| 'VOLUME 1

COMMANDS AND UTILITIES

/ e ®
| CBS GOLLEGE PUBLISJ-HNG’S
/ / / / UNIX* SYSTEM LIBRARY \

* TRADEMARK OF AT&T AT&T
7 |

2y

VOLUME 1
COMMANDS AND UTILITIES

UNIX

programmer’s manual

CBS COLLEGE PUBLISHING'S
UNIX SYSTEM LIBRARY

* Trademark of AT&T.

2l

VOLUME 1

COMMANDS AND UTILITIES

UNIX

programmer’s manual

CBS COLLEGE PUBLISHING'S
UNIX SYSTEM LIBRARY

Steven V. Earhart: Editor

HOLT, RINEHART AND WINSTON
New York Chicago San Francisco Philadelphia
Montreal Toronto London Sydney Tokyo
Mexico City Rio de Janeiro Madrid

Trademark of AT&T.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document, AT&T assumes
no liability to any party for any loss or damage caused by errors or omissions or statements of any kind in the
UNIX* Programmer’s Manual, its updates, supplements, or special editions, whether such errors are
omissions or statements resulting from negligence, accident, or any other cause. AT&T further assumes no
liability arising out of the application or use of any product or system described herein; nor any liability for
incidental or consequential damages arising from the use of this document. AT&T disclaims all warranties
regarding the information contained herein, whether expressed, implied or statutory, including implied
warranties of merchantability or fitness for a particular purpose.

AT&T reserves the right to make changes without further notice to any products herein to improve
reliability, function or design.

This document was set on an AUTOLOGIC, Inc. APS-5 phototypesetter driven by the TROFF formatter
operating under the UNIX system on an AT&T 3B20 computer.

* Trademark of AT&T.

Copyright® 1986 AT&T
All rights reserved.
Address correspondence to:
383 Madison Avenue

New York, NY 10017

No part of this publication may be reproduced, transmitted or used in any form or by an means -- graphic,
electronic, mechanical or chemical, including photocopying, recording in any medium, taping, by any
computer or information storage and retrieval systems, etc. without prior permission in writing from
AT&T.

Library of Congress Cataloging-in-Publication Data
UNIX programmer’s manual.

At head of title: AT&T

Includes index.

Contents: v. 1. Commands and utilities — v. 2.
System calls and library routines — v. 3. System
administration facilities.

1. UNIX (Computer operating system) 1. Earhart,
Steven V. II. American Telephone and Telegraph Company.
QA76.76.063U548 1986 005.4'3 86-311

Select Code 320-031
ISBN 0~-03-009317-1

Printed in the United States of America
Published simultaneously in Canada
678 090 98765432

CBS COLLEGE PUBLISHING

Holt, Rinehart and Winston

The Dryden Press
Saunders College Publishing

PREFACE

The UNIX Programmer’s Manual describes most of features of UNIX System
V. It does not provide a general overview of the UNIX system nor details of
the implementation of the system.

Not all commands, features, or facilities described in this series are available in
every UNIX system implementation. For specific questions on a machine
implementation of the UNIX system, consult your system administrator.

The UNIX Programmer’s Manual is available in several volumes. The first
three volumes consist of the following:

e Volume 1 contains the Commands and Utilities (sections 1 and 6).

e Volume 2 contains the System Calls and Library Routines (sections 2, 3,
4, and 5).

e Volume 3 contains the SyStem Administration Facilities (sections 1M, 7,
and 8).

UNIX Programmer’s Manual Commands and Utilities—i

TRADEMARKS

UNIX, TELETYPE, and DOCUMENTER’S WORKBENCH are trademarks of AT&T.
DEC, VAX, PDP, and MASSBUS are trademarks of Digital Equipment Corporation.
HP is a trademark of Hewlett-Packard, Inc.

TEKTRONIX is a registered trademark of Tektronix, Inc.

ii—Commands and Utilities UNIX Programmer’s Manual

INTRODUCTION

The UNIX Programmer’s Manual Volume 1: Commands and Utilities is
divided into two sections:

1—Commands and Utility Programs

6—Games and Educational Programs

Section 1 (Commands and Utility Programs) describes programs invoked
directly by the user or the command language procedures. Commands gen-
erally reside in the directory /bin (for bimary programs). Some programs also
reside in /usr/bin, to save space in bin. These directories are searched
automatically, in most implementations, by the command interpreter called the
shell. Some UNIX systems may have a directory called /usr/Ibin, containing
local commands.

Section 6 (Games and Educational Programs) describes games and educational
programs that usually reside in the directory /usr/games.

Each section consists of a number of independent entries of a page or so each.
The name of the entry appears in the upper corners of its page(s). Entries
within each section are alphabetized, with the exception of the introductory
entry that begins each section. Some entries may describe several routines,
commands, etc. In such cases, the entry appears only once, under its "major"
name.

All entries use a common format, not all of whose parts always appear:

The NAME part gives the name(s) of the entry and briefly states its
purpose.

The SYNOPSIS part summarizes the use of the program described. A
few conventions are used (particularly in Section 1 (Commands and
Utility Programs):

Boldface strings are literals and are typed just as they appear.

Italic strings usually represent substitutable argument prototypes and
program names found elsewhere in the UNIX Programmer’s Series.

UNIX Programmer’s Manual Commands and Utilities—iii

Square brackets [] around an argument prototype indicate that the
argument is optional. When an argument prototype is given as "name"
or "file", it always refers to a file name.

Ellipses ... are used to show that the previous argument prototype may
be repeated.

A final convention is used by the commands themselves. An argument
beginning with minus —, plus +, or equal sign = is often taken to be a
flag argument, even if it appears in a position where a file name could
appear. Files that begin with —, +, or = should therefore be avoided.

The DESCRIPTION part discusses the subject.
The EXAMPLE(S) part provides example(s) of usage.
The FILES part shows the file names that are built into the program.

The DIAGNOSTICS part discusses the diagnostic indications that may be pro-
duced. Messages that are self-explanatory are not listed.

The BUGS section describes known deficiencies that exist on some implementa-
tions.

The SEE ALSO section suggests related utilities or information to consult.
The WARNINGS part describes potential pitfalls.

A table of contents and a permuted index precede Section 1. The table of con-
tents lists each major entry with a brief description and the page number that
the entry begins on.

The permuted index is used by searching the middle column for a key word or
phrase. The right column contains the name of the utility along with the sec-
tion number. The left column of the permuted index contains additional useful
information about the utility or command.

iv—Commands and Ultilities UNIX Programmer’s Manual

Throughout this volume references to sections 2, 3, 4, and 5 can be found in
the UNIX Programmer’s Manual Volume 2: System Calls and Library Rou-
tines. References to sections 1M, 7, and 8 will be found in the UNIX
Programmer’s Manual Volume 3: System Administration Facilities.

UNIX Programmer’s Manual Commands and Utilities—v

HOW TO GET STARTED

This discussion provides the basic information you need to get started on the
UNIX system:

how to log in

how to log out
e how to communicate through your terminal

e how to run a program

Logging in
You must dial up the UNIX operating system from an appropriate terminal.
The UNIX system supports full-duplex ASCII terminals. You must also have a
valid user name, which may be obtained (together with the telephone
number(s) of your UNIX system) from the administrator of your system.
Common terminal speeds are 10, 15, 30, and 120 characters per second (110,
150, 300, and 1200 baud); occasionally, speeds of 240, 480, and 960 characters
per second (2400, 4800, and 9600 baud) are also available. On some UNIX
systems, there are separate telephone numbers for each available terminal
speed, while on other systems several speeds may be served by a single tele-
phone number. In the latter case, there is one “preferred” speed; if you dial in
from a terminal set to a different speed, you will be greeted by a string of
meaningless characters (the login: message at the wrong speed). Keep hitting
the “break™ or “attention” key until the login: message appears. Hard-wired
terminals usually are set to the correct speed.

Most terminals have a speed switch that should be set to the appropriate speed
and a half-/full-duplex switch that should be set to full-duplex. When a con-
nection (at the speed of the terminal) has been established, the system types
login: and you then type your user name followed by the'retursi key. If you
have a password (and you should!), the system asks for it, but does not print
(echd) it on the terminal. After you have logged in, the'retursi, new-liné, and
“line-feed keys will give exactly the same result.

It is important that you type your login name in lower-case if possible; if you
type upper-case letters, the UNIX system will assume that your terminal cannot
generate lower-case letters and that you mean all subsequent upper-case input

vi—Commands and Utilities UNIX Programmer’s Manual

to be treated as lower-case. When you have logged in successfully, the shell
will type a $ to you. (The shell is described below under How to run a pro-
gram.)

For more information, consult login (1), which discusses the login sequence in
more detail, and stty (1), which tells you how to describe the characteristics of
your terminal to the system. The command (profile(4) in the UNIX
Programmer’s Manual —Volume 2: System Calls and Library Routines
explains how to accomplish this last task automatically every time you log in).

Logging out

There are two ways to log out:

1. You can simply hang up the phone.

2. You can log out by typing an end-of-file indication (ASCII EOT character,
usually typed as'control-d) to the shell. The shell will terminate and the
login: message will appear again on most systems.

How to communicate through your terminal

When you type to the UNIX system, a gnome deep in the system is gathering
your characters and saving them. These characters will not be given to a pro-
gram until you type a'returi (or'new-liné), as described above in Logging in.

On most systems, UNIX system terminal input/output is full-duplex. It has
full read-ahead, which means that you can type at any time, even while a pro-
gram is typing at you. Of course, if you type during output, the output will
have interspersed in it the input characters. However, whatever you type will
be saved and interpreted in the correct sequence. There is a limit to the
amount of read-ahead, but it is generous and not likely to be exceeded unless
the system is in trouble. When the read-ahead limit is exceeded, the system
silently throws away all the saved characters.

On an input line from a terminal, the character @ cancels all the characters
typed before it on that line. The character # erases the last character typed.
Successive uses of # will erase characters back to, but not beyond, the begin-
ning of the line; @ and # can be typed as themselves by preceding them with \
(thus, to erase a \, you need two #s). These default erase and kill characters

UNIX Programmer’s Manual Commands and Utilities—vii

can be changed; see stzy(1). The ASCII DC3 (control-s) character can be used
to temporarily stop output. It is useful with CRT terminals to prevent output
from disappearing before it can be read. Output is resumed when a DC1
(control-q) or a second DC3 (or any other character, for that matter) is typed.

The ASCII DEL (a.k.a. rub-ouf) character is not passed to programs, but
instead generates an interrupt signal, just like the'break, interrupft, or’attention
signal. This signal generally causes whatever program you are running to ter-
minate. It is typically used to stop a long printout that you do not want. How-
ever, programs can arrange either to ignore this signal altogether, or to be
notified when it happens (instead of being terminated). The editor ed (1), for
example, catches interrupts and stops what it is doing, instead of terminating,
so that an interrupt can be used to halt an editor printout without losing the
file being edited.

The quit signal is generated by typing the ASCII FS character. It not only
causes a running program to terminate, but also, if possible, generates a file
with the “core image” of the terminated process. Quit is useful for debugging.

Besides adapting to the speed of the terminal, the UNIX system tries to be
intelligent as to whether you have a terminal with the new-liné function, or
whether it must be simulated with a’carriage-returii and’line-feed pair. In the
latter case, all input ‘carriage-returfi characters are changed to'line-feed char-
acters (the standard line delimiter), and a’carriage-returni and’ line-feed pair is
echoed to the terminal. If you get into the wrong mode, the szzy (1) command
will rescue you. ‘

Tab characters are used freely in UNIX system source programs. If your ter-
minal does not have the tab function, you can arrange to have tab characters
changed into spaces during output, and echoed as spaces during input. Again,
the sty (1) command will set or reset this mode. The system assumes that tabs
are set every eight character positions. The tabs(1) command will set tab stops
on your terminal, if that is possible.

How to run a program

When you have successfully logged into the UNIX system, a program called the
shell is listening to your terminal. The shell reads the lines you type, splits
them into a command name and its arguments, and executes the command. A
command is simply an executable program. Normally, the shell looks first in
your current directory (see The current directory below) for a program with

viii—Commands and Utilities UNIX Programmer’s Manual

the given name, and if none is there, then in system directories. There is noth-
ing special about system-provided commands except that they are kept in direc-
tories where the shell can find them. You can also keep commands in your
own directories and arrange for the shell to find them there.

The command name is the first word on an input line to the shell; the com-
mand and its arguments are separated from one another by space and/or tab
characters.

When a program terminates, the shell will ordinarily regain control and type a
$ at you to indicate that it is ready for another command. The shell has many
other capabilities, which are described in detail in sk (1).

The current directory

The UNIX system has a file system arranged in a hierarchy of directories.
When the system administrator gave you a user name, he or she also created a
directory for you (ordinarily with the same name as your user name, and
known as your login or home directory). When you log in, that directory
becomes your current or working directory, and any file name you type is, by
default, assumed to be in that directory. Because you are the owner of this
directory, you have full permissions to read, write, alter, or destroy its contents.
Permissions to access and/or modify other directories and files will have been
granted or denied to you by their respective owners, or by the system adminis-
trator. To change the current directory use cd (1).

Path names

To refer to files not in the current directory, you must use a path name. Full
path names begin with /, which is the name of the roor directory of the whole
file system. After the slash comes the name of each directory containing the
next sub-directory (followed by a /), until finally the file name is reached (e.g.,
/usr/ae/filex refers to file filex in directory ae, while ae is itself a subdirectory
of usr; usr springs directly from the root directory). See intro(2) in the UNIX
Programmer’s Manual —~Volume 2: System Calls and Library Routines for a
formal definition of path name.

If your current directory contains subdirectories, the path names of files therein
begin with the name of the corresponding subdirectory (without a prefixed /).
Without important exception, a path name may be used anywhere a file name
is required.

UNIX Programmer’s Manual Commands and Utilities—ix

Important commands that modify the contents of files are ¢p(1), mv(1), and
rm (1), which respectively copy, move (i.e., rename), and remove files. To find
out the status of files or directories, use Is(1). Use mkdir(1) for making direc-
tories and rmdir (1) for destroying them.

Writing a program

To enter the text of a source program into a UNIX system file, use ed(1).
After the program text has been entered with the editor and written into a file
(whose name has the appropriate suffix), you can give the name of that file to
the appropriate language processor as an argument. Normally, the output of
the language processor will be left in a file in the current directory named a.out
(if that output is valuable, use mv(1) to give it a less vulnerable name). If the
program is written in assembly language, you will probably need to load with it
library subroutines (see /d(1)).

When you have finally gone through this entire process without provoking any
diagnostics, the resulting program can be run by giving its name to the shell in
response to the $ prompt.

Your programs can receive arguments from the command line just as system
programs do; see exec(2) in the UNIX Programmer’s Manual —Volume 2:
System Calls and Library Routines.

Text processing

Almost all text is entered through the editor ed(1). The commands most often
used to write text on a terminal are cat(1) or pr(1). The cat(1) command
simply dumps ASCII text on the terminal, with no processing at all. The pr(1)
command paginates the text, supplies headings, and has a facility for multi-
column output.

Surprises

Certain commands provide inter-user communication. Even if you do not plan
to use them, it would be well to learn something about them, because someone
else may aim them at you. To communicate with another user currently logged
in, write(1) is used; mail(1) will leave a message whose presence will be
announced to another user when he or she next logs in. The corresponding
entries in this manual also suggest how to respond to these two commands if
you are their target.

x—Commands and Utilities UNIX Programmer’s Manual

TABLE OF CONTENTS

1. Commmands and Utilities

intro—introduction to commands and application programs1
300—handle special functions of DASI 300 and 300s terminals . . .3
4014—-pa§inator for the TEKTRONIX 4014 terminal g

450—handle special functions of the DASI 450 terminal

acctcom—search and print process accounting file(s) 9
admin—create and administer SCCSfiles 12
ar—archive and library maintainer for portable archives19
as—common assembler e e e e e e W21
asa—interpret ASA carriage control characters 23
at—execute commands at a later time
awk—pattern scanning and processing language27
banner—make posters 0 oL 0 e e e e e e .. 31
basename—deliver portions of pathnames 32
bc—arbitrary-precision arithmetic language33
bdiff—bigdiff 0000 oo . 236
bfs—big file scanner 0000 . 00w 37
bs—a compiler/interpreter for modest-sized programs4l
cal-printcalendar 000054
calendar—reminder service B b
cat—concatenate and printfiles0 0. . 56
cb—C program beautifier 0.57
cc—Ccompiler v et i e e e e e e .. .58
cd—change working directory . . . « . . . 00 e 00 . 61
cdc—change the delta commentary of an SCCS delta62
cflow—generate C flowgraph« o o . .65
chmod—changemode68
chown—change OWner or group . . « « « « « ¢ « « o « o« « o+ & 70
cmp—compare twofiles 00 e e .01
col—filter reverse line-feeds72
comb—combine SCCSdeltaso 74
comm-—select or reject lines common to two sorted files 76

convert—convert object and archive files to common formats . . .77
cp—copy, linkormovefiles 00079

cpio—copy file archivesinandout, 80
cpp—the C language preprocessor « . « « « « « « « « «82
crontab—user crontabfile e e e e e e e . 86
crypt—encode/decode e e e e e e e e e e e .. .88
csplit—context split e e e e e e .90
ct—spawn getty to a remote terminal 93
ctrace—C program debugger N L]
cu—call another UNIX system101
cut—cut out selected fields of each line of afile 106
cxref—lgenerate C program cross-reference 108
daps—Postprocessors for phototypesetter and laser printer 109
date—print and setthedate 111
dc—desk calculator 000w e e e e . 113
dd—convert andcopyafile 116

delta—make a delta (change) to an SCCSfile118
deroff—remove nroff/troff, tbl, and eqn constructs 121
diff—differential file comgarator e e e e et e e e e e 122
diff3—3-way differential file comparison124
diffmk—mark differences between files126

UNIX Programmer’s Manual Commands and Utilities—xi

dircmp—directory comparison 4 e 0 00 127
du—summarize diskusage0 00000 128
dump—dump selected parts of an object file129
dx9700—prepare troff documents for the 9700 printer 131
echo—echo arguments e e e e e e e 132
ed—texteditor 0 . oo e e e ... 133
edit—text editor (variant of ex for casual users) 146
efi—Extended Fortran Language 150
enable—enable/disable LP printers 152
env—set environment for command execution 153
eqn—format mathematical text for nroff or troff 154
ex—texteditor L .00 e e e e e . 157
exg —evaluate arguments as an expression 163
f77—Fortran 77 compiler 0 o 0 0w .. 166
factor—factoranumber00, 170
file—determine filetype o000 ... 1T
find—findfiles ¢ v v v v vt 172
fSJ)lit—split f77, ratfor,orefl files 175
gdev—graphical device routines and filters 176
ged—graphical editor o000 00 0. ... 178
get—get aversionof an SCCSfile 186
geto%t—émrse command options B 17
graph—drawa graph . . . + v ¢« ¢ 4 v ot e 0 e e ... o196
graphics—access graphical and numerical commands 198
greek—select terminal filter 199
grep—search a file fora pattern200
util—graphical utilities 202
elp—askforhelp00, .. 204
hp—handle functions of Hewlett-Packard terminals 205
hpio—Hewlett-Packard 2645A terminal tape file archiver . . 0207
h(;rphen—ﬁnd hyphenated words 211
id—print user and group IDs and names 212

ipcrm—remove message queue, semaphore set or shared memory i

ipcs—report inter-process communication facilities status 214
join—relational database operator 218
ill—terminate a process .+ « + « « 4 ¢ ¢ 0 e o 0 000 o 220
ld—link editor for common object files «221
lex—generate programs for simple lexical tasks 224
line—readoneline « . ¢« ¢ v v o v v 0o .227
lint—a C program checker« ¢ o228
login—signon e e e e e e e e e e e e e e 232
logname—ﬁet loginname 0000w e . 235
lorder—find ordering relation for an object library236
Ip—send/cancel requests to an LP line printer 237
Ipstat—print LP status information 239
Is—list contents of directory e e e e e e . . 241
M4—IMACTO PTOCESSOT + + & o o « & o o o o o o o o o o « 245
machid—provide truth value about your processor type 250
macref—produce cross-reference listing of macro files 251
mail—send mail tousersorread mail253
mailx—interactive message processing system256
make—maintain, update, and regenerate groups of programs . . . 275
makekey—generate encryptionkey e e o . . 4283
man—print manual entrieson-line284
mesg—permit or deny messages« ¢ o o o . o0 o o o o287

xii—Commands and Utilities

UNIX Programmer’s Manual

mkdir—make a directory288
mm-—print/check documents formatted with the MM macros . . 289
mmlint—sroff/MM nroff/MM document compatibility checker . . 292
mmt—typeset documents, viewgraphs, and slides 294
newform—change the formatof a textfile296
newgrp—logintoanew group ¢ ¢ 4 o o 00 .. 299

NEWS—Print NEWS items « « + &« « ¢ ¢ ¢+ ¢ ¢« 4 o . . s . . . 301
nice—run a command at low priority302
nl—line numbering filter 0000 .. 0303
nm—print name list of common object file 305
nohup—run a command immune to hangups and quits 308
nroff—format or typeset text ¢ . .« .. 2310
od—octaldump0 e s e e e e e 313
pack—compress and expand files.. 314
passwd—change login password 2317
paste—merge files or subse(}uent linesofonefile 319
pg—file perusal filter for soft-copy terminals 321
pic—tro grcproccssor for drawing simple pictures 326
pr—printfiles00 0 0 0o s e e e e 327
prof—display groﬁle data 00000 . 329
prs—print an SCCSfile 2332
ps—report process status e e e e e e e e .. 4337
ptx—permuted indexo 00 0. 341
-pwd—working directoryname ¢ 343
ratfor—rational Fortran dialect« 344
regcmp—reﬁular expression compile 346
rjestat—RJE status report and interactive status console 347
rm—remove files or directories ¢ o . .. 349
rmdel—remove a delta froman SCCSfile350
sact—print current SCCS file editing activity 351
sag—system activity graph oL o000 0. L. 352
sar—system activity reporter e e e e e e e . 2354
scesdiff—compare two versions of an SCCSfile 357
sdb—symbolic debl(lig (=2 S 358
sdiff—side-by-side difference program369
sed—stream editor 4 ¢ e v v e e e e 00 .. o371
send—gather files and/or submit RIEjobs 375
sh—shell, the standard/restricted command programming language 383
shl—shell layer manager ¢+« 397
size—print section sizes of common object files 399
sleep—suspend execution for an interval 400
sno—SNOBOL interpreter . . . « « « « « « ¢« « « « « « . 401
sort—sort and/or merge files e e e e e .. 4403
spell—find spelling errors e e e e e e 407
spline—interpolate smoothcurve e v ... 2410
split—split a file into pieces e e e e e e e . . 411
sroff—formattext L 00000 e 00 412

stat—statistical network useful with graphical commands 413
strip—strip symbol & line # information from a common object file418

stty—set the options for a terminal, 420
su—become super-user or another user R X)
sum—print checksum and block countofafile 426
sync—update the super block 427
tabs—set tabsonaterminal 0000 L. 428
tail—deliver the last partofafile 431

UNIX Programmer’s Manual Commands and Utilities—xiii

tar—tape filearchiver 000 . 432
tbl—format tables for nroffortroff435
tc—troff output interpreter438

tee—pipe fitting . . . « ¢ ¢ ¢ v v bt e e e e e e e e e e 440
test—condition evaluation command 441
time—timeacommand 443
timex—time a command; report process data and system activity . 444
toc—graphical table of contents routines 446

touch—update access and modification times of a file 449
tplot—graphics filters00 450

tput—query terminfodatabase 0. ... 451
tr—translate characters 0 00 0. . . 453
troff—text formatting and typesetting455
true—provide truth values e e e .. 2457
tsort—topological sort o0 000 0. 458
tty—get the name of the terminal 459
umask—set file-creation mode mask460
uname—print name of current UNIX system46l
unget—undo a previous get of an SCCSfile 462

unig—report repeated linesinafile.463
UNitS—CONVErsion Program . . + « « « o « o« « .
uucp—UNIX system to UNIX system copf' 465
uustat—uucp status inquiry and job control . . .

uuto—&)ubhc UNIX-to-UNIX system filecopy . . . «472

uux—UNIX-to-UNIX system command execution 474
val—validate SCCSfile e e e e e e e .. . 477
vc—versioncontrol e e e e e e e .. .479
vi—screen-oriented (visual) display editor based onex 483
wait—await completion of process 0. 490
WC—WOrd COUNt « « o v v @ v ¢ v v o o o 4 e e e e e e e 491
what—identify SCCSfiles ¢ ¢ ¢ ¢ oo+ . 492
who—whoisonthesystem 493
write—write toanother user ¢« « ¢ . . 4 0 e s e o . 496

x9700—prepare nroff documents for the Xerox 9700 printer . . . 498
xargs—construct argument list(s) and execute command 504
yacc—yet another compiler-compiler508

6. Games
intro—introduction to games 0L 511
arithmetic—provide drill in number facts 512
back—the game of backgammon513
bj—the game of blackjack e e e e e e e e 514
craps—the gameofcraps 0. .. 516
hangman—guesstheword518
jotto—secret word game B b
MAazZe—gEeNerate a MAZE .« « « & « o « o « o o o o o o o+ o » 520

MOO—GUESSING ZAME « + + v & + o o « ¢ o « o-0 o o o+ o » »3521
quiz—test your knowledge o000 . 0522
ttt—tic-tac-toe e e e e e e e e e e e e 523
wump—the game of hunt-the-wumpus 524

xiv—Commands and Utilities UNIX Programmer’s Manual

PERMUTED INDEX

/of Hewlett-Packard 2640 and
functions of Hewlett-Packard
hpio: Hewlett-Packard
functions of DASI 300 and/
/special functions of DASI

of DASI 300 and 300s/ 300
functions of DASI 300 and
comparison. diff3:
TEKTRONIX 4014 terminal.
paginator for the TEKTRONIX
of the DASI 450 terminal.
special functions of the DASI
f77: Fortran

troff documents for the Xerox
nroff documents for the Xerox
of a file. touch: update
commands. graphics:

search and print process
process accounting file(s).
sag: system

sar: system

current SCCS file editing
report process data and system
SCCS files.

admin: create and

sort: sort

send, gath: gather files
introduction to commands and
Imagen/ /for the Autologic
maintainer for portable/
language. bc:

for portable archives. ar:
convert: convert object and
2645A terminal tape file

tar: tape file

maintainer for portable

cpio: copy file

command. xargs: construct
expr: evaluate

echo: echo

be: arbitrary-precision
number facts.

expr: evaluate arguments

characters. asa: interpret
control characters.

help:

as: common

a later time.

di10: Postprocessors for the
wait:

processing language.

back: the game of
(visual) display editor
portions of path names.

. later time. at,
arithmetic language.

UNIX Programmer’s Manual

2621-series terminals.
2640 and 2621-series/ /special
2645A terminal tape file

300, 300s: handle special

300 and 300s terminals.

300s: handle special functions .

300s terminals. /special
3-way differential file
4014: paginator for the
4014 terminal. 4014:
450: handle special functions
450 terminal. 450: handle
77 compiler.
9700 printer. dx9700: prepare
9700 printer. x9700 - prepare

access graphical and numerical
accounting file(s). acctcom:
acctcom: search and print
activity graph.
activity reporter.
activity. sact: print
activity. /time a command;
admin: create and administer
administer SCCS files.
and/or merge files.

application programs. intro: .
APS-5 phototypesetter and the
ar: archive and library

arbitrary-precision arithmetic . . b
. ar(l)

. . convert(1)
.. hpioSl)

archive and library maintainer
archive files to common/ . .
archiver. /Hewlett-Packard
archiver.
archives. /archive and library
archives in and out.
argument list(s) and execute
arguments as an expression.
arguments.
arithmetic language. .
arithmetic: provide drill in
as an expression.
as: common assembler.
ASA carriage control
asa: interpret ASA carriage

ooooo

.....

.....

......... £77Q1)
. dx9700(1)
. x9700(1)
access and modification times . .
. graphics(1G)
. acctcom(1

. acctcom(1

......

and/or submit RJE jo.bs..
. intro(1)
. daps(1)

.........:ar(l)

uage. bc(l)
. arithmetic(6)

. as(1)
- auth

touch(1)

sag(1G)
sar(1)
sact(1)

. timex(1)
. admin 1;
. admin(l

1
ot o)

1
art)

tar(1

cpio(1)

. xargs(1)
. expr(l

echo(1)

expr(1)

ask forhelp. hel;l)(l)
assembler. as(

at, batch: execute commands at . at(l
Autologic APS-5/ daps, . . daps(1)
await completion of process. . wait(1)
awk: pattern scanning and . . . awk(]l)
back: the game of backgammon. back26;
backgammon. back(6
banner: make posters. b_anner(l)
based on ex. /screen-oriented . . vi(1)
basename, dirname: deliver . . . basename(1)
batch: execute commands at a . at(1)

bc: arbitrary-precision be(1)

Commands and Utilities—xv

cb: C program

. bj: the game of

sum: print checksum and
sync: update the super
modest-sized programs.
cc, pec:

cflow— generate

cpp: the

cb:

lint: a
cxref: generate
ctrace:

dc: desk
cal: print

cu:
to an LP line printer. lp,
asa: interpret ASA

text editor (variant of e)f(i 1for
es.

commentary of an SCCS delta.

) delta: make a delta
interpret ASA carriage control
tr: translate
text for nroff or/ eqn, neqn,
lint: a C program

document compatibilit
formatted with the/ mm, osdd,
file. sum: print
chown,

group.
line-feeds.

comb:

common to two sorted files.
nice: run a

env: set environment for

uux: UNIX-to-UNIX system
quits. nohup: run a

getopt: parse

/shell, the standard/restricted
and system/ timex: time a
test: condition evaluation

. time: time a

argument list(s) and execute
intro: introduction to

at, batch: execute

access graphical and numerical
network useful with graphical
cdc: change the delta

as:
object and archive files to

xvi—Commands and Ultilities

bdiff: big diff. bdiff(1)
beautifier. cb(1)
bfs: big file scanner. bfs(1)
bi': the game of black jack. bj 26;
blackjack. bj(6
block count of a file. sum(1)
block. « « v v v e e e e .. sync(1)
bs: a compiler/interpreter for . . bs§1;

C compiler. cc(1

C flowgraph. cflow(1)
C language preprocessor. . . . cg §))
C program beautifier. c I()1)

C program checker. lint (1)
C program cross-reference. . . . cxref(l)
C program debugger. ctrace(1)
cal: print calendar. cal(1)
caleulator. c(1
calendar. cal(1)

calendar: reminder service.

. . calendar(1)

call another UNIX system. . . . cu(l1C
cancel: send/cancel requests . IpQ
carriage control characters. . . asa(l)
casual users). edit: edit(1)
cat: concatenate and print . cat(1)
cb: C program beautifier. . ¢b(1)
cc, pec: C compiler. cc(1)
cd: change working directory. . . cd(1)
cdc: change the delta . .7. . . cde(1)
cflow— generate C flowgraph. . cflow(1)
(change) to an SCCS file. . delta(1)
characters. asa: asa(l)
characters. . . « « . « ¢ « o & tr(1
checkeq: format mathematical . eqn(l
checker. lint (1

checker. /sroff/MM nroff/ MM

. mmlint(1)

checkmm: print/check documents mm(1
checksum and block count of a . sum(1)
chgrp: change owner or group. . chown(l1)
chmod: change mode. chmod(1)
chown, chgrp: change owner or . chown(1)
cmp; compare two files. cm Sl)
col: filter reverse col?l
comb; combine SCCS deltas. . . combEI;
combine SCCS deltas. comb(]
comm: select or reject lines . . . comm(1)
command at low priority. . . mnice(l)
command execution. env(l)
command execution. uux(1C)
command immune to hangups and nohup(1
command options. getopt(1
command programming language. sh(l
command; report process data . timex(1)
command. test(1)
command. time(1)
command. xargs: construct . . . xargs(l)
commands and application/ . intro(1)
commands at a later time. . . . at(1)
commands. graphics: graphics(1G)
commands. stat: statistical . . stat(1G)
commentary of an SCCS delta. . cd¢(1)
common assembler. as(1)

common formats. /convert

. convert(1)

UNIX Programmer’s Manual

nm: print name list of

line number information from a
1d: link editor for

size: print section sizes of
comm: select or reject lines
ipcs: report inter-process

diff: differential file

cm&:
SCCS file. sccsdiff:
diff3: 3-way differential file
ircmp: directory

/sroff/MM nroff/MM document
regcmp: regular expression

cc, pec: C

£77: Fortran 77

) Jacc: yet another
modest-sized programs. bs: a
wait: await

pack, pcat, unpack:

cat:

i R test:

report and interactive status
execute command. xargs:
nroff/troff, tbl, and eqn

Is: list

toc: graphical table of

) csplit:

asa: interpret ASA carriage
uucp status inquiry and job

VC: version

units:

dd:

archive files to common/

files to common/ convert:

dd: convert and

cpio:

cp, In, mv:

UNIX system to UNIX system
UNIX-to-UNIX system file
sum: print checksum and block
wc: word

files.

and out.

preprocessor.

craps: the game of

files. admin:
crontab: user

cxref: generate C program
macro files. macref: produce

terminal.

ttt,

activity. sact: print
_uname: print name of
spline: interpolate smooth
of each line of a file.
each line of a file. cut:

UNIX Programmer’s Manual

common object file. nm(1)
common object file. /and . . . stnf)(l)
common object files. 1d(1)
common object files. size(1)
common to two sorted files. . . comm(1)

communication facilities/ . . . g}cs(l)
COMPArator. . « « o « + « « & iff (1)
compare two files. « cmp(1)
compare two versions of an . . . sccsdjff(1)
COMPArison. . « « « v 4 « 4 . diff3(1)
COMPATISON. + « « + & « o « &« dircmp(1)
compatibility checker. mmlint (1)
compile. re%cmp(l)
compiler. ccll)
compiler. £77(1)
compiler-compiler. K’;lcc(l)
compiler/interpreter for . bs(1)
completion of process. wait(1)

compress and expand files. . . . pack(l)
concatenate and print files. . . . cat(l
condition evaluation command. . test(1)
console. rjestat: RJE status . . rjestat(1C)
construct argument list(s) and . xargs(1)
constructs. deroff: remove . . . deroff(1)

contents of directory. 1s(1
contents routines. toc(1G)
context split. csplit(1)
control characters. asa(1)
control. uustat: uustat(1C)
control. vell
conversion dprogram units(1)
convert and copy a file. dd(1)

convert: convert object and . . . convertglg
convert object and archive . . . convert(l
copyafilee. dd(1

copy file archives in and out. . . cpio(1)
copy, link or move files. cp(l)
copy. uucp, uulog, uuname: . . uucp(1C)
copy. uuto, uupick: public . . . uuto(1C)
countofafile. sum(1)
COUNt. & & v v 4 v w e e e we(l

cp, In, mv: copy, link or move . cp(1)
cpio: copzr: file archivesin . . . cpio(l)

cpp: the Clanguage cpp(1)
CIAPS. « « « o o o o o o o o o craps 26;
craps: the game of crags. . . . craps(6
create and administer SCCS . . admin(l
crontab file. crontab lg
crontab: user crontab file. - . . . crontab(l
cross-reference. cxref(1
cross-reference listing of macref(1)
crypt: encode/decode. crypt(1
csplit: context split. CSP it(1
ct: spawn getty to a remote ct(10)

ctrace: C program debugger. . . ctrace(1)
cu; call another UNIX system. . cu(1C)

cubic: tic-tac-toe. - ttt(6
current SCCS file editing . . . sact(1)
current UNIX system. uname(1)
CUTVE. & v v v o o o o o o o « spline(1G)

cut: cut out selected fields . . . cut(l
cut out selected fieldsof cut(l

Commands and Utilities—xvii

cross-reference.

the Autologic APS-5/

/handle special functions of

. special functions of the
/time a command; report process
prof: display profile

join: relational

tput: query terminfo

date: print and set the

ctrace: C program
sdb: (siym olic

names. basename, dirname:
file. tail:
delta commentary of an SCCS
file. delta: make a

delta. cdc: change the
rmdel: remove a

to an SCCS file.

comb: combine SCCS
mesg: permit or

tbl, and eqn construc(:its.

c:

file:

/tekset, td: graphical
Autologic APS-5/ daps,
ratfor: rational Fortran
bdiff: big

comparator.

__ comparison.

sdiff: side-by-side

diffmk: mark

diff:
diff3: 3-way
between files.

rm, rmdir: remove files or
cd: change working
dircmp:

Is: list contents of

mkdir: make a

pwd: working

path names. basename,
printers. enable,

. du: summarize
vi: screen-oriented (visual)

. R,lioft
mmlint: sroff/ MM nroff/MM
dx9700: prepare troff

x9700 - prepare nroff

mm, osdd, checkmm: print/check
slides. mmt, mvt: typeset

. gra;}h:

pic: troff preprocessor for
arithmetic: provide

an object file.

od: octal

object file. dump:

documents for the Xerox 9700/

xviii—Commands and Utilities

drawagraph.
drawing simple pictures.
drill in number facts.

du: summarize disk usage. .
dump: dump selected parts of .

.....

cxref: generate C program . . cxref(1)
daps, dil10: Postprocessors for . . dags(l)
DASI 300 and 300s terminals. . 30 él;
DASI 450 terminal. /handle . 450(1
data and system activity. timex (1)
data., rof (1
database operator. join(1)
database. tput(l
date. ate(l
date: print and set the date. date(1
dc: desk calculator. de(1)

dd: convert and copy a file. . . . dd(1)
debugger. ctrace(1)
debugger. sdb(1)
deliver portions of path . basename(1)
deliver the last part of a . tail(l
delta. cdc: changethe cdc(1
delta (change) to an SCCS . . delta(l)
delta commentary of an SCCS . cdc(l
delta from an SCCS file. rmdel(])
delta: make a delta (change) . . delta(l)
deltas. comb(1)
deny messages. mesg(1)
deroff: remove nroff/troff, . deroff (1
desk calculator. dc(1)
determine file type. file(1
device routines and filters. dev(1G)
dil0: Postprocessors for the aps(1)
dialect. ratfor(1)
diff, . . bdiff (1)
diff: differential file diff (1)
diff3: 3-way differential file diff3(1)
difference program. sdiff (1)
differences between files. diffmk(1)
differential file comparator. . diff (1)
differential file comparison. . . . diff3(1)
diffmk: mark differences diffmk(}1)
dircmp: directory comparison. . dircmp(1
directories. & . 4 . . rm(1)
directory. cd(1)
directory comparison. dircmp(1)
directory. o s(1)
directory. mkdir(1)
‘directory name. gwd(l)
dirname: deliver portions of . basename(1)
disable: enable/disable LP . enable(1)
diskusage. du(1)
display editor based on ex. vi(1)
display profile data. prof(1)
document compatibility/ mmlint(1)
documents for the Xerox 9700/ . dx9700(1)
documents for the Xerox 9700/ . x9700(1)
documents formatted with the/ . mm(l
documents, viewgraphs, and mmt(1)

. Prithmetic(6)

. du
. d 1
T

dump. 00
dump selected parts of an . dump(1)
dx9700: prepare troff dx9700(1)

UNIX Programmer’s Manual

echo:

ex for casual users).

sact: print current SCCS file
(visual) display

ed, red: text

€X: text

files. 1d: link

ged: ﬁraphlcal

sed: stream

casual users). edit: text
Language.

fsplit: split £77, ratfor, or
for a pattern. grep,
enable/disable LP printers.
enable, disable:

crypt:

makekey: generate

man, manprog: print manual
command execution.
execution. env: set

remove nroff/troff, tbl, and
mathematical text for nroff/
graphical device/ hpd,
hashcheck: find spelling
expression. expr:

test: condition

edit: text editor (variant of

display editor based on
construct argument list(s) and
time. at, batch:

set environment for command
sleep: suspend
UNIX-to-UNIX system command
pcat, unpack: compress and
expression.

regcmp: regular

expr: evaluate arguments as zfl_ln
efl:

fsplit: split
factor:

true,

attern. grep, egrep,

/2645A termglal tape

tar: tape

__ cpio: copy

diff: differential

diff3: 3-way differential
public UNIX-to-UNIX system
crontab: user crontab

fields of each line of a

dd: convert and copy a

a delta (change) to an SCCS

selected parts of an olgect
sact: print current SCCS
grep, egrep, fgrep: search a
get: get a version of an SCCS

UNIX Programmer’s Manual

echo arguments. echoglg
echo: echo arguments. echo(1
ed, red: text editor. ed(1
edit; text editor (variant of . . . edit(1)
editing activity. sact(1)
editor basedonex. vi(1)
editor. edglg
editor. ex(1
editor for common object 1d(1)
editor. ed(1G)
editor. sed(1)
editor (variant of ex for edntSl)
efl: Extended Fortran efi(l
eflfiles, o« ... fsplit(1)
egreg, fgrep: search a file grep(1)
enable, disable: ena le?;
enable/disable LP printers. . . . enable(l
encode/decode. crypt(1)
encryptionkey. makekey (1)
entries on-liné. man(1)
env; set environment for envgl;
environment for command env(l
eqn constructs. deroff: deroff (1)
eqn, neqn, checkeq: format . . . eqn(l)
erase, hardcopy, tekset, td: g evglG)
errors. /hashmake, spellin, spell(1)
evaluate arguments as an expr(1)
evaluation command. test(1)
ex for casual users). edit(1
ex:texteditor. ex(1
ex. /screen-oriented (visual) . . vi(1)
execute command. xargs: . xargs(1
execute commands at a later at(é
execution. env: env 12
execution for an interval. sleep(1)
execution. UUX: ¢ . . . uux(1C
expand files. pack, pack(1)
expr: evaluate arguments as an expr(1)
expression compile. regcmg(l
EXPIESSION. « & « o o o o o o . expr(1
Extended Fortran Language. efl(1)
£77: Fortran 77 compiler. £77(1)
£77, ratfor, or efl files. fsplit(1)
factor a number. factor(1
factor: factor a number. factor(1
false: provide truth values. true(1)
fgrep: search a file for a ﬁrqp(lg
file archiver. ploSI
file archiver. tar(1
file archives in and out. cpio(l
file comparator. diff (1
file comparison. diff3 51)
file copy. uuto, uupick: . « uuto(1C
file. .. . v i v 0. crontab(1)
file. cut: cut out selected cut(l)

€ vt e e e e e e e e dd(1)
file. delta: make delta(1)
file: determine file type. . file(1)
file. dump: dump dump(1)
file editing activity. sact(]
file for a pattern.” gre{)Sl
file. get(l

Commands and Utilities—xix

split: split a
change the format of a text
name list of common object

or subsequent lines of one
soft-copy terminals. E%

prs: print an SC
remove a delta from an SCCS

s: bi
two versions of an SCCE
from a common object
checksum and block count of a
deliver the last part of a
and modification times of a
file: determine
undo a previous get of an SCCS
report repeated lines in a
val: validate SCCS
. umask: set
and print process accountin
create and administer SCC
send, gath: gather
cat: concatenate and print
cmp: compare two
lines common to two sorted
cp, In, mv: copy, link or move
mark differences between
find: find
split £77, ratfor, or efl
link editor for common object
listing of macro
rm, rmdir: remove
/merge same lines of several
unpack: compress and expand
- pr: print
section sizes of common object
sort: sort and/or merge
/convert object and archive
what: identify SCCS
terminals. pg: file perusal
greek: select terminal
nl: line numberinF
col-

graphical device routines and
tplot: grapéli((:ls
nd:

hfphen:
object library. lorder:
hashmake, spellin, hashcheck:

tee: pipe

cflow— generate C

nroff or/ eqn, neqn, checkeq:
newform: change the

nroff, otroff:

troff. tbl:

sroff:

and archive files to common
/checkmm: print/check documents
troff: }9,)7(’(

ratfor: rational
efl: Extended

xx—Commands and Utilities

file into pieces. split(1)
file. newform: newform(1)
file. nm:print nm(l)
file. /lines of several files . . . paste(l
file perusal filter for peg(l)
file. « . v 00 vt prs(1)
file. rmdel: rmdel(1)
file scanmer. s(1)
file. sccsdiff: compare sccsdiff (1)
file. /line number information strip(1)
file. sum:print sum(1)
file. tail:, tail(1)
file. touch: update access . . touch(1)
letype. « « v o v v o v . . file(1)
file. unget: unget (1)
file. uniq: o0 0. . . um?Sl)
file . val(l

file(s). acctcom: search

. . umask(1)
. acctcom(1)

files. admin: . ., . . . C+ o« » . admin(l
files and/or submit RJE jobs. . . send(1C
files. cat(l
files. ¢ oo .. cmp(l)
files. comm: select or reject . comm(1)
files. . . .o 0. cp(1)
files. diffmk: diffmk(1)
files. . . oo i v v nd(1)
files. fsplit: f(sipllt(l)
files. d: 1d(1)
files. /cross-reference macref(1)
files or directories. rm(1
files or subsequent lines of/ . paste(l)
files. pack, pcat, pack(1)
files. pr(1
files. size:print size 1;
filess.cc... sort(1
files to common formats. convert(1)
€5. 4 e e e e e e e e e e what(1)
filter for soft-copy pg(1)
filter. greek(1)
filter. . . . v v v o0 0. . nl(1)
filter reverse line-feeds. . col(1)
filters. /tekset,td: gdevglG;
Iters. « v ¢« v v o v 0 e e . tplot(1G.
find files. nd 1;
find: find files. find (1
find hyphenated words. . . hyphen(1)
find ordering relation for an . . lorder(l
find spelling errors. spell, . spell(1
fitting. tee(1)
flowgraph. « . . . cflow(1)
format mathematical text for . . eqn(l1)
format of a text file. newform(1)
format or tlypeset text. nroff (1)
format tables for nroff or . tbi(1)
format text. sroff (1)
formats. /convert object . . convert(1)
formatted with the MM macros. mm(1)
formattin% and typesetting. . . . troff(1)
Fortran 77 compiler. 7(1)
Fortran dialect. ratfor(1)
Fortran Language. efi(1)

UNIX Programmer’s Manual

/and line number information
rmdel: remove a delta

efl files.

300, 300s: handle special
2640 and/ hg: handle special
terminal. 450: handle special
jotto: secret word

moo: guessing

back: the

bj: the

craps: the

. . wump: the

intro: introduction to

submit RJE jobs. send,

jobs. send, gath:

maze:
cflow—
cross-reference. cxref:
makekey:

lexical tasks. lex:

et:

le.

logname:

unget: undo a previous

tty:
ct: spawn

graph: draw a

sag: system activity
commands. graphics: access
/network useful with
/erase, hardcopy, tekset, td:
. ged:

routines. toc:

. gutil:

numerical commands.

tplot:

file for a pattern.

chown, chgrp: change owner or
id: print user and

newgrp: log in to a new
update, and regenerate
hangman:

moo:

DASI 300 and 300s/ 300, 300s:
Hewlett-Packard 2640 and/ hp:
the DASI 450 terminal. 450:

nohup: run a command immune to
graphical device/ hpd, erase,
spell, hashmake, spellin,

find spelling errors. spell,

help: ask for

handle special functions of
tape file archiver. hpio:

of Hewlett-Packard 2640 and/
td: graphical device routines/

UNIX Programmer’s Manual

from a common object file.
from an SCCS file.

oooooo

fsplit; split £77, ratfor, or . . . fsplit(1)
functions of DASI 300 and 300s/ 300(1
functions of Hewlett-Packard . . hg(l)
functions of the DASI 450 450(1)
BAME. « « v v ¢ o o o v 4 .. jotto(6,
AME. .« + . 4 4 e e e e . moo(6)
game of backgammon. back(6)
game of black jack. bj(6)
gameof craps.” craps(6)
game of hunt-the-wumpus. wum?
gaMeS. . .+ « + + 4 o o o o o introl6
gath: gather files and/or sendglc
gather files and/or submit RJE . send(1C
ged: graphical editor. ged(1G
generate a Maze. maze(6
generate C flowgraph. cflow(1
generate C program cxref (1
generate encryption key. . . . makekey(1)
generate programs for simple . . lex 1)

get a version of an SCCS file. get 1;

get: get a version of an SCCS . fget 1

get loginname. ogname(1)
get of an SCCS file. unget(1)
get the name of the terminal. . . tty(1)
getopt: parse command options. . getogt(l)
getty to a remote terminal. . . . ct(1C)
graph: draw a graph. graphglG;
graph. graph(1G
graph. e e e sag(1G)
graphical and numerical . graphics(1G)
graphical commands. stat(1G)
graphical device routines and/ . gdev(1G)
graphical editor. ged(1G)
graphical table of contents . . . toc(1G)
graphical utilities. gutil(1G)
graphics: access graphical and . graphics(1G)
graphics filters. tplot(1G)
greek: select terminal filter. . greek(1)
grep, egrep, fgrep: search a . grep(1)
rOUD. .« o v o o o o o o o o . chown(1)
group IDs and names. id(1)
BrOUP. « . 4 4 . . s . _« .« . . newgrp(1)
groups of programs. /maintain, . make(l
guesstheword. hangman(6)
guessing game. moo(6)

ﬁutil: graphical utilities.

andle special functions of
handle special functions of
handle special functions of
hangman: guess the word.

. . gutil(1G)
10
. . hp(1)

. 450(D

. hangman(6)

hangups and quits. nohup(1)
hardcopy, tekset, td: gdev(1G)
hashcheck: find spelling/ spell(l
hashmake, spellin, hashcheck: . spell(1
help: ask for help. helpglg
help.o 00 help(1
Hewlett-Packard 2640 and/ hp: hp(1)
Hewlett-Packard 2645A terminal hpio(1)

hp: handle special functions
hpd, erase, hardcopy, tekset,

Commands and Utilities—xxi

. . hp(1
. gggvzlG)

terminal tape file archiver.
wump: the game of

hyphen: find

semaphore set or shared memory
‘ and names.

what:

id: print user and group

/APS-5 phototypesetter and the
nohup: run a command
/phototypesetter and the Imagen
ptx: permuted

uustat: uucp status

system. mailx:

rjestat: RJE status report and
spline:

characters. asa:

sno: SNOBOL

tc, otc: troff output

facilities/ ipcs: report

suspend execution for an
commands and application/

application programs. intro:
intro:

semaphore set or shared/
communication facilities/

_ news: print news

bj: the game of black
operator.

makekey: generate encryption

quiz: test your
. scanning and processing
arbltrarya)recision arithmetic
efl: Extended Fortran
cpp: the C
command programmin,
/and the Imagen Imprint-1
shl: shell
object files.
simple lexical tasks.
generate programs for simple
relation for an object
portable/ ar: archive and
line: read one
strip: strip symbol an;l

nl:
out selected fields of each
send/cancel requests to an LP

col: filter reverse

files. comm: select or reject
uniq: report repeated

of several files or subsequent
subsequent/ paste: merge same
les. 1d:

cp, In, mv: copy,

Is:
nm: print name

xxii—Commands and Utilities

hpio: Hewlett-Packard 2645A . hpio(1)
hunt-the-wumpus. wump(6
hyphen: find hyphenated words. . hyphen(1
lR'phenated words. hyphen (1
id. /remove a message queue, . ipcrm(l
id: print user and group IDs . id(1)
identify SCCS files. what (1)
IDs and names. . . « « . . o . id(1)

Imagen Imprint-10 laser/
immune to hangups and quits.
In&print-lO laser printer.
index.

inquiry and job control.
interactive message processing
interactive status console.
interpolate smooth curve.

interpret ASA carriage control . asa(l
interpreter. sno(l
interpreter. tc(l
Inter-process communication . ipes(1)
interval. sleep: sleep(1
intro: introductionto intro(l
intro: introduction to games. . intro(6
introduction to commands and . intro(l
introduction to games. intro(6
ipcrm: remove a message queue, ipcrm(1)
ipcs: report inter-process ipes(1)
items. oL news (1
ke oo e bj(6)
oin: relational database . . join(1)
ftto: secret word game. . . Jotto(6)
'ei/. e e e e e e e makekey(1)
kill: terminate a process. kill(1)
knowledge. quiz(6
language. awk: pattern . awk(l
language. be: be(l
Language. efl(1
language preprocessor. CEFSI)
language. /standard/restricted . sh(l
laser printer. daps(1)
layer manager. shi(1)
Id: link editor for common . 1d(1)

lex: generate programs for

. . daps(1)
. ngﬁig(l)

daps(1)

ptx(1

. . uustat(1C)
. mailx(1)

. rjestat(1C)
. spline(1G)

- - lex(l

lexical tasks. lex:

library. /find ordering lorder(1)
library maintainer for ar(l

line. * oo line(1)
line number information from a/ strnF(l)
line numbering filter. “nl(1)
line of a file. cut:cut cut(1)
line printer. lp, cancel: . 1p(1)
line: read one line. line(1)
line-feeds. col(1)
lines common to two sorted . comm(1)
linesinafile. unq(])
lines of one file. /same lines . paste lg
lines of several filesor {)aste 1
link editor for common object . 1d(1)
link or move files. cp(1
lint: a C program checker. . . . lint(1)
list contents of directory. 1s(1)

list of common object file. . nm(1)

UNIX Programmer’s Manual

/produce cross-reference
xargs: construct ar%ument
files. cp,

newgrp:

logname: get

passwd: change

for an object library.

nice: run a command at
requests to an LP line/
send/cancel requests to an
disable: enable/disable
Ipstat: print

information.

directory.

cross-reference listing of/
cross-reference listing of

m4:
formatted with the MM
send mail to users or read
users or read mail.

mail, rmail: send

processing system.
regenerate groups of/ make:
ar: archive and library
SCCS file. delta:

mkdir;

regenerate groups of/
banner:

key.

entries on-line.

shl: shell layer

on-line. man,

man, manprog: print

files. diffmk:

umask: set file-creation mode
eqn, neqn, checkeq: format

maze: generate a

queue, semaphore set or shared
sort: sort and/or

files or subsequent/ paste:

mailx: interactive
or shared/ ipcrm: remove a
mesg: permit or deny

documents formatted with the
documents formatted with the/
document compatibility/
viewgraphs, and slides.

chmod: change

umask: set file-creation

bs: a compiler/interpreter for
touch: update access and

cp, In, mv: copy, link or

‘ cp, In,
viewgraphs, and slides. mmt,
mathematical text for/ eqn,

UNIX Programmer’s Manual

listing of macro files.
list(s) and execute command. .
In, mv: copy, link or move

log in to a new group. newgrp(1)
loginname. logname(1
login password. {)asswd(l)
login:signon, ogin(1)
logname: ﬁet login name. . logname(1)
lorder: find ordering relation . lorder(1)
low priority. nice(1)
II(‘), cancel: send/cancel p

P line printer. lp, cancel: . Ip(1
LP printers. enable, enable(1)
LP status information. lpstatglg
lpstat: print LP status lpstat(1
Is: list contents of 1s(1)
m4: macro processor. m4(1)
macref: produce macref' glg
macro files. macref: produce macref(1
INACTO PrOCESSOT. « « o o o .+ « m4(1)
macros. /print/check documents mm(])
mail. mail, rmail: mail (1
mail, rmail: send mail to mail(l
mail to users or read mail. mail(l
mailx: interactive message mailx (1)
maintain, uFdate, and make(1
maintainer for portable/ ar(1)
make a delta (change) to an delta(1)
make a directory. mkdir(1
make: maintain, update, and make (1
make posters. banner(1

makekey: generate encryption

macref(1)

 Xargs(l

. makekey(1)

man, manprog: print manual . man(l
mManager.+ o . . . shi(1
manprog: print manual entries . man(l
manual entries on-line. . man(]
mark differences between . diﬂ'mk?;
mask. o0 0. .. umask (1
mathematical text for nroff or/ . eqn(1)
maze: generate a maze. . mazeg6;
MAZE. + o o o o o o o o o o & maze(6
memory id. /remove a message . ipcrm(1)
merge files. sort(1
merge same lines of several . paste 1;
mesg: permit or deny messages. . mes;F 1
message processing system. . . . mailx(1)
message queue, semaphore set . ipcrm(1)
MESSAZES. + « o o o o b o . . mesg(1)
mkdir: make a directory. mkdir (1)
MM macros. /print/check . mm(1
mm, osdd, checkmm: print/check mm(1

mmlint: sroff/ MM nroff/ MM

. mmlint(1)

mmt, mvt: typeset documents, . mmt(1)
mode. . . v v v v e e 0oe . chmod(lg
mode mask. umask(1
modest-sized programs. bs(l)
modification times of a file. . . . touch(l)
moo: guessing game. moo(6
move files. cp(l

mv: copy, link or move files. . cp(l

mvt: typeset documents, . mmt(1)
neqn, checkeq: format eqn(l

Commands and Utilities—xxiii

commands. stat: statistical
a text file.

news: print
priority.

object file.

han%q})s and quits.

9700 printer. x9700 - prepare
format mathematical text for
tbl: format tables for

typeset text.

mmlint: sroff/MM

constructs. deroff: remove
_nl; line

graphics: access graphical and
common/ convert: convert
dump selected parts of an
nm: print name list of common
information from a common
1d: link editor for common
print section sizes of common
find ordering relation for an

od:-

manprog: print manual entries
join: relational database

stty: set the

getopt: parse command

object library. lorder: find
documents formatted with/ mm,
tc,

text. nroff,

tc, otc: troft

chown, chgrp: change

and expand files.

4014 terminal. 4014:

getopt:

i)asswd: change login
several files or subsequent/
dirname: deliver portions of
fgrep: search a file for a
processing language. awk:
expand files. pack,

cc
truth value about youri

mesg:

. ptx:

terminals. pg: file

soft-copy terminals.

/for the Autologic APS-5
drawing simple pictures.

for drawing simple

split: split a file into

. . tee:

and library maintainer for
basename, dirname: deliver

) banner: make
Autologic APS-5/ daps, dil0:

xxiv—Commands and Utilities

network useful with graphical . stat(1G)
newform: change the format of . newform(1)
newgrp: log in to a new group. . newgrf(l
news items. o0 . . . news
news: print news items. news(l
nice; run a command at low . . nice(1)
nl: line numbering filter. . nl(1)
nm: print name list of common . nm(1)
nohup: run a command immune to nohu@(l)
nroff documents for the Xerox . x9700(1)
nroff or troff. /checkeq: . eqn(l)
nroffor troff. tbl (1)
nroff, otroff: formator nroff(1)
nroff/MM document/ mmlint(1)
nroff/troff, tbl, and eqn deroff (1
numbering filter. ni(1)
numerical commands. graphics(1G)
object and archive files to . . convert(1)
object file. dump: dump(1)
objectfile. nm(
object file. /and line number . . str1{) D
object files. 1d(1)
object files. size: size(1)
object library. lorder: lorder(1)
octaldump.” od(1
od: octaldump. od(1
on-line. man, man(1)
operator. 4 . 0 . . join(1
options for a terminal. stty(1
options. e e e e f,etopt(l)
ordering relation foran lorder(1)
osdd, checkmm: print/check . . mm(1)
otc: troff output interpreter. . tc(l)
otroff: format or typeset . . nroff (1)
output interpreter. tc(l
OWNer OT group. « « « « « - - chown (1)
pack, pcat, unpack: compress . . pack(1)
paginator for the TEKTRONIX 4014(1)
parse command options. getopt(l)
passwd: change login password. . passwd(1l
password. T passwd (1
paste: merge same lines of aste(1)
path names. basename, asename (1)
pattern. grep, egrep, grep(1)
pattern scanning and awk(l
pcat, unpack: compress and . . pack(1)
pcc: C compiler. cc(l)
pdpl1, u3b, u3bs, vax: provide . machid(1)
permit or deny messages. . . mesg(1)
permuted indéx. ptx(1)
perusal filter for soft-copy pgglg ,
pﬁ: file perusal filter for . . pgl
p ototyt;f)esetter and the Imagen/ daps(1)
pic: troff preprocessor for .. p!c?;
pictures. /troff preprocessor . . pic(l
PieCes. « v v . e v e e e . split (1)
pipe fitting. tee(l)
portable archives. /archive . . . ar(l)
portions of path names. . basename(1)
osters. banner(1)
ostprocessors for the daps(1)
pr:print files. pr(l

UNIX Programmer’s Manual

the Xerox 9700/ x9700 -
the Xerox 9700/ dx9700:
cpp: the C language
simple pictures. pic: troff
unget: undo a

prs:

date:

cal:

of a file. sum:

editing activity. sact:
cat: concatenate and

pr:
Ipstat:

man, manprog:

object file. nm:

system. uname:

news:

file(s). acctcom: search and
object files. size:

names. id:

formatted/ mm, osdd, checkmm:
the Imagen Imprint-10 laser
documents for the Xerox 9700
requests to an LP line
documents for the Xerox 9700
disable: enable/disable LP
nice: run a command at low
acctcom: search and print
timex: time a command; report
kill: terminate a

. . ps: report

wait: await completion of

awk: pattern scanning and
mailx: interactive message

. m4: macro
provide truth value about your
listing of macro/ macref:

prof: display
standard/restricted command
arithmetic:

pdpll, u3b, udbs, vax:

true, false:

. tput:
ipcrm: remove a message
command immune to hangups and

fsplit: split f77,

dialect.

ratfor:

rmail: send mail to users or

line:

ed,

o compile.

make: maintain, update, and
regcmp:

sorted files. comm: select or
lorder: find ordering

UNIX Programmer’s Manual

prepare nroff documents for
prepare troff documents for

. . x9700(1)
. dx9700(1)

PIEPTOCESSOT. o & « & & o « « . cpp(1)
preprocessor for drawin§ .o v . pic(l)
previous get of an SCCS file. . . unget(1)
print an SCCS file. e« ... prs(l)
print and set the date. date(1)
print calendar. cal(1
print checksum and block count . sum(1)
print current SCCS file . sact(1)
print files. cat(1)
print files.

print LP status information.

1
X {gs(ta)t(l)

print manual entries on-line. . . man(l
print name list of common . nm(1)
print name of current UNIX . . uname(l
print news items. news (1)

print process accounting .
print section sizes of common . .
print user and group IDs and . .
print/check documents .
printer. /phototypesetter and
printer. /prepare troff
printer. /cancel: send/cancel
printer. /- prepare nroff

printers. enable,
Priority. .« « o ¢ o o o o o o
process accounting file(s).

.......

.. m
. d
d

1

. acctcom(1)

sizeSt)
mD
iB%OO(l)
(1)

T ¥9700(1)

enable(1)
nice(1)

. acctcom(1)

process data and system/ . . timex(1
PrOCESS. & o o o o o s o 4 o W kill(1)
process status. ps(1)
PrOCESS. « o v o v v v 0 o0 a0 s wait(1)
processing language. awk(1
processing system. mailx (1)
PIOCESSOT. o « & o 4 o o o o & m4(1)

processor type. /u3b5, vax: . . .
produce cross-reference

machid (1)

. . macref(1)

prof: display profile data. . . . prof(l
profiledata. prof(1
programming language. /the . . sh(l)
provide drill in number facts. . . arithmetic(6)
provide truth value about your/ . machid(1
provide truth values. true(1)
prs: print an SCCS file. « . prs()

ps: report process status. . ps(l)

ptx: permuted index. ptx(1)
pwd: working directory name. . pwd(l
query terminfo database. tput (1
queue, semaphore set or shared/ ipcrm(1)
quits. nohup:runa nohup(1)
quiz: test your knowledge. . uiz&)
ratfor,orefl files. split (1)
ratfor: rational Fortran . . ratfor(1l
rational Fortran dialect. . ratfor(l
read mail. mail, mail(1
readone line. line(1)
red: text editor. ed(1)
regcmp: regular expression . regcm(p(l)
regenerate groups of programs. . make(1)
regular expression compile. . . . regemp(1)
reiec; lines common to two . . . commgl
relation for an object/ lorder(1

Commands and Utilities—xxv

join:

calendar:

ct: spawn getty to a

ﬁfé. r)rlndel:

semaphore set or/ ipcrm:
rm, rmdir;

eqn constructs. deroff:

' . uniq: report
console. rjestat: RJE status
communication/ ipcs:
timex: time a command;

ps:
file. uniq:

sar: system activity

Ip, cancel: send/cancel

col: filter

gather files and/or submit
Interactive status/ rjestat:
interactive status console.
directories.

read mail. mail,

. S file.

directories. rm,

/tekset, td: graphical device
graphical table of contents
standard/restricted/ sh,
nice:

hangups and quits. nohup:
editing activity.

 bfs: big file

language. awk: pattern

the delta commentary of an
comb: combine

make a delta (change) to an
sact: print current

get: get a version of an

prs: print an

rmdel: remove a delta from an
compare two versions of an
undo a previous get of an
val: validate

admin: create and administer
what: identify

. _of an SCCS file.
display editor based on/ vi:

program.
] greP, egrep, fgrep:
accounting file(s). acctcom:
jotto:

files. size: print

to two sorted files. comm:
greek:

of a file. cut: cut out

file. dump: dump

ipcrm: remove a mes_saﬁe chue,
and/or submit RJE jobs.

. mail. mail, rmail:

line printer. Ip, cancel:

xxvi—Commands and Ultilities

relational database operator. . . join(1)
reminder service. calendar(1)
remote terminal. ct(1C)
remove a delta from an SCCS . rmde1§l;
remove a message queue, . . . ipcrmf(l
remove files or directories. . . Tm
remove nroff/troff, tbl, and . . . deroff(1)
repeated lines in a file. uniq(l
report and interactive status . . rjestat(1C)

report inter-process ipes(1)
report process data and system/ . timex(1)
report process status. ps(1)
report repeated linesina . . . unlggl)
TEPOItET. « v o & & o o o o o« & sar(]
requests to an LP line/ Ip(1)
reverse line-feeds. col(1)
RJE jobs. send, gath: send(1C)
RJE status reportand r]estatglcg
rjestat: RJE status report and . rjestat(1C

rm, rmdir: remove filesor . . . rm(l)
rmail: send mail to users or . . mail(l
rmdel: remove a delta from an . rmdel(1)

rmdir: remove filesor rm(1
routines and filters. gdev(1G)
routines. t0C: toc(1G)
rsh:shell, the sh(1)

run a command at low priority. . nice(1)
run a command immune to ." . . nohup(1)
sact: print current SCCS file . . sact(1)
sag: system activity graph. . . . sag(1G)
sar: system activity reporter. . . sar(l
SCANMET. + & v o o o o o o o &« bfs(1
scanning and processing awk(l
SCCS delta. cdc: change . . . cdc(1)

SCCSdeltas. . . . « comb(1)
SCCS file. delta: delta(1)
SCCS file editing activity. . . . sact(l)
SCCSfile. get(1
SCCSfile. prs(1
SCCSfile. .+ . v v oo ... rmdel (1
SCCS file. scesdiff: scesdiff (1)
SCCS file. unget: . . « unget(1)
SCCSfile. val(1
SCCSfiles. . . v v v v« .. admin(1)
SCCSfiles. what(1

scesdiff: compare two versions . scesdiff (1)
screen-oriented (visual) vi(l)

sdb: symbolic debxégﬁer. .« . . sdb(1)
sdiff: side-by-side difference . sdiﬂ'glg
search a file for a pattern. . . . grep(l
search and print process acctcom(l)

secret word game. jotto(6)
section sizes of common object . size(l)
sed: stream editor. sed(1)
select or reject lines common . . comm(1)
select terminal filter. greek(1)

selected fields of each line . . . cut(])
selected parts of an object . . . dump(l)
semaphore set or sharéed memory/ ipcrm(1)
send, gath: gather files sengiﬁlC)
send mail to users or read . . . mail(1)
send/cancel requests to an LP . Ip(1)

UNIX Programmer’s Manual

standard/restricted command/
queue, semaphore set 1'(lylr

shl:

command programming/ sh, rsh:

program. sdiff:

login:

lex: generate programs for
troff preprocessor for drawing
common object files.

size: print section

an interval,

documents, viewgraphs, and
spline: interpolate

sno:
pg: file perusal filter for
sort:

. tsort: topological
or reject lines common to two
terminal. ct:

hashcheck: find spelling/
spelling/ spell, hashmake
spellin, ashcheck: find
curve.

split:

csplit: context

files. fsplit:

pieces.

compatibility/ mmlint:

sh, rsh: shell, the

useful with graphical/
with graphical/ stat:

status report and interactive
lfstat: print LP

control. uustat: uucp
communication facilities

ps: report process

status console. rjestat: RJE
sed:

number information from a/
information from a/ strip:
terminal.

another user.

gath: gather files and/or
/same lines of several files or
count of a file.

du:

sync: update the

_ su: become

interval. sleep:

information from/ strip: stclﬁ)p
sdb:

toc: %ra hical
tbl: format
tabs: set

a file.
Hewlett-Packard 2645A terminal

UNIX Programmer’s Manual

sh, rsh: shell, the sh(1)
shared memory id. /a message . 1gcrm(1)
shell layer manager. shl(1)
shell, the standard/restricted sh(1)

shl: shell layer manager. shi(1
side-by-side difference sdiff (1)
signon. 0. login(1
simple lexical tasks. quglg
simple pictures. pic: pic(]

size: print section sizes of s;zeglg
sizes of common object files. size(l
sleep: suspend execution for sleep(1)
slides. mmt, mvt: typeset mmt(1)
smooth curve. spline(1G)
sno: SNOBOL interpreter. snoglg
SNOBOL interpreter. sno(l
soft-copy terminals. ps(1)

sort and/or merge files. . sort}lg
sort: sort and/or merge files. sort(1
SOTE. v v o v v e v e v e e tsort(1
sorted files. comm: select comm (1
spawn getty to a remote ct(1C
spell, hashmake, spellin, spell(1
spellin, hashcheck: find . . spell(1
spelling errors. /hashmake, . . spell(l
spline: interpolate smooth . . . spline(1G)
split a file into pieces. split(l
split. e csplit(1)
split £77, ratfor, orefl fsplit(1)
split: split a fileinto sp 1ti1)
sroff: format text. sroff(1)
sroff/MM nroff/ MM document . mmlint(1)
standard/restricted command/ sh(l

stat: statistical network . . stat lG;
statistical network useful stat(1G
status console. rjestat: RJE . rjestat(1C)
status information. lpstat(1)
status inquiry and job uustat(1C)
status. /report inter-process . ipes(1)
SATUS. & v v 4 e e e e e e . ps(1)

status report and interactive
stream editor.

oooooooo

. . rjestat(1C)

sed(1

strip: striﬂ symbol and line . strip?;
strip symbol and line number . . strip(l
stty: set the options fora stty(1)
su: become super-useror sull
submit RJE jobs. send, . . send(10)
subsequent lines of one file. . . paste(1)
sum: print checksum and block . sumSl
summarize disk usage. du(l
super block. sync(1)
super-user or another user. su(1)
suspend execution for an . sleep(1)
symbol and line number strip(1)
symbolic debugger. sdb(1)
sync: update the super block. sync(1)
table of contents routines. toc(1G)
tables for nroff or troff. tbl(1
tabson a terminal. tabs 13
tabs: set tabs on a terminal. tabs(1

tail: deliver the last part of . . .
tape file archiver. hpio:

- . hpio(1)

Commands and Utilities—xxvii

tar:

programs for simple lexical
deroff: remove nroff/troff,
or troff.

interpreter. -

hpd, erase, hardcopy, tekset,

hpd, erase, hardcopy,

4014. Ea inator for the

for the TE ONIX 4014
functions of the DASI 450
ct: spawn getty to a remote
greek: select

stty: set the options for a
tabs: set tabs on a

hpio: Hewlett-Packard 2645A
tty: get the name of the
functions of DASI 300 and 300s
2640 and 2621-series

perusal filter for soft-cow
kill:

tput: quer
command.
quiz:

ed, red:

ex:
casual users). edit:

change the format of a
/checkeq: format mathematical
tfypesettmg. troff:

otroff: format or typeset

sroff: format

ttt, cubic:

data and system/ timex:

time:

execute commands at a later

update access and modification
process data and system/
contents routines.

tsort:

modification times of a file.

tr:

9700 printer. dx9700: prepare
mathematical text for nroff or
.) tc, otc:

simple pictures. pic:

format tables for nroft or
typesetting.

values.

pdpll, u3b, u3bs, vax: provide
true, false: provide

terminal.

file: determine file

value about your processor
and slides. mmt, mvt:

xxviii—Commands and Utilities

tar: tape file archiver. tar(1
tasks. lex: generate lex(l
tbl, and eqn constructs. deroff(1)
tbl: format tables for nroff . . . tbl(1)

tape file archiver. tar%l%

tc, otc: troff output te(l
td: graphical device routines/ . . gdey(1G)
tee: pipe fitting. tee(1)

tekset, td: Iglra hical device/ . . gdev(1G)
TEKTRONIX 4014 terminal. . 014&1;
terminal. 4014: paginator . . . 4014(]
terminal. 450: handle special . . 450(1;

terminal. ., ct(1C
terminal filter. greek (1)
terminal. stty(1)
terminal. tabs(1
terminal tape file archiver. . . . hpio(l
terminal. PR ttg(l
terminals. /handle special 300(1)

terminals. /of Hewlett-Packard . hp(1

terminals. pg:file E% 1
terminate a process. 11(1)
terminfo database, tput(1)
test: condition evaluation test(])
test your knowledge. quiz(6)
texteditor. ed(1
texteditor. ex(1
text editor (variant of ex for . . edit(1)
text file. newform: newform(1)
text for nroff or troff. eqn(1)
text formattingand troff (1)
text. nroff, nroff (1)
1. sroff (1)
tC-tac-toe. v « « v 4 . . oo . . ttt(6)
time a command; report process timex(l)
time a command. time (1)
time. at, batch: at(1)
time: time a command. time(l)
times of a file. touch: touch (1)
timex: time a command; report . timex(1)
toc: graphical tableof toc(1G)
topological sort. tsort(1)
touch: update access and touch(l)
tplot: graphics filters. tplot (1G)

tput: query terminfo database. . tput(1)

tr: translate characters. tr(l
translate characters. tr(l1

troff documents for the Xerox . dx9700(1)
troff. /neqn, checkeq: format . . eqn(1)
troff output interpreter. tc(l)
troff pref)rocessor for drawing . pic(1)
troff. tbl: tbl(1)
troff: text formatting and . . . troff(1)
true, false: provide truth true(1)
truth value about your/ machid(1)

truth values. true(1)
tsort: topological sort. tsort(1)
ttt, cubic: tic-tac-toe. ttt(6)
tty: get the name of the ttly(l)
157+, file(1)

type. /vax: provide truth machid(1)
typeset documents, viewgraphs, . mmt(1)

UNIX Programmer’s Manual

nroff, otroff: format or
troff: text formatting and
value about your/ pdpll,
about your/ pdpll, u3b,
mask.

UNIX system.

file. unget:

an SCCS file.

a file.

execution. uux:

uuto, uupick: public

files. pack, pcat,

times of a file. touch:

of programs. make: maintain,
., Sync

du: summarize disk

stat: statistical network

id: print

crontab:

become super-user or another
write: write to another
(variant of ex for casual
mail, rmail: send mail to
gutil: graphical

control. uustat:

system to UNIX system copy.
UNIX system copy. uucp,
system copy. uucp, uulog,
system file copy. uuto,

and job control.
UNIX-to-UNIX system file/
command execution.

val:

/u3b, u3bs, vax: provide truth
true, false: provide truth
users). edit: text editor

your/ pdpll, u3b, udbs,

ve:

. get. get a

. scesdiff: compare two

display editor based on ex.
mmt, mvt: typeset documents
on ex. Vi screen-oriente

process.

who:

cd: change
pwd:
write:

hunt-the-wumpus.

documents for the Xerox 9700/
list(s) and execute command.
troff documents for the

nroff documents for the
compiler-compiler.

UNIX Programmer’s Manual

typeset teXt. . .+ .+ . . 0 . . . nroff(1)
tyﬁ)esctting. e e e troff(1)
u3b, u3b5, vax: provide truth machidglg
u3b$, vax: provide truth value machid (1
umask: set file-creation mode umask%l)
uname: print name of current . . uname(1)
undo a previous get of an SCCS ungctglg
unget: undo a previous get of unget (1
uniq: report repeated lines in uniq(1)
units: conversion program. . . . units(l
UNIX-to-UNIX system uux(1C
UNIX-to-UNIX system file copy. uuto%l O
ungack: compress and expand pack(1)
update access and modification touchélg
update, and regenerate groups . make(l
update the super block. zync(l)
USAZE. o = o o o o o o o o o u(l)
useful with graphical/ stat(1G)
user and group IDs and names. id(1)
user crontabfile. crontab(1)
USET. SUI « o v o o o o o o o & su(l

SEL. v+ et e e e e e e e s write(1)
users). edit: text editor . edit(1)
users or read mail. mail(1)
utilities. gutil(1G)
uucp status inquiry and f\(l)b . . uustat(1C)
uucp, uulog, uuname: UNIX . . uucp(1C
uulog, uuname: UNIX system to uucp(1C
uuname: UNIX system to UNIX uucp(1C
uupick: public UNIX-to-UNIX . uuto(1C)

uustat: uucp status inquiry

. uustat(1C)

uuto, uupick: public uuto(1C)
uux: UNIX-to-UNIX system . . uwux(1C)
val: validate SCCS file. val(l
validate SCCSfile. val(l

value about your processor/
values.00 .
(variant of ex for casual
vax: provide truth value about

. machid(1)

true(l
edit(1)

. machid(1)

vc: version control. ve(l
version control. ve(]
version of an SCCS file. . get(1)

versions of an SCCS file. .

. scesdiff (1)

vi: screen-oriented (visual) . vi(D)
viewgraphs, and slides. . mmt(1)
(visual) display editor based . vi(D
wait: await completion of . wait(1)
we:word count, well
what; identify SCCS files. . . . what(1)
who is on the system. whogl
who: who is on the system. . . . who(l
working directory. cd(l)
working directory name. pwd(1)
write to another user. WI‘ltC?;
write: write to another user. write(]
wumg; the gameof wum 26;
x9700 - prepare nroff x9700(1
xargs: construct argument . . . xargs(l
Xerox 9700 printer. /prepare . . dx9700(1)
Xerox 9700 printer. /- prepare . x9700(1
yacc: yet another yacc(1)

Commands and Utilities—xxix

INTRO(1) INTRO(1)

NAME
intro — introduction to commands and application programs

DESCRIPTION
This section describes, in alphabetical order, publicly-accessible
commands. Certain distinctions of purpose are made in the head-
ings:
(0 Commands of general utility.
(1C) Commands for communication with other systems.
(1G) Commands used primarily for graphics and computer-

aided design.

COMMAND SYNTAX
Unless otherwise noted, commands described in this section accept
options and other arguments according to the following syntax:

name loption(s)] [emdarg(s)]

where:
name The name of an executable file.
option — noargletter (s) or,

— argletter <>optarg
where <> is optional white space.

noargletter A single letter representing an option without an

argument.
argletter A single letter representing an option requiring an
argument.
optarg Argument (character string) satisfying preceding
. argletter.
cmdarg Path name (or other command argument) not

beginning with — or, — by itself indicating the
standard input.
SEE ALSO
getopt(1).
exit(2), wait(2), getopt(3C) in the UNIX Programmer’s
Manual —Volume 2: System Calls and Library Routines.
How to Get Started, at the front of this volume.

DIAGNOSTICS
Upon termination, each command returns two bytes of status, one
supplied by the system and giving the cause for termination, and
(in the case of “normal” termination) one supplied by the program

UNIX Programmer’s Manual Commands and Utilities—1

INTRO(1) INTRO(1)

(see wait(2) and exit(2)). The former byte is O for normal termi-
nation; the latter is customarily O for successful execution and
non-zero to indicate troubles such as erroneous parameters, bad or
inaccessible data, or other inability to cope with the task at hand.
It is called variously “exit code”, “exit status”, or “return code”,
and is described only where special conventions are involved.

BUGS
Regretfully, many commands do not adhere to the aforementioned
syntax. '

WARNINGS
Some commands produce unexpected results when processing files
containing null characters. These commands often treat text input
lines as strings and therefore become confused upon encountering a
null character (the string terminator) within a line.

2—Commands and Ultilities UNIX Programmer’s Manual

300(1) 300(1)

NAME
300, 300s — handle special functions of DASI 300 and 300s termi-
nals

SYNOPSIS
300 [+121[=n][=dtlc]

300s [+121[—n 1 [—dtlc]

DESCRIPTION

The 300 command supports special functions and optimizes the
use of the DASI 300 (GSI 300 or DTC 300) terminal; 300s per-
forms the same functions for the DASI 300s (GSI 300s or DTC
300s) terminal. It converts half-line forward, half-line reverse, and
full-line reverse motions to the correct vertical motions. It also
attempts to draw Greek letters and other special symbols. It per-
mits convenient use of 12-pitch text. It also reduces printing time
5 to 70%. The 300 command can be used to print equations
neatly, in the sequence:

neqn file ... | nroff | 300

WARNING: if your terminal has a PLOT switch, make sure it is
turned on before 300 is used.

The behavior of 300 can be modified by the optional flag argu-
ments to handle 12-pitch text, fractional line spacings, messages,
and delays.

+12 permits use of 12-pitch, 6 lines/inch text. DASI 300 ter-
minals normally allow only two combinations: 10-pitch,
6 lines/inch, or 12-pitch, 8 lines/inch. To obtain the
12-pitch, 6 lines per inch combination, the user should
turn the PITCH switch to 12, and use the +12 option.

-n controls the size of half-line spacing. A half-line is, by
default, equal to 4 vertical plot increments. Because
each increment equals 1/48 of an inch, a 10-pitch line-
feed requires 8 increments, while a 12-pitch line-feed
needs only 6. The first digit of n overrides the default
value, thus allowing for individual taste in the appear-
ance of subscripts and superscripts. For example, nroff
half-lines could be made to act as quarter-lines by using
—2. The user could also obtain appropriate half-lines
for 12-pitch, 8 lines/inch mode by using the option —3
alone, having set the PITCH switch to 12-pitch.

UNIX Programmer’s Mamial ‘ Commands and Utilities—3

300(1) 300(1)

—dt,l,c controls delay factors. The default setting is —d3,90,30.
DASI 300 terminals sometimes produce peculiar output
when faced with very long lines, too many tab charac-
ters, or long strings of blankless, non-identical charac-
ters. One null (delay) character is inserted in a line for
every set of ¢ tabs, and for every contiguous string of ¢
non-blank, non-tab characters. If a line is longer than /
bytes, 1+(total length)/20 nulls are inserted at the end
of that line. Items can be omitted from the end of the
list, implying use of the default values. Also, a value of
zero for ¢ (c) results in two null bytes per tab (charac-
ter). The former may be needed for C programs, the
latter for files like /etc/passwd. Because terminal
behavior varies according to the specific characters
printed and the load on a system, the user may have to
experiment with these values to get correct output. The
—d option exists only as a last resort for those few cases
that do not otherwise print properly. For example, the
file /etc/passwd may be printed using —d3,30,5. The
value —d0,1 is a good one to use for C programs that
have many levels of indentation.

Note that the delay control interacts heavily with the
prevailing carriage return and line-feed delays. The
stty(1) modes nl0 cr2 or nl0 cr3 are recommended for
most uses.

The 300 command can be used with the nroff —s flag or .rd
requests, when it is necessary to insert paper manually or change
fonts in the middle of a document. Instead of hitting the return
key in these cases, you must use the line-feed key to get any
response.

In many (but not all) cases, the following sequences are
equivalent:

nroff —T300 files ... and nroff files ... | 300
nroff —~T300—12 files ... and nroff files ... | 300 +12

The use of 300 can thus often be avoided unless special delays or
options are required; in a few cases, however, the additional move-
ment optimization of 300 may produce better-aligned output.

SEE ALSO
450(1), eqn(1), graph(1G), mesg(1), nroff(1), stty(1), tabs(1),
tbl(1), tplot(1G).

4—Commands and Ultilities UNIX Programmer’s Manual

300(1) 300(1)

BUGS

Some special characters cannot be correctly printed in column 1
because the print head cannot be moved to the left from there.

If your output contains Greek and/or reverse line-feeds, use a
friction-feed platen instead of a forms tractor; although good
enough for drafts, the latter has a tendency to slip when reversing
direction, distorting Greek characters and misaligning the first line
of text after one or more reverse line-feeds.

UNIX Programmer’s Manual Commands and Utilities—5

4014(1) 4014(1)

NAME
4014 — paginator for the TEKTRONIX 4014 terminal

SYNOPSIS
4014 [—t1[—n][—=cN1I[—pL 11 file]

DESCRIPTION

The output of 4014 is intended for a TEKTRONIX 4014 terminal;
4014 arranges for 66 lines to fit on the screen, divides the screen
into NV columns, and contributes an eight-space page offset in the
(default) single-column case. Tabs, spaces, and backspaces are
collected and plotted when necessary. TELETYPE® Model 37 half-
and reverse-line sequences are interpreted and plotted. At the end
of each page, 4014 waits for a new-line (empty line) from the key-
board before continuing on to the next page. In this wait state,
the command !emd will send the cmd to the shell.

The command line options are:

—t Do not wait between pages (useful for directing output
into a file).
-n Start printing at the current cursor position and never

erase the screen.

—cN Divide the screen into N columns and wait after the last
column.

—pL Set page length to L; L accepts the scale factors i (inches)
and 1 (lines); default is lines.

SEE ALSO
pr(1), tc(1), troff(1).

6—Commands and Ultilities UNIX Programmer’s Manual

450(1) 450(1)

NAME

450 — handle special functions of the DASI 450 terminal
SYNOPSIS

450
DESCRIPTION

The 450 command supports special functions of, and optimizes the
use of, the DASI 450 terminal, or any terminal that is functionally
identical, such as the DIABLO 1620 or XEROX 1700. It converts
half-line forward, half-line reverse, and full-line reverse motions to
the correct vertical motions. It also attempts to draw Greek letters
and other special symbols in the same manner as 300(1). Use 450
to print equations neatly, in the sequence:

neqn file ... | nroff | 450

WARNING: make sure that the PLOT switch on your terminal is
ON before 450 is used. The SPACING switch should be put in the
desired position (either 10- or 12-pitch). In either case, vertical
spacing is 6 lines/inch, unless dynamically changed to 8 lines per
inch by an appropriate escape sequence.

Use 450 with the nroff —s flag or .rd requests when it is necessary
to insert paper manually or change fonts in the middle of a docu-
ment. Instead of hitting the return key in these cases, you must
use the line-feed key to get any response.

In many (but not all) cases, the use of 450 can be eliminated in
favor of one of the following:

nroff —T450 files ...
or
nroff —T450—12 files ...

The use of 450 can thus often be avoided unless special delays or
options are required; in a few cases, however, the additional move-
ment optimization of 450 may produce better-aligned output.

SEE ALSO
300(1), eqn(1), graph(1G), mesg(1), nroff(1), stty(1), tabs(1),
tbl(1), tplot(1G).

BUGS
Some special characters cannot be correctly printed in column 1
because the print head cannot be moved to the left from there.
If your output contains Greek and/or reverse line-feeds, use a
friction-feed platen instead of a forms tractor; although good

UNIX Programmer’s Manual Commands and Utilities—7

450(1) 450(1)

enough for drafts, the latter has a tendency to slip when reversing
direction, distorting Greek characters and misaligning the first line
of text after one or more reverse line-feeds.

8—Commands and Ultilities UNIX Programmer’s Manual

ACCTCOM (1) ACCTCOM(1)

NAME

acctcom — search and print process accounting file(s)
SYNOPSIS

acctcom [[options][file]l] . . .
DESCRIPTION

Acctcom reads file, the standard input, or /usr/adm/pacct, in the
form described by acct(4) and writes selected records to the stan-
dard output. Each record represents the execution of one process.
The output shows the COMMAND NAME, USER, TTYNAME,
START TIME, END TIME, REAL (SEC), CPU (SEC), MEAN
SIZE(K), and optionally, F (the fork/exec flag: 1 for fork without
exec), STAT (the system exit status), HOG FACTOR, KCORE MIN,
CPU FACTOR, CHARS TRNSFD, and BLOCKS /WD (total blocks
read and written).

The command name is prepended with a # if it was executed with
super-user privileges. If a process is not associated with a known
terminal, a ? is printed in the TTYNAME field.

If no files are specified, and if the standard input is associated with
a terminal or /dev/null (as is the case when using & in the shell),
/usr/adm/pacct is read; otherwise, the standard input is read.

If any file arguments are given, they are read in their respective
order. Each file is normally read forward, i.e., in chronological
order by process completion time. The file /usr/adm/pacct is usu-
ally the current file to be examined; a busy system may need
several such files of which all but the current file are found in
/usr/adm/pacct?. The options are:

—a Show some average statistics about the processes
selected. The statistics will be printed after the out-
put records.

=b Read backwards, showing latest commands first.
This option has no effect when the standard input is
read.

-f Print the fork/exec flag and system exit status
columns in the output.

-h Instead of mean memory size, show the fraction of

total available CPU time consumed by the process
during its execution. This “hog factor” is computed
as: '

(total CPU time)/(elapsed time).

UNIX Programmer’s Manual Commands and Utilities—9

ACCTCOM(1)

—-i

-—m
-r

-y
—1 line
—u user

—g group

—s time
—e time

—S time
—E time

—n pattern

-q

—o ofile
—H factor
-0 sec
—C sec

—1I chars

10—Commands and Utilities

ACCTCOM(1)

Print columns containing the I/O counts in the out-
put.)

Instead of memory size, show total kcore-minutes.
Show mean core size (the default).

Show CPU factor (user time/(system-time + user-
time).

Show separate system and user CPU times.

Exclude column headings from the output.

Show only processes belonging to terminal /dev/line.
Show only processes belonging to user that may be
specified by: a user ID, a login name that is then
converted to a user ID, a # which designates only
those processes executed with super-user privileges,
or ? which designates only those processes associated
with unknown user IDs.

Show only processes belonging to group. The group
may be designated by either the group ID or group
name.

Select processes existing at or after time, given in
the format hr [:min:sec1l.

Select processes existing at or before time .

Select processes starting at or after time.

Select processes ending at or before time. Using the
same time for both —S and —E shows the processes
that existed at time.

Show only commands matching pattern that may be
a regular expression as in ed(l) except that +
means one Or more oCcurrences.

Do not print any output records, just print the aver-
age statistics as with the —a option.

Copy selected process records in the input data for-
mat to ofile; supress standard output printing.

Show only processes that exceed factor, where factor
is the “hog factor™ as explained in option —h above.
Show only processes with CPU system time exceed-
ing sec seconds.

Show only processes with total CPU time, system
plus user, exceeding sec seconds.

Show only processes transferring more characters
than the cut-off number given by chars.

UNIX Programmer’s Manual

ACCTCOM(1) ACCTCOM(1)

FILES
/etc/passwd
/usr/adm/pacct
/etc/group

SEE ALSO
ps(1), su(1).
acct(2), acct(4), utmp(4) in the UNIX Programmer’s Manual —
Volume 2: System Calls and Library Routines.
acct(1M), acctcms(1M), acctcon(1M), acctmerg (1M),
acctprc(1M), acctsh(1M), fwtmp(1M), runacct(1M) in the UNIX
Programmer’s Manual —Volume 3: System Administration Facil-
ities.

BUGS

Acctcom only reports on processes that have terminated; use ps(1)
for active processes. If time exceeds the present time, then time is
interpreted as occurring on the previous day.

UNIX Programmer’s Manual Commands and Utilities—11

ADMIN(1) ADMIN (1)

NAME
admin — create and administer SCCS files

SYNOPSIS
admin [—n] [—ilnamel]l [—rrell [—t[namell [—fflaglflag-valll
[—dflag[flag-vall] [—alogin] [—elogin] [—mlmrlist]]
[—ylcomment]] [—h] [—z] files

DESCRIPTION

Admin is used to create new SCCS files and change parameters of
existing ones. Arguments to admin, which may appear in any
order, consist of keyletter arguments, which begin with —, and
named files (note that SCCS file names must begin with the char-
acters s.). If a named file does not exist, it is created, and its
parameters are initialized according to the specified keyletter argu-
ments. Parameters not initialized by a keyletter argument are
assigned a default value. If a named file does exist, parameters
corresponding to specified keyletter arguments are changed, and
other parameters are left as is.

If a directory is named, admin behaves as though each file in the
directory were specified as a named file, except that non-SCCS files
(last component of the path name does not begin with s.) and
unreadable files are silently ignored. If a name of — is given, the
standard input is read; each line of the standard input is taken to
be the name of an SCCS file to be processed. Again, non-SCCS
files and unreadable files are silently ignored.

The keyletter arguments are as follows. Each is explained as
though only one named file is to be processed since the effects of
the arguments apply independently to each named file.

-n This keyletter indicates that a new SCCS
file is to be created.

—ilnamel The name of a file from which the text for
a new SCCS file is to be taken. The text
constitutes the first delta of the file (see —r
keyletter for delta numbering scheme). If
the i keyletter is used, but the file name is
omitted, the text is obtained by reading the
standard input until an end-of-file is
encountered. If this keyletter is omitted,
then the SCCS file is created empty. Only
one SCCS file may be created by an admin
command on which the i keyletter is

12—Commands and Utilities UNIX Programmer’s Manual

ADMIN (1)

—rrel

—tlnamel

—fflag

cceil

ffloor

UNIX Programmer’s Manual

ADMIN(1)

supplied. Using a single admin to create
two or more SCCS files requires that they
be created empty (no —i keyletter). Note
that the —i keyletter implies the =—n
keyletter.

The release into which the initial delta is
inserted. This keyletter may be used only
if the —i keyletter is also used. If the —r
keyletter is not used, the initial delta is
inserted into release 1. The level of the ini-
tial delta is always 1 (by default initial del-
tas are named 1.1).

The name of a file from which descriptive
text for the SCCS file is to be taken. If the
—t keyletter is used and admin is creating
a new SCCS file (the —n and/or —i
keyletters also used), the descriptive text
file name must also be supplied. In the
case of existing SCCS files: (1) a —t
keyletter without a file name causes remo-
val of descriptive text (if any) currently in
the SCCS file, and (2) a —t keyletter with
a file name causes text (if any) in the
named file to replace the descriptive text (if
any) currently in the SCCS file.

This keyletter specifies a flag, and, possibly,
a value for the flag, to be placed in the
SCCS file. Several f keyletters may be sup-
plied on a single admin command line.
The allowable flags and their values are:

Allows use of the —b keyletter on a get (1)
command to create branch deltas.

The highest release (i.e., “ceiling”), a
number less than or equal to 9999, which
may be retrieved by a get (1) command for
editing. The default value for an
unspecified ¢ flag is 9999.

The lowest release (i.e., “floor””), a number
greater than O but less than 9999, which
may be retrieved by a get (1) command for

Commands and Utilities—13

ADMIN(1)

dsiD

ilszrl

Uist

14—Commands and Utilities

ADMIN(1)

editing. The default value for an
unspecified f flag is 1.

The default delta number (SID) to be used
by a get (1) command.

Causes the "No id keywords (ge6)" message
issued by get(1) or delta(1) to be treated
as a fatal error. In the absence of this flag,
the message is only a warning. The mes-
sage is issued if no SCCS identification key-
words (see get(1)) are found in the text
retrieved or stored in the SCCS file. If a
value is supplied, the keywords must
exactly match the given string, however the
string must contain a keyword, and no
embedded newlines.

Allows concurrent get(1) commands for
editing on the same SID of an SCCS file.
This allows multiple concurrent updates to
the same version of the SCCS file.

A list of releases to which deltas can no
longer be made (get —e against one of
these “locked” releases fails). The list has
the following syntax:

<list> = <range> | <list> , <range>
<range> ::= RELEASE NUMBER | a

The character a in the list is equivalent to
specifying all releases for the named SCCS
file. '

Causes delta(1) to create a “null” delta in
each of those releases (if any) being
skipped when a delta is made in a new
release (e.g., in making delta 5.1 after delta
2.7, releases 3 and 4 are skipped). These
null deltas serve as “anchor points” so that
branch deltas may later be created from
them. The absence of this flag causes
skipped releases to be non-existent in the
SCCS file, preventing branch deltas from
being created from them in the future.

UNIX Programmer’s Manual

ADMIN (1)

qtext

mmod

ttype

vipgm]

—dflag

Uist

—alogin

UNIX Programmer’s Manual

ADMIN (1)

User definable text substituted for all
occurrences of the %Q% keyword in SCCS
file text retrieved by get(1).

Module name of the SCCS file substituted
for all occurrences of the %M% keyword in
SCCS file text retrieved by get(1). If the m
flag is not specified, the value assigned is
the name of the SCCS file with the leading
s. removed.

Type of module in the SCCS file substituted
for all occurrences of %Y% keyword in
SCCS file text retrieved by get (1).

Causes delta(1) to prompt for Modification
Request (MR) numbers as the reason for
creating a delta. The optional value
specifies the name of an MR number vali-
dity checking program (see delta(1)). (If
this flag is set when creating an SCCS file,
the m keyletter must also be used even if its
value is null).

Causes removal (deletion) of the specified
flag from an SCCS file. The —d keyletter
may be specified only when processing
existing SCCS files. Several —d keyletters
may be supplied on a single admin com-
mand. See the —f keyletter for allowable
flag names.

A list of releases to be “unlocked”. See the
—f keyletter for a description of the 1 flag
and the syntax of a list.

A login name, or numerical UNIX system
group ID, to be added to the list of users
which may make deltas (changes) to the
SCCS file. A group ID is equivalent to
specifying all login names common to that
group ID. Several a keyletters may be used
on a single admin command line. As many
logins, or numerical group IDs, as desired
may be on the list simultaneously. If the
list of users is empty, then anyone may add

Commands and Ultilities—15

ADMIN((1)

—elogin

—ylcomment]

—mlmrlist]

16—Commands and Utilities

ADMIN (1)

deltas. If login or group ID is preceded by
a ! they are to be denied permission to
make deltas.

A login name, or numerical group ID, to be
erased from the list of users allowed to
make deltas (changes) to the SCCS file.
Specifying a group ID is equivalent to
specifying all login names common to that
group ID. Several e keyletters may be used
on a single admin command line.

The comment text is inserted into the SCCS
file as a comment for the initial delta in a
manner identical to that of delta(l1).
Omission of the —y keyletter results in a
default comment line being inserted in the
form:

date and time created YY/MM/DD
HH:MM:SS by login

The —y keyletter is valid onmly if the —i
and/or —n keyletters are specified (i.e., a
new SCCS file is being created).

The list of Modification Requests (MR)
numbers is inserted into the SCCS file as
the reason for creating the initial delta in a
manner identical to delta(1). The v flag
must be set and the MR numbers are vali-
dated if the v flag has a value (the name of
an MR number validation program). Diag-
nostics will occur if the v flag is not set or
MR validation fails.

Causes admin to check the structure of the
SCCS file (see scesfile(5)), and to compare
a newly computed check-sum (the sum of
all the characters in the SCCS file except
those in the first line) with the check-sum
that is stored in the first line of the SCCS
file. Appropriate error diagnostics are pro-
duced.

UNIX Programmer’s Manual

ADMIN (1) ADMIN (1)

This keyletter inhibits writing on the file, so
that it nullifies the effect of any other
keyletters supplied, and is, therefore, only
meaningful when processing existing files.

-z The SCCS file check-sum is recomputed
and stored in the first line of the SCCS file
(see —h, above).

Note that use of this keyletter on a truly
corrupted file may prevent future detection
of the corruption.

FILES

The last component of all SCCS file names must be of the form
s.file-name. New SCCS files are given mode 444 (see chmod(1)).
Write permission in the pertinent directory is, of course, required
to create a file. All writing done by admin is to a temporary x-
file, called x.file-name, (see get (1)), created with mode 444 if the
admin command is creating a new SCCS file, or with the same
mode as the SCCS file if it exists. After successful execution of
admin, the SCCS file is removed (f it exists), and the x-file is
renamed with the name of the SCCS file. This ensures that
changes are made to the SCCS file only if no errors occurred.

It is recommended that directories containing SCCS files be mode
755 and that SCCS files themselves be mode 444. The mode of the
directories allows only the owner to modify SCCS files contained in
the directories. The mode of the SCCS files prevents any
modification at all except by SCCS commands.

If it should be necessary to patch an SCCS file for any reason, the
mode may be changed to 644 by the owner allowing use of ed(1).
Care must be taken! The edited file should always be processed by
an admin —h to check for corruption followed by an admin —z to
generate a proper check-sum. Another admin —h is recommended
to ensure the SCCS file is valid.

Admin also makes use of a transient lock file (called z.file-name),
which is used to prevent simultaneous updates to the SCCS file by
different users. See get (1) for further information.

UNIX Programmer’s Manual Commands and Utilities—17

ADMIN(1) ADMIN (1)

SEE ALSO
delta(1), ed(1), get(1), help(1), prs(1), what(1).
sccsfile(4) in the UNIX Programmer’s Manual —Volume 2: Sys-
tem Calls and Library Routines.

DIAGNOSTICS
Use help (1) for explanations.

18—Commands and Utilities UNIX Programmer’s Manual

AR(1) AR(1)

NAME
ar — archive and library maintainer for portable archives

SYNOPSIS
ar key [posname] afile [name] ...

DESCRIPTION
The Ar command maintains groups of files combined into a single
archive file. Its main use is to create and update library files as
used by the link editor. It can be used, though, for any similar
purpose. The magic string and the file headers used by ar consist
of printable ASCII characters. If an archive is composed of print-
able files, the entire archive is printable.

When ar creates an archive, it creates headers in a format that is
portable across all machines. The portable archive format and
structure is described in detail in ar(4). The archive symbol table
(described in ar(4)) is used by the link editor (/d(1)) to effect
multiple passes over libraries of object files in an efficient manner.
An archive symbol table is only created and maintained by ar
when there is at least one object file in the archive. The archive
symbol table is in a specially named file which is always the first
file in the archive. This file is never mentioned or accessible to the
user. Whenever the ar(1) command is used to create or update
the contents of such an archive, the symbol table is rebuilt. The s
option described below will force the symbol table to be rebuilt.

Key is an optional —, followed by one character from the set
drqtpmx, optionally concatenated with one or more of vuaibcls.
Afile is the archive file. The names are constituent files in the
archive file. The meanings of the key characters are:

d Delete the named files from the archive file.

T Replace the named files in the archive file. If the optional
character u is used with r, then only those files with dates
of modification later than the archive files are replaced. If
an optional positioning character from the set abi is used,
then the posname argument must be present and specifies
that new files are to be placed after (a) or before (b or i)
posname. Otherwise new files are placed at the end.

q Quickly append the named files to the end of the archive
file. Optional positioning characters are invalid. The
command does not check whether the added members are
already in the archive. Useful only to avoid quadratic

UNIX Programmer’s Manual Commands and Utilities—19

AR(D) AR(1)

behavior when creating a large archive piece-by-piece.

t Print a table of contents of the archive file. If no names
are given, all files in the archive are tabled. If names are
given, only those files are tabled.

Print the named files in the archive.

=

m Move the named files to the end of the archive. If a posi-
tioning character is present, then the posname argument
must be present and, as in r, specifies where the files are
to be moved.

X Extract the named files. If no names are given, all files in
the archive are extracted. In neither case does x alter the
archive file.

v Give a verbose file-by-file description of the making of a
new archive file from the old archive and the constituent
files. When used with t, give a long listing of all informa-
tion about the files. When used with x, precede each file
with a name.

c Suppress the message that is produced by default when
afile is created.

1 Place temporary files in the local current working direc-
tory, rather than in the directory specified by the environ-
ment variable TMPDIR or in the default directory /tmp.

s Force the regeneration of the archive symbol table even if
ar(1) is not invoked with a command which will modify
the archive contents. This command is useful to restore
the archive symbol table after the strip(1) command has
been used on the archive.

FILES
/tmp/ar* temporaries
SEE ALSO
convert(1), 1d(1), lorder(1), strip(1).

tmpnam(3S), a.out(4), ar(4) in the UNIX Programmer’s
Manual —Volume 2: System Calls and Library Routines.

BUGS
If the same file is mentioned twice in an argument list, it may be
put in the archive twice.

20—Commands and Utilities ~ UNIX Programmer’s Manual

AS(1) AS(1)

NAME
as — common assembler

SYNOPSIS
as [—o objfile] [—=n] [=j] [=m] [=R] [=r] [=[bwll] [-V]
file-name

DESCRIPTION
The as command assembles the named file. The following flags
may be specified in any order:

—o objfile Put the output of the assembly in objfile. By default,
the output file name is formed by removing the .s
suffix, if there is one, from the input file name and
appending a .o suffix.

-n Turn off long/short address optimization. By default,
address optimization takes place.

=j Invoke the long-jump assembler (for some versions of
the common assembler only). The address optimiza-
tion algorithm chooses between long and short address
lengths, with short lengths chosen when possible.
Often, three distinct lengths are allowed by the
machine architecture; a choice must be made between
two of those lengths. When the two choices given to
the assembler exclude the largest length allowed, then
some addresses might be unrepresentable. The long-
jump assembler will always have the largest length as
one of its allowable choices. If the assembler is
invoked without this option, and the case arises where
an address is unrepresentable by either of the two
allowed choices, then the user will be informed of the
error, and advised to try again using the —j option.

-m Run the m4 macro pre-processor on the input to the
assembler.

-R Remove (unlink) the input file after assembly is com-
pleted.

-r Place all assembled data (normally placed in the .data

section) into the .text section (for some versions of the
common assembler only). This option effectively dis-
ables the .data pseudo operation. This option is off by
default.

UNIX Programmer’s Manual Commands and Utilities—21

AS(1) : AS(1)

~[bwll Create byte (b), halfword (w) or long (1) displace-
ments for undefined symbols (for some versions of the
common assembler only). (An undefined symbol is a
reference to a symbol whose definition is external to
the input file or a forward reference.) The default
value for this option is long (I) displacements.

-V Write the version number of the assembler being run
on the standard error output.
FILES
/ust/tmp/as[1-61XXXXXX temporary files
SEE ALSO

1d(1), m4(1), nm(1), strip(1).
a.out(4) in the UNIX Programmer’s Manual —Volume 2: System
Calls and Library Routines.

WARNING
If the —m (m4 macro pre-processor invocation) option is used,
keywords for m4 (see m4(1)) cannot be used as symbols (vari-
ables, functions, labels) in the input file since m4 cannot determine
which are assembler symbols and which are real m4 macros.

Use the: —b or —w option only when undefined symbols are known
to refer to locations representable by the specified default displace-
ment. Use of either option when assembling a file containing a
reference to a symbol that is to be resolved by the loader can lead
to unpredictable results, since the loader may be unable to place
the address of the symbol into the space provided.

BUGS
The .align assembler directive is not guaranteed to work in the
.text section when optimization is performed.

Arithmetic expressions may only have one forward referenced sym-
bol per expression.

22—Commands and Utilities UNIX Programmer’s Manual

ASA(1) ASA(1)

NAME
asa — interpret ASA carriage control characters

SYNOPSIS
asa [files]

DESCRIPTION
Asa interprets the output of FORTRAN programs that utilize ASA
carriage control characters. It processes either the files whose
names are given as arguments or the standard input if no file
names are supplied. The first character of each line is assumed to
be a control character; their meanings are:

r 1

(blank) single new line before printing

0 double new line before printing
1 new page before printing
+ overprint previous line.

Lines beginning with other than the above characters are treated
as if they began with ' '. The first character of a line is not
printed. If any such lines appear, an appropriate diagnostic will
appear on standard error. This program forces the first line of
each input file to start on a new page.

To view correctly the output of FORTRAN programs which use
ASA carriage control characters, asa could be used as a filter thus:

a.out|asa|lp
and the output, properly formatted and paginated, would be
directed to the line printer. FORTRAN output sent to a file could
be viewed by: '

asa file

SEE ALSO
ef1(1), £77(1), fsplit(1), ratfor(1).

UNIX Programmer’s Manual Commands and Utilities—23

AT() - AT(1)

NAME
at, batch — execute commands at a later time

SYNOPSIS
at time [date 1 [+ increment 1
at -rjob...
at -lljob...]

batch

DESCRIPTION
At and batch read commands from standard input to be executed
at a later time. At allows you to specify when the commands
should be executed, while jobs queued with batch will execute
when system load level permits. At -r removes jobs previously
scheduled with ar. The -1 option reports all jobs scheduled for the
invoking user.

Standard output and standard error output are mailed to the user
unless redirected elsewhere. The shell environment variables,
current directory, umask, and ulimit are retained when the com-
mands are executed. Open file descriptors, traps, and priority are
lost.

Users are permitted to use at if their name appears in the file
/usr/lib/cron/at.allow. If that file does not exist, the file
- fusr/lib/cron/at.deny is checked to determine if the user should be
denied access to at. If neither file exists, only root is allowed to
submit a job. If either file is at.demy, global usage is permitted.
The allow/deny files consist of one user name per line.

The time may be specified as 1, 2, or 4 digits. One and two digit
numbers are taken to be hours, four digits to be hours and
minutes. The time may alternately be specified as two numbers
separated by a colon, meaning hour:minute. A suffix am or pm
may be appended; otherwise a 24-hour clock time is understood.
The suffix zulu may be used to indicate GMT. The special names
noon, midnight, now, and next are also recognized.

An optional date may be specified as either a month name fol-
lowed by a day number (and possibly year number preceded by an
optional comma) or a day of the week (fully spelled or abbreviated
to three characters).

Two special “days”, today and tomorrow are recognized. If no
date is given, today is assumed if the given hour is greater than
the current hour and tomorrow is assumed if it is less. If the given

24—Commands and Utilities UNIX Programmer’s Manual

AT(1) AT(1)

month is less than the current month (and no year is given), next
year is assumed.

The optional increment is simply a number suffixed by one of the
following: minutes, hours, days, weeks, months, or years. (The
singular form is also accepted.)

Thus legitimate commands include:

at 0815am Jan 24
at 8:15am Jan 24
at now + 1 day
at 5 pm Friday

At and batch write the job number and schedule time to standard
error.

Batch submits a batch job. It is almost equivalent to ‘“at now”,
but not quite. For one, it goes into a different queue. For another,
“at now” will respond with the error message too late.

At -r removes jobs previously scheduled by at or batch. The job
number is the number given to you previously by the at or batch
command. You can also get job numbers by typing at -l. You can
only remove your own jobs unless you are the super-user.

EXAMPLES
The at and batch commands read from standard input the com-
mands to be executed at a later time. Sh(1) provides different
ways of specifying standard input. Within your commands, it may
be useful to redirect standard output.

This sequence can be used at a terminal:
batch
nroff filename > outfile
<control-D> (hold down ’control’ and depress *D’)

This sequence, which demonstrates redirecting standard error to a
pipe, is useful in a shell procedure (the sequence of output redirec-
tion specifications is significant):

batch <<!

nroff filename 2> &1 > outfile | mail loginid
!

UNIX Programmer’s Manual Commands and Utilities—25

AT(1) AT(1)

To have a job reschedule itself, invoke a¢ from within the shell
procedure, by including code similar to the following within the
shell file:

echo "sh shellfile" | at 1900 thursday next week

FILES .
/usr/lib/cron - main cron directory
/usr/lib/cron/at.allow ~ list of allowed users
/usr/lib/cron/at.deny - list of denied users
/usr/lib/cron/queue - scheduling information
/usr/spool/cron/atjobs - spool area

SEE ALSO

kill(1), mail(1), nice(1), ps(1), sh(1). ‘
cron(1M) in the UNIX Programmer’s Manual —Volume 3: Sys-
tem Administration Facilities.

DIAGNOSTICS
Complains about various syntax errors and times out of range.

26—Commands and Utilities UNIX Programmer’s Manual

AWK (1) AWK (1)

NAME

awk — pattern scanning and processing language
SYNOPSIS

awk [—Fc 1 [prog] [parameters] [files]
DESCRIPTION

Awk scans each input file for lines that match any of a set of pat-
terns specified in prog. With each pattern in prog there can be an
associated action that will be performed when a line of a file
matches the pattern. The set of patterns may appear literally as
prog, or in a file specified as —f file. The prog string should be
enclosed in single quotes (') to protect it from the shell.

Parameters, in the form x=... y=... etc., may be passed to awk.

Files are read in order; if there are no files, the standard input is
read. The file name — means the standard input. Each line is
matched against the pattern portion of every pattern-action state-
ment; the associated action is performed for each matched pattern.

An input line is made up of fields separated by white space. (This
default can be changed by using FS; see below). The fields are
denoted $1, $2, ...; $0 refers to the entire line.

A pattern-action statement has the form:
pattern { action }

A missing action means print the line; a missing pattern always
matches. An action is a sequence of statements. A statement can
be one of the following:

if (conditional) statement [else statement]

while (conditional) statement

for (expression ; conditional ; expression) statement
break V

continue

{ [statement] ...}

variable = expression

print [expression-list 1 [>expression]

printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right
braces. An empty expression-list stands for the whole line.
Expressions take on string or numeric values as appropriate, and

UNIX Programmer’s Manual Commands and Utilities—27

AWK (1) AWK (1)

are built using the operators +, —, *, /, %, and concatenation
(indicated by a blank). The C operators ++, ——, +=, —=,
«=_ /= and % = are also available in expressions. Variables
may be scalars, array elements (denoted x[il) or fields. Variables
are initialized to the null string. Array subscripts may be any
string, not necessarily numeric; this allows for a form of associative
memory. String constants are quoted (").

The print statement prints its arguments on the standard output
(or on a file if >expr is present), separated by the current output
field separator, and terminated by the output record separator.
The printf statement formats its expression list according to the
format (see printf(3S)).

The built-in function length returns the length of its argument
taken as a string, or of the whole line if no argument. There are
also built-in functions exp, log, sqrt, and int. The last truncates
its argument to an integer; substr (s, m, n) returns the n-character
substring of s that begins at position m. The function
sprintf(fmt, expr, expr, ...) formats the expressions according to
the printf(3S) format given by fmt and returns the resulting
string.

Patterns are arbitrary Boolean combinations (!, ||, & &, and
parentheses) of regular expressions and relational expressions.
Regular expressions must be surrounded by slashes and are as in
egrep (see grep(1)). Isolated regular expressions in a pattern
apply to the entire line. Regular expressions may also occur in
relational expressions. A pattern may consist of two patterns
separated by a comma; in this case, the action is performed for all
lines between an occurrence of the first pattern and the next
occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a
matchop is either (for contains) or ! (for does not contain). A
conditional is an arithmetic expression, a relational expression, or a
Boolean combination of these.

The special patterns BEGIN and END may be used to capture con-
trol before the first input line is read and after the last. BEGIN
must be the first pattern, END the last.

28—Commands and Utilities UNIX Programmer’s Manual

AWK(1) AWK (1)

A single character ¢ may be used to separate the fields by starting
the program with:

BEGIN {FS = ¢ }
or by using the —Fc option.

Other variable names with special meanings include NF, the
number of fields in the current record; NR, the ordinal number of
the current record; FILENAME, the name of the current input file;
OFS, the output field separator (default blank); ORS, the output
record separator (default new-line); and OFMT, the output format
for numbers (default %.6g).

EXAMPLES
Print lines longer than 72 characters:

length > 72
Print first two fields in opposite order:
{ print $2, $1 }
Add up first column, print sum and average:

{s+=981]}
END { print "sum is", s, " average is", s/NR }

Print fields in reverse order:
{ for G = NF; i > 0; —=i) print 8$i }

Print all lines between start/stop pairs:
/start/, /stop/

Print all lines whose first field is different from previous one:
$1 '= prev { print; prev = $1 }

Print file, filling in page numbers starting at 5:

/Page/ { $2 = n++;)
{ print }

command line: awk —f program n=>5 input

UNIX Programmer’s Manual Commands and Utilities—29

AWK(1) AWK(1)

SEE ALSO
grep(1), lex(1), sed(1).
malloc(3X) in the UNIX Programmer’s Manual —Volume 2: Sys-
tem Calls and Library Routines.

BUGS
Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To

force an expression to be treated as a number add 0 to it; to force
it to be treated as a string concatenate the null string ("") to it.

30—Commands and Utilities UNIX Programmer’s Manual

BANNER (1) BANNER (1)

NAME

banner — make posters
SYNOPSIS

banner strings
DESCRIPTION

Banner prints its arguments (each up to 10 characters long) in
large letters on the standard output.

SEE ALSO
echo(1).

UNIX Programmer’s Manual Commands and Utilities—31

BASENAME(1) BASENAME(1)

NAME
basename, dirname — deliver portions of path names

SYNOPSIS
basename string [suffix]
dirname string

DESCRIPTION
Basename deletes any prefix ending in / and the suffix (if present
in string) from string, and prints the result on the standard out-
put. It is normally used inside substitution marks (¥%) within
shell procedures.

Dirname delivers all but the last level of the path name in string.

EXAMPLES
The following example, invoked with the argument
/usr/src/cmd/cat.c, compiles the named file and moves the output
to a file named cat in the current directory:

cc $1
mv a.out ‘basename $1 “\.c”®

The following example will set the shell variable NAME to
/usr/src/cmd:

NAME=\dirname /usr/src/cmd/cat.c®

SEE ALSO
sh(1)..

BUGS
The basename of / is null and is considered an error.

32—Commands and Utilities UNIX Programmer’s Manual

BC(1) A BC(1)

NAME

bc — arbitrary-precision arithmetic language
SYNOPSIS

be[—c1[—11I1 file ...]
DESCRIPTION

Bc is an interactive processor for a language that resembles C but
provides unlimited precision arithmetic. It takes input from any
files given, then reads the standard input. The —1 argument
stands for the name of an arbitrary precision math library. The
syntax for bc programs is as follows; L means letter a—z, E means
expression, S means statement.

Comments
are enclosed in /* and /.

Names
simple variables: L
array elements: L [E]

% ¢

The words “ibase”, “obase”, and “scale”

Other operands
arbitrarily long numbers with optional sign and decimal
point.
(E)
sqrt (E)
length (E) number of significant decimal digits
scale (E) number of digits right of decimal point
L(E,..,E)

Operators
+ =+ / % " (% is remainder; " is power)
++ —- (prefix and postfix; apply to names)
==<=>=1=<>

==t =— === ="

Statements
E
{S;..;S}
if (E)S
while (E) S
for (E;E;E)S
null statement
break
quit

UNIX Programmer’s Manual Commands and Utilities—33

BC(1) BC(1)

Function definitions
define L (L,.., L) {

autoL, ..., L
S;..S
return (E)
)
Functions in —I math library
s(x) sine

c(x) cosine

e(x) exponential
1x) log

a(x) arctangent
j(n,x) Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the
main operator is an assignment. Either semicolons or new-lines
may separate statements. Assignment to scale influences the
number of digits to be retained on arithmetic operations in the
manner of dc(1). Assignments to ibase or obase set the input and
output number radix respectively.

The same letter may be used as an array, a function, and a simple
variable simuitaneously. All variables are global to the program.
“Auto” variables are pushed down during function calls. When
using arrays as function arguments or defining them as automatic
variables, empty square brackets must follow the array name.

Bc is actually a preprocessor for dc(1), which it invokes automati-
cally, unless the —c (compile only) option is present. In this case
the dc input is sent to the standard output instead.

FILES
/usr/lib/lib.b mathematical library
/usr/bin/dc desk calculator proper
SEE ALSO
de(1).

34—Commands and Utilities UNIX Programmer’s Manual

BC(1) BC(1)

EXAMPLE
scale = 20
define e(x){
autoa, b, ¢, 1i,s
a=1
b=1
s=1
for(i=1; 1==1; i++){
a = a*x
b = b+
c=a/b
if(c == 0) return(s)
s = s+c
}
}

defines a function to compute an approximate value of the
exponential function and

for(i=1; i<=10; i++) e(i)
prints approximate values of the exponential function of the first
ten integers.

BUGS
No & &, | | yet.
For statement must have all three E’s.
Quit is interpreted when read, not when executed.

UNIX Programmer’s Manual Commands and Utilities—35

BDIFF(1) BDIFF (1)

NAME

bdiff — big diff
SYNOPSIS

bdiff filel file2 [n] [—s]

DESCRIPTION

Bdiff is used in a manner analogous to diff (1) to find which lines
must be changed in two files to bring them into agreement. Its
purpose is to allow processing of files which are too large for diff.
Bdiff ignores lines common to the beginning of both files, splits the
remainder of each file into n-line segments, and invokes diff upon
corresponding segments. The value of n is 3500 by default. If the
optional third argument is given, and it is numeric, it is used as
the value for n. This is useful in those cases in which 3500-line
segments are too large for diff, causing it to fail. If filel (file2) is
—, the standard input is read. The optional —s (silent) argument
specifies that no diagnostics are to be printed by ddiff’ (note, how-
ever, that this does not suppress possible exclamations by diff. If
both optional arguments are specified, they must appear in the
order indicated above.

The output of bdiff is exactly that of diff, with line numbers
adjusted to account for the segmenting of the files (that is, to
make it look as if the files had been processed whole). Note that
because of the segmenting of the files, bdiff’ does not necessarily
find a smallest sufficient set of file differences.

FILES

SEE ALSO
diff (1).

DIAGNOSTICS
Use help (1) for explanations.

36—Commands and Utilities - UNIX Programmer’s Manual

BFS(1) BFS(1)

NAME

bfs — big file scanner
SYNOPSIS

bfs [—] name
DESCRIPTION

The Bfs command is (almost) like ed(1) except that it is read-
only and processes much larger files. Files can be up to 1024K
bytes (the maximum possible size) and 32K lines, with up to 512
characters, including new-line, per line (255 for 16-bit machines).
Bfs is usually more efficient than ed for scanning a file, since the
file is not copied to a buffer. It is most useful for identifying sec-
tions of a large file where csplit(1) can be used to divide it into
more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the
size of any file written with the w command. The optional —
suppresses printing of sizes. Input is prompted with = if P and a
carriage return are typed as in ed. Prompting can be turned off
again by inputting another P and carriage return. Note that mes-
sages are given in response to errors if prompting is turned on.

All address expressions described under ed are supported. In addi-
tion, regular expressions may be surrounded with two symbols
besides / and ?: > indicates downward search without wrap-
around, and < indicates upward search without wrap-around.
There is a slight difference in mark names: only the letters a
through z may be used, and all 26 marks are remembered.

The e, g, v, k, p, q, W, =, ! and null commands operate as
described under ed. Commands such as ———, +++—,
+++=, —12, and +dp are accepted. Note that 1,10p and 1,10
will both print the first ten lines. The f command only prints the
name of the file being scanned; there is no remembered file name.
The w command is independent of output diversion, truncation, or
crunching (see the xo, xt and xc commands, below). The follow-
ing additional commands are available:

xf file
Further commands are taken from the named file.
When an end-of-file is reached, an interrupt signal is
received or an error occurs, reading resumes with the
file containing the xf. The xf commands may be
nested to a depth of 10.

UNIX Programmer’s Manual Commands and Utilities—37

BFS(1) , ; BFS(1)

xn List the marks currently in use (marks are set by the k
command). '

xo [filel
Further output from the p and null commands is
diverted to the named file, which, if necessary, is
created mode 666. If file is missing, output is diverted
to the standard output. Note that each diversion
causes truncation or creation of the file.

: label
This positions a label in a command file. The label is
terminated by new-line, and blanks between the : and
the start of the label are ignored. This command may
also be used to insert comments into a command file,
since labels need not be referenced.

(., .)xb/regular expression/label
A jump (either upward or downward) is made to label
if the command succeeds. It fails under any of the fol-
lowing conditions:
1. Either address is not between 1 and $.
2. The second address is less than the first.
3. The regular expression does not match at
least one line in the specified range, including
the first and last lines.

On success, . is set to the line matched and a jump is
made to /abel. This command is the only one that does
not issue an error message on bad addresses, so it may
be used to test whether addresses are bad before other
commands are executed. Note that the command

xb/"/ label

is an unconditional jump.

The xb command is allowed only if it is read from
someplace other than a terminal. If it is read from a
pipe only a downward jump is possible.

xt number
Output from the p and null commands is truncated to
at most number characters. The initial number is 255.

38—Commands and Utilities UNIX Programmer’s Manual

BFS(1) BFS(1)

xvldigit][spaces][valuel

The variable name is the specified digit following the
xv. The commands xv5100 or xv5 100 both assign the
value 100 to the variable 5. The command Xv61,100p
assigns the value 1,100p to the variable 6. To refer-
ence a variable, put a % in front of the variable name.
For example, using the above assignments for variables
S and 6:

1,%5p
1,%5
%6

will all print the first 100 lines.

g/%5/p

would globally search for the characters 100 and print
each line containing a match. To escape the special
meaning of %, a \ must precede it.

g/" \%lcdsl/p

could be used to match and list lines containing printf
of characters, decimal integers, or strings.

Another feature of the xv command is that the first
line of output from a UNIX system command can be
stored into a variable. The only requirement is that
the first character of value be an !. For example:

.w junk

xv5lcat junk
Irm junk

lecho "%5"
xv6lexpr %6 + 1

would put the current line into variable 5, print it, and
increment the variable 6 by one. To escape the special
meaning of ! as the first character of value, precede it
with a \.

UNIX Programmer’s Manual Commands and Utilities—39

BFS(1) BFS(1)

xv7\!date

stores the value !date into variable 7.
xbz label
xbn label

These two commands will test the last saved return
code from the execution of a UNIX system command
(!command) or nonzero value, respectively, to the
specified label. The two examples below both search
for the next five lines containing the string size.

xv55

.1

/size/

xvSlexpr %5 — 1
if 0%5 == 0 exit 2
xbn 1

xv45

|

/size/

xv4lexpr %4 — 1
lif 0%4 = 0 exit 2
xbz |

xc [switch]
If switch is 1, output from the p and null commands is
crunched; if switch is 0 it is not. Without an argu-
ment, xc¢ reverses switch. Initially switch is set for no
crunching. Crunched output has strings of tabs and
blanks reduced to one blank and blank lines
suppressed.

SEE ALSO
csplit(1), ed(1).
regemp(3X) in the UNIX Programmer’s Manual —~Volume 2:
System Calls and Library Routines.

DIAGNOSTICS

? for errors in commands, if prompting is turned off. Self-
explanatory error messages when prompting is on.

40—Commands and Utilities UNIX Programmer’s Manual

BS (1) BS(1)

NAME
bs — a compiler/interpreter for modest-sized programs

SYNOPSIS
bs [file [args 1]

DESCRIPTION

Bs is a remote descendant of Basic and Snobol4 with a little C
language thrown in. Bs is designed for programming tasks where
program development time is as important as the resulting speed of
execution. Formalities of data declaration and file/process mani-
pulation are minimized. Line-at-a-time debugging, the trace and
dump statements, and useful run-time error messages all simplify
program testing. Furthermore, incomplete programs can be
debugged; inner functions can be tested before outer functions
have been written and vice versa.

If the command line file argument is provided, the file is used for
input before the console is read. By default, statements read from
the file argument are compiled for later execution. Likewise,
statements entered from the console are normally executed
immediately (see compile and execute below). Unless the final
operation is assignment, the result of an immediate expression
statement is printed.

Bs programs are made up of input lines. If the last character on a
line is a \, the line is continued. Bs accepts lines of the following
form: '

statement
label statement

A label is a name (see below) followed by a colon. A label and a
variable can have the same name.

A bs statement is either an expression or a keyword followed by
zero or more expressions. Some keywords (clear, compile, !, exe-
cute, include, ibase, obase, and run) are always executed as they
are compiled.

Statement Syntax:

expression
The expression is executed for its side effects (value, assign-
ment, or function call). The details of expressions follow the
description of statement types below.

UNIX Programmer’s Manual Commands and Utilities—41

BS(1) » BS(1)

break
Break exits from the inner-most foriwhile loop.

clear .
Clears the symbol table and compiled statements. Clear is
executed immediately.

compile [expression]
Succeeding statements are compiled (overrides the immediate
execution default). The optional expression is evaluated and
used as a file name for further input. A clear is associated
with this latter case. Compile is executed immediately.

continue
Continue transfers to the loop-continuation of the current
forMhile loop.

dump [name]
The name and current value of every non-local variable is
printed. Optionally, only the named variable is reported.
After an error or interrupt, the number of the last statement
and (possibly) the user-function trace are displayed.

exit [expression]
Return to system level. The expression is returned as process
status.

execute
Change to immediate execution mode (an interrupt has a simi-
lar effect). This statement does not cause stored statements to
execute (see run below).

for name = expression expression statement
for name = expression expression

next

for expression , expression , expression statement
for expression , expression , expression

next
The for statement repetitively executes a statement (first form)
or a group of statements (second form) under control of a
named variable. The variable takes on the value of the first
expression, then is incremented by one on each loop, not to
exceed the value of the second expression. The third and
fourth forms require three expressions separated by commas.

42—Commands and Utilities UNIX Programmer’s Manual

BS(1) BS(1)

The first of these is the initialization, the second is the test
(true to continue), and the third is the loop-continuation action
(normally an increment).

fun f([a, ... 1 [v,...]

nuf
Fun defines the function name, arguments, and local variables
for a user-written function. Up to ten arguments and local
variables are allowed. Such names cannot be arrays, nor can
they be 1/0 associated. Function definitions may not be
nested.

freturn
A way to signal the failure of a user-written function. See the
interrogation operator (?) below. If interrogation is not
present, freturn merely returns zero. When interrogation is
active, freturn transfers to that expression (possibly by-passing
intermediate function returns).

goto name
Control is passed to the internally stored statement with the
matching label.

ibase V
Ibase sets the input base (radix) to N. The only supported
values for N are 8, 10 (the default), and 16. Hexadecimal
values 10—15 are entered as a—f. A leading digit is required
(i.e., f0a must be entered as 0f0a). Ibase (and obase, below)
are executed immediately.

if expression statement
if expression

[else
vl
fi .
‘ The statement (first form) or group of statements (second
form) is executed if the expression evaluates to non-zero. The
strings 0 and " (null) evaluate as zero. In the second form, an
optional else allows for a group of statements to be executed
when the first group is not. The only statement permitted on
the same line with an else is an if; only other fi’s can be on the
same line with a fi. The elision of else and if into an elif is
supported. Only a single fi is required to close an if ... elif ...

[else ..,] sequence..evl o
UNIX Programmer’s Manual Commands and Ultilities—43

BS(1) BS(1)

include expression
The expression must evaluate to a file name. The file must
contain bs source statements. Such statements become part of
the program being compiled. Include statements may not be
nested.

obase N
Obase sets the output base to N (see ibase above).

onintr label

onintr
The onintr command provides program control of interrupts.
In the first form, control will pass to the label given, just as if a
goto had been executed at the time onintr was executed. The
effect of the statement is cleared after each interrupt. In the
second form, an interrupt will cause bs to terminate.

return [expression]
The expression is evaluated and the result is passed back as the
value of a function call. If no expression is given, zero is
returned.

run
The random number generator is reset. Control is passed to
the first internal statement. If the run statement is contained
in a file, it should be the last statement.

stop
Execution of internal statements is stopped. Bs reverts to
immediate mode.

trace [expression]
The trace statement controls function tracing. If the expres-
sion is null (or evaluates to zero), tracing is turned off. Other-
wise, a record of user-function calls/returns will be printed.
Each return decrements the trace expression value.

while expression statement
while expression

next
While is similar to for except that only the conditional expres-
sion for loop-continuation is given. '

! shell command
An immediate escape to the shell.

44—Commands and Utilities UNIX Programmer’s Manual

BS(1) BS(1)

#...
This statement is ignored. It is used to interject commentary
in a program.

Expression Syntax:

name

A name is used to specify a variable. Names are composed of
a letter (upper or lower case) optionally followed by letters and
digits. Only the first six characters of a name are significant.
Except for names declared in fun statements, all names are
global to the program. Names can take on numeric (double
float) values, string values, or can be associated with
input/output (see the built-in function open() below).

name ([expression [, expression] ... 1) ;
Functions can be called by a name followed by the arguments
in parentheses separated by commas. Except for built-in func-
tions (listed below), the name must be defined with a fun state-
ment. Arguments to functions are passed by value.

name [expression [, expression] ... 1
This syntax is used to reference either arrays or tables (see
built-in zable functions below). For arrays, each expression is
truncated to an integer and used as a specifier for the name.
The resulting array reference is syntactically identical to a
name; al1,2] is the same as a[1l[2]. The truncated expressions
are restricted to values between 0 and 32767.

number
A number is used to represent a constant value. A number is
written in Fortran style, and contains digits, an optional
decimal point, and possibly a scale factor consisting of an e fol-
lowed by a possibly signed exponent.

string
Character strings are delimited by " characters. The \ escape
character allows the double quote (\"), new-line (\m), carriage
return (\r), backspace (\b), and tab (\t) characters to appear
in a string. Otherwise, \ stands for itself.

(expression)
Parentheses are used to alter the normal order of evaluation.

(expression, expression [, expression ... 1) [expression |
The bracketed expression is used as a subscript to select a
comma-separated expression from the parenthesized list. List

UNIX Programmer’s Manual ‘ Commands and Ultilities—45

BS(1) BS(1)

_elements are numbered from the left, starting at zero. The
expression:

(False, True)[a == b]
has the value True if the comparison is true.

? expression

The interrogation operator tests for the success of the expres-
sion rather than its value. At the moment, it is useful for test-
ing end-of-file (see examples in the Programming Tips section
below), the result of the eval built-in function, and for check-
ing the return from user-written functions (see freturn). An
interrogation “trap” (end-of-file, etc.) causes an immediate
transfer to the most recent interrogation, possibly skipping
assignment statements or intervening function levels.

— expression ,
The result is the negation of the expression.

+ + name
Increments the value of the variable (or array reference). The
result is the new value.

- = name
Decrements the value of the variable. The result is the new
value.

! expression
The logical negation of the expression. Watch out for the shell
escape command.

expression operator expression
Common functions of two arguments are abbreviated by the
two arguments separated by an operator denoting the function.
Except for the assignment, concatenation, and relational opera-
tors, both operands are converted to numeric form before the
function is applied.

Binary Operators (in increasing precedence):

= is the assignment operator. The left operand must be a
name or an array element. The result is the right operand.
Assignment binds right to left, all other operators bind left to
right.

_ (underscore) is the concatenation operator.
46—Commands and Ultilities - UNIX Programmer’s Manual

BS(1) BS (1)

&
& (logical and) has result zero if either of its arguments are
zero. It has result one if both of its arguments are non-zero; |
(logical or) has result zero if both of its arguments are zero. It
has result one if either of its arguments is non-zero. Both
operators treat a null string as a zero.

< <= > >= == =
The relational operators (< less than, <= less than or equal,
> greater than, > = greater than or equal, == equal to, !=
not equal to) return one if their arguments are in the specified
relation. They return zero otherwise. Relational operators at
the same level extend as follows: a>b>c is the same as a>b
& b>c. A string comparison is made if both operands are
strings.

+ -—
Add and subtract.

/%
Multiply, divide, and remainder.

Exponentiation.
Built-in Functions:
Dealing with arguments

arg(i)
is the value of the i-th actual parameter on the current level of
function call. At level zero, arg returns the i-th command-line
argument (arg(0) returns bs).

narg()
returns the number of arguments passed. At level zero, the
command argument count is returned.

Mathematical

abs(x)
is the absolute value of x.

atan(x)
is the arctangent of x. Its value is between —x/2 and «/2.

ceil(x)
returns the smallest integer not less than x.

UNIX Programmer’s Manual “Commands and Utilities—47

BS(1) BS(1)

cos(x)
is the cosine of x (radians).

exp(x)
is the exponential function of x.

floor (x)
returns the largest integer not greater than x.

log (x)
is the natural logarithm of x.

rand()
is a uniformly distributed random number between zero and
.one.

sin(x)
is the sine of x (radians).

sqrt(x)
is the square root of x.

String operations

size(s)
the size (length in bytes) of s is returned.

format(f, a)
returns the formatted value of a. F is assumed to be a format
specification in the style of printf(3S). Only the %...f,
% ...e,and % ...s types are safe.

index(x, y)
returns the number of the first position in x that any of the
characters from y matches. No match yields zero.

trans(s, f, t)
Translates characters of the source s from matching characters
in f to a character in the same position in ¢. Source characters
that do not appear in f are copied to the result. If the string f
is longer than ¢, source characters that match in the excess
portion of f do not appear in the result.

substr (s, start, width)

returns the sub-string of s defined by the starting position and
width.

match(string, pattern)
mstring (n)
The pattern is similar to the regular expression syntax of the

48—Commands and Utilities UNIX Programmer’s Manual

BS (1) BS(1)

ed(1) command. The characters ., [,], ~ (inside brackets), *
and $ are special. The mstring function returns the n-th (1
<= n <= 10) substring of the subject that occurred between
pairs of the pattern symbols \(and \) for the most recent call
to match. To succeed, patterns must match the beginning of
the string (as if all patterns began with 7). The function
returns the number of characters matched. For example:

match("a123ab123", "s\([a—z)") == 6
mstring(1) == "b"

File handling

open(name, file, function)

close(name)
The name argument must be a bs variable name (passed as a
string). For the open, the file argument may be 1) a 0 (zero),
1, or 2 representing standard input, output, or error output,
respectively; 2) a string representing a file name; or 3) a string
beginning with an ! representing a command to be executed
(via sh —c). The function argument must be either r (read),
w (write), W (write without new-line), or a (append). After a
close, the name reverts to being an ordinary variable. The ini-
tial associations are:

open("get", 0, "r")
Open("put", 1’ nwu)
open("puterr”, 2, "w")

Examples are given in the following section.

access(s, m)
executes access (2).

ftype(s)

returns a single character file type indication: f for regular file,
p for FIFO (i.e., named pipe), d for directory, b for block spe-
cial, or ¢ for character special.

Tables

table(name, size)

A table in bs is an associatively accessed, single-dimension
array. “Subscripts” (called keys) are strings (numbers are
converted). The name argument must be a bs variable name
(passed as a string). The size argument sets the minimum
number of elements to be allocated. Bs prints an error mes-
sage and stops on table overflow.

UNIX Programmer’s Manual Commands and Utilities—49

BS(1) BS(1)

item(name, i)

key(O

The item function accesses table elements sequentially (in nor-
mal use, there is no orderly progression of key values). Where
the item function accesses values, the key function accesses the
“subscript” of the previous item call. The name argument
should not be quoted. Since exact table sizes are not defined,
the interrogation operator should be used to detect end-of-table;
for example:

table("t", 100)

If word contains "party", the following expression
adds one

to the ¢count of that word:

++t{word]

To print out the the key/value pairs:
for i =0, 7(s = item(t, i)), ++i if keyQ) put =
keyOQ ™" s

iskey (name, word)
The iskey function tests whether the key word exists in the
table name and returns one for true, zero for false.

Odds and ends

eval(s)
The string argument is evaluated as a bs expression. The func-
tion is handy for converting numeric strings to numeric internal
form, Eval can also be used as a crude form of indirection, as
in:

name = "xyz"
eval("++"_name)

which increments the variable xyz. In addition, eval preceded
by the interrogation operator permits the user to control bs
error conditions. For example:

 ?eval("open(\"X\", \"XXX\", \"r\")")

returns the value zero if there is no file named “XXX” (instead
of halting the user’s program).

50—Commands and Utilities UNIX Programmer’s Manual

BS(1)

BS(1)

The following executes a goto to the label L (f it exists):

label="L"

if 1(2eval("goto "_label)) puterr = "no label"

plot(request, args)

The plot function produces output on devices recognized by
tplot (1G). The requests are as follows:

Call
plot(0, term)

plot(4)
plot(2, string)

plot(3, x1, yl, x2, y2)
plot(4, x, y, r)

plot(5, x1, y1, x2, y2, X3, y3)

plot(6)
plot(7, x, y)

plot(8, x, y)

plot(9, x, y)
plot(10, string)

plot(11, x1, y1, x2, y2)

UNIX Programmer’s Manual

Function

causes further plot output
to be piped into tplot (1G)
with an argument of
~Tterm.

“erases” the plotter.

labels the current point
with string.

draws the line between
(x1,y1) and (x2,y2).

draws a circle with center
(x,y) and radius r.

draws an arc (counter-
clockwise) with center
(x1,y1) and endpoints
(x2,2) and (x3,y3).

is not implemented.

makes the current point
(x,p).

draws a line from the
current point to (x,y).

draws a point at (x,y).

sets the line mode to
string.

makes (xI,yl) the lower
left corner of the plotting
area and (x2,y2) the
upper right corner of the
plotting area.

Commands and Utilities—51

BS(1) BS(1)

plot(12, x1, y1, x2, y2) causes subsequent x (y)
coordinates to be multi-
plied by xI (yI) and then
added to x2 (y2) before
they are plotted. The ini-
tial scaling is plot(12, 1.0,
1.0, 0.0, 0.0).

Some requests do not apply to all plotters. All requests except
zero and twelve are implemented by piping characters to
tplot (1G). See plot (4) for more details.

last()

in immediate mode, last returns the most recently computed
value.

PROGRAMMING TIPS
Using bs as a calculator:

$ bs

Distance (inches) light travels in a nanosecond.
186000 *+ 5280 * 12 / 19

11.78496

Compound interest (6% for 5 years on $1,000).
int =.06/4

bal = 1000

for i = 1 5+*4 bal = bal + bal*int

bal — 1000

346.855007

exit
The outline of a typical bs program:

initialize things:
varl =1
open("read", "infile", "r")

compute:
while ?(str = read)

next
clean up:
close("read")

52—Commands and Utilities : UNIX Programmer’s Manual

BS(1)

BS(1)

last statement executed (exit or stop):
exit

last input line:

run

Input/Output examples:

Copy "oldfile" to "newfile".
open("read", "oldfile", "r")
open("write", "newfile", "w")

while ? (write = read)

close "read" and "write":
close("read")
close("write")

Pipe between commands.
open("ls", "!18 *u’ "l‘“)

open("pr", "Ipr —2 —h 'List™, "w")
while ?(pr = Is) ...

be sure to close (wait for) these:
close ("ls")
close("pr")

SEE ALSO

ed(1), sh(1), tplot(1G).

access(2), printf(3S), stdio(3S), plot(4) in the UNIX
Programmer’s Manual —Volume 2: System Calls and Library
Routines.

See Section 3 of the UNIX Programmer’s Manual —Volume 2:
System Calls and Library Routines for a further description of the
mathematical functions (pow on exp (3M) is used for exponentia-
tion); bs uses the Standard Input/Output package.

UNIX Programmer’s Manual Commands and Utilities—53

CAL(1) CAL(1)

NAME
cal — print calendar

SYNOPSIS
cal [[month] year]

DESCRIPTION
Cal prints a calendar for the specified year. If a month is also
specified, a calendar just for that month is printed. If neither is
specified, a calendar for the present month is printed. Year can be
between 1 and 9999. The month is a number between 1 and 12.

Try December 1949.

BUGS
The year is always considered to start in January even though this
is historically naive. '
Beware that “cal 84” refers to the early Christian era, not the
20th century.

54—Commands and Utilities UNIX Programmer’s Manual

CALENDAR (1) CALENDAR(1)

NAME

calendar — reminder service

SYNOPSIS

calendar [—]

DESCRIPTION

FILES

Calendar consults the file calendar in the current directory and
prints out lines that contain today’s or tomorrow’s date anywhere
in the line. Most reasonable month-day dates such as “Aug. 24,”
“august 24,” “8/24,” etc., are recognized, but not “24 August” or
“24/8”. On weekends “tomorrow” extends through Monday.

When an argument is present, calendar does its job for every user
who has a file calendar in the login directory and sends them any
positive results by mail(1). Normally this is done daily by facili-
ties in the UNIX operating system.

/usr/lib/calprog to figure out today’s and tomorrow’s dates

/etc/passwd
/tmp/cal*

SEE ALSO

BUGS

mail(1).

Your calendar must be public information for you to get reminder
service.

Calendar’s extended idea of “tomorrow” does not account for holi-
days.

UNIX Programmer’s Manual Commands and Utilities—55

CAT(1) . CAT(1)

NAME
cat — concatenate and print files
SYNOPSIS v
cat [—u][—=s][—vI[—t]l [—e]] file.
DESCRIPTION
Cat reads each file in sequence and writes it on the standard out-
put. Thus:

cat file
prints the file, and:
cat filel file2 >file3
concatenates the first two files and places the result on the third.

If no input file is given, or if the argument — is encountered, cat
reads from the standard input file. Output is buffered unless the
—u option is specified. The —s option makes cat silent about
non-existent files.

The —v option causes non-printing characters (with the exception
of tabs, new-lines and form-feeds) to be printed visibly. Control
characters are printed "X (control-x); the DEL character (octal
0177) is printed *?. Non-ASCII characters (with the high bit set)
are printed as M-x, where x is the character specified by the seven
low order bits.

When used with the —v option, —t causes tabs to be printed as
“I's, and —e causes a $ character to be printed at the end of each
line (prior to the new-line). The —t and —e options are ignored if
the —v option is not specified.

WARNING
Command formats such as

cat filel file2 >filel

will cause the original data in filel to be lost; therefore, take care
when using shell special characters.

SEE ALSO
cp(1), pg(1), pr(1).

56—Commands and Ultilities UNIX Programmer’s Manual

CB(1) CB(1)

NAME

cb — C program beautifier
SYNOPSIS

cb[=s1[=j1[—1leng]I file ...]
DESCRIPTION

Cb reads C programs either from its arguments or from the stan-
dard input and writes them on the standard output with spacing
and indentation that displays the structure of the code. Under
default options, cb preserves all user new-lines. Under the —s flag
¢b canonicalizes the code to the style of Kernighan and Ritchie in
The C Programming Language. The —j flag causes split lines to
be put back together. The —1 flag causes cb to split lines that are
longer than leng.

SEE ALSO
cc(1).

BUGS
Punctuation that is hidden in preprocessor statements will cause
indentation errors.

UNIX Programmer’s Manual Commands and Utilities—57

cc(1) cc(1)

NAME
cc, pcc — C compiler

SYNOPSIS
cc [option] ... file ..
pee [option] ... file ...

DESCRIPTION
Cc is the UNIX system C compiler. Pcc is the portable version for
some machines. They accept several types of arguments.

Arguments whose names end with .c are taken to be C source pro-
grams. They are compiled, and each object program is left on the
file whose name is that of the source with .o substituted for .c.
The .o file is normally deleted, however, if a single C program is
compiled and loaded all at one go.

In the same way, arguments whose names end with .s are taken to
be assembly source programs and are assembled, producing a .o
file.

The following options are interpreted by cc and pcc. See 1d(1) for
link editor options and cpp (1) for more preprocessor options.

—-c Suppress the link edit phase of the compilation and force
an object file to be produced even if only one program is
compiled.

-p Arrange for the compiler to produce code that counts the

number of times each routine is called; also, if link edit-
ing takes place, replace the standard startoff routine by
one that automatically calls monitor (3C) at the start and
arranges to write out a mon.out file at normal termination
of execution of the object program. An execution profile
can then be generated by use of prof(1). For some
machines, the libraries /lib/libp/libm.a (if the —Im option
is used) and /lib/libp/libc.a must be specified explicitly if
the versions reporting function call counts are to be

loaded.

it Link the object program with the floating-point inter-
preter for systems without hardware floating-point.

-g Cause the compiler to generate additional information
needed for the use of sdb(1).

-0 Invoke an object-code optimizer.

58—Commands and Ultilities UNIX Programmer’s Manual

Ccc(1)

cc(1)

-S Compile the named C programs and leave the
assembler-language output on corresponding files suffixed
.S.

-E Run only ¢pp (1) on the named C programs and send the
result to the standard output.

-P Run only c¢pp (1) on the named C programs and leave the
result on corresponding files suffixed .i.

—Bstring
Construct path names for substitute preprocessor, com-
piler, assembler and link editor passes by concatenating
string with the suffixes cpp, ¢0 (or ccom or comp, see
under FILES below), cl, ¢2 (or optim), as and . If
string is empty it is taken to be /lib/o.

—t[p012al]
Find only the designated preprocessor, compiler, assem-
bler and link editor passes in the files whose names are
constructed by a —B option. In the absence of a —B
option, the string is taken to be /lib/n. The value —t ™
is equivalent to —tp012.

-Wec,argllarg2...]
Hand off the argumentls] argi to pass ¢ where ¢ is one of
[p012al] indicating preprocessor, compiler first pass, com-
. piler second pass, optimizer, assembler, or link editor,
respectively.

Other arguments are taken to be either link editor option argu-
ments, C preprocessor option arguments, or C-compatible object
programs, typically produced by an earlier cc or pcc run, or
perhaps libraries of C-compatible routines. These programs,
together with the results of any compilations specified, are linked
(in the order given) to produce an executable program with the
name a.out.

The C language standard was extended to include arbitrary length
variable names. This standard has been implemented on most
computers. The option pair “—Wp,—T —WO0,—XT” will cause
the current compiler (on most computers) to behave the same as
previous compilers with respect to the length of variable names.

UNIX Programmer’s Manual Commands and Utilities—59

NOTES

CcCc(1) CcC(1)
FILES
file.c input file
file.o object file
a.out linked output
/tmp/ctm* temporary
/usr/tmp/ctm» temporary
/lib/cpp C preprocessor cpp (1)
/lib/cl01] compiler, cc
/usr/lib/comp compiler, pcc
/lib/ccom compiler, cc
/lib/comp 3B20 computer compiler cc
/1ib/c2 an optional optimizer on some
machines.
/lib/optim 3B20 computer optional optimizer
/usr/lib/Oc* backup compiler, Occ
/bin/as assembler, as (1)
/bin/Id link editor, /d (1)
/lib/crt0.0 runtime startoff
/lib/mcrt0.0 profiling startoff
/lib/fert0.0 floating-point interpretation startoff
(for some machines)
/lib/fmcrt0.0 floating-point interpretation and
, profiling startoff (for some machines)
/1ib/libc.a standard C library, see section (3) in
the UNIX Programmer’s Manual —
Volume 2: System Calls and Library
Routines
/1ib/libp/lib*.a profiled versions of libraries
SEE ALSO

cpp(1), as(1), 1d(1), prof(1), sdb(1).

exit(2), monitor(3C)

in the UNIX Programmer’s Manual —

Volume 2: System Calls and Library Routines.

By default, the return value from a C program is completely ran-
dom. The only two guaranteed ways to return a specific value are
to explicitly call exit(2) or to leave the function main() with a

“return expression;” construct.

DIAGNOSTICS
~ The diagnostics produced by C itself are intended to be self-
explanatory. Occasional messages may be produced by the assem-
bler or the link editor.

60—Commands and Utilities UNIX Programmer’s Manual

CD(1) CD(1)

NAME
cd — change working directory

SYNOPSIS
cd [directory]

DESCRIPTION

If directory is not specified, the value of shell parameter SHOME is
used as the new working directory. If directory specifies a com-
plete path starting with /, ., .., directory becomes the new working
directory. If neither case applies, cd tries to find the designated
directory relative to one of the paths specified by the SCDPATH
shell variable. $CDPATH has the same syntax as, and similar
semantics to, the $PATH shell variable. Cd must have execute
(search) permission in directory .

Because a new process is created to execute each command, c¢d
would be ineffective if it were written as a normal command;
therefore, it is recognized and is internal to the shell.

SEE ALSO
pwd(1), sh(1).
chdir(2) in the UNIX Programmer’s Manual —Volume 2: System
Calls and Library Routines.

UNIX Programmer’s Manual Commands and Utilities—61

CDC(1) CDC(1)

NAME

cdc — change the delta commentary of an SCCS delta
SYNOPSIS

cdc —rSID [—mlmrlist]] [—ylcomment]] files
DESCRIPTION

Cdc changes the delta commentary, for the SID specified by the
-r keyletter, of each named SCCS file. Delta commentary is
defined to be the Modification Request (MR) and comment infor-
mation normally specified via the delta(1) command (—m and —y
keyletters).

If a directory is named, cdc behaves as though each file in the
directory were specified as a named file, except that non-SCCS files
(last component of the path name does not begin with s.) and
unreadable files are silently ignored. If a name of — is given, the
standard input is read (see WARNINGS); each line of the standard
input is taken to be the name of an SCCS file to be processed.

Arguments to cdc, which may appear in any order, consist of
keyletter arguments and file names.

All the described keyletter afguments apply independently to each
named file: :

~rSID Used to specify the SCCS IDentification
(SID) string of a delta for which the delta
commentary is to be changed.

—mlmrlist] If the SCCS file has the v flag set (see
admin(1)) then a list of MR numbers to be
added and/or deleted in the delta commen-
tary of the SID specified by the -—r
keyletter may be supplied. A null MR list
has no effect.

MR entries are added to the list of MRs in
the same manner as that of delta(l). In
order to delete an MR, precede the MR
number with the character ! (see EXAM-
PLES). If the MR to be deleted is
currently in the list of MRs, it is removed
and changed into a “comment” line. A list
of all deleted MRs is placed in the comment
section of the delta commentary and pre-
ceded by a comment line stating that they

62—Commands and Utilities UNIX Programmer’s Manual

CDC(1)

UNIX Programmer’s Manual

—ylcomment]

CDC(1)

were deleted.

If —m is not used and the standard input is
a terminal, the prompt MRs? is issued on
the standard output before the standard
input is read; if the standard input is not a
terminal, no prompt is issued. The MRs?
prompt always precedes the comments?
prompt (see —y keyletter).

MRs in a list are separated by blanks
and/or tab characters. An unescaped new-
line character terminates the MR list.

Note that if the v flag has a value (see
admin(1)), it is taken to be the name of a
program (or shell procedure) which vali-
dates the correctness of the MR numbers.
If a non-zero exit status is returned from
the MR number validation program, cdc
terminates and the delta commentary
remains unchanged.

Arbitrary text used to replace the
comment (s) already existing for the delta
specified by the —r keyletter. The previous
comments are kept and preceded by a com-
ment line stating that they were changed.
A null comment has no effect.

If —y is not specified and the standard
input is a terminal, the prompt comments?
is issued on the standard output before the
standard input is read; if the standard input
is not a terminal, no prompt is issued. An
unescaped new-line character terminates
the comment text.

Simply stated, the exact permissions necessary to remove a
delta are either (1) if you made the delta, you can change its
delta commentary; or (2) if you own the file and directory
you can modify the delta commentary.

Commands and Ultilities—63

CDC(1) CDC(1)

EXAMPLES
cdc —rl.6 —m"bl78-12345 'b177-54321 bl179-00001" —ytrouble s.file

adds bl78-12345 and bl79-00001 to the MR list, removes bl77-
54321 from the MR list, and adds the comment trouble to delta 1.6
of s.file.

cde —rl.6 s.file
MRs? 'bl77-54321 bl78-12345 bl79-00001
comments? trouble

does the same thing.

WARNINGS
If SCCS file names are supplied to the cdc command via the stan-
dard input (— on the command line), then the —m and -y
keyletters must also be used.

FILES
x-file (see delta(1))
z-file (see delta(1))
SEE ALSO

admin(1), delta(1), get(1), help(1), prs(1).
sccsfile(4) in the UNIX Programmer’s Manual —Volume 2: Sys-
tem Calls and Library Routines.

DIAGNOSTICS
Use help (1) for explanations.

64—Commands and Utilities UNIX Programmer’s Manual

CFLOW (1) CFLOW (1)

NAME
cflow— generate C flowgraph

SYNOPSIS
cflow [—r] [—ix] [—i_ 1 [—dnum] files

DESCRIPTION

Cflow analyzes a collection of C, YACC, LEX, assembler, and
object files and attempts to build a graph charting the external
references. Files suffixed in .y, ., .c, and .i are YACC'd, LEX’d,
and C-preprocessed (bypassed for .i files) as appropriate and then
run through the first pass of lint(1). (The —I, —D, and —U
options of the C-preprocessor are also understood.) Files suffixed
with .s are assembled and information is extracted (as in .o files)
from the symbol table. The output of all this non-trivial process-
ing is collected and turned into a graph of external references
which is displayed upon the standard output.

Each line of output begins with a reference (i.e., line) number, fol-
lowed by a suitable number of tabs indicating the level. Then the
name of the global (normally only a function not defined as an
external or beginning with an underscore; see below for the —i
inclusion option) a colon and its definition. For information
extracted from C source, the definition consists of an abstract type
declaration (e.g., char »), and, delimited by angle brackets, the
name of the source file and the line number where the definition
was found. Definitions extracted from object files indicate the file
name and location counter under which the symbol appeared (e.g.,
text). Leading underscores in C-style external names are deleted.

Once a definition of a name has been printed, subsequent refer-
ences to that name contain only the reference number of the line
where the definition may be found. For undefined references, only
< > is printed.

When the nesting level becomes too deep, the —e option of pr(1)
can be used to compress the tab expansion to somethlng less than
every eight spaces.

The following options are interpreted by cflow:

-r Reverse the “caller:callee” relationship producing an
inverted listing showing the callers of each function. The
listing is also sorted in lexicographical order by callee.

—ix Include external and static data symbols. The default is
to include only functions in the flowgraph.

UNIX Programmer’s Manual Commands and Utilities—65

CFLOW (1) CFLOW (1)

—i Include names that begin with an underscore. The default
is to exclude these functions (and data if —ix is used).

—dnum The num decimal integer indicates the depth at which the
flowgraph is cut off. By default this is a very large
number. Attempts to set the cutoff depth to a nonposi-
tive integer will be met with contempt. '

EXAMPLE
Given the following in file.c:

int i
main()
{
£0;
g0;
£0;
1
fO
{
i=h0;
}

the command
cflow —ix file.c

produces the output

1 main: int(), <file.c 4>

2 f: int(), <filec 11>

3 h: <>

4 i int, <file.c 1>
5

g <>

DIAGNOSTICS
Complains about bad options. Complains about multiple
definitions and only believes the first. Other messages may come
from the various programs used (e.g., the C-preprocessor).

SEE ALSO
as(1), cc(1), cpp(1), lex(1), lint(1), nm(1), pr(1), yacc(1).
66—Commands and Utilities UNIX Programmer’s Manual

CFLOW(1) CFLOW (1)

BUGS
Files produced by /ex (1) and yacc(1) cause the reordering of line
number declarations which can confuse ¢flow. To get proper
results, feed cflow the yacc or lex input.

UNIX Programmer’s Manual Commands and Utilities—67

CHMOD(1) CHMOD((1)

NAME ,

chmod — change mode
SYNOPSIS

chmod mode files
DESCRIPTION

The permissions of the named files are changed according to
mode, which may be absolute or symbolic. An absolute mode is
an octal number constructed from the OR of the following modes:

4000 set user ID on execution

2000 set group ID on execution

1000 sticky bit, see chmod (2)

0400 read by owner

0200 write by owner

0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:
[who 1 op permission [op permission]

The who part is a combination of the letters u (for user’s permis-
sions), g (group) and o (other). The letter a stands for ugo, the
default if who is omitted.

Op can be + to add permission to the file’s mode, — to take away
permission, or = to assign permission absolutely (all other bits
will be reset).

Permission is any combination of the letters r (read), w (write), x
(execute), s (set owner or group ID) and t (save text, or sticky); u,
g, or o indicate that permission is to be taken from the current
mode. Omitting permission is only useful with = to take away all
permissions. ‘

Multiple symbolic modes separated by commas may be given.
Operations are performed in the order specified. The letter s is
only useful with u or g and t only works with u.

Only the owner of a file (or the super-user) may change its mode.
Only the super-user may set the sticky bit. In order to set the
group ID, the group of the file must correspond to your current
group ID.

68—Commands and Utilities UNIX Programmer’s Manual

CHMOD(1) CHMOD(1)

EXAMPLES
The first example denies write permission to others, the second
makes a file executable:

chmod o—w file
chmod +x file

SEE ALSO
1s(1).
chmod(2) in the UNIX Programmer’s Manual —Volume 2: Sys-
tem Calls and Library Routines.

UNIX Programmer’s Manual Commands and Utilities—69

CHOWN (1) CHOWN(1)

NAME
chown, chgrp — change owner or group

SYNOPSIS
chown owner file ...

chgrp group file ...

DESCRIPTION
Chown changes the owner of the files to owner. The owner may

be either a decimal user ID or a login name found in the password
file.

Chgrp changes the group ID of the files to group. The group may
be either a decimal group ID or a group name found in the group
file.

If either command is invoked by other than the super-user, the
set-user-ID and set-group-ID bits of the file mode, 04000 and
02000 respectively, will be cleared.

FILES
/etc/passwd
/etc/group

SEE ALSO
chmod(1). .
chown(2), group(4), passwd(4) in the UNIX Programmer’s
Manual —Volume 2: System Calls and Library Routines.

70—Commands and Utilities UNIX Programmer’s Manual

CMP(1) CMP(1)

NAME

cmp — compare two files
SYNOPSIS

emp [=111 —s] filel file2
DESCRIPTION

The two files are compared. (If filel is —, the standard input is

used.) Under default options, cmp makes no comment if the files

are the same; if they differ, it announces the byte and line number

at which the difference occurred. If one file is an initial subse-
" quence of the other, that fact is noted.

Options:

—1 Print the byte number (decimal) and the differing bytes
(octal) for each difference.

—s Print nothing for differing files; return codes only.

SEE ALSO
comm(1), diff (1).

DIAGNOSTICS
Exit code 0 is returned for identical files, 1 for different files, and 2
for an inaccessible or missing argument.

UNIX Programmer’s Manual Commands and Utilities—71

COL (1) COL(1)

NAME
col — filter reverse line-feeds

SYNOPSIS
col [—bfpx]

DESCRIPTION
Col reads from the standard input and writes onto the standard
output. It performs the line overlays implied by reverse line feeds
(ASCII code ESC-7), and by forward and reverse half-line feeds
(ESC-9 and ESC-8). Col is particularly useful for filtering mul-
ticolumn output made with the .rt command of nroff and" output
resulting from use of the ¢bl/(1) preprocessor.

If the —b option is given, col assumes that the output device in
use is not capable of backspacing. In this case, if two or more
characters are to appear in the same place, only the last one read
will be output.

Although col accepts half-line motions in its input, it normally
does not emit them on output. Instead, text that would appear
between lines is moved to the next lower full-line boundary. This
treatment can be suppressed by the ~f (fine) option; in this case,
the output from co/ may contain forward half-line feeds (ESC-9),
but will still never contain either kind of reverse line motion.

Unless the —x option is given, col will convert white space to tabs
on output wherever possible to shorten printing time.

The ASCII control characters SO (\016) and SI (\017) are
assumed by col to start and end text in an alternate character set.
The character set to which each input character belongs is remem-
bered, and on output SI and SO characters are generated as
appropriate to ensure that each character is printed in the correct
character set.

On input, the only control characters accepted are space, back-
space, tab, return, new-line, SI, SO, VT (\013), and ESC followed
by 7, 8, or 9. The VT character is an alternate form of full reverse
line-feed, included for compatibility with some earlier programs of
this type. All other non-printing characters are ignored.

Normally, col will ignore any unknown to it escape sequences
found in its input; the —p option may be used to cause col to out-
put these sequences as regular characters, subject to overprinting
from reverse line motions. The use of this option is highly
discouraged.

72—Commands and Utilities UNIX Programmer’s Manual

COL(1) COL(1)

SEE ALSO
nroff (1), tbl(1).

NOTES
The input format accepted by col matches the output produced by
nroff with either the —T37 or —Tlp options. Use —T37 (and the
—f option of col) if the ultimate disposition of the output of col
will be a device that can interpret half-line motions, and —TIlp
otherwise.

BUGS
Cannot back up more than 128 lines.
Allows at most 800 characters, including backspaces, on a line.
Local vertical motions that would result in backing up over the
first line of the document are ignored. As a result, the first line
must not have any superscripts.

UNIX Programmer’s Manual Commands and Utilities—73

COMB (1) COMB(1)

NAME
comb — combine SCCS deltas

SYNOPSIS
comb [—o] [—s] [—psid] [—clist] files

DESCRIPTION

Comb generates a shell procedure (see s#(1)) which, when run,
will reconstruct the given SCCS files. The reconstructed files will,
hopefully, be smaller than the original files. The arguments may
be specified in any order, but all keyletter arguments apply to all
named SCCS files. If a directory is named, comb behaves as
though each file in the directory were specified as a named file,
except that non-SCCS files (last component of the path name does
not begin with s.) and unreadable files are silently ignored. If a
name of — is given, the standard input is read; each line of the
input is taken to be the name of an SCCS file to be processed;
non-SCCS files and unreadable files are silently ignored. The gen-
erated shell procedure is written on the standard output.

The keyletter arguments are as follows. Each is explained as
though only one named file is to be processed, but the effects of
any keyletter argument apply independently to each named file.

—pSID The SCCS IDentification string (SID) of the oldest delta
to be preserved. All older deltas are discarded in the
reconstructed file.

—clist A list (see get(1) for the syntax of a list) of deltas to be
preserved. All other deltas are discarded.

-0 For each get —e generated, this argument causes the
reconstructed file to be accessed at the release of the
delta to be created, otherwise the reconstructed file wouid
be accessed at the most recent ancestor. Use of the —o
keyletter may decrease the size of the reconstructed SCCS
file. It may also alter the shape of the delta tree of the
original file.

—-s This argument causes comb to generate a shell procedure
which, when run, will produce a report giving, for each
file: the file name, size (in blocks) after combining, origi-
nal size (also in blocks), and percentage change com-
puted by:

100 = (original — combined) / original

74—Commands and Utilities UNIX Programmer’s Manual

COMB(1) COMB(1)

It is recommended that before any SCCS files are actu-
ally combined, one should use this option to determine
exactly how much space is saved by the combining pro-
cess.

If no keyletter arguments are specified, comb will preserve only
leaf deltas and the minimal number of ancestors needed to
preserve the tree.

FILES
s.COMB The name of the reconstructed SCCS file.
comb???77? Temporary.

SEE ALSO

admin(1), delta(1), get(1), help(1), prs(1), sh(1).
sccsfile(4) in the UNIX Programmer’s Manual —Volume 2: Sys-
tem Calls and Library Routines.

DIAGNOSTICS
Use help (1) for explanations.

BUGS
Comb may rearrange the shape of the tree of deltas. It may not
save any space; in fact, it is possible for the reconstructed file to
actually be larger than the original.

UNIX Programmer’s Manual Commands and Utilities—75

COMM (1) | COMM (1)

NAME

comm — select or reject lines common to two sorted files
SYNOPSIS

comm [— [123]] filel file2
DESCRIPTION

Comm reads filel and file2, which should be ordered in ASCII col-
lating sequence (see sort(1)), and produces a three-column output:
lines only in filel; lines only in file2; and lines in both files. The
file name — means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column.
Thus comm —12 prints only the lines common to the two files;
comm —23 prints only lines in the first file but not in the second;
comm —123 is a no-op.

SEE ALSO
cmp(1), diff(1), sort(1), uniq(1).

76—Commands and Utilities UNIX Programmer’s Manual

CONVERT(1)

NAME

CONVERT (1)

convert — convert object and archive files to common formats

SYNOPSIS

convert [—5] infile outfile

DESCRIPTION

Convert transforms input infile to output outfile. Infile must be
different from outfile. The —5 option causes convert to work
exactly as it did for UNIX System V Release 1.0. Infile may be
any one of the following:

1)

2)

3)

4)

a pre-UNIX System V Release 1.0 object file or
link-edited (a.out) module (only with the —5
option),

a pre-UNIX System V Release 1.0 archive of
object files or link edited (a.out) modules (only
with the —5 option),

a pre-UNIX System V Release 1.0 3B20 computer
archive of object files or link edited (a.out)
modules (only with the —5 option), or

a UNIX System V Release 1.0 archive file on
most computers (without the —5 option).

Convert will transform infile to one of the following (respectively):

1

2)

3)

)

an equivalent UNIX System V Release 1.0 object
file or link edited (a.out) module (with the —5
option),

an equivalent UNIX System V Release 1.0 archive
of equivalent object files or link edited (a.out)
modules (with the —5 option),

an equivalent UNIX System V Release 1.0 archive
of unaltered 3B20 computer object files or link
edited (a.out) modules (with the —5 option) and

an equivalent UNIX System V Release 2.0 port-
able archive on most computers containing unal-
tered members (without the —5 option).

All other types of input to the convert command will be passed
unmodified from the input file to the output file (along with
appropriate warning messages). When transforming archive files
with the —5 option, the convert(1) command will inform the user

UNIX Programmer’s Manual Commands and Utilities—77

CONVERT(1) CONVERT(1)

that the archive symbol table has been deleted. To generate an
archive symbol table, this archive file must be transformed again
by convert without the —5 option to create a UNIX System V
Release 2.0 archive file. Then the archive symbol table may be
created by executing the ar(1) command with the ts option. If a
UNIX System V Release 1.0 archive with an archive symbol table
is being transformed, the archive symbol table will automatically
be converted.

FILES

/tmp/conv*
SEE ALSO

ar(1).

a.out(4), ar(4) in the UNIX Programmer’s Manual —Volume 2:
System Calls and Library Routines.

78~Commands and Utilities UNIX Programmer’s Manual

CP(1)

NAME

CP(1)

cp, In, mv — copy, link or move files

SYNOPSIS

cp filel [file2 ...] target
In [—f] filel [file2 ...] target
mv [—f] filel [file2 ...] target

DESCRIPTION

Filel is copied (linked, moved) to target. Under no circumstance
can filel and target be the same (take care when using sh (1)
metacharacters). If target is a directory, then one or more files
are copied (linked, moved) to that directory. If target is a file, its
contents are destroyed.

If mv or In determines that the mode of target forbids writing, it
will print the mode (see chmod(2)), ask for a response, and read
the standard input for one line; if the line begins with y, the mv or
In occurs, if permissable; if not, the command exits. No questions
are asked and the mv or In is done when the —f option is used or
if the standard input is not a terminal.

Only mv will allow filel to be a directory, in which case the direc-
tory rename will occur only if the two directories have the same
parent; filel is renamed target. If filel is a file and rarget is a link
to another file with links, the other links remain and target
becomes a new file.

When using cp, if target is not a file, a new file is created which
has the same mode as filel except that the sticky bit is not set
unless you are super-user; the owner and group of target are those
of the user. If target is a file, copying a file into target does not
change its mode, owner, nor group. The last modification time of
target (and last access time, if target did not exist) and the last
access time of filel are set to the time the copy was made. If tar-
get is a link to a file, all links remain and the file is changed.

SEE ALSO

BUGS

cpio(1), rm(1).
chmod(2) in the UNIX Programmer’s Manual —Volume 2: Sys-
tem Calls and Library Routines.

If filel and target lie on different file systems, mv must copy the
file and delete the original. In this case any linking relationship
with other files is lost. Lr will not link across file systems.

UNIX Programmer’s Manual Commands and Utilities—79

cPIO(1) CPIO(1)

NAME
cpio — copy file archives in and out

SYNOPSIS
cpio —o [acBv]

cpio —i [BedmrtuvfsSb6 1 [patterns]
cpio —p [adlmruv] directory

DESCRIPTION
Cpio —o (copy out) reads the standard input to obtain a list of
path names and copies those files onto the standard output
together with path name and status information. Output is padded
to a 512-byte boundary.

Cpio —i (copy in) extracts files from the standard input, which is
assumed to be the product of a previous cpio —o. Only files with
names that match patterns are selected. Patterns are given in the
name-generating notation of sh(1). In patterns, meta-characters
?, », and [...] match the slash / character. Multiple patterns
may be specified and if no patterns are specified, the default for
patterns is * (i.e., select all files). The extracted files are condi-
tionally created and copied into the current directory tree based
upon the options described below. The permissions of the files will
be those of the previous cpio —o. The owner and group of the
files will be that of the current user unless the user is super-user,
which causes cpio to retain the owner and group of the files of the
previous cpio —o.

Cpio —p (pass) reads the standard input to obtain a list of path
names of files that are conditionally created and copied into the
destination directory tree based upon the options described below.

The meanings of the available options are:

a Reset access times of input files after they have been
copied.
B Input/output is to be blocked 5,120 bytes to the record

(does not apply to the pass option; meaningful only with
data directed to or from /dev/rmt/??).

d Directories are to be created as needed.

¢ Write header information in ASCII character form for
portability.

r Interactively rename files. If the user types a null line,
the file is skipped.

80—Commands and Utilities UNIX Programmer’s Manual

CPIO(1)

EXAMPLES

SEE ALSO

BUGS

UNIX Programmer’s Manual

SN @ ™ E

=)

CPIO(1)

Print a table of contents of the input. No files are
created.

Copy unconditionally (normally, an older file will not
replace a newer file with the same name).

Verbose: causes a list of file names to be printed. When
used with the t option, the table of contents looks like the
output of an Is —l command (see Is(1)).

Whenever possible, link files rather than copying them.
Usable only with the —p option.

Retain previous file modification time. This option is
ineffective on directories that are being copied.

Copy in all files except those in patterns.

Swap bytes. Use only with the —i option.

Swap halfwords. Use only with the —i option.

Swap both bytes and halfwords. Use only with the —i
option.

Process an old (i.e., UNIX System Sixth Edition format)
file. Only useful with —i (copy in).

The first example below copies the contents of a directory into an
archive; the second duplicates a directory hierarchy:

The

Is | cpio —o >/dev/mt/Om

cd olddir
find . —depth —print | cpio —pdl newdir

trivial case “find . —depth —print | cpio —oB

> /dev/rmt/Om” can be handled more efficiently by:

find . —cpio /dev/rmt/Om

ar(1), find(1), 1s(1).
cpio(4) in the UNIX Programmer’s Manual —Volume 2: System
Calls and Library Routines.

Path names are restricted to 128 characters. If there are too many
unique linked files, the program runs out of memory to keep track
of them and, thereafter, linking information is lost. Only the
super-user can copy special files. The —B option does not work
with certain magnetic tape drives.

Commands and Utilities—81

CPP(1) CPP(1)

NAME

cpp — the C language preprocessor
SYNOPSIS

/lib/cpp [option ... 11 ifile [ofile 11
DESCRIPTION

Cpp is the C language preprocessor which is invoked as the first
pass of any C compilation using the cc(1) command. Thus the
output of ¢pp is designed to be in a form acceptable as input to
the next pass of the C compiler. As the C language evolves, cpp
and the rest of the C compilation package will be modified to fol-
low these changes. Therefore, the use of cpp other than in this
framework is not suggested. The preferred way to invoke cpp is
through the cc(1) command, since the functionality of cpp may
someday be moved elsewhere. See m4(1) for a general macro pro-
CesSOr.

Cpp optionally accepts two file names as arguments. Ifile and
ofile are respectively the input and output for the preprocessor.
They default to standard input and standard output if not sup-
plied.

The following options to cpp are recognized:

-P Preprocess the input without producing the line control
information used by the next pass of the C compiler.

-C By default, cpp strips C-style comments. If the —C
option is specified, all comments (except those found on
cpp directive lines) are passed along.

—Uname
Remove any initial definition of name, where name is a
reserved symbol that is predefined by the particular
preprocessor. The current list of these possibly reserved
symbols includes:

operating system: ibm, gcos, os, tss, unix

hardware: interdata, pdpl1, u370, u3b,
u3bs, vax

UNIX system variant: RES, RT

lint(1): lint

82—Commands and Utilities UNIX Programmer’s Manual

CPP(1) CPP(1)

—Dname

—Dname =def
Define name as if by a #define directive. If no =def is
given, name is defined as 1. The —D option has lower
precedence than the —U option. That is, if the same
name is used in both a —U option and a —D option, the
name will be undefined regardless of the order of the
options.

-T On most computers, preprocessor symbols are no longer
restricted to eight characters. The —T option forces cpp
to use only the first eight characters for distinguishing
different preprocessor names. This behavior is the same as
previous preprocessors with respect to the length of names
and is included for backward compatability.

—Idir Change the algorithm for searching for #include files
whose names do not begin with / to look in dir before
looking in the directories on the standard list. Thus,
#include files whose names are enclosed in "" will be.
searched for first in the directory of the file with the
#include line, then in directories named in —I options,
and last in directories on a standard list. For #include
files whose names are enclosed in <>, the directory of
the file with the #include line is not searched.

Two special names are understood by cpp. The name __LINE__is
defined as the current line number (as a decimal integer) as known
by cpp, and __FILE__ is defined as the current file name (as a C
string) as known by cpp. They can be used anywhere (including in
macros) just as any other defined name.

All ¢pp directives start with lines begun by #. Any number of
blanks and tabs are allowed between the # and the directive. The
directives are:

#define name token-string
Replace subsequent instances of name with token-string.

#define name(arg, ..., arg) token-string
Notice that there can be no space between name and the
(. Replace subsequent instances of name followed by a (,
a list of comma-separated set of tokens, and a) by
token-string, where each occurrence of an arg in the
token-string is replaced by the corresponding set of tokens
in the comma-separated list. When a macro with

UNIX Programmer’s Manual Commands and Utilities—83

CPP(1) CPP(1)

arguments is expanded, the arguments are placed into the
expanded token-string unchanged. After the entire
token-string has been expanded, cpp re-starts its scan for
names to expand at the beginning of newly created
token-string.

#undef name
Cause the definition of name (if any) to be forgotten from
now on.

#include "filename"

#include <filename>
Include at this point the contents of filename (which will
then be run through cpp). When the <filename> nota-
tion is used, filename is only searched for in the standard
places. See the —I option above for more detail.

#line integer-constant "filename"
Causes ¢pp to generate line control information for the
next pass of the C compiler. Integer-constant is the line
number of the next line and filename is the file where it
comes from. If "filename" is not given, the current file
name is unchanged.

#endif
Ends a section of lines begun by a test directive (#if,
#ifdef, or #ifndef). Each test directive must have a
matching #endif.

#ifdef name
The lines following will appear in the output if and only if
name has been the subject of a previous #define without
being the subject of an intervening #undef.

#ifndef name ,
The lines following will not appear in the output if and
only if name has been the subject of a previous #define
without being the subject of an intervening #undef.

#if constant-expression
Lines following will appear in the output if and only if the
constant-expression evaluates to non-zero. All binary
non-assignment C operators, the ?: operator, the unary —,
!, and ~ operators are all legal in constant-expression.
The precedence of the operators is the same as defined by
the C language. There is also a unary operator defined,

84—Commands and Utilities UNIX Programmer’s Manual

CPP(1) CPP(1)

which can be used in constant-expression in these two
forms: defined (name) or defined name. This allows the
utility of #ifdef and #ifndef in a #if directive. Only these
operators, integer constants, and names which are known
by cpp should be used in constant-expression. In particu-
lar, the sizeof operator is not available.

#else Reverses the notion of the test directive which matches
this directive. So if lines previous to this directive are
ignored, the following lines will appear in the output. And
vice versa.

The test directives and the possible #else directives can be nested.

FILES
/usr/include standard directory for #include files

SEE ALSO
cc(1), m4(1).

DIAGNOSTICS
The error messages produced by cpp are intended to be self-
explanatory. The line number and filename where the error
occurred are printed along with the diagnostic.

NOTES
When new-line characters were found in argument lists for macros
to be expanded, previous versions of cpp put out the new-lines as
they were found and expanded. The current version of cpp
replaces these new-lines with blanks to alleviate problems that the
previous versions had when this occurred.

UNIX Programmer’s Manual Commands and Utilities—85

CRONTAB(1) CRONTAB(1)

NAME
crontab — user crontab file

SYNOPSIS
crontab [file]
crontab -r
crontab -1

DESCRIPTION
Crontab copies the specified file, or standard input if no file is
specified, into a directory that holds all users’ crontabs. The —r
option removes a user’s crontab from the crontab directory. Cron-
tab —1 will list the crontab file for the invoking user.

Users are permitted to use crontab if their names appear in the file
/ust/lib/cron/cron.allow. If that file does not exist, the file
/usr/lib/cron/cron.deny is checked to determine if the user should
be denied access to crontab. If neither file exists, only root is
allowed to submit a job. If either file is at.demy, global usage is
permitted. The allow/deny files consist of one user name per line.

A crontab file consists of lines of six fields each. The fields are
separated by spaces or tabs. The first five are integer patterns that
specify the following:

minute (0—59),

hour (0—23),

day of the month (1—31),

month of the year (1—12),

day of the week (0—6 with 0=Sunday).

Each of these patterns may be either an asterisk (meaning all
legal values) or a list of elements separated by commas. An ele-
ment is either a number or two numbers separated by a minus sign
(meaning an inclusive range). Note that the specification of days
may be made by two fields (day of the month and day of the
week). If both are specified as a list of elements, both are adhered
to. For example, 0 0 1,15 * 1 would run a command on the first
and fifteenth of each month, as well as on every Monday. To
specify days by only one field, the other field should be set to *
(for example, 0 0 + + 1 would run a command only on Mondays).

The sixth field of a line in a crontab file is a string that is executed
by the shell at the specified times. A percent character in this
field (unless escaped by \) is translated to a new-line character.

86—Commands and Utilities UNIX Programmer’s Manual

CRONTAB(1) CRONTAB(1)

Only the first line (up to a % or end of line) of the command field
is executed by the shell. The other lines are made available to the
command as standard input.

The shell is invoked from your $SHOME directory with an arg0 of
sh. Users who desire to have their .profile executed must explicitly
do so in the crontab file. Cron supplies a default environment for
every shell, defining HOME, LOGNAME, SHELL(=/bin/sh), and
PATH(=:/bin:/usr/bin:/usr /Ibin) .

NOTE: Users should remember to redirect the standard output
and standard error of their commands! If this is not done, any
generated output or errors will be mailed to the user.

FILES
/usr/lib/cron main cron directory
/usr/spool/cron/crontabs spool area
/usr/lib/cron/log accounting information
/usr/lib/cron/cron.allow list of allowed users
/usr/lib/cron/cron.deny list of denied users
SEE ALSO

sh(1).
cron(1M) in the UNIX Programmer’s Manual —Volume 3: Sys-
tem Administration Facilities.

UNIX Programmer’s Manual Commands and Utilities—87

CRYPT(1) CRYPT(1)

NAME
crypt — encode/decode

SYNOPSIS
- crypt [password 1]

DESCRIPTION
Crypt reads from the standard input and writes on the standard
output. The password is a key that selects a particular transfor-
mation. If no password is given, crypt demands a key from the
terminal and turns off printing while the key is being typed in.
Crypt encrypts and decrypts with the same key:

crypt key <clear >cypher
crypt key <cypher | pr

will print the clear.

Files encrypted by crypt are compatible with those treated by the
editor ed in encryption mode.

The security of encrypted files depends on three factors: the fun-
damental method must be hard to solve; direct search of the key
space must be infeasible; “sneak paths” by which keys or clear
text can become visible must be minimized.

Crypt implements a one-rotor machine designed along the lines of
the German Enigma, but with a 256-element rotor. Methods of
attack on such machines are known, but not widely; moreover the
amount of work required is likely to be large.

The transformation of a key into the internal settings of the
machine is deliberately designed to be expensive, i.c., to take a
substantial fraction of a second to compute. However, if keys are
restricted to (say) three lower-case letters, then encrypted files can
be read by expending only a substantial fraction of five minutes of
machine time. '

Since the key is an argument to the crypt command, it is poten-

tially visible to users executing ps(1) or a derivative. The choice

of keys and key security are the most vulnerable aspect of crypt.
FILES

/dev/tty for typed key

SEE ALSO
ed(1), makekey(1), stty(1).

88—Commands and Utilities UNIX Programmer’s Manual

CRYPT(1) CRYPT (1)

BUGS

If output is piped to nroff and the encryption key is not given on
the command line, crypt can leave terminal modes in a strange
state (see stty (1)).

If two or more files encrypted with the same key are concatenated
and an attempt is made to decrypt the result, only the contents of
the first of the original files will be decrypted correctly.

UNIX Programmer’s Manual Commands and Utilities—89

CSPLIT(1) CSPLIT (1)

NAME
csplit — context split

SYNOPSIS
csplit [—s] [—k] [—f prefix] file argl [... argn]

DESCRIPTION
Csplit reads file and separates it into n+1 sections, defined by the
arguments argl... argn. By default the sections are placed in
xx00 ... xxn (n may not be greater than 99). These sections get
the following pieces of file:

00: From the start of file up to (but not including) the
line referenced by argl.

01: From the line referenced by argl up to the line
referenced by arg2.

n+1: From the line referenced by argn to the end of file.
If the file argument is a — then standard input is used.
The options to csplit are:

-s Csplit normally prints the character counts for
each file created. If the —s option is present,
csplit suppresses the printing of all character
counts,

-k Csplit normally removes created files if an error
occurs. If the —Kk option is present, csplit leaves
previously created files intact.

—f prefix If the —f option is used, the created files are
named prefix00 ... prefixn. The default is
xx00 ... xxn.

The arguments (argl ... argn) to csplit can be a combination of
the following:

/rexp/ A file is to be created for the section from the
current line up to (but not including) the line con-
taining the regular expression rexp. The current
line becomes the line containing rexp. This argu-
ment may be followed by an optional + or —
some number of lines (e.g., /Page/—5).

%rexp% This argument is the same as /rexp/, except that
no file is created for the section.

90—Commands and Utilities UNIX Programmer’s Manual

CSPLIT(1) CSPLIT(1)

Inno A file is to be created from the current line up to
(but not including) Inmo. The current line
becomes /nno.

{num} Repeat argument. This argument may follow any
of the above arguments. If it follows a rexp type .
argument, that argument is applied num more
times. If it follows /nno, the file will be split every
Inno lines (num times) from that point.

Enclose all rexp type arguments that contain blanks or other char-
acters meaningful to the shell in the appropriate quotes. Regular
expressions may not contain embedded new-lines. Csplit does not
affect the original file; it is the users responsibility to remove it.

EXAMPLES
csplit —f cobol file '/procedure division/' /par5./ /parl6./

This example creates four files, cobol00 . .. cobol03. After editing
the “split” files, they can be recombined as follows:

cat cobol0[0—3] > file
Note that this example overwrites the original file.
csplit —k file 100 {99}

This example would split the file at every 100 lines, up to 10,000
lines. The —k option causes the created files to be retained if
there are less than 10,000 lines; however, an error message would
still be printed.

csplit =k prog.c ‘%main(%' '/°}/+1' {20}

Assuming that prog.c follows the normal C coding convention of
ending routines with a } at the beginning of the line, this example
will create a file containing each separate C routine (up to 21) in
prog.c.

SEE ALSO
ed(1), sh(1).
regexp(5) in the UNIX Programmer’s Manual —Volume 2: Sys-
tem Calls and Library Routines.

UNIX Programmer’s Manual Commands and Utilities—91

CSPLIT(1) CSPLIT(1)

DIAGNOSTICS :
Self-explanatory except for:
arg — out of range
which means that the given argument did not reference a line
between the current position and the end of the file.

92—Commands and Utilities UNIX Programmer’s Manual

CT(1C) CT(1C)

NAME

ct — spawn getty to a remote terminal

SYNOPSIS

ct[=h][=v][—wn][—sspeed] telno ...

DESCRIPTION

FILES

Ct dials the phone number of a modem that is attached to a termi-
nal, and spawns a getty process to that terminal. Telno is a tele-
phone number, with equal signs for secondary dial tones and minus
signs for delays at appropriate places. If more than one telephone
number is specified, ¢t will try each in succession until one
answers; this is useful for specifying alternate dialing paths.

Ct will try each line listed in the file /usr/lib/uucp/L-devices until
it finds an available line with appropriate attributes or runs out of
entries. If there are no free lines, ¢t will ask if it should wait for
one, and if so, for how many minutes it should wait before it gives
up. Ct will continue to try to open the dialers at one-minute inter-
vals until the specified limit is exceeded. The dialogue may be
overridden by specifying the —wn option, where n is the maximum
number of minutes that ¢t is to wait for a line.

Normally, ¢t will hang up the current line, so that that line can
answer the incoming call. The —h option will prevent this action.
If the —v option is used, ct will send a running narrative to the
standard error output stream.

The data rate may be set with the —s option, where speed is
expressed in baud. The default rate is 300.

After the user on the destination terminal logs out, ¢ prompts,
Reconnect? If the response begins with the letter n the line will be
dropped; otherwise, getty will be started again and the login:
prompt will be printed.

Of course, the destination terminal must be attached to a modem
that can answer the telephone.

/usr/lib/uucp/L-devices
/usr/adm/ctlog

SEE ALSO

cu(1C), login(1), wucp(1C).

UNIX Programmer’s Manual Commands and Utilities—93

CTRACE(1) CTRACE(1)

. NAME
ctrace — C program debugger
SYNOPSIS
ctrace [options] [file]
DESCRIPTION

Ctrace allows you to follow the execution of a C program,
statement-by-statement. The effect is similar to executing a shell
procedure with the -x option. Ctrace reads the C program in file
(or from standard input if you do not specify file), inserts state-
ments to print the text of each executable statement and the values
of all variables referenced or modified, and writes the modified
program to the standard output. You must put the output of
ctrace into a temporary file because the cc(1) command does not
allow the use of a pipe. You then compile and execute this file.

As each statement in the program executes it will be listed at the
terminal, followed by the name and value of any variables refer-
enced or modified in the statement, followed by any output from
the statement. Loops in the trace output are detected and tracing
is stopped until the loop is exited or a different sequence of state-
ments within the loop is executed. A warning message is printed
every 1000 times through the loop to help you detect infinite loops.
The trace output goes to the standard output so you can put it into
a file for examination with an editor or the bfs(1) or tail(1) com-
mands.

The only options you will commonly use are:

—f functions Trace only these functions.
—v functions Trace all but these functions.

You may want to add to the default formats for printing variables.
Long and pointer variables are always printed as signed integers.
Pointers to character arrays are also printed as strings if appropri-
ate. Char, short, and int variables are also printed as signed
integers and, if appropriate, as characters. Double variables are
printed as floating point numbers in scientific notation. You can
request that variables be printed in additional formats, if appropri-
ate, with these options:

-0 Octal
-X Hexadecimal
-u Unsigned

94—Commands and Utilities UNIX Programmer’s Manual

CTRACE(1)

-€

CTRACE(1)

Floating point

These options are used only in special circumstances:

-1ln

-Ss

-P

Check n consecutively executed statements for looping
trace output, instead of the default of 20. Use 0 to get all
the trace output from loops.

Suppress redundant trace output from simple assignment
statements and string copy function calls. This option can
hide a bug caused by use of the = operator in place of the
== operator.

Trace n variables per statement instead of the default of
10 (the maximum number is 20). The Diagnostics section
explains when to use this option.

Run the C preprocessor on the input before tracing it.
You can also use the =D, -I, and -U cc(1) preprocessor
options.

These options are used to tailor the run-time trace package when
the traced program will run in a non-UNIX system environment:

=b

EXAMPLE

Use only basic functions in the trace code, that is, those in
ctype (3C), printf(3S), and string (3C). These are usually
available even in cross-compilers for microprocessors. In
particular, this option is needed when the traced program
runs under an operating system that does not have sig-
nal (2) or setjmp (3C).

Change the trace print function from the default of
>printf(C. For example, ’fprintf(stderr,” would send the
trace to the standard error output.

Use file f in place of the runtime.c trace function package.
This lets you change the entire print function, instead of
just the name and leading arguments (see the -p option).

If ‘the file /c.c contains this C program:

1
2
3

4
5
6
7

#include <stdio.h>

main() /* count lines in input */
{

int ¢, nl;

nl = 0;

while ((c = getchar()) != EOF)

UNIX Programmer’s Manual Commands and Utilities—95

CTRACE(1) CTRACE(1)

8 if (c = \n’)
9 ++nl;
10 printf("%d\n", nl);
11}
and you enter these commands and test data:
ccle.c
a.out
1
(cntl-d),

the program will be compiled and executed. The output of the
program will be the number 2, which is not correct because there
is only one line in the test data. The error in this program is com-
mon, but subtle. If you invoke ctrace with these commands:

ctrace lc.c >temp.c

cc temp.c

a.out

the output will be:

2 main()
6 nl = 0;
/* n] == */

7 while ((c = getchar()) '= EOF)

The program is now waiting for input. If you enter the same test
data as before, the output will be:
/¥ c === 49 or 1’ */

8 if (c ="\n’)
/* c == 10 or \n’ */
9 +-+nl;
/¥ nl mm=1 %/

7 while ((c = getchar() = EOF)
/* ¢ == 10 or \n’ */

8 if (c =\n")
/* ¢ == 10 or \n’ */
9 ++nl;
/* n] mem 2 */

7 while ((c = getchar()) != EOF)

If you now enter an end of file character (cntl-d) the final output
will be:

96—Commands and Utilities UNIX Programmer’s Manual

CTRACE(1) CTRACE(1)

/* ¢ == .1 %/

10 printf("%d\n", nl);
/* nl ==2 */2
return

Note that the program output printed at the end of the trace line
for the nl variable. Also note the return comment added by ctrace
at the end of the trace output. This shows the implicit return at
the terminating brace in the function.

The trace output shows that variable ¢ is assigned the value ’1’ in
line 7, but in line 8 it has the value \n’. Once your attention is
drawn to this if statement, you will probably realize that you used
the assignment operator (=) in place of the equal operator (==),
You can easily miss this error during code reading.

EXECUTION-TIME TRACE CONTROL
The default operation for ctrace is to trace the entire program file,
unless you use the -f or -v options to trace specific functions. This
does not give you statement-by-statement control of the tracing,
nor does it let you turn the tracing off and on when executing the
traced program.

You can do both of these by adding ctroffO) and ctron() function
calls to your program to turn the tracing off and on, respectively,
at execution time. Thus, you can code arbitrarily complex criteria
for trace control with if statements, and you can even conditionally
include this code because ctrace defines the CTRACE preprocessor
variable. For example:

#ifdef CTRACE
if (c =="r && i > 1000)
ctron();
#endif

You can also call these functions from sdb(1) if you compile with
the -g option. For example, to trace all but lines 7 to 10 in the
main function, enter:

sdb a.out
main:7b ctroffQ
main:11b ctron()
r

UNIX Programmer’s Manual Commands and Utilities—97

CTRACE(1) ' CTRACE(1)

You can also turn the trace off and on by setting static variable
tr ct_ to 0 and 1, respectively. This is useful if you are using a
debugger that cannot call these functions directly.

DIAGNOSTICS
This section contains diagnostic messages from both ctrace and
cc(1), since the traced code often gets some cc warning messages.
You can get cc error messages in some rare cases, all of which can
be avoided.

Ctrace Diagnostics
warning: some variables are not traced in this statement
Only 10 variables are traced in a statement to prevent the
C compiler "out of tree space; simplify expression" error.
Use the -t option to increase this number. '

warning: statement too long to trace
This statement is over 400 characters long. Make sure
that you are using tabs to indent your code, not spaces.

cannot handle preprocessor code, use -P option
This is usually caused by #ifdef/#endif preprocessor
statements in the middle of a C statement, or by a semi-
colon at the end of a #define preprocessor statement.

‘if ... else if” sequence too long
Split the sequence by removing an else from the middle.

possible syntax error, try -P option
Use the -P option to preprocess the ctrace input, along
with any appropriate -D, -I, and -U preprocessor options.
If you still get the error message, check the Warnings sec-
tion below.

Cc Diagnostics
warning: floating point not implemented
warning: illegal combination of pointer and integer
warning: statement not reached
warning: sizeof returns 0
Ignore these messages.

compiler takes size of function
See the ctrace "possible syntax error" message above.

yacc stack overflow ,
See the ctrace "if ... else if’ sequence too long" message
above.

98—Commands and Utilities UNIX Programmer’s Manual

CTRACE(1) CTRACE(1)

out of tree space; simplify expression
Use the -t option to reduce the number of traced variables
per statement from the default of 10. Ignore the "ctrace:
too many variables to trace" warnings you will now get.

redeclaration of signal
Either correct this declaration of signal(2), or remove it
and #include <signal.h>.

unimplemented structure assignment
This is caused by a bug in the C compiler on some com-
puters. Use pcc instead of cc(1).

offset xxxx in control section ...
This is caused by a problem in the current UNIX/370 C
compiler. Use the cc (1) -b2,2 option.

expression causes compiler loop: try simplifying
This is caused by a bug in the UNIX/370 C compiler.
Unfortunately, the only way to avoid it is to use the ctrace
-v option to not trace the function containing this line.

WARNINGS

BUGS

You will get a ctrace syntax error if you omit the semicolon at the
end of the last element declaration in a structure or union, just
before the right brace (}). This is optional in some C compilers.

Defining a function with the same name as a system function may
cause a syntax error if the number of arguments is changed. Just
use a different name. '

Ctrace assumes that BADMAG is a preprocessor macro, and that
EOF and NULL are #defined constants. Declaring any of these
to be variables, e.g., "int EOF;", will cause a syntax error.

Ctrace does not know about the components of aggregates like
structures, unions, and arrays. It cannot choose a format to print
all the components of an aggregate when an assignment is made to
the entire aggregate. Ctrace may choose to print the address of an
aggregate or use the wrong format (e.g., %e for a structure with
two integer members) when printing the value of an aggregate.

Pointer values are always treated as pointers to character strings.

The loop trace output elimination is done separately for each file
of a multi-file program. This can result in functions called from a
loop still being traced, or the elimination of trace output from one

UNIX Programmer’s Manual Commands and Utilities—99

CTRACE(1) CTRACE(1)

function in a file until another in the same file is called.

FILES
runtime.c run-time trace package

SEE ALSO
signal(2), ctype(3C), printf(3S), setjmp(3C), string(3C) in the
UNIX Programmer’s Manual —Volume 2: System Calls and
Library Routines.

100—Commands and Ultilities UNIX Programmer’s Manual

cu(10) cuao)

NAME :
cu — call another UNIX system

SYNOPSIS
cu [—sspeed] [—llinel [=h] [=t] [—d] [—m] [—0] [—e]
[—n] telno | systemmame | dir

DESCRIPTION
Cu calls up another UNIX system, a terminal, or possibly a non-
UNIX system. It manages an interactive conversation with possi--
ble transfers of ASCII files.

cu accepts the following options and arguments.

—sspeed
Specifies the transmission speed (110, 150, 300, 600, 1200,
4800, 9600); 300 is the default value. Most modems are
either 300 or 1200 baud. Directly connected lines may be
set to a speed higher than 1200 baud.

—lline Specifies a device name to use as the communication line.
This can be used to override searching for the first avail-
able line having the right speed. When the -l option is
used without the -s option, the speed of a line is taken
from the file /usr/lib/uucp/L-devices. When the -1 and -s
options are used simultaneously, cu will search the L-
devices file to check if the requested speed for the
requested line is available. If so, the connection will be
made at the requested speed; otherwise an error message
will be printed and the call will not be made. The specified
device is generally a directly connected asynchronous line
(e.g., /dev/ttyab), in this case a telephone number is not
required but the string dir may be use to specify a null
acu. If the specified device is associated with an auto
dialer, a telephone number must be provided.

—h Emulates local echo, supporting calls to other computer
systems which expect terminals to be set to half-duplex
mode.

-t Used when dialing an ASCII terminal which has been set
to auto answer.. Appropriate mapping of carriage-return
to carriage-return-line-feed pairs is set.

—d Causes diagnostic traces to be printed.

—e Designates that even parity is to be generated for data
sent to the remote.

UNIX Programmer’s Manual Commands and Utilities—101

cuc) : Ccu(10)

-0 Designates that odd parity is to be generated for data sent
to the remote.

—~m Designates a direct line which has modem control.

-n Will request the telephone number to be dialed from the
user rather than taking it from the command line.

telno When using an automatic dialer the argument is the
teletelephone number with equal signs for secondary dial
tone or minus signs for delays, at appropriate places.

systemname

A uucp system name may be used rather than a telephone
number; in this case, cu will obtain an appropriate direct
line or telephone number from /usr/lib/uucp/L.sys (the
appropriate baud rate is also read along with telephone
numbers). Cu will try each telephone number or direct
line for systemname in the L.sys file until a connection is
made or all the entries are tried.

dir Using dir insures that cu will use the line specified by the
-1 option.

After making the connection, cu runs as two processes: the
transmit process reads data from the standard input and, except
for lines beginning with ~, passes it to the remote system; the
receive process accepts data from the remote system and, except
for lines beginning with =, passes it to the standard output. Nor-
mally, an automatic DC3/DC1 protocol is used to control input
from the remote so the buffer is not overrun. Lines beginning with
~ have special meanings.

The transmit process interprets the following:

terminate the conversation.

- escape to an interactive shell on the local
system.

“lemd . .. run cmd on the local system (via sh —¢).

“$Scmd. .. run ¢cmd locally and send its output to the

remote system.

"% cd change the directory on the local system.
NOTE: “lcd will cause the comm:ind to be
run by a sub-shell; probably not what was
intended.

102—Commands and Ultilities UNIX Programmer’s Manual

Cu(10) Ccu(10)

“%take from [to 1 copy file from (on the remote system) to
file to on the local system. If to is omitted,
the from argument is used in both places.

“%put from [to 1 copy file from (on local system) to file to
on remote system. If 7o is omitted, the
from argument is used in both places.

—~

e send the line ~... to the remote system.
“% break transmit a BREAK to the remote system.

“% nostop toggles between DC3/DC1 input control
protocol and no input control. This is use-
ful in case the remote system is one which
does not respond properly to the DC3 and
DC1 characters.

The receive process normally copies data from the remote system
to its standard output. A line from the remote that begins with
~> initiates an output diversion to a file. The complete sequence
is:

>[>1:file

zero or more lines to be written to file

>
Data from the remote is diverted (or appended, if > > is used) to
file. The trailing "> terminates the diversion.

The use of ~%put requires stzy (1) and cat(1) on the remote side.
It also requires that the current erase and kill characters on the
remote system be identical to the current ones on the local system.
Backslashes are inserted at appropriate places.

The use of ~% take requires the existence of echo (1) and cat (1) on
the remote system. Also, stty tabs mode should be set on the
remote system if tabs are to be copied without expansion.

UNIX Programmer’s Manual Commands and Utilities—103

Ccu(10) Ccu(10)

When cu is used on system X to connect to system Y and subse-
quently used on system Y to connect to system Z, commands on
system Y can be executed by using ~". For example, uname can be
executed on Z, X, and Y as follows:

uname

Z

“luname

X

““luname

Y

In general, ~ causes the command to be executed on the original
machine, ™~ causes the command to be executed on the next
machine in the chain.

EXAMPLES
To dial a system whose number is 9 201 555 1212 using 1200
baud:
cu -s1200 9=2015551212

If the speed is not specified, 300 is the default value.

To login to a system connected by a direct line:
cu -l /dev/ttyXX dir

To dial a system with the specific line and a specific speed:
cu -s1200 -1 /dev/ttyXX dir

To dial a system using a specific line:
cu -l /dev/culXX 2015551212

To use a system name:
cu YYYZZZ

FILES
/usr/lib/uucp/L.sys
/usr/lib/uucp/L-devices
/usr/spool/uucp/LCK..(tty-device)
/dev/null

SEE ALSO
cat(1), ct(1C), echo(1), stty(1), uname(1), uucp(1C).

104—Commands and Ultilities UNIX Programmer’s Manual

cu(10) cu(ic)

DIAGNOSTICS
Exit code is zero for normal exit, non-zero (various values) other-
wise.

BUGS
Cu buffers input internally.
There is an artificial slowing of transmission by cu during the
"% put operation so that loss of data is unlikely.
You cannot use cu from the 3B20 computer system console.

UNIX Programmer’s Manual Commands and Utilities—105

CUT (1) CUT(1)

NAME
cut — cut out selected fields of each line of a file

SYNOPSIS
cut —clist [filel file2 ...]
cut —flist [—dchar] [—s] [filel file2 ...]

DESCRIPTION

Use cut to cut out columns from a table or fields from each line of
a file; in data base parlance, it implements the projection of a rela-
tion. The fields as specified by /ist can be fixed length, i.e., char-
acter positions as on a punched card (—c option) or the length can
vary from line to line and be marked with a field delimiter charac-
ter like tab (—f option). Cut can be used as a filter; if no files are
given, the standard input is used.

The meanings of the options are:

list A comma-separated list of integer field numbers (in
increasing order), with optional — to indicate ranges as
in the —o option of nroff/troff for page ranges; e.g.,
1,4,7, 1-3,8; —5,10 (short for 1—5,10); or 3— (short
for third through last field).

—clist The list following —c (no space) specifies character posi-
tions (e.g., —¢1 =72 would pass the first 72 characters of
each line).

—flist The list following —f is a list of fields assumed to be
separated in the file by a delimiter character (see —d);
e.g., —f1,7 copies the first and seventh field only. Lines
with no field delimiters will be passed through intact
(useful for table subheadings), unless —s is specified.

—dchar The character following —d is the field delimiter (—f
option only). Default is tab. Space or other characters
with special meaning to the shell must be quoted.

—s Suppresses lines with no delimiter characters in case of
—f option. Unless specified, lines with no delimiters will
be passed through untouched.

Either the —c¢ or —f option must be specified.

HINTS
Use grep (1) to make horizontal “cuts” (by context) through a file,
or paste(1) to put files together column-wise (i.., horizontally).
To reorder columns in a table, use cut and paste.

106—Commands and Ultilities UNIX Programmer’s Manual

CUT(1) CUT(1)

EXAMPLES
cut —d: —f1,5 /etc/passwd mapping of wuser IDs to
names

name=>‘who am i | cut —f1 —d" "> to set mame to current login
name.
DIAGNOSTICS

line too long A line can have no more than 1023 charac-
ters or fields.

bad list for c/f option
Missing —e¢ or —f option or incorrectly
specified list. No error occurs if a line has
fewer fields than the Jist calls for.

no fields The list is empty.

SEE ALSO
grep(1), paste(1).

UNIX Programmer’s Manual Commands and Utilities—107

CXREF (1) CXREF(1)

NAME
cxref — generate C program cross-reference

SYNOPSIS
cxref [options] files

DESCRIPTION

Cxref analyzes a collection of C files and attempts to build a
cross-reference table. Cxref utilizes a special version of cpp to
include #define’d information in its symbol table. It produces a
listing on standard output of all symbols (auto, static, and global)
in each file separately, or with the —c option, in combination.
Each symbol contains an asterisk (+) before the declaring refer-
ence.

In addition to the =D, —I and —U options (which are identical to
their interpretation by cc(1)), the following options are interpreted
by cxref:

—c Print a combined cross-reference of all input files.

—w<num>
Width option which formats output no wider than
<num> (decimal) columns. This option will default to
80 if <num>> is not specified or is less than 51.

—o file Direct output to named file.

=S Operate silently; does not print input file names.
-t Format listing for 80-column width.
FILES
/usr/lib/xcpp special version of C-preprocessor.
SEE ALSO .
ce(1).
DIAGNOSTICS

Error messages are unusually cryptic, but usually mean that you
cannot compile these files, anyway.

BUGS
Cxref considers a formal argument in a #define macro definition
to be a declaration of that symbol. For example, a program that
#includes ctype.h, will contain many declarations of the variable c.

108—Commands and Utilities UNIX Programmer’s Manual

DAPS (1) DAPS(1)

NAME
daps, dil0 — Postprocessors for the Autologic APS-5 photo-
typesetter and the Imagen Imprint-10 laser printer

SYNOPSIS '
daps [option] ... [file] ...
di10 [option] ... [file] ...

DESCRIPTION
Daps and dil0 (formerly known as dcan) print files created by
troff (1) on an Autologic APS-5 phototypesetter or on an Imagen
Imprint-10 laser printer. If no file is mentioned, the standard
input is printed. The following options are understood.

-b Report whether the typesetter is busy; do not print.

—hstring _
Print string in this job’s header. A header will only be
generated if either this option or the -H option is used.
(daps only)

—Hfile Print the first line from file in this job’s header. (daps
only)

—olist Print pages whose numbers are given in the comma-
separated list. The list contains single numbers N and
ranges NI —N2. A missing NI means the lowest-
numbered page, a missing N2 means the highest.

-r Report the number of 11-inch pages generated by this job.
(daps only)

—sn Stop after every n pages of output. Continue when the
PROCEED button is pushed on the typesetter.

—t Direct output to the standard output instead of the
typesetter.

-w Wait for typesetter to become free, then print.

The files submitted to daps should be prepared under the —Taps
option of troff. Dil0 is a phototypesetter simulator and can handle
troff output prepared for any supported typesetter. However, files
sent to dil0 will look best when prepared with the -Til0 option of

troff.

UNIX Programmer’s Manual Commands and Ultilities—109

DAPS (1) | DAPS (1)

FILES
/dev/aps APS-5 phototypesetter device
/usr/lib/font/devaps/* description files for APS-5
/usr/lib/font/devil0/* description files for Imagen
Imprint-10
/usr/lib/font/devil0/rasti10/* raster files for Imprint-10
/tmp/dcan* output of dil0 ready for Imagen
SEE ALSO
tc(1), troff(1).
troff (5) in the UNIX Programmer’s Manual —Volume 2: System
Calls and Library Routines.
BUGS

Installations with an Autologic APS-5 phototypesetter should be
aware that getting a good match to their Autologic fonts will
almost certainly require hand-tuning of the distributed font
description files.

110—Commands and Utilities UNIX Programmer’s Manual

DATE(1) DATE(1)

NAME
date — print and set the date

SYNOPSIS
date [mmddhhmml[yy] 1 [+format]

DESCRIPTION
If no argument is given, or if the argument begins with +, the
current date and time are printed. Otherwise, the current date is
set. The first mm is the month number; dd is the day number in
the month; hh is the hour number (24 hour system); the second
mm is the minute number; yy is the last 2 digits of the year
number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default
if no year is mentioned. The system operates in GMT. Date takes
care of the conversion to and from local standard and daylight
time.

If the argument begins with <+, the output of date is under the
control of the user. The format for the output is similar to that of
the first argument to printf(3S). All output fields are of fixed size
(zero padded if necessary). Each field descriptor is preceded by %
and will be replaced in the output by its corresponding value. A
single % is encoded by % %. All other characters are copied to
the output without change. The string is always terminated with a
new-line character. ‘

Field Descriptors:

insert a new-line character
insert a tab character
month of year — 01 to 12
day of month — 01 to 31
last 2 digits of year — 00 to 99
date as mm/dd/yy

hour — 00 to 23

minute — 00 to 59

second — 00 to 59

time as HH:MM:SS

day of year — 001 to 366

ﬁ—.ngmc% Q‘a - =

UNIX Programmer’s Manual Commands and Utilities—111

DATE(1) DATE(1)

day of week — Sunday = 0
abbreviated weekday — Sun to Sat
abbreviated month — Jan to Dec
time in AM/PM notation

- e g

EXAMPLE
date '+DATE: %m/%d/%y%nTIME: %H:%M:%S'
would have generated as output:
DATE: 08/01/76
TIME: 14:45:05

DIAGNOSTICS
No permission if you are not the super-user and you try to
change the date;
bad conversion if the date set is syntactically incorrect;

bad format character if the field descriptor is not recognizable.
FILES ’
/dev/kmem
SEE ALSO
printf(3S) in the UNIX Programmer’s Manual —Volume 2: Sys-
tem Calls and Library Routines.

WARNING
It is a bad practice to change the date while the system is running

multi-user.

112—Commands and Ultilities UNIX Programmer’s Manual

DC(1) DC(1)

NAME
dc — desk calculator

SYNOPSIS
de [file]

DESCRIPTION

Dc is an arbitrary precision arithmetic package. Ordinarily it
operates on decimal integers, but one may specify an input base,
output base, and a number of fractional digits to be maintained.
(See bc(1), a preprocessor for dc that provides infix notation and a
C-like syntax that implements functions. Bc also provides reason-
able control structures for programs.) The overall structure of dc
is a stacking (reverse Polish) calculator. If an argument is given,
input is taken from that file until its end, then from the standard
input. The following constructions are recognized:

number
The value of the number is pushed on the stack. A number
is an unbroken string of the digits 0—9. It may be preceded
by an underscore () to input a negative number. Numbers
may contain decimal points.

+—-/+%"
The top two values on the stack are added (+), subtracted
(=), multiplied (»), divided (/), remaindered (%), or
exponentiated (%). The two entries are popped off the
stack; the result is pushed on the stack in their place. Any
fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register
named x, where x may be any character. If the s is capi-
talized, x is treated as a stack and the value is pushed on it.

Ix The value in register x is pushed on the stack. The register
x is not altered. All registers start with zero value. If the l
is capitalized, register x is treated as a stack and its top
value is popped onto the main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value
remains unchanged. P interprets the top of the stack as an
ASCII string, removes it, and prints it.

f All values on the stack are printed.

UNIX Programmer’s Manual Commands and Utilities—113

DC(1) DC(1)

q exits the program. If executing a string, the recursion level
is popped by two. If q is capitalized, the top value on the
stack is popped and the string execution level is popped by

that value.

x treats the top element of the stack as a character string and
executes it as a string of dc commands.

X replaces the number on the top of the stack with its scale
factor.

[..] puts the bracketed ASCII string onto the top of the stack.

<x >x =x
The top two elements of the stack are popped and com-
pared. Register x is evaluated if they obey the stated rela-
tion.

\] replaces the top element on the stack by its square root.
Any existing fractional part of the argument is taken into
account, but otherwise the scale factor is ignored.

! interprets the rest of the line as a UNIX system command.
¢ All values on the stack are popped.
i The top value on the stack is popped and used as the

number radix for further input. I pushes the input base on
the top of the stack.

0 The top value on the stack is popped and used as the
number radix for further output.

() pushes the output base on the top of the stack.

k the top of the stack is popped, and that value is used as a
non-negative scale factor: the appropriate number of places
are printed on output, and maintained during multiplica-
tion, division, and exponentiation. The interaction of scale
factor, input base, and output base will be reasonable if all
are changed together.

The stack level is pushed onto the stack.

replaces the number on the top of the stack with its length.

o N N

A line of input is taken from the input source (usually the
terminal) and executed.

are used by bc for array operations.

we
X3

114—Commands and Utilities UNIX Programmer’s Manual

DC(1) DC(1)

EXAMPLE
This example prints the first ten values of n!:

[lal+dsa*plal0>ylsy
Osal
lyx
SEE ALSO
be(1).

DIAGNOSTICS
X is unimplemented
where x is an octal number.

stack empty

for not enough elements on the stack to do what was
asked.

Out of space
when the free list is exhausted (too many digits).

Out of headers
for too many numbers being kept around.

Out of pushdown
for too many items on the stack.

Nesting Depth
for too many levels of nested execution.

UNIX Programmer’s Manual Commands and Utilities—115

DD(1) DD(1)

NAME
dd — convert and copy a file

SYNOPSIS
dd [option=value] ...

DESCRIPTION
Dd copies the specified input file to the specified output with possi-
ble conversions. The standard input and output are used by
default. The input and output block size may be specified to take
advantage of raw physical I/0.

option values

if=file input file name; standard input is default

of =file output file name; standard output is default

ibs=n input block size n bytes (default 512)

obs=n output block size (default 512)

bs=n set both input and output block size, superseding

ibs and obs; also, if no conversion is specified, it is
particularly efficient since no in-core copy need be

done

cbs=n conversion buffer size

skip=n skip n input blocks before starting copy

seek=n seek n blocks from beginning of output file before
copying

count=n copy only r input blocks

conv =ascii convert EBCDIC to ASCII
ebedic convert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC
lcase map alphabetics to lower case
ucase map alphabetics to upper case
swab . swap every pair of bytes
noerror do not stop processing on an error
syn¢ pad every input block to ibs
..o e« several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A
number may end with k, b, or w to specify multiplication by 1024,
512, or 2, respectively; a pair of numbers may be separated by x to
indicate a product.

Cbs is used only if ascii or ebedic conversion is specified. In the
former case cbs characters are placed into the conversion buffer,
converted to ASCII, and trailing blanks trimmed and new-line
added before sending the line to the output. In the latter case

116—Commands and Ultilities . UNIX Programmer’s Manual

DD(1) DD(1)

ASCII characters are read into the conversion buffer, converted to
EBCDIC, and blanks added to make up an output block of size
chs.

After completion, dd reports the number of whole and partial
input and output blocks.

EXAMPLE
This command will read an EBCDIC tape blocked ten 80-byte
EBCDIC card images per block into the ASCII file x:

dd if=/dev/rmt/Om of=x ibs=800 cbs=80 conv=ascii,lcase

Note the use of raw magtape. Dd is especially suited to I/O on
the raw physical devices because it allows reading and writing in
arbitrary block sizes.

SEE ALSO
cp(1).

DIAGNOSTICS
f+p blocks in(out) numbers of full and partial blocks
read (written)
BUGS
' The ASCII/EBCDIC conversion tables are taken from the 256-
character standard in the CACM Nov, 1968. The ibm conversion,
while less blessed as a standard, corresponds better to certain IBM
print train conventions. There is no universal solution.

New-lines are inserted only on conversion to ASCII; padding is
done only on conversion to EBCDIC. These should be separate
options.

UNIX Programmer’s Manual Commands and Utilities—1 17'

DELTA (1) DELTA(1)

NAME C
delta — make a delta (change) to an SCCS file

SYNOPSIS
delta [-rSID] [-s] [-n]l [—glist] [—mlmrlist]]
[—ylcomment]] [—p] files

DESCRIPTION
Delta is used to permanently introduce into the named SCCS file
changes that were made to the file retrieved by get (1) (called the
g-file, or generated file).

Delta makes a delta to each named SCCS file. If a directory is
named, delta behaves as though each file in the directory were
specified as a named file, except that non-SCCS files (last com-

" ponent of the path name does not begin with s.) and unreadable
files are silently ignored. If a name of — is given, the standard
input is read (see WARNINGS); each line of the standard input is
taken to be the name of an SCCS file to be processed.

Delta may issue prompts on the standard output depending upon
certain keyletters specified and flags (see admin(1)) that may be
present in the SCCS file (see —m and —y keyletters below).

Keyletter arguments apply independently to each named file.

—rSID Uniquely identifies which delta is to be
made to the SCCS file. The use of this
keyletter is necessary only if two or more
outstanding gets for editing (get —e) on
the same SCCS file were done by the same
person (login name). The SID value
specified with the —r keyletter can be
either the SID specified on the get com-
mand line or the SID to be made as
reported by the get command (see get (1)).
A diagnostic results if the specified SID is
ambiguous, or, if necessary and omitted on
the command line.

—-s Suppresses the issue, on the standard out-
put, of the created delta’s SID, as well as
the number of lines inserted, deleted and
unchanged in the SCCS file.

-n Specifies retention of the edited g-file (nor-
mally removed at completion of delta

118—Commands and Utilities UNIX Programmer’s Manual

DELTA(1)

—glist

—mlmrlist]

—ylcomment]

4

UNIX Programmer’s Manual

DELTA(1)

processing).

Specifies a list (see get (1) for the definition
of list) of deltas which are to be ignored
when the file is accessed at the change level
(SID) created by this delta.

If the SCCS file has the v flag set (see
admin(1)) then a Modification Request
(MR) number must be supplied as the rea-
son for creating the new delta.

If —m is not used and the standard input is
a terminal, the prompt MRs? is issued on
the standard output before the standard
input is read; if the standard input is not a
terminal, no prompt is issued. The MRs?
prompt always precedes the comments?
prompt (see —y keyletter).

MRs in a list are separated by blanks
and/or tab characters. An unescaped new-
line character terminates the MR list.

Note that if the v flag has a value (see
admin(1)), it is taken to be the name of a
program (or shell procedure) which will
validate the correctness of the MR numbers.
If a non-zero exit status is returned from
MR number validation program, delta ter-
minates. (It is assumed that the MR
numbers were not all valid.)

Arbitrary text used to describe the reason
for making the delta. A null string is con-
sidered a valid comment.

If —y is not specified and the standard
input is a terminal, the prompt comments?
is issued on the standard output before the
standard input is read; if the standard input
is not a terminal, no prompt is issued. An
unescaped new-line character terminates
the comment text.

Causes delta to print (on the standard out-
put) the SCCS file differences before and

Commands and Utilities—119

DELTA (1)

FILES
g-file

p-file
q-ﬁ1¢
x-file
z-file
d-file

/usr/bin/bdiff

WARNINGS

DELTA(1)

after the delta is applied in a diff(1) for-
mat.

Existed before the execution of delta; removed
after completion of delta.

Existed before the execution of delta; may exist
after completion of delta.

Created during the execution of delta; removed
after completion of delta.

Created during the execution of delta; renamed to
SCCS file after completion of delta.

Created during the execution of delta; removed
during the execution of delta.

Created during the execution of delta; removed
after completion of delta.

Program to compute differences between the “got-
ten” file and the g-file.

Lines beginning with an SOH ASCII character (binary 001) cannot
be placed in the SCCS file unless the SOH is escaped. This charac-
ter has special meaning to SCCS (see sccsfile(4) (5)) and will

caus¢ an error.

A get of many SCCS files, followed by a delta of those files, should
be avoided when the get generates a large amount of data.
Instead, multiple get/delta sequences should be used.

If the standard input (=) is specified on the delta command line,
the —m (if necessary) and —y keyletters must also be present.
Onmission of these keyletters causes an error to occur.

Comments are limited to text strings of at most 512 characters.

SEE ALSO

admin(1), bdiff(1), cdc(1), get(1), help(1), prs(1), rmdel(1).
scesfile(4) in the UNIX Programmer’s Manual —Volume 2: Sys-
tem Calls and Library Routines.

DIAGNOSTICS

Use help (1) for explanations.

120—Commands and Utilities | UNIX Programmer’s Manual

DEROFF(1) DEROFF (1)

NAME

deroff — remove nroff/troff, tbl, and eqn constructs
SYNOPSIS

deroff [—mx] [—wl [files]
DESCRIPTION

Deroff reads each of the files in sequence and removes all troff(1)
requests, macro calls, backslash constructs, egn(1) constructs
(between .EQ and .EN lines, and between delimiters), and tb/(1)
descriptions, perhaps replacing them with white space (blanks and
blank lines), and writes the remainder of the file on the standard
output. Deroff follows chains of included files (.so and .nx troff
commands); if a file has already been included, a

UNIX Programmer’s Manual Commands and Utilities—121

DIFF (1) DIFF(I)

NAME
diff — differential file comparator

SYNOPSIS
diff [—efbh] filel file2

DESCRIPTION ‘
Diff tells what lines must be changed in two files to bring them
into agreement. If filel (file2) is —, the standard input is used.
If filel (file2) is a directory, then a file in that directory with the
name file2 (filel) is used. The normal output contains lines of
these forms:

nl an3nd
nl,n2 d n3
nl,n2 ¢ n3,n4

These lines resemble ed commands to convert filel into file2. The
numbers after the letters pertain to file2. In fact, by exchanging a
for d and reading backward one may ascertain equally how to con-
vert file2 into filel. As in ed, identical pairs, where nI = n2 or
n3 = n4, are abbreviated as a single number.

Following each of these lines come all the lines that are affected in
the first file flagged by <, then all the lines that are affected in the
second file flagged by >.

The —b option causes trailing blanks (spaces and tabs) to be
ignored and other strings of blanks to compare equal.

The —e option produces a script of a, ¢, and d commands for the
editor ed, which will recreate file2 from filel. The —f option pro-
duces a similar script, not useful with ed, in the opposite order. In
connection with —e, the following shell program may help main-
tain multiple versions of a file. Only an ancestral file ($1) and a
chain of version-to-version ed scripts ($2,$3,...) made by diff need
be on hand. A “latest version” appears on the standard output.

(shift; cat $*; echo '1,$p") | ed — $1

Except in rare circumstances, diff’ finds a smallest sufficient set of
file differences.

Option —h does a fast, half-hearted job. It works only when
changed stretches are short and well separated, but does work on
files of unlimited length. Options —e and —f are unavailable with
—h.

122—Commands and Utilities UNIX Programmer’s Manual

DIFF(1) DIFF (1)

FILES

/usr/lib/diffh for —~h

SEE ALSO
cmp(1), comm(1), ed(1).

DIAGNOSTICS
Exit status is O for no differences, 1 for some differences, 2 for
trouble.

BUGS
Editing scripts produced under the —e or —f option are naive
about creating lines consisting of a single period (.).

WARNINGS
Missing newline at end of file X
indicates that the last line of file X did not have a new-line.
If the lines are different, they will be flagged and output;
although the output will seem to indicate they are the same.

UNIX Programmer’s Manual Commands and Utilities—123

DIFF3(1) DIFF3(1)

NAME

diff3 — 3-way differential file comparison
SYNOPSIS

diff3 [—ex3] filel file2 file3
DESCRIPTION

Diff3 compares three versions of a file, and publishes disagreeing
ranges of text flagged with these codes:

==== all three files differ
====] filel is different
=—===) file2 is different
====] file3 is different

The type of change suffered in converting a given range of a given
file to some other is indicated in one of these ways:

finl a Text is to be appended after line
number n/ in file f, where f = 1, 2, or
3.

finl ,n2c¢ Text is to be changed in the range line

nl to line n2. If nl = n2, the range
may be abbreviated to ni.

The original contents of the range follows immediately after a ¢
indication. When the contents of two files are identical, the con-
tents of the lower-numbered file is suppressed.

Under the —e option, diff3 publishes a script for the editor ed that
will incorporate into filel all changes between file2 and file3, i.e.,

the changes that normally would be flagged and 3.
Option —x (—3) produces a script to incorporate only changes
flagged ==== (====3). The following command will apply the

resulting script to filel .
(cat script; echo '1,$p) | ed — filel

FILES
/tmp/d3+
/usr/1ib/diff3prog

124—Commands and Utilities UNIX Programmer’s Manual

DIFF3(1) DIFF3(1)

SEE ALSO
diff (1).

BUGS
Text lines that consist of a single . will defeat —e.
Files longer than 64K bytes will not work.

UNIX Programmer’s Manual Commands and Utilities—125

DIFFMK (1) : DIFFMK (1)

NAME

diffmk — mark differences between files
SYNOPSIS

diffmk namel name2 name3
DESCRIPTION

Diffmk compares two versions of a file and creates a third file that
includes “change mark” commands for nroff or troff(1). Namel
and name?2 are the old and new versions of the file. Diffmk gen-
erates name3, which contains the lines of name2 plus inserted for-
matter “change mark” (mc) requests. When name3 is formatted,
changed or inserted text is shown by | at the right margin of each
line. The position of deleted text is shown by a single *.

If anyone is so inclined, diffmk can be used to produce listings of
C (or other) programs with changes marked. A typical command
line for such use is:

diffmk old.c new.c tmp; nroff macs tmp | pr

where the file macs contains:

pl1
A1 77
.nf
.e0
.nc

The .1 request might specify a different line length, depending on
the nature of the program being printed. The .eo and .nc requests
are probably needed only for C programs. ‘

If the characters | and * are inappropriate, a copy of diffmk can
be edited to change them (diffmk is a shell procedure).

SEE ALSO
diff (1), nroff (1), troff(1).

BUGS
Aesthetic considerations may dictate manual adjustment of some
output. File differences involving only formatting requests may

produce undesirable output, i.e., replacing .sp by .sp 2 will produce
a “change mark” on the preceding or following line of output.

126—Commands and Utilities UNIX Programmer’s Manual

DIRCMP(1) DIRCMP(1)

NAME

dircmp — directory comparison
SYNOPSIS

diremp [—d][—s 1[—wn] dirl dir2
DESCRIPTION

Dircmp examines dirl and dir2 and generates various tabulated
information about the contents of the directories. Listings of files
that are unique to each directory are generated for all the options.
If no option is entered, a list is output indicating whether the file
names common to both directories have the same contents.

-d Compare the contents of files with the same name in both
directories and output a list telling what must be changed
in the two files to bring them into agreement. The list for-
mat is described in diff (1).

-s Suppress messages about identical files.

—wn Change the width of the output line to n characters. The
default width is 72.

SEE ALSO
emp(1), diff(1).

UNIX Programmer’s Manual Commands and Utilities—127

DU (1) DU(1)

NAME
du — summarize disk usage

SYNOPSIS
du{ —ars] [names]

DESCRIPTION
Du gives the number of blocks contained in all files and (recur-
sively) directories within each directory and file specified by the
names argument. The block count includes the indirect blocks of
the file. If names is missing, . is used.

The optional argument —s causes only the grand total (for each of
the specified names) to be given. The optional argument —a
causes an entry to be generated for each file. Absence of either
causes an entry to be generated for each directory only.

Du is normally silent about directories that cannot be read, files
that cannot be opened, etc. The —r option will cause du to gen-
erate messages in such instances.

A file with two or more links is only counted once.

BUGS
If the —a option is not used, non-directories given as arguments
are not listed.
If there are too many distinct linked files, du will count the excess
files more than once.
Files with holes in them will get an incorrect block count.

128—Commands and Utilities UNIX Programmer’s Manual

DUMP(1)

NAME

DUMP(1)

dump — dump selected parts of an object file

SYNOPSIS

dump [—acfghlorst] [—z name] files

DESCRIPTION

The dump command dumps selected parts of each of its object file

arguments.

This command will accept both object files and archives of object
files. It processes each file argument according to one or more of
the following options:

—a

—Z name

—C

Dump the archive header of each member of each
archive file argument.

Dump the global symbols in the symbol table of an
archive.

Dump each file header.

Dump each optional header.

Dump section headers.

Dump section contents.

Dump relocation information.

Dump line number information.

Dump symbol table entries.

Dump line number entries for the named function.

Dump the string table.

The following modifiers are used in conjunction with the options
listed above to modify their capabilities.

—d number Dump the section number or range of sections start-

+d number

—n name

4

ing at number and ending either at the last section
number or number specified by +d.

Dump sections in the range either beginning with first
section or beginning with section specified by —d.

Dump information pertaining only to the named
entity. This modifier applies to —h, —s, —r, =, and
-t

Supress printing of the headers.

UNIX Programmer’s Manual Commands and Utilities—129

DUMP(1) DUMP(1)

—t index Dump only the indexed symbol table entry. The —t
used in conjunction with +t, specifies a range of sym-
bol table entries.

+t index Dump the symbol table entries in the range ending
with the indexed entry. The range begins at the first
symbol table entry or at the entry specified by the —t

option.
-u Underline the name of the file for emphasis.
-y Dump information in symbolic representation rather

than numeric (e.g., C STATIC instead of 0X02). This
modifier can be used with all the above options except
—s and —o options of dump.

—2Z name,number
Dump line number entry or range of line numbers
starting at number for the named function.

+z number Dump line numbers starting at either function name
or number specified by —z, up to number specified by
+z.

Blanks separating an option and its modifier are optional. The
comma separating the name from the number modifying the —z
option may be replaced by a blank.

The dump command attempts to format the information it dumps
in a meaningful way, printing certain information in character,
hex, octal or decimal representation as appropriate.

SEE ALSO |
a.out(4), ar(4) in the UNIX Programmer’s Manual —Volume 2:
System Calls and Library Routines.

130—Commands and Utilities UNIX Programmer’s Manual

DX9700(1) ’ DX9700(1)

NAME

dx9700 — prepare troff documents for the Xerox 9700 printer

SYNOPSIS

dx9700 name

DESCRIPTION

The dx9700 filter is a post-processor for device independent troff
output, and produces codes suitable for being sent to a Xerox 9700
laser printer.

The single argument to dx9700 should be the name part of the
—Tname argument given to troff.

The output of the dx9700 filter should be directed to the input of a
Xerox 9700 printer.

Note that the Xerox 9700 treats different point sizes as different
fonts. Hence, the font tables specified to troff(1) and dx9700
actually specify a family of typefaces and point sizes. The font
families that are supported for the Xerox 9700 and that can be
specified to zroff using the -T option follow:

name contains
X97.tim10p Times, 7, 10, and 15 point
X97.tim12p Times, 9, 12, and 17 point
SEE ALSO
troff (1).

BUGS

troff(5) in the UNIX Programmer’s Manual —Volume 2: System
Calls and Library Routines.

Special fonts for the Xerox 9700 printer are needed to use with
this post-processor.

This manual entry should be expanded to more fully describe the
peculiarities of the Xerox 9700 printer.

UNIX Programmer’s Manual Commands and Utilities—131

ECHO (1)

NAME

ECHO(1)

echo — echo arguments

SYNOPSIS

echo [arg] ...

DESCRIPTION

Echo writes its arguments separated by blanks and terminated by
a new-line on the standard output. It also understands C-like
escape conventions; beware of conflicts with the shell’s use of \:

\b
\c
\f
\n
\r
\t
\v
\\
\n

backspace

print line without new-line

form-feed

new-line

carriage return

tab

vertical tab

backslash

the 8-bit character whose ASCII code is the 1-, 2-
or 3-digit octal number n, which must start with a
zero.

Echo is useful for producing diagnostics in command files and for
sending known data into a pipe.

SEE ALSO
sh(1).

132—Commands and Ultilities : UNIX Programmer’s Manual

ED(1) ED(1)

NAME
ed, red — text editor

SYNOPSIS
edl — 1[—pstring 1[=x 11 file]

red [— 1[—pstring][—x 11 file]

DESCRIPTION

Ed is the standard text editor. If the file argument is given, ed
simulates an e command (see below) on the named file; that is to
say, the file is read into ed’s buffer so that it can be edited. The
optional — suppresses the printing of character counts by e, r, and
w commands, of diagnostics from e and ¢ commands, and of the !
prompt after a !shell command. The —p option allows the user to
specify a prompt string. If —x is present, an x command is simu-
lated first to handle an encrypted file. Ed operates on a copy of
the file it is editing; changes made to the copy have no effect on
the file until a w (write) command is given. The copy of the text
being edited resides in a temporary file called the buffer. There is
only one buffer.

Red is a restricted version of ed. It will only allow editing of files
in the current directory. It prohibits executing shell commands via
Ishell command. Attempts to bypass these restrictions result in an
error message (restricted shell).

Both ed and red support the fspec(4) formatting capability. After
including a format specification as the first line of file and invoking
ed with your terminal in stty —tabs or stty tab3 mode (see
stty (1), the specified tab stops will automatically be used when
scanning file. For example, if the first line of a file contained:
<:t5,10,15 s72:>
tab stops would be set at columns 5, 10, and 15, and a maximum
_line length of 72 would be imposed. NOTE: while inputting text,
tab characters when typed are expanded to every eighth column as
is the default.

Commands to ed have a simple and regular structure: zero, one, or
two addresses followed by a single-character command, possibly
followed by parameters to that command. These addresses specify
one or more lines in the buffer. Every command that requires
addresses has default addresses, so that the addresses can very
often be omitted.

UNIX Programmer’s Manual Commands and Utilities—133

ED(1) ED(1)

In general, only one command may appear on a line. Certain
commands allow the input of text. This text is placed in the
appropriate place in the buffer. While ed is accepting text, it is
said to be in input mode. In this mode, no commands are recog-
nized; all input is merely collected. Input mode is left by typing a
period (.) alone at the beginning of a line.

Ed supports a limited form of regular expression notation; regular
expressions are used in addresses to specify lines and in some com-
mands (e.g., s) to specify portions of a line that are to be substi-
tuted. A regular expression (RE) specifies a set of character
strings. A member of this set of strings is said to be matched by
the RE. The REs allowed by ed are constructed as follows:

The following one-character REs match a single character:

1.1 An ordinary character (not one of those discussed in 1.2
below) is a one-character RE that matches itself.

1.2 A backslash (\) followed by any special character is a one-
character RE that matches the special character itself. The
special characters are:

a. . » [, and \ (period, asterisk, left square bracket, and
backslash, respectively), which are always special,
except when they appear within square brackets ([1;
see 1.4 below).

b. ~ (caret or circumflex), which is special at the begin-
ning of an entire RE (see 3.1 and 3.2 below), or when it
immediately follows the left of a pair of square brackets
(ID (see 1.4 below)..

c. 8 (currency symbol), which is special at the end of an
entire RE (see 3.2 below).

d. The character used to bound (i.e., delimit) an entire
RE, which is special for that RE (for example, see how
slash (/) is used in the g command, below.)

1.3 A period (.) is a one-character RE that matches any charac-
ter except new-line.

1.4 A non-empty string of characters enclosed in square brackets
(ID is a one-character RE that matches any one character
in that string. If, however, the first character of the string is
a circumflex (#), the one-character RE matches any charac-

‘ter except new-line and the remaining characters in the

134—Commands and Ultilities UNIX Programmer’s Manual

ED(1)

ED(1)

string. The ~ has this special meaning only if it occurs first
in the string. The minus (=) may be used to indicate a
range of consecutive ASCII characters; for example, [0—9] is
equivalent to [0123456789]. The — loses this special mean-
ing if it occurs first (after an initial ~, if any) or last in the
string. The right square bracket (]) does not terminate such
a string when it is the first character within it (after an ini-
tial ~, if any); e.g., [la—fl matches either a right square
bracket (1) or one of the letters a through f inclusive. The
four characters listed in 1.2.a above stand for themselves
within such a string of characters.

The following rules may be used to construct REs from one-
character REs:

2.1

2.2

2.3

2.4

2.5

2.6

A one-character RE is a RE that matches whatever the one-
character RE matches.

A one-character RE followed by an asterisk (¢) is a RE that
matches zero or more occurrences of the one-character RE.
If there is any choice, the longest leftmost string that per-
mits a match is chosen.

A one-character RE followed by \{m\}, \{m,\}, or \{m,n\}
is a RE that matches a range of occurrences of the one-
character RE. The values of m and n must be non-negative
integers less than 256; \{m\} matches exactly m
occurrences; \{m,\} matches at least m occurrences;
\{m,n\} matches any number of occurrences between m and
n inclusive. Whenever a choice exists, the RE matches as
many occurrences as possible.

The concatenation of REs is a RE that matches the concate-
nation of the strings matched by each component of the RE.

A RE enclosed between the character sequences \(and \) is
a RE that matches whatever the unadorned RE matches.

The expression \n matches the same string of characters as
was matched by an expression enclosed between \(and \)
earlier in the same RE. Here n is a digit; the sub-expression
specified is that beginning with the n-th occurrence of \(
counting from the left. For example, the expression
~\(#\)\1$ matches a line consisting of two repeated appear-
ances of the same string.

UNIX Programmer’s Manual Commands and Utilities—135

ED(1) ED(1)

Finally, an entire RE may be constrained to match only an initial
segment or final segment of a line (or both).

3.1 A circumflex (#) at the beginning of an entire RE constrains
that RE to match an initial segment of a line.

- 3.2 A currency symbol ($) at the end of an entire RE constrains
that RE to match a final segment of a line.

The construction ~entire RES$ constrains the entire RE to match
the entire line.

The null RE (e.g., //) is equivalent to the last RE encountered.
See also the last paragraph before FILES below.

To understand addressing in ed it is necessary to know that at any
time there is a current line. Generally speaking, the current line is
the last line affected by a command; the exact effect on the current
line is -discussed under the description of each command.
Addresses are constructed as follows:

1. The character . addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.
4

x addresses the line marked with the mark name character
x, which must be a lower-case letter. Lines are marked with
the k£ command described below.

5. A RE enclosed by slashes (/) addresses the first line found
by searching forward from the line following the current
line toward the end of the buffer and stopping at the first
line containing a string matching the RE. If necessary, the
search wraps around to the beginning of the buffer and con-
tinues up to and including the current line, so that the entire
buffer is searched. See also the last paragraph before FILES
below.

6. A RE enclosed in question marks (?) addresses the first line
found by searching backward from the line preceding the
current line toward the beginning of the buffer and stopping
at the first line containing a string matching the RE. If
necessary, the search wraps around to the end of the buffer
and continues up to and including the current line. See also
the last paragraph before FILES below.

136—Commands and Ultilities UNIX Programmer’s Manual

ED(1) ED(1)

7. An address followed by a plus sign (+) or a minus sign
(=) followed by a decimal number specifies that address
plus (respectively minus) the indicated number of lines. The
plus sign may be omitted.

8. If an address begins with + or —, the addition or subtrac-
tion is taken with respect to the current line; e.g, —5 is
understood to mean .—5.

9. If an address ends with + or —, then 1 is added to or sub-
tracted from the address, respectively. As a consequence of
this rule and of rule 8 immediately above, the address —
refers to the line preceding the current line. (To maintain
compatibility with earlier versions of the editor, the charac-
ter ~ in addresses is entirely equivalent to —.) Moreover,
trailing + and — characters have a cumulative effect, so
— — refers to the current line less 2.

10. For convenience, a comma (,) stands for the address pair
1,8, while a semicolon (;) stands for the pair .,$.

Commands may require zero, one, or two addresses. Commands
that require no addresses regard the presence of an address as an
error. Commands that accept one or two addresses assume default
addresses when an insufficient number of addresses is given; if
more addresses are given than such a command requires, the last
one(s) are used.

Typically, addresses are separated from each other by a comma
(,). They may also be separated by a semicolon (;). In the latter
case, the current line (.) is set to the first address, and only then is
the second address calculated. This feature can be used to deter-
mine the starting line for forward and backward searches (see
rules 5. and 6. above). The second address of any two-address
sequence must correspond to a line that follows, in the buffer, the
line corresponding to the first address.

In the following list of ed commands, the default addresses are
shown in parentheses. The parentheses are not part of the
address; they show that the given addresses are the default.

It is generally illegal for more than one command to appear on a
line. However, any command (except e, f, r, or w) may be
suffixed by 1, n, or p in which case the current line is either listed,
numbered or printed, respectively, as discussed below under the /,
n, and p commands.

UNIX Programmer’s Manual Commands and Utilities—137

ED(1) ED(1)

(JJa
<text>

The append command reads the given text and appends it
after the addressed line; . is left at the last inserted line,
or, if there were none, at the addressed line. Address 0 is
legal for this command: it causes the “appended” text to
be placed at the beginning of the buffer. The maximum
number of characters that may be entered from a terminal
is 256 per line (including the new-line character).

(e
<text>

The change command deletes the addressed lines, then
accepts input text that replaces these lines; . is left at the
last line input, or, if there were none, at the first line that
was not deleted.

(,.)d
The delete command deletes the addressed lines from the
buffer. The line after the last line deleted becomes the
current line; if the lines deleted were originally at the end
of the buffer, the new last line becomes the current line.

e file

The edit command causes the entire contents of the buffer
to be deleted, and then the named file to be read in; . is
set to the last line of the buffer. If no file name is given,
the currently-remembered file name, if any, is used (see
the f command). The number of characters read is typed;
file is remembered for possible use as a default file name
in subsequent e, r, and w commands. If file is replaced
by !, the rest of the line is taken to be a shell (sh(1))
command whose output is to be read. Such a shell com-
mand is not remembered as the current file name. See
also DIAGNOSTICS below.

E file
The Edit command is like e, except that the editor does
not check to see if any changes have been made to the
buffer since the last w command.

138—Commands and Utilities UNIX Programmer’s Manual

ED(1) ED(1)

f file
If file is given, the file-name command changes the
currently-remembered file name to file; otherwise, it prints
the currently-remembered file name.

(1,8)g/RE /command list

In the global command, the first step is to mark every line
that matches the given RE. Then, for every such line, the
given command list is executed with . initially set to that
line. A single command or the first of a list of commands
appears on the same line as the global command. All
lines of a multi-line list except the last line must be ended
with a \; a, i, and ¢ commands and associated input are
permitted. The . terminating input mode may be omitted
if it would be the last line of the command list. An
empty command list is equivalent to the p command.
The g, G, v, and ¥V commands are not permitted in the
command list. See also BUGS and the last paragraph
before FILES below.

(1,$)G/RE/

In the interactive Global command, the first step is to
mark every line that matches the given RE. Then, for
every such line, that line is printed, . is changed to that
line, and any one command (other than one of the a, c, i,
g, G, v, and ¥ commands) may be input and is executed.
After the execution of that command, the next marked
line is printed, and so on; a new-line acts as a null com-
mand; an & causes the re-execution of the most recent
command executed within the current invocation of G.
Note that the commands input as part of the execution of
the G command may address and affect any lines in the
buffer. The G command can be terminated by an inter-
rupt signal (ASCII DEL or BREAK).

The help command gives a short error message that
explains the reason for the most recent ? diagnostic.

The Help command causes ed to enter a mode in which
error messages are printed for all subsequent ? diagnos-
tics. It will also explain the previous ? if there was one.
The H command alternately turns this mode on and off; it
is initially off.

UNIX Programmer’s Manual Commands and Utilities—139

ED(1) | ED(1)

i
<text>

The insert command inserts the given text before the
addressed line; . is left at the last inserted line, or, if there
were none, at the addressed line. This command differs
from the a command only in the placement of the input
text. Address 0 is not legal for this command. The max-
imum number of characters that may be entered from a
terminal is 256 per line (including the new-line character).

(.y.+1)j
The join command joins contiguous lines by removing the
appropriate new-line characters. If exactly one address is
given, this command does nothing.

(kx
The mark command marks the addressed line with name
x, which must be a lower-case letter. The address x then
addresses this line; . is unchanged.

¢,)N
The /ist command prints the addressed lines in an unam-
biguous way: a few non-printing characters (e.g., tab,
backspace) are represented by (hopefully) mnemonic
overstrikes. All other non-printing characters are printed
in octal, and long lines are folded. An/ command may be
appended to any other command other than e, f, r, or w.

(.,.)ma
The move command repositions the addressed line(s) after
the line addressed by a. Address 0 is legal for ¢ and
causes the addressed line(s) to be moved to the beginning
of the file. It is an error if address a falls within the
range of moved lines; . is left at the last line moved.

(.,.)n
The number command prints the addressed lines, preced-
ing each line by its line number and a tab character; . is
left at the last line printed. The n command may be
appended to any other command other than e, f, r, or w.

G,.)p
The print command prints the addressed lines; . is left at
the last line printed. The p command may be appended
to any other command other than e, f, r, or w. For

140—Commands and Ultilities UNIX Programmer’s Manual

ED(1) ED(1)

example, dp deletes the current line and prints the new
current line.

P
The editor will prompt with a * for all subsequent com-
mands. The P command alternately turns this mode on
and off; it is initially off.

q
The guit command causes ed to exit. No automatic write
of a file is done (but see DIAGNOSTICS below).

Q

The editor exits without checking if changes have been
made in the buffer since the last w command.

(8$)r file
The read command reads in the given file after the
addressed line. If no file name is given, the currently-
remembered file name, if any, is used (see e and f com-
mands). The currently-remembered file name is not
changed unless file is the very first file name mentioned
since ed was invoked. Address O is legal for r and causes
the file to be read at the beginning of the buffer. If the
read is successful, the number of characters read is typed;
. is set to the last line read in. If file is replaced by !, the
rest of the line is taken to be a shell (sh(1)) command
whose output is to be read. For example, "$r !Is" appends
current directory to the end of the file being edited. Such
a shell command is not remembered as the current file

name.
(.,.)s/RE/replacement / or
(.,.)s/RE/replacement /g or
(.,.)s/RE [replacement /n n=1-512

The substitute command searches each addressed line for
an occurrence of the specified RE. In each line in which a
match is found, all (non-overlapped) matched strings are
replaced by the replacement if the global replacement
indicator g appears after the command. If the global indi-
cator does not appear, only the first occurrence of the
matched string is replaced. If a number n appears after
the command, only the n th occurrence of the matched
string on each addressed line is replaced. It is an error for
the substitution to fail on all addressed lines. Any

UNIX Programmer’s Manual Commands and Utilities—141

ED(1) ED(1)

character other than space or new-line may be used
instead of / to delimit the RE and the replacement; . is
left at the last line on which a substitution occurred. See
also the last paragraph before FILES below.

An ampersand (&) appearing in the replacement is
replaced by the string matching the RE on the current
line. The special meaning of & in this context may be
suppressed by preceding it by \. As a more general
feature, the characters \n, where n is a digit, are replaced
by the text matched by the n-th regular subexpression of
the specified RE enclosed between \(and \). When
nested parenthesized subexpressions are present, n is
determined by counting occurrences of \(starting from
the left. When the character % is the only character in
the replacement, the replacement used in the most recent
substitute command is used as the replacement in the
current substitute command. The % loses its special
meaning when it is in a replacement string of more than
one character or is preceded by a \.

A line may be split by substituting a new-line character
into it. The new-line in the replacement must be escaped
by preceding it by \. Such substitution cannot be done as
part of a g or v command list.

(.,.)ta
This command acts just like the m command, except that
a copy of the addressed lines is placed after address a
(which may be 0); . is left at the last line of the copy.

The undo command nullifies the effect of the most recent
command that modified anything in the buffer, namely the
most recent a, ¢, d, g, i, j, m, r, s, t, v, G, or V com-
mand.

(1,$)v/RE/command list
This command is the same as the global command g
except that the command list is executed with . initially
set to every line that does not match the RE.

(1,$)V/RE/ :
This command is the same as the interactive global com-
mand G except that the lines that are marked during the
first step are those that do not match the RE.

142—Commands and Utilities UNIX Programmer’s Manual

ED(1)

ED(1)

(1,8)w file

($)=

The write command writes the addressed lines into the
named file. If the file does not exist, it is created with
mode 666 (readable and writable by everyone), unless
your umask setting (see sh(1)) dictates otherwise. The
currently-remembered file name is not changed unless file
is the very first file name mentioned since ed was invoked.
If no file name is given, the currently-remembered file
name, if any, is used (see e and f commands); . is
unchanged. If the command is successful, the number of
characters written is typed. If file is replaced by !, the
rest of the line is taken to be a shell (sh(1)) command
whose standard input is the addressed lines. Such a shell
command is not remembered as the current file name.

A key string is demanded from the standard input. Sub-
sequent e, r, and w commands will encrypt and decrypt
the text with this key by the algorithm of crypt(1). An
explicitly empty key turns off encryption.

The line number of the addressed line is typed; . is
unchanged by this command.

Ishell command

The remainder of the line after the ! is sent to the UNIX
system shell (sh(1)) to be interpreted as a command.
Within the text of that command, the unescaped character
% is replaced with the remembered file name; if a !
appears as the first character of the shell command, it is
replaced with the text of the previous shell command.
Thus, !! will repeat the last shell command. If any expan-
sion is performed, the expanded line is echoed; . is
unchanged.

(.+1) <new-line>

~ An address alone on a line causes the addressed line to be
printed. A new-line alone is equivalent to .+1p; it is use-
ful for stepping forward through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ?
and returns to its command level.

Some size limitations: 512 characters per line, 256 characters per

global

command list; 64 characters per file name, and 128K

UNIX Programmer’s Manual Commands and Utilities—143

ED(1) ED(1)

characters in the buffer. The limit on the number of lines depends
on the amount of user memory: each line takes 1 word.

When reading a file, ed discards ASCII NUL characters and all
characters after the last new-line. Files (e.g., a.out) that contain
characters not in the ASCII set (bit 8 on) cannot be edited by ed.

If the closing delimiter of a RE or of a replacement string (e.g., /)
would be the last character before a new-line, that delimiter may
be omitted, in which case the addressed line is printed. The fol-
lowing pairs of commands are equivalent:
s/s1/s2 s/sl/s2/p
g/sl g/sl/p
sl 7517
FILES
/tmp/e# temporary; # is the process number. ,
ed.hup work is saved here if the terminal is hung up.
DIAGNOSTICS

? for command errors.

?ile for an inaccessible file.
(use the help and Help commands for detailed expla-
nations).

If changes have been made in the buffer since the last w command
that wrote the entire buffer, ed warns the user if an attempt is
made to destroy ed’s buffer via the e or ¢ commands. It prints ?
and allows one to continue editing. A second e or ¢ command at
this point will take effect. The — command-line option inhibits
this feature.

SEE ALSO
crypt(1), grep(1), sed(1), sh(1), stty(1).
fspec(4), regexp(5) in the UNIX Programmer’s Manual—
Volume 2: System Calls and Library Routines.

CAVEATS AND BUGS
A ! command cannot be subject to a g or a v command.
The /! command and the ! escape from the e, r, and w commands
cannot be used if the the editor is invoked from a restricted shell
(see sh(1)).
The sequence \n in a RE does not match a new-line character.
The I command mishandles DEL. ,
Files encrypted directly with the crypt(1) command with the null
key cannot be edited.
Characters are masked to 7 bits on input.

. 144—Commands and Utilities UNIX Programmer’s Manual

ED(1) ED(1)

If the editor input is coming from a command file (i.e., ed file <
ed-cmd-file), the editor will exit at the first failure of a command
that is in the command file.

UNIX Programmer’s Manual Comma_nds and Utilities—145

EDIT (1) EDIT (1)

NAME _
edit — text editor (variant of ex for casual users)

SYNOPSIS
edit [—r] name ...

DESCRIPTION
Edit is a variant of the text editor ex recommended for new or
casual users who wish to use a command-oriented editor. The fol-
lowing brief introduction should help you get started with edit. If
you are using a CRT terminal you may want to learn about the
display editor vi.

BRIEF INTRODUCTION
To edit the contents of an existing file you begin with the com-
mand “edit name” to the shell. Edit makes a copy of the file
which you can then edit, and tells you how many lines and charac-
ters are in the file. To create a new file, just make up a name for
the file and try to run edit on it; you will cause an error diagnostic,
but do not worry.

Edit prompts for commands with the character ‘’, which you
should see after starting the editor. If you are editing an existing
file, then you will have some lines in edit’s buffer (its name for the
copy of the file you are editing). Most commands to edit use its
“current line” if you do not tell them which line to use. Thus if
you say print (which can be abbreviated p) and hit carriage return
(as you should after all edit commands) this current line will be
printed. If you delete (d) the current line, edit will print the new
current line. When you start editing, edit makes the last line of
the file the current line. If you delete this last line, then the new
last line becomes the current one. In general, after a delete, the
next line in the file becomes the current line. (Deleting the last
line is a special case.)

If you start with an empty file or wish to add some new lines, then
the append (a) command can be used. After you give this com-
mand (typing a carriage return after the word append) edir will
read lines from your terminal until you give a line consisting of
just a “.”, placing these lines after the current line. The last line
you type then becomes the current line. The command insert (i) is
like append but places the lines you give before, rather than after,
the current line.

146—Commands and Utilities UNIX Programmer’s Manual

EDIT (1) EDIT (1)

Edit numbers the lines in the buffer, with the first line having
number 1. If you give the command *“1” then edit will type this
first line. If you then give the command delete edit will delete the
first line, line 2 will become line 1, and edit will print the current
line (the new line 1) so you can see where you are. In general, the
current line will always be the last line affected by a command.

You can make a change to some text within the current line by
using the substitute (s) command. You say “s/old /new/” where
old is replaced by the old characters you want to get rid of and
new is the new characters you want to replace it with.

The command file (f) will tell you how many lines there are in the
buffer you are editing and will say “[Modified]” if you have
changed it. After modifying a file you can put the buffer text
back to replace the file by giving a write (w) command. You can
then leave the editor by issuing a quit (g) command. If you run
edit on a file, but do not change it, it is not necessary (but does no
harm) to write the file back. If you try to quit from edit after
modifying the buffer without writing it out, you will be warned
that there has been “No write since last change” and edir will
await another command. If you wish not to write the buffer out
then you can issue another quit command. The buffer is then irre-
trievably discarded, and you return to the shell.

By using the delete and append commands, and giving line
numbers to see lines in the file you can make any changes you
desire. You should learn at least a few more things, however, if
you are to use edit more than a few times.

The change (¢) command will change the current line to a
sequence of lines you supply (as in append you give lines up to a
line consisting of only a “.”). You can tell change to change more
than one line by giving the line numbers of the lines you want to
change, i.e., “3,5change”. You can print lines this way too. Thus
“1,23p” prints the first 23 lines of the file.

The undo (u) command will reverse the effect of the last command
you gave which changed the buffer. Thus if you give a substitute
command which does not do what you want, you can say undo and
the old contents of the line will be restored. You can also undo an
undo command so that you can continue to change your mind.
Edit will give you a warning message when commands you do
affect more than one line of the buffer. If the amount of change
seems unreasonable, you should consider doing an undo and

UNIX Programmer’s Manual Commands and Utilities—147

EDIT(1) EDIT(1)

looking to see what happened. If you decide that the change is ok,
then you can undo again to get it back. Note that commands such
as write and quit cannot be undone.

To look at the next line in the buffer you can just hit carriage
return. To look at a number of lines hit "D (control key and,
while it is held down D key, then let up both) rather than carriage
return. This will show you a half screen of lines on a CRT or 12
lines on a hardcopy terminal. You can look at the text around
where you are by giving the command “z.”. The current line will
then be the last line printed; you can get back to the line where
you were before the “z.” command by saying “’. The z com-
mand can also be given other following characters “z—" prints a
screen of text (or 24 lines) ending where you are; “z+” prints the
next screenful. If you want less than a screenful of lines, type in
"z.12" to get 12 lines total. This method of giving counts works in
general; thus you can delete 5 lines starting with the current line
with the command “delete 5.

To find things in the file, you can use line numbers if you happen
to know them; since the line numbers change when you insert and
delete lines this is somewhat unreliable. You can search back-
wards and forwards in the file for strings by giving commands of
the form /text/ to search forward for text or ?text? to search
backward for text. If a search reaches the end of the file without
finding the text it wraps, end around, and continues to search back
to the line where you are. A useful feature here is a search of the
form /“text/ which searches for text at the beginning of a line.
Similarly /text$/ searches for text at the end of a line. You can
leave off the trailing / or ? in these commands.

@ 9,

The current line has a symbolic name “.”; this is most useful in a
range of lines as in “.,$print” which prints the rest of the lines in
the file. To get to the last line in the file you can refer to it by its
symbolic name *“$”. Thus the command “$ delete” or “$d”
deletes the last line in the file, no matter which line was the
current line before. Arithmetic with line references is also possi-
ble. Thus the line “$—5" is the fifth before the last, and “.4+20” is
20 lines after the present.

You can find out which line you are at by doing “.=”. This is use-
ful if you wish to move or copy a section of text within a file or
between files. Find out the first and last line numbers you wish to
copy or move (say 10 to 20). For a move you can then say
“10,20delete a” which deletes these lines from the file and places
148—Commands and Ultilities ~ UNIX Programmer’s Manual

EDIT (1) EDIT (1)

them in a buffer named a. Edit has 26 such buffers named a
through z. You can later get these lines back by doing “put a” to
put the contents of buffer a after the current line. If you want to
move or copy these lines between files you can give an edit (e)
command after copying the lines, following it with the name of the
other file you wish to edit, i.e., “edit chapter2”. By changing
delete to yank above you can get a pattern for copying lines. If
the text you wish to move or copy is all within one file then you
can just say “10,20move $” for example. It is not necessary to use
named buffers in this case (but you can if you wish).

SEE ALSO
ex(1), vi(1).

UNIX Programmer’s Manual Commands and Utilities—149

EFL(1) ‘ EFL(1)

NAME

efl — Extended Fortran Language
SYNOPSIS

efl [options] [files]
DESCRIPTION

Efl compiles a program written in the EFL language into clean

Fortran on the standard output. EfI provides the C-like control
constructs of ratfor(1):

statement grouping with braces.

decision-making:
if, if-else, and select-case (also known as switch-
case);

while, for, Fortran do, repeat, and repeat ... until
loops;
multi-level break and next.

EFL has C-like data structures, e.g.:

struct

{
integer flags(3)

character(8) name
long real coords(2)
} table(100)

The language offers generic functions, assignment operators (+ =,
& =, etc.), and sequentially evaluated logical operators (& & and
|1). There is a uniform input/output syntax:

write(6,x,y:(7,2), do i=1,10 { a(i,j),z.b@ })
EFL also provides some syntactic “sugar’:

free-form input:

multiple statements per line; automatic continua-
tion; statement label names (not just numbers).

comments:
this is a comment.

translation of relational and logical operators:
>, > = &, etc., become .GT., .GE., .AND., etc.

return expression to caller from function:
return (expression)

150—Commands and Utilities | UNIX Programmer’s Manual

EFL (1) EFL(1)

defines:
define name replacement

includes:
include file

Efl understands several option arguments: —w suppresses warning
messages, —# suppresses comments in the generated program, and
the default option —C causes comments to be included in the gen-
erated program.

An argument with an embedded = (equal sign) sets an EFL
option as if it had appeared in an option statement at the start of
the program. Many options are described in the reference manual.
A set of defaults for a particular target machine may be selected
by one of the choices: system=unix, system=gcos, or
system=cray. The default setting of the system option is the same
as the machine the compiler is running on.

Other specific options determine the style of input/output, error
handling, continuation conventions, the number of characters
packed per word, and default formats.

Ef1 is best used with f77(1).

SEE ALSO
cc(1), £77(1), ratfor(1).

UNIX Programmer’s Manual ' Commands and Utilities—151

ENABLE(1) ENABLE(1)

NAME
enable, disable — enable/disable LP printers

SYNOPSIS
enable printers
disable [—c] [—r[reason]] printers

DESCRIPTION
Enable activates the named printers, enabling them to print
requests taken by Ip(1). Use Ipstat(1) to find the status of
printers.

Disable deactivates the named printers, disabling them from print-
ing requests taken by Ip(1). By default, any requests that are
currently printing on the designated printers will be reprinted in
their entirety either on the same printer or on another member of
the same class. Use Ipstat(1) to find the status of printers.
Options useful with disable are:

-c Cancel any requests that are currently printing on
any of the designated printers. ‘

—rlreason] Associates a reason with the deactivation of the
printers. This reason applies to all printers men-
tioned up to the next —r option. If the —r option is
not present or the —r option is given without a rea-
son, then a default reason will be used. Reason is
reported by Ipstat (1).

FILES
/usr/spool/lp/+

SEE ALSO
1p(1), lpstat(1).

152—Commands and Utilities UNIX Programmer’s Manual

ENV(1) ENV(1)

NAME

env — set environment for command execution
SYNOPSIS

env [—] [name=value] ... [command args]
DESCRIPTION

Env obtains the current environment, modifies it according to its
arguments, then executes the command with the modified environ-
ment. Arguments of the form name =value are merged into the
inherited environment before the command is executed. The —
flag causes the inherited environment to be ignored completely, so
that the command is executed with exactly the environment
specified by the arguments.

If no command is specified, the resulting environment is printed,
one name-value pair per line.

SEE ALSO
sh(1).
exec(2), profile(4), environ(5) in the UNIX Programmer’s
Manual —Volume 2: System Calls and Library Routines.

UNIX Programmer’s Manual Commands and Utilities—153

EQN(1) EQN(1)

NAME
eqn, neqn, checkeq — format mathematical text for nroff or troff

SYNOPSIS
eqn [—dxy][=pn 1 [—=sn 1 [—fn] [—Tdest 1 [files]

neqn [—dxy 1 [—pn 1 [—=sn 1 [—fn] [files]
checkeq [files]

DESCRIPTION
Egn is a troff (1) preprocessor for typesetting mathematical text on
a phototypesetter, while negn is used for the same purpose with
nroff on typewriter-like terminals. Usage is almost always:

eqn files | troff
neqn files | nroff

or equivalent. If no files are specified (or if — is specified as the
last argument), these programs read the standard input. Egn
prepares output for the typesetter named in the —T option.
Currently supported devices are —Taps (Autologic APS-5), -TX97
(Xerox 9700), -Til0 (Imagen Imprint-10), and —Tcat (Wang
CAT). Default is —Taps.

A line beginning with .EQ marks the start of an equation; the end
of an equation is marked by a line beginning with .EN. Neither of
these lines is altered, so they may be defined in macro packages to
get centering, numbering, etc. It is also possible to designate two
characters as delimiters; subsequent text between delimiters is
then treated as eqn input. Delimiters may be set to characters x
and y with the command-line argument =—dxy or (more com-
monly) with delim xy between .EQ and .EN. The left and right
delimiters may be the same character; the dollar sign is often used
as such-a delimiter. Delimiters are turned off by delim off. All
text that is neither between delimiters nor between .EQ and .EN is
passed through untouched.

The program checkeq reports missing or unbalanced delimiters
and .EQ/.EN pairs.

Tokens within egn are separated by spaces, tabs, new-lines, braces,
double quotes, tildes, and circumflexes. Braces {} are used for
grouping; generally speaking, anywhere a single character such as
x could appear, a complicated construction enclosed in braces may
be used instead. Tilde () represcnts a full space in the output,
circumflex (%) half as much.

154—Commands and Utilities UNIX Programmer’s Manual

EQN(1) EQN (1)

Subscripts and superscripts are produced with the keywords sub
and sup. ’zl'hus x sub j makes x;, a sub k sup 2 produces a,
while e*

is made with e sup {x sup 2 + y sup 2}. Fractions are made

with over: a over b yields ib’_; sqrt makes square roots:
1

\/ax2+bx o

The keywords from and to introduce lower and upper limits:
n

lim Yx; is made with

n—eo’y

lim from {n —> inf} sum from 0 to n x sub i. Left and right

brackets, braces, etc., of the right height are made with left and

right: left [x sup 2 + y sup 2 over alpha right] ~=~ 1

1 over sqrt {ax sup 2+bx+c} results in

2
produces x4+ =1. Legal characters after left and right are
a

braces, brackets, bars, ¢ and f for ceiling and floor, and "" for
nothing at all (useful for a right-side-only bracket). A left thing
need not have a matching right thing.

Vertical piles of things are made with pile, Ipile, cpile, and rpile:
a
pile {a above b above ¢} produces b. Piles may have arbitrary

¢
numbers of elements; Ipile left-justifies, pile and cpile center (but
with different vertical spacing), and rpile right justifies. Matrices

are made with matrix: matrix { Icol { x sub i above y sub 2 } ccol
X 1
{ 1 above 2 } } produces vy 2 In addition, there is rcol for a

right-justified column.

Diacritical marks are made with dot, dotdot, hat, tilde, bar, vec,
dyad, and under: x dot = f(t) bar is x=f(),
y dotdot bar ~=~ n under is y = n, and x vec ~==~ y dyad is
X =Y

Point sizes and fonts can be changed with size n.or size *n,
roman, italic, bold, and font n. Point sizes and fonts can be
changed globally in a document by gsize n and gfont n, or by the
command-line arguments —sn and —fn.

Normally, subscripts and superscripts are reduced by 3 points from
the previous size; this may be changed by the command-line argu-
ment —pn.

UNIX Programmer’s Manual | Commands and Utilities—155

EQN (1) EQN (1)

Successive display arguments can be lined up. Place mark before
the desired lineup point in the first equation; place lineup at the
place that is to line up vertically in subsequent equations.

Shorthands may be defined or existing keywords redefined with
define:

define thing % replacement %

defines a new token called thing that will be replaced by replace-
ment whenever it appears thereafter. The % may be any charac-
ter that does not occur in replacement.

Keywords such as sum (3), int (f), inf (o0), and shorthands
such as >= (), !'= (), and —> (—) are recognized. Greek
letters are spelled out in the desired case, as in alpha (@), or
GAMMA (I'). Mathematical words such as sin, cos, and log are
made Roman automatically. Troff(1) four-character escapes such
as \(dd (3) and \(bs () may be used anywhere. Strings enclosed
in double quotes ("...") are passed through untouched; this per-
mits keywords to be entered as text, and can be used to communi-
cate with zroff (1) when all else fails. Full details are given in the
manual cited below.

SEE ALSO
mm (1), mmt(1), nroff(1), tbl(1), troff(1).
eqnchar(5), mm(5), mv(5) in the UNIX Programmer’s Manual —
Volume 2: System Calls and Library Routines.

BUGS
To embolden digits, parentheses, etc., it is necessary to quote them,
as in bold "12.3".
See also BUGS under troff(1).

156—Commands and Utilities UNIX Programmer’s Manual

EX (1) EX (1)

NAME
ex — text editor

SYNOPSIS
ex[=10 -=vI]l -ttag]ll =r][-R11[+command]
[=110 =x] name ...

DESCRIPTION
Ex is the root of a family of editors: ex and vi. Ex is a superset
of ed, with the most notable extension being a display editing
facility. Display based editing is the focus of vi.

If you have a CRT terminal, you may wish to use a display based
editor; in this case see vi (1), which is a command which focuses
on the display editing portion of ex.

FOR ED USERS

If you have used ed you will find that ex has a number of new
features useful on CRT terminals. Intelligent terminals and high
speed terminals are very pleasant to use with vi. Generally, the
editor uses far more of the capabilities of terminals than ed does,
and uses the terminal capability data base terminfo(4) and the
type of the terminal you are using from the variable TERM in the
environment to determine how to drive your terminal efficiently.
The editor makes use of features such as insert and delete charac-
ter and line in its visual command (which can be abbreviated vi)
and which is the central mode of editing when using vi (1).

Ex contains a number of new features for easily viewing the text
of the file. The z command gives easy access to windows of text.
Hitting "D causes the editor to scroll a half-window of text and is
more useful for quickly stepping through a file than just hitting
return. Of course, the screen-oriented visual mode gives constant
access to editing context.

Ex gives you more help when you make mistakes. The undo (u)
command allows you to reverse any single change which goes
astray. Ex gives you a lot of feedback, normally printing changed
lines, and indicates when more than a few lines are affected by a
command so that it is easy to detect when a command has affected
more lines than it should have.

The editor also normally prevents overwriting existing files unless
you edited them so that you do not accidentally clobber with a
write a file other than the one you are editing. If the system (or
editor) crashes, or you accidentally hang up the telephone, you can

UNIX Programmer’s Manual Commands and Utilities—157

EX (1) EX(1)

\

use the editor recover command to retrieve your work. This will
get you back to within a few lines of where you left off.

Ex has several features for dealing with more than one file at a
time. You can give it a list of files on the command line and use
the next (n) command to deal with each in turn. The next com-
mand can also be given a list of file names, or a pattern as used by
the shell to specify a new set of files to be dealt with. In general,
file names in the editor may be formed with full shell metasyntax.
The metacharacter ‘%’ is also available in forming file names and
is replaced by the name of the current file.

For moving text between files and within a file the editor has a
group of buffers, named a through z. You can place text in these
named buffers and carry it over when you edit another file.

There is a command & in ex which repeats the last substitute
command. In addition there is a confirmed substitute command.
You give a range of substitutions to be done and the editor
interactively asks whether each substitution is desired.

It is possible to ignore case of letters in searches and substitutions.
Ex also allows regular expressions which match words to be con-
structed. This is convenient, for example, in searching for the
word “edit” if your document also contains the word “editor.”

Ex has a set of options which you can set to tailor it to your lik-
ing. One option which is very useful is the auroindent option
which allows the editor to automatically supply leading white
space to align text. You can then use the "D key as a backtab and
space and tab forward to align new code easily.

Miscellaneous new useful features include an intelligent join (j)
command which supplies white space between joined lines
automatically, commands < and > which shift groups of lines,
and the ability to filter portions of the buffer through commands
such as sort.

INVOCATION OPTIONS
The following invocation options are interpreted by ex:

- Suppress all interactive-user feedback. This is
useful in processing editor scripts.

-v Invokes vi

—t tag Edit the file containing the tag and position the
editor at its definition.

158—Commands and Utilities UNIX Programmer’s Manual

EX(1)

—r file

-R

+command

=X

EX(1)

Recover file after an editor or system crash. If
file is not specified a list of all saved files will be
printed.

Readonly mode set, prevents accidentally
overwriting the file.

Begin editing by executing the specified editor
search or positioning command.

LISP mode; indents appropriately for lisp code,
the O {} [[and 11 commands in vi are modified to
have meaning for lisp.

Encryption mode; a key is prompted for allowing
creation or editing of an encrypted file.

The name argument indicates files to be edited.

Ex States
Command

Insert

Visual

Normal and initial state. Input prompted for by
:. Your kill character cancels partial command.

Entered by a i and ¢. Arbitrary text may be
entered. Insert is normally terminated by line
having only . on it, or abnormally with an inter-
rupt.

Entered by vi, terminates with Q or "\.

Ex command names and abbreviations

abbrev
append
args
change
copy
delete
edit
file
global
insert
join
list
map
mark
move

UNIX Programmer’s Manual

ab
a

ma
m

next n unabbrev una
number nu undo u
unmap unm
preserve pre version ve
print p visual vi
put pu write w
quit q xit X
read re yank ya
recover rec window z
rewind rew escape !
set se Ishift <
shell sh print next CR
source S0 resubst &
stop st rshift >
substitute s scroll ‘D

Commands and Utilities—159

EX (1)

Ex Command Addresses

n line n

. current

$ last

+ next

- previous

+n n forward

% 1,3
Initializing options

EXINIT

SHOME/.exre

.J.exrc

set x

set nox

set x=val

set

set all

set x?

Most useful options
autoindent
autowrite
ignorecase
lisp
list
magic
number
paragraphs
redraw
scroll
sections
shiftwidth
showmatch
showmode
slowopen
window
wrapscan
wrapmargin

place set’s here in environment var.

/pat next with pat
?pat previous with pat
x-n n before x

X,y x through y

x marked with x

previous context

editor initialization file
editor initialization file
enable option

disable option

give value val

show changed options
show all options

show value of option x

ai
aw
ic

nu
para

sect
swW
sm
smd
slow

WS
wm

160—Commands and Utilities

supply indent

write before changing files
in scanning

() {} are s-exp’s

print “I for tab, $ at end

. [* special in patterns
number lines

macro names which start ...
simulate smart terminal
command mode lines
macro names ...

for < >, and input "D
to) and } as typed

show insert mode in vi
stop updates during insert
visual mode lines

around end of buffer?
automatic line splitting

EX(1)

UNIX Programmer’s Manual

EX (1) EX(1)

Scanning pattern formation
- beginning of line

$ end of line

. any character

\< beginning of word
\> end of word

[str] any char in str
[1ser] ... not in str

[x—yl ... between x and y
*

any number of preceding

AUTHOR
Vi and ex are based on software developed by The University of
California, Berkeley California, Computer Science Division,
Department of Electrical Engineering and Computer Science.

FILES
/usr/lib/ex?.?strings error messages
/usr/lib/ex?.?recover recover command
/usr/lib/ex?.?preserve preserve command
/ust/lib/*/* describes capabilities of terminals
$HOME/ exrc editor startup file
J.exrc editor startup file
/tmp/Exnnnnn editor temporary
/tmp/Rxnnnnn named buffer temporary
/usr/preserve preservation directory

SEE ALSO

awk(1), ed(1), edit(1), grep(1), sed(1), vi(1).
curses(3X), term(4), terminfo(4) in the UNIX Programmer’s
Manual —Volume 2: System Calls and Library Routines.

CAVEATS AND BUGS
The undo command causes all marks to be lost on lines changed
and then restored if the marked lines were changed.

Undo never clears the buffer modified condition.

The z command prints a number of logical rather than physical
lines. More than a screen full of output may result if long lines
are present.

UNIX Progrémmer's Manual Commands and Utilities—161

EX(1) EX (1)

File input/output errors do not print a name if the command line
¢—’ option is used.

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not
used before exiting the editor.

Null characters are discarded in input files and cannot appear in
resultant files.

162—Commands and Ultilities UNIX Programmer’s Manual

EXPR (1) EXPR (1)

NAME
expr — evaluate arguments as an expression

SYNOPSIS
expr arguments

DESCRIPTION

The arguments are taken as an expression. After evaluation, the
result is written on the standard output. Terms of the expression
must be separated by blanks. Characters special to the shell must
be escaped. Note that 0 is returned to indicate a zero value,
rather than the null string. Strings containing blanks or other spe-
cial characters should be quoted. Integer-valued arguments may
be preceded by a unary minus sign. Internally, integers are
treated as 32-bit, 2s complement numbers.

The operators and keywords are listed below. Characters that
need to be escaped are preceded by \. The list is in order of
increasing precedence, with equal precedence operators grouped
within {} symbols.

expr \| expr
returns the first expr if it is neither null nor 0, otherwise
returns the second expr.

expr \& expr
returns the first expr if neither expr is null or 0, otherwise
returns 0.

expr { =, \>’ \> =, \<; \< =, != } expr
returns the result of an integer comparison if both argu-
ments are integers, otherwise returns the result of a lexical
comparison.

expr { +, = } expr
addition or subtraction of integer-valued arguments.

expr {\e,/, % } expr
multiplication, division, or remainder of the integer-valued
arguments.

expr : expr
The matching operator : compares the first argument with
the second argument which must be a regular expression.
Regular expression syntax is the same as that of ed(1),
except that all patterns are “anchored” (i.e., begin with *)
and, therefore, " is not a special character, in that context.
Normally, the matching operator returns the number of

UNIX Programmer’s Manual Commands and Utilities—163

EXPR (1) : EXPR (1)

characters matched (0 on failure). Alternatively, the
\(...\) pattern symbols can be used to return a portion of
the first argument.

EXAMPLES
1. a=“expr $a + 1°
adds 1 to the shell variable a.
2. # ’For $a equal to either "/usr/abc/file" or just "file"”

expr $a : 72N’ \| $a

returns the last segment of a path name (i.e.,
file). Watch out for / alone as an argument:
expr will take it as the division operator (see
BUGS below).

3. # A Dbetter representation of example 2.
expr //$a : "2/\(+)”

The addition of the // characters eliminates any
ambiguity about the division operator and
simplifies the whole expression.
4. expr $VAR : ’.*’
returns the number of characters in $VAR.
SEE ALSO
ed(1), sh(1).

EXIT CODE
As a side effect of expression evaluation, expr returns the follow-
ing exit values:

0 if the expression is neither null nor 0
1 if the expression is null or 0
2 for invalid expressions.
DIAGNOSTICS
syntax error for operator/operand errors
non-numeric argument if arithmetic is attempted on such a
string '

164—Commands and Ultilities UNIX Programmer’s Manual

EXPR(1) EXPR (1)

BUGS
After argument processing by the shell, expr cannot tell the
difference between an operator and an operand except by the
value. If $a is an =, the command:

expr $a = r=r
looks like:
expr = = =

as the arguments are passed to expr (and they will all be taken as
the = operator). The following works:

expr X$a = X=

UNIX Programmer’s Manual Commands and Utilities—165

F77(1) F77(1)

NAME
£77 — Fortran 77 compiler

SYNOPSIS
£77 [options] files

DESCRIPTION
F77 is the UNIX System Fortran 77 compiler; it accepts several
types of file arguments:

Arguments whose names end with .f are taken to be For-
tran 77 source programs; they are compiled and each
object program is left in the current directory in a file
whose name is that of the source, with .0 substituted for .f.

Arguments whose names end with .r or .e are taken to be
RATFOR or EFL source programs, respectively. These are
first transformed by the appropriate preprocessor, then
compiled by f77, producing .o files.

In the same way, arguments whose names end with .c or .s
are taken to be C or assembly source programs and are
compiled or assembled, producing .o files.

Files whose names do not end with the suffix .1, .r, .e, .s,
or .c are treated as .0 (object) files.

The following options have the same meaning as in cc(1) [see
1d (1) for link editor options]:

-C Suppress link editing and produce .o files for each
source file.
-f Link the object program with the floating-point

- interpreter for systems without hardware floating-
point. This option must be specified unless your sys-
tem has floating-point hardware.

-g Generate additional information needed for the use
of sdb(1).

—ooutput Name the final output file output, instead of a.out.

-p Prepare object files for profiling [see prof(1)1.

-0 Invoke an object-code optimizer.

-S Compile the named programs and leave the

assembler-language output in corresponding files
whose names are suffixed with .s. (No .o files are
created.)

The following options are peculiar to f77:

166—Commands and Utilities UNIX Programmer’s Manual

F77(1) F77(1)

-1 Same as —onetrip.

—66 This option is used to compile Fortran 66 source pro-
grams. Only syntax compatible with Fortran 66 is
accepted.

—m Apply the M4 preprocessor to each EFL or RATFOR

source file before transforming with the ratfor(1) or
efl (1) processors.

—onetrip Compile DO loops that are performed at least once if
reached. (Fortran 77 DO loops are not performed at
all if the upper limit is smaller than the lower limit.)

-u Make the default type of a variable wundefined,
rather than using the default Fortran rules.

—-v Verbose mode. Provide diagnostics for each process
during compilation.

-w Suppress all warning messages. If the option is
—w66, only Fortran 66 compatibility warnings are
suppressed.

-C Generate code for run-time subscript range-checking.

—E The remaining characters in the argument are used
as an EFL flag argument whenever processing a .e
file.

-F Apply EFL and RATFOR preprocessor to relevant

files, put the result in files whose names have their

suffix changed to .f. (No .o files are created.)
—NIgxscnl] nnn : ‘

Change size of table [gqxscnl] to nnn. The compiler

will provide a diagnostic when a table overflows.

The tables and corresponding default values for nnn

are:
" 150 (equivalences)

x> 200 (common blocks, subroutine and function names)
s 401 (statement numbers)

-
-

w

201 (symbol table)

’c 20 (depth of loops or if-then-elses)
'n> 401 (variable names and common block names)
I 125 labels for computed and assigned gotos
and the number of alternate returns
-R The remaining characters in the argument are used
as a RATFOR flag argument whenever processing a
1 file.

UNIX Programmer’s Manual Commands and Utilities—167

F77(1) F77(1)

-U Do not "fold" cases. F77 is normally a no-case
language (i.e., a is equal to A). The —U option
causes f77 to treat upper and lowercases separately.

Other arguments are taken to be either link-editor option argu-
ments or f77-compilable object programs (typically produced by
an earlier run), or libraries of f77-compilable routines. These pro-
grams, together with the results of any compilations specified, are
linked (in the order given) to produce an executable program with
the default name a.out .

FILES
file.[fresc] input file
file.o object file
a.out linked output
/usr/tmp/F77AAAalpidl.? temporary
/usr/lib/f77pass1 compiler
/usr/1ib/f77pass2 pass 2
/lib/c2 optional optimizer (VAX comput-
ers)
/usr/lib/f77optim optional optimizer
- (3B20, 3B5, 3B2 computers)
/usr/lib/1ibF77.a intrinsic function library
/usr/1ib/1ibI77.a Fortran I/0O library
/lib/libc.a C library; see Volume 3 in the
/usr/bin/f77 driver and command line parser
/bin/as assembler, as(1)
/bin/1d link editor, 1d(1)
/lib/crt0.0 runtime startoff
/lib/mcrt0.0 profiling startoff
/bin/sort sort, sort(1)
/usr/bin/m4 m4 macro preprocessor
/bin/cc C compiler
/usr/bin/efl EFL compiler
/usr/bin/ratfor RATFOR preprocessor
/1ib/libp/libm.a runtime math library
/1ib/libp/libc.a ¢ runtime library
/lib/fert0.0 floating-point interpretation
startoff
/lib/fmcrt0.0 Software floating point startup
/usr/lib/libg.a sdb runtime library

168—Commands and Utilities

UNIX Programmer’s Manual

F77(1) F77(1)

SEE ALSO

as(1), asa(1), cc(1), efl(1), fsplit(1), 1d(1), m4(1), prof(1), rat-
for(1), sdb(1).

DIAGNOSTICS

The diagnostics produced by f77 itself are intended to be self-
explanatory. Occasional messages may be produced by the link
editor Id (1) or the assembler as(1).

UNIX Programmer’s Manual Commands and Utilities—169

FACTOR (1) FACTOR(1)

NAME

factor — factor a number
SYNOPSIS

factor [number]
DESCRIPTION

When factor is invoked without an argument, it waits for a
number to be typed in. If you type in a positive number less than
2°¢ (about 7.2x10'®) it will factor the number and print its prime
factors; each one is printed the proper number of times. Then it
waits for another number. It exits if it encounters a zero or any
non-numeric character.

If factor is invoked with an argument, it factors the number as
above and then exits.

Maximum time to factor is proportional to /% and occurs when n
is prime or the square of a prime. It takes 1 minute to factor a
prime near 10" on some computers.

DIAGNOSTICS
“Ouch” for input out of range or for garbage input.

170—Commands and Ultilities UNIX Programmer’s Manual

FILE(1) FILE(1)

NAME

file — determine file type
SYNOPSIS

file [—c1[—f file] [—m mfile] arg ...
DESCRIPTION

File performs a series of tests on each argument in an attempt to
classify it. If an argument appears to be ASCII, file examines the
first 512 bytes and tries to guess its language. If an argument is
an executable a.out, file will print the version stamp, provided it is
greater than 0 (see Id(1)).

If the —f option is given, the next argument is taken to be a file
containing the names of the files to be examined.

File uses the file /etc/magic to identify files that have some sort of
magic number, that is, any file containing a numeric or string con-
stant that indicates its type. Commentary at the beginning of
/etc/magic explains its format.

The —m option instructs file to use an alternate magic file.

The —c flag causes file to check the magic file for format errors.
This validation is not normally carried out for reasons of efficiency.
No file typing is done under —c.

SEE ALSO
1d(1).

UNIX Programmer’s Manual Commands and Utilities—171

FIND (1)

NAME

find — find files

SYNOPSIS

FIND(1)

find path-name-list expression

DESCRIPTION

Find recursively descends the directory hierarchy for each path
name in the path-name-list (i.e., one or more path names) seeking
files that match a boolean expression written in the primaries

given below.

In the descriptions, the argument n is used as a

decimal integer where +n means more than n, —n means less
than n and #» means exactly n.

—name file

—perm onum

~type ¢

—links ~»

—user uname

—group gname
—size nlc]

—atime n

True if file matches the current file name. Nor-
mal shell argument syntax may be used if
escaped (watch out for [, ? and »).

True if the file permission flags exactly match
the octal number onum (see chmod(1)). If
onum is prefixed by a minus sign, more flag bits
(017777, see stat(2)) become significant and
the flags are compared.

True if the type of the file is ¢, where c is b, ¢,
d, p, or f for block special file, character special
file, directory, fifo (a.k.a named pipe), or plain
file respectively.

True if the file has »n links.

True if the file belongs to the user uname. If
uname is numeric and does not appear as a
login name in the /etc/passwd file, it is taken as
a user ID.

True if the file belongs to the group gname. If
gname is numeric and does not appear in the
/etc/group file, it is taken as a group ID.

True if the file is n blocks long (512 bytes per
block). If n is followed by a c, the size is in
characters.

True if the file has been accessed in n days.
The access time of directories in path-name-list
is changed by find itself.

172—~Commands and Ultilities UNIX Programmer’s Manual

FIND(1)

—mtime n
—ctime n

—exec cmd

—ok cmd

—print
—cpio device
—newer file

—depth

(expression)

FIND(1)

True if the file has been modified in n days.
True if the file has been changed in n days.

True if the executed cmd returns a zero value
as exit status. The end of cmd must be punc-
tuated by an escaped semicolon. A command
argument {} is replaced by the current path
name.

Like —exec except that the generated command
line is printed with a question mark first, and is
executed only if the user responds by typing y.

Always true; causes the current path name to be
printed.

Always true; write the current file on device in
cpio (4) format (5120-byte records).

True if the current file has been modified more
recently than the argument file.

Always true; causes descent of the directory
hierarchy to be done so that all entries in a
directory are acted on before the directory itself.
This can be useful when find is used with
cpio(1) to transfer files that are contained in
directories without write permission.

True if the parenthesized expression is true
(parentheses are special to the shell and must be
escaped).

The primaries may be combined using the following operators (in
order of decreasing precedence):

1) The negation of a primary (! is the unary not operator).

2) Concatenation of primaries (the and operation is implied by
the juxtaposition of two primaries).

3) Alternation of primaries (—o is the or operator).

EXAMPLE

To remove all files named a.out or *=.0 that have not been accessed

for a week:

find / \(—name a.out —o —name '+.0' \) —atime +7 —exec rm {}

\;

UNIX Programmer’s Manual Commands and Utilities—173

FIND(1) FIND(1)

FILES
/etc/passwd, /etc/group

SEE ALSO
chmod (1), cpio(1), sh(1), test(1).
stat(2), cpio(4), fs(4) in the UNIX Programmer’s Manual—
Volume 2: System Calls and Library Routines.

174—Commands and Ugtilities UNIX Programmer’s Manual

FSPLIT(1) FSPLIT (1)

NAME

fsplit — split £77, ratfor, or efl files
SYNOPSIS

fsplit options files
DESCRIPTION

Fsplit splits the named file(s) into separate files, with one pro-
cedure per file. A procedure includes blockdata, function, main,
program, and subroutine program segments. Procedure X is put
in file X.f, X.r, or X.e depending on the language option chosen,
with the following exceptions: main is put in the file MAIN lefr]
and unnamed blockdata segments in the files blockdataN lefrl
where N is a unique integer value for each file.

The following options pertain:
—f (default) Input files are f77.
-r Input files are ratfor.

—e Input files are Efl.

-s Strip f77 input lines to 72 or fewer characters with trail-
ing blanks removed.

SEE ALSO
csplit(1), efl(1), £77(1), ratfor(1), split(1).

UNIX Programmer’s Manual ' Commands and Utilities—175

GDEV(1G) GDEV (1G)
NAME
hpd, erase, hardcopy, tekset, td — graphical device routines and
filters
SYNOPSIS
hpd [—options] [GPS file ...]
erase
hardcopy
tekset
td [—eurn] [GPS file ...]
DESCRIPTION
All of the commands described below reside in /usr/bin/graf (sece
graphics (1G)).
hpd Hpd translates a GPS (see gps(4)), to instructions for

the Hewlett-Packard 7221A Graphics Plotter. A view-
ing window is computed from the maximum and
minimum points in file unless the —u or —r option is
provided. If no file is given, the standard input is
assumed. Options are:

en Select character set n, n between 0 and 5 (see
the HP7221A Plotter Operating and Program-
ming Manual, Appendix A).

pn Select pen numbered n, n between 1 and 4
inclusive.

rn Window on GPS region n, n between 1 and 25
inclusive.

sn Slant characters n degrees clockwise from the
vertical.

u Window on the entire GPS universe.

xdn Set x displacement of the viewport’s lower left
corner to n inches.

xvn Set width of viewport to n inches.

ydn Set y displacement of the viewport’s lower left
corner to n inches.

yvn Set height of viewport to n inches.

erase Erase sends characters to a TEKTRONIX 4010 series

storage terminal to erase the screen.

176—Commands and Utilities UNIX Programmer’s Manual

GDEV(1G)

hardcopy

tekset

td

SEE ALSO

GDEV(1G)

When issued at a TEKTRONIX display terminal with a
hard copy unit, hardcopy generates a screen copy on
the unit.

Tekset sends characters to a TEKTRONIX terminal to
clear the display screen, set the display mode to alpha,
and set characters to the smallest font.

Td translates a GPS to scope code for a TEKTRONIX
4010 series storage terminal. A viewing window is
computed from the maximum and minimum points in
file unless the —u or —r option is provided. If no file
is given, the standard input is assumed. Options are:

e Do not erase screen before initiating display.

rn Display GPS region n, n between 1 and 25
inclusive.

u Display the entire GPS universe.

ged(1G), graphics(1G).
gps(4) in the UNIX Programmer’s Manual —Volume 2: System
Calls and Library Routines.

UNIX Programmer’s Manual Commands and Utilities—177

GED(1G) GED(1G)

NAME
ged — graphical editor

SYNOPSIS
ged [—euRrn] [GPS file ...]

DESCRIPTION
Ged is an interactive graphical editor used to display, construct,
and edit GPS files on TEKTRONIX 4010 series display terminals.
If GPS file(s) are given, ged reads them into an internal display
buffer and displays the buffer. The GPS in the buffer can then be
edited. If — is given as a file name, ged reads a GPS from the
standard input.

Ged accepts the following command line options:
e Do not erase the screen before the initial display.
rn Display region number n.
u Display the entire GPS universe.
R Restricted shell invoked on use of !.

A GPS file is composed of instances of three graphical objects:
lines, arc, and text. Arc and lines objects have a start point, or
object-handle, followed by zero or more points, or point-handles.
Text has only an object-handle. The objects are positioned within
a Cartesian plane, or universe, having 64K (—32K to +32K)
points, or universe-units, on each axis. The universe is divided
into 25 equal sized areas called regions. Regions are arranged in
five rows of five squares each, numbered 1 to 25 from the lower
left of the universe to the upper right.

Ged maps rectangular areas, called windows, from the universe
onto the display screen. Windows allow the user to view pictures
from different locations and at different magnifications. The
universe-window is the window with minimum magnification, i.e.,
the window that views the entire universe. The home-window is
the window that completely displays the contents of the display
buffer.

COMMANDS
Ged commands are entered in stages. Typically each stage ends
with a <er> (return). Prior to the final <cr> the command
may be aborted by typing rubout. The input of a stage may be
edited during the stage using erase and kill characters of the cal-
ling shell. The prompt * indicates ged is waiting at stage 1.

178—Commands and Utilities UNIX Programmer’s Manual

GED (1G) GED(1G)

Each command consists of a subset of the following stages:

1. Command line
A command line consists of a command name fol-
lowed by argument(s) followed by a <er>. A com-
mand name is a single character. Command argu-
ments are either option(s) or a file-name. Options
are indicated by a leading —.

2. Text Text is a sequence of characters terminated by an
unescaped <cr> (120 lines of text maximum).

3. Points Points is a sequence of one or more screen locations
(maximum of 30) indicated either by the terminal
crosshairs or by name. The prompt for entering
points is the appearance of the crosshairs. When the
crosshairs are visible, typing:

sp (space) enters the current location as a point.
The point is identified with a number.

$n enters the previous point numbered ».

>x labels the last point entered with the upper
case letter x.

$x enters the point labeled x.

. establishes the previous points as the current
points. At the start of a command the previ-
ous points are those locations given with the
previous command.

= echoes the current points.

$.n enters the point numbered n from the previous
points.

erases the last point entered.
@ erases all of the points entered.

4. Pivot The pivot is a single location, entered by typing
<er> or by using the $ operator, and indicated with
as

5. Destination
The destination is a single location entered by typing
<cr> or by using $.

UNIX Programmer’s Manual Commands and Utilities—179

GED(1G) GED (1G)

COMMAND SUMMARY
In the summary, characters typed by the user are printed in bold.
Command stages are printed in italics. Arguments surrounded by
brackets “[]” are optional. Parentheses “()” surrounding argu-
ments separated by “or” means that exactly one of the arguments
" must be given.

Construct commands:

Arc [—echo,style,weight] points

Box [—echo,style,weight] points

Circle [—echo,style,weight] points
Hardware [—echol text points

Lines [—echo,style,weight] points

Text [—angle,echo,height,mid-point,right-

point,text,weight] text points

Edit commands:

Delete (= (universe or view) or points)

Edit [—angle,echo,height,style,weight] (-
(universe or view) or points)

Kopy [—echo,points,x] points pivot destination

Move [—echo,points,x] points pivot destination

Rotate [—angle,echo,kopy,x] points pivot destination

Scale [—echo,factor,kopy,x] points pivot destination

View commands:
coordinates points

erase
new-display

object-handles (— (universe or view) or points)

point-handles (= (labelled-points or universe or view)
or points)
view (— (home or universe or region) or [—xI

pivot destination)

180—Commands and Utilities UNIX Programmer’s Manual

GED(1G)

Zoom
Other commands:

quit or Quit

read

set

write

lcommand
?

Options:

GED(1G)

[—view] points

[—out] points

[—angle,echo,height,mid-point,right-
point,text,weight
file-name [destination)

[—angle,echo,factor,height kopy,mid-
point,points,
right-point,style,text,weight,x]

file-name

Options specify parameters used to construct, edit, and view

graphical objects.

If a parameter used by a command is not

specifed as an option, the default value for the parameter will be

used (see set below). The format of command options is:
—option|,option]

where option is keyletterlvaluel. Flags take on the values of true

or false indicated by + and — respectively. If no value is given

with a flag, true is assumed.

Object options:
anglen
echo

factorn
heightn

kopy
mid-point

Angle of n degrees.

When true, echo additions to the display
buffer.

Scale factor is n percent.

Height of text is n universe-units
(0<n<1280).

When true, copy rather than move.

When true, mid-point is used to locate text
string.

UNIX Programmer’s Manual Commands and Utilities—181

GED(1G)

points
right-point

styletype

text

weighttype

Area options:
home
out
regionn
universe
view

X

GED(1G)

When true, operate on points; otherwise
operate on objects.

When true, right-point is used to locate text
string.

Line style set to one of following types:

S0 solid

da dashed

dd dot-dashed
do dotted

1d long-dashed

When false, text strings are outlined rather
than drawn.

Sets line weight to one of following types:

n narrow
m medium
b bold

Reference the home-window.

Reduce magnification.

Reference region n.

Reference the universe-window.
Reference those objects currently in view.

Indicate the center of the referenced area.

COMMAND DESCRIPTIONS

Construct commands:
Arc and Lines

behave similarly. Each consists of a command line followed
by points. The first point entered is the object-handle. Suc-
cessive points are point-handles. Lines connect the handles
in numerical order. Arc fits a curve to the handles
(currently a maximum of 3 points will be fit with a circular
arc; splines will be added in a later version).

Box and Circle

are special cases of Lines and Arc, respectively. Box gen-
erates a rectangle with sides parallel to the universe axes. A
diagonal of the rectangle would connect the first point

182—-Commands and Ultilities UNIX Programmer’s Manual

GED(1G) GED(1G)

entered with the last point. The first point is the object-
handle. Point-handles are created at each of the vertices.
Circle generates a circular arc centered about the point num-
bered zero and passing through the last point. The circle’s
object-handle coincides with the last point. A point-handle is
generated 180 degrees around the circle from the object-
handle. ‘

Text and Hardware

generate text objects. Each consists of a command line, text
and points. Text is a sequence of characters delimited by
<cr>. Multiple lines of text may be entered by preceding a
cr with a backslash (i.e., \cr). The Text command creates
software-generated characters. Each line of software text is
treated as a separate fext object. The first point entered is
the object-handle for the first line of text. The Hardware
command sends the characters in fext uninterpreted to the
terminal.

Edit commands:

Edit commands operate on portions of the display buffer called
defined areas. A defined area is referenced either with an area
option or interactively. If an area option is not given, the perime-
ter of the defined area is indicated by points. If no point is
entered, a small defined area is built around the location of the
<er>. This is useful to reference a single point. If only one
point is entered, the location of the <er> is taken in conjunction
with the point to indicate a diagonal of a rectangle. A defined
area referenced by points will be outlined with dotted lines.

Delete
removes all objects whose object-handle lies within a defined
area. The universe option removes all objects and erases the
screen.

Edit modifies the parameters of the objects within a defined area.
Parameters that can be edited are:
angle angle of text
height height of rext
style style of lines and arc
weight weight of lines, arc, and text.

Kopy (or Move)
copies (or moves) object- and/or point-handles within a

UNIX Programmer’s Manual ‘ Commands and Utilities—183

GED(1G) ' GED(1G)

defined area by the displacement from the pivot to the desti-
nation.

Rotate
rotates objects within a defined area around the pivor. If the
kopy flag is true then the objects are copied rather than
moved.

Scale
For objects whose object handles are within a defined area,
point displacements from the pivot are scaled by factor per-
cent. If the kopy flag is true then the objects are copied
rather than moved.

View commands:
coordinates
prints the location of point(s) in universe- and screen-units.

erase clears the screen (but not the display buffer).

new-display
erases the screen then displays the display buffer.

object-handles (or point-handles)
labels object-handles (and/or point-handles) that lie within
the defined area with O (or P). Point-handles identifies
labeled points when the labelled-points flag is true.

view moves the window so that the universe point corresponding to
the pivot coincides with the screen point corresponding to the
destination. Options for home, universe, and region display
particular windows in the universe.

X indicates the center of a defined area. Option view indicates
the center of the screen.

zoom
decreases (zoom out) or increases the magnification of the
viewing window based on the defined area. For increased
magnification, the window is set to circumscribe the defined
area. For a decrease in magnification the current window is
inscribed within the defined area.

Other commands:
quit or Quit
exit from ged. Quit responds with ? if the display buffer has

184—Commands and Ultilities UNIX Programmer’s Manual

GED(1G) GED(1G)

not been written since the last modification.

read inputs the contents of a file. If the file contains a GPS it is
read directly. If the file contains text it is converted into
text object(s). The first line of a text file begins at destina-
tion.

set when given option(s) resets default parameters, otherwise it
prints current default values.

write outputs the contents of the display buffer to a file.

! escapes ged to execute a UNIX system command.
? lists ged commands.
SEE ALSO

gdev(1G), graphics(1G), sh(1).
gps(4) in the UNIX Programmer’s Manual —Volume 2: System
Calls and Library Routines.

WARNING .
See Appendix A of the TEKTRONIX 4014 Computer Display Ter-
minal User’s Manual for the proper terminal strap options.

UNIX Programmer’s Manual Commands and Utilities—185

GET(1) GET(1)

NAME
get — get a version of an SCCS file

SYNOPSIS
get [—rSID] [—ccutoff] [=—ilist] [—xlist] [—wstring]
[—aseq-no.] [—k] [—e] [—l[p]]l [—p] [—m] [—n] [—s] [—b]
[~gl [—t] file ...

DESCRIPTION

Get generates an ASCII text file from each named SCCS file
according to the specifications given by its keyletter arguments,
which begin with —. The arguments may be specified in any
order, but all keyletter arguments apply to all named SCCS files.
If a directory is named, get behaves as though each file in the
directory were specified as a named file, except that non-SCCS files
(last component of the path name does not begin with s.) and
unreadable files are silently ignored. If a name of — is given, the
standard input is read; each line of the standard input is taken to
be the name of an SCCS file to be processed. Again, non-SCCS
files and unreadable files are silently ignored.

The generated text is normally written into a file called the g-file
whose name is derived from the SCCS file name by simply remov-
ing the leading s.; (see also FILES, below).

Each of the keyletter arguments is explained below as though only
one SCCS file is to be processed, but the effects of any keyletter
argument applies independently to each named file.

—rSID The SCCS IDentification string (SID) of the version
(delta) of an SCCS file to be retrieved. Table 1 below
shows, for the most useful cases, what version of an
SCCS file is retrieved (as well as the SID of the version
to be eventually created by delta(1) if the —e
keyletter is also used), as a function of the SID
specified.

—ccutoff Cutoff date-time, in the form: .
YY{MMIDDIHHIMMISSII]

No changes (deltas) to the SCCS file which were
created after the specified cutoff date-time are
included in the generated ASCII text file. Units omit-
ted from the date-time default to their maximum pos-
sible values; that is, —c7502 is equivalent to
—c750228235959. Any number of non-numeric

186—Commands and Utilities UNIX Programmer’s Manual

GET(1) GET(1)

characters may separate the various 2-digit pieces of
the cutoff date-time. This feature allows one to
specify a cutoff date in the form: "—c77/2/2 9:22:25".
Note that this implies that one may use the %E% and
%U% identification keywords (see below) for nested
gets within, say the input to a send (1C) command:

Tlget "—c%E% %U%" s.file

—e Indicates that the get is for the purpose of editing or
making a change (delta) to the SCCS file via a subse-
quent use of delta(1). The —e keyletter used in a get
for a particular version (SID) of the SCCS file prevents
further gets for editing on the same SID until delta is
executed or the j (joint edit) flag is set in the SCCS
file (see admin(1)). Concurrent use of get —e for
different SIDs is always allowed.

If the g-file generated by get with an —e keyletter is
accidentally ruined in the process of editing it, it may
be regenerated by re-executing the ger command with
the —k keyletter in place of the —e keyletter.

SCCS file protection specified via the ceiling, floor, and
authorized user list stored in the SCCS file (see
admin (1)) are enforced when the —e keyletter is used.

-b Used with the —e keyletter to indicate that the new
delta should have an SID in a new branch as shown in
Table 1. This keyletter is ignored if the b flag is not
present in the file (see admin(1)) or if the retrieved
delta is not a leaf delta. (A leaf delta is one that has
no successors on the SCCS file tree.)
Note: A branch delta may always be created from a
non-leaf delta. '

—ilist A list of deltas to be included (forced to be applied) in
the creation of the generated file. The /ist has the fol-
lowing syntax:

<list> ::= <range> | <list> , <range>
<range> ::= SID | SID — SID

SID, the SCCS Identification of a delta, may be in any
form shown in the “SID Specified” column of Table 1.
Partial SIDs are interpreted as shown in the “SID
Retrieved” column of Table 1.

UNIX Programmer’s Manual Commands and Utilities—187

GET(1)

—xlist

—Iipl

-P

=S

it

GET(1)

A list of deltas to be excluded (forced not to be
applied) in the creation of the generated file. See the
—i keyletter for the list format.

Suppresses replacement of identification keywords (see
below) in the retrieved text by their value. The —k
keyletter is implied by the —e keyletter.

Causes a delta summary to be written into an /-file.
If —Ip is used then an /-file is not created; the delta
summary is written on the standard output instead.
See FILES for the format of the /-file.

Causes the text retrieved from the SCCS file to be
written on the standard output. No g-file is created.
All output which normally goes to the standard output
goes to file descriptor 2 instead, unless the —s
keyletter is used, in which case it disappears.

Suppresses all output normally written on the standard
output. However, fatal error messages (which always
go to file descriptor 2) remain unaffected.

Causes each text line retrieved from the SCCS file to
be preceded by the SID of the delta that inserted the
text line in the SCCS file. The format is: SID, fol-
lowed by a horizontal tab, followed by the text line.

Causes each generated text line to be preceded with
the %M% identification keyword value (see below).
The format is: %M% value, followed by a horizontal
tab, followed by the text line. When both the —m and
—n keyletters are used, the format is: %M% value,
followed by a horizontal tab, followed by the —m
keyletter generated format.

Suppresses the actual retrieval of text from the SCCS
file. It is primarily used to generate an [-file, or to
verify the existence of a particular SID.

Used to access the most recently created (“top”) delta
in a given release (e.g., —rl), or release and level
(e.g., —-rl2).

—w string Substitute string for all occurrences of

@(#)get.1 6.2 when geting the file.

188—Commands and Utilities UNIX Programmer’s Manual

GET(1) GET(1)

—aseq-no. The delta sequence number of the SCCS file delta
(version) to be retrieved (see scesfile(5)). This
keyletter is used by the comb(1) command; it is not a
generally useful keyletter, and users should not use it.
If both the —r and —a keyletters are specified, the
—a keyletter is used. Care should be taken when
using the —a keyletter in conjunction with the —e
keyletter, as the SID of the delta to be created may
not be what one expects. The —r keyletter can be
used with the —a and —e keyletters to control the
naming of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with
the SID being accessed and with the number of lines retrieved
from the SCCS file.

If the —e keyletter is used, the SID of the delta to be made
appears after the SID accessed and before the number of lines gen-
erated. If there is more than one named file or if a directory or
standard input is named, each file name is printed (preceded by a
new-line) before it is processed. If the —i keyletter is used
included deltas are listed following the notation “Included”; if the
—x keyletter is used, excluded deltas are listed following the nota-
tion “Excluded”.

TABLE 1. Determination of SCCS Identification String

SID* —b Keyletter Other SID SID of Delta
Specified Used} Conditions Retrieved to be Created
none# no R defaults to mR mR.mL mR.(mL+1)
nonet yes R defaults to mR mR.mL mR.mL.(mB+1).1
R no R > mR mR.mL R.1***

R no R =mR mR.mL mR.(mL+1)

R yes R > mR mR.mL mR.mL.(mB+1).1

R yes R =mR mR.mL mR.mL.(mB+1).1

R - R <mRand ~ ypml** hR.mL.(mB+1).1
R does not exist
Trunk succ.#

R - in release > R R.mL R.mL.(mB+1).1
and R exists

R.L no No trunk succ. R.L R.(L+1)

UNIX Programmer’s Manual Commands and Utilities—189

GET (1) GET(1)
R.L yes No trunk succ. R.L R.L.(mB+1).1
RL - Trunk succ. RL R.L.(mB+1).1
in release 2 R

R.L.B no No branch succ. R.L.B.mS R.L.B.(mS+1)
R.L.B yes No branch succ. R.L.B.mS R.L.(mB+1).1
R.L.BS no No branch succ. R.L.BS R.LB.(S+1)
R.L.B.S yes No branch succ. R.LBS R.L.(mB+1).1
R.L.BS - Branch succ. RLBS R.L.(mB+1).1

* ¥

* Kk ok

—+ %

“R”, “L”, “B”, and “S” are the “release”, “level”,
“branch”, and “sequence” components of the SID, respec-
tively; “m” means “maximum”. Thus, for example, “R.mL”
means “the maximum level number within release R”;
“R.L.(mB+1).1” means “the first sequence number on the
new branch (i.e., maximum branch number plus one) of level
L within release R”. Note that if the SID specified is of the
form “R.L”, “R.L.B”, or “R.L.B.S”, each of the specified
components rmust exist.

“hR” is the highest existing release that is lower than the
specified, nonexistent, release R.

This is used to force creation of the first delta in a new
release.

Successor.

The —b keyletter is effective only if the b flag (see
admin (1)) is present in the file. An entry of — means
“irrelevant”.

This case applies if the d (default SID) flag is not present in
the file. If the d flag is present in the file, then the SID
obtained from the d flag is interpreted as if it had been
specified on the command line. Thus, one of the other cases
in this table applies.

IDENTIFICATION KEYWORDS
Identifying information is inserted into the text retrieved from the
SCCS file by replacing identification keywords with their value
wherever they occur. The following keywords may be used in the
text stored in an SCCS file:

190—Commands and Ultilities UNIX Programmer’s Manual

GET (1) GET (1)

FILES

Keyword Value

%M% Module name: either the value of the m flag in the file
(see admin(1)), or if absent, the name of the SCCS file
with the leading s. removed.

%1% SCCS identification (SID) (%R%.%1.%.%B%.%S%) of
the retrieved text.

% R % Release.

% L. % Level.

% B % Branch.

%S % Sequence.

% D% Current date (YY/MM/DD).

% H % Current date (MM/DD/YY).

% T % Current time (HH:MM:SS).

% E % Date newest applied delta was created (YY/MM/DD).

% G % Date newest applied delta was created (MM/DD/YY).

% U % Time newest applied delta was created (HH:MM:SS).

%Y % Module type: value of the t flag in the SCCS file (see
admin(1)).

% F % SCCS file name.

% P % Fully qualified SCCS file name.

%Q% The value of the q flag in the file (see admin(1)).

% C % Current line number. This keyword is intended for
identifying messages output by the program such as
“this should not have happened” type errors. It is not
intended to be used on every line to provide sequence
numbers.

% Z% The 4-character string @ (#) recognizable by what (1).

%W% A shorthand notation for constructing what (1) strings
for UNIX system program files.
%W % = %Z%%M% < horizontal-tab> %1%

% A % Another shorthand notation for constructing what (1)
strings for non-UNIX system program files.
%A% = %Z%%Y % %M% %1%%Z%

Several auxiliary files may be created by get. These files are
known generically as the g-file, I-file, p-file, and z-file. The
letter before the hyphen is called the tag. An auxiliary file name
is formed from the SCCS file name: the last component of all
SCCS file names must be of the form s.module-name, the auxiliary
files are named by replacing the leading s with the tag. The g-file
is an exception to this scheme: the g-file is named by removing
the s, prefix.

UNIX Programmer’s Manual Commands and Utilities—191

GET (1) GET (1)

The g-file, which contains the generated text, is created in the
current directory (unless the —p keyletter is used). A g-file is
created in all cases, whether or not any lines of text were gen-
erated by the ger. It is owned by the real user. If the —k
keyletter is used or implied its mode is 644; otherwise its mode is
444. Only the real user need have write permission in the current
directory.

The I-file contains a table showing which deltas were applied in
generating the retrieved text. The /-file is created in the current
directory if the =1 keyletter is used; its mode is 444 and it is
owned by the real user. Only the real user need have write per-
mission in the current directory.

Lines in the /-file have the following format:

a. A blank character if the delta was applied;
* otherwise.
b. A blank character if the delta was applied or was

not applied and ignored;
» if the delta was not applied and was not
ignored.
c. A code indicating a “special” reason why the
delta was or was not applied:
“I”: Included.
“X”: Excluded.
“C”: Cut off (by a —c keyletter).

d. Blank.

e. SCCS identification (SID).

f. Tab character.

g. Date and time (in the form
YY/MM/DD HH:MM:SS) of creation.

h. Blank.

i. Login name of person who created delta.

The comments and MR data follow on subsequent lines,
indented one horizontal tab character. A blank line ter-
minates each entry.

The p-file is used to pass information resulting from a get with an
—e keyletter along to delta. Its contents are also used to prevent
a subsequent execution of ger with an —e keyletter for the same
SID until delta is executed or the joint edit flag, j, (see admin(1))
is set in the SCCS file. The p-file is created in the directory con-
taining the SCCS file and the effective user must have write

192—Commands and Utilities UNIX Programmer’s Manual

GET(1) GET(1)

permission in that directory. Its mode is 644 and it is owned by
the effective user. The format of the p-file is: the gotten SID, fol-
lowed by a blank, followed by the SID that the new delta will have
when it is made, followed by a blank, followed by the login name
of the real user, followed by a blank, followed by the date-time the
get was executed, followed by a blank and the —i keyletter argu-
ment if it was present, followed by a blank and the —x keyletter
argument if it was present, followed by a new-line. There can be
an arbitrary number of lines in the p-file at any time; no two lines
can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous
updates. Its contents are the binary (2 bytes) process ID of the
command (i.e., get) that created it. The z-file is .created in the
directory containing the SCCS file for the duration of get. The
same protection restrictions as those for the p-file apply for the z-
file. The z-file is created mode 444.

SEE ALSO
admin(1), delta(1), help(1), prs(1), what(1).
sccsfile(4) in the UNIX Programmer’s Manual —Volume 2: Sys-
tem Calls and Library Routines.

DIAGNOSTICS
Use help (1) for explanations.

BUGS
If the effective user has write permission (either explicitly or impli-
citly) in the directory containing the SCCS files, but the real user
does not, then only one file may be named when the —e keyletter
is used.

UNIX Programmer’s Manual Commands and Utilities—193

GETOPT (1) GETOPT (1)

NAME ;

getopt — parse command options
SYNOPSIS

set —— “getopt optstring $e°
DESCRIPTION

Getopt is used to break up options in command lines for easy pars-
ing by shell procedures and to check for legal options. Optstring is
a string of recognized option letters (see getopt(3C)); if a letter is
followed by a colon, the option is expected to have an argument
which may or may not be separated from it by white space. The
special option — — is used to delimit the end of the options. If it
is used explicitly, getopt will recognize it; otherwise, getopt will
generate it; in either case, getopr will place it at the end of the
options. The positional parameters ($1 $2 ...) of the shell are
reset so that each option is preceded by a — and is in its own posi-
tional parameter; each option argument is also parsed into its own
positional parameter.

EXAMPLE
The following code fragment shows how one might process the
arguments for a command that can take the options a or b, as well
as the option o, which requires an argument:

set —— “getopt abo: $**

if[$72!'=01

then
echo $USAGE
exit 2

fi

for i in $*

do
case $i in
—a | —b) FLAG=S$i; shift;;
—0) OARG=$2; shift 2;;
—) shift; break;;
esac

done

This code will accept any of the following as equivalent:

cmd —aoarg file file

cmd —a —o arg file file
cmd —oarg —a file file
cmd —a —oarg —— file file

194—Commands and Utilities UNIX Programmer’s Manual

GETOPT (1) GETOPT (1)

SEE ALSO
sh(1), getopt (3C).

DIAGNOSTICS
Getopt prints an error message on the standard error when it
encounters an option letter not included in optstring.

UNIX Programmer’s Manual Commands and Utilities—195

GRAPH (1G) GRAPH (1G)

NAME
graph — draw a graph

SYNOPSIS
‘ graph [options]

DESCRIPTION ,
Graph with no options takes pairs of numbers from the standard
input as abscissas and ordinates of a graph. Successive points are
connected by straight lines. The graph is encoded on the standard
output for display by the zplot (1G) filters.

If the coordinates of a point are followed by a non-numeric string,
that string is printed as a label beginning on the point. Labels
may be surrounded with quotes ", in which case they may be
empty or contain blanks and numbers; labels never contain new-
lines.

The following options are recognized, each as a separate argument:

—a Supply abscissas automatically (they are missing from
the input); spacing is given by the next argument
(default 1). A second optional argument is the start-
ing point for automatic abscissas (default 0 or lower
limit given by —x).

-b Break (disconnect) the graph after each label in the
input.

-c Character string given by next argument is default
label for each point.

T - Next argument is grid style, 0 no grid, 1 frame with

ticks, 2 full grid (default).

-1 Next argument is label for graph.

-m Next argument is mode (style) of connecting lines: 0

disconnected, 1 connected (default). Some devices give
distinguishable line styles for other small integers (e.g.,
the TEKTRONIX 4014: 2=dotted, 3==dash-dot,
4=short-dash, S=long-dash).

-s Save screen, do not erase before plotting.

—x[1] If 1 is present, x axis is logarithmic. Next 1 (or 2)
arguments are lower (and upper) x limits. Third argu-
ment, if present, is grid spacing on x axis. Normally
these quantities are determined automatically.

—y[1] Similarly for y.

-h Next argument is fraction of space for height.

196—Commands and Utilities UNIX Programmer’s Manual

GRAPH (1G) GRAPH (1G)

-w Similarly for width.

-r Next argument is fraction of space to move right
before plotting.

—u Similarly to move up before plotting.

-t Transpose horizontal and vertical axes. (Option —x

now applies to the vertical axis.)
A legend indicating grid range is produced with a grid unless the
—s option is present. If a specified lower limit exceeds the upper
limit, the axis is reversed.

SEE ALSO
graphics(1G), spline(1G), tplot(1G).

BUGS
Graph stores all points internally and drops those for which there
is no room.
Segments that run out of bounds are dropped, not windowed.
Logarithmic axes may not be reversed.

UNIX Programmer’s Manual Commands and Utilities—197

GRAPHICS (1G) GRAPHICS (1G)

NAME

graphics — access graphical and numerical commands
SYNOPSIS :

graphics [—r]
DESCRIPTION

Graphics prefixes the path name /usr/bin/graf to the current
SPATH value, changes the primary shell prompt to ", and executes
a new shell. The directory /usr/bin/graf contains all of the
Graphics subsystem commands. If the —r option is given, access
to the graphical commands is created in a restricted environment;
that is, $PATH is set to
:/usr /bin/graf:/rbin: /usr /rbin

and the restricted shell, rsh, is invoked. To restore the environ-
ment that existed prior to issuing the graphics command, type
EOT (control-d on most terminals). To logoff from the graphics
environment, type quit.

The command line format for a command in graphics is command
name followed by argument(s). An argument may be a file name
or an option string. A file name is the name of any UNIX system
file except those beginning with —. The file name — is the name
for the standard input. An option string consists of — followed by
one or more option(s). An option consists of a keyletter possibly
followed by a value. Options may be separated by commas.

The graphical commands have been partitioned into four groups.

Commands that manipulate and plot numerical data; see
stat (1G).

Commands that generate tables of contents; see toc (1G).

Commands that interact with graphical devices; see
gdev(1G) and ged (1G).

A collection of graphical utility commands; see gutil (1G).

A list of the graphics commands can be generated by typing
whatis in the graphics environment.

SEE ALSO
gdev(1G), ged(1G), gutil(1G), stat(1G), toc(1G).
gps(4) in the UNIX Programmer’s Manual —~Volume 2: System
Calls and Library Routines.

198—Commands and Ultilities UNIX Programmer’s Manual

GREEK(1) GREEK (1)

NAME

greek — select terminal filter

SYNOPSIS

greek [—Tterminal]

DESCRIPTION

Greek is a filter that reinterprets the extended character set, as
well as the reverse and half-line motions, of a 128-character TELE-
TYPE® Model 37 terminal (which is the nroff (1) default terminal)
for certain other terminals. Special characters are simulated by
overstriking, if necessary and possible. If the argument is omitted,
greek attempts to use the environment variable $TERM (see
environ(5)). The following terminals are recognized currently:

300 DASI 300.
300-12 DASI 300 in 12-pitch.
300s DASI 300s.
300s-12 DASI 300s in 12-pitch.
450 DASI 450.
450-12 DASI 450 in 12-pitch.
1620 Diablo 1620 (alias DASI 450).
1620-12 Diablo 1620 (alias DASI 450) in 12-pitch.
2621 Hewlett-Packard 2621, 2640, and 2645.
2640 Hewlett-Packard 2621, 2640, and 2645.
2645 Hewlett-Packard 2621, 2640, and 2645.
4014 TEKTRONIX 4014.
hp Hewlett-Packard 2621, 2640, and 2645.
tek TEKTRONIX 4014.
FILES)

/usr/bin/300

/usr/bin/300s

/usr/bin/4014

/usr/bin/450

/usr/bin/hp

SEE ALSO

300(1), 4014(1), 450(1), eqn(1), hp(1), mm(1), nroff(1),
tplot(1G).

environ(5), term(5) in the UNIX Programmer’s Manual —
Volume 2: System Calls and Library Routines.

UNIX Programmer’s Manual Commands and Utilities—199

GREP(1) GREP(1)

NAME
grep, egrep, fgrep — search a file for a pattern

SYNOPSIS
grep [options] expression [files]

egrep [options] [expression] [files]
fgrep [options] [strings 1 [files]

DESCRIPTION

Commands of the grep family search the input files (standard
input default) for lines matching a pattern. Normally, each line
found is copied to the standard output. Grep patterns are limited
regular expressions in the style of ed(1); it uses a compact non-
deterministic algorithm. FEgrep patterns are full regular
expressions; it uses a fast deterministic algorithm that sometimes
needs exponential space. Fgrep patterns are fixed strings; it is fast
and compact. The following options are recognized:

—v All lines but those matching are printed.

—x (Exact) only lines matched in their entirety are printed
(fgrep only).

—c¢ Only a count of matching lines is printed.

—i Ignore upper/lower case distinction during comparisons.

—~1 Only the names of files with matching lines are listed
(once), separated by new-lines.

—n Each line is preceded by its relative line number in the file.

—b Each line is preceded by the block number on which it was
found. This is sometimes useful in locating disk block
numbers by context.

—s The error messages produced for nonexistent or unreadable
files are suppressed (grep only).

—e expression
Same as a simple expression argument, but useful when the
expression begins with a — (does not work with grep).

—f file
The regular expression (egrep) or strings list (fgrep) is
taken from the file.

In all cases, the file name is output if there is more than one input
file. Care should be taken when using the characters $, *, [, *, |,
(,), and \ in expression, because they are also meaningful to the
shell. It is safest to enclose the entire expression argument in sin-
gle quotes ...’

200—Commands and Ultilities UNIX Programmer’s Manual

GREP(1) GREP(1)

Fgrep searches for lines that contain one of the strings separated
by new-lines.

Egrep accepts regular expressions as in ed (1), except for \(and
\), with the addition of:

1. A regular expression followed by + matches one or more
occurrences of the regular expression.

2. A regular expression followed by ? matches 0 or 1
occurrences of the regular expression.

3. Two regular expressions separated by | or by a new-line
match strings that are matched by either.

4. A regular expression may be enclosed in parentheses () for
grouping.

The order of precedence of operators is [1, then »? +, then con-
catenation, then | and new-line.

SEE ALSO

ed(1), sed(1), sh(1).

DIAGNOSTICS

BUGS

Exit status is 0 if any matches are found, 1 if none, 2 for syntax
errors or inaccessible files (even if matches were found).

Ideally there should be only one grep, but we do not know a single
algorithm that spans a wide enough range of space-time tradeoffs.
Lines are limited to BUFSIZ characters; longer lines are truncated.
(BUFSIZ is defined in /usr/include/stdio.h.)

Egrep does not recognize ranges, such as [a—zl, in character
classes.

If there is a line with embedded nulls, grep will only match up to
the first null; if it matches, it will print the entire line.

UNIX Programmer’s Manual Commands and Utilities—201

GUTIL (1G) GUTIL(1G)

NAME
gutil — graphical utilities

SYNOPSIS
command-name [options] [files]

DESCRIPTION
Below is a list of miscellaneous device independent utility com-
mands found in /fusr/bin/graf. If no files are given, input is from
the standard input. All output is to the standard output. Graphi-
cal data is stored in GPS format; see gps(4).

bel — send bel character to terminal

cvrtopt [=sstring fstring istring tstring] [args] — options
converter
Cvrtopt reformats args (usually the command line
arguments of a calling shell procedure) to facilitate
processing by shell procedures. An arg is either a file
name (a string not beginning with a —, or a — by
itself) or an option string (a string of options beginning
with a —). Output is of the form:

—option —option . . . file name(s)

All options appear singularly and preceding any file
names. Options that take values (e.g., —rl.1) or are
two letters long must be described through options to
cvrtopt.

Cvrtopt is usually used with set in the following
manner as the first line of a shell procedure:

set — “cvrtopt =loptions] $@>
Options to cvrtopt are:

sstring String accepts string values.

fstring String accepts floating point numbers as
values.
istring String accepts integers as values.

tstring String is a two-letter option name that
takes no value.

String is a one- or two-letter option name.
gd [GPS files 1 — GPS dump
Gd prints a human readable listing of GPS.

202—Commands and Ultilities UNIX Programmer’s Manual

GUTIL (1G)

gtop

pd

ptog

quit

remcom

whatis

yoo

SEE ALSO

GUTIL (1G)

[—rnu 1 [GPSfiles 1 — GPS to plot(4) filter

Gtop transforms a GPS into plot(4) commands
displayable by plot filters. GPS objects are translated
if they fall within the window that circumscribes the
first file unless an option is given.

Options:

m translate objects in GPS region n.
u translate all objects in the GPS universe.

[plot(5) files 1 — plot(4) dump
Pd prints a human readable listing of ploz(4) format
graphical commands.

[plot(5) files 1 — plot(4) to GPS filter
Ptog transforms plot (4) commands into a GPS.

— terminate session

[files 1 — remove comments

Remcom copies its input to its output with comments
removed. Comments are as defined in C (i.e., /* com-
ment */).

[—o 1 [names 1 — brief on-line documentation
Whatis prints a brief description of each name given.
If no name is given, then the current list of description
names is printed. The command whatis * prints out
‘every description.

Option:

o just print command options

file — pipe fitting

Yoo is a piping primitive that deposits the output of a

pipeline into a file used in the pipeline. Note that,
without yoo, this is not usually successful as it causes a
read and write on the same file simultaneously.

graphics(1G).
gps(4), plot(4) in the UNIX Programmer’s Manual —Volume 2:
System Calls and Library Routines.

UNIX Programmer’s Manual Commands and Ultilities—203

HELP(1) HELP(1)

NAME
help — ask for help

SYNOPSIS
help [args]

DESCRIPTION
Help finds information to explain a message from a command or
explain the use of a command. Zero or more arguments may be
supplied. If no arguments are given, help will prompt for one.

The arguments may be either message numbers (which normally
appear in parentheses following messages) or command names, of
one of the following types:

type 1 Begins with non-numerics, ends in numer-
ics. The non-numeric prefix is usually an
abbreviation for the program or set of rou-
tines which produced the message (e.g.,
ge6, for message 6 from the get command).

type 2 Does not contain numerics (as a command,
such as get)

type 3 Is all numeric (e.g., 212)

The response of the program will be the explanatory information
related to the argument, if there is any.

When all else fails, try “help stuck”.

FILES
/usr/lib/help directory containing files of message
text.
/usr/lib/help/helploc file containing locations of help files
not in /usr/lib/help.
DIAGNOSTICS

Use help(1) for explanations.

204—Commands and Utilities UNIX Programmer’s Manual

HP(1) : HP(1)

NAME
hp — handle special functions of Hewlett-Packard 2640 and 2621-
series terminals

SYNOPSIS
hp{ —e1[-m]

DESCRIPTION
Hp supports special functions of the Hewlett-Packard 2640 series
of terminals, with the primary purpose of producing accurate
representations of most nroff output. A typical use is:

nroff —h files ... | hp

Regardless of the hardware options on your terminal, Ap tries to
do sensible things with underlining and reverse line-feeds. If the
terminal has the “display enhancements” feature, subscripts and
superscripts can be indicated in distinct ways. If it has the
“mathematical-symbol” feature, Greek and other special charac-
ters can be displayed.

The flags are as follows:

—e It is assumed that your terminal has the “display enhance-
ments” feature, and so maximal use is made of the added
display modes. Overstruck characters are presented in the
Underline mode. Superscripts are shown in Half-bright
mode, and subscripts in Half-bright, Underlined mode. If
this flag is omitted, hp assumes that your terminal lacks
the “display enhancements” feature. In this case, all over-
struck characters, subscripts, and superscripts are
displayed in Inverse Video mode, i.e., dark-on-light, rather
than the usual light-on-dark.

—m Requests minimization of output by removal of new-lines.
Any contiguous sequence of 3 or more new-lines is con-
verted into a sequence of only 2 new-lines; ie., any
number of successive blank lines produces only a single
blank output line. This allows you to retain more actual
text on the screen. ’

With regard to Greek and other special characters, hp provides the
same set as does 300(1), except that “not” is approximated by a
right arrow, and only the top half of the integral sign is shown.
The display is adequate for examining output from negn.

UNIX Programmer’s Manual Commands and Utilities—205

HP(1) HP(1)

DIAGNOSTICS
“line too long” if the representation of a line exceeds 1,024 charac-
ters.
The exit codes are 0 for normal termination, 2 for all errors.

SEE ALSO
300(1), col(1), eqn(1), greek(1), nroff (1), tbl(1).

BUGS

An “overstriking sequence” is defined as a printing character fol-
lowed by a backspace followed by another printing character. In
such sequences, if either printing character is an underscore, the
other printing character is shown underlined or in Inverse Video;
otherwise, only the first printing character is shown (again, under-
lined or in Inverse Video). Nothing special is done if a backspace
is adjacent to an ASCII control character. Sequences of control
characters (e.g., reverse line-feeds, backspaces) can make text
“disappear”; in particular, tables generated by rb/(1) that contain
vertical lines will often be missing the lines of text that contain the
“foot” of a vertical line, unless the input to Ap is piped through
col(1).

Although some terminals do provide numerical superscript charac-
ters, no attempt is made to display them.

206—Commands and Utilities UNIX Programmer’s Manual

HPIO (1) HPIO(1)

NAME

hpio — Hewlett-Packard 2645A terminal tape file archiver

SYNOPSIS

hpio —olrc] file ...

hpio —ilrta] [—n count]

DESCRIPTION

Hpio is designed to take advantage of the tape drives on Hewlett-
Packard 2645A terminals. Up to 255 UNIX system files can be
archived onto a tape cartridge for off-line storage or for transfer to
another UNIX system. The actual number of files depends on the
sizes of the files. One file of about 115,000 bytes will almost fill a
tape cartridge. Almost 300 1-byte files will fit on a tape, but the
terminal will not be able to retrieve files after the first 255. This
manual page is not intended to be a guide for using tapes on
Hewlett-Packard 2645A terminals, but tries to give enough infor-
mation to be able to create and read tape archives and to position
a tape for access to a desired file in an archive.

Hpio —o (copy out) copies the specified file(s), together with path
name and status information to a tape drive on your terminal
(which is assumed to be positioned at the beginning of a tape or
immediately after a tape mark). The left tape drive is used by
default. Each file is written to a separate tape file and terminated
with a tape mark. When Apio finishes, the tape is positioned fol-
lowing the last tape mark written.

Hpio —i (copy in) extracts a file(s) from a tape drive (which is
assumed to be positioned at the beginning of a file that was previ-
ously written by a hpio —o). The default action extracts the next
file from the left tape drive.

Hpio always leaves the tape positioned after the last file read from
or written to the tape. Tapes should always be rewound before the
terminal is turned off. To rewind a tape depress the green func-
tion button, then function key 5, and then select the appropriate
tape drive by depressing either function key 5 for the left tape
drive or function key 6 for the right. If several files have been
archived onto a tape, the tape may be positioned at the beginning
of a specific file by depressing the green function button, then
function key 8, followed by typing the desired file number (1—255)
with no RETURN, and finally function key 5 for the left tape or
function key 6 for the right. The desired file number may also be
specified by a signed number relative to the current file number.

UNIX Programmer’s Manual ‘ Commands and Utilities—207

HPIO(1) HPIO(1)

The meanings of the available options are:

r Use the right tape drive.

c Include a checksum at the end of each file. The check-
sum is always checked by hpio —i for each file written
with this option by hpio —o.

n count The number of input files to be extracted is set to count.
If this option is not given, count defaults to 1. An arbi-
trarily large count may be specified to extract all files
from the tape. Hpio will stop at the end of data mark on
the tape.

t Print a table of contents only. No files are created.
Printed information gives the file size in bytes, the file
name, the file access modes, and whether or not a check-
sum is included for the file.

a Ask before creating a file. Hpio —i normally prints the
file size and name, creates and reads in the file, and prints
a status message when the file has been read in. If a
checksum is included with the file, it reports whether the
checksum matched its computed value. With this option,
the file size and name are printed followed by a ?. Any
response beginning with y or Y will cause the file to be
copied in as above. Any other response will cause the file
to be skipped.

FILES
/dev/tty?? to block messages while accessing a tape

SEE ALSO
cu(10).

DIAGNOSTICS
BREAK
An interrupt signal terminated processing.
Can’t create ‘file’.
File system access permissions did not allow file to be
created.
Can’t get tty options on stdout.
Hpio was unable to get the input-output control settings
associated with the terminal.
Can’t open ‘file’.
File could not be accessed to copy it to tape.
End of Tape.
No tape record was available when a read from a tape
was requested. An end of data mark is the usual reason
208—Commands and Utilities UNIX Programmer’s Manual

HPIO(1) HPIO(1)

for this, but it may also occur if the wrong tape drive is
being accessed and no tape is present.

‘file’ not a regular file.
File is a directory or other special file. Only regular files
will be copied to tape.

Readcent = re, terment = tc.
Hpio expected to read rc bytes from the next block on the
tape, but the block contained t¢ bytes. This is caused by
having the tape improperly positioned or by a tape block
being mangled by interference from other terminal 1/0.

Skip to next file failed.
An attempt to skip over a tape mark failed.

Tape mark write failed.
An attempt to write a tape mark at the end of a file
failed.

Write failed.
A tape write failed. This is most frequently caused by
specifying the wrong tape drive, running off the end of the
tape, or trying to write on a tape that is write protected.

WARNINGS

BUGS

Tape I/0 operations may copy bad data if any other I/0O involving
the terminal occurs. Do not attempt any type ahead while hpio is
running. Hpio turns off write permissions for other users while it
is running, but processes started asynchronously from your termi-
nal can still interfere. The most common indication of this prob-
lem, while a tape is being written, is the appearance of characters
on the display screen that should have been copied to tape.

The keyboard, including the terminal BREAK key, is locked during
tape write operations; the BREAK key is only functional between
writes. ‘

Hpio must have complete control of the attributes of the terminal
to communicate with the tape drives. Interaction with commands
such as cu (1C) may interfere and prevent successful operation.

Some binary files contain sequences that will confuse the terminal.

An hpie —i that encounters the end of data mark on the tape
(e.g., scanning the entire tape with hpio —itn 300), leaves the tape
positioned after the end of data mark. If a subsequent hpio —o is
done at this point, the data will not be retrievable. The tape must
be repositioned manually using the terminal FIND FILE —1

UNIX Programmer’s Manual Commands and Utilities—209

HPIO(1) | HPIO(1)

operation (depress the green function button, function key 8, and
then function key 5 for the left tape or function key 6 for the right
tape) before the hpio —o is started.

If an interrupt is received by hpio while a tape is being written,
the terminal may be left with the keyboard locked. If this hap-
pens, the terminal’s RESET TERMINAL key will unlock the key-
board.

210—Commands and Ultilities UNIX Programmer’s Manual

HYPHEN (1) HYPHEN(1)

NAME

hyphen — find hyphenated words
SYNOPSIS

hyphen [files]
DESCRIPTION

Hyphen finds all the hyphenated words ending lines in files and
prints them on the standard output. If no arguments are given,
the standard input is used; thus, hyphen may be used as a filter.

EXAMPLE
The following will allow the proofreading of nroff hyphenation in
textfile.
mm textfile | hyphen
SEE ALSO
mm(1), nroff(1).
BUGS

Hyphen cannot cope with hyphenated italic (i.e., underlined)
words; it will often miss them completely, or mangle them.
Hyphen occasionally gets confused, but with no ill effects other
than spurious extra output.

UNIX Programmer’s Manual , Commands and Utilities—211

ID(1) ID(1)

NAME
id — print user and group IDs and names

SYNOPSIS
id

DESCRIPTION
Id writes a message on the standard output giving the user and
group IDs and the corresponding names of the invoking process. If
the effective and real IDs do not match, both are printed.

SEE ALSO
logname(1).
getuid(2) in the UNIX Programmer’s Manual —Volume 2: System
Calls and Library Routines.

212—Commands and Utilities UNIX Programmer’s Manual

IPCRM (1) IPCRM (1)
NAME
ipcrm — remove a message queue, semaphore set or shared
memory id
SYNOPSIS
iperm [options]
DESCRIPTION

Ipcrm will remove one or more specified messages, semaphore or

shared memory identifiers. The identifiers are specified by the fol-

lowing options:

—q msqid removes the message queue identifier msqid from the
system and destroys the message queue and data
structure associated with it.

—m shmid removes the shared memory identifier shmid from
the system. The shared memory segment and data
structure associated with it are destroyed after the
last detach.

—s semid removes the semaphore identifier semid from the sys-
tem and destroys the set of semaphores and data
structure associated with it.

—Q msgkey removes the message queue identifier, created with
key msgkey, from the system and destroys the mes-
sage queue and data structure associated with it.

—M shmkey removes the shared memory identifier, created with
key shmkey, from the system. The shared memory
segment and data structure associated with it are
destroyed after the last detach.

—S semkey removes the semaphore identifier, created with key
semkey, from the system and destroys the set of
semaphores and data structure associated with it.

The details of the removes are described in msgctl(2), shmctl(2),

and semctl(2). The identifiers and keys may be found by using

ipes(1).
SEE ALSO
ipes(1).

msgctl(2), msgget(2), msgop(2), semctl(2), semget(2), semop(2),
shmctl(2), shmget(2), shmop(2) in the UNIX Programmer’s
Manual —Volume 2: System Calls and Library Routines.

UNIX Programmer’s

Manual Commands and Utilities—2l3

IPCS(1) IPCS(1)

NAME
ipcs — report inter-process communication facilities status

SYNOPSIS
ipes [options]

DESCRIPTION
Ipcs prints certain information about active inter-process commun-
ication facilities. Without options, information is printed in short
format for message queues, shared memory, and semaphores that
are currently active in the system. Otherwise, the information that
is displayed is controlled by the following options:

-q Print information about active message queues.
—m Print information about active shared memory segments.
-s Print information about active semaphores.

If any of the options —q, —m, or —s are specified, information
about only those indicated will be printed. If none of these three
are specified, information about all three will be printed.

—b Print biggest allowable size information. (Maximum
number of bytes in messages on queue for message queues,
size of segments for shared memory, and number of sema-
phores in each set for semaphores.) See below for mean-
ing of columns in a listing.

—c Print creator’s login name and group name. See below.

-0 Print information on outstanding usage. (Number of mes-
sages on queue and total number of bytes in messages on
queue for message queues and number of processes
attached to shared memory segments.)

-p Print process number information. (Process ID of last pro-
cess to send a message and process ID of last process to
receive a message on message queues and process ID of
creating process and process ID of last process to attach or
detach on shared memory segments) See below.

-t Print time information. (Time of the last control opera-
tion that changed the access permissions for all facilities.
Time of last msgsnd and last msgrcv on message queues,
last shmat and last shmdt on shared memory, last
semop (2) on semaphores.) See below.

—a Use all print options. (This is a shorthand notation for
—b, —¢, —0, —p, and —t.)

214—Commands and Utilities UNIX Programmer’s Manual

IPCS (1) IPCS (1)

—C corefile
Use the file corefile in place of /dev/kmem.

=N namelist
The argument will be taken as the name of an alternate
namelist (/unix is the default).

The column headings and the meaning of the columns in an ipcs
listing are given below; the letters in parentheses indicate the
options that cause the corresponding heading to appear; all means
that the heading always appears. Note that these options only
determine what information is provided for each facility; they do
not determine which facilities will be listed.

T (all) Type of the facility:
q message queue;
m shared memory segment;
s semaphore.
ID (all) The identifier for the facility entry.
KEY (al) The key used as an argument to msgget,

semget, or shmget to create the facility entry.
(Note: The key of a shared memory segment is’
changed to IPC_PRIVATE when the segment has
been removed until all processes attached to the
segment detach it.)

MODE (all) The facility access modes and flags: The mode
consists of 11 characters that are interpreted as
follows:

The first two characters are:

R if a process is waiting on a msgrev;

S if a process is waiting on a
msgsnd;

D if the associated shared memory
segment has been removed. It will
disappear when the last process
attached to the segment detaches
it;

C if the associated shared memory
segment is to be cleared when the
first attach is executed;

— if the corresponding special flag is
not set.

The next 9 characters are interpreted as three
sets of three bits each. The first set refers to

UNIX Programmer’s Manual Commands and Utilities—215

IPCS (1)

OWNER
GROUP
CREATOR
CGROUP
CBYTES
QNUM

QBYTES

LSPID

LRPID
STIME
RTIME
CTIME

NATTCH

IPCS (1)

the owner’s permissions; the next to permissions
of others in the user-group of the facility entry;
and the last to all others. Within each set, the
first character indicates permission to read, the
second character indicates permission to write or
alter the facility entry, and the last character is
currently unused.

The permissions are indicated as follows:

if read permission is granted;

if write permission is granted;

if alter permission is granted;

if the indicated permission is not

granted.

(al) The login name of the owner of the facility
entry. '

(alD The group name of the group of the owner of
the facility entry.

(a,c) The login name of the creator of the facility
entry.

(a,c) The group name of the group of the creator of
the facility entry.

(a,0) The number of bytes in messages currently out-
standing on the associated message queue.

(a,0) The number of messages currently outstanding
on the associated message queue.

(a,b) The maximum number of bytes allowed in mes-
sages outstanding on the associated message
queue.

(a,p) The process ID of the last process to send a
message to the associated queue.

(a,p) The process ID of the last process to receive a
message from the associated queue.

(a,t) The time the last message was sent to the asso-
ciated queue.

(a,t) The time the last message was received from the
associated queue.

(a,t) The time when the associated entry was created
or changed.

(a,0) The number of processes attached to the associ-
ated shared memory segment.

| ® "

216—Commands and Ultilities UNIX Programmer’s Manual

IPCS(1)

SEGSZ
CPID
LPID
ATIME
DTIME
NSEMS

OTIME

FILES
/unix
/dev/kmem
/etc/passwd
/etc/group

SEE ALSO

IPCS(1)

(a,b) The size of the associated shared memory seg-
ment.

(a,p) The process ID of the creator of the shared
memory entry.

(a,p) The process ID of the last process to attach or
detach the shared memory segment.

(a,t) The time the last attach was completed to the
associated shared memory segment.

(a,t) The time the last detach was completed on the
associated shared memory segment.

(a,b) The number of semaphores in the set associated
with the semaphore entry.

(a,t) The time the last semaphore operation was com-
pleted on the set associated with the semaphore
entry.

system namelist
memory

user names
group names

msgop(2), semop(2), shmop(2) in the UNIX Programmer’s
Manual —Volume 2: System Calls and Library Routines.

BUGS

Things can change while ipcs is running; the picture it gives is
only a close approximation to reality.

UNIX Programmer’s Manual Commands and Utilities—217

JOIN (1) , JOIN (1)

NAME
join — relational database operator

SYNOPSIS
join [options 1 filel file2

DESCRIPTION
Join forms, on the standard output, a join of the two relations
specified by the lines of filel and file2. If filel is —, the standard
input is used.

Filel and file2 must be sorted in increasing ASCII collating
sequence on the fields on which they are to be joined, normally the
first in each line.

There is one line in the output for each pair of lines in filel and
file2 that have identical join fields. The output line normally con-
sists of the common field, then the rest of the line from filel, then
the rest of the line from file2.

The default input field separators are blank, tab, or new-line. In
this case, multiple separators count as one field separator, and
leading separators are ignored. The default output field separator
is a blank.

Some of the below options use the argument n. This argument
should be a 1 or a 2 referring to either filel or file2, respectively.
The following options are recognized:

—an In addition to the normal output, produce a line for each
unpairable line in file #n, where n is 1 or 2.

—e s Replace empty output fields by string s.

—jn m Join on the mth field of file n. If n is missing, use the
mth field in each file. Fields are numbered starting with
1.

—o list Each output line comprises the fields specified in list,
each element of which has the form n.m, where » is a file
number and m is a field number. The common field is
not printed unless specifically requested.

—tc Use character ¢ as a separator (tab character). Every
appearance of ¢ in a line is significant. The character ¢ is
used as the field separator for both input and output.

218—Commands and Utilities UNIX Programmer’s Manual

JOIN (1) JOIN(1)

EXAMPLE
The following command line will join the password file and the
group file, matching on the numeric group ID, and outputting the
login name, the group name and the login directory. It is assumed
that the files have been sorted in ASCII collating sequence on the
group ID fields.

join —j1 4 =j2 3 —o0 1.1 2.1 1.6 —t: /etc/passwd
/etc/group

SEE ALSO
awk(1), comm(1), sort(1), uniq(1).

BUGS
With default field separation, the collating sequence is that of sort
—b; with —t, the sequence is that of a plain sort.

The conventions of join, sort, comm, uniq and awk (1) are wildly
incongruous.

Filenames that are numeric may cause conflict when the -0 option
is used right before listing filenames.

UNIX Programmer’s Manual Commands and Utilities—219

KILL (1) KILL (1)

NAME
kill — terminate a process

SYNOPSIS
kill [—signo] PID ...

DESCRIPTION

Kill sends signal 15 (terminate) to the specified processes. This
will normally kill processes that do not catch or ignore the signal.
The process number of each asynchronous process started with &
is reported by the shell (unless more than one process is started in
a pipeline, in which case the number of the last process in the
pipeline is reported). Process numbers can also be found by using
ps(1).

The details of the kill are described in kill(2). For example, if

process number 0 is specified, all processes in the process group are
signaled.

The killed process must belong to the current user unless he is the
super-user.

If a signal number preceded by — is given as first argument, that
signal is sent instead of terminate (see signal(2)). In particular
“kill —9 ...” is a sure kill.

SEE ALSO
ps(1), sh(1).
kill(2), signal(2) in the UNIX Programmer’s Manual —Volume 2:
System Calls and Library Routines.

220—Commands and Utilities UNIX Programmer’s Manual

LD(1) LD(1)

NAME
1d — link editor for common object files

SYNOPSIS
1d [options] filename

DESCRIPTION

The I/d command combines several object files into one, performs
relocation, resolves external symbols, and supports symbol table
information for symbolic debugging. In the simplest case, the
names of several object programs are given, and /d combines them,
producing an object module that can either be executed or used as
input for a subsequent /d run. The output of /d is left in a.out.
By default this file is executable if no errors occurred during the
load. If any input file, filename, is not an object file, /d assumes it
is either an archive library or a text file containing link editor
directives.

If any argument is a library, it is searched exactly once at the
point it is encountered in the argument list. Only those routines
defining an unresolved external reference are loaded. The library
(archive) symbol table [see ar(4)] is searched sequentially with as
many passes as are necessary to resolve external references which
can be satisfied by library members. Thus, the ordering of library
members is unimportant.

The following options are recognized by /d.

—a Produce an absolute, executable file; give warnings for
undefined references. This option is available only on the
3B5 and 3B2 computers. Relocation information is
stripped from the output file unless the —r option is given.
The —r option is needed only when an absolute file should
retain its relocation information (not the normal case). If
neither —a nor —r is given, —a is assumed.

—e epsym .
Set the default entry point address for the output file to be
that of the symbol epsym.

—~f fill Set the default fill pattern for “holes” within an output
section as well as initialized bss sections. The argument
fill is a two-byte constant.

—Ix Search a library libx.a, where x is up to seven characters.
A library is searched when its name is encountered, so the
placement of a —1 is significant. By default, libraries are

UNIX Programmer’s Manual Commands and Utilities—221

LD(1) LD (1)

located in /lib and /usr/lib/.

—m Produce a map or listing of the input/output sections on
the standard output.

—o outfile
Produce an output object file by the name outfile. The
name of the default object file is a.out.

-r Retain relocation entries in the output object file. Reloca-
tion entries must be saved if the output file is to become
an input file in a subsequent /d run. The link editor will
not complain about unresolved references, and the output
file will not be executed.

-s Strip line number entries and symbol table information
from the output object file.

-t Turn off the warning about multiply-defined symbols that
are not the same size.

—u symname
Enter symname as an undefined symbol in the symbol
table. This is useful for loading entirely from a library,
since initially the symbol table is empty and an unresolved
reference is needed to force the loading of the first routine.

-x Do not preserve local (non-.globl) symbols in the output
symbol table; enter external and static symbols only. This
option saves some space in the output file.

-z Do not bind anything to address zero. This option will
allow runtime detection of null pointers.

—L dir Change the algorithm of searching for libx.a to look in dir
before looking in /lib and /usr/lib. This option is effective
only if it precedes the —I1 option on the command line.

—~M Output a message for each multiply-defined external
definition. However, if the objects being loaded include
debugging information, extraneous output is produced [see
the ~g option in cc(1)1.

=N Put the data section immediately following the text in the
output file.

-V Output a message giving information about the version of
1d being used.

222—Commands and Utilities UNIX Programmer’s Manual

LD(1) ' LD(1)

—VS num
Use num as a decimal version stamp identifying the a.out
file that is produced. The version stamp is stored in the
optional header.

FILES
/lib/libx.a libraries
/usr/lib/libx.a libraries
a.out output file
SEE ALSO

as(1), cc(1).
exit(2), end(3C), a.out(4), ar(4) in the UNIX Programmer’s
Manual —Volume 2: System Calls and Library Routines.

CAVEATS
Through its options and input directives, the common link editor
gives users great flexibility; however, those who use the input
directives must assume some added responsibilities. Input direc-
tives and options should insure the following properties for pro-
grams:

— C defines a zero pointer as null. A pointer to which zero has
been assigned must not point to any object. To satisfy this,
users must not place any object at virtual address zero in the
data space.

— When the link editor is called through cc(1), a startup rou-
tine is linked with the user’s program. This routine calls
exit() [see exit(2)] after execution of the main program. If
the user calls the link editor directly, then the user must
insure that the program always calls exit() rather than fal-
ling through the end of the entry routine.

The symbols etext, edata, and end [see end(3C)] are reserved and
are defined by the link editor. It is erroneous for a user program
to redefine them.

If the link editor does not recognize an input file as an object file,
it will assume that it contains link editor directives and will
attempt to parse it. This will occasionally produce an error mes-
sage complaining about "syntax errors".

UNIX Programmer’s Manual Corhmands and Utilities—223

LEX(1) LEX(1)

NAME
lex — generate programs for simple lexical tasks
SYNOPSIS
lex [—rctvn 11[file] ...
DESCRIPTION
Lex generates programs to be used in simple lexical analysis of
text.

The input files (standard input default) contain strings and
expressions to be searched for, and C text to be executed when
strings are found.

A file lex.yy.c is generated which, when loaded with the library,
copies the input to the output except when a string specified in the
file is found; then the corresponding program text is executed. The
actual string matched is left in yytext, an external character array.
Matching is done in order of the strings in the file. The strings
may contain square brackets to indicate character classes, as in
[abx —2] to indicate a, b, X, y, and z; and the operators *, +, and
? mean respectively any non-negative number of, any positive
number of, and either zero or one occurrence of, the previous char-
acter or character class. The character . is the class of all ASCII
characters except new-line. Parentheses for grouping and vertical
bar for alternation are also supported. The notation r{d,e} in a
rule indicates between d and e instances of regular expression r.
It has higher precedence than |, but lower than *, ?, +, and con-
catenation. The character ~ at the beginning of an expression per-
mits a successful match only immediately after a new-line, and the
character $ at the end of an expression requires a trailing new-line.
The character / in an expression indicates trailing context; only
the part of the expression up to the slash is returned in yytext, but
the remainder of the expression must follow in the input stream.
An operator character may be used as an ordinary symbol if it is
within " symbols or preceded by \. Thus [a—zA —Z] + matches a
string of letters.

Three subroutines defined as macros are expected: input() to read
a character; unput(c) to replace a character read; and output(c) to
place an output character. They are defined in terms of the stan-
dard streams, but you can override them. The program generated
is named yylex(), and the library contains a main() which calls it.
The action REJECT on the right side of the rule causes this match
to be rejected and the next suitable match executed; the function

224—Commands and Utilities ~ UNIX Programmer’s Manual

LEX(1) LEX(1)

yymore() accumulates additional characters into the same yytext;
and the function yyless(p) pushes back the portion of the string
matched beginning at p, which should be between yytext and
yytext+yyleng. The macros input and output use files yyin and
yyout to read from and write to, defaulted to stdin and stdout,
respectively.

Any line beginning with a blank is assumed to contain only C text
and is copied; if it precedes % % it is copied into the external
definition area of the lex.yy.c file. All rules should follow a % %,
as in YACC. Lines preceding % % which begin with a non-blank
character define the string on the left to be the remainder of the
line; it can be called out later by surrounding it with {}. Note that
curly brackets do not imply parentheses; only string substitution is

done.
EXAMPLE
D [0—9]
%%
if printf("[F statement\n");
[a—zl+ printf("tag, value %s\n",yytext);
0{D}+ printf("octal number %s\n",yytext);
{D}+ printf("decimal number %s\n",yytext);
"++" printf("unary op\n");
" printf("binary op\n");
/" { loop:
. while (input(Q) !='+");
switch (input()
case '/": break;
case '*": unput('*');
default: go to loop;
}
}
The external names generated by lex all begin with the prefix yy
or YY.

The flags must appear before any files. The flag —r indicates
RATFOR actions, —c indicates C actions and is the default, —t
causes the lex.yy.c program to be written instead to standard out-
put, —v provides a one-line summary of statistics of the machine
generated, —n will not print out the — summary. Multiple files
are treated as a single file. If no files are specified, standard input
is used.

UNIX Programmer’s Manual : Commands and Utilities—225

LEX(1) LEX(1)

Certain table sizes for the resulting finite state machine can be set
in the definitions section:

%p n number of positions is n (default 2000)
%nn number of states is n (500)

%tn number of parse tree nodes is n (1000)
%a n number of transitions is # (3000)

The use of one or more of the above automatically implies the —v
option, unless the —n option is used.

SEE ALSO
yacc(l).
malloc(3X) in the UNIX Programmer’s Manual —Volume 2: Sys-
tem Calls and Library Routines.

BUGS
The —r option is not yet fully operational.

226—Commands and Ultilities UNIX Programmer’s Manual

LINE(1) LINE(1)

NAME

line — read one line
SYNOPSIS

line
DESCRIPTION

Line copies one line (up to a new-line) from the standard input
and writes it on the standard output. It returns an exit code of 1
on EOF and always prints at least a new-line. It is often used
within shell files to read from the user’s terminal.

SEE ALSO
sh(1).
read(2) in the UNIX Programmer’s Manual —Volume 2: System
Calls and Library Routines.

UNIX Programmer’s Manual 4 Commands and Utilities—227

LINT(1) ' LINT (1)

NAME

lint — a C program checker
SYNOPSIS

lint [option] ... file ...
DESCRIPTION

Lint attempts to detect features of the C program files that are
likely to be bugs, non-portable, or wasteful. It also checks type
usage more strictly than the compilers. Among the things that are
currently detected are unreachable statements, loops not entered at
the top, automatic variables declared and not used, and logical
expressions whose value is constant. Moreover, the usage of func-
tions is checked to find functions that return values in some places
and not in others, functions called with varying numbers or types
of arguments, and functions whose values are not used or whose
values are used but none returned.

Arguments whose names end with .c are taken to be C source files.
Arguments whose names end with .In are taken to be the result of
an earlier invocation of /int with either the —c or the —o option
used. The .In files are analogous to .0 (object) files that are pro-
duced by the cc(1) command when given a .c file as input. Files
with other suffixes are warned about and ignored.

Lint will take all the .c,In, and llib-lx.In (specified by —Lx) files
and process them in their command line order. By default, lint
appends the standard C lint library (llib-lc.In) to the end of the list
of files. However, if the —p option is used, the portable C lint
library (llib-port.In) is appended instead. When the —c¢ option is
not used, the second pass of /int checks this list of files for mutual
compatibility. When the —c option is used, the .In and the llib-
Lx.In files are ignored.

Any number of lint options may be used, in any order, intermixed
with file-name arguments. The following options are used to
suppress certain kinds of complaints:

—a Suppress complaints about assignments of long values to
variables that are not long.

=b Suppress complaints about break statements that cannot
be reached. (Programs produced by lex or yacc will often
result in many such complaints).

=h Do not apply heuristic tests that attempt to intuit bugs,
improve style, and reduce waste.

228—Commands and Utilities UNIX Programmer’s Manual

LINT(1) LINT (1)

-u Suppress complaints about functions and external vari-
ables used and not defined, or defined and not used. (This
option is suitable for running /int on a subset of files of a
larger program).

=v Suppress complaints about unused arguments in functions.

-x Do not report variables referred to by external declara-
tions but never used.

The following arguments alter /int’s behavior:

—Ilx Include additional lint library llib-Lx.In. For example, you
can include a lint version of the Math Library llib-lm.In by
inserting —lm on the command line. This argument does
not suppress the default use of lib-lc.Iln. These lint
libraries must be in the assumed directory. This option
can be used to reference local lint libraries and is useful in
the development of multi-file projects.

-n Do not check compatibility against either the standard or
the portable lint library.

—p Attempt to check portability to other dialects (IBM and
GCOS) of C. Along with stricter checking, this option
causes all non-external names to be truncated to eight
characters and all external names to be truncated to six
characters and one case.

-c Cause lint to produce a .In file for every .c file on the
command line. These .In files are the product of lint’s
first pass only, and are not checked for inter-function com-
patibility.

—olib Cause lint to create a lint library with the name Hib-
Uib.In. The —c option nullifies any use of the —o option.
The lint library produced is the input that is given to lint’s
second pass. The —o option simply causes this file to be
saved in the named lint library. To produce a Hib-1/ib.In
without extraneous messages, use of the —x option is sug-
gested. The —v option is useful if the source file(s) for
the lint library are just external interfaces (for example,
the way the file llib-lc is written). These option settings
are also available through the use of “lint comments” (see
below).

The =D, —U, and -I options of cpp(1) and the —g and -0
options of cc(1) are also recognized as separate arguments.
UNIX Programmer’s Manual Commands and Utilities—229

LINT(1) LINT(1)

The —g and —O options are ignored, but, by recognizing these
options, lint’s behavior is closer to that of the cc(1) command.
Other options are warned about and ignored. The pre-processor
symbol “lint” is defined to allow certain questionable code to be
altered or removed for /int. Therefore, the symbol “lint” should
be thought of as a reserved word for all code that is planned to be
checked by lint.

Certain conventional comments in the C source will change the
behavior of lint:

/*NOTREACHED*/
at appropriate points stops comments about
unreachable code. (This comment is typically
placed just after calls to functions like exit (2)).

/*VARARGSn~*/ -
suppresses the wusual checking for variable
numbers of arguments in the following function
declaration. The data types of the first n argu-
ments are checked; a missing »n is taken to be 0.

/*ARGSUSED*/
turns on the —v option for the next function.

/*LINTLIBRARY*/
at the beginning of a file shuts off complaints
about unused functions and function arguments in
this file. This is equivalent to using the —v and
—x options.

Lint produces its first output on a per-source-file basis. Com-
plaints regarding included files are collected and printed after all
source files have been processed. Finally, if the —c option is not
used, information gathered from all input files is collected and
checked for consistency. At this point, if it is not clear whether a
complaint stems from a given source file or from one of its
included files, the source file name will be printed followed by a
question mark.

The behavior of the —c¢ and the —o options allows for incremental
use of lint on a set of C source files. Generally, one invokes lint
once for each source file with the —c option. Each of these invo-
cations produces a .In file which corresponds to the .c file, and
prints all messages that are about just that source file. After all
the source files have been separately run through /lint, it is invoked

230—Commands and Utilities UNIX Programmer’s Manual

LINT(1) LINT(1)

once more (without the —c¢ option), listing all the .In files with the
needed —lx options. This will print all the inter-file inconsisten-
cies. This scheme works well with make(1); it allows make to be
used to /int only the source files that have been modified since the
last time the set of source files were linted.

FILES

/usr/lib the directory where the lint libraries specified
by the —Lx option must exist

/usr/lib/1int[12] first and second passes

/usr/lib/llib-lc.ln declarations for C Library functions (binary
format; source is in /usr/lib/llib-1c)

/usr/lib/llib-port.In declarations for portable functions (binary
format; source is in /usr/lib/llib-port)

/usr/lib/llib-lm.In declarations for Math Library functions
(binary format; source is in /usr/lib/llib-lm)

/usr/tmp/»lint* temporaries
SEE ALSO
cc(1), cpp(1), make(1).

BUGS
exit(2), and other functions that do not return are not understood;
this causes various lies.

UNIX Programmer’s Manual Commands and Utilities—231

LOGIN (1) LOGIN (1)

NAME
login — sign on

SYNOPSIS
login [name [env-var ... 1]

DESCRIPTION

The login command is used at the beginning of each terminal ses-
sion and allows you to identify yourself to the system. It may be
invoked as a command or by the system when a connection is first
established. Also, it is invoked by the system when a previous user
has terminated the initial shell by typing a cntrl-d to indicate an
“end-of-file.” (See How to Get Started at the beginning of this
volume for instructions on how to dial up initially.)

If login is invoked as a command it must replace the initial com-
mand interpreter. This is accomplished by typing:

exec login
from the initial shell.

Login asks for your user name (if not supplied as an argument),
and, if appropriate, your password. Echoing is turned off (where
possible) during the typing of your password, so it will not appear
on the written record of the session.

At some installations, an option may be invoked that will require
you to enter a second “dialup” password. This will occur only for
dial-up connections, and will be prompted by the message “dialup
password:”. Both passwords are required for a successful login.

If you do not complete the login successfully within a certain
period of time (e.g., one minute), you are likely to be silently
disconnected.

After a successful login, accounting files are updated, the pro-
cedure /etc/profile is performed, the message-of-the-day, if any, is
printed, the user-ID, the group-ID, the working directory, and the
command interpreter (usually sh(1)) is initialized, and the file
Jprofile in the working directory is executed, if it exists. These
specifications are found in the /etc/passwd file entry for the user.
The name of the command interpreter is — followed by the last
component of the interpreter’s path name (i.e., —sh). If this field
in the password file is empty, then the default command inter-
preter, /bin/sh is used. If this field is “*”, then a chroot(2) is
done to the directory named in the directory field of the entry. At
that point login is re-executed at the new level which must have its

232—Commands and Ultilities UNIX Programmer’s Manual

LOGIN (1) LOGIN (1)

own root structure, including /etc/login and /etc/passwd.
The basic environment (see environ(5)) is initialized to:

HOME=your-login-directory
PATH=:/bin:/usr/bin
SHELL=last-field-of-passwd-entry
MAIL=/usr/mail/your-login-name
TZ=timezone-specification

The environment may be expanded or modified by supplying addi-
tional arguments to Jogin, either at execution time or when login
requests your login name. The arguments may take either the
form xxx or xxx=ypyy. Arguments without an equal sign are
placed in the environment as
La=xxx

where n is a number starting at 0 and is incremented each time a
new variable name is required. Variables containing an = are
placed into the environment without modification. If they already
appear in the environment, then they replace the older value.
There are two exceptions. The variables PATH and SHELL cannot
be changed. This prevents people, logging into restricted shell
environments, from spawning secondary shells which are not res-
tricted. Both login and getty understand simple single-character
quoting conventions. Typing a backslash in front of a character
quotes it and allows the inclusion of such things as spaces and

tabs.

FILES
/etc/utmp accounting
/etc/wtmp accounting
/usr/mail/your-name mailbox for user your-name
/etc/motd message-of-the-day
/etc/passwd password file
/etc/profile system profile
.profile user’s login profile

SEE ALSO

mail(1), newgrp(1), sh(1), su(1).
passwd(4), profile(4), environ(5) in the UNIX Programmer’s
Manual —Volume 2: System Calls and Library Routines.

UNIX Programmer’s Manual Commands and Utilities—233

LOGIN(1) LOGIN (1)

DIAGNOSTICS
Login incorrect if the user name or the password cannot be
matched. _
No shell, cannot open password file, or no directory: consult a
UNIX system programming counselor.
No utmp entry. You must exec "login" from the lowest level "sh".
if you attempted to execute login as a command without using the
shell’s exec internal command or from other than the initial shell.

234—Commands and Utilities UNIX Programmer’s Manual

LOGNAME(1) LOGNAME(1)

NAME
logname — get login name

SYNOPSIS
logname

DESCRIPTION
Logname returns the contents of the environment variable $LOG-
NAME, which is set when a user logs into the system.

FILES
/etc/profile

SEE ALSO
env(1), login(1).
logname(3X), environ(5) in the UNIX Programmer’s Manual —
Volume 2: System Calls and Library Routines.

UNIX Programmer’s Manual Commands and Utilities—235

LORDER(1) LORDER(1)

NAME
lorder — find ordering relation for an object library

SYNOPSIS
lorder file ...

DESCRIPTION

The input is one or more object or library archive files (see ar(1)).
The standard output is a list of pairs of object file names, meaning
that the first file of the pair refers to external identifiers defined in
the second. The output may be processed by tsort(1) to find an
ordering of a library suitable for one-pass access by /d(1). Note
that the link editor (except onsome computers) /d(1) is capable of
multiple passes over an archive in the portable archive format (see
ar(4)) and does not require that lorder(1) be used when building
an archive. The usage of the lorder (1) command may, however,
allow for a slightly more efficient access of the archive during the
link edit process.

The following example builds a new library from existing .o files.
ar cr library “lorder *.0 | tsort®

FILES
*symref, *symdef temporary files

SEE ALSO
ar(1), 1d(1), tsort(1).
ar(4) in the UNIX Programmer’s Manual —Volume 2: System
Calls and Library Routines.

BUGS
Object files whose names do not end with .0, even when contained
in library archives, are overlooked. Their global symbols and
references are attributed to some other file.

236—Commands and Utilities UNIX Programmer’s Manual

LP(1) LP(1)

NAME
lp, cancel — send/cancel requests to an LP line printer

SYNOPSIS
Ip [—c] [—ddestl] [-m] [—nnumber]l [—ooption] [—s]
[—ttitle] [—w] files
cancel [ids] [printers]

DESCRIPTION
Lp arranges for the named files and associated information (collec-
tively called a request) to be printed by a line printer. If no file
names are mentioned, the standard input is assumed. The file
name — stands for the standard input and may be supplied on the
command line in conjunction with named files. The order in
which files appear is the same order in which they will be printed.

Lp associates a unique id with each request and prints it on the
standard output. This id can be used later to cancel (see cancel)
or find the status (see Ipstat (1)) of the request.

The following options to /Jp may appear in any order and may be
intermixed with file names:

-c Make copies of the files to be printed immediately
when Ip is invoked. Normally, files will not be copied,
but will be linked whenever possible. If the —c option
is not given, then the user should be careful not to
remove any of the files before the request has been
printed in its entirety. It should also be noted that in
the absence of the —c option, any changes made to
the named files after the request is made but before it
is printed will be reflected in the printed output.

—ddest Choose dest as the printer or class of printers that is
to do the printing. If dest is a printer, then the
request will be printed only on that specific printer. If
dest is a class of printers, then the request will be
printed on the first available printer that is a member
of the class. Under certain conditions (printer unavai-
lability, file space limitation, etc.), requests for specific
destinations may not be accepted (see accept (1M)
and Ipstat(1)). By default, dest is taken from the
environment variable LPDEST (f it is set). Other-
wise, a default destination (if one exists) for the com-
puter system is used. Destination names vary between
systems (see Ipstat (1)).

UNIX Programmer’s Manual Commands and Utilities—237

LP(1) LP(1)

-m Send mail (see mail(1)) after the files have been
printed. By default, no mail is sent upon normal com-
pletion of the print request.

—nnumber Print number copies (default of 1) of the output.

—ooption Specify printer-dependent or class-dependent options.
Several such options may be collected by specifying
the —o keyletter more than once. For more informa-
tion about what is valid for options, see Models in
Ipadmin(1M).

-s Suppress messages from /p(1) such as "request id is

—ttitle Print title on the banner page of the output.

-wW Write a message on the user’s terminal after the files
have been printed. If the user is not logged in, then
mail will be sent instead.

Cancel cancels line printer requests that were made by the /p(1)
command. The command line arguments may be either request
ids (as returned by Ip(1)) or printer names (for a complete list,
use Ipstat(1)). Specifying a request id cancels the associated
request even if it is currently printing. Specifying a printer can-
cels the request which is currently printing on that printer. In
either case, the cancellation of a request that is currently printing
frees the printer to print its next available request.

FILES
/usr/spool/lp/+

SEE ALSO
enable(1), Ipstat(1), mail(1).
accept(1M), lpadmin(1M), Ipsched(IM) in the UNIX
Programmer’s Manual —Volume 3: System Administration Facil-
ities.

238—Commands and Utilities UNIX Programmer’s Manual

LPSTAT(1) LPSTAT(1)

NAME
Ipstat — print LP status information

SYNOPSIS
Ipstat [options]

DESCRIPTION
Lpstat prints information about the current status of the LP line
printer system.

If no options are given, then Ipstat prints the status of all requests
made to Ip(1) by the user. Any arguments that are not options
are assumed to be request ids (as returned by Ip). Lpstat prints
the status of such requests. Options may appear in any order and
may be repeated and intermixed with other arguments. Some of
the keyletters below may be followed by an optional /ist that can
be in one of two forms: a list of items separated from one another
by a comma, or a list of items enclosed in double quotes and
separated from one another by a comma and/or one or more
spaces. For example:

—u"userl, user2, user3"

The omission of a list following such keyletters causes all informa-
tion relevant to the keyletter to be printed, for example:

Ipstat —o
prints the status of all output requests.

—allist] Print acceptance status (with respect to Ip) of destina-
tions for requests. List is a list of intermixed printer
names and class names.

—cl Zist] Print class names and their members. List is a list of
class names.

-d Print the system default destination for /p.

—ol list] Print the status of output requests. List is a list of
intermixed printer names, class names, and request ids.

—pllist] Print the status of printers. List is a list of printer

names.
-r Print the status of the LP request scheduler
-s Print a status summary, including the status of the line

printer scheduler, the system default destination, a list
of class names and their members, and a list of printers
and their associated devices.

UNIX Programmer’s Manual Commands and Utilities—239

LPSTAT(1) LPSTAT(1)

-t Print all status information.

—ul list] Print status of output requests for users. List is a list
of login names.

~vl[list] Print the names of printers and the path names of the
devices associated with them. Listz is a list of printer
names.

FILES
/usr/spool/lp/+

SEE ALSO
enable(1), Ip(1).

240—Commands and Ultilities UNIX Programmer’s Manual

LS(1) LS(1)

NAME
Is — list contents of directory

SYNOPSIS
Is [—RadCxmlnogrtucpFbqisf] [names]

DESCRIPTION

For each directory argument, Is lists the contents of the directory;
for each file argument, Is repeats its name and any other informa-
tion requested. The output is sorted alphabetically by default.
When no argument is given, the current directory is listed. When
several arguments are given, the arguments are first sorted
appropriately, but file arguments appear before directories and
their contents.

There are three major listing formats. The default format is to list
one entry per line, the —C and —x options enable multi-column
formats, and the —m option enables stream output format in
which files are listed across the page, separated by commas. In
order to determine output formats for the —C, —x, and —m
options, Is uses an environment variable, COLUMNS, to determine
the number of character positions available on one output line. If
this variable is not set, the terminfo database is used to determine
the number of columns, based on the environment variable TERM.
If this information cannot be obtained, 80 columns are assumed.

There are an unbelievable number of options:
-R Recursively list subdirectories encountered.

—a List all entries; usually entries whose names begin with a
period (.) are not listed.

-d If an argument is a directory, list only its name (not its
contents); often used with —1 to get the status of a direc-
tory.

-C Multi-column output with entries sorted down the
columns.

-X Multi-column output with entries sorted across rather than
down the page.

—m Stream output format.

UNIX Programmer’s Manual Commands and Utilities—241

LS(1)

-0
-8

-r

-C

=P

=S

LsS(1)

List in long format, giving mode, number of links, owner,
group, size in bytes, and time of last modification for each
file (see below). If the file is a special file, the size field
will instead contain the major and minor device numbers
rather than a size.

The same as —1, except that the owner’s UID and group’s
GID numbers are printed, rather than the associated char-
acter strings.

The same as -1, except that the group is not printed.
The same as —1, except that the owner is not printed.

Reverse the order of sort to get reverse alphabetic or old-
est first as appropriate.

Sort by time modified (latest first) instead of by name.

Use time of last access instead of last modification for
sorting (with the —t option) or printing (with the =1
option).

Use time of last modification of the i-node (file created,
mode changed, etc.) for sorting (—t) or printing (=1I).

Put a slash (/) after each filename if that file is a direc-
tory.

Put a slash (/) after each filename if that file is a direc-
tory and put an asterisk (*) after each filename if that file
is executable.

Force printing of non-graphic characters to be in the octal
\ddd notation.

Force printing of non-graphic characters in file names as
the character (?).

For each file, print the i-number in the first column of the
report. '

Give size in blocks, including indirect blocks, for each
entry.

Force each argument to be interpreted as a directory and
list the name found in each slot. This option turns off —I,
—t, —s, and —r, and turns on —a; the order is the order
in which entries appear in the directory.

242—Commands and Ultilities UNIX Programmer’s Manual

LS(1) LS(1)

The mode printed under the -l option consists of 10 characters
that are interpreted as follows:

The first character is:

if the entry is a directory;

if the entry is a block special file;

if the entry is a character special file;

if the entry is a fifo (a.k.a. “named pipe”)
special file;

— if the entry is an ordinary file.

w6 A

The next 9 characters are interpreted as three sets of three
bits each. The first set refers to the owner’s permissions;
the next to permissions of others in the user-group of the
file; and the last to all others. Within each set, the three
characters indicate permission to read, to write, and to
execute the file as a program, respectively. For a direc-
tory, “execute” permission is interpreted to mean permis-
sion to search the directory for a specified file.

The permissions are indicated as follows:

if the file is readable;

if the file is writable;

if the file is executable;

if the indicated permission is not granted.

Rt

The group-execute permission character is given as s if the
file has set-group-ID mode; likewise, the user-execute per-
mission character is given as s if the file has set-user-ID
mode. The last character of the mode (normally x or —)
is t if the 1000 (octal) bit of the mode is on; see
chmod (1) for the meaning of this mode. The indications
of set-ID and 1000 bits of the mode are capitalized (S and
T respectively) if the corresponding execute permission is
not set.

When the sizes of the files in a directory are listed, a total count of
blocks, including indirect blocks, is printed.

UNIX Programmer’s Manual Commands and Utilities—243

LS (1) LS(1)

FILES

/etc/passwd to get user IDs for Is —1 and Is —o.
/etc/group to get group IDs for Is =l and Is —g.
/usr/lib/terminfo/* to get terminal information.

SEE ALSO
chmod(1), find(1).

BUGS

Unprintable characters in file names may confuse the columnar
output options.

244—Commands and Utilities UNIX Programmer’s Manual

M4(1) M4(1)

NAME

m4 — macro processor
SYNOPSIS

m4 [options] [files]
DESCRIPTION

M4 is a macro processor intended as a front end for Ratfor, C,
and other languages. Each of the argument files is processed in

order; if there are no files, or if a file name is —, the standard
input is read. The processed text is written on the standard out-
put.

The options and their effects are as follows:

—e Operate interactively. Interrupts are ignored and the out-
put is unbuffered.

-s Enable line sync output for the C preprocessor (#line ...)

—Bint Change the size of the push-back and argument collection
buffers from the default of 4,096.

—Hint Change the size of the symbol table hash array from the
default of 199. The size should be prime.

—Sint Change the size of the call stack from the default of 100
slots. Macros take three slots, and non-macro arguments
take one.

—Tint Change the size of the token buffer from the default of
512 bytes.

To be effective, these flags must appear before any file names and
before any —D or —U flags:

—Dnamel =vall
Defines name to val or to null in val’s absence.

—Uname
undefines name.

Macro calls have the form:
name(argl,arg2, ..., argn)

The (must immediately follow the name of the macro. If the
name of a defined macro is not followed by a (, it is deemed to be
a call of that macro with no arguments. Potential macro names
consist of alphabetic letters, digits, and underscore _, where the
first character is not a digit.

UNIX Programmer’s Manual Commands and Ultilities—245

M4(1) M4(1)

Leading unquoted blanks, tabs, and new-lines are ignored while
collecting arguments. Left and right single quotes are used to
quote strings. The value of a quoted string is the string stripped of
the quotes.

When a macro name is recognized, its arguments are collected by
searching for a matching right parenthesis. If fewer arguments
are supplied than are in the macro definition, the trailing argu-
ments are taken to be null. Macro evaluation proceeds normally
during the collection of the arguments, and any commas or right
parentheses which happen to turn up within the value of a nested
call are as effective as those in the original input text. After argu-
ment collection, the value of the macro is pushed back onto the
input stream and rescanned.

M4 makes available the following built-in macros. They may be
redefined, but once this is done the original meaning is lost. Their
values are null unless otherwise stated.

define the second argument is installed as the value of the
macro whose name is the first argument. Each
occurrence of $n in the replacement text, where n is
a digit, is replaced by the n-th argument. Argument
0 is the name of the macro; missing arguments are
replaced by the null string; $# is replaced by the
number of arguments; $* is replaced by a list of all
the arguments separated by commas; $@ is like $s,
but each argument is quoted (with the current

quotes).

undefine removes the definition of the macro named in its
argument.

defn returns the quoted definition of its argument(s). It
is useful for renaming macros, especially built-ins.

pushdef like define, but saves any previous definition.

popdef removes current definition of its argument(s), expos-

ing the previous one, if any.

ifdef if the first argument is defined, the value is the
second argument, otherwise the third. If there is no
third argument, the value is null. The word unix is
predefined on UNIX system versions of m4.

shift returns all but its first argument. The other argu-
ments are quoted and pushed back with commas in

246—Commands and Utilities UNIX Programmer’s Manual

M4 (1)

changequote

changecom

divert

undivert

divhum
dnl

ifelse

incr

decr

M4(1)

between. The quoting nullifies the effect of the extra
scan that will subsequently be performed.

change quote symbols to the first and second argu-
ments. The symbols may be up to five characters
long. Changequote without arguments restores the
original values (i.e., * 7).

change left and right comment markers from the
default # and new-line. With no arguments, the
comment mechanism is effectively disabled. With
one argument, the left marker becomes the argument
and the right marker becomes new-line. With two
arguments, both markers are affected. Comment
markers may be up to five characters long.

m4 maintains 10 output streams, numbered O0-9.
The final output is the concatenation of the streams
in numerical order; initially stream O is the current
stream. The divert macro changes the current out-
put stream to its (digit-string) argument. Output
diverted to a stream other than O through 9 is dis-
carded.

causes immediate output of text from diversions
named as arguments, or all diversions if no argu-
ment. Text may be undiverted into another diver-
sion. Undiverting discards the diverted text.

returns the value of the current output stream.

reads and discards characters up to and including
the next new-line.

has three or more arguments. If the first argument
is the same string as the second, then the value is the
third argument. If not, and if there are more than
four arguments, the process is repeated with argu-
ments 4, 5, 6 and 7. Otherwise, the value is either
the fourth string, or, if it is not present, null.

returns the value of its argument incremented by 1.
The value of the argument is calculated by interpret-
ing an initial digit-string as a decimal number.

returns the value of its argument decremented by 1.

UNIX Programmer’s Manual Commands and Utilities—247

M4(1)

eval

len

index

substr

translit

include
sinclude
syscmd

sysval

maketemp
m4exit
m4wrap

errprint
dumpdef

M4(1)

evaluates its argument as an arithmetic expression,
using 32-bit arithmetic. Operators include +, —, =,
/, %, " (exponentiation), bitwise &, |, ", and ; rela-
tionals; parentheses. Octal and hex numbers may be
specified as in C. The second argument specifies the
radix for the result; the default is 10. The third
argument may be used to specify the minimum
number of digits in the result.

returns the number of characters in its argument.

returns the position in its first argument where the
second argument begins (zero origin), or —1 if the
second argument does not occur.

returns a substring of its first argument. The second
argument is a zero origin number selecting the first
character; the third argument indicates the length of
the substring. A missing third argument is taken to
be large enough to extend to the end of the first
string.

transliterates the characters in its first argument
from the set given by the second argument to the set
given by the third. No abbreviations are permitted.

returns the contents of the file named in the argu-
ment.

is identical to include, except that it says nothing if
the file is inaccessible.

executes the UNIX system command given in the
first argument. No value is returned.

is the return code from the last call to syscmd.

fills in a string of XXXXX in its argument with the
current process ID.

causes immediate exit from m4. Argument 1, if
given, is the exit code; the default is 0.

argument 1 will be pushed back at final EOF; exam-
ple: mdwrap(“cleanup() ")

prints its argument on the diagnostic output file.

prints current names and definitions, for the named
items, or for all if no arguments are given.

248—Commands and Utilities UNIX Programmer’s Manual

M4Q1) M4(1)

traceon with no arguments, turns on tracing for all macros
(including built-ins). Otherwise, turns on tracing for
named macros.

traceoff turns off trace globally and for any macros specified.
Macros specifically traced by traceon can be
untraced only by specific calls to traceoff.
SEE ALSO
cc(1), cpp(D).

UNIX Programmer’s Manual Commands and Utilities—249

MACHID(1) MACHID(1)

NAME
pdpl1, u3b, u3bs, vax — provide truth value about your processor
type
SYNOPSIS
pdpll
u3b
u3b5s
vax

DESCRIPTION
The following commands will return a true value (exit code of 0)
if you are on a processor that the command name indicates.

pdpl1l True if you are on a PDP-11/45 or PDP-11/70.
u3b True if you are on a 3B20 computer.

u3bS True if you are on a 3B5 computer.

vax True if you are on a VAX-11/750 or VAX-11/780.

The commands that do not apply will return a false (non-zero)
value. These commands are often used within make (1) makefiles
and shell procedures to increase portability.

SEE ALSO
make (1), sh(1), test(1), true(1).

250—Commands and Utilities UNIX Programmer’s Manual

MACREF(1) MACREF(1)

NAME

macref — produce cross-reference listing of macro files
SYNOPSIS

macref [—t] [~s] [—n] file ...
DESCRIPTION

The macref program reads the named files (which are assumed to
be nroff(1)/troff(1) input) and produces a cross-reference listing
of the symbols in the input.

A —t in the command line causes a macro table of contents to be
printed. A —s causes symbol use statistics to be output.

The default output is a list of the symbols found in the input, each
accompanied by a list of all references to that symbol. (This out-
put may be defeated by using a —n in the command line). The
symbols are listed alphabetically in the leftmost column, with the
references following to the right. Each reference is given in the
form:

[[(NMname)l Mname—1 type Inum [#]

where the fields have the following meanings;

Mname the name of the macro within which the reference
occurs. This field is missing if the reference occurs at
the text level. Any names listed in the NMname part
are macros within which Mname is defined.

type the type associated, by context, with this occurrence of
the symbol. The types may be:
r request
m macro
d diversion
S string
n number register
p parameter (e.g. \$x is a parameter reference to x.

Note that parameters are never modified, and
that the only valid parameter symbol names are

1,2,..9).
Inum the line number on which the reference occurred.
this reference modifies the value of the symbol.

UNIX Programmer’s Manual Commands and Utilities—251

MACREF(1) MACREF(1)

Generated names are listed under the artificial symbol name
“"SYm”.

SEE ALSO
nroff(1), troff(1).

252—Commands and Utilities UNIX Programmer’s Manual

MAIL(1)

NAME

MAIL(1)

mail, rmail — send mail to users or read mail

SYNOPSIS

mail [—epqr 1 [—f file]

mail [—t] persons
rmail [—t] persons

DESCRIPTION

Mail without arguments prints a user’s mail, message-by-message,
in last-in, first-out order. For each message, the user is prompted
with a ?, and a line is read from the standard input to determine
the disposition of the message:

<new-line>
+
d

p

s_[files]

w [files]

m [persons 1

q

EOT (control-d)
X

lcommand
*

Go on to next message.

Same as <new-line>.

Delete message and go on to next mes-
sage.

Print message again.

Go back to previous message.

Save message in the named files (mbox
is default).

Save message, without its header, in the
named files (mbox is default).

Mail the message to the named persons
(yourself is default).

Put undeleted mail back in the mailfile
and stop.

Same as q.

Put all mail back in the mailfile
unchanged and stop.

Escape to the shell to do command.
Print a command summary.

The optional arguments alter the printing of the mail:

—e causes mail not to be printed. An exit value of 0 is
returned if the user has mail; otherwise, an exit value of 1

is returned.

-p causes all mail to be printed without prompting for dispo-

sition.

| causes mail to terminate after interrupts. Normally an
interrupt only causes the termination of the message being

printed.

UNIX Programmer’s Manual

Commands and Utilities—253

MAIL(1) MAIL(1)

-r causes messages to be printed in first-in, first-out order.
—ffile causes mail to use file (e.g., mbox) instead of the default
mailfile.

When persons are named, mail takes the standard input up to an
end-of-file (or up to a line consisting of just a .) and adds it to
each person’s mailfile. The message is preceded by the sender’s
name and a postmark. Lines that look like postmarks in the mes-
sage, (i.e., “From ...”) are preceded with a >. The —t option
causes the message to be preceded by all persons the mail is sent
to. A person is usually a user name recognized by login(1). If a
person being sent mail is not recognized, or if mail is interrupted
during input, the file dead.letter will be saved to allow editing and
resending. Note that this is regarded as a temporary file in that it
is recreated every time needed, erasing the previous contents of
dead.letter.

To denote a recipient on a remote system, prefix person by the sys-
tem name and exclamation mark (see uucp(1C)). Everything
after the first exclamation mark in persons is interpreted by the
remote system. In particular, if persons contains additional excla-
mation marks, it can denote a sequence of machines through which
the message is to be sent on the way to its ultimate destination.
For example, specifying alblcde as a recipient’s name causes the
message to be sent to user blcde on system a. System a will inter-
pret that destination as a request to send the message to user cde
on system b. This might be useful, for instance, if the sending sys-
tem can access system a but not system b, and system a has access
to system b. Mail will not use uucp if the remote system is the
local system name (i.e., localsystem'user).

The mailfile may be manipulated in two ways to alter the function
of mail. The other permissions of the file may be read-write,
read-only, or neither read nor write to allow different levels of
privacy. If changed to other than the default, the file will be
preserved even when empty to perpetuate the desired permissions.
The file may also contain the first line:

Forward to person

which will cause all mail sent to the owner of the mailfile to be
forwarded to person. This is especially useful to forward all of a
person’s mail to one machine in a multiple machine environment.
In order for forwarding to work properly the mailfile should have
"mail" as group ID, and the group permission should be read-write.

254—Commands and Utilities UNIX Programmer’s Manual

MAIL (1) MAIL(1)

Rmail only permits the sending of mail; uucp (1C) uses rmail as a
security precaution.

When a user logs in, the presence of mail, if any, is indicated.
Also, notification is made if new mail arrives while using mail.

FILES
/etc/passwd to identify sender and locate persons
/usr/mail/user incoming mail for user; i.e., the mailfile
$HOME/mbox saved mail
SMAIL variable containing path name of mailfile
/tmp/mas+ temporary file
/usr/mail/*.lock lock for mail directory
dead.letter unmailable text

SEE ALSO

login(1), mailx(1), uucp(1C), write(1).

BUGS
Conditions sometimes result in a failure to remove a lock file.
After an interrupt, the next message may not be printed; printing
may be forced by typing a p.

UNIX Programmer’s Manual Commands and Utilities—255

MAILX (1) MAILX (1)

NAME

mailx — interactive message processing system
SYNOPSIS

mailx [options] [name...]
DESCRIPTION

The command mailx provides a comfortable, flexible environment
for sending and receiving messages electronically. When reading
mail, mailx provides commands to facilitate saving, deleting, and
responding to messages. When sending mail, mailx allows editing,
reviewing and other modification of the message as it is entered.

Incoming mail is stored in a standard file for each user, called the
system mailbox for that user. When mailx is called to read mes-
sages, the mailbox is the default place to find them. As messages
are read, they are marked to be moved to a secondary file for
storage, unless specific action is taken, so that the messages need
not be seen again. This secondary file is called the mbox and is
normally located in the user’s HOME directory (see "MBOX"
(ENVIRONMENT VARIABLES) for a description of this file).
Messages remain in this file until forcibly removed.

On the command line, options start with a dash (=) and any other
arguments are taken to be destinations (recipients). If no reci-
pients are specified, mailx will attempt to read messages from the
mailbox. Command line options are:

-d Turn on debugging output. Neither par-
ticularly interesting nor recommended.
—e Test for presence of mail. Mailx prints

nothing and exits with a successful return
code if there is mail to read.

—f [filenamel Read messages from filename instead of
mailbox. If no filename is specified, the
mbox is used.

-F Record the message in a file named after
the first recipient. Overrides the "record”
variable, if set (see ENVIRONMENT
VARIABLES).

—h number The number of network "hops" made so
far. This is provided for network software
to avoid infinite delivery loops.

256—Commands and Utilities UNIX Programmer’s Manual

MAILX (1) MAILX (1)

-H Print header summary only.

—i Ignore interrupts. See also “ignore"
(ENVIRONMENT VARIABLES).

. | Do not initialize from the system default
Mailx.rc file.

-N Do not print initial header summary.

—r address Pass address to network delivery software.
All tilde commands are disabled.
—s subject Set the Subject header field to subject.

—u user Read wuser’s mailbox. This is only
effective if user’s mailbox is not read pro-
tected.

-U Convert uucp style addresses to internet

standards. Overrides the "conv" environ-
ment variable.

When reading mail, mailx is in command mode. A header sum-
mary of the first several messages is displayed, followed by a
prompt indicating mailx can accept regular commands (see COM-
MANDS below). When sending mail, mailx is in input mode. 1If
no subject is specified on the command line, a prompt for the sub-
ject is printed. As the message is typed, mailx will read the mes-
sage and store it in a temporary file. Commands may be entered
by beginning a line with the tilde (*) escape character followed by
a single command letter and optional arguments. See TILDE
ESCAPES for a summary of these commands.

At any time, the behavior of mailx is governed by a set of
environment variables. These are flags and valued parameters
which are set and cleared via the set and unset commands. See
ENVIRONMENT VARIABLES below for a summary of these
parameters.

Recipients listed on the command line may be of three types:
login names, shell commands, or alias groups. Login names may
be any network address, including mixed network addressing. If
the recipient name begins with a pipe symbol (|), the rest of the
name is taken to be a shell command to pipe the message through.
This provides an automatic interface with any program that reads
the standard input, such as Ip(1) for recording outgoing mail on
paper. Alias groups are set by the alias command (see COM-
MANDS below) and are lists of recipients of any type.

UNIX Programmer’s Manual Commands and Utilities—257

MAILX(1) MAILX(1)

Regular commands are of the form
[command 1 [msglist 1[arguments]

If no command is specified in command mode, print is assumed.
In input mode, commands are recognized by the escape character,
and lines not treated as commands are taken as input for the mes-
sage.

Each message is assigned a sequential number, and there is at any
time the notion of a ’current’ message, marked by a >’ in the
header summary. Many commands take an optional list of mes-
sages (msglist) to operate on, which defaults to the current mes-
sage. A msglist is a list of message specifications separated by
spaces, which may include:

n Message number n.
. The current message.
° The first undeleted message.
$ The last message.
* All messages.
n—m An inclusive range of message numbers.
user All messages from user.
/string All messages with string in the subject line (case
ignored).
«c All messages of type ¢, where ¢ is one of:
d deleted messages
n new messages
o old messages
r read messages
u unread messages

Note that the context of the command determines
whether this type of message specification makes
sense.

Other arguments are usually arbitrary strings whose usage depends
on the command involved. File names, where expected, are
expanded via the normal shell conventions (see sh(1)). Special
characters are recognized by certain commands and are docu-
mented with the commands below.

At start-up time, mailx reads commands from a system-wide file
(/usr/lib/mailx/mailx.rc) to initialize certain parameters, then
from a private start-up file (SHOME/.mailrc) for personalized
variables. Most regular commands are legal inside start-up files,
258—Commands and Utilities UNIX Programmer’s Manual

MAILX (1) MAILX(1)

the most common use being to set up initial display options and
alias lists. The following commands are not legal in the start-up
file: !, Copy, edit, followup, Followup, hold, mail, preserve, reply,
Reply, shell, and visual. Any errors in the start-up file cause the
remaining lines in the file to be ignored.

COMMANDS
The following is a complete list of mailx commands:

Ishell-command
Escape to the shell. See "SHELL" (ENVIRONMENT
VARIABLES).

comment

Null command (comment). This may be useful in .mailrc
files.

Print the current message number.

Prints a summary of commands.

alias alias name ...

group alias name ...
Declare an alias for the given names. The names will be
substituted when alias is used as a recipient. Useful in
the .mailrc file.

alternates name ...
Declares a list of alternate names for your login. When
responding to a message, these names are removed from
the list of recipients for the response. With no arguments,
alternates prints the current list of alternate names. See
also "allnet" (ENVIRONMENT VARIABLES).

cd [directory)

chdir [directory]
Change directory. If directory is not specified, SHOME is
used.

UNIX Programmer’s Manual Commands and Utilities—259

MAILX(1) MAILX(1)

copy [filenamel

copy [msglist] filename
Copy messages to the file without marking the messages
as saved. Otherwise equivalent to the save command.

Copy [msglist]
Save the specified messages in a file whose name is derived
from the author of the message to be saved, without mark-
ing the messages as saved. Otherwise equivalent to the
Save command.

delete [msglist]
Delete messages from the mailbox. If "autoprint" is set,
the next message after the last one deleted is printed (see
ENVIRONMENT VARIABLES).

discard [header-field ...]

ignore [header-field ...]
Suppresses printing of the specified header fields when
displaying messages on the screen. Examples of header
fields to ignore are "status" and "cc." The fields are
included when the message is saved. The Print and Type
commands override this command.

dp [msglist]

dt [msglist]
Delete the specified messages from the mailbox and print
the next message after the last one deleted. Roughly
equivalent to a delete command followed by a print com-
mand.

echo string ...
Echo the given strings (like echo(1)).

edit [msglist]
Edit the given messages. The messages are placed in a
temporary file and the "EDITOR" variable is used to get
the name of the editor (se¢e ENVIRONMENT VARI-
ABLES). Default editor is ed (1).

260—Commands and Utilities UNIX Programmer’s Manual

MAILX(1) MAILX (1)

exit

Xit
Exit from mailx, without changing the mailbox. No mes-
sages are saved in the mbox (see also quit).

file [filename)
folder [filenamel
Quit from the current file of messages and read in the
specified file. Several special characters are recognized
when used as file names, with the following substitutions:
% the current mailbox.
%user the mailbox for user.
the previous file.
& the current mbox.
Default file is the current mailbox.

folders
Print the names of the files in the directory set by the
"folder" variable (see ENVIRONMENT VARIABLES).

followup [messagel
Respond to a message, recording the response in a file
whose name is derived from the author of the message.
Overrides the "record” variable, if set. See also the Fol-
lowup, Save, and Copy commands and "outfolder"
(ENVIRONMENT VARIABLES).

Followup [msglist]

Respond to the first message in the msglist, sending the
message to the author of each message in the msglist.
The subject line is taken from the first message and the
response is recorded in a file whose name is derived from
the author of the first message. See also the followup,
Save, and Copy commands and "outfolder" (ENVIRON-
MENT VARIABLES).

from [msglist]
Prints the header summary for the specified messages.

UNIX Programmer’s Manual Commands and Utilities—261

MAILX (1) MAILX(1)

group alias name ...

alias alias name ...
Declare an alias for the given names. The names will be
substituted when alias is used as a recipient. Useful in
the .mailrc file.

headers [messagel
Prints the page of headers which includes the message
specified. The "screen" variable sets the number of
headers per page (see ENVIRONMENT VARIABLES).
See also the z.command.

help
Prints a summary of commands.

hold [msglist]
preserve [msglist]
Holds the specified messages in the mailbox.

if s

mail-commands

else

mail-commands

endif
Conditional execution, where s will execute following
mail-commands, up to an else or endif, if the program is
in send mode, and r causes the mail-commands to be exe-
cuted only in receive mode. Useful in the .mailrc file.

ignore header-field ...

discard header-field ...
Suppresses printing of the specified header fields when
displaying messages on the screen. Examples of header
fields to ignore are "status" and "cc." All fields are
included when the message is saved. The Print and Type
commands override this command.

list
Prints all commands available. No explanation is given.

262—Commands and Utilities UNIX Programmer’s Manual

MAILX(1) MAILX (1)

mail name ...
Mail a message to the specified users.

mbox [msglist]
Arrange for the given messages to end up in the standard
mbox save file when mailx terminates normally. See
"MBOX" (ENVIRONMENT VARIABLES) for a descrip-
tion of this file. See also the exit and quit commands.

next [messagel

Go to next message matching message. A msglist may be
specified, but in this case the first valid message in the list
is the only one used. This is useful for jumping to the
next message from a specific user, since the name would
be taken as a command in the absence of a real command.
See the discussion of msglists above for a description of
possible message specifications.

pipe [msglist] [shell-command]

| [msglist] [shell-command]
Pipe the message through the given shell-command. The
message is treated as if it were read. If no arguments are
given, the current message is piped through the command
specified by the value of the "cmd" variable. If the "page"
variable is set, a form feed character is inserted after each
message (see ENVIRONMENT VARIABLES).

preserve [msglist]
hold [msglist]
Preserve the specified messages in the mailbox.

Print [msglist]

Type [msglist]
Print the specified messages on the screen, including all
header fields. Overrides suppression of fields by the ignore
command.

print [msglist]

type [msglist]
Print the specified messages. If "crt" is set, the messages
longer than the number of lines specified by the "crt" vari-
able are paged through the command specified by the

UNIX Programmer’s Manual Commands and Utilities—263

MAILX(1) MAILX (1)

"PAGER" variable. The default command is pg(1) (see
ENVIRONMENT VARIABLES).

quit
Exit from mailx, storing messages that were read in mbox
and unread messages in the mailbox. Messages that have
been explicitly saved in a file are deleted.

Reply [msglist]

Respond [msglist]
Send a response to the author of each message in the
msglist. The subject line is taken from the first message.
If "record" is set to a file name, the response is saved at
the end of that file (see ENVIRONMENT VARIABLES).

reply [messagel

respond [messagel
Reply to the specified message, including all other reci-
pients of the message. If "record" is set to a file name, the
response is saved at the end of that file (see ENVIRON-
MENT VARIABLES).

Save [msglist]
Save the specified messages in a file whose name is derived
from the author of the first message. The name of the file
is taken to be the author’s name with all network address-
ing stripped off. See also the Copy, followup, and Fol-
lowup commands and "outfolder" (ENVIRONMENT VARI-
ABLES).

save [filenamel

save [msglist] filename
Save the specified messages in the given file. The file is
created if it does not exist. The message is deleted from
the mailbox when mailx terminates unless "keepsave" is
set (see also ENVIRONMENT VARIABLES and the exit
and quit commands).

264—Commands and Utilities UNIX Programmer’s Manual

MAILX (1) MAILX (1)

set

set name

set name=string

set name=number
Define a variable called name. The variable may be given
a null, string, or numeric value. Set by itself prints all
defined variables and their values. See ENVIRONMENT
VARIABLES for detailed descriptions of the mailx vari-
ables.

shell
Invoke an interactive shell (see also "SHELL'
(ENVIRONMENT VARIABLES)).

size [msglist]
Print the size in characters of the specified messages.

source filename
Read commands from the given file and return to com-
mand mode.

top [msglist]
Print the top few lines of the specified messages. If the
"toplines" variable is set, it is taken as the number of lines
to print (see ENVIRONMENT VARIABLES). The default
is 5.

touch [msglist]
Touch the specified messages. If any message in msglist
is not specifically saved in a file, it will be placed in the
mbox upon normal termination. See exit and quit.

Type [msglist]

Print [msglist]
Print the specified messages on the screen, including all
header fields. Overrides suppression of fields by the ignore
command.

type [msglist]

print [msglist]
Print the specified messages. If "crt" is set, the messages
longer than the number of lines specified by the "crt"

UNIX Programmer’s Manual Commands and Utilities—265

MAILX (1) MAILX (1)

variable are paged through the command specified by the
"PAGER" variable. The default command is pg(1) (see
ENVIRONMENT VARIABLES).

undelete [msglist]
Restore the specified deleted messages. Will only restore
messages deleted in the current mail session. If "auto-
print" is set, the last message of those restored is printed
(sec ENVIRONMENT VARIABLES).

unset name ...
Causes the specified variables to be erased. If the variable
was imported from the execution environment (i.e., a shell
variable) then it cannot be erased.

version
Prints the current version and release date.

visual [msglist]
Edit the given messages with a screen editor. The mes-
sages are placed in a temporary file and the "VISUAL"
variable is used to get the name of the editor (see
ENVIRONMENT VARIABLES).

write [msglist] filename
Write the given messages on the specified file, minus the
header and trailing blank line. Otherwise equivalent to
the save command.

xit

exit
Exit from mailx, without changing the mailbox. No mes-
sages are saved in the mbox (see also quit).

zl+H-]

Scroll the header display forward or backward one
screen—full. The number of headers displayed is set by
the "screen” variable (see ENVIRONMENT VARIABLES).

TILDE ESCAPES
The following commands may be entered only from input mode,
by beginning a line with the tilde escape character (7). See
"escape” (ENVIRONMENT VARIABLES) for changing this special

266—Commands and Utilities UNIX Programmer’s Manual

MAILX (1) MAILX (1)

character.

"1 shell-command
Escape to the shell.

Simulate end of file (terminate message input).

"t mail-command

mail-command
Perform the command-level request. Valid only when
sending a message while reading mail.

~9
Print a summary of tilde escapes.

A
Insert the autograph string "Sign" into the message (see
ENVIRONMENT VARIABLES).

“a
Insert the autograph string "sign" into the message (see
ENVIRONMENT VARIABLES).

“b name ...
Add the names to the blind carbon copy (Bcc) list.

“¢c name ...
Add the names to the carbon copy (Cc) list.

“d
Read in the dead.letter file. See "DEAD" (ENVIRON-
MENT VARIABLES) for a description of this file.

“e
Invoke the editor on the partial message. See also "EDI-
TOR" (ENVIRONMENT VARIABLES).

f [msglist]

Forward the specified messages. The messages are
inserted into the message, without alteration.

UNIX Programmer’s Manual Commands and Utilities—267

MAILX(1) MAILX(1)

"h
Prompt for Subject line and To, Cc, and Bcce lists. If the
field is displayed with an initial value, it may be edited as
if you had just typed it.

i string

Insert the value of the named variable into the text of the
message. For example, "A is equivalent to *7i Sign.’

“m [msglist]
Insert the specified messages into the letter, shifting the
new text to the right one tab stop. Valid only when send-
ing a message while reading mail.

P
Print the message being entered.

q
Quit from input mode by simulating an interrupt. If the
body of the message is not null, the partial message is
saved in dead.letter. See "DEAD" (ENVIRONMENT
VARIABLES) for a description of this file.

°r filename

"< filename

“< Ishell-command
Read in the specified file. If the argument begins with an
exclamation point (1), the rest of the string is taken as an
arbitrary shell command and is executed, with the stan-
dard output inserted into the message.

" s string ...
Set the subject line to string.

“t name ...
Add the given names to the To list.

Invoke a preferred screen editor on the partial message.
See also "VISUAL" (ENVIRONMENT VARIABLES).

268—Commands and Ultilities UNIX Programmer’s Manual

MAILX (1) MAILX (1)

“w filename
Write the partial message onto the given file, without the
header.

“x

Exit as with “q except the message is not saved in
dead.letter.

| shell-command
Pipe the body of the message through the given shell-
command. If the shell-command returns a successful exit
status, the output of the command replaces the message.

ENVIRONMENT VARIABLES
The following are environment variables taken from the execution
environment and are not alterable within mailx.

HOME=directory
The user’s base of operations.

MAILRC=filename
The name of the start-up file. Default is
$HOME/ mailrc.

The following variables are internal mailx variables. They may be
imported from the execution environment or set via the set com-
mand at any time. The unset command may be used to erase vari-

ables.

allnet
All network names whose last component (login name)
match are treated as identical. This causes the msglist
message specifications to behave similarly. Default is
noallnet. See also the alternates command and the
"metoo” variable.

append

Upon termination, append messages to the end of the
mbox file instead of prepending them. Default is noap-
pend.

UNIX Programmer’s Manual Commands and Utilities—269

MAILX (1) MAILX(1)

askee
Prompt for the Cc list after message is entered. Default is
noaskcc.

asksub i
Prompt for subject if it is not specified on the command
line with the —s option. Enabled by default.

autoprint §
Enable automatic printing of messages after delete and
undelete commands. Default is noautoprint.

bang

Enable the special-casing of exclamation points (!) in shell
escape command lines as in vi(1). Default is nobang.

emd=shell-command
Set the default command for the pipe command. No
default value.

conv=conversion
Convert uucp addresses to the specified address style. The
only valid conversion now is internet, which requires a
mail delivery program conforming to the RFC822 stan-
. dard for electronic mail addressing. Conversion is dis-
abled by default. See also "sendmail" and the —U com-
mand line option.

crt=number
Pipe messages having more than number lines through the
command specified by the value of the "PAGER" variable
(pg(1) by default). Disabled by default.

DEAD=filename
The name of the file in which to save partial letters in case

of untimely - interrupt or delivery errors. Default is
$HOME/dead.letter.

debug

Enable verbose diagnostics for debugging. Messages are
not delivered. Default is nodebug.

270—Commands and Utilities UNIX Programmer’s Manual

MAILX(1) MAILX (1)

dot
Take a period on a line by itself during input from a ter-
minal as end-of-file. Default is nodot.

EDITOR==shell-command
The command to run when the edit or “e command is
used. Default is ed (1).

escape=c
Substitute ¢ for the ~ escape character.

folder=directory

The directory for saving standard mail files. User-
specified file names beginning with a plus (+) are
expanded by preceding the file name with this directory
name to obtain the real file name. If directory does not
start with a slash (/), SHOME is prepended to it. In
order to use the plus (+) construct on a mailx command

" line, "folder" must be an exported sh environment variable.
There is no default for the "folder" variable. See also
"outfolder" below.

header
Enable printing of the header summary when entering
mailx. Enabled by default.

hold
Preserve all messages that are read in the mailbox instead
of putting them in the standard mbox save file. Default is
nohold.

ignore
Ignore interrupts while entering messages. Handy for
noisy dial-up lines. Default is noignore.

ignoreeof

Ignore end-of-file during message input. Input must be
terminated by a period () on a line by itself or by the ~.
command. Default is noignoreeof. See also "dot" above.

UNIX Programmer’s Manual Commands and Utilities—271

MAILX(1) MAILX (1)

keep
When the mailbox is empty, truncate it to zero length
instead of removing it. Disabled by default.

keepsave
Keep messages that have been saved in other files in the
mailbox instead of deleting them. Default is nokeepsave.

MBOX=filename
The name of the file to save messages which have been
read. The xit command overrides this function, as does
saving the message explicitly in another file. Default is
$HOME/mbox.

metoo

If your login appears as a recipient, do not delete it from
the list. Default is nometoo.

LISTER=shell-command
The command (and options) to use when listing the con-
tents of the "folder” directory. The default is Is(1).

onchop

When responding to a message that was originally sent to
several recipients, the other recipient addresses are nor-
mally forced to be relative to the originating author’s
machine for the response. This flag disables alteration of
the recipients’ addresses, improving efficiency in a network
where all machines can send directly to all other machines
(i.e., one hop away).

outfolder
Causes the files used to record outgoing messages to be
located in the directory specified by the "folder" variable
unless the path name is absolute. Default is nooutfolder.
See "folder" above and the Save, Copy, followup, and Fol-
lowup commands.

page

Used with the pipe command to insert a form feed after
each message sent through the pipe. Default is nopage.

272—Commands and Utilities ‘UNIX Programmer’s Manual

MAILX (1) MAILX (1)

PAGER=shell-command
The command to use as a filter for paginating output.
This can also be used to specify the options to be used.
Default is pg(1).

prompt=string
Set the command mode prompt to string. Default is "? "

quiet
Refrain from printing the opening message and version
when entering mailx. Default is noquiet.

record=filename
Record all outgoing mail in filename. Disabled by
default. See also "outfolder" above.

save
Enable saving of messages in dead.letter on interrupt or
delivery error. See "DEAD" for a description of this file.
Enabled by default.

screen=number

Sets the number of lines in a screen—full of headers for
the headers command.

sendmail=shell-command
Alternate command for delivering messages. Default is
mail (1).

sendwait
Wait for background mailer to finish before returning.
Default is nosendwait.

SHELL=shell-command
The name of a preferred command interpreter. Default is
sh(1).

showto
When displaying the header summary and the message is
from you, print the recipient’s name instead of the
author’s name.

UNIX Programmer’s Manual Commands and Utilities—273

MAILX (1) ' MAILX (1)

sign=string
The variable inserted into the text of a message when the
“a (autograph) command is given. No default (see also 7i
(TILDE ESCAPES)).

Sign=string
The variable inserted into the text of a message when the
“A command is given. No default (see also i (TILDE
ESCAPES)).

toplines=number
The number of lines of header to print with the top com-
mand. Default is 5.

VISUAL=shell-command
The name of a preferred screen editor. Default is vi(1).

FILES
$HOME/ .mailrc personal start-up file
$HOME/mbox secondary storage file
/usr/mail/* post office directory
/usr/lib/mailx/mailx.help* help message files
/usr/lib/mailx/mailx.rc global start-up file
/tmp/R[emgsx]* temporary files

SEE ALSO

mail(1), pg(1), 1s(1).

BUGS
Where shell-command is shown as valid, arguments are not
always allowed. Experimentation is recommended.

Internal variables imported from the execution environment cannot
be unset.

The full internet addressing is not fully supported by mailx. The
new standards need some time to settle down.

66 9

Attempts to send a message having a line consisting only of a “.
are treated as the end of the message by mail(1) (the standard
mail delivery program).

274—Commands and Ultilities UNIX Programmer’s Manual

MAKE(l)

NAME

MAKE(1)

make — maintain, update, and regenerate groups of programs

SYNOPSIS

make [—f makefile] [—p] [—i] [—=K] [—s] [=r] [=n] [—b]
[—e]l [=m] [—t] [—d] [—q] [names]

DESCRIPTION

The following is a brief description of all options and some special

names:
—f makefile

-P

—-i

-Ss

-r

-e

-t
-d

UNIX Programmer’s

Description file name. Makefile is assumed to be
the name of a description file. A file name of —
denotes the standard input. The contents of
makefile override the built-in rules if they are
present.

Print out the complete set of macro definitions and
target descriptions.

Ignore error codes returned by invoked commands.
This mode is entered if the fake target name
JIGNORE appears in the description file.

Abandon work on the current entry, but continue on
other branches that do not depend on that entry.

Silent mode. Do not print command lines before
executing. This mode is also entered if the fake tar-
get name .SILENT appears in the description file.

Do not use the built-in rules.

No execute mode. Print commands, but do not exe-
cute them. Even lines beginning with an @ are
printed. ’

Compatibility mode for old makefiles.

Environment variables override assignments within
makefiles.

Print a memory map showing text, data, and stack.
This option is a no-operation on systems without the
getu system call.

Touch the target files (causing them to be up-td-
date) rather than issue the usual commands.

Debug mode. Print out detailed information on files
and times examined.

Manual Commands and Ultilities—275

MAKE(1) MAKE(1)

-q Question. The make command returns a zero or
non-zero status code depending on whether the target
file is or is not up-to-date.

DEFAULT If a file must be made but there are no explicit com-
mands or relevant built-in rules, the commands asso-
ciated with the name .DEFAULT are used if it exists.

PRECIOUS Dependents of this target will not be removed when
quit or interrupt are hit.

SILENT Same effect as the —s option.
JIGNORE Same effect as the —i option.

Make executes commands in makefile to update one or more tar-
get names. Name is typically a program. If no —f option is
present, makefile, Makefile, s.makefile, and s.Makefile are tried in
order. If makefile is —, the standard input is taken. More than
one — makefile argument pair may appear.

Make updates a target only if its dependents are newer than the
target. All prerequisite files of a target are added recursively to
the list of targets. Missing files are deemed to be out-of-date.

Makefile contains a sequence of entries that specify dependencies.
The first line of an entry is a blank-separated, non-null list of tar-
gets, then a :, then a (possibly null) list of prerequisite files or
dependencies. Text following a ; and all following lines that begin
with a tab are shell commands to be executed to update the target.
The first line that does not begin with a tab or # begins a new
dependency or macro definition. Shell commands may be contin-
ued across lines with the <backslash> <new-line> sequence.
Everything printed by make (except the initial tab) is passed
directly to the shell as is. Thus,

echo a\
b

will pfoduce
ab
exactly the same as the shell would.
Sharp (#) and new-line surround comments.

The following makefile says that pgm depends on two files a.0 and
b.o, and that they in turn depend on their corresponding source
files (a.c and b.c) and a common file incl.h:

276—Commands and Utilities UNIX Programmer’s Manual

MAKE(1) MAKE(1)

pgm: a.o b.o
cc a.0 b.o —o pgm
a.o: incL.h a.c

¢C —C a.c
b.o: incl.h b.c
cc —c b.c

Command lines are executed one at a time, each by its own shell.
The first one or two characters in a command can be the following:
-, @, -@, or @-. If @ is present, printing of the command is
suppressed. If - is present, make ignores an error. A line is
printed when it is executed unless the —s option is present, or the
entry .SILENT: is in makefile, or unless the initial character
sequence contains a @. The —n option specifies printing without
execution; however, if the command line has the string $(MAKE)
in it, the line is always executed (see discussion of the
MAKEFLAGS macro under Environment). The —t (touch) option
updates the modified date of a file without executing any com-
mands.

Commands returning non-zero status normally terminate make. If
the —i option is present, or the entry .IGNORE: appears in
makefile, or the initial character sequence of the command con-
tains -. the error is ignored. If the —k option is present, work is
abandoned on the current entry, but continues on other branches
that do not depend on that entry.

The —b option allows old makefiles (those written for the old ver-
sion of make) to run without errors. The difference between the
old version of make and this version is that this version requires all
dependency lines to have a (possibly null or implicit) command
associated with them. The previous version of make assumed, if
no command was specified explicitly, that the command was null.

Interrupt and quit cause the target to be deleted unless the target
is a dependent of the special name .PRECIOUS.

Environment
The environment is read by make. All variables are assumed to
be macro definitions and processed as such. The environment vari-
ables are processed before any makefile and after the internal
rules; thus, macro assignments in a makefile override environment
variables. The —e option causes the environment to override the
macro assignments in a makefile.

UNIX Programmer’s Manual Commands and Utilities—277

MAKE(1) MAKE(1)

The MAKEFLAGS environment variable is processed by make as
containing any legal input option (except —f, —p, and —d)
defined for the command line. Further, upon invocation, make
“invents” the variable if it is not in the environment, puts the
current options into it, and passes it on to invocations of com-
mands. Thus, MAKEFLAGS always contains the current input
options. This proves very useful for “super-makes”. In fact, as
noted above, when the —n option is used, the command $(MAKE)
is executed anyway; hence, one can perform a make —n recur-
sively on a whole software system to see what would have been
executed. This is because the —n is put in MAKEFLAGS and
passed to further invocations of $(MAKE). This is one way of
debugging all of the makefiles for a software project without actu-
ally doing anything.

Macros

Entries of the form stringl = string? are macro definitions.
String2 is defined as all characters up to a comment character or
an unescaped new-line. Subsequent appearances of
$(stringl [:subst] =[subst2]]) are replaced by string2. The
parentheses are optional if a single character macro name is used
and there is no substitute sequence. The optional :substl=subst2
is a substitute sequence. If it is specified, all non-overlapping
occurrences of substl in the named macro are replaced by subst2.
Strings (for the purposes of this type of substitution) are delimited
by blanks, tabs, new-line characters, and beginnings of lines. An
example of the use of the substitute sequence is shown under
Libraries.

Internal Macros
There are five internally maintained macros which are useful for
writing rules for building targets.

$*+ The macro $+ stands for the file name part of the current
dependent with the suffix deleted. It is evaluated only for
inference rules.

$@ The $@ macro stands for the full target name of the current
target. It is evaluated only for explicitly named dependen-
cies.

$< The $< macro is only evaluated for inference rules or the
.DEFAULT rule. It is the module which is out-of-date with
respect to the target (i.e., the “manufactured” dependent file
name). Thus, in the .c.o rule, the $< macro would evaluate

278—Commands and Ultilities UNIX Programmer’s Manual

MAKE(1) MAKE(1)

to the .c file. An example for making optimized .o files from
.c files is:

.c.0o:
cc —¢ —0 $+*.c

or:

.C.0:
cc —c —0 §$<

$? The $? macro is evaluated when explicit rules from the
makefile are evaluated. It is the list of prerequisites that are
out-of-date with respect to the target; essentially, those
modules which must be rebuilt.

$% The $% macro is only evaluated when the target is an
archive library member of the form lib(file.o). In this case,
$@ evaluates to lib and $% evaluates to the library member,
file.o.

Four of the five macros can have alternative forms. When an
upper case D or F is appended to any of the four macros, the
meaning is changed to “directory part” for D and “file part” for F.
Thus, $(@D) refers to the directory part of the string $@. If
there is no directory part, ./ is generated. The only macro
excluded from this alternative form is $?. The reasons for this are
debatable.

Suffixes

Certain names (for instance, those ending with .0) have inferable
prerequisites such as .c, ., etc. If no update commands for such a
file appear in makefile, and if an inferable prerequisite exists, that
prerequisite is compiled to make the target. In this case, make
has inference rules which allow building files from other files by
examining the suffixes and determining an appropriate inference
rule to use. The current default inference rules are:

c.c shsh co.c.o.cc50.5.0.y0.y.0.lo.l.o
yec.y.c.lc.ca.ca.s.a.hh

The internal rules for make are contained in the source file rules.c
for the make program. These rules can be locally modified. To
print out the rules compiled into the make on any machine in a
form suitable for recompilation, the following command is used:

make —fp — 2>/dev/null </dev/null

UNIX Programmer’s Manual Commands and Utilities—279

MAKE(1) MAKE(1)

The only peculiarity in this output is the (mull) string which
printf(3S) prints when handed a null string.

A tilde in the above rules refers to an SCCS file (see sccsfile (4)).
Thus, the rule .c .0 would transform an SCCS C source file into an
object file (.0). Because the s. of the SCCS files is a prefix, it is
incompatible with make’s suffix point of view. Hence, the tilde is
a way of changing any file reference into an SCCS file reference.

A rule with only one suffix (i.e., .c:) is the definition of how to
build x from x.c. In effect, the other suffix is null. This is useful
for building targets from only one source file (e.g., shell pro-
cedures, simple C programs).

Additional suffixes are given as the dependency list for .SUFFIXES.
Order is significant; the first possible name for which both a file
and a rule exist is inferred as a prerequisite. The default list is:

SUFFIXES: 0 .c.y 1 s

Here again, the above command for printing the internal rules will
display the list of suffixes implemented on the current machine.
Multiple suffix lists accumulate; .SUFFIXES: with no dependencies
clears the list of suffixes.

Inference Rules
The first example can be done more briefly.

pgm: a.0 b.o
cc a.0 b.o —o0 pgm
a.0 b.o: inclL.h

This is because make has a set of internal rules for building files.
The user may add rules to this list by simply putting them in the
makefile.

Certain macros are used by the default inference rules to permit
the inclusion of optional matter in any resulting commands. For
example, CFLAGS, LFLAGS, and YFLAGS are used for compiler
options to cc(1), lex(1), and yacc(l1), respectively. Again, the
previous method for examining the current rules is recommended.

The inference of prerequisites can be controlled. The rule to
create a file with suffix .0 from a file with suffix .c is specified as
an entry with .c.0: as the target and no dependents. Shell com-
mands associated with the target define the rule for making a .0
file from a .c file. Any target that has no slashes in it and starts
with a dot is identified as a rule and not a true target.

280—Commands and Utilities UNIX Programmer’s Manual

MAKE(1) MAKE(1)

Libraries

FILES

If a target or dependency name contains parentheses, it is assumed
to be an archive library, the string within parentheses referring to
a member within the library. Thus lib(file.o) and $(LIB) (file.o)
both refer to an archive library which contains file.o. (This
assumes the LIB macro has been previously defined.) The expres-
sion $(LIB) (filel.o file2.0) is not legal. Rules pertaining to archive
libraries have the form .XX.a where the XX is the suffix from
which the archive member is to be made. An unfortunate bypro-
duct of the current implementation requires the XX to be different
from the suffix of the archive member. Thus, one cannot have
lib(file.o) depend upon file.o explicitly. The most common use of
the archive interface follows. Here, we assume the source files are
all C type source:

lib: lib(filel.0) lib(file2.0) lib(file3.0)
@echo lib is now up-to-date
.c.a:
$(cC) —c $(CFLAGS) $<
ar v $@ $*o0
rm —f $*.0
In fact, the .c.a rule listed above is built into make and is unneces-
sary in this example. A more interesting, but more limited exam-
ple of an archive library maintenance construction follows:

lib: lib(filel.0) lib(file2.0) lib(file3.0)
$(cC) —c $(CFLAGS) $(?:.0=.0)
ar rv lib $?
rm $? @echo lib is now up-to-date
c.a;

Here the substitution mode of the macro expansions is used. The
$? list is defined to be the set of object file names (inside lib)
whose C- source files are out-of-date. The substitution mode
translates the .0 to .c. (Unfortunately, one cannot as yet
transform to .c; however, this may become possible in the
future.) Note also, the disabling of the .c.a: rule, which would
have created each object file, one by one. This particular construct
speeds up archive library maintenance considerably. This type of
construct becomes very cumbersome if the archive library contains
a mix of assembly programs and C programs.

[Mm]lakefile and s.[Mm]akefile

UNIX Programmer’s Manual Commands and Utilities—281

MAKE(1) MAKE (1)

SEE ALSO
cc(1), cd(1), lex(1), sh(1), yacc(1).
printf(3S), sccsfile(4) in the UNIX Programmer’s Manual —
Volume 2: System Calls and Library Routines.

BUGS |
Some commands return non-zero status inappropriately; use —i to
overcome the difficulty. File names with the characters = : @ will
not work. Commands that are directly executed by the shell, not-
ably cd(1), are ineffectual across new-lines in make. The syntax
(lib(filel.o file2.0 file3.0) is illegal. You cannot build lib(file.o)
“from file.o. The macro $(a:.0=.c) does not work.

282—Commands and Utilities UNIX Programmer’s Manual

MAKEKEY (1) MAKEKEY (1)

NAME

makekey — generate encryption key
SYNOPSIS

/usr/lib/makekey
DESCRIPTION

Makekey improves the usefulness of encryption schemes depending
on a key by increasing the amount of time required to search the
key space. It reads 10 bytes from its standard input, and writes 13
bytes on its standard output. The output depends on the input in a
way intended to be difficult to compute (i.e., to require a substan-
tial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII
characters. The last two (the salt) are best chosen from the set of
digits, ., /, and upper- and lower-case letters. The salt characters
are repeated as the first two characters of the output. The remain-
ing 11 output characters are chosen from the same set as the salt
and constitute the output key.

The transformation performed is essentially the following: the salt
is used to select one of 4,096 cryptographic machines all based on
the National Bureau of Standards DES algorithm, but broken in
4,096 different ways. Using the input key as key, a constant
string is fed into the machine and recirculated a number of times.
The 64 bits that come out are distributed into the 66 output key
bits in the resuit.

Makekey is intended for programs that perform encryption (e.g.,
ed(1) and crypt(1)). Usually, its input and output will be pipes.

SEE ALSO
crypt(1), ed(1).
passwd(4) in the UNIX Programmer’s Manual —Volume 2: Sys-
tem Calls and Library Routines.

UNIX Programmer’s Manual Commands and Utilities—283

MAN (1) ' \ MAN (1)

NAME
man, manprog — print manual entries on-line

SYNOPSIS
man [options] [section] titles

/usr/lib/manprog file

DESCRIPTION
Man locates and prints manual entries named title in the specified
section. (For historical reasons, the word “page” is often used as
a synonym for “entry” in this context.) The title is entered in
lower case. The section number may not have a letter suffix. If
no section is specified, the whole manual is searched for title and
all occurrences of it are printed. Options and their meanings are:

~t Typeset the entry in the default format (8.5"x11").

—-s Typeset the entry in the small format (6"x9").

—D4014 Display the typeset output on a TEKTRONIX 4014
terminal using tc(1).

—Dtek Same as —D4014.

—Dil10 Send typeset output to the local Imagen Imprint-10
laser printer. .

—Tterm If term is one of the recognized troff devices (see
troff(1)), format the entry for that device. Otherwise
format the entry using nroff and print it on the stan-
dard output (usually, the terminal); ferm is the termi-
nal type (see term(5) and the explanation below); for
a list of recognized values of term, type help term2.
The default value of term is 450.

-w Print on the standard output only the pathnames of
the entries, relative to /usr/man, or to the current
directory for —d option.

-d Search the current directory rather than /usr/man;
requires the full file name (e.g., cu.lc, rather than
just cu).

-12 Indicates that the manual entry is to be produced in

12-pitch. May be used when STERM (see below) is
set to one of 300, 300s, 450, and 1620. (The pitch
switch on the DASI 300 and 300s terminals must be
manually set to 12 if this option is used.)

-c Causes man to invoke col(1); note that col(1) is
invoked automatically by man unless term is one of
300, 300s, 450, 37, 4000a, 382, 4014, tek, 1620, and
X

284—Commands and Utilities UNIX Programmer’s Manual

MAN(1) MAN(1)

-y Causes man to use the non-compacted version of the
macros.

b / Invokes no output filter to process or redirect the out-
put of troff (1).

The above options other than —d, —c¢, and —y are mutually
exclusive, except that the —s and —z options may be used in con-
junction with any typesetter option (6”"x9" pages may be produced
with nroff by including the —rsl option). Any other options are
passed to troff, nroff, or the man(5) macro package.

When using nroff, man examines the environment variable $STERM
(see environ(5)) and attempts to select options to nroff, as well as
filters, that adapt the output to the terminal being used. The
—Tterm option overrides the value of $TERM; in particular, one
should use —Tlp when sending the output of man to a line printer.

Section may be changed before each title.
As an example:
man man

would reproduce on the terminal this entry, as well as any other
entries named man that may exist in other sections of the manual,
e.g., man(5).

If the first line of the input for an entry consists solely of the
string:
r\n x

where x is any combination of the two characters e, and t, and
where there is exactly one blank between the double quote (*) and
x, then man will preprocess its input through the appropriate com-
bination of egn(1) (neqn for nroff) and tbl (1), respectively. If egn
or negn are invoked, they will automatically read the file
/usr/pub/egnchar (see egnchar (5)).

The man command executes manprog that takes a file name as its
argument. Manprog calculates and returns a string of three regis-
ter definitions used by the formatters identifying the date the file
was last modified. The returned string has the form:

—rdday —rmmonth —ryyear

and is bassed to nroff which sets this string as variables for the
man macro package. Months are given from 0O to 11, therefore
month is always 1 less than the actual month. The man macros

UNIX Programmer’s Manual Commands and Utilities—285

MAN(1) ' MAN(1)

calculate the correct month. If the man macro package is invoked
as an option to nroff/troff (i.e., nroff —man file), then the current
day/month/year is used as the printed date.

FILES
/usr/man/u_man/man([1,6]1/+
/usr/man/a_man/man(1,7,8]/+
/usr/man/p_man/man[2-5]/+
/usr/man/local/man[1-8]1/+
/usr/man/+/manl1-81/+
/usr/lib/manprog

SEE ALSO
daps(1), eqn(1), nroff (1), tbl(1), tc(1), troff (1).
environ(5), man(5), term(5) in the UNIX Programmer’s
Manual —Volume"2: System Calls and Library Routines.

BUGS
All entries are supposed to be reproducible either on a typesetter
or on a terminal. However, on a terminal some information is
necessarily lost.

6"'%9" manual entries formatted by nroff (with the —rs1 option)
are not guaranteed to look as good as regular-sized entries.

286—Commands and Utilities UNIX Programmer’s Manual

MESG (1) MESG (1)

NAME
mesg — permit or deny messages
SYNOPSIS
mesg [n]1[y]
DESCRIPTION
Mesg with argument n forbids messages via write(1) by revoking
non-user write permission on the user’s terminal. Mesg with argu-

ment y reinstates permission. All by itself, mesg reports the
current state without changing it.

FILES
/dev/tty*

SEE ALSO
write(1).

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

UNIX Programmer’s Manual Commands and Utilities—287

MKDIR (1) MKDIR (1)

NAME
mkdir — make a directory

SYNOPSIS
mkdir dirname ...

DESCRIPTION
Mkdir creates specified directories in mode 777 (possibly altered
by umask(1)). Standard entries, ., for the dxrectory itself, and ..,
for its parent, are made automatically.

Mkdir requires write permission in the parent directory.

SEE ALSO
sh(1), rm(1), umask(1).

DIAGNOSTICS
Mkdir returns exit code 0 if all directories were successfully made;
otherwise, it prints a diagnostic and returns non-zero.

288—Commands and Utilities UNIX Programmer’s Manual

MM (1) MM((1)

NAME
mm, osdd, checkmm — print/check documents formatted with the
MM macros

SYNOPSIS
mm [options] [files]

osdd [options] [files]
checkmm [files]

DESCRIPTION
Mm can be used to type out documents using nroff and the MM
text-formatting macro package. It has options to specify prepro-
cessing by tbI(1) and/or negn (see eqn(1)) and postprocessing by
various terminal-oriented output filters. The proper pipelines and
the required arguments and flags for nroff and MM are generated,
depending on the options selected.

Osdd is equivalent to the command mm —mosd. For more infor-
mation about the OSDD adapter macro package, see mosd(5).

Options for mm are given below. Any other arguments or flags
(e.g., —rC3) are passed to nroff or to MM, as appropriate. Such
options can occur in any order, but they must appear before the
files arguments. If no arguments are given, mm prints a list of its
options.

—Tterm Specifies the type of output terminal; for a list of recog-
nized values for term, type help term2. If this option is
not used, mm will use the value of the shell variable
STERM from the environment (see profile(4) and
environ(5)) as the value of term, if STERM is set; other-
wise, mm will use 450 as the value of term. If several
terminal types are specified, the last one takes pre-
cedence.

-12 Indicates that the document is to be produced in 12-
pitch. May be used when $TERM is set to one of 300,
300s, 450, and 1620. (The pitch switch on the DASI
300 and 300s terminals must be manually set to 12 if
this option is used.)

—c Causes mm to invoke col (1); note that col (1) is invoked
automatically by mm unless term is one of 300, 300s,
450, 37, 40002, 382, 4014, tek, 1620, and X.

—e Causes mm to invoke negqn; also causes negn to read the
/usr/pub/egnchar file (see eqnchar (5)).

UNIX Programmer’s Manual Commands and Utilities—289

MM (1) . MM(1)

—t Causes mm to invoke tbI(1).
-E Invokes the —e option of nroff.
-y Causes mm to use the non-compacted version of the

macros (see mm (5)).

As an example (assuming that the shell variable $STERM is set in
the environment to 450), the two command lines below are
equivalent:

mm —t —rC3 —12 ghh»
tbl ghh* | nroff —cm —T450—12 —h —rC3

Mm reads the standard input when — is specified instead of any
file names. (Mentioning other files together with — leads to disas-
ter.) This option allows mm to be used as a filter, e.g.:

cat dws | mm —

Checkmm is a program for checking the contents of the named
files for errors in the use of the Memorandum Macros, missing or
unbalanced neqn delimiters, and .EQ/.EN pairs. Note: The user
need not use the checkeq program (see eqn(1)). Appropriate mes-
sages are produced. The program skips all directories, and if no
file name is given, standard input is read.

HINTS
1. Mm invokes nroff with the —h flag. With this flag, nroff
assumes that the terminal has tabs set every 8 character
positions.
2. Use the —olist option of nroff to specify ranges of pages

to be output. Note, however, that mm, if invoked with
one or more of the —e, —t, and — options, together with
the —olist option of nroff may cause a harmless “broken
pipe” diagnostic if the last page of the document is not
specified in list.

3. If you use the —s option of nroff (to stop between pages
of output), use line-feed (rather than return or new-line)
to restart the output. The —s option of nroff does not
work with the —c option of mm, or if mm automatically
invokes col (1) (see —c option above).

4. If you lie to mm about the kind of terminal its output will
be printed on, you will get (often subtle) garbage; how-
ever, if you are redirecting output into a file, use the
—T37 option, and then use the appropriate terminal filter
when you actually print that file.

290—Commands and Ultilities UNIX Programmer’s Manual

MM (1) MM (1)

SEE ALSO
col(1), env(1), eqn(1), greek(1), mmt(1), nroff(1), tbi(1).
profile(4), mm(5), mosd(5), term(5) in the UNIX Programmer’s
Manual —Volume 2: System Calls and Library Routines.
DIAGNOSTICS
mm “mm: no input file” if none of the arguments is a read-
able file and mm is not used as a filter.
checkmm “Cannot open filename” if file(s) is unreadable. The

remaining output of the program is diagnostic of the
source file.

UNIX Programmer’s Manual Commands and Utilities—291

MMLINT (1) - MMLINT(1)

NAME
mmlint — sroff/MM nroff/MM document compatibility checker

SYNOPSIS
mmlint —s file
mmlint —n file

DESCRIPTION
Mmlint reads file (an input document) and reports the document
changes needed to convert the document to be runnable by the text
formatter specified by the option.

—s mmlint will flag nroff/MM constructs that are illegal in
sroff/MM.

—n mmlint will flag sroff/MM constructs that are illegal in
nroff/MM.

Constructs are commands, embedded commands, or register refer-
ences.

There are three types of messages:

Equivalent messages,
which give the equivalent construct in the target formatter.

Non-equivalent messages,
which indicate that there is no equivalent construct in the
target formatter.

Warning messages,
which describe the different meanings of a command or
argument in each formatter.

Messages are output on standard output.

CAVEATS
With the -s option, mmlint assumes the input file is in nroff/IMM
format. However, if the file is in srofffMM format, some errone-
ous messages may appear. For example,
\(ad\(asr)): no special chars in sroff

although this is a legal register construct in sroff.

292—Commands and Ultilities UNIX Programmer’s Manual

MMLINT (1) MMLINT (1)
The same characteristic is true for the —n option, with the follow-
ing messages:
\(sD: use \n(sD) in nroff

although in nroff, this is the character sequence "/)".
\t: use \nt in nroff

although in nroff, \t is the tab escape sequence.

\(G:Mu): register names can only be two characters long in
nroff

although :M is a legal register name in nroff.

.s0 and .nx requests are ignored by mmlint.

UNIX Programmer’s Manual Commands and Utilities—293

MMT (1) | MMT (1)

NAME
mmt, mvt — typeset documents, viewgraphs, and slides

SYNOPSIS
mmt [options 1 [files]

mvt [options] [files]

DESCRIPTION

These two commands are very similar to mm (1), except that they
both typeset their input via troff (1), as opposed to formatting it
via nroff (1); mmt uses the MM macro package, while mvt uses the
Macro Package for View Graphs and Slides. These two com-
mands have options to specify preprocessing by zb/(1) and/or
pic(1) and/or eqn(1). The proper pipelines and the required argu-
ments and flags for troff (1) and for the macro packages are gen-
erated, depending on the options selected.

Options are given below. Any other arguments or flags (e.g.,
—rC3) are passed to troff(1) or to the macro package, as
appropriate. Such options can occur in any order, but they must
appear before the files arguments. If no arguments are given,
these commands print a list of their options.

—e Causes these commands to invoke eqn(1); also causes
eqn to read the /usr/pub/eqnchar file (see egnchar(5)).

-t Causes these commands to invoke tbl(1).

-p Invokes pic(1).

—Taps Creates output for an Autologic APS-5 photo-
typesetter, and sends it to the default destination at
this installation.

—Tdest Creates output for troff device dest (see troff(1)). The
output is sent through the appropriate postprocessor
(see daps(1)).

-a Invokes the —a option of troff(1).

-y Causes mmt to use the non-compacted version of the
macros. This is the default except when using —Tcat.

-z Invokes no output filter to process or redirect the out-
put of troff (1).

These commands read the standard input when — is specified
instead of any file names.

Myt is just a link to mmt.

294—Commands and Utilities . UNIX Programmer’s Manual

MMT (1) MMT(1)

HINT
Use the —olist option of troff(1) to specify ranges of pages to be
output. Note, however, that these commands, if invoked with one
or more of the —e, —t, and — options, together with the —olist
option of troff (1) may cause a harmless “broken pipe” diagnostic
if the last page of the document is not specified in /Jist.

SEE ALSO

daps(1), env(1), eqn(1), mm(1), nroff(1), pic(1), tbl(1), tc(1),
troff(1).

profile(4), environ(5), mm(5), mv(5). in the UNIX Programmer’s
Manual —~Volume 2: System Calls and Library Routines.
DIAGNOSTICS

“m[mvlt: no input file” if none of the arguments is a readable file
and the command is not used as a filter.

UNIX Programmer’s Manual Commands and Utilities—295

NEWFORM (1) NEWFORM(1)

NAME
newform — change the format of a text file

SYNOPSIS
newform [—s] [—itabspec] [—otabspec] [~bn] [—en] [—pnl
[—an] [—f] [—cchar] [—In] [files]

DESCRIPTION
Newform reads lines from the named files, or the standard input if
no input file is named, and reproduces the lines on the standard
output. Lines are reformatted in accordance with command line
options in effect.

Except for —s, command line options may appear in any order,
may be repeated, and may be intermingled with the optional files.
Command line options are processed in the order specified. This
means that option sequences like “—el5 —160 will yield results
different from “—160 —el5”. Options are applied to all files on
the command line.

—itabspec Input tab specification: expands tabs to spaces, accord-
ing to the tab specifications given. Tabspec recognizes
all tab specification forms described in fabs(1). In
addition, tabspec may be ——, in which newform
assumes that the tab specification is to be found in the
first line read from the standard input (see fspec(4)).
If no tabspec is given, tabspec defaults to —8. A
tabspec of —0 expects no tabs; if any are found, they
are treated as —1.

—otabspec Output tab specification: replaces spaces by tabs,
according to the tab specifications given. The tab
specifications are the same as for —itabspec. If no

is given, tabspec defaults to —8. A rabspec ofabspec
—0 means that no spaces will be converted to tabs on
output.

=In Set the effective line length to n characters. If n is not
entered, —1 defaults to 72. The default line length
without the —1 option is 80 characters. Note that tabs
and backspaces are considered to be one character (use
—i to expand tabs to spaces).

—bn Truncate n characters from the beginning of the line
when the line length is greater than the effective line
length (see —ln). Default is to truncate the number of

296—Commands and Utilities UNIX Programmer’s Manual

NEWFORM (1)

—-ck

—an

-S

NEWFORM (1)

characters necessary to obtain the effective line length.
The default value is used when —b with no » is used.
This option can be used to delete the sequence numbers
from a COBOL program as follows:

newform —11 —b7 file-name

The —11 must be used to set the effective line length
shorter than any existing line in the file so that the —b
option is activated.

Same as —bn except that characters are truncated
from the end of the line.

Change the prefix/append character to k. Default
character for k is a space.

Prefix n characters (see —ck) to the beginning of a
line when the line length is less than the effective line
length. Default is to prefix the number of characters
necessary to obtain the effective line length.

Same as —pn except characters are appended to the
end of a line.

Write the tab specification format line on the standard
output before any other lines are output. The tab
specification format line which is printed will
correspond to the format specified in the last —o
option. If no —o option is specified, the line which is
printed will contain the default specification of —8.

Shears off leading characters on each line up to the
first tab and places up to 8 of the sheared characters at
the end of the line. If more than 8 characters (not
counting the first tab) are sheared, the eighth character
is replaced by a * and any characters to the right of it
are discarded. The first tab is always discarded.

An error message and program exit will occur if this
option is used on a file without a tab on each line. The
characters sheared off are saved internally until all
other options specified are applied to that line. The
characters are then added at the end of the processed
line.

For example, to convert a file with leading digits, one
or more tabs, and text on each line, to a file beginning
with the text, all tabs after the first expanded to

UNIX Programmer’s Manual Commands and Utilities—297

NEWFORM (1) NEWFORM (1)

spaces, padded with spaces out to column 72 (or trun-

cated to column 72), and the leading digits placed

starting at column 73, the command would be:
newform —s —i —1 —a —e file-name

DIAGNOSTICS

All diagnostics are fatal.

usage: ... Newform was called with a bad option.

not —s format There was no tab on one line.

can’t open file Self-explanatory.

internal line too long A line exceeds 512 characters after
being expanded in the internal work
buffer.

tabspec in error A tab specification is incorrectly for-
matted, or specified tab stops are not
ascending.

tabspec indirection illegal A tabspec read from a file (or standard
input) may not contain a tabspec
referencing another file (or standard
input).
EXIT CODES

0 — normal execution
1 — for any error

SEE ALSO
csplit(1), tabs(1).
fspec(4) in the UNIX Programmer’s Manual —Volume 2: System
Calls and Library Routines.

BUGS
Newform normally only keeps track of physical characters; how-
ever, for the —i and —o options, newform will keep track of back-
spaces in order to line up tabs in the appropriate logical columns.

Newform will not prompt the user if a tabspec is to be read from
the standard input (by use of —i—— or —o—-).

If the —f option is used, and the last —o option specified was
—o0— —, and was preceded by either a —o—— or a —i——, the
tab specification format line will be incorrect.

298—Commands and Utilities ~ UNIX Programmer’s Manual

NEWGRP(1) NEWGRP(1)

NAME

newgrp — log in to a new group
SYNOPSIS

newgrp [—1 [group 1
DESCRIPTION

Newgrp changes a user’s group identification. The user remains
logged in and the current directory is unchanged, but calculations
of access permissions to files are performed with respect to the new
real and effective group IDs. The user is always given a new shell,
replacing the current shell, by newgrp, regardless of whether it ter-
minated successfully or due to an error condition (.e.,

unknown group).

Exported variables retain their values after invoking newgrp; how-
ever, all unexported variables are either reset to their default value
or set to null. System variables (such as PS1, PS2, PATH,
MAIL, and HOME), unless exported by the system or explicitly
exported by the user, are reset to default values. For example, a
user has a primary prompt string (PS1) other than $ (default) and
has not exported PS1. After an invocation of newgrp , successful
or not, their PS1 will now be set to the default prompt string $.
Note that the shell command export (see sh(1)) is the method to
export variables so that they retain their assigned value when
invoking new shells.

With no arguments, newgrp changes the group identification back
to the group specified in the user’s password file entry.

If the first argument to newgrp is a —, the environment is changed
to what would be expected if the user actually logged in again.

A password is demanded if the group has a password and the user
does not, or if the group has a password and the user is not listed
in /etc/group as being a member of that group.

FILES ,
/etc/group system’s group file
/etc/passwd system’s password file -

SEE ALSO

login(1), sh(1).
group{(4), passwd(4), environ(5) in the UNIX Programmer’s
Manual —Volume 2: System Calls and Library Routines.

UNIX Programmer’s Manual Commands and Utilities—299

NEWGRP (1) NEWGRP(1)

BUGS
There is no convenient way to enter a password into /etc/group.
Use of group passwords is not encouraged, because, by their very
nature, they encourage poor security practices. Group passwords
may disappear in the future.

300—Commands and Utilities UNIX Programmer’s Manual

NEWS (1) NEWS(1)

NAME

news — print news items
SYNOPSIS

news [—a][=n][—=s][items]
DESCRIPTION

News is used to keep the user informed of current events. By con-
vention, these events are described by files in the directory
/usr/news.

When invoked without arguments, news prints the contents of all
current files in /usr/news, most recent first, with each preceded by
an appropriate header. News stores the “currency” time as the
modification date of a file named .news_time in the user’s home
directory (the identity of this directory is determined by the
environment variable SHOME); only files more recent than this
currency time are considered “current.”

The -—a option causes news to print all items, regardless of
currency. In this case, the stored time is not changed.

The —n option causes news to report the names of the current
items without printing their contents, and without changing the
stored time.

The —s option causes news to report how many current items
exist, without printing their names or contents, and without chang-
ing the stored time. It is useful to include such an invocation of
news in one’s .profile file, or in the system’s /etc/profile.

All other arguments are assumed to be specific news items that are
to be printed.

If a delete is typed during the printing of a news item, printing
stops and the next item is started. Another delete within one
second of the first causes the program to terminate.

FILES
/etc/profile
/usr/news/+
$HOME/.news_time

SEE ALSO
profile(4), environ(5) in the UNIX Programmer’s Manual—
Volume 2: System Calls and Library Routines.

UNIX Programmer’s Manual Commands and Utilities—301

NICE(1) NICE(1)

NAME

nice — run a command at low priority
SYNOPSIS

nice [—increment] command [arguments]
DESCRIPTION

Nice executes command with a lower CPU scheduling priority. If
the increment argument (in the range 1-19) is given, it is used; if
not, an increment of 10 is assumed.

The super-user may run commands with priority higher than nor-
mal by using a negative increment, e.g., — —10.

SEE ALSO
nohup(1).
nice(2) in the UNIX Programmer’s Manual —Volume 2: System
Calls and Library Routines.

DIAGNOSTICS
Nice returns the exit status of the subject command.

BUGS
An increment larger than 19 is equivalent to 19.

302—Commands and Utilities UNIX Programmer’s Manual

NLQ1) NL (1)

NAME
nl — line numbering filter

SYNOPSIS
nl [—htypel [—btypel [—ftypel [—vstart#] [—iincr] [—pl
[=Inum] [—ssep] [—wwidth] [—nformat] [—ddelim] file

DESCRIPTION
NI reads lines from the named file or the standard input if no file
is named and reproduces the lines on the standard output. Lines
are numbered on the left in accordance with the command options
in effect.

NI views the text it reads in terms of logical pages. Line number-
ing is reset at the start of each logical page. A logical page con-
sists of a header, a body, and a footer section. Empty sections are
valid. Different line numbering options are independently avail-
able for header, body, and footer (e.g., no numbering of header
and footer lines while numbering blank lines only in the body).

The start of logical page sections are signaled by input lines con-
taining nothing but the following delimiter character(s):

Line contents Start of

Ao\ header
\:\: body
\: » footer

Unless optioned otherwise, n/ assumes the text being read is in a
single logical page body.

Command options may appear in any order and may be intermin-
gled with an optional file name. Only one file may be named. The
options are: :

—btype Specifies which logical page body lines are to be num-
bered. Recognized types and their meaning are: a,
number all lines; t, number lines with printable text
only; n, no line numbering; pstring, number only lines
that contain the regular expression specified in string.
Default type for logical page body is t (text lines num-
bered).

—htype Same as —btype except for header. Default type for
logical page header is n (no lines numbered).

UNIX Programmer’s Manual Commands and Utilities—303

NL(1) - NL(1)

—ftype Same as —btype except for footer. Default for logical
page footer is n (no lines numbered).

-p Do not restart numbering at logical page delimiters.

—vstart# Start# is the initial value used to number logical page
lines. Default is 1.

—iincr Incr is the increment value used to number logical
page lines. Default is 1.

—ssep Sep is the character(s) used in separating the line
number and the corresponding text line. Default sep is
a tab.

—wwidth Width is the number of characters to be used for the
line number. Default width is 6.

—nformat Format is the line numbering format. Recognized
values are: In, left justified, leading zeroes suppressed;
rn, right justified, leading zeroes supressed; rz, right
justified, leading zeroes kept. Default format is rn
(right justified).

=lnum Num is the number of blank lines to be considered as
one. For example, —I2 results in only the second adja-
cent blank being numbered (if the appropriate —ha,
~ba, and/or —fa option is set). Default is 1.

—dxx The delimiter characters specifying the start of a logi-
cal page section may be changed from the default
characters (\:) to two user-specified characters. If only
one character is entered, the second character remains
the default character (). No space should appear
between the —d and the delimiter characters. To enter
a backslash, use two backslashes.

EXAMPLE
The command:

nl =v10 —il0 —d'+ filel

will number filel starting at line number 10 with an increment of
ten. The logical page delimiters are !+.

SEE ALSO
pr(1).

304—Commands and Utilities UNIX Programmer’s Manual

NM(1)

NAME

NM(1)

nm — print name list of common object file

SYNOPSIS

nm [—o] [—x] [—h] [=v] [—n] [—e] [—f] [—u] [-V] [-TI]

file-names

DESCRIPTION

The nm command displays the symbol table of each common
object file file-name. File-name may be a relocatable or absolute
common object file; or it may be an archive of relocatable or abso-
lute common object files. For each symbol, the following informa-
tion will be printed:

Name

Value

Class
Type

Size

Line

Section

The name of the symbol.

Its value expressed as an offset or an address depending
on its storage class.

Its storage class.

Its type and derived type. If the symbol is an instance
of a structure or of a union then the structure or union
tag will be given following the type (e.g., struct-tag). If
the symbol is an array, then the array dimensions will
be given following the type (e.g., charlnliml). Note that
the object file must have been compiled with the —g
option of the cc(1) command for this information to
appear.

Its size in bytes, if available. Note that the object file
must have been compiled with the —g option of the
¢c(1) command for this information to appear.

The source line number at which it is defined, if avail-
able. Note that the object file must have been compiled
with the —g option of the cc(1) command for this infor-
mation to appear.

For storage classes static and external, the object file
section containing the symbol (e.g., text, data or bss).

The output of nm may be controlled using the following options:

-0

-X

Print the value and size of a symbol in octal instead of
decimal.

Print the value and size of a symbol in hexadecimal
instead of decimal.

UNIX Programmer’s Manual Commands and Utilities—305

NM (1) 4 - NM)

-h Do not display the output header data.

-v Sort external symbols by value before they are printed.

-n Sort external symbols by name before they are printed.

-e Print only external and static symbols.

-f Produce full output. Print redundant symbols (.text,
.data and .bss), normally suppressed.

-u Print undefined symbols only.

-V Print the version of the nm command executing on the

standard error output.

-T By default, nm prints the entire name of the symbols
listed. Since object files can have symbols names with
an arbitrary number of characters, a name that is longer
than the width of the column set aside for names will
overflow its column, forcing every column after the
name to be misaligned. The —T option causes nm to
truncate every name which would otherwise overflow its
column and place an asterisk as the last character in the
displayed name to mark it as truncated.

Options may be used in any order, either singly or in combination,
and may appear anywhere in the command line. Therefore, both
nm name —e —v and nm —ve name print the static and external
symbols in name, with external symbols sorted by value.

FILES

CAVEATS
When all the symbols are printed, they must be printed in the
order they appear in the symbol table in order to preserve scoping
information. Therefore, the —v and -n options should be used
only in conjunction with the —e option.

- SEE ALSO
as(1), cc(1), 1d(1).
a.out(4), ar(4) in the UNIX Programmer’s Manual —Volume 2:
System Calls and Library Routines.

DIAGNOSTICS
“nm: name: cannot open”
if name cannot be read.

306—Commands and Utilities UNIX Programmer’s Manual

NM(1) NM(1)

“nm: name: bad magic”
if name is not an appropriate common object file.

“nm: name: no symbols”
if the symbols have been stripped from name.

UNIX Programmer’s Manual Commands and Utilities—307

NOHUP(1) NOHUP(1)

NAME
nohup — run a command immune to hangups and quits

SYNOPSIS
nohup command [arguments]

DESCRIPTION
Nohup executes command with hangups and quits ignored. If
output is not re-directed by the user, both standard output and
standard error are sent to nohup.out. If nohup.out is not writable
in the current directory, output is redirected to SHOME/nohup.out.

EXAMPLE
It is frequently desirable to apply nohup to pipelines or lists of
commands. This can be done only by placing pipelines and com-
mand lists in a single file, called a shell procedure. One can then
issue:

nohup sh file

and the nohup applies to everything in file. If the shell procedure
file is to be executed often, then the need to type sh can be elim-
inated by giving file execute permission. Add an ampersand and
the contents of file are run in the background with interrupts also
ignored (see sh(1)):

nohup file &
An example of what the contents of file could be is:

tbl ofile | eqn | nroff > nfile

SEE ALSO
chmod(1), nice(1), sh(1).
signal(2) in the UNIX Programmer’s Manual —Volume 2: System
Calls and Library Routines.

WARNINGS

nohup commandl; command2 nohup applies only to com-
mandl

nohup (command1; command2) is syntactically incorrect.

Be careful of where standard error is redirected. The following
command may put error messages on tape, making it unreadable:

308—Commands and Utilities UNIX Programmer’s Manual

NOHUP(1) NOHUP(1)

nohup cpio —o <list >/dev/rmt/Im&
while
nohup cpio —o <list >/dev/rmt/1m 2>errors&

puts the error messages into file errors.

UNIX Programmer’s Manual Commands and Utilities—309

NROFF (1) NROFF(1)

NAME
nroff, otroff — format or typeset text

SYNOPSIS
nroff [options 1 [files]

otroff [options 1 [files 1

DESCRIPTION
Nroff formats text contained in files (standard input by default)
for printing on typewriter-like devices and line printers; similarly,
otroff formats text for a Wang Laboratories, Inc., C/A/T photo-
typesetter. Their capabilities are described in the NROFF/TROFF
User Manual cited below.

An argument consisting of a minus (=) is taken to be a file name
corresponding to the standard input. The options, which may
appear in any order, but must appear before the files, are:

—olist Print only pages whose page numbers appear in the list
of numbers and ranges, separated by commas. A range
N—M means pages N through M; an initial —N
means from the beginning to page N; and a final N —
means from N to the end. (See BUGS below.)

=N Number first generated page V.

=sN Stop every N pages. Nroff will halt after every N
pages (default N=1) to allow paper loading or chang-
ing, and will resume upon receipt of a line-feed or
new-line (new-lines do not work in pipelines, e.g., with
mm(1)). This option does not work if the output of
nroff is piped through col (1). Otroff will stop the pho-
totypesetter every N pages, produce a trailer to allow
changing cassettes, and resume when the typesetter’s
start button is pressed. When nroff (otroff) halts
between pages, an ASCII BEL (in otroff, the message
page stop) is sent to the terminal. ,

—raN Set register a (which must have a one-character name)

to V.

—-i Read standard input after files are exhausted.

-q Invoke the simultaneous input-output mode of the .rd
request.

-z Print only messages generated by .tm (terminal mes-

sage) requests.
—mname Prepend to the input files the non-compacted (ASCII
text) macro file /usr/lib/tmac/tmac.name.

310—Commands and Utilities UNIX Programmer’s Manual

NROFF (1)

—chame

—kname

Nroff only:
—Tname

-e

—un

Otroff only:
-t

-
-w
-b
—a

—Tcat

NROFF(1)

Prepend to the input files the compacted macro files
/usr/lib/macros/cmp.[ntl.[dt].name and

/usr /lib/macros/ucmp.[ntl.name.

Compact the macros used in this invocation of
nrofffotroff, placing the output in files [dtl.name in the
current directory (see the NROFF/TROFF User
Manual for details of compacting macro files).

Prepare output for specified terminal. Known names
are 37 for the (default) TELETYPE® Model 37 termi-
nal, m300 for the GE TermiNet 300 (or any terminal
without half-line capability), 300s for the DASI 300s,
300 for the DASI 300, 450 for the DASI 450, Ip for a
(generic) ASCII line printer, 382 for the DTC-382,
4000A for the Trendata 4000A, 832 for the Anderson
Jacobson 832, X for a (generic) EBCDIC printer, and
2631 for the Hewlett Packard 2631 line printer.
Produce equally-spaced words in adjusted lines, using
the full resolution of the particular terminal.

Use output tabs during horizontal spacing to speed out-
put and reduce output character count. Tab settings
are assumed to be every 8 nominal character widths.
Set the emboldening factor (number of character over-
strikes) for the third font position (bold) to n, or to
zero if n is missing.

Direct output to the standard output instead of the pho-
totypesetter.

Refrain from feeding out paper and stopping photo-
typesetter at the end of the run.

Wait until phototypesetter is available, if it is currently
busy.

Report whether the phototypesetter is busy or available.
No text processing is done. _

Send a printable ASCII approximation of the results to
the standard output.

Print all characters in point size N while retaining all
prescribed spacings and motions, to reduce photo-
typesetter elapsed time.

Use font-width tables for Wang CAT phototypesetter.
This device is both the default and the only choice.

UNIX Programmer’s Manual Commands and Utilities—311

NROFF(1) NROFF(1)

FILES
/usr/lib/suftab suffix hyphenation tables
/tmp/ta$# temporary file
/usr/lib/tmac/tmac.* standard macro files and pointers
/usr/lib/macros/* standard macro files
/usr/lib/term/* terminal driving tables for nroff
/usr/lib/font/+ font width tables for otroff

SEE ALSO
eqn(1), tbl(1).
mm(5) in the UNIX Programmer’s Manual ~Volume 2: System
Calls and Library Routines.

BUGS

Nrofffotroff believes in Eastern Standard Time; as a result,
depending on the time of the year and on your local time zone, the
date that nroff/otroff generates may be off by one day from your
idea of what the date is.

When nroffiotroff is used with the —olist option inside a pipeline
(e.g., with one or more of egn(1) and tb/(1)), it may cause a
harmless “broken pipe” diagnostic if the last page of the document
is not specified in list.

312—Commands and Utilities UNIX Programmer’s Manual

OoD(1)

NAME

OoD(1)

od — octal dump

SYNOPSIS

od [—bedosx 1 [file] [[+ Joffsetl . Il b]1

DESCRIPTION
Od dumps file in one or more formats as selected by the first argu-
ment. If the first argument is missing, —o is default. The mean-
ings of the format options are:

=b

-C

-d
-0
-S

-X

Interpret bytes in octal.

Interpret bytes in ASCII. Certain non-graphic characters
appear as C escapes: null=\0, backspace=\b, form-feed=\f,
new-line=\n, return=\r, tab=\t; others appear as 3-digit
octal numbers.

Interpret words in unsigned decimal.
Interpret words in octal.
Interpret 16-bit words in signed decimal.

Interpret words in hex.

The file argument specifies which file is to be dumped. If no file
argument is specified, the standard input is used.

The offset argument specifies the offset in the file where dumping
is to commence. This argument is normally interpreted as octal
bytes. If.is appended, the offset is interpreted in decimal. If b is
appended, the offset is interpreted in blocks of 512 bytes. 'If the
file argument is omitted, the offset argument must be preceded by

+.

Dumping continues until end-of-file.

SEE ALSO

dump(1).

UNIX Programmer’s Manual Commands and Utilities—313

PACK(1) PACK(1)

NAME :
pack, pcat, unpack — compress and expand files

SYNOPSIS
pack [= 1 [—f] name ...

pcat name ...
unpack name .

DESCRIPTION

" Pack attempts to store the specified files in a compressed form.
Wherever possible (and useful), each input file name is replaced
by a packed file name.z with the same access modes, access and
modified dates, and owner as those of name. The -f option will
force packing of name. This is useful for causing an entire direc-
tory to be packed even if some of the files will not benefit. If pack
is successful, name will be removed. Packed files can be restored
to their original form using unpack or pcat.

Pack uses Huffman (minimum redundancy) codes on a byte-by-
byte basis. If the — argument is used, an internal flag is set that
causes the number of times each byte is used, its relative fre-
quency, and the code for the byte to be printed on the standard
output. Additional occurrences of — in place of name will cause
the internal flag to be set and reset.

The amount of compression obtained depends on the size of the
input file and the character frequency distribution. Because a
decoding tree forms the first part of each .z file, it is usually not
worthwhile to pack files smaller than three blocks, unless the char-
acter frequency distribution is very skewed, which may occur with
printer plots or pictures. '

Typically, text files are reduced to 60-75% of their original size.
Load modules, which use a larger character set and have a more
uniform distribution of characters, show little compression, the
packed versions being about 90% of the original size.

Pack returns a value that is the number of files that it failed to
compress.

No packing will occur if:

the file appears to be already packed;

the file name has more than 12 characters;
the file has links;

the file is a directory;

314—Commands and Ultilities UNIX Programmer’s Manual

PACK (1) PACK (1)

the file cannot be opened;

no disk storage blocks will be saved by packing;
a file called name.z already exists;

the .z file cannot be created;

an 1/0 error occurred during processing.

The last segment of the file name must contain no more than 12
characters to allow space for the appended .z extension. Direc-
tories cannot be compressed.

Pcat does for packed files what cat(1) does for ordinary files,
except that pcat cannot be used as a filter. The specified files are
unpacked and written to the standard output. Thus to view a
packed file named name.z use:

pcat name.z
or just:
pcat name

To make an unpacked copy, say nnn, of a packed file named
name.z (without destroying name.z) use the command:

pcat name >nnn

Pcat returns the number of files it was unable to unpack. Failure
may occur if:

the file name (exclusive of the .z) has more than 12 char-
acters;

the file cannot be opened;

the file does not appear to be the output of pack.

Unpack expands files created by pack. For each file name
specified in the command, a search is made for a file called name.z
(or just name, if name ends in .z). If this file appears to be a
packed file, it is replaced by its expanded version. The new file
has the .z suffix stripped from its name, and has the same access
modes, access and modification dates, and owner as those of the
packed file.

Unpack returns a value that is the number of files it was unable to
unpack. Failure may occur for the reasons following:

the file name (exclusive of the .z) has more than 12 char-
acters;

the file cannot be opened;

the file does not appear to be the output of pack.

UNIX Programmer’s Manual Commands and Utilities—315

PACK (1) : PACK (1)

a file with the “unpacked” name already exists;
if the unpacked file cannot be created.

SEE ALSO
cat(1).

316—Commands and Utilities UNIX Programmer’s Manual

PASSWD(1) PASSWD(1)

NAME
passwd — change login password

SYNOPSIS
passwd [name]

DESCRIPTION
This command changes or installs a password associated with the
login name.

Ordinary users may change only the password which corresponds
to their login name.

Passwd prompts ordinary users for their old password, if any. It
then prompts for the new password twice. The first time the new
password is entered passwd checks to see if the old password has
“aged” sufficiently. If “aging” is insufficient the new password is
rejected and passwd terminates; see passwd (4).

Assuming “aging” is sufficient, a check is made to insure that the
new password meets construction requirements. When the new
password is entered a second time, the two copies of the new pass-
word are compared. If the two copies are not identical the cycle of
prompting for the new password is repeated for at most two more
times.

Passwords must be constructed to meet the following requirements:

Each password must have at least six characters. Only
the first eight characters are significant.

Each password must contain at least two alphabetic char-
acters and at least one numeric or special character. In
this case, “alphabetic” means upper and lower case letters.

Each password must differ from the user’s login name and
any reverse or circular shift of that login name. For com-
parison purposes, an upper case letter and its correspond-
ing lower case letter are equivalent.

New passwords must differ from the old by at least three
characters. For comparison purposes, an upper case letter
and its corresponding lower case letter are equivalent.

One whose effective user ID is zero is called a super-user; see
id(1), and su(1). Super-users may change any password; hence,
passwd does not prompt super-users for the old password. Super-
users are not forced to comply with password aging and password

UNIX Programmer’s Manual Commands and Utilities—317

PASSWD(1) PASSWD(1)

construction requirements. A super-user can create a null pass-
word by entering a carriage return in response to the prompt for a
new password.

FILES
/etc/passwd

SEE ALSO
login(1), id(1), su(1).

crypt(3C), passwd(4) in the UNIX Programmer’s Manual—
Volume 2: System Calls and Library Routines.

318—Commands and Utilities UNIX Programmer’s Manual

PASTE(1) PASTE(1)

NAME
paste — merge same lines of several files or subsequent lines of one
file

SYNOPSIS
paste filel file2 ...
paste —dlist filel file2 ...
paste —s [—dlist] filel file2 ...

DESCRIPTION

In the first two forms, paste concatenates corresponding lines of
the given input files filel, file2, etc. It treats each file as a column
or columns of a table and pastes them together horizontally (paral-
lel merging). If you will, it is the counterpart of cat(1) which
concatenates vertically, i.e., one file after the other. In the last
form above, paste replaces the function of an older command with
the same name by combining subsequent lines of the input file
(serial merging). In all cases, lines are glued together with the
tab character, or with characters from an optionally specified list.
Output is to the standard output, so it can be used as the start of a
pipe, or as a filter, if — is used in place of a file name.

The meanings of the options are:

-d Without this option, the new-line characters of each but
the last file (or last line in case of the —s option) are
replaced by a tab character. This option allows replacing
the tab character by one or more alternate characters (see
below).

list One or more characters immediately following —d replace
the default zab as the line concatenation character. The
list is used circularly, i.e., when exhausted, it is reused. In
parallel merging (i.e., no —s option), the lines from the
last file are always terminated with a new-line character,
not from the list. The list may contain the special escape
sequences: \n (new-line), \t (tab), \\ (backslash), and \0
(empty string, not a null character). Quoting may be
necessary, if characters have special meaning to the shell
(e.g., to get one backslash, use —d"\\\\").

-s Merge subsequent lines rather than one from each input
file. Use rab for concatenation, unless a list is specified
with —d option. Regardless of the list, the very last char-
acter of the file is forced to be a new-line.

UNIX Programmer’s Manual Commands and Utilities—319

PASTE(1) PASTE(1)

- May be used in place of any file name, to read a line from
the standard input. (There is no prompting).

EXAMPLES
Is | paste —d"" — list directory in one column
Is | paste — — — — list directory in four columns
paste —s —d"\t\n" file combine pairs of lines into lines
SEE ALSO
cut(1), grep(1), pr(1).
DIAGNOSTICS
line too long Output lines are restricted
to 511 characters.
too many files Except for —s option, no

more than 12 input files
may be specified.

320—Commands and Utilities UNIX Programmer’s Manual

PG (1) PG(1)

NAME
pg — file perusal filter for soft-copy terminals

SYNOPSIS

pg [—numberl [—p stringl [—cefnsl [+linenumberl [+/pat-
tern/l lfiles...]

DESCRIPTION
The pg command is a filter which allows the examination of files
one screenful at a time on a soft-copy terminal. (The file name —
and/or NULL arguments indicate that pg should read from the
standard input.) Each screenful is followed by a prompt. If the
user types a carriage return, another page is displayed; other possi-
bilities are enumerated below.

This command is different from previous paginators in that it
allows you to back up and review something that has already
passed. The method for doing this is explained below.

In order to determine terminal attributes, pg scans the terminfo (4)
data base for the terminal type specified by the environment vari-
able TERM. If TERM is not defined, the terminal type dumb is
assumed.

The command line options are:

—number
An integer specifying the size (in lines) of the window
that pg is to use instead of the default. (On a terminal
containing 24 lines, the default window size is 23).

—p string
Causes pg to use string as the prompt. If the prompt
string contains a “%d”, the first occurrence of “%d” in the
prompt will be replaced by the current page number when
the prompt is issued. The default prompt string is “:”.

—c Home the cursor and clear the screen before displaying
each page. This option is ignored if clear_screen is not
defined for this terminal type in the terminfo(4) data
base.

—e Causes pg not to pause at the end of each file.

—f Normally, pg splits lines longer than the screen width, but
some sequences of characters in the text being displayed
(e.g., escape sequences for underlining) generate undesir-
able results. The —f option inhibits pg from splitting

UNIX Programmer’s Manual Commands and Utilities—321

PG (1) PG (1)

lines.

-n Normally, commands must be terminated by a <new-
line> character. This option causes an automatic end of
command as soon as a command letter is entered.

-s Causes pg to print all messages and prompts in standout
mode (usually inverse video).

+linenumber
Start up at linenumber.

+/pattern/
Start up at the first line containing the regular expression
pattern.

The responses that may be typed when pg pauses can be divided
into three categories: those causing further perusal, those that
search, and those that modify the perusal environment.

Commands which cause further perusal normally take a preceding
address, an optionally signed number indicating the point from
which further text should be displayed. This address is interpreted
ir: either pages or lines depending on the command. A signed
address specifies a point relative to the current page or line, and
an unsigned address specifies an address relative to the beginning
of the file. Each command has a default address that is used if
none is provided.

The perusal commands and their defaults are as follows:

(+1) <newline> or <blank>
This causes one page to be displayed. The address is
specified in pages.

(+1) 1 With a relative address this causes pg to simulate scrolling
the screen, forward or backward, the number of lines
specified. With an absolute address this command prints a
screenful beginning at the specified line.

(+1) dor "D
Simulates scrolling half a screen forward or backward.

The following perusal commands take no address.

.or "L Typing a single period causes the current page of text to
be redisplayed.

$ Displays the last windowful in the file. Use with caution
when the input is a pipe.

322—Commands and Utilities UNIX Programmer’s Manual

PG (1) PG(1)

The following commands are available for searching for text pat-
terns in the text. The regular expressions described in ed (1) are
available. They must always be terminated by a <newline>, even
if the —n option is specified.

i/pattern/
Search forward for the ith (default i=1) occurrence of
pattern. Searching begins immediately after the current
page and continues to the end of the current file, without
wrap-around.

i"pattern”
i?pattern?
Search backwards for the ith (default i=1) occurrence of
pattern. Searching begins immediately before the current
. page and continues to the beginning of the current file,
without wrap-around. The " notation is useful for Adds
100 terminals which will not properly handle the ?.

After searching, pg will normally display the line found at the top
of the screen. This can be modified by appending m or b to the
search command to leave the line found in the middle or at the
bottom of the window from now on. The suffix t can be used to
restore the original situation.

The user of pg can modify the environment of perusal with the fol-
lowing commands:

in Begin perusing the ith next file in the command line. The
i is an unsigned number, default value is 1.

ip Begin perusing the ith previous file in the command line.
i is an unsigned number, default is 1.

iw Display another window of text. If i is present, set the
window size to i.

s filename
Save the input in the named file. Only the current file
being perused is saved. The white space between the s
and filename is optional. This command must always be
terminated by a <newline>, even if the —n option is
specified.

h Help by displaying an abbreviated summary of available
commands. :

UNIX Programmer’s Manual Commands and Utilities—323

PG (1) PG(1)

qor Q Quit pg.

lfcommand
Command is passed to the shell, whose name is taken
from the SHELL environment variable. If this is not avail-
able, the default shell is used. This command must always
be terminated by a <newline>, even if the —n option is
specified.

At any time when output is being sent to the terminal, the user
can hit the quit key (normally control-\) or the interrupt (break)
key. This causes pg to stop sending output, and display the
prompt. The user may then enter one of the above commands in
the normal manner. Unfortunately, some output is lost when this
is done, due to the fact that any characters waiting in the
terminal’s output queue are flushed when the quit signal occurs.

If the standard output is not a terminal, then pg acts just like
cat (1), except that a header is printed before each file (if there is
more than one).

EXAMPLE
A sample usage of pg in reading system news would be

news | pg -p "(Page %d):"

NOTES
While waiting for terminal input, pg responds to BREAK, DEL, and
" by terminating execution. Between prompts, however, these sig-
nals interrupt pg’s current task and place the user in prompt
mode. These should be used with caution when input is being read
from a pipe, since an interrupt is likely to terminate the other
commands in the pipeline.

Users of Berkeley’s more will find that the z and f commands are
available, and that the terminal /, *, or ? may be omitted from the
searching commands.

FILES
/usr/lib/terminfo/* Terminal information data base

/tmp/pg* Temporary file when input is from a pipe

324—Commands and Utilities UNIX Programmer’s Manual

PG (1) PG (1)

SEE ALSO
crypt(1), ed(1), grep(1).
terminfo(4) in the UNIX Programmer’s Manual —Volume 2: Sys-
tem Calls and Library Routines.

BUGS
If terminal tabs are not set every eight positions, undesirable
results may occur.

When using pg as a filter with another command that changes the
terminal I/0 options (e.g., crypt (1)), terminal settings may not be
restored correctly.

UNIX Programmer’s Manual Commands and Utilities—325

PIC(1) PIC(1)

NAME
pic — troff preprocessor for drawing simple pictures
SYNOPSIS ,
pic [=Tt 11 files]
DESCRIPTION
Pic is a troff(1) preprocessor for drawing simple figures on a

typesetter. The basic objects are box, line, arrow, circle, ellipse,
arc and text.

The optional argument —T? specifies device ¢; currently supported
devices are aps (Autologic APS-5), X97 (Xerox 9700), and i10
(Imagen Imprint-10). Default is —Taps.

SEE ALSO
troff (1).

326—Commands and Utilities UNIX Programmer’s Manual

PR(1) PR (1)

NAME
pr — print files

SYNOPSIS
pr [options] [files]

DESCRIPTION
Pr prints the named files on the standard output. If file is —, or if
no files are specified, the standard input is assumed. By default,
the listing is separated into pages, each headed by the page
number, a date and time, and the name of the file.

By default, columns are of equal width, separated by at least one
space; lines which do not fit are truncated. If the —s option is
used, lines are not truncated and columns are separated by the
separation character.

If the standard output is associated with a terminal, error mes-
sages are withheld until pr has completed printing.

The below options may appear singly or be combined in any order:
+k Begin printing with page k (default is 1).

-k Produce k-column output (default is 1). The options —e
and —i are assumed for multi-column output.

—a Print multi-column output across the page.

-m Merge and print all files simultaneously, one per column
(overrides the —k, and —a options).

—d Double-space the output.

—eck Expand input tabs to character positions k+1, 2+k+1,
3+k+1, etc. If k is O or is omitted, default tab settings at
every eighth position are assumed. Tab characters in the
input are expanded into the appropriate number of spaces.
If ¢ (any non-digit character) is given, it is treated as the
input tab character (default for ¢ is the tab character).

—ick In output, replace white space wherever possible by insert-
ing tabs to character positions k+1, 2#k+1, 3+k+1, etc.
If k is O or is omitted, default tab settings at every eighth
position are assumed. If ¢ (any non-digit character) is
given, it is treated as the output tab character (default for
c is the tab character).

—nck Provide k-digit line numbering (default for k is 5). The
number occupies the first k+1 character positions of each

UNIX Programmer’s Manual Commands and Utilities—327

PR(1)

-sc

EXAMPLES

PR(1)

column of normal output or each line of —m output. If ¢
(any non-digit character) is given, it is appended to the
line number to separate it from whatever follows (default
for ¢ is a tab).

Set the width of a line to k character positions (default is
72 for equal-width multi-column output, no limit other-
wise).

Offset each line by k character positions (default is 0).
The number of character pesitions per line is the sum of
the width and offset.

Set the length of a page to k lines (default is 66).

Use the next argument as the header to be printed instead
of the file name.

Pause before beginning each page if the output is directed
to a terminal (pr will ring the bell at the terminal and
wait for a carriage return).

Use form-feed character for new pages (default is to use a
sequence of line-feeds). Pause before beginning the first
page if the standard output is associated with a terminal.

Print no diagnostic reports on failure to open files.

Print neither the five-line identifying header nor the five-
line trailer normally supplied for each page. Quit printing
after the last line of each file without spacing to the end of
the page.

Separate columns by the single character ¢ instead of by
the appropriate number of spaces (default for ¢ is a tab).

Print filel and file2 as a double-spaced, three-column listing
headed by “file list™:

pr —3dh "file list" filel file2

Write filel on file2, expanding tabs to columns 10, 19, 28, 37, ...:

FILES:

pr —e9 —t <filel >file2

/dev/tty* to suspend messages

SEE ALSO
cat(1).

328—Commands and Utilities UNIX Programmer’s Manual

PROF (1) PROF (1)

NAME
prof — display profile data

SYNOPSIS
prof [—tcan] {—ox] [—g]l [=z] [=h] [—=s] [-m mdatal
[prog]

DESCRIPTION

Prof interprets a profile file produced by the monitor (3C) func-
tion. The symbol table in the object file prog (a.out by default) is
read and correlated with a profile file (mon.out by default). For
each external text symbol the percentage of time spent executing
between the address of that symbol and the address of the next is
printed, together with the number of times that function was
called and the average number of milliseconds per call.

The mutually exclusive options ¢, ¢, a, and n determine the type of
sorting of the output lines:

-t Sort by decreasing percentage of total time (default).
-c Sort by decreasing number of calls.

—a Sort by increasing symbol address.

-n Sort lexically by symbol name.

The mutually exclusive options 0 and x specify the printing of the
address of each symbol monitored:

-0 Print each symbol address (in octal) along with the sym-
bol name.

—-X Print each symbol address (in hexadecimal) along with
the symbol name.

The following options may be used in any combination:
-g Include non-global symbols (static functions).

-z Include all symbols in the profile range (see
monitor (3C)), even if associated with zero number of
calls and zero time.

—h Suppress the heading normally printed on the report.
(This is useful if the report is to be processed further.)

-s Print a summary of several of the monitoring parameters
and statistics on the standard error output.

-m mdata
Use file mdata instead of mon.out as the input profile file.

UNIX Programmer’s Manual Commands and Ultilities—329

PROF(1) PROF(1)

A program creates a profile file if it has been loaded with the —p
option of cc(1). This option to the cc command arranges for calls
to monitor (3C) at the beginning and end of execution. It is the
call to monitor at the end of execution that causes a profile file to
be written. The number of calls to a function is tallied if the —p
option was used when the file containing the function was com-
piled.

The name of the file created by a profiled program is controlled by
the environment variable PROFDIR. If PROFDIR does not exist,
“mon.out” is produced in the directory current when the program
terminates. If PROFDIR = string, “string/pid.progname” is pro-
duced, where progname consists of argvl0] with any path prefix
removed, and pid is the program’s process id. If PROFDIR =
nothing, no profiling output is produced.

A single function may be split into subfunctions for profiling by
means of the MARK macro (see prof(5)).

FILES
mon.out for profile
a.out for namelist

SEE ALSO
cc(1).
exit(2), profil(2), monitor(3C), prof(5) in the UNIX Programmer’s
Manual —Volume 2: System Calls and Library Routines.

WARNING

The times reported in successive identical runs may show variances
of 20% or more, because of varying cache-hit ratios due to sharing
of the cache with other processes. Even if a program seems to be
the only one using the machine, hidden background or asynchro-
nous processes may blur the data. In rare cases, the clock ticks
initiating recording of the program counter may “beat™ with loops
in a program, grossly distorting measurements.

Call counts are always recorded precisely, however.

BUGS
Only programs that call exit(2) or return from main will cause a
profile file to be produced, unless a final call to monitor is expli-
citly coded.

The use of the —p option cc(1) to invoke profiling imposes a limit
of 600 (300 on some computers) functions that may have call
counters established during program execution. For more counters

330—Commands -and Utilities UNIX Programmer’s Manual

PROF(1) PROF(1)

you must call monitor (3C) directly. If this limit is exceeded,
other data will be overwritten and the mon.out file will be cor-
rupted. The number of call counters used will be reported
automatically by the prof command whenever the number exceeds
5/6 of the maximum.

UNIX Programmer’s Manual Commands and Utilities—331

PRS (1) PRS (1)

NAME
prs — print an SCCS file

SYNOPSIS
prs [—dldataspecl] [=rISIDI] [—el [—1] [—cldate-timell [—al
files

DESCRIPTION

Prs prints, on the standard output, parts or all of an SCCS file (see
sccsfile(4)) in a user-supplied format. If a directory is named, prs
behaves as though each file in the directory were specified as a
named file, except that non-SCCS files (last component of the path
name does not begin with s.), and unreadable files are silently
ignored. If a name of — is given, the standard input is read; each
line of the standard input is taken to be the name of an SCCS file
or directory to be processed; non-SCCS files and unreadable files
are silently ignored.

Arguments to prs, which may appear in any order, consist of
keyletter arguments, and file names.

All the described keyletter arguments apply independently to each
named file:

—d[dataspec] Used to specify the output data
specification. The dataspec is a string con-
sisting of SCCS file data keywords (see
DATA KEYWORDS) interspersed with
optional user supplied text.

—r[SiD] Used to specify the SCCS IDentification
(SID) string of a delta for which informa-
tion is desired. If no SID is specified, the
SID of the most recently created delta is
assumed.

—e Requests information for all deltas created
earlier than and including the delta desig-
nated via the —r keyletter or the date given
by the —c option.

-1 Requests information for all deltas created
later than and including the delta desig-
nated via the —r keyletter or the date given
by the —c option.

332—Commands and Utilities UNIX Programmer’s Manual

PRS(1) . PRS(1)

~cldate-time]l The cutoff date-time =—clcutoffll is in the
form:

YYIMMIDDIHHIMMISSIIIII

Units omitted from the date-time default to
their maximum possible values; that is,
—¢7502 is equivalent to —c750228235959.
Any number of non-numeric characters
may separate the various 2-digit pieces of
the cutoff date in the form: "—c77/2/2

9:22:25".
-a Requests printing of information for both
removed, ie., delta type = R, (see

rmdel (1)) and existing, i.e., delta type =
D, deltas. If the —a keyletter is not
specified, information for existing deltas
only is provided.

DATA KEYWORDS
Data keywords specify which parts of an SCCS file are to be
retrieved and output. All parts of an SCCS file (see sccsfile(4))
have an associated data keyword. There is no limit on the number
of times a data keyword may appear in a dataspec.

The information printed by prs consists of: (1) the user-supplied
text; and (2) appropriate values (extracted from the SCCS file)
substituted for the recognized data keywords in the order of
appearance in the dataspec. The format of a data keyword value
is either Simple (S), in which keyword substitution is direct, or
Multi-line (M), in which keyword substitution is followed by a
carriage return.

User-supplied text is any text other than recognized data key-
words.

A tab is specified by \t and carriage return/new-line is specified by
\n. The default data keywords are:

":Dt:\t:DL:\nMRs:\n:MR:COMMENTS:\n:C:"

UNIX Programmer’s Manual Commands and Utilities—333

PRS(1)

Keyword
:Dt:
:DL:
:Li:

FopprwegEE

:Dm:

:Th:
Tm:
:Ts:

PRS(1)

TABLE 1. SCCS Files Data Keywords

Data Item

Delta information

Delta line statistics

Lines inserted by Delta
Lines deleted by Delta
Lines unchanged by Delta
Delta type

SCCS ID string (SID)

Release number

Level number

Branch number

Sequence number

Date Delta created

Year Delta created
Month Delta created

Day Delta created

Time Delta created

Hour Delta created
Minutes Delta created
Seconds Delta created
Programmer who created Delta
Delta sequence number
Predecessor Delta seg-no.
Seq-no. of deltas incl., excl., ignored
Deltas included (seq #)
Deltas excluded (seq #)
Deltas ignored (seq #)
MR numbers for delta
Comments for delta

User names

Flag list

Module type flag

MR validation flag

MR validation pgm name
Keyword error/warning flag
Keyword validation string
Branch flag

Joint edit flag

Locked releases

334—Commands and Utilities

File Section
Delta Table

User Names
Flags

Value
See below*
:Liz/:Ld:/:Lu:
nnann
nnnnn
nnann

DorR
RecLcBi:S:
nnnn
nnnn
nnnn
pnnn
:Dy:/:Dm:/:Dd:

logname
nnnn
nnnn
:Dn:/:Dx:/:Dg:
:DS: :DS:...
:DS: :DS:...
:DS: :DS:...
text
text
text
text
text
yes or no

text
yes or no

text
yes or no
yes or no

R:...

Format

v n 222200 VNN N DN N AN N NANANN VLN RN AR

UNIX Programmer’s Manual

PRS(1) PRS(1)

:Q: User-defined keyword " text S
:M: Module name " text S
:FB: Floor boundary " :R: S
:CB: Ceiling boundary " :R: S
:Ds: Default SID " HH S
:ND: Null delta flag " yes or no S
:FD: File descriptive text Comments text M
:BD: Body Body text M
:GB: Gotten body " text M
:W: A form of what (1) string N/A ZaMEL: S
:A: A form of what (1) string N/A :ZzY::M::d:Z: S
:Z: what (1) string delimiter N/A @@ S
:F: SCCS file name N/A text S
:PN: SCCS file path name N/A text S
* :Dt: = :DT: :I: :D: :T: :P: :DS: :DP:
EXAMPLES

prs —d"Users and/or user IDs for :F: are:\n:UN:" s.file
may produce on the standard output:

Users and/or user IDs for s.file are:
Xyz
131
abc

prs —d"Newest delta for pgm :Mz:: :I: Created :D: By :P:"
—r s.file

may produce on the standard output:

Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas
As a special case:

prs s.file
may produce on the standard output:

D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:

bl78-12345

b179-54321

COMMENTS:

this is the comment line for s.file initial delta

for each delta table entry of the “D” type. The only keyletter
argument allowed to be used with the special case is the —a
keyletter.

UNIX Programmer’s Manual Commands and Utilities—335

PRS (1) PRS (1)

FILES

SEE ALSO
admin(1), delta(1), get(1), help(1).
sccsfile(4) in the UNIX Programmer’s Manual —Volume 2: Sys-
tem Calls and Library Routines.

DIAGNOSTICS
Use help (1) for explanations.

336—Commands and Utilities v UNIX Programmer’s Manual

PS(1) PS(1)

NAME
ps — report process status

SYNOPSIS
ps [options]

DESCRIPTION
Ps prints certain information about active processes. Without
options, information is printed about processes associated with the
current terminal. The output consists of a short listing containing
only the process ID, terminal identifier, cumulative execution time,
and the command name. Otherwise, the information that is
displayed is controlled by the selection of options.

Options using lists as arguments can have the list specified in one
of two forms: a list of identifiers separated from one another by a
comma, or a list of identifiers enclosed in double quotes and
separated from one another by a comma and/or one or more
spaces.

The options are:

—e Print information about all processes.

-—d Print information about all processes, except process
group leaders.

—a Print information about all processes, except process
group leaders and processes not associated with a
terminal.

-f Generate a full listing. (See below for meaning of
columns in a full listing).

-1 Generate a long listing. See below.

—c corefile Use the file corefile in place of /dev/mem.

—s swapdev Use the file swapdev in place of /dev/swap. This is
useful when examining a corefile; a swapdev of
/dev/mull will cause the user block to be zeroed out.

—n namelist The argument will be taken as the name of an alter-
nate system namelist file in place of /unix.

—t termlist Restrict listing to data about the processes associated
with the terminals given in termlist. Terminal
identifiers may be specified in one of two forms: the
device’s file name (e.g., tty0d) or if the device’s file
name starts with tty, just the digit identifier (e.g.,
04).

—p proclist Restrict listing to data about processes whose process
ID numbers are given in proclist.

UNIX Programmer’s Manual Commands and Utilities—337

PS(1)

—u uidlist

PS(1)

Restrict listing to data about processes whose user ID

numbers or login names are given in wuidlist. In the
listing, the numerical user ID will be printed unless
the —f option is used, in which case the login name

will be printed.
Restrict listing to data about processes whose process

—g grplist

group leaders are given in grplist.

The column headings and the meaning of the columns in a ps list-
ing are given below; the letters f and I indicate the option (full or
long) that causes the corresponding heading to appear; all means

that the heading always appears.

Note that these two options

determine only what information is provided for a process; they do
not determine which processes will be listed.

F (1))
process:

0

1

2
4

10
20

40
100

200

S o

XEN-mg®no

338—Commands and Utilities

Flags (octal and additive) associated with the

swapped;
in core;
system process;

locked-in core (e.g., for physical
1/0);
being swapped;
being traced by another process;
another tracing flag;
3B20 computer: swapin
expansion;
VAX-11/780: text pointer valid;
3B20 computer: process is child
(during fork swap);

VAX-11/780: process is partially
swapped.

segment

The state of the process:

non-existent;
sleeping;
waiting;
running;
intermediate;
terminated;
stopped;
growing.

UNIX Programmer’s Manual

PS(1)

UID (#))
PID al)
PPID (R))
C (A
PRI ()]
NI ()]
ADDR {)]
SZ ()]
WCHAN O
STIME (D
TTY (all)
TIME (al)
CMD (ald)

PS(1)

The user ID number of the process owner; the
login name is printed under the —f option.

The process ID of the process; it is possible to
kill a process if you know this datum.

The process ID of the parent process.

Processor utilization for scheduling.

The priority of the process; higher numbers
mean lower priority.

Nice value; used in priority computation.

The memory address of the process (a pointer to
the segment table array on the 3B20 computer),
if resident; otherwise, the disk address.

The size in blocks of the core image of the pro-
cess.

The event for which the process is waiting or
sleeping; if blank, the process is running.
Starting time of the process.

The controlling terminal for the process.

The cumulative execution time for the process.
The command name; the full command name
and its arguments are printed under the —f
option.

A process that has exited and has a parent, but has not yet been
waited for by the parent, is marked <defunct>.

Under the —f option, ps tries to determine the command name
and arguments given when the process was created by examining
memory or the swap area. Failing this, the command name, as it
would appear without the —f option, is printed in square brackets.

FILES

/unix system namelist

/dev/mem = memory

/dev/swap the default swap device

/etc/passwd supplies UID information

/etc/ps_data internal data structure

/dev searched to find terminal (“tty”) names

SEE ALSO

acctcom(1), kill(1), nice(1).

UNIX Programmer’s Manual Commands and Utilities—339

PS(1) : PS(1)

BUGS
Things can change while ps is running; the picture it gives is only
a close approximation to reality. Some data printed for defunct
processes are irrelevant.

340—Commands and Utilities UNIX Programmer’s Manual

PTX (1) PTX (1)

NAME
ptx — permuted index

SYNOPSIS
ptx [options] [input [output]]

DESCRIPTION

Ptx generates the file output that can be processed with a text for-
matter to produce a permuted index of file input (standard input
and output default). It has three phases: the first does the permu-
tation, generating one line for each keyword in an input line. The
keyword is rotated to the front. The permuted file is then sorted.
Finally, the sorted lines are rotated so the keyword comes at the
middle of each line. Ptx output is in the form:

xx "tail" "before keyword" "keyword and after” "head"

where .xx is assumed to be an nroff or troff (1) macro provided by
the user, or provided by the mptx(5) macro package. The before
keyword and keyword and after fields incorporate as much of the
line as will fit around the keyword when it is printed. Tail and
head, at least one of which is always the empty string, are
wrapped-around pieces small enough to fit in the unused space at
the opposite end of the line.

The following options can be applied:

-f Fold upper and lower case letters for sorting.
—t Prepare the output for the phototypesetter.
-wn Use the next argument, n, as the length of the output

line. The default line length is 72 characters for nroff
and 100 for troff. '

—gn Use the next argument, n, as the number of charac-
ters that ptx will reserve in its calculations for each
gap among the four parts of the line as finally printed.
The default gap is 3.

—o only Use as keywords only the words given in the only file.

—iignore Do not use as keywords any words given in the ignore
file. If the —i and —o options are missing, use
/usr/lib/eign as the ignore file.

—b break Use the characters in the break file to separate words.
Tab, new-line, and space characters are always used
as break characters.

UNIX Programmer’s Manual Commands and Utilities—341

PTX (1) PTX (1)

-r Take any leading non-blank characters of each input
line to be a reference identifier (as to a page or
chapter), separate from the text of the line. Attach
that identifier as a 5th field on each output line.

The index for this manual was generated using ptx.

FILES
/bin/sort
/usr/lib/eign
/usr/lib/tmac/tmac.ptx

SEE ALSO
nroff (1), troff(1).
mm(5), mptx(5) in the UNIX Programmer’s Manual —Volume 2:
System Calls and Library Routines.

BUGS
Line length counts do not account for overstriking or proportional
spacing. :
Lines that contain tildes () are botched, because ptx uses that
character internally.

342—Commands and Utilities UNIX Programmer’s Manual

PWD(1) PWD(1)

NAME
pwd — working directory name

SYNOPSIS
pwd

DESCRIPTION
Pwd prints the path name of the working (current) directory.

SEE ALSO
cd(1).

DIAGNOSTICS
“Cannot open ..” and “Read error in ..” indicate possible file sys-
tem trouble and should be referred to a UNIX system program-
ming counselor.

UNIX Programmer’s Manual Commands and Utilities—343

RATFOR(1) RATFOR (1)

NAME
ratfor — rational Fortran dialect

SYNOPSIS
ratfor [options 1 [files]

DESCRIPTION
Ratfor converts a rational dialect of Fortran into ordinary irra-
tional Fortran. Ratfor provides control flow constructs essentially
identical to those in C:

statement grouping:
{ statement; statement; statement }

decision-making:
if (condition) statement [else statement]
switch (integer value) {
case integer: statement

[default:] statement

}

loops: .
while (condition) statement

for (expression; condition; expression) statement
do limits statement

repeat statement [until (condition)]

break

next

and some syntactic sugar to make programs easier to read and
write:

free form input:
multiple statements/line; automatic continuation

comments:
this is a comment.

translation of relationals:
>, > =, etc., become .GT., .GE., etc.

return expression to caller from function:
return (expression)

define:
define name replacement

344—Commands and Ultilities UNIX Programmer’s Manual

RATFOR(1) RATFOR (1)

include:
include file

The option —h causes quoted strings to be turned into 27H con-
structs. The —C option copies comments to the output and
attempts to format it neatly. Normally, continuation lines are
marked with a & in column 1; the option —6x makes the con-
tinuation character x and places it in column 6.

Ratfor is best used with 77 (1).

SEE ALSO
efl(1), £77(1).

B. W. Kernighan and P. J. Plauger, Software Tools, Addison-
Wesley, 1976.

UNIX Programmer’s Manual Commands and Utilities—345

REGCMP(1) REGCMP(1)

NAME

regcmp — regular expression compile
SYNOPSIS

regemp [—] files
DESCRIPTION

Regemp, in most cases, precludes the need for calling regemp (3X)
from C programs. This saves on both execution time and program
size. The command regcmp compiles the regular expressions in
file and places the output in file.i. If the — option is used, the
output will be placed in file.c. The format of entries in file is a
name (C variable) followed by one or more blanks followed by a
regular expression enclosed in double quotes. The output of
regemp is C source code. Compiled regular expressions are
represented as extern char vectors. File.i files may thus be
included into C programs, or file.c files may be compiled and later
loaded. In the C program which uses the regemp output,
regex (abc,line) will apply the regular expression named abc to
line. Diagnostics are self-explanatory.

EXAMPLES
name "([A—Za—z][A—Za—z0—9]+)$0"

telno "\({0,1} [2—91[011[1—-9])$0V {0,1} ="
“([2—91l0-91{2}) $1[—1{0,1}"
"([0—91{4})$2"

In the C program that uses the regcmp output,
regex (telno, line, area, exch, rest)

will apply the regular expression named telno to line.

SEE ALSO
regemp(3X) in the UNIX Programmer’s Manual —Volume 2:
System Calls and Library Routines.

346—Commands and Utilities UNIX Programmer’s Manual

RJESTAT(1C) RJESTAT(1C)

NAME
rjestat — RJE status report and interactive status console
SYNOPSIS
rjestat [host 1... [—shost 1 [—chost emd 1 [—jhost
jobname 1..
DESCRIPTION

Rjestat provides a method of determining the status of an RJE link
and of simulating an IBM remote console (with UNIX system
features added). When invoked with no arguments, rjestat reports
the current status of all the RJE links connected to the UNIX sys-
tem. The options are:

host Print the status of the line to host. Host is the pseu-
donym for a particular IBM system. It can be any
name that corresponds to one in the first column of
the RJE configuration file.

—shost After all the arguments have been processed, start an
interactive status console to host.

—chost cmd
Interpret ¢cmd as if it were entered in status console
mode to host. See below for the proper format of
emd.

—jhost jobname
Print all status pertaining to a user job with name
jobname that has been sent by the host system to the
rje system.

In status console mode, rjestat prompts with the host pseudonym
followed by : whenever it is ready to accept a command. Com-
mands are terminated with a new-line. A line that begins with ! is
sent to the UNIX system shell for execution. A line that begins
with the letter q terminates rjestat. All other input lines are
assumed to have the form:

ibmcemd [redirect 1

Ibmcemd is any IBM JES or HASP command. Only the super-user
or rje login can send commands other than display or inquiry com-
mands. Redirect is a pipeline or a redirection to a file (e.g., “>
file” or “ | grep ...”). The IBM response is written to the pipeline
or file. If redirect is not present, the response is written to the
standard output of rjestat.

UNIX Programmer’s Manual Commands and Utilities—347

RJESTAT (1C) RJESTAT(1C)

An interrupt signal (DEL or BREAK) will cancel the command in
progress and cause rjestat to return to the command input mode.
EXAMPLE
The following command reports the status of all the card readers
attached to host A, remote 5. JES2 is assumed.
rjestat —cA '$du,rmt5 | grep RD’

DIAGNOSTICS -
The message “RIJE error: ...” indicates that rjestat found an incon-
sistency in the RJE system. This may be transient but should be
reported to the site administrator.

FILES
/usr/rje/lines RIJE configuration file

resp host response file that exists in the RJE subsystem
directory (e.g., /usr/rjel).
SEE ALSO
send(1C).

348—Commands and Utilities UNIX Programmer’s Manual

RM(1) RM(1)

NAME

rm, rmdir — remove files or directories
SYNOPSIS

rm [—fri] file ...

rmdir dir ...
DESCRIPTION

Rm removes the entries for one or more files from a directory. If
an entry was the last link to the file, the file is destroyed. Removal
of a file requires write permission in its directory, but neither read
nor write permission on the file itself.

If a file has no write permission and the standard input is a termi-
nal, its permissions are printed and a line is read from the stan-
dard input. If that line begins with y the file is deleted, otherwise
the file remains. No questions are asked when the —f option is
given or if the standard input is not a terminal.

If a designated file is a directory, an error comment is printed
unless the optional argument —r has been used. In that case, rm
recursively deletes the entire contents of the specified directory,
and the directory itself.

If the —i (interactive) option is in effect, rm asks whether to
delete each file, and, under —r, whether to examine each directory.

Rmdir removes entries for the named directories, which must be
empty.

SEE ALSO
unlink(2) in the UNIX Programmer’s Manual —Volume 2: System
Calls and Library Routines.

DIAGNOSTICS
Generally self-explanatory. It is forbidden to remove the file ..
merely to avoid the antisocial consequences of inadvertently doing
something like: '

rm -r.*

UNIX Programmer’s Manual Commands and Utilities—349

RMDEL (1) RMDEL(1)

NAME
rmdel — remove a delta from an SCCS file

SYNOPSIS
rmdel —rSID files

DESCRIPTION

Rmdel removes the delta specified by the SID from each named
SCCS file. The delta to be removed must be the newest (most
recent) delta in its branch in the delta chain of each named SCCS
file. In addition, the SID specified must not be that of a version
being edited for the purpose of making a delta (. e., if a p-file
(see get (1)) exists for the named SCCS file, the SID specified must
not appear in any entry of the p-file).

If a directory is named, rmdel behaves as though each file in the
directory were specified as a named file, except that non-SCCS files
(last component of the path name does not begin with s.) and
unreadable files are silently ignored. If a name of — is given, the
standard input is read; each line of the standard input is taken to
be the name of an SCCS file to be processed; non-SCCS files and
unreadable files are silently ignored.

Simply stated, the exact permissions necessary to remove a delta
are either (1) if you make a delta you can remove it; or (2) if you
own the file and directory you can remove a delta.

FILES
x.file (see delta(1))
z.file (see delta(1))
SEE ALSO

delta(1), get(1), help(1), prs(1).
sccsfile(4) in the UNIX Programmer’s Manual —Volume 2: Sys-
tem Calls and Library Routines.

DIAGNOSTICS
Use help (1) for explanations.

350—Commands and Utilities UNIX Programmer’s Manual

SACT(1) SACT (1)

NAME
sact — print current SCCS file editing activity

SYNOPSIS
sact files

DESCRIPTION
Sact informs the user of any impending deltas to a named SCCS
file. This situation occurs when get(1) with the —e option has
been previously executed without a subsequent execution of
delta(1). 1If a directory is named on the command line, sact
behaves as though each file in the directory were specified as a
named file, except that non-SCCS files and unreadable files are
silently ignored. If a name of — is given, the standard input is
read with each line being taken as the name of an SCCS file to be

processed.
The output for each named file consists of five fields separated by
spaces.

Field 1 specifies the SID of a delta that currently exists
in the SCCS file to which changes will be made
to make the new delta.

Field 2 specifies the SID for the new delta to be
created.

Field 3 contains the logname of the user who will
make the delta (i.e., executed a get for edit-
ing).

Field 4 contains the date that get —e was executed.

Field 5 contains the time that get —e was executed.

SEE ALSO
delta(1), get(1), unget(1).
DIAGNOSTICS

Use help(1) for explanations.

UNIX Programmer’s Manual Commands and Utilities—351

SAG (1G) SAG(1G)

NAME
sag — system activity graph

SYNOPSIS
sag [options]

DESCRIPTION

Sag graphically displays the system activity data stored in a binary
data file by a previous sar(1) run. Any of the sar data items may
be plotted singly, or in combination; as cross plots, or versus time.
Simple arithmetic combinations of data may be specified. Sag
invokes sar and finds the desired data by string-matching the data
column header (run sar to see what is available). These options
are passed through to sar:

—s time Select data later than time in the form hh[:mml.
Default is 08:00.

—e time Select data up to time. Default is 18:00.

—isec Select data at intervals as close as possible to sec
seconds. ‘

—~f file Use file as the data source for sar. Default is the
current daily data file /usr/adm/sa/sadd.

Other options:

—T term Produce output suitable for terminal term. See
tplot(1G) for known terminals. If term is vpr, output is
processed by vpr —p and queued to a Versatec printer.
Default for term is STERM.

—X spec X axis specification with spec in the form:
"name [op namel...[lo hil"

—y spec Yy axis specification with spec in the same form as above.

Name is either a string that will match a column header in the sar
report, with an optional device name in square brackets, e.g.,
r+w/sldsk —1], or an integer value. Op is + = * or / sur-
rounded by blanks. Up to five names may be specified.
Parentheses are not recognized. Contrary to custom, + and -
have precedence over * and /. Evaluation is left to right. Thus
A/ A+ B=+100 is evaluated (A/(A+B))*100, and
A+ B/C+Dis (A+B)/(C+D). Lo and hi are optional
numeric scale limits. If unspecified, they are deduced from the
data. '

352—Commands and Utilities UNIX Programmer’s Manual

SAG(1G) SAG (1G)

A single spec is permitted for the x axis. If unspecified, time is
used. Up to 5 spec’s separated by ; may be given for -—y.
Enclose the —x and —y arguments in "" if blanks or \<CR> are
included. The —y default is:

=y "%usr 0 100; %usr + %sys 0 100; %usr + %sys + %wio 0 100"

EXAMPLES
To see today’s CPU utilization:
sag

To see activity over 15 minutes of all disk drives:
TS=>date +%H:%M"
sar —o tempfile 60 15
TE=‘date +%H:%M*
sag —f tempfile —s $TS —e $TE —y "r+w/sldsk]"

FILES
/usr/adm/sa/sadd daily data file for day dd.

SEE ALSO
sar(1), tplot(1G).

UNIX Programmer’s Manual Commands and Utilities—353

SAR (1) | SAR (1)

NAME
sar — system activity reporter

SYNOPSIS
sar [—ubdycwaqvmprAl [—o filel t [n]

sar [—ubdycwaqvmprA]l [—s timel [—e timel [—i secl
[—f file]

DESCRIPTION

Sar, in the first instance, samples cumulative activity counters in
the operating system at n intervals of ¢ seconds. If the —o option
is specified, it saves the samples in file in binary format, The
default value of n is 1. In the second instance, with no sampling
interval specified, sar extracts data from a previously recorded file,
either the one specified by —f option or, by default, the standard
system activity daily data file /usr/adm/sa/sadd for the current
day dd. The starting and ending times of the report can be
bounded via the =—s and —e time arguments of the form
hh[:mml:ss]l. The —i option selects records at sec second inter-
vals. Otherwise, all intervals found in the data file are reported.

In either case, subsets of data to be printed are specified by option:

—u Report CPU utilization (the default):
%usr, %sys, %wio, %idle — portion of time running in user
mode, running in system mode, idle with some process wait-
ing for block 170, and otherwise idle.

—b Report buffer activity:
bread/s, bwrit/s — transfers per second of data between sys-
tem buffers and disk or other block devices;
Iread/s, lwrit/s — accesses of system buffers;
%rcache, %wcache — cache hit ratios, e. g., 1 — bread/Iread;

pread/s, pwrit/s — transfers via raw (physical) device
mechanism.

—d Report activity for each block device, e. g., disk or tape
drive:

%busy, avque — portion of time device was busy servicing a
transfer request, average number of requests outstanding
during that time;

r+w/s, blks/s — number of data transfers from or to device,
number of bytes transferred in 512-byte units;

354—Commands and Utilities UNIX Programmer’s Manual

SAR(1)

UNIX Programmer’s Manual

-y

-C

-Ww

—a

—-q

-V

-m

=P

SAR(1)

avwait, avserv — average time in ms. that transfer requests
wait idly on queue, and average time to be serviced (which
for disks includes seek, rotational latency and data transfer
times).

Report TTY device activity:

rawch/s, canch/s, outch/s — input character rate, input
character rate processed by canon, output character rate;
rcvin/s, xmtin/s, mdmin/s — receive, transmit and modem
interrupt rates.

Report system calls:

scall/s — system calls of all types;

sread/s, swrit/s, fork/s, exec/s — specific system calls;
rchar/s, wchar/s — characters transferred by read and write
system calls.

Report system swapping and switching activity:

swpin/s, swpot/s, bswin/s, bswot/s — number of transfers
and number of 512-byte units transferred for swapins and
swapouts (including initial loading of some programs);
pswch/s — process switches.

Report use of file access system routines:

iget/s, namei/s, dirblk/s.

Report average queue length while occupied, and % of time
occupied:

rung-sz, %runocc — run queue of processes in memory and
runnable;

swpq-sz, %swpocc — swap queue of processes swapped out
but ready to run.

Report status of process, i-node, file, record lock and file
header tables:

proc-sz, inod-sz, file-sz, lock-sz, fhdr-sz — entries/size for
each table, evaluated once at sampling point;

ov — overflows that occur between sampling points for each
table.

Report message and semaphore activities:

msg/s, sema/s — primitives per second.

Report paging activity:

vilt/s, pfit/s, pgfil/s, rclm/s —number of address translation
faults, protection faults, page-ins from file system and page
reclaims occurring per second.

Commands and Utilities—355

SAR(‘l) ' ' SAR(1)

—r Report free swap and memory space:
freemem — number of free pages of memory; freeswp —
number of free blocks of swap space; the free space reported
is necessarily contiguous.
—A Report all data. Equivalent to —udgbwecayvymor.
EXAMPLES
To see today’s CPU activity so far:
sar
To watch CPU activity evolve for 10 minutes and save data:
sar —o temp 60 10
To later review disk and tape activity from that period:
sar —d —f temp
FILES
/usr/adm/sa/sadd daily data file, where dd are digits representing
the day of the month.
SEE ALSO
sag(1G).
sar(1M) in the UNIX Programmer’s Manual —Volume 3: System
Administration Facilities.

356—Commands and Utilities UNIX Programmer’s Manual

SCCSDIFF (1) SCCSDIFF (1)

NAME

scesdiff — compare two versions of an SCCS file
SYNOPSIS

scesdiff —rSID1 —rSID2 [—p] [—sn] files
DESCRIPTION

Scesdiff compares two versions of an SCCS file and generates the
differences between the two versions. Any number of SCCS files
may be specified, but arguments apply to all files.

—rSID? SIDI and SID2 specify the deltas of an SCCS
file that are to be compared. Versions are
passed to bdiff (1) in the order given.

-p pipe output for each file through pr(1).

—sn n is the file segment size that bdiff will pass to
diff (1). This is useful when diff fails due to a
high system load.

FILES

SEE ALSO
bdiff (1), get(1), help(1), pr(1).

DIAGNOSTICS

“file: No differences” If the two versions are the same.
Use help (1) for explanations.

UNIX Programmer’s Manual Commands and Ultilities—357

SDB(1) SDB(1)

NAME
sdb — symbolic debugger

SYNOPSIS
sdb [—w] [=WI] [objfil [corfil [directory-list 11 1

DESCRIPTION
Sdb is a symbolic debugger that can be used with C and F77 pro-
grams. It may be used to examine their object files and core files
and to provide a controlled environment for their execution.

Objfil is normally an executable program file which has been com-
piled with the —g (debug) option; if it has not been compiled with
the —g option, or if it is not an executable file, the symbolic capa-
bilities of sdb will be limited, but the file can still be examined and
the program debugged. The default for objfil is a.out. Corfil is
assumed to be a core image file produced after executing objfil;
the default for corfil is core. The core file need not be present. A
— in place of corfil will force sdb to ignore any core image file.
The colon separated list of directories (directory-list) is used to
locate the source files used to build objfil.

It is useful to know that at any time there is a current line and
current file. If corfil exists then they are initially set to the line
and file containing the source statement at which the process ter-
minated. Otherwise, they are set to the first line in main(). The
current line and file may be changed with the source file examina-
tion commands.

By default, warnings are provided if the source files used in pro-
ducing objfil cannot be found, or are newer than objfil. This
checking feature and the accompanying warnings may be disabled
by the use of the —W flag.

Names of variables are written just as they are in C or F77. Note
that names in C are now of arbitrary length, sdb will no longer
truncate names. Variables local to a procedure may be accessed
using the form procedure:variable. If no procedure name is given,
the procedure containing the current line is used by default.

It is also possible to refer to structure members as
variable.member, pointers to structure = members as
variable—>member and array elements as variablelnumberl.
Pointers may be dereferenced by using the form pointerd0]l. Com-
binations of these forms may also be used. F77 common variables
may be referenced by using the name of the common block instead

358—Commands and Ultilities UNIX Programmer’s Manual

SDB(1) SDB(1)

of the structure name. Blank common variables may be named by
the form .variable. A number may be used in place of a structure
variable name, in which case the number is viewed as the address
of the structure, and the template used for the structure is that of
the last structure referenced by sdb. An unqualified structure vari-
able may also be used with various commands. Generally, sdb will
interpret a structure as a set of variables. Thus, sdb will display
the values of all the elements of a structure when it is requested to
display a structure. An exception to this interpretation occurs
when displaying variable addresses. An entire structure does have
an address, and it is this value sdb displays, not the addresses of
individual elements.

Elements of a multidimensional array may be referenced as
variablelnumberllnumberl..., or as variablelnumber,number,...1.
In place of number, the form number;number may be used to indi-
cate a range of values, * may be used to indicate all legitimate
values for that subscript, or subscripts may be omitted entirely if
they are the last subscripts and the full range of values is desired.
As with structures, sdb displays all the values of an array or of the
section of an array if trailing subscripts are omitted. It displays
only the address.of the array itself or of the section specified by
the user if subscripts are omitted. A multidimensional parameter
in an F77 program cannot be displayed as an array, but it is actu-
ally a pointer, whose value is the location of the array. The array
itself can be accessed symbolically from the calling function.

A particular instance of a variable on the stack may be referenced
by using the form procedure:variable,number. All the variations
mentioned in naming variables may be used. Number is the
occurrence of the specified procedure on the stack, counting the
top, or most current, as the first. If no procedure is specified, the
procedure currently executing is used by default.

It is also possible to specify a variable by its address. All forms of
integer constants which are valid in C may be used, so that
addresses may be input in decimal, octal or hexadecimal.

Line numbers in the source program are referred to as file-
name:number or procedure:number. In either case the number is
relative to the beginning of the file. If no procedure or file name is
given, the current file is used by default. If no number is given,
the first line of the named procedure or file is used.

UNIX Programmer’s Manual Commands and Utilities—359

SDB(1) SDB(1)

While a process is running under sdb, all addresses refer to the
executing program; otherwise they refer to objfil or corfil. An ini-
tial argument of —w permits overwriting locations in objfil.

Addresses
The address in a file associated with a written address is deter-
mined by a mapping associated with that file. Each mapping is
represented by two triples (b1, el, f1) and (b2, €2, f2) and the file
address corresponding to a written address is calculated as fol-

lows:

bladdress<el

file address=address+f1 —bl
otherwise

b2address<e2

file address=address+f2—b2,

otherwise, the requested address is not legal. In some cases (e.g.,
for programs with separated I and D space) the two segments for
a file may overlap.

The initial setting of both mappings is suitable for normal a.out
and core files. If either file is not of the kind expected then, for
that file, b1 is set to 0, el is set to the maximum file size, and f1
is set to 0; in this way the whole file can be examined with no
address translation.

In order for sdb to be used on large files, all appropriate values are
kept as signed 32-bit integers.

Commands _
The commands for examining data in the program are:

t Print a stack trace of the terminated or halted program.
T Print the top line of the stack trace.

variable /clm
Print the value of variable according to length / and format
m. A numeric count ¢ indicates that a region of memory,
beginning at the address implied by variable, is to be
displayed. The length specifiers are:

360—Commands and Utilities UNIX Programmer’s Manual

SDB(1)

SDB(1)

b one byte
h two bytes (half word)
1 four bytes (long word)

Legal values for m are:

character

decimal

decimal, unsigned

octal

hexadecimal

32-bit single precision floating point

64-bit double precision floating point

Assume variable is a string pointer and

print characters starting at the address

pointed to by the variable.

a Print characters starting at the variable’s
address. This format may not be used with
register variables.

p pointer to procedure

disassemble machine-language instruction

with addresses printed numerically and sym-

bolically.
I disassemble machine-language instruction
with addresses just printed numerically.

The length specifiers are only effective with the formats ¢, d,

u, 0 and x. Any of the specifiers, ¢, /, and m, may be omit-

ted. If all are omitted, sdb choses a length and a format

suitable for the variable’s type as declared in the program.

If m is specified, then this format is used for displaying the

variable. A length specifier determines the output length of

the value to be displayed, sometimes resulting in truncation.

A count specifier ¢ tells sdb to display that many units of

memory, beginning at the address of variable. The number

of bytes in one such unit of memory is determined by the
length specifier /, or if no length is given, by the size associ-

ated with the variable. If a count specifier is used for the s

or a command, then that many characters are printed. Oth-

erwise successive characters are printed until either a null
byte is reached or 128 characters are printed. The last vari-
able may be redisplayed with the command ./.

I - B - — I - Vi o}

)

The sh(1) metacharacters * and ? may be used within pro-
cedure and variable names, providing a limited form of

UNIX Programmer’s Manual Commands and Utilities—361

SDB(1) ' SDB(1)

pattern matching. If no procedure name is given, variables
local to the current procedure and global variables are
matched; if a procedure name is specified then only variables
local to that procedure are matched. To match only global
variables, the form :pattern is used.

linenumber?Im

variable:?Im
Print the value at the address from a.out or I space given by
linenumber or variable (procedure name), according to the
format /m. The default format is i’.

variable =Im

linenumber =Im

number =Im
Print the address of variable or linenumber, or the value of
number, in the format specified by I/m. If no format is
given, then Ix is used. The last variant of this command pro-
vides a convenient way to convert between decimal, octal and
hexadecimal.

variable!value

Set variable to the given value. The value may be a
number, a character constant or a variable. The value must
be well defined; expressions which produce more than one
value, such as structures, are not allowed. Character con-
stants are denoted ’character. Numbers are viewed as
integers unless a decimal point or exponent is used. In this
case, they are treated as having the type double. Registers
are viewed as integers. The variable may be an expression
which indicates more than one variable, such as an array or
structure name. If the address of a variable is given, it is
regarded as the address of a variable of type int. C conven-
tions are used in any type conversions necessary to perform
the indicated assignment.

X Print the machine registers and the current machine-
language instruction.

X Print the current machine-language instruction.
The commands for examining source files are:

e procedure
e file-name

362—Commands and Utilities UNIX Programmer’s Manual

SDB(1) SDB(1)

e directory/

e directory file-name
The first two forms set the current file to the file containing
procedure or to file-name. The current line is set to the first
line in the named procedure or file. Source files are assumed
to be in directory. The default is the current working direc-
tory. The latter two forms change the value of directory. If
no procedure, file name, or directory is given, the current
procedure name and file name are reported.

[regular expression/
Search forward from the current line for a line containing a
string matching regular expression as in ed(1). The trailing
/ may be deleted.

?regular expression?
Search backward from the current line for a line containing
a string matching regular expression as in ed(1). The trail-
ing ? may be deleted.

P Print the current line.

Print the current line followed by the next 9 lines. Set the
current line to the last line printed.

w Window. Print the 10 lines around the current line.

number
Set the current line to the given line number. Print the new
current line.

count +
Advance the current line by count lines. Print the new
current line.

count—
Retreat the current line by count lines. Print the new
current line.

The commands for controlling the execution of the source program
are:

count r args

count R
Run the program with the given arguments. The r command
with no arguments reuses the previous arguments to the pro-
gram while the R command runs the program with no argu-
ments. An argument beginning with < or > causes

UNIX Programmer’s Manual Commands and Utilities—363

SDB(1) : SDB(1)

redirection for the standard input or output, respectively. If
count is given, it specifies the number of breakpoints to be
ignored.

linenumber ¢ count

linenumber C count
Continue after a breakpoint or interrupt. If count is given, it
specifies the breakpoint at which to stop after ignoring count
- 1 breakpoints. C continues with the signal which caused
the program to stop reactivated and ¢ ignores it. If a line
number is specified then a temporary breakpoint is placed at
the line and execution is continued. The breakpoint is
deleted when the command finishes.

linenumber g count »
Continue after a breakpoint with execution resumed at the
given line. If count is given, it specifies the number of
breakpoints to be ignored.

s count
S count
. Single step the program through count lines. If no count is
given then the program is run for one line. S is equivalent to
s except it steps through procedure calls.

I Single step by one machine-language instruction. I steps
with the signal which caused the program to stop reactivated
and i ignores it.

variable$m count

address:m count ;
Single step (as with s) until the specified location is modified
with a new value. If count is omitted, it is effectively
infinity. Variable must be accessible from the current pro-
cedure. Since this command is done by software, it can be
very slow.

level v

Toggle verbose mode, for use when single stepping with S, s
or m. If level is omitted, then just the current source file
and/or subroutine name is printed when either changes. If
level is 1 or greater, each C source line is printed before it is
executed; if level is 2 or greater, each assembler statement is
also printed. A v turns verbose mode off if it is on for any
level.

364—Commands and Utilities UNIX Programmer’s Manual

SDB(1) SDB(1)

k Kill the program being debugged.

procedure(argl,arg2,...)

procedure(argl,arg2,..)/m
Execute the named procedure with the given arguments.
Arguments can be integer, character or string constants or
names of variables accessible from the current procedure.
The second form causes the value returned by the procedure
to be printed according to format m. If no format is given,
it defaults to d.

linenumber b commands

Set a breakpoint at the given line. If a procedure name
without a line number is given (e.g., “proc:”), a breakpoint is
placed at the first line in the procedure even if it was not
compiled with the —g option. If no linenumber is given, a
breakpoint is placed at the current line. If no commands are
given, execution stops just before the breakpoint and control
is returned to sdb. Otherwise the commands are executed
when the breakpoint is encountered and execution continues.
Multiple commands are specified by separating them with
semicolons. If k is used as a command to execute at a
breakpoint, control returns to sdb, instead of continuing exe-
cution.

B Print a list of the currently active breakpoints.

linenumber d
Delete a breakpoint at the given line. If no linenumber is
given then the breakpoints are deleted interactively. Each
breakpoint location is printed and a line is read from the
standard input. If the line begins with a y or d then the
breakpoint is deleted.

D Delete all breakpoints.
1 Print the last executed line.

linenumber a
Announce. If linenumber is of the form proc:number, the
command effectively does a linenumber b 1. If linenumber is
of the form proc:, the command effectively does a proc: b T.

Miscellaneous commands:

lcommand
The command is interpreted by sk (1).

UNIX Programmer’s Manual Commands and Utilities—365

SDB(1) : SDB(1)

new-line
If the previous command printed a source line, then advance
the current line by one line and print the new current line.
If the previous command displayed a memory location, then
display the next memory location.

control-D
Scroll. Print the next 10 lines of instructions, source or data
depending on which was printed last.

< filename
Read commands from filename until the end of file is
reached, and then continue to accept commands from stan-
dard input. When sdb is told to display a variable by a com-
mand in such a file, the variable name is displayed along
with the value. This command may not be nested; < may
not appear as a command in a file.

M Print the address maps.

M2+l b e f
Record new values for the address map. The arguments ?
and / specify the text and data maps, respectively. The first
segment (bI, el, fl) is changed unless * is specified, in
which case the second segment (b1, el, fI) of the mapping is
changed. If fewer than three values are given, the remaining
map parameters are left unchanged.

" string
Print the given string. The C escape sequences of the form

\character are recognized, where character is a nonnumeric
character.

q Exit the debugger.

The following commands also exist and are intended only for
debugging the debugger:

V Print the version number.
Q Print a list of procedures and files being debugged.
Y Toggle debug output.

FILES
a.out
core

366—Commands and Utilities. UNIX Programmer’s Manual

SDB(1) ‘ SDB(1)

SEE ALSO

cc(1), £77(1), sh(1).
a.out(4), core(4) in the UNIX Programmer’s Manual —Volume 2:
System Calls and Library Routines.

WARNINGS

BUGS

On some computers C variables are identified internally with an
underscore prepended. User variables which differ by only an ini-
tial underscore cannot be distinguished, as sdb recognizes both
internal and external names.

When sdb prints the value of an external variable for which there
is no debugging information, a warning is printed before the value.
The value is assumed to be int (integer).

Data which are stored in text sections are indistinguishable from
functions.

Line number information in optimized functions is unreliable, and
some information may be missing.

If a procedure is called when the program is not stopped at a
breakpoint (such as when a core image is being debugged), all
variables are initialized before the procedure is started. This
makes it impossible to use a procedure which formats data from a
core image. :

The default type for printing F77 parameters is incorrect. Their
address is printed instead of their value.

Tracebacks containing F77 subprograms with multiple entry points
may print too many arguments in the wrong order, but their values
are correct.

The range of an F77 array subscript is assumed to be I to n,
where n is the dimension corresponding to that subscript. This is
only significant when the user omits a subscript, or uses * to indi-
cate the full range. There is no problem in general with arrays
having subscripts whose lower bounds are not 1.

On the 3B20 computer there is no hardware trace mode and
single-stepping is implemented by setting pseudo breakpoints
where possible. This is slow. The s, S, i, and I commands do not
always convert on the 3B20 computer due to pseudo-breakpointing. .
Thus sdb will not allow single-stepping from an indirect jump, a
switch instruction, or a switdt instruction.

UNIX Programmer’s Manual Commands and Utilities—367

SDB(1) SDB(1)

The entry point to an optimized function cannot be found on the
3B20 computer. Setting a breakpoint at the beginning of an
optimized function may cause the middle of some instruction
within the function to be overwritten. This problem can be cir-
cumvented by disassembling the first few instructions of the func-
tion, and manually setting a breakpoint at the first instruction
after the stack pointer is adjusted.

368—Commands and Utilities UNIX Programmer’s Manual

SDIFF(1) SDIFF(1)

NAME

sdiff — side-by-side difference program
SYNOPSIS

sdiff [options ...] filel file2
DESCRIPTION

Sdiff uses the output of diff (1) to produce a side-by-side listing of
two files indicating those lines that are different. Each line of the
two files is printed with a blank gutter between them if the lines
are identical, a < in the gutter if the line only exists in filel, a >
in the gutter if the line only exists in file2, and a | for lines that are
different.

For example:

X | y

a a

b <

c <

d d

> c
The following options exist:
-W n Use the next argument, n, as the width of the output
line. The default line length is 130 characters.

-1 Only print the left side of any lines that are identical.
-s Do not print identical lines.

—o0 output Use the next argument, output, as the name of a
third file that is created as a user-controlled merging
of filel and file2. Identical lines of filel and file2
are copied to output. Sets of differences, as produced
by diff (1), are printed; where a set of differences
share a common gutter character. After printing
each set of differences, sdiff prompts the user with a
% and waits for one of the following user-typed com-

mands:
1 append the left column to the output
file
r append the right column to the out-
put file

UNIX Programmer’s Manual Commands and Utilities—369

SDIFF(1)

-

o o o

€

q

SDIFF (1)

turn on silent mode; do not print
identical lines

turn off silent mode
call the editor with the left column
call the editor with the right column

call the editor with the concatena-
tion of left and right

call the editor with a zero length file

exit from the program

On exit from the editor, the resulting file is con-
catenated on the end of the output file.

SEE ALSO
diff (1), ed(1).

370—Commands and Utilities

UNIX Programmer’s Manual

SED(1) SED(1)

NAME

sed — stream editor
SYNOPSIS

sed [—n 1 [—e script 1 [—f sfile] [files]
DESCRIPTION

Sed copies the named files (standard input default) to the stan-
dard output, edited according to a script of commands. The —f
option causes the script to be taken from file sfile; these options
accumulate. If there is just one —e option and no —f options, the
flag —e may be omitted. The =—n option suppresses the default
output. A script consists of editing commands, one per line, of the
following form:

[address [, address]] function [arguments]

In normal operation, sed cyclically copies a line of input into a
pattern space (unless there is something left after a D command),
applies in sequence all commands whose addresses select that pat-
tern space, and at the end of the script copies the pattern space to
the standard output (except under —n) and deletes the pattern
space.,

Some of the commands use a hold space to save all or part of the
pattern space for subsequent retrieval.

An address is either a decimal number that counts input lines
cumulatively across files, a $ that addresses the last line of input,
or a context address, i.e., a /regular expression/ in the style of
ed (1) modified thus:

In a context address, the construction \?regular expres-
sion?, where ? 1is any character, is identical to
[regular expression/. Note that in the context
address \xabc\xdefx, the second x stands for
itself, so that the regular expression is abcxdef.

The escape sequence \n matches a new-line embedded in
the pattern space.

A period . matches any character except the terminal
new-line of the pattern space.

A command line with no addresses selects every pattern
space.

A command line with one address selects each pattern
space that matches the address.

UNIX Programmer’s Manual Commands and Utilities—371

SED(1) SED(1)

A command line with two addresses selects the inclusive
range from the first pattern space that matches
the first address through the next pattern space
that matches the second. (If the second address is
a number less than or equal to the line number
first selected, only one line is selected.)
Thereafter the process is repeated, looking again
for the first address.

Editing commands can be applied only to non-selected pattern
spaces by use of the negation function ! (below).

In the following list of functions the maximum number of permis-
sible addresses for each function is indicated in parentheses.

The text argument consists of one or more lines, all but the last of
which end with \ to hide the new-line. Backslashes in text are
treated like backslashes in the replacement string of an s com-
mand, and may be used to protect initial blanks and tabs against
the stripping that is done on every script line. The rfile or wfile
argument must terminate the command line and must be preceded
by exactly one blank. Each wfile is created before processing
begins. There can be at most 10 distinct wfile arguments.

(1) a\

text Append. Place text on the output before reading the
next input line.

(2) b label Branch to the : command bearing the label. If label is
empty, branch to the end of the script.

) e\

text Change. Delete the pattern space. With 0 or 1
address or at the end of a 2-address range, place text
on the output. Start the next cycle.

24 Delete the pattern space. Start the next cycle.

@D Delete the initial segment of the pattern space through
the first new-line. Start the next cycle.

Qg Replace the contents of the pattern space by the con-
tents of the hold space.

@G Append the contents of the hold space to the pattern
space.

@h Replace the contents of the hold space by the contents

of the pattern space.
QH Append the contents of the pattern space to the hold
space.

372—Commands and Utilities UNIX Programmer’s Manual

SED(1)

i\
text

(03]
n
QN
@p
QPp
(gq

) r rfile

SED(1)

Insert. Place text on the standard output.

List the pattern space on the standard output in an
unambiguous form. Non-printing characters are
spelled in two-digit ASCII and long lines are folded.
Copy the pattern space to the standard output.
Replace the pattern space with the next line of input.
Append the next line of input to the pattern space with
an embedded new-line. (The current line number
changes.)

Print. Copy the pattern space to the standard output.
Copy the initial segment of the pattern space through
the first new-line to the standard output.

Quit. Branch to the end of the script. Do not start a
new cycle.

Read the contents of rfile. Place them on the output
before reading the next input line.

(2) s/regular expression/replacement/flags

Substitute the replacement string for instances of the
regular expression in the pattern space. Any charac-
ter may be used instead of /. For a fuller description
see ed(1). Flags is zero or more of:

n n= 1 - 512. Substitute for just the n
th occurrence of the regular expres-
sion.

g Global. Substitute for all nonoverlap-

ping instances of the regular expres-
sion rather than just the first one.

p Print the pattern space if a replace-
ment was made.

w wfile Write. Append the pattern space to
wfile if a replacement was made.

(2) t label Test. Branch to the : command bearing the label if

(2) w wfile

2 x

any substitutions have been made since the most recent
reading of an input line or execution of a t. If label is
empty, branch to the end of the script.

Write. Append the pattern space to wfile.
Exchange the contents of the pattern and hold spaces..

UNIX Programmer’s Manual Commands and Utilities—373

SED(1)

SED(1)

(2) y/stringl / string2/

Transform. Replace all occurrences of characters in
stringl with the corresponding character in string2.
The lengths of stringl and string2 must be equal.

(2)! function

0) : label
(1) =
@ {

0)
o) #

SEE ALSO

Don’t. Apply the function (or group, if function is {)
only to lines not selected by the address(es).

This command does nothing; it bears a label for b and
t commands to branch to.

Place the current line number on the standard output
as a line.

Execute the following commands through a matching }
only when the pattern space is selected.

An empty command is ignored.

If a # appears as the first character on the first line of
a script file, then that entire line is treated as a com-
ment, with one exception. If the character after the #
is an ’n’, then the default output will be suppressed.
The rest of the line after #n is also ignored. A script
file must contain at least one non-comment line.

awk(1), ed(1), grep(1).

374—Commands and Utilities UNIX Programmer’s Manual

SEND(1C) SEND (1C)

NAME

send, gath — gather files and/or submit RJE jobs

SYNOPSIS

gath [—ih] file ...

send argument ...

DESCRIPTION
Gath

Gath concatenates the named files and writes them to the standard
output. Tabs are expanded into spaces according to the format
specification for each file (see fspec(4)). The size limit and mar-
gin parameters of a format specification are also respected. Non-
graphic characters other than tabs are identified by a diagnostic
message and excised. The output of gath contains no tabs unless
the —h flag is set, in which case the output is written with stan-
dard tabs (every eighth column).

Any line of any of the files which begins with ~ is interpreted by
gath as a control line. A line beginning “~ » (tilde,space)
specifies a sequence of files to be included at that point. A line
beginning ~! specifies a UNIX system command; that command is
executed, and its output replaces the 7! line in the gath output.

Setting the —i flag prevents control lines from being interpreted
and causes them to be output literally. '

A file name of — at any point refers to standard input, and a con-
trol line consisting of ~. is a logical EOF. Keywords may be
defined by specifying a replacement string which is to be substi-
tuted for each occurrence of the keyword. Input may be collected
directly from the terminal, with several alternatives for prompting.
In fact, all of the special arguments and flags recognized by the
send command are also recognized and treated identically by gath.
Several of them only make sense in the context of submitting an
RJE job.

Send

Send is a command-level interface to the RJE subsystems. It
allows the user to collect input from various sources in order to
create a run stream consisting of card images, and submit this run
stream for transmission to an IBM host computer. Output from
the IBM system may be returned to the user in either ASCII text
form or EBCDIC punch format (see pnch (4)). How output is to
be disposed of once it returns from the host is determined by a

UNIX Programmer’s Manual Commands and Utilities—375

SEND(1C) ’ SEND(1C)

"usr=" specification which should be embedded in each job that a
user submits for transmission.

Possible sources of input to send are: ordinary files, standard input,
the terminal, and the output of a command or shell file. Each
source of input is treated as a virtual file, and no distinction is
made based upon its origin. Typical input is an ASCII text file of
the sort that is created by the editor ed(1). An optional format
specification appearing in the first line of a file (see fspec(4))
determines the settings according to which tabs are expanded into
spaces. In addition, lines that begin with ~ are normally inter-
preted as commands controlling the execution of send. They may
be used to set or reset flags, to define keyword substitutions, and to
open new sources of input in the midst of the current source.
Other text lines are translated one-for-one into card images of the
run stream.

The run stream that results from this collection is treated as one
job by the RJE subsystems. Send prints the card count of the run
stream, and the queuer that is invoked prints the name of the tem-
porary file that holds the job while it is awaiting transmission.
The initial card of a job submitted to a host must have a // in the
first column. Any cards preceding this card will be excised. If a
host computer is not specified before the first card of the run-
stream is ready to be sent, send will select a reasonable default.
All cards beginning with /*$ will be excised from the runstream,
because they are HASP command cards. ’

The arguments that send accepts are described below. An argu-
ment is interpreted according to the first pattern that it matches.
Preceding a character with \ causes it to loose any special meaning
it might otherwise have when matching against an argument pat-

tern.

. Close the current source.

- Open standard input as a new source.

+ Open the terminal as a new source.

ispec: Establish a deféult format specification
for included sources,
e.g., :mé6t—12;

imessage Print message on the terminal.

—:prompt Open standard input and, if it is a ter-

minal, print prompt.
376—Commands and Ultilities UNIX Programmer’s Manual

SEND(1C)

+:prompt
—flags

+flags
=flags

lcommand

$line

@directory

“comment

2:keyword

2keyword ="xx

?keyword =string

=:keyword
keyword ="xx

keyword=string

UNIX Programmer’s Manual

SEND (1C)

Open the terminal and print prompt.

Set the specified flags, which are
described below.

Reset the specified flags.

Restore the specified flags to their state
at the previous level.

Execute the specified UNIX system
command via the one-line shell, with
input redirected to /dev/mull as a
default. Open the standard output of
the command as a new source.

Collect contiguous arguments of this
form and write them as consecutive
lines to a temporary file; then have the
file executed by the shell. Open the
standard output of the shell as a new
source.

The current directory for the send pro-
cess is changed to directory. The origi-
nal directory will be restored at the end
of the current source.

Ignore this argument.

Prompt for a definition of keyword from
the terminal unless keyword has an
existing definition.

Define the keyword as a two-digit hexa-
decimal character code unless it already
has a non-null replacement.

Define the keyword in terms of a
replacement string unless it dlready has
a non-null replacement.

Prompt for a definition of keyword from
the terminal.

Define keyword as a two-digit hexade-
cimal character code.

Define keyword in terms of a replace-
ment string.

Commands and Ultilities—377

SEND (1C)

host

SEND(1C)

The host machine that the job should be
submitted to. It can be any name that
corresponds to one in the first column of
the RJE configuration file
(/usr/rje/lines).

file-name Open the specified file as a new source

of input.

When commands are executed via $ or ! the shell environment
(see environ(5)) will contain the values of all send keywords
that begin with $ and have the syntax of a shell variable.

The flags recognized by send are described in terms of the spe-
cial processing that occurs when they are set:

-r

-S

-y

4

-p
—m

List card images on standard output. EBCDIC charac-
ters are translated back to ASCIL.

Do not output card images.
Do not fold lower case to upper.

Trace progress on diagnostic output, by announcing the
opening of input sources.

Ignore the keywords that are active at the previous level
and erase any keyword definitions that have been made
at the current level.

Process included sources in raw mode; pack arbitrary 8-
bit bytes one per column (80 columns per card) until an
EOF.

Do not interpret control lines in included sources; treat
them as text.

Make keyword substitutions before detecting and inter-
preting control lines.

Suppress error diagnostics and submit job anyway.

Gather mode, qualifying —1 flag; list text lines before
converting them to card images.

Write listing with standard tabs,
Prompt with * when taking input from the terminal.

When input returns to the terminal from a lower level,
repeat the prompt, if any.

378—Commands and Utilities UNIX Programmer’s Manual

SEND(1C)

SEND(1C)

—a Make —k flag propagate to included sources, thereby
protecting them from keyword substitutions.

—c List control lines on diagnostic output.

—d Extend the current set of keyword definitions by adding
those active at the end of included sources.

—x This flag guarantees that the job will be transmitted in
the order of submission (relative to other jobs sent with
this flag).

Control lines are input lines that begin with ~. In the default
mode +ir, they are interpreted as commands to send. Nor-
mally they are detected immediately and read literally. The
—s flag forces keyword substitutions to be made before con-
trol lines are intercepted and interpreted. This can lead to
unexpected results if a control line uses a keyword which is
defined within an immediately preceding “$ sequence. Argu-
ments appearing in control lines are handled exactly like the
command arguments to send, except that they are processed
at a nested level of input.

The two possible formats for a control line are: ““argument”
and “~ argument ...”. In the first case, where the ~ is not fol-
lowed by a space, the remainder of the line is taken as a sin-
gle argument to send. In the second case, the line is parsed to
obtain a sequence of arguments delimited by spaces. In this
case the quotes ' and " may be employed to pass embedded
spaces.

The interpretation of the argument . is chosen so that an
input line consisting of ~. is treated as a logical EOF. The
following example illustrates some of the above conventions:

send -
“ argument ...

This sequence of three lines is equivalent to the command
synopsis at the beginning of this description. In fact, the — is
not even required. By convention, the send command reads
standard input if no other input source is specified. Send may
therefore be employed as a filter with side-effects.

The execution of the send command is controlled at each
instant by a current environment, which includes the format
specification for the input source, a default format

UNIX Programmer’s Manual Commands and Utilities—379

SEND(1C) SEND(1C)

specification for included sources, the settings of the mode
flags, and the active set of keyword definitions. This environ-
ment can be altered dynamically. When a control line opens
a new source of input, the current environment is pushed onto
a stack, to be restored when input resumes from the old
source. The initial format specification for the new source is
taken from the first line of the file. If none is provided, the
established default is used or, in its absence, standard tabs.
The initial mode settings and active keywords are copied from
the old environment. Changes made while processing the new
source will not affect the environment of the old source, with
one exception: if —d mode is set in the old environment, the
old keyword context will be augmented by those definitions
that are active at the end of the new source.

When send first begins execution, all mode flags are reset, and
the values of the shell environment variables become the ini-
tial values for keywords of the same name with a $ prefixed.

The initial reset state for all mode flags is the + state. In
general, special processing associated with a mode N is
invoked by flag —N and is revoked by flag +N. Most mode
settings have an immediate effect on the processing of the
current source. Exceptions to this are the —r and —i flags,
which apply only to included source, causing it to be processed
in an uninterpreted manner.

A keyword is an arbitrary 8-bit ASCII string for which a
replacement has been defined. The replacement may be
another string or the hexadecimal code for a single 8-bit byte.
At any instant, a given set of keyword definitions is active.
Input text lines are scanned, in one pass from left to right,
and longest matches are attempted between substrings of the
line and the active set of keywords. Characters that do not
match are output, subject to folding and the standard transla-
tion. Keywords are replaced by the specified hexadecimal
code or replacement string, which is then output character by
character. The expansion of tabs and length checking,
according to the format specification of an input source, are
delayed until substitutions have been made in a line.

All of the keywords definitions made in the current source
may be deleted by setting the —k flag. It then becomes possi-
ble to reuse them. Setting the —k flag also causes keyword
definitions active at the previous source level to be ignored.
380—Commands and Utilities UNIX Programmer’s Manual

SEND(1Cj SEND(1C)

Setting the +k flag causes keywords at the previous level to

be ignored but does not delete the definitions made at the

current level. The =k argument reactivates the definitions of
- the previous level.

When keywords are redefined, the previous definition at the
same level of source input is lost, however the definition at the
previous level is only hidden, to be reactivated upon return to
that level unless a —d flag causes the current definition to be
retained.

Conditional prompts for keywords, ?:A,/p which have already
been defined at some higher level to be null or have a replace-
ment will simply cause the definitions to be copied down to
the current level; new definitions will not be solicited.

Keyword substitution is an elementary macro facility that is
easily explained and that appears useful enough to warrant its
inclusion in the send command. More complex replacements
are the function of a general macro processor (m4(1),
perhaps). To reduce the overhead of string comparison, it is
recommended that keywords be chosen so that their initial
characters are unusual. For example, let them all be upper
case.

Send performs two types of error checking on input text lines.
Primarily, only ASCII graphics and tabs are permitted in
input text. Secondly, the length of a text line, after substitu-
tions have been made, may not exceed 80 bytes. The length
of each line may be additionally constrained by a size parame-
ter in the format specification for an input source. Diagnostic
output provides the location of each erroneous line, by line
number and input source, a description of the error, and the
card image that results. Other routine errors that are
announced are the inability to open or write files, and abnor-
mal exits from the shell. Normally, the occurrence of any
error causes send, before invoking the queuer, to prompt for
positive affirmation that the suspect run stream should be sub-
mitted.

Before submitting a job to a host, send translates 8-bit ASCII
characters into their EBCDIC equivalents. The conversion for
8-bit ASCII characters in the octal range 040-176 is based on
the character set described in “Appendix H” of IBM Sys-
tem/370 Principles of Operation (IBM SRL GA22-7000).

UNIX Programmier’s Mahual Commands and Utilities—381

SEND(1C) SEND(1C)

Each 8-bit ASCII character in the range 040-377 possesses an
EBCDIC equivalent into which it is mapped, with five excep-
tions: ~ into -, 0345 into 7, 0325 into ¢, 0313 into |, 0177
(DEL) is illegal. In listings requested from send and in
printed output returned by the subsystem, the reverse transla-
tion is made with the qualification that EBCDIC characters
that do not have valid 8-bit ASCII equivalents are translated
into . :

Additional control over the translation process is afforded by
the —f flag and hexadecimal character codes. As a default,
send folds lower-case letters into upper case. Setting the —f
flag inhibits any folding. Non-standard character codes are
obtained as a special case of keyword substitution. The users
should check with the remote IBM system to be sure the spe-
cial processing will be accepted.

SEE ALSO
m4(1), rjestat(1C), sh(1).
Iseek(2), fspec(4), pnch(4), ascii(5), environ(5) in the UNIX
Programmer’s Manual —Volume™2: System Calls and Library
Routines.

BUGS
Standard input is read in blocks, and unused bytes are returned via
Iseek (2). If standard input is a pipe, multiple arguments of the
form — and =—:prompt should not be used, nor should the logical
EOF ().

382—Commands and Utilities UNIX Programmer’s Manual

SH(1) SH(1)

NAME
sh, rsh — shell, the standard/restricted command programming
language

SYNOPSIS
sh [—acefhiknrstuvx] [args]
rsh [—acefhiknrstuvx] [args]

DESCRIPTION
Sh is a command programming language that executes commands
read from a terminal or a file. Rsh is a restricted version of the
standard command interpreter sk; it is used to set up login names
and execution environments whose capabilities are more controlled
than those of the standard shell. See Invocation below for the
meaning of arguments to the shell.

Definitions
A blank is a tab or a space. A name is a sequence of letters,
digits, or underscores beginning with a letter or underscore. A
parameter is a name, a digit, or any of the characters », @, #, ?,
—, $,and !

Commands

A simple-command is a sequence of non-blank words separated
by blanks. The first word specifies the name of the command to
be executed. Except as specified below, the remaining words are
passed as arguments to the invoked command. The command
name is passed as argument 0 (see exec(2)). The value of a
simple-command is its exit status if it terminates normally, or
(octal) 200+status if it terminates abnormally (see signal (2) for a
list of status values).

A pipeline is a sequence of one or more commands separated by |
(or, for historical compatibility, by "). The standard output of
each command but the last is connected by a pipe(2) to the stan-
dard input of the next command. Each command is run as a
separate process; the shell waits for the last command to ter-
minate. The exit status of a pipeline is the exit status of the last
command.

A list is a sequence of one or more pipelines separated by ;, &,
& &, or | |, and optionally terminated by ; or &. Of these four
symbols, ; and & have equal precedence, which is lower than that
of & & and | |. The symbols & & and | | also have equal pre-
cedence. A semicolon (;) causes sequential execution of the
preceding pipeline; an ampersand (&) causes asynchronous

UNIX Programmer’s Manual Commands and Utilities—383

SH(1) , SH(1)

execution of the preceding pipeline (i.e., the shell does not wait for
that pipeline to finish). The symbol & & (| |) causes the list fol-
lowing it to be executed only if the preceding pipeline returns a
zero (non-zero) exit status. An arbitrary number of new-lines may
appear in a list, instead of semicolons, to delimit commands.

A command is either a simple-command or one of the following.
Unless otherwise stated, the value returned by a command is that
of the last smple-command executed in the command.

for name [in word ... 1do list done
Each time a for command is executed, name is set to the
next word taken from the in word list. If in word ... is
omitted, then the for command executes the do list once
for each positional parameter that is set (see Parameter
Substitution below). Execution ends when there are no
more words in the list.

case word in [pattern | | pattern 1...) list 33]... esac
A case command executes the /ist associated with the first
pattern that matches word. The form of the patterns is
the same as that used for file-name generation (see File
Name Generation) except that a slash, a leading dot, or a
dot immediately following a slash need not be matched
explicitly.

if list then list [elif list then list 1...[else list]fi
The list following if is executed and, if it returns a zero
exit status, the list following the first then is executed.
Otherwise, the list following elif is executed and, if its
value is zero, the list following the next then is executed.
Failing that, the else list is executed. If no else list or
then Jist is executed, then the if command returns a zero
exit status.

while /ist do list done
A while command repeatedly executes the while /ist and,
if the exit status of the last command in the list is zero,
executes the do list; otherwise the loop terminates. If no
commands in the do /ist are executed, then the while com-
mand returns a zero exit status; until may be used in place
of while to negate the loop termination test.

Uist)
Execute list in a sub-shell.

{list;}
list is simply executed.

384—Commands and Utilities - UNIX Programmer’s Manual

SH(1) SH(1)

name () {list;}
Define a function which is referenced by name. The body
of the function is the l/ist of commands between { and }.
Execution of functions is described below (see Execution).

The following words are only recognized as the first word of a
command and when not quoted:

if then else elif fi case esac for while until do done

(}

Comments
A word beginning with # causes that word and all the following
characters up to a new-line to be ignored.

Command Substitution
The standard output from a command enclosed in a pair of grave
accents (*“) may be used as part or all of a word; trailing new-
lines are removed.

Parameter Substitution
The character $ is used to introduce substitutable parameters.
There are two types of parameters, positional and keyword. If
parameter is a digit, it is a positional parameter. Positional
parameters may be assigned values by set. Keyword parameters
(also known as variables) may be assigned values by writing:

name =value [name =value 1 ...

Pattern-matching is not performed on value. There cannot be a
function and a variable with the same name.

${parameter}
The value, if any, of the parameter is substituted. The
braces are required only when parameter is followed by a
letter, digit, or underscore that is not to be interpreted as
part of its name. If parameter is * or @, all the positional
parameters, starting with $1, are substituted (separated by
spaces). Parameter $0 is set from argument zero when
the shell is invoked.

${parameter: —word}
If parameter is set and is non-null, substitute its value;
otherwise substitute word.

${parameter:=word}
If parameter is not set or is null set it to word; the value
of the parameter is substituted. Positional parameters
may not be assigned to in this way.

UNIX Programmer’s Manual Commands and Utilities—385

SH(1) . sHM

${parameter:?word}
If parameter is set and is non-null, substitute its value;
otherwise, print word and exit from the shell. If word is
omitted, the message “parameter null or not set” is
printed.

${parameter: +word}
If parameter is set and is non-null, substitute word; other-
wise substitute nothing.

In the above, word is not evaluated unless it is to be used as the
substituted string, so that, in the following example, pwd is exe-
cuted only if d is not set or is null:

echo ${d:—>pwd+}

If the colon () is omitted from the above expressions, the shell
only checks whether parameter is set or not.

The following parameters are automatically set by the shell:
The number of positional parameters in decimal.
- Flags supplied to the shell on invocation or by the
set command.
The decimal value returned by the last synchro-
nously executed command.
$ The process number of this shell.
The process number of the last background com-
mand invoked.

-~

-

The following parameters are used by the shell:

HOME The default argument (home directory) for the cd
command.

PATH The search path for commands (see Execution
below). The user may not change PATH if exe-
cuting under rsh.

CDPATH
The search path for the cd command.

MAIL If this parameter is set to the name of a mail file
and the MAILPATH parameter is not set, the shell
informs the user of the arrival of mail in the
specified file.

MAILCHECK
This parameter specifies how often (in seconds)
the shell will check for the arrival of mail in the
files specified by the MAILPATH or MAIL param-
eters. The default value is 600 seconds (10

386—Commands and Utilities © UNIX Programmer’s Manual

SH(1)

~SH(1)

minutes). If set to 0, the shell will check before
each prompt.

MAILPATH
A colon (:) separated list of file names. If this
parameter is set, the shell informs the user of the
arrival of mail in any of the specified files. Each
file name can be followed by % and a message
that will be printed when the modification time
changes. The default message is you have mail .

PS1 Primary prompt string, by default “$ ”.

PS2 Secondary prompt string, by default “> ”.

IFS Internal field separators, normally space, tab, and
new-line.
SHACCT

If this parameter is set to the name of a file writ-
able by the user, the shell will write an accounting
record in the file for each shell procedure exe-
cuted. Accounting routines such as acctcom (1)
and acctcms (IM) can be used to analyze the data
collected.

SHELL When the shell is invoked, it scans the environ-
ment (see Environment below) for this name. If
it is found and there is an ’r’ in the file name part
of its value, the shell becomes a restricted shell.

The shell gives default values to PATH, PS1, PS2, MAILCHECK
and IFS. HOME and MAIL are set by login(1).

Blank Interpretation

File

"After parameter and command substitution, the results of substitu-

tion are scanned for internal field separator characters (those
found in IFS) and split into distinct arguments where such charac-
ters are found. Explicit null arguments ("™ or *”) are retained.
Implicit null arguments (those resulting from parameters that
have no values) are removed.

Name Generation

Following substitution, each command word is scanned for the
characters », ?, and [. If one of these characters appears the word
is regarded as a pattern. The word is replaced with alphabetically
sorted file names that match the pattern. If no file name is found
that matches the pattern, the word is left unchanged. The charac-
ter . at the start of a file name or immediately following a /, as
well as the character / itself, must be matched explicitly.

UNIX Programmer’s Manual Commands and Utilities—387

SH(1) SH(1)

* Matches any string, including the null string.

? Matches any single character.

[...1 Matches any one of the enclosed characters. A
pair of characters separated by — matches any
character lexically between the pair, inclusive. If
the first character following the opening [is a
“!” any character not enclosed is matched.

Quoting
The following characters have a special meaning to the shell and
cause termination of a word unless quoted:

; & () | © < > new-line space tab

A character may be quoted (i.c., made to stand for itself) by
preceding it with a \. The pair \mew-line is ignored. All charac-
ters enclosed between a pair of single quote marks (”), except a
single quote, are quoted. ' Inside double quote marks (""), parame-
ter and command substitution occurs and \ quotes the characters \,
v, ", and $. "$*" is equivalent to "$1 $2 ...", whereas "$@" is
equivalent to "$1" "$2"

Prompting
When used interactively, the shell prompts with the value of PS1
before reading a command. If at any time a new-line is typed and
further input is needed to complete a command, the secondary
prompt (i.e., the value of PS2) is issued.

Input/Output
Before a command is executed, its input and output may be
redirected using a special notation interpreted by the shell. The
following may appear anywhere in a simple-command or may pre-
cede or follow a command and are not passed on to the invoked
command; substitution occurs before word or digit is used:

<word Use file word as standard input (file descriptor 0).

>word Use file word as standard output (file descriptor
1). If the file does not exist it is created; other-
wise, it is truncated to zero length.

>>word Use file word as standard output. If the file exists
output is appended to it (by first seeking to the
end-of-file); otherwise, the file is created.

<<[—Iword The shell input is read up to a line that is the
same as word, or to an end-of-file. The resulting
document becomes the standard input. If any
character of word is quoted, no interpretation is

388—Commands and Utilities UNIX Programmer’s Manual

SH(1)

SH(1)

placed upon the characters of the document; oth-
erwise, parameter and command substitution
occurs, (unescaped) \mew-line is ignored, and \
must be used to quote the characters \, §, *, and
the first character of word. If — is appended to
<<, all leading tabs are stripped from word and
from the document.

< & digit Use the file associated with file descriptor digit as
standard input. Similarly for the standard output
using > & digit.

<& - The standard input is closed. Similarly for the
standard output using > & —.

If any of the above is preceded by a digit, the file descriptor which
will be associated with the file is that specified by the digit
(instead of the default O or 1). For example:

L 2> &1

associates file descriptor 2 with the file currently associated with
file descriptor 1.

The order in which redirections are specified is significant. The
shell evaluates redirections left-to-right. For example:

e 1> xxx 2> &1

first associates file descriptor 1 with file xxx. It associates file
descriptor 2 with the file associated with file descriptor 1 G.e.,
xxx). If the order of redirections were reversed, file descriptor 2
would be associated with the terminal (assuming file descriptor 1
had been) and file descriptor 1 would be associated with file xxx.

If a command is followed by & the default standard input for the
command is the empty file /dev/null. Otherwise, the environment
for the execution of a command contains the file descriptors of the
invoking shell as modified by input/output specifications.

Redirection of output is not allowed in the restricted shell.

Environment

The environment (see environ(5)) is a list of name-value pairs that
is passed to an executed program in the same way as a normal
argument list. The shell interacts with the environment in several
ways. On invocation, the shell scans the environment and creates
a parameter for each name found, giving it the corresponding
value. If the user modifies the value of any of these parameters or
creates new parameters, none of these affects