= ATsT

) »

UNIX® SYSTEM V
RELEASE 4

Programmer’s Guide: XWIN™
Graphical Windowing System

The X Toolkit

UNIX Software Operation

(W

ATsl

UNIX® SYSTEM V
RELEASE 4

Programmer's Guide: XWIN™
Graphical Windowing System
Xlib-C Language Interface

UNIX Software Operation

Copyright 1990, 1989, 1988, 1987, 1986, 1985, 1984, 1983 AT&T
All Rights Reserved
Printed in USA

Published by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means--graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap-
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from AT&T.

ACKNOWLEDGEMENT

Parts of this book are being reproduced with the permission of the Massachusetts Institute of Tech-
nology, O'Reilly and Associates, Inc., Hewlett Packard, Digital Equipment Corporation, and Sun Mi-
crosystems, Inc.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document, AT&T
assumes no liability to any party for any loss or damage caused by errors or omissions or by state-
ments of any kind in this document, its updates, supplements, or special editions, whether such er-
rors are omissions or statements resulting from negligence, accident, or any other cause. AT&T furth-
er assumes no liability arising out of the application or use of any product or system described
herein; nor any liability for incidental or consequential damages arising from the use of this docu-
ment. AT&T disclaims all warranties regarding the information contained herein, whether expressed,
implied or statutory, including implied warranties of merchantability or fitness for a particular purpose.

AT&T makes no representation that the interconnection of products in the manner described herein
will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the
granting or license to make, use or sell equipment constructed in accordance with this description.

ATAT reserves the right to make changes without further notice to any products herein to improve re-
liability, function, or design.
TRADEMARKS

PostScript is a registered trademark of Adobe Systems

UNIX is a registered trademark of AT&T

The X Window System is a trademark of the Massachusetts Institute of Technology
XwIN is a registered trademark of AT&T

10987654321

ISBN 0-13-931874-7

UNIX

PRESS
A Prentice Hall Title

P R ENTI C E H A L L

ORDERING INFORMATION

UNIX® SYSTEM V, RELEASE 4 DOCUMENTATION

To order single copies of UNIX® SYSTEM V, Release 4 documentation,
please call (201) 767-5937.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:
For bulk purchases in excess of 30 copies please write to:

Corporate Sales

Prentice Hall

Englewood Cliffs, N.J. 07632

Or call: (201) 592-2498

ATTENTION GOVERNMENT CUSTOMERS: For GSA and other pricing
information please call (201) 767-5994.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

AT&T UNIX® System V Release 4

General Use and System Administration

UNIX® System V Release 4 Network User’s and Administrator’s Guide
UNIX® System V Release 4 Product Overview and Master Index
UNIX® System V Release 4 System Administrator’s Guide

UNIX® System V Release 4 System Administrator’s Reference Manual
UNIX® System V Release 4 User’s Guide

UNIX® System V Release 4 User’s Reference Manual

General Programmer’s Series

UNIX® System V Release 4 Programmer’s Guide: ANSI C and Programming Support Tools

UNIX® System V Release 4 Programmer’s Guide: Character User Interface (FMLI and ETI)

UNIX® System V Release 4 Programmer’s Guide: Networking Interfaces

UNIX® System V Release 4 Programmer’s Guide: POSIX Conformance

UNIX® System V Release 4 Programmer’s Guide: System Services and Application
Packaging Tools

UNIX® System V Release 4 Programmer’s Reference Manual

System Programmer’s Series

UNIX® System V Release 4 Device Driver Interface / Driver—Kernel Interface (DDI / DKI)
Reference Manual

UNIX® System V Release 4 Programmer’s Guide: STREAMS

Migration Series

UNIX® System V Release 4 ANSI C Transition Guide
UNIX® System V Release 4 BSD / XENIX® Compatibility Guide
UNIX® System V Release 4 Migration Guide

Graphics Series

UNIX® System V Release 4 OPEN LOOK™ Graphical User Interface Programmer’s
Reference Manual

UNIX® System V Release 4 OPEN LOOK™ Graphical User Interface User’s Guide

UNIX® System V Release 4 Programmer’s Guide: XWIN ™ Graphical Windowing System
Xlib — C Language Interface

UNIX® System V Release 4 Programmer’s Guide: OPEN LOOK™ Graphical User Interface

UNXEIX;ISSystem V Release 4 Programmer’s Guide: X11/NeWS® Graphical Windowing System

e

UNIX® System V Release 4 Programmer’s Guide: X11/NeWS® Graphical Windowing System
Server Guide

UNIX® System V Release 4 Programmer’s Guide: X11/NeWS® Graphical Windowing System
tNt Technical Reference Manual

UNIX® System V Release 4 Programmer’s Guide: X1 1/NeWS® Graphical Windowing System
XVIEW

UNIX® System V Release 4 Programmer’s Guide: XWIN™ Graphical Windowing System
Addenda: Technical Papers

UNIX® System V Release 4 Programmer’s Guide: XWIN™ Graphical Windowing System
The X Toolkit

Available from Prentice Hall

Contents

1 Introduction to Xlib
Introduction to Xlib 1-1
Overview of the XWIN System 1-2
Errors 1-5
Naming and Argument Conventions within Xlib 1-6
Programming Considerations 1-8
Conventions Used in Xlib — C Language X Interface 1-9

2 Display Functions
Introduction 2-1
Opening the Display 22
Obtaining Information about the Display, Image Formats, or

Screens 2-4

Generating a NoOperation Protocol Request 2-16
Freeing Client-Created Data 2-17
Closing the Display 2-18
XWIN Server Connection Close Operations 2-19

3 Window Functions
Introduction 31
Visual Types 3-2
Window Attributes 3-4
Creating Windows 3-15
Destroying Windows 3-19
Mapping Windows 3-21
Unmapping Windows 3-24
Configuring Windows 3-25
Changing Window Stacking Order 3-32

Table of Contents

Table of Contents

Changing Window Attributes 3-36
Translating Window Coordinates 3-40
4 Window Information Functions
Introduction 41
Obtaining Window Information 4-2
Properties and Atoms 4-8
Obtaining and Changing Window Properties 4-12
Selections 4-18
5 Graphics Resource Functions
Introduction 5-1
Colormap Functions 5-2
Creating and Freeing Pixmaps 5-16
Manipulating Graphics Context/State 5-18
Using GC Convenience Routines 5-30

6 Graphics Functions

Introduction 6-1
Clearing Areas 6-2
Copying Areas 6-4
Drawing Points, Lines, Rectangles, and Arcs 6-7
Filling Areas 6-17
Font Metrics 6-22
Drawing Text 6-40
Transferring Images between Client and Server 6-47
Cursors 6-54

ii Xwin GWS: Xiib - C Language Interface

Table of Contents

7 Window Manager Functions
Introduction 7-1
Changing the Parent of a Window 7-2
Controlling the Lifetime of a Window 7-4
Determining Resident Colormaps 7-6
Pointer Grabbing 7-8
Keyboard Grabbing 7-16
Server Grabbing 7-24
Miscellaneous Control Functions 7-25
Keyboard and Pointer Settings 7-30
Keyboard Encoding 7-38
Screen Saver Control 7-45
Controlling Host Access 7-48

Events and Event-Handling Functions

(00]

Introduction 8-1
Event Types 8-2
Event Structures 8-4
Event Masks 8-7
Event Processing 8-9
Selecting Events 8-54
Handling the Output Buffer 8-55
Event Queue Management 8-56
Manipulating the Event Queue 8-57
Putting an Event Back into the Queue 8-64
Sending Events to Other Applications 8-65
Getting Pointer Motion History 8-67
Handling Error Events 8-69

Table of Contents fii

Table of Contents

Predefined Property Functions

Introduction 9-1
Communicating with Window Managers 9-2
Manipulating Standard Colormaps 9-22
1 0 Application Utility Functions
Introduction 10-1
Keyboard Utility Functions 10-2
Obtaining the X Environment Defaults 10-7
Parsing the Window Geometry 10-9
Parsing the Color Specifications 10-12
Generating Regions 10-13
Manipulating Regions 10-14
Using the Cut and Paste Buffers 10-19
Determining the Appropriate Visual Type 10-22
Manipulating Images 10-25
Manipulating Bitmaps 10-30
Using the Resource Manager 10-34
Using the Context Manager 10-52
A Xlib Functions and Protocol Requests
Xlib Functions and Protocol Requests A-1
B Xlib Font Cursors
Xlib Font Cursors B-1

Xwin GWS: Xlib — C Language Interface

Table of Contents

C Extensions

Extensions C-1

Basic Protocol Support Routines c-2

Hooking into Xlib C-3

Hooks into the Library C5

Hooks onto Xlib Data Structures C-11
GC Caching C-13
Graphics Batching C-14
Writing Extension Stubs C-16
Requests, Replies, and Xproto.h C-17
Request Format c-18
Starting to Write a Stub Routine c-21
Locking Data Structures Cc-22
Sending the Protocol Request and Arguments C-23
Variable Length Arguments C-25
Replies C-26
Synchronous Calling Cc-29
Allocating and Deallocating Memory C-30
Portability Considerations C-31
Deriving the Correct Extension Opcode C-32

D Version 10 Compatibilty Functions
Drawing and Filling Polygons and Curves D-1
Associating User Data with a Value D-4

E X11 Input Synthesis Extension

Preface E-1
Conventions Used In This Document E-2
Definition Of Terms E-3
What Does This Extension Do? E-4
Functions In This Extension E-5

Table of Contents v

Table of Contents

X11 Input Synthesis Extension Include File E-15
G Glossary
G-1
| Index

Manual Pages

vi Xwin GWS: Xlib - C Language Interface

[) gléal@l. A

1 Introduction to Xlib

Introduction to Xlib

1-1

Overview of the XWIN System

1-2

Errors

1-5

Naming and Argument Conventions within
Xlib

1-6

Programming Considerations

1-8

Conventions Used in Xlib - C Language X
Interface

Table of Contents

1-9

i
|
|
|
|
i
1

Introduction to Xlib

The X Window System is a network-transparent window system that was
designed at MIT. It runs under 4.3BSD UNIX, ULTRIX-32, many other UNIX
variants, VAX/VMS, MS/DOS, as well as several other operating systems.

AT&T’s XWIN™ Release 3.0 product is based on the MIT X Window System
X11R3. It is streams based, includes performance enhancements, and runs on
UNIX System V Release 3.2 and SVR4.0

XWIN display servers run on computers with either monochrome or color bit-
map display hardware. The server distributes user input to and accepts output
requests from various client programs located either on the same machine or
elsewhere in the network. Xlib is a C subroutine library that application pro-
grams (clients) use to interface with the window system by means of a stream
connection. Although a client usually runs on the same machine as the XWIN
server it is talking to, this need not be the case.

Xlib — C Language X Interface is a reference guide to the low-level C language
interface to the X System protocol. It is neither a tutorial nor a user’s guide to
programming the XWIN System. Rather, it provides a detailed description of
each function in the library as well as a discussion of the related background
information. Xlib — C Language X Interface assumes a basic understanding of a
graphics window system and of the C programming language. Other higher-
level abstractions (for example, those provided by the toolkits for X) are built on
top of the Xlib library. For further information about these higher-level
libraries, see the appropriate toolkit documentation. The X Protocol provides the
definitive word on the behavior of X. Although additional information appears
here, the protocol document is the ruling document.

To provide an introduction to X programming, this chapter discusses:
m Overview of the XWIN System
m Errors
® Naming and argument conventions
m Programming considerations

m Conventions used in this document

Introduction to Xlib 1-1

Overview of the XWIN System

Some of the terms used in this book are unique to the XWIN System, and other
terms that are common to other window systems have different meanings in
XWIN. You may find it helpful to refer to the glossary, which is located at the
end of the book.

All the windows in an XWIN server are arranged in strict hierarchies. At the top
of the hierarchy is the root window, which covers the display screen. Each root
window is partially or completely covered by child windows. All windows,
except for root windows, have parents. There is usually at least one window for
each application program. Child windows may in turn have their own children.
In this way, an application program can create an arbitrarily deep tree. The
XWIN system provides graphics, text, and raster operations for windows.

A child window can be larger than its parent. That is, part or all of the child
window can extend beyond the boundaries of the parent, but all output to a
window is clipped by its parent. If several children of a window have overlap-
ping locations, one of the children is considered to be on top of or raised over
the others thus obscuring them. Output to areas covered by other windows is
suppressed by the window system unless the window has backing store. If a
window is obscured by a second window, the second window obscures only
those ancestors of the second window, which are also ancestors of the first win-
dow. ‘

A window has a border zero or more pixels in width, which can be any pattern
(pixmap) or solid color you like. A window usually but not always has a back-
ground pattern, which will be repainted by the window system when
uncovered. Each window has its own coordinate system. Child windows
obscure their parents unless the child windows (of the same depth) have no
background, and graphic operations in the parent window usually are clipped
by the children.

The XWIN server does not guarantee to preserve the contents of windows. When
part or all of a window is hidden and then brought back onto the screen, its
contents may be lost. The server then sends the client program an Expose event
to notify it that part or all of the window needs to be repainted. Programs must
be prepared to regenerate the contents of windows on demand.

The XWIN server also provides off-screen storage of graphics objects, called pix-
maps. Single plane (depth 1) pixmaps are sometimes referred to as bitmaps.
Pixmaps can be used in most graphics functions interchangeably with windows
and are used in various graphics operations to define patterns or tiles. Win-
dows and pixmaps together are referred to as drawables.

1-2 » XWIN GWS: Xlib - C Language Interface

Overview of the XwIN System

Most of the functions in Xlib just add requests to an output buffer. These
requests later execute asynchronously on the XWIN server. Functions that return
values of information stored in the server do not return (that is, they block)
until an explicit reply is received or an error occurs. You can provide an error
handler, which will be called when the error is reported.

If a client does not want a request to execute asynchronously, it can follow the
request with a call to XSync, which blocks until all previously buffered asyn-
chronous events have been sent and acted on. As an important side effect, the
output buffer in Xlib is always flushed by a call to any function that returns a
value from the server or waits for input.

Many Xlib functions will return an integer resource ID, which allows you to
refer to objects stored on the XWIN server. These can be of type Window, Font,
Pixmap, Colormap, Cursor, and GContext, as defined in the file < X11/X.h >.

These resources are created by requests and are destroyed (or freed) by requests
or when connections are closed. Most of these resources are potentially sharable
between applications, and in fact, windows are manipulated explicitly by win-
dow manager programs. Fonts are loaded and unloaded as needed and are
shared by multiple clients. Fonts are often cached in the server. Xlib provides
no support for sharing graphics contexts between applications.

Client programs are informed of events. Events may either be side effects of a
request (for example, restacking windows generates Expose events) or com-
pletely asynchronous (for example, from the keyboard). A client program asks
to be informed of events. Because other applications can send events to your
application, programs must be prepared to handle (or ignore) events of all
types.

Input events (for example, a key pressed or the pointer moved) arrive asynchro-
nously from the server and are queued until they are requested by an explicit
call (for example, XNextEvent or XWindowEvent). In addition, some library
functions (for example, XRaiseWindow) generate Expose and ConfigureRe—
quest events. These events also arrive asynchronously, but the client may wish
to explicitly wait for them by calling XSync after calling a function that can
cause the server to generate events.

Introduction to Xlib 1-3

Overview of the XwiN System

The <> has the meaning defined by the # include statement of the C com-
piler and is a file relative to a well-known directory. This is /usr/X/include
on XWIN systems.

1-4 XWIN GWS: Xlib - C Language Interface

Errors

Some functions return Status, an integer error indication. If the function fails,
it returns a zero. If the function returns a status of zero, it has not updated the
return arguments. Because C does not provide multiple return values, many
functions must return their results by writing into client-passed storage.

By default, errors are handled either by a standard library function or by one
that you provide. Functions that return pointers to strings return NULL
pointers if the string does not exist.

The XWIN server reports protocol errors at the time that it detects them. If more
than one error could be generated for a given request, the server can report any
of them.

Because Xlib usually does not transmit requests to the server immediately (that
is, it buffers them), errors can be reported much later than they actually occur.

For debugging purposes, however, Xlib provides a mechanism for forcing syn-
chronous behavior (see "Enabling or Disabling Synchronization" in Chapter 8).

When synchronization is enabled, errors are reported as they are generated.

When Xlib detects an error, it calls an error handler, which your program can
provide. If you do not provide an error handler, the error is printed, and your
program terminates.

Introduction to Xlib , 1-5

Naming and Argument Conventions within Xlib

Xlib follows a number of conventions for the naming and syntax of the func-
tions. Given that you remember what information the function requires, these
conventions are intended to make the syntax of the functions more predictable.

The major naming conventions are:

16

To differentiate the XWIN symbols from the other symbols, the library uses
mixed case for external symbols. It leaves lowercase for variables and all
uppercase for user macros, as per existing convention.

m All Xlib functions begin with a capital X.

m The beginnings of all function names and symbols are capitalized.

m All user-visible data structures begin with a capital X. More generally,

anything that a user might dereference begins with a capital X.

Macros and other symbols do not begin with a capital X. To distinguish
them from all user symbols, each word in the macro is capitalized.

All elements or variables in a data structure are in lowercase. Compound
words, where needed, are constructed with underscores ().

The display argument, where used, is always first in the argument list.

m All resource objects, where used, occur at the beginning of the argument

list immediately after the display argument.

When a graphics context is present together with another type of
resource (most commonly, a drawable), the graphics context occurs in the
argument list after the other resource. Drawables outrank all other
resources.

Source arguments always precede the destination arguments in the argu-
ment list.

m The x argument always precedes the y argument in the argument list.

m The width argument always precedes the height argument in the argu-

ment list.

Where the x, y, width, and height arguments are used together, the x and
y arguments always precede the width and height arguments.

XWIN GWS: Xlib - C Language Interface

Naming and Argument Conventions within Xlib

m Where a mask is accompanied with a structure, the mask always precedes
the pointer to the structure in the argument list.

Introduction to Xlib 1-7

Programming Considerations

The major programming considerations are:

1-8

m Keyboards are the greatest variable between different manufacturers’

workstations. If you want your program to be portable, you should be
particularly conservative here.

Many display systems have limited amounts of off-screen memory. If you
can, you should minimize use of pixmaps and backing store.

The user should have control of the screen real estate. Therefore, you
should write your applications to react to window management rather
than presume control of the entire screen. What you do inside of your
top-level window, however, is up to your application. For further infor-
mation, see Chapter 9.

Coordinates and sizes in the XWIN System are actually 16-bit quantities.
They usually are declared as an “int” in the interface (int is 16 bits on
some machines). Values larger than 16 bits are truncated silently. Sizes
(width and height) are unsigned quantities. This decision was taken to
minimize the bandwidth required for a given level of performance.

XWIN GWS: Xlib - C Language Interface

Conventions Used in Xlib — C Language X
Interface

This document uses the following conventions:

m Global symbols in Xlib — C Language X Interface are printed in this spe-
cial font. These can be either function names, symbols defined in
include files, or structure names. Arguments are printed in ifalics.

m Each function is introduced by a general discussion that distinguishes it
from other functions. The function declaration itself follows, and each
argument is specifically explained. General discussion of the function, if
any is required, follows the arguments. Where applicable, the last para-
graph of the explanation lists the possible Xlib error codes that the func-
tion can generate. For a complete discussion of the Xlib error codes, see
"Using the Default Error Handlers" in Chapter 8.

m To eliminate any ambiguity between those arguments that you pass and
those that a function returns to you, the explanations for all arguments
that you pass start with the word specifies or, in the case of multiple argu-
ments, the word specify. The explanations for all arguments that are
returned to you start with the word returns or, in the case of multiple
arguments, the word return. The explanations for all arguments that you
can pass and are returned start with the words specifies and returns.

® Any pointer to a structure that is used to return a value is designated as
such by the _return suffix as part of its name. All other pointers passed to
these functions are used for reading only. A few arguments use pointers
to structures that are used for both input and output and are indicated by
using the _in_out suffix.

m Xlib defines the Boolean values of True and False.

Introduction to Xlib 1-9

2 Display Functions

Introduction 2-1

Opening the Display 22

Obtaining Information about the Display,

Image Formats, or Screens 24
Display Macros 2-4
Image Format Macros 2-10
Screen Information Macros 2-12

Generating a NoOperation Protocol

Request 2-16
Freeing Client-Created Data 2-17
Closing the Display 2-18

Table of Contents i

Table of Contents

XWIN Server Connection Close Operations 2-19

ii Xwin GWS: Xlib - C Language Interface

Introduction

Before your program can use a display, you must establish a connection to the
XWIN server. Once you have established a connection, you then can use the Xlib
macros and functions discussed in this chapter to return information about the
display. This chapter discusses how to:

m Open (connect to) the display

m Obtain information about the display, image format, and screen
m Free client-created data

m Close (disconnect from) a display

The chapter concludes with a general discussion of what occurs when the con-
nection to the XWIN server is closed.

Display Functions 241

Opening the Display

To open a connection to the XWIN server that controls a display, use XOpen-
Display.

Display *XOpenDisplay (display_name)
char *display_name;

display name Specifies the hardware display name, which determines the
display and communications domain to be used. On a UNIX-
based system, if the display_name is NULL, it defaults to the
value of the DISPLAY environment variable.

On UNIX-based systems, the display name or DISPLAY environment variable is
a string in the format:

hostname:number .screen_number

hostname Specifies the name of the host machine on which the display is
physically attached. You follow the hostname with either a sin-
gle colon (:) or a double colon (::).

number Specifies the number of the display server on that host machine.
You may optionally follow this display number with a period
(). A single CPU can have more than one display. Multiple
displays are usually numbered starting with zero.

screen_number Specifies the screen to be used on that server. The
screen_number sets an internal variable that can be accessed by
using the DefaultScreen macro or the XDefaultScreen func-
tion if you are using languages other than C (see "Display Mac-
ros" in Chapter 2).

For example, the following would specify screen 2 of display 0 on the machine
named mit-athena:

mit-athena:0.2

The XOpenDisplay function returns a Display structure that serves as the con-
nection to the XWIN server and that contains all the information about that XWIN
server. XOpenDisplay connects your application to the XWIN server through
TCP, UNIX domain, or StarLan (SVR3.2 only) communications protocols. If the
hostame is a host machine name and a single colon (:) separates the hostname
and display number XOpenDisplay connects using TCP streams. If the

2-2 Xwin GWS: Xlib - C Language Interface

Opening the Display

hostname is unix and a single colon (:) separates it from the display number,
XOpenDisplay connects using UNIX domain IPC streams. If the hostname is
not specified, Xlib uses whatever it believes is the fastest transport. A single
XWIN server can support any or all of these transport mechanisms simultane-
ously. A particular Xlib implementation can support many more of these tran-
sport mechanisms.

If successful, XOpenDisplay returns a pointer to a Display structure, which is
defined in < X11/X1ib.h >. If XOpenDisplay does not succeed, it returns
NULL. After a successful call to XOpenDisplay, all of the screens in the display
can be used by the client. The screen number specified in the display_name
argument is returned by the DefaultScreen macro (or the XDefaultScreen
function). You can access elements of the Display and Screen structures only
by using the information macros or functions. For information about using
macros and functions to obtain information from the Display structure, see
"Display Macros" in Chapter 2.

XWIN servers may implement various types of access control mechanisms (see
"Controlling Host Access" in Chapter 7).

Display Functions 2-3

Obtaining Information about the Display,
Image Formats, or Screens

The Xlib library provides a number of useful macros and corresponding func-
tions that return data from the Display structure. The macros are used for C
programming, and their corresponding function equivalents are for other
language bindings. This section discusses the:

m Display macros

m Image format macros

m Screen macros
All other members of the Display structure (that is, those for which no macros

are defined) are private to Xlib and must not be used. Applications must never
directly modify or inspect these private members of the Display structure.

The XDisplayWidth, XDisplayHeight, XDisplayCells, XDisplayPlanes,

XDisplayWidthMM, and XDisplayHeightMM functions in the next sections

are misnamed. These functions really should be named Screenwhatever and

] XScreenwhatever, not Displaywhatever or XDisplaywhatever. Our apologies
for the resulting confusion.

Display Macros

Applications should not directly modify any part of the Display and Screen
structures. The members should be considered read-only, although they may
change as the result of other operations on the display.

The following lists the C language macros, their corresponding function
equivalents that are for other language bindings, and what data they both can
return.

AllPlanes()

unsigned long XAllPlanes()

Both return a value with all bits set to 1 suitable for use in a plane argument to
a procedure.

24 Xwin GWS: Xiib - C Language Interface

Obtaining Information about the Display, Image Formats, or Screens

Both BlackPixel and WhitePixel can be used in implementing a monochrome
application. These pixel values are for permanently allocated entries in the
default colormap. The actual RGB (red, green, and blue) values are settable on
some screens and, in any case, may not actually be black or white. The names
are intended to convey the expected relative intensity of the colors.

BlackPixel (display, screen_number)
unsigned long XBlackPixel(display, screen_number)
Display *display;
int screen_number;
Both return the black pixel value for the specified screen.
WhitePixel (display, screen_number)
unsigned long XWhitePixel(display, screen_number)
Display *display;
int screen_number;
Both return the white pixel value for the specified screen.
Connect ionNumber (display)
int XConnectionNumber(display)
Display *display;
Both return a connection number for the specified display. On a UNIX-based
system, this is the file descriptor of the connection.
DefaultColormap (display, screm_numb?z) ' .

Colormap XDefaultColormap(display, scréen_numbef)
Display *display;

int screen_number;

Both return the default colormap ID for allocation on the specified screen. Most
routine allocations of color should be made out of this colormap.

Display Functions 2-5

Obtaining Information about the Display, Inage Formats, or Screens

DefaultDepth (display, screen_number)
int XDefaultDepth(display, screen_number)
Display *display;
int screen_number;

Both return the depth (number of planes) of the default root window for the
specified screen. Other depths may also be supported on this screen (see
XMatchVisualInfo).

DefaultGC (display, screen_number)

GC XDefaultGC(display, screen_number)
Display *display;
int screen_number;

Both return the default graphics context for the root window of the specified
screen. This GC is created for the convenience of simple applications and con-
tains the default GC components with the foreground and background pixel
values initialized to the black and white pixels for the screen, respectively. You
can modify its contents freely because it is not used in any Xlib function. This
GC should never be freed.

DefaultRootWindow (display)
Window XDefaultRootWindow(display)
Display *display;
Both return the root window for the default screen.
DefaultScreenOfDisplay (display)
Screen *XDefaultScreenOfDisplay(display)
Display *display;
Both return a pointer to the default screen.
ScreenOfDisplay (display, screen_number)

Screen *XScreenOfDisplay (display, screen_number)
Display *display;
int screen_number;

2-6 Xwin GWS: Xlib - C Language Interface

Obtaining Information about the Display, Image Formats, or Screens

Both return a pointer to the indicated screen.
DefaultScreen (display)
int XDefaultScreen(display)
Display *display;

Both return the default screen number referenced by the XOpenDisplay func-
tion. This macro or function should be used to retrieve the screen number in
applications that will use only a single screen.

DefaultVisual (display, screen_number)

Visual *XDefaultVisual(display, screen_number)
Display *display;
int screen_number;

Both return the default visual type for the specified screen. For further informa-
tion about visual types, see "Visual Types" in Chapter 3.
DisplayCells (display, screen_number)

int XDisplayCells(display, screen_number)
Display *display;
int screen_number;
Both return the number of entries in the default colormap.
DisplayPlanes (display, screen_number)

int XDisplayPlanes(display, screen_number)
Display *display;

int screen_number;
Both return the depth of the root window of the specified screen. For an expla-
nation of depth, see the glossary.
DisplayString (display)

char *XDisplayString(display)
Display *display;

Display Functions 2-7

Obtaining Information about the Display, Image Formats, or Screens

Both return the string that was passed to XOpenDisplay when the current
display was opened. On UNIX-based systems, if the passed string was NULL,
these return the value of the DISPLAY environment variable when the current
display was opened.

These are useful to applications that invoke the fork system call and want to
open a new connection to the same display from the child process as well as for
printing error messages.
LastKnownRequestProcessed (display)
unsigned long XLastKnownRequestProcessed (display)
Display *display;
Both extract the full serial number of the last request known by Xlib to have

been processed by the XWIN server. Xlib automatically sets this number when
replies, events, and errors are received.

NextRequest (display)

unsigned long XNextRequest(display)
Display *display;

Both extract the full serial number that is to be used for the next request. Serial
numbers are maintained separately for each display connection.

ProtocolVersion (display)
int XProtocolVersion (display)
Display *display;
Both return the major version number (11) of the X protocol associated with the
connected display.
ProtocolRevision (display)
int XProtocolRevision (display)
Display *display;

Both return the minor protocol revision number of the XWIN server.
QLength (display)

int XQLength (display)
Display *display;

2-8 Xwin GWS: Xiib — C Language Interface

Obtaining Information about the Display, Image Formats, or Screens

Both return the length of the event queue for the connected display. Note that
there may be more events that have not been read into the queue yet (see
XEvent sQueued).

RootWindow (display, screen_number)

Window XRootWindow (display, screen_number)

Display *display;
int screen_number;

Both return the root window. These are useful with functions that need a draw-
able of a particular screen and for creating top-level windows.
ScreenCount (display)
int XScreenCount(display)
Display *display;
Both return the number of available screens.
ServerVendor (display)
char *XServerVendor (display)
Display *display;
Both return a pointer to a null-terminated string that provides some
identification of the owner of the XWIN server implementation.
VendorRelease (display)
int XVendorRelease(display)
Display *display;

Both return a number related to a vendor’s release of the XWIN server.

Display Functions 2-9

Obtaining Information about the Display, Image Formats, or Screens

Image Format Macros

Applications are required to present data to the XWIN server in a format that the
server demands. To help simplify applications, most of the work required to
convert the data is provided by Xlib (see "Transferring Images Between Client
and Server" in Chapter 6, and "Manipulating Images” in Chapter 10).

The following lists the C language macros, their corresponding function
equivalents that are for other language bindings, and what data they both
return for the specified server and screen. These are often used by toolkits as
well as by simple applications.

ImageByteOrder (display)
int XImageByteOrder (display)
Display *display;

Both specify the required byte order for images for each scanline unit in XY for-
mat (bitmap) or for each pixel value in Z format. The macro or function can
return either LSBFirst or MSBFirst.

BitmapUnit (display)
int XBitmapUnit(display)
Display *display;
Both return the size of a bitmap’s scanline unit in bits. The scanline is calcu-
lated in multiples of this value.
BitmapBitOrder (display)
int XBitmapBitOrder (display)
Display *display;

Within each bitmap unit, the left-most bit in the bitmap as displayed on the
screen is either the least-significant or most-significant bit in the unit. This
macro or function can return LSBFirst or MSBFirst.

BitmapPad (display)

int XBitmapPad(display)
Display *display;

2-10 Xwin GWS: Xlib - C Language Interface

Obtaining Information about the Display, Image Formats, or Screens

Each scanline must be padded to a multiple of bits returned by this macro or
function.

DisplayHeight (display, screen_number)
int XDisplayHeight(display, screen_number)
Display *display;
int screen_number;
Both return an integer that describes the height of the screen in pixels.
DisplayHeightMM (display, screen_number)
int XDisplayHeightMM (display, screen_number)
Display *display;
int screen_number;
Both return the height of the specified screen in millimeters.
DisplayWidth (display, screen_number)
int XDisplayWidth(display, screen_number)
Display *display;
int screen_number;
Both return the width of the screen in pixels.
DisplayWidthMM (display, screen_number)

int XDisplayWidthMM (display, screen_number)
Display *display;
int screen_number;

Both return the width of the specified screen in millimeters.

Display Functions 2-11

Obtaining Information about the Display, Image Formats, or Screens

Screen Information Macros

The following lists the C language macros, their corresponding function
equivalents that are for other language bindings, and what data they both can
return. These macros or functions all take a pointer to the appropriate screen
structure.

BlackPixelOfScreen (screen)
unsigned long XBlackPixelOfScreen(screen)
Screen *screen;
Both return the black pixel value of the specified screen.
WhitePixelOfScreen (screen)

unsigned long XWhitePixelOfScreen(screen)
Screen *screen;

Both return the white pixel value of the specified screen.
CellsOfScreen (screen)
int XCellsOfScreen(screen)
Screen *screen;
Both return the number of colormap cells in the default colormap of the
specified screen.
DefaultColormapOfScreen (screen)
Colormap XDefaultColormapOfScreen(screen)
Screen *screen;
Both return the default colormap of the specified screen.
DefaultDepthOfScreen (screen)
int XDefaultDepthOfScreen(screen)

Screen *screen;

Both return the depth of the root window.

2-12 Xwin GWS: Xlib - C Language Interface

Obtaining Information about the Display, Image Formats, or Screens

DefaultGOOfScreen (screen)
GC XDefaultGCOfScreen(screen)
Screen “screen;
Both return a default graphics context (GC) of the specified screen, which has
the same depth as the root window of the screen. The GC must never be freed.
DefaultVisualOfScreen (screen)
Visual *XDefaultVisualOfScreen(screen)
Screen *screen;
Both return the default visual of the specified screen. For information on visual
types, see "Visual Types" in Chapter 3.
DoesBackingStore (screen)
int XDoesBackingStore(screen)

Screen *screen;

Both return a value indicating whether the screen supports backing stores. The
value returned can be one of WhenMapped, NotUseful, or Always (see "Backing
Store Attribute" in Chapter 3).

DoesSaveUnders (screen)
Bool XDoesSaveUnders(screen)

Screen “screen;

Both return a Boolean value indicating whether the screen supports save unders.
If True, the screen supports save unders. If False, the screen does not support
save unders (see "Save Under Flag" in Chapter 3).

DisplayOfScreen (screen)

Display *XDisplayOfScreen(screen)
Screen *screen;

Both return the display of the specified screen.

Display Functions 2-13

Obtaining Information about the Display, Image Formats, or Screens

EventMaskOfScreen (screen)
long XEventMaskOfScreen(screen)
Screen *screen;
Both return the event mask of the root window for the specified screen at con-
nection setup time.
WidthOfScreen (screen)
int XWidthOfScreen (screen)
Screen *screen;
Both return the width of the specified screen in pixels.
HeightOfScreen (screen)
int XHeightOfScreen(screen)
Screen *screen;
Both return the height of the specified screen in pixels.
WidthMMOfScreen (screen)
int XWidthMMOfScreen(screen)
Screen *screen;
Both return the width of the specified screen in millimeters.
HeightMMOfScreen (screen)
int XHeightMMOfScreen(screen)
Screen *screen;
Both return the height of the specified screen in millimeters.
MaxCmapsOfScreen (screen)
int XMaxCmapsOfScreen(screen)
Screen *screen;

Both return the maximum number of installed colormaps supported by the
specified screen (see "Determining Resident Colormaps" in Chapter 7).

2-14 Xwin GWS: Xlib — C Language Interface

Obtaining Information about the Display, Image Formats, or Screens

MinCmapsOfScreen (screen)
int XMinCmapsOfScreen(screen)
Screen *screen;
Both return the minimum number of installed colormaps supported by the
specified screen (see "Determining Resident Colormaps” in Chapter 7).
PlanesOfScreen (screen)
int XPlanesOfScreen(screen)
Screen *screen;
Both return the depth of the root window.
RootWindowOfScreen (screen)
Window XRootWindowOfScreen(screen)

Screen *screen;

Both return the root window of the specified screen.

Display Functions 2-15

Generating a NoOperation Protocol Request

To execute a NoOperation protocol request, use XNoOp.

XNoOp (display)
Display *display;

display Specifies the connection to the XWIN server.

The XNoOp function sends a NoOperation protocol request to the XWIN server,
thereby exercising the connection.

2-16 Xwin GWS: Xiib - C Language Interface

Freeing Client-Created Data

To free any in-memory data that was created by an Xlib function, use XFree.

XFree (data)
char *data;

data Specifies a pointer to the data that is to be freed.

The XFree function is a general-purpose Xlib routine that frees the specified
data. You must use it to free any objects that were allocated by Xlib.

Display Functions

217

Closing the Display

To close a display or disconnect from the XWIN server, use XCloseDisplay.

XCloseDisplay (display)
Display *display;

display Specifies the connection to the XWIN server.

The XCloseDisplay function closes the connection to the XWIN server for the
display specified in the Display structure and destroys all windows, resource
IDs (Window , Font, Pixmap, Colormap, Cursor, and GContext), or other
resources that the client has created on this display, unless the close-down mode
of the resource has been changed (see XSetCloseDownMode). Therefore, these
windows, resource IDs, and other resources should never be referenced again or
an error will be generated. Before exiting, you should call XCloseDisplay
explicitly so that any pending errors are reported as XCloseDisplay performs a
final XSync operation.

XCloseDisplay can generate a BadGC error.

2-18 Xwin GWS: Xlib - C Language Interface

XWIN Server Connection Close Operations

When the XWIN server’s connection to a client is closed either by an explicit call
to XCloseDisplay or by a process that exits, the XWIN server performs the fol-
lowing automatic operations:

It disowns all selections owned by the client (see XSetSelectionOwner).

It performs an XUngrabPointer and XUngrabKeyboard if the client has
actively grabbed the pointer or the keyboard.

m It performs an XUngrabServer if the client has grabbed the server.

m It releases all passive grabs made by the client.

m It marks all resources (including colormap entries) allocated by the client

either as permanent or temporary, depending on whether the close-down
mode is RetainPermanent or RetainTemporary. However, this does not
prevent other client applications from explicitly destroying the resources
(see XSetCloseDownMode).

When the close-down mode is DestroyAll, the XWIN server destroys all of a
client’s resources as follows:

It examines each window in the client’s save-set to determine if it is an
inferior (subwindow) of a window created by the client. (The save-set is a
list of other clients’ windows, which are referred to as save-set windows.)
If so, the XWIN server reparents the save-set window to the closest ances-
tor so that the save-set window is not an inferior of a window created by
the client. The reparenting leaves unchanged the absolute coordinates
(with respect to the root window) of the upper-left outer corner of the
save-set window.

It performs a MapWindow request on the save-set window if the save-set
window is unmapped. The XWIN server does this even if the save-set
window was not an inferior of a window created by the client.

It destroys all windows created by the client.

It performs the appropriate free request on each nonwindow resource
created by the client in the server (for example, Font, Pixmap, Cursor,
Colormap, and GContext).

Display Functions 2-19

XwiN Server Connection Close Operations

m It frees all colors and colormap entries allocated by a client application.

Additional processing occurs when the last connection to the XWIN server closes.
An XWIN server goes through a cycle of having no connections and having some
connections. When the last connection to the XWIN server closes as a result of a
connection closing with the close_mode of DestroyAll, the XWIN server does
the following:

m It resets its state as if it had just been started. The XWIN server begins by
destroying all lingering resources from clients that have terminated in
RetainPermanent or RetainTemporary mode.

m It deletes all but the predefined atom identifiers.
m It deletes all properties on all root windows (see Chapter 4).

m It resets all device maps and attributes (for example, key click, bell
volume, and acceleration) as well as the access control list.

m It restores the standard root tiles and cursors.
m It restores the default font path.
m It restores the input focus to state PointerRoot.

However, the XWIN server does not reset if you close a connection with a close-
down mode set to RetainPermanent or RetainTemporary.

2-20 Xwin GWS: Xlib - C Language Interface

3 Window Functions

Introduction 3-1
Visual Types 32
Window Attributes 3-4
Background Attribute 37
Border Attribute 3-8
Gravity Attributes 3-9
Backing Store Attribute 3-11
Save Under Flag 3-11
Backing Planes and Backing Pixel Attributes 3-12
Event Mask and Do Not Propagate Mask Attributes 3-12
Override Redirect Flag 3-13
Colormap Attribute 3-13
Cursor Attribute 3-14
Creating Windows 3-15
Destroying Windows 3-19

Table of Contents

Table of Contents

Mapping Windows 3-21
Unmapping Windows 3-24
Configuring Windows 3-25
Changing Window Stacking Order 3-32
Changing Window Attributes 3-36
Translating Window Coordinates 3-40

Xwin GWS: Xlib — C Language Interface

Introduction

In the XWIN System, a window is a rectangular area on the screen that lets you
view graphic output. Client applications can display overlapping and nested
windows that are driven by XWIN servers on one or more machines. Clients
who want to create windows must first connect their program to the XWIN
server by calling XOpenDisplay. This chapter begins with a discussion of visual
types and window attributes. The chapter continues with a discussion of the
Xlib functions you can use to:

m Create windows
Destroy windows
Map windows

Unmap windows

Change the stacking order

[
=

|

m Configure windows
|

m Change window attributes
[|

Translate window coordinates

This chapter also identifies the window actions that may generate events.

Note that it is vital that your application conform to the established conventions
for communicating with window managers for it to work well with the various
window managers in use (see "Communicating with Window Managers" in
Chapter 9). Toolkits generally adhere to these conventions for you, relieving
you of the burden. Toolkits also often supersede many functions in this chapter
with versions of their own. Refer to the documentation for the toolkit you are
using for more information.

Window Functions 3-1

Visual Types

On some display hardware, it may be possible to deal with color resources in
more than one way. For example, you may be able to deal with a screen of
either 12-bit depth with arbitrary mapping of pixel to color (pseudo-color) or
24-bit depth with 8 bits of the pixel dedicated to each of red, green, and blue.
These different ways of dealing with the visual aspects of the screen are called
visuals. For each screen of the display, there may be a list of valid visual types
supported at different depths of the screen. Because default windows and
visual types are defined for each screen, most simple applications need not deal
with this complexity. Xlib provides macros and functions that return the default
root window, the default depth of the default root window, and the default
visual type (see "Display Macros" in chapter 2 and XMatchVisualInfo).

Xlib uses a Visual structure that contains information about the possible color
mapping. The members of this structure pertinent to this discussion are class,
red_mask, green_mask, blue_mask, bits_per_rgb, and map_entries. The class
member specifies one of the possible visual classes of the screen and can be Sta-
ticGray, StaticColor, TrueColor, GrayScale, PseudoColor, or
DirectColor.

The following concepts may serve to make the explanation of visual types
clearer. The screen can be color or grayscale, can have a colormap that is writ-
able or read-only, and can also have a colormap whose indices are decomposed
into separate RGB pieces, provided one is not on a grayscale screen. This leads
to the following diagram:

Color GrayScale
R/O R/W R/O R/W

Undecom- Static | Pseudo | Static | Gray
posed Color | Color Gray | Scale
Colormap

Decomposed | True | Direct
Colormap Color | Color

Conceptually, as each pixel is read out of video memory for display on the
screen, it goes through a look-up stage by indexing into a colormap. Colormaps
can be manipulated arbitrarily on some hardware, in limited ways on other
hardware, and not at all on other hardware. The visual types affect the color-
map and the RGB values in the following ways:

3-2 Xwin GWS: Xlib - C Language Interface

Visual Types

m For PseudoColor, a pixel value indexes a colormap to produce indepen-
dent RGB values, and the RGB values can be changed dynamically.

B GrayScale is treated the same way as PseudoColor except that the pri-
mary that drives the screen is undefined. Thus, the client should always
store the same value for red, green, and blue in the colormaps.

m For DirectColor, a pixel value is decomposed into separate RGB
subfields, and each subfield separately indexes the colormap for the
corresponding value. The RGB values can be changed dynamically.

m TrueColor is treated the same way as DirectColor except that the color-
map has predefined, read-only RGB values. These RGB values are
server-dependent but provide linear or near-linear ramps in each primary.

B StaticColor is treated the same way as PseudoColor except that the
colormap has predefined, read-only, server-dependent RGB values.

B StaticGray is treated the same way as StaticColor except that the RGB
values are equal for any single pixel value, thus resulting in shades of
gray. StaticGray with a two-entry colormap can be thought of as mono-
chrome.

The red_mask, green_mask, and blue_mask members are only defined for
DirectColor and TrueColor. Each has one contiguous set of bits with no
intersections. The bits_per_rgb member specifies the log base 2 of the number
of distinct color values (individually) of red, green, and blue. Actual RGB
values are unsigned 16-bit numbers. The map_entries member defines the
number of available colormap entries in a newly created colormap. For
DirectColor and TrueColor, this is the size of an individual pixel subfield.

To obtain the visual ID from a Visual, use XVisualIDFromVisual.

VisualID XVisualIDFromVisual (visual)
Visual *visual;

visual Specifies the visual type.

The XVisualIDFromVisual function returns the visual ID for the specified
visual type.

Window Functions 33

Window Attributes

All InputOutput windows have a border width of zero or more pixels, an
optional background, an event suppression mask (which suppresses propagation
of events from children), and a property list (see "Properties and Atoms" in
Chapter 4). The window border and background can be a solid color or a pat-
tern, called a tile. All windows except the root have a parent and are clipped
by their parent. If a window is stacked on top of another window, it obscures
that other window for the purpose of input. If a window has a background
(almost all do), it obscures the other window for purposes of output. Attempts
to output to the obscured area do nothing, and no input events (for example,
pointer motion) are generated for the obscured area.

Windows also have associated property lists (see "Properties and Atoms" in
Chapter 4).

Both InputOutput and InputOnly windows have the following common attri-
butes, which are the only attributes of an InputOnly window:

® win-gravity

m event-mask

m do-not-propagate-mask

m override-redirect

W cursor
If }::>lu specify any other attributes for an InputOnly window, a BadMatch error
results.

InputOnly windows are used for controlling input events in situations where
InputOutput windows are unnecessary. InputOnly windows are invisible; can
only be used to control such things as cursors, input event generation, and grab-
bing; and cannot be used in any graphics requests. Note that InputOnly win-
dows cannot have InputOutput windows as inferiors.

Windows have borders of a programmable width and pattern as well as a back-
ground pattern or tile.

Pixel values can be used for solid colors.

The background and border pixmaps can be destroyed immediately after creat-
ing the window if no further explicit references to them are to be made.

3-4 Xwin GWS: Xlib - C Language Interface

Window Attributes

The pattern can either be relative to the parent or absolute. If ParentRelative,
the parent’s background is used.

When windows are first created, they are not visible (not mapped) on the
screen. Any output to a window that is not visible on the screen and that does
not have backing store will be discarded.

An application may wish to create a window long before it is mapped to the
screen. When a window is eventually mapped to the screen (using XMapWin—
dow), the XWIN server generates an Expose event for the window if backing
store has not been maintained.

A window manager can override your choice of size, border width, and position
for a top-level window. Your program must be prepared to use the actual size
and position of the top window. It is not acceptable for a client application to
resize itself unless in direct response to a human command to do so. Instead,
either your program should use the space given to it, or if the space is too small
for any useful work, your program might ask the user to resize the window.
The border of your top-level window is considered fair game for window
managers.

To set an attribute of a window, set the appropriate member of the XSetWin—
dowAttributes structure and OR in the corresponding value bitmask in your
subsequent calls to XCreateWindow and XChangeWindowAttributes, or use one
of the other convenience functions that set the appropriate attribute. The sym-
bols for the value mask bits and the XSetWindowAttributes structure are:

/* Window attribute value mask bits */

#define CWBackPixmap (1L<<0)
#define CWBackPixel (1L<<1)
#define CWBorderP ixmap (1L<<2)
#define CWBorderPixel (1L<<3)
#idefine CWBitGravity (1L<<4)
#define CWWinGravity (1L<<5)
#define CWBackingStore (1L<<6)
#define CWBackingPlanes (1L<<?)
#define CWBackingPixel (1L<<8)

Window Functions 35

Window Attributes

#define CWoverrideRedirect
#define CWSaveUnder
#define CWEventMask
#define CWDontPropagate
#define CWColormap

#define CWCursor

/* Values */

typedef struct {

Pixmap background pixmap;
unsigned long background pixel;
Pixmap border_ pixmap;
unsigned long border_pixel;
int bit_gravity;

int win_gravity;

int backing store;

unsigned long backing planes;
unsigned long backing_ pixel;
Bool save_under;

long event_mask;

long do_not_propagate mask;
Bool override redirect;
Colormap colormap;

Cursor cursor;

} XSetWindowAttributes;

/t
/*
/*
/*
/*
/'k
/*
,*
/*
/t
/*
/*
/*
/*
/*

(1L<<9)
(1L<<10)

(1L<<11)
(1L<<12)
(1L<<13)
(1L<<14)

background, None, or ParentRelative */
background pixsl */

border of the window or CopyFromParent */
border pixel value */

one of bit gravity values */

one of the window gravity values */
NotUseful, WhenMapped, Always */

planes to be preserved if possible */
value to use in restoring planes */
should bits under be saved? (popups) */
set of events that should be saved */

set of events that should not propagate */
boolean value for override redirect */
color map to be associated with window */
cursor to be displayed (or None) */

The following lists the defaults for each window attribute and indicates whether
the attribute is applicable to InputOutput and InputOnly windows:

Attribute Default InputOutput InputOnly
background-pixmap None Yes No
background-pixel Undefined Yes No
border-pixmap CopyFromParent Yes No
border-pixel Undefined Yes No

3-6 Xwin GWS: Xlib - C Language Interface

Window Attributes

Attribute Default InputOutput InputOnly
bit-gravity ForgetGravity Yes No
win-gravity NorthWestGravity Yes Yes
backing-store NotUseful Yes No
backing-planes All ones Yes No
backing-pixel zero Yes No
save-under False Yes No
event-mask empty set Yes Yes
do-not-propagate-mask empty set Yes Yes
override-redirect False Yes Yes
colormap CopyFromParent Yes No
cursor None Yes Yes

Background Attribute

Only InputOutput windows can have a background. You can set the back-

ground of an InputOutput window by using a pixel or a pixmap.

The background-pixmap attribute of a window specifies the pixmap to be used
for a window’s background. This pixmap can be of any size, although some
sizes may be faster than others. The background-pixel attribute of a window
specifies a pixel value used to paint a window’s background in a single color.

You can set the background-pixmap to a pixmap, None (default), or ParentRe-
lative. You can set the background-pixel of a window to any pixel value (no
default). If you specify a background-pixel, it overrides either the default
background-pixmap or any value you may have set in the background-pixmap.
A pixmap of an undefined size that is filled with the background-pixel is used
for the background. Range checking is not performed on the background pixel;
it simply is truncated to the appropriate number of bits.

If you set the background-pixmap, it overrides the default. The background-
pixmap and the window must have the same depth, or a BadMatch error
results. If you set background-pixmap to None, the window has no defined
background. If you set the background-pixmap to ParentRelative:

Window Functions

3-7

Window Attributes

m The parent window’s background-pixmap is used. The child window,
however, must have the same depth as its parent, or a BadMatch error
results.

m If the parent window has a background-pixmap of None, the window also
has a background-pixmap of None.

m A copy of the parent window’s background-pixmap is not made. The
parent’s background-pixmap is examined each time the child window’s
background-pixmap is required.

m The background tile origin always aligns with the parent window’s back-
ground tile origin. If the background-pixmap is not ParentRelative, the
background tile origin is the child window’s origin.

Setting a new background, whether by setting background-pixmap or
background-pixel, overrides any previous background. The background-pixmap
can be freed immediately if no further explicit reference is made to it (the XwIN
server will keep a copy to use when needed). If you later draw into the pixmap
used for the background, what happens is undefined because the X implementa-
tion is free to make a copy of the pixmap or to use the same pixmap.

When no valid contents are available for regions of a window and either the
regions are visible or the server is maintaining backing store, the server
automatically tiles the regions with the window’s background unless the win-
dow has a background of None. If the background is None, the previous screen
contents from other windows of the same depth as the window are simply left
in place as long as the contents come from the parent of the window or an infe-
rior of the parent. Otherwise, the initial contents of the exposed regions are
undefined. Expose events are then generated for the regions, even if the
background-pixmap is None (see Chapter 8).

Border Attribute

Only InputOutput windows can have a border. You can set the border of an
InputOutput window by using a pixel or a pixmap.

The border-pixmap attribute of a window specifies the pixmap to be used for a
window’s border. The border-pixel attribute of a window specifies a pixmap of
undefined size filled with that pixel be used for a window’s border. Range
checking is not performed on the background pixel; it simply is truncated to the

3-8 Xwin GWS: Xlib - C Language Interface

Window Attributes

appropriate number of bits. The border tile origin is always the same as the
background tile origin.

You can also set the border-pixmap to a pixmap of any size (some may be faster
than others) or to CopyFromParent (default). You can set the border-pixel to
any pixel value (no default).

If you set a border-pixmap, it overrides the default. The border-pixmap and the
window must have the same depth, or a BadMatch error results. If you set the
border-pixmap to CopyFromParent, the parent window’s border-pixmap is
copied. Subsequent changes to the parent window’s border attribute do not
affect the child window. However, the child window must have the same depth
as the parent window, or a BadMatch error results.

The border-pixmap can be freed immediately if no further explicit reference is
made to it. If you later draw into the pixmap used for the border, what hap-
pens is undefined because the X implementation is free either to make a copy of
the pixmap or to use the same pixmap. If you specify a border-pixel, it over-
rides either the default border-pixmap or any value you may have set in the
border-pixmap. All pixels in the window’s border will be set to the border-
pixel. Setting a new border, whether by setting border-pixel or by setting
border-pixmap, overrides any previous border.

Output to a window is always clipped to the inside of the window. Therefore,
graphics operations never affect the window border.

Gravity Attributes

The bit gravity of a window defines which region of the window should be
retained when an InputOutput window is resized. The default value for the
bit-gravity attribute is ForgetGravity. The window gravity of a window
allows you to define how the InputOutput or InputOnly window should be
repositioned if its parent is resized. The default value for the win-gravity attri-
bute is NorthWestGravity.

If the inside width or height of a window is not changed and if the window is
moved or its border is changed, then the contents of the window are not lost
but move with the window. Changing the inside width or height of the win-
dow causes its contents to be moved or lost (depending on the bit-gravity of the
window) and causes children to be reconfigured (depending on their win-
gravity). For a change of width and height, the (x, y) pairs are defined:

Window Functions 3-9

Window Attributes

Gravity Direction ~ Coordinates

NorthWestGravity (0, 0)

NorthGravity (Width/2, 0)
NorthEastGravity (Width, 0)
WestGravity (0, Height/2)
CenterGravity (Width/2, Height/2)
EastGravity (Width, Height/2)
SouthWestGravity (0, Height)
SouthGravity (Width/2, Height)

SouthEastGravity (Width, Height)

When a window with one of these bit-gravity values is resized, the correspond-
ing pair defines the change in position of each pixel in the window. When a
window with one of these win-gravities has its parent window resized, the
corresponding pair defines the change in position of the window within the
parent. When a window is so repositioned, a GravityNotify event is gen-
erated (see Chapter 8).

A bit-gravity of StaticGravity indicates that the contents or origin should not
move relative to the origin of the root window. If the change in size of the win-
dow is coupled with a change in position (x, y), then for bit-gravity the change
in position of each pixel is (-x, —y), and for win-gravity the change in position
of a child when its parent is so resized is (—x, —y). Note that StaticGravity
still only takes effect when the width or height of the window is changed, not
when the window is moved.

A bit-gravity of ForgetGravity indicates that the window’s contents are always
discarded after a size change, even if a backing store or save under has been
requested. The window is tiled with its background and zero or more Expose
events are generated. If no background is defined, the existing screen contents
are not altered. Some XWIN servers may also ignore the specified bit-gravity
and always generate Expose events.

A win-gravity of UnmapGravity is like NorthWestGravity (the window is not
moved), except the child is also unmapped when the parent is resized, and an
UnmapNotify event is generated.

3-10 Xwin GWS: Xlib - C Language Interface

Window Attributes

Backing Store Attribute

Some implementations of the XWIN server may choose to maintain the contents
of InputOutput windows. If the XWIN server maintains the contents of a win-
dow, the off-screen saved pixels are known as backing store. The backing store
advises the XWIN server on what to do with the contents of a window. The
backing-store attribute can be set to NotUseful (default), WhenMapped, or
Always.

A backing-store attribute of NotUseful advises the XWIN server that maintain-
ing contents is unnecessary, although some X implementations may still choose
to maintain contents and, therefore, not generate Expose events. A backing-
store attribute of WhenMapped advises the XWIN server that maintaining contents
of obscured regions when the window is mapped would be beneficial. In this
case, the server may generate an Expose event when the window is created. A
backing-store attribute of Always advises the XWIN server that maintaining con-
tents even when the window is unmapped would be beneficial. Even if the win-
dow is larger than its parent, this is a request to the XWIN server to maintain
complete contents, not just the region within the parent window boundaries.
While the XWIN server maintains the window’s contents, Expose events nor-
mally are not generated, but the XWIN server may stop maintaining contents at
any time.

When the contents of obscured regions of a window are being maintained,
regions obscured by noninferior windows are included in the destination of
graphics requests (and source, when the window is the source). However,
regions obscured by inferior windows are not included.

Save Under Flag

The XWIN server implementation preserves the contents of InputOutput win-
dows under other InputOutput windows. This is not the same as preserving
the contents of a window for you. You may get better visual appeal if transient
windows (for example, pop-up menus) request that the system preserve the
screen contents under them, so the temporarily obscured applications do not
have to repaint.

Window Functions 3-11

Window Attributes

You can set the save-under flag to True or False (default). If save-under is
True, the XWIN server is advised that, when this window is mapped, saving the
contents of windows it obscures would be beneficial.

Backing Planes and Backing Pixel Attributes

You can set backing planes to indicate (with bits set to 1) which bit planes of an
InputOutput window hold dynamic data that must be preserved in backing
store and during save unders. The default value for the backing-planes attribute
is all bits set to 1. You can set backing pixel to specify what bits to use in
planes not covered by backing planes. The default value for the backing-pixel
attribute is all bits set to 0. The XWIN server is free to save only the specified bit
planes in the backing store or the save under and is free to regenerate the
remaining planes with the specified pixel value. Any extraneous bits in these
values (that is, those bits beyond the specified depth of the window) may be
simply ignored. If you request backing store or save unders, you should use
these members to minimize the amount of off-screen memory required to store
your window.

Event Mask and Do Not Propagate Mask Attributes

The event mask defines which events the client is interested in for this
InputOutput or InputOnly window (or, for some event types, inferiors of that
window). The do-not-propagate-mask attribute defines which events should not
be propagated to ancestor windows when no client has the event type selected
in this InputOutput or InputOnly window. Both masks are the bitwise
inclusive OR of one or more of the valid event mask bits. You can specify that
no maskable events are reported by setting NoEventMask (default).

3-12 Xwin GWS: Xlib - C Language Interface

Window Attributes

Override Redirect Flag

To control window placement or to add decoration, a window manager often

needs to intercept (redirect) any map or configure request. Pop-up windows,

however, often need to be mapped without a window manager getting in the

way. To control whether an InputOutput or InputOnly window is to ignore
these structure control facilities, use the override-redirect flag.

The override-redirect flag specifies whether map and configure requests on this
window should override a SubstructureRedirectMask on the parent. You
can set the override-redirect flag to True or False (default). Window managers
use this information to avoid tampering with pop-up windows (see also Chapter
9).

Colormap Attribute

The colormap attribute specifies which colormap best reflects the true colors of
the InputOutput window. The colormap must have the same visual type as the
window, or a BadMatch error results. XWIN servers capable of supporting multi-
ple hardware colormaps can use this information, and window managers can
use it for calls to XInstallColormap. You can set the colormap attibute to a
colormap or to CopyFromParent (default).

If you set the colormap to CopyFromParent, the parent window’s colormap is
-copied and used by its child. However, the child window must have the same
visual type as the parent, or a BadMatch error results. The parent window must
not have a colormap of None, or a BadMatch error results. The colormap is
copied by sharing the colormap object between the child and parent, not by
making a complete copy of the colormap contents. Subsequent changes to the
parent window’s colormap attribute do not affect the child window.

Window Functions 313

Window Attributes

Cursor Attribute

The cursor attribute specifies which cursor is to be used when the pointer is in
the InputOutput or InputOnly window. You can set the cursor to a cursor or
None (default).

If you set the cursor to None, the parent’s cursor is used when the pointer is in
the InputOutput or InputOnly window, and any change in the parent’s cursor
will cause an immediate change in the displayed cursor. By calling XFreeCur-
sor, the cursor can be freed immediately as long as no further explicit reference
to it is made.

3-14 Xwin GWS: Xlib - C Language Interface

Creating Windows

Xlib provides basic ways for creating windows, and toolkits often supply
higher-level functions specifically for creating and placing top-level windows,
which are discussed in the appropriate toolkit documentation. If you do not use
a toolkit, however, you must provide some standard information or hints for the
window manager by using the Xlib predefined property functions (see

Chapter 9).

If you use Xlib to create your own top-level windows (direct children of the root
window), you must observe the following rules so that all applications interact
reasonably across the different styles of window management:

®m You must never fight with the window manager for the size or placement
of your top-level window.

m You must be able to deal with whatever size window you get, even if this
means that your application just prints a message like “Please make me
bigger” in its window.

® You should only attempt to resize or move top-level windows in direct
response to a user request. If a request to change the size of a top-level
window fails, you must be prepared to live with what you get. You are
free to resize or move the children of top-level windows as necessary.
(Toolkits often have facilities for automatic relayout.)

m If you do not use a toolkit that automatically sets standard window pro-
perties, you should set these properties for top-level windows before map-
ping them.

XCreateWindow is the more general function that allows you to set specific win-
dow attributes when you create a window. XCreateSimpleWindow creates a
window that inherits its attributes from its parent window.

The XWIN server acts as if InputOnly windows do not exist for the purposes of
graphics requests, exposure processing, and VisibilityNotify events. An
InputOnly window cannot be used as a drawable (that is, as a source or desti-
nation for graphics requests). InputOnly and InputOutput windows act ident-
ically in other respects (properties, grabs, input control, and so on). Extension
packages can define other classes of windows.

To create an unmapped window and set its window attributes, use
XCreateWindow.

Window Functions 3-15

Creating Windows

Window XCreateWindow (display, parent, x, y, width, height, border_width, depth,

class, visual, valuemask, attributes)

Display *display;

Window parent;

intx, y;

unsigned int width, height;
unsigned int border_width;

int depth;
unsigned int class;
Visual *visual
unsigned long wluemask;
XSetWindowAttributes *attributes;
display Specifies the connection to the XWIN server.
parent Specifies the parent window.
x
y Specify the x and y coordinates, which are the top-left outside
corner of the created window’s borders and are relative to the
inside of the parent window’s borders.
width
height Specify the width and height, which are the created window’s
inside dimensions and do not include the created window’s
borders. The dimensions must be nonzero, or a Badvalue error
results.
border_width Specifies the width of the created window’s border in pixels.
depth Specifies the window’s depth. A depth of CopyFromParent
means the depth is taken from the parent.
class Specifies the created window’s class. You can pass InputOut—
put, InputOnly, or CopyFromParent. A class of CopyFrom—
Parent means the class is taken from the parent.
visual Specifies the visual type. A visual of CopyFromParent means
the visual type is taken from the parent.
valuemask Specifies which window attributes are defined in the attributes
argument. This mask is the bitwise inclusive OR of the valid
attribute mask bits. If valuemask is zero, the attributes are
ignored and are not referenced.
3-16 Xwin GWS: Xiib - C Language Interface

Creating Windows

attributes Specifies the structure from which the values (as specified by the
value mask) are to be taken. The value mask should have the
appropriate bits set to indicate which attributes have been set in
the structure.

The XCreateWindow function creates an unmapped subwindow for a specified

parent window, returns the window ID of the created window, and causes the

XWIN server to generate a CreateNotify event. The created window is placed
on top in the stacking order with respect to siblings.

The border_width for an InputOnly window must be zero, or a BadMatch error
results. For class InputOutput, the visual type and depth must be a combina-
tion supported for the screen, or a BadMatch error results. The depth need not
be the same as the parent, but the parent must not be a window of class
InputOnly, or a BadMatch error results. For an InputOnly window, the depth
must be zero, and the visual must be one supported by the screen. If either
condition is not met, a BadMatch error results. The parent window, however,
may have any depth and class. If you specify any invalid window attribute for
a window, a BadMatch error results.

The created window is not yet displayed (mapped) on the user’s display. To
display the window, call XMapWindow. The new window initially uses the same
cursor as its parent. A new cursor can be defined for the new window by calling
XDefineCursor.

The window will not be visible on the screen unless it and all of its ancestors
are mapped and it is not obscured by any of its ancestors.

XCreateWindow can generate BadAlloc, BadColor, BadCursor, BadMatch, Bad—
Pixmap, BadValue, and BadWindow errors.

To create an unmapped InputOutput subwindow of a given parent window,
use XCreateSimpleWindow.

Window Functions 317

Creating Windows

Window XCreateSimpleWindow (display, parent, x, y, width, height, border_width,
border, background)
Display *display;
Window parent;
intx, y;
unsigned int width, height;
unsigned int border_width;

unsigned long border;
unsigned long background;
display Specifies the connection to the XWIN server.
parent Specifies the parent window.
x
y Specify the x and y coordinates, which are the top-left outside
corner of the new window’s borders and are relative to the
inside of the parent window’s borders.
width
height Specify the width and height, which are the created window’s
inside dimensions and do not include the created window’s
borders. The dimensions must be nonzero, or a BadvValue error
results.
border_width Specifies the width of the created window’s border in pixels.
border Specifies the border pixel value of the window.

background Specifies the background pixel value of the window.

The XCreateSimpleWindow function creates an unmapped InputOutput
subwindow for a specified parent window, returns the window ID of the
created window, and causes the XWIN server to generate a CreateNotify event.
The created window is placed on top in the stacking order with respect to
siblings. Any part of the window that extends outside its parent window is
clipped. The border_width for an InputOnly window must be zero, or a Bad-
Match error results. XCreateSimpleWindow inherits its depth, class, and visual
from its parent. All other window attributes, except background and border,
have their default values.

XCreateSimpleWindow can generate BadAlloc, BadMatch, BadValue, and
BadWindow errors.

3-18 Xwin GWS: Xlib - C Language Interface

Destroying Windows

Xlib provides functions that you can use to destroy a window or destroy all
subwindows of a window.

To destroy a window and all of its subwindows, use XDest royWindow.

XDestroyWindow (display, w)

Display *display;

Window w;
display Specifies the connection to the XWIN server.
w Specifies the window.

The XDestroyWindow function destroys the specified window as well as all of
its subwindows and causes the XWIN server to generate a DestroyNotify event
for each window. The window should never be referenced again. If the win-
dow specified by the w argument is mapped, it is unmapped automatically.
The ordering of the DestroyNotify events is such that for any given window
being destroyed, DestroyNotify is generated on any inferiors of the window
before being generated on the window itself. The ordering among siblings and
across subhierarchies is not otherwise constrained. If the window you specified
is a root window, no windows are destroyed. Destroying a mapped window
will generate Expose events on other windows that were obscured by the win-
dow being destroyed.

XDestroyWindow can generate a BadWindow error.
To destroy all subwindows of a specified window, use XDestroySubwindows.

XDestroySubwindows (display, w)

Display *display;

Window w;
display Specifies the connection to the XWIN server.
w Specifies the window.

The XDestroySubwindows function destroys all inferior windows of the
specified window, in bottom-to-top stacking order. It causes the XWIN server to
generate a DestroyNotify event for each window. If any mapped subwindows
were actually destroyed, XDest roySubwindows causes the XWIN server to gen-
erate Expose events on the specified window. This is much more efficient than
deleting many windows one at a time because much of the work need be

Window Functions 3-19

Destroying Windows

performed only once for all of the windows, rather than for each window. The
subwindows should never be referenced again.

XDestroySubwindows can generate a BadWindow error.

3-20 Xwin GWS: Xlib - C Language Interface

Mapping Windows

A window is considered mapped if an XMapWindow call has been made on it. It
may not be visible on the screen for one of the following reasons:

m It is obscured by another opaque window.
m One of its ancestors is not mapped.
m It is entirely clipped by an ancestor.

Expose events are generated for the window when part or all of it becomes visi-
ble on the screen. A client receives the Expose events only if it has asked for
them. Windows retain their position in the stacking order when they are

unmapped.

A window manager may want to control the placement of subwindows. If Sub-
structureRedirectMask has been selected by a window manager on a parent
window (usually a root window), a map request initiated by other clients on a
child window is not performed, and the window manager is sent a MapRequest
event. However, if the override-redirect flag on the child had been set to True
(usually only on pop-up menus), the map request is performed.

A tiling window manager might decide to reposition and resize other client’s
windows and then decide to map the window to its final location. A window
manager that wants to provide decoration might reparent the child into a frame
first. For further information, see "Override Redirect Flag" in this Chapter and
Chapter 8. Only a single client at a time can select for Substruc-
tureRedirectMask.

Similarly, a single client can select for ResizeRedirectMask on a parent win-
dow. Then, any attempt to resize the window by another client is suppressed,
and the client receives a ResizeRequest event.

To map a given window, use XMapWindow.

XMapWindow (display, w)

Display *display;

Window w;
display Specifies the connection to the XWIN server.
w Specifies the window.

Window Functions 3-21

Mapping Windows

The XMapWindow function maps the window and all of its subwindows that
have had map requests. Mapping a window that has an unmapped ancestor
does not display the window but marks it as eligible for display when the
ancestor becomes mapped. Such a window is called unviewable. When all its
ancestors are mapped, the window becomes viewable and will be visible on the
screen if it is not obscured by another window. This function has no effect if
the window is already mapped.

If the override-redirect of the window is False and if some other client has
selected SubstructureRedirectMask on the parent window, then the XWIN
server generates a MapRequest event, and the XMapWindow function does not
map the window. Otherwise, the window is mapped, and the XWIN server gen-
erates a MapNotify event.

If the window becomes viewable and no earlier contents for it are remembered,
the XWIN server tiles the window with its background. If the window’s back-
ground is undefined, the existing screen contents are not altered, and the XWIN
server generates zero or more Expose events. If backing-store was maintained
while the window was unmapped, no Expose events are generated. If
backing-store will now be maintained, a full-window exposure is always gen-
erated. Otherwise, only visible regions may be reported. Similar tiling and
exposure take place for any newly viewable inferiors.

If the window is an InputOutput window, XMapWindow generates Expose
events on each InputOutput window that it causes to be displayed. If the
client maps and paints the window and if the client begins processing events,
the window is painted twice. To avoid this, first ask for Expose events and
then map the window, so the client processes input events as usual. The event
list will include Expose for each window that has appeared on the screen. The
client’s normal response to an Expose event should be to repaint the window.
This method usually leads to simpler programs and to proper interaction with
window managers.

XMapWindow can generate a BadWindow error.
To map and raise a window, use XMapRaised.

XMapRaised (display, w)
Display *display;
Window w;

3-22 Xwin GWS: Xiib - C Language Interface

Mapping Windows

display Specifies the connection to the XWIN server.

w Specifies the window.

The XxMapRaised function essentially is similar to XMapWindow in that it maps
the window and all of its subwindows that have had map requests. However, it

also raises the specified window to the top of the stack. For additional informa-
tion, see XMapWindow.

XMapRaised can generate multiple BadWindow errors.
To map all subwindows for a specified window, use XMapSubwindows.

XMapSubwindows (display, w)

Display *display;

Window w;
display Specifies the connection to the XWIN server.
w Specifies the window.

The XMapSubwindows function maps all subwindows for a specified window in
top-to-bottom stacking order. The XWIN server generates Expose events on
each newly displayed window. This may be much more efficient than mapping
many windows one at a time because the server needs to perform much of the
work only once, for all of the windows, rather than for each window.

XMapSubwindows can generate a BadWindow error.

Window Functions 3-23

Unmapping Windows

Xlib provides functions that you can use to unmap a window or all subwin-
dows.

To unmap a window, use XUnmapWindow.

XUnmapWindow (display, w)

Display *display;

Window w;
display Specifies the connection to the XWIN server.
w Specifies the window.

The XUnmapWindow function unmaps the specified window and causes the XWIN
server to generate an UnmapNotify event. If the specified window is already
unmapped, XUnmapWindow has no effect. Normal exposure processing on form-
erly obscured windows is performed. Any child window will no longer be visi-
ble until another map call is made on the parent. In other words, the subwin-
dows are still mapped but are not visible until the parent is mapped. Unmap-
ping a window will generate Expose events on windows that were formerly
obscured by it.

XUnmapWindow can generate a BadWindow error.
To unmap all subwindows for a specified window, use XUnmapSubwindows.

XUnmapSubwindows (display, w)

Display *display;

Window w;
display Specifies the connection to the XWIN server.
w Specifies the window.

The XUnmapSubwindows function unmaps all subwindows for the specified win-
dow in bottom-to-top stacking order. It causes the XWIN server to generate an
UnmapNotify event on each subwindow and Expose events on formerly
obscured windows. Using this function is much more efficient than unmapping
multiple windows one at a time because the server needs to perform much of
the work only once, for all of the windows, rather than for each window.

XUnmapSubwindows can generate a BadWindow error.

3-24 Xwin GWS: Xlib - C Language Interface

Configuring Windows

Xlib provides functions that you can use to move a window, resize a window,
move and resize a window, or change a window’s border width. To change one
of these parameters, set the appropriate member of the XWindowChanges struc-
ture and OR in the corresponding value mask in subsequent calls to XConfi-
gureWindow. The symbols for the value mask bits and the XWindowChanges
structure are:

/* Configure window value mask bits */

#define CWX (1<<0)
#define CWY (1<<1)
#define CWWidth (1<<2)
#define CWHeight (1<<3)
#define CWBorderWidth (1<<4)
#define CWSibling (1<<5)
#define CWStackMode (1<<6)
/* Values */

typedef struct {
int x, y;
int width, height;
int border_width;
Window sibling;
int stack mode;

} XWindowChanges;

The x and y members are used to set the window’s x and y coordinates, which
are relative to the parent’s origin and indicate the position of the upper-left
outer corner of the window. The width and height members are used to set the
inside size of the window, not including the border, and must be nonzero, or a
BadValue error results. Attempts to configure a root window have no effect.

The border_width member is used to set the width of the border in pixels. Note
that setting just the border width leaves the outer-left corner of the window in a
fixed position but moves the absolute position of the window’s origin. If you
attempt to set the border-width attribute of an InputOnly window nonzero, a
BadMatch error results.

Window Functions 3-25

Configuring Windows

The sibling member is used to set the sibling window for stacking operations.
The stack_mode member is used to set how the window is to be restacked and
can be set to Above, Below, TopIf, BottomIf, or Opposite.

If the override-redirect flag of the window is False and if some other client has
selected SubstructureRedirectMask on the parent, the XWIN server generates
a ConfigureRequest event, and no further processing is performed. Other-
wise, if some other client has selected ResizeRedirectMask on the window and
the inside width or height of the window is being changed, a ResizeRequest
event is generated, and the current inside width and height are used instead.
Note that the override-redirect flag of the window has no effect on
ResizeRedirectMask and that SubstructureRedirectMask on the parent has
precedence over ResizeRedirectMask on the window.

When the geometry of the window is changed as specified, the window is res-
tacked among siblings, and a ConfigureNotify event is generated if the state
of the window actually changes. GravityNotify events are generated after
ConfigureNotify events. If the inside width or height of the window has actu-
ally changed, children of the window are affected as specified.

If a window’s size actually changes, the window’s subwindows move according
to their window gravity. Depending on the window’s bit gravity, the contents
of the window also may be moved (see "Gravity Attributes” in this chapter).

If regions of the window were obscured but now are not, exposure processing is
performed on these formerly obscured windows, including the window itself
and its inferiors. As a result of increasing the width or height, exposure process-
ing is also performed on any new regions of the window and any regions where
window contents are lost.

The restack check (specifically, the computation for BottomIf, TopIf, and Oppo-
site) is performed with respect to the window’s final size and position (as con-
trolled by the other arguments of the request), not its initial position. If a
sibling is specified without a stack_mode, a BadMatch error results.

If a sibling and a stack_mode are specified, the window is restacked as follows:

3-26 Xwin GWS: Xiib - C Language Interface

Configuring Windows

Above The window is placed just above the sibling.
Below The window is placed just below the sibling.
TopIf If the sibling occludes the window, the window is placed at the

top of the stack.

BottomIf If the window occludes the sibling, the window is placed at the
bottom of the stack.

Opposite If the sibling occludes the window, the window is placed at the
top of the stack. If the window occludes the sibling, the win-
dow is placed at the bottom of the stack.

If a stack_mode is specified but no sibling is specified, the window is restacked
as follows:

Above The window is placed at the top of the stack.
Below The window is placed at the bottom of the stack.
TopIf If any sibling occludes the window, the window is placed at

the top of the stack.

BottomIf If the window occludes any sibling, the window is placed at
the bottom of the stack.

Opposite If any sibling occludes the window, the window is placed at
the top of the stack. If the window occludes any sibling, the
window is placed at the bottom of the stack.

Attempts to configure a root window have no effect.

To configure a window’ s size, location, stacking, or border, use
XConfigureWindow.

XConfigureWindow (display, w, value_mask, values)
Display *display;
Window w;
unsigned int value_mask;
XWindowChanges *values;

Window Functions 3-27

Configuring Windows

display Specifies the connection to the XWIN server.
w Specifies the window to be reconfigured.
value_mask Specifies which values are to be set using information in the

values structure. This mask is the bitwise inclusive OR of
the valid configure window values bits.

values Specifies a pointer to the XWindowChanges structure.

The XConfigureWindow function uses the values specified in the XWin-
dowChanges structure to reconfigure a window’s size, position, border, and
stacking order. Values not specified are taken from the existing geometry of the
window.

If a sibling is specified without a stack_mode or if the window is not actually a
sibling, a BadMatch error results. Note that the computations for BottomIf,
TopIf, and Opposite are performed with respect to the window’s final
geometry (as controlled by the other arguments passed to XConfigureWindow),
not its initial geometry. Any backing store contents of the window, its inferiors,
and other newly visible windows are either discarded or changed to reflect the
current screen contents (depending on the implementation).

XConfigureWindow can generate BadMatch, BadValue, and BadWindow errors.
To move a window without changing its size, use XMoveWindow.

XMoveWindow (display, w, x, y)

Display *display;
Window w;
intx, y;
display Specifies the connection to the XWIN server.
w Specifies the window to be moved.
x
y Specify the x and y coordinates, which define the new location
of the top-left pixel of the window’s border or the window itself
if it has no border.

3-28 Xwin GWS: Xlib - C Language Interface

Configuring Windows

The XMoveWindow function moves the specified window to the specified x and y
coordinates, but it does not change the window’s size, raise the window, or
change the mapping state of the window. Moving a mapped window may or
may not lose the window’s contents depending on if the window is obscured by
nonchildren and if no backing store exists. If the contents of the window are
lost, the XWIN server generates Expose events. Moving a mapped window gen-
erates Expose events on any formerly obscured windows.

If the override-redirect flag of the window is False and some other client has
selected SubstructureRedirectMask on the parent, the XWIN server generates
a ConfigureRequest event, and no further processing is performed. Otherwise,
the window is moved.

XMoveWindow can generate a BadWindow error.

To change a window’s size without changing the upper-left coordinate, use
XResizeWindow.

XResizeWindow (display, w, width, height)
Display *display;
Window w;
unsigned int width, height;

display Specifies the connection to the XWIN server.

w Specifies the window.

width

height Specify the width and height, which are the interior dimensions

of the window after the call completes.

The XResizeWindow function changes the inside dimensions of the specified
window, not including its borders. This function does not change the window’s
upper-left coordinate or the origin and does not restack the window. Changing
the size of a mapped window may lose its contents and generate Expose events.
If a mapped window is made smaller, changing its size generates Expose events
on windows that the mapped window formerly obscured.

If the override-redirect flag of the window is False and some other client has
selected SubstructureRedirectMask on the parent, the XWIN server generates
a ConfigureRequest event, and no further processing is performed. If either
width or height is zero, a BadvValue error results.

Window Functions 3-29

Configuring Windows

XResizeWindow can generate BadValue and BadWindow errors.
To change the size and location of a window, use XMoveResizeWindow.

XMoveResizeWindow (display, w, x, y, width, height)
Display *display;
Window w;
intx, y;
unsigned int width, height;

display Specifies the connection to the XWIN server.

w Specifies the window to be reconfigured.

x

y Specify the x and y coordinates, which define the new position
of the window relative to its parent.

width

height Specify the width and height, which define the interior size of

the window.

The XMoveResizeWindow function changes the size and location of the specified
window without raising it. Moving and resizing a mapped window may gen-
erate an Expose event on the window. Depending on the new size and location
parameters, moving and resizing a window may generate Expose events on
windows that the window formerly obscured.

If the override-redirect flag of the window is False and some other client has
selected SubstructureRedirectMask on the parent, the XWIN server generates
a ConfigureRequest event, and no further processing is performed. Otherwise,
the window size and location are changed.

XMoveResizeWindow can generate Badvalue and BadWindow errors.
To change the border width of a given window, use XSetWindowBorderWidth.

XSetWindowBorderWidth (display, w, width)
Display *display;
Window w;
unsigned int width;

3-30 Xwin GWS: Xlib — C Language Interface

Configuring Windows

display Specifies the connection to the XWIN server.
w Specifies the window.
width Specifies the width of the window border.

The XSetWindowBorderWidth function sets the specified window’s border
width to the specified width.

XSetWindowBorderWidth can generate a BadWindow error.

Window Functions 3-31

Changing Window Stacking Order

Xlib provides functions that you can use to raise, lower, circulate, or restack
windows.

To raise a window so that no sibling window obscures it, use XRaiseWindow.

XRadseWindow (display, w)

Display *display;

Window w;
display Specifies the connection to the XWIN server.
w Specifies the window.

The XRaiseWindow function raises the specified window to the top of the stack
so that no sibling window obscures it. If the windows are regarded as overlap-
ping sheets of paper stacked on a desk, then raising a window is analogous to
moving the sheet to the top of the stack but leaving its x and y location on the
desk constant. Raising a mapped window may generate Expose events for the
window and any mapped subwindows that were formerly obscured.

If the override-redirect attribute of the window is False and some other client
has selected SubstructureRedirectMask on the parent, the XWIN server gen-
erates a ConfigureRequest event, and no processing is performed. Otherwise,
the window is raised.

XRaiseWindow can generate a BadWindow error.

To lower a window so that it does not obscure any sibling windows, use
XLowerWindow.

XLowerWindow (display, w)
Display *display;
Window w;
display Specifies the connection to the XWIN server.
w Specifies the window.

The XLowerWindow function lowers the specified window to the bottom of the
stack so that it does not obscure any sibling windows. If the windows are
regarded as overlapping sheets of paper stacked on a desk, then lowering a
window is analogous to moving the sheet to the bottom of the stack but leaving

3-32 Xwin GWS: Xlib - C Language Interface

Changing Window Stacking Order

its x and y location on the desk constant. Lowering a mapped window will
generate Expose events on any windows it formerly obscured.

If the override-redirect attribute of the window is False and some other client
has selected SubstructureRedirectMask on the parent, the XWIN server gen-
erates a ConfigureRequest event, and no processing is performed. Otherwise,
the window is lowered to the bottom of the stack.

XLowerWindow can generate a BadWindow error.
To circulate a subwindow up or down, use XCirculateSubwindows.

XCirculateSubwindows (display, w, direction)

Display *display;
Window w;
int direction;
display Specifies the connection to the XWIN server.
w Specifies the window.
direction Specifies the direction (up or down) that you want to circulate

the window. You can pass RaiseLowest or LowerHighest.

The XCirculateSubwindows function circulates children of the specified win-
dow in the specified direction. If you specify Raiselowest, XCircula-
teSubwindows raises the lowest mapped child (if any) that is occluded by
another child to the top of the stack. If you specify LowerHighest, XCircula-
teSubwindows lowers the highest mapped child (if any) that occludes another
child to the bottom of the stack. Exposure processing is then performed on
formerly obscured windows. If some other client has selected Substruc-
tureRedirectMask on the window, the XWIN server generates a CirculateRe—
quest event, and no further processing is performed. If a child is actually res-
tacked, the XWIN server generates a CirculateNotify event.

XCirculateSubwindows can generate Badvalue and BadWindow errors.

To raise the lowest mapped child of a window that is partially or completely
occluded by another child, use XCirculateSubwindowsUp.

XCirculateSubwindowsUp (display, w)
Display *display;
Window w;

Window Functions 3-33

Changing Window Stacking Order

display Specifies the connection to the XWIN server.

w Specifies the window.

The XCirculateSubwindowsUp function raises the lowest mapped child of the
specified window that is partially or completely occluded by another child.

Completely unobscured children are not affected. This is a convenience function
equivalent to XCirculateSubwindows with RaiseLowest specified.

XCirculateSubwindowsUp can generate a BadWindow error.

To lower the highest mapped child of a window that partially or completely
occludes another child, use XCirculateSubwindowsDown.

XCirculateSubwindowsDown (display, w)

Display *display;

Window w;
display Specifies the connection to the XWIN server.
w Specifies the window.

The XCirculateSubwindowsDown function lowers the highest mapped child of
the specified window that partially or completely occludes another child. Com-
pletely unobscured children are not affected. This is a convenience function
equivalent to XCirculateSubwindows with LowerHighest specified.

XCirculateSubwindowsDown can generate a BadWindow error.
To restack a set of windows from top to bottom, use XRestackWindows.
XRestackWindows (display, windows, nwindows);

Display *display;
Window windowsl[];
int nwindows;
display Specifies the connection to the XWIN server.
windows Specifies an array containing the windows to be restacked.

nwindows Specifies the number of windows to be restacked.

3-34 Xwin GWS: Xlib - C Language Interface

Changing Window Stacking Order

The XRestackWindows function restacks the windows in the order specified,
from top to bottom. The stacking order of the first window in the windows
array is unaffected, but the other windows in the array are stacked underneath
the first window, in the order of the array. The stacking order of the other win-
dows is not affected. For each window in the window array that is not a child
of the specified window, a BadMatch error results.

If the override-redirect attribute of a window is False and some other client has
selected SubstructureRedirectMask on the parent, the XWIN server generates
ConfigureRequest events for each window whose override-redirect flag is not
set, and no further processing is performed. Otherwise, the windows will be
restacked in top to bottom order.

XRestackWindows can generate a BadWindow error.

Window Functions 3-35

Changing Window Attributes

Xlib provides functions that you can use to set window attributes. XChangeWin-
dowAttributes is the more general function that allows you to set one or more
window attributes provided by the XSetWindowAttributes structure. The
other functions described in this section allow you to set one specific window
attribute, such as a window’s background.

To change one or more attributes for a given window, use XChangeWindowAt—
tributes.

XChangeWindowAttributes (display, w, maluemask, attributes)
Display *display;
Window w;
unsigned long valuemask;
XSetWindowAttributes *attributes;

display Specifies the connection to the XWIN server.
w Specifies the window.

valuemask Specifies which window attributes are defined in the attributes
argument. This mask is the bitwise inclusive OR of the valid
attribute mask bits. If valuemask is zero, the attributes are
ignored and are not referenced. The values and restrictions are
the same as for XCreateWindow.

attributes Specifies the structure from which the values (as specified by the
value mask) are to be taken. The value mask should have the
appropriate bits set to indicate which attributes have been set in
the structure (see "Window Attributes” in this chapter).

Depending on the valuemask, the XChangeWindowAttributes function uses the
window attributes in the XSetWindowAttributes structure to change the
specified window attributes. Changing the background does not cause the win-
dow contents to be changed. To repaint the window and its background, use
XClearWindow. Setting the border or changing the background such that the
border tile origin changes causes the border to be repainted. Changing the
background of a root window to None or ParentRelative restores the default
background pixmap. Changing the border of a root window to CopyF rom-
Parent restores the default border pixmap. Changing the win-gravity does not
affect the current position of the window. Changing the backing-store of an
obscured window to WhenMapped or Always, or changing the backing-planes,
backing-pixel, or save-under of a mapped window may have no immediate

3-36 Xwin GWS: Xlib - C Language Interface

Changing Window Attributes

effect. Changing the colormap of a window (that is, defining a new map, not
changing the contents of the existing map) generates a ColormapNotify event.
Changing the colormap of a visible window may have no immediate effect on
the screen because the map may not be installed (see XInstallColormap).
Changing the cursor of a root window to None restores the default cursor.
Whenever possible, you are encouraged to share colormaps.

Multiple clients can select input on the same window. Their event masks are
maintained separately. When an event is generated, it is reported to all
interested clients. However, only one client at a time can select for Substruc-
tureRedirectMask, ResizeRedirectMask, and ButtonPressMask. If a client
attempts to select any of these event masks and some other client has already
selected one, a BadAccess error results. There is only one do-not-propagate-
mask for a window, not one per client.

XChangeWindowAttributes can generate BadAccess, BadColor, BadCursor,
BadMatch, BadPixmap, BadValue, and BadWindow errors.

To set the background of a window to a given pixel, use XSetWindowBack-
ground.

XSetWindowBackground (display, w, background_pixel)

Display *display;

Window w;

unsigned long background_pixel;
display Specifies the connection to the XWIN server.
w Specifies the window.

background_pixel =~ Specifies the pixel that is to be used for the background.

The XSetWindowBackground function sets the background of the window to the
specified pixel value. Changing the background does not cause the window
contents to be changed. XSetWindowBackground uses a pixmap of undefined
size filled with the pixel value you passed. If you try to change the background
of an InputOnly window, a BadMatch error results.

XSetWindowBackground can generate BadMatch and BadWindow errors.

To set the background of a window to a given pixmap, use
XSetWindowBackgroundPixmap.

Window Functions 3-37

Changing Window Attributes

XSetWindowBackgroundPixmap (display, w, background_pixmap)
Display *display;
Window w;
Pixmap background_pixmap;

display Specifies the connection to the XWIN server.
w Specifies the window.

background_pixmap
Specifies the background pixmap, ParentRelative, or
None.

The XSetWindowBackgroundPixmap function sets the background pixmap of the
window to the specified pixmap. The background pixmap can immediately be
freed if no further explicit references to it are to be made. If ParentRelative is
specified, the background pixmap of the window’s parent is used, or on the root
window, the default background is restored. If you try to change the back-
ground of an InputOnly window, a BadMatch error results. If the background
is set to None, the window has no defined background.

XSetWindowBackgroundPixmap can generate BadMatch, BadPixmap, and
BadWindow errors.

XSetWindowBackground and XSetWindowBackgroundPixmap do not
change the current contents of the window.

To change and repaint a window’s border to a given pixel, use XSetWin-
dowBorder.

XSetWindowBorder (display, w, border_pixel)

Display *display;

Window w;

unsigned long border_pixel;
display Specifies the connection to the XWIN server.
w Specifies the window.

3-38 Xwin GWS: Xlib - C Language Interface

Changing Window Attributes

border_pixel Specifies the entry in the colormap.

The XSetWindowBorder function sets the border of the window to the pixel
value you specify. If you attempt to perform this on an InputOnly window, a
BadMatch error results.

XSetWindowBorder can generate BadMatch and BadWindow errors.

To change and repaint the border tile of a given window, use XSetWindowBor-
derPixmap.

XSetWindowBorderPixmap (display, w, border_pixmap)

Display *display;

Window w;

Pixmap border_pixmap;
display Specifies the connection to the XWIN server.
w Specifies the window.

border_pixmap Specifies the border pixmap or CopyFromParent.

The XSetWindowBorderPixmap function sets the border pixmap of the" wmdow
to the pixmap you specify. The border pixmap can be freed immediately if no
further explicit references to it are to be made. If you specify CopyFromParent,
a copy of the parent window’s border pixmap is used. If you attempt to per-
form this on an InputOnly window, a BadMatch error results.

XSetWindowBorderPixmap can generate BadMatch, BadPixmap, and BadWindow
errors.

Window Functions 3-39

Translating Window Coordinates

Applications, mostly window managers, often need to perform a coordinate
transformation from the coordinate space of one window to another window or
need to determine which subwindow a coordinate lies in. XTranslateCoordi-
nates fulfills these needs (and avoids any race conditions) by asking the XWIN
server to perform this operation.

Bool XTranslateCoordinates (display, src_w, dest_w, src_x, src_y, dest_x_return,
dest_y_return, child_return)
Display *display;
Window src_w, dest_w;
int src_x, src_y;
int *dest_x_return, *dest y_return;
Window *child_return;

display Specifies the connection to the XWIN server.

src_w Specifies the source window.

dest_w Specifies the destination window.

src_x

src_y Specify the x and y coordinates within the source window.
dest_x_return

dest_y return Return the x and y coordinates within the destination window.

child_return Returns the child if the coordinates are contained in a mapped
child of the destination window.

The XTranslateCoordinates function takes the src_x and src_y coordinates
relative to the source window’s origin and returns these coordinates to
dest_x_return and dest_y_return relative to the destination window’s origin. If
XTranslateCoordinates returns zero, src_ w and dest_w are on different
screens, and dest_x_return and dest_y_return are zero. If the coordinates are
contained in a mapped child of dest_w, that child is returned to child_return.
Otherwise, child_return is set to None.

XTranslateCoordinates can generate a BadWindow error.

3-40 Xwin GWS: Xlib - C Language Interface

4 Window Information Functions

Introduction

4-1

Obtaining Window Information 42
Properties and Atoms 4-8
Obtaining and Changing Window

Properties 4-12
Selections 4-18

Table of Contents

Introduction

After you connect the display to the XWIN server and create a window, you can
use the Xlib window information functions to:

m Obtain information about a window
® Manipulate property lists
m Obtain and change window properties

®m Manipulate selections

Window Information Functions 4-1

Obtaining Window Information

Xlib provides functions that you can use to obtain information about the win-
dow tree, the window’s current attributes, the window’s current geometry, or
the current pointer coordinates. Because they are most frequently used by win-
dow managers, these functions all return a status to indicate whether the win-
dow still exists.

To obtain the parent, a list of children, and number of children for a given win-
dow, use XQueryTree.

Status XQueryTree (display, w, root_return, parent_return, children_return, nchildren_return)
Display *display;
Window w;
Window *root_return;
Window *parent_return;
Window **children_return;
unsigned int *nchildren_return;

display Specifies the connection to the XWIN server.

w Specifies the window whose list of children, root, parent, and
number of children you want to obtain.

root_return Returns the root window.

parent_return Returns the parent window.

children_return Returns a pointer to the list of children.

nchildren_return Returns the number of children.

The XQueryTree function returns the root ID, the parent window ID, a pointer
to the list of children windows, and the number of children in the list for the
specified window. The children are listed in current stacking order, from bot-
tommost (first) to topmost (last). XQueryTree returns zero if it fails and
nonzero if it succeeds. To free this list when it is no longer needed, use XFree.

To obtain the current attributes of a given window, use XGetWindowAttri-
butes.

Status XGetWindowAttributes (display, w, window_attributes_return)
Display *display;
Window w;
XWindowAttributes *window_attributes_return;

4-2 Xwin GWS: Xiib — C Language Interface

Obtaining Window Information

display Specifies the connection to the XWIN server.
w Specifies the window whose current attributes you want to
obtain.

window_attributes_return
Returns the specified window’s attributes in the XWindowAttri-
butes structure.

The XGetWindowAttributes function returns the current attributes for the
specified window to an XWindowAttributes structure.

typedef struct {(

int x, y; /* location of window */

int width, height; /* width and height of window */

int border_width; /* border width of window */

int depth; /* depth of window */

Visual *visual; /* the associated visual structure */
Window root; /* root of screen containing window */
int class; /* InputOutput, InputOnly*/

int bit_gravity; /* one of the bit gravity values */
int win_gravity; /* one of the window gravity values */
int backing store; /* NotUseful, WhenMapped, Always */

unsigned long backing planes; /* planes to be preserved if possible */
unsigned long backing pixel; /* value to be used when restoring planes */

Bool save under; /* boolean, should bits under be saved? */
Colormap colormap; /* color map to be associated with window */
Bool map_installed; /* boolean, is color map currently installed*/
int map_state; /* IsUnmapped, IsUnviewable, IsViewable */
long all_event masks; /* set of events all people have interest in*/
long your event mask; /* my event mask */

long do_not_propagate mask; /* set of events that should not propagate */
Bool override redirect; /* boolean value for override-redirect */
Screen *screen; /* back pointer to correct screen */

} XWindowAttributes;

The x and y members are set to the upper-left outer corner relative to the parent
window’s origin. The width and height members are set to the inside size of
the window, not including the border. The border_width member is set to the
window’s border width in pixels. The depth member is set to the depth of the
window (that is, bits per pixel for the object). The visual member is a pointer to
the screen’s associated Visual structure. The root member is set to the root

Window Information Functions 4-3

Obtaining Window Information

window of the screen containing the window. The class member is set to the
window’s class and can be either InputOutput or InputOnly.

The bit_gravity member is set to the window’s bit gravity and can be one of the
following:

ForgetGravity EastGravity
NorthWestGravity SouthWestGravity
NorthGravity SouthGravity
NorthEastGravity SouthEastGravity
WestGravity StaticGravity
CenterGravity

The win_gravity member is set to the window’s window gravity and can be one
of the following:

UnmapGravity EastGravity
NorthWestGravity SouthWestGravity
NorthGravity SouthGravity
NorthEastGravity SouthEastGravity
WestGravity StaticGravity
CenterGravity

For additional information on gravity, see "Creating Windows" in Chapter 3.

The backing_store member is set to indicate how the XWIN server should main-
tain the contents of a window and can be WhenMapped, Always, or NotUseful.
The backing_planes member is set to indicate (with bits set to 1) which bit
planes of the window hold dynamic data that must be preserved in
backing_stores and during save_unders. The backing_pixel member is set to
indicate what values to use for planes not set in backing_planes.

The save_under member is set to True or False. The colormap member is set
to the colormap for the specified window and can be a colormap ID or None.
The map_installed member is set to indicate whether the colormap is currently
installed and can be True or False. The map_state member is set to indicate
the state of the window and can be IsUnmapped, IsUnviewable, or IsView—
able. IsUnviewable is used if the window is mapped but some ancestor is

unmapped.

4-4 Xwin GWS: Xiib - C Language Interface

Obtaining Window Information

The all_event_masks member is set to the bitwise inclusive OR of all event
masks selected on the window by all clients. The your_event_mask member is
set to the bitwise inclusive OR of all event masks selected by the querying
client. The do_not_propagate_mask member is set to the bitwise inclusive OR
of the set of events that should not propagate.

The override_redirect member is set to indicate whether this window overrides
structure control facilities and can be True or False. Window manager clients
should ignore the window if this member is True.

The screen member is set to a screen pointer that gives you a back pointer to
the correct screen. This makes it easier to obtain the screen information without
having to loop over the root window fields to see which field matches.

XGetWindowAttributes can generate BadDrawable and BadWindow errors.
To obtain the current geometry of a given drawable, use XGetGeometry.

Status XGetGeometry (display, d, root_return, x_return, y_return, width_return,
height_return, border_width_return, depth_return)
Display *display;
Drawable 4;
Window *root_return;
int *x_return, *y_return;
unsigned int *width_return, *height_return;
unsigned int *border_width_return;
unsigned int *depth_return;

display Specifies the connection to the XWIN server.

d Specifies the drawable, which can be a window or a pixmap.
root_return Returns the root window.

X_return

y_return Return the x and y coordinates that define the location of the

drawable. For a window, these coordinates specify the upper-
left outer corner relative to its parent’s origin. For pixmaps,
these coordinates are always zero.

width_return

height_return Return the drawable’s dimensions (width and height). For a
window, these dimensions specify the inside size, not including
the border.

Window Information Functions 4-5

Obtaining Window Information

border_width_return
Returns the border width in pixels. If the drawable is a pixmap,
it returns zero.

depth_return Returns the depth of the drawable (bits per pixel for the object).

The XGetGeometry function returns the root window and the current geometry
of the drawable. The geometry of the drawable includes the x and y coordi-
nates, width and height, border width, and depth. These are described in the
argument list. It is legal to pass to this function a window whose class is
InputOnly.

To obtain the root window the pointer is currently on and the pointer coordi-
nates relative to the root’s origin, use XQueryPointer.
Bool XQueryPointer (display, w, root_return, child_return, root_x_return, root_y_return,
win_x_return, win_y_return, mask_return)

Display *display;

Window w;

Window *root_return, *child_return,

int *root_x_return, *root_y_return;

int *win_x_return, *win_y_return;

unsigned int *mask_return;

display Specifies the connection to the XWIN server.

w Specifies the window.

root_return Returns the root window that the pointer is in.

child_return Returns the child window that the pointer is located in, if any.

root_x_return
root_y return Return the pointer coordinates relative to the root window’s ori-

gin.
win_x_return
win_y_return Return the pointer coordinates relative to the specified window.

mask_return Returns the current state of the modifier keys and pointer but-
tons.

4-6 Xwin GWS: Xlib - C Language Interface

Obtalning Window Information

The XQueryPointer function returns the root window the pointer is logically
on and the pointer coordinates relative to the root window’s origin. If
XQueryPointer returns False, the pointer is not on the same screen as the
specified window, and XQueryPointer returns None to child_return and zero to
win_x_return and win_y_return. If XQueryPointer returns True, the pointer
coordinates returned to win_x_return and win_y_return are relative to the ori-
gin of the specified window. In this case, XQueryPointer returns the child that
contains the pointer, if any, or else None to child_return.

XQueryPointer returns the current logical state of the keyboard buttons and
the modifier keys in mask_return. It sets mask_return to the bitwise inclusive
OR of one or more of the button or modifier key bitmasks to match the current
state of the mouse buttons and the modifier keys.

Note that the logical state of a device (as seen through Xlib) may lag the physi-
cal state if device event processing is frozen (see "Pointer Grabbing" in
Chapter 7).

XQueryPointer can generate a BadWindow error.

Window Information Functions 4-7

Properties and Atoms

A property is a collection of named, typed data. The window system has a set
of predefined properties (for example, the name of a window, size hints, and so
on), and users can define any other arbitrary information and associate it with
windows. Each property has a name, which is an ISO Latin-1 string. For each
named property, a unique identifier (atom) is associated with it. A property also
has a type, for example, string or integer. These types are also indicated using
atoms, so arbitrary new types can be defined. Data of only one type may be
associated with a single property name. Clients can store and retrieve proper-
ties associated with windows. For efficiency reasons, an atom is used rather
than a character string. XInternAtom can be used to obtain the atom for pro-

perty names.

A property is also stored in one of several possible formats. The XWIN server
can store the information as 8-bit quantities, 16-bit quantities, or 32-bit quanti-
ties. This permits the XWIN server to present the data in the byte order that the
client expects.

If you define further properties of complex type, you must encode and
decode them yourself. These functions must be carefully written if they are
to be portable. For further information about how to write a library extension,
l see appendix C.

The type of a property is defined by an atom, which allows for arbitrary exten-
sion in this type scheme.

Certain property names are predefined in the server for commonly used func-
tions. The atoms for these properties are defined in < X11/Xatom.h >. To
avoid name clashes with user symbols, the #define name for each atom has the
XA_ prefix. For definitions of these properties, see "Obtaining and Changing
Window Properties” in Chapter 4. For an explanation of the functions that let
you get and set much of the information stored in these predefined properties,
see Chapter 9.

You can use properties to communicate other information between applications.
The functions described in this section let you define new properties and get the
unique atom IDs in your applications.

Although any particular atom can have some client interpretation within each of
the name spaces, atoms occur in five distinct name spaces within the protocol:

4-8 Xwin GWS: Xlib - C Language Interface

Properties and Atoms

m Selections
m Property names

m Property types
m Font properties

m Type of a ClientMessage event (none are built into the XWIN server)

The built-in selection property names are:

PRIMARY
SECONDARY

The built-in property names are:

CUT_BUFFERO
CUT_BUFFERI
CUT_BUFFER2
CUT_BUFFER3
CUT_BUFFER4
CUT_BUFFER5
CUT_BUFFER6
CUT_BUFFER?7
RGB_BEST MAP
RGB_BLUE_MAP
RGB_DEFAULT MAP
RGB_GRAY _MAP

The built-in property types are:

ARC

ATOM
BITMAP
CARDINAL
COLORMAP
CURSOR
DRAWABLE

Window Information Functions

RGB_GREEN_MAP
RGB_RED MAP
RESOURCE_MANAGER
WM_CLASS
WM_CLIENT_MACHINE
WM_COMMAND
WM_HINTS
WM_ICON_NAME
WM_ICON _SIZE

WM _NAME
WM_NORMAL_HINTS
WM_ZOOM _HINTS
WM_TRANSIENT_FOR

POINT
RGB_COLOR_MAP
RECTANGLE
STRING
VISUALID
WINDOW
WM_HINTS

4-9

Properties and Atoms

FONT WM _SIZE_HINTS
INTEGER
PIXMAP

The built-in font property names are:

MIN_SPACE STRIKEOUT DESCENT
NORM_SPACE STRIKEOUT_ASCENT
MAX_SPACE ITALIC_ANGLE

END _SPACE X _HEIGHT
SUPERSCRIPT X QUAD WIDTH
SUPERSCRIPT_Y WEIGHT
SUBSCRIPT_X POINT SIZE
SUBSCRIPT_Y RESOLUTION
UNDERLINE_POSITION COPYRIGHT
UNDERLINE_THICKNESS NOTICE

FONT NAME FAMILY NAME
FULL_NAME CAP_HEIGHT

For further information about font properties, see "Font Metrics" in Chapter 6.
To return an atom for a given name, use XInternAtom.

Atom XInternAtom (display, atom_name, only if exists)
Display *display;
char *atom_name;
Bool only_if exists;

display Specifies the connection to the XWIN server.
atom_name Specifies the name associated with the atom you want returned.

only if exists Specifies a Boolean value that indicates whether XInternatom
creates the atom.

The XInternAtom function returns the atom identifier associated with the
specified atom_name string. If only_if exists is False, the atom is created if it
does not exist. Therefore, XInternAtom can return None. You should use a
null-terminated ISO Latin-1 string for atom_name. Case matters; the strings
thing, Thing, and thinG all designate different atoms. The atom will remain
defined even after the client’s connection closes. It will become undefined only
when the last connection to the XWIN server closes.

4-10 Xwin GWS: Xlib — C Language Interface

Properties and Atoms

XInternAtom can generate BadAlloc and BadValue errors.
To return a name for a given atom identifier, use XGetAtomName.

char *XGetAtomName (display, atom)

Display *display;
Atom atom;
display Specifies the connection to the XWIN server.
atom Specifies the atom for the property name you want returned.

The XGetAtomName function returns the name associated with the specified
atom. To free the resulting string, call XFree.

XGetAtomName can generate a BadAtom error.

Window Information Functions 4-11

Obtaining and Changing Window Properties

You can attach a property list to every window. Each property has a name, a
type, and a value (see "Properties and Atoms" in Chapter 4). The value is an
array of 8-bit, 16-bit, or 32-bit quantities, whose interpretation is left to the
clients.

Xlib provides functions that you can use to obtain, change, update, or inter-
change window properties. In addition, Xlib provides other utility functions for
predefined property operations (see Chapter 9).

To obtain the type, format, and value of a property of a given window, use
XGetWindowProperty.

int XGetWindowProperty (display, w, property, long_offset, long_length, delete, req_type,

actual_type_return, actual_format_return, nitems_return, bytes_after_return,
prop_return)

Display *display;

Window w;

Atom property;

long long_offset, long_length;

Bool delete;

Atom req_type;

Atom *actual_type return;

int *actual_format_return;

unsigned long *nitems_return;

unsigned long *bytes_after_return;

unsigned char “*prop_return;

display Specifies the connection to the XWIN server.
w Specifies the window whose property you want to obtain.
property Specifies the property name.

long_offset Specifies the offset in the specified property (in 32-bit quantities)
where the data is to be retrieved.

long_length Specifies the length in 32-bit multiples of the data to be
retrieved.

delete Specifies a Boolean value that determines whether the property
is deleted.

412 Xwin GWS: Xlib - C Language Interface

Obtaining and Changing Window Properties

req_type Specifies the atom identifier associated with the property type or
AnyPropertyType.

actual_type_return
Returns the atom identifier that defines the actual type of the

property.
actual_format_return
Returns the actual format of the property.

nitems_return Returns the actual number of 8-bit, 16-bit, or 32-bit items stored
in the prop_return data.

bytes_after_return
Returns the number of bytes remaining to be read in the pro-
perty if a partial read was performed.

prop_return Returns a pointer to the data in the specified format.

The XGetWindowProperty function returns the actual type of the property; the
actual format of the property; the number of 8-bit, 16-bit, or 32-bit items
transferred; the number of bytes remaining to be read in the property; and a
pointer to the data actually returned. XGetWindowProperty sets the return
arguments as follows:

m If the specified property does not exist for the specified window, XGetWin-
dowProperty returns None to actual_type_return and the value zero to
actual_format_return and bytes_after_return. The nitems_return argument
is empty. In this case, the delete argument is ignored.

m If the specified property exists but its type does not match the specified
type, XGetWindowProperty returns the actual property type to
actual_type return, the actual property format (never zero) to
actual_format_return, and the property length in bytes (even if the
actual_format_return is 16 or 32) to bytes_after_return. It also ignores the
delete argument. The nitems_return argument is empty.

m If the specified property exists and either you assign AnyPropertyType to
the req_type argument or the specified type matches the actual property
type, XGetWindowProperty returns the actual property type to
actual_type return and the actual property format (never zero) to

Window Information Functions 4-13

Obtaining and Changing Window Properties

actual_format_return. It also returns a value to bytes_after_return and
nitems_return, by defining the following values:

N = actual length of the stored property in bytes
(even if the format is 16 or 32)
I = 4" long_offset

T=N-1I
L = MINIMUMC(T, 4 * long_length)
A=N-(I+1L)

The returned value starts at byte index I in the property (indexing from
zero), and its length in bytes is L. If the value for long_offset causes L to
be negative, a Badvalue error results. The value of bytes_after_return is
A, giving the number of trailing unread bytes in the stored property.

XGetWindowProperty always allocates one extra byte in prop_return (even if
the property is zero length) and sets it to ASCII null so that simple properties
consisting of characters do not have to be copied into yet another string before
use. If delete is True and bytes_after return is zero, XGetWindowProperty
deletes the property from the window and generates a PropertyNotify event
on the window.

The function returns Success if it executes successfully. To free the resulting
data, use XFree.

XGetWindowProperty can generate BadAtom, BadValue, and BadWindow errors.
To obtain a given window’s property list, use XListProperties.
Atom *XListProperties (display, w, num_prop_return)

Display *display;

Window w;

int *num_prop_return;
display Specifies the connection to the XWIN server.
w Specifies the window whose property list you want to obtain.

num_prop_return
Returns the length of the properties array.

414 Xwin GWS: Xlib - C Language Interface

Obtaining and Changing Window Properties

The XListProperties function returns a pointer to an array of atom properties
that are defined for the specified window or returns NULL if no properties were
found. To free the memory allocated by this function, use XFree.

XListProperties can generate a BadWindow error.
To change a property of a given window, use XChangeProperty.

XChangeProperty (display, w, property, type, format, mode, data, nelements)
Display *display;
Window w;
Atom property, type;
int format;
int mode;
unsigned char *data;
int nelements;

display Specifies the connection to the XWIN server.
w Specifies the window whose property you want to change.

property Specifies the property name.

type ' Specifies the type of the property. The XWIN server does not
interpret the type but simply passes it back to an application
that later calls XGetWindowProperty.

format Specifies whether the data should be viewed as a list of 8-bit,
16-bit, or 32-bit quantities. Possible values are 8, 16, and 32.
This information allows the XWIN server to correctly perform
byte-swap operations as necessary. If the format is 16-bit or 32-
bit, you must explicitly cast your data pointer to a (char *) in the

call to XChangeProperty.

mode Specifies the mode of the operation. You can pass PropModeRe-
place, PropModePrepend, or PropModeAppend.

data Specifies the property data.

nelements Specifies the number of elements of the specified data format.
The XChangeProperty function alters the property for the specified window

and causes the XWIN server to generate a PropertyNotify event on that win-
dow. XChangeProperty performs the following:

Window Information Functions 415

Obtaining and Changing Window Properties

m If mode is PropModeReplace, XChangeProperty discards the previous
property value and stores the new data.

m If mode is PropModePrepend or PropModeAppend, XChangeProperty
inserts the specified data before the beginning of the existing data or onto
the end of the existing data, respectively. The type and format must
match the existing property value, or a BadMatch error results. If the pro-
perty is undefined, it is treated as defined with the correct type and for-
mat with zero-length data.

The lifetime of a property is not tied to the storing client. Properties remain
until explicitly deleted, until the window is destroyed, or until the server resets.
For a discussion of what happens when the connection to the XWIN server is
closed, see "Closing the Display” in Chapter 2. The maximum size of a property
is server dependent and can vary dynamically depending on the amount of
memory the server has available. (If there is insufficient space, a BadAlloc
error results.)

XChangeProperty can generate BadAlloc, BadAtom, BadMatch, BadValue, and
BadWindow errors.

To rotate a window’s property list, use XRotateWindowProperties.

XRotateWindowProperties (display, w, properties, num_prop, npositions)
Display *display;
Window w;
Atom properties(];
int num_prop;

int npositions;
display Specifies the connection to the XWIN server.
w Specifies the window.
properties Specifies the array of properties that are to be rotated.
num_prop Specifies the length of the properties array.
npositions Specifies the rotation amount.
The XRotateWindowProperties function allows you to rotate properties on a
window and causes the XWIN server to generate PropertyNotify events. If the

property names in the properties array are viewed as being numbered starting
from zero and if there are num_prop property names in the list, then the value

4-16 Xwin GWS: Xiib - C Language Interface

Obtalning and Changing Window Properties

associated with property name I becomes the value associated with property
name (I + npositions) mod N for all I from zero to N — 1. The effect is to rotate
the states by npositions places around the virtual ring of property names (right
for positive npositions, left for negative npositions). If npositions mod N is
nonzero, the XWIN server generates a PropertyNotify event for each property
in the order that they are listed in the array. If an atom occurs more than once
in the list or no property with that name is defined for the window, a BadMatch
error results. If a BadAtom or BadMatch error results, no properties are

changed.

XRotateWindowProperties can generate BadAtom, BadMatch, and BadWindow
errors.

To delete a property on a given window, use XDeleteProperty.
XDeleteProperty (display, w, property)

Display *display;

Window w;

Atom property;
display Specifies the connection to the XWIN server.
w Specifies the window whose property you want to delete.
property Specifies the property name.

The XDeleteProperty function deletes the specified property only if the pro-
perty was defined on the specified window and causes the XWIN server to gen-
erate a PropertyNotify event on the window unless the property does not
exist.

XDeleteProperty can generate BadAtom and BadWindow errors.

Window Information Functions 417

Selections

Selections are one method used by applications to exchange data. By using the
property mechanism, applications can exchange data of arbitrary types and can
negotiate the type of the data. A selection can be thought of as an indirect pro-
perty with a dynamic type. That is, rather than having the property stored in
the XWIN server, the property is maintained by some client (the owner). A
selection is global in nature (considered to belong to the user but be maintained
by clients) rather than being private to a particular window subhierarchy or a
particular set of clients.

Xlib provides functions that you can use to set, get, or request conversion of
selections. This allows applications to implement the notion of current selection,
which requires that notification be sent to applications when they no longer
own the selection. Applications that support selection often highlight the
current selection and so must be informed when another application has
acquired the selection so that they can unhighlight the selection.

When a client asks for the contents of a selection, it specifies a selection target
type. This target type can be used to control the transmitted representation of
the contents. For example, if the selection is ““the last thing the user clicked on”
and that is currently an image, then the target type might specify whether the
contents of the image should be sent in XY format or Z format.

The target type can also be used to control the class of contents transmitted, for
example, asking for the “looks” (fonts, line spacing, indentation, and so forth) of
a paragraph selection, not the text of the paragraph. The target type can also be
used for other purposes. The protocol does not constrain the semantics.

To set the selection owner, use XSetSelectionOwner.

XSetSelect ionOwner (display, selection, owner, time)
Display *display;
Atom selection;
Window owner;
Time time;

display Specifies the connection to the XWIN server.
selection Specifies the selection atom.

owner Specifies the owner of the specified selection atom. You can
pass a window or None.

4-18 Xwin GWS: Xlib - C Language Interface

Selections

time Specifies the time. You can pass either a timestamp or Current-
Time.

The XSetSelectionOwner function changes the owner and last-change time for
the specified selection and has no effect if the specified time is earlier than the
current last-change time of the specified selection or is later than the current
XWIN server time. Otherwise, the last-change time is set to the specified time,
with CurrentTime replaced by the current server time. If the owner window is
specified as None, then the owner of the selection becomes None (that is, no
owner). Otherwise, the owner of the selection becomes the client executing the
request.

If the new owner (whether a client or None) is not the same as the current
owner of the selection and the current owner is not None, the current owner is
sent a SelectionClear event. If the client that is the owner of a selection is
later terminated (that is, its connection is closed) or if the owner window it has
specified in the request is later destroyed, the owner of the selection automati-
cally reverts to None, but the last-change time is not affected. The selection
atom is uninterpreted by the XWIN server. XGetSelectionOwner returns the
owner window, which is reported in SelectionRequest and SelectionClear
events. Selections are global to the XWIN server.

XSetSelectionOwner can generate BadAtom and BadWindow errors..
To return the selection owner, use XGetSelectionOwner.

Window XGetSelectionOwner (display, selection)
Display *display;
Atom selection;
display Specifies the connection to the XWIN server.
selection Specifies the selection atom whose owner you want returned.
The XGetSelectionOwner function returns the window ID associated with the
window that currently owns the specified selection. If no selection was

specified, the function returns the constant None. If None is returned, there is
no owner for the selection.

XGetSelectionOwner can generate a BadAtom error.

Window Information Functions 4-19

Selections

To request conversion of a selection, use XConvertSelection.
XConvertSelection (display, selection, target, property, requestor, time)

Display *display;
Atom selection, target;
Atom property;
Window requestor;
Time time;
display Specifies the connection to the XWIN server.
selection Specifies the selection atom.
target Specifies the target atom.
property Specifies the property name. You also can pass None.
requestor Specifies the requestor.
time Specifies the time. You can pass either a timestamp or Current-
Time.

XConvertSelection requests that the specified selection be converted to the
specified target type:
m If the specified selection has an owner, the XWIN server sends a Selec—
tionRequest event to that owner.

m If no owner for the specified selection exists, the XWIN server generates a
SelectionNotify event to the requestor with property None.

In either event, the arguments are passed on unchanged. There are two
predefined selection atoms: PRIMARY and SECONDARY.

XConvertSelection can generate BadAtom and BadWindow errors.

4-20 Xwin GWS: Xiib - C Language Interface

5 Graphics Resource Functions

Introduction 5-1
Colormap Functions 5-2
Creating, Copying, and Destroying Colormaps 5-3
Allocating, Modifying, and Freeing Color Cells 5-6
Reading Entries in a Colormap 5-14
Creating and Freeing Pixmaps 5-16
Manipulating Graphics Context/State 5-18
Using GC Convenience Routines 5-30
Setting the Foreground, Background, Function, or Plane

Mask 5-30
Setting the Line Attributes and Dashes 5-32
Setting the Fill Style and Fill Rule 5-34
Setting the Fill Tile and Stipple 5-35
Setting the Current Font 5-39
Setting the Clip Region 5-39
Setting the Arc Mode, Subwindow Mode, and Graphics

Exposure 5-41

Table of Contents i

Introduction

After you connect your program to the XWIN server by calling XOpenDisplay,
you can use the Xlib graphics resource functions to:

m Create, copy, and destroy colormaps

m Allocate, modify, and free color cells

m Read entries in a colormap

m Create and free pixmaps

m Create, copy, change, and destroy graphics contexts

A number of resources are used when performing graphics operations in X.
Most information about performing graphics (for example, foreground color,
background color, line style, and so on) are stored in resources called graphics
contexts (GC). Most graphics operations (see Chapter 6) take a GC as an argu-
ment. Although in theory it is possible to share GCs between applications, it is
expected that applications will use their own GCs when performing operations.
Sharing of GCs is highly discouraged because the library may cache GC state.

Each X window always has an associated colormap that provides a level of
indirection between pixel values and colors displayed on the screen. Many of
the hardware displays built today have a single colormap, so the primitives are
written to encourage sharing of colormap entries between applications. Because
colormaps are associated with windows, X will support displays with multiple
colormaps and, indeed, different types of colormaps. If there are not sufficient
colormap resources in the display, some windows may not be displayed in their
true colors. A client or window manager can control which windows are
displayed in their true colors if more than one colormap is required for the color
resources the applications are using.

Off-screen memory or pixmaps are often used to define frequently used images
for later use in graphics operations. Pixmaps are also used to define tiles or pat-
terns for use as window backgrounds, borders, or cursors. A single bit-plane
pixmap is sometimes referred to as a bitmap.

Note that some screens have very limited off-screen memory. Therefore, you
should regard off-screen memory as a precious resource.

Graphics operations can be performed to either windows or pixmaps, which col-
lectively are called drawables. Each drawable exists on a single screen and can
only be used on that screen. GCs can also only be used with drawables of
matching screens and depths.

Graphics Resource Functions 5-1

Colormap Functions

Xlib provides functions that you can use to manipulate a colormap. This section
discusses how to:

m Create, copy, and destroy a colormap
m Allocate, modify, and free color cells

m Read entries in a colormap

The following functions manipulate the representation of color on the screen.
For each possible value that a pixel can take in a window, there is a color cell in
the colormap. For example, if a window is 4 bits deep, pixel values 0 through
15 are defined. A colormap is a collection of color cells. A color cell consists of
a triple of red, green, and blue. As each pixel is read out of display memory, its
value is taken and looked up in the colormap. The values of the cell determine
what color is displayed on the screen. On a multiplane display with a black-
and-white monitor (with grayscale but not color), these values can be combined
to determine the brightness on the screen.

Screens always have a default colormap, and programs typically allocate cells
out of this colormap. You should not write applications that monopolize color
resources. On a screen that either cannot load the colormap or cannot have a
fully independent colormap, only certain kinds of allocations may work.
Depending on the hardware, one or more colormaps may be resident (installed)
at one time. To install a colormap, use XInstallColormap. The
DefaultColormap macro returns the default colormap. The DefaultVisual
macro returns the default visual type for the specified screen. Colormaps are
local to a particular screen. Possible visual types are StaticGray, GrayScale,
StaticColor, PseudoColor, TrueColor, or DirectColor (see "Visual Types”
in Chapter 3).

The functions discussed in this section operate on an XColor structure, which
contains:

typedef struct {

unsigned long pixel; /* pixel value */
unsigned short red, green, blue; /* rgb values */
char flags; /* DoRed, DoGreen, DoBlue */
char pad;
} XColor;

5-2 Xwin GWS: Xlib - C Language Interface

Colormap Functions

The red, green, and blue values are scaled between 0 and 65535. On full in a
color is a value of 65535 independent of the number of bits actually used in the
display hardware. Half brightness in a color is a value of 32767, and off is 0.
This representation gives uniform results for color values across different
screens. In some functions, the flags member controls which of the red, green,
and blue members is used and can be one or more of DoRed, DoGreen, and DoB~-
lue.

The introduction of color changes the view a programmer should take when
dealing with a bitmap display. For example, when printing text, you write a
pixel value, which is defined as a specific color, rather than setting or clearing
bits. Hardware will impose limits (the number of significant bits, for example)
on these values. Typically, one allocates color cells or sets of color cells. If
read-only, the pixel values for these colors can be shared among multiple appli-
cations, and the RGB values of the cell cannot be changed. If read/write, they
are exclusively owned by the program, and the color cell associated with the
pixel value may be changed at will.

Creating, Copying, and Destroying Colormaps

To create a colormap for a screen, use XCreateColormap.

Colormap XCreateColormap (display, w, visual, alloc)
Display *display;
Window w;
Visual *visual;
int alloc;

display Specifies the connection to the XWIN server.

w Specifies the window on whose screen you want to create a
colormap.

visual Specifies a pointer to a visual type supported on the screen. If
the visual type is not one supported by the screen, a BadMatch
error results.

alloc Specifies the colormap entries to be allocated. You can pass
AllocNone or AllocAll.

Graphics Resource Functions 5-3

Colormap Functions

The XCreateColormap function creates a colormap of the specified visual type
for the screen on which the specified window resides and returns the colormap
ID associated with it. Note that the specified window is only used to determine
the screen.

The initial values of the colormap entries are undefined for the visual classes
GrayScale, PseudoColor, and DirectColor. For StaticGray, StaticColor,
and TrueColor, the entries have defined values, but those values are specific to
the visual and are not defined by X. For StaticGray, StaticColor, and
TrueColor, alloc must be AllocNone, or a BadMatch error results. For the
other visual classes, if alloc is AllocNone, the colormap initially has no allocated
entries, and clients can allocate them. For information about the visual types,
see "Visual Types" in Chapter 3.

If alloc is AllocAll, the entire colormap is allocated writable. The initial values
of all allocated entries are undefined. For GrayScale and PseudoColor, the
effect is as if an XAllocColorCells call returned all pixel values from zero to N
- 1, where N is the colormap entries value in the specified visual. For
DirectColor, the effect is as if an XAllocColorPlanes call returned a pixel
value of zero and red_mask, green_mask, and blue_mask values containing the
same bits as the corresponding masks in the specified visual. However, in all
cases, none of these entries can be freed by using XFreeColors.

XCreateColormap can generate BadAlloc, BadMatch, BadValue, and BadWin-
dow errors.

To create a new colormap when the allocation out of a previously shared color-
map has failed because of resource exhaustion, use XCopyColormapAndFree.

Colormap XCopyColormapAndFree (display, colormap)

Display *display;

Colormap colormap;
display Specifies the connection to the XWIN server.
colormap Specifies the colormap.

The XCopyColormapAndFree function creates a colormap of the same visual
type and for the same screen as the specified colormap and returns the new
colormap ID. It also moves all of the client’s existing allocation from the
specified colormap to the new colormap with their color values intact and their
read-only or writable characteristics intact and frees those entries in the
specified colormap. Color values in other entries in the new colormap are

5-4 Xwin GWS: Xlib - C Language Interface

Colormap Functions

undefined. If the specified colormap was created by the client with alloc set to
AllocAll, the new colormap is also created with AllocAll, all color values for
all entries are copied from the specified colormap, and then all entries in the
specified colormap are freed. If the specified colormap was not created by the
client with AllocAll, the allocations to be moved are all those pixels and planes
that have been allocated by the client using XAllocColor, XAllocNamedColor,
XAllocColorCells, or XAllocColorPlanes and that have not been freed since
they were allocated.

XCopyColormapAndFree can generate BadAlloc and BadColor errors.
To set the colormap of a given window, use XSetWindowColormap.
XSetWindowColormap (display, w, colormap)

Display *display;

Window w;

Colormap colormap;
display Specifies the connection to the XWIN server.
w Specifies the window.
colormap Specifies the colormap.

The XSetWindowColormap function sets the specified colormap of the specified
window. The colormap must have the same visual type as the window, or a
BadMatch error results.

XSetWindowColormap can generate BadColor, BadMatch, and BadWindow
errors.

To destroy a colormap, use XFreeColormap.
XFreeColormap (display, colormap)

Display *display;

Colormap colormap;
display Specifies the connection to the XWIN server.
colormap Specifies the colormap that you want to destroy.

Graphics Resource Functions 5-5

Colormap Functions

The XFreeColormap function deletes the association between the colormap
resource ID and the colormap and frees the colormap storage. However, this
function has no effect on the default colormap for a screen. If the specified
colormap is an installed map for a screen, it is uninstalled (see XUnin-
stallColormap). If the specified colormap is defined as the colormap for a
window (by XCreateWindow, XSetWindowColormap, or XChangeWindowAttri-
butes), XFreeColormap changes the colormap associated with the window to
None and generates a ColormapNotify event. X does not define the colors
displayed for a window with a colormap of None.

XFreeColormap can generate a BadColor error.

Allocating, Modifying, and Freeing Color Cells

There are two ways of allocating color cells: explicitly as read-only entries by
pixel value or read/write, where you can allocate a number of color cells and
planes simultaneously. The read/write cells you allocate do not have defined
colors until set with XStoreColor or XStoreColors.

To determine the color names, the XWIN server uses a color database.

Although you can change the values in a read /write color cell that is allocated
by another application, this is considered ‘“‘antisocial”’ behavior.

To allocate a read-only color cell, use XAllocColor.

Status XAllocColor (display, colormap, screen_in_out)
Display *display;
Colormap colormap;
XColor *screen_in_out;

display Specifies the connection to the XWIN server.
colormap Specifies the colormap.

screen_in_out Specifies and returns the values actually used in the colormap.

The XAllocColor function allocates a read-only colormap entry corresponding
to the closest RGB values supported by the hardware. XAllocColor returns the
pixel value of the color closest to the specified RGB elements supported by the
hardware and returns the RGB values actually used. The corresponding

5-6 Xwin GWS: Xlib - C Language Interface

Colormap Functions

colormap cell is read-only. In addition, XAllocColor returns nonzero if it suc-
ceeded or zero if it failed.

Read-only colormap cells are shared among clients. When the last client deallo-
cates a shared cell, it is deallocated. XAllocColor does not use or affect the
flags in the XColor structure.

XAllocColor can generate a BadColor error.

To allocate a read-only color cell by name and return the closest color supported
by the hardware, use XAllocNamedColor.

Status XAllocNamedColor (display, colormap, color_name, screen_def return, exact_def return)
Display *display;
Colormap colormap;
char *color_name;
XColor *screen_def return, *exact_def return;

display Specifies the connection to the XWIN server.
colormap Specifies the colormap.
color_name Specifies the color name string (for example, red) whose

color definition structure you want returned.
screen_def return Returns the closest RGB values provided by the hardware.
exact_def return Returns the exact RGB values.

The XAllocNamedColor function looks up the named color with respect to the
screen that is associated with the specified colormap. It returns both the exact
database definition and the closest color supported by the screen. The allocated
color cell is read-only. You should use the ISO Latin-1 encoding; uppercase and
lowercase do not matter.

XAllocNamedColor can generate a BadColor error.
To look up the name of a color, use XLookupColor.

Graphics Resource Functions 5-7

Colormap Functions

Status XLookupColor (display, colormap, color_name, exact_def return, screen_def return)
Display *display;
Colormap colormap;
char *color_name;
XColor *exact_def return, *screen_def return;

display Specifies the connection to the XWIN server.
colormap Specifies the colormap.
color_name Specifies the color name string (for example, red) whose

color definition structure you want returned.
exact_def return Returns the exact RGB values.
screen_def return Returns the closest RGB values provided by the hardware.

The XLookupColor function looks up the string name of a color with respect to
the screen associated with the specified colormap. It returns both the exact
color values and the closest values provided by the screen with respect to the
visual type of the specified colormap. You should use the ISO Latin-1 encoding;
uppercase and lowercase do not matter. XLookupColor returns nonzero if the
name existed in the color database or zero if it did not exist.

To allocate read/write color cell and color plane combinations for a Pseu-
doColor model, use XAllocColorCells.

Status XAllocColorCells (display, colormap, contig, plane_masks_return, nplanes,

pixels_return, npixels)

Display *display;

Colormap colormap;

Bool contig;

unsigned long plane_masks_return[];

unsigned int nplanes;

unsigned long pixels_return[];

unsigned int npixels;

display Specifies the connection to the XWIN server.
colormap Specifies the colormap.

5-8 Xwin GWS: Xlib - C Language Interface

Colormap Functions

contig Specifies a Boolean value that indicates whether the planes must
be contiguous.

plane_mask_return
Returns an array of plane masks.

nplanes Specifies the number of plane masks that are to be returned in
the plane masks array.

pixels_return Returns an array of pixel values.

npixels Specifies the number of pixel values that are to be returned in
the pixels_return array.

The XAllocColorCells function allocates read /write color cells. The number
of colors must be positive and the number of planes nonnegative, or a Bad-
Value error results. If ncolors and nplanes are requested, then ncolors pixels
and nplane plane masks are returned. No mask will have any bits set to 1 in
common with any other mask or with any of th”epgli.}els. By ORing together
each pixel with zero or more masks, ncolors * 2 distinct pixels can be pro-
duced. All of these are allocated writable by the request. For GrayScale or
PseudoColor, each mask has exactly one bit set to 1. For DirectColor, each
has exactly three bits set to 1. If contig is True and if all masks are ORed
together, a single contiguous set of bits set to 1 will be formed for GrayScale or
PseudoColor and three contiguous sets of bits set to 1 (one within each pixel
subfield) for DirectColor. The RGB values of the allocated entries are
undefined. XAllocColorCells returns nonzero if it succeeded or zero if it
failed.

XAllocColorCells can generate BadColor and BadValue errors.

To allocate read /write color resources for a DirectColor model, use XAlloc—
ColorPlanes.

Graphics Resource Functions 5-9

Colormap Functions

Status XAllocColorPlanes (display, colormap, contig, pixels_return, ncolors, nreds, ngreens,
nblues, rmask_return, gmask_return, bmask_return)
Display *display;
Colormap colormap;
Bool contig;
unsigned long pixels_return[];
int ncolors;
int nreds, ngreens, nblues;
unsigned long *rmask_return, *gmask_return, *bmask_return;

display Specifies the connection to the XWIN server.

colormap Specifies the colormap.

contig Specifies a Boolean value that indicates whether the planes must
be contiguous.

pixels_return Returns an array of pixel values. XAllocColorPlanes returns
the pixel values in this array.

ncolors Specifies the number of pixel values that are to be returned in
the pixels_return array.

nreds

ngreens

nblues Specify the number of red, green, and blue planes. The value
you pass must be nonnegative.

rmask_return
gmask_return
bmask_return Return bit masks for the red, green, and blue planes.

The specified ncolors must be positive; and nreds, ngreens, and nblues must be
nonnegative, or a Badvalue error results. If ncolors colors, nreds reds, ngreens
greens, and nblues blues are requested, ncolors pixels are returned; and the
masks have nreds, ngreens, and nblues bits set to 1, respectively. If contig is
True, each mask will have a contiguous set of bits set to 1. No mask will have
any bits set to 1 in common with any other mask or with any of the pixels. For
DirectColor, each mask will lie within the corresponding pixel subfield. By
ORing together subsets of masks with each pixel value, ncolors *

2nreds-¥ngreens +nbluss) distinct pixel values can be produced. All of these are allo-
cated by the request. However, in the colormap, there are only ncolors * 2"
independent red entries, ncolors * 2" independent green entries, and ncolors

5-10 Xwin GWS: Xiib — C Language Interface

Cclormap Functions

* 2" jndependent blue entries. This is true even for PseudoColor. When the
colormap entry of a pixel value is changed (using XStoreColors, XStoreColor,
or XStoreNamedColor), the pixel is decomposed according to the masks, and
the corresponding independent entries are updated. XAllocColorPlanes
returns nonzero if it succeeded or zero if it failed.

XAllocColorPlanes can generate BadColor and BadValue errors.
To store RGB values into colormap cells, use XStoreColors.

XStoreColors (display, colormap, color, ncolors)
Display *display;
Colormap colormap;
XColor color[];
int ncolors;

display Specifies the connection to the XWIN server.
colormap Specifies the colormap.
color Specifies an array of color definition structures to be stored.

ncolors Specifies the number of XColor structures in the color definition
array.

The XStoreColors function changes the colormap entries of the pixel values
specified in the pixel members of the XColor structures. You specify which
color components are to be changed by setting DoRed, DoGreen, and/or DoBlue
in the flags member of the XColor structures. If the colormap is an installed
map for its screen, the changes are visible immediately. XStoreColors changes
the specified pixels if they are allocated writable in the colormap by any client,
even if one or more pixels generates an error. If a specified pixel is not a valid
index into the colormap, a Badvalue error results. If a specified pixel either is
unallocated or is allocated read-only, a BadAccess error results. If more than
one pixel is in error, the one that gets reported is arbitrary.

XStoreColors can generate BadAccess, BadColor, and BadValue errors.
To store an RGB value in a single colormap cell, use XStoreColor.

XStoreColor (display, colormap, color)
Display *display;
Colormap colormap;
XColor *color;

Graphics Resource Functions 5-11

Colormap Functions

display Specifies the connection to the XWIN server.
colormap Specifies the colormap.
color Specifies the pixel and RGB values.

The XStoreColor function changes the colormap entry of the pixel value
specified in the pixel member of the XColor structure. You specified this value
in the pixel member of the XColor structure. This pixel value must be a

read /write cell and a valid index into the colormap. If a specified pixel is not a
valid index into the colormap, a BadValue error results. XStoreColor also
changes the red, green, and/or blue color components. You specify which color
components are to be changed by setting DoRed, DoGreen, and/or DoBlue in
the flags member of the XColor structure. If the colormap is an installed map
for its screen, the changes are visible immediately.

XStoreColor can generate BadAccess, BadColor, and BadValue errors.
To set the color of a pixel to a named color, use XStoreNamedColor.
XStoreNamedColor (display, colormap, color, pixel, flags)

Display *display;
Colormap colormap;
char *color;
unsigned long pixel;
int flags;
display Specifies the connection to the XWIN server.
colormap Specifies the colormap.
color Specifies the color name string (for example, red).
pixel Specifies the entry in the colormap.
flags Specifies which red, green, and blue components are set.

The XStoreNamedColor function looks up the named color with respect to the
screen associated with the colormap and stores the result in the specified color-
map. The pixel argument determines the entry in the colormap. The flags
argument determines which of the red, green, and blue components are set.

You can set this member to the bitwise inclusive OR of the bits DoRed, DoGreen,
and DoBlue. If the specified pixel is not a valid index into the colormap, a Bad-
Value error results. If the specified pixel either is unallocated or is allocated

5-12 Xwin GWS: Xlib - C Language Interface

Colormap Functions

read-only, a BadAccess error results. You should use the ISO Latin-1 encoding;
uppercase and lowercase do not matter.

XStoreNamedColor can generate BadAccess, BadColor, BadName, and Bad-
Value errors.

To free colormap cells, use XFreeColors.

XFreeColors (display, colormap, pixels, npixels, planes)

Display *display;
Colormap colormap;
unsigned long pixels[];
int npixels;
unsigned long planes;
display Specifies the connection to the XWIN server.
colormap Specifies the colormap.
pixels Specifies an array of pixel values that map to the cells in the
specified colormap.
npixels Specifies the number of pixels.
planes Specifies the planes you want to free.

The XFreeColors function frees the cells represented by pixels whose values
are in the pixels array. The planes argument should not have any bits set to 1
in common with any of the pixels. The set of all pixels is produced by ORing
together subsets of the planes argument with the pixels. The request frees all of
these pixels that were allocated by the client (using XAllocColor, XAlloc—
NamedColor, XAllocColorCells, and XAllocColorPlanes). Note that freeing
an individual pixel obtained from XAllocColorPlanes may not actually allow
it to be reused until all of its related pixels are also freed.

All specified pixels that are allocated by the client in the colormap are freed,
even if one or more pixels produce an error. If a specified pixel is not a valid
index into the colormap, a BadValue error results. If a specified pixel is not
allocated by the client (that is, is unallocated or is only allocated by another
client), a BadAccess error results. If more than one pixel is in error, the one
that gets reported is arbitrary.

XFreeColors can generate BadAccess, BadColor, and BadValue errors.

Graphics Resource Functions 5-13

Colormap Functions

Reading Entries in a Colormap

The XQueryColor and XQueryColors functions return the RGB values stored in
the specified colormap for the pixel value you pass in the pixel member of the
XColor structure(s). The values returned for an unallocated entry are
undefined. These functions also set the flags member in the XColor structure to
all three colors. If a pixel is not a valid index into the specified colormap, a
BadValue error results. If more than one pixel is in error, the one that gets
reported is arbitrary.

To query the RGB values of a single specified pixel value, use XQueryColor.

XQueryColor (display, colormap, def_in_out)
Display *display;
Colormap colormap;
XColor *def_in_out;
display Specifies the connection to the XWIN server.
colormap Specifies the colormap.

def in_out Specifies and returns the RGB values for the pixel specified in
the structure.

The XQueryColor function returns the RGB values for each pixel in the XColor
structures and sets the DoRed, DoGreen, and DoBlue flags.

XQueryColor can generate BadColor and Badvalue errors.

To query the RGB values of an array of pixels stored in color structures, use
XQueryColors.

XQueryColors (display, colormap, defs_in_out, ncolors)
Display *display;
Colormap colormap;
XColor defs_in_out(];
int ncolors;

display Specifies the connection to the XWIN server.
colormap Specifies the colormap.

5-14 Xwin GWS: Xlib - C Language Interface

Colormap Functions

defs_in_out Specifies and returns an array of color definition structures for
the pixel specified in the structure.

ncolors Specifies the number of XColor structures in the color definition
array.

The XQueryColors function returns the RGB values for each pixel in the
XColor structures and sets the DoRed, DoGreen, and DoBlue flags.

XQueryColors can generate BadColor and BadValue errors.

Graphics Resource Functions 5-15

Creating and Freeing Pixmaps

Pixmaps can only be used on the screen on which they were created. Pixmaps
are off-screen resources that are used for various operations, for example,
defining cursors as tiling patterns or as the source for certain raster operations.
Most graphics requests can operate either on a window or on a pixmap. A bit-
map is a single bit-plane pixmap.

To create a pixmap of a given size, use XCreatePixmap.

Pixmap XCreatePixmap (display, d, width, height, depth)

Display *display;
Drawable d;
unsigned int width, height;
unsigned int depth;
display Specifies the connection to the XWIN server.
d Specifies which screen the pixmap is created on.
width
height Specify the width and height, which define the dimensions of
the pixmap.
depth Specifies the depth of the pixmap.

The XCreatePixmap function creates a pixmap of the width, height, and depth
you specified and returns a pixmap ID that identifies it. It is valid to pass an
InputOnly window to the drawable argument. The width and height argu-
ments must be nonzero, or a Badvalue error results. The depth argument must
be one of the depths supported by the screen of the specified drawable, or a
BadValue error results.

The server uses the specified drawable to determine on which screen to create
the pixmap. The pixmap can be used only on this screen and only with other
drawables of the same depth (see XCopyPlane for an exception to this rule).
The initial contents of the pixmap are undefined.

XCreatePixmap can generate BadAlloc, BadDrawable, and BadValue errors.
To free all storage associated with a specified pixmap, use XFreePixmap.

XFreePixmap (display, pixmap)
Display *display;
Pixmap pixmap;

5-16 Xwin GWS: Xlib - C Language Interface

Creating and Freeing Pixmaps

display Specifies the connection to the XWIN server.
pixmap Specifies the pixmap.
The XFreePixmap function first deletes the association between the pixmap ID

and the pixmap. Then, the XWIN server frees the pixmap storage when there
are no references to it. The pixmap should never be referenced again.

XFreePixmap can generate a BadPixmap error.

Graphics Resource Functions 5-17

Manipulating Graphics Context/State

Most attributes of graphics operations are stored in Graphic Contexts (GCs).
These include line width, line style, plane mask, foreground, background, tile,
stipple, clipping region, end style, join style, and so on. Graphics operations
(for example, drawing lines) use these values to determine the actual drawing
operation. Extensions to X may add additional components to GCs. The con-
tents of a GC are private to Xlib.

Xlib implements a write-back cache for all elements of a GC that are not
resource IDs to allow Xlib to implement the transparent coalescing of changes to
GCs. For example, a call to XSetForeground of a GC followed by a call to
XSetLineAttributes results in only a single-change GC protocol request to the
server. GCs are neither expected nor encouraged to be shared between client
applications, so this write-back caching should present no problems. Applica-
tions cannot share GCs without external synchronization. Therefore, sharing
GCs between applications is highly discouraged.

To set an attribute of a GC, set the appropriate member of the XGCValues struc-
ture and OR in the corresponding value bitmask in your subsequent calls to
XCreateGC. The symbols for the value mask bits and the XGCValues structure
are:

/* GC attribute value mask bits */

#define GCFunction (1L<<0)
#define GCP laneMask (1L<<1)
#define GCForeground (1L<<?)
#define GCBackground (1L<<3)
#define GCLineWidth (1L<<4)
#define GCLineStyle (1L<<5)
#define GCCapStyle (1L<<6)
#define GCJoinStyle (1L<<7)
#idefine GCFillStyle (1L<<8)
#define GCFillRule (1L<<9)
#define GCTile (1L<<10)
#define GCStipple (1L<<11)
#define GCTileStipXOrigin (1L<<12)
#define GCTileStipYOrigin (1L<<13)

5-18 Xwin GWS: Xlib - C Language Interface

Manipulating Graphics Context/State

#define GCFont (1L<<14)
#define GCSubwindowMode (1L<<15)
#define GCGraphicsExposures (1L<<16)
#define GCClipXOrigin (1L<<17)
#define GCClipYOrigin ; (1L<<18)
#define GCClipMask (1L<<19)
#define GCDashOffset (1L<<20)
#define GCDashList (1L<<21)
#define GCArcMode (1L<<22)
/* Values */

typedef struct {
int function; /* logical operation */
unsigned long plane mask;/* plane mask */
unsigned long foregrournd;/* foreground pixel */
unsigned long background;/* background pixel */

int line width; /* line width (in pixels) */
int line style; /* LineSolid, LineOnOffDash, LineDoubleDash */
int cap_style; /* CapNotLast, CapButt, CapRound, CapProjecting */
int join_style; /* JoinMiter, JoinRound, JoinBevel */
int fill style; /* FillSolid, FillTiled, FillStippled FillOpaqueStippled*/
int £ill rule; /* EvenOddRule, WindingRule */
int arc_mode; /* ArcChord, ArcPieSlice */
Pixmap tile; /* tile pixmap for tiling operations */
Pixmap stipple; /* stipple 1 plane pixmap for stippling */
int ts_x origin; /* offset for tile or stipple operations */
int ts_y origin;
Font font; /* default text font for text operations */
int subwindow_mode; /* ClipByChildren, IncludeInferiors */
Bool graphics_exposures; /* boolean, should exposures be generated */
int clip x origin; /* origin for clipping */
int clip y origin;
Pixmap clip_mask; /* bitmap clipping; other calls for rects */
int dash offset; /* patterned/dashed line information */
char dashes;
} XGCValues;

Graphics Resource Functions 5-19

Manipulating Graphics Context/State

The default GC values are:
Component Default
function GXcopy
plane_mask All ones
foreground 0
background 1

line_width 0

line_style LineSolid
cap_style CapButt
join_style JoinMiter
fill_style FillSolid
fill_rule EvenOddRule
arc_mode ArcPieSlice
tile Pixmap of unspecified size filled with foreground pixel

stipple
ts_x_origin

ts_y_origin
font

subwindow_mode
graphics_exposures

clip_x_origin
clip_y_origin
clip_mask
dash_offset
dashes

(that is, client specified pixel if any, else 0)

(subsequent changes to foreground do not affect this pixmap)
Pixmap of unspecified size filled with ones

0

0

<implementation dependent>
ClipByChildren

True

0

0

None

0

4 (that is, the list [4, 4])

Note that foreground and background are not set to any values likely to be use-

ful in a window.

5-20

Xwin GWS: Xiib - C Language Interface

The function attributes of a GC are used when you update a section of a draw-
able (the destination) with bits from somewhere else (the source). The function
in a GC defines how the new destination bits are to be computed from the
source bits and the old destination bits. GXcopy is typically the most useful
because it will work on a color display, but special applications may use other
functions, particularly in concert with particular planes of a color display. The
16 GC functions, defined in < X11/X.h >, are:

Function Name Hex Code Operation

GXclear 0x0 0

GXand Ox1 src AND dst
GXandReverse 0x2 src AND NOT dst
GXcopy 0x3 src

GXandInverted Ox4 (NOT src) AND dst
GXnoop 0x5 dst

GXxor 0x6 src XOR dst

GXor 0x7 src OR dst

GXnor 0x8 (NOT src) AND (NOT dst)
GXequiv 0x9 (NOT src) XOR dst
GXinvert Oxa NOT dst

GXorReverse Oxb src OR (NOT dst)
GXcopyInverted Oxc NOT src

GXorInverted Oxd (NOT src) OR dst
GXnand Oxe (NOT src) OR (NOT dst)
GXset Oxf 1

Many graphics operations depend on either pixel values or planes in a GC. The
planes attribute is of type long, and it specifies which planes of the destination
are to be modified, one bit per plane.

A monochrome display has only one plane and will be the least-significant bit
of the word. As planes are added to the display hardware, they will occupy

more significant bits in the plane mask.

Graphlics Resource Functions

5-21

Manipulating Graphics Context/State

Manlipulating Graphics Context/State

In graphics operations, given a source and destination pixel, the result is com-
puted bitwise on corresponding bits of the pixels. That is, a Boolean operation
is performed in each bit plane. The plane_mask restricts the operation to a sub-
set of planes. A macro constant Al1Planes can be used to refer to all planes of
the screen simultaneously. The result is computed by the following:

((src FUNC dst) AND plane-mask) OR (dst AND (NOT plane-mask))

Range checking is not performed on the values for foreground, background, or
plane_mask. They are simply truncated to the appropriate number of bits. The
line-width is measured in pixels and either can be greater than or equal to one
(wide line) or can be the special value zero (thin line).

Wide lines are drawn centered on the path described by the graphics request.
Unless otherwise specified by the join-style or cap-style, the bounding box of a
wide line with endpoints [x1, y1], [x2, y2] and width w is a rectangle with ver-
tices at the following real coordinates:

[x1- (w*sn/2), yl+(w*cs/2)], [x1+(w*sn/2), yl-(w*cs/2)],
[x2-(w*sn/2), y2+(w*cs/2)], [x2+(w*sn/2), y2-(w*cs/2)]

Here sn is the sine of the angle of the line, and cs is the cosine of the angle of
the line. A pixel is part of the line and so is drawn if the center of the pixel is
fully inside the bounding box (which is viewed as having infinitely thin edges).
If the center of the pixel is exactly on the bounding box, it is part of the line if
and only if the interior is immediately to its right (x increasing direction). Pixels
with centers on a horizontal edge are a special case and are part of the line if
and only if the interior or the boundary is immediately below (y increasing
direction) and the interior or the boundary is immediately to the right (x
increasing direction).

Thin lines (zero line-width) are one-pixel-wide lines drawn using an unspecified,
device-dependent algorithm. There are only two constraints on this algorithm.

1. If a line is drawn unclipped from [x1,y1] to [x2,y2] and if another line is
drawn unclipped from [x1+dx,y1+dy] to [x2+dx,y2+dy], a point [x,y] is
touched by drawing the first line if and only if the point [x+dx,y+dy] is
touched by drawing the second line.

2. The effective set of points comprising a line cannot be affected by clip-
ping. That is, a point is touched in a clipped line if and only if the point
lies inside the clipping region and the point would be touched by the line
when drawn unclipped.

5-22 Xwin GWS: Xlib - C Language Interface

Manipulating Graphics Context/State

A wide line drawn from [x1,y1] to [x2,y2] always draws the same pixels as a
wide line drawn from [x2,y2] to [x1,y1], not counting cap-style and join-style. It
is recommended that this property be true for thin lines, but this is not required.
A line-width of zero may differ from a line-width of one in which pixels are
drawn. This permits the use of many manufacturers’ line drawing hardware,
which may run many times faster than the more precisely specified wide lines.

In general, drawing a thin line will be faster than drawing a wide line of width
one. However, because of their different drawing algorithms, thin lines may not
mix well aesthetically with wide lines. If it is desirable to obtain precise and
uniform results across all displays, a client should always use a line-width of
one rather than a line-width of zero.

The line-style defines which sections of a line are drawn:
LineSolid The full path of the line is drawn.

LineDoubleDash The full path of the line is drawn, but the even dashes are filled dif-
ferently than the odd dashes (see fill-style) with CapButt style used
where even and odd dashes meet.

LineOnOffDash Only the even dashes are drawn, and cap-style applies to all internal
ends of the individual dashes, except CapNotLast is treated as Cap-
Butt.

The cap-style defines how the endpoints of a path are drawn:

CapNotLast This is equivalent to CapButt except that for a line-width of zero the
final endpoint is not drawn.

CapButt The line is square at the endpoint (perpendicular to the slope of the
line) with no projection beyond.

CapRound The line has a circular arc with the diameter equal to the line-width,
centered on the endpoint. (This is equivalent to CapButt for line-
width of zero).

CapProjecting The line is square at the end, but the path continues beyond the end-

point for a distance equal to half the line-width. (This is equivalent
to CapButt for line-width of zero).

Graphics Resource Functions 5-23

Manipulating Graphics Context/State

The join-style defines how corners are drawn for wide lines:

JoinMiter The outer edges of two lines extend to meet at an angle. However, if
the angle is less than 11 degrees, then a JoinBevel join-style is used
instead.

JoinRound The corner is a circular arc with the diameter equal to the line-width,
centered on the joinpoint.

JoinBevel The corner has CapButt endpoint styles with the triangular notch
filled.

For a line with coincident endpoints (x1=x2, y1=y2), when the cap-style is
applied to both endpoints, the semantics depends on the line-width and the

cap-style:

CapNotLast thin The results are device-dependent, but the desired effect is
that nothing is drawn.

CapButt thin The results are device-dependent, but the desired effect is
that a single pixel is drawn.

CapRound thin The results are the same as for CapButt /thin.

CapProjecting thin The results are the same as for Butt /thin.

CapButt wide Nothing is drawn.

CapRound wide The closed path is a dircle, centered at the endpoint, and
with the diameter equal to the line-width.

CapProjecting wide The closed path is a square, aligned with the coordinate
axes, centered at the endpoint, and with the sides equal to
the line-width.

For a line with coincident endpoints (x1=x2, y1=y2), when the join-style is
applied at one or both endpoints, the effect is as if the line was removed from
the overall path. However, if the total path consists of or is reduced to a single
point joined with itself, the effect is the same as when the cap-style is applied at
both endpoints.

The tile/stipple and clip origins are interpreted relative to the origin of what-
ever destination drawable is specified in a graphics request. The tile pixmap
must have the same root and depth as the GC, or a BadMatch error results. The
stipple pixmap must have depth one and must have the same root as the GC, or

5-24 Xwin GWS: Xlib - C Language Interface

Manipulating Graphics Context/State

a BadMatch error results. For stipple operations where the fill-style is
FillStippled but not FillOpaqueStippled, the stipple pattern is tiled in a
single plane and acts as an additional clip mask to be ANDed with the clip-
mask. Although some sizes may be faster to use than others, any size pixmap
can be used for tiling or stippling.

The fill-style defines the contents of the source for line, text, and fill requests.
For all text and fill requests (for example, XDrawText, XDrawText16, XFillRec—
tangle, XFillPolygon, and XFillArc); for line requests with line-style
LineSolid (for example, XDrawLine, XDrawSegments, XDrawRectangle,
XDrawArc); and for the even dashes for line requests with line-style LineOnOff-
Dash or LineDoubleDash, the following apply:

FillSolid Foreground
FillTiled Tile

FillOpaqueStippled A tile with the same width and height as stip-
ple, but with background everywhere stipple
has a zero and with foreground everywhere
stipple has a one

FillStippled Foreground masked by stipple

When drawing lines with line-style LineDoubleDash, the odd dashes are con-
trolled by the fill-style in the following manner:

FillSolid Background

FillTiled Same as for even dashes

FillOpaqueStippled Same as for even dashes

FillStippled Background masked by stipple

Storing a pixmap in a GC might or might not result in a copy being made. If
the pixmap is later used as the destination for a graphics request, the change
might or might not be reflected in the GC. If the pixmap is used simultaneously

in a graphics request both as a destination and as a tile or stipple, the results are
undefined.

Graphics Resource Functions 5-25

Manipulating Graphics Context/State

For optimum performance, you should draw as much as possible with the same
GC (without changing its components). The costs of changing GC components
relative to using different GCs depend upon the display hardware and the
server implementation. It is quite likely that some amount of GC information
will be cached in display hardware and that such hardware can only cache a
small number of GCs.

The dashes value is actually a simplified form of the more general patterns that
can be set with XSetDashes. Specifying a value of N is equivalent to specifying
the two-element list [N, N] in XSetDashes. The value must be nonzero, or a
BadValue error results.

The clip-mask restricts writes to the destination drawable. If the clip-mask is set
to a pixmap, it must have depth one and have the same root as the GC, or a
BadMatch error results. If clip-mask is set to None, the pixels are always drawn
regardless of the clip origin. The clip-mask also can be set by calling the
XSetClipRectangles or XSetRegion functions. Only pixels where the clip-
mask has a bit set to 1 are drawn. Pixels are not drawn outside the area
covered by the clip-mask or where the clip-mask has a bit set to 0. The clip-
mask affects all graphics requests. The clip-mask does not clip sources. The
clip-mask origin is interpreted relative to the origin of whatever destination
drawable is specified in a graphics request.

You can set the subwindow-mode to ClipByChildren or IncludeInferiors.
For ClipByChildren, both source and destination windows are additionally
clipped by all viewable InputOutput children. For IncludeInferiors, neither
source nor destination window is clipped by inferiors. This will result in
including subwindow contents in the source and drawing through subwindow
boundaries of the destination. The use of IncludeInferiors on a window of
one depth with mapped inferiors of differing depth is not illegal, but the seman-
tics are undefined by the core protocol.

The fill-rule defines what pixels are inside (drawn) for paths given in
XFillPolygon requests and can be set to EvenOddRule or WindingRule. For
EvenOddRule, a point is inside if an infinite ray with the point as origin crosses
the path an odd number of times. For WindingRule, a point is inside if an
infinite ray with the point as origin crosses an unequal number of clockwise and
counterclockwise directed path segments. A clockwise directed path segment is
one that crosses the ray from left to right as observed from the point. A coun-
terclockwise segment is one that crosses the ray from right to left as observed
from the point. The case where a directed line segment is coincident with the

5-26 Xwin GWS: Xiib - C Language Interface

Manipulating Graphics Context/State

ray is uninteresting because you can simply choose a different ray that is not
coincident with a segment.

For both EvenOddRule and WindingRule, a point is infinitely small, and the
path is an infinitely thin line. A pixel is inside if the center point of the pixel is
inside and the center point is not on the boundary. If the center point is on the
boundary, the pixel is inside if and only if the polygon interior is immediately
to its right (x increasing direction). Pixels with centers on a horizontal edge are
a special case and are inside if and only if the polygon interior is immediately
below (y increasing direction).

The arc-mode controls filling in the XFillArcs function and can be set to
ArcPieSlice or ArcChord. For ArcPieSlice, the arcs are pie-slice filled. For
ArcChord, the arcs are chord filled.

The graphics-exposure flag controls GraphicsExpose event generation for
XCopyArea and XCopyPlane requests (and any similar requests defined by
extensions).

To create a new GC that is usable on a given screen with a depth of drawable,
use XCreateGC.

GC XCreateGC (display, d, valuemask, values)
Display *display;
Drawable d;
unsigned long waluemask;
XGCValues *walues;

display Specifies the connection to the XWIN server.

d Specifies the drawable.

valuemask Specifies which components in the GC are to be set using the
information in the specified values structure. This argument is
the bitwise inclusive OR of one or more of the valid GC com-
ponent mask bits.

values Specifies any values as specified by the valuemask.
The XCreateGC function creates a graphics context and returns a GC. The GC

can be used with any destination drawable having the same root and depth as
the specified drawable. Use with other drawables results in a BadMatch error.

Graphics Resource Functions 5-27

Manipulating Graphics Context/State

XCreateGC can generate BadAlloc, BadDrawable, BadFont, BadMatch, BadPix-
map, and BadValue errors.

To copy components from a source GC to a destination GC, use XCopyGC.
XCopyGC (display, src, valuemask, dest)

Display *display;

GC src, dest;

unsigned long waluemask;
display Specifies the connection to the XWIN server.
src Specifies the components of the source GC.

valuemask Specifies which components in the GC are to be copied to the
destination GC. This argument is the bitwise inclusive OR of
one or more of the valid GC component mask bits.

dest Specifies the destination GC.

The XCopyGC function copies the specified components from the source GC to
the destination GC. The source and destination GCs must have the same root
and depth, or a BadMatch error results. The valuemask specifies which com-
ponent to copy, as for XCreateGC.

XCopyGC can generate BadAlloc, BadGC, and BadMatch errors.
To change the components in a given GC, use XChangeGC.

XChangeGC (display, gc, valuemask, values)
Display *display;
GC gc;
unsigned long maluemask;
XGCValues *values;

displa Specifies the connection to the XWIN server.
piay pect

& Specifies the GC.

valuemask Specifies which components in the GC are to be changed using
information in the specified values structure. This argument is
the bitwise inclusive OR of one or more of the valid GC com-
ponent mask bits.

5-28 Xwin GWS: Xlib — C Language Interface

Manipulating Graphics Context/State

values Specifies any values as specified by the valuemask.

The XChangeGC function changes the components specified by valuemask for the
specified GC. The values argument contains the values to be set. The values
and restrictions are the same as for XCreateGC. Changing the clip-mask over-
rides any previous XSetClipRectangles request on the context. Changing the
dash-offset or dash-list overrides any previous XSetDashes request on the con-
text. The order in which components are verified and altered is server-
dependent. If an error is generated, a subset of the components may have been
altered.

XChangeGC can generate BadAlloc, BadFont, BadGC, BadMatch, BadPixmap,
and BadValue errors.

To free a given GC, use XFreeGC.
XFreeGC (display, gc)

Display *display;

GC gc;
display Specifies the connection to the XWIN server.
g Specifies the GC.

The XFreeGC function destroys the specified GC as well as all the associated
storage.

XFreeGC can generate a BadGC error.
To obtain the GContext resource ID for a given GC, use XGContextFromGC.
GContext XGContextFromGC (gc)
GC gc;

g Specifies the GC for which you want the resource ID.

Graphics Resource Functions 5-29

Using GC Convenience Routines

This section discusses how to set the:
m Foreground, background, plane mask, or function components
Line attributes and dashes components
Fill style and fill rule components
Fill tile and stipple components
Font component

Clip region component

Arc mode, subwindow mode, and graphics exposure components

Settin%nthe Foreground, Background, Function, or
Plane Mask

To set the foreground, background, plane mask, and function components for a
given GC, use XSetState.

XSetState (display, gc, foreground, background, function, plane_mask)

Display *display;

GC gc;

unsigned long foreground, background;

int function;

unsigned long plane_mask;
display Specifies the connection to the XWIN server.
g Specifies the GC.
foreground Specifies the foreground you want to set for the specified GC.
background Specifies the background you want to set for the specified GC.
function Specifies the function you want to set for the specified GC.
plane_mask Specifies the plane mask.

XSetState can generate BadAlloc, BadGC, and BadValue errors.

5-30 Xwin GWS: Xlib - C Language Interface

Using GC Convenience Routines

To set the foreground of a given GC, use XSetForeground.

XSetForeground (display, gc, foreground)

Display *display;

GC gc;

unsigned long foreground;
display Specifies the connection to the XWIN server.
g Specifies the GC.

foreground Specifies the foreground you want to set for the specified GC.

XSetForeground can generate BadAlloc and BadGC errors.
To set the background of a given GC, use XSetBackground.
XSetBackground (display, gc, background)

Display *display;

GC gc;

unsigned long background;
display Specifies the connection to the XWIN server.
g Specifies the GC.

background Specifies the background you want to set for the specified GC.

XSetBackground can generate BadAlloc and BadGC errors.
To set the display function in a given GC, use XSetFunction.

XSetFunction (display, gc, function)

Display *display;
GCgc;
int function;
display Specifies the connection to the XWIN server.
g Specifies the GC.
function Specifies the function you want to set for the specified GC.

Graphics Resource Functions 5-31

Using GC Convenience Routines

XSetFunction can generate BadAlloc, BadGC, and BadValue errors.
To set the plane mask of a given GC, use XSetPlaneMask.
XSetPlaneMask (display, gc, plane_mask)
Display *display;
GC gc;
unsigned long plane_mask;
display Specifies the connection to the XWIN server.
g Specifies the GC.

plane_mask Specifies the plane mask.

XSetPlaneMask can generate BadAlloc and BadGC errors.

Setting the Line Attributes and Dashes

To set the line drawing components of a given GC, use XSetLineAttributes.

XSetLineAttributes (display, gc, line_width, line_style, cap_style, join_style)
Display *display;
GC gc;
unsigned int line_width;
int line_style;
int cap_style;
int join_style;

display Specifies the connection to the XWIN server.
g Specifies the GC.

line_width Specifies the line-width you want to set for the specified GC.

line_style Specifies the line-style you want to set for the specified GC.
You can pass LineSolid, LineOnOffDash, or LineDoubleDash.

cap_style Specifies the line-style and cap-style you want to set for the
specified GC. You can pass CapNotLast, CapButt, CapRound,
or CapProjecting.

5-32 Xwin GWS: Xlib - C Language Interface

Using GC Convenience Routines

join_style Specifies the line join-style you want to set for the specified GC.
You can pass JoinMiter, JoinRound, or JoinBevel.

XSetLineAttributes can generate BadAlloc, BadGC, and BadValue errors.

To set the dash-offset and dash-list for dashed line styles of a given GC, use
XSetDashes.

XSetDashes (display, gc, dash_offset, dash_list, n)
Display *display;
GC gc;
int dash_offset;
char dash_list{];
int n;

display Specifies the connection to the XWIN server.
g Specifies the GC.

dash_offset Specifies the phase of the pattern for the dashed line-style you
want to set for the specified GC.

dash_list Specifies the dash-list for the dashed line-style you want to set
for the specified GC.

n Specifies the number of elements in dash_list.

The XSetDashes function sets the dash-offset and dash-list attributes for dashed
line styles in the specified GC. There must be at least one element in the
specified dash_list, or a BadValue error results. The initial and alternating ele-
ments (second fourth, and so on) of the dash_list are the even dashes, and the
others are the odd dashes. Each element specifies a dash length in pixels. All
of the elements must be nonzero, or a BadValue error results. Specifying an
odd-length list is equivalent to specifying the same list concatenated with itself
to produce an even-length list.

The dash-offset defines the phase of the pattern, specifying how many pixels
into the dash-list the pattern should actually begin in any single graphics
request. Dashing is continuous through path elements combined with a join-
style but is reset to the dash-offset each time a cap-style is applied at a line end-

point.

Graphics Resource Functions 5-33

Using GC Convenience Routines

The unit of measure for dashes is the same for the ordinary coordinate system.
Ideally, a dash length is measured along the slope of the line, but implementa-
tions are only required to match this ideal for horizontal and vertical lines. Fail-
ing the ideal semantics, it is suggested that the length be measured along the
major axis of the line. The major axis is defined as the x axis for lines drawn at
an angle of between —45 and +45 degrees or between 315 and 225 degrees from
the x axis. For all other lines, the major axis is the y axis.

XSetDashes can generate BadAlloc, BadGC, and BadValue errors.

Setting the Fill Style and Fill Rule

To set the fill-style of a given GC, use XSetFillStyle.
XSetFillStyle (display, gc, fill_style)
Display *display;
GC gc;
int fill_style;
display Specifies the connection to the XWIN server.
g Specifies the GC.

fill_style Specifies the fill-style you want to set for the specified GC. You
can pass FillSolid, FillTiled, FillStippled, or
FillOpaqueStippled.

XSetFillStyle can generate BadAlloc, BadGC, and BadValue errors.

To set the fill-rule of a given GC, use XSetFillRule.

XSetFillRule (display, gc, fill_rule)

Display *display;

GC gc;

int fill_rule;
display Specifies the connection to the XWIN server.
g Specifies the GC.

5-34 Xwin GWS: Xiib - C Language Interface

Using GC Convenlence Routines

fill_rule Specifies the fill-rule you want to set for the specified GC. You
can pass EvenOddRule or WindingRule.

XSetFillRule can generate BadAlloc, BadGC, and BadValue errors.

Setting the Fill Tile and Stipple

Some displays have hardware support for tiling or stippling with patterns of
specific sizes. Tiling and stippling operations that restrict themselves to those
specific sizes run much faster than such operations with arbitrary size patterns.
Xlib provides functions that you can use to determine the best size, tile, or stip-
ple for the display as well as to set the tile or stipple shape and the tile or stip-
ple origin.

To obtain the best size of a tile, stipple, or cursor, use XQueryBestSize.

Status XQueryBestSize (display, class, which_screen, width, height, width_return, height return)
Display *display;
int class;
Drawable which_screen;
unsigned int width, height;
unsigned int *width_return, *height_return;
display Specifies the connection to the XWIN server.

class Specifies the class that you are interested in. You can pass
TileShape, CursorShape, or StippleShape.

which_screen Specifies any drawable on the screen.

width
height Specify the width and height.

width_return

height_return Return the width and height of the object best supported by the
display hardware.

Graphics Resource Functions 5-35

Using GC Convenience Routines

The XQueryBestSize function returns the best or closest size to the specified
size. For CursorShape, this is the largest size that can be fully displayed on the
screen specified by which_screen. For TileShape, this is the size that can be
tiled fastest. For StippleShape, this is the size that can be stippled fastest. For
CursorShape, the drawable indicates the desired screen. For TileShape and
StippleShape, the drawable indicates the screen and possibly the window class
and depth. An InputOnly window cannot be used as the drawable for
TileShape or StippleShape, or a BadMatch error results.

XQueryBestSize can generate BadDrawable, BadMatch, and Badvalue errors.
To obtain the best fill tile shape, use XQueryBestTile.

Status XQueryBestTile (display, which_screen, width, height, width_return, height_return)
Display *display;
Drawable which_screen;
unsigned int width, height;
unsigned int *width_return, *height_return;

display Specifies the connection to the XWIN server.

which_screen Specifies any drawable on the screen.

width

height Specify the width and height.

width_return

height_return Return the width and height of the object best supported by the

display hardware.

The XQueryBestTile function returns the best or closest size, that is, the size
that can be tiled fastest on the screen specified by which_screen. The drawable
indicates the screen and possibly the window class and depth. If an InputOnly
window is used as the drawable, a BadMatch error results.

XQueryBestTile can generate BadDrawable and BadMatch errors.
To obtain the best stipple shape, use XQueryBestStipple.

5-36 Xwin GWS: Xlib - C Language Interface

Using GC Convenlence Routines

Status XQueryBestStipple (display, which_screen, width, height, width_return, height_return)
Display *display;
Drawable which_screen;
unsigned int width, height;
unsigned int *width_return, *height_return;

display Specifies the connection to the XWIN server.

which_screen Specifies any drawable on the screen.

width

height Specify the width and height.

width_return

height_return Return the width and height of the object best supported by the

display hardware.

The XQueryBestStipple function returns the best or closest size, that is, the
size that can be stippled fastest on the screen specified by which_screen. The
drawable indicates the screen and possibly the window class and depth. If an
InputOnly window is used as the drawable, a BadMatch error results.

XQueryBestStipple can generate BadDrawable and BadMatch errors.
To set the fill tile of a given GC, use XSetTile.
XSetTile (display, gc, tile)

Display *display;
GC gc;
Pixmap tile;
display Specifies the connection to the XWIN server.
& Specifies the GC. ‘
tile Specifies the fill tile you want to set for the specified GC.

The tile and GC must have the same depth, or a BadMatch error results.
XSetTile can generate BadAlloc, BadGC, BadMatch, and BadPixmap errors.
To set the stipple of a given GC, use XSetStipple.

Graphics Resource Functions 5-37

Using GC Convenience Routines

XSetStipple (display, gc, stipple)

Display *display;
GC gc;
Pixmap stipple;
display Specifies the connection to the XWIN server.
g Specifies the GC. :
stipple Specifies the stipple you want to set for the specified GC.

The stipple and GC must have the same depth, or a BadMatch error results.
XSetStipple can generate BadAlloc, BadGC, BadMatch, and BadPixmap errors.
To set the tile or stipple origin of a given GC, use XSetTSOrigin.

XSetTSOrigin (display, gc, ts_x_origin, ts_y_origin)

Display *display;

GC gc;

int ts x_origin, ts_y_origin;
display Specifies the connection to the XWIN server.
g Specifies the GC.
ts_x_origin

ts_y_origin Specify the x and y coordinates of the tile and stipple origin.

When graphics requests call for tiling or stippling, the parent’s origin will be
interpreted relative to whatever destination drawable is specified in the graphics
request.

XSetTSOrigin can generate BadAlloc and BadGC error.

5-38 Xwin GWS: Xiib — C Language Interface

Using GC Convenience Routines

Setting the Current Font

To set the current font of a given GC, use XSetFont.

XSetFont (display, gc, font)
Display *display;
GC gc;
Font font;
display Specifies the connection to the XWIN server.
gc Specifies the GC.

font Specifies the font.

XSetFont can generate BadAlloc, BadFont, and BadGC errors.

Setting the Clip Region

Xlib provides functions that you can use to set the clip-origin and the clip-mask
or set the clip-mask to a list of rectangles.

To set the clip-origin of a given GC, use XSetClipOrigin.

XSetClipOrigin (display, gc, clip_x_origin, clip_y_origin)

Display *display;

GCgc;

int clip_x_origin, clip_y_origin;
display Specifies the connection to the XWIN server.
g Specifies the GC.
clip_x_origin

clip y origin Specify the x and y coordinates of the clip-mask origin.

The clip-mask origin is interpreted relative to the origin of whatever destination
drawable is specified in the graphics request.

Graphics Resource Functions 5-39

Using GC Convenience Routines

XSetClipOrigin can generate BadAlloc and BadGC errors.
To set the clip-mask of a given GC to the specified pixmap, use XSetClipMask.
XSetClipMask (display, gc, pixmap)

Display *display;

GC gc;

Pixmap pixmap;
display Specifies the connection to the XWIN server.
8¢ Specifies the GC.
pixmap Specifies the pixmap or None.

If the clip-mask is set to None, the pixels are are always drawn (regardless of
the clip-origin).

XSetClipMask can generate BadAlloc, BadGC, BadMatch, and Badvalue errors.

To set the clip-mask of a given GC to the specified list of rectangles, use
XSetClipRectangles.

XSetClipRectangles (display, gc, clip_x_origin, clip_y_origin, rectangles, n, ordering)

Display *display;
GC gc;
int clip_x_origin, clip_y_origin;
XRectangle rectangles(];
int n;
int ordering;
display Specifies the connection to the XWIN server.
g Specifies the GC.
clip_x_origin
clip_y origin Specify the x and y coordinates of the clip-mask origin.
rectangles Specifies an array of rectangles that define the clip-mask.
n Specifies the number of rectangles.
ordering Specifies the ordering relations on the rectangles. You can pass

Unsorted, YSorted, YXSorted, or YXBanded.

5-40 Xwin GWS: Xlib - C Language Interface

Using GC Convenience Routines

The XSetClipRectangles function changes the clip-mask in the specified GC to
the specified list of rectangles and sets the clip origin. The output is clipped to
remain contained within the rectangles. The clip-origin is interpreted relative to
the origin of whatever destination drawable is specified in a graphics request.
The rectangle coordinates are interpreted relative to the clip-origin. The rectan-
gles should be nonintersecting, or the graphics results will be undefined. Note
that the list of rectangles can be empty, which effectively disables output. This
is the opposite of passing None as the clip-mask in XCreateGC, XChangeGC, and
XSetClipMask.

If known by the client, ordering relations on the rectangles can be specified with
the ordering argument. This may provide faster operation by the server. If an
incorrect ordering is specified, the XWIN server may generate a BadMatch error,
but it is not required to do so. If no error is generated, the graphics results are
undefined. Unsorted means the rectangles are in arbitrary order. YSorted
means that the rectangles are nondecreasing in their Y origin. YXSorted addi-
tionally constrains YSorted order in that all rectangles with an equal Y origin
are nondecreasing in their X origin. YXBanded additionally constrains YXSorted
by requiring that, for every possible Y scanline, all rectangles that include that
scanline have an identical Y origins and Y extents.

XSetClipRectangles can generate BadAlloc, BadGC, BadMatch, and BadValue
errors.

Xlib provides a set of basic functions for performing region arithmetic. For
information about these functions, see Chapter 10.

Setting the Arc Mode, Subwindow Mode, and
Graphics Exposure

To set the arc mode of a given GC, use XSetArcMode.

XSetArcMode (display, gc, arc_mode)
Display *display;
GC gc;
int arc_mode;

Graphics Resource Functions 5-41

Using GC Convenience Routines

display Specifies the connection to the XWIN server.

g Specifies the GC.

arc_mode Specifies the arc mode. You can pass ArcChord or
ArcPieSlice.

XSetArcMode can generate BadAlloc, BadGC, and BadValue errors.
To set the subwindow mode of a given GC, use XSetSubwindowMode.
XSetSubwindowtode (display, gc, subwindow_mode)

Display *display;

GC gc;

int subwindow_mode;
display Specifies the connection to the XWIN server.
8¢ Specifies the GC.

subwindow_mode Specifies the subwindow mode. You can pass ClipByChil-
dren or IncludeInferiors.

XSetSubwindowMode can generate BadAlloc, BadGC, and BadValue errors.
To set the graphics-exposures flag of a given GC, use XSetGraphicsExposures.
XSetGraphicsExposures (display, gc, graphics_exposures)

Display *display;

GC gc;

Bool graphics_exposures;
display Specifies the connection to the XWIN server.
8¢ Specifies the GC.

graphics_exposures Specifies a Boolean value that indicates whether you want
GraphicsExpose and NoExpose events to be reported when
calling XCopyArea and XCopyPlane with this GC.

XSetGraphicsExposures can generate BadAlloc, BadGC, and BadValue errors.

5-42 Xwin GWS: Xiib - C Language Interface

6. GRAPHICS FUNCTIONS

SNOILONNH SOIHdVHD 9

6 Graphics Functions

Introduction 6-1
Clearing Areas 6-2
Copying Areas 6-4

Drawing Points, Lines, Rectangles, and

Arcs 6-7

Drawing Single and Multiple Points 6-8

Drawing Single and Multiple Lines 6-9

Drawing Single and Multiple Rectangles 6-11
Drawing Single and Multiple Arcs 6-13
Filling Areas 6-17
Filling Single and Multiple Rectangles 6-17
Filling a Single Polygon 6-19
Filling Single and Multiple Arcs 6-20
Font Metrics 6-22
Loading and Freeing Fonts 6-28
Obtaining and Freeing Font Names and Information 6-31

Table of Contents |

Table of Contents

Setting and Retrieving the Font Search Path 6-33
Computing Character String Sizes 6-34
Computing Logical Extents 6-35
Querying Character String Sizes 6-37
Drawing Text 6-40
Drawing Complex Text 6-41
Drawing Text Characters 6-43
Drawing Image Text Characters 6-44
Transferring Images between Client and

Server 6-47
Cursors 6-54
Creating a Cursor 6-54
Changing and Destroying Cursors 6-57
Defining the Cursor 6-59

Xwin GWS: Xlib - C Language Interface

Introduction

Once you have connected the display to the XWIN server, you can use the Xlib
graphics functions to:

m Clear and copy areas
Draw points, lines, rectangles, and arcs
Fill areas
Manipulate fonts

n
n

n

m Draw text
m Transfer images between clients and the server
[

Manipulate cursors
If the same drawable and GC is used for each call, Xlib batches back-to-back

calls to XDrawPoint , XDrawLine, XDrawRectangle, XFillArc, and XFillRec—
tangle. Note that this reduces the total number of requests sent to the server.

Graphics Functions 6-1

Clearing Areas

Xlib provides functions that you can use to clear an area or the entire window.
Because pixmaps do not have defined backgrounds, they cannot be filled by
using the functions described in this section. Instead, to accomplish an analo-
gous operation on a pixmap, you should use XFillRectangle, which sets the
pixmap to a known value.

To clear a rectangular area of a given window, use XClearArea.

XClearArea (display, w, x, y, width, height, exposures)

Display *display;
Window w;
intx,y;
unsigned int width, height;
Bool exposures;
display Specifies the connection to the XWIN server.
w Specifies the window.
x
y Specify the x and y coordinates, which are relative to the origin
of the window and specify the upper-left corner of the rectangle.
width
height Specify the width and height, which are the dimensions of the
rectangle.
exposures Specifies a Boolean value that indicates if Expose events are to
be generated.

The XClearArea function paints a rectangular area in the specified window
according to the specified dimensions with the window’s background pixel or
pixmap. The subwindow-mode effectively is ClipByChildren. If width is zero,
it is replaced with the current width of the window minus x. If height is zero, it
is replaced with the current height of the window minus y. If the window has a
defined background tile, the rectangle clipped by any children is filled with this
tile. If the window has background None, the contents of the window are not
changed. In either case, if exposures is True, one or more Expose events are
generated for regions of the rectangle that are either visible or are being
retained in a backing store. If you specify a window whose class is InputOnly,
a BadMatch error results.

6-2 Xwin GWS: Xlib - C Language Interface

Clearing Areas

XClearArea can generate BadMatch, BadValue, and BadWindow errors.
To clear the entire area in a given window, use XClearWindow.

XClearWindow (display, w)

Display *display;

Window w;
display Specifies the connection to the XWIN server.
w Specifies the window.

The XClearWindow function clears the entire area in the specified window and

is equivalent to XClearArea (display, w, 0, 0, 0, 0, False). If the window has a
defined background tile, the rectangle is tiled with a plane-mask of all ones and
GXcopy function. If the window has background None, the contents of the win-
dow are not changed. If you specify a window whose class is InputOnly, a Bad—
Match error results.

XClearWindow can generate BadMatch and BadWindow errors.

Graphics Functions 6-3

Copying Areas

Xlib provides functions that you can use to copy an area or a bit plane.
To copy an area between drawables of the same root and depth, use XCopyArea.

XCopyArea (display, src, dest, gc, src_x, src_y, width, height, dest_x, dest_y)
Display *display;
Drawable src, dest;
GC gc;
int src_x, src_y;
unsigned int width, height;

int dest_x, dest_y;

display Specifies the connection to the XWIN server.

src

dest Specify the source and destination rectangles to be combined.

g Specifies the GC.

src_x

src_y Specify the x and y coordinates, which are relative to the origin
of the source rectangle and specify its upper-left corner.

width

height Specify the width and height, which are the dimensions of both
the source and destination rectangles.

dest_x

dest_y Specify the x and y coordinates, which are relative to the origin

of the destination rectangle and specify its upper-left corner.

The XCopyArea function combines the specified rectangle of src with the
specified rectangle of dest. The drawables must have the same root and depth,
or a BadMatch error results.

If regions of the source rectangle are obscured and have not been retained in
backing store or if regions outside the boundaries of the source drawable are
specified, those regions are not copied. Instead, the following occurs on all
corresponding destination regions that are either visible or are retained in back-
ing store. If the destination is a window with a background other than None,
corresponding regions of the destination are tiled with that background (with
plane-mask of all ones and GXcopy function). Regardless of tiling or whether
the destination is a window or a pixmap, if graphics-exposures is True, then
GraphicsExpose events for all corresponding destination regions are generated.

6-4 Xwin GWS: Xlib - C Language Interface

Copying Areas

If graphics-exposures is True but no GraphicsExpose events are generated, a
NoExpose event is generated. Note that by default graphics-exposures is True
in new GCs.

This function uses these GC components: function, plane-mask, subwindow-
mode, graphics-exposures, clip-x-origin, clip-y-origin, and clip-mask.

XCopyArea can generate BadDrawable, BadGC, and BadMatch errors.
To copy a single bit plane of a given drawable, use XCopyPlane.

XCopyPlane (display, src, dest, gc, src_x, src_y, width, height, dest_x, dest_y, plane)
Display *display;
Drawable src, dest;
GC gc;
int src_x, src_y;
unsigned int width, height;
int dest_x, dest y;

unsigned long plane;

display Specifies the connection to the XWIN server.

src

dest Specify the source and destination rectangles to be combined.

g Specifies the GC.

src_x

src_y Specify the x and y coordinates, which are relative to the origin
of the source rectangle and specify its upper-left corner.

width

height Specify the width and height, which are the dimensions of both
the source and destination rectangles.

dest_x

dest_y Specify the x and y coordinates, which are relative to the origin
of the destination rectangle and specify its upper-left corner.

plane Specifies the bit plane. You must set exactly one bit to 1.

The XCopyPlane function uses a single bit plane of the specified source rectan-
gle combined with the specified GC to modify the specified rectangle of dest.
The drawables must have the same root but need not have the same depth. If
the drawables do not have the same root, a BadMatch error results. If plane

Graphics Functions 6-5

Copying Areas

does not have exactly one bit set to 1 and the values of planes must be less than
* 2", where n is the depth of src, a Badvalue error results.

Effectively, XCopyPlane forms a pixmap of the same depth as the rectangle of
dest and with a size specified by the source region. It uses the

foreground /background pixels in the GC (foreground everywhere the bit plane
in src contains a bit set to 1, background everywhere the bit plane in src con-
tains a bit set to 0) and the equivalent of a CopyArea potocol request is per-
formed with all the same exposure semantics. This can also be thought of as
using the specified region of the source bit plane as a stipple with a fill-style of
FillOpaqueStippled for filling a rectangular area of the destination.

This function uses these GC components: function, plane-mask, foreground,
background, subwindow-mode, graphics-exposures, clip-x-origin, clip-y-origin
and clip-mask.

XCopyPlane can generate BadDrawable, BadGC, BadMatch, and BadvValue
errors.

6-6 Xwin GWS: Xlib - C Language Interface

Drawing Points, Lines, Rectangles, and Arcs

Xlib provides functions that you can use to draw:
® A single point or multiple points
m A single line or multiple lines
m A single rectangle or multiple rectangles

m A single arc or multiple arcs

Some of the functions described in the following sections use these structures:

typedef struct {
short x1, yl, x2, y2;
} XSegment;

typedef struct {
short x, y;
} XPoint;

typedef struct {

short x, y;

unsigned short width, height;
} XRectangle;

typedef struct {

short x, y;

unsigned short width, height;

short anglel, angle2; /* Degrees * 64 */
} XArc;

All x and y members are 16-bit signed integers. The width and height members
are 16-bit unsigned integers. You should be careful not to generate coordinates
and sizes out of the 16-bit ranges, because the protocol only has 16-bit fields for

these values.

Graphics Functions

6-7

Drawing Points, Lines, Rectangles, and Arcs

Drawing Single and Multiple Points

To draw a single point in a given drawable, use XDrawPoint.

XDrawPoint (display, d, gc, x, ¥)

Display *display;
Drawable d;
GC gc;
intx, y;
display Specifies the connection to the XWIN server.
d Specifies the drawable.
gc Specifies the GC.
x
y Specify the x and y coordinates where you want the point
drawn.

To draw multiple points in a given drawable, use XDrawPoints.

XDrawPoints (display, d, gc, points, npoints, mode)

Display *display;

Drawable d;

GC gc;

XPoint *points;

int npoints;

int mode;
display Specifies the connection to the XWIN server.
d Specifies the drawable.
g Specifies the GC.
points Specifies a pointer to an array of points.
npoints Specifies the number of points in the array.
mode Specifies the coordinate mode. You can pass CoordModeOrigin

or CoordModePrevious.

6-8 Xwin GWS: Xlib - C Language Interface

Drawing Points, Lines, Rectangles, and Arcs

The XDrawPoint function uses the foreground pixel and function components of
the GC to draw a single point into the specified drawable; XDrawPoints draws
multiple points this way.

CoordModeOrigin treats all coordinates as relative to the origin, and CoordMo—
dePrevious treats all coordinates after the first as relative to the previous point.
XDrawPoints draws the points in the order listed in the array.

Both functions use these GC components: function, plane-mask, foreground,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.

XDrawPoint can generate BadDrawable, BadGC, and BadMatch errors.
XDrawPoints can generate BadDrawable, BadGC, BadMatch, and BadvValue
errors.

Drawing Single and Multiple Lines

To draw a single line between two points in a given drawable, use XDrawLine.

XDrawLine (display, d, gc, x1, y1, x2, y2)

Display *display;
Drawable 4;
GC gc;
int x1, y1, x2, y2;
display Specifies the connection to the XWIN server.
d Specifies the drawable.
g Specifies the GC.
x1
yl
x2
y2 Specify the points (x1, y1) and (x2, y2) to be connected.

To draw multiple lines in a given drawable, use XDrawLines.

Graphics Functions 6-9

Drawing Points, Lines, Rectangles, and Arcs

XDrawLines (display, d, gc, points, npoints, mode)

Display *display;

Drawable 4;

GC gc;

XPoint *points;

int npoints;

int mode;
display Specifies the connection to the XWIN server.
d Specifies the drawable.
gc Specifies the GC.
points Specifies a pointer to an array of points.
npoints Specifies the number of points in the array.
mode Specifies the coordinate mode. You can pass CoordModeOrigin

or CoordModePrevious.

To draw multiple, unconnected lines in a given drawable, use XDrawSegments.
XDrawSegments (display, d, gc, segments, nsegments)
Display *display;
Drawable d;
GC gc;
XSegment *segments;
int nsegments;

display Specifies the connection to the XWIN server.

d Specifies the drawable.

g Specifies the GC.

segments Specifies a pointer to an array of segments.

nsegments Specifies the number of segments in the array.

The XDrawLine function uses the components of the specified GC to draw a line
between the specified set of points (x1, y1) and (x2, y2). It does not perform
joining at coincident endpoints. For any given line, XDrawLine does not draw a

pixel more than once. If lines intersect, the intersecting pixels are drawn multi-
ple times.

6-10 Xwin GWS: Xiib - C Language Interface

Drawing Points, Lines, Rectangles, and Arcs

The XDrawLines function uses the components of the specified GC to draw
npoints—1 lines between each pair of points (point[il, point[i+1]) in the array of
XPoint structures. It draws the lines in the order listed in the array. The lines
join correctly at all intermediate points, and if the first and last points coincide,
the first and last lines also join correctly. For any given line, XDrawLines does
not draw a pixel more than once. If thin (zero line-width) lines intersect, the
intersecting pixels are drawn multiple times. If wide lines intersect, the inter-
secting pixels are drawn only once, as though the entire PolyLine protocol
request were a single, filled shape. CoordModeOrigin treats all coordinates as
relative to the origin, and CoordModePrevious treats all coordinates after the
first as relative to the previous point.

The XDrawSegments function draws multiple, unconnected lines. For each seg-
ment, XDrawSegments draws a line between (x1, y1) and (x2, y2). It draws the
lines in the order listed in the array of XSegment structures and does not per-
form joining at coincident endpoints. For any given line, XDrawSegments does
not draw a pixel more than once. If lines intersect, the intersecting pixels are
drawn multiple times.

All three functions use these GC components: function, plane-mask, line-width,
line-style, cap-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and
clip-mask. The XDrawLines function also uses the join-style GC component.
All three functions also use these GC mode-dependent components: foreground,
background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin, dash-offset,
and dash-list.

XDrawLine, XDrawLines, and XDrawSegments can generate BadDrawable,
BadGC, and BadMatch errors. XDrawLines also can generate BadValue errors.

Drawing Single and Multiple Rectangles

To draw the outline of a single rectangle in a given drawable, use
XDrawRectangle.

Graphics Functions 6-11

Drawing Points, Lines, Rectangles, and Arcs

XDrawRectangle (display, d, gc, x, y, width, height)

display
d
g

x
y

width
height

Display *display;
Drawable 4;

GC gc;

intx, y;

unsigned int width, height;

Specifies the connection to the XWIN server.
Specifies the drawable.
Specifies the GC.

Specify the x and y coordinates, which specify the upper-left
corner of the rectangle.

Specify the width and height, which specify the dimensions of
the rectangle.

To draw the outline of multiple rectangles in a given drawable, use XDrawRec-

tangles.

XDrawRectangles (display, d, gc, rectangles, nrectangles)

display

d

g
rectangles

nrectangles

6-12

Display *display;
Drawable 4;
GC gc;
XRectangle rectangles(];
int nrectangles;
Specifies the connection to the XWIN server.
Specifies the drawable.
Specifies the GC.
Specifies a pointer to an array of rectangles.

Specifies the number of rectangles in the array.

Xwin GWS: Xlib - C Language Interface

Drawing Points, Lines, Rectangles, and Arcs

The XDrawRectangle and XDrawRectangles functions draw the outlines of the
specified rectangle or rectangles as if a five-point PolyLine protocol request
were specified for each rectangle:

[x,y] [x+width,y] [x+width,y+height] [x,y+height] [x,y]

For the specified rectangle or rectangles, these functions do not draw a pixel
more than once. XDrawRectangles draws the rectangles in the order listed in
the array. If rectangles intersect, the intersecting pixels are drawn multiple
times.

Both functions use these GC components: function, plane-mask, line-width,
line-style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and
clip-mask. They also use these GC mode-dependent components: foreground,
background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin, dash-offset,
and dash-list.

XDrawRectangle and XDrawRectangles can generate BadDrawable, BadGC,
and BadMatch errors.

Drawing Single and Multiple Arcs

To draw a single arc in a given drawable, use XDrawArc.

XDrawAre (display, d, gc, x, y, width, height, anglel, angle2)
Display *display;
Drawable 4;
GC gc;
intx, y;
unsigned int width, height;
int anglel, angle2;

display Specifies the connection to the XWIN server.
d Specifies the drawable.
g Specifies the GC.

y Specify the x and y coordinates, which are relative to the origin
of the drawable and specify the upper-left corner of the bound-
ing rectangle.

Graphics Functions 6-13

Drawing Points, Lines, Rectangles, and Arcs

width

height Specify the width and height, which are the major and minor
axes of the arc.

anglel Specifies the start of the arc relative to the three-o’clock position
from the center, in units of degrees * 64.

angle2 Specifies the path and extent of the arc relative to the start of

the arc, in units of degrees * 64.

To draw multiple arcs in a given drawable, use XDrawArcs.

XDrawhArcs (display, d, gc, arcs, narcs)

Display *display;

Drawable d;

GC gc;

XArc *arcs;

int narcs;
display Specifies the connection to the XWIN server.
d Specifies the drawable.
g Specifies the GC.
arcs Specifies a pointer to an array of arcs.
narcs Specifies the number of arcs in the array.

XDrawArc draws a single circular or elliptical arc, and XDrawArcs draws multi-
ple circular or elliptical arcs. Each arc is specified by a rectangle and two
angles. The center of the circle or ellipse is the center of the rectangle, and the
major and minor axes are specified by the width and height. Positive angles
indicate counterclockwise motion, and negative angles indicate clockwise
motion. If the magnitude of angle2 is greater than 360 degrees, XDrawArc or
XDrawArcs truncates it to 360 degrees.

For an arc specified as [x, y, width, height, angle1, angle2], the origin of the
major and minor axes is at [x+ > ih , Y+ hezg t] and the infinitely thin path
descnbmg the entire circle or ellipse mtersects the horizontal axis at

[x, y+ —23—] and [x+width, y+ __gh_] and intersects the vertical axis at

2
wzdth Wth , y+height]. These coordinates can be fractional and

[x+

, y] and [x+

6-14 Xwin GWS: Xlib - C Language Interface

Drawing Points, Lines, Rectangles, and Arcs

so are not truncated to discrete coordinates. The path should be defined by the
ideal mathematical path. For a wide line with line-width lw, the bounding out-
lines for filling are given by the two infinitely thin paths consisting of all points
whose perpendicular distance from the path of the circle/ellipse is equal to
Iw/2 (which may be a fractional value). The cap-style and join-style are applied
the same as for a line corresponding to the tangent of the circle/ellipse at the
endpoint.

For an arc specified as [x, y, width, height, angle1, angle2], the angles must be
specified in the effectively skewed coordinate system of the ellipse (for a circle,
the angles and coordinate systems are identical). The relationship between these
angles and angles expressed in the normal coordinate system of the screen (as
measured with a protractor) is as follows:
width

-; = & *
skewed-angle = atan |tan(normal-angle) height

+adjust

The skewed-angle and normal-angle are expressed in radians (rather than in
degrees scaled by 64) in the range [0, 2r] and where atan returns a value in the

range [—%, %] and adjust is:

0 for normal-angle in the range [0, 125]
n for normal-angle in the range [-125-, -3515]
2r for normal-angle in the range [%E, 2n)

For any given arc, XDrawArc and XDrawArcs do not draw a pixel more than
once. If two arcs join correctly and if the line-width is greater than zero and the
arcs intersect, XDrawArc and XDrawArcs do not draw a pixel more than once.
Otherwise, the intersecting pixels of intersecting arcs are drawn multiple times.
Specifying an arc with one endpoint and a clockwise extent draws the same pix-
els as specifying the other endpoint and an equivalent counterclockwise extent,
except as it affects joins.

If the last point in one arc coincides with the first point in the following arc, the
two arcs will join correctly. If the first point in the first arc coincides with the
last point in the last arc, the two arcs will join correctly. By specifying one axis
to be zero, a horizontal or vertical line can be drawn. Angles are computed
based solely on the coordinate system and ignore the aspect ratio.

Graphics Functions 6-15

Drawing Points, Lines, Rectangles, and Arcs

Both functions use these GC components: function, plane-mask, line-width,
line-style, cap-style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-
origin, and clip-mask. They also use these GC mode-dependent components:
foreground, background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin,
dash-offset, and dash-list.

XDrawArc and XDrawArcs can generate BadDrawable, BadGC, and BadMatch
errors.

6-16 Xwin GWS: Xlib - C Language Interface

Filling Areas

Xlib provides functions that you can use to fill:
m A single rectangle or multiple rectangles

m A single polygon
m A single arc or multiple arcs

Filling Single and Multiple Rectangles

To fill a single rectangular area in a given drawable, use XFillRectangle.

XFillRectangle (display, d, gc, x, y, width, height)
Display *display;
Drawable 4;
GC ge;
intx, y;
unsigned int width, height;

display Specifies the connection to the XWIN server.

d Specifies the drawable.

g Specifies the GC.

x

y Specify the x and y coordinates, which are relative to the origin
of the drawable and specify the upper-left corner of the rectan-
gle.

width

height Specify the width and height, which are the dimensions of the
rectangle to be filled.

To fill multiple rectangular areas in a given drawable, use XFillRectangles.

Graphics Functions 6-17

Filling Areas

XFillRectangles (display, d, gc, rectangles, nrectangles)
Display *display;
Drawable d;
GC gc;
XRectangle *rectangles;
int nrectangles;

display Specifies the connection to the XWIN server.

d Specifies the drawable.

g Specifies the GC.

rectangles Specifies a pointer to an array of rectangles.

nrectangles Specifies the number of rectangles in the array.

The XFillRectangle and XFillRectangles functions fill the specified rectan-

gle or rectangles as if a four-point FillPolygon protocol request were specified
for each rectangle:

[x,¥] [x+width,y] [xtwidth, y+height] [x, y+height]

Each function uses the x and y coordinates, width and height dimensions, and
GC you specify.

XFillRectangles fills the rectangles in the order listed in the array. For any
given rectangle, XFillRectangle and XFillRectangles do not draw a pixel

more than once. If rectangles intersect, the intersecting pixels are drawn multi-
ple times.

Both functions use these GC components: function, plane-mask, fill-style,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use
these GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, and tile-stipple-y-origin.

XFillRectangle and XFillRectangles can generate BadDrawable, BadGC,
and BadMatch errors.

6-18 Xwin GWS: Xlib - C Language Interface

Filling Areas

Filling a Single Polygon

To fill a polygon area in a given drawable, use XFillPolygon.

XFillPolygon (display, d, gc, points, npoints, shape, mode)
Display *display;
Drawable d;
GC gc;
XPoint *points;
int npoints;
int shape;
int mode;

display Specifies the connection to the XWIN server.
d Specifies the drawable.

gc Specifies the GC.

points Specifies a pointer to an array of points.
npoints Specifies the number of points in the array.

shape Specifies a shape that helps the server to improve performance.
You can pass Complex, Convex, or Nonconvex.

mode Specifies the coordinate mode. You can pass CoordModeOrigin
or CoordModePrevious.

XFillPolygon fills the region closed by the specified path. The path is closed
automatically if the last point in the list does not coincide with the first point.
XFillPolygon does not draw a pixel of the region more than once.
CoordModeOrigin treats all coordinates as relative to the origin, and CoordMo—
dePrevious treats all coordinates after the first as relative to the previous point.

Depending on the specified shape, the following occurs:
m If shape is Complex, the path may self-intersect.

m If shape is Convex, the path is wholly convex. If known by the client,
specifying Convex can improve performance. If you specify Convex for a
path that is not convex, the graphics results are undefined.

Graphics Functions 6-19

Filling Areas

m If shape is Nonconvex, the path does not self-intersect, but the shape is
not wholly convex. If known by the client, specifying Nonconvex instead
of Complex may improve performance. If you specify Nonconvex for a
self-intersecting path, the graphics results are undefined.

The fill-rule of the GC controls the filling behavior of self-intersecting polygons.

This function uses these GC components: function, plane-mask, fill-style, fill-
rule, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. It also uses
these GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, and tile-stipple-y-origin.

XFillPolygon can generate BadDrawable, BadGC, BadMatch, and BadValue
errors.

Filling Single and Multiple Arcs

To fill a single arc in a given drawable, use XFillArc.
XFillArc (display, d, gc, x,y, width, height, anglel, angle2)

Display *display;
Drawable d;
GC gc;
intx, y;
unsigned int width, height;
int anglel, angle2;
display Specifies the connection to the XWIN server.
d Specifies the drawable.
8¢ Specifies the GC.
x
y Specify the x and y coordinates, which are relative to the origin
of the drawable and specify the upper-left corner of the bound-
ing rectangle.
width
height Specify the width and height, which are the major and minor

axes of the arc.

6-20 Xwin GWS: Xlib - C Language Interface

Fllling Areas

anglel Specifies the start of the arc relative to the three-o’clock position
from the center, in units of degrees * 64.

angle2 Specifies the path and extent of the arc relative to the start of
the arc, in units of degrees * 64.

To fill multiple arcs in a given drawable, use XFillArcs.

XFillArcs (display, d, gc, arcs, narcs)

Display *display;

Drawable d;

GC gc;

XArc *arcs;

int narcs;
display Specifies the connection to the XWIN server.
d Specifies the drawable.
g Specifies the GC.
arcs Specifies a pointer to an array of arcs.
narcs Specifies the number of arcs in the array.

For each arc, XFillArc or XFillArcs fills the region closed by the infinitely
thin path described by the specified arc and, depending on the arc-mode
specified in the GC, one or two line segments. For ArcChord, the single line seg-
ment joining the endpoints of the arc is used. For ArcPieSlice, the two line
segments joining the endpoints of the arc with the center point are used.
XFillArcs fills the arcs in the order listed in the array. For any given arc,
XFillArc and XFillArcs do not draw a pixel more than once. If regions inter-
sect, the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style, arc-
mode, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also
use these GC mode-dependent components: foreground, background, tile, stip-
ple, tile-stipple-x-origin, and tile-stipple-y-origin.

XFillArc and XFillArcs can generate BadDrawable, BadGC, and BadMatch
errors.

Graphics Functions 6-21

Font Metrics

A font is a graphical description of a set of characters that are used to increase
efficiency whenever a set of small, similar sized patterns are repeatedly used.

This section discusses how to:
m Load and free fonts
Obtain and free font names
Set and retrieve the font search path
Compute character string sizes

Return logical extents

Query character string sizes

The XWIN server loads fonts whenever a program requests a new font. The
server can cache fonts for quick lookup. Fonts are global across all screens in a
server. Several levels are possible when dealing with fonts. Most applications
simply use XLoadQueryFont to load a font and query the font metrics.

Characters in fonts are regarded as masks. Except for image text requests, the
only pixels modified are those in which bits are set to 1 in the character. This
means that it makes sense to draw text using stipples or tiles (for example,
many menus gray-out unusable entries).

The XFontStruct structure contains all of the information for the font and con-
sists of the font-specific information as well as a pointer to an array of XChar—
Struct structures for the characters contained in the font. The XFontStruct,
XFontProp, and XCharStruct structures contain:

typedef struct {

short lbearing; /* origin to left edge of raster */
short rbearing; /* origin to right edge of raster */
short width; /* advance to next char’s origin */
short ascent; /* baseline to top edge of raster */
short descent; /* baseline to bottom edge of raster */
unsigned short attributes; /* per char flags (not predefined) */

} XCharStruct;

6-22 Xwin GWS: Xlib - C Language Interface

Font Metrics

typedef struct {
Atom name;
unsigned long card32;
} XFontProp;

typedef struct { /* normal 16 bit characters are two bytes */
unsigned char bytel;
unsigned char byte2;

} XChar2b;

typedef struct {

XBxtData *ext data; /* hook for extension to hang data */

Font fid; /* Font id for this font */

unsigned direction; /* hint about the direction font is painted */
unsigned min char_or_byte2; /* first character */

unsigned max char_or_byte2; /* last character */

unsigned min bytel; /* first row that exists */

unsigned max bytel; /* last row that exists */

Bool all chars exist; /* flag if all characters have nonzero size */
unsigned default_char; /* char to print for undefined character */

int n_properties; /* how many properties there are */

XFontProp *properties; /* pointer to array of additional properties */
XCharStruct min bounds; /* minimum bounds over all existing char */
XCharStruct max bounds; /* maximum bounds over all existing char */
XCharStruct *per_char; /* first_char to last_char information */

int ascent; /* logical extent above baseline for spacing */
int descent; /* logical decent below baseline for spacing */

} XFontStruct;

X supports single byte/character, two bytes/character matrix, and 16-bit charac-
ter text operations. Note that any of these forms can be used with a font, but a
single byte/character text request can only specify a single byte (that is, the first
row of a 2-byte font). You should view 2-byte fonts as a two-dimensional
matrix of defined characters: bytel specifies the range of defined rows and byte2
defines the range of defined columns of the font. Single byte/character fonts
have one row defined, and the byte2 range specified in the structure defines a
range of characters.

Graphics Functions 6-23

Font Metrics

The bounding box of a character is defined by the XCharStruct of that charac-
ter. When characters are absent from a font, the default_char is used. When
fonts have all characters of the same size, only the information in the
XFontStruct min and max bounds are used.

The members of the XFontStruct have the following semantics:
m The direction member can be either FontLeftToRight or FontRight—

6-24

ToLeft. It is just a hint as to whether most XCharStruct elements have
a positive (FontLeftToRight) or a negative (FontRightToLeft) char-
acter width metric. The core protocol defines no support for vertical text.

If the min_bytel and max_bytel members are both zero,
min_char_or_byte2 specifies the linear character index corresponding to
the first element of the per_char array, and max_char_or_byte2 specifies
the linear character index of the last element.

If either min_bytel or max_bytel are nonzero, both min_char_or_byte2
and max_char_or_byte2 are less than 256, and the 2-byte character index
values corresponding to the per_char array element N (counting from 0)
are:

bytel = N/D + min_bytel
byte2 = N\D + min_char_or_byte2
where:

D = max_char_or_byte2 — min_char_or_byte2 + 1
/ = integer division
\ = integer modulus

If the per_char pointer is NULL, all glyphs between the first and last char-
acter indexes inclusive have the same information, as given by both
min_bounds and max_bounds.

If all_chars_exist is True, all characters in the per_char array have
nonzero bounding boxes.

The default_char member specifies the character that will be used when
an undefined or nonexistent character is printed. The default_char is a 16-
bit character (not a 2-byte character). For a font using 2-byte matrix for-
mat, the default_char has bytel in the most-significant byte and byte2 in
the least-significant byte. If the default_char itself specifies an undefined
or nonexistent character, no printing is performed for an undefined or
nonexistent character.

Xwin GWS: Xlib - C Language Interface

Font Metrics

® The min_bounds and max_bounds members contain the most extreme
values of each individual XCharStruct component over all elements of
this array (and ignore nonexistent characters). The bounding box of the
font (the smallest rectangle enclosing the shape obtained by superimpos-
ing all of the characters at the same origin [x,y]) has its upper-left coordi-

nate at:
[x + min_bounds.lbearing, y - max bounds.ascent]
Its width is:
max_bounds.rbearing - min_bounds.lbearing
Its height is:

max bounds.ascent + max bounds.descent

m The ascent member is the logical extent of the font above the baseline that
is used for determining line spacing. Specific characters may extend
beyond this.

m The descent member is the logical extent of the font at or below the base-
line that is used for determining line spacing. Specific characters may
extend beyond this.

m If the baseline is at Y-coordinate y, the logical extent of the font is
inclusive between the Y-coordinate values (y - font.ascent) and (y +
font.descent — 1). Typically, the minimum interline spacing between rows
of text is given by ascent + descent.

For a character origin at [x,y], the bounding box of a character (that is, the smal-
lest rectangle that encloses the character’s shape) described in terms of XChar-
Struct components is a rectangle with its upper-left corner at:

[x + lbearing, y - ascent]

Its width is:
rbearing - lbearing

Graphics Functions 6-25

Font Metrics

Its height is:

ascent + descent

The origin for the next character is defined to be:
[x + width, y]

The Ibearing member defines the extent of the left edge of the character ink
from the origin. The rbearing member defines the extent of the right edge of
the character ink from the origin. The ascent member defines the extent of the
top edge of the character ink from the origin. The descent member defines the
extent of the bottom edge of the character ink from the origin. The width
member defines the logical width of the character.

Note that the baseline (the y position of the character origin) is logically viewed
as being the scanline just below nondescending characters. When descent is
zero, only pixels with Y-coordinates less than y are drawn, and the origin is log-
ically viewed as being coincident with the left edge of a nonkerned character.
When lbearing is zero, no pixels with X-coordinate less than x are drawn. Any
of the XCharStruct metric members could be negative. If the width is nega-
tive, the next character will be placed to the left of the current origin.

The X protocol does not define the interpretation of the attributes member in
the XCharStruct structure. A nonexistent character is represented with all
members of its XCharStruct set to zero.

A font is not guaranteed to have any properties. The interpretation of the pro-
perty value (for example, long or unsigned long) must be derived from a priori
knowledge of the property. When possible, fonts should have at least the pro-
perties listed in the table. With atom names, uppercase and lowercase matter.
The following built-in property atoms can be found in < X11/Xatam.h >:

6-26 Xwin GWS: Xlib - C Language Interface

Font Metrics

Property Name Type Description
MIN_SPACE unsigned The minimum interword spacing, in pixels.
NORM_SPACE unsigned The normal interword spacing, in pixels.
MAX_SPACE unsigned The maximum interword spacing, in pixels.
END_SPACE unsigned The additional spacing at the end of sentences, in
pixels.
SUPERSCRIPT_X int Offset from the character origin where super-
SUPERSCRIPT_Y scripts should begin, in pixels. If the origin is at
[x,y], then superscripts should begin at
[x + SUPERSCRIPT_X, y - SUPERSCRIPT_Y].
SUBSCRIPT_X int Offset from the character origin where subscripts
SUBSCRIPT_Y should begin, in pixels. If the origin is at [x,y],
then subscripts should begin at
[x + SUPERSCRIPT X, y + SUPERSCRIPT Y].
UNDERLINE_POSITION int Y offset from the baseline to the top of an under-
line, in pixels. If the baseline is Y-coordinate y,
then the top of the underline is at
(y + UNDERLINE_POSITION).
UNDERLINE_THICKNESS unsigned Thickness of the underline, in pixels.
STRIKEOUT_ASCENT int Vertical extents for boxing or voiding characters,
STRIKEOUT _DESCENT in pixels. If the baseline is at Y-coordinate y,
then the top of the strikeout box is at
(y — STRIKEOUT_ASCENT),
and the height of the box is
(STRIKEOUT_ASCENT + STRIKEOUT DESCENT).
ITALIC_ANGLE int The angle of the dominant staffs of characters in
the font, in degrees scaled by 64, relative to the
three-o’clock position from the character origin,
with positive indicating counterclockwise motion
(as in XDrawArc).
X_HEIGHT int 1 ex as in TeX, but expressed in units of pixels.
Often the height of lowercase x.
QUAD_WIDTH int 1 em as in TeX, but expressed in units of pixels.

Graphics Functions

Often the width of the digits 0-9.

6-27

Font Metrics

Property Name Type Description

CAP_HEIGHT int Y offset from the baseline to the top of the capital
letters, ignoring accents, in pixels. If the baseline
is at Y-coordinate y, then the top of the capitals is
at (y - CAP_HEIGHT).

WEIGHT unsigned The weight or boldness of the font, expressed as
a value between 0 and 1000.

POINT _SIZE unsigned The point size of this font at the ideal resolution,
expressed in 1/10 points.

RESOLUTION unsigned The number of pixels per point, expressed in

1/100, at which this font was created.

Loading and Freeing Fonts

Xlib provides functions that you can use to load fonts, get font information,
unload fonts, and free font information. A few font functions use a GContext
resource ID or a font ID interchangeably.

To load a given font, use XLoadFont.

Font XLoadFont (display, name)

Display *display;
char *name;
display Specifies the connection to the XWIN server.
name Specifies the name of the font, which is a null-terminated string.

The XLoadFont function loads the specified font and returns its associated font
ID. The name should be ISO Latin-1 encoding; uppercase and lowercase do not
matter. If XLoadFont was unsuccessful at loading the specified font, a BadName
error results. Fonts are not associated with a particular screen and can be stored
as a component of any GC. When the font is no longer needed, call XUnload-
Font.

XLoadFont can generate BadAlloc and BadName errors.

6-28 Xwin GWS: Xlib - C Language Interface

Font Metrics

To return information about an available font, use XQueryFont.

XFontStruct *XQueryFont (display, font_ID)

Display *display;

XID font_ID;
display Specifies the connection to the XWIN server.
font_ID Specifies the font ID or the GContext ID.

The XQueryFont function returns a pointer to the XFontStruct structure, which
contains information associated with the font. You can query a font or the font
stored in a GC. The font ID stored in the XFontStruct structure will be the
GContext ID, and you need to be careful when using this ID in other functions
(see XGContextFromGC). To free this data, use XFreeFontInfo.

To perform a XLoadFont and XQueryFont in a single operation, use XLoad-
QueryFont.

XFontStruct *XLoadQueryFont (display, name)

Display *display;
char *name;
display Specifies the connection to the XWIN server.
name Specifies the name of the font, which is a null-terminated string.

The XLoadQueryFont function provides the most common way for accessing a
font. XLoadQueryFont both opens (loads) the specified font and returns a
pointer to the appropriate XFontStruct structure. If the font does not exist,
XLoadQueryFont returns NULL.

XLoadQueryFont can generate a BadAlloc error.

To unload the font and free the storage used by the font structure that was allo-
cated by XQueryFont or XLoadQueryFont, use XFreeFont.

XFreeFont (display, font_struct)
Display *display;
XFontStruct *font_struct;

display Specifies the connection to the XWIN server.

Graphics Functions 6-29

Font Metrics

font_struct Specifies the storage associated with the font.

The XFreeFont function deletes the association between the font resource ID
and the specified font and frees the XFontStruct structure. The font itself will
be freed when no other resource references it. The data and the font should not
be referenced again.

XFreeFont can generate a BadFont error.
To return a given font property, use XGetFontProperty.

Bool XGetFontProperty (font_struct, atom, value_return)
XFontStruct *font_struct;
Atom atom;
unsigned long *mlue_return;

font_struct Specifies the storage associated with the font.
atom Specifies the atom for the property name you want returned.

value_return Returns the value of the font property.

Given the atom for that property, the XGetFontProperty function returns the
value of the specified font property. XGetFontProperty also returns False if
the property was not defined or True if it was defined. A set of predefined
atoms exists for font properties, which can be found in < X11/Xatom.h >. This
set contains the standard properties associated with a font. Although it is not
guaranteed, it is likely that the predefined font properties will be present.

To unload a font that was loaded by XLoadFont, use XUnloadFont.
XUnloadFont (display, font)

Display *display;

Font font;
display Specifies the connection to the XWIN server.
font Specifies the font.

The XUnloadFont function deletes the association between the font resource ID
and the specified font. The font itself will be freed when no other resource
references it. The font should not be referenced again.

6-30 Xwin GWS: Xlib - C Language Interface

Font Metrics

XUnloadFont can generate a BadFont error.

Obtaining and Freeing Font Names and Information

You obtain font names and information by matching a wildcard specification
when querying a font type for a list of available sizes and so on.

To return a list of the available font names, use XListFonts.

char **XListFonts (display, pattern, maxnames, actual_count_return)
Display *display;
char *pattern;
int maxnames;
int “actual count_return;

display Specifies the connection to the XWIN server.

pattern Specifies the null-terminated pattern string that can contain
wildcard characters.

maxnames Specifies the maximum number of names to be returned.

actual_count_return
Returns the actual number of font names.

The XListFonts function returns an array of available font names (as controlled
by the font search path; see XSetFontPath) that match the string you passed to
the pattern argument. The string should be ISO Latin-1; uppercase and lower-
case do not matter. Each string is terminated by an ASCII null. The pattern
string can contain any characters, but each asterisk (*) is a wildcard for any
number of characters, and each question mark (?) is a wildcard for a single char-
acter. The client should call XFreeFontNames when finished with the result to
free the memory.

To free a font name array, use XFreeFontNames.

XFreeFontNames (list)
char *list[];

Graphics Functions 6-31

Font Metrics

list Specifies the array of strings you want to free.

The XFreeFontNames function frees the array and strings returned by XList-
Fonts or XListFontsWithInfo.

To obtain the names and information about available fonts, use XList-
FontsWithInfo. -

char **XListFontsWithInfo (display, pattern, maxnames, count_return, info_return)
Display *display;
char *pattern;
int maxnames;
int *count_return;
XFontStruct *info_return;

display Specifies the connection to the XWIN server.

pattern Specifies the null-terminated pattern string that can contain
wildcard characters.

maxnames Specifies the maximum number of names to be returned.

count_return Returns the actual number of matched font names.

info_return Returns a pointer to the font information.

The XListFontsWithInfo function returns a list of font names that match the
specified pattern and their associated font information. The list of names is lim-
ited to size specified by maxnames. The information returned for each font is
identical to what XLoadQueryFont would return except that the per-character
metrics are not returned. The pattern string can contain any characters, but
each asterisk (*) is a wildcard for any number of characters, and each question
mark (?) is a wildcard for a single character. To free the allocated name array,
the client should call XFreeFontNames. To free the the font information array,
the client should call XFreeFontInfo.

To free the the font information array, use XFreeFontInfo.

XFreeFontInfo (names, free_info, actual_count)
char **names;
XFontStruct *free_info;
int actual_count;

6-32 Xwin GWS: Xlib - C Language Interface

Font Metrics

names Specifies the list of font names returned by XList-
FontsWithInfo.

free_info Specifies the pointer to the font information returned by XList-
FontsWithInfo.

actual_count Specifies the actual number of matched font names returned by
XListFontsWithInfo.

Setting and Retrieving the Font Search Path

To set the font search path, use XSetFontPath.

XSetFontPath (display, directories, ndirs)
Display *display;
char **directories;
int ndirs;

display Specifies the connection to the XWIN server.

directories Specifies the directory path used to look for a font. Setting the
path to the empty list restores the default path defined for the
XWIN server.

ndirs Specifies the number of directories in the path.

The XSetFontPath function defines the directory search path for font lookup.
There is only one search path per XWIN server, not one per client. The interpre-
tation of the strings is operating system dependent, but they are intended to
specify directories to be searched in the order listed. Also, the contents of these
strings are operating system dependent and are not intended to be used by
client applications. Usually, the XWIN server is free to cache font information
internally rather than having to read f6nts from files. In addition, the XWIN
server is guaranteed to flush all cached information about fonts for which there
currently are no explicit resource IDs allocated. The meaning of an error from
this request is operating system dependent.

XSetFontPath can generate a Badvalue error.

Graphics Functions 6-33

Font Metrics

To get the current font search path, use XGetFontPath.
char **XGetFontPath (display, npaths_return)
Display *display;
int *npaths_return;
display Specifies the connection to the XWIN server.
npaths_return Returns the number of strings in the font path array.

The XGetFontPath function allocates and returns an array of strings containing
the search path. When it is no longer needed, the data in the font path should
be freed by using XFreeFontPath.

To free data returned by XGetFontPath, use XFreeFontPath.
XFreeFontPath (list)
char **list;
list Specifies the array of strings you want to free.
The XFreeFontPath function frees the data allocated by XGetFontPath.

Computing Character String Sizes

Xlib provides functions that you can use to compute the width, the logical
extents, and the server information about 8-bit and 2-byte text strings. The
width is computed by adding the character widths of all the characters. It does
not matter if the font is an 8-bit or 2-byte font. These functions return the sum
of the character metrics, in pixels.

To determine the width of an 8-bit character string, use XTextWidth.

int XTextWidth (font_struct, string, count)
XFontStruct *font_struct;
char *string;
int count;

font_struct Specifies the font used for the width computation.

6-34 Xwin GWS: Xlib — C Language Interface

Font Metrics

string Specifies the character string.
count Specifies the character count in the specified string.

To determine the width of a 2-byte character string, use XTextWidthl6.

int XTextWidthl6 (font_struct, string, count)
XFontStruct *font_struct;
XChar2b *string;
int count;

font_struct Specifies the font used for the width computation.

string Specifies the character string.
count Specifies the character count in the specified string.

Computing Logical Extents

To compute the bounding box of an 8-bit character string in a given font, use
XTextExtents.

XTextExtents (font_struct, string, nchars, direction_return, font_ascent_return,
font_descent_return, overall_return)
XFontStruct *font_struct;
char *string;
int nchars;
int *direction_return;
int *font_ascent_return, *font_descent_return;
XCharStruct *overall_return;

font_struct Specifies a pointer to the XFontStruct structure.
string Specifies the character string.
nchars Specifies the number of characters in the character string.

direction_return
Returns the value of the direction hint (FontLeftToRight or
FontRightTolLeft).

Graphics Functions 6-35

Font Metrics

font_ascent_return
Returns the font ascent.

font_descent_return
Returns the font descent.

overall_return Returns the overall size in the specified XCharStruct structure.

To compute the bounding box of a 2-byte character string in a given font, use
XTextExtentsl6.

XTextExtentsl6 (font_struct, string, nchars, direction_return, font_ascent_return,
font_descent_return, overall_return)
XFontStruct *font_struct;
XChar2b *string;
int nchars;
int *direction_return;
int *font_ascent_return, “font_descent_return;
XCharStruct *overall_return;

font_struct Specifies a pointer to the XFontStruct structure.
string Specifies the character string.

nchars Specifies the number of characters in the character string.

direction_return
Returns the value of the direction hint (FontLeftToRight or
FontRightToLeft).

font_ascent_return
Returns the font ascent.

font_descent_return
Returns the font descent.

overall_return Returns the overall size in the specified XCharStruct structure.
The XTextExtents and XTextExtentsl6 functions perform the size computa-
tion locally and, thereby, avoid the round-trip overhead of XQueryTextExtents

and XQueryTextExtentsl6. Both functions return an XCharStruct structure,
whose members are set to the values as follows.

6-36 Xwin GWS: Xlib - C Language Interface

Font Metrics

The ascent member is set to the maximum of the ascent metrics of all characters
in the string. The descent member is set to the maximum of the descent
metrics. The width member is set to the sum of the character-width metrics of
all characters in the string. For each character in the string, let W be the sum of
the character-width metrics of all characters preceding it in the string. Let L be
the left-side-bearing metric of the character plus W. Let R be the right-side-
bearing metric of the character plus W. The lbearing member is set to the
minimum L of all characters in the string. ‘The rbearing member is set to the
maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each
XChar2b structure is interpreted as a 16-bit number with bytel as the most-
significant byte. If the font has no defined default character, undefined charac-
ters in the string are taken to have all zero metrics.

Querying Character String Sizes

To query the server for the bounding box of an 8-bit character string in a given
font, use XQueryTextExtents.

XQueryTextExtents (display, font_ID, string, nchars, direction_return, font_ascent_return,
font_descent_return, overall_return)
Display *display;
XID font_ID;
char *string;
int nchars;
int *direction_return;
int *font_ascent_return, *font_descent_return;
XCharStruct *overall_return;

display Specifies the connection to the XWIN server.

font_ID Specifies either the font ID or the GContext ID that contains the
font.

string Specifies the character string.

nchars Specifies the number of characters in the character string.

Graphics Functions ' 6-37

Font Metrics

direction_return
Returns the value of the direction hint (FontLeftToRight or
FontRightToLeft).

font_ascent_return
Returns the font ascent.

font_descent_return
Returns the font descent.

overall_return Returns the overall size in the specified XCharStruct structure.

To query the server for the bounding box of a 2-byte character string in a given
font, use XQueryTextExtentsl16.

XQueryTextExtentsl6 (display, font_ID, string, nchars, direction_return, font_ascent_return,
font_descent_return, overall_return)
Display *display;
XID font_ID;
XChar2b *string;
int nchars;
int *direction_return;
int *font_ascent_return, *font_descent_return;
XCharStruct *overall_return;

display Specifies the connection to the XWIN server.

font_ID Specifies either the font ID or the GContext ID that contains the
font.

string Specifies the character string.

nchars Specifies the number of characters in the character string.

direction_return
Returns the value of the direction hint (FontLeftToRight or
FontRightToLeft).

font_ascent_return
Returns the font ascent.

font_descent_return
Returns the font descent.

6-38 Xwin GWS: Xlib - C Language Interface

Font Metrics

overall_return Returns the overall size in the specified XCharStruct structure.

The XQueryTextExtents and XQueryTextExtentsl6é functions return the
bounding box of the specified 8-bit and 16-bit character string in the specified
font or the font contained in the specified GC. These functions query the XWIN
server and, therefore, suffer the round-trip overhead that is avoided by XTex-
tExtents and XTextExtents16. Both functions return a XCharStruct struc-
ture, whose members are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of all characters
in the string. The descent member is set to the maximum of the descent
metrics. The width member is set to the sum of the character-width metrics of
all characters in the string. For each character in the string, let W be the sum of
the character-width metrics of all characters preceding it in the string. Let L be
the left-side-bearing metric of the character plus W. Let R be the right-side-
bearing metric of the character plus W. The Ibearing member is set to the
minimum L of all characters in the string. The rbearing member is set to the
maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each
XChar2b structure is interpreted as a 16-bit number with bytel as the most-
significant byte. If the font has no defined default character, undefined charac-
ters in the string are taken to have all zero metrics.

XQueryTextExtents and XQueryTextExtentsl6 can generate BadFont and
BadGC errors.

Graphics Functions 6-39

Drawing Text

This section discusses how to draw:

m Complex text

m Text characters

m Image text characters
The fundamental text functions XDrawText and XDrawText16 use the following
structures.

typedef struct {

char *chars; /* pointer to string */

int nchars; /* number of characters */

int delta; /* delta between strings */

Font font; /* Font to print it in, None don’t change */
} XTextItem;

typedef struct {

XChar2b *chars; /* pointer to two-byte characters */

int nchars; /* number of characters */

int delta; /* delta between strings */

Font font; /* font to print it in, None don’t change */
} XTextIteml6;

If the font member is not None, the font is changed before printing and also is
stored in the GC. If an error was generated during text drawing, the previous
items may have been drawn. The baseline of the characters are drawn starting
at the x and y coordinates that you pass in the text drawing functions.

For example, consider the background rectangle drawn by XDrawImageString.
If you want the upper-left corner of the background rectangle to be at pixel
coordinate (x,y), pass the (x,y + ascent) as the baseline origin coordinates to the
text functions. The ascent is the font ascent, as given in the XFontStruct struc-
ture. If you want the lower-left corner of the background rectangle to be at
pixel coordinate (x,y), pass the (x,y — descent + 1) as the baseline origin coordi-
nates to the text functions. The descent is the font descent, as given in the
XFontStruct structure.

6-40 Xwin GWS: Xlib - C Language Interface

Drawing Text

Drawing Complex Text

To draw 8-bit characters in a given drawable, use XDrawText.

XDrawText (display, d, gc, x, y, items, nitems)
Display *display;
Drawable d;
GC gc;
intx, y;
XTextltem *items;
int nitems;

display Specifies the connection to the XWIN server.

d Specifies the drawable.

8 Specifies the GC.

Specify the x and y coordinates, which are relative to the origin

of the specified drawable and define the origin of the first char-
acter.

<R

items Specifies a pointer to an array of text items.
nitems Specifies the number of text items in the array.
To draw 2-byte characters in a given drawable, use XDrawText16.

XDrawText16 (display, d, gc, x, y, items, nitems)
Display *display;
Drawable d;
GCgc;
intx, y;
XTextltem16 *items;
int nitems;

display Specifies the connection to the XWIN server.
d Specifies the drawable.
g Specifies the GC.

Graphics Functions 6-41

Drawing Text

x

y Specify the x and y coordinates, which are relative to the origin
of the specified drawable and define the origin of the first char-
acter.

items Specifies a pointer to an array of text items.

nitems Specifies the number of text items in the array.

The XDrawText16 function is similar to XDrawText except that it uses 2-byte or
16-bit characters. Both functions allow complex spacing and font shifts between
counted strings.

Each text item is processed in turn. A font member other than None in an item
causes the font to be stored in the GC and used for subsequent text. A text ele-
ment delta specifies an additional change in the position along the x axis before
the string is drawn. The delta is always added to the character origin and is not
dependent on any characteristics of the font. Each character image, as defined
by the font in the GC, is treated as an additional mask for a fill operation on the
drawable. The drawable is modified only where the font character has a bit set
to 1. If a text item generates a BadFont error, the previous text items may have
been drawn.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each
XChar2b structure is interpreted as a 16-bit number with bytel as the most-
significant byte.

Both functions use these GC components: function, plane-mask, fill-style, font,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use
these GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, and tile-stipple-y-origin.

XDrawText and XDrawText16 can generate BadDrawable, BadFont, BadGC, and
BadMatch errors.

6-42 Xwin GWS: Xlib - C Language Interface

Drawing Text Characters

To draw 8-bit characters in a given drawable, use XDrawString.

display

F:(4

string

length

XDrawString (display, d, gc, x, y, string, length)

Display *display;
Drawable d;
GC gc;

int x, y;

char *string;

int length;

Specifies the connection to the XWIN server.

Specifies the drawable.
Specifies the GC.

Specify the x and y coordinates, which are relative to the origin
of the specified drawable and define the origin of the first char-
acter.

Specifies the character string.
Specifies the number of characters in the string argument.

To draw 2-byte characters in a given drawable, use XDrawStringl6.

display
d

XDrawStringl6 (display, d, gc, x, y, string, length)

Display *display;
Drawable d;

GC gc;

intx, y;
XChar2b *string;
int length;

Specifies the connection to the XWIN server.
Specifies the drawable.

Graphics Functions 6-43

Drawing Text

Drawing Text

8¢ Specifies the GC.

x

y Specify the x and y coordinates, which are relative to the origin
of the specified drawable and define the origin of the first char-
acter.

string Specifies the character string.

length Specifies the number of characters in the string argument.

Each character image, as defined by the font in the GC, is treated as an addi-
tional mask for a fill operation on the drawable. The drawable is modified only
where the font character has a bit set to 1. For fonts defined with 2-byte matrix
indexing and used with XDrawStringl6, each byte is used as a byte2 with a
bytel of zero.

Both functions use these GC components: function, plane-mask, fill-style, font,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use
these GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, and tile-stipple-y-origin.

XDrawString and XDrawStringl6é can generate BadDrawable, BadGC, and Bad—
Match errors.

Drawing Image Text Characters

Some applications, in particular terminal emulators, need to print image text in
which both the foreground and background bits of each character are painted.
This prevents annoying flicker on many displays.

To draw 8-bit image text characters in a given drawable, use XDrawImage—
String.

XDrawImageString (display, d, gc, x, y, string, length)
Display *display;
Drawable 4;
GC gc;
intx, y;
char *string;
int length;

6-44 Xwin GWS: Xiib - C Language Interface

Drawing Text

display Specifies the connection to the XWIN server.

d Specifies the drawable.

8¢ Specifies the GC.

x

y Specify the x and y coordinates, which are relative to the origin
of the specified drawable and define the origin of the first char-
acter.

string Specifies the character string.

length Specifies the number of characters in the string argument.

To draw 2-byte image text characters in a given drawable, use XDrawImage-
Stringlé6.

XDrawImageStringl6 (display, d, gc, x, y, string, length)

Display *display;
Drawable 4;
GC gc;
intx, y;
XChar2b *string;
int length;
display Specifies the connection to the XWIN server.
d Specifies the drawable.
g Specifies the GC.
x
y Specify the x and y coordinates, which are relative to the origin
of the specified drawable and define the origin of the first char-
acter.
string Specifies the character string.
length Specifies the number of characters in the string argument.

The XDrawImageStringl6 function is similar to XDrawImageString except that
it uses 2-byte or 16-bit characters. Both functions also use both the foreground
and background pixels of the GC in the destination.

Graphics Functions 6-45

Drawing Text

The effect is first to fill a destination rectangle with the background pixel
defined in the GC and then to paint the text with the foreground pixel. The
upper-left corner of the filled rectangle is at:

[x, y - font-ascent]

The width is:

overall-width

The height is:

font-ascent + font-descent
The overall-width, font-ascent, and font-descent are as would be returned by
XQueryTextExtents using gc and string. The function and fill-style defined in

the GC are ignored for these functions. The effective function is GXcopy, and the
effective fill-style is Fil1Solid.

For fonts defined with 2-byte matrix indexing and used with XDrawImage—
String, each byte is used as a byte2 with a bytel of zero.

Both functions use these GC components: plane-mask, foreground, background,
font, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.

XDrawImageString and XDrawImageStringl6 can generate BadDrawable,
BadGC, and BadMatch errors.

6-46 Xwin GWS: Xlib - C Language Interface

Transferring Images between Client and Server

Xlib provides functions that you can use to transfer images between a client and
the server. Because the server may require diverse data formats, Xlib provides
an image object that fully describes the data in memory and that provides for
basic operations on that data. You should reference the data through the image
object rather than referencing the data directly. However, some implementa-
tions of the Xlib library may efficiently deal with frequently used data formats
by replacing functions in the procedure vector with special case functions. Sup-
ported operations include destroying the image, getting a pixel, storing a pixel,
extracting a subimage of an image, and adding a constant to an image (see
Chapter 10).

All the image manipulation functions discussed in this section make use of the
XImage data structure, which describes an image as it exists in the client’s
memory.

Graphics Functions 6-47

Transferring images between Client and Server

typedef struct _XImage (

int width, height; /* size of image */

int xoffset; /* nunber of pixels offset in X direction */
int format; /* XYBitmap, XYPisxmap, ZPixmap */

char *data; /* pointer to image data */

int byte order; /* data byte order, LSBFirst, MSBFirst */
int bitmap unit; /* quant. of scanline 8, 16, 32 */

int bitmap bit_order; /* LSBFirst, MSBFirst */

int bitmap pad; /* 8, 16, 32 either XY or ZPixmap */

int depth; /* depth of image */

int bytes per_ line; /* accelerator to next scanline */

int bits_per_pixel; /* bits per pixel (ZPixmap) */

unsigned long red mask; /* bits in z arrangement */

unsigned long green mask;
unsigned long blue mask;
char *obdata; /* hook for the object routines to hang on */
struct funcs { /* image manipulation routines */
struct _XImage *(*create_image) ();
int (*destroy_image) () ;
unsigned long (*get_pixel) () ;
int (*put_pixel) ();
struct _XImage *(*sub_image) ();
int (*add pixel) ();
} £
} XImage;

You may request that some of the members (for example, height, width, and
xoffset) be changed when the image is sent to the server. That is, you may send
a subset of the image. Other members (for example, byte_order, bitmap_unit,
and so forth) are characteristics of both the image and the server. If these
members differ between the image and the server, XPut Image makes the
appropriate conversions. The first byte of the first scanline of plane n is located
at the address (data + (n * height * bytes_per_line)).

To combine an image in memory with a rectangle of a drawable on the display,
use XPutImage.

6-48 Xwin GWS: Xlib - C Language Interface

Transferring Images between Client and Server

XPut Image (display, d, gc, image, src_x, src_y, dest_x, dest_y, width, height)
Display *display;
Drawable d;
GC gc;
XImage *image;
int src_x, src_y;
int dest_x, dest_y;
unsigned int width, height;

display Specifies the connection to the XWIN server.

d Specifies the drawable.

8 Specifies the GC.

image Specifies the image you want combined with the rectangle.

src_x Specifies the offset in X from the left edge of the image defined
by the XImage data structure.

src_y Specifies the offset in Y from the top edge of the image defined
by the XImage data structure.

dest_x

dest_y Specify the x and y coordinates, which are relative to the origin
of the drawable and are the coordinates of the subimage.

width

height Specify the width and height of the subimage, which define the

dimensions of the rectangle.

The XPutImage function combines an image in memory with a rectangle of the
specified drawable. If XYBitmap format is used, the depth must be one, or a
BadMatch error results. The foreground pixel in the GC defines the source for
the one bits in the image, and the background pixel defines the source for the
zero bits. For XYPixmap and ZPixmap, the depth must match the depth of the
drawable, or a BadMatch error results. The section of the image defined by the
src_x, src_y, width, and height arguments is drawn on the specified part of the
drawable.)

This function uses these GC components: function, plane-mask, subwindow-
mode, clip-x-origin, clip-y-origin, and clip-mask. It also uses these GC mode-
dependent components: foreground and background.

Graphics Functions 6-49

Transferring Images between Client and Server

XPutImage can generate BadDrawable, BadGC, BadMatch, and BadValue errors.

To return the contents of a rectangle in a given drawable on the display, use
XGetImage. This function specifically supports rudimentary screen dumps.

XImage *XGetImage (display, d, x,y, width, height, plane_mask, format)

Display *display;
Drawable d;
intx, y;
unsigned int width, height;
long plane_mask;
int format;
display Specifies the connection to the XWIN server.
d Specifies the drawable.
X
y Specify the x and y coordinates, which are relative to the origin
of the drawable and define the upper-left corner of the rectan-
gle.
width
height Specify the width and height of the subimage, which define the

dimensions of the rectangle.
plane_mask Specifies the plane mask.

ormat Specifies the format for the image. You can pass XYBitmap,
pect ge pa
XYPixmap, or ZPixmap.

The XGetImage function returns a pointer to an XImage structure. This struc-
ture provides you with the contents of the specified rectangle of the drawable in
the format you specify. If the format argument is XYPixmap, the image contains
only the bit planes you passed to the plane_mask argument. If the plane_mask
argument only requests a subset of the planes of the display, the depth of the
returned image will be the number of planes requested. If the format argument
is ZPixmap, XGet Image returns as zero the bits in all planes not specified in the
plane_mask argument. The function performs no range checking on the values
in plane_mask and ignores extraneous bits.

6-50 Xwin GWS: Xiib - C Language Interface

Transferring Images between Client and Server

XGetImage returns the depth of the image to the depth member of the XImage
structure. The depth of the image is as specified when the drawable was
created, except when getting a subset of the planes in XYPixmap format, when
the depth is given by the number of bits set to 1 in plane_mask.

If the drawable is a pixmap, the given rectangle must be wholly contained
within the pixmap, or a BadMatch error results. If the drawable is a window,
the window must be viewable, and it must be the case that if there were no
inferiors or overlapping windows, the specified rectangle of the window would
be fully visible on the screen and wholly contained within the outside edges of
the window, or a BadMatch error results. Note that the borders of the window
can be included and read with this request. If the window has backing-store,
the backing-store contents are returned for regions of the window that are
obscured by noninferior windows. If the window does not have backing-store,
the returned contents of such obscured regions are undefined. The returned
contents of visible regions of inferiors of a different depth than the specified
window’s depth are also undefined. The pointer cursor image is not included
in the returned contents.

XGetImage can generate BadDrawable, BadMatch, and BadValue errors.

To copy the contents of a rectangle on the display to a location within a preex-
isting image structure, use XGetSubImage.

XImage *XGetSublImage (display, d, x, y, width, height, plane_mask, format, dest_image, dest x,

dest_y)

Display *display;

Drawable 4;

int x, y;

unsigned int width, height;

unsigned long plane_mask;

int format;

XImage *dest_image;

int dest_x, dest_y;

display Specifies the connection to the XWIN server.
d Specifies the drawable.

Graphics Functions , 6-51

Transferring Images between Client and Server

x

y Specify the x and y coordinates, which are relative to the origin
of the drawable and define the upper-left corner of the rectan-
gle.

width

height Specify the width and height of the subimage, which define the

dimensions of the rectangle.
plane_mask Specifies the plane mask.

format Specifies the format for the image. You can pass XYBitmap,
XYPixmap, or ZPixmap.

dest_image Specify the destination image.

dest_x

dest_y Specify the x and y coordinates, which are relative to the origin
of the destination rectangle, specify its upper-left corner, and
determine where the subimage is placed in the destination
image.

The XGetSubImage function updates dest_image with the specified subimage in
the same manner as XGetImage. If the format argument is XYPixmap, the image
contains only the bit planes you passed to the plane_mask argument. If the for-
mat argument is ZPixmap, XGetSubImage returns as zero the bits in all planes
not specified in the plane_mask argument. The function performs no range
checking on the values in plane_mask and ignores extraneous bits. As a con-
venience, XGetSubImage returns a pointer to the same XImage structure
specified by dest_image.

The depth of the destination XImage structure must be the same as that of the
drawable. If the specified subimage does not fit at the specified location on the
destination image, the right and bottom edges are clipped. If the drawable is a
pixmap, the given rectangle must be wholly contained within the pixmap, or a
BadMatch error results. If the drawable is a window, the window must be
viewable, and it must be the case that if there were no inferiors or overlapping
windows, the specified rectangle of the window would be fully visible on the
screen and wholly contained within the outside edges of the window, or a Bad-
Match error results. If the window has backing-store, then the backing-store
contents are returned for regions of the window that are obscured by noninfe-
rior windows. If the window does not have backing-store, the returned contents
of such obscured regions are undefined. The returned contents of visible

6-52 Xwin GWS: Xlib - C Language Interface

Transferring Images between Client and Server

regions of inferiors of a different depth than the specified window’s depth are
also undefined.

XGetSubImage can generate BadDrawable, BadGC, BadMatch, and BadValue
errors.

Graphics Functions 6-53

Cursors

This section discusses how to:
m Create a cursor
m Change or destroy a cursor

m Define the cursor for a window

Each window can have a different cursor defined for it. Whenever the pointer
is in a visible window, it is set to the cursor defined for that window. If no cur-
sor was defined for that window, the cursor is the one defined for the parent
window.

From X’s perspective, a cursor consists of a cursor source, mask, colors, and a
hotspot. The mask pixmap determines the shape of the cursor and must be a
depth of one. The source pixmap must have a depth of one, and the colors
determine the colors of the source. The hotspot defines the point on the cursor
that is reported when a pointer event occurs. There may be limitations imposed
by the hardware on cursors as to size and whether a mask is implemented.
XQueryBestCursor can be used to find out what sizes are possible. It is
intended that most standard cursors will be stored as a special font.

Creating a Cursor
Xlib provides functions that you can use to create a font, bitmap, or glyph cur-
sor.
To create a cursor from a standard font, use XCreateFontCursor.
#include <Xl1l1/cursorfont.h>
Cursor XCreateFontCursor (display, shape)

Display *display;

unsigned int shape;
display Specifies the connection to the XWIN server.
shape Specifies the shape of the cursor.

6-54 Xwin GWS: Xlib - C Language Interface

Cursors

X provides a set of standard cursor shapes in a special font named cursor.
Applications are encouraged to use this interface for their cursors because the
font can be customized for the individual display type. The shape argument
specifies which glyph of the standard fonts to use.

The hotspot comes from the information stored in the cursor font. The initial
colors of a cursor are a black foreground and a white background (see
XRecolorCursor). For further information about cursor shapes, see appendix
B.

XCreateFontCursor can generate BadAlloc and BadValue errors.
To create a cursor from two bitmaps, use XCreatePixmapCursor.

Cursor XCreatePixmapCursor (display, source, mask, foreground_color, background_color, x, y)
Display *display;
Pixmap source;
Pixmap mask;
XColor *foreground_color;
XColor *background_color;

unsigned int x, y;
display Specifies the connection to the XWIN server.
source Specifies the shape of the source cursor.
mask Specifies the cursor’s source bits to be displayed or None.

foreground_color
Specifies the RGB values for the foreground of the source.

background_color
Specifies the RGB values for the background of the source.

y Specify the x and y coordinates, which indicate the hotspot rela-
tive to the source’s origin.

The XCreatePixmapCursor function creates a cursor and returns the cursor ID
associated with it. The foreground and background RGB values must be
specified using foreground_color and background_color, even if the XWIN server
only has a StaticGray or GrayScale screen. The foreground color is used for
the pixels set to 1 in the source, and the background color is used for the pixels
set to 0. Both source and mask, if specified, must have depth one (or a

Graphics Functions 6-55

Cursors

BadMatch error results) but can have any root. The mask argument defines the
shape of the cursor. The pixels set to 1 in the mask define which source pixels
are displayed, and the pixels set to 0 define which pixels are ignored. If no
mask is given, all pixels of the source are displayed. The mask, if present, must
be the same size as the pixmap defined by the source argument, or a BadMatch
error results. The hotspot must be a point within the source, or a BadMatch
error results.

The components of the cursor can be transformed arbitrarily to meet display -
limitations. The pixmaps can be freed immediately if no further explicit refer-
ences to them are to be made. Subsequent drawing in the source or mask pix-
map has an undefined effect on the cursor. The XWIN server might or might not
make a copy of the pixmap.

XCreatePixmapCursor can generate BadAlloc and BadPixmap errors.
To create a cursor from font glyphs, use XCreateGlyphCursor.

Cursor XCreateGlyphCursor (display, source_font, mask_font, source_char, mask_char,
foreground_color, background_color)

Display *display;

Font source_font, mask_font;

unsigned int source_char, mask_char;

XColor “foreground_color;

XColor *background_color;
display Specifies the connection to the XWIN server.
source_font Specifies the font for the source glyph.
mask_font Specifies the font for the mask glyph or None.
source_char Specifies the character glyph for the source.
mask_char Specifies the glyph character for the mask.

foreground_color
Specifies the RGB values for the foreground of the source.

background_color
Specifies the RGB values for the background of the source.

6-56 Xwin GWS: Xlib - C Language Interface

Cursors

The XCreateGlyphCursor function is similar to XCreatePixmapCursor except
that the source and mask bitmaps are obtained from the specified font glyphs.
The source_char must be a defined glyph in source_font, or a Badvalue error
results. If mask_font is given, mask_char must be a defined glyph in mask_font,
or a BadValue error results. The mask_font and character are optional. The
origins of the source_char and mask_char (if defined) glyphs are positioned
coincidently and define the hotspot. The source_char and mask_char need not
have the same bounding box metrics, and there is no restriction on the place-
ment of the hotspot relative to the bounding boxes. If no mask_char is given, all
pixels of the source are displayed. You can free the fonts immediately by
calling XFreeFont if no further explicit references to them are to be made.

For 2-byte matrix fonts, the 16-bit value should be formed with the bytel
member in the most-significant byte and the byte2 member in the least-
significant byte.

XCreateGlyphCursor can generate BadAlloc, BadFont, and BadValue errors.

Changing and Destroying Cursors

Xlib provides functions that you can use to change the cursor color, destroy the
cursor, and determine the best cursor size.

To change the color of a given cursor, use XRecolorCursor.

XRecoloxCursor (display, cursor, foreground_color, background_color)
Display *display;
Cursor cursor;
XColor *foreground_color, *background_color;
display Specifies the connection to the XWIN server.
cursor Specifies the cursor.

foreground_color
Specifies the RGB values for the foreground of the source.

background_color
Specifies the RGB values for the background of the source.

Graphics Functions 6-57

Cursors

The XRecolorCursor function changes the color of the specified cursor, and if
the cursor is being displayed on a screen, the change is visible immediately.

XRecolorCursor can generate a BadCursor error.
To free (destroy) a given cursor, use XFreeCursor.

XFreeCursor (display, cursor)
Display *display;
Cursor cursor;

display Specifies the connection to the XWIN server.
cursor Specifies the cursor.
The XFreeCursor function deletes the association between the cursor resource

ID and the specified cursor. The cursor storage is freed when no other resource
references it. The specified cursor ID should not be referred to again.

XFreeCursor can generate a BadCursor error.
To determine useful cursor sizes, use XQueryBestCursor.
Status XQueryBestCursor (display, d, width, height, width_return, height_return)
Display *display;
Drawable d;

unsigned int width, height;
unsigned int *width_return, *height_return;

display Specifies the connection to the XWIN server.

d Specifies the drawable, which indicates the screen.

width

height Specify the width and height of the cursor that you want the
size information for.

width_return

height_return Return the best width and height that is closest to the specified

width and height.
Some displays allow larger cursors than other displays. The XQueryBestCursor

function provides a way to find out what size cursors are actually possible on
the display.

6-58 Xwin GWS: Xlib - C Language Interface

Cursors

It returns the largest size that can be displayed. Applications should be
prepared to use smaller cursors on displays that cannot support large ones.

XQueryBestCursor can generate a BadDrawable error.

Defining the Cursor

Xlib provides functions that you can use to define or undefine the cursor that
should be displayed in a window.

To define which cursor will be used in a window, use XDefineCursor.

XDef ineCursor (display, w, cursor)
Display *display;
Window w;
Cursor cursor;

display Specifies the connection to the XWIN server.
w Specifies the window.
cursor Specifies the cursor that is to be displayed or None.

If a cursor is set, it will be used when the pointer is in the window. If the cur-
sor is None, it is equivalent to XUndefineCursor.

XDefineCursor can generate BadCursor and BadWindow errors.

To undefine the cursor in a given window, use XUndefineCursor.

XUndefineCursor (display, w)

Display *display;

Window w;
display Specifies the connection to the XWIN server.
w Specifies the window.

Graphics Functions 6-59

Cursors

The XUndefineCursor undoes the effect of a previous XDefineCursor for this
window. When the pointer is in the window, the parent’s cursor will now be
used. On the root window, the default cursor is restored.

XUndefineCursor can generate a BadWindow error.

6-60 Xwin GWS: Xlib - C Language Interface

1. ,<SZ_UO<.< MANAGER FUNCTIONS

SNOILONNd HIOVNVIN MOANIM 'L

7 Window Manager Functions

Introduction 7-1
Changing the Parent of a Window 7-2
Controlling the Lifetime of a Window 7-4
Determining Resident Colormaps 7-6
Pointer Grabbing 7-8
Keyboard Grabbing 7-16
Server Grabbing 7-24
Miscellaneous Control Functions 7-25
Controlling Input Focus 725
Killing Clients 7-28

Table of Contents

Table of Contents

Keyboard and Pointer Settings 7-30
Keyboard Encoding 7-38
Screen Saver Control 7-45
Controlling Host Access 7-48
Adding, Getting, or Removing Hosts 7-49
Changing, Enabling, or Disabling Access Control 7-51

Xwin GWS: Xiib - C Language Interface

Introduction

Although it is difficult to categorize functions as application only or window
manager only, the functions in this chapter are most often used by window

managers. It is not expected that these functions will be used by most applica-

tion programs. You can use the Xlib window manager functions to:

Change the parent of a window

Control the lifetime of a window

Determine resident colormaps

Grab the pointer

Grab the keyboard

Grab the server

Control event processing

Manipulate the keyboard and pointer settings
Control the screen saver

Control host access

Window Manager Functions

Changing the Parent of a Window

To change a window’s parent to another window on the same screen, use
XReparentWindow. There is no way to move a window between screens.

XReparentWindow (display, w, parent, x, y)

Display *display;
Window w;
Window parent;
intx, y;
display Specifies the connection to the XWIN server.
w Specifies the window.
parent Specifies the parent window.
x
y Specify the x and y coordinates of the position in the new

parent window.

If the specified window is mapped, XReparentWindow automatically performs
an UnmapWindow request on it, removes it from its current position in the hierar-
chy, and inserts it as the child of the specified parent. The window is placed in
the stacking order on top with respect to sibling windows.

After reparenting the specified window, XReparentWindow causes the XWIN
server to generate a ReparentNotify event. The override_redirect member
returned in this event is set to the window’s corresponding attribute. Window
manager clients usually should ignore this window if this member is set to
True. Finally, if the specified window was originally mapped, the XWIN server
automatically performs a MapWindow request on it.

The XWIN server performs normal exposure processing on formerly obscured
windows. The XWIN server might not generate Expose events for regions from
the initial UnmapWindow request that are immediately obscured by the final
MapWindow request. A BadMatch error results if:

m The new parent window is not on the same screen as the old parent win-
dow.

m The new parent window is the specified window or an inferior of the
specified window.

7-2 Xwin GWS: Xiib - C Language Interface

Changing the Parent of a Window

m The specified window has a ParentRelative background, and the new
parent window is not the same depth as the specified window.

XReparentWindow can generate BadMatch and BadWindow errors.

Window Manager Functions 7-3

Controlling the Lifetime of a Window

The save-set of a client is a list of other clients” windows that, if they are inferi-
ors of one of the client’s windows at connection close, should not be destroyed
and should be remapped if they are unmapped. For further information about
close-connection processing, see "X Server Connection Close Operations” in
Chapter 2. To allow an application’s window to survive when a window
manager that has reparented a window fails, Xlib provides the save-set func-
tions that you can use to control the longevity of subwindows that are normally
destroyed when the parent is destroyed. For example, a window manager that
wants to add decoration to a window by adding a frame might reparent an
application’s window. When the frame is destroyed, the application’s window
should not be destroyed but be returned to its previous place in the window
hierarchy.

The XWIN server automatically removes windows from the save-set when they
are destroyed.

To add or remove a window from the client’s save-set, use XChangeSaveSet.
XChangeSaveSet (display, w, change_mode)

Display *display;
Window w;
int change_mode;
display Specifies the connection to the XWIN server.
w Specifies the window that you want to add to or delete from the

client’s save-set.
change_mode Specifies the mode. You can pass SetModeInsert or
SetModeDelete.

Depending on the specified mode, XChangeSaveSet either inserts or deletes the
specified window from the client’s save-set. The specified window must have
been created by some other client, or a BadMatch error results.

XChangeSaveSet can generate BadMatch, BadValue, and BadWindow errors.
To add a window to the client’s save-set, use XAddToSaveSet .

XAddToSaveSet (display, w)
Display *display;
Window w;

7-4 Xwin GWS: Xlib - C Language Interface

Controlling the Lifetime of a Window

display Specifies the connection to the XWIN server.
w Specifies the window that you want to add to the client’s save-
set.

The XAddToSaveSet function adds the specified window to the client’s save-set.
The specified window must have been created by some other client, or a Bad-
Match error results.

XAddToSaveSet can generate BadMatch and BadWindow errors.
To remove a window from the client’s save-set, use XRemoveFromSaveSet.

XRemoveFromSaveSet (display, w)

Display *display;
Window w;
display Specifies the connection to the XWIN server.
w Specifies the window that you want to delete from the client’s
save-set.

The XRemoveFromSaveSet function removes the specified window from the
client’s save-set. The specified window must have been created by some other
client, or a BadMatch error results.

XRemoveFromSaveSet can generate BadMatch and BadWindow er<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>