a keyboard. 

A window is said to be mapped if a map call has 
been performed on it. Unmapped windows and 
their inferiors are never viewable or visible. 

G-7 



Glossary 

Modifier keys 

Monochrome 

Obscure 

Occlude 

Paddinq 

Parent window 

Passive qrab 

Pixel value 

G·8 

Shift, Control, Meta, Super, Hyper, Alt, Compose, 
Apple, CapsLock, ShiftLock, and similar keys are 
called modifier keys. 

Monochrome is a special case of StaticGray in 
which there are only two colormap entries. 

Window A obscures window B if both are mapped, if 
A is higher in the global stacking order, and if the 
rectangle defined by the outside edges of A intersects 
the rectangle defined by the outside edges of B. 
Note that InputOnly windows cannot obscure other 
windows. 

Window A occludes window B if A is higher in the 
global stacking order, and if the rectangle defined by 
the outside edges of A intersects the rectangle 
defined by the outside edges of B. The (fine) distinc­
tion between the tenns obscures and occludes is that 
for obscures, the windows have to be mapped, while 
for occludes they don't. Also note that window bord­
ers are included in the calculation. Note that Inpu­
tOnly windows never obscure other windows but 
can occlude other windows. 

Some padding bytes are inserted in the data stream 
to maintain alignment of the protocol requests on 
natural boundaries. This increases ease of portability 
to some machine architectures. 

If C is a child of P, then P is the parent of C. 

Grabbing a key or button is a passive grab. The grab 
activates when the key or button is actually pressed. 

A pixel is an N-bit value, where N is the number of 
bit planes used in a particular window or pixmap 
(that is, is the depth of the window or pixmap). A 
pixel in a window indexes a colormap to derive an 
actual color to be displayed. 

Xwln GWS: Xllb - C Language Interface 



Pixmap 

Plane 

Plane mask 

Pointer 

Pointer grabbing 

Pointing device 

Property 

Glossary 

Glossary 

A pixmap is a three-dimensional array of bits. A pix­
map is nonnally thought of as a two-dimensional 
array of pixels, where each pixel can be a value from 
o to 2N -1, and where N is the depth (z axis> of the 
pixmap. A pixmap can also be thought of as a stack 
of N bitmaps. A pixmap can only be used on the 
screen that it was created in. 

When a pixmap or window is thought of as a stack 
of bitmaps, each bitmap is called a plane or bit plane. 

Graphics operations can be restricted to only affect a 
subset of bit planes of a destination. A plane mask is 
a bit mask describing which planes are to be 
modified. The plane mask is stored in a graphics 
context. 

The pointer is the pointing device currently attached 
to the cursor and tracked on the screens. 

A client can actively grab control of the pointer. Then 
button and motion events will be sent to that client 
rather than the client the events would normally 
have been sent to. 

A pointing device is typically a mouse, tablet, or 
some other device with effective dimensional motion. 
The core protocol defines only one visible cursor, 
which tracks whatever pointing device is attached as 
the pointer. 

Windows can have associated properties that consist 
of a name, a type, a data fonnat, and some data. The 
protocol places no interpretation on properties. They 
are intended as a general-purpose naming mechan­
ism for clients. For example, clients might use pro­
perties to share information such as resize hints, pro­
gram names, and icon fonnats with a window 
manager. 

G·g 



Glossary 

Property list 

PseudoColor 

Rectangle 

Redirecting control 

Reply 

Request 

Resource 

RGB values 

G-10 

The property list of a window is the list of properties 
that have been defined for the window. 

PseudoColor is a class of colormap in which a pixel 
value indexes the colormap entry to produce 
independent RGB values; that is, the colormap is 
viewed as an array of triples (RGB values). The RGB 
values can be changed dynamically. 

A rectangle specified by [x,y,w,h] has an infinitely 
thin outline path with comers at [x,y], [x+w,y], 
[x+w,y+h], and [x, y+h]. When a rectangle is filled, 
the lower-right edges are not drawn. For example, if 
w=h=O, nothing would be drawn. For w=h=l, a sin­
gle pixel would be drawn. 

Window managers (or client programs) may enforce 
window layout policy in various ways. When a client 
attempts to change the size or position of a window, 
the operation may be redirected to a specified client 
rather than the operation actually being performed. 

Information requested by a client program using the 
X protocol is sent back to the client with a reply. 
Both events and replies are multiplexed on the same 
connection. Most requests do not generate replies, 
but some requests generate multiple replies. 

A command to the server is called a request. It is a 
single block of data sent over a connection. 

Windows, pixmaps, cursors, fonts, graphics contexts, 
and colormaps are known as resources. They all have 
unique identifiers associated with them for naming 
purposes. The lifetime of a resource usually is 
bounded by the lifetime of the connection over which 
the resource was created. 

RGB values are the red, green, and blue intensity 
values that are used to define a color. These values 
are always represented as 16-bit, unsigned numbers, 
with 0 the minimum intensity and 65535 the 

Xwln GWS: Xllb - C Language Interface 



Root 

Root window 

Save set 

Scanline 

Scanline order 

Screen 

Selection 

Glossary 

Glossary 

maximum intensity. The XWIN server scales these 
values to match the display hardware. 

The root of a pixmap or graphics context is the same 
as the root of whatever drawable was used when the 
pixmap or GC was created. The root of a window is 
the root window under which the window was 
created. 

Each screen has a root window covering it. The root 
window cannot be reconfigured or unmapped, but 
otherwise it acts as a full-fledged window. A root 
window has no parent. 

The save set of a client is a list of other clients' win­
dows that, if they are inferiors of one of the client's 
windows at connection close, should not be des­
troyed and that should be remapped if currently 
unmapped. Save sets are typically used by window 
managers to avoid lost windows if the manager 
should terminate abnormally. 

A scanline is a list of pixel or bit values viewed as a 
horizontal row (all values having the same y coordi­
nate) of an image, with the values ordered by 
increasing the x coordinate. 

An image represented in scanline order contains 
scanlines ordered by increasing the y coordinate. 

A server can provide several independent screens, 
which typically have physically independent moni­
tors. This would be the expected configuration when 
there is only a single keyboard and pointer shared 
among the screens. A Screen structure contains the 
information about that screen and is linked to the 
Display structure. 

A selection can be thought of as an indirect property 
with dynamic type. That is, rather than having the 
property stored in the XWIN server, it is maintained 
by some client (the owner). A selection is global and 
is thought of as belonging to the user and being 

G-11 



Glossary 

Server 

Server grabbing 

Sibling 

Stacking order 

G-12 

maintained by clients, rather than being private to a 
particular window subhierarchy or a particular set of 
clients. When a client asks for the contents of a 
selection, it specifies a selection target type, which 
can be used to control the transmitted representation 
of the contents. For example, if the selection is "the 
last thing the user clicked on," and that is currently 
an image, then the target type might specify whether 
the contents of the image should be sent in XY for­
mat or Z format. The target type can also be used to 
control the class of contents transmitted; for example, 
asking for the "looks" (fonts, line spacing, indenta­
tion, and so forth) of a paragraph selection, rather 
than the text of the paragraph. The target type can 
also be used for other purposes. The protocol does 
not constrain the semantics. 

The server, which is also referred to as the XWIN 
server, provides the basic windowing mechanism. It 
handles IPC connections from clients, demultiplexes 
graphics requests onto the screens, and multiplexes 
input back to the appropriate clients. 

The server can be grabbed by a single client for 
exclusive use. This prevents processing of any 
requests from other client connections until the grab 
is completed. This is typically only a transient state 
for such things as rubber-banding, pop-up menus, or 
executing requests indivisibly. / 

Children of the same parent window are known as 
Sibling windows. 

Sibling windows, similar to sheets of paper on a 
desk, can stack on top of each other. Windows above 
both obscure and occlude lower windows. The rela­
tionship between sibling windows is known as the 
stacking order. 

Xwin GWS: Xllb - C Language Interface 



StaticColor 

StaticGray 

Status 

Stipple 

Tile 

Timestamp 

TrueColor 

Glossary 

Glossary 

StaticColor can be viewed as a degenerate case of 
PseudoColor in which the RGB values are 
predefined and read-only. 

StaticGray can be viewed as a degenerate case of 
GrayScale in which the gray values are predefined 
and read-only. The values are typically linear or 
near-linear increasing ramps. 

Many Xlib functions return a success status. If the 
function does not succeed, however, its arguments 
are not disturbed. 

A stipple pattern is a bitmap that is used to tile a 
region to serve as an additional clip mask for a fill 
operation with the foreground color. 

A pixmap can be replicated in two dimensions to tile 
a region. The pixmap itself is also known as a tile. 

A timestamp is a time value expressed in mil­
liseconds. It is typically the time since the last server 
reset. Timestamp values wrap around (after about 
49.7 days). The server, given its current time is 
represented by timestamp T, always interprets times­
tamps from clients by treating half of the timestamp 
space as being earlier in time than T and half of the 
timestamp space as being later in time than T. One 
timestamp value, represented by the constant 
CurrentTime, is never generated by the server. This 
value is reserved for use in requests to represent the 
current server time. 

TrueColor can be viewed as a degenerate case of 
DirectColor in which the subfields in the pixel 
value directly encode the corresponding RGB values. 
That is, the colormap has predefined read-only RGB 
values. The values are typically linear or near-linear 
increasing ramps. 

G·13 



Glossary 

Type 

Viewable 

Visible 

Window gravity 

Window manager 

XY format 

Z format 

G-14 

A type is an arbitrary atom used to identify the 
interpretation of property data. Types are completely 
uninterpreted by the server. They are solely for the 
benefit of clients. X predefines type atoms for many 
frequently used types, and clients also can define 
new types. 

A window is viewable if it and all of its ancestors are 
mapped. This does not imply that any portion of the 
window is actually visible. Graphics requests can be 
performed on a window when it is not viewable, but 
output will not be retained unless the server is main­
taining backing store. 

A region of a window is visible if someone looking 
at the screen can actually see it; that is, the window 
is viewable and the region is not occluded by any 
other window. 

When windows are resized, subwindows may be 
repositioned automatically relative to some position 
in the window. This attraction of a subwindow to 
some part of its parent is known as window gravity. 

Manipulation of windows on the screen and much of 
the user interface (policy) is typically provided by a 
window manager client. 

The data for a pixmap is said to be in XY format if it 
is organized as a set of bitmaps representing indivi­
dual bit planes with the planes appearing from 
most-significant to least-significant bit order. 

The data for a pixmap is said to be in Z format if it is 
organized as a set of pixel values in scanline order. 

Xwln GWS: Xllb - C Language Interface 







I Index 

Index 1-1 

Table of Contents 





Index 

A 
Access control list 7: 48, G: 1 

Active grab 7: 8, G: 1 

Allocation 
colormap 5: 7 

read-only colormap cells 5: 6-7 
read/write colormap cells 5: 8 

AIIPlanes 2: 4 

Ancestors G: 1 

Arcs 
drawing 6: 13 

filling 6: 20 

Areas 
clearing 6: 2 

copying 6: 4 

Atom 4: 8, G: 1 
getting name 4: 11 

interning 4: 10 

predefined 4: 8, 9: 3 

Authentication 7: 48 

B 
Background G: 1 

Backing store G: 1 

BadAccess 8: 71 

BadAlloc 8: 71 

BadAtom 8: 71 

BadColor 8: 71 

BadCursor 8: 71 

BadDrawable 8: 71 

BadFont 8: 71 

BadGC 8: 71 

BadIOChoice 8: 71 

BadImplementation 8: 74 

Bad Length 8: 74 

Index 

BadMatch 8: 74 

BadName 8: 74 

BadPixmap 8: 74 

BadRequest 8: 74 

BadValue 8: 74 

BadWindow 8: 74 

Bit 
gravity G: 1 

plane G: 1 

Bitmap 1: 2, G: 2 
BitmapBitOrder 2: 10 

BitmapPad 2: 11 

BitmapUnit 2: 10 

BlackPixel 2:5 
BlackPixelOfScreen 2: 12 

Border G: 2 

Button 
grabbing 7: 13, G: 2 

ungrabbing 7: 15 

ButtonPress 8: 13 

ButtonRelease 8: 13 

Byte, order G: 2 

c 
CellsOfScreen 2: 12 
Changing, pointer grab 7: 12 

Child window 1: 2 
Child Window 4: 2 

Children G: 2 
CirculateNotify 8: 33 

CirculateRequest 8: 44 
Class G: 2 

Clearing 
areas 6: 2 
windows 6:3 

Client G: 2 

1-1 



Index 

ClientMessage 8: 49 

Clipping region G: 2 
Color 5: 3 

allocation 5: 7-9 
database 5: 6 
getting values 5: 14 

naming 5:7 
parsing command lines 10: 12 
setting cells 5: 11 

Color map 5: 2, 7 
Colormap G: 3 
ColormapNotify 8: 47 
ConfigureNotify 8: 34 

ConfigureRequest 8: 45 
Connection G: 3 

ConnectionNumber 2: 5 

Containment G: 3 
Coordinate system G: 3 
Copying 

areas 6: 4 

planes 6:5 
CreateNotify 8: 36 

CurrentTime 7: 8, 8: 9 
Cursor G: 3 

Initial State 3: 17 
limitations 6: 58 

Cut Buffers 10: 19 

o 
Debugging 

error event 8: 70 
error handlers 8: 70 
error message strings 8: 74 
error numbers 8: 71 
synchronous mode 8: 69 

Default Protection 7: 48 

1·2 

DefaultColormap 2: 5 
DefaultColormapOfScreen 2: 12 
DefaultDepth 2: 6 
DefaultDepthOfScreen 2: 12 
DefaultGC 2: 6 
DefaultGCOfScreen 2: 13 

DefaultRootWindow 2: 6 
DefaultScreen 2: 7 
DefaultScreenOfDisplay 2: 6 
DefaultVisual 2: 7 
DefaultVisualOfScreen 2: 13 

Depth G:3 
Destination 5: 21 
DestroyNotify 8: 37 
Device G:4 
DirectColor G: 4 
Display 2: 3, G: 4 

data structure 2: 4 
structure G: 4, 11 

Display Functions 5: 21 

DisplayCells 2: 7 
DisplayHeight 2: 11 

DisplayHeightMM 2: 11 
Displa~een 2:13 
DisplayPlanes 2: 7 
DisplayString 2: 8 
DisplayWidth 2: 11 

DisplayWidthMM 2: 11 
DoesBackingStore 2: 13 
DoesSaveUnders 2: 13 

Drawable 1: 2, G: 4 

Drawing 
arcs 6: 13 
image text 6: 44 
lines 6: 9 

points 6: 8 

polygons 6: 9 
rectangles 6: 11 

XWIN GWS: Xllb - C Language Interface 



__________________________ Index 

strings 6: 43 
text items 6: 41 

E 
EnterNotify 8: 17 
Environment, DISPLAY 2: 2 
Error 

codes 8: 71 
handlers 8: 70 
handling 1: 5 

Event 1: 3, 8: 2, G: 4 
categories 8: 2 
Exposure G: 5 
mask G:5 
propagation 8: 54, G: 5 
source G: 5 
synchronization G: 5 

types 8:2 
event mask 8: 7 
EventMaskOfScreen 2: 14 
Events 

ButtonPress 8: 13 
ButtonRelease 8: 13 
CirculateNotify 8: 33 
CirculateRequest 8: 44 
Oien~essage 8: 49 
ColormapNotify 8: 47 
ConfigureNotify 8: 34 
ConfigureRequest 8: 45 
CreateNotify 8: 36 
DestroyNotify 8: 37 
EnterNotify 8: 17 
Expose 8: 30 
FocusIn 8: 22 
Focus()ut 8:22 
GraphicsExpose 8: 31 

Index 

GravityNotify 8: 37 
KeymapNotify 8: 29 
KeyPress 8: 13 
KeyRelease 8: 13 
LeaveNotify 8: 17 
~apNotify 8:38 
MappingNotify 8: 39 
MapRequest 8: 46 
~otionNotify 8: 13 
NoExpose 8: 31 
PropertyNotify 8: 50 
ReparentNotify 8: 40 
ResizeRequest 8: 47 
SelectionOear 8: 51 
SelectionNotify 8: 53 

SelectionRequest 8: 51 
UnmapNotify 8: 41 

VisibilityNotify 8: 42 
Expose 8:30 
Extension G: 5 

F 
Files 

/etc/ttys 7: 30 
/ etc/X? .hosts 7: 48 
$HQME/ .Xdefaults 10: 7 

<sy&ISockeUl> 7: 50 
/llsr/X/hb/XErrorDB 8: 75 
<Xll/Xlib.h> C: 3,11-12 
<Xll/Xlibint.h> C: 1, 15,17,23 
<Xll/Xproto.h> C: 17-18, 20, 23 
<xproto.h> C: 19 

Filling 
arcs 6: 20 
polygon 6: 19 
rectangles 6: 17 

1-3 



Index 

FlushGC C: 13 

FocusIn 8: 22 
Focus()ut 8:22 
Font 6: 22, G: 5 
Fonts 

freeing font information 6: 28 
getting information 6: 28 
unloading 6: 28 

Freeing 
colors 5: 13 
resources 3:4,38-39 

Frozen events G: 5 

G 
GC G:6 
Glyph G:6 
Grab G:6 
Grabbing 

buttons 7: 13 

keyboard 7: 16 
keys 7: 18 
pointer 7: 9 
server 7:24 

Graphics context 5: 1, G: 6 
initializing 5: 27 
path 5: 23 

GraphicsExpose 8: 31 
Gravity G: 6 
GravityNotify 8: 37 
GrayScale G: 6 

H 
Hash Lookup D: 4 
HeightMMOfScreen 2: 14 

HeightOfScreen 2: 14 

1-4 

Hotspot G:6 

Identifier G: 6 

Image text, drawing 6: 44 
ImageByteOrder 2: 10 
Inferiors G: 6 
Input 

focus G: 7 

manager G:7 
Input Control 8: 2 
IsCursorKey 10: 6 
IsFunctionKey 10: 6 
IsKeypadKey 10: 6 
IsMiscFunctionKey 10: 6 
IsModiferKey 10: 6 
IsPFKey 10: 6 

K 
Key 

grabbing 7: 18, G: 7 
ungrabbing 7: 19 

Keyboard 
bell volume 7: 30 
bit vector 7: 30 
grabbing 7: 16, G: 7 
keyclick volume 7: 30 

ungrabbing 7: 17 

KeymapNotify 8: 29 

KeyPress 8: 13 
KeyRelease 8: 13 

Keysym G:7 

XWIN GWS: Xllb - C Language Interface 



L 
Last~o~equestlP~cessed 2:8 
LeaveNotify 8: 17 
tines, drawing 6: 9 
LockDisplay c: 22 

M 
MapNotify 8: 38 

Mapped window G: 7 
MappingNotify 8: 39 
MapRequest 8: 46 
MaxCmapsOfScreen 2: 14 
Menus 7: 24 
MinCmapsOfScreen 2: 15 

Modifier keys G: 8 

Monochronne G:8 
MotionNotify 8: 13 
Mouse, programming 7: 30 

N 
NextRequest 2: 8 
NoExpose 8: 31 

o 
Obscure G:8 
Occlude G:8 
Output Control 8: 2 

p 
Padding G:8 
Parent Window 1: 2, 4: 2 

Index 

Passive grab 7: 8, G: 8 
Paste Buffers 10: 19 
Pixel value 5: 21, G: 8 
Pixmap 1: 2, G: 9 
Plane G:9 

copying 6: 5 
mask 5: 21, G: 9 

PlanesOfScreen 2: 15 

Pointer G:9 
grabbing 7: 9,12, G: 9 
ungrabbing 7: 12 

Pointing device G: 9 

Points, drawing 6: 8 
Polygons 

drawing 6:9 
filling 6: 19 

Property G: 9 
appending 4: 15 
changing 4: 15 
deleting 4: 17 
format 4: 15 

getting 4: 12 
listing 4: 14 
prepending 4: 15 

replacing 4: 15 
type 4: 15 

Property list G: 10 
PropertyNotify 8: 50 

Protocol, TCP 2: 2 

ProtocolRevision 2: 8 
ProtocolVersion 2: 8 
PseudoColor G: 10 

a 
QLength 2:9 

Index 

1-5 



Index 

R 
read-only colormap cells 5: 7 

allocating 5: 6-7 
read/write colormap cells 5: 6 

allocating 5: 8 
Rectangle G: 10 

filling 6: 17 
Rectangles, drawing 6: 11 

Redirecting control G: 10 

ReparentNotify 8: 40 
Reply G: 10 

Request G: 10 

Requests 8: 1 
ResizeRequest 8: 47 
Resource G: 10 

Resource IDs 1: 3, 2: 18, 0: 4 
Cursor 1: 3 

Font 1: 3 
freeing 3: 4,38-39 
GContext 1: 3 
Pixmap 1:3 
Window 1:3 

RGB values G: 10 

Root 5: 1, G: 11 
RootWindow 2: 9 
RootWindowOfScreen 2: 15 

s 
Save set G: 11 
Save Unders 3: 11 

Scanline G: 11 
order G: 11 

Screen 1: 2, 2: 2, G: 11 
structure G: 11 

ScreenCount 2: 9 
ScreenOfDisplay 2: 7 

1-6 

Selection 4: 18, G: 11 
converting 4: 20 

getting the owner 4: 19 

setting the owner 4: 18 
SelectionOear 8: 51 
SelectionNotify 8: 53 
SelectionRequest 8: 51 

Serial Number 8: 71 
Server G: 12 

grabbing 7: 24, G: 12 
ServerVendor 2: 9 

Sibling G: 12 
Source 5: 21 
Stacking order 1: 2, G: 12 
StaticColor G: 12 
StaticGray G: 13 
Status 1: 5, G: 13 
Stipple G: 13 
Strings, drawing 6: 43 

T 
Text, drawing 6: 41 
Tile 1: 2, G: 13 

mode 3:4 
pixmaps 3: 4 

time 7:8 
Timestamp G: 13 
TrueColor G: 13 
Type G: 13 

u 
Ungrabbing 

buttons 7: 15 

keyboard 7: 17 
keys 7: 19 

XWIN GWS: Xllb - C Language Interface 



pointer 7: 12 

Unix System Call, fork 2: 8 

UnlockDisplay C: 22 

UnmapNotify 8: 41 
UnmapNotify Event 3: 24 

v 
VendorRelease 2: 9 
Vertex 0: 2 
VertexCurved 0: 2 
VertexDontDraw 0: 2 
VertexEndOosed 0: 2 
VertexRelative 0: 2 
VertexStartOosed 0: 2 
Viewable G: 14 

VisibilityNotify 8: 42 

Visible G: 14 
Visual 3: 2 
Visual Classes 

GrayScale 3: 2 
PseudoColor 3: 2 
StaticColor 3: 2 
StaticGray 3: 2 

TrueColor 3: 2 
Visual Type 3: 2 

w 
WhitePixe1 2: 5 

WhitePixelOfScreen 2: 12 

WidthMMOfScreen 2: 14 

WidthOfScreen 2: 14 

Window 1: 2, 3: 4 
attributes 3: 4 

background 3:37 

clearing 6: 3 

Index 

defining the cursor 6: 59 

determining location 10: 9-10 
gravity G: 14 
icon name 9: 7 
IDs 0: 4 
InputOnly 3: 15, G: 7 
InputOutput G: 7 
manager G: 14 

managers 7: 24 

mapping 3:5 
name 9:6 
parent G:8 
root G: 11 
RootWindow 2: 9 
undefining the cursor 6: 59 

XRootWindow 2: 9 

x 
XIO compatibility 

XDraw 0: 1 
XDrawDashed 0: 1 
XDrawFilled 0: 1,3 
XDrawPatterned 0: 1 
XDrawTiled 0: 1,3 

XActivateScreenSaver 7: 46 

XAddExtension C: 3 

XAddHost 7: 49 

XAddHosts 7: 49 

XAddPixel 10: 28 
XAddToExtensionList C: 11 

XAddToSaveSet 7: 4 

XAll0cC0lor 5: 6,13 
XAll0cC0lorCells 5: 8,13 
XAll0cC0lorPlanes 5: 9, 13 
XAllocID C: 12 

XAllocNamedColor 5: 7, 13 

Index 

1·7 



Index 

_ XAllocScratch C: 30 

XAllowEvents 7: 20 
XAlIPlanes 2: 4 
XAnyEvent 8: 4 
XArc 6:7 
~uto~a~ 7:33 
~uto~atOn 7: 33 
XBell 7:33 
XBitmapBitOrder 2: 10 
XBitmapPad 2: 11 
XBitmapUnit 2: 10 
XBlackPixel 2: 5 
XBlackPixelOfScreen 2: 12 
XButtonEvent 8: 14 
XButtonPressedEvent 8: 14 

XButtonReleasedEvent 8: 14 

XCellsOfScreen 2: 12 
XChangeActivePointerGrab 7: 12 

XChangeGC 5: 28 
XChangeI<eyboardControl 7: 32 
XChangeKeyboardMapping 7: 40 
XChangePointerControl 7: 35 
XChangeProperty 4: 15 
XChangeSaveSet 7:4 
XChangeWindow Attributes 3: 36 
XChar2b 6: 23 
XCharStruct 6: 22 
XChecklfEvent 8: 59 
XCheckMaskEvent 8: 62 
XCheckTypedEvent 8: 62 
XCheckTypedWindowEvent 8: 63 

XCheckWindowEvent 8: 61 
XCirculateEvent 8: 33 
XCirculateRequestEvent 8: 44 
XCirculateSubwindows 3: 33 
XCirculateSubwindowsDown 3: 34 

XCirculateSubwindowsUp 3: 33 
XClassHint 9: 18 

1-8 

XOearArea 6: 2 
XOearWindow 6: 3 
XOientMessageEvent 8: 49 
XOipBox 10: 13 
XOoseOisplay 2: 18 
XColor 5:2 
XColormapEvent 8: 48 

XConfigureEvent 8: 35 
XConfigureRequestEvent 8: 45 
XConfigureWindow 3: 27 
XConnectionNumber 2: 5 
XConvertSelection 4: 20 
XCopyArea 6: 4 
XCopyColormapAndFree 5: 4 
XCopyGC 5: 28 
XCopyPlane 6: 5 
XCreateAssocTable 0: 4 
XCreateBitmapFromData 10: 33 
XCreateColormap 5: 3 
XCreateFontCursor 6: 54 
XCreateGC 5: 27 
XCreateGlyphCursor 6: 56 
XCreatelmage 10: 25 
XCreatePixmap 5: 16 
XCreatePixmapCursor 6: 55 
XCreatePixmapFromBitmapData 

10:32 

XCreateRegion 10: 14 
XCreateSimpleWindow 3: 17 

XCreateWindow 3: 15 
XCreateWindowEvent 8: 36 

XCrossingEvent 8: 17 
_ Xdebug 8: 69 

XDefaultColormap 2: 5 
XDefaultColormapOfScreen 2: 12 
XDefaultDepth 2: 6 
XDefaultDepthOfScreen 2: 12 
XDefaul~ 2:6 

XWIN GWS: Xllb - C Language Interface 



XDefaultGCOfScreen 2: 13 
XDefaultRootWindow 2: 6 

XDefaultScreen 2: 7 
XDefaultScreenOfDisplay 2: 6 

XDefaultVisual 2: 7 
XDefaultVisualOfScreen 2: 13 
XDefineCursor 3: 17, 6: 59 

XDeleteAssoc D: 5 

XDeleteContext 10: 53 
XDeleteModifiermapEntry 7: 42 
XDeleteProperty 4: 17 

XDestroy AssocTable D: 6 
XDestroylmage 10: 28 

XDestroyRegion 10: 14 
XDestroySubwindows 3: 19 

XDestroyWindow 3: 19 

XDestroyWindowEvent 8: 37 
XDisableAccessControl 7: 52 

XDisplayCells 2: 7 
XDisplayHeight 2: 11 
XDisplayHeightMM 2: 11 

XDisplayKeycodes 7: 39 
XDisplayMotionBufferSize 8: 67 
XDisplay~ar.ne 8:75 
XDisplayOfScreen 2: 13 
XDisplayPlanes 2: 7 
XDisplayString 2: 8 
XDisplayWidth 2: 11 
XDisplayWidthMM 2: 11 

XDoesBackingStore 2: 13 
XDoesSaveUnders 2: 13 
xDoSomethingReply C: 19 

xDoSomethingReq C: 18 
XDraw D: 1 

XDrawArc 6: 13 
XDrawArcs 6: 13-14 

XDrawFilled D: 3 
XDrawlmageString 6: 44 

Index 

XDrawlmageString16 6: 44-45 
XDrawLine 6: 9 

XDrawLines 6: 9, D: 1 
XDrawPoint 6: 8 
XDrawPoints 6: 8 
XDrawRectangle 6: 11 
XDrawRectangles 6: 11-12 

XDrawSegments 6: 9-10, D: 1 

XDrawString 6: 43 
XDrawString16 6: 43 

XDrawText 6: 41 

XDrawText16 6: 41 
XEHeadOfExtensionList C: 11 
XEmptyRegion 10: 17 
XEnableAccessControl 7: 52 
XEnterWindowEvent 8: 17 
XEqualRegion 10: 17 
XErrorEvent 8: 70 

XESetCloseDisplay C: 5 
XESetCopyGC C: 5 
XESetCreateFont C: 6 

XESetCreateGC C: 5 
XESetError C: 9 

XESetErrorString C: 9 
XESetEventToWire C: 8 

XESetFlushGC C: 10 
XESetFreeFont C: 7 
XESetFreeGC C: 6 
XESetWireToEvent C: 7 
XEvent 8:4 
XEventMaskOfScreen 2: 14 

XEventsQueued 8: 56 

XExposeEvent 8: 30 
XExtCodes C: 3 
XExtData C: 11 
XFetchBuffer 10: 20 

XFetchBytes 10: 20 

XFet~ame 9: 6 

Index 

1-9 



Index 

XFillArc 6: 20 
XFillArcs 6: 21 

XFillPolygon 6: 19 

XFillRectangle 6: 17 
XFillRectangles 6: 17 
XFindContext 10: 52 
XFindOnExtensionList C: 11 

XFlush 8: 55 

XFlushGCCache C: 13 

XFocusChangeEvent 8: 22 

XFocusInEvent 8: 22 

XFocusOutEvent 8: 22 

XFontProp 6: 23 

XFontStruct 6: 23 

XForceScreenSaver 7: 46 
XFree 2: 17 
XFreeColormap 5: 5 
XFreeColors 5: 13 

XFreeCursor 6: 58 

XFreeExtensionUst C: 2 
XFreeFont 6: 29 

XFreeFontInfo 6: 32 

XFreeFontNames 6: 31 

XFreeFontPath 6: 34 

XFreeCC 5: 29 

XFreeModifiermap 7: 43 

XFreePixmap 5: 16 

XGContextFromGC 5: 29 
XGCValues 5: 19 

XGeometry 10: 10 
XGetAtomName 4: 11 

XGetClassHint 9: 19 
XGetDefault 10: 7 
XGetErrorDatabaseText 8: 74 
XGetErrorText 8: 74 

XGetFontPath 6: 34 

XGetFontProperty 6: 30 
XGetGeometry 4: 5 

1-10 

XGetIconName 9: 7 
XGetIconSizes 9: 18 

XGetImage 6: 50 

XGetInputFocus 7: 27 

XGetI<eyboardControl 7: 32 

XGetI<eyboardMapping 7: 39 
XGetModifierMapping 7: 44 
XGetMotionEvents 8: 67 
XGetNormalHints 9: 14 

XGetPixel 10: 27 

XGetPointerControl 7: 36 

XGetPointerMapping 7: 35 

XGetScreenSaver 7: 47 

XGetSelectionOwner 4: 19 

XGetSizeHints 9: 16 

XGetStandardColormap 9: 26 

XGetSublmage 6: 51 

XGetTransientForHint 9: 20 
XGetVisualInfo 10: 23 
XGetWindow Attributes 4: 2 
XGetWindowProperty 4: 12 

XGetWMHints 9: 11 

XGetZoomHints 9: 15 

XGrabButton 7: 13 

XGrabKey 7: 18 

XGrabKeyboard 7: 16 

XGrabPointer 7: 9 

XGrabServer 7: 24 
XGraphicsExposeEvent 8: 31 

XGravityEvent 8: 38 
XHeightMMOfScreen 2: 14 

XHeightOfScreen 2: 14 

XHostAddress 7: 49 

XIconSize 9: 17 
XIfEvent 8: 58 

XImage 6:47 
XImageByteOrder 2: 10 
XInitExtension C: 3 

XWIN GWS: Xllb - C Language Interface 



XInsertModifiennapEntry 7: 42 

XInstallColonnap 7: 6 

XInternAtom 4: 10 
XIntersectRegion 10: 15 
XKeyboardControl 7: 30 
XKeyboardState 7: 32 

XKeycodeToKeysym 10: 5 
XKeyEvent 8: 14 

XKeymapEvent 8: 29 

XKeyPressedEvent 8: 14 
XKeyReleasedEvent 8: 14 

XKeysymToKeycode 10: 6 
XKeysymToString 10: 5 

XKillOient 7: 28 
XLastKnownRequestProcessed 2: 8 

XLeaveWindowEvent 8: 17 
XListExtensions C: 2 

XListFonts 6: 31 

XListFontsWithInfo 6: 32 

XListHosts 7: 50 

XListInstalledColonnaps 7: 7 
XListProperties 4: 14 
XLoadFont 6: 28 

XLoadQueryFont 6: 29 

XLookUpAssoc 0: 5 
XLookupColor 5: 7 
XLookupKeysym 10: 2 
XLookupString 7: 38, 10: 3 
XLowerWindow 3: 32 

XMakeAssoc 0: 5 
XMapEvent 8: 38 

XMappingEvent 8: 39 

XMapRaised 3: 22 

XMapRequestEvent 8: 46 

XMapSubwindows 3: 23 

XMapWindow 3: 5, 21-22 
XMaskEvent 8: 61 
XMatch VisualInfo 10: 23 

Index 

XMaxCmapsOfScreen 2: 14 
XMaxRequestSize C: 18 
XMinCmapsOfScreen 2: 15 

XModifierKeymap 7: 42 
XMotionEvent 8: 15 
XMoveResizeWindow 3: 30 
XMoveWindow 3: 28 
XNewModifiennap 7: 42 

XNextEvent 8: 55, 57 
XNextRequest 2: 8 
XNoExposeEvent 8: 31 

XNoOp 2: 16 
XOffsetRegion 10: 15 
XOpenDisplay 2: 2, 8: 1 
XParseColor 10: 12 
XParseGeometry 10: 9 
XPeekEvent 8: 57 
XPeekIfEvent 8: 59 

XPending 8: 55-56 
Xpennalloc 10: 38 

XPlanesOfScreen 2: 15 
XPoint 6:7 
XPointerMovedEvent 8: 15 
XPointInRegion 10: 18 
XPolygonRegion 10: 13 
XPropertyEvent 8: 50 

XProtocolRevision 2: 8 
XProtooolVersion 2: 8 
XPutBackEvent 8: 64 

XPutImage 6: 48 

XPutPixel 10: 27 
XQLength 2: 9 
XQueryBestCursor 6: 54, 58 
XQueryBestSize 5: 35 

XQueryBestStipple 5: 36 

XQueryBestTile 5: 36 

XQueryColor 5: 14 

XQueryColors 5: 14 

Index 

1-11 



Index 

XQueryExtension C: 2 
XQueryFont 6: 29 

XQueryKeymap 7: 34 
XQueryPointer 4: 6 

XQueryTextExtents 6: 37 
XQueryTextExtents16 6: 38 

XQueryTree 4:2 

XRaiseWindow 3: 32 

XReadBitmapFile 10: 30 

XRebindKeysym 10: 4 
XRecolorCursor 6: 57 

XRectangle 6: 7 
XRectlnRegion 10: 18 

XRefreshKeyboardMapping 10: 3 
XRemoveFromSaveSet 7: 5 

XRemoveHost 7: 50 
XRemoveHosts 7: 51 

XReparentEvent 8: 40 

XReparentWindow 7: 2 
_ XReply C: 26 

XResetScreenSaver 7: 46 
XResizeRequestEvent 8: 47 

XResizeWindow 3: 29 

XResourceManagerString 10: 7 
xResourceReq C: 19 

XRestackWindows 3: 34 

XrmGetFileDatabase 10: 47 

XrmGetResource 10: 44 

XrmGetStringDatabase 10: 48 

XrmInitialize 10: 38 

XrmMergeDatabases 10: 47 

XrmOptionDescRec 10: 49 

XrmOptionKind 10: 49 
XrmParseCommand 10: 49 

XrmPutFileDatabase 10: 48 

XrmPutLineResource 10: 43 
XrmPutResource 10: 41 

XrmPutStringResource 10: 42 

1-12 

XrmQGetResource 10: 44 

XrmQGetSearchList 10: 45 

XrmQGetSearchResource 10:46 

XrmQPutResource 10: 41 

XrmQPutStringResource 10: 43 
XrmQuarkToString 10: 39 

XrmStringToBindingQuarkList 10: 40 

XrmStringToQuark 10: 39 

XrmStringToQuarkList 10: 39 
XrmUniqueQuark 10: 38 

XrmValue 10: 37 

XRootWindow 2: 9 
XRootWindowOfScreen 2: 15 

XRotateBuffers 10: 21 
XRotateWindowProperties 4: 16 

XSaveContext 10: 52 
XScreenCount 2: 9 

XScreenOfDisplay 2: 7 
XSegment 6: 7 

XSelectInput 8: 54 

XSelectionClearEvent 8: 51 
XSelectionEvent 8: 53 

XSelectionRequestEvent 8: 51 

XSendEvent 8: 65 

XServerVendor 2: 9 

XSetAccessControl 7: 51 

XSetAfterFurlction 8: 69 

XSetArcMode 5: 41 

XSetBackground 5: 31 

XSetClassHint 9: 19 

XSetClipMask 5: 40 

XSetClipOrigin 5: 39 

XSetClipRectangles 5: 40 

XSetCloseDownMode 7: 28 

XSetCommand 9: 8 

XSetDashes 5: 33 

XSetErrorHandler 8: 70 

XSetFillRule 5: 34 

XWIN GWS: Xllb - C Language Interface 



XSetFiIlStyle 5: 34 

XSetFont 5: 39 

XSetFontPath 6: 33 

XSetForeground 5: 31 

XSetFunction 5: 31 
XSetGraphicsExposures 5: 42 

XSeticonName 9: 7 

XSeticonSizes 9: 17 

XSetinputFocus 7: 26 

XSetiOErrorHandler 8: 76 
XSetLineAttributes 5: 32 

XSetModifierMapping 7: 43 

XSetNormalHints 9: 13 

XSetPlaneMask 5: 32 

XSetPointerMapping 7: 34 

XSetRegion 10: 14 
XSetScreenSaver 7: 45 

XSetSelectionOwner 4: 18 

XSetSizeHints 9: 15 

XSetStandardColormap 9: 27 
XSetStandardProperties 9: 4 

XSetState 5: 30 
XSetStipple 5: 37 

XSetSubwindowMode 5: 42 
XSetTile 5: 37 

XSetTransientForHint 9: 20 

XSetTSOrigin 5: 38 
XSetWindowAttributes 3: 6 

XSetWindowBackground 3: 37 

XSetWindowBackgroundPixmap 
3:37 

XSetWindowBorder 3: 38 

XSetWindowBorderPixmap 3: 39 

XSetWindowBorderWidth 3: 30 

XSetWindowColormap 5: 5 

XSetWMHints 9: 10 

XSetZoomHints 9: 14 

XShrinkRegion 10: 15 

Index 

XSizeHints 9: 12 

XStandardColormap 9: 23 

XStoreBuffer 10: 19 

XStoreBytes 10: 19 

XStoreColor 5: 11 
XStoreColors 5: 11 

XStoreName 9: 6 

XStoreNamedColor 5: 12 

XStringToKeysym 10: 5 
XSubImage 10: 27 
XSubtractRegion 10: 16 
XSync 1: 3, 8: 55 

XSynchronize 8: 69 

XTextExtents 6: 35 

XTextExtents16 6: 36 

XTextItem 6: 40 

XTextItem16 6: 40 

XTextWidth 6: 34 

XTextWidth16 6: 34-35 

XTimeCoord 8: 68 

XTranslateCoordinates 3: 40 

XUndefineCursor 6: 59 
XUngrabButton 7: 15 

XUngrabKey 7: 19 

XUngrabKeyboard 7: 17 

XUngrabPointer 7: 12 

XUngrabServer 7: 24 
XUninstallColormap 7: 6 

XUnionRectWithRegion 10: 16 

XUnionRegion 10: 16 

XUniqueContext 10: 53 

XUnloadFont 6: 30 

XUnmapEvent 8: 41 
XUnmapSubwindows 3: 24 

XUnmapWindow 3: 24 

XVendorRelease 2: 9 

XVisibilityEvent 8: 43 

XVisualIDFromVisual 3: 3 

Index 

1-13 



Index 

XVisualInfo 10: 22 
XWarpPointer 7: 25 
XWhitePixel 2: 5 
XWhitePixelOfScreen 2: 12 

XWidthMMOfScreen 2: 14 
XWidthOfScreen 2: 14 
XWindow Attributes 4: 3 
XWindowChanges 3: 25 
XWindowEvent 8: 55, 60 
XWMHints 9: 9 
XWriteBitmapFile 10: 31, 33 
XXorRegion 10: 17 
XY format G: 14 

z 
Z format G: 14 

1-14 XWIN GWS: Xllb - C Language Interface 







AliPlan88 (3X11 ) AliPlan88 (3X11) 

NAME 
AllPlanes, BlackPixel, WhitePixel, ConnectionNumber, DefaultColormap, 
DefaultDepth, DefaultGC, DefaultRootWindow, DefaultScreenOfDisplay, 
DefaultScreen, DefaultVisual, DisplayCells, DisplayPlanes, DisplayString, 
LastKnownRequestProcessed, NextRequest, ProtocolVersion, ProtocolRevision, 
QLength, RootWindow, ScreenCount, ScreenOfDisplay, ServerVendor, Ven­
dorRelease - Display macros 

SYNTAX 
AllPlanesO 

BlackPixel(display, screen_number) 
WhitePixel (display, screen_number) 

ConnectionNumber(display) 

DefaultColormap (display, screen_number) 
DefaultDepth(display, screen_number) 
DefaultGC(display, screen_number) 
DefaultRootWindow(display) 

DefaultScreenOfDisplay(display) 

DefaultScreen (display) 

DefaultVisual(display, screen_number) 

DisplayCells(display, screen_number) 

DisplayPlanes(display, screen_number) 
DisplayString(display) 

LastKnownRequestProcessed (display) 

NextRequest(display) 

ProtocolVersion (display) 

ProtocolRevision (display) 

QLength(display) 

RootWindow(display, screen_number) 
ScreenCount(display) 

ScreenOfDisplay(display, screen_number) 
ServerVendor(display) 

VendorRelease(display) 

ARGUMENTS 
display Specifies the connection to the XWIN server. 

screen number Specifies the appropriate screen number on the host server. 

10189 Page 1 



AIiPlanes (3X11) AIiPlanes(3X11 ) 

DESCRIPTION 

Page 2 

The AllPlanes macro returns a value with all bits set to 1 suitable for use in a 
plane argument to a procedure. 

The BlackPixel macro returns the black pixel value for the specified screen. 

The WhitePixel macro returns the white pixel value for the specified screen. 

The ConnectionNumber macro returns a connection number for the Specified 
display. 

The DefaultColormap macro returns the default colormap ID for allocation on 
the specified screen. 

The DefaultDepth macro returns the depth (number of planes) of the default 
root window for the specified screen. 

The DefaultGC macro returns the default GC for the root window of the 
specified screen. 

The DefaultRootWindow macro returns the root window for the default screen. 

The DefaultScreenOfDisplay macro returns the default screen of the specified 
display. 

The DefaultScreen macro returns the default screen number referenced in the 
XOpenDisplay routine. 

The DefaultVisual macro returns the default visual type for the specified screen. 

The DisplayCells macro returns the number of entries in the default colormap. 
The DisplayPlanes macro returns the depth of the root window of the specified 
screen. 

The DisplayString macro returns the string that was passed to XOpenDisplay 
when the current display was opened. 

The LastKnownRequestProcessed macro extracts the full serial number of the 
last request known by Xlib to have been processed by the XWIN server. 

The NextRequest macro extracts the full serial number that is to be used for the 
next request. 

The ProtocolVersion macro returns the major version number (ll) of the X pro­
tocol associated with the connected display. 

The ProtocolRevision macro returns the minor protocol revision number of the 
XWIN server. 

The QLength macro returns the length of the event queue for the connected 
display. 

The RootWindow macro returns the root window. 

The ScreenCount macro returns the number of available screens. 

The ScreenOfDisplay macro returns a pointer to the screen of the specified 
display. 

10/89 



AIiPlanes(3X11 } AIiPlanes(3X11 } 

The ServerVendor macro returns a pointer to a null-terminated string that pro­
vides some identification of the owner of the XWIN server implementation. 

The VendorRelease macro returns a number related to a vendor's release of the 
XWIN server. 

SEE ALSO 
BlackPixelOfScreen(3Xll), 
ImageByteOrder(3Xll) , 
IsCursorKey(3Xll) 
Xlib - C Language X Interface 

10/89 Page 3 



BlackPlxelOfScreen (3X11) BlackPlxelOfScreen (3X11 ) 

NAME 
BlackPixelOfScreen, WhitePixe10fScreen, CellsOfScreen, 
DefaultColonnapOfScreen, DefaultDepthOfScreen, DefaultGCOfScreen, 
DefaultVisualOfScreen, DoesBackingStore, DoesSaveUnders, DisplayOfScreen, 
EventMaskOfScreen, HeightOfScreen, HeightMMOfScreen, MaxCmapsOfScreen, 
MinCmapsOfScreen, PlanesOfScreen, RootWindowOfScreen, WidthOfScreen, 
WidthMMOfScreen - screen information macros 

SYNTAX 
BlackPixeIOfScreen{screen) 

WhitePixe10fScreen (screen) 

CellsOfScreen (screen) 

DefaultColonnapOfScreen (screen) 

DefaultDepthOfScreen{screen) 

DefaultGCOfScreen (screen) 

Default VisualOfScreen (screen) 

DoesBackingStore (screen) 

DoesSaveUnders{screen) 

DisplayOfScreen{screen) 

EventMaskOfScreen (screen) 

HeightOfScreen (screen) 

HeightMMOfScreen (screen) 

MaxCmapsOfScreen{screen ) 

MinCmapsOfScreen{screen) 

PlanesOfScreen (screen) 

RootWindowOfScreen (screen) 

WidthOfScreen{screen) 

WidthMMOfScreen{screen) 

ARGUMENTS 
screen Specifies a pointer to the appropriate Screen structure. 

DESCRIPTION 

10/89 

The BlackPixelOfScreen macro returns the black pixel value of the specified 
screen. 

The WhitePixelOfScreen macro returns the white pixel value of the specified 
screen. 

The Cells Of Screen macro returns the number of colormap cells in the default 
colonnap of the specified screen. 

The DefaultColormapOfScreen macro returns the default colonnap of the 
specified screen. 

Page 1 



BlackPlxelOfScreen (3X11) BlackPlxelOfScreen (3X11 ) 

The DefaultDepthOfScreen macro returns the default depth of the root window 
of the specified screen. 
The DefaultGCOfScreen macro returns the default GC of the specified screen, 
which has the same depth as the root window of the screen. 

The DefaultVisualOfScreen macro returns the default visual of the specified 
screen. 

The DoesBacldngStore macro returns WhenMapped, NotUseful, or Always, 
which indicate whether the screen supports backing stores. 

The DoesSaveUnders macro returns a Boolean value indicating whether the 
screen supports save unders. 

The DisplayOfScreen macro retums the display of the specified screen. 

The EventMaskOfScreen macro returns the root event mask of the root window 
for the specified screen at connecti setup time. 
The HeightOfScreen macro returns the height of the specified screen. 

The HeightMMOfScreen macro returns the height of the specified screen in mil­
limeters. 
The MaxCmapsOfScreen macro returns the maximum number of installed color­
maps supported by the specified screen. 
The MinCmapsOfScreen macro retums the minimum number of installed color­
maps supported by the specified screen. 
The Planes Of Screen macro returns the number of planes in the root window of 
the specified screen. 
The RootWindowOfScreen macro retums the root window of the specified 
screen. 
The WidthOfScreen macro returns the width of the specified screen. 

The WidthMMOfScreen macro returns the width of the specified screen in mil­
limeters. 

SEE ALSO 

Page 2 

AllPlanes(3Xll), 
ImageByteOrder(3Xl1), 
IsCursorI<ey(3Xl1) 
Xlib - C LAnguage X InlerftlC8 

10189 



ImageByteOrder (3X11) ImageByteOrder(3X11 ) 

NAME 
ImageByteOrder, BitmapBitOrder, BitmapPad, BitmapUnit, DisplayHeight, 
DisplayHeightMM, DisplayWidth, DisplayWidthMM - image format macros 

SYNTAX 
ImageByteOrder(display ) 

BitmapBitOrder(display) 

BitmapPad(display) 

BitmapUnit(display) 

DisplayHeight(display, screen_number) 

DisplayHeightMM(display, screen_number) 
DisplayWidth(display, screen_number) 
DisplayWidthMM(display, screen_number) 

ARGUMENTS 
display Specifies the connection to the XWIN server. 

Specifies the appropriate screen number on the host server. 

DESCRIPTION 
The ImageByteOrder macro specifies the required byte order for images for each 
scanline unit in XY format (bitmap) or for each pixel value in Z format. 

The BitmapBitOrder macro returns LSBFirst or MSBFirst to indicate whether 
the leftmost bit in the bitmap as displayed on the screen is the least or most 
significant bit in the unit. 

The BitmapPad macro returns the number of bits that each scanline must be pad­
ded. 

The BitmapUnit macro returns the size of a bitmap's scanline unit in bits. 

The DisplayHeight macro returns the height of the specified screen in pixels. 

The DisplayHeightMM macro returns the height of the specified screen in mil­
limeters. 

The DisplayWidth macro returns the width of the screen in pixels. 

The DisplayWidthMM macro returns the width of the specified screen in millim­
eters. 

SEE ALSO 

10/89 

AIIPlanes(3Xll), 
BlackPixe1OfScreen(3Xll), 
IsCursorKey(3Xl1) 
Xlib - C LIlnguJlge X Interface 

Page 1 



IsCursorKey (3X11 ) IsCursorKey (3X11 ) 

NAME 
IsCursorKey, IsFunctionKey, IsKeypadKey, IsMiscFunctionKey, IsModiferKey, 
IsPFKey - keysym classifiaction macros 

SYNTAX 
IsCursorKey(keysym) 

IsFunctionKey (keysym) 

IsKeypadKey(keysym) 

IsMiscFunctionKey(keysym ) 

IsModifierKey (keysym) 

IsPFKey(keysym) 

ARGUMENTS 
keysym Specifies the KeySym that is to be tested. 

DESCRIPTION 
The IsCursorKey macro returns True if the specified KeySym is a cursor key. 

The IsFunctionKey macro returns True if the KeySym is a function key. 

The IsKeypadKey macro returns True if the specified KeySym is a keypad key. 

The IsMiscFunctionKey macro returns True if the specified KeySym is a miscel­
laneous function key. 

The IsModiferKey macro returns True if the specified KeySym is a modifier key. 

The IsPFKey macro returns True if the specified KeySym is a PF key. 

SEE ALSO 

10/89 

AlIPlanes(3Xll), 
BlackPixeIOfScreen(3Xll), 
ImageByteOrder(3Xll) 
Xlib - C LIlngw:zge X Interface 

Page 1 



XAddHost(3X11) XAddHost (3X11) 

NAME 
XAddHost, XAddHosts, XListHosts, XRemoveHost, XRemoveHosts, XSetAc­
cessControl, XEnableAccessControl, XDisableAccessContro - control host access 

SYNTAX 
XAddHost(display, host) 

Display "display; 
XHostAddress "host; 

XAddHosts(display, hosts, num _hosts) 
Display"display; 
XHostAddress "hosts; 
int Hum_hosts; 

XHostAddress "XListHosts(display, nhostsJeturn, stateJeturn) 
Display "display; 
int "nhosts return; 
Bool "state-:"return; 

XRemoveHost(display, host) 
Display"display; 
XHostAddress "host; 

XRemoveHosts(display, hosts, num_hosts) 
Display "display; 
XHostAddress "hosts; 
int Hum_hosts; 

XSetAccessControl(display, mode) 
Display "display; 
int mode; 

XEnableAccessControl (display) 
Display"display; 

XDisableAccessControl (display) 
Display "display; 

ARGUMENTS 
display Specifies the connection to the XWIN server. 

Specifies the host that is to be added or removed. 

Specifies each host that is to be added or removed. 

host 
hosts 

mode 

nhosts return 
num hosts 

state return 

Specifies the mode. You can pass EnableAccess or DisableAc-
cess. 

Returns the number of hosts currently in the access control list. 

Specifies the number of hosts. 

Returns the state of the access control. 

DESCRIPTION 

10/89 

The XAddHost function adds the specified host to the access control list for that 
display. The server must be on the same host as the client issuing the command, 
or a BadAccess error results. 

Page 1 



XAddHost (3X11) XAddHost (3X11 ) 

XAddHost can generate BadAccess and BadValue errors. 

The XAddHosts function adds each specified host to the access control list for 
that display. The server must be on the same host as the client issuing the com­
mand, or a BadAccess error results. 

XAddHosts can generate BadAccess and BadValue errors. 

The XListHosts function returns the current access control list as well as whether 
the use of the list at connection setup was enabled or disabled. XListHosts 
allows a program to find out what machines can make connections. It also 
returns a pointer to a list of host structures that were allocated by the function. 
When no longer needed, this memory should be freed by calling XFree. 

The XRemoveHost function removes the specified host from the access control 
list for that display. The server must be on the same host as the client process, or 
a BadAccess error results. If you remove your machine from the access list, you 
can no longer connect to that server, and this operation cannot be reversed unless 
you reset the server. 

XRemoveHost can generate BadAccess and BadValue errors. 

The XRemoveHosts function removes each specified host from the access control 
list for that display. The XWIN server must be on the same host as the client pro­
cess, or a BadAccess error results. If you remove your machine from the access 
list, you can no longer connect to that server, and this operation cannot be 
reversed unless you reset the server. 

XRemoveHosts can generate BadAccess and BadValue errors. 

The XSetAccessControl function either enables or disables the use of the access 
control list at each connection setup. 

XSetAccessControl can generate BadAccess and BadValue errors. 

The XEnableAccessControl function enables the use of the access control list at 
each connection setup. 

XEnableAccessControl can generate a BadAccess error. 

The XDisableAccessControl function disables the use of the access control list at 
each connection setup. 

XDisableAccessControl can generate a BadAccess error. 

DIAGNOSTICS 
BadAccess A client attempted to modify the access control list from other 

than the local (or otherwise authorized) host. 

BadValue Some numeric value falls outside the range of values accepted 
by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted. 
Any argument defined as a set of alternatives can generate this 
error. 

SEE ALSO 
Xlib - C Language X Interface 

Page 2 10/89 



XAliocColor (3X11) XAliocColor(3X11 ) 

NAME 
XAllocColor, XAllocNamedColor, XAllocColorCells, XAllocColorPlanes, 
XFreeColors - allocate and free colors 

SYNTAX 
Status XAllocColor (display, colormap, screen _in_out) 

Display "display; 
Colonnap colormap; 
XColor "screen)n _out; 

Status XAllocNamedColor(display, colormap, color_name, screen_defJeturn, 
exact j.eLreturn) 

Display"display; 
Colonnap colormap; 
char "color name; 
XColor "screen_defJeturn, "exact_defJeturn; 

Status XAllocColorCells(display, colormap, contig, plane_masks Jeturn, nplanes, 
pixels Jeturn, npixels) 

Display"display; 
Colonnap colormap; 
Bool contig; 
unsigned long plane_masks Jeturn[] ; 
unsigned int nplanes; 
unsigned long pixels Jeturn[]; 
unsigned int npixels; 

Status XAllocColorPlanes(display, colormap, contig, pixelsJeturn, ncolors, nreds, 
ngreens, nblues, rmaskJeturn, gmaskJeturn, bmaskJeturn) 

Display"display; 
Colonnap colormap; 
Bool contig; 
unsigned long pixels Jeturn[] ; 
int ncolors; 
int nreds, ngreens, nblues; 
unsigned long "rmaskJeturn, "gmaskJeturn, "bmaskJeturn; 

XFreeColors (display, colormap, pixels, npixels, planes) 
Display"display; 
Colonnap colormap; 
unsigned long pixels[]; 
int npixels; 
unsigned long planes; 

ARGUMENTS 

10/89 

color name 

colormap 
contig 

Specifies the color name string (for example, red) whose color 
definition structure you want returned. 

Specifies the colormap. 

Specifies a Boolean value that indicates whether the planes must 
be contiguous. 

Page 1 



XAliocColor (3X11 ) XAliocColor (3X11 ) 

display Specifies the connection to the XWIN server. 

exact _ deLreturn Returns the exact RCB values. 

ncolors Specifies the number of pixel values that are to be returned in 
the pixels_return array. 

npixels 

nplanes 

nreds 
ngreens 
nblues 

pixels 

pixels Jeturn 
plane_mask Jeturn 

Specifies the number of pixels. 

Specifies the number of plane masks that are to be returned in 
the plane masks array. 

Specify the number of red, green, and blue planes. The value 
you pass must be nonnegative. 

Specifies an array of pixel values. 

Returns an array of pixel values. 

Returns an array of plane masks. 

planes Specifies the planes you want to free. 

rmaskreturn 
gmasIc __ return 
bmask return 

screen_deL return 

screen in out 

Return bit masks for the red, green, and blue planes. 

Returns the closest RCB values provided by the hardware. 

Specifies and returns the values actually used in the colormap. 

DESCRIPTION 

Page 2 

The XAllocColor function allocates a read-only colormap entry corresponding to 
the closest RCB values supported by the hardware. XAlloc:Color returns the 
pixel value of the color closest to the specified RCB elements supported by the 
hardware and returns the RCB values actually used. The corresponding color­
map cell is read-only. In addition, XAllocColor returns nonzero if it succeeded 
or zero if it failed. Read-only colormap cells are shared among clients. When the 
last client deallocates a shared cell, it is deallocated. XAllocColor does not use or 
affect the flags in the XColor structure. 

XAllocColor can generate a BadColor error. 

The XAllocNamedColor function looks up the named color with respect to the 
screen that is associated with the specified colormap. It returns both the exact 
database definition and the closest color supported by the screen. The allocated 
color cell is read-only. You should use the ISO Latin-l encoding; uppercase and 
lowercase do not matter. 

XAllocNamedColor can generate a BadColor error. 

The XAllocColorCells function allocates read/write color cells. The number of 
colors must be positive and the number of planes nonnegative, or a BadValue 
error results. H ncolors and nplanes are requested, then ncolors pixels and 
nplane plane masks are returned. No mask will have any bits set to 1 in common 

10/89 



XAllocColor (3X11 ) XAliocColor(3X11 ) 

10/89 

with any other mask or with any of the pixels. By ORing together each pixel 
with zero or more masks, ncolors It 'Z'P'- distinct pixels can be produced. All of 
these are allocated writable by the request. For GrayScale or PaeudoColor, each 
mask has exactly one bit set to 1. For DirectColor, each has exactly three bits set 
to 1. If contig is True and if all masks are ORed together, a single contiguous set 
of bits set to 1 will be formed for GrayScale or PseudoColor and three contigu­
ous sets of bits set to 1 (one within each pixel subfield) for DirectColor. The 
RCB values of the allocated entries are undefined. XAllocColorCells returns 
nonzero if it succeeded or zero if it failed. 

XAllocColorCells can generate BadColor and BadValue errors. 

The specified ncolors must be positive; and nreds, ngreens, and nblues must be 
nonnegative, or a BadValue error results. If ncolors colors, nreds reds, ngreens 
greens, and nblues blues are requested, ncolors pixels are returned; and the 
masks have nreds, ngreens, and nblues bits set to 1, respectively. If contig is 
True, each mask will have a contiguous set of bits set to 1. No mask will have 
any bits set to 1 in common with any other mask or with any of the pixels. For 
DirectColor, each mask will lie within the corresponding pixel subfield. By 
ORing together subsets of masks with each pixel value, ncolors It 2<-1s~,......."", .... ) 
distinct pixel values can be produced. All of these are allocated by the request. 
However, in the colormap, there are only ncolors It 2-- independent red entries, 
ncolors It 2"""" independent green entries, and ncolors It 2..w .... independent blue 
entries. This is true even for PseudoColor. When the colormap entry of a pixel 
value is changed (using XStoreColors, XStoreColor, or XStoreNamedColor), the 
pixel is decomposed according to the masks, and the corresponding independent 
entries are updated. XAlloeColorPlanes returns nonzero if it succeeded or zero 
if it failed. 

XAllocColorPlanes can generate BadColor and BadValue errors. 

The XFreeColors function frees the cells represented by pixels whose values are 
in the pixels array. The planes argument should not have any bits set to 1 in 
common with any of the pixels. The set of all pixels is produced by ORing 
together subsets of the planes argument with the pixels. The request frees all of 
these pixels that were allocated by the client (using XAllocColor, XAlloe­
NamedColor, XAlloeColorCells, and XAllocColorPlanes). Note that freeing an 
individual pixel obtained from XAlloeColorPlanes may not actually allow it to be 
reused until all of its related pixels are also freed. 

All specified pixels that are allocated by the client in the colormap are freed, even 
if one or more pixels produce an error. If a specified pixel is not a valid index 
into the colormap, a BadValue error results. If a specified pixel is not allocated 
by the client (that is, is unallocated or is only allocated by another client), a 
BadAccess error results. If more than one pixel is in error, the one that gets 
reported is arbitrary. 

XFreeColors can generate BadAccess, BadColor, and BadValue errors. 

Page 3 



XAliocColor (3X11 ) 

DIAGNOSnCS 
BadAccess 

BadAccess 

BadColor 

BadValue 

XAliocColor (3X11 ) 

A client attempted to free a color map entry that it did not 
already allocate. 

A client attempted to store into a read-only color map entry. 

A value for a Colormap argument does not name a defined 
Colormap. 

Some numeric value falls outside the range of values accepted 
by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted. 
Any argument defined as a set of alternatives can generate this 
error. 

SEE ALSO 
XCreateColormap(3Xl1), 
XQueryColor(3Xll), 
XStoreColors(3Xll) 
Xlib - C LAngwage X InterfflCe 

Page 4 10/89 



XAllowEvents(3X11 ) XAllowEvents (3X11) 

NAME 
XAllowEvents - release queued events 

SYNTAX 
XAllowEvents<display, event_mode, time) 

Display ·display; 
int event mode; 
Time time; 

ARGUMENTS 
display Specifies the connection to the XWIN server. 

event mode 

time 

Specifies the event mode. You can pass AsyncPointer, Sync­
Pointer, AsyncKeyboard, SyncKeyboard, ReplayPointer, 
ReplayKeyboard, AsyncBoth, or SyncBoth. 

Specifies the time. You can pass either a timestamp or Current­
Time. 

DESCRIPTION 
The XAllowEvents function releases some queued events if the client has caused 
a device to freeze. It has no effect if the specified time is earlier than the last-grab 
time of the most recent active grab for the client or if the specified time is later 
than the current XWIN server time. 

XAllowEvents can generate a BadValue error. 

DIAGNOSTICS 
BadValue Some numeric value falls outside the range of values accepted 

by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted. 
Any argument defined as a set of alternatives can generate this 
error. 

SEE ALSO 
Xlib - C Language X Interface 

10/89 Page 1 



XChangeKeyboardControl (3X11) XChangeKeyboardControl (3X11 ) 

NAME 
XChangeI<eyboardControl, XGetKeyboardControl, XAutoRepeatOn, 
toRepeatOff, XBeII, XQueryKeymap - manipulate keyboard settings 

XAu-

SYNTAX 
XChangeI<eyboardControl (display, value _mIlSk, values) 

Display"display; 
unsigned long value_mIlSk; 
XI<eyboardControl -values; 

XGetI<eyboardControl (displily, values Jetum) 
Display"display; 
XI<eyboardState "values Jetum; 

XAutoRepeatOn(display) 
Display "display; 

XAutoRepeatOff(display) 
Display "display; 

XBell(display, percent) 
Display "display; 
int percent; 

XQueryKeymap(display, keys Jdum) 
Display "display; 
char keysJetum[32]; 

ARGUMENTS 
display Specifies the connection to the XWIN server. 

percent 

value mIlSk 
values 

Returns an array of bytes that identifies which keys are pressed 
down. Each bit represents one key of the keyboard. 

Specifies the volume for the bell, which can range from -100 to 
100 inclusive. 

Specifies one value for each bit set to 1 in the mask. 

Specifies which controls to change. This mask is the bitwise 
inclusive OR of the valid control mask bits. 

Returns the current keyboard controls in the specified XKey­
boardState structure. 

DESCRIPTION 

10/89 

The XChangeKeyboardControl function controls the keyboard characteristics 
defined by the XKeyboardControl structure. The value_mask argument specifies 
which values are to be changed. 

XChangeKeyboardControl can generate BadMatch and BadValue errors. 

The XGetKeyboardControl function returns the current control values for the 
keyboard to the XKeyboardState structure. 

The XAutoRepeatOn function turns on auto-repeat for the keyboard on the 
specified display. 

Page 1 



XChangaKayboardControl (3X11 ) XChangaKayboardControl (3X11) 

The XAutoRepeatOff function turns off auto-repeat for the keyboard on the 
specified display. 

The XBell function rings the bell on the keyboard on the specified display, if p0s­
sible. The specified volume is relative to the base volume for the keyboard. If 
the value for the percent argument is not in the range -100 to 100 inclusive, a 
BadValue error results. The volume at which the bell rings when the percent 
argument is nonnegative is: 

base - [(base It percent) I 100] + percent 

The volume at which the bell rings when the percent argument is negative is: 

base + [(base It percent) I 100] 

To change the base volume of the bell, use XChangeKeyboardControl. 

XBell can generate a BadValue error. 

The XQueryKeymap function returns a bit vector for the logical state of the key­
board, where each bit set to 1 indicates that the corresponding key is currently 
pressed down. The vector is represented as 32 bytes. Byte N (from 0) contains 
the bits for keys SN to SN + 7 with the least-significant bit in the byte represent­
ing key SN. 

Note that the logical state of a device (as seen by client applications) may lag the 
physical state if device event processing is frozen. 

DIAGNOSTICS 
BadMatch Some argument or pair of arguments has the correct type and 

BadValue 

range but fails to match in some other way required by the 
request. 

Some numeric value falls outside the range of values accepted 
by the request. Unless a specific range is specified for an argu-
ment, the full range defined by the argument's type is accepted. 
Any argument defined as a set of alternatives can generate this 
error. 

SEE ALSO 
XChangeKeyboardMapping(3Xll), 
XSetPointerMapping(3Xll) 
Xlib - C Language X Interface 

Page 2 10/81 



XChangeKeyboardMapplng (3X11 ) XChangeKeyboardMapplng (3X11 ) 

NAME 
XChangeKeyboardMapping, XGetKeyboardMapping, XDisplayKeycodes, 
XSetModifierMapping, XGetModifierMapping, XNewModifiermap, 
XlnsertModifiermapEntry, XDeleteModifiermapEntry, XFreeModifierMap - mani­
pulate keyboard encoding 

SYNTAX 
XChangeKeyboardMapping(display, first -'reycode, keysyms..,.Per -',eycode, keysyms, 

num codes) 
Display ·display; -
int first _ keycode; 
int keysyms..,.Per _ keycode; 
KeySym ·keysyms; 
int num _codes; 

KeySym ·XGetKeyboardMapping(display, first _ keycode, keycode _count, 
keysyms..,.Per _ keycode Jeturn) 

Display ·display; 
KeyCode first _ keycode; 
int keycode _count; 
int .keysyms..,.Per _ keycode Jeturn i 

XDisplayKeycodes(display, min _ keycodes Jeturn, mJlJC _ keycodes Jeturn) 
Display • display; 
int ·min _ keycodes Jeturn, mJlJC -',eycodes Jeturn; 

int XSetModifierMapping(display, modmap) 
Display ·displayi 
XModifierKeymap ·modmap i 

XModifierKeymap ·XGetModifierMapping(display) 
Display ·display; 

XModifierKeymap ·XNewModifiermap( mJlJC _ keys..,.Per _mod) 
int mJlJC _ keys..,.Per _modi 

XModifierKeymap ·XInsertModifiermapEntry(modmap, keycode _entry, modifier) 
XModifierKeymap ·modnwp; 
KeyCode keycode _ entry; 
int modifier; 

XModifierKeymap ·XDeleteModifiermapEntry(modnwp, keycode _entry, modifier) 
XModifierKeymap ·modmap; 
KeyCode keycode_entry; 
int modifier; 

XFreeModifiermap( mod71/llp) 
XModifierKeymap ·modmap; 

ARGUMENTS 
display Specifies the connection to the XWlN server. 

10/89 Page 1 



XChangeKeyboardMapplng (3X11 ) XChangeKeyboardMapplng (3X11) 

first -'ceycode Specifies the first KeyCode that is to be changed or returned. 
keyccde _ ccunt Specifies the number of KeyCodes that are to be returned. 
keycode _entry Specifies the KeyCode. 

keysyms Specifies a pointer to an array of KeySyms. 
keysyms yet' _ keycode 

Specifies the number of KeySyms per KeyCode. 
keysyms yet' _ keycode -,eturn 

max_keys yet' _ mod 

Returns the number of KeySyms per KeyCode. 

Specifies the number of KeyCode entries preallocated to the 
modifiers in the map. 

max _ keycodes -,eturn 
Returns the maximum number of KeyCodes. 

min _ keyccties -,eturn 

modifier 

modmap 
num cedes 

Returns the minimum number of KeyCodes. 

Specifies the modifier. 

Specifies a pointer to the XModifierKeymap structure. 

Specifies the number of KeyCodes that are to be changed. 

DESCRIPTION 

Page 2 

The XChangeKeyboardMapping function defines the symbols for the specified 
number of KeyCodes starting with first_ keycode. The symbols for KeyCodes out­
side this range remain unchanged. The number of elements in keysyms must be: 

num _codes • keysyms ..,per _ keycode 

The specified first _ keycode must be greater than or equal to min _ keycode 
returned by XDisplayKeycodes, or a BadValue error results. In addition, the 
following expression must be less than or equal to max_keycode as returned by 
XDisplayKeycodes, or a BadValue error results: 

first_keycode + num_codes - 1 

KeySym number N, counting from zero, for KeyCode K has the following index 
in keysyms, counting from zero: 

(K - first_keycode) • keysyms..,per_keycode + N 

The specified keysyms..,per _ keycode can be chosen arbitrarily by the client to be 
large enough to hold all desired symbols. A special KeySym value of NoSymbol 
should be used to fill in unused elements for individual KeyCodes. It is legal for 
NoSymbol to appear in nontrailing positions of the effective list for a KeyCode. 
XChangeKeyboardMapping generates a MappingNotify event. 

10/89 



XChangeKeyboardMapplng (3X11 ) XChangeKeyboardMapplng (3X11) 

10/89 

There is no requirement that the XWIN server interpret this mapping. It is merely 
stored for reading and writing by clients. 

XChangeKeyboardMapping can generate BadAlloc and BadValue errors. 

The XGetKeyboardMapping function returns the symbols for the specified 
number of KeyCodes starting with firstJ<eycode. The value specified in 
firstJ<eycode must be greater than or equal to minJ<eycode as returned by 
XDisplayKeycodes, or a BadValue error results. In addition, the following 
expression must be less than or equal to max Jreycode as returned by 
XDisplayKeycodes : 

firstJ«~ycode + keycode _count - 1 

If this is not the case, a BadValue error results. The number of elements in the 
KeySyms list is: 

keycode _count • keysyms"'per _ keycode Jetum 

KeySym number N, counting from zero, for KeyCode K has the following index 
in the list, counting from zero: 

The XWIN server arbitrarily chooses the keysyms -Pet _ keycode _return value to be 
large enough to report all requested symbols. A special KeySym value of NoSym­
bol is used to fill in unused elements for individual KeyCodes. To free the 
storage returned by XGetKeyboardMapping, use XFree. 

XGetKeyboardMapping can generate a BadValue error. 

The XDisplayKeycodes function returns the min-keycodes and max-keycodes 
supported by the specified display. The minimum number of KeyCodes returned 
is never less than 8, and the maximum number of KeyCodes returned is never 
greater than 255. Not all KeyCodes in this range are required to have 
corresponding ~ys. 

The XSeiModifierMapping function specifies the Keycodes of the keys (if any) 
that are to be used as modifiers. If it succeeds, the 'XWIN server generates a Map­
pingNotify event, and XSetModifierMapping returns MappingSuccess. X per­
mits at most eight modifier keys. If more than eight are specified in the 
XModifierKeymap structure, a BadLength error results. 

The modifiermap member of the XModifierKeymap structure contains eight sets 
of max_keypermod KeyCodes, one for each modifier in the order Shift, Lock, 
Control, ModI, Modl, Mod3, Mod4, and ModS. Only nonzero KeyCodes have 
meaning in each set, and zero KeyCodes are ignored. In addition, all of the 
nonzero KeyCodes must be in the range specified by min_ keycode and 
max _ keycode in the Display structure, or a BadValue error results. No Key­
Code may appear twice in the entire map, or a BadValue error results. 

Page 3 



XChangeKeyboardMapplng (3X11 ) XChangeKeyboardMapplng (3X11 ) 

An XWIN server can impose restrictions on how modifiers can be changed, for 
example, if certain keys do not generate up transitions in hardware, if auto-repeat 
cannot be disabled on certain keys, or if multiple modifier keys are not sup­
ported. If some such restriction is violated, the status reply is MappingFaUed, 
and none of the modifiers are changed. If the new KeyCodes specified for a 
modifier differ from those currently defined and any (current or new) keys for 
that modifier are in the logically down state, XSetModifierMapping returns 
MappingBusy, and none of the modifiers is changed. 

XSetModifierMapping can generate BadAlloc and BadValue errors. 

The XGetModifierMapping function returns a pointer to a newly created 
XModifierKeymap structure that contains the keys being used as modifiers. The 
structure should be freed after use by calling XFJeeModifiermap. If only zero 
values appear in the set for any modifier, that modifier is disabled. 

The XNewModifiermap function returns a pointer to XModifierKeymap struc­
ture for later use. 

The XInsertModifiermapEntty function adds the specified KeyCode to the set 
that controls the specified modifier and returns the resulting XModifierKeymap 
structure (expanded as needed). 

The XDeleteModifiermapEntry function deletes the specified KeyCode from the 
set that controls the specified modifier and returns a pointer to the resulting 
XModifierKeymap structure. 

The XFJeeModifiermap function frees the specified XModifierKeymap structure. 

DIAGNOSTICS 
BadAlloc: The server failed to allocate the requested resource or server 

memory. 

BadValue Some numeric value falls outside the range of values accepted 
by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted. 
Any argument defined as a set of alternatives can generate this 
error. 

SEE ALSO 
XSetPointerMapping(3Xl1) 
Xlib - C Language X Interface 

Page 4 10/89 



XChangePolnterControl (3X11) XChangePolnterControl (3X11 ) 

NAME 
XChangePointerControl, XGetPointerControl - control pointer 

SYNTAX 
XChangePointerControl(display, do _ accel, do_threshold, accel_ numerator, 

accel denominator, threshold) 
Display ·display; -
Bool do accel, do threshold; 
int accef numerator, accel denominator; 
int threshold; -

XGetPointerControl (display, accel_ numerator Jeturn, accel_ denominator Jeturn, 
threshold return) 

Display "display; -
int ·accel numerator return, "accel denominator return; 
int ·thresholdJeturn; - -

ARGUMENTS 
accel denominator 

- Specifies the denominator for the acceleration multiplier. 

accel denominator return 
- -Returns the denominator for the acceleration multiplier. 

accel numerator Specifies the numerator for the acceleration multiplier. 

accel numerator return 
- - Returns the numerator for the acceleration multiplier. 

display Specifies the connection to the XWIN server. 

do accel 

do threshold 

threshold 

Specifies a Boolean value that controls whether the values for 
the accel_ numerator or accet denominator are used. 

Specifies a Boolean value that controls whether the value for the 
threshold is used. 

Specifies the acceleration threshold. 

threshold return Returns the acceleration threshold. 

DESCRIPTION 

10/89 

The XChangePointerControl function defines how the pointing device moves. 
The acceleration, expressed as a fraction, is a multiplier for movement. For exam­
ple, specifying 3/1 means the pointer moves three times as fast as normal. The 
fraction may be rounded arbitrarily by the XWIN server. Acceleration only takes 
effect if the pointer moves more than threshold pixels at once and only applies to 
the amount beyond the value in the threshold argument. Setting a value to -1 
restores the default. The values of the do_accel and do_threshold arguments 
must be True for the pointer values to be set, or the parameters are unchanged. 
Negative values (other than -1) generate a BadValue error, as does a zero value 
for the accet denominator argument. 

XChangePointerControl can generate a BadValue error. 

Page 1 



XChangePolnterControl (3X11 ) XChangePolnterControl (3X11 ) 

The XGetPointerControl function returns the pointer's current acceleration multi­
plier and acceleration threshold. 

DIAGNOSTICS 
BadValue Some numeric value falls outside the range of values accepted 

by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted. 
Any argument defined as a set of alternatives can generate this 
error. 

SEE ALSO 
Xlib - C Language X Interface 

Page 2 10/89 



XChangeSaveSet (3X11 ) XChangeSaveSet(3X11 ) 

NAME 
XChangeSaveSet, XAddToSaveSet, XRemoveFromSaveSet - change a client's save 
set 

SYNTAX 
XChangeSaveSet(display, w, change_mode) 

Display *display; 
Window w; 
int change_mode; 

XAddToSaveSet(display, w) 
Display *display; 
Windoww; 

XRemoveFromSaveSet(display, w) 
Display *display; 
Windoww; 

ARGUMENTS 
change -,node 

display 

w 

Specifies the mode. You can pass SetModeInsert or SetMo­
deDelete. 

Specifies the connection to the XWIN server. 

Specifies the window that you want to add or delete from the 
client's save-set. 

DESCRIPTION 
Depending on the specified mode, XChangeSaveSet either inserts or deletes the 
specified window from the client's save-set. The specified window must have 
been created by some other client, or a BadMatch error results. 

XChangeSaveSet can generate BadMatch, BadValue, and BadWindow errors. 

The XAddToSaveSet function adds the specified window to the client's save-set. 
The specified window must have been created by some other client, or a Bad­
Match error results. 

XAddToSaveSet can generate BadMatch and BadWindow errors. 

The XRemoveFromSaveSet function removes the specified window from the 
client's save-set. The specified window must have been created by some other 
client, or a BadMatch error results. 

XRemoveFromSaveSet can generate BadMatch and BadWindow errors. 

DIAGNOSTICS 

10/89 

BadMatch Some argument or pair of arguments has the correct type and 

BadValue 

range but fails to match in some other way required by the 
request. 

Some numeric value falls outside the range of values accepted 
by the request. Unless a specific range is specified for an argu-
ment, the full range defined by the argument's type is accepted. 
Any argument defined as a set of alternatives can generate this 
error. 

Page 1 



XChangeSaveSet (3X11) XChangeSaveSet (3X11 ) 

BadWindow A value for a Window argument does not name a defined Win­
dow. 

SEE ALSO 

Page 2 

XReparentWindow(3Xll) 
Xlib - C LAnguage X Interface 

10/89 



XChangeWIndowAttribute8 (3X11 ) XChangeWlndowAttrlbute8(3X11 ) 

NAME 
XChangeWindowAttributes, XSetWindowBackground, XSetWindowBackground­
Pixmap, XSetWindowBorder, XSetWindowBorderPixmap - change window attri­
butes 

SYNTAX 
XChangeWindowAttributes(display, w, valuemask, attributes) 

Display "'display; 
Window w; 
unsigned long valuemask; 
XSetWindowAttributes "'attributes; 

XSetWindowBackground (display, w, background yixel) 
Display "'display; 
Window w; 
unsigned long backgroundyixel; 

XSetWindowBackgroundPixmap (display, w, background yixmap) 
Display "'display; 
Window w; 
Pixmap background yixmap; 

XSetWindowBorder(display, w, borderyixel) 
Display "'display; 
Window w; 
unsigned long border yixel; 

XSetWindowBorderPixmap(display, w, borderyixmap) 
Display "'display; 
Windoww; 
Pixmap border yixmap; 

ARGUMENTS 

10/89 

attributes Specifies the structure from which the values (as Specified by 
the value mask) are to be taken. The value mask should have 
the appropriate bits set to indicate which attributes have been 
set in the structure. 

background yixel Specifies the pixel that is to be used for the background. 

background yixmap 

border yixel 

border yixmap 

display 
valuemask 

Specifies the background pixmap, ParentRelative, or None. 

Specifies the entry in the colormap. 

Specifies the border pixmap or CopyFromParent. 

Specifies the connection to the XWIN server. 

Specifies which window attributes are defined in the attributes 
argument. This mask is the bitwise inclusive OR of the valid 
attribute mask bits. If valuemask is zero, the attributes are 
ignored and are not referenced. 

Page 1 



XChangeWlndowAttrlbutes (3X11) XChangeWlndowAttrlbutes (3X11) 

w Specifies the window. 

DESCRIPTION 

Page 2 

Depending on the valuemask, the XChangeWindowAttributes function uses the 
window attributes in the XSelWindowAttributes structure to change the 
specified window attributes. Changing the background does not cause the win­
dow contents to be changed. To repaint the window and its background, use 
XClearWindow. Setting the border or changing the background such that the 
border tile origin changes causes the border to be repainted. Changing the back­
ground of a root window to None or ParentRelative restores the default back­
ground pixmap. Changing the border of a root window to CopyFromParent 
restores the default border pixmap. Changing the win-gravity does not affect the 
current position of the window. Changing the backing-store of an obscured win­
dow to WhenMapped or Always, or changing the backing-planes, backing-pixel, 
or save-under of a mapped window may have no immediate effect. Changing the 
colormap of a window (that is, defining a new map, not changing the contents of 
the existing map) generates a ColormapNotify event. Changing the colormap of 
a visible window may have no immediate effect on the screen because the map 
may not be installed (see XlnstaIlColormap). Changing the cursor of a root win­
dow to None restores the default cursor. Whenever possible, you are 
encouraged to share colormaps. 

Multiple clients can select input on the same window. Their event masks are 
maintained separately. When an event is generated, it is reported to all interested 
clients. However, only one client at a time can select for Substruc­
tureRedirectMask, ResizeRedirectMask, and ButtonPressMask. If a client 
attempts to select any of these event masks and some other client has already 
selected one, a BadAccess error results. There is only one do-not-propagate­
mask for a window, not one per client. 

XChangeWindowAttributes can generate BadAccess, BadColor, BadCursor, 
BadMatch, BadPixmap, BadValue, and BadWindow errors. 

The XSetWindowBackground function sets the background of the window to the 
specified pixel value. Changing the background does not cause the window con­
tents to be changed. XSetWindowBackground uses a pixmap of undefined size 
filled with the pixel value you passed. If you try to change the background of an 
InputOnly window, a BadMatch error results. 

XSetWindowBackground can generate BadMatch and BadWindow errors. 

The XSelWindowBackgroundPixmap function sets the background pixmap of 
the window to the specified pixmap. The background pixmap can immediately 
be freed if no further explicit references to it are to be made. If ParentRelative is 
specified, the background pixmap of the window's parent is used, or on the root 
window, the default background is restored. If you try to change the background 
of an InputOnly window, a BadMatch error results. If the background is set to 
None, the window has no defined background. 

XSetWindowBackgroundPixmap can generate BadMatch, BadPixmap, and 
BadWindow errors. 

10/89 



XChangeWlndowAttrlbute. (3X11 ) XChangeWlndowAttrlbut8. (3X11 ) 

The XSetWindowBorder function sets the border of the window to the pixel 
value you specify. If you attempt to perform this on an InputOnly window, a 
BadMatch error results. 

XSetWindowBorder can generate BadMatch and BadWindow errors. 

The XSetWindowBorderPixmap function sets the border pixmap of the window 
to the pixmap you specify. The border pixmap can be freed immediately if no 
further explicit references to it are to be made. If you specify CopyFl'OmParent, a 
copy of the parent window's border pixmap is used. If you attempt to perform 
this on an InputOnly window, a BadMatch error results. 

XSetWindowBorderPixmap can generate BadMatch, BadPixmap, and BadWin­
dow errors. 

DIAGNOSTICS 
BadAccess A client attempted to free a color map entry that it did not 

already allocate. 

BadAccess 

BadColor 

BadCursor 

BadMatch 

BadMatch 

BadPixmap 

BadValue 

BadWindow 

A client attempted to store into a read-only color map entry. 

A value for a Colormap argument does not name a defined 
Colormap. 

A value for a Cursor argument does not name a defined Cursor. 

Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

An InputOnly window locks this attribute. 

A value for a Pixmap argument does not name a defined Pix­
map. 
Some numeric value falls outside the range of values accepted 
by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted. 
Any argument defined as a set of alternatives can generate this 
error. 

A value for a Window argument does not name a defined Win­
dow. 

SEE ALSO 
XConfigureWindow(3Xl1), 
XCreateWindow(3Xll), 
XDestroyWindow(3Xl1), 
XMapWindow(3Xll), 
XRaiseWindow(3Xll), 
XUnmapWindow(3Xll) 
Xlib - C Language X Interface 

10189 Page 3 



XClearArea (3X11) XClearArea(3X11 ) 

NAME 
XClearArea, XClearWindow - clear area or window 

SYNTAX 
XClearArea(display, w, x, y, width, height, exposures) 

Display"display; 
Window w; 
int x, y; 
unsigned int width, height; 
Bool exposures; 

XClearWindow(display, w) 
Display"display; 
Windoww; 

ARGUMENTS 
display Specifies the connection to the XWIN server. 

exposures 

w 
width 
height 

x 
y 

Specifies a Boolean value that indicates if Expose events are to 
be generated. 

Specifies the window. 

Specify the width and height, which are the dimensions of the 
rectangle. 

Specify the x and y coordinates, which are relative to the origin 
of the window and specify the upper-left comer of the rectan­
gle. 

DESCRIPTION 

10/89 

The XClearArea function paints a rectangular area in the specified window 
according to the specified dimensions with the window's background pixel or 
pixmap. The subwindow-mode effectively is ClipByChildren. If width is zero, 
it is replaced with the current width of the window minus x. If height is zero, it 
is replaced with the current height of the window minus y. If the window has a 
defined background tile, the rectangle clipped by any children is filled with this 
tile. If the window has background None, the contents of the window are not 
changed. In either case, if exposures is True, one or more Expose events are gen­
erated for regions of the rectangle that are either visible or are being retained in a 
backing store. If you specify a window whose class is InputOnly, a BadMatch 
error results. 

XClearArea can generate BadMatch, BadValue, and BadWindowerrors. 

The XClearWindow function clears the entire area in the specified window and is 
equivalent to XClearArea (display, w, 0, 0, 0, 0, False). If the window has a 
defined background tile, the rectangle is tiled with a plane-mask of all ones and 
GXcopy function. If the window has background None, the contents of the win­
dow are not changed. If you specify a window whose class is InputOnly, a Bad­
Match error results. 

Page 1 



XCle8rAre8 (3X11) XCle8rAre8 (3X11) 

XClearWindow can generate BadMatch and BadWindow errors. 

DIAGNOSTICS 
BadMatch An InputOnly window is used as a Drawable. 

BadValue 

BadWindow 

Some numeric value falls outside the range of values accepted 
by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted. 
Any argument defined as a set of alternatives can generate this 
error. 

A value for a Window argument does not name a defined Win­
dow. 

SEE ALSO 
XCopy Area(3Xll) 
Xlib - C Language X Interface 

Page 2 10/89 



XConflgureWlndow(3X11 ) XConflgureWlndow(3X11 ) 

NAME 
XConfigureWindow, XMoveWindow, XResizeWindow, XMoveResizeWindow, 
XSetWindowBorderWidth - configure windows 

SYNTAX 
XConfigureWindow(display, w, value_mask, values) 

Display "display i 
Window Wi 
unsigned int value _maski 
XWindowChanges "valuesi 

XMoveWindow(display, w, x, y) 
Display"displayi 
Window Wi 
int x, Yi 

XResizeWindow(display, w, width, height) 
Display "display i 
Window Wi 
unsigned int width, height i 

XMoveResizeWindow(display, w, x, y, width, height) 
Display "display i 
Window Wi 
int x, Yi 
unsigned int width, heighti 

XSetWindowBorderWidth (display, w, width) 
Display "display i 
Window Wi 
unsigned int widthi 

ARGUMENTS 

10/89 

display Specifies the connection to the XWIN server. 

value mask 

values 

W 

width 

width 
height 

x 
y 

Specifies which values are to be set using information in the 
values structure. This mask is the bitwise inclusive OR of the 
valid configure window values bits. 

Specifies a pointer to the XWindowChanges structure. 

Specifies the window to be reconfigured, moved, or resized .. 

Specifies the width of the window border. 

Specify the width and height, which are the interior dimensions 
of the window. 

Specify the x and y coordinates, which define the new location 
of the top-left pixel of the window's border or the window itself 
if it has no border or define the new position of the window 
relative to its parent. 

Page 1 



XConflgureWlndow (3X11 ) XConflgureWlndow (3X11 ) 

DESCRIPTION 

Page 2 

The XConfigureWindow function uses the values specified in the XWin­
dowChanges structure to reconfigure a window's size, position, border, and 
stacking order. Values not specified are taken from the existing geometry of the 
window. 

If a sibling is specified without a stack_mode or if the window is not actually a 
Sibling, a BadMatch error results. Note that the computations for Bottomlf, 
Toplf, and Opposite are performed with respect to the window's final geometry 
(as controlled by the other arguments passed to XConfigureWindow), not its ini­
tial geometry. Any backing store contents of the window, its inferiors, and other 
newly visible windows are either discarded or changed to reflect the current 
screen contents (depending on the implementation). 

XConfigureWindow can generate BadMatch, BadValue, and BadWindow 
errors. 

The XMoveWindow function moves the specified window to the specified x and 
y coordinates, but it does not change the window's size, raise the window, or 
change the mapping state of the window. Moving a mapped window mayor 
may not lose the window's contents depending on if the window is obscured by 
nonchildren and if no backing store exists. If the contents of the window are lost, 
the XWIN server generates Expose events. Moving a mapped window generates 
Expose events on any formerly obscured windows. 

If the override-redirect flag of the window is False and some other client has 
selected SubslructureRedirectMask on the parent, the XWIN server generates a 
Configure Request event, and no further processing is performed. Otherwise, the 
window is moved. 

XMoveWindow can generate a BadWindow error. 

The XResizeWindow function changes the inside dimensions of the specified 
window, not including its borders. This function does not change the window's 
upper-left coordinate or the origin and does not restack the window. Changing 
the size of a mapped window may lose its contents and generate Expose events. 
If a mapped window is made smaller, changing its size generates Expose events 
on windows that the mapped window formerly obscured. 

If the override-redirect flag of the window is False and some other client has 
selected SubslructureRedirectMask on the parent, the XWIN server generates a 
ConfigureRequest event, and no further processing is performed. If either width 
or height is zero, a BadValue error results. 

XResizeWindow can generate BadValue and BadWindowerrors. 

The XMoveResizeWindow function changes the size and location of the specified 
window without raising it. Moving and resizing a mapped window may gen­
erate an Expose event on the window. Depending on the new size and location 
parameters, moving and resizing a window may generate Expose events on win­
dows that the window formerly obscured. 

10/89 



XConflgureWlndow (3X11 ) XConflgureWlndow(3X11 ) 

If the override-redirect flag of the window is False and some other client has 
selected SubstructureRedirectMask on the parent, the XWIN server generates a 
ConfigureRequest event, and no further processing is performed. Otherwise, the 
window size and location are changed. 

XMoveResizeWindow can generate BadValue and BadWindow errors. 

The XSetWindowBorderWidth function sets the specified window's border width 
to the specified width. 

XSetWindowBorderWidth can generate a BadWindow error. 

DIAGNOSTICS 
BadMatch An InputOnly window is used as a Drawable. 

BadMatch 

BadValue 

BadWindow 

Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

Some numeric value falls outside the range of values accepted 
by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted. 
Any argument defined as a set of alternatives can generate this 
error. 

A value for a Window argument does not name a defined Win­
dow. 

SEE ALSO 

10/89 

XChangeWindow Attributes(3Xl1), 
XCreateWindow(3Xll), 
XDestroyWindow(3Xl1), 
XMapWindow(3Xll), 
XRaiseWindow(3Xl1), 
XUnmapWindow(3Xll) 
Xlib - C Language X Interface 

Page 3 



XCopyArea (3X11) XCopyAre8 (3X11 ) 

NAME 
XCopyArea, XCopyPlane - copy areas 

SYNTAX 
XCopyArea(display, STC, dest, ge, STC_X, STC"'y, width, height, dest_x, dest...Y) 

Display "display; 
Drawable STC, dest; 
GCge; 
int STC_X, STC...Y; 
unsigned int width, height; 
int dest _ x, dest"'y; 

XCopyPlane(display, src, dest, gc, src_x, STC"'y, width, height, dest_x, dest"'y, plane) 
Display"display; 
Drawable src, dest; 
GCge; 
int STC_X, STC...Y; 
unsigned int width, height; 
int dest_x, dest"'y; 
unsigned long plane; 

ARGUMENTS 
dest x 
desty Specify the x and y coordinates, which are relative to the origin 

of the destination rectangle and specify its upper-left corner. 

display 

ge 

plane 

src 
dest 
src x 
src"'y 

width 
height 

Specifies the connection to the XWIN server. 

Specifies the Gc. 

Specifies the bit plane. You must set exactly one bit to 1. 

Specify the source and destination rectangles to be combined. 

Specify the x and y coordinates, which are relative to the origin 
of the source rectangle and specify its upper-left corner. 

Specify the width and height, which are the dimensions of both 
the source and destination rectangles. 

DESCRIPTION 

10/89 

The XCopyArea function combines the specified rectangle of src with the 
specified rectangle of dest. The dra~ables must have the same root and depth, or 
a BadMatch error results. 

If regions of the source rectangle are obscured and have not been retained in 
backing store or if regions outside the boundaries of the source drawable are 
specified, those regions are not copied. Instead, the following occurs on all 
corresponding destination regions that are either visible or are retained in backing 
store. If the destination is a window with a background other than None, 
corresponding regions of the destination are tiled with that background (with 
plane-mask of all ones and GXcopy function). Regardless of tiling or whether 
the destination is a window or a pixmap, if graphics-exposures is True, then 

Page 1 



XCopyAre. (3X11 ) XCopyAre. (3X11) 

GraphicsExpose events for all corresponding destination regions are generated. 
If graphics-exposures is True but no GraphksExpose events are generated, a 
NoExpose event is generated. Note that by default graphics-exposures is True in 
new GCs. 

This function uses these GC components: function, plane-mask, subwindow­
mode, graphics-exposures, clip-x-origin, clip-y-origin, and clip-mask. 

XCopyArea can generate BadDrawable, BadGC, and BadMatch errors. 

The XCopyPlane function uses a single bit plane of the specified source rectangle 
combined with the specified GC to modify the specified rectangle of dest. The 
drawables must have the same root but need not have the same depth. If the 
drawables do not have the same root, a BadMatch error results. If plane does 
not have exactly one bit set to 1 and the values of planes must be less than 2 n, 
where n is the depth of src, a BadValue error results. 

Effectively, XCopyPlane forms a pixmap of the same depth as the rectangle of 
dest and with a size specified by the source region. It uses the 
foreground/background pixels in the GC (foreground everywhere the bit plane in 
src contains a bit set to 1, background everywhere the bit plane in src contains a 
bit set to 0) and the equivalent of a CopyArea patacol request is performed with 
all the same exposure semantics. This can also be thought of as using the 
specified region of the source bit plane as a stipple with a fill-style of FillOpa­
queStippled for filling a rectangular area of the destination. 

This function uses these GC components: function, plane-mask, foreground, back­
ground, subwindow-mode, graphics-exposures, clip-x-origin, clip-y-origin, and 
clip-mask. 

XCopyPlane can generate BadDrawable, BadGC, BadMatch, and BadValue 
errors. 

DIAGNOSTICS 
BadDrawable A value for a Drawable argument does not name a defined 

Window or Pixmap. 

BadGC A value for a GContext argument does not name a defined 
GContext. 

BadMatch An InputOnly window is used as a Drawable. 

BadMatch Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

BadValue Some numeric value falls outside the range of values accepted 
by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted. 
Any argument defined as a set of alternatives can generate this 
error. 

SEE ALSO 
XClearArea(3X11) 
Xlib - C LAngwzge X Interface 

Page 2 10/89 



XCreateColormap (3X11 ) XCreateColormap (3X11 ) 

NAME 
XCreateColormap, XCopyColormapAndFree, XFreeColormap, XSetWindowColor­
map - create, copy, or destroy colormaps 

SYNTAX 
Colormap XCreateColormap(display, w, visulll, alloc) 

Display"display; 
Window W; 
Visual "visulll; 
int alloc; 

Colormap XCopyColormapAndFree (display, colormap) 
Display "display; 
Colormap colormap; 

XFreeColormap(display, colormap) 
Display"display; 
Colormap colormap; 

XSetWindowColormap(display, w, colormap) 
Display"display; 
Window W; 
Colormap colormap; 

ARGUMENTS 
alloc Specifies the colormap entries to be allocated. You can pass 

AllocNone or AllocAll. 

colormap 

display 

visulll 

W 

Specifies the colormap that you want to create, copy, set, or 
destroy. 

Specifies the connection to the XWIN server. 

Specifies a pointer to a visual type supported on the screen. If 
the visual type is not one supported by the screen, a BadMatch 
error results. 

Specifies the window for which you want to create or set a 
colormap. 

DESCRIPTION 

10/89 

The XCreateColormap function creates a colormap of the specified visual type for 
the screen on which the specified window resides and returns the colormap ID 
associated with it. Note that the specified window is only used to determine the 
screen. 

The initial values of the colormap entries are undefined for the visual classes 
GrayScale, PseudoColor, and DirectColor. For StaticGray, StaticColor, and 
TrueColor, the entries have defined values, but those values are specific to the 
visual and are not defined by X. For StaticGray, StaticColor, and TrueColor, 
alloc must be AllocNone, or a BadMatch error results. For the other visual 
classes, if alloc is AllocNone, the colormap initially has no allocated entries, and 
clients can allocate them. For information about the visual types, see section 3.1, 
Xlib--C Language X Interface. 

Page 1 



XCreateColormap (3X11 ) XCreateColormap (3X11) 

If alloc is AnDeAll, the entire colormap is allocated writable. The initial values of 
all allocated entries are undefined. For GrayScale and PseudoColor, the effect is 
as if an XAllocColorCeUs call returned all pixel values from zero to N - 1, where 
N is the colormap entries value in the specified visual. For DiredColor, the 
effect is as if an XAllocColorPlanes call returned a pixel value of zero and 
red_mask, green_mask, and blue_mask values containing the same bits as the 
corresponding masks in the specified visual. However, in all cases, none of these 
entries can be freed by using XFreeColors. 

XCreateColormap can generate BadAlloc, BadMatch, BadValue, and BadWin­
dow errors. 

The XCopyColormapAndFree function creates a colormap of the same visual 
type and for the same screen as the specified colormap and returns the new color­
map 10. It also moves all of the client's existing allocation from the Specified 
colormap to the new colormap with their color values intact and their read-only 
or writable characteristics intact and frees those entries in the specified colormap. 
Color values in other entries in the new colormap are undefined. If the specified 
colormap was created by the client with alloc set to AllocAll, the new colormap 
is also created with AUoeAn, all color values for all entries are copied from the 
specified colormap, and then all entries in the specified colormap are freed. If the 
specified colormap was not created by the client with AnocAU, the allocations to 
be moved are all those pixels and planes that have been allocated by the client 
using XAUocColor, XAllocNamedColor, XAllocColorCells, or XAllocColor­
Planes and that have not been freed since they were allocated. 

XCopyColormapAndFree can generate BadAUoc and BadColor errors. 

The XFreeColormap function deletes the association between the colormap 
resource 10 and the colormap and frees the colormap storage. However, this 
function has no effect on the default colormap for a screen. If the specified color­
map is an installed map for a screen, it is uninstalled (see XUninstallColormap). 
If the specified colormap is defined as the colormap for a window (by 
XCreateWindow, XSetWindowColormap, or XChangeWindowAttribules), 
XFreeColormap changes the colormap associated with the window to None and 
generates a ColormapNotify event. X does not define the colors displayed for a 
window with a colormap of None. 

XFreeColormap can generate a BadColor error. 

The XSetWindowColormap function sets the specified colormap of the specified 
window. The colormap must have the same visual type as the window, or a 
BadMatch error results. 

XSetWindowColormap can generate BadColor, BadMatch, and BadWindow 
errors. 

DIAGNOSTICS 
BadAlloc The server failed to allocate the requested resource or server 

memory. 

BadColor 

Page 2 

A value for a Colormap argument does not name a defined 
Colormap. 

10/89 



XCreateColormap (3X11) XCreateColormap (3X11 ) 

BadMatch 

BadMatch 

BadValue 

BadWindow 

An InputOnly window is used as a Drawable. 

Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

Some numeric value falls outside the range of values accepted 
by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted. 
Any argument defined as a set of alternatives can generate this 
error. 
A value for a Window argument does not name a defined Win­
dow. 

SEE ALSO 
XAlloc:.Color(3Xl1), 
XQueryColor(3Xll), 
XStoreColors(3Xll) 
Xlib - C LAnguJlge X Interface 

10188 Page 3 



XCreateFontCursor (3X11) XCreateFontCursor (3X11 ) 

NAME 
XCreateFontCursor, XCreatePixmapCursor, XCreateGlyphCursor - create cursors 

SYNTAX 
#include <XII / cursorfont.h> 

Cursor XCreateFontCursor(display, shape) 
Display"display; 
unsigned int shllpe; 

Cursor XCreatePixmapCursor(display, source, mIlSk, foreground_color, 
background_color, x, y) 

Display "display; 
Pixmap source; 
Pixmap mIlSk; 
XColor "foreground_color; 
XColor "background_color; 
unsigned int x, y; 

Cursor XCreateGlyphCursor(display, sourcejont, mIlSkjont, source_chIlr, mask_char, 
foreground_color, background_color) 

Display"display; 
Font source jont, mIlSk Jont; 
unsigned int source_char, mIlSk_char; 
XColor "foreground_color; 
XColor "background_color; 

ARGUMENTS 
background_color Specifies the RCB values for the background of the source. 

display Specifies the connection to the XWIN server. 

foreground_color Specifies the RCB values for the foreground of the source. 

mIlSk 
mask char 
maskJont 
shllpe 
source 
source chIlr 
sourcejont 
x 
y 

Specifies the cursor's source bits to be displayed or None. 

Specifies the glyph character for the mask. 

Specifies the font for the mask glyph or None. 

Specifies the shape of the cursor. 

Specifies the shape of the source cursor. 

Specifies the character glyph for the source. 

Specifies the font for the source glyph. 

Specify the x and y coordinates, which indicate the hotspot rela­
tive to the source's origin. 

DESCRIPTION 

10/89 

X provides a set of standard cursor shapes in a special font named cursor. Appli­
cations are encouraged to use this interface for their cursors because the font can 
be customized for the individual display type. The shape argument specifies 
which glyph of the standard fonts to use. 

Page 1 



XCreateFontCur80r (3X11) XCreateFontCursor (3X11 ) 

The hotspot comes from the information stored in the cursor font. The initial 
colors of a cursor are a black foreground and a white background (see XRec:olor­
Cursor). 

XCreateFontCursor can generate BadAlloc and BadValue errors. 

The XCreatePixmapCul'8or function creates a cursor and returns the cursor IO 
associated with it. The foreground and background RGB values must be 
specified using foreground _color and background_color, even if the XWIN server 
only has a StaticGray or GrayScale screen. The foreground color is used for the 
pixels set to 1 in the source, and the background color is used for the pixels set to 
O. Both source and mask, if specified, must have depth one (or a BadMatch error 
results) but can have any root. The mask argument defines the shape of the cur­
sor. The pixels set to 1 in the mask define which source pixels are displayed, and 
the pixels set to 0 define which pixels are ignored. If no mask is given, all pixels 
of the source are displayed. The mask, if present, must be the same size as the 
pixmap defined by the source argument, or a BadMatch error results. The 
hotspot must be a point within the source, or a BadMatch error results. 

The components of the cursor can be transformed arbitrarily to meet display limi­
tations. The pixmaps can be freed immediately if no further explicit references to 
them are to be made. Subsequent drawing in the source or mask pixmap has an 
undefined effect on the cursor. The XWIN server might or might not make a copy 
of the pixmap. 

xCreatePixmapCursor can generate BadAIloc and BadPixmap errors. 

The XCreateGlyphCul'8or function is similar to XCreatePixmapCursor except 
that the source and mask bitmaps are obtained from the specified font glyphs. 
The source_char must be a defined glyph in source_font, or a BadValue error 
results. If mask_font is given, mask_char must be a defined glyph in mask_font, 
or a BadValue error results. The mask_font and character are optional. The ori­
gins of the source_char and mask_char (if defined) glyphs are positioned coin­
cidently and define the hotspot. The source_char and mask_char need not have 
the same bounding box metrics, and there is no restriction on the placement of 
the hotspot relative to the bounding boxes. If no mask_char is given, all pixels of 
the source are displayed. You can free the fonts immediately by calling 
XFreeFont if no further explicit references to them are to be made. 

For 2-byte matrix fonts, the 16-bit value should be formed with the byte1 member 
in the most-significant byte and the byte2 member in the least-significant byte. 

XCreateGlyphCursor can generate BadAlloc, BadFont, and BadValue errors. 

DIAGNOSTICS 
BadAlloc The server failed to allocate the requested resource or server 

memory. 

BadFont 

BadMatch 

Page 2 

A value for a Font or GContext argument does not name a 
defined Font. 

Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

10/89 



xeraataFontCursor (3X11 ) XCraataFontCursor (3X11 ) 

BadPixmap 

BadValue 

A value for a Pixmap argument does not name a defined. Pix­
map. 
Some numeric value falls outside the range of values accepted. 
by the request. Unless a specific range is specified. for an argu­
ment, the full range defined. by the argument's type is accepted.. 
Any argument defined. as a set of alternatives can generate this 
error. 

SEE ALSO 
XDefineCursor(3Xll), 
XRecolorCursor(3Xll) 
Xlib - C Language X Interface 

10/89 Page 3 



XCreateGC(3X11) XCreateGC(3X11 ) 

NAME 
XCreateGC, XCopyGC, XChangeGC, XFreeGC, XGContextFromGC - create or 
free graphics contexts 

SYNTAX 
GC XCreateGC(display, d, valuemask, values) 

Display"display; 
Drawable d; 
unsigned long valuemask; 
XGCValues "values; 

XCopyGC(display, src, valuemask, dest) 
Display"display; 
GC src, dest; 
unsigned long valuemask; 

XChangeGC(display, gc, valuemask, values) 
Display"display; 
GCgc; 
unsigned long valuemask; 
XGCValues "values; 

XFreeGC(display, gc) 
Display"display; 
GCgc; 

GContext XGContextFromGC(gc) 
GCgc; 

ARGUMENTS 
d Specifies the drawable. 

dest 

display 

gc 
src 
valuemask 

values 

Specifies the destination GC. 

Specifies the connection to the XWIN server. 

Specifies the GC. 

Specifies the components of the source Gc. 

Specifies which components in the GC are to be set, copied, or 
changed . This argument is the bitwise inclusive OR of one or 
more of the valid GC component mask bits. 

Specifies any values as specified by the valuemask. 

DESCRIPTION 

10/89 

The XCreateGC function creates a graphics context and returns a Gc. The GC 
can be used with any destination drawable having the same root and depth as the 
specified drawable. Use with other drawables results in a BadMatch error. 

XCreateGC can generate BadAlloc, BadDrawable, BadFont, BadMatch, BadPix­
map, and BadValue errors. 

The XCopyGC function copies the specified components from the source GC to 
the destination Gc. The source and destination GCs must have the same root 
and depth, or a BadMatch error results. The valuemask specifies which com­
ponent to copy, as for XCreateGC. 

Page 1 



XCreateGC(3X11) XCreateGC(3X11 ) 

XCopyGC can generate BadAlloc, BadGC, and BadMatch errors. 
The XChangeGC function changes the components specified by valuemask for 
the specified Gc. The values argument contains the values to be set. The values 
and restrictions are the same as for XCreateGC. Changing the clip-mask over­
rides any previous XSetClipRectangles request on the context. Changing the 
dash-offset or dash-list overrides any previous XSetDashes request on the con­
text. The order in which components are verified and altered is server­
dependent. If an error is generated, a subset of the components may have been 
altered. 
XChangeGC can generate BadAlloc, BadFont, BadGC, BadMatch, BadPixmap, 
and BadValue errors. 
The XFreeGC function destroys the specified GC as well as all the associated 
storage. 
XFreeGC can generate a BadGC error. 

DIAGNOSTICS 
BadAlloc The server failed to allocate the requested resource or server 

memory. 
BadDrawable 

BadFont 

BadGC 

BadMatch 
BadMatch 

BadPixmap 

BadValue 

A value for a Drawable argument does not name a defined 
Window or Pixmap. 
A value for a Font or GContext argument does not name a 
defined Font. 
A value for a GContext argument does not name a defined 
GContext. 
An InputOnly window is used as a Drawable. 
Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 
A value for a Pixmap argument does not name a defined Pix­
map. 
Some numeric value falls outside the range of values accepted 
by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted. 
Any argument defined as a set of alternatives can generate this 
error. 

SEE ALSO 
XQueryBestSize(3Xl1), 
XSetArcMode(3Xll), 
XSetClipOrigin(3Xl1), 
XSetFillStyle(3Xll), 
XSetFont(3Xl1), 
XSetLineAttributes(3Xll), 
XSetState(3Xll), 
XSetTile(3Xll) 
Xlib - C LAnguage X Interface 

Page 2 10/89 



XCreatelmage (3X11) XCreatelmage (3X11 ) 

NAME 
XCreateImage, XGetPixel, XPutPixel, XSubImage, XAddPixel, XDestroyImage -
image utilities 

SYNTAX 
XImage ItXCreateImage(display, visual, depth, formllt, offset, data, width, height, 

bitmllp yad, bytes yer Jine) 
Display Itdisplay; 
Visual ~ual; 
unsigned int depth; 
int formllf; 
int offset; 
char Itdata; 
unsigned int width; 
unsigned int height; 
int bitl'nllp yad; 
int bytes yer Jine; 

unsigned lon~ ?CGetPixel(ximage, x, y) 
XImage Xlmllge; 
int x; 
int y; 

int XPutPixel(ximllge, x, y, pixel) 
XImage Itximllge; 
int x; 
int y; 
unsigned long pixel; 

XImage ItXSubImage(ximllge, x, y, subimllge_width, subimllge_height) 
XImage Itximllge; 
int x; 
int y; 
unsigned int subimllge _width; 
unsigned int subimllge _height; 

XAddPixeI(ximllge, 'IXllue) 
XImage Itximllge; 
long value; 

int XDestroyImage (ximllge) 
XImage It ximllge; 

ARGUMENTS 

10/89 

bitmap JXId Specifies the quantum of a scanline (8, 16, or 32). In other 
words, the start of one scanUne is separated in client memory 
from the start of the next scanline by an integer multiple of this 
many bits. 

Specifies the number of bytes in the client image between the 
start of one scanline and the start of the next. 

Page 1 



XCreatelmage (3X11) XCreatelmage (3X11) 

data 

depth 

display 
formllt 

height 

offset 

pixel 

subimage _height 

subimage _width 

value 

visual 

width 

ximage 

x 
y 

Specifies a pointer to the image data. 

Specifies the depth of the image. 

Specifies the connection to the XWIN server. 

Specifies the format for the image. You can pass XYBitmap, 
XYPixmap, or ZPixmap. 

Specifies the height of the image, in pixels. 

Specifies the number of pixels to ignore at the beginning of the 
scanline. 

Specifies the new pixel value. 

Specifies the height of the new subimage, in pixels. 

Specifies the width of the new subimage, in pixels. 

Specifies the constant value that is to be added. 

Specifies a pointer to the visual. 

Specifies the width of the image, in pixels. 

Specifies a pointer to the image. 

Specify the x and y coordinates. 

DESCRIPTION 

Page 2 

The XCreatelmage function allocates the memory needed for an Xlmage struc­
ture for the specified display but does not allocate space for the image itself. 
Rather, it initializes the structure byte-order, bit-order, and bitmap-unit values 
from the display and returns a pointer to the Xlmage structure. The red, green, 
and blue mask values are defined for Z format images only and are derived from 
the Visual structure passed in. Other values also are passed in. The offset per­
mits the rapid displaying of the image without requiring each scanline to be 
shifted into position. If you pass a zero value in bytes J>eI" Jine, Xlib assumes 
that the scanlines are contiguous in memory and calculates the value of 
bytes J>er Jine itself. 

Note that when the image is created using XCreatelmage, XGetImage, or 
XSublmage, the destroy procedure that the XDestroylmage function calls frees 
both the image structure and the data pointed to by the image structure. 

The basic functions used to get a pixel, set a pixel, create a subimage, and add a 
constant offset to a Z format image are defined in the image object. The func­
tions in this section are really macro invocations of the functions in the image 
object and are defined in <XlllXutil.h>. 

The XGetPixel function returns the specified pixel from the named image. The 
pixel value is returned in normalized format (that is, the least-significant byte of 
the long is the least-significant byte of the pixel). The image must contain the x 
and y coordinates. 

10/89 



XCreatelmage (3X11) XCreatelmage(3X11 ) 

The XPutPixel function overwrites the pixel in the named image with the 
specified pixel value. The input pixel value must be in normalized format (that 
is, the least-significant byte of the long is the least-significant byte of the pixel). 
The image must contain the x and y coordinates. 

The XSubImage function creates a new image that is a subsection of an existing 
one. It allocates the memory necessary for the new XImage structure and returns 
a pointer to the new image. The data is copied from the source image, and the 
image must contain the rectangle defined by x, y, subimage _width, and 
subimage _height. 

The XAddPixel function adds a constant value to every pixel in an image. It is 
useful when you have a base pixel value from allocating color resources and need 
to manipulate the image to that form. 

The XDestroylmage function deallocates the memory associated with the XIm­
age structure. 

SEE ALSO 
XPutimage(3Xll) 
Xlib - C Language X Interface 

10/89 Page 3 



XCreatePlxmap (3X11) XCreatePlxmap(3X11 ) 

NAME 
XCreatePixmap, XFreePixmap - create or destroy pixmaps 

SYNTAX 
Pixmap XCreatePixmap(display, d, width, height, depth) 

Display"display; 
Drawable d; 
unsigned int width, height; 
unsigned int depth; 

XFreePixmap(display, pixmap) 
Display"display; 
Pixmap pixmap; 

ARGUMENTS 
d 

depth 

display 

pixmap 
width 
height 

DESCRIPTION 

Specifies which screen the pixmap is created on. 

Specifies the depth of the pixmap. 

Specifies the connection to the XWIN server. 

Specifies the pixmap. 

Specify the width and height, which define the dimensions of 
the pixmap. 

The XCreatePixmap function creates a pixmap of the width, height, and depth 
you specified and returns a pixmap ID that identifies it. It is valid to pass an 
InputOnly window to the drawable argument. The width and height arguments 
must be nonzero, or a BadValue error results. The depth argument must be one 
of the depths supported by the screen of the specified drawable, or a BadValue 
error results. 

The server uses the specified drawable to determine on which screen to create the 
pixmap. The pixmap can be used only on this screen and only with other draw­
abIes of the same depth (see XCopyPlane for an exception to this rule). The ini­
tial contents of the pixmap are undefined. 

XCreatePixmap can generate BadAlloc, BadDrawable, and BadValue errors. 

The XFreePixmap function first deletes the association between the pixmap 10 
and the pixmap. Then, the XWIN server frees the pixmap storage when there are 
no references to it. The pixmap should never be referenced again. 

XFreePixmap can generate a BadPixmap error. 

DIAGNOSTICS 
BadAlloc The server failed to allocate the requested resource or server 

memory. 

BadDrawable A value for a Drawable argument does not name a defined 
Window or Pixmap. 

10/89 Page 1 



XCreatePlxmap (3X11 ) XCreataPlxmap (3X11 ) 

BadPixmap A value for a Pixmap argument does not name a defined Pix­
map. 

BadValue Some numeric value falls outside the range of values accepted 
by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted. 
Any argument defined as a set of alternatives can generate this 
error. 

SEE ALSO 
Xlib - C Language X Interface 

Page 2 10/89 



XCreateReglon (3X11) XCreateReglon (3X11) 

NAME 
XCreateRegion, XSetRegion, XDestroyRegion - create or destroy regions 

SYNTAX 
Region XCreateRegionO 

XSetRegion(d~lay, gc, T) 
Display"dlsplay; 
GCgc; 
Region T; 

XDestroyRegion(T) 
Region T; 

ARGUMENTS 
displlly 

gc 
T 

DESCRIPTION 

Specifies the connection to the XWIN server. 

Specifies the GC. 

Specifies the region. 

The XCreateRegion function creates a new empty region. 

The XSetRegion function sets the clip-mask in the GC to the specified region. 
Once it is set in the GC, the region can be destroyed. 

The XDestroyRegion function deallocates the storage associated with a specified 
region. 

SEE ALSO 
XEmptyRegion(3Xll), 
XIntersectRegion(3Xll) 
Xlib - C Language X Interface 

10/89 Page 1 



XCreateWlndow (3X11 ) XCreateWlndow (3X11 ) 

NAME 
XCreateWindow, XCreateSimpleWindow - create windows 

SYNTAX 
Window XCreateWindow(display, parent, x, y, width, height, border_width, depth, 

class, visual, valuemask, attributes) 
Display"display; 
Window parent; 
int x, y; 
unsigned int width, height; 
unsigned int border_width; 
int depth; 
unsigned int class; 
Visual "visual 
unsigned long valuemask; 
XSetWindowAttributes "attributes; 

Window XCreateSimpleWindow(display, parent, x, y, width, height, border_width, 
border, background) 

Display"display; 
Window parent; 
int x, y; 
unsigned int width, height; 
unsigned int border_width; 
unsigned long border; 
unsigned long background; 

ARGUMENTS 

10/89 

attributes Specifies the structure from which the values (as specified by 
the value mask) are to be taken. The value mask should have 
the appropriate bits set to indicate which attributes have been 
set in the structure. 

background 

border 
border width 
class 

depth 

display 
parent 
valuemask 

Specifies the background pixel value of the window. 

Specifies the border pixel value of the window. 

Specifies the width of the created window's border in pixels. 

Specifies the created window's class. You can pass InputOut­
put, InputOnly, or CopyFromParent. A class of CopyFrom­
Parent means the class is taken from the parent. 

Specifies the window's depth. A depth of CopyFromParent 
means the depth is taken from the parent. 

Specifies the connection to the XWIN server. 

Specifies the parent window. 

Specifies which window attributes are defined in the attributes 
argument. This mask is the bitwise inclusive OR of the valid 
attribute mask bits. If valuemask is zero, the attributes are 
ignored and are not referenced. 

Page 1 



XCreateWlndow (3X11 ) XCreateWlndow (3X11 ) 

visual 

width 
height 

x 
y 

Specifies the visual type. A visual of CopyFromParent means 
the visual type is taken from the parent. 

Specify the width and height, which are the created window's 
inside dimensions and do not include the created window's 
borders. 

Specify the x and y coordinates, which are the top-left outside 
comer of the window's borders and are relative to the inside of 
the parent window's borders. 

DESCRIPTION 

Page 2 

The XCreateWindow function creates an unmapped subwindow for a specified 
parent window, returns the window ID of the created window, and causes the 
XWIN server to generate a CreateNotify event. The created window is placed on 
top in the stacking order with respect to siblings. 

The border_width for an InputOnly window must be zero, or a BadMatch error 
results. For class InputOutput, the visual type and depth must be a combination 
supported for the screen, or a BadMatch error results. The depth need not be 
the same as the parent, but the parent must not be a window of class InputOnly, 
or a BadMatclt error results. For an InputOnly window, the depth must be 
zero, and the visual must be one supported by the screen. If either condition is 
not met, a BadMatch error results. The parent window, however, may have any 
depth and class. If you specify any invalid window attribute for a window, a 
BadMatch error results. 

The created window is not yet displayed (mapped) on the user's display. To 
display the window, call XMapWindow. The new window initially uses the 
same cursor as its parent. A new cursor can be defined for the new window by 
calling XDeBneCursor. The window will not be visible on the screen unless it 
and all of its ancestors are mapped and it is not obscured by any of its ancestors. 

XCreateWindow can generate BadAlloc BadColor, BadCursor, BadMatch, Bad­
Pixmap, BadValue, and BadWindowerrors. 

The XCreateSimpleWindow function creates· an unmapped InputOutput 
subwindow for a specified parent window, returns the window 10 of the created 
window, and causes the XWIN server to generate a CreateNotify event. The 
created window is placed on top in the stacking order with respect to siblings. 
Any part of the window that extends outside its parent window is clipped. The 
border_width for an InputOnly window must be zero, or a BadMatch error 
results. XCreateSimpleWindow inherits its depth, class, and visual from its 
parent. All other window attributes, except background and border, have their 
default values. 

XCreateSimpleWindow can generate BadAlloc, BadMatch, BadValue, and 
BadWindow errors. 

10/89 



XCrealeWlndow (3X11 ) 

DIAGNOSTICS 
BadAlloc 

BadColor 

BadCursor 

BadMatch 

Bad Match 

BadPixmap 

BadValue 

BadWindow 

XCrealeWIndow{3X11 ) 

The server failed to allocate the requested resource or server 
memory. 

A value for a Colormap argument does not name a defined 
Colormap. 
A value for a Cursor argument does not name a defined Cursor. 

The values do not exist for an InputOnly window. 

Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

A value for a Pixmap argument does not name a defined Pix­
map. 

Some numeric value falls outside the range of values accepted 
by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted. 
Any argument· defined as a set of alternatives can generate this 
error. 

A value for a Window argument does not name a defined Win­
dow. 

SEE ALSO 
XChangeWindowAttributes(3Xll), 
XConfigureWindow(3Xll), 
XDestroyWindow(3Xll), 
XMapWindow(3Xll), 
XRaiseWindow(3Xl1), 
XUnmapWindow(3Xll) 
Xlib - C Language X Interface 

10/89 Page 3 



XDeflneCursor (3X11 ) XDeflneCursor (3X11 ) 

NAME 
XDefineCursor, XUndefineCursor - define cursors 

SYNTAX 
XDefineCursor(display, w, cursor) 

Display"display; 
Window w; 
Cursor cursor; 

XUndefineCursor(display, w) 
Display"display; 
Window w; 

ARGUMENTS 
cursor 

w 

Specifies the cursor that is to be displayed or None. 

Specifies the connection to the XWIN server. 

Specifies the window. 

DESCRIPTION 
If a cursor is set, it will be used when the pointer is in the window. If the cursor 
is None, it is equivalent to XUndefineCursor. 

XDefineCursor can generate BadCursor and BadWindow errors. 

The XUndefineCursor undoes the effect of a previous XDefineCursor for this 
window. When the pointer is in the window, the parent's cursor will now be 
used. On the root window, the default cursor is restored. 

XUndefineCursor can generate a BadWindow error. 

DIAGNOSTICS 
BadAlloc The server failed to allocate the requested resource or server 

memory. 

BadCursor 

BadWindow 

A value for a Cursor argument does not name a defined Cursor. 

A value for a Window argument does not name a defined Win­
dow. 

SEE ALSO 
XCreateFontCursor(3Xll), 
XRecolorCursor(3Xll) 
Xlib - C Language X Interface 

10/89 Page 1 



XDestroyWlndow (3X11 ) XDestroyWlndow (3X11 ) 

NAME 
XDestroyWindow, XDestroySubwindows - destroy windows 

SYNTAX 
XDestroyWindow(display, w) 

Display ·display; 
Window w; 

XDestroySubwindows(display, w) 
Display ·display; 
Window w; 

ARGUMENTS 
display Specifies the connection to the XWIN server. 

w Specifies the window. 

DESCRIPTION 
The XDestroyWindow function destroys the specified window as well as all of its 
subwindows and causes the XWIN server to generate a DestroyNotify event for 
each window. The window should never be referenced again. If the window 
specified by the w argument is mapped, it is unmapped automatically. The ord­
ering of the DestroyNotify events is such that for any given window being des­
troyed, DestroyNotify is generated on any inferiors of the window before being 
generated on the window itself. The ordering among siblings and across 
subhierarchies is not otherwise constrained. If the window you specified is a root 
window, no windows are destroyed. Destroying a mapped window will generate 
Expose events on other windows that were obscured by the window being des­
troyed. 

XDestroyWindow can generate a BadWindow error. 

The XDestroySubwindows function destroys all inferior windows of the 
specified window, in bottom-to-top stacking order. It causes the XWIN server to 
generate a DestroyNotify event for each window. If any mapped subwindows 
were actually destroyed, XDestroySubwindows causes the XWIN server to gen­
erate Expose events on the specified window. This is much more efficient than 
deleting many windows one at a time because much of the work need be per­
formed only once for all of the windows, rather than for each window. The 
subwindows should never be referenced again. 

XDestroySubwindows can generate a BadWindow error. 

DIAGNOSTICS 
BadWindow A value for a Window argument does not name a defined Win­

dow. 

SEE ALSO 
XChangeWindowAttributes(3Xll), 
XConfigureWindow(3Xll), 
XCreateWindow(3Xll), 
XMapWindow(3Xll), 
XRaiseWindow(3Xll), 
XUnmapWindow(3Xll) 
XZib - C Language X Interface 

10/89 Page 1 



XOrawAre (3X11) XOrawAre(3X11 ) 

NAME 
XDrawArc, XDrawArcs - draw arcs 

SYNTAX 
XDrawArc(display, d, gc, x, y, width, height, angle1, angle2) 

Display"display; 
Drawable d; 
GCgc; 
int x, y; 
unsigned int width, height; 
int angle1, angle2; 

XDrawArcs(display, d, gc, arcs, narcs) 
Display"display; 
Drawable d; 
GCgc; 
XArc "arcs; 
int narcs; 

ARGUMENTS 
angle1 Specifies the start of the arc relative to the threEH)' clock position 

from the center, in units of degrees .. 64. 

angle2 

arcs 
d 

display 
gc 
narcs 
width 
height 

x 
y 

Specifies the path and extent of the arc relative to the start of 
the arc, in units of degrees .. 64. 

Specifies a pointer to an array of arcs. 

Specifies the drawable. 

Specifies the connection to the XWIN server. 

Specifies the CC. 

Specifies the number of arcs in the array. 

Specify the width and height, which are the major and minor 
axes of the arc. 

Specify the x and y coordinates, which are relative to the origin 
of the drawable and specify the upper-left comer of the bound­
ing rectangle. 

DESCRIPTION 

10/89 

XDrawArc draws a single circular or elliptical arc, and XDrawArcs draws multi­
ple circular or elliptical arcs. Each arc is specified by a rectangle and two angles. 
The center of the circle or ellipse is the center of the rectangle, and the major and 
minor axes are specified by the width and height. Positive angles indicate coun­
terclockwise motion, and negative angles indicate clockwise motion. If the magni­
tude of angle2 is greater than 360 degrees, XDrawArc or XDrawArcs truncates it 
to 360 degrees. 

Page 1 



XDrawArc (3X11) XDrawArc (3X11 ) 

Page 2 

For an arc specified as [x, y, wi4thh heigh~'J61el, ang1e21, the origin of the 
major and minor axes is at [x+ un:.t , y+ ~ I, and the infinitely thin path 

describing the entire circle or ellipse intersects the horizontal axis at [x, y+ heitt I 

and [x+width, y+ heitt I and intersects the vertical axis at [x+ un:.th , yl and 

[x+ w~th , y+heightl. These coordinates can be fractional and so are not trun­

cated to discrete coordinates. The path should be defined by the ideal mathemat­
ical path. For a wide line with line-width lw, the bounding outlines for filling are 
given by the two infinitely thin paths consisting of all points whose perpendicular 
distance from the path of the circle/ellipse is equal to Iw/2 (which may be a frac­
tional value). The cap-style and join-style are applied the same as for a line 
corresponding to the tangent of the circle/ellipse at the endpoint. 

For an arc specified as [x, y, width, height, ang1el, angle21, the angles must be 
specified in the effectively skewed coordinate system of the ellipse (for a circle, 
the angles and coordinate systems are identical). The relationship between these 
angles and angles expressed in the normal coordinate system of the screen (as 
measured with a protractor) is as follows: 

[ width] skewed-angle = atan tan(normal-angle)· height +adjust 

The skewed-angle and normal-angle are expressed in radians (rather than in 
degrees scaled by 64) in the range [0, :btl and where atan returns a value in the 

range [- ;, ; ) and adjust is: 

o 
'It 

2'1t 

for normal-angle in the range [0, ; I 

for normal-angle in the range [i, ~ ) 
for normal-angle in the range [ :' :btl 

For any given are, XDrawArc and XDrawArcs do not draw a pixel more than 
once. If two arcs join correctly and if the line-width is greater than zero and the 
arcs intersect, XDrawArc and XDrawArcs do not draw a pixel more than once. 
Otherwise, the intersecting pixels of intersecting arcs are drawn multiple times. 
Specifying an arc with one endpoint and a clockwise extent draws the same pix­
els as specifying the other endpoint and an equivalent counterclockwise extent, 
except as it affects joins. 

If the last point in one arc coincides with the first point in the following arc, the 
two arcs will join correctly. If the first point in the first arc coincides with the last 
point in the last arc, the two arcs will join correctly. By specifying one axis to be 
zero, a horizontal or vertical line can be drawn. Angles are computed based 
solely on the coordinate system and ignore the aspect ratio. 

Both functions use these GC components: function, plane-mask, line-width, line­
style, cap-style, join-style, fill-style, subwindow-mode, clip-x~rigin, clip-y~rigin, 

10/89 



XDrawArc (3X11) XDrawArc(3X11) 

and clip-mask. They also use these GC mode-dependent components: fore­
ground, background, tile, stipple, ti1e-stipp1e-x-origin. ti1e-stipple-y-origin, dash­
offset, and dash-list. 

XDrawArc and XDrawArcs can generate BadDrawable, BadGC, and BadMatch 
errors. 

DIAGNOSTICS 
BadDrawable A value for a Drawable argument does not name a defined 

Window or Pixmap. 
BadGC A value for a GContext argument does not name a defined 

GContext. 
BadMatch An InputOnly window is used as a Drawable. 
BadMatch Some argument or pair of arguments has the correct type and 

range but fails to match in some other way required by the 
request. 

SEE ALSO 

10/89 

XDrawLine(3Xll), 
XDrawPoint(3Xll), 
XDrawRectangle(3Xll) 
Xlib - C LAngwge X Interface 

Page 3 



XDrawlmageStrlng (3X11 ) XDrawimageStrlng (3X11 ) 

NAME 
XDrawIrnageString, XDrawImageString16 - draw image text 

SYNTAX 
XDrawIrnageString(display, d, ge, X, y, string, length) 

Display"display; 
Drawabled; 
GCge; 
int x, y; 
char "string; 
int length; 

XOrawIrnageString16(display, d, gc, X, y, string, length) 
Display"display; 
Drawabled; 
GCgc; 
int x, y; 
XChar2b "string; 
int length; 

ARGUMENTS 
d Specifies the drawable. 

display 
gc 
length 

string 
x 
y 

Specifies the connection to the XWIN server. 

Specifies the GC. 

Specifies the number of characters in the string argument. 

Specifies the character string. 

Specify the x and y coordinates, which are relative to the origin of 
the specified drawable and define the origin of the first character. 

DesCRIPTION 

10/89 

The XDrawlmageString16 function is similar to XDrawlmageString except that 
it uses 2-byte or 16-bit characters. Both functions also use both the foreground 
and background pixels of the GC in the destination. 

The effect is first to fill a destination rectangle with the background pixel defined 
in the GC and then to paint the text with the foreground pixel. The upper-left 
corner of the filled rectangle is at: 

[x. y - font-ascent] 

The width is: 

overall-width 

The height is: 

font-ascent + font-descent 

The overall-width, font-ascent, and font-descent are as would be returned by 
XQueryTextExtents using gc and string. The function and fill-style defined in the 
GC are ignored for these functions. The effective function is GXcopy, and the 
effective fill-style is FillSolid. 

Page 1 



XDrawlmageStrlng (3X11) XDrawlmageStrlng (3X11 ) 

For fonts defined with 2-byte matrix indexing and used with XDrawImageShing, 
each byte is used as a byte2 with a bytel of ~ero. 
Both functions use these GC components: plane-mask, foreground, background, 
font, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. 

XDrawImageShing and XDrawImageShing16 can generate BadDrawable, 
BadGC, and BadMatch errors. 

DIAGNOSTICS 
BadDrawable A value for a Drawable argument does not name a defined 

Window or Pixmap. 
BadGC 

BadMatch 

BadMatch 

A value for a GContext argument does not name a defined 
GContext. 
An InputOnly window is used as a Drawable. 

Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. ' 

SEE ALSO 
XDrawString(3Xll), 
XDrawText(3Xll) 
Xlib - C Language X Interface 

Page 2 10/89 



XDrawLine (3X11 ) XDrawLlne(3X11 } 

NAME 
XDrawLine, XDrawLines, XDrawSegments - draw lines and polygons 

SYNTAX 
XDrawLine(display, d, gc, x1, y1, x2, y2) 

Display"display; 
Drawable d; 
GCge; 
int x1, y1, xl, y2; 

XDrawLines(display, d, ge, points, npoints, mode) 
Display"display; 
Drawable d; 
GCge; 
XPoint "points; 
int npoints; 
int mode; 

XDrawSegments(display, d, gc, segments, nsegments) 
Display"display; 
Drawable d; 
GCge; 
XSegment "segments; 
int nsegments; 

ARGUMENTS 
d Specifies the drawable. 

display 
gc 
mode 

npoints 
nsegments 
points 
segments 
x1 
y1 
x2 
y2 

Specifies the connection to the XWIN server. 

Specifies the GC. 

Specifies the coordinate mode. You can pass CoordModeOrigin 
or CoordModePrevious. 

Specifies the number of points in the array. 

Specifies the number of segments in the array. 

Specifies a pointer to an array of points. 

Specifies a pointer to an array of segments. 

Specify the points (xl, yl) and (xl, y2) to be connected. 

DESCRIPTION 

10/89 

The XDrawLine function uses the components of the specified GC to draw a line 
between the specified set of points (xl, yl) and (x2, y2). It does not perform join­
ing at coincident endpoints. For any given line, XDrawLine does not draw a 
pixel more than once. If lines intersect, the intersecting pixels are drawn multiple 
times. 

Page 1 



XDrawLlne (3X11 ) XDrawLlne (3X11) 

The XDrawUnes function uses the components of the specified GC to draw 
npoints-l lines between each pair of points (point[i), point[i+l]) in the array of 
XPoint structures. It draws the lines in the order listed in the array. The lines 
join correctly at all intermediate points, and if the first and last points coincide, 
the first and last lines also join correctly. For any given line, XDrawLines does 
not draw a pixel more than once. H thin (zero line-width) lines intersect, the 
intersecting pixels are drawn multiple times. If wide lines intersect, the intersect­
ing pixels are drawn only once, as though the entire PolyUne protocol request 
were a single, filled shape. CoordModeOrigin treats all coordinates as relative to 
the origin, and CoordModePrevious treats all coordinates after the first as rela­
tive to the previous point. 

The XDrawSegments function draws multiple, unconnected lines. For each seg­
ment, XDrawSegments draws a line between (xl, yl) and (x2, y2). It draws the 
lines in the order listed in the array of XSegment structures and does not per­
form joining at coincident endpoints. For any given line, XDrawSegments does 
not draw a pixel more than once. If lines intersect, the intersectiltg pixels are 
drawn multiple times. 

All three functions use these GC components: function, p1ane-mask, line-width, 
line-style, cap-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and 
clip-mask. The XDrawUnes function ~lso uses the join-style GC component. All 
three functions also use these GC mode-dependent components: foreground, 
background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, and 
dash-list. 

XDrawUne, XDrawUnes, and XDrawSegments can generate BadDrawable, 
BadGC, and BadMatch errors. XDrawUnes can also generate a BadValue 
error. 

DIAGNOSTICS 
BadDrawable A value for a Drawable argument does not name a defined 

Window or Pixmap. 

BadGe A value for a GContext argument does not name a defined 
GContext. 

BadMatch An InputOnly window is used as a Drawable. 

BadMatch Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

BadValue Some numeric value falls outside the range of values accepted 
by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted. 
Any argument defined as a set of alternatives can generate this 
error. 

SEE ALSO 

Page 2 

XDrawArc(3Xll), 
XDrawPoint(3Xll), 
XDrawRectangle(3XII) 
Xlib - C Language X Interface 

10/89 



XDrawPolnt (3X11 ) XDrawPolnt(3X11 } 

NAME 
XDrawPoint, XDrawPoints - draw points 

SYNTAX 
XDrawPoint(display, d, gc, x, y) 

Display ·display; 
Drawable d; 
GCge; 
int x, y; 

XDrawPoints(display, d, ge, points, npoints, mode) 
Display ·display; 
Drawable d; 
GCge; 
XPoint ·points; 
int npoints; 
int mode; 

ARGUMENTS 
d 

display 

gc 
mode 

npoints 
points 
x 
y 

DESCRIPTION 

Specifies the drawable. 

Specifies the connection to the XWIN server. 

Specifies the GC. 

Specifies the coordinate mode. You can pass CoordModeOrigin 
or CoordModePrevious. 

Specifies the number of points in the array. 

Specifies a pointer to an array of points. 

Specify the x and y coordinates where you want the point 
drawn. 

The XDrawPoint function uses the foreground pixel and function components of 
the GC to draw a single point into the specified drawable; XDrawPoints draws 
multiple points this way. CoordModeOrigin treats all coordinates as relative to 
the origin, and CoordModePrevious treats all coordinates after the first as rela­
tive to the previous pOint. XDrawPoints draws the points in the order listed in 
the array. 

Both functions use these GC components: function, plane-mask, foreground, 
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. 

XDrawPoint can generate BadDrawable, BadGC, and BadMatch errors. 
XDrawPoint can generate BadDrawable, BadGe, BadMatch, and BadValue 
errors. 

DIAGNOSTICS 
BadDrawable A value for a Drawable argument does not name a defined 

Window or Pixmap. 

10/89 Page 1 



XDrawPolnt (3X11 ) XDrawPolnt (3X11 ) 

BadGC 

BadMatch 

BadMatch 

BadValue 

A value for a GContext argument does not name a defined 
GContext. 

An InputOnly window is used as a Drawable. 

Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

Some numeric value falls outside the range of values accepted 
by the request. Unless a specific range is Specified for an argu­
ment, the full range defined by the argument's type is accepted. 
Any argument defined as a set of alternatives can generate this 
error. 

SEE ALSO 

Page 2 

XDrawArc(3Xll), 
XDrawLine(3Xl1), 
XDrawRectangle(3Xll) 
Xlib - C LIlnguage X Interface 

10/89 



XDrawRectangle (3X11 ) XDrawRectangle (3X11 ) 

NAME 
XDrawRectangle, XDrawRectangles - draw rectangles 

SYNTAX 
XDrawRectangle(display, d, gc, x, y, width, height) 

Display -displayi 
Drawable di 
GCgci 
int x, Yi 
unsigned int width, heighti 

XDrawRectangles(display, d, gc, rectangles, nrectangles) 
Display -displlly i 
Drawable di 
GCgc; 
XRectangle rectangles (]; 
int nrectangles; 

ARGUMENTS 
d Specifies the drawable. 

displlly 

gc 
nrectangles 
rectangles 
width 
height 

x 
y 

Specifies the connection to the XWIN server. 

Specifies the GC. 

Specifies the number of rectangles in the array. 

Specifies a pointer to an array of rectangles. 

Specify the width and height, which specify the dimensions of 
the rectangle. 

Specify the x and y coordinates, which specify the upper-left 
comer of the rectangle. 

DESCRIPTION 

10/89 

The XDrawRedangle and XDrawRedangles functions draw the outlines of the 
specified rectangle or rectangles as if a five-point PolyUne protocol request were 
specified for each rectangle: 

(x.y] (x+width,y] (x+width,y+height] (x.y+height] (x,y] 

For the specified rectangle or rectangles, these functions do not draw a pixel more 
than once. XDrawRedangles draws the rectangles in the order listed in the 
array. If rectangles intersect, the intersecting pixels are drawn multiple times. 

Both functions use these GC components: function, plane-mask, line-width, line­
style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip­
mask. They also use these GC mode-dependent components: foreground, back­
ground, tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, and 
dash-list. 

XDrawRedangle and XDrawRedangles can generate BadDrawable, BadGC, 
and BadMatch errors. 

Page 1 



XDrawReclangle (3X11) XDrawRectangle (3X11) 

DIAGNOSTICS 
BadDrawable A value for a Drawable argument does not name a defined 

Window or Pixmap. 
BadGC A value for a GContext argument does not name a defined 

GContext. 
BadMatch An InputOnly window is used as a Drawable. 

BadMatch Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

SEE ALSO 

Page 2 

XDraw Arc(3Xll), 
XDrawLine(3Xll), 
XDrawPoint(3Xll) 
Xlib - C LAnguage X Interface 

10/89 



XDrawStrlng (3X11) XDraWStrlng (3X11) 

NAME 
XDrawString, XDrawString16 - draw text characters 

SYNTAX 
XDrawString(display, d, gc, x, y, string, length) 

Display"displayi 
Drawable di 
GCgci 
int x, Yi 
char "stringi 
int lengthi 

XDrawString16(display, d, gc, x, y, string, length) 
Display"displayi 
Drawable di 
GCgci 
int x, Yi 
XChar2b "stringi 
int length; 

ARGUMENTS 
d 

display 
gc 
length 
string 

x 
y 

DESCRIPTION 

Specifies the drawable. 

Specifies the connection to the XWIN server. 

Specifies the ce. 
Specifies the number of characters in the string argument. 

Specifies the character string. 

Specify the x and y coordinates, which are relative to the origin 
of the specified drawable and define the origin of the first char­
acter. 

Each character image, as defined by the font in the ce, is treated as an additional 
mask for a fill operation on the drawable. The drawable is modified only where 
the font character has a bit set to 1. For fonts defined with 2-byte matrix index­
ing and used with XDrawString16, each byte is used as a byte2 with a byte1 of 
zero. 
Both functions use these GC components: function, plane-mask, fill-style, font, 
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these 
GC mode-dependent components: foreground, background, tile, stipple, tile­
stipple-x-origin, and tile-stipple-y-origin. 

XDrawString and XDrawString16 can generate BadDrawable, BadGe, and 
BadMatdt errors. 

DIAGNOSTICS 
BadDrawable A value for a Drawable argument does not name a defined 

Window or Pixmap. 

10/89 Page 1 



XDrawStrlng (3X11 ) XDrawStrlng (3X11 ) 

BadGC A value for a GContext argument does not name a defined 
GContext. 

BadMatch An InputOnly window is used as a Drawable. 
BadMatch Some argument or pair of arguments has the correct type and 

range but fails to match in some other way required by the 
request. 

SEE ALSO 
XDrawImageString(3Xl1), 
XDrawText(3Xll) 
Xlib - C LAnguIlge X Interface 

Page 2 10/89 



XDrawTaxt (3X11 ) XDrawTaxt(3X11) 

NAME 
XDrawText, XDrawText16 - draw polytext text 

SYNTAX 
XDrawText(display, d, ge, x, y, items, nitems) 

Display ·display i 
Drawable di 
GCgei 
int x, Yi 
XTextItem ·itemsi 
int nitemsi 

XDrawText16(display, d, ge, x, y, items, nitems) 
Display ·displayi 
Drawable di 
GCgei 
int x, Yi 
XTextItem16 ·itemsi 
int nitemsi 

ARGUMENTS 
d Specifies the drawable. 

display 
ge 
items 
nitems 
x 
y 

Specifies the connection to the XWIN server. 

Specifies the GC. 

Specifies a pointer to an array of text items. 

Specifies the number of text items in the array. 

Specify the x and y coordinates, which are relative to the origin 
of the specified drawable and define the origin of the first char­
acter. 

DESCRIPTION 

10/89 

The XDrawText16 function is similar to XDrawText except that it uses 2-byte or 
16-bit characters. Both functions allow complex spacing and font shifts between 
counted strings. 

Each text item is processed in tum. A font member other than None in an item 
causes the font to be stored in the GC and used for subsequent text. A text ele­
ment delta specifies an additional change in the position along the x axis before 
the string is drawn. The delta is always added to the character origin and is not 
dependent on any characteristics of the font. Each character image, as defined by 
the font in the GC, is treated as an additional mask for a fill operation on the 
drawable. The drawable is modified only where the font character has a bit set 
to 1. If a text item generates a BadFont error, the previous text items may have 
been drawn. 

For fonts defined with linear indexing rather than 2-byte matrix indexing, each 
XChar2b structure is interpreted as a 16-bit number with byte1 as the most­
significant byte. 

Page 1 



XDrawText (3X11 ) XDrawText (3X11 ) 

Both functions use these GC components: function, plane-mask, fill-style, font, 
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these 
GC mode-dependent components: foreground, background, tile, stipple, tile­
stipple-x-origin, and tile-stipple-y-origin. 

XDrawText and XDrawText16 can generate BadDrawable, BadFont, BadGC, 
and BadMatch errors. 

DIAGNOSTICS 
BadDrawable A value for a Drawable argument does not name a defined 

Window or Pixmap. 

BadFont 

BadGC 

BadMatch 

A value for a Font or GContext argument does not name a 
defined Font. 

A value for a GContext argument does not name a defined 
GContext. 

An InputOnly window is used as a Drawable. 
SEE ALSO 

XDrawImageString(3Xll), 
XDrawString(3Xll) 
Xlib - C Language X Interface 

Page 2 10/89 



XEmptyReglon (3X11 ) XEmptyReglon (3X11 ) 

NAME 
XEmptyRegion, XEqualRegion, XPointlnRegion, XRectInRegion - determine if 
regions are empty or equal 

SYNTAX 
Bool XEmptyRegion(r) 

Region ri 
Bool XEqualRegion(r1, r2) 

Region r1, r2 i 
Bool XPointlnRegion(r, x, y) 

Region ri 
int x, Yi 

int XRectlnRegion(r, x, y, width, hea'ght) 
Region ri 
int x, Yi 
unsigned int width, heighti 

ARGUMENTS 
r 

r1 
r2 

width 
height 
x 
Y 

Specifies the region. 

Specify the two regions. 

Specify the width and height, which define the rectangle. 

Specify the x and y coordinates, which define the point or the 
coordinates of the upper-left comer of the rectangle. 

DESCRIPTION 
The XBmptyRegion function retums True if the region is empty. 

The XBqualRegion function returns True if the two regions have the same offset, 
size, and shape. 

The XPointlnRegion function returns True if the point (x, y) is contained in the 
region r. 

The XRectlnRegion function returns Rectangleln if the rectangle is entirely in 
the specified region, RectangleOut if the rectangle is entirely out of the specified 
region, and RectanglePart if the rectangle is partially in the specified region. 

SEE ALSO 
XCreateRegion(3Xll), 
XIntersectRegion(3Xll) 
Xlib - C LAngulige X Interface 

10/89 Page 1 



XFIIIRectangle (3X11 ) XFIIIRectangle(3X11 ) 

NAME 
XFillRectangle, XFillRectangles, XFillPolygon, XFillArc, XFi1lArcs - fill rectangles, 
polygons, or arcs 

SYNTAX 
XFillRectangle(display, d, ge, x, y, width, height) 

Display ·display; 
Drawable d; 
GCgei 
int x, y; 
unsigned int width, height; 

XFillRectangles(display, d, ge, rectangles, nrecttmg1es) 
Display ·display; 
Drawable d; 
GCge; 
XRectangle ·rectangles; 
int nrectangles; 

XFillPolygon(display, d, ge, points, npoints, shape, mode) 
Display ·display; 
Drawable d; 
GCge; 
XPoint ·points; 
int npoints; 
int shape; 
int mode; 

XFillArc(display, d, ge, x, y, width, height, anglel, angle2) 
Display ·display; 
Drawable d; 
GCge; 
int x, y; 
unsigned int width, height; 
int anglel, angle2; 

XFillArcs(display, d, ge, arcs, narcs) 
Display ·display; 
Drawabled; 
GCge; 
XArc ·ares; 
int narcs; 

ARGUMENTS 
anglel Specifies the start of the arc relative to the three-o'clock position 

from the center, in units of degrees • 64. 
angle2 

arcs 

10/89 

Specifies the path and extent of the arc relative to the start of 
the arc, in units of degrees • 64. 

Specifies a pointer to an array of arcs. 

Page 1 



XFIIIRectangle (3X11) XFIIIRectangle (3X11) 

d 

display 
gc 
mode 

narcs 
npoints 
nrectang1es 
points 
rectangles 
shape 

width 
height 

x 
y 

Specifies the drawable. 
Specifies the connection to the XWIN server. 
Specifies the GC. 

Specifies the coordinate mode. You can pass CoordModeOrigin 
or CoordModePrevious. 

Specifies the number of arcs in the array. 
Specifies the number of points in the array. 
Specifies the number of rectangles in the array. 

Specifies a pointer to an array of points. 
Specifies a pointer to an array of rectangles. 
Specifies a shape that helps the server to improve performance. 
You can pass Complex, Convex, or Nonconvex. 

Specify the width and height, which are the dimensions of the 
rectangle to be filled or the major and minor axes of the arc. 

Specify the x and y coordinates, which are relative to the origin 
of the drawable and specify the upper-left comer of the rectan­
gle. 

DESCRIPTION 

Page 2 

The XFillRectangle and XFillRectangles functions fill the specified rectangle or 
rectangles as if a four-point FillPolygon protocol request were specified for each 
rectangle: 
[x,yJ [x+width,yJ [x+width,y+heightJ [x,y+heightJ 
Each function uses the x and y coordinates, width and height dimensions, and 
GC you specify. 
XFillRectangles fills the rectangles in the order listed in the array. For any given 
rectangle, XFillRectangle and XFillRectangles do not draw a pixel more than 
once. If rectangles intersect, the intersecting pixels are drawn multiple times. 
Both functions use these GC components: function, plane-mask, fill-style, 
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these 
GC mode-dependent components: foreground, background, tile, stipple, tile­
stipple-x-origin, and tile-stipple-y-origin. 
XFillRectangle and XFillRectangles can generate BadDrawable, BadGC, and 
BadMatch errors. 
XFillPolygon fills the region closed by the specified path. The path is closed 
automatically if the last point in the list does not coincide with the first point. 
XFillPolygon does not draw a pixel of the region more than once. CoordMo­
deOrigin treats all coordinates as relative to the origin, and CoordModePrevious 
treats all coordinates after the first as relative to the previous point. 

10/89 



XFIIIRectangle (3X11 ) XFIIIRectangle(3X11 ) 

Depending on the specified shape, the following occurs: 

• If shape is Complex, the path may self-intersect. 

• If shape is Convex, the path is wholly convex. If known by the client,· speci­
fying Convex can improve performance. If you specify Convex for a path 
that is not convex, the graphics results are undefined. 

• If shape is Nonconvex, the path does not self-intersect, but the shape is not 
wholly convex. If known by the client, s~S Nonconvex instead of 
Complex may improve performance. If you specify Nonconvex for a self­
intersecting path, the graphics results are undefined. 

The fill-rule of the GC controls the filling behavior of self-intersecting polygons. 

This function uses these GC components: function, plane-mask. fill-style, fill-rule, 
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. It also uses these 
GC mode-dependent components: foreground, background, tile, stipple, tile­
stipple-x-origin, and tile-stipple-y-origin. 

XFillPolygon can generate BadDrawable, BadGC, BadMatch, and BadValue 
errors. 

For each arc, XFillArc or XFillArc. fills the region closed by the infinitely thin 
path described by the specified arc and, depending on the arc-mode specified in 
the GC, one or two line segments. For ArcChord, the single line segment joining 
the endpoints of the arc is used. For ArcPieSlic:e, the two line segments joining 
the endpoints of the arc with the center point are used. XFi11AraI fills the arcs in 
the order listed in the array. For any given arc, XFillArc and XFi1lArc:e do not 
draw a pixel more than once. If regions intersect, the intersecting pixels are 
drawn multiple times. 

Both functions use these GC components: function, plane-mask. fill-style, arc­
mode, subwindow-mode, clip-x-origin, c:lip-y-origin, and clip-mask. They also 
use these GC mode-dependent components: foreground, background, tile, stipple, 
tile-stipple-x-origin, and tile-stipple-y-origin. 

XFillAn: and XFillAft:e can generate BadDnwable, BadGC, and BadMatch 
errors. 

DIAGNOSncs 
BadDrawable A value for a Drawable argument does not name a defined 

Window or Pixmap. 

BadGC A value for a GContext argument does not name a defined 
GCOntext. 

BadMatch An InputOnly window is used as a Drawable. 

BadMatch Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

BadValue Some numeric value falls outside the range of values accepted 
by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted. 
Any argument defined as a set of alternatives can generate this 
error. 

10189 Page 3 



XFIIIRectangle (3X11) 

SEE ALSO 

Page 4 

XDrawArc(3Xll), 
XDrawRectangle(3Xll) 
Xlib - C Language X Interface 

XFIIIRectangIe (3X11) 

10/89 



XFlush (3X11) XFlush (3X11 ) 

NAME 
XFlush, XSync, XEventsQueued, XPending - handle output buffer or event queue 

SYNTAX 
XFlush(display) 

Display ·display; 
XSync(display, disaard) 

Display ·display; 
Bool discard; 

int XEventsQueued(display, mode) 
Display ·display; 
int mode; 

int XPending(display) 
Display ·display; 

ARGUMENTS 
disaard Specifies a Boolean value that indicates whether XSync discards 

all events on the event queue. 
display 

mode 

Specifies the connection to the XWIN server. 
Specifies the mode. You can pass QueuedAlready, QueuedAf­
terFlush, or QueuedAfterReading. 

DESCRIPTION 

10189 

The XFlush function flushes the output buffer. Most client applications need not 
use this function because the output buffer is automatically flushed as needed by 
calls to XPending, XNextEvent, and XWindowEvent. Events generated by the 
server may be enqueued into the library's event queue. 

The XSync function flushes the output buffer and then waits until all requests 
have been received and processed by the XWIN server. Any errors generated 
must be handled by the error handler. For each error event received by Xlib, 
XSync calls the client application's error handling routine (see section 8.12.2, 
Xlib-C LAngwzge X Interface). Any events generated by the server are enqueued 
into the library's event queue. 
Finally, if you passed False, XSync does not discard the events in the queue. If 
you passed True, XSync discards all events in the queue, including those events 
that were on the queue before XSync was called. Client applications seldom 
need to call XSync. 

If mode is QueuedAlready, XEventsQueued returns the number of events 
already in the event queue (and never performs a system call). If mode is 
QueuedAfterFlush, XEventsQueued returns the number of events already in the 
queue if the number is nonzero. If there are no events in the queue, 
XEventsQueued flushes the output buffer, attempts to read more events out of 
the application's connection, and returns the number read. If mode is 
QueuedAfterReading, XEventsQueued returns the number of events already in 
the queue if the number is nonzero. If there are no events in the queue, 
XEventsQueued attempts to read more events out of the application's connection 
without flushing the output buffer and returns the number read. 

Page 1 



XFlush (3X11 ) XFlush (3X11 ) 

XEventsQueued always returns immediately without I/O if there are events 
already in the queue. XEventsQueued with mode QueuedAfterFlush is identical 
in behavior to XPending. XEventsQueued with mode QueuedAlready is identi­
cal to the XQLength function. 

The XPending function returns the number of events that have been received 
from the XWIN server but have not been removed from the event queue. XPend­
ing is identical to XEventsQueued with the mode QueuedAfterFlush specified. 

SEE ALSO 

Page 2 

XIfEvent(3Xll), 
XNextEvent(3Xll), 
XPutBackEvent(3Xl1) 
Xlib - C lAnguage X Interface 

10/89 



XFree (3X11) 

NAME 
XFree, XNoOp - free client data 

SYNTAX 
XFree(data) 

char .. data; 

XNoOp(display) 
Display"display; 

ARGUMENTS 
display 
data 

DESCRIPTION 

Specifies the connection to the XWIN server. 

Specifies a pointer to the data that is to be freed. 

XFree (3X11) 

The XFree function is a general-purpose Xlib routine that frees the specified data. 
You must use it to free any objects that were allocated by Xlib. 

The XNoOp function sends a NoOperation protocol request to the XWIN server, 
thereby exercising the connection. 

SEE ALSO 
Xlib - C Language X Interface 

10/89 Page 1 



XGetDefault (3X11) XGetDefault (3X11) 

NAME 
XGetDefault, XResourceManagerString - get X program defaults 

SYNTAX 
char ·XGetDefault(display, program, option) 

Display ·display; 
char ·program; 
char ·option; 

char ·XResourceManagerString (display) 
Display ·display; 

ARGUMENTS 
display Specifies the connection to the XWIN server. 

Specifies the option name. option 

program Specifies the program name for the Xlib defaults (usually 
argv[O] of the main program). 

DESCRIPTION 
The XGetDefault function returns the value NULL if the option name specified 
in this argument does not exist for the program. The strings returned by XGet­
Default are owned by Xlib and should not be modified or freed by the client. 

The XResourceManagerString returns the RESOURCE_MANAGER property 
from the server's root window of screen zero, which was returned when the con­
nection was opened using XOpenDisplay. 

SEE ALSO 
XrmGetSearchList(3Xll) 
Xlib - C Language X Interface 

10/89 Page 1 



XrmGetR880urce (3X11 ) XrmGetR880urce (3X11 ) 

NAME 
XrmGetResource, XrmQGetResource, XrmQGetSearchList, XrmQGetSear-
chResource - retrieve database resources and search lists 

SYNTAX 
Bool XrmGetResource(database, str _ 1Iilme, str _clllss, str _ type Jallm, value Jetllm) 

XrmDatabase diztabtlse; 
char ·sfr _1IIlme; 
char ·sfr _clllss; 
char "str _ type Jetllm; 
XrmValue ·value_retllm; 

Bool XrmQGetResource(diztabtlse, tpUlrk _name, tpUlrk _clllss, .br 
qUllrk _type Jetllm, value Jetllm) 

XrmDatabase diztabtlse; 
XrmNameList tpUlrk _ name; 
XrmCiassList tpUlrk_clllss; 
XrmRepresentation ·quark _type Jetum; 
XrmValue ·value_retum; 

typedef XrmHashTable ·XrmSearchList; 

Bool XrmQGetSearchList(database, names, classes, list_retum, listJength) 
XrmDatabase diztabtlse; 
XrmNameList nmnes; 
XrmCiassList classes; 
XrmSearchList list refilm; 
int list)ength; -

Bool XrmQGetSearchResource(list, name, class, type_retllm, value_retum) 
XrmSearchList list; 
XrmName 1Iilme; 

XrmCiass class; 
XrmRepresentation .type _ retum; 
XrmValue ·valueJetum; 

ARGUMENTS 

10189 

class Specifies the resource class. 

classes 
diztabtlse 

list 
list)ength 

list retum 

name 
names 

Specifies a list of resource classes. 

Specifies the database that is to be used. 

Specifies the search list returned by XrmQGetSearcltList. 

Specifies the number of entries (not the byte size) allocated for 
list return. 

Returns a search list for further use. 

Specifies the resource name. 

Specifies a list of resource names. 

Page 1 



XrmGetRe80urce (3X11) XrmGetRe80urce (3X11 ) 

qUllrk _type Jetum 

Specifies the fully qualified class of the value being retrieved (as 
a quark). 

Specifies the fully qualified name of the value being retrieved 
(as a quark). 

Returns a pointer to the representation type of the destination 
(as a quark). 

str class Specifies the fully qualified class of the value being retrieved (as 
a string). 

str nIl1tle Specifies the fully qualified name of the value being retrieved 
(as a string). 

str _ type Jetum Returns a pointer to the representation type of the destination 
(as a string). 

type Jetu.m Returns data representation type. 

value return Returns the value in the database. 
DESCRIPTION 

Page 2 

The XrmGetResource and XrmQGetResource functions retrieve a resource from 
the specified database. Both take a fully qualified name/class pair, a destination 
resource representation, and the address of a value (size/address pair). The value 
and returned type point into database memory; therefore, you must not modify 
the data. 

The database only frees or overwrites entries on XrmPutResource, 
XrmQPutResource, or XrmMergeDatabases. A client that is not storing new 
values into the database or is not merging the database should be safe using the 
address passed back at any time until it exits. If a resource was found, both 
XrmGetResource and XrmQGetResource return True; otherwise, they return 
False. 

The XrmQGetSearchList function takes a list of names and classes and returns a 
list of database levels where a match might occur. The returned list is in best-to­
worst order and uses the same algorithm as XrmGetResource for determining 
precedence. XrmQGetSearchList returns True if list_return was large enough 
for the search list, otherwise, it returns False. 

The size of the search list that the caller must allocate is dependent upon the 
number of levels and wildcards in the resource specifiers that are stored in the 
database. The worst case length is 3ft , where n is the number of name or class 
components in names or classes. 

When using XrmQGetSearchList followed by multiple probes for resources with 
a common name and class prefix, only the common prefix should be specified in 
the name and class list to XrmQGetSearchList. 

The XrmQGetSearchResource function searches the specified database levels for 
the resource that is fully identified by the specified name and class. The search 
stops with the first match. XrmQGetSearchResource returns True if the 
resource was found; otherwise, it returns False. 

10/89 



XrmGetRelOurce (3X11) XnnGetReIOUrce (3X11 ) 

A call to XrmQGetSearchLiat with a name and class list containing all but the 
last component of a resource name followed by a call to 
XrmQGetSearchResourc:e with the last component name and class returns the 
same database entry as XrmGetResourc:e and XrmQGetResource with the fully 
qualified name and class. 

SEE ALSO 

10189 

XrmInitia1ize(3Xl1), 
XrmMergeDatabases(3Xll), 
XrmPutResource(3Xll), 
XrmUniqueQuark(3Xll) 
Xlib - C LAnguage X Interface 

Page 3 



XGetVlsuallnfo (3X11 ) XGetVIsuallnfo(3X11 ) 

NAME 
XGetVisualInfo, XMatchVisualInfo, XVisualIDFromVisual- obtain visual infonna­
tion 

SYNTAX 
XVisualInfo "XGetVisualInfo(display, vinfo_mask, vinfo_templllte, nitemsJeturn> 

Display"display; 
long vinfo_mask; 
XVisualInfo "vinfo _template; 
int "nitems Jeturn; 

Status XMatchVisualInfo(display, screen, depth, class, vinfoJeturn> 
Display"display; 
int screen; 
int depth; 
int class; 
XVisualInfo "vinfo Jeturn; 

VisualID XVisualIDFrom Visual( visual) 
Visual "visual; 

ARGUMENTS 
class Specifies the class of the screen. 

Specifies the depth of the screen. depth 
display 
nitems return 

screen 
visual 

vinfo_mask 

vinfo Jeturn 
vinfo _template 

Specifies the connection to the XWIN server. 

Returns the number of matching visual structures. 

Specifies the screen. 

Specifies the visual type. 

Specifies the visual mask value. 

Returns the matched visual information. 

Specifies the visual attributes that are to be used in matching 
the visual structures. 

DESCRIPTION 

10/89 

The XGetVisualInfo function returns a list of visual structures that match the 
attributes specified by vinfo_template. If no visual structures match the template 
using the specified vinfo_mask, XGetVisualInfo returns a NULL. To free the 
data returned by this function, use XFree. 

The XMatch VisualInfo function returns the visual information for a visual that 
matches the specified depth and class for a screen. Because multiple visuals that 
match the specified depth and class can exist, the exact visual chosen is 
undefined. If a visual is found, XMatch VisualInfo returns nonzero and the 
information on the visual to vinfo return. Otherwise, when a visual is not found, 
XMatch Visual Info returns zero. -

The XVisualIDFrom Visual function returns the visual 10 for the specified visual 
type. 

Page 1 



XGetVlsuallnfo (3X11) XGetVlsuallnfo (3X11) 

SEE ALSO 
Xlib - C lAnguage X Interface 

Page 2 10/89 



XGetWIndowAttribute8 (3X11 ) XGetWIndowAttribute8 (3X11 ) 

NAME 
XGetWindowAttributes, XGetGeometry - get current window attribute or 
geometry 

SYNTAX 
Status XGetWindowAttributes(display, w, window_llttributesJeturn) 

Display"display; 
Windoww; 
XWindow Attributes "window_attributes Jdurn; 

Status XGetGeometry(display, d, rootJeturn, x_return, YJeturn, widthJeturn, 
height_return, border_width _return, depth_return) 

Display"display; 
Drawable d; 
Window"root return; 
int "x_return, i'y_return; 
unsigned int "width Jeturn, "height Jeturn; 
unsigned int "border_width Jeturn; 
unsigned int "depthJeturn; 

ARGUMENTS 
border width return 

- - Returns the border width in pixels. 

d 

depth Jeturn 
display 

root return 
w 

width return 
height __ return 

Specifies the drawable, which can be a window or a pixmap. 
Returns the depth of the drawable (bits per pixel for the object). 
Specifies the connection to the XWIN' server. 

Returns the root window. 
Specifies the window whose current attributes you want to 
obtain. 

Return the drawable's dimensions (width and height). 

window Ilttributes return 
- -Returns the specified window's attributes in the XWindowAttri-

butes structure. 

Return the x and y coordinates that define the location of the 
drawable. For a window, these coordinates specify the upper­
left outer comer relative to its parent's origin. For pixmaps, 
these coordinates are always zero. 

DESCRIPTION 

10/89 

The XGetWindowAttributes function returns the current attributes for the 
specified window to an XWindowAttributes structure. 

XGetWindowAttributes can generate BadDrawable and BadWindow errors. 

The XGetGeometry function returns the root window and the current geometry 
of the drawable. The geometry of the drawable includes the x and y coordinates, 
width and height, border width, and depth. These are described in the argument 
list. It is legal to pass to this function a window whose class is InputOnly. 

Page 1 



XGetWlndowAttrlbutes (3X11) XGetWlndowAttrlbutes (3X11 ) 

DIAGNOSTICS 
BadDrawable A value for a Drawable argument does not name a defined 

Window or Pixmap. 
BadWindow A value for a Window argument does not name a defined Win­

dow. 
SEE ALSO 

XQueryPointer(3Xll), 
XQueryTree(3Xll) 
Xlib - C LanguJlge X Interface 

Page 2 10/89 



XGltWlndowProplrty (3X11 ) XGltWlndowProplrty (3X11 ) 

NAME 
XGetWindowProperty, XListProperties, XChangeProperty, XRotateWindowPro­
perties, XDeleteProperty - obtain and change window properties 

SYNTAX 
int XGetWindowPropertyCdisplay, w, property, long_offset, longJength, delete, 

1'e1f_type, actU41_twe_return, actUAlJonnat_return, nitems_return, 
~~~a~Jdu.rn,F~_return) 

Display"display;
Windoww;
Atom property;
long long_offset, long_length;
Bool delete;
Atom r",jyptt;
Atom "IIdUAUypeJdurn;
int "actUAl fomr4t return;
unsigned fong "n"ltems Jdurn;
unsigned long "~tes_after _return;
unsigned char FoP _return;

Atom "XListProperties (display, w, num yrop _return)
Display "display;
Windoww;
int "numpop Jeturn;

XChangePropertyCdisplay, w, Foperly, type, fcmnat, mode, datil, ne1ements)
Display "display;
Window W;
Atom property, type;
intfonnat;
int mode;
unsigned char .. dt:Ita;
int nelements;

XRotateWindowPropertiesCdisplay, w, Foperlies, numyrop, npositions)
Display "display;
Windoww;
Atom properties [];
int num JW~;
int npositions;

XDeletePropertyCdisplay, w, property)
Display "display;
Window W;
Atom property;

ARGUMENTS
actualJonntd Jdurn

Returns the actual format of the property.

10189 Page 1

XGetWlndowProperty (3X11) XGetWlndowProperty (3X11)

Page 2

actuaUype Jdurn

bytes_after _return

data

delete

display

format

long)ength

mode

ne1ements

nitems return

Returns the atom identifier that defines the actual type of the
property.

Returns the number of bytes remaining to be read in the pro­
perty if a partial read was performed.

Specifies the property data.

Specifies a Boolean value that determines whether the property
is deleted.

Specifies the connection to the XWIN server.

Specifies whether the data should be viewed as a list of 8-bit,
16-bit, or 32-bit quantities. Possible values are 8, 16, and 32.
This information allows the XWIN server to correctly perform
byte-swap operations as necessary. If the format is 16-bit or
32-bit, you must explicitly cast your data pointer to a (char -) in
the call to XChangeProperty.
Specifies the length in 32-bit multiples of the data to be
retrieved.

Specifies the offset in the specified property (in 32-bit quantities)
where the data is to be retrieved.

Specifies the mode of the operation. You can pass
PropModeReplace, PropModePrepend, or PropModeAppend.

Specifies the number of elements of the specified data format.

Returns the actual number of 8-bit, 16-bit, or 32-bit items stored
in the prop Jeturn data.

numyrop Specifies the length of the properties array.

num yrop Jeturn Returns the length of the properties array.

npositions

propJeturn
property
properties

retLtype

type

w

Specifies the rotation amount.

Returns a pointer to the data in the specified format.

Specifies the property name.

Specifies the array of properties that are to be rotated.

Specifies the atom identifier associated with the property type
or AnyPropertyType.

Specifies the type of the property. The XWIN server does not
interpret the type but simply passes it back to an application
that later calls XGetWindowProperty.

Specifies the window whose property you want to obtain,
change, rotate or delete.

10/89

XGetWlndowProperty (3X11) XGetWlndowProperty (3X11)

DESCRIPTION

10/89

The XGetWindowProperty function returns the actual type of the property; the
actual format of the property; the number of 8-bit, 16-bit, or 32-bit items
transferred; the number of bytes remaining to be read in the property; and a
pointer to the data actually returned. XGetWindowProperty sets the return
arguments as follows:

• If the specified property does not exist for the specified window, XGetWin­
dowProperty returns None to actual_type_retum and the value zero to
actuatformat_ return and bytes_after _return. The nitems Jeturn argument
is empty. In this case, the delete argument is ignored.

• If the specified property exists but its type does not match the specified
type, XGetWindowProperty returns the actual property type to
actuattype_return, the actual property format (never zero) to
actuatformat_return, and the property length in bytes (even if the
actuatformat_return is 16 or 32) to bytes_afterJeturn. It also ignores the
delete argument. The nitems_return argument is empty.

• If the specified property exists and either you assign AnYPlOpertyType to
the J"e(}... type argument or the specified type matches the actual property
type, XGetWindowProperty returns the actual property type to
actual_type_return and the actual property format (never zero) to
actual_format _return. It also returns a value to bytes_after Jeturn and
nitems _return, by defining the following values:

N = actual length of the stored property in bytes
(even if the format is 16 or 32)

I = 4 .. long_offset
T =N-I
L = MINIMUM(T, 4 .. longJength)
A=N-Cl+L)

The returned value starts at byte index I in the property (indexing from
zero), and its length in bytes is L. If the value for long_offset causes L to be
negative, a BadValue error results. The value of bytes_after_return is A,
giving the number of trailing unread bytes in the stored property.

XGetWindowProperty always allocates one extra byte in prop Jeturn (even if the
property is zero length) and sets it to ASCII null so that simple properties con­
sisting of characters do not have to be copied into yet another string before use.
If delete is True and bytes _after_return is zero, XGetWindowProperty deletes
the property from the window and generates a PropertyNotify event on the win­
dow.

The function returns Success if it executes successfully. To free the resulting
data, use XFree.

XGetWindowProperty can generate BadAtom, BadValue, and BadWindow
errors.

Page 3

XGetWlndowProperty (3X11) XGetWlndowProperty(3X11)

Page 4

The XUstProperties function returns a pointer to an array of atom properties
that are defined for the specified window or returns NULL if no properties were
found. To free the memory allocated by this function, use XFree.
XUstProperties can generate a BadWindow error.

The XChangeProperly function alters the property for the specified window and
causes the XWIN server to generate a ProperlyNotify event on that window.
XChangeProperty performs the following:
• If mode is PropModeReplace, XChangeProperty discards the previous pr0-

perty value and stores the new data.
• If mode is PropModePrepend or PropModeAppend, XChangeProperly

inserts the specified data before the beginning of the existing data or onto
the end of the existing data, respectively. The type and format must match
the existing property value, or a BadMatc:h error results. If the property is
undefined, it is treated as defined with the correct type and format with
zero-length data.

The lifetime of a property is not tied to the storing client. Properties remain until
explicitly deleted, until the window is destroyed, or until the server resets. For a
discussion of what happens when the connection to the XWIN server is closed, see
section 2.5, Xlib-C LAngu48e X Interface. The maximum size of a property is
server dependent and can vary dynamically depending on the amount of memory
the server has available. (If there is insufficient space, a BadAlloc error results.)

XChangeProperly can generate BadAlloc, BadAtom, BadMatc:h, BadValue, and
BadWindow errors.

The XRotateWindowProperties function allows you to rotate properties on a
window and causes the XWIN server to generate ProperlyNotify events. If the
property names in the properties array are viewed as being numbered starting
from zero and if there are num -PlOP property names in the list, then the value
associated with property name I becomes the value associated with property
name (I + npositions) mod N for all 1 from zero to N - 1. The effect is to rotate
the states by npositions places around the virtual ring of property names (right
for positive npositions, left for negative npositions). If npositions mod N is
nonzero, the XWIN server generates a PropertyNotify event for each property in
the order that they are listed in the array. If an atom occurs more than once in
the list or no property with that name is. defined for the window, a BadMatc:h
error results. If a BadAtom or BadMatc:h error results, no properties are
changed.
XRotateWindowProperties can generate BadAtom, BadMatc:h, and BadWindow
errors.
The XDeleteProperly function deletes the specified property only if the property
was defined on the specified window and causes the XWIN server to generate a
PropertyNotify event on the window unless the property does not exist.

XDeleteProperly can generate BadAtom and BadWindow errors.

10/89

XGetWlndowProperty (3X11) XGetWlndowProperty (3X11)

DIAGNOSTICS
BadAlloc

BadAtom

BadValue

BadWindow

The server failed to allocate the requested resource or server
memory.

A value for an Atom argument does not name a defined Atom.

Some numeric value falls outside the range of values accepted
by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted.
Any argument defined as a set of alternatives can generate this
error.

A value Cor a Window argument does not name a defined Win­
dow.

SEE ALSO
XInternAtom(3Xll)
Xlib - C Language X Interface

10189 Page 5

XGrabButton (3X11) XGrabButton (3X11)

NAME
XGrabButton. XUngrabButton - grab pointer buttons

SYNTAX
XGrabButton(display, button, modifiers, grab_window, owner_events, event_mJlS1c,

pointer_mode, keyboard_mode, confine_to, CIlTSOT)
Display -display;
unsigned int button;
unsigned int modifiers;
Window grab_window;
Bool owner events;
unsigned iDt event_mask;
int pointer _mode, keyboard_mode;
Window confine_to;
Cursor cursor;

XUngrabButton(display, button, modifiers, grab_window)
Display -display;
unsigned int button;
unsigned int modifiers;
Window grab_window;

ARGUMENTS
button Specifies the pointer button that is to be grabbed or released or

AnyButton.

modifiers

Specifies the window to confine the pointer in or None.

Specifies the cursor that is to be displayed or None.

Specifies the connection to the XWIN server.

Specifies which pointer events are reported to the client. The
mask is the bitwise inclusive OR of the valid pointer event mask
bits.

Specifies the grab window.

Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

Specifies the set of keymasks or AnyModifier. The mask is the
bitwise inclusive OR of the valid keymask bits.

Specifies a Boolean value that indicates whether the pointer
events are to be reported as usual Or reported with respect to
the grab window if selected by the event mask.

Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.

DesCRIPTION

10/89

The XGrabButton function establishes a passive grab. In the future, the pointer
is actively grabbed (as for XGrabPointer), the last-pointer-grab time is set to the
time at which the button was pressed (as transmitted in the ButtonPress event),
and the ButtonPress event is reported if all of the following conditions are true:

Page 1

XGrabButton (3X11) XGrabButton (3X11)

• The pointer is not grabbed, and the specified button is logically pressed
when the specified modifier keys are logically down, and no other buttons
or modifier keys are logically down.

• The grab_window contains the pointer.

• The confine_to window (if any) is viewable.

• A passive grab on the same button/key combination does not exist on any
ancestor of grab_window.

The interpretation of the remaining arguments is as for XGrabPointer. The
active grab is terminated automatically when the logical state of the pointer has
all buttons released (independent of the state of the lOgical modifier keys).

Note that the logical state of a device (as seen by client applications) may lag the
physical state if device event processing is frozen.

This request overrides all previous grabs by the same client on the same
button/key combinations on the same window. A modifiers of AnyModifier is
equivalent to issuing the grab request for all possible modifier combinations
(including the combination of no modifiers). It is not required that all modifiers
specified have currently assigned KeyCodes. A button of AnyButton is
equivalent to issuing the request for all possible buttons. Otherwise, it is not
required that the specified button currently be assigned to a physical button.
If some other client has already issued a XGrabButton with the same button/key
combination on the same window, a BadAccess error results. When using
AnyModifier or AnyButton, the request fails completely, and a BadAccess error
results (no grabs are established) if there is a conflicting grab for any combina­
tion. XGrabButton has no effect on an active grab.
XGrabButton can generate BadCursor, BadValue, and BadWindow errors.

The XUngrabButton function releases the passive button/key combination on the
specified window if it was grabbed by this client. A modifiers of AnyModifier is
equivalent to issuing the ungrab request for all possible modifier combinations,
including the combination of no modifiers. A button of AnyButton is equivalent
to issuing the request for all possible buttons. XUngrabButton has no effect on
an active grab.
XUngrabButton can generate BadValue and BadWindowerrors.

DIAGNOSTICS
BadCursor A value for a Cursor argument does not name a defined Cursor.
BadValue

BadWindow

Page 2

Some numeric value falls outside the range of values accepted
by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted.
Any argument defined as a set of alternatives can generate this
error.
A value for a Window argument does not name a defined Win­
dow.

10/89

XGrabButton (3X11)

SEE ALSO
XAllowEvents(3Xll),
XGrabPointer(3Xll),
XGrabKey(3Xll),
XGrabI<eyboard(3Xll),
Xlib - C Language X Interface

10/89

XGrabButton (3X11)

Page 3

XGrabKey (3X11) XGrabKey(3X11)

NAME
XGrabKey, XUngrabKey - grab keyboard keys

SYNTAX
XGrabKey(display, keycode, modifiers, grab_window, owner_events, pointer_mode,

keyboard_mode)
Display"display;
int keycode;
unsigned int modifiers;
Window grab_window;
Bool owner events;
int pointer Jnode, keyboard_mode;

XUngrabKey(display, keycode, modifiers, grab_window)
Display"display;
int keycode;
unsigned int modifiers;
Window grab_window;

ARGUMENTS
display Specifies the connection to the XWIN server.

Specifies the grab window.

keycode
modifiers

owner events

Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

Specifies the KeyCode or AnyKey.

Specifies the set of keymasks or AnyModifier. The mask is the
bitwise inclusive OR of the valid keymask bits.

Specifies a Boolean value that indicates whether the pointer
events are to be reported as usual or reported with respect to
the grab window if selected by the event mask.

Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.

DESCRIPTION

10/89

The XGrabKey function establishes a passive grab on the keyboard. In the
future, the keyboard is actively grabbed (as for XGrabKeyboard), the last­
keyboard-grab time is set to the time at which the key was pressed (as transmit­
ted in the KeyPress event), and the KeyPress event is reported if all of the fol­
lowing conditions are true:

• The keyboard is not grabbed and the specified key (which can itself be a
modifier key) is logically pressed when the specified modifier keys are logi­
cally down, and no other modifier keys are logically down.

•

•

Either the grab_window is an ancestor of (or is) the focus window, or the
grab_window is a descendant of the focus window and contains the pointer.

A passive grab on the same key combination does not exist on any ancestor
of grab_window.

Page 1

XGrabKey (3X11) XGrabKey(3X11)

The interpretation of the remaining arguments is as for XGrabKeyboard.The
active grab is terminated automatically when the logical state of the keyboard has
the specified key released (independent of the logical state of the modifier keys).

Note that the logical state of a device (as seen by client applications) may lag the
physical state if device event processing is frozen.

A modifiers argument of AnyModifier is equivalent to issuing the request for all
possible modifier combinations (including the combination of no modifiers). It is
not required that all modifiers specified have currently assigned KeyCodes. A
keycode argument of AnyKey is equivalent to issuing the request for all possible
KeyCodes. Otherwise, the specified keycode must be in the range specified by
min_keycode and max_keycode in the connection setup, or a BadValue error
results.

If some other client has issued a XGrabKey with the same key combination on
the same window, a BadAccess error results. When using AnyModifier or Any­
Key, the request fails completely, and a BadAccess error results (no grabs are
established) if there is a conflicting grab for any combination.

XGrabKey can generate BadAccess, BadValue, and BadWindow errors.

The XUngrabKey function releases the key combination on the specified window
if it was grabbed by this client. It has no effect on an active grab. A modifiers of
AnyModifier is equivalent to issuing the request for all possible modifier combi­
nations (including the combination of no modifiers). A keycode argument of
AnyKey is equivalent to issuing the request for all possible key codes.

XUngrabKey can generate BadValue and BadWindowerror.

DIAGNOSTICS
BadAccess A client attempted to grab a key/button combination already

grabbed by another client.

BadValue

BadWindow

Some numeric value falls outside the range of values accepted
by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted.
Any argument defined as a set of alternatives can generate this
error.

A value for a Window argument does not name a defined Win­
dow.

SEE ALSO

Page 2

XAllow Access(3Xll),
XGrabButton(3Xll),
XGrabKeyboard(3Xll},
XGrabPointer(3Xll)
Xlib - C Language X Interface

10/89

X,GrabKeyboard (3X11) XGrabKeyboard (3X11)

NAME
XGrabKeyboard, XUngrabKeyboard - grab the keyboard

SYNTAX
int XGrabKeyboard(displily, grab_window, owneTJvents, pointer_mode,

keyboard_mode, time)
Display ·displily;
Window grab_window;
Bool owner events;
int pointer -'node, keyboard_mode;
Time time;

XUngrabKeyboard (displily, time)
Display ·displily;
Time time;

ARGUMENTS
dispilly Specifies the connection to the XWIN server.

Specifies the grab window.

owner events

time

Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

Specifies a Boolean value that indicates whether the pointer
events are to be reported as usual or reported with respect to
the grab window if selected by the event mask.

Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.
Specifies the time. You can pass either a timestamp or Current­
Time.

DESCRIPTION

10/89

The XGrabKeyboard function actively grabs control of the keyboard and gen­
erates FocusIn and FocusOut events. Further key events are reported only to
the grabbing client. XGrabKeyboard overrides any active keyboard grab by this
client. If owner_events is False, all generated key events are reported with
respect to grab_window. If owner_events is True and if a generated key event
would normally be reported to this client, it is reported normally; otherwise, the
event is reported with respect to the grab _window. Both KeyPress and
KeyRelease events are always reported, independent of any event selection made
by the client.

If the keyboard_mode argument is GrabModeAsync, keyboard event processing
continues as usual. If the keyboard is currently frozen by this client, then process­
ing of keyboard events is resumed. If the keyboard _mode argument is
GrabModeSync, the state of the keyboard (as seen by client applications) appears
to freeze, and the XWIN server generates no further keyboard events until the
grabbing client issues a releasing XAllowEvents call or until the keyboard grab is
released. Actual keyboard changes are not lost while the keyboard is frozen; they
are simply queued in the server for later processing.

Page 1

XGrabKeyboard (3X11) XGrabKeyboard (3X11)

If pointer_mode is GrabMoeleAeync, pointer event processing is unaffected. by
actlvation of the grab. If pointer_mode is GrabMocIeSync:, the state of the pointer
(as seen by client applications) appears to freeze, and the XWIN server generates
no further pointer events until the grabbing client issues a releasing XAl­
lowEventa call or until the keyboard grab is released. Actual pointer changes are
not lost while the pointer is frozen; they are simply queued in the server for later
processing. .
If the keyboard is actively grabbed by some other client, XGrabKeyboard fails
and returns AlreacIyGrabbed. If grab window is not viewable, it fails and
returns GrabNotViewable. If the keyboard is frozen by an active grab of
another client, it fails and returns GrabFrozen. If the specified time is earlier
than the last-keyboard~b time or later than the current XWIN server time, it
fails and returns GrabInvaUeiTime. Otherwise, the last-keyboard-grab time is set
to the specified time (CurrentTime is replaced by the current XWIN server time).

XGrabKeyboarcl can generate BaeiValue and BaelWinciow errors.

The XUngrabKeyboarcl function releases the keyboard and any 'lueued events if
this client has it actively grabbed from either XGrabKeyboarci or XGrabKey.
XUngrabKeyboard does not release the keyboard and any queued events if the
specified time is earlier than the last-keyboard~b time or is later than the
current XWIN server time. It also generates FocusIn and FoculOut events. The
XWIN server automatically performs an UngrabKeyboarci request if the event
window for an active keyboard grab becomes not viewable.

DIAGNOSTICS
BaeiValue Some numeric value falls outside the range of values accepted

by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted.
Any argument defined as a set of alternatives can generate this
error.

BaelWineiow A value for a Window argument does not name a defined Win­
dow.

SEE ALSO
XAllowEvents(3Xll),
XGrabButton(3Xll),
XGrab~3Xll),
XGrabPomter(3Xll)
Xlib - C LAlIgJUlge X Interface

Page 2 10/88

XGrabPolnter (3X11) XGrabPolnter(3X11)

NAME
XGrabPointer, XUngrabPointer, XChangeActivePointerGrab - grab the pointer

SYNTAX
int XGrabPointer(display, grab_window, ownerJoents, event_mask, pointer_mode,

keyboard -,-mode, confine_to, cursor, time)
Display ·display;
Window grab_window;
Bool owner events;
unsigned int event_mask;
int pointer_mode, keyboard_mode;
Window confine_to;
Cursor cursor;
Time time;

XUngrabPointer(display, time)
Display ·display;
Time time;

XChangeActivePointerGrab(display, event_mask, cursor, time)
Display ·display;
unsigned int event_mask;
Cursor cursor;
Time time;

ARGUMENTS
confine_to Specifies the window to confine the pointer in or None.

Specifies the cursor that is to be displayed during the grab or
None.

cursor

display

event mask

owner events

time

Specifies the connection to the XWIN server.

Specifies which pointer events are reported to the client. The
mask is the bitwise inclusive OR of the valid pointer event mask
bits.

Specifies the grab window.

Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

Specifies a Boolean value that indicates whether the pointer
events are to be reported as usual or reported with respect to
the grab window if selected by the event mask.

Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.

Specifies the time. You can pass either a timestamp or Current­
Time.

DESCRIPTION

10/89

The XGrabPointer function actively grabs control of the pointer and returns
GrabSuccess if the grab was successful. Further pointer events are reported only
to the grabbing dient. XGrabPointer overrides any active pointer grab by this
client. If owner_events is False, all generated pointer events are reported with

Page 1

XGrabPolnter (3X11) XGrabPo!nter (3X11)

Page 2

respect to grab_window and are reported only if selected by event_mask. If
owner_events is True and if a generated pointer event would normally be
reported to this client, it is reported as usual. Otherwise, the event is reported
with respect to the grab_window and is reported only if selected by event_mask.
For either value of owner_events, unreported events are discarded.

If the pointer_mode is GrabModeAsync, pointer event processing continues as
usual. If the pointer is currently frozen by this client, the processing of events for
the pointer is resumed. If the pointer_mode is GrabModeSync, the state of the
pointer, as seen by client applications, appears to freeze, and the XWIN server gen­
erates no further pointer events until the grabbing client calls XAllowEvents or
until the pointer grab is released. Actual pointer changes are not lost while the
pointer is frozen; they are simply queued in the server for later processing.

If the keyboard_mode is GrabModeAsync, keyboard event processing is unaf­
fected by activation of the grab. If the keyboard_mode is GrabModeSync, the
state of the keyboard, as seen by client applications, appears to freeze, and the
XWIN server generates no further keyboard events until the grabbing client calls
XAllowEvents or until the pointer grab is released. Actual keyboard changes are
not lost while the pointer is frozen; they are simply queued in the server for later
processing.

If a cursor is specified, it is displayed regardless of what window the pointer is
in. If None is specified, the normal cursor for that window is displayed when the
pointer is in grab_window or one of its subwindows; otherwise, the cursor for
grab_window is displayed.

If a confine_to window is specified, the pointer is restricted to stay contained in
that window. The confine_to window need have no relationship to the
grab_window. If the pointer is not initially in the confine_to window, it is
warped automatically to the closest edge just before the grab activates and
enter/leave events are generated as usual. If the confine_to window is subse­
quently reconfigured, the pointer is warped automatically, as necessary, to keep it
contained in the window.

The time argument allows you to avoid certain circumstances that come up if
applications take a long time to respond or if there are long network delays.
Consider a situation where you have two applications, both of which normally
grab the pointer when clicked on. If both applications specify the timestamp
from the event, the second application may wake up faster and successfully grab
the pointer before the first application. The first application then will get an indi­
cation that the other application grabbed the pointer before its request was pro­
cessed.

XGrabPointer generates EnterNotify and LeaveNotify events.

Either if grab_window or confine_to window is not viewable or if the confine_to
window lies completely outside the boundaries of the root window, XGrab­
Pointer fails and returns GrabNotViewable. If the pointer is actively grabbed by
some other client, it fails and returns AlreadyGrabbed. If the pointer is frozen
by an active grab of another client, it fails and returns GrabFrozen. If the
specified time is earlier than the last-pointer-grab time or later than the current
XWIN server time, it fails and returns GrablnvalidTime. Otherwise, the last-

10/89

XGrabPolntar (3X11) XGrabPolntar (3X11)

pointer-grab time is set to the specified time (CurrentTime is replaced by the
current XWIN server time).

XGrabPointer can generate BadCursor, BadValue, and BadWindow errors.

The XUngrabPointer function releases the pointer and any queued events if this
client has actively grabbed the pointer from XGrabPointer, XGrabButton, or
from a normal button press. XUngrabPointer does not release the pointer if the
specified time is earlier than the last-pointer-grab time or is later than the current
XWIN server time. It also generates EnterNotify and LeaveNotify events. The
XWIN server performs an UngrabPointer request automatically if the event win­
dow or confine_to window for an active pointer grab becomes not viewable or if
window reconfiguration causes the confine_to window to lie completely outside
the boundaries of the root window.

The XChangeActivePointerGrab function changes the specified dynamiC parame­
ters if the pointer is actively grabbed by the client and if the Specified time is no
earlier than the last-pointer-grab time and no later than the current XWIN server
time. This function has no effect on the passive parameters ofaXGrabBuHon.
The interpretation of event_mask and cursor is the same as described in XGrab­
Pointer.

XChangeActivePointerGrab can generate a BadCursor and BadValue error.

DIAGNOSTICS
BadCursor A value for a Cursor argument does not name a defined Cursor.

Some numeric value falls outside the range of values accepted
by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted.
Any argument defined as a set of alternatives can generate this
error.

BadValue

BadWindow A value for a Window argument does not name a defined Win­
dow.

SEE ALSO
XAllowEvents(3Xll),
XGrabBuHon(3Xll),
XGrabI<ey(3Xll),
XGrabI<eyboard(3Xll)
Xlib - C Language X Interface

10/89 Page 3

XGrabServer (3X11)

NAME
XGrabServer, XUngrabServer - grab the server

SYNTAX
XGrabServer(display)

Display"display;

XUngrabServer(display)
Display"display;

ARGUMENTS
display Specifies the connection to the XWIN server.

DESCRIPTION

XGrabServer (3X11)

The XGrabServer function disables processing of requests and close downs on all
other connections than the one this request arrived on. You should not grab the
XWIN server any more than is absolutely necessary.

The XUngrabServer function restarts processing of requests and close downs on
other connections. You should avoid grabbing the XWIN server as much as possi­
ble.

SEE ALSO
XGrabButton(3Xll),
XGrabKey(3Xl1),
XGrabKeyboard(3Xll),
XGrabPointer(3Xll)
Xlib - C Language X Interface

10/89 Page 1

XlfEvent(3X11) XIfEvent(3X11)

NAME
XIfEvent, XCheckIfEvent, XPeekIfEvent - check the event queue with a predicate
procedure

SYNTAX
XIfEvent(display, eventJeturn, predicllte, arg)

Display -display;
XEvent -event return;
Bool (ltpredicRte) 0 ;
char -lJrg;

8001 XCheckIfEvent(display, eventJeturn, predia:lte, IJrg)
Display -display;
XEvent -event return;
8001 (ltpredicRte)O;
char -lJrg;

XPeekIfEvent(display, eventJeturn, predia:lte, arg)
Display -display;
XEvent -event return;
8001 (-predicRte)O;
char -lJrg;

ARGUMENTS
arg

display
event return

predicllte

Specifies the user-supplied argument that will be passed to the
predicate procedure.
Specifies the connection to the XWIN server.

Returns either a copy of or the matched event's associated
structure.

Specifies the procedure that is to be called to determine if the
next event in the queue matches what you want.

DESCRIPTION

10189

The XlfEvent function completes only when the specified predicate procedure
returns True for an event, which indicates an event in the queue matches.
XlfEvent flushes the output buffer if it blocks waiting for additional events.
XlfEvent removes the matching event from the queue and copies the structure
into the c1ient-supplied XEvent structure.

When the predicate procedure finds a match, XCheddfEvent copies the matched
event into the client-supplied XEvent structure and returns True. (This event is
removed from the queue.) If the predicate procedure finds no match,
XCheddfEvent returns False, and the output buffer will have been flushed. All
earlier events stored in the queue are not discarded.

The XPeeldfEvent function returns only when the specified predicate procedure
returns True for an event. After the predicate procedure finds a match,
XPeekIfEvent copies the matched event into the c1ient-supplied XEvent structure
without removing the event from the queue. XPeekIfEvent flushes the output
buffer if it blocks waiting for additional events.

Page 1

XIfEvent(3X11)

SEE ALSO
XPutBackEvent(3Xll)
XNextEvent(3Xll),
XSendEvent(3Xll)
Xlib - C LAnguage X Interface

Page 2

XlfEvent (3X11)

10/89

Xrmlnltlallz8 (3X11) Xrmlnltlallze (3X11)

NAME
XrmInitialize, XrmParseCommand - initialize the Resource Manager and parse
the command line

SYNTAX
void XrmInitialize();

void XrmParseCommand(database, table, table_count, 1JIlme, argc)n_out,
flTgv _in_out,)

XrmDatabase "database;
XrmOptionDescList table;
int table count;
char "name;
int "aTgc_in_out;
char argo)n _out;

ARGUMENTS

name

table

Specifies the number of arguments and returns the number of
remaining arguments.

Specifies a pointer to the command line arguments and returns
the remaining arguments.

Specifies a pointer to the resource database.

Specifies the application name.

Specifies the table of command line arguments to be parsed.

table_count Specifies the number of entries in the table.

DESCRIPTION

10/89

The Xrmlnitialize function initialize the resource manager.
The XrmParseCommand function parses an (argc, argv) pair according to the
specified option table, loads recognized options into the specified database with
type "String," and modifies the (argc, argv) pair to remove all recognized
options. .

The specified table is used to parse the command line. Recognized entries in the
table are removed from argv, and entries are made in the specified resource data­
base. The table entries contain information on the option string, the option name,
the style of option, and a value to provide if the option kind is Xrmoption­
NoArg. The argc argument specifies the number of arguments in argv and is set
to the remaining number of arguments that were not parsed. The name argu­
ment should be the name of your application for use in building the database
entry. The name argument is prefixed to the resourceName in the option table
before storing the specification. No separating (binding) character is inserted.
The table must contain either a period (.) or an asterisk (If) as the first character in
each resourceName entry. To specify a more completely qualified resource name,
the resourceName entry can contain multiple components.

Page 1

Xrmlnltlallze (3X11)

SEE ALSO

Page 2

XrmGetResource(3Xll),
XrmMergeDatabases(3Xll),
XrmPutResource(3Xll),
XrmUniqueQuark(3Xll)
Xlib - C LAnguage X Interface

Xrmlnltlallze (3X11)

10/88

XlnstallColormap (3X11) XlnstaliColormap (3X11)

NAME
XInstallColormap, XUninstallColormap, XListInstalledColormaps - control color­
maps

SYNTAX
XInstallColormap (display, colormap)

Display"display;
Colormap colonnap;

XUninstallColormap (display, colonnap)
Display"display;
Colormap colonnap;

Colormap "XListlnstalledColormaps(display, w, num-,efurn)
Display "display;
Windoww;
int "num -,efurn;

ARGUMENTS
colO11tlRJ1 Specifies the colormap.

display
num return

w

Specifies the connection to the XWIN server.
Returns the number of currently installed colormaps.
Specifies the window that determines the screen.

DESCRIPTION

10/89

The XlnstallColormap function installs the specified colormap for its associated
screen. All windows associated with this colormap immediately display with
true colors. You associated the windows with this colormap when you created
them by calling XCreateWindow, XCreateSimpleWindow, XChangeWindowAt­
tributes, or XSetWindowColormap.

If the specified colormap is not already an installed colormap, the XWIN server
generates a ColormapNotify event on each window that has that colormap. In
addition, for every other colormap that is installed as a result of a call to Xln­
stallColormap, the XWIN server generates a ColormapNotify event on each win­
dow that has that colormap.

XlnstallColormap can generate a BadColol' error.
The XUninstallColormap function removes the specified colormap from the
required list for its screen. As a result, the specified colormap might be unin­
stalled, and the XWIN server might implicitly install or uninstall additional color­
maps. Which colormaps get installed or uninstalled is server-dependent except
that the required list must remain installed.
If the specified colormap becomes uninstalled, the XWIN server generates a Color­
mapNotify event on each window that has that colormap. In addition, for every
other colormap that is installed Or uninstalled as a result of a call to XUnin­
stallColormap, the XWIN server generates a ColormapNotify event on each win­
dow that has that colormap.

Page 1

XlnstallColormap (3X11) XlnstaliColormap (3X11)

XUninstallColormap can generate a BadColor error.

The XListlnstalledColormaps function returns a list of the currently installed
colormaps for the screen of the specified window. The order of the colormaps in
the list is not significant and is no explicit indication of the required list. When
the allocated list is no longer needed, free it by using XFree.

XListlnstalledColormaps can generate a BadWindowerror.

DIAGNOSTICS
BadColor A value for a Colormap argument does not name a defined

Colormap.
BadWindow A value for a Window argument does not name a defined Win­

dow.
SEE ALSO

Xlib - C Language X Interface

Page 2 10/89

XlntersectReglon (3X11) XlntersectReglon (3X11)

NAME
XIntersectRegion, XUnionRegion, XUnionRectWithRegion, XSubtractRegion,
XXorRegion, XOffsetRegion, XShrinkRegion - region arthmetic

SYNTAX
XIntersectRegion(sra, srb, dr Jeturn)

Region sra, srb, drJeturn;

XUnionRegion(sra, srb, drJeturn)
Region sra, srb, drJeturn;

XUnionRectWithRegiorf(rectangle, src Jegion, dest Jegion Jeturn)
XRectangle "rectangle;
Region src Jegion;
Region dest Jegion Jeturn;

XSubtractRegion(sra, srb, drJeturn)
Region sra, srb, drJeturn;

XXorRegion(sra, srb, dr Jeturn)
Region sra, srb, drJeturn;

XOffsetRegion(r, dx, dy)
Region r;
int dx, dy;

XShrinkRegion(r, dx, dy)
Region r;
int dx, dy;

ARGUMENTS
dest Jegion Jeturn

dr return

dx
dy

r

rectangle

sra
srb

srcJegion

Returns the destination region.

Returns the result of the computation.

Specify the x and y coordinates, which define the amount you
want to move or shrink the specified region.

Specifies the region.

Specifies the rectangle.

Specify the two regions with which you want to perform the
computation.

Specifies the source region to be used.

DESCRIPTION

10/89

The XIntenedRegion function computes the intersection of two regions.

The XUnionRegion function computes the union of two regions.

The XUnionRectWithRegion function updates the destination region from a
union of the specified rectangle and the specified source region.

Page 1

XlntersectReglon (3X11) XlntersectReglon (3X11)

The XSubtractRegion function subtracts srb from sra and stores the results in
dr return.

The XXorRegion function calculates the difference between the union and inter­
section of two regions.

The XOffsetRegion function moves the specified region by a specified amount.

The XShrinkRegion function reduces the specified region by a specified amount.
Positive values shrink the size of the region, and negative values expand the
region.

SEE ALSO
XCreateRegion(3Xll),
XEmptyRegion(3Xll),
Xlib - C Language X Interface

Page 2 10/89

XlnternAtom (3X11) XlnternAtom (3X11)

NAME
XInternAtom, XGetAtomName - create or return atom names

SYNTAX
Atom XInternAtom(display, atom_ nJUne,onlyJI-exists)

Display -display;
char -atom name;
Bool only_ii_exists;

char -XGetAtomName(display, atom)
Display -display;
Atom atom;

ARGUMENTS
atom
atom name

display

only)I-exists

Specifies the atom for the property name you want returned.

Specifies the name associated with the atom you want returned.

Specifies the connection to the XWIN server.

Specifies a Boolean value that indicates whether XlntemAtom
creates the atom.

DESCRIPTION
The XlntemAtom function returns the atom identifier associated with the
specified atom_name string. If only)Cexists is False, the atom is created if it
does not exist. Therefore, XlntemAtom can return None. You should use a
null-terminated ISO Latin-l string for atom_name. Case matters; the strings thing,
Thing, and thinG all designate different atoms. The atom will remain defined even
after the client's connection closes. It will become undefined only when the last
connection to the XWIN server closes.

XlntemAtom can generate BadAlloc and BadVaIue errors.

The XGetAtomName function returns the name associated with the specified
atom. To free the resulting string, call XFree.

XGetAtomName can generate a BadAtom error.

DIAGNOSTICS
BadAlloc The server failed to allocate the requested resource or server

memory.
BadAtom

BadValue

A value for an Atom argument does not name a defined Atom.

Some numeric value falls outside the range of values accepted
by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted.
Any argument defined as a set of alternatives can generate this
error.

SEE ALSO
XGetWindowProperty(3Xll)
Xlib - C Language X Interface

10189 Page 1

XListFonts (3X11) XLlstFonts(3X11)

NAME
XListFonts, XFreeFontNames, XListFontsWithInfo, XFreeFontinfo - obtain or free
font names and information

SYNTAX
char "XListFonts (display, pattern, maxnames, 1lCt1llll_ counU'eturn)

Display ·display;
char ·pattern;
int maxnames;
int ·IlCtUiltcount Jettlrn;

XFreeFontNames(list)
char ·,ist[];

char "XListFontsWithInfo(display, pattern,~, countJeturn, infoJeturn)
Display ·display;
char ·pattern;
int maxnames;
int ·count return;
XFontStni"ct "info Jeturn;

XFreeFontInfo(names, free_info, actUllI_count)
char "names;
XFontStruct ·free _info;
int 1lCtua1_ count;

ARGUMENTS
IlCtUiltcount Specifies the actual number of matched font names returned by

XListFontsWithInfo.

IlCtUilI count return
- - Returns the actual number of font names.

count -,eturn
display
infoJeturn
freeJnfo

list

pattern

Returns the actual number of matched font names.

Specifies the connection to the XWIN server.

Returns a pointer to the font information.

Specifies the pointer to the font information returned by XList­
FontsWithIn(o.

Specifies the array of strings you want to free.

Specifies the maximum number of names to be returned.

Specifies the list of font names returned by XListFontsWithInfo.

Specifies the null-terminated pattern string that can contain
wildcard characters.

DESCRIPTION

10/89

The XListFonts function returns an array of available font names (as controlled
by the font search path; see XSetFontPath) that match the string you passed to
the pattern argument. The string should be ISO Latin-1; uppercase and lowercase
do not matter. Each string is terminated by an ASCII null. The pattern string
can contain any characters, but each asterisk (It) is a wildcard for any number of
characters, and each question mark (?) is a wildcard for a single character. The

Page 1

XListFonta (3X11) XListFonts(3X11)

client should call XFreeFontNames when finished with the result to free the
memory.

The XFreeFontNames function frees the array and strings returned by XUstFonts
or XListFontsWithInfo.

The XUstFontsWithInfo function returns a list of font names that match the
specified pattern and their associated font information. The list of names is lim­
ited to size specified by maxnames. The information returned for each font is
identical to what XLoadQueryFont would return except that the per-character
metrics are not returned. The pattern string can contain any characters, but each
asterisk (It) is a wildcard for any number of characters, and each question mark
(?) is a wildcard for a single character. To free the allocated name array, the
client should call XFreeFontNames. To free the the font information array, the
client should call XFreeFontInfo.

The XFreeFontInfo function frees the the font information array.

SEE ALSO
XLoadFont(3Xll),
XSetFontPath(3Xll)
Xlib - C Language X Interface

Page 2 10/89

XLoadFont (3X11) XLoadFont(3X11}

NAME
XLoadFont, XQueryFont, XLoadQueryFont, XFreeFont, XGetFontProperty, XUn-
10adFont - load or unload fonts

SYNTAX
Font XLoadFont(display, name)

Display"display;
char "name;

XFontStruct "XQueryFont(display, font_ID)
Display"display;
XID fontjD;

XFontStruct "XLoadQueryFont(display, name)
Display"display;
char "name;

XFreeFont (display, font _struct)
Display"display;
XFontStruct "font _struct;

Bool XGetFontProperty(font _struct, atom, value Jeturn)
XFontStruct "font struct;
Atom atom; -
unsigned long -Value Jeturn;

XUnloadFont(display, font)
Display"display;
Font font;

ARGUMENTS
atom

display

font
fontjD

font _struct
gc
name
value return

Specifies the atom for the property name you want returned.

Specifies the connection to the XWIN server.

Specifies the font.

Specifies the font 10 or the GContext 10.

Specifies the storage associated with the font.

Specifies the Gc.

Specifies the name of the font, which is a null-terminated string.

Returns the value of the font property.

DESCRIPTION

10/89

The XLoadFont function loads the specified font and returns its associated font
10. The name should be ISO Latin-l encoding; uppercase and lowercase do not
matter. If XLoadFont was unsuccessful at loading the specified font, a BadName
error results. Fonts are not associated with a particular screen and can be stored
as a component of any Gc. When the font is no longer needed, call XUnIoad­
Font.

XLoadFont can generate BadAlloc and BadName errors.

Page 1

XLoadFont (3X11) XLoadFont (3X11)

The XQueryFont function returns a pointer to the XFontStrud structure, which
contains information associated with the font. You can query a font or the font
stored in a CC. The font 10 stored in the XFontStrud structure will be the
GContext 10, and you need to be careful when using this ID in other functions
(see XGContextFromGC). To free this data, use XFreeFontInfo.

XLoadQueryFont can generate a BadAIIoc error.

The XLoadQueryFont function provides the most common way for accessing a
font. XLoadQueryFont both opens (loads) the specified font and returns a
pointer to the appropriate XFontStrud structure. If the font does not exist,
XLoadQueryFont returns NULL.
The XFreeFont function deletes the association between the font resource 10 and
the specified font and frees the XFontStrud structure. The font itself will be
freed when no other resource references it. The data and the font should not be
referenced again.

XFreeFont can generate a BadFont error.

Given the atom for that property, the XGetFontProperty function returns the
value of the specified font property. XGetFontProperty also returns False if the
property was not defined or True if it was defined. A set of predefined atoms
exists for font properties, which can be found in <Xl11Xatom.h>. This set con­
tains the standard properties associated with a font. Although it is not
guaranteed, it is likely that the predefined font properties will be present.

The XUnloadFont function deletes the association between the font resource ID
and the specified font. The font itself will be freed when no other resource refer­
ences it. The font should not be referenced again.

XUnloadFont can generate a BadFont error.

DIAGNOSTICS
BadAIIoc The server failed to allocate the requested resource or server

memory.

BadFont A value for a Font or GContext argument does not name a
defined Font.

BadName A font or color of the specified name does not exist.

SEE ALSO
XListFonts(3Xll),
XSetFontPath(3Xl1)
Xlib - C LIlnguJlge X Interface

Page 2 10/89

XLookupKaysym (3X11) XLookupKaysym(3X11)

NAME
XLookupKeysym, XRefreshKeyboardMapping, XLookupString, XRebindKeySym
- handle keyboard input events

SYNTAX
KeySym XLookupKeysym(keyJvent, index)

XKeyEvent "keyJDent;
int index;

XRefreshKeyboardMapping(event _map)
XMappingEvent "event_map;

int XLookupString(event ytruct, buffer Jeturn,bytes _buffer, keysym Jeturn,
status in out)

XKeyEvent "event Jtruct;
char "buffer Jeturn;
int bytes_buffer;
KeySym "keysymJeturn;
XComposeStatus "status jn _out;

XRebindKeysym(display, keysym, list, mod_count, string, bytes_string)
Display"display;
KeySym keysym;
KeySym list [I;
int mod count;
unsigned char "string;
int bytes_string;

ARGUMENTS

10189

buffer Jeturn
bytes_buffer

bytes_string

display
event_map
event struct

index

key_event

keysym
keysym Jeturn

list
mod count

Returns the translated characters.

Specifies the length of the buffer.
translation are returned.

No more than bytes_buffer of

Specifies the length of the string.

Specifies the connection to the XWIN server.

Specifies the mapping event that is to be used.

Specifies the key event structure to be used. You can pass
XKeyPressedEvent or XKeyReleasedEvent.

Specifies the index into the KeySyms list for the event's Key­
Code.

Specifies the KeyPress or KeyRelease event.

Specifies the KeySym that is to be .

Returns the KeySym computed from the event if this argument
is not NULL.

Specifies the KeySyms to be used as modifiers.

Specifies the number of modifiers in the modifier list.

Page 1

XLookupKeysym (3X11) XLookupKeysym (3X11)

status in out

string

Specifies or returns the XComposeStatus structure or NULL.

Specifies a pointer to the string that is copied and will be
returned by XLookupSlring.

DESCRIPTION
The XLookupKeysym function uses a given keyboard event and the index you
specified to return the KeySym from the list that corresponds to the KeyCode
member in the XKeyPressedEvent or XKeyReleasedEvent structure. If no
KeySym is defined for the KeyCode of the event, XLookupKeysym returns
NoSymbol.

The XRefreshKeyboardMapping function refreshes the stored modifier and key­
map information. You usually call this function when a MappingNotify event
with a request member of MappingKeyboard or MappingModifier occurs. The
result is to update Xlib's knowledge of the keyboard.

The XLookupString function is a convenience routine that maps a key event to
an ISO Latin-l string, using the modifier bits in the key event to deal with shift,
lock, and control. It returns the translated string into the user's buffer. It also
detects any rebound KeySyms (see XRebindKeysym) and returns the specified
bytes. XLookupString returns the length of the string stored in the tag buffer. If
the lock modifier has the caps lock KeySym associated with it, XLookupString
interprets the lock modifier to perform caps lock processing.

If present (non-NULL), the XComposeStatus structure records the state, which is
private to Xlib, that needs preservation across calls to XLookupString to imple­
ment compose processing.

The XRebindKeysym function can be used to rebind the meaning of a KeySym
for the client. It does not redefine any key in the XWIN server but merely pro­
vides an easy way for long strings to be attached to keys. XLookupString
returns this string when the appropriate set of modifier keys are pressed and
when the KeySym would have been used for the translation. Note that you can
rebind a KeySym that may not exist.

SEE ALSO
XStringToKeysym(3Xll)
Xlib - C Language X Interface

Page 2 10/89

XrmMergeDatabases(3X11) XrmMergeDatabases (3X11)

NAME
XrmMergeDatabases, XrmGetFlleDatabase, XrmPutFlleDatabase, XrmGetStringDa­
tabase - manipulate resource databases

SYNTAX
void XrmMergeDatabases(source_db, target_db)

XrmDatabase source_db, "tIlrget _db;
XrmDatabase XrmGetFileDatabase(fi1ent.uM)

char "filename;
void XrmPutFlleDatabase(database, stored db)

XrmDatabase database; -
char "stored_db;

XrmDatabase XrmGetStringDatabase(datll)
char .. data;

ARGUMENTS
datil Specifies the database contents using a string.

Specifies the database that is to be used.

Specifies the resource database file name.

database

filename
source db

stored db
target_db

Specifies the resource database that is to be merged into the tar­
get database.

Specifies the file name for the stored database.

Specifies a pointer to the resource database into which the
source database is to be merged.

DESCRIPTION

10/89

The XrmMe1'8eDatabases function merges the contents of one database into
another. It may overwrite entries in the destination database. This function is
used to combine databases (for example, an application specific database of
defaults and a database of user preferences). The merge is destructive; that is, the
source database is destroyed.

The XrmGetFileDatabase function opens the specified file, creates a new resource
database, and loads it with the specifications read in from the specified file. The
specified file must c:ontain lines in the format accepted by XrmPutLineResource.
If it cannot open the specified file, XrmGetFileDatabase returns NULL.
The XrmPutFileDatabase function stores a copy of the specified database in the
Specified file. The file is an ASCII text file that contains lines in the format that is
accepted by XrmPutLineResource.

The XrmGelStrlngDatabase function creates a new database and stores the
resources specified in the specified null-terminated string. XrmGetStrlngData­
base is similar to XrmGetFileDatabase except that it reads the information out of
a string instead of out of a file. Each line is separated by a new-line character in
the format accepted by XrmPutLineResource.

Page 1

XrmMergeDataba ... (3X11)

SEE ALSO
XrmGetResource(3Xll),
XrmInitialize(3XU),
XrmPutResource(3Xll),
XrmUniqueQuark(3Xll)
Xlib - C Langua~ X Interface

Page 2

XrmMergeDatab (3X11)

10/89

XMapWlndow(3X11) XMapWlndow(3X11)

NAME
XMapWinow, XMapRaised, XMapSubwindows - map windows

SYNTAX
XMapWindow(display, w)

Display -display;
Window w;

XMapRaised(display, w)
Display -display;
Window W;

XMapSubwindows(display, w)
Display -display;
Window W;

ARGUMENTS
display Specifies the connection to the XWIN server.

w Specifies the window.

DESCRIPTION

10/89

The XMapWindow function maps the window and all of its subwindows that
have had map requests. Mapping a window that has an unmapped ancestor does
not display the window but marks it as eligible for display when the ancestor
becomes mapped. Such a window is called unviewable. When all its ancestors
are mapped, the window becomes viewable and will be visible on the screen if it
is not obscured by another window. This function has no effect if the window is
already mapped.

If the override-redirect of the window is False and if some other client has
selected SubstructureRedirectMask on the parent window, then the XWIN server
generates a MapRequest event, and the XMapWindow function does not map
the window. Otherwise, the window is mapped, and the XWIN server generates a
Map Notify event.

If the window becomes viewable and no earlier contents for it are remembered,
the XWIN server tiles the window with its background. If the window's back­
ground is undefined, the existing screen contents are not altered, and the XWIN
server generates zero or more Expose events. If backing-store was maintained
while the window was unmapped, no Expose events are generated. If backing­
store will now be maintained, a full-window exposure is always generated. Oth­
erwise, only visible regions may be reported. Similar tiling and exposure take
place for any newly viewable inferiors.

If the window is an InputOutput window, XMapWindow generates Expose
events on each InputOutput window that it causes to be displayed. If the client
maps and paints the window and if the client begins processing events, the win­
dow is painted twice. To avoid this, first ask for Expose events and then map
the window, so the client processes input events as usual. The event list will
include Expose for each window that has appeared on the screen. The client's
normal response to an Expose event should be to repaint the window. This
method usually leads to simpler programs and to proper interaction with win­
dow managers.

Page 1

XMapWlndow (3X11) XMapWlndow(3X11)

XMapWindow can generate a BadWindow error.

The XMapRaised function essentially is similar to XMapWindow in that it maps
the window and all of its subwindows that have had map requests. However, it
also raises the specified window to the top of the stack.

XMapRaised can generate a BadWindow error.

The XMapSubwindows function maps all subwindows for a specified window in
top-to-bottom stacking order. The XWIN server generates Expose events on each
newly displayed window. This may be much more efficient than mapping many
windows one at a time because the server needs to perform much of the work
only once, for all of the windows, rather than for each window.

XMapSubwindows can generate a BadWindow error.

DIAGNOSTICS
BadWindow A value for a Window argument does not name a defined Win­

dow.

SEE ALSO

Page 2

XChangeWindow Attrlbutes(3Xll),
XConfigureWindow(3Xll),
XCreateWindow(3Xll),
XDestroyWindow(3Xll),
XRaiseWindow(3Xll),
XUnmapWindow(3Xll)
Xlib - C LangUJlge X Interface

10/89

XNextEvent (3X11) XNextEvent (3X11)

NAME
NextEvent, XPeekEvent, XWindowEvent, XCheckWindowEvent, XMaskEvent,
XCheckMaskEvent, XCheckTypedEvent, XCheckTypedWindowEvent - select
events by type

SYNTAX
XNextEvent(display, event Jeturn >

DispJay ·display;
XEvent ·event Jeturn;

XPeekEvent (display, event JetUTn >
DispJay ·display;
XEvent ·event Jeturn;

XWindowEvent(display, w, event_mask, eventJeturn>
DispJay ·display;
Windoww;
long event_mask;
XEvent ·eventJetUTn;

Bool XCheckWindowEvent(display, w, event _ mIlSk, event Jeturn>
DispJay ·display;
Window W;
long event_mIlSk;
XEvent ·event Jeturn;

XMaskEvent(display, event_mIlSk, eventJeturn>
DispJay ·display;
long event_mIlSk;
XEvent ·eventJeturn;

Bool XCheckMaskEvent(display, event _ mIlSk, event Jeturn>
DispJay ·display;
long event_mask;
XEvent ·eventJetUTn;

Bool XCheckTypedEvent(display, event_type, event Jeturn>
DispJay ·display;
int event_type;
XEvent ·event Jeturn;

Bool XCheckTypedWindowEvent(display, w, event_type, eventJeturn>
DispJay ·display;
Windoww;
int event_type;
XEvent ·event Jeturn;

ARGUMENTS

10/89

display Specifies the connection to the XWIN server.

event mask
event retUTn

Specifies the event mask.

Returns the matched event's associated structure.

Page 1

XNextEvent (3X11) XNextEvent (3X11)

event return
event return
event_type

w

Returns the next event in the queue.

Returns a copy of the matched event's associated structure.

Specifies the event type to be compared.

Specifies the window whose event you are interested in.

DESCRIPTION

Page 2

The XNextEvent function copies the first event from the event queue into the
specified XEvent structure and then removes it from the queue. If the event
queue is empty, XNextEvent flushes the output buffer and blocks until an event
is received.

The XPeekEvent function returns the first event from the event queue, but it does
not remove the event from the queue. If the queue is empty, XPeekEvent flushes
the output buffer and blocks until an event is received. It then copies the event
into the client-supplied, XEvent structure without removing it from the event
queue.

The XWindowEvent function searches the event queue for an event that matches
both the specified window and event mask. When it finds a match, XWin­
dowEvent removes that event from the queue and copies it into the specified
XEvent structure. The other events stored in the queue are not discarded. If a
matching event is not in the queue, XWindowEvent flushes the output buffer and
blocks until one is received.

The XCltedtWindowEvent function searches the event queue and then the events
available on the server connection for the first event that matches the specified
window and event mask. If it finds a match, XClteckWindowEvent removes that
event, copies it into the specified XEvent structure, and returns True. The other
events stored in the queue are not discarded. If the event you requested is not
available, XCltedtWindowEvent returns False, and the output buffer will have
been flushed.

The XMaskEvent function searches the event queue for the events associated
with the specified mask. When it finds a match, XMaskEvent removes that event
and copies it into the specified XEvent structure. The other events stored in the
queue are not discarded. If the event you requested is not in the queue,
XMaskEvent flushes the output buffer and blocks until one is received.

The XCltedtMaskEvent function searches the event queue and then any events
available on the server connection for the first event that matches the specified
mask. If it finds a match, XClteckMaskEvent removes that event, copies it into
the specified XEvent structure, and returns True. The other events stored in the
queue are not discarded. If the event you requested is not available, XCltedt­
MaskEvent returns False, and the output buffer will have been flushed.

The XClteckTypedEvent function searches the event queue and then any events
available on the server connection for the first event that matches the specified
type. If it finds a match, XClteckTypedEvent removes that event, copies it into
the specified XEvent structure, and retums True. The other events in the queue
are not discarded. If the event is not available, XCltedtTypedEvent returns
False, and the output buffer will have been flushed.

10/89

XNextEvent (3X11) XNextEvent (3X11)

The XCheckTypedWindowEvent function searches the event queue and then any
events available on the server mnnection for the first event that matches the
specified type and window. If it finds a match, XCheckTypedWindowEvent
removes the event from the queue, copies it into the specified XEvent structure,
and returns True. The other events in the queue are not discarded. If the event
is not available, XCheckTypedWindowEvent returns False, and the output
buffer will have been flushed.

SEE ALSO

10189

XIfEvent(3Xll),
XPutBackEvent(3Xll),
XSendEvent(3Xll)
Xlib - C lAnguage X Interface

Page 3

XOpenDlsplay (3X11) XOpenDlsplay(3X11)

NAME
XOpenDisplay, XCloseDisplay - connect or disconnect to XWIN server

SYNTAX
Display -XOpenDisplay(display_ name)

char -display_name;
XCloseDisplay(display)

Display -display;
ARGUMENTS

display Specifies the connection to the XWIN server.

Specifies the hardware display name, which determines the
display and communications domain to be used. On a UNIX­
based system, if the display_name is NULL, it defaults to the
value of the DISPLAY environment variable.

DESCRIPTION

10/89

The XOpenDisplay function returns a Display structure that serves as the con­
nection to the XWIN server and that contains all the information about that XWIN
server. XOpenDisplay connects your application to the XWIN server. If the host­
name is a host machine name and a single colon (:) separates the hostname and
display number, XOpenDisplay connects using TCP streams. If the hostname is
unix and a single colon (:) separates it from the display number, XOpenDisplay
connects using UNIX domain IPC streams. If the hostname is not specified, Xlib
uses whatever it believes is the fastest transport. A single XWIN server can sup­
port any or all of these transport mechanisms simultaneously. A particular Xlib
implementation can support many more of these transport mechanisms.

If successful, XOpenDisplay returns a pointer to a Display structure, which is
defined in <Xl1/Xlib.h>. If XOpenDisplay does not succeed, it returns NULL.
After a successful call to XOpenDisplay, all of the screens in the display can be
used by the client. The screen number specified in the display_name argument is
returned by the DefaultScreen macro (or the XDefaultScreen function). You can
access elements of the Display and Screen structures only by using the informa­
tion macros or functions. For information about using macros and functions to
obtain information from the Display structure, see section 2.2.1, Xlib-C Language
X Interface.
The XCloseDisplay function closes the connection to the XWIN server for the
display specified in the Display structure and destroys all windows, resource IDs
(Window, Font, Pixmap, Colormap, Cursor, and GContext), or other resources
that the client has created on this display, unless the close-down mode of the
resource has been changed (see XSelCloseDownMode). Therefore, these win­
dows, resource IDs, and other resources should never be referenced again or an
error will be generated. Before exiting, you should call XCloseDisplay explicitly
so that any pending errors are reported as XCloseDisplay performs a final
XSync operation.

XCloseDisplay can generate a BadGC error.

Page 1

XOpenDisplay (3X11) XOpenDlsplay (3X11)

SEE ALSO
Xlib - C Language X Interface

Page 2 10/89

XParaeG80metry (3X11) XParaeGeometry (3X11)

NAME
XParseGeometry, XGeometry, XParseColor - parse window geometry and color

SYNTAX
int XParseGeometry(parsestring, xJeturn, YJeturn, widthJeturn, height_return)

char -parsestring;
int -x_return, -Y Jeturn;
int -wUlth_return, -height_return;

int XGeometry(display, screen, position, default ..J1OSition, bwidth, fwidth, /height,
XIIdder, yadder, xJeturn, y_return, widthJeturn, heightJeturn)

Display -display;
int screen;
char -"osition, -default yosition;
unsigned int bwidth;
unsigned int fwidth, /height;
int XIIdder, yadder;
int -x_return, -y _return;
int -wUlth_return, -height_return;

Status XParseColor(display, colormap, spec, exact_defJeturn)
Display -display;
Colormap coloTmllp;
char -spec;
XColor -exact _ def _return;

ARGUMENTS

10/89

bwidth Specifies the border width.

colonnap Specifies the colormap.

position
default ..J1OSition Specify the geometry specifications.

display Specifies the connection to the XWIN server.

exact_de{Jeturn Returns the exact color value for later use and sets the DoRed,
DoGreen, and DoBlue flags.

/height
fwidth
parsestring
screen
spec
width return
height __ return

XIIdder
yadder
x return

Specify the font height and width in pixels (increment size).

Specifies the string you want to parse.
Specifies the screen.

Specifies the color name string; case is ignored.

Return the width and height determined.

Specify additional interior padding needed in the window.

, Page 1

XParseGeometry{3X11) XParseGeometry (3X11)

YJeturn Return the x and y offsets.
DESCRIPTION

Page 2

By convention, X applications use a standard string to indicate window size and
placement. XPaneGeometry makes it easier to conform to this standard because
it allows you to parse the standard window geometry. Specifically, this function
lets you parse strings of the form:
[=][<Width>x<height>)[{ +-}<roffset>{ +-}<yo.ffset>]

The items in this form map into the arguments associated- with this function.
Otems enclosed in <> are integers, items in [] are optional, and items enclosed in
{} indicate "choose one of'. Note that the brackets should not appear in the
actual string.)

The XPaneCeometry function returns a bitmask that indicates which of the four
values (width, height, xoffset, and yoffset) were actually found in the string and
whether the x and y values are negative. By convention, -0 is not equal to +0,
because the user needs to be able to say "position the window relative to the
right or bottom edge." For each value found, the corresponding argument is
updated. For each value not found, the argument is left unchanged. The bits are
represented by XValue, YValue, WidthValue, HeighlValue, XNegative, or
YNegative and are defined in <Xl1/Xutil.h>. They will be set whenever one of
the values is defined or one of the signs is set.

If the function returns either the XValue or YValue flag, you should place the
window at the requested position.
You pass in the border width (bwidth), size of the increments fwidth and fheight
(typically font width and height), and any additional interior space (xadder and
yadder) to ma~ it easy to compute the resulting size. The XGeometry function
returns the position the window should be placed given a position and a default
position. XGeometry determines the placement of a window using a geometry
specification as specified by XPaneGeometry and the additional information
about the window. Given a fully qualified default geometry specification and an
incomplete geometry specification, XPaneGeometry returns a bitmask value as
defined above in the XPaneGeometry call, by using the position argument.

The returned width and height will be the width and height specified by
default-FOsition as overridden by any user-specified position. They are not
affected by fwidth, fheight, xadder, or yadder. The x and y coordinates are com­
puted by using the border width, the screen width and height, padding as
specified by xadder and yadder, and the fheight and fwidth times the width and
height from the geometry specifications.

The XPaneColor function provides a simple way to create a standard user inter­
face to color. It takes a string specification of a color, typically from a command
line or XGetDefault option, and returns the corresponding red, green, and blue
values that are suitable for a subsequent call to XAllocColor or XSloreColor.
The color can be specified either as a color name (as in XAllocNamedColor) or as
an initial sharp sign character followed by a numeric specification, in one of the
following formats:

10/89

XParseG80metry (3X11) XParseGeometry(3X11)

IIRGB
IIRRGGBB
IIRRRGGGBBB
IIRRRRGGGGBBBB

(4 bits each)
(8 bits each)
(12 bits each)
(16 bits each)

The R, G, and B represent single hexadecimal digits (both uppercase and lower­
case). When fewer than 16 bits each are specified, they represent the most­
significant bits of the value. For example, 113a7 is the same as 113000aOOO7000.
The colormap is used only to determine which screen to look up the color on.
For example, you can use the screen's default colormap.

If the initial character is a sharp sign but the string otherwise fails to fit the above
formats or if the initial character is not a sharp sign and the named color does not
exist in the server's database, XParseColor fails and returns zero.

XParseColor can generate a BadColor error.

DIAGNOSTICS
BadColor A value for a Colormap argument does not name a defined

Colormap.

SEE ALSO
Xlib - C Language X Interface

10/89 Page 3

XPolygonReglon (3X11) XPolygonReglon (3X11)

NAME
XPolygonRegion, XOipBox - generate regions

SYNTAX
Region XPolygonRegion(points, n, fiU ,,"Ie)

XPoint points[]; -
int n;
int filt,,"le;

XaiF.Bo~(r, redJetllm)
Region r;
XRectangle "red Jetllm;

ARGUMENTS
filt,,"1e Specifies the fill-rule you want to set for the specified GC. You

can pa88 BvenOddRule or WindingRule.

n Specifies the number of points in the polygon.

points Specifies an array of points.

r Specifies the region.

red retllm Returns the smallest enclosing rectangle.

DESCRIPTION
The XPolygonRegion function retums a region £Or the polygon defined by the
points array. For an explanation of fill_rule, see xCreateGC.

The XCHpBox function returns the smallest rectangle enclosing the specified
region.

SEE ALSO
Xlib - C lAnguage X Interface

10/81 Page 1

XPutBackEvent (3X11) XPutBackEvent (3X11)

NAME
XPutBackEvent - put events back on the queue

SYNTAX
XPutBackEvent(display, event)

Display -display;
XEvent -event;

ARGUMENTS
displlily
event

DESCRIPTION

Specifies the connection to the XWIN server.

Specifies a pointer to the event.

The XPutBackEvent function pushes an event back onto the head of the display's
event queue by copying the event into the queue. This can be useful if you read
an event and then decide that you would rather deal with it later. There is no
limit to the number of times in succession that you can call XPutBackEvent.

SEE ALSO
XIfEvent(3Xll),
XNextEvent(3Xll),
XSendEvent(3Xl1)
Xliii - C LAnguage X Interface

10189 Page 1

XPutlmaga (3X11) XPutimaga (3X11)

NAME
XPutImage, XGetlmage, XGetSublmage - transfer images

SYNTAX
XPutlmage(display, d, ge, image, src_x, src.JI, dest_x, dest.JI, width, height)

Display"display;
Drawable d;
GCge;
XImage "image;
int src_x, src.JI;
int dest _x, dest.JI;
unsigned int width, height;

Xlmage "XGetlmage(display, d, x, y, width, height, plane_mask, format)
Display"display;
Drawable d;
int x, y;
unsigned int width, height;
Ions plane_mask;
int format;

Xlmage "XGetSublmage(display, d, x, y, width, height, plane.J1lllSk, format,
destjmage, dest_x,

. dest.JI)
Display "display;
Drawable d;
int x, y;
unsigned int width, height;
unsigned long plane_mask;
int format;
Xlmage "dest_image;
int dest_x, dest.JI;

ARGUMENTS

10189

d Specifies the drawable.

destjmage
dest x
destJ

display
format

gc

Specify the destination image.

Specify the x and y coordinates, which are relative to the origin
of the drawable and are the coordinates of the subimage or
which are relative to the origin of the destination rectangle,
specify its upper-left comer, and determine where the subimage
is placed in the destination image.

Specifies the connection to the XWIN server.

Specifies the format for the image. You can pass XYBitmap,
XYPixmap, or ZPixmap.

Specifies the GC.

Page 1

XPutlmage (3X11) XPutlmage (3X11)

imilge

plane_mRSk

src x

src..JI

width
height

x
y

Specifies the image you want combined with the rectangle.

Specifies the plane mask.
Specifies the offset in X from the left edge of the image defined
by the XImage data structure.

Specifies the offset in Y from the top edge of the image defined
by the XImage data structure.

Specify the width and height of the subimage, which define the
dimensions of the rectangle.

Specify the x and y coordinates, which are relative to the origin
of the drawable and define the upper-left comer of the rectan­
gle.

DESCRIPTION

Page 2

The XPutImage function combines an image in memory with a rectangle of the
specified drawable. If XYBitmap format is used, the depth must be one, or a
BadMatch error results. The foreground pixel in the GC defines the source for
the one bits in the image, and the background pixel defines the source for the
zero bits. For XYPixmap and ZPixmap, the depth must match the depth of the
drawable, or a BadMatdt error results. The section of the image defined by the
src_x, srcJ, width, and height arguments is drawn on the specified part of the
drawable.

This function .. uses these GC components: function, plane-mask, subwindow­
mode, clip-x-origin, clip-y-origin, and clip-mask. It also uses these GC mode­
dependent components: foreground and background.

XPutImage can generate BadDrawable, BadGe, BadMatdt, and BadValue
errors.

The XGetlmage function returns a pointer to an XImage structure. This struc­
ture provides you with the contents of the specified rectangle of the drawable in
the format you specify~If thefonnat arsument is XYPixmap, the image contains
only the bit planes you passe(i· to· the . p~ane _mask arguJl\ent. If tlle plane_mask
argument only requests a subset of the planes of the di~p~y, tlle depth of the
returned image will be the number of planes requested. If the fonriai argument
is ZPixmap, XGetImage returns as zero the bits in all planes not specified in the
plane_mask argument. The function performs no range checking on the values in
plane_mask and ignores extraneous bits.

XGetImage returns the depth of the image to the depth member of the XImage
structure. The depth of the image is as specified when the drawable was created,
except when getting a subset of the planes in XYPixmap format, when the depth
is given by the number of bits set to 1 in plane_mask.

If the drawable is a pixmap, the given rectangle must be wholly contained within
the pixmap, or a BadMatch error results. If the drawable is a window, the win­
dow must be viewable, and it must be the case that if there were no inferiors or
overlapping windows, the specified rectangle of the window would be fully visi­
ble on the screen and wholly contained within the outside edges of the window,

10/88

XPutlmage (3X11) XPutlmage (3X11)

or a BadMatch error results. Note that the borders of the window can be
included and read with this request. If the window has backing-store, the
backing-store contents are returned for regions of the window that are obscured
by noninferior windows. If the window does not have backing-store, the returned
contents of such obscured regions are undefined. The returned contents of visible
regions of inferiors of a different depth than the specified window's depth are
also undefined. The pointer cursor image is not included in the returned con­
tents.

XGetImage can generate BadDrawable, BadMatch, and BadValue errors.

The XGetSubImage function updates desUmage with the specified subimage in
the same manner as XGetImage. If the format argument is XYPixmap, the image
contains only the bit planes you passed to the plane_mask argument. If the for­
mat argument is ZPixmap, XGetSubImage returns as zero the bits in all planes
not specified in the plane_mask argument. The function performs no range
checking on the values in plane_mask and ignores extraneous bits. As a conveni­
ence, XGetSubImage returns a pointer to the same XImage structure specified by
desUmage.

The depth of the destination XImage structure must be the same as that of the
drawable. If the specified subimage does not fit at the specified location on the
destination image, the right and bottom edges are clipped. If the drawable is a
pixmap, the given rectangle must be wholly contained within the pixmap, or a
BadMatch error results. If the drawable is a window, the window must be view­
able, and it must be the case that if there were no inferiors or overlapping win­
dows, the specified rectangle of the window would be fully visible on the screen
and wholly contained within the outside edges of the window, or a BadMatch
error results. If the window has backing-store, then the backing-store contents
are returned for regions of the window that are obscured by noninferior win­
dows. If the window does not have backing-store, the returned contents of such
obscured regions are undefined. The returned contents of visible regions of infe­
riors of a different depth than the specified window's depth are also undefined.

XGetSubImage can generate BadDrawable, BadGC, BadMatch, and BadValue
errors.

DIAGNOS11CS
BadDrawable A value for a Drawable argument does not name a defined

Window or Pixmap.

BadGC A value for a GContext argument does not name a defined
GContext.

BadMatch An InputOnly window is used as a Drawable.

BadMatch Some argument or pair of arguments has the correct type and
range but fails to match in some other way required by the
request.

BadValue Some numeric value falls outside the range of values accepted
by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted.
Any argument defined as a set of alternatives can generate this
error.

10/89 Page 3

XPutlmage (3X11) XPutimage (3X11)

SEE ALSO
Xlib - C Langullge X Interface

Page 4 10/89

XrmPutR880urce (3X11) XrmPutR880urce (3X11)

NAME
XrmPutResource, XnnQPutResource, XnnPutStringResource,
XrmQPutStringResource, XnnPutLineResource - store database resources

SYNTAX
void XnnPutResource(dRtabase, specifier, type, wlue)

XrmDatabase Itdatabase;
char Itspecifier;
char Ittype;
XnnValue Itwlue;

void XrmQPutResource(database, bindings, qUllTks, type, wlue)
XrmDatabase Itdatabase;
XrmBindingList bindings;
XnnQuarkList quIlrks;
XnnRepresentation type;
XnnValue Itwlue;

void XrmPutStringResource(dRtabase, specifier, wlue)
XnnDatabase Itdatabase;
char Itspecifier;
char Itwlue;

void XnnQPutStringResource(database, bindings, quarks, wlue)
XrmDatabase Itdatabase;
XnnBindingList bindings;
XnnQuarkList quIlrks;
char Itwlue;

void XnnPutLineResource(database, line)
XnnDatabase Itdatabase;
char Itline;

ARGUMENTS
bindings Specifies a Jist of bindings.

database

line

quarks

specifier
type
value

Specifies a pointer to the resource database.

Specifies the resource value pair as a single string. A single
colon (:) separates the name from the value.

Specifies the complete or partial name or the class list of the
resource.

Specifies a complete or partial specification of the resource.

Specifies the type of the resource.

Specifies the value of the resource, which is specified as a string.

DESCRIPTION

10/89

If database contains NULL, XrmPutResourc:e creates a new database and returns
a pointer to it. XrmPutResource is a convenience function that calls
XrmStrlngToBindingQuarkList followed by:

Page 1

XrmPutR880urce (3X11) XrmPutR880urca (3X11)

XrmQPutResource(database, bindings, quarks, XrmStringToQuark(type), value)

If database contains NULL, XrmQPutRe80urce creates a new database and
returns a pointer to it.

If database contains NULL, XrmPutStringResoun:e creates a new database and
returns a pointer to it. XrmPutStringRe8oun:e adds a resource with the specified
value to the specified database. XrmPutStringResoun:e is a convenience routine
that takes both the resource and value as null-terminated strings, converts them
to quarks, and then calls XrmQPutResoun:e, using a ''String'' representation
type.
If database contains NULL, XrmQPutStringResoun:e creates a new database and
returns a pointer to it. XrmQPutStringRe8oun:e is a convenience routine that
constructs an XrmValue for the value string (by calling 8trien to compute the
size) and then calls XrmQPutRe8oun:e, using a "String" representation type.
If database contains NULL, XrmPutLineRe80urce creates a new database and
returns a pointer to it. XrmPutUneRe8oun:e adds a single resource entry to the
specified database. Any white space before or after the name or colon in the line
argument is ignored. The value is terminated by a new-line or a NULL character.
To allow values to contain embedded new-line characters, a '~" is recognized
and replaced by a new-line character. For example, line might have the value
"xtermltbackground:green\n". Null-terminated strings without a new line are also
permitted.

SEE ALSO

Page 2

XrmGetResource(3Xll),
XrmInitialize(3Xll),
XrmMergeDatabases(3Xll),
XrmUniqueQuark(3Xll)
Xlib - C LAngruzge X Interface

10/89

XQueryBestSlze (3X11) XQueryBestSlze (3X11)

NAME
XQueryBestSize, XQueryBestTile, XQueryBestStipple - determine efficient sizes

SYNTAX
Status XQueryBestSize(display, class, which_screen, width, height, widthJeturn,

height Jeturn)
Display "display;
int class;
Drawable which screen;
unsigned int width, height;
unsigned int "width Jeturn, "height Jeturn;

Status XQueryBestTile(display, which _screen, width, height, width Jeturn,
height Jeturn)

Display"display;
Drawable which screen;
unsigned int width, height;
unsigned int "widthJeturn, "heightJeturn;

Status XQueryBestStipple(display, which_screen, width, height, widthJeturn,
height Jeturn)

Display"display;
Drawable which screen;
unsigned int width, height;
unsigned int "width Jeturn, "height Jeturn;

ARGUMENTS
class Specifies the class that you are interested in. You can pass

TileShape, CursorShape, or StippleShape.

display
width
height
which screen
width return
height __ return

Specifies the connection to the XWIN server.

Specify the width and height.

Specifies any drawable on the screen.

Return the width and height of the object best supported by the
display hardware.

DESCRIPTION

10/89

The XQueryBestSize function returns the best or closest size to the specified size.
For CursorShape, this is the largest size that can be fully displayed on the screen
specified by which_screen. For TileShape, this is the size that can be tiled
fastest. For StippleShape, this is the size that can be stippled fastest. For Cur­
sorShape, the drawable indicates the desired screen. For TileShape and Stip­
pleShape, the drawable indicates the screen and possibly the window class and
depth. An InputOnly window cannot be used as the drawable for TileShape or
StippleShape, or a BadMatch error results.

XQueryBestSize can generate BadDrawable, BadMatch, and BadValue errors.

Page 1

XQueryBestSlze (3X11) XQueryBestSlze (3X11)

The XQueIYBestTile function returns the best or closest size, that is, the size that
can be tiled fastest on the screen specified by which_screen. The drawable indi­
cates the screen and possibly the window class and depth. If an
InputOnly window is used as the drawable, a BadMatch error results.

XQueIYBestTile can generate BadDrawable and BadMatch errors.

XQueIYBestTile can generate BadDrawable and BadMatch errors.

The XQu~BestStipple function returns the best or closest size, that is, the size
that can be stippled fastest on the screen specified by which_screen. The draw­
able indicates the screen and possibly the window class and depth. If an
InputOnly window is used as the drawable, a BadMatch error results.

XQueIYBestStipple can generate BadDrawable and BadMatch errors.

DIAGNOSTICS
BadMatch An InputOnly window is used as a Drawable.

BadDrawable A value for a Drawable argument does not name a defined
Window or Pixmap.

BadMatch The values do not exist for an InputOnly window.

BadValue Some numeric value falls outside the range of values accepted
by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted.
Any argument defined as a set of alternatives can generate this
error.

SEE ALSO

Page 2

XCreateGC(3Xll),
XSetArcMode(3Xll),
XSetOipOrigin(3Xll),
XSetFillStyle(3Xll),
XSetFont(3Xll),
XSetLineAttributes(3Xll),
XSetState(3Xll),
XSetTile(3Xll)
Xlib - C LAnguage X Interface

10/89

XQuaryColor (3X11) XQuaryColor(3X11)

NAME
XQueryColor, XQueryColors, XLookupColor - obtain color values

SYNTAX
XQueryColor(display, colomuzp, defJn _out)

Display -display;
Colormap colomuzp;
XColor -/hf_in_out;

XQueryColors(di~lay, colorrruap, defsJn_out, ncolors)
Display -displtly;
Colormap colomuzp;
XColor defsJn_ou.t[);
int ncolors;

Status XLookupColor(display, colomuzp, color _1Ul1tIe, eXQCUuU'etu.rn,
screen _ defJetum)

Display -display;
Colormap colomuzp;
char -color 1Ul1tIe. - ,
XColor -eXQCf_defJetu.rn, -screen_defJeturn;

ARGUMENTS
colonnap Specifies the colormap.

color 1Ul1tIe Specifies the color name string (for example, red) whose color
definition structure you want returned.

Specifies and returns the RCB values for the pixel specified in
the structure.

Specifies and returns an array of color definition structures for
the pixel specified in the structure.

display Specifies the connection to the XWIN server.

eXQCf _ def Jetum Returns the exact RCB values.

ncolors Specifies the number of XColor structures in the color definition
array.

screen_defJetum Returns the closest RCB values provided by the hardware.

DESCRIPTION

10189

The XQueryColor function returns the RCB values for each pixel in the XColor
structures and sets the DoRed, DoCreen, and DoBlue flags. The XQueryColors
function returns the RCB values for each pixel in the XColor structures and sets
the DoRed, DoCreen, and DoBlue flags.

XQueryColor and XQueryColors can generate BadColor and BadValue errors.

The XLookupColor function looks up the string name of a color with respect to
the screen associated with the specified colormap. It returns both the exact color
values and the closest values provided by the screen with respect to the visual
type of the specified colormap. You should use the ISO Latin-l encoding; upper­
case and lowercase do not matter. XLookupColor returns nonzero if the name
existed in the color database or zero if it did not exist.

Page 1

XQueryColor (3X11) XQueryColor (3X11)

DIAGNOSTICS
BadColor A value for a Colonnap argument does not name a defined

Colormap.
BadValue Some numeric value falls outside the range of values accepted

by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted.
Any argument defined as a set of alternatives can generate this
error.

SEE ALSO

Page 2

XAllocColor(3Xl1),
XCreateColormap(3Xll),
XStoreColors(3Xll)
Xlib - C LAnguage X Interface

10/89

XQueryPolnter (3X11) XQueryPolnter (3X11)

NAME
XQueryPointer - get pointer coordinates

SYNTAX
Bool XQueryPointer(display, w, rootJetum, childJetum, TOOt_xJetum,

TOot .JI Jetum, win _x _ retum, win.JI Jetum, 1tIIlSk Jetum)
Display "display;
Windoww;
Window"root retum, "child retum;
int "root_xJetUm, "roof.JIJdum;
int -W;n_xJetum, -W;n.JIJetum;
unsigned int .. 1tIIlSk _ retum;

ARGUMENTS
child retum
display
1tIIlSk retum

root retum
root x retum
root .JIJetum

w

win x retum

Returns the child window that the pointer is located in, if any.

Specifies the connection to the XWIN server.

Returns the current state of the modifier keys and pointer but­
tons.

Returns the root window that the pointer is in.

Return the pointer coordinates relative to the root window's ori-
gin.

Specifies the window.

win.J/ _ retum Return the pointer coordinates relative to the specified window.

DESCRIPTION
The XQueryPointer function returns the root window the pointer is logically on
and the pointer coordinates relative to the root window's origin. If
XQueryPointer returns False, the pointer is not on the same screen as the
specified window, and XQuel)'Pointer returns None to child_return and zero to
win_x_retum and winy_return. If XQueryPointer returns True, the pointer
coordinates returned to win_x_retum and winy_return are relative to the origin
of the specified window. In this case, XQuel)'Pointer returns the child that con­
tains the pointer, if any, or else None to child_return.

XQueryPointer returns the current logical state of the keyboard buttons and the
modifier keys in mask_return. It sets mask_return to the bitwise inclusive OR of
one or more of the button or modifier key bitmasks to match the current state of
the mouse buttons and the modifier keys.

XQueryPointer can generate a BadWindow error.

DIAGNOSTICS
BadWindow A value for a Window argument does hot name a defined Win­

dow.

SEE ALSO

10189

XGetWindow Attribules(3Xll),
XQueryTree(3Xll)
Xlib - C LAnguage X Interface

Page 1

XQueryTree (3X11) XQueryTree (3X11)

NAME
XQueryTree - query window tree information

SYNTAX
Status XQueryTree(display, w, rootJetum, parentJetum, children_retum,
nchildren retum)

Display Itdispllly;
Windoww;
Window Itroot retum;
Window ItparentJetum;
Window children retum;
unsigned int Itnchiidren Jetum;

ARGUMENTS
children retum Returns a pointer to the list of children.

display Specifies the connection to the XWIN server.

nchildren retum Returns the number of children.

parent _ retum
root retum
w

Returns the parent window.
Returns the root window.

Specifies the window whose list of children, root, parent, and
number of children you want to obtain.

DESCRIPTION

BUGS

The XQueryTree function retums the root 10, the parent window 10, a pointer to
the list of children windows, and the number of children in the list for the
specified window. The children are listed in current stacking order, from bottom­
most (first) to topmost (last). XQueryTree returns zero if it fails and nonzero if it
succeeds. To free this list when it is no longer needed, use XFree.

This really should retum a screen It, not a root window 10.

SEE ALSO
XGetWindowAttributes(3Xll),
XQueryPointer(3Xll)
Xlib - C lAnguage X Interface

10189 Page 1

XRalseWlndow (3X11) XRalseWlndow (3X11)

NAME
XRaiseWindow, XLowerWindow, XCirculateSubwindows, XCirculateSubwin­
dowsUp, XCirculateSubwindowsDown, XRestackWindows - change window
stacking order

SYNTAX
XRaiseWindow(display, w)

Display"display;
Window w;

XLowerWindow(display, w)
Display "display;
Window w;

XCirculateSubwindows (display, w, direction)
Display "display;
Window w;
int direction;

XCirculateSubwindowsUp(display, w)
Display "display;
Windoww;

XCirculateSubwindowsDown(display, w)
Display"display;
Windoww;

XRestackWindows(display, windows, nwindows);
Display"display;
Window windows[);
int nwindows;

ARGUMENTS
direction

display
nwindows
w

windows

Specifies the direction (up or down) that you want to circulate
the window. You can pass RaiseLowest or LowerHighest.

Specifies the connection to the XWIN server.
Specifies the number of windows to be restacked.
Specifies the window.

Specifies an array containing the windows to be restacked.
DESCRIPTION

10/89

The XRaiseWindow function raises the specified window to the top of the stack
so that no sibling window obscures it. If the windows are regarded as overlap­
ping sheets of paper stacked on a desk, then raising a window is analogous to
moving the sheet to the top of the stack but leaving its x and y location on the
desk constant. Raising a mapped window may generate Expose events for the
window and any mapped subwindows that were formerly obscured.

If the override-redirect attribute of the window is False and some other client has
selected SubstructureRedirectMask on the parent, the XWIN server generates a
ConfigureRequest event, and no processing is performed. Otherwise, the win­
dow is raised.

Page 1

XRalsaWlndow (3X11) XRalsaWlndow (3X11)

Page 2

XRaiseWindow can generate a BadWindow error.
The XLowerWindow function lowers the specified window to the bottom of the
stack so that it does not obscure any sibling windows. If the windows are
regarded as overlapping sheets of paper stacked on a desk, then lowering a win­
dow is analogous to moving the sheet to the bottom of the stack but leaving its x
and y location on the desk constant. Lowering a mapped window will generate
Expose events on any windows it formerly obscured.
If the override-redirect attribute of the window is FaIse and some other client has
selected SubstructureRedirectMask on the parent, the XWIN server generates a
ConfigureRequest event, and no processing is performed. Otherwise, the win­
dow is lowered to the bottom of the stack.
XLowerWindow can generate a BadWindow error.
The XCirculateSubwindows function circulates children of the specified window
in the specified direction. If you specify RaiseLowest, XCircuIateSubwindows
raises the lowest mapped child (if any) that is occluded by another child to the
top of the stack. If you specify LowerHighest, XCirculateSubwindows lowers
the highest mapped child (if any) that occludes another child to the bottom of the
stack. Exposure processing is then performed on formerly obscured windows. If
some other client has selected Su&structureRedirectMask on the window, the
XWIN server generates a CirculateRequest event, and no further processing is
performed. If a child is actually restacked, the XWIN server generates a
CirculateNotify event.

XCirculateSubwindows can generate BadValue and BadWindowerrors.
The XCirculateSubwindowsUp function raises the lowest mapped child of the
specified window that is partially or completely occluded by another child. Com­
pletely unobscured children are not affected.. This is a convenience function
equivalent to XCirculateSubwindows with RaiseLowest specified.
XCirculateSubwindowsUp can generate a BadWindowerror.

The XCirculateSubwindowsDown function lowers the highest mapped child of
the specified window that partially or completely occludes another child. Com­
pletely unobscured children are not affected. This is a convenience function
equivalent to XCirculateSubwindows with LowerHighest specified.
XCirculateSubwindowsDown can generate a BadWindow error.
The XRestackWindows function restacks the windows in the order specified,
from top to bottom. The stacking order of the first window in the windows array
is unaffected, but the other windows in the array are stacked underneath the first
window, in the order of the array. The stacking order of the other windows is
not affected. For each window in the window array that is not a child of the
specified window, a BadMatch error results.
If the override-redirect attribute of a window is FaIse and some other client has
selected SubstructureRedirectMask on the parent, the XWIN server generates
ConfigureRequest events for each window whose override-redirect flag is not
set, and no further processing is performed. Otherwise, the windows will be res­
tacked in top to bottom order.

10/89

XRaI .. Wlndow(3X11) XRalseWlndow(3X11)

XRestackWindows can generate BadWindowerror.

DIAGNOSTICS
BadValue Some numeric value falls outside the range of values accepted

by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted.
Any argument defined as a set of alternatives can generate this
error.

BadWindow A value for a Window argument does not name a defined Win­
dow.

SEE ALSO
XChangeWindowAttributes(3Xll),
XConfigureWindow(3Xll),
XCreateWindow(3Xll),
XDestroyWindow(3Xll),
XMapWindow(3Xll),
XUnmapWindow(3Xll)
Xlib - C UmglUlgt X Interface

10188 Page 3

XReadBltmapFUe (3X11) XReadBltmapFlle (3X11)

NAME
XReadBitmapFile, XWriteBitmapFile, XCreatePixmapFromBitmapData, XCreateBit­
mapFromData - manipulate bitmaps

SYNTAX
int XReadBitmapFile(display, d, filename, width Jeturn, height Jeturn, bitmap Jeturn,

x_hot Jeturn, y _ hot Jeturn)
Display -displily;
Drawable d;
char -filename;
unsigned int -width Jeturn, -height Jeturn;
Pixmap -bitmap Jeturn;
int -x_hot Jeturn, -y _hot Jeturn;

int XWriteBitmapFile(displily, file1lJlme, bitmap, width, height, x_hot, Y _ hot)
Display -displily;
char -filename;
Pixmap bitmap;
unsigned int width, height;
int x_hot, y_hot;

Pixmap XCreatePixmapFromBitmapData(displily, d, data, width, height, fg, bg, depth)
Display -display;
Drawable d;
char -data;
unsigned int width, height;
unsigned long fg, bg;
unsigned int depth;

Pixmap XCreateBitmapFromData(displily, d, data, width, height)
Display -displily;
Drawable d;
char -data;
unsigned int width, height;

ARGUMENTS

10/89

bitmap Specifies the bitmap.

bitmap Jeturn
d

data
data

depth

display

fg
bg
file1lilme

Returns the bitmap that is created.

Specifies the drawable that indicates the screen.

Specifies the data in bitmap format.

Specifies the location of the bitmap data.

Specifies the depth of the pixmap.

Specifies the connection to the XWIN server.

Specify the foreground and background pixel values to use.

Specifies the file name to use. The format of the file name is
operating-system dependent.

Page 1

XReadBltrnapFlle (3X11) XReadBltmapFl1e (3X11)

width
height

width return
height __ return

x hot
y)wt

x hot return

Specify the width and height.

Return the width and height values of the read in bitmap file.

Specify where to place the hotspot coordinates (or -1,-1 if none
are present) in the file.

y:ho(return Return the hotspot coordinates.

DESCRIPTION

Page 2

The XReadBitmapFile function reads in a file containing a bitmap. The file can
be either in the standard X version 10 format (that is, the format used by X ver­
sion 10 bitmap program) or in the X version 11 bitmap format. If the file cannot
be opened, XReadBitmapFUe returns BitmapOpenFalled. If the file can be
opened but does not contain valid bitmap data, it returns BitmapFilelnvaHd. If
insufficient working storage is allocated, it returns BitmapNoMemory. If the file
is readable and valid, it returns BitmapSucce8s.

XReadBitmapFile returns the bitmap's height and width, as read from the file, to
width_return and height_retum. It then creates a pixmap of the appropriate size,
reads the bitmap data from the file into the pixmap, and assigns the pixmap to
the caller's variable bitmap. The caller must free the bitmap using XFreePixmap
when finished. If name_x _hot and name J _hot exist, XReadBitmapFlle returns
them to x_hot_return and y_hotJeturn; otherwise, it returns -1,-1.

XReadBitmapFile can generate BadAlloc and BadDrawable errors.

The XWriteBitmapFile function writes a bitmap out to a file. While XReadBit­
mapFUe can read in either X version 10 format or X version 11 format,
XWriteBitmapFUe always writes out X version 11 format. If the file cannot be
opened for writing, it returns BitmapOpenFailed. If insufficient memory is allo­
cated, XWriteBitmapFUe returns BitmapNoMemory; otherwise, on no error, it
returns BitmapSucce&s. If x_hot and y_hot are not -1, -1, XWriteBitmapFile
writes them out as the hotspot coordinates for the bitmap.

XWriteBitmapFUe can generate BadDrawable and BadMatch errors.

The XCreatePixmapFromBitmapData function creates a pixmap of the given
depth and then does a bitmap-format XPutImage of the data into it. The depth
must be supported by the screen of the specified drawable, or a BadMatch error
results.

XCreatePixmapFromBitmapData can generate BadAlloc and BadMatch errors.

The XCreateBitmapFromData function allows you to include in your C program
(using #include) a bitmap file that was written out by XWriteBitmapFile ex ver­
sion 11 format only) without reading in the bitmap file. The fo1lowing example
creates a gray bitmap:

10/89

XReadBltmapFlle (3X11) XReadBltmapFlle (3X11)

#include "gray.bitmap"

Pixmap bitmap;
bitmap = XCreateBitmapFromData(display, window, gray_bits, gray_width, gray_height);

If insufficient working storage was allocated, XCreateBitmapFromData returns
None. It is your responsibility to free the bitmap using XFreePixmap when
finished.

XCreateBitmapFromData can generate a BadAlloc error.

DIAGNOSTICS
BadAlloc The server failed to allocate the requested resource or server

memory.

BadOrawable

BadMatch

SEE ALSO

A value for a Drawable argument does not name a defined
Window or Pixmap.

An InputOnly window is used as a Drawable.

XZib - C LAnguage X Interfac4

10189 Page 3

XRecolorCUrsor (3X11) XRecolorCursor (3X11)

NAME
XRecolorCursor, XFreeCursor, XQueryBestCursor - manipulate cursors

SYNTAX
XRecolorCursor(display, cursor, foreground _color, background_color)

Display"display;
Cursor cursor;
XColor "foreground_color, "background_color;

XFreeCursor (display, cursor)
Display"display;
Cursor cursor;

Status XQueryBestCursor(display, d, width, height, widthJeturn, heightJeturn)
Display"display;
Drawable d;
unsigned int width, height;
unsigned int "widthJeturn, "heightJeturn;

ARGUMENTS
background_color Specifies the RGB values for the background of the source.

cursor

d

display
foreground_color
width
height

width return
heigh(return

Specifies the cursor.

Specifies the drawable, which indicates the screen.

Specifies the connection to the XWIN server.

Specifies the RGB values for the foreground of the source.

Specify the width and height of the cursor for which you want
the size information.

Return the best width and height that is closest to the specified
width and height.

DESCRIPTION

10/89

The XRecolorCursor function changes the color of the specified cursor, and if the
cursor is being displayed on a screen, the change is visible immediately.

XRecolorCursor can generate a BadCursor error.

The XFreeCursor function deletes the association between the cursor resource ID
and the specified cursor. The cursor storage is freed when no other resource
references it. The specified cursor ID should not be referred to again.

XFreeCursor can generate a BadCursor error.

Some displays allow larger cursors than other displays. The XQueryBestCursor
function provides a way to find out what size cursors are actually possible on the
display. It returns the largest size that can be displayed. Applications should be
prepared to use smaller cursors on displays that cannot support large ones.

XQueryBestCursor can generate a BadDrawable error.

Page 1

XRecolorCuraor (3X11) XRecolorCuraor (3X11)

DIAGNOSTICS
BadCul'lor
BadDrawable

A value for a Cursor argument does not name a defined Cursor.

A value for a Drawable argument does not name a defined
Window or Pixmap.

SEE ALSO
XCreateFontCursor(3Xl1),
XDefineCusor(3Xll)
Xlib - C unp4ge X Interftu:8

Page 2 10/81

XReparantWlndow (3X11) XReparantWlndow (3X11)

NAME
XReparentWindow - reparent windows

SYNTAX
XReparentWindow(display, w, parent, x, y)

Display"display;
Windoww;
Window parent;
int x, y;

ARGUMENTS
display Specifies the connection to the XWIN server.

Specifies the parent window. parent
w

x
y

Specifies the window.

Specify the x and y coordinates of the position in the new
parent window.

DESCRIPTION
If the specified window is mapped, XReparentWindow automatically performs
an Unmap Window request on it, removes it from its current position in the
hierarchy, and inserts it as the child of the specified parent. The window is
placed in the stacking order on top with respect to sibling windows.

After reparenting the specified window, XReparentWindow causes the XWIN
server to generate a ReparentNotify event. The override_redirect member
returned in this event is set to the window's corresponding attribute. Window
manager clients usually should ignore this window if this member is set to True.
Finally, if the specified window was originally mapped, the XWIN server automat­
ically performs a Map Window request on it.

The XWIN server performs normal exposure processing on formerly obscured win­
dows. The XWIN server might not generate Expose events for regions from the
initial UnmapWindow request that are immediately obscured by the final
Map Window request. A BadMatch error results if:

• The new parent window is not on the same screen as the old parent win­
dow.

• The new parent window is the specified window or an inferior of the
specified window.

• The specified window has a ParentRelative background, and the new
parent window is not the same depth as the specified window.

XReparentWindow can generate BadMatch and BadWindow errors.

DIAGNOSTICS
BadWindow A value for a Window argument does not name a defined Win­

dow.

SEE ALSO
XChangeSaveSet(3Xll)
Xlib - C Language X Interface

10189 Page 1

XSaveContext (3X11) XSaveContext(3X11)

NAME
XSaveContext, XFindContext, XDeleteContext, XUniqueContext - associative
look-up routines

SYNTAX
int XSaveContext(display, w, context, data)

Display "display;
Windoww;
XContext context;
caddr _ t data;

int XFmdContext(display, w, context, datRJeturn)
Display"display;
Windoww;
XContext context;
caddr_t .. datRJeturn;

int XDeleteContext(display, w, context)
Display"display;
Windoww;
XContext context;

XContext XUniqueContextO

ARGUMENTS
context Specifies the context type to which the data belongs.

data

data return
display

w

Specifies the data to be associated with the window and type.

Returns a pointer to the data.
Specifies the connection to the XWIN server.

Specifies the window with which the data is associated.
DESCRIPTION

If an entry with the specified window and type already exists, XSaveContext
overrides it with the specified context. The XSaveContext function returns a
nonzero error code if an error has occurred and zero otherwise. Possible errors
are XCNOMEM (out of memory).

Because it is a return value, the data is a pointer. The XFindContext function
returns a nonzero error code if an error has occurred and zero otherwise. Possi­
ble errors are XCNOENT (context-not-found).

The XDeleteContext function deletes the entry for the given window and type
from the data structure. This function returns the same error codes that
XFindContext returns if called with the same arguments. XDeleteContext does
not free the data whose address was saved.

The XUniqueContext function creates a unique context type that may be used in
subsequent calls to XSaveContext.

SEE ALSO
Xlib - C LAnguJlge X Interface

10189 Page 1

XSelectlnput (3X11) XSelectlnput(3X11)

NAME
XSelectInput - select input events

SYNTAX
XSelectInput(display, w, evenUnlls1c)

Display -display;
Windoww;
long euenUNlsk;

ARGUMENTS
display Specifies the connection to the XWIN server.

euent mIlSk Specifies the event mask.

w Specifies the window whose events you are interested in.
DESCRIPTION

The XSeledlnput function requests that the XWIN server report the events associ­
ated with the specified event mask. Initially, X will not report any of these
events. Events are reported relative to a window. If a window is not interested
in a device event, it usually propagates to the closest ancestor that is interested,
unless the do_not...,propagate mask prohibits it.
Setting the event-mask attribute of a window overrides any previous call for the
same window but not for other clients. Multiple clients can select for the same
events on the same window with the following restrictions:

• Multiple clients can select events on the same window because their event
masks are disjoint. When the XWIN server generates an event, it reports it to
all interested clients.

• Only one client at a time can select CirculateRequest, ConfigureRequest, or
MapRequest events, which are associated with the event mask Substruc­
tureRedirectMask.

• Only one client at a time can select a ResizeRequest event, which is associ­
ated with the event mask ResizeRediredMask.

• Only one client at a time can select a ButtonPress event, which is associated
with the event mask ButtonPressMask.

The server reports the event to all interested clients.
XSeledlnput can generate a BadWindow error.

DIAGNOSTICS
BadWindow A value for a Window argument does not name a defined Win­

dow.
SEE ALSO

Xlib - C lAnguage X Interface

10189 Page 1

XSetArcMode (3X11) XSetArcMode (3X11)

NAME
XSetArcMode, XSetSubwindowMode, XSetCraphicsExposure - CC convience
routines

SYNTAX
XSetArcMode(display, ge, arc_mode)

Display -display;
CCge;
int arc_mode;

XSetSubwindowMode(display, gc, subwindow_mode)
Display -display;
CCge;
int subwindow _ mode;

XSetGraphicsExposures(display, gc, graphics_exposures)
Display -display;
GCge;
Bool graphics_exposures;

ARGUMENTS
arc mode Specifies the arc mode. You can pass ArcChord or ArcPieSlice.

Specifies the connection to the XWIN server. display
gc
graphics_exposures

Specifies the CC.

Specifies a Boolean value that indicates whether you want Gra­
phicsExpose and NoExpose events to be reported when calling
XCopyArea and XCopyPlane with this Cc.

subwindow mode Specifies the subwindow mode. You can pass ClipByChiIdren
or IncludeInferiors.

DESCRIPTION
The XSetArc:Mode function sets the arc mode in the specified CC.

XSetArc:Mode can generate BadAlloc, BadGC, and BadValue errors.
The XSetSubwindowMode function sets the subwindow mode in the specified
Cc.
XSetSubwindowMode can generate BadAlloc, BadGC, and BadValue errors.

The XSetGraphicsExposures function sets the graphics-exposures flag in the
specified Cc.

XSetGraphicsExposures can generate BadAlloc, BadGC, and BadValue errors.
DIAGNOSTICS

BadAlloc The server failed to allocate the requested resource or server
memory.

BadGC

10189

A value for a CContext argument does not name a defined
CContext.

Page 1

XSetArcMode (3X11) XSetArcMode (3X11)

BadValue Some numeric value falls outside the range of values accepted
by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted.
Any argument defined as a set of alternatives can generate this
error.

SEE ALSO

Page 2

XCreateGC(3Xll),
XQueryBestSize(3Xll),
XSetCipOrigin(3Xll),
XSetFillStyle(3Xl1),
XSetFont(3Xll),
XSetLineAttributes(3Xll),
XSetState(3Xll),
XSetTile(3Xll)
Xlib - C Langwzge X Interface

10/89

XSetClassHlnt (3X11) XSetClassHlnt (3X11)

NAME
XSetClassHint, XGetCassHint - set or get class hint

SYNTAX
XSetClassHint(display, w, clllss_hints)

Display"display;
Windoww;
XClassHint "clllss _hints;

Status XGetCassHint(display, w, class_hints_return)
Display "display;
Windoww;
XClassHint "clllss _hints_return;

ARGUMENTS
c1Ilss hints Specifies a pointer to a XCla •• Hint structure that is to be used.

clllss hints return
- - Returns the XCla •• Hint structure.

display Specifies the connection to the XWIN' server.

w Specifies the window.

DESCRIPTION
The XSetCla •• Hint function sets the class hint for the specified window.

XSetClassHint can generate BadAlloc and BadWindow errors.

The XGetCla •• Hint function returns the class of the specified window. To free
res_name and res_class when finished with the strings, use XFree.

XGetCla •• Hint can generate a BadWindow error.

PROPERTY
WM CLASS

DIAGNOSTICS
BadAlloc The server failed to allocate the requested resource or server

memory.

BadWindow A value for a Window argument does not name a defined Win­
dow.

SEE ALSO

10189

XSetCommand(3Xll),
XSetIconName(3Xll),
XSetIconSizeHints(3Xll),
XSetNormalHints(3Xll),
XSetSizeHints(3Xll),
XSetStandardProperties(3Xl1),
XSetTransientForHint(3Xll),
XSetWMHints(3Xl1),
XSetZoomHints(3Xll),
XStoreName(3Xll)
Xlib - C LAnguage X Interface

Page 1

XSetCllpOrlgln (3X11) XSetCllpOrlgln {3X11}

NAME
XSetClipOrigin, XSetClipMask, XSetOipRectangles - GC convenience routines

SYNTAX
XSetClipOrigin(display, gc, clip_x_origin, clip.JI_origin)

Display "display i
GCgci
int clip_x_origin, clip..1l_origini

XSetClipMask(display, gc, pixmap)
Display "display;
GCgci
Pixmap pixmap i

XSetClipRectangles(display, gc, clip_x_origin, clip..1l_origin, rectangles, n, ordering)
Display"display;
GCgci
int clip_x_origin, clip..1I_origini
XRectangle rectang1es(] i
int ni
int orderingi

ARGUMENTS
display Specifies the connection to the XWIN server.

clip _x_origin
clip .JI_origin
gc
n

ordering

pixmap

Specify the x and y coordinates of the clip-mask origin.

Specifies the Gc.
Specifies the number of rectangles.

Specifies the ordering relations on the rectangles. You can pass
Unsorted, YSorted, YXSorted, or YXBanded.

Specifies the pixmap or None.

rectangles Specifies an array of rectangles that define the clip-mask.

DESCRIPTION

10/89

The XSetClipOrigin function sets the clip origin in the specified GC. The clip­
mask origin is interpreted relative to the origin of whatever destination drawable
is specified in the graphics request.
XSetClipOrigin can generate BadAlloc and BadGC errors.

The XSetClipMask function sets the clip-mask in the specified GC to the
specified pixmap. If the clip-mask is set to None, the pixels are are always
drawn (regardless of the clip-origin).

XSetOipMask can generate BadAlloc, BadGC, BadMatch, and BadValue
errors.

The XSetClipRectangles function changes the clip-mask in the specified GC to
the specified list of rectangles and sets the clip origin. The output is clipped to
remain contained within the rectangles. The clip-origin is interpreted relative to
the origin of whatever destination drawable is specified in a graphics request. The
rectangle coordinates are interpreted relative to the clip-origin. The rectangles

Page 1

XSetClipOrlgln (3X11) XSetClipOrlgln (3X11)

should be nonintersecting, or the graphics results will be undefined. Note that
the list of rectangles can be empty, which effectively disables output. This is the
opposite of passing None as the clip-mask in XCreateGC, XChangeGC, and
XSetClipMask.

If known by the client, ordering relations on the rectangles can be specified with
the ordering argument. This may provide faster operation by the server. If an
incorrect ordering is specified, the XWIN server may generate a BadMatch error,
but it is not required to do so. If no error is generated, the graphics results are
undefined. Unsorted means the rectangles are in arbitrary order. YSorted
means that the rectangles are nondecreasing in their Y origin. YXSorted addi­
tionally constrains YSorted order in that all rectangles with an equal Y origin are
nondecreasing in their X origin. YXBanded additionally constrains YXSorted by
requiring that, for every possible Y scanline, all rectangles that include that scan­
line have an identical Y origins and Y extents.

XSetClipRectangles can generate BadAlloc, BadGe, BadMatch, and BadValue
errors.

DIAGNOSTICS
BadAlloc The server failed to allocate the requested resource or server

memory.

BadGC

BadMatch

BadValue

A value for a GContext argument does not name a defined
GContext.

Some argument or pair of arguments has the correct type and
range but fails to match in some other way required by the
request.

Some numeric value falls outside the range of values accepted
by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted.
Any argument defined as a set of alternatives can generate this
error.

SEE ALSO

Page 2

XCreateGC(3Xll),
XQueryBestSize(3Xll),
XSetArcMode(3Xll),
XSetFillStyle(3Xll),
XSetFont(3Xll),
XSetLineAttributes(3Xll),
XSetState(3Xll),
XSetTile(3Xll)
Xlib - C Language X Interface

10/89

XSetCloseDownMode (3X11) XSetCloseDownMode (3X11)

NAME
XSetCloseDownMode, XKillOient - control clients

SYNTAX
XSetCloseDownMode (display, close_mode>

Display"display;
int close_mode;

XKillClient (display, resource>
Display"display;
XID resource;

ARGUMENTS
close mode

display

resource

Specifies the client cloSEHIown mode. You can pass DestroyAll,
RetainPermanent, or RetainTemporary.

Specifies the connection to the XWIN server.

Specifies any resource associated with the client that you want
to destroy or AllTemporary.

DESCRIPTION
The XSetOoseDownMode defines what will happen to the client's resources at
connection close. A connection starts in Destroy All mode. For information on
what happens to the client's resources when the close_mode argument is Retain­
Permanent or RetainTemporary, see section 2.6, Xlib-C Language X Interface.

XSetOoseDownMode can generate a BadValue error.

The XIGlIOient function forces a cloSEHIown of the client that created the
resource if a valid resource is specified. If the client has already terminated in
either RetainPermanent or RetainTemporary mode, all of the client's resources
are destroyed. If AllTemporary is specified, the resources of all clients that have
terminated in RetainTemporary are destroyed (see section 2.6, Xlib-C Language
X Interface>. This permits implementation of window manager facilities that aid
debugging. A client can set its cloSEHIown mode to RetainTemporary. If the
client then crashes, its windows would not be destroyed. The programmer can
then inspect the application's window tree and use the window manager to des­
troy the zombie windows.

XKillClient can generate a BadValue error.

DIAGNOSTICS
BadValue Some numeric value falls outside the range of values accepted

by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted.
Any argument defined as a set of alternatives can generate this
error.

SEE ALSO
Xlib - C Language X Interface

10/89 Page 1

XSetComrnand (3X11) XSetComrnand (3X11)

NAME
XSetCommand - set command atom

SYNTAX
XSetCommand(display, w, argo,argc)

Display "display i
Window Wi
char Margoi
int argci

ARGUMENTS
argc
argo
disp14y
W

DESCRIPTION

Specifies the number of arguments.

Specifies the application's argument list.

Specifies the connection to the XWIN server.

Specifies the window.

The XSetCommand function sets the command and arguments used to invoke
the application. (Typically, argv is the argv array of your main program.)

XSetCommand can generate BadAlloc and BadWindow errors.

PROPERTY
WM COMMAND

DIAGNOSTICS
BadAlloc The server failed to allocate the requested resource or server

memory.

BadWindow A value for a Window argument does not name a defined Win­
dow.

SEE ALSO

10188

XSetClassHint(3Xll),
XSetIconName(3Xll),
XSetIconSizeHints(3Xll),
XSetNormalHints(3Xll),
XSetSizeHints(3Xll),
XSetStandardProperties(3Xll),
XSetTransientForHint(3Xll),
XSetWMHints(3Xll),
XSetZoomHints(3Xl1),
XStoreName(3Xll)
Xlib - C LIlngwage X Interface

Page 1

XSetErrorHandler (3X11) XSetErrorHandler(3X11 }

NAME
XSetErrorHandler, XGetErrorText, XDisplayName, XSetIOErrorHandler, XGetEr­
rorDatabaseText - default error handlers

SYNTAX
XSetErrorHandler(hand1er)

int (·handler)();

XGetErrorText(display, code, buffer Jeturn, length)
Display ·display;
int code;
char ·bufferJeturn;
int length;

char ·XDisplayName(string)
char ·string;

XSetIOErrorHandler (handler)
int (·hand1er)();

XGetErrorDatabaseText(display, name, message, default_string, bufferJeturn, length)
Display ·display;
char ·name, ·message;
char ·default _string;
char ·buffer Jeturn;
int length; .

ARGUMENTS
buffer Jeturn
code

default_string

display
handler

length
message
name

Returns the error description.

Specifies the error code for which you want to obtain a descrip­
tion.

Specifies the default error message if none is found in the data­
base.
Specifies the connection to the XWIN server.
Specifies the program's supplied error handler.
Specifies the size of the buffer.

Specifies the type of the error message.
Specifies the name of the application.

string Specifies the character string.

DESCRIPTION

10/89

Xlib generally calls the program's supplied error handler whenever an error is
received. It is not called on BadName errors from OpenFont, LookupColor, or
A11ocNamedColor protocol requests or on BadFont errors from a QueryFont
protocol request. These errors generally are reflected back to the program
through the procedural interface. Because this condition is not assumed to be
fatal, it is acceptable for your error handler to return. However, the error handler
should not call any functions (directly or indirectly) on the display that will gen­
erate protocol requests or that will look for input events.

Page 1

XSetErrorHandler (3X11) XSetErrorHandler (3X11)

The XGetErrorText function copies a null-terminated string describing the
specified error code into the specified buffer. It is recommended that you use
this function to obtain an error description because extensions to Xlib may define
their own error codes and error strings.
The XDisplayName function returns the name of the display that XOpenDisplay
would attempt to use. If a NULL string is specified, XDisplayName looks in the
environment for the display and returns the display name that XOpenDisplay
would attempt to use. This makes it easier to report to the user precisely which
display the program attempted to open when the initial connection attempt
failed.

The XSetlOErrorHandler sets the fatal I/O error handler. Xlib calIs the
program's supplied error handler if any sort of system call error occurs (for
example, the connection to the server was lost). This is assumed to be a fatal
condition, and the called routine should not return. If the I/O error handler does
return, the client process exits.

The XGetErrorDatabaseText function returns a message (or the default message)
from the error message database. Xlib uses this function internally to look up its
error messages. On a UNIX-based system, the error message database is
lusrJliblX11/XErrorDB.

The name argument should generally be the name of your application. The mes­
sage argument should indicate which type of error message you want. Xlib uses
three predefined message types to report errors (uppercase and lowercase
matter):

XProtoError

XlibMessage

XRequest

The protocol error number is used as a string for the message
argument.

These are the message strings that are used internally by the
library.
The major request protocol number is used for the message
argument. If no string is found in the error database, the
default_string is returned to the buffer argument.

SEE ALSO
XSynchronize(3Xll)
Xlib - C LAnguage X Interface

Page 2 10/89

XSendEvent (3X11) XSendEvent (3X11)

NAME
XSendEvent, XDisplayMotionBufferSize, XGetMotionEvents - send events

SYNTAX
Status XSendEvent(display, w, propagate, evenU,,,lSIc, event_send)

Display"display;
Window W;
Bool propagate;
long event_mask;
XEvent "event_send;

unsigned long XDisplayMotionBufferSize(display)
Display"display;

XTimeCoord "XGetMotionEvents(display, w, start, stop, neventsJeturn)
Display"display;
Window W;
Time start, stop;
int "nevents Jeturn;

ARGUMENTS
display Specifies the connection to the XWIN server.

Specifies the event mask. event mask

event send
nevents return
propagate
start
stop

w

Specifies a pointer to the event that is to be sent.

Returns the number of events from the motion history buffer.

Specifies a Boolean value.

Specify the time interval in which the events are returned from
the motion history buffer. You can pass a timestamp or
CurrentTime.

Specifies the. window the event is to be sent to, PointerWin­
dow, or InputFocus.

DESCRIPTION

10189

The XSendEvent function identifies· the destination window, determines which
clients should receive the specified events, and ignores any active grabs. This
function requires you to pass an event mask. For a discussion of the valid event
mask names, see section 8.3. This function uses the w argument to identify the
destination window as follows:

• If w is PointerWindow, the destination window is the window that con­
tains the pointer.

• If w is InputFocus and if the focus window contains the pointer, the desti­
nation window is the window that contains the pointer; otherwise, the desti­
nation window is the focus window.

To determine which clients should receive the specified events, XSendEvent uses
the propagate argument as follows:

Page 1

XSendEvent (3X11) XSendEvent(3X11)

• If event_mask is the empty set, the event is sent to the client that created the
destination window. If that client no longer exists, no event is sent.

• If propagate is False, the event is sent to every client selecting on destina­
tion any of the event types in the event_mask argument.

• If propagate is True and no clients have selected on destination any of the
event types in event-mask, the destination is replaced with the closest ances­
tor of destination for which some client has selected a type in event-mask
and for which no intervening window has that type in its do-not­
propagate-mask. If no such window exists or if the window is an ancestor
of the focus window and InputFocus was originally specified as the desti­
nation, the event is not sent to any clients. Otherwise, the event is reported
to every client selecting on the final destination any of the types specified in
event_mask.

The event in the XEvent structure must be one of the core events or one of the
events defined by an extension (or a BadValue error results) so that the XWIN
server can correctly byte-swap the contents as necessary. The contents of the
event are otherwise unaltered and unchecked by the XWIN server except to force
send event to True in the forwarded event and to set the serial number in the
event correctly.
XSendEvent returns zero if the conversion to wire protocol format failed and
returns nonzero otherwise. XSendEvent can generate BadValue and BadWin­
dow errors.

The server may retain the recent history of the pointer motion and do so to a
finer granularity than is reported by MotionNotify events .. The XGetMo­
tionEvents function malces this history available.
The XGetMotionEvents function returns all events in the motion history buffer
that fall between the specified start and stop times, inclusive, and that have coor­
dinates that lie within the specified window (including its borders) at its present
placement. If the start time is later than the stop time or if the start time is in the
future, no events are returned. If the stop time is in the future, it is equivalent to
specifying Curr~tTime. ·XGetMotic:mEvents can generate a BadWindowerror.

DIAGNOSTICS
BadValue Some nllnltm.c value falls outside, the range of values accepted

by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted.
Any argument defined as a set of alternatives can generate this
error.

BadWindow A value for a Window argument does not name a defined Win­
dow.

SEE ALSO

Page 2

XIfEvent(3Xll),
XNextEvent(3Xll),
XPutBackEvent(3Xll)
XZib - C Langutlge X Interface

10/89

XSetFIllStyIe (3X11) XSetFUIStyIe (3X11)

NAME
XSetFillStyle, XSetFillRule - ce convenience routines

SYNTAX
XSetFillStyle(display, gc, filtstyle)

Display ·display;
GCgc;
int filtstyle;

XSetFillRule(display, gc, fill_TIlle)
Display ·display;
GCgc;
int filt rule;

ARGUMENTS
display Specifies the connection to the XWIN server.

fill_TIlle

fill_style

gc

Specifies the fill-rule you want to set for the specified. GC. You
can pass EvenOddRule or WindingRule.

Specifies the fill-style you want to set for the specified. Gc. You
can pass FillSolid, FillTiled, FillStippled, or FillOpaqueStip­
plea.

Specifies the ce.
DESCRIPTION

The XSetFillStyle function sets the fill-style in the specified GC.

XSetFillStyle can generate BadAlloc, BadGC, and BadValue errors.

The XSetFillRule function sets the fill-rule in the specified ce.
XSetFillRule can generate BadAlloc, BadGC, and BadValue errors.

DIAGNOSTICS
BadAlloc The server failed to allocate the requested resource or server

memory.

BadGC

BadValue

A value for a GContext argument does not name a defined
GContext.

Some numeric value falls outside the range of values accepted
by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted.
Any argument defined as a set of alternatives can gen~ate this
error.

SEE ALSO

10/89

XCreateGC(3Xll),
XQueryBestSize(3Xll),
XSetArcMode(3Xll),
XSetClipOrigin(3Xl1),
XSetFont(3Xll),
XSetLineAtQibutes(3Xll),
XSetState(3Xll),
XSetTile(3Xll)
Xlii; - C Lang'.ulge X Interface

Page 1

XSetFont (3X11)

NAME
XSetFont - GC convenience routines

SYNTAX
XSetFont(display, ge, font)

Display ·display;
GCge;
Font font;

ARGUMENTS
display

font
ge

DESCRIPTION

Specifies the connection to the XWIN server.

Specifies the font.

Specifies the GC.

The XSetFont function sets the current font in the specified Gc.

XSetFont can generate BaclAUoc, BadFont, and BadGC errors.

DIAGNOSTICS

XSetFont(3X11)

BaclAUoc The server failed to allocate the requested resource or server
memory.

BadFont

BadGC

A value for a Font or GContext argument does not name a
defined Font.

A value for a GContext argument does not name a defined
GContext.

SEE ALSO

10/89

XCreateGC(3Xll),
XQueryBestSize(3Xl1),
XSetArcMode(3Xll),
XSetClipOrigin(3Xl1),
XSetF"tllStyle(3Xll),
XSetLineAttributes(3Xll),
XSetState(3Xl1),
XSetTile(3Xll)
Xlib - C LIlngwage X Interfou:e

Page 1

XSetFontPath (3X11) XSetFontPath (3X11)

NAME
XSetFontPath, XGetFontPath, XFreeFontPath - set, get, or free the font search
path

SYNTAX
XSetFontPath(display, directories, ndirs)

Display rtdisplay;
char directories i
int ndirs;

char XGetFontPath (display, npaths Jeturn)
Display rtdisplay;
int rtnpaths Jeturn;

XFreeFontPath(list)
char list;

ARGUMENTS
directories Specifies the directory path used to look for a font. Setting the

path to the empty list restores the default path defined for the
XWIN server.

display
list
ndirs

Specifies the connection to the XWIN server.

Specifies the array of strings you want to free.

Specifies the number of directories in the path.

npathsJeturn Returns the number of strings in the font path array.

DESCRIPTION

10189

The XSetFontPath function defines the directory search path for font lookup.
There is only one search path per XWIN server, not one per client. The interpreta­
tion of the strings is operating system dependent, but they are intended to specify
directories to be searched in the order listed. Also, the contents of these strings
are operating system dependent and are not intended to be used by client appli­
cations. Usually, the XWIN server is free to cache font information internally
rather than having to read fonts from files. In addition, the XWIN server is
guaranteed to flush all cached information about fonts for which there currently
are no explicit resource IDs allocated. The meaning of an error from this request
is operating system dependent.

XSetFontPath can generate a BadValue error.

The XGetFontPath function allocates and returns an array of strings containing
the search path. When it is no longer needed, the data in the font path should be
freed by using XFreeFontPath.

The XFreeFontPath function frees the data allocated by XGetFontPath.

Page 1

XSetFontPath (3X11) XSetFontPath (3X11)

DIAGNOSTlCS
BadValue Some numeric value falls outside the range of values accepted

by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted.
Any argument denned as a set of alternatives can generate this
error.

SEE ALSO
XListFont(3Xll),
XLoadFonts(3Xll)
Xlib - C LAnguage X Interface

Page 2 10/89

XSetlconNarna (3X11) XSetlconNarna (3X11)

NAME
XSetIronName, XGetlronName - set or get iron names

SYNTAX
XSetlronName(display, w, icon_1IIl1I'I8)

DispJay"display;
Windoww;
char "icon 1IIlme· - ,

Status XGetIconName(display, w, icon _1IIlme -,dum)
DispJay"display;
Windoww;
char icon _1IIl1I'I8 -,etum;

ARGUMENTS
display Specifies the ronnection to the XWIN server.

icon1lllme Specifies the icon name, which should be a null-terminated
string.

icon_1IIlme-,etum Returns a pointer to the window's iron name, which is a null­
terminated string.

w Specifies the window.

DESCRIPTION
The XSetIconName function sets the name to be dispJayed in a window's icon.

XSetIconName can generate BadAlloc and BadWindow errors.

The XGetIconName function returns the name to be dispJayed in the specified
window's icon. If it succeeds, it returns nonzero; otherwise, if no icon name has
been set for the window, it returns zero. If you never assigned a name to the
window, XGetIconName sets icon name return to NULL. When finished with
it, a client must free the icon name String Using XFree.
XGetIconName can generate a BadWindow error.

PROPERTY
WMJCON_NAME

DIAGNOSTICS
BadAlloc

BadWindow

10/89

The server failed to allocate the requested resource or server
memory.

A value for a Window argument does not name a defined Win­
dow.

Page 1

XSetlconName (3X11)

SEE ALSO

Page 2

XSetClassHint(3Xll),
XSetCommand(3Xll),
XSetlconSizeHints(3Xll),
XSetNonnaIHints(3Xll),
XSetSizeHints(3Xll),
XSetStandardProperties(3Xll),
XSetTransientForliint(3Xll),
XSetWMHints(3Xll),
XSetZoomHints(3Xll),
XStoreName(3Xll)
Xlib - C LAnguage X Interface

XSeticonName (3X11)

10/89

XSetlconSlzeHlnts (3X11) XSeticonSlzeHlnts (3X11)

NAME
XSetIconSizes, XGetIconSizes - set or get icon size hints

SYNTAX
XSetIconSizes(display, w, size_list, count)

Display ·displayi
Window Wi
XIconSize ·size list i
int counti -

Status XGetIconSizes(display, w, size_list_return, count_return)
Display ·display i
Window Wi
XIconSize "size list returni
int ·count Jetu';; -

ARGUMENTS
display Specifies the connection to the XWIN server.

count
countJeturn
size list
size list return
W

Specifies the number of items in the size list.

Returns the number of items in the size list.

Specifies a pointer to the size list.

Returns a pointer to the size list.

Specifies the window.

DESCRIPTION
The XSeUconSizes function is used only by window managers to set the sup­
ported icon sizes.

XSeUconSizes can generate BadAlloc and BadWindow errors.

The XGetIconSizes function returns zero if a window manager has not set icon
sizes or nonzero otherwise. XGetIconSizes should be called by an application
that wants to find out what icon sizes would be most appreciated by the window
manager under which the application is running. The application should then
use XSetWMHints to supply the window manager with an icon pixmap or win­
dow in one of the supported sizes. To free the data allocated in size_list_return,
use XFree.

XGetIconSizes can generate a BadWindow error.

PROPERTY
WMJCON_SIZE

DIAGNOSncs
BadAlloc

BadWindow

10189

The server failed to al10cate the requested resource or server
memory.

A value for a Window argument does not name a defined Win­
dow.

Page 1

XSetlconSlzeHlnts (3X11)

SEE ALSO

Page 2

XSetClassHint(3Xll),
XSetCommand(3Xll),
XSetlconName(3Xll),
XSetNonnaIHints(3Xll),
XSetSizeHints(3Xll),
XSetStandardProperties(3Xll),
XSetTransientForHint(3Xll),
XSetWMHints(3Xll),
XSetZoomHints(3Xll),
XStoreName(3Xll)
Xlib - C Language X Interface

XSetlconSlzeHlnts (3X11)

10/89

XSetlnputFocus (3X11) XSeUnputFocus(3X11)

NAME
XSetInputFocus, XGetInputFocus - control input focus

SYNTAX
XSetInputFocus(display, focus, reDerUo, time)

Display -display;
Window focus;
int revert to;
Time time;

XGetInputFocus (display, focus -,eturn, reDerUo -,eturn)
Display -display;
Window -focus-,eturn;
int -reoert _to_return;

ARGUMENTS
dispilly Specifies the connection to the XWIN server.

focus Specifies the window, PointerRoot, or None.

focus-,eturn Returns the focus window, PointerRoot, or None.

revert to Specifies where the input focus reverts to if the window
becomes not viewable. You can pass RevertToParent, Revert­
ToPointerRoot, or RevertToNone.

revert to return Returns the current focus state (RevertToParent, RevertToPoin­
terRoot, or RevertToNone).

time Specifies the time. You can pass either a timestamp or Current­
Time.

DESCRIPTION

10189

The XSeUnputFocus function changes the input focus and the last-focus-change
time. It has no effect if the specified time is earlier than the current last-focus­
change time or is later than the current XWIN server time. Otherwise, the last­
focus-change time is set to the specified time (CurrentTime is replaced by the
current XWIN server time). XSeUnputFocus causes the XWIN server to generate
Focusln and FocusOut events.

Depending on the focus argument, the following occurs:

• If focus is None, all keyboard events are discarded until a new focus win­
dow is set, and the revert_to argument is ignored.

• If focus is a window, it becomes the keyboard's focus window. If a gen­
erated keyboard event would normally be reported to this window or one
of its inferiors, the event is reported as usual. Otherwise, the event is
reported relative to the focus window.

• If focus is PointerRoot, the focus window is dynamically taken to be the
root window of whatever screen the pointer is on at each keyboard event.
In this case, the revert_to argument is ignored.

The specified focus window must be viewable at the time XSetlnputFocus is
called, or a BadMatch error results. If the focus window later becomes not view­
able, the XWIN server evaluates the revert_to argument to determine the new
focus window as follows:

Page 1

XSetinputFocU8 (3X11) XSetinputFocu8 (3X11)

•

•

If revert_to is RevertToParent, the focus reverts to the parent (or the closest
viewable ancestor), and the new revert to value is taken to be RevertTo-
None. -

If revert to is RevertToPointerRoot or RevertToNone, the focus reverts to
PointerRoot or None, respectively. When the focus reverts, the XWIN
server generates Focusln and FocusOut events, but the last-focus-change
time is not affected.

XSetlnputFocus can generate BadMatch, BadValue, and BadWindowerrors.

The XGetlnputFocus function returns the focus window and the current focus
state.

DIAGNOSnCS
BadValue Some numeric value falls outside the range of values accepted

by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted.
Any argument defined as a set of alternatives can generate this
error.

BadWindow A value for a Window argument does not name a defined Win­
dow.

SEE ALSO
XWarpPointer(3Xll)
Xlib - C Ltmguage X Interface

Page 2 10/89

XSetLineAttrlbute (3X11) XSetLineAttribute (3X11)

NAME
XSetLineAttribute, XSetDashes - CC convenience routines

SYNTAX
XSetLineAttributes(display, gc, line_width, line_style, CRp_Style, join_style)

Display"display;
CCgc;
unsigned int line_width;
int line_style;
int CRp _style;
int join_style;

XSetDashes(display, gc, dash_offset, dash-,ist, n)
Display "display;
CCgc;
int dash_offset;
char dash -,ist[];
int n;

ARGUMENTS
CRp_style Specifies the line-style and cap-style you want to set for the

specified CC. You can pass CapNotLast, CapButt, CapRound,
or CapProjecting.

dash list

display
gc

join -.style

line width
n

Specifies the dash-list for the dashed line-style you want to set
for the specified Cc.

Specifies the phase of the pattern for the dashed line-style you
want to set for the specified Cc.

Specifies the connection to the XWIN server.

Specifies the CC.

Specifies the line join-style you want to set for the specified Cc.
You can pass JoinMiter, JoinRound, or JoinBevel.

Specifies the line-style you want to set for the specified Cc.
You can pass LineSolid, lineOnOffDash, or
LineDoubleDash.

Specifies the line-width you want to set for the specified Cc.

Specifies the number of elements in dash_list.

DESCRIPTION

10/89

The XSetLineAttributes function sets the line drawing components in the
specified Cc.
XSetLineAttributes can generate BadAlloc, BadCe, and BadValue errors.

The XSetDashes function sets the dash-offset and dash-list attributes for dashed
line styles in the specified Cc. There must be at least one element in the
specified dash_list, or a BadValue error results. The initial and alternating ele­
ments (second, fourth, and so on) of the dash list are the even dashes, and the
others are the odd dashes. Each element specifies a dash length in pixels. All of

Page 1

XSetLlneAHrlbute (3X11) XSetLlneAHrlbute (3X11)

the elements must be nonzero, or a BadValue error results. Specifying an odd­
length list is equivalent to specifying the same list concatenated with itself to pro­
duce an even-length list.

The dash-offset defines the phase of the pattern, specifying how many pixels into
the dash-list the pattern should actually begin in any single graphics request.
Dashing is continuous through path elements combined with a join-style but is
reset to the dash-offset each time a cap-style is applied at a line endpoint.

The unit of measure for dashes is the same for the ordinary coordinate system.
Ideally, a dash length is measured along the slope of the line, but implementa­
tions are only required to match this ideal for horizontal and vertical lines. Fail­
ing the ideal semantics, it is suggested that the length be measured along the
major axis of the line. The major axis is defined as the x axis for lines drawn at
an angle of between -45 and +45 degrees or between 315 and 225 degrees from
the x axis. For all other lines, the major axis is the y axis.

XSetDashes can generate BadAlloc, BadGC, and BadValue errors.

DIAGNOSTICS
BadAlloc The server failed to allocate the requested resource or server

memory.

BadGC

BadValue

A value for a GContext argument does not name a defined
GContext.

Some numeric value falls outside the range of values accepted
by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted.
Any argument defined as a set of alternatives can generate this
error.

SEE ALSO

Page 2

XCreateGC(3X11),
XQueryBestSize(3X11),
XSetArcMode(3X11),
XSetQipOrigin(3X11),
XSetFillStyle(3X11),
XSetFont(3Xll),
XSetState(3X11),
XSetTile(3X11)
Xlib - C Language X Interface

10/89

XSetNormalHlnts (3X11) XSetNormalHhits(3X11)

NAME
XSetNormalHints, XGetNormalHints - set or get normal state hints

SYNTAX
XSetNormalHints(display, w, hints)

Display"display;
Window W;
XSizeHints "hints;

Status XGetNormalHints(display, w, hintsJetum)
Display "display;
Windoww;
XSizeHints "hints Jetum;

ARGUMENTS
display Specifies the connection to the XWIN server.

hints

hints return
w

Specifies a pointer to the size hints for the window in its normal
state.

Returns the size hints for the window in its normal state.

Specifies the window.

DESCRIPTION
The XSetNormalHints function sets the size hints structure for the specified win­
dow. Applications use XSetNormalHints to inform the window manager of the
size or position desirable for that window. In addition, an application that wants
to move or resize itself should call XSetNormalHints and specify its new desired
location and size as well as making direct Xlib calls to move or resize. This is
because window managers may ignore redirected configure requests, but they
pay attention to property changes.

To set size hints, an application not only must assign values to the appropriate
members in the hints structure but also must set the flags member of the struc­
ture to indicate which information is present and where it came from. A call to
XSetNormalHints is meaningless, unless the flags member is set to indicate
which members of the structure have been assigned values.

XSetNormalHints can generate BadAIloc and BadWindow errors.

The XGetNormalHints function returns the size hints for a window in its normal
state. It returns a nonzero status if it succeeds or zero if the application specified
no normal size hints for this window.

XGetNormalHints can generate a BadWindow error.

PROPERTY
WM_NORMAL_HINI'S

DIAGNOSTICS
BadAlloc

BadWindow

10/89

The server failed to allocate the requested resource or server
memory.

A value for a Window argument does not name a defined Win­
dow.

Page 1

XSetNormalHlnt. (3X11)

SEE ALSO

Page 2

XSetCommand(3Xll),
XSetlconName(3Xll),
XSetlconSizeHints(3Xll),
XSetSizeHints(3Xll),
XSetStandardProperties(3Xll),
XSetWMHints(3Xll),
XSetZoomHints(3Xll),
XStoreName(3Xll)
Xlib - C Language X Interface

XSetNormalHlnts(3X11)

10/89

XSetPolnterMapplng (3X11) XSetPolnterMapplng (3X11)

NAME
XSetPointerMapping, XGetPointerMapping - manipulate pointer settings

SYNTAX
int XSetPointerMapping(display, map, nmap)

Display "display;
unsigned char map [];
int nmap;

int XGetPointerMapping (displlly, map_return, nmap)
Display "display;
unsigned char map_return [];
int nmap;

ARGUMENTS
displily Specifies the connection to the XWIN server.

Specifies the mapping list. map
mapJeturn
nmap

Returns the mapping list.

Specifies the number of items in the mapping list.
DESCRIPTION

The XSetPointerMapping function sets the mapping of the pointer. If it
succeeds, the XWIN server generates a MappingNotify event, and XSetPointer­
Mapping returns MappingSuccess. Elements of the list are indexed starting
from one. The length of the list must be the same as XGetPointerMapping
would return, or a BadValue error results. The index is a core button number,
and the element of the list defines the effective number. A zero element disables
a button, and elements are not restricted in value by the number of physical but­
tons. However, no two elements can have the same nonzero value, or a Bad­
Value error results. If any of the buttons to be altered are logically in the down
state, XSetPointerMapping returns MappingBusy, and the mapping is not
changed.

XSetPointerMapping can generate a BadValue error.
The XGetPointerMapping function returns the current mapping of the pointer.
Elements of the list are indexed starting from one. XGetPointerMapping returns
the number of physical buttons actually on the pointer. The nominal mapping for
a pointer is the identity mapping: map[i]=i. The nmap argument specifies the
length of the array where the pointer mapping is returned, and only the first
nmap elements are returned in map_return.

DIAGNOSTICS
BadValue Some numeric value falls outside the range of values accepted

by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted.
Any argument defined as a set of alternatives can generate this
error.

SEE ALSO
XChangeI<eyboardControl(3Xl1),
XChangeKeyboardMapping(3Xll)
Xlib - C LAnguage X Infer/ace

10/89 Page 1

XSetScreenSaver (3X11) XSetScreenSaver (3X11)

NAME
XSetScreenSaver, XForceScreenSaver, XActivateScreenSaver, XResetScreenSaver,
XGetScreenSaver - manipulate the screen saver

SYNTAX
XSetScreenSaver(display, timeout, interval, prefer _blanking, allow_exposures)

Display"display;
int timeout, interval;
int prefer_blanking;
int allow_exposures;

XForceScreenSaver(display, mode)
Display"display;
int mode;

XActivateScreenSaver(display)
Display "display;

XResetScreenSaver(display)
Display"display;

XGetScreenSaver(display, timeout Jeturn, interval Jeturn, prefer _blankingJeturn,
allow_exposures Jeturn)

Display"display;
int "timeout return, "interval return;
int "prefer JiankingJeturn; -
int "allow_exposures Jeturn;

ARGUMENTS
allow _exposures Specifies the screen save control values. You can pass DontAl­

lowExposures, AllowExposures, or DefaultExposures.

allow_exposures Jeturn
Returns the current screen save control value (DontAllowExpo­
sures, AllowExposures, or DefaultExposures).

display Specifies the connection to the XWIN server.

interoal Specifies the interval between screen saver alterations.

interval return Returns the interval between screen saver invocations.

mode Specifies the mode that is to be applied. You can pass Screen­
SaverActive or Sc:reenSaverReset.

prefer _blanking Specifies how to enable screen blanking. You can pass
DontPreferBlanking, PreferBlanking, or DefaultBlanking.

prefer _blanking_return
Returns the current screen blanking preference (DontPrefer­
Blanking, PreferBlanking, or DefaultBlanking).

timeout Specifies the timeout, in seconds, until the screen saver turns on.

timeout return Returns the timeout, in minutes, until the screen saver turns on.

10/89 Page 1

XSetScreenSaver (3X11) XSetScreenSaver (3X11)

DESCRIPTION
Timeout and interval are specified in seconds. A timeout of 0 disables the screen
saver, and a timeout of -1 restores the default. Other negative values generate a
BadValue error. If the timeout value is nonzero, XSetScreenSaver enables the
screen saver. An interval of 0 disables the tandom-pattern motion. If no input
from devices (keyboard, mouse, and so on) is generated for the specified number
of timeout seconds once the screen saver is enabled, the screen saver is activated.
For each screen, if blanking is preferred and the hardware supports video blank­
ing, the screen simply goes blank. Otherwise, if either exposures are allowed or
the screen can be regenerated without sending Expose events to clients, the
screen is tiled with the root window background tile randomly re-arigined each
interval minutes. Otherwise, the screens' state do not change; and the screen
saver is not activated. The screen saver is deactivated, and all screen states are
restored at the next keyboard or pointer input or at the next call to
XFon:eScreenSaver with mode ScreenSaverReset.

If the server-dependent screen saver method supports periodic change, the inter­
val argument serves as a hint about how long the change period should be, and
zero hints that no periodic change should be made. Examples of ways to change
the screen include scrambling the colormap periodically, moving an icon image
around the screen periodically, or tiling the screen with the root window back­
ground tile, randomly re-origined periodically.

XSetScreenSaver can generate a BadValue error.

If the specified mode is ScreenSaverAc:tive and the screen saver currently is
deactivated, XFon:eScreenSaver activates the screen saver even if the screen saver
had been disabled with a timeout of zero. If the specified mode is ScreenSave
Reset and the screen saver currently is enabled, XForceScreenSaver deactivates
the screen saver if it was activated, and the activation timer is reset to its initial
state (as if device input had been received).

XFon:eScreenSaver can generate a BadValue error.

The XAdivateScreenSaver function activates the screen saver.

The XResetScreenSaver function resets the screen saver.

The XGetScreenSaver function gets the current screen saver values.

DIAGNOSncs
BadValue Some numeric value falls outside the range of values accepted

by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted.
Any argument defined as a set of alternatives can generate this
error.

SEE ALSO
Xlib - C Language X Interface

Page 2 10/89

XSetSelectlonOwner (3X11) XSetSelectlonOwner (3X11)

NAME
XSetSelectionOwner, XGetSelectionOwner, XConvertSelection - manipulate win­
dow selection

SYNTAX
XSetSelectionOwner(display, selection, owner, time)

Display rfdi"lay;
Atom selectIOn;
Window cn.tmer;
Time time;

Window XGetSelectionOwner(display, selection)
Display rfdi"lay;
Atom selectIOn;

XConvertSelection(display, selection, target, property, requestor, time)
Display rfdispltzy;
Atom selection, target;
Atom properly;
Window,-equator;
Time time;

ARGUMENTS
display Specifies the connection to the XWIN server.

owner Specifies the owner of the specified selection atom .. You can
pass a window or None.

property Specifies the property name. You also can pass None.

requestor
selection
target
time

Specifies the requestor.

Specifies the selection atom.

Specifies the target atom.

Specifies the time. You can pass either a timestamp or Current­
Time.

DESCRIPTION

10/89

The XSetSelectionOwner function changes the owner and last-change time for
the specified selection and has no effect if the specified time is earlier than the
current last-change time of the specified selection or is later than the current XWIN
server time. Otherwise, the last-change time is set to the specified time, with
CurrentTime replaced by the current server time. If the owner window is
specified as None, then the owner of the selection becomes None (that is, no
owner). Otherwise, the owner of the selection becomes the client executing the
request.

If the new owner (whether a client or None) is not the same as the current owner
of the selection and the current owner is not None, the current owner is sent a
SelectionClear event. If the client that is the owner of a selection is later ter­
minated (that is, its connection is closed) or if the owner window it has specified
in the request is later destroyed, the owner of the selection automatically reverts
to None, but the last-change time is not affected. The selection atom is uninter­
preted by the XWIN server. XGetSelectionOwner returns the owner window,

Page 1

XSetSeI8CtlonOWner (3X11) XSetSelectlonOWner (3X11)

which is reported in SelectionRequest and SelectionClear events. Selections are
global to the XWIN server.
XSetSelectionOwner can generate BadAtom and BadWindow errors.
The XGetSelectionOwner function returns the window ID associated with the
window that currently owns the specified selection. H no selection was specified,
the function returns the constant None. If None is returned, there is no owner
for the selection.
XGetSelectionOwner can generate a BadAtom error.

XConvertSelection requests that the specified selection be converted to the
specified target type:
• H the specified selection has an owner, the XWIN server sends a Selection­

Request event to that owner.

• H no owner for the specified selection exists, the XWIN server generates a
SelectionNotify event to the requestor with property None.

In either event, the arguments are passed on unchanged. There are two
predefined selection atoms: PRIMARY and SECONDARY.
XConvertSelection can generate BadAtom and BadWindow errors.

DIAGNOSTICS
BadAtom A value for an Atom argument does not name a defined Atom.

A value for a Window argument does not name a defined Win­
dow.

BadWindow

SEE ALSO
Xlib - C lAnguage X Interface

Page 2 10/89

XSetSlzeHlnts (3X11) XSetSlzeHlnts (3X11)

NAME
XSetSizeHints, XGetSizeHints - set or get window size hints

SYNTAX
XSetSizeHints(display, w, hints, property}

Display ·display;
Window w;
XSizeHints ·hints;
Atom property;

Status XGetSizeHints(display, w, hintsJeturn, property}
Display ·display;
Windoww;
XSizeHints ·hints return;
Atom property; -

ARGUMENTS
display Specifies the connection to the XWIN server.

Specifies a pointer to the size hints. hints
hints return

properly
w

Returns the size hints.

Specifies the property name.

Specifies the window.

DESCRIPTION
The XSetSizeHints function sets the XSizeHints structure for the named pro­
pertyand the specified window. This is used by XSetNormalHints and XSet­
ZoomHints, and can be used to set the value of any property of type
WM_SIZE_HINTS. Thus, it may be useful if other properties of that type get
defined.

XSetSizeHints can generate BadAlloc, BadAtom, and BadWindow errors.

XGetSizeHints returns the XSizeHints structure for the named property and the
specified window. This is used by XGetNormalHints and XGetZoomHints. It
also can be used to retrieve the value of any property of type WM_SIZE_HINTS.
Thus, it may be useful if other properties of that type get defined. XGet­
SizeHints returns a nonzero status if a size hint was defined or zero otherwise.

XGetSizeHints can generate BadAtom and BadWindow errors.

DIAGNOSTICS
BadAlloc The server failed to allocate the requested resource or server

memory.

10/89

BadAtom

BadWindow

A value for an Atom argument does not name a defined Atom.

A value for a Window argument does not name a defined Win­
dow.

Page 1

XSatSlzeHlnt8 (3X11)

SEE ALSO

Page 2

XSetClassHint(3Xll),
XSetCommand(3Xll),
XSetlconName(3Xll),
XSetlconSizeHints(3Xll),
XSetNonnalHints(3Xll),
XSetStandardProperties(3Xll),
XSetTransientForliint(3Xll),
XSetWMHints(3Xll),
XSetZoomHints(3Xll),
XStoreName(3Xll)
Xlib - C Language X Interface

XSetSlzeHlnts(3X11)

10/89

XSetStandardColormap (3X11) XSetStandardColormap (3X11)

NAME
XSetStandardColormap, XGetStandardColormap - set or get standard colormaps

SYNTAX
XSetStandardColormap(display, w, colormap, property)

Display "display;
Window w;
XStandardColormap "colormap;
Atom property; fit RGB_BEST_MAP, etc."/

Status XGetStandardColormap(display, w, colormap Jeturn, property)
Display"display;
Window W;
XStandardColormap "colormap Jeturn;
Atom property; fit RGB _BEST_MAP, etc ... /

ARGUMENTS
colormap Specifies the colormap.

colormap Jeturn
display
property
w

Returns the colormap associated with the specified atom.

Specifies the connection to the XWIN server.

Specifies the property name.

Specifies the window.

DESCRIPTION

10/89

The XSetStandardColormap function usually is only used by window managers.
To create a standard colormap, follow this procedure:

1. Open a new connection to the same server.

2. Grab the server.

3. See if the property is on the property list of the root window for the screen.

4. If the desired property is not present:

• Create a colormap (not required for RGB_DEFAULT_MAP)

• Determine the color capabilities of the display.

• Call XAllocColorPlanes or XAllocColorCells to allocate cells in the
colormap.

• Call XStoreColors to store appropriate color values in the colormap.

• Fill in the descriptive members in the XStandardColonnap structure.

• Attach the property to the root window.

• Use XSetCloseDownMode to make the resource permanent.

5. Ungrab the server.

XSetStandardColonnap can generate BadAlloc, BadAtom, and BadWindow
errors.

Page 1

XSetStandardColormap (3X11) XSetStandardColormap (3X11)

The XGetStandardColormap function returns the colormap definition associated
with the atom supplied as the property argument. For example, to fetch the stan­
dard GrayScale colormap for a display, you use XGetStandardColormap with
the following syntax:

XGetStandardColormap(dpy, DefaultRootWindow(dpy), &cmap, XA_RGB_GRAY_MAP);

Once you have fetched a standard colormap, you can use it to convert RGB
values into pixel values. For example, given an XStandardColormap structure
and floating-point RGB coefficients in the range 0.0 to 1.0, you can compose pixel
values with the following C expression:

pixel = base -pixel
+ «unsigned long) (0.5 + r" red_max»" red_mult
+ «unsigned long) (0.5 + g .. green_max» .. green _ mult
+ «unsigned long) (0.5 + b .. blue_max» .. blue _ mult;

The use of addition rather than logical OR for composing pixel values permits
allocations where the RGB value is not aligned to bit boundaries.

XGetStandardColormap can generate BadAtom and BadWindow errors.
DIAGNOSTICS

BadAlloc The server failed to allocate the requested resource or server
memory.

BadAtom

BadWindow

A value for an Atom argument does not name a defined Atom.

A value for a Window argument does not name a defined Win­
dow.

SEE ALSO
Xlib - C Language X Interface

Page 2 10/89

XSetStandardPropertles (3X11) XSetStandardPropertles(3X11)

NAME
XSetStandardProperties - set standard window manager properties

SYNTAX
XSetStandardProperties (display, w, window_name, icon_name, icon yixmap, argv,

argc, hints)
Display"display;
Window w;
char "window name·
char "icon name; ,
Pixmap icOnyixmap;
char argv;
int argc;
XSizeHints "hints;

ARGUMENTS
argc
argv

display
hints

icon name

iconyixmap
w

window name

Specifies the number of arguments.

Specifies the application's argument list.

Specifies the connection to the XWIN server.

Specifies a pointer to the size hints for the window in its normal
state.

Specifies the icon name, which should be a null-terminated
string.

Specifies the bitmap that is to be used for the icon or None.

Specifies the window.

Specifies the window name, which should be a null-terminated
string.

DESCRIPTION
The XSetStandardProperties function provides a means by which simple applica­
tions set the most essential properties with a single call. XSetStandardProperties
should be used to give a window manager some information about your
program's preferences. It should not be used by applications that need to com­
municate more information than is possible with XSetStandardProperties. (Typi­
cally, argv is the argv array of your main program.)

XSetStandardProperties can generate BadAlloc and BadWindow errors.

PROPERTIES
WM NAME, WM ICON NAME, WM _HINTS, WM _COMMAND, and
WM-NORMALHINTS -

DIAGNOSTICS
BadAlloc

BadWindow

10/89

The server failed to allocate the requested resource or server
memory.

A value for a Window argument does not name a defined Win­
dow.

Page 1

XSetStandardPropertle. (3X11)

SEE ALSO

Page 2

XSetOassHint(3Xll),
XSetCommand(3Xll),
XSetlconName(3Xll),
XSetlconSizeHints(3Xll),
XSetNormalHints(3Xl1),
XSetSizeHints(3Xll),
XSetTransientForHint(3Xll),
XSetWMHints(3Xll),
XSetZoomHints(3Xll),
XStoreName(3Xll)
Xlib - C Language X Interface

XSetStandardPropertle. (3X11)

10/89

XSetState (3X11) XSetStata (3X11)

NAME
xSetState, XSetFunction, XSetPlanemask, XSetForeground, XSetBackground - GC
convenience routines

SYNTAX
XSetState(display, gc, foreground, background, function, plane_mask)

Display"display;
GCge;
unsigned long foreground, background;
int function;
unsigned long plane_mask;

XSetFunction(display, ge, function)
Display"display;
GCge;
int function;

XSetPlaneMask(display, gc, plane_mask)
Display"display;
GCge;
unsigned long p14ne _ mask;

XSetForeground (display, ge, foreground)
Display"display;
GCge;
unsigned long foreground;

XSetBackground (display, gc, background)
Display "display;
GCge;
unsigned long background;

ARGUMENTS
background Specifies the background you want to set for the specified GC.

display
foreground

function
gc
plane_mask

Specifies the connection to the XWIN server.

Specifies the foreground you want to set for the specified Gc.

Specifies the function you want to set for the specified GC.

Specifies the Gc.

Specifies the plane mask.

DESCRIPTION

10/89

The XSetState function sets the foreground, background, plane mask, and func­
tion components for the specified Gc.

XSetState can generate BadAlloc, BadGC, and BadValue errors.

XSetFunction sets a specified value in the specified Gc.

XSetFunction can generate BadAlloc, BadGC, and BadValue errors.

The XSetPlaneMask function sets the plane mask in the specified Gc.

Page 1

XSetState (3X11) XSetState (3X11)

XSetPlaneMask can generate BadAlloc and BadGe errors.

The XSetForeground function sets the foreground in the specified Gc.
XSetForeground can generate BadAlloc and BadGe errors.

The XSetBackground function sets the background in the specified Ge.

XSetBackground can generate BadAlloc and BadGe errors.

DIAGNOSTICS
BadAlloc The server failed to allocate the requested resource or server

memory.

BadGe

BadValue

A value for a GContext argument does not name a defined
GContext.

Some numeric value falls outside the range of values accepted
by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted.
Any argument defined as a set of alternatives can generate this
error.

SEE ALSO

Page 2

XCreateGC(3Xll),
XQueryBestSize(3Xll),
XSetArcMode(3Xll),
XSetClipOrigin(3Xll),
XSetFillStyle(3Xll),
XSetFont(3Xll),
XSetLineAttributes(3Xll) ,
XSetTile(3Xll)
Xlib - C Language X Interface

10/89

XSetTIle(3X11) XSetTIle (3X11)

NAME
XSetTile, XSetStipple, XSetTSOrigin - GC convience routines

SYNTAX
XSetTile(display, ge, tile)

Display ·displayi
GCgci
Pixmap tilei

XSetStipple(d~1ay, ge, stipple)
Display ·d'splayi
GCgei
Pixmap stipplei

XSetTSOrigin(display, ge, ts_x_origin, tS.ll-0rigin)
Display ·displayi
GCgci
int ts_x_origin, tsJ_origini

ARGUMENTS
display Specifies the connection to the XWIN server.

Specifies the Gc. ge
stipple
tile

ts _ x_origin
tSJ_origin

Specifies the stipple you want to set for the specified GC.

Specifies the fill tile you want to set for the specified GC.

Specify the x and y coordinates of the tile and stipple origin.

DESCRIPTION
The XSetTlle function sets the rul tile in the specified Gc. The tile and GC must
have the same depth, or a BadMatch error results.

XSetTile can generate BadAlloc:, BadGe, BadMatch, and BadPixmap errors.

The XSetStipple function sets the stipple in the specified Gc. The stipple and
GC must have the same depth, or a BadMatch error results.

XSetStipple can generate BadAlloc, BadGC, BadMatch, and BadPixmap errors.

The XSetTSOrigin function sets the tile/ stipple origin in the specified GC. When
graphics requests call for tiling or stippling, the parent's origin will be interpreted
relative to whatever destination drawable is specified in the graphics request.

XSetTSOrigin can generate BadAlloc and BadGe errors.

DIAGNOSTICS
BadAlloc: The server failed to allocate the requested resource or server

memory.

BadGe

BadMatch

10189

A value for a GContext argument does not name a defined
GContext.

Some argument or pair of arguments has the correct type and
range but fails to match in some other way required by the
request.

Page 1

XSetTlle (3X11) XSetTlle (3X11)

BadPixmap A value for a Pixmap argument does not name a defined Pix­
map.

SEE ALSO

Page 2

XCreateCC(3Xll),
XQueryBestSize(3Xll),
XSetArcMode(3Xll),
XSetOipOrigin(3Xll),
XSetFil1Sty1e(3Xll),
XSetFont(3Xll),
XSetLineAttributes(3Xll),
XSetState(3Xll)
Xlib - C LAngIUlge X Interfrice

10/89

XSetTranaientForHlnt(3X11) XSetTranslentForHlnt (3X11)

NAME
XSetTransientForHint, XGetTransientForHint - set or get transient for hint

SYNTAX
XSetTransientForHint (displJzy, w, prop_window)

Display"display;
Window w;
Window prop_window;

Status XGetTransientForHint(display, w, prop_window Jeturn)
Display"display;
Windoww;
Window "prop_window JetuTn;

ARGUMENTS
display Specifies the connection to the XWIN server.

Specifies the window.

Specifies the window that the WM _TRANSIENT }1QR property
is to be set to.

prop_window JetUTn
Returns the WM_TRANSIENT_FOR property of the specified
window.

DESCRIPTION
The XSetTransientForHint function sets the WM _TRANSIENT_FOR property of
the specified window to the specified prop_window.

XSetTransientFor~int can generate BadAlIoc and BadWindow errors.

The XGetTransientForHint function returns the WM _TRANSIENT_FOR property
for the specified window.

XGetTransientForHint can generate a BadWindow error.

PROPERTY
WM_TRANSIENT_FOR

DIAGNOSTICS
BadAlloc The server failed to allocate the requested resource or server

memory.

BadWindow A value for a Window argument does not name a defined Window.

SEE ALSO

10/89

XSetClassHint(3Xll),
XSetCommand(3Xll),
XSetIconName(3Xll),
XSetIconSizeHints(3Xll),
XSetNormalHints(3Xll),
XSetSizeHints(3Xll),
XSetStandardProperties(3Xll),
XSetWMHints(3Xll),
XSetZoomHints(3Xll),
XStoreName(3Xll)
Xlib - C LAngw;zge X Interface

Page 1

XSetWMHlnt8 (3X11) XSetWMHlnts(3X11)

NAME
XSetWMHints, XGetWMHints - set or get window manager hints

SYNTAX
XSetWMHints(display, w, wmhints)

DispJay ·displayj
Windowwj
XWMHints ·wmhints j

XWMHints ·XGetWMHints(display, w)
DispJay ·displayj
Windowwj

ARGUMENTS
displlly Specifies the connection to the XWIN server.

Specifies the window. W

wmhints Specifies a pointer to the window manager hints.

DESCRIPTION
The XSetWMHints function sets the· window manager hints that include icon
information and location, the initial state of the window, and whether the appli­
cation relies on the window manager to get keyboard input.

XSetWMHints can generate BadAlloc and BadWindow errors.

The XGetWMHints function reads the window manager hints and returns NULL
if no WM_HINTS property was set on the window or a pointer to a XWMHints
structure if it succeeds. When finished with the data, free the space used for it by
calling XFree.

XGetWMHints can generate a BadWindow error.

PROPERTY
WM_HINTS

DIAGNOSTICS
BadAlloc The server failed to allocate the requested resource or server

memory.

BadWindow A value for a Window argument does not name a defined Win­
dow.

SEE ALSO

10/89

XSetClassHint(3Xll),
XSetCommand(3Xll),
XSetIconName(3Xll),
XSetIconSizeHints(3Xll),
XSetNormalHints(3Xll),
XSetSizeHints(3Xll),
XSetStandardProperties(3Xll),
XSetTransientForHint(3Xll),
XSetZoomHints(3Xll),
XStoreName(3Xll)
Xlib - C Language X Interface

Page 1

XSetZoomHlnta (3X11) XSetZoomHlnts(3X11)

NAME
XSetZoomHints, XGetZoomHints - set or get zoom state hints

SYNTAX
XSetZoomHints(displily, w, zhints)

Display ·displily i
Window Wi
XSizeHints ·zhints i

Status XGetZoomHints(display, w, zhintsJeturn)
Display ·displilyi
Window Wi
XSizeHints ·zhints Jeturn i

ARGUMENTS
display Specifies the connection to the XWIN server.

Specifies the window. W

zhints

zhints return

Specifies a pointer to the zoom hints.

Returns the zoom hints.

DESCRIPTION
Many window managers think of windows in one of three states: iconic, normal,
or zoomed. The XSelZoomHints function provides the window manager with
information for the window in the zoomed state.

XSetZoomHints can generate BadAlloc and BadWindow errors.

The XGetZoomHints function returns the size hints for a window in its zoomed
state. It returns a nonzero status if it succeeds or zero if the application specified
no zoom size hints for this window.

XGetZoomHints can generate a BadWindow error.

PROPERTY
WM ZOOM HINfS - -

DIAGNOSTICS
BadAlloc The server failed to allocate the requested resource or server

memory.

BadWindow A value for a Window argument does not name a defined Win­
dow.

SEE ALSO

10/89

XSetCIassHint(3Xll),
XSetCommand(3Xll),
XSetlconName(3Xll),
XSetIconSizeHints(3Xll),
XSetNormalHints(3Xll),
XSetSizeHints(3Xll),
XSetStandardProperties(3Xll),
XSetTransientForHint(3Xll),
XSetWMHints(3Xll),
XStoreName(3Xll)
Xlib - C lAnguage X Interface

Page 1

XStoreBytes(3X11) XStoreBytes{3X11)

NAME
XStoreBytes, XStoreBuffer, XFetchBytes, XFetchBuffer, XRotateBuffers - manipu­
late cut and paste buffers

SYNTAX
XStoreBytes(display, bytes, nbytes)

Display "display;
char .. bytes;
int nbytes;

XStoreBuffer(display, bytes, nbytes, buffer>
Display"display;
char "bytes;
int nbytes;
int buffer;

char "XFetchBytes(display, nbytes Jeturn>
Display"display;
int "nbytes Jeturn;

char "XFetchBuffer(display, nbytesJeturn, buffer>
Display"display;
int "nbytes Jeturn;
int buffer;

XRotateBuffers (display, rotate)
Display"display;
int rotate;

ARGUMENTS
buffer Specifies the buffer in which you want to store the bytes or

from which you want the stored data returned.

bytes

display
nbytes

nbytes Jeturn
rotate

Specifies the bytes, which are not necessarily ASCII or null­
terminated.

Specifies the connection to the XWIN server.

Specifies the number of bytes to be stored.

Returns the number of bytes in the buffer.

Specifies how much to rotate the cut buffers.

DESCRIPTION

10/89

Note that the cut buffer's contents need not be text, so zero bytes are not special.
The cut buffer's contents can be retrieved later by any client calling XFetchBytes.

XStoreBytes can generate a BadAlloc error.

If the property for the buffer has never been created, a BadAtom error results.

XStoreBuffer can generate BadAlloc and BadAtom errors.

The XFetchBytes function returns the number of bytes in the nbytes _return argu­
ment, if the buffer contains data. Otherwise, the function returns NULL and sets
nbytes to O. The appropriate amount of storage is allocated and the pointer
returned. The client must free this storage when finished with it by calling

Page 1

XStoreByte8(3X11) XStoreByte8 (3X11)

XFree. Note that the cut buffer does not necessarily contain text, so it may con­
tain embedded zero bytes and may not terminate with a null byte.

The XFetchBuffer function returns zero to the nbytes Jeturn argument if there is
no data in the buffer.

XFetchBuffer can generate a BadValue error.

The XRotateBuffen function rotates the cut buffers, such that buffer 0 becomes
buffer n, buffer 1 becomes n + 1 mod 8, and so on. This cut buffer numbering is
global to the display. Note that XRotateBuffers generates BadMatch errors if
any of the eight buffers have not been created.

XRotateBuffen can generate a BadMatch error.

DIAGNOSTICS
BadAlloc The server failed to allocate the requested resource or server

memory.

BadAtom

BadMatch

BadValue

SEE ALSO

A value for an Atom argument does not name a defined Atom.

Some argument or pair of arguments has the correct type and
range but fails to match in some other way required by the
request.

Some numeric value falls outside the range of values accepted
by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted.
Any argument defined as a set of alternatives can generate this
error.

Xlib - C iAngUJlge X Interface

Page 2 10/89

XStoreCOlor. (3X11) XStoreCOlor. (3X11)

NAME
XStoreColors, XStoreColor, XStoreNamedColor - set colors

SYNTAX
XStoreColors(display, colormap, color, ncolors)

Display "displily;
Colormap colormap;
XColor color(];
int ncolors i

XStoreColor(display, colormAp, color)
Display "displily;
Colormap colormap;
XColor "color;

XStoreNamedColor(displily, colomuzp, color, pixel, flags)
Display"displilyi
Colormap colontrllp;
char "color;
unsi,gned long pixel;
int flags;

ARGUMENTS
color Specifies the pixel and RGB values or the color name string (for

example, red).

color
colormAp
displily
flags
ncolors

pixel

Specifies an array of color definition structures to be stored.

Specifies the colormap.

Specifies the connection to the XWIN server.

Specifies which red, green, and blue components are set.

Specifies the number of XColor structures in the color definition
array.

Specifies the entry in the colormap.

DESCRIPTION

10189

The XStoreColors function changes the colormap entries of the pixel values
specified in the pixel members of the XColor structures. You specify which color
components are to be changed by setting DoRed, DoGreen, and/or DoBlue in
the flags member of the XColor structures. If the colormap is an installed map
for its screen, the changes are visible immediately. XStoreColors changes the
specified pixels if they are allocated writable in the colormap by any client, even
if one or more pixels generates an error. If a Specified pixel is not a valid index
into the colormap, a BadValue error results. If a specified pixel either is unallo­
cated or is allocated read-only, a BadAccess error results. If more than one pixel
is in error, the one that gets reported is arbitrary.

XStoreColors can generate BadAccess, BadColor, and BadValue errors.

The XStoreColor function changes the colormap entry of the pixel value specified
in the pixel member of the XColor structure. You specified this value in the pixel
member of the XColor structure. This pixel value must be a read/write cell and
a valid index into the colormap. If a specified pixel is not a valid index into the

Page 1

XStoreColors (3X11) XStoreColors (3X11)

colormap, a BadValue error results. XStoreColor also changes the red, green,
and/or blue color components. You specify which color components are to be
changed by setting DoRed, DoGreen, and/or DoBlue in the flags member of
the XColor structure. If the colormap is an installed map for its screen, the
changes are visible immediately.

XStoreColor can generate BadAccess, BadColor, and BadValue errors.

The XStoreNamedColor function looks up the named color with respect to the
screen associated with the colormap and stores the result in the specified color­
map. The pixel argument determines the entry in the colormap. The flags argu­
ment determines which of the red, green, and blue components are set. You can
set this member to the bitwise inclusive OR of the bits DoRed, DoGreen, and
DoBlue. If the specified pixel is not a valid index into the colormap, a BadValue
error results. If the specified pixel either is unallocated or is allocated read-only,
a BadAccess error results. You should use the ISO Latin-l encoding; uppercase
and lowercase do not matter.

XStoreNamedColor can generate BadAccess, BadColor, BadName, and Bad­
Value errors.

DIAGNOSTICS
BadAccess A client attempted to free a color map entry that it did not

already allocate.

BadAccess

BadColor

BadName

BadValue

A client attempted to store into a read-only color map entry.

A value for a Colormap argument does not name a defined
Colormap.

A font or color of the specified name does not exist.

Some numeric value falls outside the range of values accepted
by the request. Unless a specific range is specified for an argu­
ment, the full range defined by the argument's type is accepted.
Any argument defined as a set of alternatives can generate this
error.

SEE ALSO

Page 2

XAllocColor(3Xll) ,
XCreateColormap(3Xll),
XQueryColor(3Xll)
Xlib - C Language X Interface

10/89

XStoraName (3X11) XStoraNama (3X11)

NAME
XStoreName, XFetchName - set or get window names

SYNTAX
XStoreName(display, w, window_7IIl1I'/e)

Display -display;
Windoww;
char -window 7IIl1I'/e. - ,

Status XFetchName(display, w, windoW_1UiltneJetIlTn)
Display -display;
Windoww;
char -window _1Uiltne JetllTn i

ARGUMENTS
display Specifies the oonnection to the XWIN server.

Specifies the window. w
window 7IIl1I'/e Specifies the window name, which should be a null-terminated

string.
window 1Uilme retllTn

- - Returns a pointer to the window name, which is a null-
terminated string.

DESCRIPTION
The XSloreName function assigns the name passed to window_name to the
specified window. A window manager can display the window name in some
prominent place, such as the title bar, to allow users to identify windows easily.
Some window managers may display a windows name in the windows icon,
although they are encouraged to use the windows icon name if one is provided
by the application.
XSloreName can generate BadAlloc: and BadWindow errors.

The XFetchName function returns the name of the specified window. If it
succeeds, it returns nonzero; otherwise, if no name has been set for the window,
it returns zero. If the WM_NAME property has not been set for this window,
XFetchName sets window name return to NULL. When finished with it, a client
must free the window name string using XFree.

XFetchName can generate a BadWindow error.
PROPERTY

WM NAME

DIAGNOSncs
BadAlloc: The server failed to allocate the requested resource or server

memory.
BadWindow A value for a Window argument does not name a defined Window.

10189 Page 1

XStoreName (3X11)

SEE ALSO

Page 2

XSetCommand(3Xll),
XSetIconName(3Xll),
XSetIconSizeHints(3Xll),
XSetNormalHints(3Xll),
XSetSizeHints(3Xll),
XSetStandardProperties(3Xll),
XSetWMHints(3Xll),
XSetZoomHints(3Xll)
Xlib - C LAngwzge X Interface

XStoreName (3X11)

10/89

XStrlngToKeyaym (3X11) XStrlngToKeyaym (3X11)

NAME
XStringToKeysym, XKeysymToString, XKeycodeToKeysym, XKeysymToKeycode
- convert keysyms

SYNTAX
KeySym XStringToKeysym (string)

char -string;
char -XKeysymToString(keysym)

KeySym keysym;
KeySym XKeycodeToKeysym(display, keycode, index)

Display -display;
KeyCode keycode;
int index;

KeyCode XKeysymToKeycode(display, keysym)
Display -display;
KeySym keysym;

ARGUMENTS
display Specifies the connection to the XWIN server.

Specifies the element of KeyCode vector.

Specifies the KeyCode.

index

keycode

keysym Specifies the KeySym that is to be searched for or converted.

string Specifies the name of the KeySym that is to be converted.
DESCRIPTION

Valid KeySym names are listed in <Xl11keySymdef.h> by removing the XK_
prefix from each name. If the specified string does not match a valid KeySym,
XStringToKeysym returns NoSymbol.

The returned string is in a static area and must not be modified. If the specified
KeySym is not defined, XKeysymToString returns a NULL.

The XKeycodeToKeysym function uses internal Xlib tables and returns the
KeySym defined for the specified KeyCode and the element of the KeyCode vec­
tor. If no symbol is defined, XKeycodeToKeysym returns NoSymbol.

If the specified KeySym is not defined for any KeyCode, XKeysymToKeycode
returns zero.

SEE ALSO
XLookupKeysym(3Xll)
Xlib - C LAnguage X Interface

10189 Page 1

XSynchronlze(3X11) XSynchronlze (3X11)

NAME
XSynchronize, XSetAfterf'unction - enable or disable synchronization

SYNTAX
int (-XSynchronize(display, onoff»()

Display -display;
Boolonoff;

int (-XSetAfterFunction (display, procedure»()
Display -display;
int (-procedure)O;

ARGUMENTS
display Specifies the connection to the XWIN server.

procedure

onoff

Specifies the function to be called after an Xlib function that
generates a protocol request completes its work.

Specifies a Boolean value that indicates whether to enable or
disable synchronization.

DESCRIPTION
The XSynchronize function returns the previous after function. If onoff is True,
XSynchronize turns on synchronous behavior. If onoff is False, XSynchronize
turns off synchronous behavior.

The specified procedure is called with only a display pointer. XSetAfterFunction
returns the previous after function.

SEE ALSO
XSetErrorHandler(3Xll)
Xlib - C Language X Interface

10189 Page 1

XTextExtents (3X11) XTextExtents(3X11)

NAME
XTextExtents, XTextExtents16, XQueryTextExtents, XQueryTextExtents16 - com­
pute or query text extents

SYNTAX
XTextExtents(font_strud, string, nchars, diredionJetum, font_ascentJeturn,

font_descent Jetum, O'OeTaU Jetum)
XFontStruct ·font ~trud;
char ·string;
int nchars;
int ·diredion retum;
int ·font _ascent Jeturn, ·font jescent Jeturn;
XCharStruct ·01JeTaUJetum;

XTextExtents16(font_strud, string, nchilrs, direction_retum, font_ascentJetum,
font_descent Jetum, o'OeTaltretum)

XFontStruct 10nt _strud;
XChar2b ·string;
int nchars;
int ·diredion retum;
int ·font _ascent_return, ·font _descent Jeturn;
XCharStruct ·01JeTaU Jetum;

XQueryTextExtents(display, fontjD, string, nchilrs, diredionJetum,
font_ascent Jetum, font .Jlescent Jetum, o'OeTall Jetum)

Display ·display;
XID font _ID;
char ·string;
int nchars;
int ·diredion retum;
int ·font _ ascint _return, ·font _descent_return;
XCharStruct ·01JeTaU Jetum;

XQueryTextExtents16 (display, fontjD, string, nchilrs, diredion_retum,
(emt _ ascent Jetum, font_descent Jetum, o'OeTall Jetum)

Display ·display;
XID fontjD;
XChar2b ·string;
int nchilrs;
int ·diredion retum;
int ·font _ascent_return, ·font _descent Jetum;
XCharStruct ·01JeTaIIJetum;

ARGUMENTS

10/89

diredion retum Returns the value of the direction hint (FontLeftToRight or
FontRightToLeft).

display Specifies the connection to the XWIN server.

Page 1

XTextExtents (3X11) XTextExtents (3X11)

font _ID Specifies either the font ID or the GContext ID that contains the
font.

font_ascent Jdurn
Returns the font ascent.

font_descent Jdurn

font _struct
nchars
string
overall return

Returns the font descent.

Specifies a pointer to the XFontStruct structure.

Specifies the number of characters in the character string.

Specifies the character string.

Returns the overall size in the specified XCharSbuct structure.

DESCRIPTION

Page 2

The XTextExtents and XTextExtents16 functions perform the size computation
locally and, thereby, avoid the round-trip overhead of XQueryTextExtents and
XQueryTextExtents16. Both functions return an XCharStruct structure, whose
members are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of all characters
in the string. The descent member is set to the maximum of the descent metrics.
The width member is set to the sum of the character-width metrics of all charac­
ters in the string. For each character in the string, let W be the sum of the
character-width metrics of all characters preceding it in the string. Let L be the
left-side-bearing metric of the character plus W. Let R be the right-side-bearing
metric of the character plus W. The lbearing member is set to the minimum L of
all characters in the string. The rbearing member is set to the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each
XChar2b structure is interpreted as a 16-bit number with bytel as the most­
significant byte. If the font has no defined default character, undefined characters
in the string are taken to have all zero metrics.

The XQueryTextExtents and XQueryTextExtents16 functions return the bound­
ing box of the specified 8-bit and 16-bit character string in the specified font or
the font contained in the specified ce. These functions query the XWIN server
and, therefore, suffer the round-trip overhead that is avoided by XTextExtents
and XTextExtents16. Both functions return a XCharStruct structure, whose
members are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of all characters
in the string. The descent member is set to the maximum of the descent metrics.
The width member is set to the sum of the character-width metrics of all charac­
ters in the string. For each character in the string, let W be the sum of the
character-width metrics of all characters preceding it in the string. Let L be the
left-side-bearing metric of the character plus W. Let R be the right-side-bearing
metric of the character plus W. The lbearing member is set to the minimum L of
all characters in the string. The rbearing member is set to the maximum R.

10/89

XTextExtents (3X11) XTextExtents (3X11)

For fonts defined with linear indexing rather than 2-byte matrix indexing, each
XChaJ2b structure is interpreted as a 16-bit number with byte1 as the most­
significant byte. If the font has no defined default character, undefined characters
in the string are taken to have all zero metries.
XQueryTextExtents and XQueryTextExtents16 can generate BadFont and
BadGC errors.

DIAGNOSncs
BadFont A value for a Font or GContext argument does not name a

defined Font.

BadGC A value for a GContext argument does not name a defined
GContext.

SEE ALSO
XTextWidth(3X11)
Xlib - C LAnguage X Interface

10188 Page 3

XTextWldth (3X11) XTextWldth (3X11)

NAME
XTextWidth, XTextWidth16 - compute text width

SYNTAX
int XTextWidth(font_struct, string, count)

XFontStruct ·font _struct;
char ·string;
int count;

int XTextWidth16<.font_struct, string, count)
XFontStruct ·font struct;
XChar2b ·string; -
int count;

ARGUMENTS
count

string
DESCRIPTION

Specifies the character count in the specified string.

Specifies the font used for the width computation.

Specifies the character string.

The XTextWidth and XTextWidth16 functions retum the width of the specified
8-bit or 2-byte character strings.

SEE ALSO
XTextExtents(3Xll)
Xlib - C LAnguage X Interface

10/89 Page 1

XTranslataCoordlnates (3X11) XTranslateCoordlnates(3X11)

NAME
XTranslateCoordinates - translate window coordinates

SYNTAX
Bool XTranslateCoordinates(display, src_w, dest_w, src_x, src..JI, dest_xJetum,

dest ..JI Jeturn, child Jetum)
Display"display;
Window src w, dest W;
int src_x, sru; -
int .. destYJeturn, "dest..JIJetum;
Window"child_return;

ARGUMENTS
child return

dest w

dest x return
dest J :return
display

src w
src x
src..JI

Returns the child if the coordinates are contained in a mapped
child of the destination window.

Specifies the destination window.

Return the x and y coordinates within the destination window.

Specifies the connection to the XWIN server.

Specifies the source window.

Specify the x and y coordinates within the source window.

DESCRIPTION
The XTranslateCoordinates function takes the src _x and src J coordinates rela­
tive to the source window's origin and returns these coordinates to dest_x_return
and destJ Jeturn relative to the destination window's origin.

If XTranslateCoordinates returns zero, src wand dest w are on different
screens, and dest_x_return and destJ_return are zero. If the coordinates are con­
tained in a mapped child of dest_w, that child is returned to child_return. Other­
wise, child Jeturn is set to None.

XTranslateCoordinates can generate a BadWindow error.

DIAGNOSTICS
BadWindow A value for a Window argument does not name a defined Win­

dow.

SEE ALSO
Xlib - C Language X Interface

10189 Page 1

XrmUnlqueQuark (3X11) XrmUnlqueQuark (3X11)

NAME
XrmUniqueQuark, XrmStringToQuark, XrmQuarkToString, XrmStringToQuark­
List, XrmStringToBindingQuarkList - manipulate resource quarks

SYNTAX
XrmQuark XrmUniqueQuark()

#define XrmStringToName(string) XrmStringToQuark(string)
#define XrmStringToClass(string) XrmStringToQuark(string)
#define XrmStringToRepresentation(string) XrmStringToQuark(string)

XrmQuark XrmStringToQuark(string)
char ·string;

#define XrmNameToString(name) XrmQuarkToString(name)
#define XrmQassToString(c1ass) XrmQuarkToString(class)
#define XrmRepresentationToString(type) XrmQuarkToString(type)

char ·XrmQuarkToString(quark)
XrmQuark quark;

#define XrmStringToNameList(str, name) XrmStringToQuarkList«str), (name»
#define XrmStringToClassList(str,c1ass) XrmStringToQuarkList«str), (class»

void XrmStringToQuarkList(string, quarksJeturn)
char ·string;
XrmQuarkList quarks Jeturn;

XrmStringToBindingQuarkList (string, bindings_return, quarks Jeturn)
char ·string;
XrmBindingList bindings Jeturn;
XrmQuarkList quarksJeturn;

ARGUMENTS
bindings_return Returns the binding list.

quark
quarks Jeturn
string

DESCRIPTION

Specifies the quark for which the equivalent string is desired.

Returns the list of quarks.

Specifies the string for which a quark is to be allocated.

10/89

The XrmUniqueQuark function allocates a quark that is guaranteed
represent any string that is known to the resource manager.

not to

These functions can be used to convert to and from quark representations. The
string pointed to by the return value must not be modified or freed. If no string
exists for that quark, XrmQuarkToString returns NULL.

The XrmQuarkToString function converts the specified resource quark represen­
tation back to a string.

The XrmStringToQuarkUsl function converts the null-terminated string (gen­
erally a fully qualified name) to a list of quarks. The components of the string
are separated by a period or asterisk character.

Page 1

XrmUnlquaQuark (3X11) XrmUnlquaauark (3X11)

A binding list is a list of type XrmBindingList and indicates if components of
name or class lists are bound tightly or loosely (that is, if wildcarding of inter­
mediate components is specified).
typedef enum {XrmBindTightly, XrmBindLoosely} XrmBinding, -XrmBindingList;

XrmBindTightly indicates that a period separates the components, and
XrmBindLoosely indicates that an asterisk separates the components.
The XrmStringToBindingQuarkList function converts the specified string to a
binding list and a quark list. Component names in the list are separated by a
period or an asterisk character. If the string does not start with period or aster­
isk, a period is assumed. For example, ''''a.b-c'' becomes:

quarks abc
bindings loose tight loose

SEE ALSO

Page 2

XrmGetResource(3Xll),
XrmInitialize(3Xll),
XrmMergeDatabases(3Xll),
XrmPutResource(3Xll)
Xlib - C LAnguilge X Interface

10/89

XUnmapWlndow(3X11 } XUnmapWlndow(3X11 }

NAME
XUnmapWindow, XUnmapSubwindows - unmap windows

SYNTAX
XUnmapWindow(display, w)

Display"display;
Windoww;

XUnmapSubwindows(display, w)
Display "display;
Window W;

ARGUMENTS
display Specifies the connection to the XWIN server.

w Specifies the window.

DESCRIPTION
The XUnmapWindow function unmaps the specified window and causes the
XWIN server to generate an UnmapNotify event. If the specified window is
already unmapped, XUnmapWindow has no effect. Normal exposure processing
on formerly obscured windows is performed. Any child window will no longer
be visible until another map call is made on the parent. In other words, the
subwindows are still mapped but are not visible until the parent is mapped.
Unmapping a window will generate Expose events on windows that were form­
erly obscured by it.

XUnmapWindow can generate a BadWindow error.

The XUnmapSubwindows function unmaps all subwindows for the specified
window in bottom-to-top stacking order. It causes the XWIN server to generate
an UnmapNotify event on each sub window and Expose events on formerly
obscured windows. Using this function is much more efficient than unmapping
multiple windows one at a time because the server needs to perform much of the
work only once, for all of the windows, rather than for each window.

XUnmapSubwindows can generate a BadWindow error.

DIAGNOSTICS
BadWindow A value for a Window argument does not name a defined Win­

dow.

SEE ALSO

10/89

XChangeWindow Attributes(3Xll),
XConfigureWindow(3Xll),
XCreateWindow(3Xll),
XDestroyWindow(3Xll),
XMapWindow(3Xl1)
XRaiseWindow(3Xll)
Xlib - C LAnguage X Interface

Page 1

XWarpPointer(3X11) XWarpPointer (3X11)

NAME
XWarpPointer - move pointer

SYNTAX
XWarpPointer(display, src_w, dest~w, src_x, src.JI, src_width, src_height, dest_x,

dest .JI)
Display ·display;
Window src w, dest W;
int src_x, sru; -
unsigned int src_width, src}/eight;
int dest _x, dest.JI;

ARGUMENTS
dest w Specifies the destination window or None.

dest x
destJ Specify the x and y coordinates within the destination window.

display Specifies the connection to the XWIN server.

src x
src.JI
src width
src)/eight
src w

Specify a rectangle in the source window.

Specifies the source window or None.

DESCRIPTION
If dest_w is None, XWarpPointer moves the pointer by the offsets (dest_x,
desty) relative to the current position of the pointer. If dest_ w is a window,
XWarpPointer moves the pointer to the offsets (dest_x, desty) relative to the ori­
gin of dest_ w. However, if src _ w is a window, the move only takes place if the
specified rectangle src _ w contains the pointer.

The src_x and srcy coordinates are relative to the origin of src_w. If src_height
is zero, it is replaced with the current height of src_w minus srcy. If src_width
is zero, it is replaced with the current width of src _ w minus src _x.

There is seldom any reason for calling this function. The pointer should normally
be left to the user. If you do use this function, however, it generates events just
as if the user had instantaneously moved the pointer from one position to
another. Note that you cannot use XWarpPointer to move the pointer outside
the confine_to window of an active pointer grab. An attempt to do so will only
move the pointer as far as the closest edge of the confine_to window.

XWarpPointer can generate a BadWindow error.
DIAGNOSTICS

BadWindow A value for a Window argument does not name a defined Win­
dow.

SEE ALSO
XSetInputFocus(3Xll)
Xlib - C Language X Interface

10/89 Page 1

