

r UNIX™ System V - Release 2.0
" User Reference Manual

DEC™ Processors

April 1984
307-1 09, Issue 2

UNIX is a trademark of AT&T Bell Laboratories

DEC is a trademark of Digital Equipment Corporation

Copyright @ 1984 AT&T Technologies
All Rights Reserved
Printed in U.S.A.

DEC. PDP. UN IBUS. and MASSBUS are trademarks of Digital Equipment
Corporation.

HP is a trademark of Hewlett-Packard, Inc.

DIABLO is a trademark of Xerox Corporation.

TEKTRONIX is a registered trademark of Tektronix, Inc.

Versatec is a registered trademark of Versatec Corporation.

TELETYPE is a trademark of AT&T Teletype Corporation.

3B and DOCUMENTER'S WORKBENCH are trademarks of AT&T
Technologies.

UNIX is a trademark of AT&T Bell Laboratories.

This manual was set on an AUTOLOGIC. Inc.
APS-5 phototypesetter driven by the TROFF
formatter operating under the UNIX system.

- 2 -

INTRODUCTION

This manual describes the features of the UNIX system. It provides neither a general
overview of the UN IX system nor details of the implementation of the system.

Not all commands, features, and facilities described in this manual are available in
every UNIX system. The entries not applicable for a particular hardware line will have
an appropriate caveat stamped in the center of the mast of an entry. Also, programs or
facilities being phased out will be marked as "Obsolescent" on the top of the entry.
When in doubt, consult your system's administrator.

This manual is divided into two sections, some containing inter-filed sub-classes:

1. Commands and Application Programs:
1. General-Purpose Commands
IC. Communications Commands
IG. Graphics Commands

6. Games

Section I (Commands and Application Programs) describes programs intended to be
invoked directly by the user or by command language procedures, as opposed to subrou­
tines, which are intended to be called by the user's programs. Commands generally
reside in the directory Ibin (for binary programs). Some programs also reside in
lusr/bin, to save space in Ibin. These directories are searched automatically by the
command interpreter called the shell. Sub-class IC contains communication programs
such as CU, send, UUcp, etc. These entries may not apply from system to system
depending upon the hardware included on your processor. Some UNIX systems may
have a directory called lusr/lbin, containing local commands.

Section 6 (Games) describes the games and educational programs that, as a rule, reside
in the directory lusr/games.

Each section consists of a number of independent entries of a page or so each. The
name of the entry appears in the upper corners of its pages. Entries within each section
are alphabetized, with the exception of the introductory entry that begins each section.
Some entries may describe several routines, commands, etc. In such cases, the entry
appears only once, alphabetized under its "major" name.

All entries are based on a common format, not all of whose parts always appear:

The NAME part gives the name(s) of the entry and briefly states its purpose.

The SYNOPSIS part summarizes the use of the program being described. A few
conventions are used, particularly in Section 1 (Commands):

Boldface strings are literals and are to be typed just as they appear.

Italic strings usually represent substitutable argument prototypes and program
names found elsewhere in the manual (they are underlined in the typed ver­
sion of the entries).

Square brackets [I around an argument prototype indicate that the argument
is optional. When an argument prototype is given as "name" or "file", it
always refers to a file name.

Ellipses .•• are used to show that the previous argument prototype may be
repeated.

A final convention is used by the commands themselves. An argument begin­
ning with a minus -, plus +, or an equal sign - is often taken to be some sort
of flag argument, even if it appears in a position where a file name could
appear. Therefore, it is unwise to have files whose names begin with -, +, or

- 3 -

Introduction

The DESCRIPTION part discusses the subject at hand.

The EXAMPLE(S) part gives example(s) of usage, where appropriate.

The FILES part gives the file names that are built into the program.

The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic indications that may be produced.
Messages that are intended to be self-explanatory are not listed.

The WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes deficiencies. Occasionally, the
suggested fix is also described.

A table of contents and a permuted index derived from that table precede Section I.
On each index line, the title of the entry to which that line refers is followed by the
appropriate section number in parentheses. This is important because there is consider­
able duplication of names among the sections, arising principally from commands that
exist only to exercise a particular system call.

On most systems, all entries are available on-line via the man(I) command.

- 4 -

HOW TO GET STARTED

This discussion provides the basic information you need to get started on the UNIX sys­
tem: how to log in and log out, how to communicate through your terminal, and how to
run a program. (See the UNIX System User Guide for a more complete introduction to
the system.>

Logging in. You must dial up the UNIX operating system from an appropriate termi­
nal. The UNIX system supports full-duplex ASCII terminals. You must also have a
valid user name, which may be obtained <together with the telephone number(s) of
your UNIX system} from the administrator of your system. Common terminal speeds
are 10, 15, 30, and 120 characters per second (110, 150, 300, and 1,200 baud); occa­
sionally, speeds of 240, 480, and 960 characters per second (2,400, 4,800, and 9,600
baud) are also available. On some UNIX systems, there are separate telephone numbers
for each available terminal speed, while on other systems several speeds may be served
by a single telephone number. In the latter case, there is one ··preferred" speed; if you
dial in from a terminal set to a different speed, you will be greeted by a string of mean­
ingless characters (the login: message at the wrong speed). Keep hitting the ·'break" or
··attention" key until the login: message appears. Hard-wired terminals usually are set
to the correct speed.

Most terminals have a speed switch that should be set to the appropriate speed and a
half-/full-duplex switch that should be set to full-duplex. When a connection (at the
speed of the terminal) has been established, the system types login: and you then type
your user name followed by the "return" key. If you have a password (and you
should!>, the system asks for it, but does not print ("echo") it on the terminal. After
you have logged in, the "return", "new-line", and "line-feed" keys will give exactly the
same result.

It is important that you type your login name in lower case if possible; if you type
upper-case letters. the UNIX system will assume that your terminal cannot generate
lower-case letters and that you mean all subsequent upper-case input to be treated as
lower case. When you have logged in successfully. the shell will type a $ to you. (The
shell is described below under How 10 run a programJ

For more information. consult login (I), which discusses the login sequence in more
detail. and slIy (I), which tells you how to describe the characteristics of your terminal
to the system. The command (projile(4) in The UNIX System Programmer Reference
Manual explains how to accomplish this last task automatically every time you log in}.

Logging out. There are two ways to log out:

I. You can simply hang up the phone.
2. You can log out by typing an end-of-file indication (ASCII EOT character, usu­

ally typed as "control-d") to the shell. The shell will terminate and the login:
message will appear again.

How to communicate through your terminal. When you type to UNIX system, a gnome
deep in the system is gathering your characters and saving them. These characters will
not be given to a program until you type a Ureturn" (or unew-line"), as described above
in Logging in.

UNIX system terminal input/output is full-duplex. It has full read-ahead, which means
that you can type at any time, even while a program is typing at you. Of course, if you
type during output, the output will have interspersed in it the input characters. How­
ever, whatever you type will be saved and interpreted in the correct sequence. There is
a limit to the amount of read-ahead, but it is generous and not likely to be exceeded
unless the system is in trouble. When the read-ahead limit is exceeded, the system
silently throws away all the saved characters.

- 5 -

How To Get Started

On an input line from a terminal, the character @ "kills" all the characters typed
before it. The character # erases the last character typed. Successive uses of # will
erase characters back to, but not beyond, the beginning of the line; @ and # can be
typed as themselves by preceding them with \ <thus, to erase a \, you need two #s}.
These default erase and kill characters can be changed; see Slly(]}.

The ASCll DC3 <Control-s} character can be used to temporarily stop output. It is use­
ful with CRT terminals to prevent output from disappearing before it can be read. Out­
put is resumed when a DCt {control-q} or a second DC3 (or any other character, for
that matter) is typed. The DCt and DC3 characters are not passed to any other pro­
gram when used in this manner.

The ASCII DEL (a.k.a. "rubout") character is not passed to programs, but instead gen­
erates an interrupt signal. just like the "break", "interrupt". or "attention" signal. This
signal generally causes whatever program you are running to terminate. It is typically
used to stop a long printout that you do not want. However, programs can arrange
either to ignore this signal altogether, or to be notified when it happens (instead of
being terminated). The editor ed(J), for example, catches interrupts and stops what it
is doing, instead of terminating, so that an interrupt can be used to halt an editor print­
out without losing the file being edited.

The quit signal is generated by typing the ASCII FS character. It not only causes a
running program to terminate, but also, if possible, generates a file with the H core
image" of the terminated process. Quit is useful for debugging.

Besides adapting to the speed of the terminal, the UNIX system tries to be intelligent as
to whether you have a terminal with the "new-line" function, or whether it must be
simulated with a "carriage-return" and "line-feed" pair. In the latter case, all input
"carriage-return" characters are changed to "line-feed" cryaracters {the standard line
delimiter}, and a "carriage-return" and "line-feed" pair is echoed to the terminal. If
you get into the wrong mode, the Slty(]} command will rescue you.

Tab characters are used freely in UNIX system source programs. If your terminal does
not have the tab function, you can arrange to have tab characters changed into spaces
during output, and echoed as spaces during input. Again, the slly(]) command will set
or reset this mode. The system assumes that tabs are set every eight character posi­
tions. The tabs (I) command will set tab stops on your terminal, if that is possible.

How to run a program. When you have successfully logged into the CNIX system, a
program called the shell is listening to your terminal. The shell reads the lines you
type, splits them into a command name and its arguments. and executes the command.
A command is simply an executable program. Normally, the shell looks first in your
current directory (see The current directory below) for a program with the given name.
and if none is there. then in system directories. There is nothing special about system­
provided commands except that they are kept in directories where the shell can find
them. You can also keep commands in your own directories and arrange for the shell
to find them there.

The command name is the first word on an input line to the shell: the command and its
arguments are separated from one another by space and/or tab characters.

When a program terminates, the shell will ordinarily regain control and type a $ at you
to indicate that it is ready for another command. The shell has many other capabilities,
which are described in detail in sh (I).

The current directory, The liNIX system has a file system arranged in a hierarchy of
directories. When the system administrator gave you a user name. he or she also
created a directory for you (ordinarily with the same name as your user name. and
known as your login or home directory). When you log in, that directory becomes your
current or working directory, and any file name you type is. by default, assumed to be
in that directory. Because you are the owner of this directory. you have full permissions

- 6 -

~.

How To Get Started

to read, write, alter, or destroy its contents. Permissions to have your will with other
directories and files will have been granted or denied to you by their respective owners,
or by the system administrator. To change the current directory use cdC I).

Path names. To refer to files not in the current directory. you must use a path name.
Full path names begin with /. which is the name of the root directory of the whole file
system. After the slash comes the name of each directory containing the next sub­
directory (followed by a /), until finally the file name is reached (e.g., /usr/ae/filex
refers to file filex in directory ae, while ae is itself a subdirectory of usr; usr springs
directly from the root directory). See intro(2) for a formal definition of path name.

If your current directory contains subdirectories, the path names of files therein begin
with the name of the corresponding subdirectory (without a prefixed /). Without
important exception, a path name may be used anywhere a file name is required.

Important commands that modify the contents of files are cp(I), mv, and rm(}). which
respectively copy, move (j.e.. rename), and remove files. To find out the status of files
or directories, use ls(I). ese mkdir(}) for making directories and rmdir<I) for des­
troying them.

For a fuller discussion of the file system, see the references cited at the beginning of the
INTRODUCTION above. It may also be useful to glance through Section 2 of The
UNIX System Programmer Reference ~anual. which discusses system calls. even if you
do not intend to deal with the system at that level.

Writing a program. To enter the text of a source program into a UNIX system file, use
ed(J). The principal languages available under the UNIX system are C (see cdt»,
Fortran (see j77(I», and assembly language (see as(}». After the program text has
been entered with the editor and written into a file (whose name has the appropriate
suffix), you can give the name of that file to the appropriate language processor as an
argument. Normally, the output of the language processor will be left in a file in the
current directory named a.out (if that output is precious, use mv (I) to give it a less
vulnerable name). If the program is written in assembly language, you will probably
need to load with it library subroutines (see /d (I». Fortran and C call the loader
automatically.

When you have finally gone through this entire process without provoking any diagnos­
tics, the resulting program can be run by giving its name to the shell in response to the
$ prompt.

If any execution (run-time) errors occur, you will need sdb (I) or adb(I) to examine the
remains of your program.

Your programs can receive arguments from the command line just as system programs
do; see exed2).

Text processing. Almost all text is entered through the editor ed (I). The commands
most often used to write text on a terminal are cadI), prO), and nroff. The cadI)
command simply dumps ASCII text on the terminal, with no processing at all. The
pr(t) command paginates the text, supplies headings, and has a facility for multi­
column output.

Surprises. Certain commands provide inter-user communication. Even if you do not
plan to use them, it would be well to learn something about them, because someone else
may aim them at you. To communicate with another user currently logged in. write(I)
is used; mail(I) will leave a message whose presence will be announced to another user
when he or she next logs in. The corresponding entries in this manual also suggest how
to respond to these two commands if you are their target.

When you log in, a message-of-the-day may greet you before the first $.

- 7 -

_. .-- _. . ._~-_..

"t

~"""""'"
\'~:':'

TABLE OF CONTENTS

1. Commands and Application Programs

intro • • . . introduction to commands and application programs
300 •.....•.• handle special functions of DASI 300 and 300s terminals
4014 •.......•.... paginator for the TEKTRONIX 4014 terminal
450 ••• • • • • . . . • • handle special functions of the DASI 450 terminal
acctcom • . • • . • • • • • • . . • search and print process accounting file(s)
adb • . • . • • . • . . . • • . • . . • • . . absolute debugger
admin . . • • . • • • • • . . create and administer sees files
ar archive and library maintainer for portable archives
ar.pdp • • . . • . . • . . archive and library maintainer
arcv.. convert archive files from PDP-II to common archive format
as•.•.••••..•••...•..... common assembler
as.pdp •..••••.•....•..•.•..•. assembler for PDP-II
asa ..•.•......•.•.• interpret ASA carriage control characters
at . • • . . • • . . • . . execute commands at a later time
awk • • • . . • • • • • . • . • . . pattern scanning and processing language
banner . • • . . . • . • • make posters
basename . . • • . . • deliver portions of path names
bc . • . • . . • . • . . •• arbitrary-precision arithmetic language
bdiff. • • . • . . • • • big diff
bfs . . . • • • . . . • . . • • • • . . . • • . . big file scanner
~s. • • . . . a compiler/interpreter for modest-sized programs
cal . • • . • • . . • . • . . . • . . . • • • print calendar
calendar • . • . . • • . • . • • . . . • . . • . • reminder service
cat . . . • . • • . . • • concatenate and print files
cb. . • . . • . . . • . • • . • • • • • • . . . • . . e program beautifier
cc • • • • . . . • • • . . • . • • • • . . e compiler
cd • • • • . • • • • • • • . • . • • . . . • change working directory
cdc ..••....•. change the delta commentary of an sees delta
cflow • . • • • • • • • . cflow- generate e flow graph
chmod • • • • . . . • change mode
chown • • . . • • • . . . • . • . . change owner or group
cmp ..•........••..........•.. compare two files
col • • • . • • . . • • filter reverse line-feeds
comb •.•..•.••...•.••.•.••... combine sees deltas
comm • . . . • • • . . • . • • select or reject lines common to two sorted files
convert.. .••• • • . convert object and archive files to common formats
cp . • • • . . . • . • copy. link or move files
cpio . . . • • • . . copy file archives in and out
cpp . • . • . • • • • • • • • • . • • . the e language preprocessor
crontab .•••.•••••••..•••...•••.. user crontab file
crypt • • • . • • • • • encode/decode
csplit • • . • • • • . • . . • • • . . • . • • context split
ct. • • • • • . • • . . • • • • • • • . . • spawn getty to a remote terminal
ctrace . • • • • • • • • • • • • . . . • . • • C program debugger
cu • • • • • • . . • . • . • . • • . call another UN IX system
cut . . . • • . . cut out selected fields of each line of a file
cxref • generate C program cross-reference
date. • • • • • • • • . . • print and set the date
dc • . • • • . • . • • • • . desk calculator
dd . • • . • . • • • • . . . • • . . • • • . . • . • convert and copy a file
delta • . • • • • . • • . • • • . • • • make a delta (change) to an sees file
diff . • . • . • • . • • • • • . • • • • • • . • . differential file comparator
diff3 ••.•••••••••••••.•• 3-way differential file comparison
diffmk • • • • . • • • • • • • • • . • • mark differences between files

- I -

Table of Contents

dircmp • • • • • • • directory comparison
du . • . . . • . • • . • • • . • • . . . summarize disk usage
dump. • • . • • • • • • . . . • dump selected parts of an object file
echo . . . • • • • • • • • . . • • . . • . . • • . echo arguments
ed • • • • . . • . • . • • • . . • • • • • . . • . . • . • . . text editor
edit • • . • • • . . • • • • • text editor (variant of ex for casual users)
eft • • • • • . • . . Extended Fortran language
enable. . • • • • enable/disable lP printers
env . . ••. set environment for command execution
ex • • . • . • . • text editor
expr . • • . . • . . . • . • • • . . . • evaluate arguments as an expression
f77 . • • • • • • • • • • • • • • • • • • . . • Fortran 77 compiler
factor . • • • • • • . • • • factor a number
file•.......•••........•.. determine file type
find ..•.......•....••.......•.•••. find files
fsplit . • • • . • . • • • • . • • . • • . .•.• split f77, ratfor, or eO files
gdev ••.•••••.•.•••.•.• graphical device routines and filters
ged ••••..••••••••••.•..•...•.• graphical editor
get . • • • . • . • • • • • . • . . . • get a version of an sces file
getopt • • • • • • • • . • . • • • parse command options
graph ••••......•..•••....•••.••. draw a graph
graphics . . • . • . • • • . • . . • access graphical and numerical commands
greek • . . • • • • • • • . • • • • select terminal filter
grep • . • • • • • . . • . • • • • • • . search a file for a pattern
gutil • . . • • • • • • • • . . • • • • • • . • • graphical utilities
help . . • • • • • . • • • • . . . • • . • ask for help
hp •• handle special functions of Hewlett-Packard 2640 and 2621-series terminals
hpio . . • • . • . • . • • . Hewlett-Packard 2645A terminal tape file archiver
hyphen • . • • . . • . . • • . . . • find hyphenated words
id • • • • • • . . print user and group IDs and names
ipcrm ••.••.• remove a message queue, semaphore set or shared memory id
ipcs . . • • • • • . report inter-process communication facilities status
join . • . • • . . • . . • • • • • • • relational database operator
kasb ••••..... assembler/un-assembler for the KMCII B microprocessor
kill • • • . . • . • . . . • • • terminate a process
Id • . • • • link editor for common object files
ld.pdp. . . • . • . • • • . • • . . link editor
lex •......•.....••• generate programs for simple lexical tasks
line. • . . . • . • read one line
lint . . • • • • • a C program checker
login. • • • • . . . • . • sign on
logname•••.•••••••........ get login name
lorder . • . • . . • • • . • find ordering relation for an object library
Ip . • • . • • . • . . send/cancel requests to an lP line printer
lpstat•..•....•..• print lP status information
Is. . . . • . • • • • • • • . • . . • • . . . • • . list contents of directory
m4 •.•....••...•••...••....... macro processor
machid • • • . • . • • provide truth value about your processor type
mail •................... send mail to users or read mail
mailx • • • • . • • • interactive message processing system
make •...•...•. maintain, update, and regenerate groups of programs
makekey . . • . • • . . • • • • generate encryption key
man • • • . . • • • . • . • • • • • . . . • . . print entries in this manual
mesg • • • • • • . • • . • • • permit or deny messages
mkdir • • • • . • • • . • • . • • . • • • . . • • . • • • make a directory
net . • . . • . . execute a command on the pel network
newform •..••••.•.•.••.... change the format of a text file

- 2 -

Table of Contents

newgrp . . • . . . log in to a new group
news. . • • • • • • print news items
nice • . • run a command at low priority
nl . line numbering filter
nm •....•...•..••...• print name list of common object file
nm.pdp . . . • • . . • . • • . . • . print name list
nohup • • . . run a command immune to hangups and quits
od • • • . • . • • • • octal dump
pack. • . . • • • . . compress and expand files
passwd . • • . . . • • . . . • • . . • . . . • • . . change login password
paste. • merge same lines of several files or subsequent lines of one file
pg. • . . . • •• • • file perusal filter for soft-copy terminals
pr • . . . • • . . • • • • print files
prof . • display profile data
prs • • • . . • . • print an sees file
ps . • . • • • . . . • • . • . . . • . . . report process status
ptx • • • • permuted index
pwd • • working directory name
ratfor • • . . • • rational Fortran dialect
regcmp • regular expression compile
rjestat•.. RJE status report and interactive status console
rm ••..•......•••..•.•• ••• remove files or directories
rmdel•...••.••••.•• remove a delta from an sees file
sact . . . • . • . • . print current sees file editing activity
sag . . . • • • system activity graph
sar • . . • • . . . • • . . • . . • . . . system activity reporter
scc. • • . . C compiler for stand-alone programs
sccsdiff . . • • • compare two versions of an sees file
sdb • • . . . • • . • . . . • • symbolic debugger
sdiff . . • . • . . • • . side-by-side difference program
sed • • • • . . • • . stream editor
send .•. • . . • • . . . gather files and/or submit RJE jobs
sh . . • . . • • . shell, the standard/restricted command programming language
shl . . • • . . . • shell layer manager
size. • • . . . , . . • . . . print section sizes of common object files
size.pdp . • , • . . • . . . • . print sizes of object files
sleep ••..•••.••.•.•...•. suspend execution for an interval
sno .•..............••..•.... SNOBOL interpreter
sort•.•....•............ sort and/or merge files
spell • . • • find spelling errors
spline • . . . • • . . • interpolate smooth curve
split . . . • • • • • . . • . . • split a file into pieces
stat • • • statistical network useful with graphical commands
strip strip symbol and line number information from a common object file
strip.pdp • • • . remove symbols and relocation bits
stty. • set the options for a terminal
su . become super-user or another user
sum. • • • . print checksum and block count of a file
sync . . . • . . • • . . • • update the super block
tabs. set tabs on a terminal
tail . deliver the last part of a file
tar • tape file archiver
tee • . . • . . . • . . • . . • . . • . . pipe fitting
test . . . • • • • • • • condition evaluation command
time. . • • • time a command
timex • • • time a command; report process data and system activity
toc • . • . • • . • • graphical table of contents routines

- 3 -

Table of Contents

touch . • • • • • . • • • update access and modification times of a file
tplot . . . • • graphics filters
tput . . • • query terminfo database
tr . • translate characters
true . • . provide truth values
tsort . . . • . . • • • . topological sort
tty . • get the name of the terminal
umask • . • •.. set file-creation mode mask
uname • . • . . • • . • • • .••••• print name of current UNIX system
unget . . • • • . • • undo a previous get of an sees file
uniq •.•••••••••••••••••.• report repeated lines in a file
units . • • • • . • • • • . • • • • • . • . • • conversion program
uucp • • • • . . . • • • • . . • UNIX system to UNIX system copy
uustat • . • • • • uucp status inquiry and job control
uuto .•••••.•••.....• public UNIX-to-UNIX system file copy
uux • • • • • . . • • • . . • • • UNIX-to-UNIX system command execution
val •••.•••••••••••••••.••••.• validate sees file
vc •••••••••••••••••.••...•..•. version control
vi •...•.....••• screen-oriented (visual) display editor based on ex
vpr . . • • . . . • • • • • . • • • . • • • • . • . Versatec printer spooler
wait • • • • • • • • • . . • • • • ••••••• await completion of process
we • • • • • • . • • • • . • • • • • . • • • • . . . • • • • . word count
what ••••••••••.••.••.•..••... identify sees files
who . . . • . • • • . • • . • . • ••• who is on the system
write . • . • • • . • • • • . . • write to another user
xargs • construct argument list(s) and execute command
yacc . . . • • • • • • • • . . •••. yet another compiler-compiler

6. Games

intro . • • • introduction to games
arithmetic . • • • . • • • provide drill in number facts
back. • • • • . • the game of backgammon
bj • • • . the game of black jack
chess • • . • • • • • • • • . • . • • . • • • . . • • • • the game of chess
craps • • • • • • • • • • • . • • • • • • • • . • • • • • the game of craps
hangman .•••.•••••..••••.••...••• guess the word
jotto • • • • • • • . • • • • • . • • • • . . • • • . • • secret word game
maze •.••••••••.•.•••••••••.••• generate a maze
moo • • • • • . . • • • . • • • • • . • • • • • • • • • • • guessing game
quiz . . • • • • • • • • • • • • • • • . . • • • . • • test your knowledge
reversi • • • • • • •• a game of dramatic reversals
sky • • • • • . • • • • • • • • • • . • • • • • • • • • obtain ephemerides
ttt • . • • • • • • • • • • • • • • • . • • • • • • • . . • tic-tac-toe
wump • the game of hunt-the-wumpus

- 4 -

PERMUTED INDEX

· 70boot(S)
• hpio(l)
• 300(I)

300(1)
300(I)

• 13to10C)
• difT3(1)

4014(1)
4014(1)

· • 450(1)
• • . 450(1)

70boot(S)
7500ps(S)
n7(1)
7800ps(8)
a6410C)

· • abortOC)
abort OF)
absOF)
absOC)
adb(l)
abs(JC)

· absOF)
· floorOM)
• accept (I M)
· touch (I)

•.•• utime(2)
access(2)

• • graphics(IG)
sputl(JX)
sadp(l M)
Idfcn(4)
dcopy(l M)
getutOC)

• access(2)
acct(l M)

• acct(2)
acctcon (1M)
acctprC< 1M)
acctsh(1 M)

• diskusg(IM)
acct (4)
acctcom(l)
acctmerg(l M)
mclock(3F)
acctcms() M)
fwtmp(1 M)
runacct(1 M)

• acct(2)
acct(4)
acctcms(1M)

• acctcom(l)
acctcon(1 M)
acct() M)
acctmerg(l M)

• • acctprC< 1M)
acosOF)

• killalH 1M)
. ..• sag(IG)

sar(1 M)
sar<t)

11170 bootstrap procedures.
2645A terminal tape file
300 and 300s terminals.
300: DASI 300 and 300s
3005 terminals.
3-byte integers and long!
3-way differential file
4014: paginator for the
4014 terminal. 4014:
450: handle special functions
450 terminal. 450: handle
70boot: 11170 bootstrap
7500ps: VAX-I 11750 console
77 compiler. •.••••..
7800ps: VAX-I 11780 console
a64l: convert between long
abort: generate an lOT fault.
abort: terminate Fortran
abs: Fortran absolute value.
abs: return integer absolute
absolute debugger.
absolute value.
absolute value.
absolute value functions.
accept: allow!prevent LP
access and modification times
access and modification times.
access: determine
access graphical and numerical
access long integer data in a
access profiler.
access routines. • • • •
access time. dcopy:
access utmp file entry.
accessibility of a file.
accounting • • • .
accounting. acct:
accounting.
accounting. . • .
accounting. chargefee:
accounting data by user ID.
accounting file formal. • .
accounting file(s). acctcom:
accounting files. •
accounting. • •
accounting records. !command
accounting records.
accounting. • • • •
acct: enable or disable . .
acct: per-process accounting
acctcms: command summary from
acctcom: search and print
acctcon I: connect-time . . .
acctdisk: overview of . • • • •
acctmerg: merge or add total
acctprc I: process accounting.
acos: Fortran arccosine .
active processes.
activity graph.
activity report package.
activity reporter.

intrinsic function.
killal1: kill all

sag: system
sal: system
sar: system

value.
adb:

abs: return integer
abs: Fortran

!floor, ceiling, remainder,
requests.

of a file. touch: update
utime: set file

accessibility of a file.
commands. graphics:

machine-independent! sputl:
sadp: disk

Idfcn: common object file
copy file systems for optimal

getutent:
access: determine

acctdisk: overview of
enable or disable process

acctcon I: connect-time
acctprc I: process

shcll procedures for
diskusg: generate disk

acct: per-process
search and print process

acctmerg: merge or add total
mclock: rcturn Fortran time

summary from per-process
fwtmp: manipulate connect

runacct: run daily
process accounting.

file format.
per-process accounting!

process accounting file(s).
accounting.
accounting

accounting files.

program.

70boot:
archiver. hpio: HP

300: DASI
terminals.

300: DASI 300 and
13tol: convert between

comparison. difT3:
TEKTRONIX 4014 terminal.

paginator for the TEKTRONIX
of the DASI 450 terminal.

special functions of the DASI
procedures.
operations.

n7: Fortran
operations.

integer and base-64 ASCII!

- 1 -

Permuted Index

current sees file editing activity. sact: print sact())
report process data and system activity. !lime a command: timex(l)

interface. acu: Automatic Call Unit (ACU) acu(7)

~
acu: Automatic Call Unit (ACU) interface. acu(7)

adb: absolute debugger. adb(t)
acctmerg: merge or add total accounting flIes. acctmerg (I M)

putenv: change or add value to environment. putenv<JC)
SCCS files. admin: create and administer admin(l)

admin: create and administer SCCS files. admin(l)
of complex argument. aimag: Fortran imaginary part aimag<3F)

intrinsic function. aint: Fortran integer part aint<JF)
alarm: set a process alarm clock. alarm(2)

clock. alarm: set a process alarm alarm(2)
brk: change data segment space allocation. brk(2)

malloc: main memory allocator. malloc(3C)
malloc: fast main memory allocator. malloc(JX)

accept: allow/prevent LP requests. accept(1 M)
boolean functions. and, or, xor, not: Fortran booI(3 F)

disk packs. format: format and/or check RP06 and RM05 format<t M)
sort: sort and/or merge files. sort(t)

send: gather files and/or submit RJE jobs. send(IC)
functions. anint: Fortran nearest integer round<JF)

link editor output. a.out: common assembler and a.out(4)
mkboot: convert a.out file to boot image. mkboot(1 M)

link editor output. a.out: PDP-II assembler and a.out.pdp(4)
maintainer. ar: archive and library ar.pdp(I)

maintainer for portable/ ar: archive and library adl)
ar: archive file format. ar.pdp(4)

format. ar: common archive file ad4)
language. bc: arbitrary-precision arithmetic bc<t)
acos: Fortran arccosine intrinsic function. acos(JF)

maintainer. ar: archive and library ar.pdp<t)
for portable archives. ar: archive and library maintainer adl)

cpio: format of cpio archive. cpio(4)
ar: common archive file format. ar(4)

ar: archive file format. ar.pdp(4)
common format. arcv: convert archive files from PDP-II to arcv.pdp(t)

Idahread: read the archive header Idahread(JX)
HP 2645A terminal tape file archiver. hpio: hpio(I)

tar: tape file archiver. tar(I)
maintainer for portable archives. /archive and library adt)

cpio: copy file archives in and out. cpio(I)
asin: Fortran arcsine intrinsic function. asin(JF)

atan2: Fortran arctangent intrinsic function. atan2<JF)
atan: Fortran arctangent intrinsic function. atan(JF)

from PDP-II to common format. arcv: convert archive files arcv.pdp(I)
imaginary part of complex argument. aimag: Fortran aimag(JF)

return Fortran command-line argument. getarg: getarg(JF)
varargs: handle variable argument list. varargs(5)

formatted output of a varargs argument list. vprintf: print vprintf(JS)
formatted output of a varargs argument list. vprintf: print vprintf(JX)

command. xargs: construct argument list(s) and execute xargs(I)
getopt: get option letter from argument vector. getopt(JC)

expr: evaluate arguments as an expression. expd t)
echo: echo arguments. ccho(I)

bc: arbitrary-precision arithmetic language. bc(l)
number facts. arithmetic: provide drill in arithmetic(6)

expr: evaluate arguments as an expression. expr<t)
as: assembler for PDP-II. as.pdp(t)
as: common assembler. as<t)

.~characters. asa: interpret ASA carriage control asa(t)
control characters. asa: interpret ASA carriage asa (I)

ascii: map of ASCII character set. ascii (5)
set. ascii: map of ASCII character ascii(S)

- 2 -

Permuted Index

long integer and base-64 ASCII string. /convert between a6410C)
intrinsic function. asin: Fortran arcsine asinOF)

~
help: ask for help. hclp(I)

output. a.out: common assembler and link editor a.out(4)
output. a.out: PDP-II assembler and link editor a.ouLpdp(4)

as: common assembler. asU)
as: assembler for PDP-II. as.pdp(I)

KMCII B kasb: assembler/un-assembler for the kasb(I)
assertion. assert: verify program assert OX)

assert: verify program assertion. assertOX)
setbuf: assign buffering to a stream. setbufOS)

qasurvey: Quality Assurance Survey. qasurveyU M)
kl: KL-II or DL-II asynchronous interface. kl.pdp(7)

/DZ-It. DZ-II/KMC-IIB, DH-II asynchronous multiplexers. dz(7)
intrinsic function. atan: Fortran arctangent atanOF)
intrinsic function. atan2: Fortran arctangent atan20F)

interface. acu: Automatic Call Unit (ACU) acu(7)
wait: await completion of process. wait(J)

processing language. awk: pattern scanning and awkU)
ungetc: push character back into input stream. ungetcOS)

back: the game of backgammon. back(6)
back: the game of backgammon. back(6)

UNIX system file system backup. /daily/weekly filesave(1M)
fine: fast incremental backup. findl M)

frec: recover files from a backup tape. frcC< 1M)
print, initialize, update bad information bdblk: bdblk(1 M)

banner: make posters. banned J)
terminal capability data base. terminfo: terminfo(4)

between long integer and base-64 ASCII string. /convert a6410C)
portions of path names. basename, dirname: deliver basename< I)

~.
arithmetic language. be: arbitrary-precision bcU)

beopy: interactive block copy. bcopy(1 M)
update bad information bdblk: print, initialize, bdblkU M)

bdiff: big diff. bdilT(I)
cb: C program beautifier. cb(I)

jO, jl. jn, yO, yl, yn: Bessel functions. besselOM)
bfs: big file scanner. bfsU)

cpset: install object files in binary directories. cpset(1 M)
fread: binary input/output. freadOS)

bsearch: binary search a sorted table. bsearchOC>
tsearch: manage binary search trees. tsearch(JC)

remove symbols and relocation bits. strip: strip.pdp(I)
bj: the game of black jack. bj(6)

bj: the game of black jack. bj(6)
bcopy: interactive block copy. bcopyU M)

sum: print checksum and block count of a file. sumU)
sync: update the super block. svnC< I)

df: report number of free disk blocks. df(IM)
and, or, xor, not: Fortran boolean functions. boolOF)

mkboot: convert a.out file to boot image. mkboot(IM)
UNIX system startup and boot procedures. unixboot: unixboot (8)

romboot: special ROM bootstrap loaders. romboot(S)
70boot: 11170 bootstrap procedures. 70boot(8)

tapeboot: magnetic tape bootstrap program. tapeboot (8)
diskboot: disk bootstrap programs. diskboot (8)

shell scripts. brc: system initialization brd 1M)
allocation. brk: change data segment space brk(2)

modest-sized programs. bs: a compiler/interpreter for bs(I)

~
sorted table. bsearch: binary search a bsea rch 00

stdio: standard buffered input/output package. stdioOS)
, setbuf: assign buffering to a stream. setbufOS)

mknod: build special file. mknodU M)
dmc: communications link with built-in DDCMP protocol. dmc(7)

swab: swap bytes. swabOC>

- 3 .

Permuted Index

cc: C compiler. cc(f)
programs. scc: C compiler for stand-alone scc()
cflow: generate C flow graph. cRow(l)

•.~
cpp: the C language preprocessor. cpp(I)

cb: C program beautifier. cb(t)
lint: a C program checker. IintO)

cxref: generate C program cross-reference. cxrefO)
ctrace: C program debugger. ctrace(J)

cal: print calendar. cal(I)
dc: desk calculator. de()

cal: print calendar. cal()
calendar: reminder service. calendar< J)

cu: call another UNIX system. cu(IC)
data returned by stat system call. stat: stat (5)

acu: Automatic Call Unit (ACU) interface. acu(7)
intro: introduction to system calls and error numbers. intro(2)

link and unlink system calls. link: exercise Iink(J M)
to an LP line printer. lp. cancel: send/cancel requests Ip()

terminfo: terminal capability data base. terminfo(4)
pnch: file format for card images: pnch(4)
asa: interpret ASA carriage control characters. asa()

files. cat: concatenate and print cat(1)
cb: C program beautifier. cb(1)
cc: C compiler. cd I)
cd: change working directory. cd(1)

commentary of an SCCS delta. cdc: change the delta cdc(J)
value/ floor: floor. ceiling. remainder. absolute floor(3M)

cflow: generate C flow graph. cflow(1)
delta: make a delta (change) to an SCCS file. deha(1)

pipe: create an interprocess channel. pipe(2)
stream. ungetc: push character back into input . ungetc(3S)

.~user. cuserid: get character login name of the cuserid (3S)
stream. getc: get character or word from a getd3S)

putc: put character or word on a stream. putc(3S)
ascii: map of ASCII character set. ascii (5)

interpret ASA carriage control characters. asa: asa(t)
toupper: translate characters. conv(3C)

isalpha: classify characters. ctype(3C)
tr: translate characters. tr(I)

for accounting. chargefee: shell procedures acctsh(1 M)
directory. chdir: change working chdir(2)

fsck: file system consistency check fsck(1 M)
packs. format: format and/or check RP06 and RM05 disk format(J M)

checking procedure. checkall: faster file system checkall(1 M)
lint: a C program checker. Iint(1)

pwck: password/group file checkers. pwck(lM)
checkall: faster file system checking procedure. checkall() M:

copy file systems with label checking. volcopy: volcopy(1 M)
systems processed by fsck. checklist: list of file checklist (4)

file. sum: print checksum and block count of a sum()
chess: the game of chess. chess (6)

chess: the game of chess. chess(6)
times: get process and child process times. times(2)

terminate. wait: wait for child process to stop or wait(2)
chmod: change mode. chmod(1)
chmod: change mode of file. chmod(2)

of a file. chown: change owner and group chown(2)
chown: change owner or group. chown(l)
chroot: change root directory. chroot(2)

)for a command. chroot: change root directory chrootO M)
isalpha: classify characters. ctype(3C)

uuelean: uucp spool directory clean-up.• uuclean(1 M)
clri: clear i-node. • e1ri() M)

alarm: set a process alarm clock. alarm(2)

- 4 -

Permuted Index

cron: clock daemon. cron(1 M)
clock: report CPU time used. clockOC)

r Idclose: close a common object file. Idclose(3X)
close: close a file descriptor. closc(2)

descriptor. close: close a fi Ie c1osc(2)
fclose: close or flush a stream. fcioseOS)

clri: clear i-node. clri(IM)
cmp: compare two files. cmp(l)

line-feeds. col: filter reverse col(I)
comb: combine SCCS deltas. comb(J)

comb: combine SCCS deltas. comb(J)
common to two sorted files. comm: select or reject lines comm(\)

nice: run a command at low priority. nicc(J)
change root directory for a command. chroot: chroot(1 M)

env: set environment for command execution. env(I)
uux: UNIX-to-UNIX system command execution. uux(\ C)

system: issue a shell command from Fortran. system (J F)
quits. nohup: run a command immune to hangups and nohup(\)

net: execute a command on the PCl network. net (I C)
getopt: parse command options. getopt(l)

/shell, the standard/restricted command programming language. she I)
and system/ timex: time a command; report process data timex(\)

per-process/ acctcms: command summary from acctcms(\ M)
system: issue a shell command. system(JS)

test: condition evaluation command. test (J)
time: time a command. time(\)

argument \ist(s) and execute command. xargs: construct xargs(l)
getarg: return Fortran command-line argument. getarg(JF)

at: execute commands at a later time. ate I)
access graphical and numerical commands. graphics: graphics(\ G)

~
install: install commands. installU M)

intro: introduction to commands intro(I)
introduction to maintenance commands intro: intro(1 M)

how to remake the system and commands. mk: mk(S)
network useful with graphical commands. stat: statistical stat(JG)

cdc: change the delta commentary of an SCCS delta. cdcU)
ar: common archive file format. ar(4)

editor output. a.out: common assembler and link a.out(4)
as: common assembler. as(\}

archive files from PDP-II to common format. arcv: convert arcv.pdp(J)
object/archive files to common formats. /convert convert(l)

function. log I0: Fortran common logarithm intrinsic 10gI0(JF)
routines. Idfcn: common object file access Idfcn(4)

reading. Idopen: open a common object file for IdopenOX)
Idelose: close a common object file. Idclose(JX)

read the file header of a common object file. Idlbread: IdlbreadOX)
seck to the symbol table of a common object file. Idtbseek: IdtbseekOX)

line number entries in a common object file. linenum: linenum(4)
nm: print name list of common object file. nm(J)

relocation information for a common object file. reloc: reloc(4)
scnhdr: section header for a common object file. scnhdr(4)

table format. syms: common object file symbol syms(4)
filehdr: file header for common object files. filehdr(4)

Id: link editor for common object files. Id(I)
size: print section sizes of common object files. size< \}

comm: select or reject lines common to two sorted files. comm(J)
ipcs: report inter-process communication facilities/ ipcs(\)

ftok: standard interprocess communication package. stdipc(JC)

~
pel: parallel communications link interface. pc\(7)

built-in DDCMP protocol. dmc: communications link with dmc(7)
ditT: ditTerential file comparator. ditTO)

cmp: compare two files. • • . cmp(l)
SCCS file. sccsditT: compare two versions of an sccsditT(J)

functions. 1ge: string comparision intrinsic strcmpOF)

• 5 •

Permuted Index

diff3: 3-way differential file comparison. •••.••
dircmp: directory comparison. • ••...

expression. regcmp: compile and execute regular
regexp: regular expression compile and match routines.

regcmp: regular expression compile.
term: format of compiled term file..

cc: C compiler.
n7: Fortran 77 compiler.

programs. scc: C compiler for stand-alone
protocol machine. vpmc: compiler for the virtual

tic: terminfo compiler. .
yacc: yet another compiler-compiler.

modest-sized programs. bs: a compiler/interpreter for
erf: error function and complementary error function.

wait: await completion of process.
Fortran imaginary part of complex argument. aimag:

function. conjg: Fortran complex conjugate intrinsic
pack: compress and expand files.

table entry of a/ Idtbindex: compute the index of a symbol
cat: concatenate and print tiles.
test: condition evaluation command.

:;ystem. config: configure a UN IX
program. vcr: VAX-l 11780 configuration verification .

config: configure a UNIX system.
system. Ipadmin: configure the LP spooling

conjugate intrinsic function. conjg: Fortran complex
conjg: Fortran complex conjugate intrinsic function.

fwtmp: manipulate connect accounting records.
KMCII-B dmkset: connect DMII-BA modems to

an out-going terminal line connection. dial: establish
vpmset: connect/load VPM drivers

acctcon I : connect-time accounting.
fsck: file system consistency check

vlx: VAX-I 11780 LSI console floppy interface.
750ops: VAX-III7S0 console operations.
7800ps: VAX-I 11780 console operations.

math: math functions and constants.
mkfs: construct a file system.

execute command. xargs: construct argument list (s) and
Is: list contents of directory.

toe: graphical table of contents routines.
csplit: context split.

asa: interpret ASA carriage control characters.
loctl: control device.

fcntl: file control.
init: process control initialization.

dmk: D\1II-BA modem control multiplexor.
Illsgctl: message control operations.

semctl: semaphore control operations.
shmctl: shared memory control operations.

fcntl: lile control options.
uucp status inquiry and job control. uustat:

vc: version control.
interface. Itv: controlling terminal

terminals. terJ~: conventional names for
int: explicit Fortran type conversion.

units: conversion program. .
dd: convert and copy a tile.

image. mkboot: convert a.out file to boot
PDP-II to common/ arcv: convert archive files from

integers and long/ I3tol: convert between 3-byte .
and base-64 ASCII/ a64l: convert between long integer

object/archive Iiles tol convert: convert • . . .
string. ctime: convert date and time to

- 6 -

diff3 (J)
dircmp(l)
regcmpOX)

· regcxp(S)
regcmp(l)
term(4)
cdl)
n7(1)
scd I)

vpmc.dcd 1M)
tidlM)
vacdJ)

• bS(I)
erf(3M)
waite\)
aimagOF)

• conjgOF)
pack(l)
IdtbindexOX)
catU)
test U)
config.dd 1M)
vcf(1M)
conllg.dd 1M)
IpadminU M)
conjgOF)

· conjgOF)
fwtmp(1 M)
dmkset(1 M)

•• dial{)c)
vpmsel(1 M)
acctcon(1M)
fsckU M)
vlx(1 M)

· 7500psOO
7800ps(8)

· math(S)
mkfsU M)
xargs(J)
Is(J)
toe(I G)
csplit«)
asa (J)

iOC1«2)
rcntlt~)

inil(JM)
dmk(7)
Illsgctl t!)
sClllctJ(2)
shmctJ(2)

. . fcntJ(5)
UUSlatUC)
vc(l)
Ilv(7)
Ic'rm(5)
ftypeOF)
units(J)
dd(I)

mkbootU M)
arcv.pdp(J)
13to1<3C)
a641{)C)
wnvert(l)
ctimeOC)

Permuted Index

and VAX-111780 systems. fscv: convert files between PDP-II fscv.vax(t M)
to string. ecvt: convert floating-point number ecvtOC)

~
scanf: convert formatted input. scanfOS)

to common formats. convert: convert object/archive files convert (I)
double-precision/ strtod: convert string to strtod<3C)

strtol: convert string to integer. strtol<3C)
dd: convert and copy a file. dd(I)

bcopy: interactive block copy. bcopy(\ M)
cpio: copy file archives in and out. cpio(I)

access time. dcopy: copy file systems for optimal dcopyO M)
checking. volcopy: copy file systems with label volcopy(1M)

CPt In. mv: copy. link or move liles. cpU)
UNIX system to UNIX system copy. uucp: uucp(Ie)

UNIX-to-UNIX system file copy. uuto: public uuto(tC)
file. core: format of core image cord4)

core: format of core image file. cord4)
mem: core memory. mem(7)

function. cos: Fortran cosine intrinsic cosOF)
cosine intrinsic function. cosh: Fortran hyperbolic coshOF)

cos: Fortran cosine intrinsic function. cosOF)
cosh: Fortran hyperbolic cosine intrinsic function. coshOF)

sum: print checksum and block count of a file. sum(\)
wc: word count. wdl)

files. CPt In. mv: copy. link or move cpO)
cpio: format of cpio archive. cpio(4)

and out. cpio: copy file archives in cpio(l)
cpio: format of cpio archive. cpio(4)

preprocessor. cpp: the C language • . cpp(I)
binary directories. cpset: install object flIes in cpsctU M)

clock: report CPU time used. clockOC)

~
craps: the game of craps. craps(6)

craps: the game of craps. . • craps(6)
crash: examine system images. crashU M)

system crashes. crash: what to do when the crash.ded8)
what to do when the system crashes. crash: crash.ded8)

rewrite an existing one. creat: create a new me or crcat(2)
flle. tmpnam: create a name for a temporary tmpnam<3S)

an existing one. creat: create a new file or rewrite creat (2)
fork: create a new process. fork (2)

tmpfile: create a temporary file. tmplile<3S)
channel. pipe: create an interprocess pipd2)

files. admin: create and administer SCCS adminO)
umask: set and get file creation mask. umask(2)

cron: clock daemon. cron(IM)
crontab: user crontab file. crontab(\)

crontab: user crontab Ille. crontabO)
cxref: generate C program cross-reference. cxrcf(I)

optimization package. curses: CRT screen handling and cursesOX)
crypt: encode/decode. crypt (I)

encryption. crypt: generate DES cryptOC)
csplit: context split. csplit(l)

terminal. ct: spawn getty to a remote cdlC)
for terminal. ctermid: generate file name ctcrmid(JS)

to string. ctime: convert date and time ctimcOe)
ctrace: C program debugger. ctrace(l)
cu: call another UNIX system. cuOC)

activity. sact: print current SCCS file editing sact(\)
uname: print name of current UNIX system. uname(I)

~
uname: get name of current UNIX system. unamc(2)

slot in the utmp file of the current user. /find the ttyslot OC)
getcwd: get path-name of current working directory. gctcwdOe)

and optimization package. curses: CRT screen handling curses(JX)
spline: interpolate smooth curve. splincOG)

name of the user. cuserid: get character login cuserid<3S)

• 7 •

Permuted Index

of each line of a file. cut: cut out selected fields cut(t)
each line of a file. cut: cut out selected fields of cut(l)

cross-reference. cxref: generate C program cxref(l)

~cron: clock daemon. cron(J M)
errdemon: error-logging daemon. errdemon(1 M)

terminate the error-logging daemon. errstop: errstop(IM)
runacct: run daily accounting. runacct(J M)

system backup. filesave: daily/weekly UNIX system file filesave(J M)
300: DASI 300 and 300s terminals. 300(J)

special functions of the DASI 450 terminal. Ihandle 450(t)
!time a command; report process data and system activity. timex(l)

terminfo: terminal capability data base. terminfo(4)
generate disk accounting data by user ID. diskusg: ••• diskusg<t M)
sputl: access long integer data in a machine-independentl spulH3X)

plock: lock process, text, or data in memory. plock(2)
prof: display profile data. prof(l)

call. stat: data returned by stat system stat (5)
brk: change data segment space allocation. brk(2)

types: primitive system data types. types(S)
join: relational database operator. . join(l)

tput: query lerminfo dat~base. tput(»
ctime: convert date and time to string. ctime(3C)

dale: print and set the date. datc(J)
date: print and set the date. datc(J)
dc: desk calculator. dc(t)

optimal access time. dcopy: copy file systems for dcopy(1 M)
dd: convert and copy a file. dd(l)

llink with built-in DDCMP protocol. dme(7)
adb: absolute debugger. adb(J)

ctrace: C program debugger. ctraccC»
fsdb: file system debugger. fsdb(1 M)

'~sdb: symbolic debugger. sdb(J)
sysdef: system definition. sysdef(IM)

names. basename, dirname: deliver portions of path basenamcC I)
file. tail: deliver the last part of a taiHt)

delta commentary of an SCCS delta. cdc: change the cdeCt)
file. delta: make a delta (change) to an SCCS delta(J)

delta. cdc: change the delta commentary of an SCCS cdeCl)
rmdel: remove a delta from an SCCS file. rmdel(l)
to an SCCS file. delta: make a delta (change) delta(l)

comb: combine SCCS deltas. comb(J)
mesg: permit or deny messages. mesg(I)
crypt: generate DES encryption. crypt(3C)

close: close a file descriptor. c1osc(2)
dup: duplicate an open file descriptor. dup(2)

dc: desk calculator. deC»
file. access: determine accessibility of a access (2)

file: determine file type. filc(l)
master: master device information table. mastcr.dec(4)

ioctl: control device. ioctl(2)
devnm: device name. devnm(1 M)

hpd: graphical device routines and filters. gdev(JG)
devnm: device name. devnm(J M)

blocks. df: report number of free disk df(1 M)
dz: DZ-II, DZ-II/KMC-IIB, DH-II asynchronousl dz(7)

terminal line connection. dial: establish an out-going dial(JC)
ratfor: rational Fortran dialect. ratfor(t)

bdiff: big diff. bdiff(l)
comparator. diff: differential file diff(t)

)comparison. diff3: 3-way differential file diff3(J)
functions. dim: positive difference intrinsic . dimOF)

sdiff: side-by-side difference program. sdiff(I)
diffmk: mark differences between files. diffmk(I)

diff: differential file comparator. diff(l)

- 8 -

Permuted Index

diff3: 3-way differential file comparison. difT3(J)
between files. diffmk: mark ditferences dilfmk(I)

r intrinsic functions. dim: positive difference dim()F)
dir: format of directories. dir(4)
dircmp: directory comparison. dircmp(I)

install object liIes in binary directories. cpset: epset(I M)
dir: format of directories. dir(4)

rm: remove files or directories. rm(J)
cd: change working directory. cd(I)

chdir: change working directory. chdir(2)
chroot: change root directory. chroot (2)
uuclean: uucp spool directory clean-up. uuclean(I M)

dircmp: directory comparison. dircmp(J)
unlink: remove directory entry. unlink(2)

chroot: change root directory for a command. chroot(1 M)
path-name of current working directory. getcwd: get getcwd()C)

Is: list contents of directory. Is<I)
mkdir: make a directory. mkdir(J)
mvdir: move a directory. mvdir(1 M)
pwd: working directory name. pwd(J)

ordinary file. mknod: make a directory, or a special or mknod(2)
path names. basename. dirname: deliver portions of basename< I)

acct: enable or disable process accounting. acct(2)
type, modes, speed, and line discipline. /sel lerminal getty(1 M)

sadp: disk access profiler. sadp(1 M)
10. diskusg: generate disk accounting data by user diskusg(1 M)

df: report number of free disk blocks. df(I M)
diskboot: disk bootstrap programs. diskboOl (S)

RH II /RJS03·RJS04 fixed-head disk file. hs: hs.pdp(7)
rf: RFI I/RSII fixed-head disk file. rf.pdp(7)

hm: RM05 moving-head disk. hm(7)
moving-head disk. /RP04/RP05/RP06 hp(7)

mil I: MLJ I solid-slate disk. ml I I.pdp(7)
and/or check RP06 and RM05 disk packs. format: format format(J M)

rk: RK-I I/RK03 or RK05 disk. rk.pdp(7)
rl: RL-I I/RLOI disk. rJ(7)

rmSO: RMSO moving-head disk. rm80(7)
medium moving-head disk. IRP07 non-removable rp07(7)

rp: RP- I I/RP03 moving-head disk. rp.pdp(7)
du: summarize disk usage. du(J)

programs. diskboot: disk bootstrap diskboot (8)
general driver for moving-head disks. gd: gd(7)

accounting data by user 10. diskusg: generate disk diskusg(I M)
mount: mount and dismount file system. mount(1 M)

prof: display profile data. prof(I)
hypot: Euclidean distance function. hypotOM)

drand48: generate uniformly distributed pseudo-randoml drand48()C)
kl: KL-II or OL-II asynchronous interface. kl.pdp(7)

multiplexor. dmk: OMI I-BA modem control dmk(7)
dmkset: connect OMI I-BA modems to KMCI I-B dmkset(1 M)

built-in OOCMP protocol. dmc: communications link with dmC(7)
multiplexor. dmk: OMII-BA modem control dmk(7)

to KMCI I-B dmkset: connect OMII-BA modems dmkset(IM)
whodo: who is doing what. whodo(1 M)

intrinsic function. dprod: double precision product dprod()F)
strtod: convert string to double-precision number. strtod()C)

product intrinsic function. dprod: double precision dprod()F)
reversi: a game of dramatic reversals. reversi(6)

~
distributed pseudo-randoml drand4S: generate uniformly drand48()C)

graph: draw a graph. graph(JG)
arithmetic: provide drill in number facts. arit hmetiC(6)

gd: general driver for moving-head disks. gd(7)
gt: general driver for tape drives. gt(7)

sxt: pseudo-device driver. sxt (7)

- 9 -

Permuted Index

trace: event-tracing driver. tracd7)
vpmset: connect/load VPM drivers vpmscr(1 M)

gt: general driver for tape drives. gt(7)

)interface. du: DU-li synchronous line du.pdp(7)
du: summarize disk usage. duO)

interface. du: DU-ll synchronous line du.pdp(7)
an object file. dump: dump selected parts of dumpO)

extract error records from dump. errdead: errdead(1 M)
00: octal dump. od(»

object file. dump: dump selected parts of an dump(l)
descriptor. dup: duplicate an open file dup(2)

descriptor. dup: duplicate an open file dup(2)
DH-ll asynchronous/ dz: DZ-ll, DZ-II/KMC-IIB. dz(7)

asynchronous/ dz: DZ-l I. DZ-II/KMC-IIB. DH-I I dz(7)
asynchronous I dz: DZ-Il. DZ-II/KMC-IIB, DH-II dz(7)

echo: echo arguments. echo(I)
echo: echo arguments. echoO)

number to string. ecvt: convert floating-point ccvtOC)
edt red: text editor. cdC))
edit: text editor edit(l)

sact: print current SCCS file editing activity. sactO)
edt red: text editor. cd(l)

edit: text editor edit(l)
ex: text editor. ex(I)

files. Id: link editor for common object Id(l)
ged: graphical editor. ged(IG)

Id: link editor. Id.pdp(I)
common assembler and link editor output. a.out: a.out(4)
PDP-II assembler and link editor output. a.out: a.out.pdp(4)

sed: stream editor. sedO)
vi: screen-oriented editor vi(l)

Language. efl: Extended Fortran eHO)
~fsplit: split n7. ratfor, or efl files. fsplit())

printers. enable: enable/disable LP enableO)
accounting. acct: enable or disable process acct(2)

enable: enable/disable LP printers. enable(I)
crypt: encode/decode. crypt(I)

crypt: generate DES encryption. • cryptOC)
makekey: generate encryption key. makekey()

program. end: last locations in endOC)
trenter: enter a trouble report. trenter(I)

nlist: get entries from name list. nlistOC)
file. linenum: line number entries in a common object linenum(4)

man: print entries in this manual. man(l)
/manipulate line number entries of a file function. IdlreadOX)

Idlscek: seck to line number entries of a section of a/ IdlseekOX)
Idrseek: seek to relocation entries of a section of a/ IdrseekOX)

utmp: utmp and wtmp entry formats. utmp(4)
getgrent: get group file entry. getgrcntOC)

getpwent: get password file entry. getpwent OC)
getutent: access utmp file entry. getutOC)

name for file symbol table entry. /retrieve symbol IdgetnameOX)
the index of a symbol table entry of a file. /compute IdtbindexOX)

read an indexed symbol table entry of a file. Idtbread: IdtbrcadOX)
putpwent: write password file entry. putpwent Oc>

rje: RJ E (Remote Job Entry) to IBM. rje<8J
unlink: remove directory entry. unlink(2)

command execution. env: set environment for env())
environ: user environment. environ(S)

profile: setting up an environment at login time. profilc(4)
~environ: user environment. environ(S)

execution. env: set environment for command env())
getenv: return value for environment name. getenvOc>

putenv: change or add value to environment. putenvOC)

- 10-

Permuted Index

getenv: return Fortran environment variable. getenv(JF)
sky: obtain ephemerides. sky(6)

r complementary error function. erf: error function and erf(JM)
err: error-logging interface. err(7)

from dump. errdead: extract error records errdead() M)
daemon. errdemon: error-logging errdemon (1M)
format. errfile: error-log file errfilc(4)

complementary errorl erf: error function and erf(JM)
function and complementary error function. erf: error erf(JM)

perror: system error messages. perror(JC)
to system calls and error numbers. lintroduction intro(2)

errdead: extract error records from dump. errdead (1M)
matherr: error-handling function. matherr(JM)

errfile: error-log file format. errfilc(4)
crrdcmon: error-logging daemon. errdemonU M)

errstop: terminate the error-logging daemon. errstop(1M)
err: error-logging interface. err(7)

process a report of logged errors. errpt: errpt(1M)
spell: find spelling errors. spell ())

logged errors. errpt: process a report of errpt(l M)
error-logging daemon. errstop: terminate the errstop(1M)

terminal linel dial: establish an out-going dial(JC)
setmnt: establish mount table. setmnt(1 M)

hypot: Euclidean distance function. hypot(JM)
expression. expr: evaluate arguments as an cXPr())

test: condition evaluation command. test ()
vpmsave: save and print VPM event traces. vpmsavd 1M)

trace: event-tracing driver. tracd?)
ex: text editor. ex(I)

crash: examine system images. crashU M)
exeel: execute a file. exec(2)

~'
network. net: execute a command on the PCl net (I C)

excel: execute a file. excc(2)
construct argument list(s) and execute command. xargs: xargs())

time. at: execute commands at a later ad))
regcmp: compile and execute regular expression. regcmpOX)

set environment for command execution. env: cnv«)
sleep: suspend execution for an interval. sleep(I)
sleep: suspend execution for interval. sleep(JC>

monitor: prepare execution profile. monitorOC)
profil: execution time profile. prolil (2)

UNIX-to-UNIX system command execution. uux: uux(IC)
system calls. link: exercise link and unlink link <I M)

a new file or rewrite an existing one. creat: create creal (2)
exit: terminate process. exit(2)

power. square root functions. exp: exponential. logarithm. expOM)
intrinsic function. exp: Fortran exponential expOF)

pack: compress and expand files. pack{J)
conversion. int: explicit Fortran type ftype(JF)

function. exp: Fortran exponential intrinsic expOr)
square root functions. exp: exponential. logarithm. power. expOM)

expression. expr: evaluate arguments as an expd I)
routines. rege:<p: regular expression compile and match regcxp(S)

regcmp: regular expression compile. regcmp(l)
expr: evaluate arguments as an expression. . • • expr(I)

compile and execute regular expression. regcmp: regcmpOX)
ell: Extended Fortran language. efl(I)

dump. errdead: extract error records from errdead (1M)
fl7: Fortran 77 compiler. n7(J)

~.
fsplit: split fl7, ratfor. or en flies. fsplit (I)

factor: factor a number. factor(I)
factor: factor a number. factor(J)

data in a machine-independent fashion laccess long integer sputl(JX)
fine: fast incremental backup. lind I M)

- 11 -

Permuted Index

malloc: fast main memory allocator. maJlocOX)
procedure. checkall: faster file system checking checka" (JM)

abort: generate an lOT fault. abortOC)
.~stream. fclose: close or flush a fclosc(3S)

fcntl: file control. fcntl(2)
fcnll: file control options. fcntl(S)

inquiries. ferror: stream status ferrorOS)
statistics for a file system. ff: list file names and fT(1 M)

times. utime: set file access and modification utime(2)
Idfcn: common object file access routines. Idfcn(4)

determine accessibility of a file. access: access (2)
hpio: HP 264SA terminal tape file archiver. hpio(l)

tar: tape file archiver. tar(I)
cpio: copy file archives in and oul. cpio(l)

pwck: password/group file checkers. pwck(l M)
chmod: change mode of file. chmod(2)

change owner and group of a file. chown: chown(2)
diff: differential file comparator. diff(I)

diff3: 3-way differential file comparison. • diff3(J)
fcntl: file contro!. fcntl(2)
fcntl: file control options. fcntJ(5)

public UNIX-to-UNIX system file copy. uuto: uuto(IC)
core: format of core image file. core(4)

umask: set and get file creation mask. umask(2)
crontab: user crontab file. crontab())

fields of each line of a file. cut: cut out selected • cut(l)
dd: convert and copy a file. dd(l)

a delta (change) to an SCCS file. delta: make dclta(l)
close: close a file descriptor. · c1osc(2)

dup: duplicate an open file descriptor. dup(2)
file: determine file type. l1Ic(l)

selected parts of an object file. dump: dump dump() .~sact: print current SCCS file editing activity. sact(»
getgrent: get group file entry. getgrent (JC)

getpwent: get password file entry. getpwent (JC)
getutent: access utmp file entry. getut(JC)

putpwent: write password file entry. putpwent OC)
execl: execute a file. exec(2)

grep: search a file for a pattern. grep(J)
Idopen: open a common object file for reading. IdopenOX)

acct: per-process accounting file format. acct (4)
ar: common archive file format. ar(4)

ar: archive file format. ar.pdp(4)
errfilc: error-log file format. errl1le(4)

pnch: file format for card images. pnch(4)
intro: introduction to file formats. intro(4)

line number entries of a file function. /manipulate IdlreadOX)
get: get a version of an SCCS file. get (J)

group: group file. group(4)
files filehdr: file header for common object l1Iehdd4)

file. Idfhread: read the file header of a common object Id fhread 0 X)
Idohseek: seek to the optional file header of a file. Idohseek 0 X)

fixed-head disk file. hs: RH II/RJS03-RJS04 hs.pdp(7)
split: split a file into pieces. split()

issue: issue identification file. issuc(4)
Idclose: close a common object file. IdcloseOX)
file header of a common object file. Idfhread: read the Idfhread OX)

entries of a section of a file. /seek to line number Idlseck OX)
the optional file header of a file. Idohseek: seek to IdohseekOX)

entries of a section of a file. /seek to relocation Idrseek(JX)
~section header of a file. /read an indexed/named IdshreadOX)

section of an object file. Ito an indexed/named IdsseekOX)
of a symbol table entry of a file. /compute the index IdtbindexOX)

symbol table entry of a file. /read an indexed Idtbread OX)

- 12 -

","\'"

table of a common object file. /seek to the symbol
entries in a common object file. linenum: line number

link: link to a file. . • • •
mknod: build special file. • • . • •

or a special or ordinary file. /make a directory.
ctermid: generate file name for terminal.

mktemp: make a unique file name. • ..•.
a file system. fT: list file names and statistics for

change the format of a text file. newform:
name list of common object file. nm: print

null: the null file. • . . •
/find the slot in the utmp file of the current user.

/identify processes using a file or file structure.
one. creat: create a new file or rewrite an existing

passwd: password file. • • • • • . • .
merge same lines of several file paste: •.•..•

soft-copy terminals. pg: file perusal filter for • .
fseek: reposition a file pointer in a stream.

Iseek: move read/write file pointer. .
prs: print an sees file. . • . • • . . •

read: read from file. . . . • • • . •.
for a common object file. /relocation information

rf: RFll/RSll fixed-head disk file. • ••..
remove a delta from an sees file. rmdel: • . . . • .

bfs: big file scanner.
two versions of an sees file. sccsditf: compare
sccsfile: format of sees file. . •.....

header for a common object file. scnhdr: section
stat: get file status.

line number information from a file. strip: strip symbol and
processes using a file or file structure. /identify

checksum and block count of a file. sum: print
/retrieve symbol name for file symbol table entry. •

syms: common object file symbol table formal.
daily/weekly UNIX system file system backup. filesave:

procedure. checkall: faster file system checking . • .
fsck: file system consistency check
fsdb: file system debugger.

names and statistics for a file system. tf: list file
volume. file system: format of system

mkfs: construct a file system.
mount: mount and dismount file system. • • • .

mount: mount a file system. • . . •
ustat: get file system statistics.

mnllab: mounted file system table.
umount: unmount a file system. . . • •

access time. dcopy: copy file systems for optimal
fsck. checklist: list of file systems processed by

checking. volcopy: copy file systems with label
deliver the last part of a file. tail:

term: format of compiled term file.. • . • .
tmpfile: create a temporary file. • • • •

create a name for a temporary file. tmpnam:
mkboot: convert a.out file to boot image.

and modification times of a file. touch: update access
ftw: walk a file tree. • • • • .

file: determine file type. • .
undo a previous get of an sees file. unget:

report repeated lines in a file. uniq:
val: validate secs file. • • •

write: write on a file. • • •
umask: set file-creation mode mask.

common object files. filehdr: file header for
and print process accounting file(s). acctcom: search

• 13 •

Permuted Index

Idtbseek(JX)
Iinenum(4)

• Iink(2)
• mknodO M)
• mknod(2)

ctermid(JS)
mktemp(3C)

• IT(I M)
· newform (I)

nm(1)
null (7)
tlyslot ()C)
fuser(1 M)
creat(2)
passwd(4)
paste(l)

• pg<J)
fseck()S)
Iscck(2)

• prsO)
• rcad(2)

reloc(4)
· rf.pdp(7)
• rmdel<l)

bfs<J)
sccsditf(1)
sccsfile(4)
scnhdr(4)

• stat(2)
strip<l)

· fuser< 1M)
• sum<l)
· Idgctname()X)

syms(4)
filcsavC<l M)
chcckall(1 M)

• fsck(1 M)
fsdb(1M)
!f(1 M)

• fs(4)
· mkfs(1 M)

mount(1 M)
• mount(2)
• ustat(2)

mnllab(4)
umount(2)
dcopy(1 M)

· checklist (4)
volcopy(1M)
tail<l)
term (4)
tmpfile(JS)

• tmpnam(JS)
• mkboot (I M)
• touchO)
· ftw(Je)

file (I)
unget(I>
uniq(t)

• vaJ(J)
· write(2)

umask(t)
• filehdr(4)
· acctcom (I)

Permuted Index

merge or add total accounting files. acctmerg: acctmerg(1 M)
create and administer SCCS files. admin: admin(J)

send: gather files and/or submit RJE jobs. scnd(IC)

'~VAX-I 11780/ fscv: convert files between PDP-II and fscv.vax(l M)
cat: concatenate and print files. cat(t)

cmp: compare two files. cmp(l)
lines common to two sorted files. comm: select or reject comm(l)

cp, In, mv: copy, link or move files. cp(l)
mark differences between files. diffmk: dilfmk(J)

file header for common object files. filehdr: filehdr(4)
find: find files. find(l)

free: recover files from a backup tape. freC< 1M)
format. arcv: convert archive files from PDP- I I to common arcv.pdp(1)

format specification in text files. fspec: fspeC(4)
split f77, ratfor, or efl files. fsplit: fsplit (I)

string, format of graphical files. /graphical primitive gps(4)
cpset: install object files in binary directories. cpset(1 M)

intro: introduction to special files. intro(7)
link editor for common object files.ld: Id(I)

rm: remove files or directories. rm(J)
pack: compress and expand files. pack(l)

pr: print files. pr(I)
section sizes of common object files. size: print sizc(J)

size: print sizes of object files. size.pdp (J)
sort: sort and/or merge files. sort (I)
/convert object/archive files to common formats. convert(I)

what: identify SCCS files. what(l)
system file system backup. filesave: daily/weekly UNIX filesavd 1M)
terminals. pg: file perusal filter for soft-copy pg(l)

greek: select terminal filter. greek(l)
nl: line numbering filter. nH))

col: filter reverse line-feeds. coJ(J)
graphical device routines and filters. hpd: gdev(IG)

tplot: graphics filters. tplot(IG)
finc: fast incremental backup. find I M)

find: find files. find(l)
find: find files. find(l)

ttyname: find name of a terminal. ttyname(JC)
object library. lorder: find ordering relation for an lorder())

spell: find spelling errors. spell (I)
of the current user. ttyslot: find the slot in the utmp file ttyslotOC)

tee: pipe fitting. ted))
hs: RH I I/RJS03-RJS04 fixed-head disk file. hs.pdp(7)

rf: RFII/RSII fixed-head disk file. rf.pdp(7)
string. ecvt: convert floating-point number to ecvtOC)

frexp: manipulate parts of floating-point numbers. frexpOC)
absolute value/ floor: floor, ceiling, remainder, fJoorOM)

remainder, absolute value/ floor: floor, ceiling, floorOM)
vlx: VAX-I 11780 LSI console floppy interface. vlx(IM)

cflow: generate C flow graph. cllow(l)
fclose: close or flush a stream. fcloseOS)

fopen: open a stream. fopenOS)
fork: create a new process. fork(2)

per-process accounting file format. acct: acct (4)
RMOS disk packs. format: format and/or check RP06 and format(1 M)

ar: common archive file format. ar(4)
files from PDP-II to common format. arcv: convert archive arcv.pdp(l)

ar: archive file format. ar.pdp(4)
errfile: error-log file format. errfile(4)

pnch: file format for card images. pnch(4)
RP06 and RMOS disk packs. format: format and/or check format(1 M)

newform: change the format of a text file. newform(l)
inode: format of an i-node. inode(4)
term: format of compiled term file.. term (4)

- 14 -

core:
cpio:

dir:
/graphical primitive string,

sccsfile:
file system:
files. fspec:

object file symbol table
object/archive files to common

intro: introduction to file
utmp: utmp and wtmp entry

scanf: convert
argument list. vprintf: print
argument list. vprintf: print

printf: print
n7:
abs:

system/ signal: specify
function. acos:
function. asin:

function. atan2:
function. atan:

and, or. xor, not:
getarg: return

intrinsic function. log I0:
intrinsic function. conjg:

function. cos:
ratfor: rational
getenv: return
function. exp:

intrinsic function. cosh:
intrinsic function. sinh:
intrinsic function. tanh:

complex argument. aimag:
function. aint:

efl: Extended
functions. max:
functions. min:

intrinsic function. log:
functions. anint:
abort: terminate
functions. mod:

function. sin:
function. sqrt:

len: return length of
index: return location of

issue a shell command from
funclion. tan:

mclock: return
intrinsic funclion. sign:

int: explicit

backup tape.
df: report number of

floating-point numbers.
frec: recover files

and line number information
getc: get character or word

gets: get a string
rmdel: remove a delta

getopt: get option letter
errdead: extract error records

read: read
system: issue a shell command

Permuted Index

format of core image file. • • core(4)
format of cpio archive. . cpio(4)
format of directories. .•••.••• dir(4)
format of graphical files. • gps(4)
format of SCCS file. . • • • • • • • • sccsfile(4)
format of system volume. • . fs(4)
format specification in text fsped4)
format. syms: common • . syms(4)
formats. convert: convert convert ())
formats. intro(4)
formats. • • • • • • • . • utmp(4)
formatted input. . scanfOS)
formatted output of a varargs • • • • • vprintfOS)
formatted output of a varargs • vprintfOX)
formatted output. • printfOS)
Fortran 77 compiler. . • . • . n7 (I)
Fortran absolute value. • • . • • absOF)
Fortran action on receipt of a • signa10 F)
Fortran arccosine intrinsic . acosOF)
Fortran arcsine intrinsic • • asin 0 F)
Fortran arctangent intrinsic . atan20F)
Fortran arctangent intrinsic . • atanOF)
Fortran boolean functions. • boolOF)
Fortran command-line argument. • getargOF)
Fortran common logarithm 10gIOOF)
Fortran complex conjugate •.•• conjgOF)
Fortran cosine intrinsic • . cosOF)
Fortran dialect. • • . • • • rat for(I)
Fortran environment variable. • getenv 0 F)
Fortran exponential intrinsic •• ••• expOF)
Fortran hyperbolic cosine • • • cosh 0 F)
Fortran hyperbolic sine sinh(3F)
Fortran hyperbolic tangent • tanh 0 F)
Fortran imaginary part of aimag 0 F)
Fortran integer part intrinsic aint 0 F)
Fortran Language. • efl (I)
Fortran maximum-value • max 0 F)
Fortran minimum-value minOF)
Fortran natural logarithm . logOF)
Fortran nearest integer . round 0 F)
Fortran program. abort 0 F)
Fortran remaindering intrinsic mod 0 F)
Fortran sine intrinsic . sin 0 F)
Fortran square root intrinsic • sqrt0 F)
Fortran string. • • • • len 0 F)
Fortran substring. . . • index OF)
Fortran. system: system OF)
Fortran tangent intrinsic . • • tan 0 F)
Fortran time accounting. mclock 0 F)
Fortran transfer-of-sign sign 0 F)
Fortran type conversion. • ftypeOF)
fread: binary input/output. ••• freadOS)
frec: recover files from a . fred I M)
free disk blocks. • • • • •• .•• df(I M)
frexp: manipulate parts of •.•.•. frexpOC)
from a backup tape. • • • . • • frec(I M)
from a file. /strip symbol • • strip(I)
from a stream. getcOS)
from a stream. getsOS)
from an SCCS file. . rmdel(I)
from argument vector. • getoptOC)
from dump. errdead (I M)
from file. . • . • • • . • • read (2)
from Fortran. • • . • . • . • . system OF)

- 15 -

Permuted Index

ncheck: generate names from i-numbers. ncheck(1 M)
nlist: get entries from name list. nlistOC)

arcv: convert archive files from PDP-II to common format. arcv.pdp(\)
.~acctcms: command summary from per-process accounting/ acctcms(1M)

getpw: get name from UID. gctpw()C)
of file systems processed by fsck. checklist: list checklist (4)

check fsck: file system consistency fsck(IM)
PDP-II and VAX-I 1/7801 fscv: convert files betwecn fscv.vax(t M)

fsdb: file system debugger. fsdb(1 M)
pointcr in a stream. fseek: reposition a file fscckOS)

text files. fspec: format specification in fspcc(4)
eft files. fsplit: split n7, ratfor, or fsplit (J)

communication package. ftok: standard interprocess stdipcOC)
ftw: walk a file tree. ftwOC)

Fortran arccosine intrinsic function. acos: acos()F)
Fortran integer part intrinsic function. aint: aint(3F)

error function. erf: error function and complementary erf()M)
Fortran arcsine intrinsic function. asin: asinOF)

Fortran arctangent intrinsic function. atan2: atan20F)
Fortran arctangent intrinsic function. atan: atanOF)
complex conjugate intrinsic function. conjg: Fortran conjg()F)
cos: Fortran cosine intrinsic function. cos() F)

hyperbolic cosine intrinsic function. cosh: Fortran coshOF)
precision product intrinsic function. dprod: double dprodOF)
and complementary error function. erf: error function erf<JM)

Fortran exponential intrinsic function. exp: cxpOF)
gamma: log gamma function. gammaOM)

hypot: Euclidean distance function. hypotOM)
line number entries of a file function. Idlread: manipulate Idlread 0 X)
common logarithm intrinsic function. log 10: Fortran loglOOF)

natural logarithm intrinsic function. log: Fortran logO F)

~matherr: error-handling function. mathcrrOM)
prof: profile within a function. prof(S)

transfer-of-sign intrinsic function. sign: Fortran signOF)
sin: Fortran sine intrinsic function. sinOF)

hyperbolic sine intrinsic function. sinh: Fortran sinh 0 F)
Fortran square root intrinsic function. sqrt: sqrt 0 F)

tan: Fortran tangent intrinsic function. tanOF)
hyperbolic tangent intrinsic function. tanh: Fortran tanhOF)

math: math functions and constants. math(S)
jOt j 1. jn. yO. y I. yn: Bessel functions. bessclOM)

or. xor. not: Fortran boolean functions. and. boolOF)
positive difference intrinsic functions. dim: dim(Jf)

logarithm. power, square root functions. exp: exponential. exp(JM)
remainder. absolute value functions. /floor. ceiling. floor(JM)

max: Fortran maximum-value functions. max(JF)
min: Fortran minimum-value functions. min(JF)

Fortran remaindering intrinsic functions. mod: mod (J F)
hp: handle special functions of HP terminals. hp(I)

terminal. 450: handle special functions of the DASI 4S0 450(J)
anint: Fortran nearest integer functions. round(JF)

sinh: hyperbolic functions. sinh(JM)
string comparision intrinsic functions. Ige: strcmp(JF)

sin: trigonometric functions. trigOM)
using a file or file/ fuser: identify processes fuser(1 M)

accounting records. fwtmp: manipulate connect fwtmp(1 M)
jOllO: secret word game. jOllo(6)

moo: guessing game. moo(6)
back: the game of backgammon. back (6)

~bj: the game of black jack. bj(6)
chess: the game of chess. chess (6)
craps: the game of craps. craps(6)
reversi: a game of dramatic reversals. rcversi (6)

wump: the game of hunt-the-wumpus. wump(6)

- 16 -

Permuted Index

intro: introduction to games. intro(6)
gamma: log gamma function. gammaOM)

~.
gamma: log gamma function. gammaOM)

jobs. send: gather files and!or submit RJE send(IC)
moving-head disks. gd: general driver for gd(7)

ged: graphical editor. ged(\G)
maze: generate a maze. mazc(6)
abort: generate an lOT fault. abonOC)
cflow: generate e flow graph. ctlow«)

cross-reference. cxref: generate e program cxref(\)
crypt: generate DES encryption. cryptOC)

by user ID. diskusg: generate disk accounting data diskusg(1M)
makekey: generate encryption key. makekeY(\)

terminal. ctermid: generate file name for ctermid(3S)
ncheck: generate names from i-numbers. ncheckU M)

lexical tasks. lex: generate programs for simple lex(I)
pseudo-random! drand48: generate uniformly distributed drand480C)

rand: simple random-number generator. randOC)
irand: random number generator. randOF)

gets: get a string from a stream. gets OS)
get: get a version of an sees file. gct«)

ulimit: get and set user limits. . . ulimit(2)
the user. cuserid: get character login name of cuserid OS)

stream. getc: get character or word from a getcOS)
nlist: get entries from name list. nlistOC)

umask: set and get file creation mask. umask(2)
stat: get file status. stat (2)

ustat: get file system statistics. ustat(2)
file. get: get a version of an sces getU)

getgrent: get group file entry. getgrcnt (3C)

~.
getlogin: get login name. getloginOC)
logname: get login name. logname(\)

msgget: get message queue. msggct(2)
getpw: get name from UID. gctpwOC)

system. uname: get name of currcnt UNIX uname(2)
unget: undo a previous get of an SCCS file. unget(l)

argument vector. getopt: get option letter from getoptOe)
getpwent: get password file entry. getpwentOC)

working directory. getcwd: get path-name of current gClcwdOC)
times. times: gel process and child process times(2)

and parent processl getpid: get process. process group. getpid(2)
semget: get set of semaphores. semget(2)
shmget: get shared memory segment. shmget(2)

tty: get the name of the terminal. tty(I)
time: get time. time(2)

getuid: get user IDs getuid(2)
command-line argument. getarg: return Fortran getargOF)

from a stream. getc: get character or word getcOS)
current working directory. getcwd: get path-name of getcwd(JC)

environment variable. getenv: return Fortran getenvOF)
environment name. getenv: return value for getenvOC)

entry. getgrent: get group file getgrent (JC)
getlogin: get login name. getlogin(JC)

argument vector. getopt: get option letter from getopt(JC)
getopt: parse command options. getopt(l)
getpass: read a password. getpass(JC)

group, and parent process! getpid: get process. process gctpid(2)
getpw: get name from UID. getpw(3C)

~
entry. getpwent: get password file getpwent (JC)

stream. gets: get a string from a gets(JS)
and terminal settings used by getty. gettydefs: speed gettydefs(4)

modes. speed. and line! getty: set terminal type. getty(J M)
ct: spawn getty to a remote terminal. ctUC)

settings used by getty. gettydefs: speed and terminal gettydefs(4)

• 17 •

Permuted Index

getuid: get user IDs getuid(2)
entry. getutent: access utmp file getut(JC)

setjmp: non-local goto. setjmp(JC)

~string, format of graphicall gps: graphical primitive gps(4)
cflow: generate C flow graph. cflow(J)

graph: draw a graph. graph(lG)
graph: draw a graph. graph(lG)

sag: system activity graph. sag(lG)
commands. graphics: access graphical and numerical graphics(IG)

Inetwork useful with graphical commands. stat(IG)
filters. hpd: graphical device routines and gdev(lG)

ged: graphical editor. ged(IG)
primitive string, format of graphical files. Igraphical gps(4)
format of graphicall gps: graphical primitive string, gps(4)

routines. toc: graphical table of contents toc(IG)
gutH: graphical utilities. gutil(IG)

numerical commands. graphics: access graphical and graphics(l G)
tplot: graphics filters. tplot(IG)
plot: graphics interface. plot(4)

subroutines. plot: graphics interface plotOX)
greek: select terminal filter. greek (I)

pattern. grep: search a file for a grepO)
getpid: get process, process group, and parent process IDs. getpid(2)

chown: change owner or group. chown(l)
getgrent: get group file entry. getgrentOC)

group: group file. group(4)
group: group file. group(4)

setpgrp: set process group 10. setpgrp(2)
id: print user and group IDs and names. id(l)

setuid, setgid: set user and group IDs. setuid(2)
newgrp: log in to a new group. newgrp())

~
chown: change owner and group of a file. chown(2)
a signal to a process or a group of processes. Isend ki11(2)

update, and regenerate groups of programs. Imaintain, make(I)
drives. gt: general driver for tape gt(7)

hangman: guess the word. ha ngrnan (6)
moo: guessing game. moo(6)

gutil: graphical utilities. gutil(IG)
terminals. hp: handle special functions of H P hp(l)

the DASI 450 terminal. 450: handle special functions of 450(1)
varargs: handle variable argument list. varargs(5)

package. curses: CRT screen handling and optimization cursesOX)
hangman: guess the word. hangman(6)

nohup: run a command immune to hangups and quits. nohup(J)
hsearch: manage hash search tables. hsearch OC)

file. scnhdr: section header for a common object scnhdr(4)
files. filehdr: file header for common object filchdr(4)

Idahread: read the archive header IdahrcadOX)
file. Idfhread: read the file header of a common object IdfhreadOX)

seek to the optional file header of a file. Idohseek: IdohseckOX)
read an indexed/named section header of a file. Idshread: IdshreadOX)

help: ask for help. hclp(l)
help: ask for help. hclp(l)

hm: RM05 moving-head disk. hm(7)
archiver. hpio: HP 2645A terminal tape file hpio(l)

of H P terminals. hp: handle special functions hp(l)
moving-head disk. hp: RP04/RP05/RP06 hp(7)

handle special functions of HP terminals. hp: hp(J)
and filters. hpd: graphical device routines gdev(IG)

file archiver. hpio: HP 2645A terminal tape hpio(I) '~fixed· head disk file. hs: RH IIlRJS03·RJS04 hs.pdp(7)
tables. hsearch: manage hash search hsearch (3C)

interface. ht: TUI6/TEI6 magnetic tape ht(7)
wump: the game of hunt-the-wumpus. wump(6)

- 18 -

Permuted Index

function. cosh: Fortran hyperbolic cosine intrinsic cosh (3 F)
sinh: hyperbolic functions. sinh(3M)

~.
function. sinh: Fortran hyperbolic sine intrinsic sinh(3F)
function. tanh: Fortran hyperbolic tangent intrinsic tanh(3F)

hyphen: find hyphenated words. hyphen(l)
function. hypot: Euclidean distance hypotOM)

iargc. iargc(3F)
rje: RJE (Remote Job Entry) to IBM. rje(S)

disk accounting data by user 10. diskusg: generate diskusg (I M)
and names. id: print user and group IDs id(l)

setpgrp: set process group 10. setpgrp(2)
issue: issue identification file. issue (4)

file or file/ fuser: identify processes using a fuser(l M)
what: identify sees files. what(I)

id: print user and group IDs and names. id(l)
group, and parent process IDs. /get process, process getpid(2)

getuid: get user IDs getuid(2)
setgid: set user and group· IDs. setuid, setuid(2)

core: format of core image file. core(4)
convert a.out file to boot image. mkboot: mkboot(1 M)

crash: examine system images. crash(l M)
pnch: file format for card images. pnch(4)

argument. aimag: Fortran imaginary part of complex aimagOF)
nohup: run a command immune to hangups and quits. nohup(I)

finc: fast incremental backup. finc(I M)
of a/ Idtbindex: compute the index of a symbol table entry Idtbindex OX)

Fortran substring. index: return location of indexOF)
a file. Idtbread: read an indexed symbol table entry of IdtbreadOX)

of a file. Idshread: read an indexed/named section header IdshreadOX)
object/ Idsseek: seek to an indexed/named section of an IdsseekOX)

~
initialization. init: process control init(I M)

inittab: script for the init process. inittab(4)
init: process control initialization. init(l M)

brc: system initialization shell scripts. brc(I M)
information bdblk: print, initialize, update bad bdblk(l M)

process. popen: initiate pipe to/from a popenOS)
process. inittab: script for the init inittab(4)

c1ri: clear i-node. c1ri(I M)
inode: format of an i-node. inode(4)

inode: format of an i-node. inode(4)
scanf: convert formatted input. scanfOS)
push character back into input stream. ungetc: ungetcOS)

fread: binary input/output. fread(3S)
stdio: standard buffered input/output package. stdioOS)

ferror: stream status inquiries. ferrorOS)
uustat: uucp status inquiry and job control. uustat(IC)

install: install commands. install (I M)
install: install commands. install(l M)

directories. cpset: install object files in binary' cpset(1 M)
conversion. int: explicit Fortran type ftypeOF)
abs: return integer absolute value. absOC)

a641: convert between long integer and base-64 ASCII/ a6410C)
sputl: access long integer data in a/ sputl(3X)

anint: Fortran nearest integer functions. roundOF)
function. aint: Fortran integer part intrinsic aintOF)
strtol: convert string to integer. strtolOC)

13tol: convert between 3-byte integers and long integers. 13tolOC)
3-byte integers and long integers. /convert between 13to1OC)

r bcopy: interactive block copy. bcopy(IM)
system. mailx: interactive message processing mailx(I)

acu: Automatic Call Unit (ACU) interface. acu(7)
du: DU-Il synchronous line interface. du.pdp(7)

err: error-logging interface. err(7)
ht: TU 16/TE16 magnetic tape interface. ht(7)
KL-Il or DL-Il asynchronous interface. kl: k1.pdp(7)

- 19 -

Permuted Index

pel (7)
plot (4)

· plot OX)
· termio(7)
• tm.pdp(7)

tsll (7)
• tty (7)

• • • tu7S(7)
• vlx(IM)
• spline(IG)
• asa())

sno(I)
pipe(2)
ipes ()
stdipcOC)

• slcep(I)
• sleepOC)
• acosOF)

aintOF)
asinOF)

• atan20F)
atanOF)
conjgOF)

· coson
coshOF)
dprodOF)

· expOF)
log 100F)

· 10gOF)
signOF)

• sinOF)
· .• sinhOF)

sqrtOF)
tanOF)
tanhOF)
dimOF)

· modOF)
•. strcmpOF)

intro(l)
intro(4)

· • • intro(6)
intro() M)

• intro(S)
• intro(7)

introO)
intro(2)
intro(8)
intro())
intro(4)
intro(6)
intro() M)
intro(S)
intro(7)
introO)

. . • • . • intro(2)
intro(S)
ncheck(1 M)
ioctl(2)
abortOC)
ipcrm(1)

• ipcs(l)
• randOF)
• ctypeOC)
• systemOF)

interface. pel:
interface. ••...
interface subroutines.
interface.
interface.
interface.
interface.
interface.
interface. vlx:
interpolate smooth curve.
interpret ASA carriage control
interpreter. • • • • • • • .
interprocess channel. • . . .
inter-process communication
interprocess communication
interval. sleep:
interval.
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function. conjg:
intrinsic function.
intrinsic function. cosh:
intrinsic function. dprod:
intrinsic function.
intrinsic function. log I 0:
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function. tanh:
intrinsic functions. •
intrinsic functions. • .
intrinsic functions. •
intro: introduction to •
intro: introduction to file
intro: introduction to games.
intro: introduction to . . .
intro: introduction to . . .
intro: introduction to special
intro: introduction to . . .
intro: introduction to system
intro: introduction to system
introduction to commands
introduction to file formats.
introduction to games.
introduction to maintenance
introduction to miscellany.
introduction to special files.
introduction to subroutines
introduction to system calls
introduction to system
i-numbers. • ••••.
ioctl: control device.
lOT fault.
ipcrm: remove a message queue
ipcs: report inter-process
irand: random number . .
isalpha: classify characters.
issue a shell command from

abort: generate an

maintenance commands
miscellany.

files.
subroutines and libraries.
calls and error numbel's.
maintenance procedures.

intro:
intro:
intro:

commands intro:
intro:
intro:

and libraries. intro:
and error numbers. intro:

maintenance! intro:
ncheck: generate names from

communication facilities!
generator.

parallel communications link
plot: graphics
plot: graphics

termio: general terminal
tm: TMII!TUIO magnetic tape

ts: TSII magnetic tape
tty: controlling terminal

tu78: TU78 magnetic tape
VAX-I 1/780 LSI console floppy

spline:
characters. asa:
sno: SNOBOL
pipe: create an

facilities! ipcs: report
package. ftok: standard

suspend execution for an
sleep: suspend execution for

acos: Fortran arccosine
aint: Fortran integer part

asin: Fortran arcsine
atan2: Fortran arctangent

atan: Fortran arctangent
Fortran complex conjugate

cos: Fortran cosine
Fortran hyperbolic cosine
double precision product
exp: Fortran exponential

Fortran common logarithm
log: Fortran natural logarithm

sign: Fortran transfer-of-sign
sin: Fortran sine

sinh: Fortran hyperbolic sine
sqrt: Fortran square root

tan: Fortran tangent
Fortran hyperbolic tangent

dim: positive difference
mod: Fortran remaindering

Ige: string comparision
commands

formats.

Fortran. system:

- 20-

system: issue a shell command. .
issue: issue identification file. .

file. issue: issue identification
news: print news items. • • • • •

functions. jOt j I, jn. yO. y I, yn: Bessel
functions. jO, j I, jn. yO. y I, yn: Bessel

bj: the game of black jack. •...•. •.
functions. jOt j I, jn. yO, y I, yn: Bessel . . •

operator. join: relational database
jotto: secret word game.

for the KMC II B kasb: assembler/un-assembler
makekey: generate encryption key. . . . • . . • .

killall: kill all active processes.
process or a group of! kill: send a signal to a

kill: terminate a process.
processes. killall: kill all active • .

asynchronous interface. kl: KL-II or DL-I I
interface. kl: KL-I I or DL-I I asynchronous

microprocessor. kmc: KMC- I I B/KMS II
vpmtest: test KMC lines.

connect DM II-BA modems to KMCI I-B dmkset:
assembler/un-assembler for the KMCII B kasb: •••

microprocessor. kmc: KMC-I I B/KMSI I
quiz: test your knowledge. • . . .

integers and long integers. I3tol: convert between 3-byte
copy file systems with label checking. volcopy:

scanning and processing language. awk: pattern
arbitrary-precision arithmetic language. be: • . • . •

en: Extended Fortran Language. . • . . .
cpp: the C language preprocessor.

command programming language. /standard/restricted
shl: shell layer manager. •...•

object files. Id: link editor for common
ld: link editor. .•...

header Idahread: read the archive
file. Idclose: close a common object

access routines. Idfcn: common object file . •
of a common object file. Idfhread: read the file header

name for file symbol table/ Idgetname: retrieve symbol
number entries of a file/ Idlread: manipulate line
entries of a section of a/ Idlseek: seek to line number .

file header of a file. Idohseek: seek to the optional
file for reading. Idopen: open a common object

entries of a section of a/ Idrseek: seek to relocation
indexed/named section header/ Idshread: read an •....

indexed/named section of an/ Idsseek: seek to an •
of a symbol table entry of a/ Idtbindex: compute the index

symbol table entry of a file. Idtbread: read an indexed
table of a common object/ Idtbseek: seek to the symbol

string. len: return length of Fortran
len: return length of Fortran string.

getopt: get option letter from argument vector.
simple lexical tasks. lex: generate programs for

generate programs for simple lexical tasks. lex:
intrinsic functions. Ige: string comparision
to subroutines and libraries. /introduction

relation for an object library. /find ordering
ar: archive and library maintainer.

portable/ ar: archive and library maintainer for
ulimit: get and set user limits. . . • . . • .

an out-going terminal line connection. /establish
type. modes. speed, and line discipline. /set terminal
du: DU- I I synchronous line interface. •

line: read one line. . • • • • •

- 21 -

Permuted Index

system(JS)
issuc(4)
issuC(4)
news(l)
besseI(3M)
bessel(3M)
bj(6)

• besseI(3M)
join())

· jotto(6)
• kasb()

makekey()
killall{] M)

· kilI(2)
kill(J)

· killall(1 M)
kl.pdp(7)
kl.pdp(7)
kmC(7)
vpmtest() M)

• dmksetO M)
kasb(I)

• kmC(7)
quiz(6)
13tol(JC)

• volcopy() M)
awk())
bC<l)
en(l)
cpp(I)
sh(l)

• shI())
• IdO)

Id.pdp(l)
Idahread (J X)
IdcloseOX)
Idfcn(4)
Idfhread (JX)

• Idgetname(JX)
• Idlread(JX)

Idlseek(JX)
Idohseek (J X)
Idopen(JX)
Idrseek(JX)
IdshreadOX)

• Idsscck (3X)
IdtbindcxOX)
Idtbread(JX)
Idtbseck (JX)
len(JF)

• len(JF)
getopt(JC)
Icx())
lex (I)
strcmp(JF)

• intro(J)
lorded I)
ar.pdp()

• ad))
ulimit(2)
dial(3C)
getty(1 M)

• du.pdp(7)
line(l)

Permuted Index

common object file. linenum: line number entries in a linenum(4)
function. Idlread: manipulate line number entries of a file Idlrcad(JX)
section of a/ ldlseek: seek to line number entries of a IdlseekOX)

~file. strip: strip symbol and line number information from a strip(I)
nl: line numbering filter. nl(I)

out selected fields of each line of a file. cut: cut cutU)
send/cancel requests to an lP line printer. Ip, cancel: Ip(I)

Ip: line printer. Ip(7)
line: read one line. line< \)

Isearch: linear search and update. IsearchOC)
col: filter reverse line-feeds. col(I)

in a common object file. linenum: line number entries linenum(4)
files. comm: select or reject lines common to two sorted cornm(J)

uniq: report repeated lines in a file. uniqU)
paste: merge same lines of several file paste(I)

vpmtest: test KMC lines. vpmtcst (I M)
link: exercise link and unlink system calls. linkU M)

files. Id: link editor for common object Id(I)
Id: link editor. Id.pdp(l)

a.out: common assembler and link editor output. a.out(4)
a.out: PDP-II assembler and link editor output. a.out.pdp(4)

system calls. link: exercise link and unlink Iink(1 M)
pel: parallel communications link interface. pcl(7)

link: link to a file. link(2)
peldaemon: PCl link monitor. pcldaemon (1 M)
cp, In, mv: copy, link or move files. cp(J)

link: link to a file. link(2)
protocol. dmc: communications link with built-in DDCMP dmc(7)

lint: a C program checker. lintU)
Is: list contents of directory. Is(I)

for a file system. ff: list file names and statistics ff(IM)

~nlist: get entries from name list. nlistOC)
nm: print name list. nrn.pdp(l)
nm: print name list of common object file. nm(J)

by fsck. checklist: list of file systems proccssed checklist (4)
handle variable argument list. varargs: varargs(S)

output of a varargs argument list. /print formatted vprintfOS)
output of a varargs argument list. /print formatted vprintfOX)

xargs: construct argument list (s) and execute command. xargs(J)
files. cp, In, mv: copy, link or move cp(l)

romboot: special ROM bootstrap loaders. romboot(S)
index: return location of Fortran substring. index OF)

end: last locations in program. endOC)
memory. plock: lock process, text, or data in plock(2)

intrinsic function. log: Fortran natural logarithm logOn
gamma: log gamma function. gammaOM)
newgrp: log in to a new group. newgrp(l)

logarithm intrinsic function. log I0: Fortran common 10glO(JF)
log I0: Fortran common logarithm intrinsic function. logI0(3F)

log: Fortran natural logarithm intrinsic function. logO F)
functions. exp: exponential, logarithm, power, square root expOM)

errpt: process a report of logged errors. errpt(1 M)
getlogin: get login name. gctloginOC)
logname: get login name. 10gmlme<l)

cuserid: get character login name of the user. cuserid OS)
logname: return login name of user. 10gnameOX)
passwd: change login password. passwd(l)

login: sign on. login (J)
setting up an environment at login time. profile: profilC(4)

.~logname: get login name. logname(l)
user. logname: return login name of lognameOX~

string. a641: convert between long integer and base·64 ASCII a6410C)
sputl: access long integer data in a/ sputH3X)

between 3-byte integers and long integers. I3tol: convert I3tol(JC)

- 22 -

Permuted Index

for an object library. lorder: find ordering relation lorded I)
nice: run a command at low priority. nicdl)

~
requests to an lP line/ Ip. cancel: send/cancel IpU)

sendlcancel requests to an lP line printer. Ip. cancel: Ip(l)
Ip: line printer. Ip(7)

enable: enable/disable lP printers. enable{l)
Ipsched: start/stop the lP request scheduler IpschedU M)
accept: allow/prevent lP requests. accept(1 M)

Ipadmin: configure the lP spooling system. Ipadmin(1M)
Ipstat: print lP status information. IpstatO)

spooling system. Ipadmin: configure the lP Ipadmin(1M)
request scheduler Ipsched: start/stop the lP IpschedO M)

information. Ipstat: print lP status lpstat(l)
directory. Is: list contents of ls(I)

update. Isearch: linear search and IsearchOC)
pointer. Iseek: move read/write file Iseek(2)

vlx: VAX-II/7S0 lSI console floppy interface. vlxO M)
m4: macro processor. m4(J)

vpm: Virtual Protocol Machine. vpm(7)
for the virtual protocol machine. vpmc: compiler vpmc.decO M)

values: machine-dependent values. values(S)
/access long integer data in a machine-independent fashion sputlOX)

m4: macro processor. m4(»
program. tapeboot: magnetic tape bootstrap tapeboot (8)

hl: TU 16/TE16 magnetic tape interface. ht(7)
tm: TMII/TUIO magnetic tape interface. tm.pdp(7)

ts: TSII magnetic tape interface. ts II (7)
tu78: TU78 magnetic tape interface. tu78(7)

send mail to users or read mail. mail: mail(»
read mail. mail: send mail to users or mailO)

~.
mail: send mail to users or read mail. maiJ(l)

processing system. mailx: interactive message mailx(»
maUoc: main memory allocator. mallocOC)

maUoc: fast main memory allocator. mallocOX)
regenerate groups of! make: maintain. update. and make(I)

ar: archive and library maintainer. ar.pdpO)
ar: archive and library maintainer for portable/ ad»

intro: introduction to maintenance commands intro(1 M)
intro: introduction to system maintenance procedures. intro(S)

SCCS file. delta: make a delta (change) to an delta(l)
mkdir: make a directory. mkdid»

or ordinary file. mknod: make a directory. or a special mknod(2)
mktemp: make a unique file name. mktempOC)

regenerate groups ofl make: maintain. update. and make(J)
banner: make posters. banner(I)

key. makekey: generate encryption makekey(I)
allocator. malloc: fast main memory mallocOX)

malloc: main memory allocator. mallocOC)
manual. man: print entries in this man(I)
tsearch: manage binary search trees. tsearchOC)
hsearch: manage hash search tables. hsearchOC)

shl: shell layer manager. shlU)
records. fwtmp: manipulate connect accounting fwtmp(1 M)

of a file function. Idlread: manipulate line number entries IdlreadOX)
floating-point/ frexp: manipulate parts of frexpOC)

man: print entries in this manual. man(J)
ascii: map of ASCII character set. ascii(S)

files. diffmk: mark differences between diffmk(»

~
umask: set file-creation mode mask. umask(I)

set and get file creation mask. umask: umask(2)
table. master: master device information master.dcc(4)

information table. master: master device master.dec(4)
regular expression compile and match routines. regexp: regexp(S)

math: math functions and constants. math(S)

- 23 -

Permuted Index

constants. math: math functions and math(S)
function. matherr: error-handling matherr()M)

multiple-access-user-space/ maus: maus(2)

~functions. max: Fortran maximum-value max()F)
max: Fortran maximum-value functions. max()F)

maze: generate a maze. maze(6)
maze: generate a maze. maze(6)

accounting. mclock: return Fortran time mciockOF)
rp07: RP07 non-removable medium moving-head disk. rp07(7)

mem: core memory. mem(7)
memccpy: memory operations. memoryOC)

malloc: main memory allocator. malloc(3C)
malloc: fast main memory allocator. malloc()X)

shmctl: shared memory control operations. shmctl(2)
mem: core memory. mem(7)

/(shared memory) operations. maus(2)
memccpy: memory operations. memoryOC)

shmop: shared memory operations. shmop(2)
lock process, text, or data in memory. plock: plock (2)

shmget: get shared memory segment. shmget(2)
sort: sort and/or mer:ge files. sort())
files. acctmerg: merge or add total accounting acctmerg(1 M)

file paste: merge same lines of several paste())
mesg: permit or deny messages. mesg())

msgctl: message control operations. msgctl(2)
msgop: message operations. msgop(2)

mailx: interactive message processing system. mailx()
ipcrm: remove a message queue ipcrm())

msgget: get message queue. msgget(2)
mesg: permit or deny messages. mesg(l)

perror: system error messages. perrorOC)

1kmc: KMC-IIB/KMSII microprocessor. kmc(7)
functions. min: Fortran minimum-value minOF)

min: Fortran minimum-value functions. minOF)
and commands. mk: how to remake the system mk(S)

boot image. mkboot: convert a.out file to mkboot() M)
mkdir: make a directory. mkdir()
mkfs: construct a file system. mkfs(1 M)
mknod: build special file. mknod(1 M)

special or ordinary file. mknod: make a directory, or a mknod(2)
name. mktemp: make a unique file mktempOC)

mill: MLiI solid-state disk. mlll.pdp(7)
mill: MLiI solid-state disk. mlll.pdp(7)
table. mnltab: mounted file system mnttab(4)

intrinsic functions. mod: Fortran remaindering mod(3F)
chmod: change mode. chmod())

umask: set file-creation mode mask. umask()
chmod: change mode of file. chmod(2)

dmk: OMII-BA modem control multiplexor. dmk(7)
dmkset: connect OM II-BA modems to KMCII-B dmkset() M)

getty: set terminal type, modes, speed, and line/ getty(1 M)
bs: a compiler/interpreter for modest-sized programs. bs()

touch: update access and modification times of a file. touch(l)
utime: set file access and modification times. utime(2)

pcldaemon: PCl link monitor. pc1daemon(1 M)
profile. monitor: prepare execution monitor(3C)
uusub: monitor uucp network. uusub()M)

moo: guessing game. moo(6)
mount: mount a file system. mount(2)

system. mount: mount and dismount file mount(1 M))mount: mount a file system. mount(2)
system. mount: mount and dismount file mount(IM)

setmnt: establish mount table. setmnt() M)
mnttab: mounted file system table. mnttab(4)

- 24 -

Permuted Index

mvdir: move a directory., mvdidl M)
CPt In. mv: copy. link or move files. cp(l)

~
Iseek: move read/write file pointer. Iseek(2)

hm: RM05 moving-head disk. hm(7)
hp: RP04/RP05/RP06 moving-head disk. hp(7)

rm80: RM80 moving-head disk. rm80(7)
RP07 non-removable medium moving-head disk. rp07: rp07(7)

rp: RP-II/RP03 moving-head disk. rp.pdp(7)
gd: general driver for moving-head disks. gd(7)

operations. msgctl: message control msgctJ(2)
msggel: get message queue. msgget(2)
msgop: message operations. msgop(2)

(shared memory)/ rnaus: multiple-access-user-space maus(2)
DH-)) asynchronous multiplexers./DZ-II/KMC-IIB. dz(7)

dmk: DMII-BA modem control multiplexor. dmk(7)
CPt In. mv: copy, link or move files. cpU)

mvdir: move a directory. mvdir(1 M)
function. log: Fortran natural logarithm intrinsic log() F)

i-numbers. ncheck: generate names from ncheck(1 M)
anint: Fortran nearest integer functions. round()F)
PCl network. net: execute a command on the net< IC)

execute a command on the PCl network. net: net(JC)
commands. stat: statistical network useful with graphical statUG)

uusub: monitor uucp network. uusub(1 M)
a text file. newform: change the format of newformU)

newgrp: log in to a new group. newgrp(l)
news: print news items. ncws(I)

news: print news items. news(I)
process. nice: change priority of a nice(2)
priority. nice: run a command at low nicdl)

nl: line numbering filter. nl(I)

~
list. nlist: get entries from name nlistOc)

nm: pr:int name list. nm.pdp()
object file. nm: print name list of common nm()

hangups and quits. nohup: run a command immune to nohupU)
setjmp: non-local goto. setjmpOC)

moving-headl rp07: RP07 non-removable medium rp07(7)
null: the null file. null(7)

null: the null file. null(7)
nl: line numbering filter. nI(l)

graphics: access graphical and numerical commands. graphics() G)
Idfcn: common object file access routines. Idfcn(4)

dump selected parts of an object file. dump: dump()
Idopen: open a common object file for reading. Idopen()X)
Idclose: close a common object file. Idclose0 X)

the file header of a common object file. Idfhread: read Idfhread()X)
indexed/named section of an object file. /seek to an Idsseek()X)

the symbol table of a common object file. /seek to Idtbseek()X)
number entrics in a common object file. linenum: line lincnum(4)

nm: print name list of common object file. nm()
information for a common object file. /relocation rcloc(4)

section header for a common object file. scnhdr: scnhdr(4)
format. syms: common object file symbol table syms(4)
file header for common object files. filehdr: filehdd4)

directories. cpset: install object files in binary cpset(1M)
Id: link editor for common object files. Id(l)

print section sizes of common object files. size: size< I)
size: print sizes of object files. sizc.pdp())

r-'
find ordering relation for an object library. lorder: lorder(I)

formats. convert: convert object/archive files to common convert(I)
sky: obtain ephemerides. sky(6)
od: octal dump. od(l)

od: octal dump. od()
reading. Idopen: open a common object file for Idopcn()X)

- 25 -

Permuted Index

fopen: open a stream. fopen(3S)
dup: duplicate an open file descriptor. dup(2)

open: open for reading or writing. open(2)

7writing. open: open for reading or open (2)
prf: operating system profiler. prf(7)

prfld: operating system profiler. profiler(1M)
750ops: VAX-I 11750 console operations. 7S0ops(8)
780ops: VAX-I 11780 console operations. 7S0ops(S)

!(shared memory) operations. maus(2)
memccpy: memory operations. memory(3C)

msgctl: message control operations. msgctl(2)
msgop: message operations. msgop(2)

semctl: semaphore control operations. semctl(2)
semop: semaphore operations. semop(2)

shmctl: shared memory control operations. shmctl(2)
shmop: shared memory operations. shmop(2)

strcat: string operations. stringOC)
join: relational database operator. • join(J)

dcopy: copy file systems for optimal access time. dcopy(l M)
CRT screen handling and optimization package. curses: curses(3X)

vector. getopt: get option letter from argument getopt(3C)
file. ldohseek: seek to the optional file header of a IdohseekOX)

fcntl: file control options. fcntl(S)
stty: set the options for a terminal. stty(I)

getopt: parse command options. gctopt(l)
functions. and. or, xor, not: Fortran boolean boo\(3 F)

object library. lorder: find ordering relation for an lorded I)
a directory, or a special or ordinary file. mknod: make mknod(2)

dial: establish an out-going terminal line! dial(3C)
assembler and link editor output. a.out: common a.out(4)
assembler and link editor output. a.out: PDP-II a.out.pdp(4)

l~vprintf: print formatted output of a varargs argument! vprintfOS)
vprintf: print formatted output of a varargs argument! vprintfOX)

printf: print formatted output. printf(3S)
acctdisk: overview of accounting acct(1 M)

chown: change owner and group of a file. chown(2)
chown: change owner or group. chown(l)

files. pack: compress and expand pack())
handling and optimization package. curses: CRT screen curses(3X)
sa I: system activity report package. sadl M)

standard buffered input/output package. stdio: stdio(3S)
interprocess communication package. ftok: standard stdipcOC)

check RP06 and RMOS disk packs. format: format and/or format(l M)
4014 terminal. 4014: paginator for the TEKTRONIX 4014(J)

interface. pcl: parallel communications link pc\(7)
process, process group, and parent process IDs. !get getpid(2)

getopt: parse command options. getopt(l)
passwd: change login password. passwd(J)
passwd: password file. passwd(4)

getpwent: get password file entry. getpwent OC)
putpwent: write password file entry. putpwent(3C)

passwd: password file. passwd(4)
getpass: read a password. getpass(3C)

passwd: change login password. passwd(l)
pwck: password!group file checkers. pwck(l M)

several file paste: merge same lines of paste(I)
dirname: deliver portions of path names. basename, bascnamC< I)

directory. getcwd: get path-name of current working getcwd(3C)
grep: search a file for a pattern. grep(I)

~processing language. awk: pattern scanning and awk(l)
signal. pause: suspend process until pause(2)

pcldaemon: PCl link monitor. peldaemon (1M)
net: execute a command on the PCl network. net(lC)

link interface. pel: parallel communications pel (7)

- 26 -

pcldaemon: pel link monitor.
fscv: convert files between PDP-II and VAX-I 11780 systems.

as: assembler for PDP-II. . • . . • • • .
editor output. a.out: PDP-II assembler and link

Iconvert archive files from PDP-I I to common formal.
value about processor type. pdp II, vax: provide truth

mesg: permit or deny messages. •
ptx: permuted index.

formal. acct: per-process accounting liIe
acctcms: command summary from per-process accounting/

perror: system error messages.
terminals. pg: file perusal filter for soft-copy

soft-copy terminals. pg: file perusal filter for
split: split a file into pieces. • . . . • . • . •

channel. pipe: create an interprocess
tee: pipe filling. ••....

popen: initiate pipe to/from a process. . .
data in memory. plock: lock process, text. or

plot: graphics interface.
subroutines. plot: graphics interface •

images. pnch: file format for card
fscek: reposition a file pointer in a stream.

Iseek: move read/write file pointer. ..•..
process. popen: initiate pipe to/from a

and library maintainer for portable archives. /archive
basename. dirname: deliver portions of path names.

functions. dim: positive difference intrinsic
banner: make posters. .••.•...

exp: exponential, logarithm, power, square root functions.
pr: print files. • . • . .

function. dprod: double precision product intrinsic
monitor: prepare execution profile.

cpp: the e language preprocessor.
unget: undo a previous get of an sees file.

profiler. prf: operating system
profiler. prftd: operating system . .

graphical/ gps: graphical primitive string, format of
types: primitive system data types.

prs: print an sees file.
date: print and set the date.

cal: print calendar.
of a file. sum: print checksum and block count

editing activity. sact: print current sees file
man: print entries in this manual.

cat: concatenate and print files. .•.....
pr: print files. •......

varargs argumentl vprintf: print formatted output of a
varargs argument/ vprintf: print formatted output of a

printf: print formatted output.
information bdblk: print, initialize. update bad

Ipstat: print LP status information.
nm: print name lisl.

object file. nm: print name list of common
system. una me: print name of current UNIX

news: print news items.
filc(s). acctcom: search and print process accounting

object files. sizc: print section sizes of common
size: print sizes of object tiles.

names. id: print user and group IDs and
vpmsave: savc and print VPM event traces.

requesls to an LP line printer. /cancel: send/cancel
Ip: line printer.

vpr: Versatcc printer spooler.
vp: Versatec printer.

enable: enable/disable LP printcrs.

- 27 -

Permuted Index

pcldaemon (1M)
fscv.vax« M)
as.pdp«)
a.out.pdp(4)
arcv.pdp(J)
machid(I)
mesg(l)
ptx(l)

• acct(4)
• • acctcms« M)

· perrorOC>
pg(l)

• pg(J)
split (I)
pipe(2)
tee())
popenOS)
plock (2)

· plot (4)
plotOX)
pnch(4)
fseekOS)
Iscek(2)
popenOS)

· adJ)
basenamC< I)
dimOF)
banner< I)
expOM)
pr(J)
dprodOF)
monitorOC)
cpp(I)
ungct(l)
prf(7)
prolller(1 M)
gps(4)

• types(S)
prs(J)
datc(J)
cal(J)
sum(t)
sact (J)
man(I)
cat(t)
pr(I)
vprintfOS)
vprintfOX)
printfOS)
bdblk() M)
Ipstat<l)
nm.pdp(I)

· nm(J)
• uname(J)

ncws(I)
acctcom(I)
size(I)
sizc.pdp(1)
id(I)
vpmsave(1M)
Ip(I)
Ip(7)
vpd I)
vp.pdp(7)
enable< I)

Permuted Index

output. printf: print formatted
nice: run a command at low priority. • • . . • .

nice: change priority of a process. • •
errors. errpt: process a report of logged

acct: enable or disable process accounting.
acctprc 1: process accounting.

acctcom: search and print process accounting filC<s).
alarm: set a process alarm clock. . .

times. times: get process and child process
initialization. init: process control

timex: time a command; report process data and system/
exit: terminate process.•

fork: create a new process. ..•....
process/ gctpid: get process, process group, and parent

setpgrp: set process group I D.
process group, and parent process IDs. /get process,
inittab: script for the init process.

kill: terminate a process. •....••
nice: change priority of a process. .••...

kill: send a signal to a process or a group off
popen: initiate pipe tolfrom a process. ••....

parent process/ getpid: get process, process group. and
ps: report process status.

memory. plock: lock process, text, or data in
times: gel process and child process times. , . . .

wail: wait for child process to stop or terminate.
ptrace: process trace. . • .

pause: suspend process until signal.
wait: await completion of process. .•...

list of file systems processed by fsck. checklist:
to a process or a group of processes. /send a signal

killall: kill all active processes. •......
struclure. fuser: identify processes using a file or file

awk: pattern scanning and processing language.
shutdown: terminate all processing. . . .

mailx: interactive message processing system. .
m4: macro processor.

vax: provide truth value about processor type. pdp 11.
dprod: double precision product intrinsic function.

prof: display profile data.
function. prof: profile within a

profile. profil: execution time
prof: display profile data.

monitor: prepare execution profile. .
profil: execution time profile. .

environment at login time. profile: setting up an
prof: profile within a function.

prf: operating system protHero
prnd: operating system profiler. .

sadp: disk access profiler. .
standard/restricted command programming language. !the

link with built-in DDCMP protocol. dmc: communicaliom
vpm: Virtual Protocol Machine.

vpmc: compiler for the virtual protocol machine.
arithmetic: provide drill in number facts.

processor type. pdp II. vax: provide truth value about
true: provide truth values. • .

prs: print an SCCS file.
ps: report process status.

sxt: pseudo-device driver.
/generate uniformly distributed pseudo-random numbers.

ptrace: process trace.
stream. ungetc: push character back into input

a stream. putc: put character or word on

printfOS)
nicC< t>

· nicC(2)
• errpt(1M)

acct(2)
acctprc(I M)

• acctcom (J)
· alarm(2)

times(2)
• inidlM)
• timex (»
· exit (2)

•. fork (2)
getpid(2)

• setpgrp(2)
gctpid(2)
inillab(4)
kilH»
nicc(2)
kill(2)
popenOS)
getpid(2)
ps(J)

plock (2)
timcs(2)
waitt!>
ptrace(2)
pausc(2)
wait(l)
checklist (4)
ki11(2)

• killalH 1M)
fuscr(J M)
awk(l)
shutdown(1 M)
mailx (I)
014(1)

machid(l)
· dprodOF)

prof(Ii
prof(S)
prolil(2)
prof(I)

monitor(3C}
profi1(2)
prolilc(4)
pronS I
prf(7)
rrolilcr(J M)

sadp<J M)
she I)
dmd71
"rm (7)

"pme.ded 1M)
arithmctid6>
machid(I)
trudl)
prs(l)
ps(I)

sxt(7)
drand480C)

· plracd2)
ungctcOS)
pUlCOS)

Permuted Index

environment. putenv: change or add value to putenvOC)
entry. putpwent: write password fIle putpwentOC),-\ stream. puts: put a string on a putsOS)

checkers. pwck: password/group file pwck(1 M)
pwd: working directory name. pwd(\}

Survey. qasurvey: Quality Assurance qasurvey(1 M)
qsort: quicker sort. qsortOC)

qasurvey: Quality Assurance Survey. qasurvey(1M)
tput: query terminfo database. tput<J)

ipcrm: remove a message queue ipcrmU)
msgget: get message queue. msgget(2)

qsort: quicker sort. qsortOC)
command immune to hangups and quits. nohup: run a nohupU)

quiz: test your knowledge. quiz(6)
generator. rand: simple random-number randOC)

irand: random number generator. randOF)
rand: simple random-number generator. randOC)

fsplit: split n7, ralfor, or en files. fsplit())
dialect. ratfor: rational Fortran rat for(\}
ratfor: rational Fortran dialect. ratfodl)

getpass: read a password. getpassOC)
entry of a file. Idtbread: read an indexed symbol table IdtbreadOX)

header of a file. Idshread: read an indexed/named section IdshreadOX)
read: read from file. read(2)

mail: send mail to users or read mail. mailU)
line: read one line. lind\}

read: read from file. read (2)
Idahread: read the archive header IdahreadOX)

common object tHe. Idfhread: read the file header of a IdfhreadOX)
open a common object file for reading. Idopen: IdopenOX)

~
open: open for reading or writing. open (2)

Iseek: move read/write file pointer. Iseek(2)
specify what to do upon receipt of a signal. signal: signaJ(2)

/specify Fortran action on receipt of a system signal. signalOF)
from per-process accounting records. /command summary acctcms() M)

errdead: extract error records from dump. errdead<J M)
manipulate connect accounting records. fwtmp: fwtmp(IM)

tape. free: recover files from a backup freC< 1M)
ed, red: tcxt editor. ed())

regular expression. regcmp: compile and execute regcmpOX)
compile. regcmp: regular expression regcmp(l)

make: maintain. update. and regenerate groups of programs. makeU)
compile and match routines. regexp: regular expression regexp(S)

match routines. regexp: regular expression compile and regexp(S)
regcmp: regular expression compile. regcmp(l)

regcmp: compile and execute regular expression. regcmpOX)
sorted files. comm: selcct Or reject lines common to two comm()

lorder: find ordering relation for an object/ 10rder<J)
join: relational database operator. join()

for a common object file. reloc: relocation information rcloc(4)
strip: remove symbols and relocation bits. slrip.pdp(1)

section of a/ Idrseek: seek to relocation entries of a Idrseek 0 X)
common object file. reloc: relocation information for a reloc(4)

noor: floor, ceiling. remainder. absolute value/ noorOM)
functions. mod: Fortran remaindering intrinsic modOF)
commands. mk: how to remake the system and mk(S)

calendar: reminder service. calendar(I)
rje: RJE (Remote Job Entry) to IBM. rjc(8)

~
ct: spawn getty to a remote terminal. ct(IC)

file. rmdel: remove a delta from an SCCS rmdel()
iperm: remove a message queue ipcrm(I)
unlink: remove directory entry. unlink(2)

rIO: remove files or directories. rm(\)
bits. strip: remove symbols and relocation strip.pdp(I)

- 29 -

Permuted Index

uniq: report repeated lines in a filc. uniq (J)
clock: report CPU time used. c1ockOC)

communication/ ipcs: report inter-process ipcs(l)

~blocks. df: report number of free disk df(J M)
errpt: process a report of logged errors. errrt< 1M)

sa I: systcm activity report package. sar< 1M)
timex: time a command; report process data and system/ timex (J)

ps: report process status. ps(l)
file. uniq: report repeated lines in a uniqU)

rjestat: RJE status report rjesta t (IC)
trenter: enter a trouble report. trentcr< I)

sar: system activity reporter. . .••... sarU)
stream. fseek: reposition a file pointcr in a fseekOS)

Ipsched: start/stop the LP request scheduler Ipsched (I M)
accept: allow/prevent LP requests. acccpt (I M)

Ip. cancel: send/cancel requests to an LP line/ Ip(I)
symbol table/ Idgetname: retrieve symbol name for file IdgetnameOX)

argument. getarg: return Fortran command-line getargOF)
variable. getenv: return Fortran environment getenvOF)

accounting. mclock: return Fortran time mclockOF)
abs: return integer absolute value. absOC)

string. len: return length of Fortran Icn(3F)
substring. index: return location of Fortran index OF)

logname: return login name of uscr. 10gname()X)
name. getenv: return value for environment gctenv()C)

stat: data returned by stat system call. stat (5)
reversi: a gamc of dramatic reversals. reversi(6)

col: filter reverse line-feeds. cot())
reversals. reversi: a game of dramatic reversi(6)

creat: create a new file or rewrite an existing one. creat (2)
file. rf: R FII/RS 11 fixed-head disk rf.pdp(7)

file. rf: RFII/RSII fixed-head disk rf.pdp(7)

~disk file. hs: RH II/RJS03-RJS04 fixed-hcad hs.pdp(7)
gather files and/or submit RJE jobs. send: send(IC)

rje: RJE (Remote Job Entry) to IBM. rjc(S)
IBM. rje: RJE (Remote Job Entry) to rje(S)

rjestat: RJE status report . • . rjestat (IC)
rjcstat: RJE status report rjestat (I C)
rk: RK-IIIRK03 or RK05 disk. rk.pdp(7)

rk: RK-II/RK03 or RK05 disk. rk.pdp(7)
rk: RK-II/RK03 or RK05 disk. rk.pdp(7)

rl: RL-IIIRLO I disk. r1(7)
rl: RL-II/RLOI disk. r«7)

directories. rm: remove files or rm(J)
format and/or check RP06 and RM05 disk packs. format: format(1 M)

hm: RM05 moving-head disk. hm(7)
rmSO: RMSO moving-head disk. rmSO(7)

rmSO: RMSO moving-head disk. rmSO(7)
SCCS file. rmdel: remove a delta from an rmdel(l)

romboot: special ROM bootstrap loaders. rombool(S)
loaders. romboot: special ROM bootstrap rombool(S)

chroot: change root directory. chroot(2)
chroot: change root directory for a command. chroot(l M)

logarithm. power. square root functions. /exponential. expOM)
sqrt: Fortran square root intrinsic function. sqrtOF)

hpd: graphical device routines and filters. gdevUG)
common object file access routines. Idfcn: Idfcn(4)

expression compile and match routines. regexp: regular regexp(S)
graphical table of contents routines. toc: toc(lG)

disk. rp: RP-II/RP03 moving-head rp.pdp(7)
moving-head disk. hp: RP04/RP05/RP06 hp(7)

format: format and/or check RP06 and RMOS disk packs. format(1 M)
moving-head disk. rp07: RP07 non-removable medium rp07(7)

medium moving-head disk. rp07: RP07 non-removable rp07(7)

• 30·

Permuted Index

rp: RP-II/RP03 moving-head disk. rp.pdp(7)
nice: run a command at low priority. niceO)

r hangups and quits. nohup: run a command immune to nohup(t)
runacct: run daily accounting. runacct (I M)

runacct: run daily accounting. runacctO M)
package. sa I: system activity report sarO M)

editing activity. sact: print current sees file sact(I)
sadp: disk access profiler. sadp(1 M)
sag: system activity graph. sag()G)
sar: system activity reporter. sar(J)

traces. vpmsave: save and print VPM event vpmsavc(1M)
input. scanf: convert formatted scanfOS)

bfs: big file scanner. bfsU)
language. awk: pattern scanning and processing awk(l)
stand-alone programs. scc: e compiler for sccO)

the delta commentary of an sees delta. cdc: change cdcO)
comb: combine sees deltas. combO)

make a delta (change) to an sees file. delta: delta 0)
sact: print current sees file editing activity. sact(t)

get: get a version of an sees file. get(J)
prs: print an sees file. prs(J)

rmdel: remove a delta from an sees file. rmdcl(I)
compare two versions of an sees file. sccsdiff: sccsdiff(I)

sccsfile: format of sees file. sccsfile(4)
undo a previous get of an sees file. unget: unget(l)

val: validate sees file. valO)
admin: create and administer sees files. admin(l)

what: identify sees files. whatO)
of an sees file. sccsdiff: compare two versions sccsdiff(I)

sccsfile: format of sees file. sccsfilc(4)

~
start/stop the LP request scheduler Ipsched: Ipsched() M)

common object file. scnhdr: section header for a scnhdd4)
optimizationl curses: eRT screen handling and curses OX)

vi: screen-oriented editor vi (I)
inittab: script for the init process. inittab(4)

system initialization shell scripts. brc: brc(1 M)
sdb: symbolic debugger. sdb(J)

program. sdiff: side-by-side difference sdilf())
grep: search a file for a pallern. grcp(I)

bsearch: binary search a sorted table. bscarchOC>
accounting filC<sL acctcom: search and print process acctcom(l)

Isearch: linear search and update. IscarchOC)
hscarch: manage hash search tables. hscarchOC)

tsearch: manage binary search trees. tsearchOC)
jOllO: secret word game. jotto(6)

object file. scnhdr: section header for a common scnhdr(4)
/read an indexed/named section header of a file. IdshreadOX)

to line number entries of a section of a file. Iseek Idlseek OX)
to relocation entries of a section of a file. Iseek IdrscekOX)

/seek to an indexed/named section of an object file. IdsseekOX)
files. size: print section sizes of common object sizeU)

sed: stream editor. sed())
section of an object/ Idsscek: seek to an indexed/named Idsseck(3X)

a section of a file. Idlseek: seek to line number entries of IdlseekOX)
a section of a file. Idrseek: seek to relocation entries of IdrscekOX)
header of a file. Idohseek: seek to the optional file IdohseekOX)

common object file. Idtbseek: seek to the symbol table of <l IdtbseekOX)
shmget: get shared memory segment. shmget(2)

~
brk: change data segment space allocation. . brk (2)

to two sorted files. comm: select or reject lines common comm(I)
greek: select terminal filter. greck(l)

of a file. cut: cut out selected fields of each line cud\)
file. dump: dump selected parts of an object dump(l)

semctl: semaphore control operations. scmctl(2)

- 31 -

Permuted Index

semop: semaphore operations. semop(2)
semget: get set of semaphores. semget(2)

operations. semctl: semaphore control semctl(2)
'~semgel: get set of semaphores. semget(2)

semop: semaphore operations. semop(2)
a group of processes. kill: send a signal to a process or kill (2)

submit RJE jobs. send: gather files and/or send(IC)
mail. mail: send mail to users or read mail(l)

line printer. Ip, cancel: send/cancel requests to an LP Ip(l)
stream. setbuf: assign buffering to a setbufOS)

IDs. setuid, setgid: set user and group setuid(2)
setjmp: non-local goto. setjmpOC)
setmnt: establish mount table. setmnt(1 M)
setpgrp: set process group ID. setpgrp(2)

login time. profile: setting up an environment at profilc(4)
gettydefs: speed and terminal settings used by getty. gettydefs(4)

group IDs. setuid, setgid: set user and setuid(2)
standard/restricted command/ sh: shell, the she J)

operations. shmctl: shared memory control shmctl(2)
/ muIl iple-access-user-space (shared memory) operations. maus(2)

shmop: shared memory operations. shmop(2)
shmgel: get shared memory segment. shmget(2)

system: issue a shell command from Fortran. system OF)
system: issue a shell command. system OS)

shl: shell layer manager. shU I)
accounting. chargefee: shell procedures for acctsh(1 M)

brc: system initialization shell scripts. brC<1 M)
command programming/ sh: shell, the standard/restricted sh(l)

shl: shell layer manager. shl(I)
operations. shmctl: shared memory control shmctU2)

segment. shmget: get shared memory shmget(2)

')operations. s~mop: shared memory shmop(2)
processing. shutdown: terminate all shutdown{\ M)

program. sdiff: side-by-side difference sdiff(I)
intrinsic function. sign: Fortran transfer-of-sign signOF)

login: sign on. 10gin(J)
pause: suspend process until signal. pausc(2)
what to do upon receipt of a signal. signal: specify signal(2)
action on receipt of a system signal. /specify Fortran signalOF)

on receipt of a system/ signal: specify Fortran action signalOF)
upon receipt of a signal. signal: specify what to do . signal(2)
of processes. kill: send a signal to a process or a group kill(2)

ssignal: software signals. ssignalOC)
lex: generate programs for simple lexical tasks. lex(J)

generator. rand: simple random-number . randOC)
function. sin: Fortran sine intrinsic sinOF)

sin: trigonometric functions. trigOM)
sin: Fortran sine intrinsic function. sin 0 F)

sinh: Fortran hyperbolic sine intrinsic function. sinhOF)
intrinsic function. sinh: Fortran hyperbolic sine sinhOF)

sinh: hyperbolic functions. sinhOM)
common object files. size: print section sizes of . size(I)

files. size: print sizes of object sizc.pdp{\)
size: print section sizes of common object files. size(I)

size: print sizes of object files. size.pdp(I)
sky: obtain ephemerides. sky(6)

an interval. sleep: suspend execution for sleep(I)
interval. sleep: suspend execution for slecpOC)

current/ ttyslot: find the slot in the utmp file of the ttyslot OC)

'~spline: interpolate smooth curve. splindlG)
sno: SNOBOL interpreter. sno(J)

sno: SNOBOL interpreter. sno(\)
pg: file perusal filler for soft-copy terminals. pg(I)

ssignal: software signals. ssignalOC)

- 32 -

Permuted Index

mill: MLII solid-state disk. mlll.pdp(7)
sort: sort and!or merge files. sort <I)

~'
qsort: quicker sort. qsortOC)

sort: sort and!or merge files. sort (J)
tsort: topological sort. tsort (I)

or reject lines common to two sorted files. comm: select comm(l)
bsearch: binary search a sorted table. bsearch ()C)

brk: change data segment space allocation. brk(2)
terminal. ct: spawn getty to a remote ctUe>

fspec: format specification in text files. fsped4)
receipt of a system/ signal: specify Fortran action on signalOF)

receipt of a signal. signal: specify what to do upon signa)(2)
!set terminal type. modes. speed. and line discipline. gctty(1M)

used by getty. gettydcfs: speed and terminal settings gettydefs(4)
spell: find spelling errors. spell (\)

spell: find spelling errors. spell (I)
curve. spline: interpolate smooth spline(JG)

split: split a file into pieces. split (J)
csplit: context split. csplit< I)

files. fsplit: split n7. ratfor. or efl fsplit <I)
pieces. split: split a file into split(I)

uuclean: uucp spool directory clean-up. uuclean<l M)
vpr: Versatec printer spooler. vpr<t)

Ipadmin: configure the LP spooling system. Ipadmin<J M)
data in a machine-independent! sputl: access long integer sput)(3X)

intrinsic function. sqrt: Fortran square root sqrtOF)
exponential. logarithm. power. square root functions. exp: expC3M)

function. sqrt: Fortran square root intrinsic sqrtOF)
ssignal: software signals. ssignalOC)

scc: C compiler for stand-alone programs. scd\)

~
package. stdio: standard buffered input/output stdioOS)

communication package. ftok: standard interprocess stdipcOC)
programming! sh: shell. the standard!restricted command she I)

scheduler Ipsched: start!stop the LP request Ipsched(IM)
unixboot: UNIX system startup and boot procedures. unixboot(S)

system call. stat: data returned by stat stat(5)
stat: get file status. stat (2)

useful with graphical/ stat: statistical network statUG)
stat: data returned by stat system call. stat (5)
with graphical! stat: statistical network useful stat(1 G)
ff: list file names and statistics for a file system. ff<J M)
ustat: get file system statistics. ustat(2)

lpstat: print LP status information. Ipstat(\)
ferror: stream status inquiries. ferror(3S)

control. uustat: uucp status inquiry and job uustat(IC)
communication facilities status. /report inter-process ipcs(\)

ps: report process status. ps(J)
rjestat: RJE status report rjesta t (IC)
stat: get file status. stat(2)

input/output package. stdio: standard buffered stdioOS)
stime: set time. stimc(2)

wait for child process to stop or terminate. wait: wait(2)
strcat: string operations. stringOC)

sed: stream editor. scd<J)
fclose: close or flush a stream. fcloseC3S)

fopen: open a stream. fopenOS)
reposition a file pointer in a stream. fseek: fseekC3S)

get character or word from a stream. getc: getcC3S)

~
gets: get a string from a stream. gets(3S)

put character or word on a stream. putc: putc(3S)

\,
puts: put a string on a stream. putsOS)

setbuf: assign buffering to a stream. setbufC3S)
ferror: stream status inquiries. ferror(3S)

push character back into input stream. ungetc: ungetc(3S)

- 33 -

Permuted Index

long integer and base-64 ASCII string. a64l: convert between a64I(JC)
functions. Ige: string comparision intrinsic strcmpOF)

convert date and time to string. ctime: ctime(JC)

~Roating-point number to string. ecvt: convert ecvt(JC)
gps: graphical primitive string, format of graphicall gps(4)

gets: get a string from a stream. gets(JS)
len: return length of Fortran string.•.... len(JF)

puts: put a string on a stream. puts(JS)
strcat: string operations. string(JC)

number. strtod: convert string to double-precision . strtod (JC)
strtol: convert string to integer. strtolOC)

relocation bits. strip: remove symbols and strip.pdp(I)
number information from al strip: strip symbol and line stripe I)

information from al strip: strip symbol and line number stripe I)
double-precision number. strtod: convert string to strtod(JC)

integer. strtol: convert string to strtol(JC)
processes using a file or file structure. fuser: identify fuser(1 M)

terminal. stty: set the options for a stty(l)
another user. su: become super-user or su())

send: gather files and/or submit RJE jobs. send()C)
intro: introduction to subroutines and libraries. intro(J)

plot: graphics interface subroutines. plotOX)
return location of Fortran substring. index: indexOF)

count of a file. sum: print checksum and block sum()
du: summarize disk usage. du(1)

accountingl acctcms: command summary from per-process acctcms() M)
sync: update the super block. sync(\)

sync: update super-block. sync(2)
su: become super-user or another user. su(l)

qasurvey: Quality Assurance Survey. qasurvey(1M)
interval. sleep: suspend execution for an sleep(l)

')interval. sleep: suspend execution for sleep(3C)
pause: suspend process until signal. pausc(2)

swab: swap bytes. swabOC)
swab: swap bytes. swabOC)

sxt: pseudo-device driver. sxt (7)
information froml strip: strip symbol and line number stripe I)

tablel Idgetname: retrieve symbol name for file symbol Idgetname()X)
Iretrieve symbol name for file symbol table entry. IdgetnameOX)

Icompute the index of a symbol table entry of a file. IdtbindexOX)
Idtbread: read an indexed symbol table entry of a file. IdtbreadOX)
syms: common object file symbol table format. syms(4)

objectl Idtbseek: seek to the symbol table of a common Idtbseek(JX)
sdb: symbolic debugger. sdb(I)

strip: remove symbols and relocation bits. strip.pdp(I)
symbol table format. syms: common object file syms(4)

sync: update super-block. sync(2)
sync: update the super block. synC< \)

du: DU-II synchronous line interface. du.pdp(7)
sysdef: system definition. sysdef(1 M)

binary search a sorted table. bsearch: bsearch ()C)
symbol name for file symbol table entry. Iretrieve Idgetname(3X)

Icompute the index of a symbol table entry of a file. IdtbindcxOX)
Iread an indexed symbol table entry of a file. Idtbread(JX)

common object file symbol table format. syms: syms(4)
master device information table. master: master.deC(4)

mnttab: mounted file system table. mnttab(4)
Idtbseck: seck to the symbol table of a common object file. IdtbseckOX)

toc: graphical table of contents routines. toc(IG)

~setmnt: establish mount table. setmnt() M)
hsearch: manage hash search tables. hsearch(JC)

tabs: set tabs on a terminal. tabs(l)
tabs: set tabs Oli a terminal. tabs(\)

a file. tail: deliver the last part of tai1())

- 34 -

Permuted Index

function. tan: Fortran tangent intrinsic tan()F)
tan: Fortran tangent intrinsic function. tan 0 F)

~.
tanh: Fortran hyperbolic tangent intrinsic function. tanhOF)

tangent intrinsic function. tanh: Fortran hyperbolic tanh()F)
tapeboot: magnetic tape bootstrap program. tapeboot (8)

gt: general driver for tape drives. gt(7)
hpio: HP 2645A terminal tape file archiver. hpio(I)

tar: tape file archiver. tar(I)
recover files from a backup tape. free: frce(1M)

ht: TU 16/TE16 magnetic tape interface. ht(7)
tm: TMII/TUIO magnetic tape interface. tm.pdp(7)

ts: TSII magnetic tape interface. tsll (7)
tu78: TU78 magnetic tape interface. tu78(7)

bootstrap program. tapeboot: magnetic tape tapeboot (8)
tar: tape file archiver. tar(I)

programs for simple lexical tasks. lex: generate lex (I)
tee: pipe fitting. tee (I)

4014: paginator for the TEKTRONIX 4014 terminal. 4014(})
tmpfile: create a temporary file. tmpfileOS)

tmpnam: create a name for a temporary file. tmpnam(JS)
terminals. term: conventional names for term(5)

ferm: format of compiled term file .. term(4)
file.. term: format of compiled term term (4)

for the TEKTRONIX 4014 terminal. 4014: paginator 4014(I)
functions of the DASI 450 terminal. 450: handle special 450(})

terminfo: terminal capability data base. terminfo(4)
ct: spawn getty to a remote terminal. ct(}C)

generate file name for terminal. ctermid: .ctermid OS)
greek: select terminal filter. greek (I)

termio: general terminal interface. termio(7)

~
tty: controlling terminal interface. tty(7)

dial: establish an out-going terminal line connection. dialOC)
getty. gettydefs: speed and terminal settings used by gettydefs (4)

stty: set the options for a terminal. stty(J)
tabs: set tabs on a terminal. tabs(I)

hpio: HP 2645A terminal tape file archiver. hpio(l)
tty: get the name of the terminal. tty(I)
ttyname: find name of a terminal. ttynameOC)

and line/ getty: set terminal type, modes, speed. getty(1 M)
300: DASI 300 and 300s terminals. 300(I)

handle special functions of HP terminals. hp: hp(})
perusal filter for soft-copy terminals. pg: file pg(l)

term: conventional names for terminals. term(5)
kill: terminate a process. kill (I)

shutdown: terminate all processing. shutdown (I M)
abort: terminate Fortran program. abortOF)

exit: terminate process. . . . exit(2)
daemon. errstop: terminate the error-logging errstop(1M)

for child process to stop or terminate. wait: wait wait(2)
tic: terminfo compiler. tic(I M)

tput: query terminfo database. tput(I)
data base. terminfo: terminal capability terminfo(4)
interface. termio: general terminal termio(7)

command. test: condition evaluation test(I)
vpmtest: test KMC lines. vpmtest(J M)

quiz: test your knowledge. quiz(6)
ed, red: text editor. ed(I)

edit: text editor edit(I)

~
ex: text editor. ex(l)

change the format of a text file. newform: newform(l)
fspec: format specification in text files. fspee(4)

plock: lock process, text, or data in memory. pJock(2)
tic: terminfo compiler. tie(l M)

ttt: tic-tac-toe. ttt(6)

- 35 -

Permuted Index

data and systeml timex: time a cqmmand; report process timex(J)
time: time a command. time(J)

mclock: return Fortran time accounting. mclockOF) Jexecute commands at a later time. at: at(J)
systems for optimal access time. dcopy: copy file dcopy(1 M)

time: get time. time(2)
profil: execution time profile. profil (2)

up an environment at login time. profile: setting profile(4)
stime: set time. stime(2)

time: time a command. time(I)
time: get time. time(2)

ctime: convert date and time to string. ctimeOC)
clock: report CPU time used. clockOC)

process times. times: get process and child times(2)
update access and modification times of a file. touch: touch(I)

get process and child process times. times: times(2)
file access and modification times. utime: set utime(2)

process data and systeml timex: time a command; report timex(l)
interface. tm: TM II/TU 10 magnetic tape tm.pdp(7)

interface. tm: TM II/TU I0 magnetic tape tm.pdp(7)
file. tmpfile: create a temporary tmpfileOS)

temporary file. tmpnam: create a name for a tmpnamOS)
contents routines. toc: graphical table of toc(IG)

popen: initiate pipe to/from a process. popenOS)
tsort: topological sort. tsort(I)

acctmerg: merge or add total accounting files. acctmerg(I M)
modification times of a file. touch: update access and touch(l)

toupper: translate characters. convOC)
tplot: graphics filters. tplot(JG)
tput: query terminfo database. tput(J)
tr: translate characters. tr(I)

.~trace: event-tracing driver. trace(7)
ptrace: process trace. ptracc(2)

save and print VPM event traces. vpmsave: vpmsave(J M)
function. sign: Fortran transfer-of-sign intrinsic signOF)

toupper: translate characters. convOC)
tr: translate characters. tr(I)

ftw: walk a file tree. ftwOC)
tsearch: manage binary search trees. tsearchOC)

report. trenter: enter a trouble trenter(J)
sin: trigonometric functions. trigOM)

trenter: enter a trouble report. trenter(I)
true: provide truth values. true(I)

type. pdp II, vax: provide truth value about processor machid(l)
true: provide truth values. true(J)

interface. ts: TSII magnetic tape ts11(7)
ts: TSII magnetic tape interface. tsll (7)

trees. tsearch: manage binary search tsearchOC)
tsort: topological sort. tsort (I)
ttl: tic-tac-toe. ttt(6)

interface. tty: controlling terminal tty(7)
terminal. tty: get the name of the tty(I)
terminal. ttyname: find name of a ttynameOC)

utmp file of the currentl uyslot: find the slot in the ttyslotOC)
interface. ht: TUI6/TEI6 magnetic tape ht(7)

tu78: TU78 magnetic tape interface. tu78(7)
interface. tu78: TU78 magnetic tape tu78(7)

int: explicit Fortran type conversion. ftypeOF)
file: determine file type. file(l)

~truth value about processor type. pdpll, vax: provide machid(l)
getty: set terminal type, modes, speed, and linel getty(1 M)

types. types: primitive system data types(S)
types: primitive system data types. types(S)

getpw: get name from UfO. getpwOC)

- 36 -

Permuted Index

limits. ulimit: get and set user ulimit(2)
creation mask. umask: set and get file umask(2)

~
mask. umask: set file-creation mode umask(l)

umount: unmount a file system. umount(2)
UNIX system. unamc: get name of current unamc(2)
UNIX system. una me: print name of current . uname(t)

file. ungct: undo a prcvious get of an SCCS ungct (I)
an SCCS file. ungel: undo a previous get of unget(J)

into input stream. ungetc: push character back ungetc(3S)
drand48: generate uniformly distributed/ • . drand48()C)

a file. uniq: report repeated lines in uniq (J)
mktemp: make a unique file name. mktempOC)

acu: Automatic Call Unit (ACU) interface. acu(7)
units: conversion program. units(I)

and boot procedures. unixboot: UNIX system startup unixboot(S)
execution. uux: UNIX-to-UNIX system command uux(JC)

uuto: public UNIX-to-UNIX systcm file copy. uuto(IC)
entry. unlink: remove directory unlink(2)

link: exercise link and unlink system calls. Iink(J M)
umount: unmount a file system. umount(2)

times of a file. touch: update access and modification touch(J)
of programs. make: maintain, update, and regenerate groups make(J)

bdblk: print, initialize, update bad information bdblk(J M)
Isearch: linear search and update. Isearch()C)

sync: update super-block. sync(2)
sync: update the super block. sync(J)

du: summarize disk usage. du(J)
stat: statistical network useful with graphical! stat(JG)

id: print user and group IDs and names. id(I)
setuid, setgid: set user and group IDs. setuid(2)

crontab: user crontab file. crontab(l)

~\ character login name of the user. cuserid: get cuseridOS)
environ: user environment. environ(S)

disk accounting data by user 10. diskusg: generate diskusg (l M)
getuid: get user IDs getuid(2)

ulimit: get and set user limits. ulimit(2)
logname: return login name of user. 10gnameOX)
become supcr-user or anothcr user. su: su(l)

the utmp tile of the current user. /find the slot in llyslotOC)
write: write to another user. write(t)

mail: send mail to users or read mail. mail(l)
wall: write to all users. walJ(l M)

fuser: identify processes using a file or filel fused I M)
statistics. ustat: get file system ustat (2)

gutil: graphical utilities. gutiJ(IG)
modification times. utime: set file access and utime(2)

utmp: utmp and wtmp entry formats. utmp(4)
getutent: access utmp file entry. getutOC)

llyslot: find the slot in the utmp file of the current user. llyslot OC)
formats. utmp: utmp and wtmp entry utmp(4)

clean-up. uuclean: uucp spool directory uuclean(J M)
uusub: monitor uucp network. uusub(1 M)

uuclean: uucp spool directory clean-up. uuclean(l M)
control. uustat: uucp status inquiry and job uustat(IC)

system copy. uucp: UNIX system to UNIX uucp(IC)
and job control. uustat: uucp status inquiry uustat(lC)

uusub: monitor uucp network. uusub(t M)
system file copy. uuto: public UNIX-to-UNIX uuto(IC)

~\
command execution. uux: UNIX-to-UNIX system uux(1 C)

val: validate SCCS file. vaHl)
val: validate sees file. val(J)

pdpll. vax: provide truth value about processor type. machid(J)
abs: return integer absolute value. abs()C)

abs: Fortran absolute value. abs()F)

- 37 -

Permul~d Index

getenv: return value for environment name. getenv(JC)
ceiling, remainder, absolute value functions. Ifloor, fJoorOM)

putenv: change or add value to environment. putenv(JC)

)values. values: machine-dependent values(S)
true: provide truth values. trueO)

values: machine-dependent values. values(S)
Iprint formatted output of a varargs argument list. vprintfOS)
Iprint formatted output of a varargs argument list. vprintfOX)

argument list. varargs: handle variable varargs(S)
varargs: handle variable argument list. varargs(S)

return Fortran environment variable. getenv: getenvOF)
processor type. pdp II. vax: provide truth value about machid(l)

7S00ps: VAX-1117 SO console operations. 7S00ps(S)
verification program. vcf: VAX-I 11780 configuration vcf(1 M)

7800ps: VAX-111780 console operations. 7S00ps(S)
interface. vlx: VAX-I 11780 LSI console floppy vlxO M)

files between PDP-II and VAX-I 1/180 systems. Iconvert fscv.vax(1 M)
vc: version control. vc{l)

verification program. vcf: VAX-I 11780 configuration vcfO M)
option letter from argument vector. getopt: get getoptOC)

vcf: VAX-III7S0 configuration verification program. vcf(1 M)
assert: verify program assertion. assert(JX)

vpr: Versatec printer spooler. vpr(J)

vp: Versatec printer. vp.pdp(7)
vc: version control. vcO)

get: get a version of an sces file. get(J)
sccsdilT: compare two versions of an SCCS file. sccsdiff(I)

vi: screen-oriented editor vi(J)
vpm: Virtual Protocol Machine. vpm(7)

vpmc: compiler for the virtual protocol machine. vpmc.dec{ I M)
floppy interface. vlx: VAX-I 11780 LSI console • vlx(1 M)

1with label checking. volcopy: copy file systems volcopy (1M)
file system: format of system volume. f5(4)

vp: Versatec printer. vp.pdp(7)
vpmset: connectltoad VPM drivers vpmset(1 M)

vpmsave: save and print VPM event traces. vpmsavC< 1M)
vpm: Virtual Protocol Machine. vpm(7)

protocol machine. vpmc: compiler for the virtual vpmc.dec{ I M)
event traces. vpmsave: save and print VPM vpmsavc(1 M)

drivers vpmset: connect/load VPM vpmsct(1 M)
vpmtest: test KMC lines. vpmtestO M)
vpr: Versatec printer spooler. vpr(l)

output of a varargs argumentl vprintf: print formatted vprintfOS)
output of a varargs argumentl vprintf: print formatted vprintfOX)

process. wait: await completion of waitO)
or terminate. wait: wait for child process to stop wait(2)

to stop or terminate. wait: wait for child process wait(2)
ftw: walk a file tree. ftw(JC)

wall: write to all users. wallO M)
wc: word count. wc{J)
what: identify SCCS files. what(J)

signal. signal: specify what to do upon receipt of a signal(2)
crashes. crash: what to do when the system crash.deC(8)

whodo: who is doing what. whodo(1 M)
who: who is on the system. whoO)

who: who is on the system. whoO)
whodo: who is doing what. whodo(1 M)

cd: change working directory. cd(1)
chdir: change working directory. chdir(2)

.~get path-name of current working directory. getcwd: getcwdOC)
pwd: working directory name. pwd(1)

write: write on a file. write(2)
putpwent: write password file entry. putpwent OC)

wall: write to all users. wall(l M)

• 38 -

write: write to another user.
write: write on a file.
write: write to another user.

open: open for reading or writing. .••.•
ulmp: utmp and wtmp entry formats. . . . •

hunt-the-wumpus. wump: the game of
list (s) and execute command. xargs: construct argument

functions. and, or, xor. not: Fortran boolean • •
jO, j I. jn, yO, y I, yn: Bessel functions.

jO, j I, jn, yO, y I, yn: Bessel functions.
compiler-compiler. yacc: yet another

jOt j I, j n, yO. y 1, yn: Bessel functions. • . •

- 39 -

Permuted Index

• write<I)
• • write(2)

· writc<I)
open(2)

• utmp(4)
• . wump(6)

• xargs<I)
• boolOF)
• besselOM)

bcsscl(3M)
yacc(l)

• • besselOM)

l-.-;;--;r.\:;:;.

INTRO(I)

NAME

INTRO(I)

intro - introduction to commands and application programs

DESCRIPTION
This section describes, in alphabetical order, publicly-accessible commands.
Certain distinctions of purpose are made in the headings:

(I) Commands of general utility.
(IC) Commands for communication with other systems.
(I G) Commands used primarily for graphics and computer-aided design.

COMMAND SYNTAX
Unless otherwise noted, commands described in this section accept options and
other arguments according to the following syntax:

name [option (s)] lcmdarg(s)]
where:

name

option

noargletter

argletter

optarg

cmdarg

The name of an executable file.

- noargletter(s) or,
- argletter < > optarg
where < > is optional white space.

A single letter representing an option without an argument.

A single letter representing an option requiring an argument.

Argument (character string) satisfying preceding argletter.

Path name (or other command argument) not beginning with
or, - by itself indicating the standard input.

" ,.
r·~

SEE ALSO
getopt(l) .
exit(2), wait(2), getopt(3C) in the UNIX System V Programmer Reference
Manual.
How to Get Started, at the front of this volume.

DIAGNOSTICS
Upon termination, each command returns two bytes of status, one supplied by
the system and giving the cause for termination, and (in the case of "normal"
termination) one supplied by the program (see wait (2) and exit (2». The
former byte is 0 for normal termination; the latter is customarily 0 for success­
ful execution and non-zero to indicate troubles such as erroneous parameters.
bad or inaccessible data, or other inability to cope with the task at hand. It is
called variously "exit code", "exit status", or "return code", and is described
only where special conventions are involved.

BUGS
Regretfully. many commands do not adhere to the aforementioned syntax.

WARNINGS
Some commands produce unexpected results when processing Illes containing
null characters. These commands often treat text input lines as strings and
therefore become confused upon encountering a null character {the string ter­
minator> within a line.

- I -

300 (t)

NAME

300(1)

300, 300s - handie special functions of DASI 300 and 300s terminals

SYNOPSIS
300 [+12] [-n] [-dt,l,c]

300s [+12] [-n] [-dt,l,c]

DESCRIPTION
The 300 command supports special functions and optimizes the use of the DASI
300 (GSI 300 or DTC 300) terminal; 300s performs the same functions for the
DASI 300s (GSI 300s or DTC 3OOs) terminal. It converts half-line forward,
half-line reverse, and full-line reverse motions to the correct vertical motions.
It also attempts to draw Greek letters and other special symbols. It permits
convenient use of 12-pitch text. It also reduces printing time 5 to 70%. The
300 command can be used to print equations neatly, in the sequence:

neqn file •.. I nroff I 300

WARNING: if your terminal has a PLOT switch, make sure it is turned on
before 300 is used.

The behavior of 300 can be modified by the optional flag arguments to handle
12-pitch text, fractional line spacings, messages, and delays.

+12 permits use of 12-pitch, 6 lines/inch text. DASI 300 terminals nor­
mally allow only two combinations: 10-pitch, 6 lineslinch, or 12­
pitch, 8 lines/inch. To obtain the t 2-pitch, 6 lines per inch combina­
tion, the user should turn the PITCH switch to 12, and use the + 12
option.

-n controls the size of half-line spacing. A half-line is, by default, equal
to 4 vertical plot increments. Because each increment equals 1/48 of
an inch, a 10-pitch line-feed requires 8 increments, while a 12-pitch
line-feed needs only 6. The first digit of n overrides the default
value, thus allowing for individual taste in the appearance of sub­
scripts and superscripts. For example, nroff half-lines could be made
to act as quarter-lines by using -2. The user could also obtain
appropriate half-lines for 12-pitch, 8 lines/inch mode by using the
option -3 alone, having set the PITCH switch to 12-pitch.

-dt,l,c controls delay factors. The default setting is -d3,90,JO. DASI 300
terminals sometimes produce peculiar output when faced with very
long lines, too many tab characters, or long strings of blankless, non­
identical characters. One null (delay) character is inserted in a line
for every set of t tabs, and for every contiguous string of (' non­
blank, non-tab characters. If a line is longer than I bytes, t +hotal
length)120 nulls are inserted at the end of that line. Items can be
omitted from the end of the list, implying use of the default values.
Also, a value of zero for t (c) results in two null bytes per tab (char­
acter>. The former may be needed for C programs, the latter for
files like /etc/passwd. Because terminal behavior varies according to
the specific characters printed and the load on a system, the user
may have to experiment with these values to get correct output. The
-d option exists only as a last resort for those few cases that do not
otherwise print properly. For example, the file /etc/passwd may be
p'rinted using -d3,30,S. The value -dO,1 is a good one to use for C
programs that have many levels of indentation.

Note that the delay control interacts heavily with the prevailing car­
riage return and line-feed delays. The Slly (I) modes nlO cr2 or nlO
cr3 are recommended for most uses.

- 1 -

300 (1) 300 (1)

The 300 command can be used with the nroff -s flag or .rd requests, when it
is necessary to insert paper manually or change fonts in the middle of a docu­
ment. Instead of hitting the return key in these cases, you must use the line­
feed key to get any response.

In many (but not all) cases, the following sequences are equivalent:

nroff -T300 files... and nroff files ... I 300
moff -T300-12 files... and nroff files ... I 300 +12

The use of 300 can thus often be avoided unless special delays or options are
required; in a few cases, however, the additional movement optimization of 300
may produce better-aligned output.

The neqn names of, and resulting output for, the Greek and special characters
supported by 300 are shown in greek (5).

SEE ALSO
450(1), eqn(I), graph(IG), mesg(I), moff(I), stty(l), tabs(I), tbI(I),
tplot(IG).
greek(5) in the UNIX System V Programmer Reference Manual.

BUGS
Some special characters cannot be correctly printed in column I because the
print head cannot be moved to the left from there.
If your output contains Greek and/or reverse line-fceds, use a friction-feed pla­
tcn instead of a forms tractor; although good enough for drafts, the latter has a
tendency to slip when reversing direction, distorting Greek characters and
misaligning the first line of text after one or more reverse line-feeds.

- 2 -

4014(1)

NAME

4014 (I)

4014 - paginator for the TEKTRONIX 4014 terminal

SYNOPSIS
4014 [-t] [-0] [-eN] [-pL] [file]

DESCRIPTION
The output of 4014 is intended for a TEKTRONIX 4014 terminal; 40J4
arranges for 66 lines to fit on the screen, divides the screen into N columns, and
contributes an eight-space page offset in the {default} single-column case.
Tabs. spaces, and backspaces are collected and ploued when necessary. TELE­
TYPE Model 37 half- and reverse-line sequences are interpreted and plotted.
At the end of each page, 4014 waits for a new-line {empty line} from the key­
board before continuing on to the next page. In this wait state, the command
!cmd will send the cmd to the shell.

The command line options are:

-t Do not wait between pages {useful for directing output into a file}.

-0 Start printing at the current cursor position and never crase the screen.

-eN Divide the screen into N columns and wait after the last column.

-pL Set page length to L; L accepts the scale factors i <inches} and I
(lines); default is lines.

SEE ALSO
pr{ I), teO), troff{ I).

- I .

450 (I)

NAME

450(1)

450 - handle special functions of the DASI 450 terminal

SYNOPSIS
450

DESCRIPTION
The 450 command supports special functions of, and optimizes the use of, the
DASI 450 terminal, or any terminal that is functionally identical, such as the
DIABLO 1620 or XEROX 1700. It converts half-line forward, half-line reverse,
and full-line reverse motions to the correct vertical motions. It also allempts to
draw Greek lellers and other special symbols in the same manner as 300(1).
Use 450 to print equations neatly, in the sequence:

neqn file ... I nroff I 450

WARNING: make sure that the PLOT switch on your terminal is ON before 450
is used. The SPACING switch should be put in the desired position (either 10­
or 12-pitch). In either case, vertical spacing is 6 lines/inch, unless dynamically
changed to 8 lines per inch by an appropriate escape sequence.

Use 450 with the nroff -5 flag or .rd requests when it is necessary to insert
paper manually or change fonts in the middle of a document. Instead of hit­
ting the return key in these cases, you must use the line-feed key to get any
response.

In many (but not all) cases, the use of 450 can be eliminated in favor of one of
the following:

nroff -T450 files ...
or

nroff - T450-12 files ...

The use of 450 can thus often be avoided unless special delays or options are
required; in a few cases, however, the additional movement optimization of 450
may produce better-aligned output.

The neqn names of, and resulting output for, the Greek and special characters
supported by 450 are shown in greek (5).

SEE ALSO
300(I), eqn(l), graph (I G). mesg(I), nroff(I), slly(I), tabs(I), tbJ(1) ,
tplot(IG).
greek(5) in the UNIX System V Programmer Reference Manual.

BUGS
Some special characters cannot be correctly printed in column I because the
print head cannot be moved to the left from there.
If your output contains Greek and/or reverse line-feeds, use a friction-feed pla­
ten instead of a forms tractor; although good enough for drafts, the latter has a
tendency to slip when reversing direction, distorting Greek characters and
misaligning the first line of text after one or more reverse line-feeds.

- I -

ACCTCOM(l) ACCTCOM(I)

NAME
acctcom - search and print process accounting file<s)

SYNOPSIS
acctcom [[options] [file] 1

DESCRIPTION
Acctcom reads file, the standard input, or /usr/adm/pacct, in the form
described by acct (4) and writes selected records to the standard output. Each
record represents the execution of one process. The output shows the COM­
MAND NAME, lJSER, 'ITYNAME, START TIME, END TIME, REAL (SEC), CPU
(SEC), MEAN SIZE(K), and optionally, F <the fork / exec. flag: I for fork
without exed, STAT <the system exit status}, HO(; FACrOR, KCORE MIN, CPlJ
FACTOR, CHARS TRNSFD, and BLOCKS two (total blocks read and written).

The command name is prepended with a # if it was executed with super-user
privileges. If a process is not associated with a known terminal, a ? is printed
in the TTYNAME field.

-f

-h

-b

-i
-k

.~...••... '\)

-e lime
-5 lime
-E time

-g group

-s time

-u user

-m
-r
-t
-v
-I line

If no files are specified, and if the standard input is associated with a terminal
or /dev/null (as is the case when using & in the shem, /usr/adm/pacct is read;
otherwise, the standard input is read.

If any file arguments are given, they are read in their respective order. Each
file is normally read forward, i.e., in chronological order by process completion
time. The file /usr/adm/pacct is usually the current file to be examined; a busy
system may need several such files of which all but the current file are found in
/usr/adm/pacct? The options are:

-a Show some average statistics about the processes selected. The
statistics will be printed after the output records.
Read backwards, showing latest commands first. This option has
no effect when the standard input is read.
Print the fork/exec flag and system exit status columns in the
output.
Instead of mean memory size, show the fraction of total available
CPU time consumed by the process during its execution. This
"hog factor" is computed as:

(total CPU time}/(elapsed time).
Print columns containing the I/O counts in the output.
Instead of memory size, show total kcore-minutes.
Show mean core size <the default}.
Show CPU factor (user time/(system-time + user-time>.
Show separate system and user CPU times.
Exclude column headings from the output.
Show only processes belonging to terminal /dev/line.
Show only processes belonging to user that may be specified by: a
user 10, a login name that is then converted to a user 10, a #
which designates only those processes executed with super-user
privileges, or ? which designates only those processes associated
with unknown user lOs.
Show only processes belonging to group. The group may be
designated by either the group 10 or group name.
Select processes existing at or after lime, given in the format
hr [:min [:sec ll.
Select processes existing at or before lime.
Select processes starting at or after time.
Select processes ending at or before lime. Using the same time
for both -5 and - E shows the processes that existed at time.

- 1 -

ACCTCOM(l)

-0 pattern

-0 oftle

-H factor

-0 sec
-C sec

-I chars

FILES

ACCTCOM(l)

Show only commands matching pattern that may be a regular
expression as in ed(l) except that + means one or more
occurrences.
Do not print any output records. just print the average statistics
as with the -8 option.
Copy selected proces:> records in the input data format to oiile;
supress standard output printing.
Show only processes that exceed factor, where factor is the "hog
factor" as explained in option -h above.
Show only processes with CPU system time cxceeding sec seconds.
Show only processes with total CPU time. system plus user.

exceeding sec seconds.
Show only processes transferring more characters than the cut-off
number given by chars.

/etc/passwd
/usr/adm/paect
tete/group

SEE ALSO
ps(I), su(».
acet(2), acct(4), utmp(4) in the UNIX System V Programmer Reference
Manual.
acetUM), acctcms(IM), aectconUM). acetmerg(IM). acctprc(IM).
acctsh(1M), fwtmp(I M), runacct(1 M) in the UNIX System V Administrator
Reference Manual.

BUGS
Acctcom only reports on processes that have terminatcd; use ps (I) for active
processes. If time exceeds the present time, then time is interpreted as occur­
ring on the previous day.

- 2 -

ADB(J)

NAME

(DEC only) ADB(J)

adb - absolute debugger

SYNOPSIS
adb [-w] [objfil [corfH]]

DESCRIPTION
Adb is a general purpose debugging program. It may be used to examine files
and to provide a controlled environment for the execution of UNIX system pro­
grams.

Objjil is normally an executable program file, preferably containing a symbol
table: if not then the symbolic features of adh cannot be used although the file
can still be examined. The default for objfil is a.out. Cor/il is assumed to be a
core image file produced after executing objfil: the default for corjil is core.

Requests to aqb arc read from the standard input and responses are to the
standard output. If the -w nag is present then both objfil and corjil are
created if necessary and opened for reading and writing so that files can be
modified using adb. Adb ignores QUIT: INTERRUPT causes return to the next
adb command.

In general requests to adb arc of the form

[address] [, count] [command) [:]

If address is present then dot is set to address. Initially dOl is set to O. For
most commands coulll specifics how many times the command will be executed.
The default coulll is I. Address and COlint are expressions.

The interpretation of an address depends on the context it is used in. If a sub­
process is being debugged then addresses are interpreted in the usual way in
the address space of the subprocess. For further details of address mapping see
A/)/)R E,S'S E.~·.

EXPRESSIONS
The value of dOl.

+ The value of dot incremented by the current increment.

The value of dot decremented by the current increment.

The last address typed.

illleger An octal number if illleger begins with a 0: a hexadecimal number if
preceded by #: otherwise a decimal number.

imeger .fraction
A 32-bit floating point number.

'cccc The ASCII value of up to 4 characters. /\ \ may be used to escape a '.

< name
The value of name, which is either a variable name or a register name.
Adh maintains a number of variables (see V.·fRIAnl./:'S) named by sin­
gle letters or digits. If flame is a register name then the value of the
register is obtained from the system header in corjil. The register
names are rO ... r1 t sp pc ps fp ap for the VAX

and
rO ... r5 sp pc ps for the PDP· I J.

symbol A symbol is a sequence of upper or lower case letters. underscores or
digits. not starting with a digit. The value of the symbol is taken
from the symbol table in objfil. An initial or - will be prefixed to
symbol if needed.

- I -

ADB(I) (DEC only) ADB(I)

sl'mhol
- . In C. thc "truc name" of an external symbol begins with _. It may be

nccessary to uttcr this namc to distinguish it from internal or hidden
variables of a program.

r01l1 ine .name
The address of the variablc name in the specified C routine. Both roll­
line and name are symbols. If name is omitted the value is the
address of the most recently activated C stack framc corresponding to
rOll/ine.

(exp) The valuc of the expression expo

Monadic operators:

.exp The contents of the location addressed by exp in corfil.

@exp The contents of the location addressed byexp in objfil.

-exp Integer negation.

-exp Bitwise complement.

Dyadic operators arc left associative and arc less binding than monadic opcra­
tors.

el +e2

el -e2

el %e2

el &e2

e/le2

el#e2

Integer addition.

Integer subtraction.

Integcr multiplication.

Integcr division.

Bitwise conjunction.

Bitwise disjunction.

E I rounded up to the ncxt multiple of e2.

COMMANDS
Most commands consist of a verb followed by a modifier or list of modificrs.
The following verbs are available. (The commands? and I may be followcd by
.; see A/)/)RES'St:.\' for further details'>

?f Locations starting at address in objfil arc printed according to the
format f and dOl is incremented by the sum of the increments for
each format lettcr (q.v.>.

If Locations starting at address in corfil are printed according to the
format f and dol is incremented as for ?

=f The value of address itself is printed in the styles indicated by the
format f. (For i format ? is printed for the parts of the instruction
that reference subsequent words'>

A format consists of one or more characters that specify a style of printing.
Each format character may be preceded by a decimal integer that is a repeat
count for the format character. While stepping through a format, dOl is incre­
mented by the amount given for each format letter. If no format is givcn then
the last format is uscd. The format lettcrs available arc as follows:

o 2

04
q 2
Q4
d 2

Print 2 bytes in octal. All octal numbers output by adb are
preceded by O.
Print 4 bytes in octal.
Print in signed octal.
Print long signed octal.
Print in decimal.

- 2 -

ADB(J) (DEC only) ADB (I)

[) -t
x .2
X -t
u 2
lJ 4
f -t
F ~

b
c
C

S 11

S 11

Y 4
n

a 0

p 2

o

r 0
n 0
" ... n 0

+

Print long d~cimal.

Print .2 bytes in hexadecimal.
Print 4 b) tcs in hexadecimal.
Print as an unsigned decimal number.
Print long unsigned decimal.
Print the 32 bit value as a noating point number.
Print double nOtHing point.
Print the addressed byte in octal.
Print the addressed character.
Print the addrcssed character using thc following escape con­
vention. Character values 000 to 040 arc printed as @ fol­
lowed by the corresponding character in the range 0 I00 to
0140. The character @ is printed as @@.
Print the addressed characters until a zcro character IS

reached.
Print a string using the @ escape convention. The value 11 IS

the length of the string including its zero terminator.
Print 4 bytes in date format (sec etim£' DC».
Print as PDP-II instructions. The value 11 is the number of
bytes occupied by the instruction. This style of printing causes
variables I and .2 to be sct to the oll"set parts of the source and
destination. respectively.
Print the value of dut in symbolic form. Symbols arc checkcd
to ensure that thcy have an appropriate type as indicated
below.

I local or global data symbol
'! local or global text symbol

local or global absolute symbol

Print the addrcssed value in symbolic form using the same
rules for symbol lookup as a.
When preceded by an integer. tabs to the next appropriate tab
stop. For example. 8t movcs to the next X-space tab stop.
Print a space.
Print a ncw-line.
Print thc enclosed string.
Dot is decremented by the current increment. Nothing is
printcd.
Dot is incremcntcd by I. Nothing is printed.
Dot is dccremcnted by I. Nothing is printed.

new-line
Repcat the previous command with a COlint of I.

[?/lI vallie mask
Words starting at dol arc masked with mask and compared with vallie
until a match is found. If L is used thcn the match is for 4 bytcs at a
timc instead of 2. If no match is found thcn dot is unchanged~ othcr­
wisc dOl is sct to the matched location. If mllsk is omitted then -I is
used.

[? I]w \'GIlle ...
Write the 2-bytc vallie into the addressed location. If the command is
W. write 4 bytes. Odd addresses arc not allowed when writing to the
subprocess address space.

[?/]m hI el Ill?!]
New values for (hI. el. If) are recorded. If less than three expressions
are given then the remaining map parameters an~ left unchanged. If

- 3 -

ADB(I) (DEC only) ADB(J)

~
e
w
s
0

d
q,
m

the '? or I is followed by • then the second segment (b2 .£,2./2) of the
mapping is changed. If the list is terminated by ? or I then the lHe
(ohjfi/ or mr.li/. respectively) is used for subsequent requests. (So that,
for example. 1m? will cause I to refer to ob.i/ii.)

> name Dor is assigned to the variable or register named.

A shell is called to read the rest of the line following !.

$/I1oc/ifier
Misccllaneous commands. The available /I1mh/ierJ are:

<f Read commands from the file f and return.
>f Send output to the file f. which is created if it does not exist.
r Print the general registers and the instruction addressed by pc.

DOT is set to pc.
r Print the lloating registers in single or double length. If lhe

lloating point status of ps is set to double (0200 bit> then dou­
ble length is used anyway.

b Print all breakpoints and their associated counts and com­
mands.

a AI.(iOI. 68 stack backtrace. If address is given then it is
taken to be the address of the current frame ~ (instead of r4).
II' mu11T is given then only the first mUI/T frames are printed.

c C stack backtrace. If address is given then it is taken as the
address of the current frame (jnst~ld of r5>' II' C is used then
the names and (16-bit> values of all automatic and static vari­
ables arc printed for each active function. If mum is given
then only the first mum frames are printed.
The names and values of external variables are printed.
Set the page width for output to address (default 80).
Set the limit for symbol matches to address (default 255).
All integers input are regarded as octal.
Reset integer input as described in 1:'PNF.\'.\'lo.\S.
Exit from adb.
Print all non-zero variables in octal.
Print the address map.

:lIIodUler
Manage a subprocess. Available modifiers are:

be

d

r

cs

Set breakpoint at address. The breakpoint is executed
coul/T-1 times before causing a stop. Each time the break­
point is encountered the command c is executed. If this com­
mand sets dOT to zero then the breakpoint causes a stop.

Delete breakpoint at address.

Run oh.ifil as a subprocess. If address is given explicitly then
the program is entered at this point: otherwise the program is
entered at its standard entry point. The value coum specifIcs
how many breakpoints are to be ignored before stopping.
Arguments to the subprocess may be supplied on the same line
as the command. An argument starting with < or > causes
the standard input or output to be established for the com­
mand. All signals are turned on on entry to the subprocess.

The subprocess is continued with signal s (see signa/(2». If
address is given then the subproccss is continued at this
address. If no signal is specified then the signal that caused
the subprocess to stop is sent. Breakpoint skipping is the same
as for r.

- 4 -

ADB(J) (DEC only) ADB(J)

ss As for c except that the subprocess is single stepped coUIlt

times. If there is no current subprocess then ohjjif is run as a
subprocess as for r. In this case no signal can be sent; the
remainder of the line is treated as arguments to the subpro­
cess.

k The current subprocess, if any, is terminated.

VARIABLES
Adh provides a number of variables. Named variables are set initially by adh
but are not used subsequently. Numbered variables are reserved for communi­
cation as follows.

o The last value printed.
1 The last ofTset part of an instruction source.
2, The previous value of variable I.

On entry the following are set from the system header in the cor.fil. If cor.fil
does not appear to be a core file, then these values are set frOln ohjfil.

b The base address of the data segment.
d The data segment size.
e The entry point.
m The "magic" number (0405.0407,0410 or 041 n.
s The staek segment size.
t The text segment size.

ADDRESSES
The address in a file associated with a written address is determined by a map­
ping associated with that file. Each mapping is represented by two triples (hi.
e I. fl) and (b2. e2. f2) and the file address c0rresponding to a written address
is calculated as follows:

hi ~address<el => file address=address+fl -hI
otherwise

b2 ~address <e2 => file address=address+f2 -h2.

otherwise. the requested address is not legal. In some cases (e.g.. for programs
with separated I and D space) the two segments for a file may overlap. If a ?
or / is followed by an • then only the second triple is used.

The initial setting of both mappings is suitable for normal a.out and core files.
If either file is not of the kind expected then. for that lile. hI is set to O. el is
set to the maximum file size and fl is set to 0; in this way the whole file can be
examined with no address translation.

In order for adb to be used on large files all appropriate values are kept as
signed 32-bit integers.

FILES
/dev/mem
/dev/swap
cl.out
core

SEE ALSO
ptrace(2), a.out(4), corc(4) in the UNIX System V Programmer Reference
Manual.

- 5 -

ADB(I) (DEC only) ADB(I)

DIAGNOSTICS
"i\db" when there is no current command or rormal. Comments about inac­
cessible liles, syntax errors, abnormal termination or commands, etc. Exit
status is O. unless last command railed or returned nonzero status.

BUGS
i\ breakpoint set at the entry point is not effective on initial entry to the pro­
gra Ill.

When single stepping, system calls do not count as an executed instruction.
Local variables whose names are the same as an external variable may roul up
the accessing or the external.

On the VAX. there is some confusion about 2-bytc versus 4-byte quantities.

- 6 -

ADMIN (1)

NAME

ADMIN (I)

admin - create and administer sees files

SYNOPSIS
admio [-01 [-Hname]] [-rreIJ [-([name]] [-fflag[flag-vaIll
[-dflag[flag-vaIll l-alogin1 [-elogin1 [-m[mrlistl1 [-ylcommentll [-h1
[-z] files

DESCRIPTION
Admin is used to create new sees files and change parameters of existing ones.
Arguments to admin, which may appear in any order, consist of keyletter argu­
ments, which begin with -, and named files (note that sees file names must
begin with the characters s.). If a named file does nJt exist, it is created, and
its parameters are initialized according to the specified key letter arguments.
Parameters not initialized by a keyletter argument are assigned a default value.
If a named file does exist, parameters corresponding to specif1ed keyletter argu­
ments are changed, and other parameters are left as is.

If a directory is named, admin behaves as though each file in the directory
were specified as a named file, except that non-Sees flies (last component of
the path name does not begin with s.) and unreadable files arc ~ilently ignored.
If a name of - is given, the standard input is read; each line "f the standard
input is taken to be the name of an sees file to be processed. Again, non­
sees files and unreadable files are silently ignored.

The keyletter arguments are as follows. Each is explained as though only one
named file is to be processed since the effects of the arguments apply indepen­
dently to each named flIe.

-0 This keyletter indicates that a new sees file is to be
created.

-Hname1

-rrel

-tlname1

The name of a file from which the text for a new sees
flIe is to be taken. The text constitutes the first delta of
the file (see -r keyletter for delta numbering scheme).
If the i keyletter is used, but the file name is omitted,
the text is obtained by reading the standard input until
an end-of-file is encountered. If this keyletter is omit­
ted, then the sees file is created empty. Only one
sees file may be created by an admin command on
which the i keyletter is supplied. Using a single admin
to create two or more sees files requires that they be
created empty (no -i keyletter). Note that the -i
keyletter implies the -0 keyletter.

The release into which the initial delta is inserted. This
keyletter may be used only if the -i kcyletter is also
used. If the -r keyletter is not used, the initial delta is
inserted into release I. The level of the initial delta is
always I (by default initial deltas are named 1.1).

The name of a file from which descriptive text for the
sees file is to be taken. If the -t keyletter is used and
admin is creating a new sees file (the -0 and/or -i
keyletters also used), the descriptive text file name must
also be supplied. In the case of existing sees files: (t)
a -t keyletter without a flIe name causes removal of
descriptive text (if any) currently in the sees file, and
(2) a -t keyletter with a file name causes text (if any)
in the named file to replace the descriptive text (if any)
currently in the sees file.

- I -

ADMIN(I) ADMIN(l)

-fj7ag This keyletter specifies a ./fag. and. possibly, a value for
the flag, to be placed in the sees file. Several f
keyletters may be supplied on a single admin command
line. The allowable flags and their values are:

h Allows use of the -b keyletter on a ged» command to
create branch deltas.

ccei/ The highest release (i.e .. "ceiling"), a number less than
or equal to 9999. which may be retrieved by a ged I)
command for editing. The default value for an
unspecified c flag is 9999.

ffloor The lowest release G.e.• "floor"). a number greater than
o but less than 9999, which may be retrieved by a
get (1) command for editing. The default value for an
unspecified f flag is).

dSID The default delta number (SID) to be used by a get (I)
command..

ilstr] Causes the "No id keywords (ge6)" message issued by
ged) or delta()) to be treated as a fatal error. In the
absence of this flag, the message is only a warning. The
message is issued if no sees identification keywords
(see get ()) are found in the text retrieved or stored in
the sees file. If a value is supplied. the keywords must
exactly match the given string; howeva. the string must
contain a keyword and no embedded new-lines.

Allows concurrent get (I) commands for editing on the
same SID of an sees file. This allows multiple con­
current updates to the same version of the sees file.

llist A list of releases to which deltas can no longer be made
(get -e against one of these "locked" releases fails).
The list has the following syntax:

<list> ::= <range> I <list> , <range>
<range> ::= RI::LEASE NUJfBER I a

The character a in the list is e')uivalent to specifying all
releases for the named sees f l' .

n Causes delta () to create a "null" delta in each of those
releases (if any) being skipped when a delta is made in
a new release (e.g., in making delta 5.1 after delta 2.7,
releases 3 and 4 are skipped). These null deltas serve as
"anchor points" so that branch deltas may later be
created from them. The absence of this flag causes
skipped releases to be non-existent in the sees file,
preventing branch deltas from being created from them
in the future.

qtext User definable text substituted for all occurrences of the
%Q% keyword in sees file text retrieved by ged)).

mmod Module name of the sees file substituted for all
occurrences of the %M% keyword in sees file text
retrieved by get (). If the m flag is not specified, the
value assigned is the name of the sees file with the
leading s. removed.

- 2 -

ADMIN(J) ADMIN(I)

ttype Type of module in the sees file substituted for all
occurrences of %Y% keyword in sees file text retrieved
by get (J).

,lpgml Causes delta(l) to prompt for Modification Request
(MR) numbers as the reason for creating a delta. The
optional value specifies the name of an MR number vali­
dity checking program (see delta (J». (J f this flag is set
when creating an sees file, the m keyletter must also be
used even if its value is null).

-dflag Causes removal (deletion) of the specified flag from an
sees file. The -d keylettcr may be specified only
when processing existing sees files. Several -d
keyletters may be supplied on a single admin command.
See the -(keyletter for allowable flag names.

llist A list of releases to be "unlocked". See the -(
keyletter for. a description of the I flag and the syntax of
a list.

-alogin A login name, or numerical UNIX system group 10, to
be added to the list of users which m.lY make deltas
(changes) to the sees file. A group ID is equivalent to
specifying all login names common to that group 10.
Several a keyletters may be used on a single admin
command line. As many logins, or numerical group IDs,
as desired may be on the list simultaneously. If the list
of users is empty, then anyone may add deltas. If login
or group 10 is preceded by a ! they are to be denied per­
mission to make deltas.

-elogin A login name, or numerical group 10, to be erased from
the list of users allowed to make deltas (changes) to the
sees file. Specifying a group 10 is equivalent to speci­
fying all login names common to that group 10. Several
e keyletters may be used on a single admin command
line.

-ylcommentl The comment text is inserted into the sees file as a
comment for the initial delta in a manner identical to
that of delta(J). Omission of the -y keyletter results
in a default comment line being inserted in the form:

date and time created YY/MM/DD HH:MM:SS by login

The -y keyletter is valid only if the -j and/or -0

keyletters are specified <i.e., a new sees file is being
created).

-mlmrlistl The list of Modification Requests (MR) numbers is
inserted into the sees file as the reason for creating the
initial delta in a manner identical to delta(J). The v
flag must be set and the M R numbers are validated if
the, flag has a value <the name of an M R number vali­
dation program). Diagnostics will occur if the , flag is
not set or MR validation fails.

-h Causes admin to check the structure of the sees file
(see sccsjile(S» , and to compare a newly computed
check-sum (the sum of all the characters in the sees
file except those in the first line) with the check-sum
that is stored in the first line of the sees file.

- 3 -

ADMIN(I)

FILES

-z

ADMIN (I)

Appropriate error diagnostics are produced.

This keyletter inhibits writing on the file, so that it
nullifies the effect of any other keyletters supplied, and
is, therefore, only meaningful when processing existing
files.

The sees file check-sum is recomputed and stored in
the first line of the sees file (see -h, above).

Note that use of this keyletter on a truly corrupted file
may prevent future detection of the corruption.

~.

The last component of all sees file names must be of the form s.file-name.
New sees files are given mode 444 (see chmod(I». Write permission in the
pertinent directory is, of course, required to create a file. All writing done by
admin is to a temporary x-file, called x.file-name, (see get (I», created with
mode 444 if the admin command is creating a new sees file, or with the same
mode as the sees file if it exists. After successful execution of admin, the
sees file is removed (if it exists), and the x-file is renamed with the name of
the sees file. This ensures that changes are made to the sees file only if no
erro:'s occurred.

It i~i recommended that directories containing sees files be mode 755 and that
sees files tl:emselves be mode 444. The mode of the directories allows only
the owner to mudify sees files contained in the directories. The mode of the
sees files prevents any modification at all except by sees commands.

If it should be necessary to patch an sees file for any reason, the mode may be
changed to 644 by the owner allowing use of ed (l). Care must be taken! The
edited file should always be processed by an admin -h· to check for corruption
followed by an admin -z to generate a proper check-sum. Another admin -h
is recommended to ensure the sees file is valid.

Admin also makes use of a transient lock file (called z.file-namd. which is
used to prevent simultaneous updates to the sees file by different users. See
get (I) for further information.

SEE ALSO
delta(t), ed(l), get(l), help(I), prs(l), what(I),
sccsfile(4) in the UNIX System V Programmer Reference Manual.

Source Code Control System User Guide in the UNIX System V User Guide.

DIAGNOSTICS
Use help(1) for explanations.

- 4 -

AR(I)

NAME

(not on PDP-II) AR(t)

ar - archive and library maintainer for portable archives

SYNOPSIS
ar key [posnamc] afile [name] ...

DESCRIPTION
The Ar command maintains groups of files combined into a single archive file.
Its main use is to create and update library files as used by the link editor. It
can be used, though, for any similar purpose. The magic string and the file
headers used by ar consist of printable ASCII characters. If an archive is com­
posed of printable files, the entire archive is printable.

When ar creates an archive. it creates headers in a format that is portable
across all machines. The portable archive format and structure is described in
detail in ar(4). The archive symbol table (described in ar(4» is used by the
link editor (ld ()) to effect multiple passes over libraries of object files in an
efficient manner. An archive symbol table is only created and maintained by
ar when there is at least one object file in the archive. The archive symbol
table is in a specially named file which is always the first file in the archive.
This file is never mentioned or accessible to the user. Whenever the ar(I)
command is used to create or update the contents of such an archive. the sym­
bol table is rebuilt. The s option described below will force the symbol table to
be rebuilt.

Key is an optional -, followed by one character from the set drqtpmx, option­
ally concatenated with one or more of vuaibcls. Afile is the archive file. The
names are constituent files in the archive file. The meanings of the key charac­
ters are:

d

r

q

p

m

x

v

c

Delete the named files from the archive file.

Replace the named files in the archive file. If the optional character u
is used with r, then only those files with dates of modification later
than the archive files are replaced. If an optional positioning character
from the set abi is used, then the posname argument must be present
and specifics that new files are to be placed after (a) or before (b or i)
posname. Otherwise new files are placed at the end.

Quickly append the named files to the end of the archive file. Optional
positioning characters are invalid. The command does not check
whether the added members are already in the archive. Useful only to
avoid quadratic behavior when creating a large archive piece-by-piece.

Print a table of contents of the archive file. If no names are given, all
files in the archive are tabled. If names are given, only those files are
tabled.

Print the named files in the archive.

Move the named files to the end of the archive. If a positioning char­
acter is present, then the posname argument must be present and, as in
r, specifics where the files are to be moved.

Extract the named files. If no names are given, all files in the archive
are extracted. In neither case does x alter the archive file.

Give a verbose file-by-file description of the making of a new archive
file from the old archive and the constituent files. When used with t,
give a long listing of all information about the files. When used with
x, precede each file with a name.

Suppress the message that is produced by default when afile is created.

- 1 -

AR(I) (not on PDP-}}) AR(t)

FILES

s

Place temporary files in the local current working directory, rather
than in the directory specified by the environment variable TMPDlR or
in the default directory Itmp.

Force the regeneration of the archive symbol table even if ar(}) is not
invoked with a command which will modify the archive contents. This
command is useful to restore the archive symbol table after the
strip(l) command has been used on the archive.

Itmp/ar. temporaries

SEE ALSO
arcv (), convert (I), Ie (1), lorder<}), strip(I).
tmpnam(3S), a.aut(;U. :u(4) in the UNIX System V Programmer Reference
Manual.

NOTES
This archive format is new to this relcase. The converr(1) command can be
used to change an oldcr archive file into an archive file that is recognized by
this ar command.

BUGS
If the same file IS mentioned twice in an argument list. it may be put in the
archive twice.

- 2 -

AR(I)

NAME

(PDP-II only) AR(I)

ar - archive and library maintainer

SYNOPSIS
ar key [posname) afile name ...

DESCRIPTION
Ar maintains groups of files combined into a single archive file. Its main use is
to create and update library files as used by the link editor. It can be used,
though, for any similar purpose.

When ar creates an archive, it always creates the header in the format of the
local system. A conversion program exists to convert PDP-II archives to UN IX
system 5.0 VAX-I 1/780 archive format (see arcv(I». Another conversion pro­
gram, convert(I), exists on the VAX and 38 20 computers to convert archives
from the UN\X system 5.0 format to the "common" archive format described in
ar(4). Individual files are inserted without conversion into the archive file.

Key is one character from the set drqtpmx, optionally concatenated with one or
more of l'uaibcl. Afile is the archive file. The names are constituent files in the
archive file. The meanings of the key characters are:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character u
is used with r, then only those files with dates of modification later
than the archive files are replaced. If an optional positioning character
from the set abi is used, then the posname argument must be present
and it specifies that new files are to be placed after (a) or before (b or
i) posname. Otherwise, new files are placed at the end.

q Quickly append the named files to the end of the archive file. Optional
positioning characters are invalid. The command does not check
whether the added members are already in the archive. Useful only to
avoid quadratic behavior when creating a large archive piece-by-piece.

Print a table of contents of the archive file. lf no names are given. all
files in the archive are tabled. If names are given, only those files are
tabled.

p Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning char­
acter is present, then the posname argument must be present and, as in
T, specifies where the files are to be moved.

x Extract the named files. If no names are given, all files in the archive
are extracted. In neither case does x alter the archive file.

v Give a verbose file-by-file description of the making of a new archive
file from the old archive and the constituent files. When used with t,
give a long listing of all information about the files. When used with
x, precede each file with a name.

c Suppress the message that is produced by default when afile is created.

Place temporary files in the local current working directory, rather
than in the default directory Itmp. This option causes them to be
placed in the current working directory.

FILES
Itmp/v. temporaries

- I -

AR(I) (PDP-It only) AR(I)

SEE ALSO
arcv (I), convert (I) I Id (I), lorder (I) .
ad4) in the UNIX System V Programmer Reference Manual.

BUGS
If the same file is mentioned twice in an argument list, it may be put in the
archive twice.

·2-

ARCV(t)

NAME

(PDP-II only) ARCV(I)

arcv - convert archive files from PDP-II to common archive format

SYNOPSIS
arc, infile outfile

DESCRIPTION
Arcv converts source archive files from the PDP-II format to the UNIX system
5.0 portable archive format. The input archive file infile is converted to an
equivalent output archive file outfile . Note that there is no conversion of the
members of the input archive file.

FILES
/tmp/arcv.

SEE ALSO
arO). convert (I).
ar(4) in the UNIX System V Programmer Reference Manual.

- I -

AS (1)

NAME
as - common assembler

(not on PDP-II) AS(I)

~.

SYNOPSIS
as [-0 objfile] [-0] [-j] [-m] [-R] [-r] [-Ibwlll [-V] file-name

DESCRIPTION
The as command assembles the named file. The following nags may be
specified in any order:

-oobjfile Put the output of the assembly in objfile. By default. the output
file name is formed by removing the .s suffix. if there is one. from
the input file name and appending a .0 suffix.

-0 Turn off long/short address optimization. By default. address
optimization takes place.

-j Invoke the long-jump assembler (for the VAX version of the com­
mon assembler only). The address optimization algorithm chooses
between long and short address lengths, with short lengths chosen
when possible. Often, three distinct lengths are allowed by the
machine architecture; a choice must be made between two of those
lengths. When the two choices given to the assembler exclude the
largest length allowed, then some addresses might be unrepre~ent­

able. The long-jump assembler will always have the largest length
as one of its allowable choices. If the assembler is invoked without
this option. and the case arises where an address is un representable
by either of the two allowed choices, then the user will be informed
of the error, and advised to try again using the -j option.

-m Run the m4 macro pre-processor on the input to the assembler.

- R Remove (unlink) the input file after assembly is completed.

-r Place all assembled data (normally placed in the .data section) into
the .text section (for the VAX version of the common assembler
only). This option effectively disables the .data pseudo operation.
This option is off by default.

-Ibwll Create byte (b), halfword (w) or long (I) displacements for
undefined symbols (for the VAX version of the common assembler
only). (An undefined symbol is a reference to a symbol whose
definition is external to the input file or a forward reference'> The
default value for this option is long (I) displacements.

- V Write the version number of the assembler being run on the stan­
dard error output.

FILES
/usrltmp/as[}-6]XXXXXX temporary files

SEE ALSO
ld(}), m4(J), nm(t). strip(l).
a.out(4) in the UNIX System V Programmer Reference Manual.

WARNING
If the -m (m4 macro pre-processor invocation) option is used. keywords for
m4 (see m4(t» cannot be used as symbols (variables. functions, labels) in the
input file since m4 cannot determine which are assembler symbols and which
are real m4 macros.

Use the -b or -w option only when undefined symbols are known to rckr to
locations representable by the specified default displacement. Usc of either
option when assembling a file containing a reference to a symbol that is to be
resolved by the loader can lead to unpredictable results, since the loader m:.!j

- 1 -

AS(I) (not on PDP-I I)

be unable to place the address of the symbol into the space provided.

AS(I)

BUGS
The .alignassembler directive is not guaranteed to work in the .text section
when optimization is performed.

Arithmetic expressions may only have one forward referenced symbol per
expression.

- 2 -

~.~..,......,
"_.-

AS(I)

NAME

(PDP-II only) AS(I)

as - assembler for PDP-II

SYNOPSIS
as [-] [-0 objfile] file

DESCRIPTION
As assembles the concatenation of the named files. If the optional first argu­
ment - is used, all undefined symbols in the assembly are treated as global.

The output of the assembly is left on the file objfile; if that is omitted, a.out is
used. It is executable if no errors occurred during the assembly, and'if there
were no unresolved exte. nal references.

FILES
llib/as2
Itmp/atm[1-3]?
a.out

pass 2 of the assembler
temporary
object

SEE ALSO
adb(I), Id(I), nmO).
a.out(4) in the UNIX System V Programmer Reference Manual.

UNIX System Assembler Manual by D. M. Ritchie.

DIAGNOSTICS
If the name chosen for the output file is of the form *?.[csl, the assembler
issues an appropriate complaint and quits. When an input file cannot be read,
its name followed by a question mark is typed and assembly ceases. When syn­
tactic or semantic errors occur, a single-character diagnostic is typed out
together with the line number and the file name in which it occurred. Errors in
pass I cause cancellation of pass 2. The possible errors are:

) Parentheses error
I Parentheses error
< String not terminated properly
• Indirection used illegally

Illegal assignment to •
a Error in address
b Branch instruction is odd or too remote
e Error in expression
f Error in local <f or b) type symbol
g Garbage {unknown} character
i End of file inside an .if
m Multiply-defined symbol as label
o Word quantity assembled at odd address
p • different in pass I and 2
r Relocation error
u Undefined symbol
x Syntax error

BUGS
Syntax errors can cause incorrect line numbers in subsequent diagnostics.

- 1 -

ASA(J) ASAeJ)

NAME
asa - interpret ASA carriage control characters

SYNOPSIS
asa (files)

DESCRIPTION
Asa interprets the output of FORTRAN programs that utilize ASA carriage con­
trol characters. It processes either the files whose names are given as argu­
ments or the standard input if no file names are supplied. The first character
of each line is assumed to be a control character; their meanings are:

(blank) single new line before printing

o double new line before printing

I new page before printing

+ overprint previous line.

Lines beginning with other than the above characters are treated as if they
began with ' '. The first character of a line is not printed. If any such lines
appear, an appropriate diagnostic will appear on standard error. This program
forces the first line of each input file to start on a new page.

To view correctly the output of FORTRAN programs which use ASA carriage
control characters, asa could be used as a filter thus:

a.out Iasa lip

and the output, properly formatted and paginated, would be directed to the line
printer. FORTRAN output sent to a file could be viewed by:

asa file

SEE ALSO
en (I), fi7 (I), fsplit (l), ratfor(I).

- 1 -

~..'.:,

AT(I)

NAME

AT(I)

at, batch - execute commands at a later time

SYNOPSIS
at time [date] [+ increment]
at -rjob...
at -/[job ...J
batch

DESCRIPTION
AI and batch read cOJ.lmands from standard input to be executed at a later
time. AI allows you to .pecify when the commands should be executed, while
jobs queued with balch .vill execute when system load level permits. At-r
removes jobs previously scheduled with at. The -I option reports all j0bs
scheduled for the invoking user.

Standard output and standard error output are mailed to the user unless they
are redirected elsewhere. The shell environment variables, current directory,
umask, and ulimit are retained when the commands are executed. Open file
descriptors, traps, and priority are lost.

Users are permitted to use al if their name appears in the file
/usr/lib/cron/at.allow. If that file does not exist, the file /usrllib/cron/at.deny
is checked to determine if the user should be denied access to al. If neither file
exists, only root is allowed to submit a job. If either file is at.deny, global usage
is permitted. The allow/deny files consist of one user name per line.

The time may be specified as I, 2, or 4 digits. One and two digit numbers are
taken to be hours, four digits to be hours and minutes. The time may alter­
nately be specified as two numbers separated by a colon, meaning hour:minute.
A suffix am or pm may be appended; otherwise a 24-hour clock time is under­
stood. The suffix zulu may be used to indicate GMT. The special names noon.
midnight, now, and next are also recognized.

An optional date may be specified as either a month name followed by a day
number (and possibly year number preceded by an optional comma) or a day
of the week (fully spelled or abbreviated to three characters). Two special
"days", today and tomorrow are recognized. If no date is given, today is
assumed if the given hour is greater than the current hour and tomorrow is
assumed if it is less. If the given month is less than the current month (and no
year is given), next year is assumed.

The optional increment is simply a number suffixed by one of the following:
minutes, hours, days, weeks, months, or years. (The singular form is also
accepted.)

Thus legitimate commands include:

at 0815am Jan 24
at 8: 15am Jan 24
at now + 1 day
at 5 pm Friday

AI and batch write the job number and schedule time to standard error.

Batch submits a batch job. It is almost equivalent to "at now", but not quite.
For one, it goes into a different queue. For another, "at now" will respond with
the error message too late.

AI -r removes jobs previously scheduled by at or balch. The job number is the
number given to you previously by the al or balch command. You can also get
job numbers by typing at -I. You can only remove your own jobs unless you
are the super-user.

- 1 -

AT(t) AT(l)

EXAMPLES
The at and batch commands read from standard input the commands to be
executed at a later time. Sh (I) provides different ways of specifying standard
input. Within your commands, it may be useful to redirect standard output.

This sequence can be used at a terminal:
batch
nroff filename >outfile
<control-D> (hold down 'control' and depress 'D')

This sequence, which demonstrates redirecting standard error to a pipe, is use­
ful in a shell procedure (the sequence of output redirection specifications is
significant) :

batch < <!
nroff filename 2> & 1 >outfile Imail loginid
!

To have a job reschedule itself, invoke at from within the shell procedure, by
including code similar to the following within the shell file:

echo "sh shel/jile" Iat 1900 thursday next week

FILES
lusr/lib/eron - main cron directory
lusr/lib/eron/at.allow - list of allowed users
lusr/lib/eron/at.deny - list of denied users
lusr/lib/cron/queue - scheduling information
lusrlspool/cron/atjobs - spool area

SEE ALSO
kill(l), maiHI), nice(I), ps(l), sh(t>.
cron(l M) in the UNIX System V Administrator Reference Manual.

DIAGNOSTICS
Complains about various syntax errors and times out of range.

- 2 -

AWK(l)

NAME

AWK(I)

awk - pattern scanning and processing language

SYNOPSIS
awk [- Fc] [prog] [parameters] [files]

DESCRIPTION
Awk scans each input file for lines that match any of a set of patterns specified
in prog. With each pattern in prog there can be an associated action that will
be performed when a line of a file matches the pattern. The set of patterns
may appear literally as prog, or in a file specified as -f file. The prog string
should be enclosed in single quotes (') to protect it from the shell.

Parameters, in the form x=... y=... etc., may be passed to awk.

Files are read in order; if there are no files, the standard input is read. The file
name - means the standard input. Each line is matched against the pattern
portion of every pattern-action statement; the associated action is performed for
each matched pattern.

An input line is made up of fields separated by white space. (This default can
be changed by using FS; see below). The fields are denoted $1, $2, ... ; $0
refers to the entire line.

A pattern-action statement has the form:

pattern { action }

A missing action means print the line; a missing pattern always matches. An
action is a sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement]
while (conditional) statement
for (expression ; conditional ; expression) statement
break
continue
{ [statement] ... }
variable = expression
print [expression-list] [>expression]
printf format [, expression-list] [> expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right braces. An empty
expression-list stands for the whole line. Expressions take on string or numeric
values as appropriate, and are built using the operators +, -, ., I, %, and
concatenation (indicated by a blank). The C operators + +, - -, + ==, - c:z,

·=,1=, and % = are also available in expressions. Variables may be scalars,
array elements (denoted x[iJ) or fields. Variables are initialized to the null
string. Array subscripts may be any string, not necessarily numeric; this allows
for a form of associative memory. String constants are quoted (").

The print statement prints its arguments on the standard output (or on a file if
> expr is present), separated by the current output field separator, and ter­
minated by the output record separator. The print! statement formats its
expression list according to the format (see print/OS».

The built-in function length returns the length of its argument taken as a
string, or of the whole line if no argument. There are also built-in functions
exp, log, sqrt, and int. The last truncates its argument to an integer;
substr<s, m, n) returns the n-character substring of s that begins at position m.
The function sprint!{Jmt, expr, expr, .. .> formats the expressions according to
the print!OS) format given by!mt and returns the resulting string.

- 1 -

AWK(l) AWK(l)

Patterns are arbitrary Boolean combinations (!, II, & &, and parentheses) of
regular expressions and relational expressions. Regular expressions must be
surrounded by slashes and are as in egrep (see grep(I». Isolated regular
expressions in a pattern apply to the entire line. Regular expressions may also
occur in relational expressions. A pattern may consist of two patterns
separated by a comma; in this case, the action is performed for all lines
between an occurrence of the first pattern and the next occurrence of the
second.

A relational expression is one of the following:

expression matchop regular-expression
expression rclop expression

where a relop is any of the six relational operators in C, and a matchop is
either - (for contains) or !- (for does not contain). A conditional is an arith­
metic expression, a relational expression, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before
the first input line is read and after the last. BEGIN must be the first pattern,
EN D the last.

A single character c may be used to separate the fields by starting the program
with:

BEGIN { FS = c }

or by using the -Fc option.

Other variable names with special meanings include NF, the number of fields in
the current record; NR, the ordinal number of the current record; FILENAME,
the name of the current input file; OFS, the output field separator (default
blank); ORS, the output record separator (default new-line>; and OFMT, the
output format for numbers (default % .6g).

EXAMPLES
Print lines longer than 72 characters:

length> 72

Print first two fields in opposite order:

{ print $2, $1 }

Add up first column, print sum and average:

(s += $1)
END {print "sum is", s, " average is", s/NR

Print fields in reverse order:

(for (j = NF; i > 0; --i) print $i }

Print all lines between start/stop pairs:

/start/, /stop/

Print all lines whose first field is different from previous one:

$1 != prev { print; prev = $1 }

Print file, filling in page numbers starting at 5:

/Page/ { $2 = n++; }
{ print }

command line: awk -f program n=5 input

- 2 -

r"

AWK(I)

SEE ALSO
grep(I). lex(I). sed(I).
mallocOX) in the UNIX System V Programmer Reference Manual.

UNIX System V Support Tools Guide.

BUGS

AWK(I)

Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To force an
expression to be treated as a number add 0 to it; to force it to be treated as a
string concatenate the null string (till) to it.

- 3 -

BANNER (I)

NAME

BANNER(t)

banner - make posters

SYNOPSIS
banner strings

DESCRIPTION
Banner prints its arguments (each up to 10 characters long) in large letters on
the standard output.

SEE ALSO
echo(1).

- 1 -

BASENAME (1)

NAME

BASENAME (I)

basename, dirname - deliver portions of path names

SYNOPSIS
basename string [suffix]
dirname string

DESCRIPTION
Basename deletes any prefix ending in / and the suffix (if present in string)
from string, and prints the result on the standard output. It is normally used
inside substitution marks (', ,) within shell procedures.

Dirname delivers all but the last level of the path name in string.

EXAMPLES
The following example, invoked with the argument lusrlsrc/cmd/cat.c, com­
piles the named file and moves the output to a file named cat in the current
directory:

cc $1
mv a.out 'basename $1 '\.c"

The following example will set the shell variable NAME to lusrlsrc/cmd:

NAME='dirname /usr/src/cmd/cat.c'

SEE ALSO
sh(I) .

BUGS
The basename of I is null and is considered an error.

- 1 -

BC(1)

NAME

BC(I)

number of significant decimal digits
number of digits right of decimal point

be - arbitrary-precision arithmetic language

SYNOPSIS
be [-e] [-I] [file ...]

DESCRIPTION
Be is an interactive processor for a language that resembles C but provides
unlimited precision arithmetic. It takes input from any liIes given. then reads
the standard input. The -) argument stands for the name of an arbitrary pre­
cision math library. The syntax for be programs is as follows; L means leltcr
a-z, E mcans expression, S means statement.

Comments
are enclosed in /. and ./.

Names
simple variables: L
array elements: L [E]
The words "ibase", "obase", and "scalc"

Othcr operands
arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt (E)
length (E)
scale (E)
L(E, ... ,E)

Operators
+ - • / % A (% is remainder; A is power)
+ + - - (prefix and postfix; apply to names)
==<=>=!=<>
= =+ =. =/=0/0 =A

Statements
E
{S ; ... ; S}
if (E) S
while (E) S
for (E ; E ; E) S
null statement
break
quit

Function defInitions
define L (L• L) {

auto L, ... , L
s; ... S
return (E)

Functions in -) math library
sex) sine
c<x) cosine
e(x) exponential
I(x) log
a (x) arctangent
j (n,x) Bessel function

All function arguments are passed by value.

• 1 -

BC (I) BC(I)

The value of a statement that is an expression is printed unless the main opera­
tor is an assignment. Either semicolons or new-lines may separate statements.
Assignment to scale influences the number of digits to be retained on arith­
metic operations in the manner of de< 1). Assignments to ibase or obase set
the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable
simultaneously. All variables are global to the program. "Auto" variables are
pushed down during function calls. When using arrays as function arguments
or defining them as automatic variables, empty square brackets must follow the
array name.

Be is actually a preprocessor for de< I), which it invokes automatically, unless
the -c <Compile only) option is present. In this case the de input is sent to the
standard output instead.

EXAMPLE
scale = 20
define c(x){

auto a, b, c, i, s
a=1
b=1
s=1
for(i=l; 1==1; i++){

a = a·x
b = b·i
c = alb
if<C == 0) return (s)
s = s+c

defines a function to compute an approximate value of the exponential function
and

for(i=1; i<=IO; i++) em

prints approximate values of the exponential function of the first tcn integers.

FILES
/usr/lib/lib.b
/usr/bin/dc

SEE ALSO
ddl).

mathematical library
desk calculator proper

UNIX System V Programmer Guide.

BUGS
No & &, I I yet.
For statement must have all three E's.
Quit i~ interpreted when read, not when executed.

• 2 -

BDIFF(I)

NAME

BDIFF(J)

bdiff - big diff

SYNOPSIS
bdiff file I file2 [n] [-s]

DESCRIPTION
Bdiff is used in a manner analogous to diff(I) to find which lines must be
changed in two files to bring them into agreement. Its purpose is to allow pro­
cessing of files which are too large for diff. BdijJ ignores lines common to the
beginning of both files, splits the remainder of each file into n-line segments,
and invokes dijJ upon corresponding segments. The value of n is 3500 by
default. If the optional third argument is given, and it is numeric. it is used as
the value for n. This is useful in those cases in which 3500-line segments are
too large for diff. causing it to fail. If file J (file2) is -. the standard input is
read. The optional -s (silent> argument specifies that no diagnostics are to be
printed by bdiff (note. however. that this does not suppress possible exclama­
tions by dijJ. If both optional arguments are specified, they must appear in the
order indicated above.

The output of bdiff is exactly that of diff, with line numbers adjusted to
account for the segmenting of the files (that is, to make it look as if the files
had been processed whole). Note that because of the segmenting of the files.
bdiff does not necessarily find a smallest sufficient set of file differences.

FILES
Itmp/bd?????

SEE ALSO
diff(I).

DIAGNOSTICS
Use he/pel) for explanations.

- I -

~.'J

BFS (»

NAME

BFS(I)

bfs - big file scanner

SYNOPSIS
hfs [-] name

DESCRIPTION
The Bfs command is (almost) like edO) except that it is read-only and
processes much larger files. Files can be up to 1024K bytes (the maximum
possible size) and 32K lines, with up to 512 characters, including new-line, per
line (255 for 16-bit machines). BJs is usually more efficient than ed for scan­
ning a file, since the file is not copied to a buffer. It is most useful for identify­
ing sections of a large file where csplit (1) can be used to divide it into more
manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of any file
written with the w command. The optional - suppresses printing of sizes.
Input is prompted with • if P and a carriage return are typed as in ed.
Prompting can be turned off again by inputting another P and carriage return.
Note that messages are given in response to errors if prompting is turned on.

All address expressions described under ed are supported. In addition, regular
expressions may be surrounded with two symbols besides / and?: > indicates
downward search without wrap-around, and < indicates upward search without
wrap-around. There is a slight difference in mark names: only the letters a
through z may be used, and all 26 marks are remembered.

The e, g, v, k, p, q, w, =, ! and null commands operate as described under ed.
Commands such as - - -, + + + -, + + + =, -12, and +4p are accepted.
Note that 1,10p and 1,10 will both print the first ten lines. The f command
only prints the name of the file being scanned; there is no remembered file
name. The w command is independent of output diversion, truncation, or
crunching (see the XO, xt and xc commands, below). The following additional
commands are available:

xf file
Further commands are taken from the named file. When an end­
of-file is reached, an interrupt signal is received or an error occurs,
reading resumes with the file containing the xf. The xf commands
may be nested to a depth of 10.

xn List the marks currently in use (marks are set by the k command).

xo [file]
Further output from the p and null commands is diverted to the
named file, which, if necessary, is created mode 666. If file is miss­
ing, output is diverted to the standard output. Note that each
diversion causes truncation or creation of the file.

: label
This positions a label in a command file. The label is terminated
by new-line, and blanks between the: and the start of the label are
ignored. This command may also be used to insert comments into a
command file, since labels need not be referenced.

- I -

BFS()) BFS (I)

(. , .)xblregular expression/label
A jump <either upward or downward) is made to label if the com­
mand succeeds. It fails under any of the following conditions:

I. Either address is not between 1 and $.
2. The second address is less than the first.
3. The regular expression does not match at least one line
in the specified range, including the first and last lines.

On success, • is set to the line matched and a jump is made to
label. This command is the only one that does not issue an error
message on bad addresses, so it may be used to test whether
addresses are bad before other commands are executed. Note that
the command

xbr/labcl

is an unconditional jump.
The xb command is allowed only if it is read from someplace other
than a terminal. If it is read from a pipe only a downward jump is
possible.

xt number
Output from the p and null commands is truncated to at most
number characters. The initial number is 255.

xv[digit] [spaces] [value]
The variable name is the specified digit following the xv. The com­
mands x\l5100 or Xl'S 100 both assign the value 100 to the variable
5. The command Xv61,100p assigns the value 1,100p to the vari­
able 6. To reference a variable, put a % in front of the variable
name. For example, using the above assignments for variables 5
and 6:

1,%5p
1,%5
%6

will all print the first 100 lines.

g/%5/p

would globally search for the characters 100 and print each line
containing a match. To escape the special meaning of %, a \ must
precede it.

g/".*\%[cds]/p

could be used to match and list lines containing print! of characters,
decimal integers, or strings.

Another feature of the xv command is that the first line of output
from a UNIX system command can be slored into a variable. The
only requirement is that the first character of value be an!. For
example:

.w junk
xv5!cat junk
!rm junk
!echo "%5"
xv6!expr %6 + 1

- 2 -

~..)

~, ,~r-~·· ,

BFS(I) BFS(I)

xv7\!date

stores the value !date into variable 7.

xbz label

xbn label
These two commands will test the last saved return code from the
execution of a UNIX system command Ocommand) or nonzero
value, respectively, to the specified label. The two examples below
both search for the next five lines containing the string size.

xv55
: I
!size!
xv5!expr %5 - I
!if 0%5 !.... 0 exit 2
xbn I
xv45
: I
!size!
xv4!expr %4 - 1
!if 0%4 0 exit 2
xbz I

xc [switch]
If switch is 1, output from the p and null commands is crunched; if
switch is 0 it is not. Without an argument, xc reverses switch. Ini­
tially switch is set for no crunching. Crunched output has strings of
tabs and blanks reduced to one blank and blank lines suppressed.

SEE ALSO
csplit(I), ed(I).
regcmp(3X) in the UNIX System V Programmer Reference Manual.

DIAGNOSTICS
? for errors in commands, if prompting is turned off. Self-explanatory error
messages when prompting is on.

- 3 -

BS(I)

NAME

BS(I)

bs - a compiler/interpreter for modest-sized programs

SYNOPSIS
bs [file [args]]

DESCRIPTION
Os is a remote descendant of Basic and Snobol4 with a little C language
thrown in. Os is designed for programming tasks where program development
time is as important as the resulting speed of execution. Formalities of data
declaration and file/process manipulation are minimized. Line-at-a-time
debugging, the trace and dump statements, and useful run-time error messages
all simplify program testing. Furthermore. incomplete programs can be
debugged; inner functions can be tested before ollter functions have been writ­
ten and vice versa.

If the command line jile argument is provided. the file is used for input before
the console is read. By default. statements read from the file argument are
compiled for later execution. Likewise, statements entered from the console are
normally executed immediately {see compile and execute below>' Unless the
final operation is assignment, the result of an immediate expression statement is
printed.

Os programs are made up of input lines. If the last character on a line is a \.
the line is continued. Os accepts lines of the following form:

statement
label statement

A label is a name (see below) followed by a colon. A label and a variable can
have the same name.

A bs statement is either an expression or a keyword followed by zero or more
expressions. Some keywords (clear. compile. !. execute. include. ibase. obase.
and run) are always executed as they are compiled.

Statement Syntax:

expression
The expression is executed for its side effects (value, assignment, or function
call). The details of expressions follow the description of statement types
below.

break
Break exits from the inner-most jor/while loop.

clear
Clears the symbol table and compiled statements. Clear is executed
immediately.

compile [expression]
Succeeding statements are compiled (overrides the immediate execution
default). The optional expression is evaluated and used as a file name for
further input. A clear is associated with this latter case. Cornpi/e is exe­
cuted immediately.

continue
Continue transfers to the loop-continuation of the current jor/whi/e loop.

dump [name]
The name and current value of every non-local variable is printed. Option­
ally. only the named variable is reported. After an error or interrupt, the
number of the last statement and (possibly) the user-function trace are
displayed.

- I -

'~

~.

BS(I) BS(I)

exit [expression]
Return to system level. The expression is returned as process status.

execute
Change to immediate execution mode (an interrupt has a similar effect).
This statement docs not cause stored statements to execute (see run below).

for name = expression expression statement
for name = expression expression

next

for expression, expression, expression statement
for expression, expression, expression

next
The for statement repetitively executes a statement (first form) or a group
of statements (second form) under control of a named variable. The vari­
able takes on the value of the first expression, then is incremented by one on
each loop, not to exceed the value of the second expression. The third and
fourth forms require three expressions separated by commas. The first of
these is the initialization. the second is the test <true to continue). and the
third is the loop-continuation action (normally an increment).

fun f([a, ...]) [v....]

nuf
Fun defines the function name, arguments, and local variables for a user­
written function. Up to ten arguments and local variables are allowed.
Such names cannot be arrays. nor can they be I/O associated. Function
definitions may not be nested.

freturn
A way to signal the failure of a user-written function. See the interrogation
operator (?) below. If interrogation is not present. fretum merely returns
zero. When interrogation is active, fretum transfers to that expression
(possibly by-passing intermediate function returns).

~oto name
Control is passed to the internally stored statement with the matching label.

ibase N
Ibase sets the input base (radix) to N. The only supported values for Narc
8. 10 (the default), and 16. Hexadecimal values 10-15 are entered as a-f.
A leading digit is required (j.e., £Oa must be entered as O£Oa). Ihase (and
abase. below) are executed immediately.

if expression statement
if expression

[else
...]

fi
The statement (first form) or group of statements (second form) is executed
if the expression evaluates to non-zero. The strings 0 and "" (null) evaluate
as zero. In the second form. an optional else allows for a group of state­
ments to be executed when the first group is not. The only statement per­
mitted on the same line with an else is an if; only other fi's can be on the
same line with a fi. The elision of else and if into an elif is supported.
Only a single fi is required to close an if ... elif ... (else ...] sequence.

- 2 -

BS(I) BS(I)

include expression
The expression must evaluate to a file name. The file must contain bs
source statements. Such statements become part of the program being com­
piled. Include statements may not be nested.

obase N
Dbase sets the output base to N (see ibase above).

onintr label
onintr

The onintr command provides program control of interrupts. In the first
form. control will pass to the label given, just as if a goto had been exe­
cuted at the time onintr was executed. The effect of the statement is
cleared after each interrupt. In the second form. an interrupt will cause bs
to terminate.

return [expression]
The expression is evaluated and the result is passed back as the value of a
function call. If no expression is given. zero is returned.

run
The random number generator is reset. Control is passed to the first inter­
nal statement. If the run statement is contained in a file, it should be the
last statement.

stop
Execution of internal statements is stopped. Bs reverts to immediate mode.

trace [expression]
The trace statement controls function tracing. If the expression is null (or
evaluates to zero). tracing is turned off. Otherwise. a record of user­
function calls/returns will be printed. Each return decrements the trace
expression value.

while expression statement
while expression

next
While is similar to for except that only the conditional expression for loop­
continuation is given.

! shell command
An immediate escape to the shell.

...
This statement is ignored. It is used to interject commentary in a program.

Expression Syntax:

name
A name is used to specify a variable. Names are composed of a letter
(upper or lower case) optionally followed by letters and digits. Only the
first six characters of a name are significant. Except for names declared in
fun statements. all names are global to the program. Names can take on
numeric (double float) values. string values. or can be associated with
input/output (see the built-in function openO below).

name ([expression [, expression] ...])
Functions can be called by a name followed by the arguments in
parentheses separated by commas. Except for built-in functions Oisted
below), the name must be defined with a fun statement. Arguments to
functions are passed by value.

- 3 -

r

BS(I) BS(I)

name I expression [, expression] ... I
This syntax is used to reference either arrays or tables (see built-in table
functions below). For arrays, each expression is truncated to an integer and
used as a specifier for the name. The resulting array reference is syntacti­
cally identical to a name; al1,21 is the same as al11121. The truncated
expressions are restricted to values between 0 and 32767.

number
A number is used to represent a constant value. A number is written in
Fortran style, and contains digits, an optional decimal point, and possibly a
scale factor consisting of an e followed by a possibly signed exponent.

string
Character strings are delimited by "characters. The \ escape character
allows the double quote (\"), new-line (\n), carriage return (\r), backspace
(\b), and tab (\0 characters to appear in a string. Otherwise, \ stands for
itself.

(expression)
Parentheses are used to alter the normal order of evaluation.

(expression, expression [, expression ...]) I expression 1
The bracketed expression is used as a subscript to select a comma-separated
expression from the parenthesized list. List clements are numbered from
the left, starting at zero. The expression:

(False, True)[a == b]

has the value True if the comparison is true.

? expression
The interrogation operator tests for the success of the expression rather than
its value. At the moment, it is useful for testing end-of-file (see examples in
the Programming Tips section below), the result of the eval built-in func­
tion, and for checking the return from user-written functions (see fretum).
An interrogation u trap" (end-of-file, etc'> causes an immediate transfer to
the most recent interrogation, possibly skipping assignment statements or
intervening function levels.

- expression
The result is the negation of the expression.

+ + name
Increments the value of the variable (or array reference>. The result is the
new value.

- - name
Decrements the value of the variable. The result is the new value.

! expression
The logical negation of the expression. Watch out for the shell escape com­
mand.

expression operator expression
Common functions of two arguments are abbreviated by the two arguments
separated by an operator denoting the function. Except for the assignment,
concatenation, and relational operators, both operands are converted to
numeric form before the function is applied.

Binary Operators (in increasing precedence):

=- is the assignment operator. The left operand must be a name or an
array element. The result is the right operand. Assignment binds right to
left, all other operators bind left to right.

- 4 -

BS(1) BS(I)

_ <underscore) is the concatenation operator.

& I
& (logical and) has result zero if either of its arguments are zero. It has
result one if both of its arguments are non-zero; I (logical or) has result
zero if both of its arguments are zero. It has result one if either of its argu­
ments is non-zero. Both operators treat a null string as a zero.

< <= > >= == !=
The relational operators << less than, < = less than or equal, > greatcr
than, > = greater than or equal, = = cqual to, ! = not equal to) return one
if their arguments are in thc specified relation. They return zero otherwise.
Relational operators at the same level extend as follows: a>b>c is the
same as a> b & b> c. A string comparison is made if both operands are
strings.

+
Add and subtract.

• / %
Multiply, divide, and remainder.

Exponentiation.

Built-in Functions:

Dealing with argumellts

argG>
is the value of the i-th actual parameter on the current level of function
call. At level zero, arg rcturns the i-th command-line argument (arg(O)
returns bs).

narg()
returns the number of arguments passed. At Icvel zero, the command argu­
ment count is returned.

Mathematical

abs(x)
is the absolute value of x.

atan(x)
is the arctangent of x. Its value is between -1r/2 and 1r/2.

ceiHx)
returns the smallest integer not less than x.

cos (x)
is the cosine of x (radians).

exp(x)
is the exponential function of x.

floor (x)
returns the largest integer not greater than x.

log(x)
is the natural logarithm of x.

randO
is a uniformly distributed random number bctween zero and one.

sin(x)
is the sine of x (radians).

- 5 -

BS(1) BS(I)

sqrt(x)
is the square root of x.

Siring operalions

size (5)
the size (length in bytes) of s is returned.

format(f, a)
returns the formatted value of a. F is assumed to be a format specification
in the style of print/OS). Only the % •.. f, % ••. e. and % •.• s types are
safe.

index(x, y)
returns the number of the first position in x that any of the characters from
y matches. No match yields zero.

trans(s, f, t)
Translates characters of the source s from matching characters in / to a
character in the same position in I. Source characters that do not appear in
J are copied to the result. If the string / is longer than I, source characters
that match in the excess portion ofJ do not appear in the result.

substr<s, start, width)
returns the sub-string of s defined by the Slarl ing position and widlh.

match(string, pattern)
mstrin~(n)

The pallern is similar to the regular expression syntax of the ed(l) com­
mand. The characters ., l. I, A <inside brackets), • and $ are special. The
mSlring function returns the n-th (I < = n <= 10) substring of the subject
that occurred between pairs of the pattern symbols \(and \) for the most
recent call to match. To succeed, patterns must match the beginning of the
string (as if all patterns began with A). The function returns the number of
characters matched. For example:

match("a 123abI23", ".-\([a-z]\)") == 6
mstring(I) == "b"

File handling

open(name, file, function)
close(name)

The name argument must be a bs variable name (passed as a string). For
the open, the file argument may be J) a 0 (zero), I, or 2 representing stan­
dard input, output, or error output, respectively; 2) a string representing a
file name; or 3) a string beginning with an ! representing a command to be
executed (via sh -c>. The /unclion argument must be either r (read). w
(write>, W (write without new-line>, or a (append). After a close, the
name reverts to being an ordinary variable. The initial associations are:

open("get", O. "r")
open("put", I, "w")
open ("putcrr", 2, "w")

Examples are given in the following section.

accesses, m)
execules access (2).

ftypC<s)
returns a single character file type indication: f for regular file, p for FIFO
<i.e.• named pipe), d for direclory. b for block special, or c for characler
special.

- 6 -

BSO) BS(I)

Tables

table<name, size)
A table in bs is an associatively accessed, single-dimension array. "Sub­
scripts" (called keys) are strings (numbers are converted). The name argu­
ment must be a bs variable name (passed as a string). The size argument
sets the minimum number of elements to be allocated. Bs prints an error
message and stops on table overflow.

item(name, i)

keyO
The item function accesses table elements sequentially (in normal use, there
is no orderly progression of key values). Where the item function accesses
values, the key function accesses the "subscript" of the previous item call.
The name argument should not be quoted. Since exact table sizes are not
defined, tht interrogation operator should be used to detect end-of-table; for
example:

tabld"t", 100)

If word contains "party", the following expression adds one
to the count of that word:
++tlwordl

To print out the the key/value pairs:
for i = 0, ?(s == item{t, i», ++i if keyO put = keyO _":"_s

iskey(name, word)
The iskey function tests whether the key word exists in the table name and
returns one for true, zero for false.

Odds and ends

eval(s)
The string argument is evaluated as a hs expression. The function is handy
for converting numeric strings to numeric internal form. Eval can also be
used as a crude form of indirection, as in:

name = "xyz"
eval ("++"_ name)

which increments the variable xyz. In addition, eval preceded by the inter­
rogation operator permits the user to control bs error conditions. For exam­
ple:

?eval ("open (\"X\", \ "XXX\It, \"r\") ")

returns the value zero if there is no file named "xxx" (instead of halting
the user's program). The following executes a goto to the label L (if it
exists):

causes further plot output to be piped
into tplot (1 G) with an argument of
-Tterm.

Function

label="L"
if !('!eval("goto "_ labe))) puterr == "no label"

plot(request, args)
The plot function produces output on devices recognized by tplot (1 G).
requests are as follows:

Call

plot (0, lerm)

The

- 7 -

BS(1) BS(1)

plot(4, x, y, r)

plot (12, x I, YI, x2, y2)

plot (5, x I, YI, x2, y2, x3, y3)

plot(6)

plot(7, x, y)

plot(8, x, y)

plot(9, x, y)

plot (10, string)

plot(ll, xl, yl, x2, y2)

plot(4)

plot (2, string)

plot 0, xI, YI, x2, y2)

Uerases" the plotter.

labels the current point with string.

draws the line between (xl,y/) and
(x2,y2L

draws a circle with center (x,y) and
radius r.

draws an arc (counterclockwise) with
center (xl,y/) and endpoints (x2,y2)
and (x3,y3).

is not implemented.

makes the current point (x,y).

draws a line from the current point to
(x,y).

draws a point at (x,y).

sets the line mode to string.

makes (x I ,yI) the lower left corner of
the plotting area and (x2,y2) the
upper right corner of the plotting area.

causes subsequent x (y) coordinates to
be multiplied by x I (y J) and then
added to x2 (y2) before they are plot­
ted. The initial scaling is plot(] 2, 1.0,
1.0, 0.0, 0.0).

Some requests do not apply to all plotters. All requests except zero and
twelve are implemented by piping characters to tplot (I G). See plot (4) for
more details.

~'

~.

lastO
in immediate mode, last returns the most recently computed value.

PROGRAMMING TIPS
Using bs as a calculator:

$ bs
Distance (inches) light travels in a nanosecond.
186000 • 5280· 12/ le9
11.78496

Compound interest (6% for 5 years on $1,000).
int = .06/4
bal = 1000
for i = I 5.4 bal = bal + bal.int
bal - 1000
346.855007

exit

The outline of a typical bs program:

initialize things:
varl = I
open ("read", "infile", "r")

compute:

- 8 -

BS(I)

while ?(str = read)

ncxt
clean up:
c1ose{ltread")

last sta tcment executed (exit or stop):
exit
last input line:
run

Input/Output examples:

Copy "oldfile" to "newfile".
open ("read", "oldfile", "r")
open ("write", "newfile", "w")

while ?(write = read)

close "read" and "write":
c1osc{"read")
closc{"write")

Pipe between commands.
open{"ls", "!Is .", "r")
open{"pr", "!pr -2 -h 'List'", "w")
while ? (pr = Is) ...

be sure to close {wait for} thcsc:
close ("Is")
close ("pr")

BS(1)

.~

SEE ALSO
ed(I), sh(I), tplot(IG).
access(2), printf(JS), stdio(JS), plot(4) in the UNIX System V Programmer
Reference Manual.
Sec Section 3 of the UNIX System V Programmer Reference Manual for a
further dcscription of the mathematical functions (pow on exp(JM) is used for
exponentiation); bs uses the Standard Input/Output package.

- 9 -

CAL(»

NAME

CAL(t)

cal - print calendar

SYNOPSIS
cal [[month] year

DESCRIPTION
Cal prints a calendar for the specified year. If a month is also specified, a
calendar just for that month is printed. If neither is specified, a calendar for
the present month is printed. Year can be between I and 9999. The month is
a number between 1 and 12. The calendar produced is that for England and
her colonies.

Try September 1752.

BUGS
The year is always considered to start in January even though this is histori­
cally naive.
Beware that "cal 83" refers to the early Christian era, not the 20th century.

- 1 -

CALENDAR (1)

NAME

CALENDAR (1)

calendar - reminder service

SYNOPSIS
calendar [-]

DESCRIPTION
Calendar consults the file calendar in the current directory and prints out lines
that contain today's or tomorrow's date anywhere in the line. Most reasonable
month-day dates such as "Aug. 24," "august 24," "8/24," etc., are recognized,
but not "24 August" or "24/8". On weekends "tomorrow" extends through
Monday.

When an argument is present, calendar does its job for every user who has a
file calendar in the login directory and sends them any positive results by
rnai/(I). Nqrmally this is done daily by facilities in the UNIX operating sys­
tem.

FILES
lusrlliblcalprog

letclpasswd

Itmp/cal­

SEE ALSO
mail(I).

BUGS

to figure out today's and tomorrow's dates

Your calendar must be public information for you to get reminder service.
Calendar's extended idea of "tomorrow" does not ac~unt for holidays.

- I -

CAT(I) CAT(I)

,....,
\

NAME
cat - concatenate and print files

SYNOPSIS
cat [-u] [-5] [-y [-t] [-e)] file

DESCRIPTION
Cat reads each file in sequence and writes it on the standard output. Thus:

cat file

prints the file, and:

cat file I file2 > file3

concatenates the first two files and places the result on the third.

If no input file is given, or if the argument - is encountered, cat reads from
the standard input file. Output is buffered unless the -u option is specified.
The -5 option makes cat silent about non-existent files.

The -y option causes non-printing characters (with the exception of tabs,
new-lines and form-feeds) to be printed visibly. Control characters are printed
"X (control-x); the DEL character (octal 0 177) is printed "? Non-ASCII
characters (with the high bit set) are printed as M-x, where x is the character
specified by the seven low order bits.

When used with the -Y option, -t causes tabs to be printed as -I's, and -e
causes a $ character to be printed at the end of each line (prior to the new­
line). The -t and -e options are ignored if the -Y option is not specified.

WARNING
Command formats such as

cat filel file2 > filet
will cause the original data in file / to be lost; therefore, take care when using
shell special characters.

SEE ALSO
cp(I), pg (I), pr (I) .

- 1 -

CB(l)

NAME

CB(l)

cb - C program beautifier

SYNOPSIS
cb [-5) [-j) [-I leng) [file ...)

DESCRIPTION
Cb reads C programs either from its arguments or from the standard input and
writes them on the standard output with spacing and indentation that displays
the structure of the code. Under default options, cb preserves all user new­
lines. Under the -s flag cb canonicalizes the code to the style of Kernighan
and Ritchie in The C Programming Language. The -j flag causes split lines
to be put back together. The -I flag causes cb to split lines that are longer
than leng.

SEE ALSO
cdt).

The C Programming Language by B. W. Kernighan and D. M. Ritchie.

BUGS'
Punctuation that is hidden in preprocessor statements will cause indentation
errors.

- I -

CC(I) CC(I)

~

"

~.

NAME
cc. pee - C compiler

SYNOPSIS
cc (option 1 file .
pee [option] lIIe .

DESCRIPTION
Ce is the UNIX system C compiler. Pee is the portable version for a PDP-II
machine. They accept several types of arguments.

Arguments whose names end with .c are taken to be C source programs. They
are compiled. and each object program is left on the file whose name is that of
the source with .0 substituted for .c. The.o file is normally deleted, however, if
a single C program is compiled and loaded all at one go.

In the same way, arguments whose names end with .s are taken to be assembly
source programs and are assembled, producing a .0 file.

The following options are interpreted by ee and pee. See Id (I) for link editor
options and epp (I) for more preprocessor options.

-c Suppress the link edit phase of the compilation and force an object file
to be produced even if only one program is compiled.

-p Arrange for the compiler to produce code that counts the number of
times each routine is called; also, if link editing takes place, replace
the standard startoff routine by one that automatically calls
monitor(JC) at the start and arranges to write out a mon.out file at
normal termination of execution of the object program. An execution
profile can then be generated by usc of prof{ I>' For the PDP-II only.
the libraries /Iib/libp/libm.a (if the -1m option is used) and
/lib/libp/libc.a must be specified explicitly if the versions reporting
function call counts are to be loaded.

-f Link the object program with the floating-point interpreter for systems
without hardware floating-point.

-g Cause the compiler to generate additional information needed for the
use of sdb (I). (Not for PDP- J \.)

-0 Invoke an object-code optimizer.

-8 Compile the named C programs and leave the assembler-language
output on corresponding files sullixed .s.

- E Run only cpp (I) on the named C programs and send the result to the
standard output.

-p Run only cpp(\) on the named C programs and leave the result on
corresponding files suffixed .i.

-Bstring
Construct path names for substitute preprocessor. compiler, assembler
and link editor passes by concatenating string with the suffixes cpp, cO
(or ccom or compo see under FILES below), cI. c2 (or optim), as and
Id. If string is empty it is taken to be llib/o.

-tlpOl2alJ
Find only the designated preprocessor, compiler. assembler and link
editor passes in the files whose names are constructed by a - B option.
In the absence of a -B option, the string is taken to be llib/n. The
value -t lilt is equivalent to -tpOI2.

-Wc,argJ l.arg2.. .J
Hand otT the argumentlsl argi to pass c where e is one of [p012alJ

- I -

CC(I)

FILES

CC(I)

indicating preprocessor, compiler first pass, compiler second pass,
optimizer, assembler, or link editor, respectively.

Other arguments are taken to be either link editor option arguments, C prepro­
cessor option arguments, or C-compatible object programs, typically produced
by an earlier cc or pcc run, or perhaps libraries of C-compatible routines.
These programs, together with the results of any compilations specified, are
linked Gn the order given) to produce an executable program with the name
a.out.

The C language standard was extended to include arbitrary length variable
names. This standard has been implemented on the VAX and the 38 20 com­
puter, but not on the PDP-II. The option pair H-Wp,-T -WO,-XT" will
cause the current compiler (on the 38 20 computer and the VAX) to behave the
same as previous compilers with respect to the length of variable names.

file.c input file
file.o object file
a.out linked output
Itmp/ctm· temporary
/usr/tmp/ctm· temporary
llib/cpp C preprocessor cpp (I)
/lib/clOI] PDP-II compiler, cc
/usr/lib/comp compiler, pcc
/lib/ccom VAX compiler, cc
/lib/comp 38 20 computer compiler cc
/lib/c2 VAX and PDP-II optional optimizer
/lib/optim 38 20 computer optional optimizer
/usr/lib/Oc· backup compiler, Dcc ~

/bin/as assembler,as(I)')
/binlld link editor, IdO)
/lib/crtO.o runtime startoff
/lib/mcrtO.o profiling startoff
/lib/fcrtO.o floating-point interpretation startoff (PDP-II)
/lib/fmcrtO.o floating-point interpretation and profiling

startoff (PDP-II)
/Iib/libc.a standard C library, see section (3) in the UNIX

System V Programmer Reference Manual
/lib/libp/lib•.a profiled versions of libraries

SEE ALSO
adb(I), cpp(l), asO), IdO), prof(I), sdbO).
exit(2), monitor(3C) in the UNIX System V Programmer Reference Manual.

The C Programming Language by B. W. Kernighan.
Programming in C-A Tutorial by B. W. Kernighan.
C Reference Manual by D. M. Ritchie.

NOTES
By default, the return value from a C program is completely random. The only
two guaranteed ways to return a specific value are to explicitly call exit (2) or
to leave the function mainO with a Hreturn expression;" construct.

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self-explanatory. Occa­
sional messages may be produced by the assembler or the link editor. Of these,
the most mystifying are from the PDP-II assembler, in particular m, which
means a multiply-defined external symbol (function or data).

- 2 -

CD(I)

NAME

CD(I)

cd - change working directory

SYNOPSIS
cd [directory]

DESCRIPTION
If directory is not specifiedt the value of shell parameter SHOME is used as the
new working directory. If directory specifies a complete path starting with It .t
••t directory becomes the new working directory. If neither case applies, cd
tries to find the designated directory relative to one of the paths specified by
the SCDPATH shell variable. SCDPATH has the same syntax aSt and similar
semantics tOt the SPATH shell variable. Cd must have execute (search) permis­
sion in directory.

Because a new process is created to execute each commandt cd would be
ineffective if it were written as a normal command; therefore, it is recognized
and is internal to the shell.

SEE ALSO
pwd(I), sh(l).
chdir(2) in the UNIX System V Programmer Reference Manual.

• 1 •

CDC(J)

NAME

CDC(J)

cdc - change the delta commentary of an sces delta

SYNOPSIS
cdc -rSID l -m[mrlist]] [-ylcommentll files

DESCRIPTION
Cdc changes the delta commentary, for the SID specified by the -r keyletter,
of each named sces file.

Delta commentary is defined to be the Modification Request (MR) and com­
ment information normally specified via the delta (I) command (-m and -y
keyletters) .

If a directory is named, cdc behaves as though each file in the directory were
specified as a named file, except that non-sees files (last component of the
path name does not begin with s.) and unreadable files are silently ignored. If
a name of - is given, the standard input is read (see WARNINGS); each line of
the standard input is taken to be the name of an sees file to be processed.

Arguments to cdc, which may appear in any order, consist of keyletter argu­
ments and file names.

All the described keyletter arguments apply independently to each named file:

-rSlD Used to specify the Sees IDentification (SID) string of
a delta for which the delta commentary is to be
changed.

-mlmrlistl If the sees file has the v flag set (see admin(l» then a
list of MR numbers to be added and/or deleted in the
delta commentary of the SID specified by the -r
keyletter may be supplied. A null MR list has no effect.

MR entries are added to the list of MRs in the same
manner as that of delta (l). In order to delete an MR,
precede the MR number with the character ! (see
EXAMPLES). If the MR to be deleted is currently in
the list of MRs, it is removed and changed into a "com­
ment" line. A list of all deleted MRs is placed in the
comment section of the delta commentary and preceded
by a comment line stating that they were deleted.

If -m is not used and the standard input is a terminal,
the prompt MRs? is issued on the standard output
before the standard input is read; if the standard input
is not a terminal, no prompt is issued. The MRs?
prompt always precedes the comments? prompt (see -y
keyletter) .

MRs in a list are separated by blanks and/or tab charac­
ters. An unescaped new-line character terminates the
MR list.

Note that if the v flag has a value (see admin (I», it is
taken to be the name of a program (or shell procedure)
which validates the correctness of the MR numbers. If a
non-zero exit status is returned from the MR number
validation program, cdc terminates and the delta com­
mentary remains unchanged.

- 1 -

~..

CDC(I)

EXAMPLES

CDC(t)

-ylcomment] Arbitrary text used to replace the comment (s) already
existing for the delta specified by the -r keyletter. The
previous comments are kept and preceded by a comment
line stating that they were changed. A null comment
has no elfect.

If -y is not specified and the standard input is a termi­
nal, the prompt comments? is issued on the standard
output before the standard input is read; if the standard
input is not a terminal, no prompt is issued. An unes­
caped new-line character terminates the comment text.

The exact permissions necessary to modify the sees file are documented
in the Source Code Control System User Guide. Simply stated, they are
either (l) if you made the delta, you can change its delta commentary; or
(2) if you own the file and directory you can modify the delta commen­
tary.

~," "

cdc -r1.6 -m"b178-12345 !bI77-54321 bI79-00001" -ytrouble s.file

adds b178-12345 and b179-0000J to the MR list, removes b177-54321 from the
MR list, and adds the comment trouble to delta J.6 of s.file.

cdc -r J.6 s.file
MRs? !b177-5432J b178-12345 b179-00001
comments? trouble

does the same thing.

WARNINGS
If sces file names are supplied to the cdc command via the standard input (­
on the command line). then the -m and -y keyletters must also be used.

FILES
x-file (sec delta (I»
z-file (see delta (l»

SEE ALSO
admin(l), delta(1), get(), help(), prs(l).
sccsfile(4) in the UNIX System V Programmer Reference Manual.

Source Code Control System User Guide in the UNIX System V User Guide.

DIAGNOSTICS
Use help (I) for explanations.

- 2 -

CFLOW(l)

NAME

CFLOW(I)

cflow- generate C flowgraph

SYNOPSIS
cftow [-r] [-ixl [-i_ l [-dnuml files

DESCRIPTION
Cjlow analyzes a collection of C, Y ACC, LEX, assembler, and object files and
attempts to build a graph charting the external references. Files suffixed in .y,
.1, .c, and .i are Y ACC'd, LEX'd, and C-preprocessed (bypassed for .i files) as
appropriate and then run through the first pass of lint 0). (The -I, -D, and
- U options of the C-preprocessor are also understood.) Files suffixed with .s
are assembled and information is extracted (as in .0 files) from the symbol
table. The output of all this non-trivial processing is collected and turned into
a graph of external references which is displayed upon the standard output.

Each line of owtput begins with a reference (i.e., line) number, followed by a
suitable number of tabs indicating the level. Then the name of the global (nor­
mally only a function not defined as an external or beginning with an under­
score; see below for the -i inclusion option) a colon and its definition. For
information extracted from C source, the definition consists of an abstract type
declaration (e.g., char .), and, delimited by angle brackets, the name of the
source file and the line number where the definition was found. Definitions
extracted from object files indicate the file name and location counter under
which the symbol appeared (e.g., text). Leading underscores in C-style exter­
nal names are deleted.

Once a definition of a name has been printed, subsequent references to that
name contain only the reference number of the line where the definition may be
found. For undefined references, only < > is printed.

As an example, given the following in file.c:

int i;

mainO
{

fO;
gO;
fO;

fO
(

)

the command

i =- hO;

cflow -ix file.c

produces the output

I
2
3
4
5

main: intO, <file.c 4>
f: intO, <file.c II>

h: <>
i: int, < file.c I >

g: <>

- I -

CFLOW(I) CFLOW (I)

When the nesting level becomes too deep, the -e option of pr(J) can be used
to compress the tab expansion to something less than every eight spaces.

The following options are interpreted by eflow:

-r Reverse the "caller:callee" relationship producing an inverted listing
showing the callers of each function. The listing is also sorted in lexi­
cographical order by callee.

-ix Include external and static data symbols. The default is to include
only functions in the flowgraph.

-i_ Include names that begin with an underscore. The default is to
exclude these functions (and data if -ix is used).

-dnum The num decimal integer indicates the depth at which the tlowgraph
is cut olT. By default this is a very large number. Attempts to set the
cutoff depth to a nonpositive integer will be met with contempt.

DIAGNOSTICS
Complains about bad options. Complains about multiple definitions and only
believes the first. Other messages may come from the various programs used
(e.g., the C-preprocessor).

SEE ALSO
as(l), cc(J), cpp(t), lex(t), lint(t), nm(l), pr(l), yacc(l).

BUGS
Files produced by lex (J) and yace< J) cause the reordering of line number
declarations which can confuse cfiow. To get proper results, feed cfiow the
yace or lex input.

• 2 -

CHMOD(l)

NAME

CHMOD(I)

chmod - change mode

SYNOPSIS
cbmod mode files

DESCRIPTION
The permissions of the named files are changed according to mode, which may
be absolute or symbolic. An absolute mode is an octal number constructed
from the OR of the following modes:

4000 set user ID on execution
2000 set group 10 on execution
1000 sticky bit, see chmod(2)
0400 read by owner
0200 write by owner
0100 execute (search in directory) by owner
0070 read. write. execute (search) by group
0007 read. write, execute (search) by others

A symbolic mode has the form:

[who] op permission [op permission]

The who part is a combination of the letters u (for user's permissions), g
(group) and 0 (other). The letter a stands for ugo, the default if who is omit­
ted.

Op can be + to add permission to the file's mode. - to take away permission.
or = to assign permission absolutely (all other bits will be reset).

Permission is any combination of the letters r (read). w (write). x (execute), S

(set owner or group 10) and t (save text. or sticky); u. g, or 0 indicate that per­
mission is to be taken from the current mode. Omitting permission is only
useful with E3 to take away all permissions.

Multiple symbolic modes separated by commas may be given. Operations are
performed in the order specified. The letter S is only useful with u or g and t
only works with u.

Only the owner of a file (or the super-user) may change its mode. Only the
super-user may set the sticky bit. In order to set the group 10. the group of the
file must correspond to your current group 10.

EXAMPLES
The first example denies write permission to others. the second makes a file
executable:

chmod o-w file

chmod +x file

SEE ALSO
Is(l).
chmod(2) in the UNIX System V Programmer Reference Manual.

• 1 -

CHOWN(I)

NAME

CHOWN(I)

chown, chgrp - change owner or group

SYNOPSIS
chown owner file ..

chgrp group file .

DESCRIPTION
Chown changes the owner of the files to owner. The owner may be either a
decimal user 10 or a login name found in the password file.

Chgrp changes the group 10 of the files to group. The group may be either a
decimal group ID or a group name found in the group file.

If either command is invoked by other than the super-user, the set-user-ID and
set-group-ID bits of the file mode, 04000 and 02000 respectively, will be
cleared.

FILES
/etc/passwd
fete/group

SEE ALSO
chmod(I).
chown(2), group(4), passwd(4) in the UNIX System V Programmer Reference
Manual.

- I -

CMP(l)

NAME

CMP(I)

cmp - compare two files

SYNOPSIS
cmp [-I] [-s] filel file2

DESCRIPTION
The two files are compared. (If filel is - t the standard input is used.) Under
default optionst cmp makes no comment if the files are the same; if they differt
it announces the byte and line number at which the difference occurred. If one
file is an initial subsequence of the othert that fact is noted.

Options:

-I Print the byte number (decimal) and the differing bytes (octal) for each
difference.

-s Print nothing for differing files; return codes only.

SEE ALSO
comm(t)t diff(I).

DIAGNOSTICS
Exit code 0 is returned for identical filest 1 for different filest and 2 for an inac­
cessible or missing argument.

- 1 •

COL(t)

NAME

COL(t)

col - filter reverse line-feeds

SYNOPSIS
col [-bfpx]

DESCRIPTION
Col reads from the standard input and writes onto the standard output. It per­
forms the line overlays implied by reverse line feeds (ASCII code FSC·7), and
by forward and reverse half-line feeds (ESC.9 and FSC-8). Col is particularly
useful for filtering multicolumn output made with the .rt command of nroff and
output resulting from use of the tb/(I) preprocessor.

If the -b option is given, col assumes that the output device in use is not capa­
ble of backspacing. In this case, if two or more characters are to appear in the
same place, only the last one read will be output.,
Although col accepts half-line motions in its input, it normally does not emit
them on output. Instead, text that would appear between lines is moved to the
next lower full-line boundary. This treatment can be suppressed by the -f
(fine) option; in this case, the output from col may contain forward half-line
feeds (FSC-9), but will still never contain either kind of reverse line motion.

Unless the -x option is given, col will convert white space to tabs on output
wherever possible to shorten printing time.

The ASCII control characters SO <\016) and SI <\017) are assumed by col to
start and end text in an alternate character set. The character set to which
each input character belongs is remembered, and on output SI and SO charac­
ters are generated as appropriate to ensure that each character is printed in the
correct character set.

On input, the only control characters accepted are space, backspace, tab,
return, new-line, SI, SO, VT <\013), and FSC followed by 7, 8, or 9. The VT
character is an alternate form of full reverse line-feed, included for compatibil­
ity with some earlier programs of this type. All other non-printing characters
are ignored.

Normally, col will ignore any unknown to it escape sequences found in its
input; the -p option may be used to cause col to output these sequences as
regular characters, subject to overprinting from reverse line motions. The use
of this option is highly discouraged unless the user is fully aware of the textual
position of the escape sequences.

SEE ALSO
nrotrO), tbl 0).

NOTES
The input format accepted by col matches the output produced by nroff with
either the -T37 or -Tip options. Use -T37 (and the -f option of col) if the
ultimate disposition of the output of col will be a device that can interpret
half-line motions, and -Tip otherwise.

BUGS
Cannot back up more than 128 lines.
Allows at most 800 characters, including backspaces, on a line.
Local vertical motions that would result in backing up over the first line of the
document are ignored. As a result, the first line must not have any super­
scripts.

- 1 -

COMB(I)

NAME

COMB(I)

-0

comb - combine sees deltas

SYNOPSIS
comb [-0] [-S] [-psid] [-clist] files

DESCRIPTION
Comb generates a shell procedure (see sh (I» which, when run, will reconstruct
the given sees files. The reconstructed files will, hopefully, be smaller than
the original files. The arguments may be specified in any order, but all
keyletter arguments apply to all named sees files. If a directory is named,
comb behaves as though each file in the directory were specified as a named
file, except that non-sees files (last component of the path name does not
begin with s.) and unreadable files are silently ignored. If a name of - is
given, the standard input is read; each line of the input is taken to be the name
of an sees file to be processed; non-sees files and unreadable files are silently
ignored. The generated shell procedure is written on the standard output.

The keyletter arguments are as follows. Each is explained as though only one
named file is to be processed, but the effects of any keyletter argument apply
independently to each named file.

-pSID The Sees IDentification string (SID) of the oldest delta to be
preserved. All older deltas are discarded in the reconstructed file.

-dist A list (see get (t) for the syntax of a list) of deltas to be preserved.
All other deltas are discarded.

For each get -e generated, this argument causes the reconstructed
file to be accessed at the release of the delta to be created, otherwise
the reconstructed file would be accessed at the most recent ancestor.
Use of the -0 keyletter may decrease the size of the reconstructed
sees file. It may also alter the shape of the delta tree of the original
file.

-s This argument causes comb to generate a shell procedure which, when
run, will produce a report giving, for each file: the file name, size (in
blocks) after combining, original size (also in blocks), and percentage
change computed by:

100 • (original - combined) / original
It is recommended that before any sees files are actually combined,
one should use this option to determine exactly how much space is
saved by the combining process.

If no keyietter arguments are specified, comb will preserve only leaf deltas and
the minimal number of ancestors needed to preserve the tree.

.~

FILES
s.eOMB
comb?????

The name of the reconstructed sees file.
Temporary.

SEE ALSO
admin(I), delta(I), get(I), help(I), prs(I), sh(I).
sccsfile(4) in the UNIX System V Programmer Reference Manual.

Source Code Control System User Guide in the UNIX System V User Guide.

DIAGNOSTICS
Use help(I) for explanations.

BUGS
Comb may rearrange the shape of the tree of deltas. It may not save any
space; in fact, it is possible for the reconstructed file to actually be larger than
the original.

- 1 -

COMM(t)

NAME

COMM ()

comm - select or reject lines common to two sorted files

SYNOPSIS
comm [- [123]] file) file2

DESCRIPTION
Comm reads filel and file2, which should be ordered in ASCII collating
sequence (see sort (I», and produces a three-column output: lines only in file I;
lines only in file2; and lines in both files. The file name - means the standard
input.

Flags), 2, or 3 suppress printing of the corresponding column. Thus comm
-12 prints only the lines common to the two files; comm -23 prints only lines
in the first file but not in the second; comm -123 is a no-op.

SEE ALSO
cmp(t), diff(I), sort(J), uniq(J).

-) -

CONVERT(I)

NAME

(nol on PDP-II) CONVERT(I)

convert - convert object and archive files to common formats

SYNOPSIS
convert (-SI infile outfile

DESCRIPTION
Convert transforms input infile to output outfile. Infile must be different from
outfile. The -S option causes convert to work exactly as it did for UNIX Sys­
tem V Release 1.0. Infile may be anyone of the following:

1) a pre-UNIX System V Release 1.0 VAX object file or link­
edited (a.out) module (only with the -S option),

2) a pre-UNIX System V Release 1.0 VAX archive of object files
o~ link edited (a.out) modules (only with the -5 option),

3) ,a pre-UNIX System V. Release 1.0 38 20 computer archive of
object files or link edited (a.out) modules (only with the -5
option), or

4) a UNIX System V Release 1.0 VAX or 38 20 computer archive
file (without the -5 option).

Convert will transform infile to one of the following (respectively):

I) an equivalent UNIX System V Release 1.0 VAX object file or
link edited (a.out) module (with the -5 option),

2) an equivalent UNIX System V Release 1.0 VAX archive of
equivalent object files or link edited (a.out) modules (with the
-5 option),

3) an equivalent UNIX System V Release 1.0 archive of unaltered
38 20 computer object files or link edited (a.out) modules
(With the -5 option) and

4) an equivalent VAX or 38 20 computer UNIX System V
Release 2.0 portable archive containing unaltered members
(without the -S option).

All other types of input to the convert command will be passed unmodified
from the input file to the output file (along with appropriate warning mes­
sages). When transforming archive files with the -5 option, the convert(I)
command will inform the user that the archive symbol table has been deleted.
To generate an archive symbol table. this archive file must be transformed
again by convert without the -S option to create a UNIX System V Release
2.0 archive file. Then the archive symbol table may be created by executing
the ar(l) command with the ts option. If a UNIX System V Release 1.0
archive with an archive symbol table is being transformed, the archive symbol
table will automatically be converted.

The arcv(l) command may be used in conjunction with the convert command
to transform PDP-II archives into the UNIX System V Release 2.0 portable
archive format. The arcv command creates a UNIX System Release 1.0 archive
which is then transformed by convert. The conversion is useful only when the
archive contains portable information such as text files.

FILES
/tmp/conv.

SEE ALSO
ar(I), arcv(I).
a.out(4), ar(4) in the UNIX System V Programmer Reference Manual.

- 1 -

CP(t}

NAME

CP(t}

cp, In, mv - copy, link or move files

SYNOPSIS
cp file 1 [file2 ...l target
In [-f] file 1 [file2 ..J target
mv [-f] file 1 [file2 ..J target

DESCRIPTION
Filel is copied Oinked, moved) to largel. Under no circumstance can jilel and
largel be the same <take care when using sh (]) metacharacters}. If largel is a
directory, then one or more files are copied Oinked, moved} to that directory.
If larget is a file, its contents are destroyed.

If mv or In determines that the mode of target forbids writing, it will print the
mode (see chmod(2», ask for a response, and read the standard input for one
line; if the line begins with Y. the mv or In occurs, if permissable; if not, the
command exits. No questions are asked and the mv or In is done when the -f
option is used or if the standard input is not a terminal.

Only mv will allow jilel to be a directory, in which case the directory rename
will occur only if the two directories have the same parent; jile! is renamed
target. If jile I is a file and targel is a link to another file with links, the other
links remain and target becomes a new file.

When using cp, if targel is not a file, a new file is created which has the same
mode as jilel except that the sticky bit is not set unless you are super-user; the
owner and group of target are those of the user. If targel is a file, copying a
file into larget does not change its mode, owner, nor group. The last
modification time of target {and last access time, if targel did not exist} and
the last access time of jilel are set to the time the copy was made. If target is
a link to a file, all links remain and the file is changed.

SEE ALSO
cpio(]), rm (]) .
chmod(2} in the UNIX System V Programmer Reference Manual.

BUGS
If jilel and target lie on different file systems, mv must copy the file and delete
the original. In this case any linking relationship with other files is lost.

Ln will not link across file systems.

- 1 -

CPIO(1)

NAME

CPIO(J)

cpio - copy file archives in and out

SYNOPSIS
cpio -0 [acBl']

cpio -i [Bcdmrtul'fsSb6] [patterns

cpio -p [adlmrul'] directory

DESCRIPTION
Cpio -0 (copy out) reads the standard input to obtain a list of path names and
copies those files onto the standard output together with path name and status
information. Output is padded to a 512-byte boundary.

Cpio -i (copy in) extracts files from the standard input, which is assumed to
be the product of a previous cpio -0. Only files with names that match pat­
terns are selected. Patterns are given in the name-generating notation of
she}). In patterns, meta-characters ?, ., and I. ..l match the slash I character.
Multiple patterns may be specified and if no patterns are specified, the default
for patterns is • (j.e., select all files). The extracted files are conditionally
created and copied into the current directory tree based upon the options
described below. The permissions of the files will be those of the previous cpio
-0. The owner and group of the files will be that of the current user unless
the user is super-user, which causes cpio to retain the owner and group of the
files of the previous cpio -0.

Cpio -p (pass) reads the standard input to obtain a list of path names of files
that are conditionally created and copied into the destination directory tree
based upon the options described below.

The meanings of the available options are:

a Reset access times of input files after they have been copied.
B Input/output is to be blocked 5,120 bytes to the record (does not apply

to the pass option; meaningful only with data directed to or from
Idel'Irmtl??).

d Directories are to be created as needed.
c Write header information in ASCII character form for portability.
r Interactively rename files. If the user types a null line, the file is

skipped.
Print a table of contents of the input. No files are created.

u Copy unconditionally (normally, an older file will not replace a newer
file with the same name).

v Verbose: causes a list of file names to be printed. When used with the
t option, the table of contents looks like the output of an Is -I com­
mand (see /s(I».
Whenever possible, link files rather than copying them. Usable only
with the -p option.

m Retain previous file modification time. This option is ineffective on
directories that are being copied.

f Copy in all files except those in patterns.
s Swap bytes. Use only with the -i option.
S Swap halfwords. Use only with the -i option.
b Swap both bytes and halfwords. Use only with the -i option.
6 Process an old (j.e., UNIX System Sixth Edition format) file. Only

useful with -i (copy in).

- I -

CPIO(I) CPIO(I)

EXAMPLES
The first example below copies the contents of a directory into an archive; the
second duplicates a directory hierarchy:

Is I cpio -0 >/dev/mt/Om

cd olddir
find • -depth -print I cpio -pdl newdir

The trivial case "find . -depth -print I cpio -oB > /dev/rmt/Om" can be
handled more efficiently by:

find . -cpio /dev/rmt/Om

SEE ALSO
ar()), find(I), Is().
cpio(4) in the UNIX System V Programmer Reference Manual.

BUGS
Path names are restricted to 128 characters. If there are too many unique
linked files, the program runs out of memory to keep track of them and,
thereafter, linking information is lost. Only the super-user can copy special
files. The - B option does not work with certain magnetic tape drives (see
un32(7) in the UNIX System V Administrator Reference Manual}.

- 2 -

CPP(t)

NAME

Cpp(t)

cpp - the C language preprocessor

SYNOPSIS
/lib/cpp [option... I [ifile [ofile I I

DESCRIPTION
Cpp is the C language preprocessor which is invoked as the first pass of any C
compilation using the ccO) command. Thus the output of cpp is designed to
be in a form acceptable as input to the next pass of the C compiler. As the C
language evolves, cpp and the rest of the C compilation package will be
modified to follow these changes. Therefore, the use of cpp other than in this
framework is not suggested. The preferred way to invoke cpp is through the
cc (I) command, since the functionality of cpp may someday be moved else­
where. See m4(I) for a general macro processor.

Cpp optionally' accepts two file names as arguments. [file and ofile are respec­
tively the input and output for the preprocessor. They default to standard
input and standard output if not supplied.

The following options to cpp are recognized:

-p Preprocess the input without producing the line control information
used by the next pass of the C compiler.

-C By default, cpp strips C-style comments. If the -C option is specified,
all comments (except those found on cpp directive lines) are passed
along.

-Uname
Remove any initial definition of name, where name is a reserved sym­
bol that is predefined by the particular preprocessor. The current list
of these possibly reserved symbols includes:

operating system: ibm, gcos, os, tss, unix
hardware: interdata, pdp II, u370, u3b, u3b5, vax
UNIX system variant: RES, RT
lint (l): lint

-Dname
-Dname=def

Define name as if by a #define directive. If no =def is given, name is
defined as l. The - D option has lower precedence than the - U
option. That is, if the same name is used in both a - U option and a
- D option, the name will be undefined regardless of the order of the
options.

-T Except on the PDP-II, preprocessor symbols are no longer restricted to
eight characters. The -T option forces cpp to use only the first eight
characters for distinguishing different preprocessor names. This
behavior is the same as previous preprocessors with respect to the
length of names and is included for backward compatability.

-Idir Change the algorithm for searching for #include files whose names do
not begin with / to look in dir before looking in the directories on the
standard list. Thus, #include files whose names are enclosed in •• will
be searched for first in the directory of the file with the #include line,
then in directories named in -I options, and last in directories on a
standard list. For #include files whose names are enclosed in < >, the
directory of the file with the #include line is not searched.

Two special names are understood by cpp. The name __LlNE__ is defined as
the current line number (as a decimal integer) as known by cpp, and __FILE__
is defined as the current file name (as a C string) as known by cpp. They can

- 1 -

CPP(I) CPP(I)

be used anywhere (including in macros) just as any other defined name.

All cpp directives start with lines begun by #. Any number of blanks and tabs
are allowed between the # and the directive. The directives are:

#define name token-string
Replace subsequent instances of name with token-string.

#define name{ arg, no, arg) token-string
Notice that there can be no space between name and the <. Replace
subsequent instances of name followed by a <. a list of comma­
separated set of tokens, and a) by token-string, where each
occurrence of an arg in the token-string is replaced by the correspond­
ing set of tokens in the comma-separated list. When a macro with
arguments is expanded, the arguments are placed into the expanded
token-string unchanged. After the entire token-string has been
expanded, cpp re-starts its scan for names to expand at the beginning
of newly created token-string.

#undef name
Cause the definition of name (if any) to be forgotten from now on.

#include ''filename''
#include <filename>

Include at this point the contents of filename (which will then be run
through cpp). When the <filename> notation is used, filename is
only searched for in the standard places. See the -I option above for
more detail.

#line integer-constant ''filename''
Causes cpp to generate line control information for the next pass of the
C compiler. Integer-constant is the line number of the next line and
filename is the file where it comes from. If ''filename'' is not given, the
current file name is unchanged.

#endif
Ends a section of lines begun by a test directive (#if, #ifdef, or
#ifndef). Each test directive must have a matching #endif.

#ifdef name
The lines following will appear in the output if and only if name has
been the subject of a previous #define without being the subject of an
intervening #undef.

#ifndef name
The lines following will not appear in the output if and only if name
has been the subject of a previous #define without being the subject of
an intervening #undef.

#if constant-expression
Lines following will appear in the output if and only if the constant­
expression evaluates to non-zero. All binary non-assignment C opera­
tors, the ?: operator, the unary -, !, and - operators are all legal in
constant-expression. The precedence of the operators is the same as
defined by the C language. There is also a unary operator defined,
which can be used in constant-expression in these two forms: defined (
name) or defined name. This allows the utility of #ifdef and #ifndef
in a #if directive. Only these operators, integer constants, and names
which are known by cpp should be used in constant-expression. In
particular, the sizeof operator is not available.

- 2 -

CPP(I)

FILES

cpp(I)

#else Reverses the notion of the test directive which matches this directive.
So if lines previous to this directive are ignored. the following lines will
appear in the output. And vice versa.

The test directives and the possible #else directives can be nested.

standard directory for #include files/ usrlinclude

SEE ALSO
cc(I). m4(I).

DIAGNOSTICS
The error messages produced by cpp are intended to be self-explanatory. The
line number and filename where the error occurred are printed along with the
diagnostic.

NOTES
When new-line characters were found in argument lists for macros to be
expanded. previous versions of cpp put out the new-lines as they were found
and expanded. The current version of cpp replaces these new-lines with blanks
to alleviate problems that the previous versions had when this occurred.

- 3 -

CRONTAB(t)

NAME

CRONTAB(J)

crontab - user crontab file

SYNOPSIS
crontab [file]
crontab -r
crontab -I

DESCRIPTION
Crontah copies the specified file, or standard input if no file is specified, into a
directory that holds all users' crontabs. The -r option removes a user's crontab
from the crontab directory. Crontab -I will list the crontab file for the invok­
ing user.

Users are permilled to use crontab if their names appear in the IIle
lusr/lib/cron/cron.allow. If that file does not exist, the file
lusr/lib/cron/cron.deny is checked to determine if the user should be denied
access to crolltah. If neither file exists, only root is allowed to submit a job. If
either file is at.dcny, global usage is permitted. The allOW/deny files consist of
one user name per line.

A crontab file consists of lines of six lIe1ds each. The lIelds are separated by
spaces or tabs. The first five are integer patterns that specify the following:

minute (0-59),
hour (0-23),
day of the month (1-3»,
month of the year (1-12),
day of the week (0-6 with O=Sunday).

Each of these patterns may be either an asterisk (meaning all legal values) or
a list of elements separated by commas. An clement is either a number or two
numbers separated by a minus sign (meaning an inclusive range). Note that
the specification of days may be made by two lIelds (day of the month and day
of the week). If both are specified as a list of elements, both arc adhered to.
For example, 0 0 1,15 • 1 would run a command on the first and IIfteenth of
each month. as well as on every Monday. To specify days by only one field, the
other field should be set to • (for example, 0 0 • • 1 would run a command only
on Mondays).

The sixth field of a line in a crontab file is a string that is executed by the shell
at the specified times. A percent character in this Held (unless escaped by \) is
translated to a new-line character. Only the fIrst line (up to a % or end of line)
of the command field is executed by the shell. The other lines are made avail­
able to the command as standard input.

The shell is invoked from your SHOME directory with an argO of sh. Users who
desire to have their .profile executed must explicitly do so in the crontab file.
Croll supplies a default environment for every shell, defining HOME. 1.0GNA!\IE,
SHEI.l.(= /bin/sM, and PATH(=:/bin:/usr/bin:/usr/lbin).

NOTE: Users should remember to redirect the standard output and standard
error of their commands! If this is not done, any generated output or errors
will be mailed to the user.

- 1 -

CRONTAB(J)

FILES
/usr/lib/cron
/usr/spool/cron/crontabs
/usr/lib/eron/log
/usr/lib/cron/cron.allow
/usr/lib/cron/cron.deny

CRONTAB(J)

main eron directory
spool area
accounting information
list of allowed users
list of denied users

SEE ALSO
sh ().
cron(t M) in the UNIX System V Administrator Reference Manual.

- 2 -

'~

CRYPT(l)

NAME

CRYPT(l)

crypt - encode/decode

SYNOPSIS
crypt [password]

DESCRIPTION
Crypt reads from the standard input and writes on the standard output. The
password is a key that selects a particular transformation. If no password is
given, crypt demands a key from the terminal and turns ofT printing while the
key is being typed in. Crypt encrypts and decrypts with the same key:

crypt key <clear >cypher
crypt key <cypher I pr

will print the clear.

Files encrypted by crypt are compatible with those treated by the editor ed in
encryption mode.

The security of encrypted files depends on three factors: the fundamental
method must be hard to solve; direct search of the key space must be infeasible;
"sneak paths" by which keys or clear text can become visible must be minim­
ized.

Crypt implements a one-rotor machine designed along the lines of the German
Enigma, but with a 256-element rotor. Methods of attack on such machines
are known, but not widely; moreover the amount of work required is likely to
be large.

The transformation of a key into the internal settings of the machine is deli­
berately designed to be expensive, i.e., to take a substantial fraction of a second
to compute. However, if keys are restricted to (say) three lower-case letters,
then encrypted files can be read by expending only a substantial fraction of five
minutes of machine time.

Since the key is an argument to the crypt command, it is potentially visible to
users executing ps(I) or a derivative. The choice of keys and key security are
the most vulnerable aspect of crypt.

FILES
Idev/tty for typed key

SEE ALSO
ed(I), makekey(l), stty(I).

BUGS
If output is piped to nroff and the encryption key is not given on the command
line, crypt can leave terminal modes in a strange state (see stty (I».
If two or more files encrypted with the same key are concatenated and an
attempt is made to decrypt the result, only the contents of the first of the origi­
nal files will be decrypted correctly.

- I -

CSPLlT(t)

NAME

CSPLlT(I)

csplit - context split

SYNOPSIS
csplit [-s] [-k] [-f prefix) file arg1 L .. argn]

DESCRIPTION
Csp/it reads file and separates it into n+ I sections, defined by the arguments
argJ. .. argn. By default the sections are placed in xxOO ... xxn (n may not
be greater than 99). These sections get the following pieces of file:

00: From the start of file up to (but not including) the line refer­
enced by argJ.

01: From the line referenced by argJ up to the line referenced by
arg2.

n+ I: From the line referenced by argn to the end of file.

If the file argument is a - then standard input is used.

The options to csp/it are:

-s Csp/it normally prints the character counts for each file
created. If the -s option is present, csplit suppresses the
printing of all character counts.

-k Csplit normally removes created files if an error occurs. If
the -k option is present, csp/it leaves previously created files
intact.

-f prefix If the -f option is used, the created files are named prefixOO
... prefixn. The default is xxOO ... xxn.

The arguments (argl ... argn) to csplit can be a combination of the follow­
ing:

/rexp/ A file is to be created for the section from the current line up
to (but not including) the line containing the regular expression
rexp. The current line becomes the line containing rexp. This
argument may be followed by an optional + or - some
number of lines (e.g., IPage/-S).

%rexp% This argument is the same as /rexp/, except that no file is
created for the section.

Inno A file is to be created from the current line up to (but not
including) Inno. The current line becomes Inno.

(num) Repeat argument. This argument may follow any of the above
arguments. If it follows a rexp type argument, that argument
is applied num more times. If it follows Inno, the file will be
split every Inno lines (num times) from that point.

Enclose all rexp type arguments that contain blanks or other characters mean­
ingful to the shell in the appropriate quotes. Regular expressions may not con­
tain embedded new-lines. Csp/it does not affect the original file; it is the users
responsibility to remove it.

EXAMPLES
csplit -f cobol file 'fprocedure division!' fparS.! fparl6.!

This example creates four files, cobolOO ..• cobol03. After editing the "split"
files, they can be recombined as follows:

cat cobolO[O-3] > file

- I -

~.
\

CSPLIT(l)

Note that this example overwrites the original file.

csplit -k file 100 (99)

CSPLIT(1)

This example would split the file at every 100 lines, up to 10,000 lines. The
-k option causes the created files to be retained if there are less than 10,000
lines; however, an error message would still be printed.

csplit -k prog.c '%main(%' 'I"}/+I' {20}

Assuming that prog.c follows the normal C coding convention of ending rou­
tines with a } at the beginning of the line, this example will create a file con­
taining each separate C routine (up to 2 I) in prog.c.

SEE ALSO
ed (I), sh (t).
regexp(S) in the UNIX System V Programmer Reference Manual.

DIAGNOSTICS
Self-explanatory except for:

arg - out of range
which means that the given argument did not reference a line between the
current position and the end of the file.

- 2 -

CT(lC) CT(IC)

NAME
ct - spawn getty to a remote terminal

SYNOPSIS
ct [-h] [-v] [-wn] [-sspeed] telno ...

DESCRIPTION
Ct dials the phone number of a modem that is attached to a terminal, and
spawns a getty process to that terminal. Telno is a telephone number. with
equal signs for secondary dial tones and minus signs for delays at appropriate
places. If more than one telephone number is specified. ct will try each in suc­
cession until one answers; this is useful for specifying alternate dialing paths.

Ct will try each line listed in the file /usr/lib/uucp/L-devices until it finds an
available line with appropriate attributes or runs out of entries. If there are no
free lines, ct will ask if it should wait for one, and if so, for how many minutes
it should wait'before it gives up. Ct will continue to try to open the dialers at
one-minute intervals until the specified limit is exceeded. The dialogue may be
overridden by specifying the -wn option, where n is the maximum number of
minutes that ct is to wait for a line.

Normally, ct will hang up the current line, so that that line can answer the
incoming call. The -h option will prevent this action. If the -v option is
used, ct will send a running narrative to the standard error output stream.

The data rate may be set with the -5 option. where speed is expressed in
baud. The default rate is 300.

After the user on the destination terminal logs out, ct prompts, Reconnect? If
the response begins with the letter n the line will be dropped; otherwise, getty
will be started again and the login: prompt will be printed.

Of coursc, thc destination tcrminal must be attached to a modem that can
answer the telephone.

FILES
/usr/lib/uucp/L-devices
/ usr/ adm/ctlog

SEE ALSO
cu(lC), login(t), uucp(IC).

- I -

.~,

CTRACE(I)

NAME

CTRACE(I)

ctrace - C program debugger

SYNOPSIS
ctrace [options] [file]

DESCRIPTION
etrace allows you to follow the execution of a C program, statement-by­
statement. The effect is similar to executing a shell procedure with the -x
option. etrace reads the C program in file (or from standard input if you do
not specify file), inserts statements to print the text of each executable state­
ment and the values of all variables referenced or modified, and writes the
modified program to the standard output. You must put the output of ctrace
into a temporary file because the cd I) command does not allow the use of a
pipe. You then compile and execute this file.

As each statement in the program executes it will be listed at the terminal, fol­
lowed by the name and value of any variables referenced or modifled in the
statement, followed by any output from the statement. Loops in the trace out­
put are detected and tracing is stopped until the loop is exited or a different
sequence of statcmcnts within the loop is cxecutcd. A warning message is
printed every 1000 times through the loop to help you dctect infinite loops.
The trace output goes to the standard output so you can put it into a file for
examination with an editor or the bj\'(t) or tail()) commands.

The only options you will commonly use are:

-f junctions Trace only these junctions.
-v junctions Trace all but these junctions.

You may want to add to the default formats for printing variables. Long and
pointer variables are always printed as signed integers. Pointers to character
arrays are also printed as strings if appropriate. Char, short, and int variables
are also printed as signed integers and, if appropriate, as characters. Double
variables are printed as floating point numbers in scientific notation. You can
request that variables be printed in additional formats, if appropriate, with
these options:

-0 Octal
-x Hexadecimal
-u Unsigned
-e Floating point

These options are used only in special circumstances:

-I n Check n consecutively executed statements for looping trace output,
instead of the default of 20. Use 0 to get all the trace output from
loops.

-5 Suppress redundant trace output from simple assignment statements
and string copy function calls. This option can hide a bug caused by
use of the =0 operator in place of the == operator.

-t n Trace n variables per statement instead of the default of 10 (the max­
imum number is 20). The Diagnostics section explains when to use this
option.

-p Run the C preprocessor on the input before tracing it. You can also
use the -D, -I, and -U cd» preprocessor options.

These options are used to tailor the run-time tracc package whcn the traced
program will run in a non-UNIX system environment:

-b Use only basic functions in the trace code, that is, those in ctypeOC),
printjOS), and stringOC). These are usually available even in cross­
compilers for microprocessors. In particular, this option is needed when

- I -

CTRACE(I) CTRACE(I)

the traced program runs under an operating system that does not have
signaJ(2),.fflushOS), longjmpOC), or setjmpOC).

-p 's' Change the trace print function from the default of 'printf('. For
example, 'fprintf(stderr,' would send the trace to the standard error
output.

-r f Use file f in place of the runtime.c trace function package. This lets
you change the entire print function, instead of just the name and lead­
ing arguments (sec the -p option).

EXAMPLE
If the file /c.c contains this C program:
I #include <stdio.h>
2 mainO /* count lines in input */
3 {
4 int c, nl;
5
6 nl = 0;
7 while «c = getcharO) != EOF)
8 if (c = '\n') .
9 ++nl; 10 printf("%d\n", nJ); II } and you entcr

these commands and test data: cc Ic.c a.out I (cnll-d), the program will be
compiled and executed. Thc output of the program will bc the number 2,
which is not correct because there is only one line in the test data. The error in
this program is common, but subtle. If you invokc ctrace with thesc com­
mands: ctrace Ic.c > temp.c cc temp.c a.out the output will be:
2 mainO
6 nl = 0;

/* nl == 0 */
7 while «c = getcharO) != EOF) The program is now waiting for input.

If you enter the samc test data as before, the output will be:
/* c == 49 or 'I' */

8 if (c = '\n')
/* c == 10 or '\n' */

9 ++nl;
/* nl == I */

7 while «c = getcharO) != EOF)
/* c == 10 or '\n' */

8 if (c = '\n')
/* c == 10 or '\n' */

9 ++nl;
/* nl == 2 */

7 while «c =- getcharO) != EOF) If you now cntcr an end of filc char-
acter (cnll-d) the final output will be:

/* c == -I */ 10 printf(tl%d\n", nO;
/* nl == 2 */2 return

Note that the program output printed at the end of the trace line for the n.
variable. Also note the return comment added by ctrace at the end of the trace
output. This shows the implicit return at the terminating brace in the function.

The trace output shows that variable c is assigned thc valuc ' I' in line 7, but in
line 8 it has the value '\n'. Once your attention is drawn to this if statement,
you will probably realizc that you used the assignment operator (=) in place of
the equal operator (==). You can easily miss this error during code reading.

EXECUTION-TIME TRACE CONTROL
The default operation for ctrace is to trace the entire program file, unless you
use the -f or -v options to trace specific functions. This does not give you

- 2 -

CTRACE(I) CTRACE(I)

statement-by-statement control of the tracing, nor does it let you turn the trac­
ing off and on when executing the traced program.

You can do both of these by adding ctroffO and ctron 0 function calls to your
program to turn the tracing off and on, respectively, at execution time. Thus,
you can code arbitrarily complex criteria for trace control with if statements,
and you can even conditionally include this code because ctrace defines the
CfRACE preprocessor variable. For example:

#ifdef CTRACE
if (c == '!' && i > 1000)

ctronO;
#endif

You can also call these functions from sdb(I) if you compile with the -g option.
For example, to trace all but lines 7 to lOin the main function, enter:

sdb a.out
main:7b ctroffO
main:llb ctronO

You can also turn the trace off and on by setting static variable tr_ct_ to 0 and
I, respectively. This is useful if you are using a debugger that cannot call these
functions directly, such as adb(l).

DIAGNOSTICS
This section contains diagnostic messages from both ctrace and cc(), since the
traced code often gets some cc warning messages. You can get cc error mes­
sages in some rare cases, all of which can be avoided.

Ctrace Diagnostics
warning: some variables are not traced in this statement

Only 10 variables are traced in a statement to prevent the C compiler
"out of tree space; simplify expression" error. Use the -t option to
increase this number.

warning: statement too long to trace
This statement is over 400 characters long. Make sure that you are
using tabs to indent your code, not spaces.

cannot handle preprocessor code, use -P option
This is usually caused by #ifdefl#endif preprocessor statements in the
middle of a C statement, or by a semicolon at the end of a #deflne
preprocessor statement.

'if ... else if sequence too long
Split the sequence by removing an else from the middle.

possible syntax error, try -P option
Use the .p option to preprocess the ctrace input, along with any
appropriate -D, -I, and -U preprocessor options. If you still get the
error message, check the Warnings section below.

Cc Diagnostics
warning: floating point not implemented
warning: illegal combination of pointer and integer
warning: statement not reached
warning: sizeo! returns 0

Ignore these messages.

- 3 -

CTRACE(I) CTRACE(I)

compiler takes size offunction
See the ctrace "possible syntax error" message above.

yacc stack overflow
See the ctrace "'if ... else if sequence too long" message above.

olit of tree space; simplify expression
Use the -t option to reduce the number of traced variables per state­
ment from the default of 10. Ignore the "ctrace: too many variables to
trace" warnings you will now get.

redeclaration of signal
Either correct this declaration of signaJ(2), or remove it and #include
<signal.h> .

unimplemented structure assignment
This is caused by a bug in the C compiler for the PDP-II. Use
pcc(l)'instead of cc(J).

offset xxxx in control section ...
This is caused by a problem in the current UNIX/370 C compiler.
Use the cc (J) -b2,2 option.

expression causes compiler loop: try simplifying
This is caused by a bug in the UNIX/370 C compiler. Unfortunately,
the only way to avoid it is to use the ctrace -v option to not trace the
function containing this line.

WARNINGS
You will get a ctrace syntax error if you omit the semicolon at the end of the
last clement declaration in a structure or union, just before the right brace (}).
This is optional in some C compilers.

Defining a function with the same name as a system function may cause a syn­
tax error if the number of arguments is changed. Just use a different name.

Ctrace assumes that BADMAG is a preprocessor macro, and that EOF and
NULL are #defined constants. Declaring any of these to be variables, e.g., "int
EOF;", will cause a syntax error.

BUGS
Ctrace docs not know about the components of aggregates like structures,
unions, and arrays. It cannot choose a format to print all the components of an
aggregate when an assignment is made to the entire aggregate. Ctrace may
choose to print the address of an aggregate or use the wrong format (e.g., %e
for a structure with two integer members) when printing the value of an aggre­
gate.

Pointer values are always treated as pointers to character strings.

The loop trace output elimination is done separately for each file of a multi-file
program. This can result in functions called from a loop still being traced, or
the elimination of trace output from one function in a file until another in the
same file is called.

FILES
runtime.c run-time trace package

SEE ALSO
signal(2), ctypeOC), ffiushOS), 10ngjmpOC), printfOS), setjmpOC),
stringOC) in the UNIX System V Programmer Reference Manual.

- 4 -

CU (IC)

NAME

CU(IC)

r

cu - call another UNIX system

SYNOPSIS
cu [-sspeed] [-lIine] [-hl [-tl [-d] [-m] [-0] [-el [-nl telno I
systemname I dir

DESCRI PTION
ell calls up another UNIX system, a terminal, or possibly a non-UNIX system.
It manages an interactive conversation with possible transfers of ASCII liIes.

cu accepts the following options and arguments.

-sspeed
Specifics the transmission speed (110, 150, 300. 600. 1200, 4800. 9(00);
300 is the default value. Most modems arc either 300 or 1200 baud.
Directly connected lines may be set to a speed higher than 1200 baud.

-Iline Specilles a device name to usc as the communication line. This can be
used to override searching for the I1rst available line having the right
speed. When the -I option is used without the -s option. the speed of a
line is taken from the file lusr/lib/uucp/L-de,·ices. When the -I and -s
options arc used simultaneously. Cll will search the L-deviccs I1Ic to
check if the requested speed for the requested line is available. If so.
the connection will be made at the requested speed; otherwise an error
illcssage will be printed and the call will not be made. The specified
deVIce is generally a directly connected asynchronous line (e.g ..
Ide,'/uyah). in this case a telephone number is not required but the
string dir may be use to specify a null acu. If the specified device is
associated with an auto dialer. a telephone number must be provided.

-h Emulates local echo, supporting calls to other computer systems which
expect terminals to be set to half-duplex mode.

-t Used when dialing an ASCII terminal which has been set to auto
answer. Appropriate mapping of carriage-return to carriage-ret urn­
line-feed pairs is set.

-d Causes diagnostic traces to be printed.

-e Designates that even parity is to be generated for data sent to the
remote.

-0 Designates that odd parity is to be generated for data sent to the
remote.

-m Designates a direct line which has modem control.

-n Will request the telephone number to be dialed from the user rather
than taking it from the command line.

telno When using an automatic dialer the argument is the tcletelephone
number with equal signs for secondary dial tone or minus signs for
delays. at appropriate places.

systemname
A uucp system name may be used rather than a telephone number; in
this case. cu will obtain an appropriate direct line or telephone number
from lusr/lib/uucp/L.sys (the appropriate baud rate is also read along
with telt:phone numbers). Cu will try each telephone number or direct
line for systemname in the L.sys file until a connection is made or all
the entries arc tried.

dir Using dir insures that cu will use the line specil1ed by the -I option .

. I .

-!C/nd ...

-Scmd ...

cu<tC) CU(JC)

After making the connection, cu runs as two processes: the transmit process
reads data from the standard input and, except for lines beginning with -,
passes it to the remote system; the receive process accepts data from the remote
system and, except for lines beginning with -, passes it to the standard output.
Normally, an automatic DC3/DCI protocol is used to control input from the
remote so the buffer is not overrun. Lines beginning with - have special mean­
ings.

The transmit process interprets the following:

terminate the conversation.

escape to an interactive shell on the local system.

run cmd on the local system (via sh -c).

run cmd locally and send its output to the remote sys­
tem.

-%ed change the directory on the local system. NOTE: -!ed
will cause the command to be run by a sub-shell; prob­
ably not what was intended.

-% take from I to] copy file from (on the remote system) to file to on the
local system. If 10 is omitted, the fronl argument is
used in both places.

- % put from [10) copy file from (on local system) to file to on remote sys­
tem. If to is omitted, the from argument is used in
both places.

send the line -... to the remote system.

-% break transmit a BREAK to the remote system.

-%nostop toggles between DC3/DCl input control protocol and no
input control. This is useful in case the remote system
is one which does not respond properly to the DC3 and
DC I characters.

The receive process normally copies data from the remote system to its stan­
dard output. A line from the remote that begins with -> initiates an output
diversion to a file. The complete sequence is:

-> [> l:file
zero or more lines to be written to file
->

Data from the remote is diverted (or appended, if > > is used) to file. The
trailing -> terminates the diversion.

The use of -%put requires stty(I) and cat(J) on the remote side. It also
requires that the current erase and kill characters on the remote system be
identical to the current ones on the local system. Backslashes are inserted at
appropriate places.

The use of -0/0 take requires the existence of echo (I) and cal (1) on the remote
system. Also, stty tabs mode should be set on the remote system if tabs are to
be copied without expansion.

- 2 -

CU(IC) CU(tC)

When cu is used on system X to connect to system V and subsequently used on
system V to connect to system Z, commands on system V can be executed by
using --. For example, uname can be executed on Z, X, and V as follows:

uname
Z
-!uname
X
--!uname
V
In general, - causes the command to be executed on the original machine,
causes the command to be executed on the ncxt machine in the chain.

EXAMPLES
To dial a system whose number is 9 201 555 1212 using 1200 baud:

cu -s1200 9=2015551212

If the speed is not specified, 300 is the default value.

To login to a system connected by a direct line:
cu -I /dev/ttyXX dir

To dial a system with the specific line and a specific speed:
cu -s 1200 -I /dev/ttyXX dir

To dial a system using a specific line:
cu -I /dcv/cuIXX 2015551212

To use a system name:
cu VVVZZZ

FILES
lusr/lib/uucp/L.sys
lusr/lib/uucp/L-devices
lusr Ispool/uucp/LC K.. (tty-device>
/dev/null

SEE ALSO
cat(I), ct(IC). echo(I), stty(I), unamc(I), uucp()C).

DIAGNOSTICS
Exit code is zero for normal exit, non-zero (various values) otherwise.

BUGS
ell buffers input internally.
There is an artifkial slowing of transmission by ell during the -0/0 put operation
so that loss of data is unlikely.
You cannot use cu from the 38 20 computer system console.

- 3 -

CUT(t)

NAME

CUT(I)

mapping of user IDs to names

to set name to current login name.

cut - cut out selected fields of each line of a file

SYNOPSIS
eut -elist [file I file2 ...J
eut -flist [-dcharl [-s] [file I file2 ..J

DESCRIPTION
Use cuI to cut out columns from a table or fields from each line of a file; in
data base parlance, it implements the projection of a relation. The fields as
specified by lisl can be fixed length, i.e., character positions as on a punched
card {-e option} or the length can vary from line to line and be marked with a
field delimiter character like lab {-f option}. Cut can be used as a filter; if no
files are given, the standard input is used.

The meanings of the options are:

list A cbmma-separated list of integer field numbers (in increasing order),
with optional - to indicate ranges as in the -0 option of nroffltroff
for page ranges; e.g., 1,4,7; 1-3,8; -5,10 {short for 1-5,10}; or 3­
(short for third through last field).

-c/ist The list following -c (no space) specifics character positions (e.g.,
-c1 -72 would pass the first 72 characters of each line).

-flist The list following -f is a list of fields assumed to be separated in the
file by a delimiter character (see -d); e.g., -fl,7 copies the first
and seventh field only. Lines with no field delimiters will be passed
through intact (useful for table subheadings), unless -s is specified.

-dchar The character following -d is the field delimiter (-f option only).
Default is tab. Space or other characters with special meaning to the
shell must be quoted.

-s Suppresses lines with no delimiter characters in case of -f option.
Unless specified, lines with no delimiters will be passed through
untouched.

Either the -c or -f option must be specified.

HINTS
Use grep (I) to make horizontal "cuts" (by context) through a file, or paste (I)
to put files together column-wise <i.e., horizontally). To reorder columns in a
table, use cut and paste.

EXAMPLES
cut -d: -fl,S /etc/passwd

name='who am i Icut -fl -d" ",

DIAGNOSTICS
line too long A line can have no more than 1023 characters or fields.

bad list for elf option Missing -c or -f option or incorrectly specified list.
No error occurs if a line has fewer fields than the list
calls for.

no fields The list is empty.

SEE ALSO
grep(I), paste(I}.

- I -

CXREF(t)

NAME

CXREF(I)

cxref - generate C program cross-reference

SYNOPSIS
cxrer [options] files

DESCRIPTION
Cxref analyzes a collection of C files and attempts to build a cross-reference
table. Cxref utilizes a special version of cpp to include #define'd information in
its symbol table. It produces a listing on standard output of all symbols {auto,
static, and global> in each file separately, or with the -c option, in combina­
tion. Each symbol contains an asterisk (.) before the declaring reference.

In addition to the -0, -(and -U options (which are identical to their
interpretation by ceO», the following options are interpreted by cxref:

-c Print a combined cross-reference of all input files.

-w<num>
Width option which formats output no wider than <num> (decimal>
columns. This option will default to 80 if <num> is not specified or
is less than 51.

-0 file Direct output to named file.

-s Operate silently; does not print input file names.

-t Format listing for 80-column width.

FILES
lusr/liblxcpp special version of C-preprocessor.

SEE ALSO
cdl).

DIAGNOSTICS
Error messages are unusually cryptic, but usually mean that you cannot com­
pile these files, anyway.

BUGS
Cxref considers a formal argument in a #define macro definition to be a
declaration of that symbol. For example, a program that #includes ctype.b, will
contain many declarations of the variable c.

- I -

DATE(l)

NAME

DATE(l)

date - print and set the date

SYNOPSIS
date [mmddhhmm[yy]] [+format]

DESCRIPTION
If no argument is given, or if the argument begins with +, the current date
and time are printed. Otherwise, the current date is set. The first mm is the
month number; dd is the day number in the month; hh is the hour number (24
hour system); the second mm is the minute number; yy is the last 2 digits of
the year number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is
mentioned. The system operates in GMT. Date takes care of the conversion to
and from local standard and daylight time.

If the argument begins with +, the output of date is under the control of the
user. The format for the output is similar to that of the first argument to
printf(JS). All output fields are of fixed size (zero padded if necessary). Each
field descriptor is preceded by % and will be replaced in the output by its
corresponding value. A single % is encoded by % %. All other characters are
copied to the output without change. The string is always terminated with a
new-line character.

Field Descriptors:
n insert a new-line character
t insert a tab character
m month of year - 01 to 12
d day of month - 01 to 31
y last 2 digits of year - 00 to 99
D date as mm/dd/yy
H hour - 00 to 23
M minute - 00 to 59
S second - 00 to 59
T time as HH:MM:SS
j day of year - 001 to 366
w day of week - Sunday = 0
a abbreviated weekday - Sun to Sat
b abbreviated month - Jan to Dec
r time in AM/PM notation

EXAMPLE
date '+DATE: %m/%d/%y%nTIME: %H:%M:%S'

would have generated as output:
DATE: 08/01176
TIME: 14:45:05

DIAGNOSTICS
No permission if you are not the super-user and you try to change the

date;
bad conversion if the date set is syntactically incorrect;
bad format character if the field descriptor is not recognizable.

FILES
/dev/kmem

SEE ALSO
printf(JS) in the UNIX System V Programmer Reference Manual.

WARNING
It is a bad practice to change the date while the system is running multi-user.

- I -

DC()

NAME

DC()

dc - desk calculator

SYNOPSIS
de [file]

DESCRIPTION
De is an arbitrary preCISion arithmetic package. Ordinarily it operates on
decimal integers, but one may specify an input base, output base, and a number
of fractional digits to be maintained. (See be(I), a preprocessor for de that
provides infix notation and a C-like syntax that implements functions. Be also
provides reasonable control structures for programs.> The overall structure of
de is a stacking (reverse Polish) calculator. If an argument is given, input is
taken from that file until its end, then from the standard input. The following
constructions are recognized:

number
The value of the number is pushed on the stack. A number is an unbro­
ken string of the digits 0-9. It may be preceded by an underscore ()
to input a negative number. Numbers may contain decimal points.

+_/.%A
The top two values on the stack are added (+), subtracted (-), multi­
plied (.), divided (/), remaindered (%), or exponentiated r). The two
entries are popped off the stack; the result is pushed on the stack in their
place. Any fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register named x, where
x may be any character. If the s is capitalized, x is treated as a stack
and the value is pushed on it.

Ix The value in register x is pushed on the stack. The register x is not
altered. All registers start with zero value. If the I is capitalized, regis­
ter x is treated as a stack and its top value is popped onto the main
stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains
unchanged. P interprets the top of the stack as an ASCII string,
removes it, and prints it.

f All values on the stack are printed.

q exits the program. If executing a string, the recursion level is popped by
two. If q is capitalized, the top value on the stack is popped and the
string execution level is popped by that value.

x treats the top clement of the stack as a character string and executes it
as a string of de commands.

X replaces the number on the top of the stack with its scale factor.

[... I puts the bracketed ASCII string onto the top of the stack.

<x >x =x
The top two elements of the stack are popped and compared. Register x
is evaluated if they obey the stated relation.

v replaces the top element on the stack by its square root. Any existing
fractional part of the argument is taken into account, but otherwise the
scale factor is ignored.

interprets the rest of the line as a UNIX system command.

- 1 -

DC(l)

c

o

o
k

z

z
?

DC(l)

All values on the stack are popped.

The top value on the stack is popped and used as the number radix for
further input. I pushes the input base on the top of the stack.

The top value on the stack is popped and used as the number radix for
further output.

pushes the output base on the top of the stack.

the top of the stack is popped, and that value is used as a non-negative
scale factor: the appropriate number of places are printed on output, and
maintained during multiplication, division, and exponentiation. The
interaction of scale factor, input base, and output base will be reasonable
if all are changed together.

The stack level is pushed onto the stack.

replaces. the number on the top of the stack with its length.

A line of input is taken from the input source (usually the terminal) and
executed.

are used by be for array operations.

EXAMPLE
This example prints the first ten values of n!:

[Ia 1+dsa.pla 10>y)sy
Osal
lyx

SEE ALSO
bc(I).

DIAGNOSTICS
x is unimplemented

where x is an octal number.

stack empty
for not enough elements on the stack to do what was asked.

Out of space
when the free list is exhausted <too many digits).

Out of headers
for too many numbers being kept around.

Out of pushdown
for too many items on the stack.

Nesting Depth
for too many levels of nested execution.

- 2 -

DD(I)

NAME

DD(I)

dd - convert and copy a file

SYNOPSIS
dd [option=value] ...

DESCRIPTION
Dd copies the specified input file to the specified output with possible conver­
sions. The standard input and output are used by default. The input and out­
put block size may be specified to take advantage of raw physical I/O.

option values
if=file input file name; standard input is default
of=file output file name; standard output is default
ibs=n input block size n bytes (default 512)
obs == n output block size (defaul t 512)
bs =n set both input and output block size. superseding ibs and obs;

also. if no conversion is specified. it is particularly efficient since
no in-core copy need be done

cbs = n conversion buffer size
skip=n skip n input blocks before starting copy
seek=n seek n blocks from beginning of output file before copying
count = n copy only n input blocks
conv = ascii convert EBCDIC to ASCII

ebcdic convert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC
lease map alphabetics to lower case
ucase map alphabetics to upper case
swab swap every pair of bytes
noerror do not stop processing on an error
sync pad every input block to ibs
... , .•. several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may end
with k, b, or w to specify multiplication by 1024, 512, or 2, respectively; a pair
of numbers may be separated by x to indicate a product.

Cbs is used only if ascii or ebcdic conversion is specified. In the former case
cbs characters are placed into the conversion buffer, converted to ASCII, and
trailing blanks trimmed and new-line added before sending the line to the out­
put. In the laller case ASCII characters are read into the conversion buffer,
converted to EBCDIC, and blanks added to make up an output block of size cbs.

After completion, dd reports the number of whole and partial input and output
blocks.

EXAMPLE
This command will read an EBCDIC tape blocked ten 80-byte EBCDIC card
images per block into the ASCII file x:

dd if=/dcv/rmt/Om of=x ibs"'"800 cbs=80 conv"'"ascii,lcase

Note the use of raw magtape. Dd is especially suited to I/O on the raw physi­
cal devices because it allows reading and writing in arbitrary block sizes.

~:~E ALSO
cpO) .

- I -

00(1)

DIAGNOSTICS
j+p blocks in(out) numbers of full and partial blocks read (written>

00(1)

BUGS
The ASCII/EBCDIC conversion tables are taken from the 256-character stan­
dard in the CACM Nov. 1968. The ibm conversion, while less blessed as a
standard, corresponds better to certain IBM print train conventions. There is no
universal solution.

New-lines are inserted only on conversion to ASCII; padding is done only on
conversion to EBCDIC. These should be separate options.

- 2 -

DELTA(l)

NAME

DELTA(l)

delta - make a delta (change) to an sees file

SYNOPSIS
delta [-rSI D] [-s] [-nJ [-glisll [-m[mrJist)) (-y(comment)) [-p] files

DESCRIPTION
Delta is used to permanently introduce into the named sees file changes that
were made to the file retrieved by gedl) (called the g-file, or generated file).

Delta makes a delta to each named sees file. If a directory is named. delta
behaves as though each file in the directory were specified as a named file,
except that non-Sees files {Jast component of the path name does not begin
with sol and unreadable files are silently ignored. If a name of - is given, the
standard input is read (see WARNING's'); each line of the standard input is
taken to be the name of an sees file to be processed.

Delta may issue prompts on the standard output depending upon certain
keyletters specified and nags (see admin (I» that may be present in the sees
file (sec -m and -y key letters below).

Keyletler arguments apply independently to each named file.

-rSID Uniquely identifies which delta is to be made to the
sees file. The use of this keyletter is necessary only if
two or more outstanding gets for editing (get -e) on
the same sees file were done by the same person (login
name). The SID value specified with the -r keyletter
can be either the SID specified on the get command line
or the SID to be made as reported by the get command
(see get (I». A diagnostic results if the specified SID is
ambiguous, or, if necessary and omittcd on the com­
mand line.

-s Suppresses the issue. on the standard output, of thc
created delta's SI D. as well as the number of lines
inserted, deleted and unchanged in the sees file.

-n Specifics retention of the edited g-file (normally
removed at completion of delta processing>.

-glist Specifies a list (sec ged I) for the definition of list) of
deltas which arc to be ignored when the file is accessed
at the change level (SID) created by this delta.

-m[mrlistl If the sees file has the ,. flag set (see admin(l» then a
Modification Request (MR) number must be supplied as
the reason for creating the new delta.

If -m is not uscd and the standard input is a terminal.
the prompt MRs? is issued on the standard output before
the standard input is read; if the standard input is not a
terminal. no prompt is issued. The MRs? prompt always
precedes the comments? prompt (see -y keyleller>.

MRs in a list arc separated by blanks and/or tab charac­
ters. An unescaped new-line character terminates the
MR list.

Note that if the v nag has a value (see admin (I». it is
taken to be the name of a program (or shell procedure)
which will validate the correctness of the MR numbers.
If a non-zero exit status is returned from MR number
validation program. delta terminates. (It is assumed

- 1 -

DELTA(I)

FILES

DELTA (l)

that the MR numbers were not all valid.>

-y[commentl Arbitrary text used to describe the reason for making
the delta. A null string is considered a valid commellf.

If -y is not specified and the standard input is a tenni­
nal, the prompt comments? is issued on the standard
output before the standard input is read: if the standard
input is not a terminal, no prompt is issued. An unes­
caped new-line character terminates the comment text.

-p Causes delta to print (on the standard output) the sees
file differences before and after the delta is applied in a
dUl(I) format.

All tiles of the form ?-file arc explained in the Source Code COllfrol System
User Guide. The naming convention for these files is also described there.

g-file Existed before the execution of delta: removed after comple­
tion of delta.

p-file Existed before the execution of delta; may exist after comple­
tion of delta.

4-file Created during the execution of delta: removed after comple­
tion of delta.

x-file Created during the execution of delta; renamed to sees file
after completion of delta.

z·file Created during the execution of delta; removed during the exe­
cution of delta.

d-file Created during the execution of delta; removed after comple­
tion of delta.

/usr/bin/bdiff Program to compute differences between the "gotten" file and
the g-file.

WARNINGS
Lines beginning with an SOH ASCII character (binary 001) cannot be placed in
the sees file unless the SOH is escaped. This character has special meaning to
sees (sec ,\'('('.\:lile(4) (5» and will cause an error.

A gel of many sees files, followed by a della of those files, should be avoided
when the get generates a large amount of daia. Instead, multiple Ket/delta
se4uences should be used.

If the standard input (-) is specified on the delta command line, the -m (if
necessary) and -y keylellers must also be present. Omission of these
keylellers causes an error to occur.

Comments are limited to text strings of at most 512 characters.

SEE ALSO
admin(IL bdifr(U, cdc(), get(J), help(I), prs(l), rmdel(J).
sccslllc(4) in the UNI.·'\' System V Programmer Reference Manual.

Source ('ode ('ollfrnl System User Guide in the UNIX System V User Gllide.

DIAGNOSTICS
Use hell' (J) for explanations.

- 2 •

DIFF(I)

NAME

DIFF(t)

diff - differential file comparator

SYNOPSIS
diff [-efbh] file 1 file2

DESCRIPTION
Diff tells what lines must be changed in two files to bring them into agreement.
If file I (file2) is -. the standard input is used. If file I (file2) is a directory,
then a file in that directory with the name file2 (file/) is used. The normal
output contains lines of these forms:

nl a n3,n4
nl,n2 d n3
nl,n2 c n3,n4

These lines resemble ed commands to convert filel into file2. The numbers
after the letters pertain to file2. In fact, by exchanging a for d and reading
backward one may ascertain equally how to convert file2 into filel. As in ed,
identical pairs, where nl 1:::1 n2 or n3 1:::1 n4. are abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file
flagged by <. then all the lines that are affected in the second file flagged by
>.
The -b option causes trailing blanks (spaces and tabs) to be ignored and other
strings of blanks to compare equal.

The -e option produces a script of a, c. and d commands for the editor ed,
which will recreate file2 from filel. The -f option produces a similar script,
not useful with ed, in the opposite order. In connection with -e, the following
shell program may help maintain multiple versions of a file. Only an ancestral
file ($1) and a chain of version-to-version ed scripts ($2.$3 •.. .> made by diff
need be on hand. A "latest version" appears on the standard output.

(shift; cat $.; echo 'I.$p') I ed - $1

Except in rare circumstances. diff finds a smallest sufficient set of file
differences.

Option -h does a fast, half-hearted job. It works only when changed stretches
are short and well separated, but does work on files of unlimited length.
Options -e and -f are unavailable with -h.

FILES
Itmp/d?????
lusr/lib/diffh for -h

SEE ALSO
cmp(I). comm(l). ed(I).

DIAGNOSTICS
Exit status is 0 for no differences. 1 for some differences, 2 for trouble.

BUGS
Editing scripts produced under the -e or -f option are naive about creating
lines consisting of a single period (.).

WARNINGS
Missing newline at end offile X

indicates that the last line of file X did not have a new-line. If the lines
are different, they will be flagged and output; although the output will
seem to indicate they are the same.

- 1 -

DIFF3(1)

NAME

DIFF3 (1)

diff3 - 3-way differential file comparison

SYNOPSIS
dUn [-ex3] filel file2 file3

DESCRIPTION
Diff3 compares three versions of a file, and publishes disagreeing ranges of text
flagged with these codes:

all three files differ

=-==1 jilel is different

====2 file2 is different

====3 file3 is different

The type of change suffered in converting a given range of a given file to some
other is indicated in one of these ways:

/: nl a Text i.s to be appended after line number nl in file /,
where/= 1,2, or 3.

/: nl , n2 c Text is to be changed in the range line nJ to line n2.
If nl = n2, the range may be abbreviated to nJ.

The original contents of the range follows immediately after a c indication.
When the contents of two files are identical, the contents of the lower­
numbered file is suppressed.

Under the -e option, di./f3 publishes a script for the editor ed that will incor­
porate into filel all changes between file2 and file3, Le., the changes that nor­
mally would be flagged ==== and ====3. Option -x (-3) produces a
script to incorporate only changes flagged ==== (====3). The following
command will apply the resulting script tofilel.

(cat script; echo '1,$p') I ed - filel

FILES
Itmp/d3*
I usrII ibldiff3 prog

SEE ALSO
diff(I).

BUGS
Text lines that consist of a single. will defeat -e.
Files longer than 64K bytes will not work.

- 1 -

DIFFMK(I)

NAME

DIFFMK(I)

diffmk - mark differences between files

SYNOPSIS
diffmk name I name2 name3

DESCRIPTION
DijJmk compares two versions of a file and creates a third file that includes
"change mark" commands for nroffor troff(I). NameJ and name2 are the old
and new versions of the file. DijJmk generates name3, which contains the lines
of name2 plus inserted formatter "change mark" (.me) requests. When name3
is formatted, changed or inserted text is shown by I at the right margin of each
line. The position of deleted text is shown by a single •.

If anyone is so inclined, dijJmk can be used to produce listings of C (or other>
programs with changes marked. A typical command line for such use is:

diffmk old.c new.c tmp; nrolT macs tmp I pr

where the file macs contains:

.pl 1

.II 77

.nf

.eo

.nc "

The .11 request might specify a different line length, depending on the nature of
the program being printed. The .eo and .ne requests are probably needed only
for C programs.

If the characters I and • are inappropriate, a copy of difJmk can be edited to
change them (dijJmk is a shell procedure).

SEE ALSO
diff(1), nroffO), troffO).

BUGS
Aesthetic considerations may dictate manual adjustment of some output. File
differences involving only formatting requests may produce undesirable output,
i.e., replacing .sp by .sp 2 will produce a "change mark" on the preceding or
following line of output.

- 1 -

DIRCMP(l)

NAME

DIRCMP(J)

dircmp - directory comparison

SYNOPSIS
dircmp [-d I [-5] [-wn I dirt dir2

DESCRIPTION
Dircmp examines dirl and dir2 and generates various tabulated information
about the contents of the directories. Listings of files that are unique to each
directory are generated for all the options. If no option is entered. a list is out­
put indicating whether the file names common to both directories have the
same contents.

-d Compare the contents of files with the same name in both directories
and output a list telling what must be changed in the two files to bring
them into agreement. The list format is described in dijJ(I).

-5 Suppress messages about identical files.

-wn Change the width of the output line to II characters. The default width
is 72.

SEE ALSO
cmp(J >. difT(I).

- I -

DU(I)

NAME

DU(I)

du - summarize disk usage

SYNOPSIS
du [-ars] [names]

DESCRIPTION
Du gives the number of blocks contained in all files and (recursively) direc­
tories within each directory and file specified by the names argument. The
block count includes the indirect blocks of the file. If names is missing, . is
used.

The optional argument -5 causes only the grand total (for each of the specified
names) to be given. The optional argument -a causes an entry to be gen­
erated for each file. Absence of either causes an entry to be generated for each
directory only.

Du is normally silent about directories that cannot be read, files that cannot be
opened, etc. The -r option will cause du to generate messages in such
instances.

A file with two or more links is only counted once.

BUGS
If the -a option is not used, non-directories given as arguments are not listed.
If there are too many distinct linked files, du will count the excess files more
than once.
Files with holes in them will get an incorrect block count.

- I -

DUMP(I)

NAME

(not on PDP-II) DUMP(I)

dump - dump selected parts of an object file

SYNOPSIS
dump [-acfghlorst] [-z name] files'

DESCRIPTION
The dump command dumps selected parts of each of its object file arguments.

This command will accept both object files and archives of object files. It
processes each file argument according to one or morc of the following options:

-a Dump the archive header of each member of each archive file
argument.

-g Dump the global symbols in the symbol table of an archive.

-f Dump cach file header.

-0 Dump each optional header.

-h Dump section headers.

-5 Dump section contents.

-r Dump relocation information.

-I Dump line number information.

-t Dump symbol table entries.

-z name Dump line number entries for the named function.

-c Dump the string table.

The following modifiers are used in conjunction with the options listed above to
modify their capabilities.

-d number Dump the section number or range of sections starting at /lumber
and ending either at the last section number or number specified
by +d.

+d number Dump sections in the range either beginning with first section or
beginning with section specified by -d.

-n name Dump information pertaining only to the namcd entity. This
modifier applies to -h, -S, -r, -I, and -t.

-p Supress printing of the headers.

-t index Dump only the indexed symbol table entry. The -t used in con-
junction with +t, specifies a range of symbol table entries.

+t index Dump the symbol table entries in the range cnding with the
indexed entry. The range begins at the first symbol table entry or
at the entry specified by the -t option.

-u Underline the name of the file for emphasis.

-v Dump information in symbolic representation rather than numeric
(e.g., C_STATIC instead of OX02). This modifier can be used with
all the above options except -s and -0 options of dump.

-z name,number
Dump line number entry or range of line numbers starting at
/lumber for the named function.

+z number Dump line numbers starting at either function /lame or /lumber
specified by -z, up to number specified by +z.

- I -

DUMP(I) (not on PDP·II) DUMP(t)

Blanks separating an option and its modifier are optional. The comma separat­
ing the name from the number modifying the -z option may be replaced by a
blank.

The dump command attempts to format the information it dumps in a mean­
ingful way. printing ccrtain information in character. hex, octal or dccimal
reprcscntation as appropriate.

SEE ALSO
a.out(4). ar(4) in the UNIX System V Programmer Reference Manual.

- 2 •

ECHO(t)

NAME

ECHO(J)

echo - echo arguments

SYNOPSIS
echo [arg] ...

DESCRIPTION
Echo writes its arguments separated by blanks and terminated by a new-line on
the standard output. It also understands C-like escape conventions; beware of
conflicts with the shell's use of \:

\b backspace
\c print line without new-line
\f form-feed
\0 new-line
\r carriage return
\t tab
\v vertical tab
\\ backslash
\n the 8-bit character whose ASCII code is the 1-, 2- or 3-digit

octal number n, which must start with a zero.

Echo is useful for producing diagnostics in command files and for sending
known data into a pipe.

SEE ALSO
sh (l).

- 1 -

ED(1)

NAME

ED(1)

cd, red - text editor

SYNOPSIS
ed [-] [-p string] [-x] [file]

red [-] [-p string] [-x] [file]

DESCRIPTION
Ed is the standard text editor. If the file argument is given, ed simulates an e
command (sec below) on the named file; that is to say, the file is read into ed's
buffer so that it can be edited. The optional - suppresses the printing of char­
acter counts bye, r, and w commands, of diagnostics from e and q commands,
and of the! prompt after a !shell command. The -p option allows the user to
specify a prompt string. If -x is present, an x command is simulated t1rst to
handle an encrypted file. Ed operates on a copy of the file it is editing; changes
made to the copy have no effect on the file until a w (write) command is given.
The copy of the text being edited resides in a temporary file called the buffer.
There is only one buffer.

Red is a restricted version of ed. It will only allow editing of files in the
current directory. It prohibits executing shell commands via !sJrell command.
Attempts to bypass these restrictions result in an error message (restricted
she//).

Both ed and red support the fr;peC(4) formatting capability. After including a
format specification as the first line of file and invoking ed with your terminal
in stty -tabs or stty tab3 mode (see stty(l), the specified tab stops will
automatically be used when scanning file. For example. if the first line of a file
contained:

<:t5,10,15 s72:>
tab stops would be set at columns 5, 10, and 15, and a maximum line length of
72 would be imposed. NOTE: whil~ inputting text, tab characters when typed
are expanded to every eighth column as is the default.

Commands to ed have a simple and regular structure: zero, one, or two
addresses followed by a single-character command, possibly followed by
parameters to that command. These addresses specify one or more lines in the
buffer. Every command that requires addresses has default addresses, so that
the addresses can very often be omitted.

In general, only one command may appear on a line. Certain commands allow
the input of text. This text is placed in the appropriate place in the buffer.
While ed is accepting text, it is said to be in input mode. In this mode, no
commands are recognized; all input is merely collected. Input mode is left by
typing a period (.) alone at the beginning of a line.

Ed supports a limited form of regular expression notation; regular expressions
are used in addresses to specify lines and in some commands (e.g., s) to specify
portions of a line that arc to be substituted. A regular expression (RE)
specifics a set of character strings. A member of this set of strings is said to be
matched by thc RE. The REs allowed by ed are constructed as follows:

The following one-character REs match a single character:

1. t An ordinary character (not onc of those discussed in 1.2 below) is a onc­
character RE that matches itself.

1.2 A backslash (\) followed by any special character is a one-character RE
that matches the special character itself. The special characters are:

a. .,., l, and \ (period, asterisk, left square bracket, and backslash,
respectively), which are always special, except when they appear
within &~uare brackets (I); see 1.4 below}.

- t -

ED(t) ED(t)

b. "(caret or circumflex), which is special at the beginning of an
entire RE (sec 3.1 and 3.2 below), or when it immediately follows
the left of a pair of square brackets ((]) (see 1.4 below).

c. $ (currency symbol), which is special at the end of an entire RE (see
3.2 below).

d. The character used to bound (i.e., delimit) an entire RE, which is
special for that RE (for example, sec how slash (/) is used in the g
command, below.)

1.3 A period (.) is a one-character RE that matches any character except
new-line.

1.4 A non-empty string of characters enclosed in square brackets «(]) is a
one-character RE that matches anyone character in that string. If, how­
ever, the first character of the string is a circumflex ("), the one­
character RE matches any character except new-line and the remaining
characters in the string. The " has this special meaning only if it occurs
first in the string. The minus (-) may be used to indicate a range of
consecutive ASCII characters; for example, (0 -91 is equivalent to
(0123456789). The - loses this special meaning if it occurs first (after
an initial ", if any) or last in the string. The right square bracket (J)
does not terminate such a string when it is the first character within it
(after an initial ", if any); e.g., lIa -fl matches either a right square
bracket (J) or one of the letters a through f inclusive. The four charac­
ters listed in 1.2.a above stand for themselves within such a string of
characters.

The following rules may be used to construct REs from one-character REs:

2.1 A one-character RE is a RE that matches whatever the one-character RE
matches.

2.2 A one-character RE followed by an asterisk (.) is a RE that matches zero
or more occurrences of the one-character RE. If there is any choice, the
longest leftmost string that permits a match is chosen.

2.3 A one-character RE followed by \(m\), \{m,\}, or \(m,n\) is a RE that
matches "a range of occurrences of the one-character RE. The values of
m and n must be non-negative integers less than 256; \(m\) matches
exactly m occurrences; \{m,\} matches at least m occurrences; \{m,n\}
matches any number of occurrences between m and n inclusive. When­
ever a choice exists, the RE matches as many occurrences as possible.

2.4 The concatenation of REs is a RE that matches the concatenation of the
strings matched by each component of the RE.

2.5 A RE enclosed between the character sequences \(and \) is a RE that
matches whatever the unadorned RE matches.

2.6 The expression \n matches the same string of characters as was matched
by an ex/pression enclosed between \(and \) earlier in the same RE.
Here n i~ a digit; the sub-expression specified is that beginning with the
n-th occurrence of \(counting from the left. For example, the expression
"\<'.\)\1$ matches a line consisting of two repeated appearances of the
same string.

Finally, an entire RE may be constrained to match only an initial segment or
final segment of a line (or both).

3.1 A circumflex (,,) at the beginning of an entire RE constrains that RE to
match an initial segment of a line.

- 2 -

ED(I) ED(I)

3.2 A currency symbol ($) at the end of an entire RE constrains that RE to
match a final segment of a line.

The construction "entire RE$ constrains the entire RE to match the entire line.

The null RE (e.g., II) is equivalent to the last RE encountered. See also the
last paragraph before FILES below.

To understand addressing in ed it is necessary to know that at any time there is
a current line. Generally speaking, the current line is the last line affected by a
command: the exact effect on the current line is discussed under the description
of each command. Addresses are constructed as follows:

I. The character. addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. 'x addresses the line marked with the mark name character x. which
must be a lower-case letter. Lines are marked with the k command
described below.

5. A RE enclosed by slashes (/) addresses the first line found by searching
forward from the line follOWing the current line toward the end of the
buffer and stopping at the first line containing a string matching the RE.
If necessary. the search wraps around to the beginning of the buffer and
continues up to and including the current line, so that the entire butTer is
searched. See also the last paragraph before FILES below.

6. A RE enclosed in question marks (?) addresses the first line found by
searching backward from the line preceding the current line toward the
beginning of the buffer and stopping at the first line containing a string
matching the RE. If necessary, the search wraps around to the end of
the buffer and continues up to and including the current line. See also
the last paragraph before FILES below.

7. An address followed by a plus sign (+) or a minus sign (-) followed by
a decimal number specifics that address plus (respectively minus) the
indicated number of lines. The plus sign may be omitted.

8. If an address begins with + or -, the addition or subtraction is taken
with respect to the current line: e.g, -5 is understood to mean. -5.

9. If an address ends with + or -, then I is added to or subtracted from
the address, respectively. As a consequence of this rule and of rule 8
immediately above, the address - refers to the line preceding the current
line. (To maintain compatibility with earlier versions of the editor. the
character " in addresses is entirely equivalent to - J Moreover. trailing
+ and - characters have a cumulative effect, so - - refers to the
current line less 2.

10. For convenience. a comma (,) stands for the address pair 1,$, while a
semicolon (;) stands for the pair .,$.

- 3 -

ED(I) ED(I)

Commands may require zero, one, or two addresses. Commands that require
no addresses regard the presence of an address as an error. Commands that
accept one or two addresses assume default addresses when an insufficient
number of addresses is given; if more addresses arc given than such a command
requires, the last one(s) are used.

Typically, addresses are separated from each other by a comma (,). They may
also be separated by a semicolon (;). In the latter case, the current line (.) is
set to the first address, and only then is the second address calculated. This
feature can be used to determine the starting line for forward and backward
searches (sec rules 5. and 6. above). The second address of any two-address
sequence must correspond to a line that follows, in the buffer, the line
corresponding to the first address.

In the following list of ed commands, the default addresses are shown in
parentheses. The parentheses are not part of the address; they show that the
given addresses are the default.

It is generally illegal for more than one command to appear on a line. How­
ever, any command (except e, I, r, or w) may be sullixed by I, n, or p in which
case the current line is either listed, numbered or printed, respectively, as dis­
cussed below under the I, n, and p commands.

(.)a

<text>

The append command reads the given text and appends it after the
addressed line; . is left at the last inserted line, or, if there were none,
at the addressed line. Address 0 is legal for this command: it causes
the "appended" text to be placed at the beginning of the buffer. The
maximum number of characters that may be entered from a terminal
is 256 per line <including the new-line character).

<ole
<text>

The change command deletes the addressed lines, then accepts input
text that replaces these lines; . is left at the last line input, or, if there
were none, at the first line that was not deleted.

(.,'>d
The delete command deletes the addressed lines from the buffer. The
line after the last line deleted becomes the current line; if the lines
deleted were originally at the end of the buffer, the new last line
becomes the current line.

efile
The edit command causes the entire contents of the buffer to be
deleted, and then the named file to be read in; . is set to the last line of
the butTer. If no file name is given, the currently-remembered file
name, if any, is used (see the I command). The number of characters
read is typed; file is remembered for possible use as a default file name
in subsequent e, r, and w commands. If file is replaced by!, the rest
of the line is taken to be a shell (sh (I» command whose output is to
be read. Such a shell command is not remembered as the current file
name. See also DIAGNOSTICS below.

Efile
The Edit command is like e, except that the editor does not check to
sec if any changes have been made to the buffer since the last w com­
mand.

- 4 -

EO(I) EO(I)

f file
If file is given. the file-name command changes the currently­
remembered file name to file; otherwise, it prints the currently­
remembered file name.

(1 ,$)g/RE Icommand list
In the global command, the first stcp is to mark every line that
matches the given RE. Thcn. for every such line, the given command
list is cxecuted with . initially set to that line. A single command or
the first of a list of commands appears on the same line as the global
command. All lines of a multi-line list except the last line must be
cnded with a \; a, i, and c commands and associated input are permit­
ted. The. terminating input mode may be omitted if it would be the
last line of the command list. An empty command list is equivalent to
the p command. The g, G, v. and V commands are not permitted in
the command list. See also BUGS and the last paragraph before FILES
below.

(l,$)GIRt;/
In the interactive Global command. the first step is to mark every line
that matches the given RE. Then, for every such line, that line is
printed, . is changed to that line, and anyone command (other than
one of the a. c, i. g. G. v, and V commands) may be input and is exe­
cuted. After the execution of that command. the next marked line is
printed, and so on; a new-line acts as a null command; an & causes
the re-execution of the most recent command executed within the
current invocation of G. Note that the commands input as part of the
execution of the G command may address and affect any lines in the
buffer. The G command can be terminated by an interrupt signal
(I\SClI DEL or BREAK).

h
The help command gives a short error message that explains the reason
for the most recent? diagnostic.

H
The Help command causes ed to enter a mode in which error messages
arc printed for all subsequent ? diagnostics. It will also explain the
previous ? if there was one. The H command alternately turns this
mode on and off; it is initially off.

('li
<text>

The insert command inserts the given text before the addressed line; .
is left at the last inserted line. or. if there were none, at the addressed
line. This command differs from the a command only in the placement
of the input text. Address 0 is not legal for this command. The max­
imum number of characters that may be entered from a terminal is
256 per line (including the new-line character).

(.,.+t>j
The join command joins contiguous lines by removing the appropriate
new-line characters. If exactly one address is given, this command
does nothing.

(.)kx
The mark command marks the addressed line with name x, which
must be a lower-case letter. The address 'x then addresses this tine; .
is unchanged.

- 5 -

ED(l) ED(l)

<.,.>1
The list command prints the addressed lines in an unambiguous way:
a few non-printing characters (e.g., tab, backspace) arc represented by
(hopefully) mnemonic overstrikes. All other non-printing characters
are printed in octal, and long lines are folded. An I command may be
appended to any other command other than e,f, r, or w.

<.,.)ma
The move command repositions the addressed line{s) after the line
addressed by a. Address 0 is legal for a and causes the addressed
line(s) to be moved to the beginning of the file. It is an error if
address a falls within the range of moved lines; . is left at the last line
moved.

<.,.)0
The number command prints the addressed lines, preceding each line
by its line number and a tab character; • is left at the last line printed.
The n command may be appended to any other command other than e,
f, r, or w.

<.,.)p
The print command prints the addressed lines; • is left at the last line
printed. The p command may be appended to any other command
other than e, f, r, or w. For example, dp deletes the current line and
prints the new current line.

p
The editor will prompt with a • for all subsequent commands. The P
command alternately turns this mode on and off; it is initially off.

q
The quit command causes ed to exit. No automatic write of a lIJe is
done (but see DIAGNOSTICS below).

Q
The editor exits without checking if changes have been made in the
buffer since the last w command.

($)r file
The read command reads in the given file after the addressed line. If
no file name is given, the currently-remembered file name, if any, is
used (see e and f commands). The currently-remembered file name is
not changed unless file is the very first file name mentioned since ed
was invoked. Address 0 is legal for r and causes the file to be read at
the beginning of the buffer. If the read is successful, the number of
characters read is typed; . is set to the last line read in. If file is
replaced by!, the rest of the line is taken to be a shell (sh (l» com­
mand whose output is to be read. For example, "$r !Is" appends
current directory to the end of the file being edited. Such a shell com­
mand is not remembered as the current file name.

<.,.)51RElreplacement 1 or
<.,.)sIRElreplacementlg or
<.,. >SIRElreplacement10 n = 1-512

The substitute command searches each addressed line for an
occurrence of the specified RE. In each line in which a match is found,
all (non-overlapped) matched strings are replaced by the replacement
if the global replacement indicator g appears after the command. If
the global indicator does not appear, only the first occurrence of the
matched string is replaced. If a number n appears after the command,
only the n th occurrence of the matched string on each addressed line

- 6 -

.~

ED(I) ED(I)

is replaced. It is an error for the substitution to fail on all addressed
lines. Any character other than space or new-line may be used instead
of / to delimit the RE and the replacement; . is left at the last line on
which a substitution occurred. See also the last paragraph before
FILES below.

An ampersand {&} appearing in the replacement is replaced by the
string matching the RE on the current line. The special meaning of &
in this context may be suppressed by preceding it by \. As a more
general feature, the characters \n, where n is a digit, are replaced by
the text matched by the n-th regular subexpression of the specified RE
enclosed between \(and \). When nested parenthesized subexpressions
arc present, n is determined by counting occurrences of \{ starting
from the left. When the character % is the only character in the
replacement, the replacement used in the most recent substitute com­
mand is used as the replacement in the current substitute command.
The % loses its special meaning when it is in a replacement string of
more than one character or is preceded by a \.

1\ line may be split by substituting a new-line character into it. The
new-line in the replacement must be escaped by preceding it by \.
Such substitution cannot be done as part of a g or v command list.

C•. >ta
This command acts just like the m command, except that a copy of the
addressed lines is placed after address a {which may be O}; • is left at
the last line of the copy.

u
The undo command nullifies the effect of the most recent command
that modified anything in the butTer, namely the most recent a, c, d, g,
i, j, m, r, s, t, v, G, or V command.

{I.$)v/RI:"/command list
This command is the same as the global command g except that the
command list is executed with. initially set to every line that does not
match the RE.

(I.$)V!RH!
This command is the same as the interactive global command G except
that the lines that are marked during the first step arc those that do
not match the RE.

(I.$)w Jile
The write command writes the addressed lines into the named file. If
the file does not exist, it is created with mode 666 {readable and writ­
able by everyone>, unless your umask setting (sec sh (I» dictates oth­
erwise. The currently-remembered file name is not changed unless file
is the very tlrst file name mentioned since ed was invoked. If no file
name is given, the currently-remembered file name, if any, is used (see
(' and J commands); • is unchanged. If the command is successful, the
number of characters written is typed. If file is replaced by!, the rest
of the line is taken to be a shell (sh ()) command whose standard
input is the addressed lines. Such a shell command is not remembered
as the current tile name.

x
1\ key string is demanded from the standard input. Subsequent e, r,
and w commands will encrypt and decrypt the text with this key by the
algorithm of crypt (I). An explicitly empty key turns otT encryption.

- 7 -

ED(I) EO(I)

($) =
The line number of the addressed line is typed; . is unchanged by this
command.

!shell command
The remainder of the line after the! is sent to the UNIX system shell
(sh (I» to be interpreted as a command. Within the text of that com­
mand, the unescaped character % is replaced with the remembered file
name; if a ! appears as the first character of the shell command, it is
replaced with the text of the previous shell command. Thus,!! will
repeat the last shell command. If any expansion is performed, the
expanded line is echoed; . is unchanged.

(. +1) <new-line>
An address alone on a line causes the addressed line to be printed. A
new-line' alone is equivalent to . +Ip; it is useful for stepping forward
through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and returns
to irs command level.

Some size limitations: 512 characters per line, 256 characters per global com­
mand list, 64 characters per file name, and 128K characters in the buffer. The
limit on the number of lines depends on the amount of user memory: each line
takes I word.

When reading a file, ed discards ASCII NUL characters and all characters after
the last new-line. Files (e.g., a.out> that contain characters not in the ASCII
set (bit 8 on) cannot be edited by ed.

If the closing delimiter of a RE or of a replacement string (e.g., /) would be the
last character before a new-line, that delimiter may be omitted, in which case
the addressed line is printed. The following pairs of commands are equivalent:

s/sl/s2 s/sl/s2/p
glsl glsllp
?sl ?sl?

FILES
temporary; # is the process number.
work is saved here if the terminal is hung up.

?file

Itmp/e#
ed.hup

DIAGNOSTICS
? for command errors.

for an inaccessible file.
(usc the help and Help commands for detailed explanations).

If changes have been made in the buffer since the last w command that wrote
the entire buffer. ed warns the user if an attempt is made to destroyed's buffer
via the e or q commands. It prints? and allows one to continue editing. A
second e or q command at this point will take effect. The - command-line
option inhibits this feature.

SEE ALSO
crypt(I), grcp(I), sed(I), shU), stty(J).
fspec(4), rcgcxp(5) in the UNIX System V Programmer Reference Manual.

UNIX System V Editing Guide.

- 8 -

ED(l) ED(l)

CAVEATS AND BUGS
A ! command cannot be subject to a g or a v command.
The! command and the! escape from the e, r, and w commands cannot be
used if the the editor is invoked from a restricted shell (see sh (I».
The sequence \n in a RE does not match a new-line character.
The / command mishandles DEL.
Files encrypted directly with the crypt (I) command with the null key cannot
be edited.
Characters are masked to 7 bits on input.
If the editor input is coming from a command file <i.e., ed file < ed-cmd-file}.
the editor will exit at the first failure of a command that is in the command
file.

- 9 -

EDIT(I)

NAME

EDIT(I)

edit - text editor (variant of ex for casual users)

SYNOPSIS
edit [-r] name ...

DESCRIPTION
Edit is a variant of the text editor ex recommended for new or casual users
who wish to use a command-oriented editor. The following brief introduction
should help you get started with edit. If you are using a CRT terminal you may
want to learn about the display editor vi.

BRIEF INTRODUCTION
To edit the contents of an existing file you begin with the command "edit
name" to the shell. Edit makes a copy of the file which you can then edit, and
tells you how many lines and characters are in the file. To create a new file,
just make up a name for the file and try to run edit on it; you will cause an
error diagnostic, but do not worry.

Edit prompts for commands with the character ':" which you should see after
starting the editor. If you are editing an existing file, then you will have some
lines in edit's buffer (its name for the copy of the file you are editing). Most
commands to edit use its "current line" if you do not tell them which line to
use. Thus if you say print (which can be abbreviated p) and hit carriage return
(as you should after all edit commands) this current line will be printed. If
you delete (d) the current line, edit will print the new current line. When you
start editing, edit makes the last line of the file the current line. If you delete
this last line, then the new last line becomes the current one. In general, after
a delete, the next line in the file becomes the current line. (Deleting the last
line is a special case.)

If you start with an empty file or wish to add some new lines, then the append
(a) command can be used. After you give this command <typing a carriage
return after the word append) edit will read lines from your terminal until you
give a line consisting of just a, placing these lines after the current line.
The last line you type then becomes the current line. The command insert (i)
is like append but places the lines you give before, rather than after, the current
line.

Edit numbers the lines in the buffer, with the first line having number 1. If
you give the command "1" then edit will type this first line. If you then give
the command delete edit will delete the first line, line 2 will become line I, and
edit will print the current line <the new line 1) so you can see where you are.
In general, the current line will always be the last line affected by a command.

You can make a change to some text within the current line by using the sub­
stitute (s) command. You say "s/oId/new/" where old is replaced by the old
characters you want to get rid of and new is the new characters you want to
replace it with.

The command file (r) will tell you how many lines there are in the buffer you
are editing and will say "[Modified]" if you have changed it. After modifying
a file you can put the buffer text back to replace the file by giving a write (w)
command. You can then leave the editor by issuing a quit (q) command. If
you run edit on a file, but do not change it, it is not necessary (but does no
harm) to write the file back. If you try to quit from edit after modifying the
buffer without writing it out, you will be warned that there has been "No write
since last change" and edit will await another command. If you wish not to
write the buffer out then you can issue another quit command. The buffer is
then irretrievably discarded, and you return to the shell.

- I -

EDIT(I) EDIT(I)

~
\'

By using the delete and append commands, and giving line numbers to see lines
in the file you can make any changes you desire. You should learn at least a
few more things, however, if you are to use edit more than a few times.

The change (c) command will change the current line to a sequence of lines
you supply (as in append you give lines up to a line consisting of only au...).
You can tell change to change more than one line by giving the line numbers of
the lines you want to change, i.e., "3,5change". You can print lines this way
too. Thus "I,23p" prints the first 23 lines of the file.

The undo (u) command will reverse the effect of the last command you gave
which changed the buffer. Thus if you give a substitute command which does
not do what you want, you can say undo and the old contents of the line will be
restored. You can also undo an undo command so that you can continue to
change your mind. Edit will give you a warning message when commands you
do affect more than one line of the buffer. If the amount of change seems
unreasonable, you should consider doing an undo and looking to see what hap­
pened. If you decide that the change is ok, then you can undo again to get it
back. Note that commands such as write and quit cannot be undone.

To look at the next line in the buffer you can just hit carriage return. To look
at a number of lines hit -D (control key and, while it is held down D key, then
let up both) rather than carriage return. This will show you a half screen of
lines on a CRT or 12 lines on a hardcopy terminal. You can look at the text
around where you are by giving the command ..z.... The current line will then
be the last line printed; you can get back to the line where you were before the
"z." command by saying 40"". The z command can also be given other follow­
ing characters "z-" prints a screen of text (or 24 lines) ending where you are;
..z+.. prints the next screenful. If you want less than a screenful of lines, type
in "z.l2" to get 12 lines total. This method of giving counts works in general;
thus you can delete 5 lines starting with the current line with the command
"delete 5".

To find things in the file, you can use line numbers if you happen to know
them; since the line numbers change when you insert and delete lines this is
somewhat unreliable. You can search backwards and forwards in the file for
strings by giving commands of the form Itextl to search forward for text or
?text? to search backward for text. If a search reaches the end of the file
without finding the text it wraps, end around, and continues to search back to
the line where you are. A useful feature here is a search of the form rtextl
which searches for text at the beginning of a line. Similarly ItextSI searches
for text at the end of a line. You can leave off the trailing / or ? in these com­
mands.

The current line has a symbolic name "...; this is most useful in a range of lines
as in ...,$print" which prints the rest of the lines in the file. To get to the last
line in the file you can refer to it by its symbolic name "$". Thus the com­
mand "$ delete" or "$d" deletes the last line in the file, no matter which line
was· the current line before. Arithmetic with line references is also possible.
Thus the line "$-5" is the fifth before the last, and 40.+20" is 20 lines after the
present.

You can find out which line you are at by doing ~ •.=". This is useful if you
wish to move or copy a section of text within a file or between files. Find out
the first and last line numbers you wish to copy or move (say 10 to 20). For a
move you can then say u, 0,20delete a" which deletes these lines from the file
and places them in a buffer named a. Edit has 26 such buffers named a
through z. You can later get these lines back by doing Uput an to put the con­
tents of buffer a after the current line. If you want to move or copy these lines
between files you can give an edit (e) command after copying the lines,

- 2 -

EDIT(l) EDIT(I)

following it with the name of the other file you wish to edit, Le., Hedit
chapter2". By changing delete to yank above you can get a pattern for copying
lines. If the text you wish to move or copy is all within one file then you can
just say HIO,20move $" for example. It is not necessary to use named buffers
in this case (but you can if you wish>.

SEE ALSO
ex(t), viet).

- 3 -

EFL(t)

NAME

EFL(I)

eft - Extended Fortran Language

SYNOPSIS
eft [options] [files]

DESCRIPTION
Eft compiles a program written in the EFL language into clean Fortran on the
standard output. Eft provides the C-like control constructs of ratfor< I):

statement grouping with braces.

decision-making:
if, if-else, and select-case (also known as switch-case);
while, for, Fortran do, repeat, and repeat ... until loops;
multi-level break and next.

EFL has C-like data structures, e.g.:

struct
{
integer flags(J)
character(8) name
long real coords (2)
} table(JOO)

The language offers generic functions, assignment operators (+ 1::1, & =, etc,),
and sequentially evaluated logical operators (& & and II). There is a uniform
input/output syntax:

write(6,x,y:f(7,2), do i=l,lO { aG,j),z.b(i) })

EFL also provides some syntactic "sugar":

free-form input:
multiple statements per line; automatic continuation; statement
label names (not just numbers).

comments:
this is a comment.

translation of relational and logical operators:
>, > 1::1, &, etc., become .GT., .GE., .AND., etc.

return expression to caller from function:
return (expression)

defines:
define name replacement

includes:
include file

Eft understands several option arguments: -w suppresses warning messages,
-# suppresses comments in the generated program, and the default option -C
causes comments to be included in the generated program.

An argument with an embedded 1::1 (equal sign) sets an EFL option as if it had
appeared in an option statement at the start of the program. Many options are
described in the reference manual. A set of defaults for a particular target
machine may be selected by one of the choices: system 1::1 unix, system = gcos, or
system 1::1 cray. The default setting of the system option is the same as the
machine the compiler is running on.

- 1 -

EFL(I) EFL(I)

Other specific options determine the style of input/output, error handling, con­
tinuation conventions, the number of characters packed per word, and default
formats.

Efl is best used with j77 (I).

SEE ALSO
cc(I), fi7 (I), ratfor (I).

- 2 -

ENABLE(I)

NAME

ENABLE(I)

enable, disable - enable/disable LP printers

SYNOPSIS
enable printers
disable [-c) [-r[reason]] printers

DESCRIPTION
Enable activates the named printers, enabling them to print requests taken by
lp (I). Use lpstat (I) to find the status of printers.

. Disable deactivates the named printers, disabling them from printing requests
taken by lp (I). By default, any requests that are currently printing on the
designated printers will be reprinted in their entirety either on the same printer
or on another member of the same class. Use lpstat (I) to find the status of
printers. Options useful with disable are:

-c Cancel any requests that are currently printing on any of the
designated printers.

-r[reason] Associates a reason with the deactivation of the printers. This
reason applies to all printers mentioned up to the next -r option.
If the -r option is not present or the -r option is given without
a reason, then a default reason will be used. Reason is reported
by lpstat (I).

FILES
lusrlspool/lp/·

SEE ALSO
Ip(I), lpstat (I).

- I -

ENV(l)

NAME
env - set environment for command execution

ENV(I)

SYNOPSIS
en" [-] [name=value]... [command args

DESCRIPTION
Env obtains the current environment, modifies it according to its arguments,
then executes the command with the modified environment. Arguments of the
form name -value are merged into the inherited environment before the com­
mand is executed. The - flag causes the inherited environment to be ignored
completely, so that the command is executed with exactly the environment
specified by the arguments.

If no command is specified, the resulting environment is printed, one name­
value pair pe~ line.

SEE ALSO
sh(I).
exec(2), profile(4), environ(S) in the UNIX System V Programmer Reference
Manual.

- I -

EX(I)

NAME
ex - text editor

EX(I)

SYNOPSIS
ex [-] [-v] [-t tag] [-r] [-R] [+command] [-I] [-x
] name ...

DESCRIPTION
Ex is the root of a family of editors: ex and vi. Ex is a superset of ed, with
the most notable extension being a display editing facility. Display based edit­
ing is the focus of vi.

If you have a CRT terminal. you may wish to use a display based editor; in this
case see vi (I), which is a command which focuses on the display editing por­
tion of ex.

DOCUMENTATION
The Ex Reference Manual is a comprehensive and complete manual for the
command mode features of ex, but you cannot learn to use the editor by read­
ing it. For an introduction to more advanced forms of editing using the com­
mand mode of ex see the editing documents written by Brian Kernighan for the
editor ed: the material in the introductory and advanced documents works also
with ex.

An Introduction to Display Editing with Vi introduces the display editor vi
and provides reference material on vi. The Vi Quick Reference card summar­
izes the commands of vi in a useful, functional way, and is useful with the
Introduction. The vi(I) manual page can also be used as reference.

FOR ED USERS
If you have used ed you will find that ex has a number of new features useful
on CRT terminals. Intelligent terminals and high speed terminals are very
pleasant to use with vi. Generally, the editor uses far more of the capabilities
of terminals than ed does, and uses the terminal capability data base ter­
minfo(4) and the type of the terminal you are using from the variable TERM
in the environment to determine how to drive your terminal efficiently. The
editor makes use of features such as insert and delete character and line in its
visual command (which can be abbreviated vi) and which is the central mode of
editing when using v;(I).

Ex contains a number of new features for easily viewing the text of the file.
The z command gives easy access to windows of text. Hitting -D causes the
editor to scroll a half-window of text and is more useful for quickly stepping
through a file than just hitting return. Of course, the screen-oriented visual
mode gives constant access to editing context.

Ex gives you more help when you make mistakes. The undo (u) command
allows you to reverse any single change which goes astray. Ex gives you a lot
of feedback, normally printing changed lines, and indicates when more than a
few lines are affected by a command so that it is easy to detect when a com­
mand has affected more lines than it should have.

The editor also normally prevents overwriting existing files unless you edited
them so that you do not accidentally clobber with a write a file other than the
one you are editing. If the system (or editor> crashes, or you accidentally hang
up the telephone, you can use the editor recover command to retrieve your
work. This will get you back to within a few lines of where you left off.

Ex has several features for dealing with more than one file at a time. You can
give it a list of files on the command line and use the next (n) command to deal
with each in turn. The next command can also be given a list of file names, or
a pattern as used by the shell to specify a new set of files to be dealt with. In

- 1 -

EX(I) EX(I)

general, file names in the editor may be formed with full shell metasyntax. The
metacharacter '%' is also available in forming file names and is replaced by the
name of the current file.

For moving text between files and within a file the editor has a group of
buffers, named a through z. You can place text in these named butTers and
carry it over when you edit anothcr file.

There is a command & in ex which repeats thc last substitute command. In
addition there is a confirmed substitute command. You give a range of substi­
tutions to be done and the editor interactively asks whether each substitution is
desired.

It is possible to ignore case of letters in searches and substitutions. Ex also
allows regular expressions which match words to be constructed. This is con­
venient, for example, in searching for the word "cdit" if your document also
contains thc word "editor."

Ex has a set of options which you can set to tailor it to your liking. One
option which is very useful is the autoindent option which allows the editor to
automatically supply leading white space to align text. You can then use the
AD key as a backtab and space and tab forward to align new code easily.

Miscellaneous new useful features include an intelligent join (j) command
which supplies white space between joined lines automatically, commands <
and > which shift groups of lines, and the ability to filter portions of the buffer
through commands such as sort.

INVOCATION OPTIONS
The following invocation options are interpreted by ex:

Suppress all interactivc-user feedback. This is useful in pro­
cessing editor scripts.

-v Invokes vi

Normal and initial state. Input prompted for by:. Your kill
character cancels partial command.

Entered by a i and c. Arbitrary text may be entered. Insert
is normally terminated by line having only. on it, or abnor­
mally with an interrupt.

Entered by vi, terminates with Q or A\.

-r file

-I

+command

-t tagfR

Insert

-x

-R

Visual

Edit the file containing the tag and position the editor at its
definition.

Recover file after an editor or system crash. If file is not
specified a list of all saved files will be printed.

Readonly mode set, prevents accidentally overwriting the file.

Begin editing by executing the specified editor search or posi­
tioning command.

LISP mode; indents appropriately for lisp code, the 0 {} II
and II commands in vi are modified to have meaning for lisp.

Encryption mode; a key is prompted for allowing creation or
editing of an encrypted file.

The name argument indicates files to be edited.

Ex States
Command

- 2 •

EX(I)

Ex command names and abbreviations
abbrev ab next n
append a number nu
args ar
change c preserve pre
copy co print p
delete d put pu
edit e quit q
file f read re
global g recover ree
insert i rewind rew
join set se
list shell sh
map source so
mark ma stop st
move m substitute s

unabbrev una
undo u
unmap unm
version ve
visual vi
write w
xit x
yank ya
window z
escape !
Ishift <
print next CR
resubst &
rshift >
scroll "D

EX(I)

/pat next with pat
?pat previous with pal
x-n 11 before x
x,y x through y
'x marked with x

previous context

place set's here in environment var.
editor initialization file
editor initialization file
enable option
disable option
give value val
show changed options
show all options
show value of option x

Ex Command Addresses
n line n

current
S last
+ next

previous
+n n forward
% 1,$

Initializing options
EXINIT
SHOME/.exre
./.exrc
set x
set nox
set x=val
set
set all
set x?

Most useful options
autoindent
autowrite
ignorecase
lisp
list
magic
number
paragraphs
redraw
scroll
sections
shiftwidth
showmateh
showmode
slowopen
window
wrapscan
wrapmargin

ai
aw
ic

nu
para

sect
sw
sm
smd
slow

ws
wm

supply indent
write before changing files
in scanning
() () are s-exp's
print "I for tab, $ at end
. I • special in patterns
number lines
macro names which start ...
simulate smart terminal
command mode lines
macro names ...
for < >, and input "D
to) and} as typed
show insert mode in vi
stop updates during insert
visual mode lines
around end of buffer'?
automatic line splitting

- 3 -

\<
\>
(str)
Itstr)
lx-y)
*

EX(l)

Scanning pattern formation
.. beginning of line
$ end of line

any character
beginning of word
end of word
any char in str
... not in str
... between x and y
any number of preceding

EX(I)

AUTHOR
Vi and ex are based on software developed by The University of California,
Berkeley California, Computer Science Division, Department of Electrical
Engineering and Computer Science.

FILES
/usr/lib/ex? ?strings
/usr/lib/ex? ?recover
/usr/lib/ex? ?preserve
/usr/lib/*/*
$HOME/.exrc
.I.exrc
/tmp/Exnnnnn
/tmp/Rxnnnnn
/ usr/ preserve

error messages
recover command
preserve command
describes capabilities of terminals
editor startup file
editor startup file
editor temporary
named buffer temporary
preservation directory

SEE ALSO
awk(I), ed(I), edit(I), grep(I), sed(», vi(I).
curses(3X), term(4). terminfo(4) in the UNIX System V Programmer Refer­
ence Manual.

CAVEATS AND BUGS
The version of ex that runs on the PDP-II does not support the full command
set due to space limitations. The commands which are not supported are
detailed in the UEx Reference Manual." The most notable commands which
are missing are the macro and abbreviation facilities.

The undo command causes all marks to be lost on lines changed and then
restored if the marked lines were changed.

Undo never clears the buffer modified condition.

The z command prints a number of logical rather than physical lines. More
than a screen full of output may result if long lines are present.

File input/output errors do not print a name if the command line' -' option is
used.

There is no easy way to do a single scan ignoring case.

The editor docs not warn if text is placed in named buffers and not used before
exiting the editor.

Null characters are discarded in input files and cannot appear in resultant files.

- 4 -

EXPR(I)

NAME

EXPR(I)

expr - evaluate arguments as an expression

SYNOPSIS
expr arguments

DESCRIPTION
The arguments are taken as an expression. After evaluation, the result is writ­
ten on the standard output. Terms of the expression must be separated by
blanks. Characters special to the shell must be escaped. Note that 0 is
returned to indicate a zero value, rather than the null string. Strings contain­
ing blanks or other special characters should be quoted. Integer-valued argu­
ments may be preceded by a unary minus sign. Internally, integers are treated
as 32-bit, 2s complement numbers.

The operators and keywords are listed below. Characters that need to be
escaped are preceded by \. The list is in order of increasing precedence, with
equal precedence operators grouped within {} symbols.

expr \1 expr
returns the first expr if it is neither null nor 0, otherwise returns the
second expr.

expr \& expr
returns the first expr if neither expr is null or 0, otherwise returns O.

expr { =, \>, \> =, \<, \< =, != } expr
returns the result of an integer comparison if both arguments are
integers, otherwise returns the result of a lexical comparison.

expr (+, -) expr
addition or subtraction of integer-valued arguments.

expr { \-, I, % } expr
multiplication, division, or remainder of the integer-valued arguments.

expr: expr
The matching operator: compares the first argument with the second
argument which must be a regular expression. Regular expression
syntax is the same as that of ed(I), except that all patterns are
"anchored" (i.e., begin with ..) and, therefore, .. is not a special char­
acter, in that context. Normally, the matching operator returns the
number of characters matched (0 on failure). Alternatively, the
\ (••• \) pattern symbols can be used to return a portion of the first
argument.

EXAMPLES
1.

2.

a='expr $a + l'

adds 1 to the shell variable a.

'For $a equal to either "/usr/abc/file" or just "file"'
expr $a : '.-I\(.-\)' \1 $a

returns the last segment of a path name (i.e., file). Watch out
for I alone as an argument: expr will take it as the division
operator (see BUGS below).

- 1 -

EXPR(t) EXPR(I)

3.

for operator/operand errors
if arithmetic is attempted on such a string

A better representation of example 2.
expr //$a : ' ••1\(.•\)'

The addition of the II characters eliminates any ambiguity
about the division operator and simplifies the whole expression.

4. expr $VAR : ' •• '

returns the number of characters in $VAR.

SEE ALSO
ed(), she)).

EXIT CODE
As a side effect of expression evaluation, expr returns the following exit values:

o if the expression is neither null nor 0
I if the expression is null or 0
2 for invalid expressions.

DIAGNOSTICS
syntax error
non-numeric argument

BUGS
After argument processing by the shell, expr cannot tell the difference between
an operator and an operand except by the value. If $a is an =, the command:

expr $a = '='
looks like:

expr = = =
as the arguments are passed to expr (and they will all be taken as the =
operator). The following works:

expr X$a XCI

- 2 -

F77 (I)

NAME

-v

-u

-w

-m

-E

-F

-)
-66
-c
-u

-ooutput
-f

f77 - Fortran 77 compiler

SYNOPSIS
f77 [options] files

DESCRIPTION
F77 is the UNIX System Fortran 77 compiler; it accepts several types of file
arguments:

Arguments whose names end with .f are taken to be Fortran 77 source
programs; they are compiled and each object program is left in the
current directory in a file whose name is that of the source, with .0

substituted for .f.

Arguments whose names end with .r or .e are taken to be RATFOR or
EFL source programs, respectively. These are first transformed by the
appropriate preprocessor, then compiled by j77, producing .0 files.

In the same way, arguments whose names end with .c or .s are taken to
be C or assembly source programs and are compiled or assembled, pro­
ducing .0 files.

The following options have the same meaning as in edt) (see IdO) for link
editor options):

-c Suppress link editing and produce .0 files for each source file.
-p Prepare object files for profiling (see pro/O».
-0 Invoke an object-code optimizer.
-s Compile the named programs and leave the assembler-language

output in corresponding files whose names are suffixed with .5.

(No .0 files are created.)
Name the final output file output, instead of a.out.
In systems without floating-point hardware, use a version of j77
that handles floating-point constants and links the object program
with the floating-point interpreter.

-g Generate additional information needed for the use of sdb 0).
The following options are peculiar toj77:

-onetrip Compile DO loops that are performed at least once if reached.
(Fortran 77 DO loops are not performed at all if the upper limit
is smaller than the lower limit.>
Same as - onetrip.
Suppress extensions which enhance Fortran 66 compatibility.
Generate code for run-time subscript range-checking.
Do not "fold" cases. F77 is normally a no-case language <i.e., a is
equal to A). The - U option causes j77 to treat upper and lower
cases to be separate.
Make the default type of a variable undefined, rather than using
the default Fortran rules.
Verbose mode. Provide diagnostics for each process during com­
pilation.
Suppress all warning messages. If the option is -w66, only For­
tran 66 compatibility warnings are suppressed.
Apply EFL and RATFOR preprocessor to relevant files, put the
result in files whose names have their suffix changed to .f. (No.o
files are created.)
Apply the M4 preprocessor to each EFL or RATFOR source file
before transforming with the rat/odt) or ejl(t) processors.
The remaining characters in the argument are used as an EFL
flag argument whenever processing a .e file.

- I -

F77 (t>

FILES

F77(l)

-R The remaining characters in the argument are used as a RATFOR
flag argument whenever processing a .r file.

Other arguments are taken to be either link-editor option arguments or 177­
compilable object programs (typically produced by an earlier run), or libraries
of 177-compilable routines. These programs, together with the results of any
compilations specified, are linked Gn the order given) to produce an executable
program with the default name a.out •

input file
object file
linked output
temporary
compiler
pass 2
optional optimizer
intrinsic function library
Fortran I/O library
C library; see Section 3 of this Manual.

file,[fresc]
file.o
a.out
.Ifort[pid],?
lusr/lib/f77pass I
lusr/lib/f77pbs2
Ilib/c2
lusr/lib/libF77.a
lusr/lib/libl77.a
llib/libc.a

SEE ALSO
asaO), cc(}), enO), fsplit(I), Id(I), m4(I), prof(t), ratforO), sdbO).

DIAGNOSTICS
The diagnostics produced by 177 itself are intended to be self-explanatory.
Occasional messages may be produced by the link editor ld(}).

- 2 -

FACTOR(I)

NAME

FACTOR(I)

r

factor - factor a number

SYNOPSIS
factor [number]

DESCRIPTION
When factor is invoked without an argument, it waits for a number to be typed
in. If you type in a positive number less than 256 (about 7.2x 1016

) it will fac­
tor the number and print its prime factors; each one is printed the proper
number of times. Then it waits for another number. It exits if it encounters a
zero or any non-numeric character.

If factor is invoked with an argument, it factors the number as above and then
exits.

Maximum time to factor is proportional to ~ and occurs when n is prime or
the square of a prime. It takes I minute to factor a prime near 1014 on a
PDP-II.

DIAGNOSTICS
"Ouch" for input out of range or for garbage input.

- I -

FILE(I)

NAME

FILE(1)

file - determine file type

SYNOPSIS
file [-c] [-f ffile] [-m mfile] arg ...

DESCRIPTION
File performs a series of tests on each argument in an attempt to classify it. If
an argument appears to be ASCII, file examines the first 512 bytes and tries to
guess its language. If an argument is an executable a.out, file will print the
version stamp, provided it is greater than 0 (see ld (I» .

If the -(option is given, the next argument is taken to be a file containing the
names of the files to be examined.

File uses the file /etc/magic to identify files that have some sort of magic
number, that is, any file containing a numeric or string constant that indicates
its type. Commentary at the beginning of /etc/magic explains its format.

The -m option instructs file to use an alternate magic file.

The -c flag causes file to check the magic file for format errors. This valida­
tion is not normally carried out for reasons of efficiency. No file typing is done
under -c.

SEE ALSO
Id(I).

- I -

FIND(I) FINO(I)

NAME

-links n

-ok cmd

-mtime n

-type c

-newer file

-print

-cpio device

-exec cmd

-ctime n

-atime n

-size n[c]

-user uname

-perm onum

find - find files

SYNOPSIS
find path-name-list expression

DESCRIPTION
Find recursively descends the directory hierarchy for each path name in the
path-name-list (i.e., one or more path names) seeking files that match a
boolean expression written in the primaries given below. In the descriptions,
the argument n is used as a decimal integer where +n means more than n, -n
means less than nand n means exactly n.

-name file True if file matches the current file name. Normal shell
argument syntax may be used if escaped (watch out for (, ?
and .).

True if the file permission flags exactly match the octal
number onum (see chmod(J). If onum is prefixed by a
minus sign, more flag bits (017777, see stat (2» become
significant and the flags are compared.

True if the type of the file is c, where c is b, C, d, p, or r for
block special file, character special file, directory, fifo (a.k.a
named pipe), or plain file respectively.

True if the file has n links.

True if the file belongs to the user uname. If uname is
numeric and does not appear as a login name in the
/etc/passwd file, it is taken as a user TD.

-group gname True if the file belongs to the group gname. If gname is
numeric and does not appear in the /etc/group file, it is
taken as a group TD.

True if the file is n blocks long (512 bytes per block). If n is
followed by a c, the size is in characters.

True if the file has been accessed in n days. The access time
of directories in path-name-list is changed by find itself.

True if the file has been modified in n days.

True if the file has been changed in n days.

True if the executed cmd returns a zero value as exit status.
The end of cmd must be punctuated by an escaped semi-
colon. A command argument () is replaced by the current
path name.

Like -exec except that the generated command line is
printed with a question mark first, and is executed only if the
user responds by typing y.

Always true; causes the current path name to be printed.

Always true; write the current file on device in cpio (4) for­
mat (S120-byte records).

True if the current file has been modified more recently than
the argument file.

- 1 -

FIND(I) FIND(I)

-deptb Always true; causes descent of the directory hierarchy to be
done so that all entries in a directory are acted on before the
directory itself. This can be useful when find is used with
cpio (1) to transfer files that are contained in directories
without write permission.

(expression) True if the parenthesized expression is true (parentheses are
special to the shell and must be escaped).

The primaries may be combined using the following operators (in order of
decreasing precedence):

)) The negation of a primary (! is the unary not operator).

2) Concatenation of primaries (the and operation is implied by the juxtaposi­
tion of two primaries).

\

3) Alternation of primaries (-0 is the or operator).

EXAMPLE
To remove all files named a.out or -.0 that have not been accessed for a week:

find I \(-name a.out -0 -name '·.0' \) -atime +7 -exec rm () \;

FILES
letc/passwd, letc/group

SEE ALSO
chmod()), cpio(), sh()), test().
stat(2), cpio(4), fs(4) in the UNIX System V Programmer Reference Manual.

- 2 -

FSPLlT(I)

NAME

FSPLlT(I)

fsplit - split rn, ratfor, or eft files

SYNOPSIS
fsplit options files

DESCRIPTION
Fsp/il splits the named filers) into separate files, with one procedure per file. A
procedure includes blockdata, Junction, main, program, and subroutine pro­
gram segments. Procedure X is put in file X.f, X.r, or X.e depending on the
language option chosen, with the following exceptions: main is put in the file
MAIN.lefrl and unnamed b/ockdala segments in the files blockdataN.lefrl
where N is a unique integer value for each file.

The following options pertain:

-f (default> Input files are}77.

-r Input files are ratJor.

-e Input files are Eft.

-s Strip}77 input lines to 72 or fewer characters with trailing blanks
removed.

EE ALSO
csplit(I), eft()), f77(I), ratfor(l), split(I).

- I .

GDEV(IG)

NAME

GDEV(IG)

hpd, erase, hardcopy, tekset, td - graphical device routines and filters

SYNOPSIS
hpd [-options] [GPS file ...]
erase
hardcopy
tekset
td [-eurn] [GPS file ...]

DESCRIPTION
All of the commands described below reside in /usr/bin/graf (see
graphics (1 G».

hpd Hpd translates a GPS (see gps (4», to instructions for the Hewlett­
Packard 7221A Graphics Plotter. A viewing window is computed
from the maximum and minimum points in file unless the -u or
-r option is provided. If no file is given, the standard input is
assumed. Options are:

en Select character set n, n between 0 and 5 (see the HP722JA
Plotter Operating and Programming Manual, Appendix A).

pn Select pen numbered n, n between I and 4 inclusive.

rn Window on GPS region n, n between 1 and 25 inclusive.

sn Slant characters n degrees clockwise from the vertical.

u Window on the entire GPS universe.

xdn Set x displacement of the viewport's lower left corner to n
inches.

xvn Set width of viewport to n inches.

ydn Set y displacement of the viewport's lower left corner to n
inches.

yvn Set height of viewport to n inches.

erase Erase sends characters to a TEKTRONIX 4010 series storage termi­
nal to erase the screen.

hardcopy When issued at a TEKTRONIX display terminal with a hard copy
unit, hardcopy generates a screen copy on the unit.

tekset Tekset sends characters to a TEKTRONIX terminal to clear the
display screen, set the display mode to alpha, and set characters to
the smallest font.

td Td translates a GPS to scope code for a TEKTRONIX 4010 series
storage terminal. A viewing window is computed from the max­
imum and minimum points in file unless the -u or -r option is
provided. If no file is given, the standard input is assumed.
Options are:

e Do not erase screen before initiating display.

rn Display GPS region n, n between 1 and 25 inclusive.

u Display the entire GPS universe.

SEE ALSO
ged(JG), graphics(IG).
gps(4) in the UNIX System V Programmer Reference Manual.

- 1 -

GED(IG)

NAME

GED(IG)

gcd - graphical editor

SYNOPSIS
gcd [-cuRrn] [GPS file •••]

DESCRIPTION
Ged is an interactive graphical cditor used to display, construct, and cdit UPS
riles on TEKTRONIX 4010 series display terminals. If UPS jile(s) are given,
ged reads them into an internal display buffer and displays the buffer. The
GPS in the buffer can thcn be edited. If - is given as a llIe name, ged reads a
GPS from the standard input.

Ged accepts the following command linc options:

c Do not crasc thc scrcen before the initial display.

rn Display region number n.

u Display the entire GPS universe.

R Restricted shell invoked on use of !.

A GPS file is composed of instances of three graphical objects: lines, arc. and
text. Arc and lines objects have a start point, or object-handle, followed by
zero or more points, or point-handles. Text has only an object-handle. The
objects are positioned within a Cartesian plane, or universe, having 64K (-32K
to +32K) points, or universe-units, on each axis. The universe is divided into
25 equal sized areas called regions. Regions are arranged in nve rows of nve
squares each, numbered I to 25 from the lower left of the universe to the uppcr
right.

Ged maps rcctangular arcas, called windows, from the universe onto the display
screen. Windows allow the user to view pictures from different locations and at
dilfcrent magnillcations. The universe-window is the window with minimum
magnification, Le., the window that views thc entire universe. The home­
window is thc window that complctcly displays the contents of the display
buffer.

COMMANDS
Ged commands are entered in stages. Typically each stage ends with a <cr>
(return). Prior to the final <cr> the command may be aborted by typing
rubout. The input of a stage may be edited during thc stage using the erase
and kill characters of the calling shell. The prompt • indicates that ged is wait­
ing at stage l.

Each command consists of a subset of the following stages:

I. Command line
A command line consists of a command name followed by
argwnent{s) followed by a <cr>. A command name is a single
character. Command argumems are either option{s) or a file­
name. Options are indicated by a leading -.

2. Text Text is a sequence of characters terminated by an unescaped
<cr> (I 20 lines of text maximum).

3. Points Points is a sequence of one or morc screen locations (maximum
of 30) indicated eithcr by the tcrminal crosshairs or by nan"le.
The prompt for entering points is thc appcarance of thc
crosshairs. When the crosshairs are visible, typing:

sp (space) enters the current location as a point. The point is
identified with a number.

- I -

GED(tG) GED(IG)

$n enters the previous point numbered n.

>x labels the last point entered with the upper case leller x.

$x enters the point labeled x.

establishes the previous points as the current points. At the
start of a command the previous points are those locations
given with the previous command.

echoes the current points.

$.n enters the point numbered n from the previous points.

erases the last point entered.

@ erases all of the points entered.

4. Pivot The pivot is a single location, entered by typing <cr> or by
u~ing the $ operator, and indicated with a -.

5. Destination
The destination is a single location entered by typing <cr> or
by using $.

COMMAND SUMMARY
In the summary, characters typed by the user are printed in bold. Command
stages are printed in italics. Arguments surrounded by brackets ..[]', are
optional. Parentheses "0" surrounding arguments separated by "or" means
that exactly one of the arguments must be given.

Construct commands:
Arc

Box

Circle

Hardware

Lines

Text

[-echo,style,weight] points

[-echo,style,weight] points

[-echo,style,weightl points

[-echo] text points

[-echo,style,weight] points

[- angle,echo,height,mid-point,righ t-poi nt,tex t,weight]
points

text

Edit commands:
Delete

Edit

Kopy

Move

Rotate

Scale

View commands:
coordinates

(- (universe or view) or points)

[-angle,echo,height,style,weightl (- (universe or view) or
points)

[-echo,points,x] points pivot destination

[-echo,points,x] points pivot destination

[-angle,echo,kopy,x] points pivot destination

[-echo,factor,kopy,x] points pivot destination

points

erase

new-display

object-handles (- (universe or view) or points)

- 2 -

~....,., ...

\

GED(IG)

point-handles

view

x

zoom

Other commands:
quit or Quit

read

set

write

!command

?

GEO(IG)

(- (labelled-points or universe or view) or poillls)

(- (home or universe or region) or [-xl pivot desti­
nation)

[-view l poillls

[-out] points

[-angle,echo,height,mid-point,right-point,text,wcight
file-name [destination]

[-angle,echo,factor,height,kopy,mid-point,points.
righ t-poi nt,style,text,weigh t,x]

file-name

Options:
Options specify parameters used to construct, edit, and view graphical objects.
If a parameter used by a command is not specifed as an option, the default
value for the parameter will be used (see set below), The format of command
options is:

-option Loption]
where option is keyletter[valueJ. Flags take on the values of true or false indi­
cated by + and - respectively. If no value is given with a nag, true is
assumed.

Object options:

anglen

echo

factorn

heightn

kopy

mid-point

points

right-point

styletype

Angle of n degrees.

When true, echo additions to the display buffer.

Scale factor is n percent.

Height of text is n universe-units (0 ~ n < 1280),

When true, copy rather than move.

When true, mid-point is used to locate text string,

When true, operate on points; otherwise operate on objects.

When true, right-point is used to locate text string.

Line style set to one of following types:
so solid
da dashed
dd dot-dashed
do dotted
Id long-dashed

- 3 -

GED(lG) GED(IG)

text When false, text strings are outlined rather than drawn.

wcighttype Sets line weight to one of following types:
n narrow
m medium
b bold

Area options:

home

out

regionn

universe

view

x

Reference the home-window.

Reduce magnification.

Reference region n.

Reference the universe-window.

Reference those objects currently in view.

Indicate the center of the referenced area.

COMMAND DESCRIPTIONS
Construct commands:

Arc and Lines
behave similarly. Each consists of a command line followed by points.
The first point entered is the object-handle. Successive points arc point­
handles. Lines connect the handles in numerical order. Arc fits a curve
to the handles (currently a maximum of 3 points will be fit with a circu­
lar arc; splines will be added in a later version>.

Box and Circle
are special cases of Lines and Arc, respectively. Box generates a rectan­
gle with sides parallel to the universe axes. A diagonal of the rectangle
would connect the first point entered with the last point. The first point
is the object-handle. Point-handles are created at each of the vertices.
Circle generates a circular arc centered about the point numbered zero
and passing through the last point. The circle's object-handle coincides
with the last point. A point-handle is generated 180 degrees around the
circle from the object-handle.

Text and Hardware
generate text objects. Each consists of a command line, text and points.
Text is a sequence of characters delimited by < cr>. Multiple lines of
text may be entered by preceding a cr with a backslash (j.e., \cr>. The
Text command creates software-generated characters. Each line of
software text is treated as a separate text object. The first point entered
is the object-handle for the first line of text. The Hardware command
sends the characters in text uninterpreted to the terminal.

Edit commands:
Edit commands operate on portions of the display bulTer called defined areas.
A defined area is referenced either with an area option or interactively. If an
area option is not given, the perimeter of the defined area is indicated by
points. If no point is entered, a small defined area is built around the location
of the <cr>. This is useful to reference a single point. If only one point is
entered, the location of the <cr> is taken in conjunction with the point to
indicate a diagonal of a rectangle. A defined area referenced by points will be
outlined with dotted lines.

Delete
removes all objects who~e object-handle lies wi; hin a defined area. The
universe option removes all objects and erases the screen.

- 4 -

GED()G) GED(IG)

Edit modifies the parameters of the objects within a delined area. Parameters
that can be edited are:

angle angle of text
height height of text
style style of lines and arc
weight weight of lines, arc, and text.

Kopy (or Move)
copies (or moves) object- and/or point-handles within a defined area by
the displacement from the pivot to the destination.

Rotate
rotates objects within a defined area around the pivot. If the kopy flag is
true then the objects are copied rather than moved.

Scale
For objects whose object handles arc within a deflned area, point displace­
ments from the pivot are scaled by factor percent. If the kopy flag is
true then the objects are copied rather than moved.

View commands:
coordinates

prints the location of point(s) in universe- and screen-units.

erase
clears the screen (but not the display bufTer>.

new-display
erases the screen then displays the display bulTer.

object-handles (or point-handles)
labels object-handles (and/or point-handles) that lie within the delined
area with 0 (or P). Point-handles identifies labeled points when the
labelled-points flag is true.

view moves the window so that the universe point corresponding to the pivot
coincides with the screen point corresponding to the destination. Options
for home, universe, and region display particular windows in the universe.

x indicates the center of a defined area. Option view indicates the center of
the screen.

zoom
decreases (zoom out) or increases the magnification of the viewing win­
dow based on the defined area. For increased magnification, the window
is set to circumscribe the defined area. For a decrease in magnification
the current window is inscribed within the defined an~a.

Other commands:
quit or Quit

exit from ged. Quit responds with ? if the display buffer has not been
written since the last modification.

read inputs the contents of a file. If the file contains a (iPS it is read directly.
Ir the file contains text it is converted into text object (5). The first line of
a text flIe begins at destination.

set when given option(s) resets default parameters, otherwise it prints current
default values.

write outputs the contents of the display buffer to a file.

- 5 -

GED(lG)

escapes ged lO execule a UN IX system command.

? lists ged commands.

SEE ALSO
gdev(IG), graphics(lG). sh(l).
gps(4) in the UNIX System V Programmer Mallual.

GEOUG)

All llllroductiofl to Ihe Graphical Editor in the UNIX System V Graphics
Guide.

WARNING
See Appendix A of the TEKTRONIX 4014 Computer Display Terminal User's
Manual for the proper terminal strap options.

- 6 -

GET(})

NAME

GET(l)

get - get a version of an sees file

SYNOPSIS
get [-rSID] [-ccutoff] [-i1ist] [-xlist] [-wstring] [-aseq-no.l [-k]
[-e] [-Hp]] [-p] [-m] [-0] [-s] [-b] [-g] [-t] file ...

DESCRIPTION
Get generates an ASCII text file from each named sees file according to the
specifications given by its keyletter arguments, which begin with -. The argu­
ments may be specified in any order, but all keyletter arguments apply to all
named sees files. If a directory is named, get behaves as though each file in
the directory were specified as a named file, except that non-sees files (last
component of the path name does not begin with s.) and unreadable files are
silently ignored. If a name of - is given, the standard input is read; each line
of the standard input is taken to be the name of an sees file to be processed.
Again, non-SeeS files and unreadable files are silently ignored.

The generated text is normally written into a file called the g-fi/e whose name
is derived from the sees file name by simply removing the leading s.; (see also
FILES, below).

Each of the kcyletter arguments is explained below as though only one sees
file is to be processed, but the effects of any keyletter argument applies
independently to each named file.

-rSID The sees IDentification string (SID) of the version (delta) of an
sees file to be retrieved. Table I below shows, for the most useful
cases, what version of an sees file is retrieved (as well as the SID
of the version to be eventually created by delta (I) if the -e
keyletter is also used), as a function of the SID specified.

-ccutoff Cutoff date-time, in the form:

yy[MM[DD[H H[MM[SSJ))))

No changes (deltas) to the sees file which were created after the
specified cutoff date-time are included in the generated ASCII text
file. Units omitted from the date-time default to their maximum
possible values; that is, -c7S02 is equivalent to -c750228235959.
Any number of non-numeric characters may separate the various
2-digit pieces of the cutoff date-time. This feature allows one to
specify a cutoff date in the form: "-c77/2/2 9:22:25". Note that
this implies that one may use the %E% and %U% identification
keywords (see below) for nested gets within, say the input to a
send (I C) command:

-!get "-c%E% %U%" s.file

-e Indicates that the get is for the purpose of editing or making a
change (delta) to the secs file via a subsequent use of delta (I).
The -e keyletter used in a get for a particular version (SID) of the
sees file prevents further gets for editing on the same SID until
delta is executed or the j (joint edit) flag is set in the sees file
(see admin(l». Concurrent use of get -e for different SIDs is
always allowed.

If the g-file generated by get with an -e keyletter is accidentally
ruined in the process of editing it, it may be regenerated by rea
executing the get command with the -k keyletter in place of the
-e keyletter.

• 1 -

GET(I) GET(I)

sees file protection specified via the ceiHng, floor, and authorized
user list stored in the sees file (see admin (I» are enforced when
the -e keyletter is used.

-b Used with the -e keyletter to indicate that the new delta should
have an SID in a new branch as shown in Table I. This keyleHer is
ignored if the b flag is not present in the file (see admin(l» or if
the retrieved delta is not a leaf delta. (A leaf delta is one that has
no successors on the sees file tree.)
Note: A branch delta may always be created from a non-leaf
delta.

-i/ist A list of deltas to be included (forced to be applied) in the creation
of the generated file. The list has the following syntax:

<list> ::= <range> I <list> , <range>
<range> ::.... SID I SID - SID

SID, the sees Identification of a delta, may be in any form shown
in the "SID Specified" column of Table I. Partial SIDs are inter­
preted as shown in the "SID Retrieved" column of Table l.

-xlist A list of deltas to be excluded (forced not to be applied) in the
creation of the generated file. See the -i keyleHer for the list for­
mat.

-k Suppresses replacement of identification keywords (see below) in
the retrieved text by their value. The -k keyleHer is implied by
the -e keyletter.

-I[p] Causes a delta summary to be written into an I-file. If -Ip is used
then an I-file is not created; the delta summary is written on the
standard output instead. See FILES for the format of the I-file.

-p Causes the text retrieved from the sees file to be written on the
standard output. No g-file is created. All output which normally
goes to the standard output goes to file descriptor 2 instead, unless
the -s keyletter is used, in which case it disappears.

-s Suppresses all output normally written on the standard output.
However, fatal error messages (which always go to file descriptor
2) remain unaffected.

-m Causes each text line retrieved from the sees file to be preceded
by the SID of the delta that inserted the text line in the sees file.
The format is: SID, followed by a horizontal tab, followed by the
text line.

-n Causes each generated text line to be preceded with the %M%
identification keyword value (see below). The format is: %M%
value, followed by a horizontal tab, followed by the text line.
When both the -m and -n keyletters are used, the format is:
%M% value, followed by a horizontal tab, followed by the -m
keyletter generated format.

-g Suppresses the actual retrieval of text from the sees file. It is pri­
marily used to generate an I-file, or to verify the existence of a
particular SID.

-t Used to access the most recently created ("top") delta in a given
release (e.g., -rO, or release and level (e.g., -rl.2).

-w string Substitute string for all occurrences of @(#)get.l 6.2 when
geting the file.

- 2 -

GET(t) GET(t)

-aseq-no. The delta sequence number of the sees file delta (version) to be
retrieved (see sccsfile(5». This keyletter is used by the comb (t)
command; it is not a generally useful keyletter, and users should
not use it. If both the -r and -a keyletters are specified, the -a
keyletter is used. Care should be taken when using the -a
keyletter in conjunction with the -e keyletter, as the SID of the
delta to be created may not be what one expects. The -r keyletter
can be used with the -a and -e keyletters to control the naming
of the SID of the delta to be created.

For each file processed, get responds (on the standard output> with the SID
being accessed and with the number of lines retrieved from the sees file.

If the -e keyletter is used, the SID of the delta to be made appears after the
SID accessed and before the number of lines generated. If there is more than
one named file or if a directory or standard input is named, each file name is
printed (preceded by a new-line) before it is processed. If the -j keyletter is
used included deltas are listed following the notation "Included"; if the -x
keyletter is used, excluded deltas are listed following the notation "Excluded".

TABLE I. Determination of sees Identification String
SID*

Specified

none*

-b Keyletter Other SID SID of Delta
Usedt Conditions Retrieved to be Created

no R defaults to mR mR.mL mR.(mL+D
none* yes R defaults to mR mR.mL mR.mL.(mB+I).1

no R =0 mR mR.mL mR.(mL+O

yes R =0 mR mR.mL mR.mL.(mB+O.I

no R > mR mR.mL R.I·"

yes R > mR mR.mL mR.mL.(m8+0.1

R.L.(mB+I).1

R.(L+D
R.L.(mB+I).1

R.mL.(mB+I).1

R.L

R.L
R.L

R.mL

No trunk succ.
No trunk succ.

Trunk succ.
in release ~ R

Trunk succ.#
in release > R
and R exists

no
yes

~ ~e~~o::~ist hR.mL** hR.mL.(mB+O.I

R
R
R

~. R

R

R

R.L
R.L

R.L

R.L.B no No branch succ. R.L.B.mS R.L.B.(mS+I>
R.L.8
R.L.B.S

yes
no

No branch succ.
No branch succ.

R.L.B.mS
R.L.8.S

R.L.(mB+I).1
R.L.B.(S+D

R.L.B.S
R.L.B.S

yes No branch succ.
Branch succ.

R.L.B.S
R.L.B.S

R.L.(mB+ I).I
R.L.(mB+O.I

*

**

#

"R U
, "L", "8", and "S" are the "release", "level", "branch", and

"sequence" components of the SID, respectively; "m" means "maximum".
Thus, for example, "R.mL" means "the maximum level number within
release R"; "R.L.(mB+O.l" means "the first sequence number on the
new branch (j.e., maximum branch number plus one) of level L within
release R". Note that if the SID specified is of the form "R.L", "R.L.8",
or uR.L.B.S", each of the specified components must exist.
"hR" is the highest existing release that is lower than the specified,
nonexistent, release R.
This is used to force creation of the first delta in a new release.
Successor.

- 3 -

GET(l) GET(t)

*

t

%1%

%A%

%Z%
%W%

%R%
%L%
%8%
%5%
%D%
%H%
%T%
%E%
%G%
%U%
%y%
%F%
%P%
%Q%
%C%

The -b keyletter is effective only if the b flag (see admin (I» is present
in the file. An entry of - means "irrelevant".
This case applies if the d (default SID) flag is not present in the file. If
the d flag is present in the file, then the SID obtained from the d flag is
interpreted as if it had been specified on the command line. Thus, one of
the other cases in this table applies.

IDENTIFICATION KEYWORDS
Identifying information is inserted into the text retrieved from the SCCS file by
replacing identification keywords with their value wherever they occur. The
following keywords may be used in the text stored in an sees file:

Keyword Value
% M % Module name: either the value of the m flag in the file (see

admin(I», or if absent, the name of the sees file with the leading
s.lemoved.
sees identification (SID) (%R%.%L%.%B%.%S%) of the retrieved
text.
Release.
Level.
Branch.
Sequence.
Current date (YY/MM/DD).
Current date (M M/DD/YY).
Current time (HH:MM:SS).
Date newest applied delta was created (YY/MM/DD).
Date newest applied delta was created (MM/DD/YY).
Time newest applied delta was created (HH:MM:SS).
Module type: value of the t flag in the sees file (see admin(I».
sees file name.
Fully qualified sees file name.
The value of the q flag in the file (see admin (I».
Current line number. This keyword is intended for identifying mes­
sages output by the program such as "this should not have hap-
pened" type errors. It is not intended to be used on every line to
provide sequence numbers.
The 4-character string @(#) recognizable by what (I).
A shorthand notation for constructing what (0 strings for UNIX sys­
tem program files. %W% = %Z%%M% <horizontal-tab> %1%
Another shorthand notation for constructing what (I) strings for
non-UNIX system program files.
%A% = %Z%%Y% %M% %I%%Z%

FILES
Several auxiliary files may be created by get. These files are known generically
as the g-ji/e, I-jile, p-jile, and z-jile. The letter before the hyphen is called
the tag. An auxiliary file name is formed from the sees file name: the last
component of all sees file names must be of the form s.module-name, the aux­
iliary files are named by replacing the leading s with the tag. The g-jile is an
exception to this scheme: the g-jile is named by removing the s. prefix. For
example, s.xyz.c, the auxiliary file names would be xyz.c, I.xyz.c, p.xyz.c, and
z.xyz.c, respectively.

The g-jile, which contains the generated text, is created in the current direc­
tory (unless the -p keyletter is used). A g-jile is created in all cases, whether
or not any lines of text were generated by the get. It is owned by the real user.
If the -k keyletter is used or implied its mode is 644; otherwise its mode is
444. Only the real user need have write permission in the current directory.

- 4 -

GET(I) GET(r>

~,c
"

The I-jile contains a table showing which deltas were applied in generating the
retrieved text. The I-jile is created in the current directory if the -I keyletter
is used; its mode is 444 and it is owned by the real user. Only the real user
need have write permission in the current directory.

Lines in the I-jile have the following format:

a. A blank character if the delta was applied;
• otherwise.

b. A blank character if the delta was applied or was not applied
and ignored;
• if the delta was not applied and was not ignored.

c. A code indicating a "special" reason why the delta was or was
not applied:

"I": Included.
"X": Excluded.
"C": Cut off (by a -c keyletter) .

d. Blank.
e. sees identification (SID).
f. Tab character.
g. Date and time (in the form YY/MM/DD HH:MM:SS) of crea-

tion.
h. Blank.
i. Login name of person who created delta.

The comments and MR data follow on subsequent lines, indented one
horizontal tab character. A blank line terminates each entry.

The p-jile is used to pass information resulting from a get with an -e keyletter
along to delta. Its contents are also used to prevent a subsequent execution of
get with an -e keyletter for the same SID until delta is executed or the joint
edit flag, j, (see admin (I» is set in the sees file. The p-jile is created in the
directory containing the sees file and the effective user must have write per­
mission in that directory. Its mode is 644 and it is owned by the effective user.
The format of the p-jile is: the gotten SID, followed by a blank, followed by the
SID that the new delta will have when it is made, followed by a blank, followed
by the login name of the real user, followed by a blank, followed by the date­
time the get was executed, followed by a blank and the -i keyletter argument
if it was present, followed by a blank and the -x keyletter argument if it was
present, followed by a new-line. There can be an a' t Itrary number of lines in
the p-jile at any time; no two lines can have the salT' ; new delta SID.

The z-jile serves as a lock-out mechanism against simultaneous updates. Its
contents are the binary (2 bytes) process ID of the command (i.e., get) that
created it. The z-jile is created in the directory containing the sees file for
the duration of get. The same protection restrictions as those for the p-jile
apply for the z-jile. The z-jile is created mode 444.

SEE ALSO
admin(l), delta(l), help(l), prs(l), what(l).
sccsfile(4) in the UNIX System V Programmer Reference Manual.

Source Code Control System in the UNIX System V Support Tools Guide.

DIAGNOSTICS
Use helpO) for explanations.

BUGS
If the effective user has write permission (either explicitly or implicitly) in the
directory containing the secs files, but the real user does not, then only one file
may be named when the -e keyletter is used.

- 5 -

GETOPT(I)

NAME

GETOPT(J)

getopt - parse command options

SYNOPSIS
set - - "getopt optstring $e"

DESCRIPTION
Getopt is used to break up options in command lines for easy parsing by shell
procedures and to check for legal options. Optstring is a string of recognized
option letters (see getopt(3C»; if a letter is followed by a colon, the option is
expected to have an argument which mayor may not be separated from it by
white space. The special option - - is used to delimit the end of the options.
If it is used explicitly, getopt will recognize it; otherwise, getopt will generate
it; in either case, getopt will place it at the end of the options. The positional
parameters ($1 $2 .. .) of the shell are reset so that each option is preceded by
a - and is in its own positional parameter; each option argument is also parsed
into its own positional parameter.

EXAMPLE
The following code fragment shows how one might process the arguments for a
command that can take the options a or b, as well as the option 0, which
requires an argument:

set -- 'getopt abo: $.'
if [$? != 0]
then

echo $USAGE
exit 2

fi
for i in $.
do

.~

case $i in
-a I -b)
-0)
--)
esac

FLAG=$i; shift;;
OARG=$2; shift 2;;
shift; break;;

done

This code will accept clny of the following as equivalent:

cmd -aoarg file file
cmd -a -0 arg file file
cmd -oarg -a file file
cmd -a -oarg -- file file

SEE ALSO
sh (1), getopt (JC).

DIAGNOSTICS
Getopt prints an error message on the standard error when it encounters an
option letter not included in optstring.

- 1 -

GRAPH(IG)

NAME

GRAPH(IG)

r"

graph - draw a graph

SYNOPSIS
graph [options]

DESCRIPTION
Graph with no options takes pairs of numbers from the standard input as
abscissas and ordinates of a graph. Successive points are connected by straight
lines. The graph is encoded on the standard output for display by the
tplot{IG) filters.

If the coordinates of a point are followed by a non-numeric string, that string is
printed as a label beginning on the point. Labels may be surrounded with
quotes ", in which case they may be empty or contain blanks and numbers;
labels never contain new-lines.

The following options are recognized, each as a separate argument:

-a Supply abscissas automatically <they are missing from the input);
spacing is given by the next argument {default t>. A second
optional argument is the starting point for automatic abscissas
(default 0 or lower limit given by -x).

-b Break (discol"nect> the graph after each label in the input.
-c Character string given by next argument is default label for each

point.
-g Next argument is grid style, 0 no grid, 1 frame with ticks, 2 full

grid (default).
-) Next argument is label for graph.
-m Next argument is mode (style) of connecting lines: 0 disconnected,

1 connected (default). Some devices give distinguishable line styles
for other small integers (e.g., the TEKTRONIX 4014: 2=dotted,
3=dash-dot, 4=short-dash, 5=long-dash).

-s Save screen, do not erase before plotting.
-x [)] If I is present, x axis is logarithmic. Next 1 (or 2) arguments are

lower (and upper) x limits. Third argument, if present, is grid
spacing on x axis. Normally these quantities are determined
automatically.

-y [I] Similarly for y.
-h Next argument is fraction of space for height.
-w Similarly for width.
-r Next argument is fraction of space to move right before plotting.
-u Similarly to move up before plotting.
-t Transpose horizontal and vertical axes. (Option -x now applies to

the vertical axis.>
A legend indicating grid range is produced with a grid unless the -5 option is
present. If a specified lower limit exceeds the upper limit, the axis is reversed.

SEE ALSO
graphics(IG). splindlG), tplot(IG).

BUGS
Graph stores all points internally and drops those for which there is no room.
Segments that run out of bounds are dropped. not windowed.
Log~rithmic axes may not be reversed.

- I -

GRAPHICS(tG)

NAME

GRAPHICS ((G)

graphics - access graphical and numerical commands

SYNOPSIS
graphics [-r]

DESCRIPTION
Graphics prefixes the path name /usr/bin/graf to the current SPATH value,
changes the primary shell prompt to ", and executes a new shell. The directory
/usr/bin/graf contains all of the Graphics subsystem commands. If the -r
option is given, access to the graphical commands is created in a restricted
environment; that is, SPATH is set to

:/usr/bin/graf:/rbin:/usr/rbin
and the restricted shell, rsh, is invoked. To restore the environment that
existed prior to issuing the graphics command, type EOT (control-d on most
terminals), T<\logoff from the graphics environment, type quit.

The command line format for a command in graphics is command name fol­
lowed by argument(s), An argument may be a file name or an option string.
A file name is the name of any UNIX system file except those beginning with
-. The file name - is the name for the standard input. An option string con­
sists of - followed by one or more option(s), An option consists of a keyletter
possibly followed by a value. Options may be separated by commas.

The graphical commands have been partitioned into four groups.

Commands that manipulate and plot numerical data; see star(1G).

Commands that generate tables of contents; see toc(lG).

Commands that interact with graphical devices; see gdev(t G) and
ged(IG).

A collection of graphical utility commands; see guti/(IG).

A list of the graphics commands can be generated by typing whatis in the
graphics environment.

SEE ALSO
gdev(IG), ged(lG), gutiI(IG), stat(IG), toc(tG).
gps(4) in the UNIX System V Programmer Reference Manual.

UNIX System V Graphics Guide,

- 1 -

GREEK(I) GREEK (I)

r-"
NAME

greek - select terminal filter

SYNOPSIS
greek [-Tterminal]

DESCRIPTION
Greek is a filter that reinterprets the extended character set, as well as the
reverse and half-line motions, of a 128-character TELETYPE Model 37 termi­
nal (which is the nroff(I) default terminal) for certain other terminals. Special
characters are simulated by overstriking, if necessary and possible. If the argu­
ment is omitted, grel'k attempts to use the environment variable $TERM (see
environ (5». fhe fOllvwing terminals are recognized currently:

300 DASI 300.
300-12 DASI 300 in 12-pitch.
300s DASI 300s.
300s-12 DASI 300s in 12-pitch.
450 DASI 450.
450-12 DASI 450 in 12-pitch.
1620 Diablo 1620 (alias DASI 450).
1620-12 Diablo 1620 (alias DASI 450) in 12-pitch.
2621 Hewlett-Packard 2621, 2640, and 2645.
2640 Hewlett-Packard 2621, 2640, and 2645.
:!6.:t5 Hewlett-Packard 2621, 2640, and 2645.
4014 TEKTRONIX 4014.
hp Hewlett-Packard 2621, 2640, and 2645.
tek TEKTRONIX 4014.

FILES
/usr/bin/300
/ usrfbi n/300s
/usr/bin/4014
/usr/bin/450
/usr/bin/hp

SEE ALSO
300(I), 4014(I), 450(I), eqn(I), hp(I), mm(I), nroff(I), tplot(lG).
environ(S), greek(5), term(S) in the UNIX System V Programmer Reference
Manual.

- 1 -

GREP(J)

NAME

GREP(J)

grep, egrep, fgrep - search a file for a pattern

SYNOPSIS
grep [options] expression [files]

egrep [options] [expression] [files]

fgrep [options] [strings] [files]

DESCRIPTION
Commands of the grep family search the input files (standard input default)
for lines matching a pattern. Normally, each line found is copied to the stan­
dard output. Grep patterns are limited regular expressions in the style of
ed(t); it uses a compact non-deterministic algorithm. Egrep patterns are full
regular expressions; it uses a fast deterministic algorithm that sometimes needs
exponential space. Fgrep patterns are fixed strings; it is fast and compact.
The following options are recognized:

-v All lines but those matching are printed.
-x (Exact) only lines matched in their entirety are printed {fgrep only).
-c Only a count of matching lines is printed.
-i Ignore upper/lower case distinction during comparisons.
-I Only the names of files with matching lines are listed (once), separated

by new-lines.
-0 Each line is preceded by its relative line number in the file.
-b Each line is preceded by the block number on which it was found. This

is sometimes useful in locating disk block numbers by context.
-s The error messages produced for nonexistent or unreadable files are

suppressed (grep only).
-e expression

Same as a simple expression argument, but useful when the expression
begins with a - (does not work with grep).

-f file
The regular expression (egrep) or strings list (fgrep) is taken from the
file.

In all cases, the file name is output if there is more than one input file. Care
should be taken when using the characters $, *, l, "', I, (,), and \ in expression,
because they are also meaningful to the shell. It is safest to enclose the entire
expression argument in single quotes ' ... '.

Fgrep searches for lines that contain one of the strings separated by new-lines.

Egrep accepts regular expressions as in ed(I), except for \(and \), with the
addition of:

I. A regular expression followed by + matches one or more occurrences of
the regular expression.

2. A regular expression followed by ? matches 0 or J occurrences of the
regular expression.

3. Two regular expressions separated by I or by a new-line match strings
that are matched by either.

4. A regular expression may be enclosed in parentheses () for grouping.

The order of precedence of operators is IJ, then .? +, then concatenation, then
I and new-line.

SEE ALSO
ed (I), sed (I), sh (J) .

DIAGNOSTICS
Exit status is 0 if any matches are found, I if none, 2 for syntax errors or inac­
cessible files (even if matches were found).

- 1 -

GREP(I) GREP(I)

r"

BUGS
Ideally there should be only one grep, but we do not know a single algorithm
that spans a wide enough range of space-time tradeoffs.
Lines are limited to BUFSIZ characters; longer lines are truncated. (BUFSIZ is
defined in lusr/include/stdio.h'>
Egrep does not recognize ranges, such as [a -z), in character classes.
If there is a line with embedded nulls, grep will only match up to the first null;
if it matches, it will print the entire line.

- 2 -

GUTIL(tG)

NAME

GUTIL(IG)

gutil - graphical utilities

SYNOPSIS
command-name [options] [files]

DESCRIPTION
Below is a list of miscellaneous device independent utility commands found in
/usr/bin/graf. If no files are given. input is from the standard input. All out­
put is to the standard output. Graphical data is stored in GPS format; see
gp.d4).

.~

bel

cntopt

- send bel character to terminal

[=sstring fstring istring tstring] [args] - options converter
Cvr/opt reformats args (usually the command line arguments of a
calling shell procedure) to facilitate processing by shell procedures.
An arg is either a file name (a string not beginning with a -. or a
- by itself) or an option string (a string of options beginning with a
-). Output is of the form:

-option -option . .. file name(s)
All options appear singularly and preceding any file names. Options
that take values (e.g.. -rl.}) or are two leHers long must be
described through options to cvrtopt.

gd

gtop

Cvrtopt is usually used with set in the following manner as the first
line of a shell procedure:

set - 'cvrtopt =Ioptionsl $@'
Options to cvrtopt are:

sstring String accepts string values.

fstring String accepts floating point numbers as values.

istring String accepts integers as values.

tstring String is a two-letter option name that takes no value.

String is a one- or two-letter option name.

[GPS files] - GPS dump
Gd prints a human readable listing of GPS.

[-rn u] (GPS files] - GPS to plot (4) filter
Gtop transforms a GPS into plor(4) commands displayable by plot
filters. GPS objects are translated if they fall within the window
that circumscribes the first file unless an option is given.
Options:

rn translate objects in GPS region n.

u translate all objects in the GPS universe.

pd [plot (5) files] - plot (4) dump
Pd prints a human readable listing of plot (4) format graphical
commands.

pto~ [plor(S) files] - plor(4) to GPS filter
Ptog transforms plot (4) commands into a G PS.

quit

remcom

- terminate session

[files] - remove comments
Remcom copies its input to its output with comments removed.
Comments are as defined in C (j.e.• /. comment .f).

- I -

GUTIL(IG) GUTIL(IG)

whatis

~ ..

[-0] [names] - brief on-line documentation
Whatis prints a brief description of each name given. If no name is
given, then the current list of description names is printed. The
command whatis \. prints out every description.
Option:

o just print command options

yoo file - pipe fitting
Yoo is a piping primitive that deposits the output of a pipeline into
a file used in the pipeline. Note that, without yoo, this is not usu­
ally successful as it causes a read and write on the same file simul­
taneously.

SEE ALSO
graphics(IG).
gps(4), plot(4) in the UNIX System V Programmer Reference Manual.

- 2 -

HELP(I)

NAME

HELP(I)

help - ask for help

SYNOPSIS
help largsl

DESCRIPTION
Help finds information to explain a message from a command or explain the
use of a command. Zero or more arguments may be supplied. If no arguments
are given, help will prompt for one.

The arguments may be either message numbers (which normally appear in
parentheses following messages) or command names, of one of the following
types:

type I Begins with non-numerics, ends in numerics. The non­
numeric prefix is usually an abbreviation for the pro­
gram or set of routines which produced the message
(e.g., ge6, for message 6 from the gel command).

type 2 Does not contain numerics {as a command, such as get>

type 3 Is all numeric (e.g .• 212)

The response of the program will be the explanatory information related to the
argument. if there is any.

When all else fails, try "help stuck".

FILES
/usr/lib/help

/usr/lib/help/helploc

directory containing files of message text.

file containing locations of help files not in
lusr/lib/belp.

DIAGNOSTICS
Use help{» for explanations.

. I .

HP(I)

NAME

HP(I)

hp - handle special functions of Hewlett-Packard 2640 and 2621-series termi­
nals

SYNOPSIS
hp [-e] [-m]

DESCRIPTION
Hp supports special functions of the Hewlett-Packard 2640 series of terminals,
with the primary purpose of producing accurate representations of most nroff
output. A typical use is:

nroff -h files ... I hp

Regardless of the hardware options on your terminal, hp tries to do sensible
things with underlining and reverse line-feeds. If the terminal has the "display
enhancements" feature, subscripts and superscripts can be indicated in distinct
ways. If it has the "mathematical-symbol" feature, Greek and other special
characters can be displayed.

The flags are as follows:
-e It is assumed that your terminal has the "display enhancements"

feature, and so maximal use is made of the added display modes.
Overstruck characters are presented in the Underline mode. Super­
scripts are shown in Half-bright mode, and subscripts in Half-bright,
Underlined mode. If this flag is omitted, hp assumes that your termi­
nal lacks the "display enhancements" feature. In this case, all over­
struck characters, subscripts, and superscripts are displayed in Inverse
Video mode, i.e., dark-on-light, rather than the usual Iight-on-dark.

-m Requests minimization of output by removal of new-lines. Any con­
tiguous sequence of 3 or more new-lines is converted into a sequence of
only 2 new-lines; i.e., any number of successive blank lines produces
only a single blank output line. This allows you to retain more actual
text on the screen.

With regard to Greek and other special characters, hp provides the same set as
does 300(), except that "not" is approximated by a right arrow, and only the
top half of the integral sign is shown. The display is adequate for examining
output from neqn.

DIAGNOSTICS
"line too long" if the representation of a line exceeds I,024 characters.
The exit codes are 0 for normal termination, 2 for all errors.

SEE ALSO
300(), col(), eqn(I), greek(I), nroff(I), tbl()).

BUGS
An "overstriking sequence" is defined as a printing character followed by a
backspace followed by another printing character. In such sequences, if either
printing character is an underscore, the other printing character is shown
underlined or in Inverse Video; otherwise, only the first printing character is
shown (again, underlined or in Inverse Video). Nothing special is done if a
backspace is adjacent to an ASCII control character. Sequences of control
characters (e.g., reverse line-feeds, backspaces) can make text "disappear"; in
particular, tables generated by tb/()) that contain vertical lines will often be
missing the lines of text that contain the "foot" of a vertical line, unless the
input to hp is piped through coH)).
Although some terminals do provide numerical superscript characters, no
attempt is made to display them.

- 1 -

HPIO(t)

NAME

HPIO(I)

hpio - Hewlett-Packard 2645A terminal tape file archiver

SYNOPSIS
hpio -o[rcJ file ...

hpio -Hrtal [-n countl

DESCRIPTION
Hpio is designed to take advantage of the tape drives on Hewlett-Packard
2645A terminals. Up to 255 UNIX system files can be archived onto a tape
cartridge for off-line storage or for transfer to another UN IX system. The
actual number of files depends on the sizes of the files. One file of about
115,000 bytes will almost fill a tape cartridge. Almost 300 I-byte files will fit
on a tape, but the terminal will not be able to retrieve files after the first 255.
This manual page is not intended to be a guide for using tapes on Hewlett­
Packard 2645A'terminals, but tries to give enough information to be able to
create and read tape archives and to position a tape for access to a desired file
in an archive.

Hpio -0 (copy out) copies the specified file (s), together with path name and
status information to a tape drive on your terminal (which is assumed to be
positioned at the beginning of a tape or immediately after a tape mark). The
left tape drive is used by default. Each file is written to a separate tape file
and terminated with a tape mark. When hpio finishes, the tape is positioned
following the last tape mark written.

Hpio -i (copy in) extracts a file{s) from a tape drive (which is assumed to be
positioned at the beginning of a file that was previously written by a hpio -0).
The default action extracts the next file from the left tape drive.

Hpio always leaves the tape positioned after the last file read from or written to
the tape. Tapes should always be rewound before the terminal is turned off.
To rewind a tape depress the green function button, then function key 5, and
then select the appropriate tape drive by depressing either function key 5 for
the left tape drive or function key 6 for the right. If several files have been
archived onto a tape, the tape may be positioned at the beginning of a specific
file by depressing the green function button, then function key 8, followed by
typing the desired file number (] -255) with no RETURN. and finally function
key 5 for the left tape or function key 6 for the right. The desired file number
may also be specified by a signed number relative to the current file number.

The meanings of the available options are:

r Use the right tape drive.
c Include a checksum at the end of each file. The checksum is always

checked by hpio -i for each file written with this option by hpio -0.

n count The number of input files to be extracted is set to count. If this
option is not given, count defaults to I. An arbitrarily large count
may be specified to extract all files from the tape. Hpio will stop at
the end of data mark on the tape.
Print a table of contents only. No files are created. Printed informa­
tion gives the file size in bytes, the file name, the file access modes,
and whether or not a checksum is included for the file.

a Ask before creating a file. Hpia -i normally prints the file size and
name, creates and reads in the file. and prints a status message when
the file has been read in. If a checksum is included with the file, it
reports whether the checksum matched its computed value. With this
option. the file size and name are printed followed by a ? Any
response beginning with y or Y will cause the file to be copied in as
above. Any other response will cause the file to be skipped.

- 1 -

.~

HPIO(J)

FILES

HPIO(I)

r

Idev/tty?? to block messages while accessing a tape

SEE ALSO
cu(1 C).

DIAGNOSTICS
BREAK

An interrupt signal terminated processing.
Can't create iile'.

File system access permissions did not allow file to be created.
Can't get tty options on stdout.

Hpio was unab,e to get the input-output control settings associated
with the terminal.

Can't open iife'.
File could not be accessed to copy it to tape.

End of Tape.
No tape record was available when a read from a tape was requested.
An end of data mark is the usual reason for this, but it may also occur
if the wrong tape drive is being accessed and no tape is present.

iile' not a regular file.
File is a directory or other special file. Only regular files will be copied
to tape.

Readcnt = rc, termcnt = tc.
Hpio expected to read re bytes from the next block on the tape, but
the block contained te bytes. This is caused by having the tape
improperly positioned or by a tape block being mangled by interference
from other terminal 110.

Skip to next file failed.
An attempt to skip over a tape mark failed.

Tape mark write failed.
An attempt to write a tape mark at the end of a file failed.

Write failed.
A tape write failed. This is most frequently caused by specifying the
wrong tape drive, running off the end of the tape, or trying to write on
a tape that is write protected.

WARNINGS
Tape I/O operations may copy bad data if any other I/O involving the terminal
occurs. Do not attempt any type ahead while hpio is running. Hpio turns off
write permissions for other users while it is running, but processes started asyn­
chronously from your terminal can still interfere. The most common indication
of this problem, while a tape is being written, is the appearance of characters
on the display screen that should have been copied to tape.

The keyboard, including the terminal BREAK key, is locked during tape write
operations; the BREAK key is only functional between writes.

Hpio must have complete control of the attributes of the terminal to communi­
cate with the tape drives. Interaction with commands such as eu (I C) may
interfere and prevent successful operation.

BUGS
Some binary files contain sequences that will confuse the terminal.

An hpio -i that encounters the end of data mark on the tape (e.g., scanning
the entire tape with hpio -ito 300), leaves the tape positioned after the end of
data mark. If a subsequent hpio -0 is done at this point, the data will not be
retrievable. The tape must be repositioned manually using the terminal FIND
FILE -} operation (depress the green function button, function key 8, and then
function key 5 for the left tape or function key 6 for the right tape) before the

- 2 -

HPIO(I) HPIO (I)

hpio -0 is started.

If an interrupt is received by hpio while a tape is being written, the terminal
may be left with the keyboard locked. If this happens, the terminal's RESET
TERMINAL key will unlock the keyboard.

- 3 -

HYPHEN(I)

NAME

HYPHEN(t)

hyphen - find hyphenated words

SYNOPSIS
hyphen [files]

DESCRIPTION
Hyphen finds all the hyphenated words ending lines in files and prints them on
the standard output. If no arguments are given, the standard input is used;
thus, hyphen may be used as a filter.

EXAMPLE
The following will allow the proofreading of nroff hyphenation in textfile .

mm textfile I hyphen

SEE ALSO
mm(l}, nroff(t).

BUGS
Hyphen cannot cope with hyphenated italic (i.e., underlined) words; it will
often miss them completely, or mangle them.
Hyphen occasionally gets confused, but with no ill effects other than spurious
extra output.

- 1 -

IOU)

NAME

IDC»

id - print user and group IDs and names

SYNOPSIS
id

DESCRIPTION
Id writes a message on the standard output giving the user and group IDs and
the corresponding names of the invoking process. If the effective and real IDs
do not match, both are printed.

SEE ALSO
logname(1).
getuid(2) in the UNIX System V Programmer Reference Manual.

- 1 -

IPCRM(I)

NAME

IPCRM(t)

ipcrm - remove a message queue, semaphore set or shared memory id

SYNOPSIS
ipcrm [options]

DESCRIPTION
Ipcrm will remove one or more specified messages, semaphore or shared
memory identifiers. The identifiers are specified by the following options:

-q msqid removes the message queue identifier msqid from the system and
destroys the message queue and data structure associated with it.

-m shmid removes the shared memory identifier shmid from the system.
The shared memory segment and data structure associated with it
are destroyed after the last detach.

-s semid removes the semaphore identifier semid from the system and des­
troys the set of semaphores and data structure associated with it.

-Q msgkey removes the message queue identifier, created with key msgkey,
from the system and destroys the message queue and data struc­
ture associated with it.

-M shmkey removes the shared memory identifier, created with key shmkey,
from the system. The shared memory segment and data struc­
ture associated with it are destroyed after the last detach.

-S semkey removes the semaphore identifier, created with key semkey, from
the system and destroys the set of semaphores and data structure
associated with it.

The details of the removes are described in msgct[(2), shmct[(2) , and
semct/(2). The identifiers and keys may be found by using ipcs(I).

SEE ALSO
ipcs(t).
msgctl (2), msgget (2), msgop (2), semctl (2), semget (2), semop(2), shmctl (2),
shmget(2), shmop(2) in the UNIX System V Programmer Reference Manual.

- 1 -

IPCS ()

NAME

IPCS{))

ipcs - report inter-process communication facilities status

SYNOPSIS
ipcs [options]

DESCRIPTION
[pes prints certain information about active inter-process communication facili­
ties. Without options, information is printed in short format for message
queues, shared memory, and semaphores that are currently active in the sys­
tem. Otherwise, the information that is displayed is controlled by the following
options:

380.spOu
-q Print information about active message queues.
-m Print information about active shared memory segments.
-s Print information about active semaphores.

If any of the options -q, -~, or -s are specified, information about only
those indicated will be printed. If none of these three are specified, information
about all three will be printed.

-b Print biggest allowable size information. (Maximum number of bytes
in messages on queue for message queues, size of segments for shared
memory, and number of semaphores in each set for semaphores.> See
below for meaning of columns in a listing.

-c Print creator's login name and group name. See below.
-0 Print information on outstanding usage. (Number of messages on

queue and total number of bytes in messages on queue for message
queues and number of processes attached to shared memory seg­
ments'>

-p Print process number information. (Process ID of last process to send a
message and process 10 of last process to receive a message on message
queues and process 10 of creating process and process 10 of last process
to attach or detach on shared memory segments) See below.

-t Print time information. (Time of the last control operation that
changed the access permissions for all facilities. Time of last msgsnd
and last msgrcv on message queues, last shmat and last shmdt on
shared memory, last semop (2) on semaphores.> See below.

-a Use all print options. (This is a shorthand notation for -b, -C, -0,

-p, and -t.>
-C corefile

Use the file corefile in place of Idev/kmem.
-N name/ist

The argument will be taken as the name of an alternate name/isl
Uunix is the default).

The column headings and the meaning of the columns in an ipcs listing are
given below; the letters in parentheses indicate the options that cause the
corresponding heading to appear; all means that the heading always appears.
Note that these options only determine what information is provided for each
facility; they do not determine which facilities will be listed.

T (all)
Type of the facility:

q message queue;
m shared memory segment;
5 semaphore.

- 1 -

IPCS (I)

ID

KEY

MODE

OWNER

GROUP

CREATOR

CGROUP

CBYTES

QNUM

QBYTES

LSPID

IPCS (I)

(all)
The identifier for the facility entry.

(all)
The key used as an argument to msgget, semget, or shmget
to create the facility entry. (Note: The key of a shared
memory segment is changed to IPC_PRIVATE \\ hen the seg­
ment has been removed until all processes 3tta~hed to the
segment detach it.>

(all)
The facility access modes and flags: The mode consists of 11
characters that are interpreted as follows:
The first two characters are:

R if a process is waiting on a msgrcv;
S if a process is waiting on a msgsnd;
D if the associated shared memory segment has

been removed. It will disappear when the last
process attached to the segment detaches it;

C if the associated shared memory segment is to
be cleared when the first attach is executed;
if the corresponding special flag is not set.

The next 9 characters are interpreted as three sets of three
bits each. The first set refers to the owner's permissions; the
next to permissions of others in the user-group of the facility
entry; and the last to all others. Within each set, the first
character indicates permission to read, the second character
indicates permission to write or alter the facility entry, and
the last character is currently unused.

The permissions are indicated as follows:

r if read permission is granted;
w if write permission is granted;
a if alter permission is granted;

if the indicated permission is not granted.
(all)

The login name of the owner of the facility entry.
(all)

The group name of the group of the owner of the facility
entry.

(a,c)
The login name of the creator of the facility entry.

{a,d
The group name of the group of the creator of the facility
entry.

(a,o)
The number of bytes in messages currently outstanding on
the associated message queue.

(a,o)
The number of messages currently outstanding on the associ­
ated message queue.

(a,b)
The maximum nllmber of bytes allowed in messages out­
standing on the associated message queue.

(a,p)
The process ID of the last process to send a message to the
a~sociated queue.

- 2 -

IPCS (I)

LRPID

STIME

RTIME

criME

NATTCH

SEGSZ

CPID

LPID

ATiME

DTiME

NSEMS

OTiME

IPCS (I)

(a,p)
The process 10 of the last process to receive a message from
the associated queue.

(a,t)
The time the last message was sent to the associated queue.

(a.O
The time the last message was received from the associated
queue.

(a.t)
The time when the associated entry was created or changed.

(a,o)
The number of processes attached to the associated shared
memory segment.

(a,b)
The size of the associated shared memory segment.

(~,P)
The process 10 of the creator of the shared memory entry.

(a,p)
The process 10 of the last process to attach or detach the
shared memory segment.

(a,t)
The time the last attach was completed to the associated
shared memory segment.

(a,l)
The time the last detach was completed on the associated
shared memory segment.

(a,b)
The number of semaphores in the set associated with the
semaphore entry.

(a,O
The time the last semaphore operation was completed on the
set associated with the semaphore entry.

FILES
/unix system namelist
/ dev/kmem memory
/etc/passwd user names
/etc/group group names

SEE ALSO
msgop(2), semop(2), shmop(2) in the UNIX System V Programmer Reference
Manual.

BUGS
Things can change while ipcs is running; the picture it gives is only a close
approximation to reality.

- 3 -

JOIN(I)

NAME

JOIN (I)

join - relational database operator

SYNOPSIS
join [options] file I file2

DESCRIPTION
Join forms, on the standard output, a join of the two relations specified by the
lines of fileJ andfile2. If fileJ is -, the standard input is used.

Filel and file2 must be sorted in increasing ASCII collating sequence on the
fields on which they are to be joined, normally the first in each line.

There is one line in the output for each pair of lines in file! and file2 that have
identical join fields. The output line normally consists of the common field,
then the rest of the line from file1, then the rest of the line from file2.

The default input field separators are blank, tab, or new-line. In this case, mul­
tiple separators count as one field separator, and leading separators are ignored.
The default output field separator is a blank.

Some of the below options use the argument n. This argument should be a 1
or a 2 referring to either filel or file2, respectively. The following options are
recognized:

-an In addition to the normal output, produce a line for each unpairable
line in file n, where n is I or 2.

-e s Replace empty output fields by string s.

-jn m Join on the mth field of file n. If n is missing, use the mth field in
each file. Fields are numbered starting with 1.

-0 list Each output line comprises the fields specified in list, each element of
which has the form n.m, where n is a file number and m is a field
number. The common field is not printed unless specifically requested.

-tc Use character c as a separator <tab character}. Every appearance of c
in a line is significant. The character c is used as the field separator
for both input and output.

EXAMPLE
The following command line will join the password file and the group file,
matching on the numeric group ID, and outputting the login name, the group
name and the login directory. It is assumed that the files have been sorted in
ASCII collating sequence on the group ID fields.

join -j I 4 -j2 3 -0 1.1 2.1 1.6 -t: /etc/passwd /etc/group

SEE ALSO
awk(I), comm(I), sort(I), uniq(I).

BUGS
With default field separation, the collating sequence is that of sort -b; with
-t, the sequence is that of a plain sort.

The conventions of join, sort, comm, uniq and awk(I) are wildly incongruous.

Filenames that are numeric may cause conflict when the -0 option is used right
before listing filenames.

- I -

KASB(t)

NAME

(DEC only) KASB(])

kasb, kunb - assembler/un-assembler for the KMCII B microprocessor

SYNOPSIS
kasb [name] [-0 name I] [-d name2]

kunb [name] [-0 name I]

DESCRIPTION
Kasb is an assembler/debugger/loader for the KMCII B microprocessor. The
optional argument name specifies the input file; default is standard input. The
optional argument -0 indicates that the next argument namel will be the out­
put of the assembler; default is a.out. The optional argument -d indicates that
the assembler is to be used in debug mode and that the next argument name2
is the device file name of the microprocessor. No output file is created in
debug mode.

Error diagnostics are written on the standard error output and contain the
input file name and line number and a brief description of the error. The C
preprocessor control lines to change the file name and line number are recog­
nized. This allows the use of the preprocessor to expand the input before
assembly.

Kunb is an un-assembler for the KMCI I1DMCII microprocessor. It produces
an output listing, acceptable to the assembler kasb, from the input object.

The optional argument name specifies the input object, default is standard
input. The format of the input is either assembler output (first word magic
0410), or formatted dump (first word magic 0440), or raw dump (anything
else). In the first two cases, the header is ignored.

The optional argument -0 indicates that the next argument namel is to con­
tain the output listing, default is standard output.

The input object is first scanned to determine branch destinations. Labels will
be inserted at these locations with format Lint:, where int is the octal value of
the location in words. Immediate values of instructions are also printed in
octal. Page breaks are noted by the labels PO:, "" P3:.

FILES
a.out
/dev/kmc?
/Iib/cpp

SEE ALSO
kmc(7}, vpm(7).

output object
microprocessor device
C preprocessor

Assembler for the DEC KMCl J Microprocessor

- 1 -

KILL(I)

NAME

KILL(I)

kill - terminate a process

SYNOPSIS
kill [-signo] PID

DESCRIPTION
Kill sends signal 15 <terminate) to the specified processes. This will normally
kill processes that do not catch or ignore the signal. The process number of
each asynchronous process started with & is reported by the shell (unless more
than one process is started in a pipeline. in which case the number of the last
process in the pipeline is reported). Process numbers can also be found by
using ps(I).

The details of the kill are described in kilJ(2). For example. if process number
o is specified. all processes in the process group are signaled.

The killed process must belong to the current user unless he is the super-user.

If a signal number preceded by - is given as first argument. that signal is sent
instead of terminate (see signaJ(2». In particular "kill -9 00 on is a sure kill.

SEE ALSO
ps(I). sh(J).
kill (2). signaJ(2) in the UNIX System V Programmer Reference Manual.

- I -

LD(I)

NAME

(not on PDP-l I) LD(I)

ld - link editor for common object files

SYNOPSIS
Id (options) filename

DESCRIPTION
The Id command combines several object files into one, performs relocation,
resolves external symbols, and supports symbol table information for symbolic
debugging. In the simplest case, the names of several object programs are
given, and Id combines them, producing a.n object module that can either be
executed or used as input for a subsequent Id run. The output of /d is left in
a.out. By default this me is executable if no errors occurred during the load.
If any input file, file-name, is not an object file, Id assumes it is either an
archive library or a text file containing link editor directives. (See the Link
Editor User Guide in the UNIX System V Programmer Guide for a discussion
of input directives')

If any argument is a library, it is searched exactly once at the point it is
encountered in the argument list. Only those routines defining an unresolved
external reference are loaded. The library (archive> symbol table (see ar(4» is
searched sequentially with as many passes as are necessary to resolve external
references which can be satisfied by library members. Thus, the ordering of
library members is unimportant.

The following options are recognized by ld.

-e epsym
Set the default entry point address for the output file to be that of the
symbol epsym.

-f fill Set the default fill pattern for "holes" within an output section as well
as initialized bss sections. The argument fill is a two-byte constant.

-Ix Search a library libx.a, where x is up to seven characters. A library is
searched when its name is encountered, so the placement of a -I is
significant. By default, libraries are located in /lib and /usr/lib/.

-m Produce a map Qr listing of the input/output sections on the standard
output.

-ooutfile
Produce an output object file by the name outfile. The name of the
default object file is a.out.

-r Retain relocation entries in the output object file. Relocation entries
must be saved if the output file is to become an input file in a subse­
quent Id run. The link editor will not complain about unresolved refer­
ences.

-s Strip line number entries and symbol table information from the output
object file.

-t Turn off the warning about multiply-defined symbols that are not the
same size.

-u symname
Enter symname as an undefined symbol in the symbol table. This is
useful for loading entirely from a library. since initially the symbol
table is empty and an unresolved reference is needed to force the load­
ing of the first routine.

- I ...

LD(I) (not on PDP-I I) LD(I)

FILES

-x Do not preserve local (non-.glob\) symbols in the output symbol table;
enter external and static symbols only. This option saves some space in
the output file.

- L dir Change the algorithm of searching for libx.a to look in dir before look­
ing in /Iib and /usr/lib. This option is effective only if it precedes the
-I option on the command line.

- M Output a message for each multiply-defined external definition. How-
ever, if the objects being loaded include debugging information,
extraneous output is produced (see the -g option in cd1».

- N Put the data section immediately following the text in the output file.

- V Output a message giving information about the version of ld being
used.

-VS num
Use num as a decimal version stamp identifying the a.out file that IS

produced. The version stamp is stored in the optional header.

/Iib/libx.a
lusr/lib/libx.a
a.out

libraries
libraries
output file

SEE ALSO
as (I), cd).
exit(2), a.out(4), ar(4) in the UNIX System V Programmer Reference Manual.

CAVEATS
Through its options and input directives, the common link editor gives users
great flexibility; however, those who use the input directives must assume some
added responsibilities. Input directives and options should insure the following
properties for programs:

C defines a zero pointer as null. A pointer to which zero has been
assigned must not point to any object. To satisfy this, users must not
place any object at virtual address zero in the data space.

When the link editor is called through cc (I), a startup routine is linked
with the user's program. This routine calls exit() (see exit(2» after exe­
cution of the main program. If the user calls the link editor directly, then
the user must insure that the program always calls exit() rather than faI­
ling through the end of the entry routine.

- 2 -

LD(I)

NAME

(PDP-II only) LO(I)

ld - link editor

SYNOPSIS
Id [-sulxXrdnim] [-0 name] [-t name] [- V num] file ...

DESCRIPTION
Ld combines several object programs into one; resolves external references; and
searches libraries (as created by ad t». In the simplest case several object
files are given, and Id combines them, producing an object module which can
be either executed or become the input for a further ld run. (In the latter
case, the -r option must be given to preserve the relocation bits'> The output
of ld is left on a.out. This file is made executable if no errors occurred during
the load and the -r flag was not specified.

The argument routines are concatenated in the order specified. The entry point
of the output is the beginning of the first routine.

If any argument is a library, it is searched exactly once at the point it is
encountered in the argument list. Only those routines defining an unresolved
external reference are loaded. If a routine from a library references another
routine in the library, the referenced routine must appear after the referencing
routine in the library. Thus the order of programs within libraries is important.

The symbols _etext, _edata and _end (etext, edata and end in C) are reserved,
and if referred to. are set to the first location above the program, the first loca­
tion above initialized data. and the first location above all data respectively. It
is erroneous to define these symbols.

Ld understands several flag arguments which are written preceded by a -.
Except for -I, they should appear before the file names.

-5 "Strip" the output. that is. remove the symbol table and relocation bits
to save space (but impair the usefulness of the debugger). This infor­
mation can also be removed by strip(t). This option is turned off if
there are any undefined symbols.

-u Take the following argument as a symbol and enter it as undefined in
the symbol table. This is useful for loading wholly from a library,
since initially the symbol table is empty and an unresolved reference is
needed to force the loading of the first routine.

-I This option is an abbreviation for a library name. -I alone stands for
lJib/libc.a. which is the standard system library for C and assembly
language programs. -Ix stands for /IiblJibx.a. where x is a string. If
that does not exist. Id tries lusr/lib/libx.a A library is searched when
its name is encountered, so the placement of a -I is significant.

-x Do not preserve local (non-.globI) symbols in the output symbol table;
only enter external symbols. This option saves some space in the out­
put file.

- X Save local symbols except for those whose names begin with L. This
option is used by cc to discard internally generated labels while retain­
ing symbols local to routines.

-r Generate relocation bits in the output file so that it can be the subject
of another Id run. This flag also prevents final definitions from being
given to common symbols. and suppresses the "undefined symbol" diag­
nostics.

-d Force definition of common storage even if the -r flag is present.

-n Arrange that when the output file is executed. the text portion will be
read-only and shared among all users executing the file. This involves

- I -

LO(I) (PDP-II only) LO(I)

-j

-0

-m

FILES

moving the data areas up to the first possible 4K-word boundary fol­
lowing the end of the text. Use - N to turn it off.

When the output file is executed, the program text and data areas will
live in separate address spaces. The only difference between this option
and -n is that here the data starts at location O.

The names of all files and archive members used to create the output
file are written to the standard output.

The name argument after -0 is used as the name of the Id output file,
instead of a.out.

-t The name argument is taken to be a symbol name, and any references
to or definitions of that symbol are listed, along with their types. There
can be up to 16 occurrences of -tname on the command line.

- V The num argument is taken as a decimal version number identifying
the a.out that is produced. Num must be in the range 0-32767. The
version stamp is stored in the a.out header; see a.out (4).

/lib/lib? .a
/usr/lib/lib? .a
a.out

libraries
more libraries
output file

SEE ALSO
ar(I), as(t), cdl), strip(t).
a.out(4), ar(4) in the UNIX System V Programmer Reference Manual.

- 2 -

LEX(I)

NAME

LEX (1)

lex - generate programs for simple lexical tasks

SYNOPSIS
lex [-rctvn] [file] ...

DESCRIPTION
Lex generates programs to be used in simple lexical analysis of text.

The input files (standard input default) contain strings and expressions to be
searched for, and C text to be executed when strings arc found.

A file lex.yy,c is generated which, when loaded with the library, copies the
input to the output except when a string specified in the file is found; then the
corresponding program text is executed. The actual string matched is left in
yylexl, an external character array. Matching is done in order of the strings in
the file. Th'e strings may contain square brackets to indicate character classes,
as in [abx -zl to indicate a, b. x, y, and z; and the operators ., +. and? mean
respectively any non-negative number of, any positive number of, and either
zero or one occurrence of, the previous character or character class. The char­
acter • is the class of all ASCII characters except new-line. Parentheses for
grouping and vertical bar for alternation are also supported. The notation
r{d,e} in a rule indicates between d and e instances of regular expression r. It
has higher precedence than I. but lower than ., ? +. and concatenation. The
character .. at the beginning of an expression permits a successful match only
immediately after a new-line. and the character $ at the end of an expression
requires a trailing new-line. The character / in an expression indicates trailing
context; only the part of the expression up to the slash is returned in yylexl.
but the remainder of the expression must follow in the input stream. An opera­
tor character may be used as an ordinary symbol if it is within It symbols or
preceded by \. Thus [a -zA -ZI + matches a string of letters.

Three subroutines defined as macros are expected: inputO to read a character;
unput(c) to replace a character read; and output(c) to place an output charac­
ter. They are defined in terms of the standard streams. but you can override
them. The program generated is named yylexO. and the library contains a
mainO which calls it. The action REJECT on the right side of the rule causes
this match to be rejected and the next suitable match executed; the function
yymoreO accumulates additional characters into the same yylexl; and the func­
tion yyless(p) pushes back the portion of the string matched beginning at p.
which should be between yylext and yytext+yylellg. The macros illput and
output use files yyin and yyout to read from and write to, defaulted to stdin
and stdout. respectively.

Any line beginning with a blank is assumed to contain only C text and is
copied; if it precedes % % it is copied into the external definition area of the
Icx.yy.c file. All rules should follow a % %, as in YACe. Lines preceding % %
which begin with a non-blank character define the string on the left to be the
remainder of the line; it can be called out later by surrounding it with {}. Note
that curly brackets do not imply parentheses; only string substitution is done.

- I -

'~
1

LEX ()

EXAMPLE
D
%%
if
[a-zl+
O{D}+
{D}+
"++"
"+"
tl/·tt

[0-9)

printf(lI(F statement\n");
prirnf("tag, value %s\n",yytext):
printf("octal number %s\n",yytext};
printf("decimal number %s\n".yytext};
printf("unary op\n");
pri ntf("bina ry op\n"):
{ loop:

while (inputO != './):
switch (input (»

{
case '/': break:
case '.': unput ('.'):
default: go to loop:
}

LEX ()

The external names generated by lex all begin with the prefix yy or YY.

The flags must appear before any files. The flag -r indicates RATFOR ~lctions,

-c indicates C actions and is the default. -t causes the lex.yy.c program to be
written instead to standard output. -v provides a one-line summary of statistics
of the machine generated, -0 will not print out the - summary. Multiple filcs
are treated as a single file. If no files are specified. standard input is used.

Certain table sizes for the resulting finitc state machine can be set in thc
defInitions section:

%p tl number of positions is tl (default 2000)

%0 tl number of states is n (500)

% t n number of parse tree nodes is n (1000)

%a n number of transitions is n (000)

The use of one or more of the above automatically implies the -v option.
unless the -n option is used.

SEE ALSO
yace(I).
mallocOX) in the UNIX System V Programmer Reference Manual.

BUGS
The -r option is not yet fully operational.

- 2 -

L1NE(t)

NAME

L1NE(I)

line - read one line

SYNOPSIS
line

DESCRIPTION
Line copies one line (up to a new-line) from the standard input and writes it on
the standard output. It returns an exit code of 1 on EOF and always prints at
least a new-line. It is often used within shell files to read from the user's termi­
nal.

SEE ALSO
sh(l).
read(2) in the UNIX System V Programmer Reference Manual.

- 1 •

L1NT(I)

NAME

L1NT(I)

lint - a C program checker

SYNOPSIS
lint [option I ... file ...

DESCRIPTION
Lint attempts to detect features of the C program files that are likely to be
bugs, non-portable, or wasteful. It also checks type usage more strictly than
the compilers. Among the things that are currently detected are unreachable
statements, loops not entered at the top, automatic variables declared and not
used, and logical expressions whose value is constant. Moreover, the usage of
functions is checked to find functions that return values in some places and not
in others, functions called with varying numbers or types of arguments, and
functions whose values are not used or whose values are used but none
returned.

Arguments whose names end with .c are taken to be C source files. Arguments
whose names end with .In are taken to be the result of an earlier invocation of
lint with either the -c or the -0 option used. The.ln files are analogous to .0

(object) files that are produced by the cd I) command when given a .c file as
input. Files with other suffixes are warned about and ignored.

Lint will take all the .c,.ln, and llib-Ix.ln (specified by -Ix) files and process
them in their command line order. By default, lint appends the standard Clint
library Olib-Ic.ln) to the end of the list of files. However, if the -p option is
used, the portable C lint library (lIib-port.ln) is appended instead. When the
-c option is not used, the second pass of lint checks this list of files for mutual
compatibility. When the -c option is used, the .In and the lIib-lx.ln files are
ignored.

Any number of lint options may be used, in any order, intermixed with file­
name arguments. The following options are used to suppress certain kinds of
complaints:

-a Suppress complaints about assignments of long values to variables that
are not long.

-b Suppress complaints about break statements that cannot be reached.
(Programs produced by lex or yaee will often result in many such com­
plaints) .

-h Do not apply heuristic tests that attempt to intuit bugs, improve style,
and reduce waste.

-u Suppress complaints about functions and external variables used and
not defined, or defined and not used. (This option is suitable for run­
ning lint on a subset of files of a larger program).

-v Suppress complaints about unused arguments in functions.

-x Do not report variables referred to by external declarations but never
used.

The following arguments alter lint's behavior:

-Ix Include additional lint library llib-Ix.ln. For example, you can include
a lint version of the Math Library IIib-lm.ln by inserting -1m on the
command line. This argument does not suppress the default use of
llib-Ic.ln. These lillt libraries must be in the assumed directory. This
option can be used to reference local lint libraries and is useful in the
development of multi-file projects.

-n Do not check compatibility against either the standard or the portable
lint library.

- I -

LINT(1) LINT (I)

-p Attempt to check portability to other dialects (IBM and GCOS) of C.
Along with stricter checking, this option causes all non-external names
to be truncated to eight characters and all external names to be trun­
cated to six characters and one case.

-c Cause lint to produce a .In file for every .c file on the command line.
These .In files are the product of lint's first pass only, and are not
checked for inter-function compatibility.

-0 lib Cause lint to create a lint library with the name llib-Wb.ln. The -c
option nullifies any use of the -0 option. The lint library produced is
the input that is given to lint's second pass. The -0 option simply
causes this file to be saved in the named lint library. To produce a
llib-Wb.ln without extraneous messages, use of the -x option is sug­
gested. The -v option is useful if the source filC<s) for the lint library
are just external interfaces (for example, the way the file llib-Ic is writ­
ten). These option settings are also available through the use of "lint
comments" (see below).

The -D, -U, and -I options of cpp(}) and the -g and -0 options of cdt)
are also recognized as separate arguments. The -g and -0 options are
ignored, but, by recognizing these options, lint's behavior is closer to that of the
cd I) command. Other options are warned about and ignored. The pre­
processor symbol "lint" is defined to allow certain questionable code to be
altered or removed for lint. Therefore, the symbol "lint" should be thought of
as a reserved word for all code that is planned to be checked by lint.

Certain conventional comments in the C source will change the behavior of
lint:

/"'NOTREACHED·/
at appropriate points stops comments about unreachable code.
(This comment is typically placed just after calls to functions
like exit (2».

/"'YARARGSn"'/
suppresses the usual checking for variable numbers of argu­
ments in the following function declaration. The data types of
the first n arguments are checked; a missing n is taken to be O.

/"'ARGSUSED·/
turns on the -v option for the next function.

/"'L1NTLIBRARY·/
at the beginning of a file shuts off complaints about unused
functions and function arguments in this file. This is
equivalent to using the -v and -x options.

Lint produces its first output on a per-source-file basis. Complaints regarding
included files are collected and printed after all source files have been pro­
cessed. Finally, if the -c option is not used, information gathered from all
input files is collected and checked for consistency. At this point, if it is not
clear whether a complaint stems from a given source file or from one of its
included files, the source file name will be printed followed by a question mark.

The behavior of the -c and the -0 options allows for incremental use of lint
on a set of C source files. Generally, one invokes lint once for each source file
with the -c option. Each of these invocations produces a .In file which
corresponds to the .c file, and prints all messages that are about just that source
file. After all the source files have been separately run through lint, it is
invoked once more (without the -c option), listing all the .In files with the
needed -Ix options. This will print all the inter-file inconsistencies. This
scheme works well with make(I); it allows make to be used to lint only the

- 2 -

LINT(J) LINT(1)

source files that have been modified since the last time the set of source files
were limed.

FILES
the directory where the lint libraries specified by the -Ix
option must exist
first and second passes
declarations for C Library functions (binary format; source
is in /usr/Iib/llib-Ic)
declarations for portable functions (binary format; source
is in /usr/lib/llib-port>
declarations for Math Library functions (binary format;
source is in /usr/lib/llib-Im)
temporaries

lusr/lib/llib-port.ln

lusr/lib/llib-Im.ln

lusr/lib/lintl12l
lusr/lib/llib-lc.ln

lusr/lib

lusrltmp/.lint.

SEE ALSO
cd 1), cpp(l), make(1).

BUGS
exit(2), /ongjmpOC), and other functions that do not return are not under­
stood; this causes various lies.

- 3 -

LOGIN (I)

NAME

LOGIN (I)

login - sign on

SYNOPSIS
login [name [env-var ...]]

DESCRIPTION
The login command is used at the beginning of each terminal session and
allows you to identify yourself to the system. It may be invoked as a command
or by the system when a connection is first established. Also, it is invoked by
the system when a previous user has terminated the initial shell by typing a
cntrl-d to indicate an "end-of-file." (See How to Get Started at the beginning
of this volume for instructions on how to dial up initially.)

If login is invoked as a command it must replace the initial command inter­
preter. This is accomplished by typing:

exec login
from the initial shell.

Login asks for your user name. (if not supplied as an argument), and, if
appropriate, your password. Echoing is turned off (where possible) during the
typing of your password, so it will not appear on the written record of the ses­
sion.

At some installations, an option may be invoked that will require you to enter a
second "dialup" password. This will occur only for dial-up connections, and
will be prompted by the message "dialup password:". Both passwords are
required for a successful login.

If you do not complete the login successfully within a certain period of time
(e.g., one minute), you are likely to be silently disconnected.

After a successful login, accounting files are updated, the procedure /ete/profile
is performed, the message-of-the-day, if any, is printed, the user-ID, the group­
10, the working directory, and the command interpreter (usually sh (I» is ini­
tialized, and the file .profile in the working directory is executed, if it exists.
These specifications are found in the /ete/passwd file entry for the user. The
name of the command interpreter is - followed by the last component of the
interpreter's path name (i.e., -sb). If this field in the password file is empty,
then the default command interpreter, Ibin/sh is used. If this field is "*", then
a chroot (2) is done to the directory named in the directory field of the entry.
At that point login is re-executed at the new level which must have its own root
structure, including /etc/login and /etc/passwd.

The basic environment (sec environ (5» is initialized to:

HOME==your-login-directory
PATH==:/bin:/usr/bin
SHELL=last-field-oJ-passwd-entry
MAIL==/usr/maillyour-login-name
TZ=timezone-specijication

The environment may be expanded or modified by supplying additional argu­
ments to login. either at execution time or when login requests your login
name. The arguments may take either the form xxx or xxx =yyy. Arguments
without an equal sign are placed in the environment as

Ln=xxx
where n is a number starting at 0 and is incremented each time a new variable
name is required. Variables containing an = are placed into the environment
without modification. If they already appear in the environment. then they
replace the older value. There are two exceptions. The variables PATH and
SHELL cannot be changed. This prevents people, logging into restricted shell

- 1 -

LOGIN(I) LOGIN (I)

environments, from spawning secondary shells which are not restricted. Both
login and getty understand simple single-character quoting conventions. Typing
a baekslash in front of a character quotes it and allows the inclusion of such
things as spaces and tabs.

FILES
/etc/utmp accounting
/etc/wtmp accounting
/usr/mail/your-name mailbox for user your-name
/etc/motd message-of-the-day
/etc/passwd password file
/etc/prof1le system profile
.profile user's login profile

SEE ALSO
mail(]). newgrp(I). sh (J), su (I).
passwd(4), profile(4), environ{S) in the UNIX System V Programmer Reference
Manual.

DIAGNOSTICS
Login incorrect if the user name or the password cannot be matched.
No shell. cannot open password file. or no directory: consult a UN IX system
programming counselor.
No utmp entry. You must exec "login" from the lowest level "sh". if you
attempted to execute login as a command without using the shell's exec inter­
nal command or from other than the initial shell.

- 2 -

LOGNAME(l) LOGNAME(l)

NAME
logname - get login name

SYNOPSIS
logname

DESCRIPTION
Logname returns the contents of the environment variable SLOGNAME. which is
set when a user logs into the system.

FILES
/etc/profile

SEE ALSO
env(l), login(l).
logname(3X), environ(S) in the UNIX System V Programmer Reference
Manual.

.. 1 •

~".- .

LORDER(l)

NAME

LORDER(I)

lorder - find ordering relation for an object library

SYNOPSIS
lorder file ...

DESCRIPTION
The input is one or more object or library archive files (see ar(]). The stan~

dard output is a list of pairs of object file names, meaning that the first file of
the pair refers to external identifiers defined in the second. The output may be
processed by tsort{]) to find an ordering of a library suitable for one-pass
access by Id(I). Note that the link editor (except on the PDP-II) Id(I) is
capable of multiple passes over an archive in the portable archive format (see
ar(4» and does not require that lorder(I) be used when building an archive.
The usage of the lorder(I) command may, however. allow for a slightly more
efficient access of the archive during the link edit process.

The following example builds a new library from existing .0 files.

ar cr library 'lorder *.0 I tsort'

FILES
*symref, *symdef temporary files

SEE ALSO
ad I). ld (), tsort (I).
ad4) in the UNIX System V Programrner Reference Manual.

BUGS
Object files whose names do not end with .0, even when contained in library
archives, are overlooked. Their global symbols and references are attributed to
some other file.

~) ~

LP(t)

NAME

LP(t)

Ip, cancel - send/cancel requests to an LP line printer

SYNOPSIS
Ip [-c] [-ddest] [-m] [-nnumberl [-ooption] [-s] [-Hitie] [-w] files
cancel [ids] [printers]

DESCRIPTION
Lp arranges for the named files and associated information (collectively called a
request> to be printed by a line printer. If no file names are mentioned, the
standard input is assumed. The file name - stands for the standard input and
may be supplied on the command line in conjunction with named jiles. The
order in which jiles appear is the same order in which they will be printed.

Lp associates a unique id with each request and prints it on the standard out­
put. This id can be used later to cancel (see cancel) or find the status (see
Ipstadl» of the request.

The following options to Ip may appear in any order and may be intermixed
with file names:

-c Make copies of the jiles to be printed immediately when Ip is
invoked. Normany, jiles will not be copied. but will be linked
whenever possible. If the -c option is not given. then the user
should be careful not to remove any of the jiles before the request
has been printed in its entirety. It should also be noted that in the
absence of the -c option, any changes made to the named jiles
after the request is made but before it is printed will be reflected in
the printed output.

-ddest Choose dest as the printer or class of printers that is to do the
printing. If dest is a printer, then the request will be printed only
on that specific printer. If dest is a class of printers, then the
request will be printed on the first available printer that is a
member of the class. Under certain conditions (printer unavaila­
bility, file space limitation, etc.), requests for specific destinations
may not be accepted (see accept(IM) and Ips I at (I». By default,
dest is taken from the environment variable LPDEST (if it is set).
Otherwise, a default destination (if one exists) for the computer
system is used. Destination names vary between systems (see
Ipstat (I».

-m Send mail (see mai/(J)) after the files have been printed. By
default, no mail is sent upon normal completion of the print
request.

-nnumber Print number copies (default of 1) of the output.

-ooption Specify printer-dependent or class-dependent options. Several
such options may be collected by specifying the -0 keyletler more
than once. For more information about what is valid for options.
see Models in Ipadmin (I M).

-s Suppress messages from IpO) such as "request id is ...".

-ttitle Print title on the banner page of the output.

-w Write a message on the user's terminal after the jiles have been
printed. If the user is not logged in, then mail will be sent instead.

Cancel cancels line printer requests that were made by the Ip (I) command.
The command line arguments may be either request ids (as returned by /p (I»
or printer names (for a complete list, use Ipstadl». Specifying a request id
cancels the associated request even if it is currently printing. Specifying a

- I -

''1

~:

LP(l)

FILES

LP(l)

printer cancels the request which is currently printing on that printer. In either
case, the cancellation of a request that is currently printing frees the printer to
print its next available request.

/usr/spool/lp/*

SEE ALSO
enableO), Ipstat(I). mail(l).
accept(l M), Ipadmin () M), IpschedO M) in the UNIX System V Administrator
Reference Manua/ .

- 2 -

LPSTAT(t) LPSTAT(J)

NAME
lpstat - print LP status information

SYNOPSIS
Ipstat [options]

DESCRIPTION
LpstQt prints information about the current status of the l.1l line printer system.

If no options arc given, then Ipstat prints the status of all requests made to
Ip (I) by the user. Any arguments that are not options are assumed to be
request ids (as returned by Ip). LpstQt prints the status of such requests.
Options may appear in any order and may be repeated and intermixed with
other arguments. Some of the keyletters below may be followed by an optional
list that can be in one of two forms: a list of items separated from one another
by a comma, ,or a list of items enclosed in double quotes and separated from
one another by a comma and/or one or more spaces. For example:

-u"user I, user2. user3"

Print the system default destination for Ip.

Print the status of output requests. List is a list of intermixed
printer names, class names. and request ids.

Print the status of printers. List is a list of printer names.

Print the status of the LP request scheduler

Print a status summary, including the status of the line printer
scheduler. the system default destination, a list of class names and
their members, and a list of printers and their associated devices.

Print all status information.

Print status of output requests for users. List is a list of login
names.

-r

-p[list]

-t

-u[list]

-s

-ellist)

-d

-o[list]

The omission of a list following such keylelters causes all information relevant
to the keylelter to be printed. for example:

Ipstat -0

prints the status of all output requests.

-a[list] Print acceptance status (with respect to Ip) of destinations for
requests. List is a list of intermixed printer names and class names.

Print class names and their members. List is a list of class names.

-v[list] Print the names of printers and the path names of the devices asso­
ciated with them. List is a list of printer names.

FILES
lusr/spooi/lp/­

SEE ALSO
enable< J). Ip(I),

- I -

LS(1)

NAME

LS(t)

-n

-0

-g
-r

-t

-u

-c

r -p

-F

Is - list contents of directory

SYNOPSIS
Is [- RadCxmlnogrtucpFbqisf] [names]

DESCRIPTION
For each directory ~rgument, Is lists the contents of the directory; for each file
argument, Is repeats its name and any other information requested. The output
is sorted alphabetically by default. When no argument is given, the current
directory is listed. When several arguments are given, the arguments are first
sorted appropriately, but file arguments appear before directories and their con­
tents.

There are three major listing formats. The default format is to list one entry
per line, the -C and -x options enable multi-column formats, and the -m
option enables stream output format in which files are listed across the page,
separated by commas. In order to determine output formats for the -C, -x,
and -m options, /s uses an environment variable, COLUMNS, to determine the
number of character positions available on one output line. If this variable is
not set, the terminfo database is used to determine the number of columns,
based on the environment variable TERM. If this information cannot be
obtained, 80 columns are assumed.

There are an unbelievable number of options:

- R Recursively list subdirectories encountered.

-a List all entries; usually entries whose names be~in with a period (.) are
not listed.

-d If an argument is a directory, list only its name (not its contents);
often used with -I to get the status of a directory.

-C Multi-column output with entries sorted down the columns.

-x Multi-column output with entries sorted across rather than down the
page.

-m Stream output format.

-I List in long format, giving mode, number of links, owner, group, size in
bytes, and time of last modification for each file (see below). If the file
is a special file, the size field will instead contain the major and minor
device numbers rather than a size.

The same as -I, except that the owner's UID and group's GID
numbers are printed, rather than the associated character strings.

The same as -I, except that the group is not printed.

The same as -I, except that the owner is not printed.

Reverse the order of sort to get reverse alphabetic or oldest first as
appropriate.

Sort by time modified Oatest first) instead of by name.

Use time of last access instead of last modification for sorting (with the
-t option) or printing (with the -I option).

Use time of last modification of the i-node (file created, mode changed,
etc'> for sorting (-t) or printing (-0.
Put a slash (f) after each filename if that file is a directory.

Put a slash (f) after each filename if that file is a directory and put an
asterisk (*) after each filename if that file is executable.

- I -

-b

-q

LS(t> LS(I)

Force printing of non-graphic characters to be in the octal \ddd nota­
tion.

Force printing of non-graphic characters in file names as the character
(?).

-j For each file, print the i-number in the first column of the report.

-s Give size in blocks, including indirect blocks, for each entry.

-f Force each argument to be interpreted as a directory and list the name
found in each slot. This option turns off -I. -t, -s, and -r. and
turns on -8; the order is the order in which entries appear in the
directory.

The mode printed under the -I option consists of 10 characters that are inter­
preted as follows:

The first character is:

d if the entry is a directory;
b if the entry is a block special file;
c if the entry is a character special file;
p if the entry is a fifo (a.k.a. "named pipe") special file;

if the entry is an ordinary file.

The next 9 characters are interpreted as three sets of three bits each.
The first set refers to the owner's permissions; the next to permissions
of others in the user-group of the file; and the last to all others.
Within each set, the three characters indicate permission to read, to
write, and to execute the file as a program, respectively. For a direc­
tory, "execute" permission is interpreted to mean permission to search
the directory for a specified file.

The permissions are indicated as follows:

r if the file is readable;
w if the file is writable;
x if the file is executable;

if the indicated permission is not granted.

The group-execute permission character is given as s if the file has set­
group-ID mode; likewise, the user-execute permission character is given
as s if the file has set-user-ID mode. The last character of the mode
(normally x or -) is t if the 1000 (octal) bit of the mode is on; see
chmod(l) for the meaning of this mode. The indications of set-ID and
1000 bits of the mode are capitalized (S and T respectively) if the
corresponding execute permission is not set.

When the sizes of the files in a directory are listed, a total count of blocks,
including indirect blocks, is printed.

FILES
I etcI passwd

letc/group

lusr/liblterminfo/*

SEE ALSO
chmod (t), find (t).

BUGS

to get user IDs for Is -I and Is
-0.

to get group IDs for Is -I and Is
-g.
to get terminal information.

Unprintable characters in file names may confuse the columnar output options.

- 2 -

M4(t)

NAME
m4 - macro processor

SYNOPSIS
m4 [options) [files)

DESCRIPTION
M4 is a macro processor intended as a front end for Ratfor. C. and other
languages. Each of the argument files is processed in order; if there are no
files, or if a file name is -, the standard input is read. The processed text is
written on the standard output.

The options and their effects are as follows:

-e Operate interactively. Interrupts are ignored and the output is
unbuffered.

-s Enable line sync output for the C preprocessor (#line ...)

- Bint Change the size of the push-back and argument collection buffers from
the default of 4,096.

-Hint Change the size of the symbol table hash array from the default of
199. The size should be prime.

-Sint Change the size of the call stack from the default of 100 slots. Macros
take three slots, and non-macro arguments take one.

-Tint Change the size of the token buffer from the default of 512 bytes.

To be effective. these flags must appear before any file names and before any
-0 or -U flags:

-Onamef :0 vall
Defines name to valor to null in val's absence.

-Uname
undefines name.

Macro calls have the form:

name(arg 1,arg2•.. ". argn)

The (must immediately follow the name of the macro. If the name of a
defined macro is not followed by a <. it is deemed to be a call of that macro
with no arguments. Potential macro names consist of alphabetic letters, digits.
and underscore -' where the first character is not a digit.

Leading unquoted blanks. tabs, and new-lines are ignored while collecting argu­
ments. Left and right single quotes are used to quote strings. The value of a
quoted string is the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching for
a matching right parenthesis. If fewer arguments are supplied than are in the
macro definition, the trailing arguments are taken to be null. Macro evaluation
proceeds normally during the collection of the arguments, and any commas or
right parentheses which happen to turn up within the value of a nested call are
as effective as those in the original input text. After argument collection, the
value of the macro is pushed back onto the input stream and rescanned.

M4 makes available the following built-in macros. They may be redefined, but
onc.e this is done the original meaning is lost. Their values are null unless oth­
erwise stated.

- 1 -

M4(l)

define

undefine

defn

pushdef

popdef

ifdef

shift

changequote

changecom

divert

undivert

divnum

dnl

ifelse

incr

M4(I)

the second argument is installed as the value of the macro whose
name is the first argument. Each occurrence of $n in the
replacement text, where n is a digit, is replaced by the n-th argu­
ment. Argument 0 is the name of the macro; missing arguments
are replaced by the null string; $# is replaced by the number of
arguments; $- 'is replaced by a list of all the arguments separated
by commas; $@ is like $-, but each argument is quoted (with the
current quotes).

removes the definition of the macro named in its argument.

returns the quoted definition of its argument(s). It is useful for
renaming macros, especially built-ins.

like define, but saves any previous definition.

removes current definition of its argument(s), exposing the previ­
Jus one, if any.

if the first argument is defined, the value is the second argument,
otherwise the third. If there is no third argument, the value is
null. The word unix is predefined on UNIX system versions of
m4.

returns all but its first argument. The other arguments are
quoted and pushed back with commas in between. The quoting
nullifies the effect of the extra scan that will subsequently be per­
formed.

change quote symbols to the first and second arguments. The
symbols may be up to five characters long. Changequote without
arguments restores the original values (j.e., " ,).

change left and right comment markers from the default # and
new-line. With no arguments, the comment mechanism is
effectively disabled. With one argument, the left marker becomes
the argument and the right marker becomes new-line. With two
arguments, both markers are affected. Comment markers may be
up to five characters long.

m4 maintains 10 output streams, numbered 0-9. The final output
is the concatenation of the streams in numerical order; initially
stream 0 is the current stream. The divert macro changes the
current output stream to its (digit-string) argument. Output
diverted to a stream other than 0 through 9 is discarded.

causes immediate output of text from diversions named as argu­
ments, or all diversions if no argument. Text may be undiverted
into another diversion. Undiverting discards the diverted text.

returns the value of the current output stream.

reads and discards characters up to and including the next new­
line.

has three or more arguments. If the first argument is the same
string as the second, then the value is the third argument. If not,
and if there are more than four arguments, the process is
repeated with arguments 4, 5, 6 and 7. Otherwise, the value is
either the fourth string, or, if it is not present, null.

returns the value of its argument incremented by 1. The value of
the argument is calculated by interpreting an initial digit-string
as a decimal number.

• 2 •

M4(1)

decr

eval

len

index

substr

translit

include

sinclude

syscmd

sysval

maketemp

m4exit

m4wrap

errprint

dumpdef

traceon

traceoff

returns the value of its argument decremented by I.

evaluates its argument as an arithmetic expression, using 32-bit
arithmetic. Operators include +. -, ., I, %, A (exponentiation),
bitwise &. I. A, and -; relationals; parentheses. Octal and hex
numbers may be specified as in C. The second argument specifies
the radix for the result; the default is 10. The third argument
may be used to specify the minimum number of digits in the
result.

returns the number of characters in its argument.

returns the position in its first argument where the second argu­
ment begins (zero origin), or -) if the second argument does not
occur.

returns a substring of its first argument. The second argument is
a zero origin number selecting the first character; the third argu­
ment indicates the length of the substring. A missing third argu­
ment is taken to be large enough to extend to the end of the first
string.

transliterates the characters in its first argument from the set
given by the second argument to the set given by the third. No
abbreviations are permitted.

returns the contents of the file named in the argument.

is identical to include, except that it says nothing if the file is
inaccessible.

executes the UNIX system command given in the first argument.
No value is returned.

is the return code from the last call to syscmd.

fills in a string of XXXXX in its argument with the current pro­
cess ID.

causes immediate exit from m4. Argument 1, if given, is the exit
code; the default is O.

argument 1 will be pushed back at final EOF; example:
m4wrap("cleanupO ,)

prints its argument on the diagnostic output file.

prints current names and definitions, for the named items, or for
all if no arguments are given.

with no arguments, turns on tracing for all macros <including
built-ins}. Otherwise, turns on tracing for named macros.

turns off trace globally and for any macros specified. Macros
specifically traced by traceon can be untraced only by specific
calls to traceoff.

SEE ALSO
cc(I}. cpp(I).

The M4 Macro Processor by B. W. Kernighan and D. M. Ritchie.

- 3 -

MACHID(l)

NAME

MACHID(l)

pdp II, u3b, u3b5, vax - provide truth value about your processor type

SYNOPSIS
pdpII

u3b

u3bS

vax

DESCRIPTION
The following commands will return a true value (exit code of 0) if you are on
a processor that the command name indicates.

pdpll True if you are on a PDP-I 1/45 or PDP-I 1/70.

u3b True if you are on a 3B 20 computer.

u3bS True if you are on a 3B 5 computer.

vax True if you are on a VAX-I 1/750 or VAX-I 1/780.

The commands that do not apply will return a false (non-zero) value. These
commands are often used within make(I) makefiles and shell procedures to
increase portability.

SEE ALSO
make(I), sh(I), test(I), true(I).

- I -

MAIL(I) MAIL(I)

NAME
mail, rmail - send mail to users or read mail

x

m [persons]

s [files]
w [files]

-p
-q

SYNOPSIS
mail [-epqr] [-f file]

mail [- t] persons

rmail [- t] persons

DESCRIPTION
Mail without arguments prints a user's mail, message-by-message, in last-in,
first-out order. For each message, the user is prompted with a ?, and a line is
read from the standard input to determine the disposition of the message:

<new-line> Go on to next message.
+ Same as < new-line> .
d Delete message and go on to next message.
p Print message again.

Go back to previous message.
Save message in the named files (mbox is default).
Save message, without its header. in the named files
(mbox is default).
Mail the message to the named persons (yourself is
default) .

q Put undeleted mail back iri the mailfile and stop.
EOT (control-d) Same as q.

Put all mail back in the mailjile unchanged and
stop.

!command Escape to the shell to do command.
• Print a command summary.

The optional arguments alter the printing of the mail:

-e causes mail not to be printed. An exit value of a is returned if the user
has mail; otherwise, an exit value of I is returned.
causes all mail to be printed without prompting for disposition.
causes mail to terminate after interrupts. Normally an interrupt only
causes the termination of the message being printed.

-r causes messages to be printed in first-in, first-out order.
-fJile causes mail to use file (e.g., mbox) instead of the default mailfile.

When persons are named, mail takes the standard input up to an end-of-file
(or up to a line consisting of just a .) and adds it to each person's mailfile.
The message is preceded by the sender's name and a postmark. Lines that look
like postmarks in the message, (j.e., "From ...") are preceded with a >. The
-t option causes the message to be preceded by all persons the mail is sent to.
A person is usually a user name recognized by login (]). If a person being sent
mail is not recognized, or if mail is interrupted during input, the file dead.letter
will be saved to allow editing and resending. Note that this is regarded as a
temporary file in that it is recreated every time needed. erasing the previous
contents of dead.letter.

~'

To denote a recipient on a remote system, prefix person by the system name
and exclamation mark (see uucp (I e». Everything after the first exclamation
mark in persons is interpreted by the remote system. In particular, if persons
contains additional exclamation marks, it can denote a sequence of machines
through which the' message is to be sent on the way to its ultimate destination.
For example, specifying a!b!cde as a recipient's name causes the message to be
sent to user b!cde on system a. System a will interpret that destination as a
request to send the message to user cde on system b. This might be useful, for
instance, if the sending system can access system a but not system b, and

- I -

MAIL(l) MAIL(I)

FILES

system a has access to system b. Mail will not use uucp if the remote system
is the local system name (j.e., localsystem!user).

The mailfile may be manipulated in two ways to alter the function of mail.
The other permissions of the file may be read-write. read-only, or neither read
nor write to allow different levels of privacy. If changed to other than the
default, the file will be preserved even when empty to perpetuate the desired
permissions. The file may also contain the first line:

Forward to person

which will cause all mail sent to the owner of the mai/file to be forwarded to
person. This is especially useful to forward all of a person's mail to one
machine in a multiple machine environment. In order for forwarding to work
properly the mailfile should have "mail" as group ID, and the group permission
should be reaq-write.

Rmail only permits the sending of mail; uucp(l C) uses rmail as a security pre­
caution.

When a user logs in, the presence of mail, if any, is indicated. Also, notification
is made if new mail arrives while using mail.

/etc/passwd
lusr/mail/user
$HOME/mbox
$MAIL
Itmp/ma­
/usr/mail/-.Iock
dead. letter

to identify sender and locate persons
incoming mail for user; i.e., the mailfile
saved mail
variable containing path name of mailfile
temporary file
lock for mail directory
unmailable text

SEE ALSO
login(J), mailx(l), uucp(IC), write(J).

BUGS
Conditions sometimes result in a failure to remove a lock file.
After an interrupt, the next message may not be printed; printing may be
forced by typing a p.

- 2 -

MAILX(l)

NAME

MAILX(l)

mailx -:- interactive message processing system

SYNOPSIS
mailx (options) (name..J

DESCRIPTION
The command mailx provides a comfoitable. flexible environment for sending
and receiving messages electronically. When reading mail. mailx provides com­
mands to facilitate saving, deleting. and responding to messages. When sending
mail, mailx allows editing. reviewing and other modilication of the message as
it is entered.

Incoming mail is stored in a standard file for each user, called the system mail­
box for that user. When mailx is called to read messages. the mailbox is the
default place to find them. As messages are read. they are marked to be moved
to a secondary file for storage, unless specific action is taken. so that the mes­
sages need not be seen again. This secondary file is called the mbox and is nor­
mally located in the user's HOME directory (see "MBOX" (ENVIRONMENT
VARIABLES) for a description of. this file). Messages remain in this filc until
forcibly removed.

On the command line. options start with a dash (-) and any othcr arguments
are taken to be destinations (recipients). If no recipients are specified, mailx
will attempt to read messages from the mailbox. Command line options are:

-d

-e

-f [filenamel

-F

-h number

-1-1
-i

-n
-N
-r address

-5 subject
-u user

-u

Turn on debugging output. Neither particularly
interesting nor recommended.
Test for presence of mail. Mailx prints nothing and
exits with a successful return code if there is mail to
read.
Read messages from filename instead of mailbox. If
no filename is specified, the mbox is used.
Record the message in a file namcd after the first reci­
pient. Overrides the "record" variable. if set (see
ENVIRONMENT VARIABLES).
The number of network "hops" made so far. This is
provided for network software to avoid infinite delivery
loops.
Print header summary only.
Ignore interrupts. See also "ignore" (ENVIRON:v1ENT
VARIABLES) .
Do not initialize from the system default Mailx.rc file.
Do not print initial header summary.
Pass address to network delivery software. All tilde

commands are disabled.
Set the Subject header field to subject.
Read user's mailbox. This is only effective if user's

mailbox is not read protected.
Convert UUCfJ style addresses to internct standards.
Overrides the "conv" environment variable.

When reading mail. mailx is in command mode. A header summary of the
first several messages is displayed. followed by a prompt indicating mailx can
accept regular commands (see COMMANDS below). When sending mail.
mailx is in input mode. If no subject is specified on the command line, a
prompt for the subject is printed. As the message is typed. mailx will read the
message and store it in a temporary file. Commands may be entered by

- I -

MAILX (() MAILX(J)

*
$

n-m
user
Istring
:c

beginning a line with the tilde (-) escape character followed by a single com­
mand 'leller and optional arguments. See TILDE ESCAPES for a summary of
these commands.

At any time, the behavior of mailx is governed by a set of environment vari­
ables. These are flags and valued parameters which are set and cleared via the
set and unset commands. See ENVIRONMENT VARIABLES below for a sum­
mary of these parameters.

Recipients listed on the command line may be of three types: login names,
shell commands, or alias groups. Login names may be any network address,
including mixed network addressing. If the recipient name begins with a pipe
symbol (I), the rest of the name is taken to be a shell command to pipe the
message through. This provides an automatic interface with any program that
reads the standard input, such as IpO) for recording outgoing mail on paper.
Alias groups are set by the alias command (see COMMANDS below) and are
lists of recipients of any type.

Regular commands are of the form

[command] [msglist] [arguments]

If no command is specified in command mode, print is assumed. In input
mode, commands are recognized by the escape character, and lines not treated
as commands are taken as input for the message.

Each message is assigned a sequential number, and there is at any time the
notion of a 'current' message, marked by a '>' in the header summary. Many
commands take an optional list of messages (msglist) to operate on, which
defaults to the current message. A msglisl is a list of message specifications
separated by spaces, which may include:

n Message number n.
The current message.
The first undeleted message.
The last message.
All messages.
An inclusive range of message numbers.
All messages from user.
All messages with string in the subject line (case ignored).
All messages of type c, where c is one of:

d deleted messages
n new messages
o old messages
r read messages
u unread messages

Note that the context of the command determines whether this
type of message specification makes sense.

Other arguments are usually arbitrary strings whose usage depends on the com­
mand involved. File names, where expected, are expanded via the normal shell
conventions (see sh (I». Special characters arc recognized by certain com­
mands and arc documented with the commands below.

At start-up time, mailx reads commands from a system-wide file
Uusr/lib/mailx/mailx.rd to initialize certain parameters, then from a private
start-up file ($HOME/.mailrd for personalized variables. Most regular com­
mands are legal inside start-up files, the most common use being to set up ini­
tial display options and alias lists. The following commands are not legal in the
start-up file: !, Copy, edit, followup, Followup, hold, mail, preserve, reply,
Reply, shell, and visual. Any errors in the start-up file cause the remaining

- 2 -

MAILX(I) MAILX (I)

lines in the file to be ignored.

COMMANDS
The following is a complete list of mailx commands:

!shell-cummand
Escape to the shell. See "SHELL" (ENVIRONMENT VARIABLES).

comment
Null command <Comment). This may be useful in .mailre tiles.

Print the current message number.

?
Prints a summary of commands.

alias alias /lame .
group alills name ..

Declare an alias for the given names. The names will be substituted
when alias is used as a recipient. Useful in the .mailre filc.

alternates name ...
Dcclares a list of alternate names for your login. When responding to
a message, these names are rcmoved from the list of recipients for the
response. With no arguments, altcrnatcs prints the currcnt list of alter­
nate names. See also "allnet" (ENVIRON \H:yr VAR IABLES).

cd [director)']
chdir [direeiory]

Change directory. If directory is not specilied. $I!OM r: is used.

copy [jUename]
copy [msglisl] filename

Copy messages to the tile without marking the mcssages as saved.
Othcrwisc cquivalent to the save command.

Copy [ms~lisl]

Save the specified messages in a file whose name is derivcd from the
author of thc mcssage to be saved. without marking the mcssages as
saved. Otherwise equivalent to the Save command.

delete [msglis/]
Delete messages from the mailhox. If "autoprint" is set. the next mes­
sage after the last one deleted is printed (see E;,\VIR()~MENT VARI­
ABLES).

discard [header-field ...l
i~norc [header-field ...l

Suppresses printing of the specified header fields when displaying mes­
sages on the screen. Examples or header fields to ignorc arc "status"
and "cc." The Iields arc included when the message is saved. The
Print and Type commands override this command.

dp [msglisl]
dt lmsgJis/]

Delete the specified messages from
messagc after the last one dclctcd.

- 3 -

the mailhox and print the ncxt
Roughly equivalent to a delete

MAILX(I)

command followed by a print command.

echo string ...
Echo the given strings (like echo (I».

MAILX (J)

edit [msglist]
Edit the given messages. The messages are placed in a temporary file
and the "EDITOR" variable is used to get the name of the editor (see
ENVIRONMENT VARIABLES). Default editor is ed(t).

exit
xit

Exit from mailx, without changing the mailbox. No messages are
saved in the mbox (see also quit).

file [filename]
folder [filename]

Quit from the current file of messages and read in the specified file.
Several special characters are recognized when used as file names. with
the following substitutions:

(;:., the current mailbox.
(l'ouser the mailbox for user.
the previous file.
& the current mbox.

Default file is the current mailbox.

folders
Print the names of the files in the directory set by the "folder" variable
(see ENVIRONMENT VARIABLES).

followup [message]
Respond to a message, recording the response in a file whose name is
derived from the author of the message. Overrides the "record" vari­
able. if set. See also the Followup, Save, and Copy commands and
"outfolder" (ENVIRONMENT VARIABI.ES).

Followup [msglisr]
Respond to the first message in the msglist. sending the message to the
author of each message in the msglist. The subject line is taken from
the first message and the response is recorded in a file whose name is
derived from the author of the first message. See also the followup,
Save, and Copy commands and "outfolder" (ENVIRONMENT VARI­
ABLES) .

from [msglistl
Prints the header summary for the specified messages.

group alias name .
alias alias namt' ..

Declare an alias for the given names. The names will be substituted
when alias is used as a recipient. Useful in the .mailre file.

headers [message]
Prints the page of headers which includes the message specified. The
"screen" variable sets the number of headers per page (see El\VIRO!\·
M ENT VARIABLES). See also the z command.

- 4 -

MAILX(\)

help
Prints a summary of commands.

hold [msgUst J
preserve [nlsgUst J

Holds the specified messages in the mailhox.

if sir
mail-commands
else
mail-commands
endif

MAILX(\)

r

Conditional execution. where s will execute following mail-commands.
up to an else or endif, if the program is in send mode. and r causes the
mail-commands to be executed only in receive mode. Useful in the
.mailre file.

ignore header-field .
discard header-field .

Suppresses printing of the specified header fields when displaying mes­
sages on the screen. Examples of header fields to ignore are "status"
and "cc." All ticlds are included when the message is saved. The Print
and Type commands override this command.

list
Prints all commands available. No explanation is given.

mail name ...
Mail a message to the specified users.

mbox [msgUst]
Arrange for the given messages to end up in the standard mho,," .~ave

file when mailx terminates normally. See "M BOX" (E~VIRO,\ \1 Eyr
VARIABL.ES) for a description of this file. See also the exit and quit
commands.

nex.t [message]
Go to next message matching message. :\ msglist may be spc,ilied.
but in this case the first valid message in the list is the only one used.
This is useful for jumping to the next message from a specilk user.
since the name would be taken as a command in the absence of a real
command. See the discussion of msgUsts above for a des,ription Ill'
possible message specifications.

pipe lmsgUsd [shell-mmnumd]
I lmsglisd b'hell-command]

Pipe the message through the given shell-mmmalld. The message is
treated as if it were read. If no arguments are giwn, the current mes­
sage is piped through the command specilicd by the value of the ""nd"
variable. If the "page" variable is set. a form feed character is inserted
after each message (see ENVIRO!':\1E!\T V:\RIABI.I:S).

preserve [msglisll
hold [msglisl]

Preserve the spccilied messages in the mailhox.

MAILX(I) MAILX (I)

Print [msglist]
Type [msglisf]

Print the specified messages on the screen, including all header fields.
Overrides suppression of fields by the i~nore command.

print [msglist]
type [msglisf]

Print the specified messages. If "crt" is set, the messages longer than
the number of lines specified by the "crt" variable arc paged through
the command specified by the "PAGER" variable. The default com­
mand is pg(l) (see ENVIRONMENT VARIABI.ES).

quit
Exit from mailx, storing messages that were read in mbox and unread
messages in the mailbox. Messages that have been explicitly saved in
a Hie are deleted.

Reply [msglist]
Respond [msglist]

Send a response to the author of each message in the 11l.\"I:liSI. The
subject line is taken from the first message. If "record" is set to a f1le
name, the response is saved at the end of that file (see ENVIRON·
M FoNT VARIABLES),

reply [message]
respond [message]

Reply to the specified message, including all other recIpIents of the
message. If "record" is set to a file name, the response is saved at the
end of that file (see ENVIRONMENT VARIABLES).

Save lmsglistl
Save the specified messages in a file whose name is derived from the
author of the first message. The name of the file is taken to be the
author's name with all network addressing stripped off. Sec also the
Copy, followup, and Followup commands and "outfolder" (FNVIRON­
MENT VARIABLES),

save [filename]
save lmsglist] filename

Save the specified messages in the given file. The file is created if it
does not exist. The message is deleted from the mailbox when mailx
terminates unless "keepsave" is set (see also ENVIRONMENT VARI­
ABLES and the exit and quit commands).

set
set name
set name=sfring
set name=/lumber

Denne a variable called name. The variable may be given a null.
string, or numeric value. Set by itself prints all defined variables and
their values. See ENVIRONMENT VARIABLES for detailed descrip­
tions of the mailx variables.

shell
Invoke an interactive shell (see also "SHELL" (ENVIRONML~TVARI­
ABLES».

- 6 -

.~

MAILX (»

size lm.\·Klist I
Print the size in characters of the specified messages.

MAILX(»

source filename
Read commands from the given file and return to command mode.

top lmsKlist]
Print the top few lines of the specified messages. If the "toplines" vari­
able is set, it is taken as the number of lines to print (see ENVIRON­
MENT VARIABLES). The default is 5.

touch lmsglist)
Touch the specified messages. If any message in msglist is not
specifically saved in a file, it will be placed in the mhox upon normal
termination. See exit and quit.

Type lmsglistl
Print lmsglistl

Print the specifIed messages on the screen, including all header fields.
Overrides suppression of fields by the ignore command.

type lmsglist]
print lmsglist]

Print the specified messages. If "crt" is set, the messages longer than
the number of lines specified by the "crt" variable are paged through
the command specified by the "PAGER" variable. The default com­
mand is pg()} (see ENVIRONMENT VARIABLES).

undelete lmsglistl
Restore the specilled deleted messages. Will only restore messages
deleted in the current mail session. If "autoprint" is set, the last mes­
sage of those restored is printed (see ENVIRON M ENT VARIABLES).

unset name ...
Causes the specified variables to be erased. If the variable was
imported from the execution environment (i.e., a shell variable) then it
cannot be erased.

version
Prints the current version and release date.

visual lmsglistl
Edit the given messages with a screen editor. The messages are placed
in a temporary file and the "VISUAL" variable is used to get the name
of the editor (see ENVIRONMENT VARIABI.ES).

write lmsglistl jilenanw
Write the given messages on the specified file, minus the header and
trailing blank line. Otherwise equivalent to the save command.

xit
exit

Exit from mailx. without changing the mailbox. No messages are
saved in the mbox (see also quit).

- 7 -

MAILX(I)

z(+I-]

MAILX(t)

Scroll the header display forward or backward one scrccn-full. The
number of headcrs displayed is set by the "screen" variablc (see
ENVIRONMENT VARIABLES).

TILDE ESCAPES
The following commands may be entered only from input mode, by beginning a
line with the tilde escape character r). See "escapc" (ENVIRONMENT VARI­
ABLES) for changing this special character.

-! sheJ/-command
Escape to the shell.

Simulate end of filc (terminate messagc input),

-: mail-command
- mail-command

Perform the command-level request. Valid only when sending a mes­
sage while reading mail.

Print a summary of tilde cscapes.

Inscrt the autograph string "Sign" into the message (see ENVIRON­
MENT VARIABLES).

Insert the autograph string "sign" into the message (see ENVI RON­
MENT VARIABLES),

-b name ,.,
Add the names to the blind carbon copy {Bce> list.

-c name .. ,
Add the names to the carbon copy (Ce> list.

Read in thc dead.leller file. See "DEAD" (ENVIRONMENT VARI­
ABLES) for a description of this file.

Invoke the editor on the partial message. See also "EDITOR"
(ENVIRONMENT VARIABLES).

-f (msglist]
Forward the specified messages. The messages are inserted into the
message, without alteration.

Prompt for Subject line and To, Cc, and Bce lists. If the field is
displayed with an initial value, it may be edited as if you had just
typed it.

-i string
Insert the value of the named variable into the text of the message.
For example, -A is equivalent to '-i Sign:

- 8 -

MAILX(I) MAILX(I)

-m lmsglist]
Insert the specified messages into the letter, shifting the new text to the
right one tab stop. Valid only when sending a message while reading
mail.

Print the message being entered.

Quit from input mode by simulating an interrupt. If the body of the
message is not null, the partial message is saved in dead. letter. See
"DEAD" (ENVIRONMENT VARIABLES) for a description of this file.

-r filename
-< filename
-< !shell-command

Read in the specified file. If the argument begins with an exclamation
point (!), the rest of the string is taken as an arbitrary shell command
and is executed, with the standard output inserted into the message.

-s string ...
Set the subject line to string.

-t name ...
Add the given names to the To list.

Invoke a preferred screen editor on the partial message. See also
"VISUAL" (ENVIRONMENT VARIABLES).

-w filename
Write the partial message onto the given file, without the header.

Exit as with -q except the message is not saved in dead. letter.

1shell-command
Pipe the body of the message through the given shell-command. If the
shell-command returns a successful exit status, the output of the com­
mand replaces the message.

ENVIRONMENT VARIABLES
The following are environment variables taken from the execution environment
and are not alterable within mailx.

HOME=directory
The user's base of operations.

MAILRC=jl/ename
The name of the start-up file. Default is $HOME/.mailrc.

The following variables are internal mailx variables. They may be imported
from the execution environment or set via the set command at any time. The
unset command may be used to erase variables.

aHnet
All network names whose last component (login name) match are
treated as identical. This causes the msg/ist message specifications to

MAILX(l)

append

askcc

asksub

MAILXU)

bchave similarly. Default is noallnel. See also the alternates command
and the "metoo" variable.

Upon termination, append messagcs to the end of the mbox file instead
of prepending them. Default is noappend.

Prompt for the Cc list aftcr message is cntered. Default is noaskcc.

Prompt for subject if it is not specified on the command line with thc
-s option. Enabled by default.

autoprint
Enable automatic printing of messages aftcr delctc and undelete com­
mands. Default is noautoprinl.

bang
Enable the spccial-casing of exclamation points m in shell cscape com­
mand lines as in vi (I). Default is nobang.

cmd=shell-command
Set the default command for the pipe command. No default value.

conv=conversion
Convert uucp addresses to the specified address style. The only valid
conversion now is internet, which requires a mail delivery program con­
forming to the RFC822 standard for electronic mail addressing.
Conversion is disabled by default. See also "sendmail" and the -U
command line option.

crt=number
Pipe messages having more than number lines through the command
specified by the value of the "PAGER" variable (pg(t) by default>'
Disabled by default.

DEAD=jilename
The name of the file in which to save partial Icttcrs in case of untimely
interrupt or delivery crrors. Default is $HOME/dead.letter.

debug
Enable verbose diagnostics for debugging. Messages are not delivered.
Dcfault is nodebug.

dot
Take a period on a line by itself during input from a terminal as end­
of-file. Default is nodol.

EDITOR....shell-command
The command to run when the edit or -e command is used. Default is
ed(J) .

escape=c
Substitute c for the - escape character.

- 10 -

MAILX (1) MAILX())

folder=directory
The directory for saving standard mail files. User-specified file names
beginning with a plus (+) are expanded by preceding the file name
with this directory name to obtain the real file name. If directory does
not start with a slash (/), $HOME is prepended to it. In order to usc
the plus (+) construct on a mailx command line, "folder" must be an
exported sh environment variable. There is no default for the "folder"
variable. See also "outfolder" below.

header
Enable printing of the header summary when entering mailx. Enabled
by default.

hold
Preserve all messages that are read in the mailbox instead of putting
them in the standard mbox save file. Default is nohold.

ignore
Ignore interrupts while entering messages. Handy for noisy dial-up
lines. Default is noignore.

ignoreeof
Ignore end-of-file during message input. Input must be terminated by
a period (J on a line by itself or by the -. command. Default is noig­
noreeof. See also "dot" above.

keep
When the mailbox is empty, truncate it to zero length instead of
removing it. Disabled by default.

keepsave
Keep messages that have been saved in other files in the mailbox
instead of deleting them. Default is nokeepsave.

MBOX=Ji/ename
The name of the file to save messages which have been read. The xit
command overrides this function, as docs saving the message explicitly
in another file. Default is $HOME/mbox.

metoo
If your login appears as a recipient, do not delete it from the list.
Default is nometoo.

LISTER=shell-command
The command (and options) to use when listing the contents of the
"folder" directory. The default is l.d t).

onehop
When responding to a message that was originally sent to several reci­
pients, the other recipient addresses are normally forced to be relative
to the originating author's machine for the response. This nag disables
alteration of the recipients' addresses, improving efficiency in a network
where all machines can send directly to all other machines (j.e., one
hop away).

- 11 -

MAILX(I) MAILX(I)

outfolder
Causes the files used to record outgoing messages to be located in the
directory specified by the "folder" variable unless the path name is
absolute. Default is nooutfolder. See "folder" above and the Save,
Copy, followup, and Followup commands.

page
Used with the pipe command to insert a form feed after each message
sent through the pipe. Default is nopage.

PA(;ER=she//-command
The command to use as a filter for paginating output. This can also be
used to specify the options to be used. Default is pg(I).

prompt=string ,
Set the command mode prompt to string. Default is "? ".

quiet
Refrain from printing the opening message and version when entering
mailx. Default is noquiet.

record=filename
Record all outgoing mail in filename. Disabled by default. See also
"outfolder" above.

sat'c
Enable saving of messages in dead. letter on interrupt or delivery error.
See "DEAD" for a description of this file. Enabled by default.

screen=number
Sets the number of lines in a screen-full of headers for the headers
command.

sendmail=shell-command
Alternate command for delivering messages. Default is mail(I).

sendwait
Wait for background mailer to finish before returning. D~fau1t is
nosendwait.

SHELL=shell-command
The name of a preferred command interpreter. Default is sh (I).

showto
When displaying the header summary and the message is from you.
print the recipient's name instead of the author's name.

sign=string
The variable inserted into the text of a message when the -a (auto­
graph) command is given. No default (see also -i (TILDE ESCAPES».

Sign=string
The variable inserted into the text of a message when the -A command
is given. No default (see also -i (TILDE ESCAPES».

- 12 -

MAILX (I) MAILX ()

toplines=number
The number of lines of header to print with the top command. Default
is 5.

VISUAL=sheil-command
The name of a preferred screen editor. Default is v;(I).

FILES
$HOME/.mailrc
$HOME/mbox
/usr/mail/*
lusr/lib/mailx/mailx.help*
/usr/lib/mailx/mailx.rc
Itmp/Rlemqsxl*

SEE ALSO
maiI(I), pg(), Is().

BUGS

personal start-up file
secondary storage file
post office directory
help message files
global start-up file
temporary files

Where shell-command is shown as valid, arguments are not always allowed.
Experimentation is recommended.

Internal variables imported from the execution environment cannot be unset.

The full internet addressing is not fully supported by mai/x. The new stan­
dards need some time to settle down.

Attempts to send a message having a line consisting only of a "." are treated
as the end of the message by mai/() (the standard mail delivery program>.

- 13 -

MAKE(I) MAKE(J)

NAME
make - maintain, update, and regenerate groups of programs

SYNOPSIS
make [-f makefilcl [-p] [-il [-k] [-5] [-r] [-0] [-b] [-e] [-mJ
[-tJ [-d] [-q] [names]

DESCRIPTION
The following is a brief description of all options and some special names:

-f make/He Description file name. Makefile is assumed to be the name of a
description file. A file name of - denotes the standard input.
The contents of makefile override the built-in rules if they arc
present.

-p Print out the complete set of macro definitions and target descrip­
tions.

-i Ignore error codes returned by invoked commands. This mode is
entered if the fake target name .IGNORE appears in the descrip­
tion file.

-k Abandon work on the current entry, but continue on other
branches that do not depend on that entry.

-5 Silent mode. Do not print command lines before executing. This
mode is also entered if the fake target name .SILENT appears in
the description file.

-r Do not use the built-in rules.

-t

-0

-e

-b

No execute mode. Print commands, but do not execute them.
Even lines beginning with an @ are printed.

Compatibility mode for old makefiles.

Environment variables override assignments within makefiles.

Print a memory map showing text, data, and stack. This option
is a no-operation on systems without the getu system call.

Touch the target files (causing them to be up-to-date) rather
than issue the usual commands.

-d Debug mode. Print out detailed information on files and times
examined.

-m

-q Question. The make command returns a zero or non-zero status
code depending on whether the target file is or is not up-to-date.

•DEFAULT If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the name
.DEFAULT are used if it exists.

•PRECIOUS Dependents of this target will not be removed when quit or inter-
rupt are hit.

.sILENT Same effect as the -5 option.

•IGNORE Same effect as the -i option.

Make executes commands in makefile to update one or more target names.
Name is typically a program. If no -f option is present, makefile, Makefile,
s.makefile, and s.Makefile are tried in order. If makefile is -, the standard
input is taken. More than one - makefile argument pair may appear.

Make updates a target only if its dependents are newer than the target. All
prerequisite files of a target are added recursively to the list of targets. Missing
files are deemed to be out-of-date.

- 1 -

MAKE(l) MAKE(l)

Makefile contains a sequence of entries that specify dependencies. The first
line of an cntry is a blank-separated, non-null list of targcts, thcn a :, then a
(possibly null) list of prerequisite files or dcpendencies. Text following a ; and
all following lines that begin with a tab are shell commands to be executed to
update the target. The first line that does not begin with a tab or # begins a
new dependency or macro definition. Shell commands may be continued across
lines with the <backslash> <new-line> sequence. Everything printed by
make (except the initial tab) is passed directly to the shell as is. Thus,

echo a\
b

will produce

ab

exactly the same as the shell would.

Sharp (#) and new-linc surround comments.

The following makejile says that pgm depends on two flIes a.o and b.o, and that
they in turn depend on their corresponding source files (a.c and b.d and a com­
mon filc incl.h:

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o: incl.h a.c
cc -c a.c

b.o: incl.h b.c
cc -c b.c

Command lines arc cxccuted one at a time, each by its own shell. The first one
or two charactcrs in a command can be the following: -, @, -@, or @-. If @ is
present, printing of the command is suppressed. If· is present, make ignores
an error. A line is printed when it is executcd unless the -5 option is present,
or thc entry .SILENT: is in makefile, or unless the initial charactcr sequence
contains a @. The -0 option specifies printing without execution; however, if
the command line has the string $(MAKE) in it, the line is always executed (see
discussion of thc MAKEFLAGS macro under Environment). The -t (touch)
option updatcs the modified date of a file without executing any commands.

Commands returning non-zero status normally terminate make. If the -i
option is present, or the entry .IGNORE: appears in makefile, or the initial char­
actcr sequence of the command contains -. the error is ignored. If the -k
option is present, work is abandoned on the current entry, but continues on
other branches that do not depend on that entry.

The -b option allows old makefiles (those written for the old version of make)
to run without errors. The difference between the old version of make and this
version is that this version requires all dependency lines to have a (possibly null
or implicit) command associated with them. The previous version of make
assumed, if no command was specified explicitly, that the command was null.

Interrupt and quit cause the target to be deleted unless the target is a depen­
dent of the special name .PRECIOUS.

Environment
The environment is read by make. All variablcs arc assumed to bc macro
dcfinitions and proccssed as such. The environment variables are processed
beforc any makefile and after the intcrnal rules; thus, macro assignments in a
makefile ovcrride environment variables. The -e option causes the environ­
ment to override the macro assignments in a makefile.

- 2 -

MAKE(I) MAKE(I)

The MAKEFLAGS environment variable is processed by make as containing any
legal input option (except -r, -p, and -d) defined for the command line.
Further, upon invocation, make "invents" the variable if it is not in the
environment, puts the current options into it, and passes it on to invocations of
commands. Thus, MAKEFLAGS always contains the current input options. This
proves very useful for "super-makes". In fact, as noted above, when the -0

option is used, the command $(MAKE) is executed anyway; hence, one can per­
form a make -0 recursively on a whole software system to see what would
have been executed. This is because the -0 is put in MAKEFLAGS and passed
to further invocations of $(MAKE). This is one way of debugging all of the
makefiles for a software project without actually doing anything.

Macros
Entries of the form string/ = string2 are macro definitions. String2 is defined
as all characters up to a comment character or an unescaped new-line. Subse­
quent appearahces of $(string/[:subst/=[subst2]]) are replaced by string2.
The parentheses are optional if a single character macro name is used and
there is no substitute sequence. The optional :subst / =subst2 is a substitute
sequence. If it is specified, all non-overlapping occurrences of subsl/ in the
named macro are replaced by subst2. Strings (for the purposes of this type of
substitution) are delimited by blanks, tabs, new-line characters, lnd beginnings
of lines. An example of the use of the substitute sequence is shown under
Libraries.

Internal Macros
There are five internally maintained macros which are useful for writing rules
for building targets.

$. The macro $e stands for the file name part of the current dependent with
the suffix deleted. It is evaluated only for inference rules.

$@ The $@ macro stands for the full target name of the current target. It is
evaluated only for explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the .DEFAULT
rule. It is the module which is out-of-date with respect to the target (j.e.,
the "manufactured" dependent file name). Thus, in the .c.o rule, the $ <
macro would evaluate to the .c file. An example for making optimized .0

files from .c files is:

.c.o:
cc -c -0 $*.c

or:

.c.o:
cc -c -0 $<

$? The $? macro is evaluated when explicit rules from the makefile are
evaluated. It is the list of prerequisites that are out-of-date with respect
to the target; essentially, those modules which must be rebuilt.

$ % The $ % macro is only evaluated when the target is an archive library
member of the form Iib(file.o). In this case, $@ evaluates to lib and $%
evaluates to the library member, file.o.

Four of the five macros can have alternative forms. When an upper case D or
F is appended to any of the four macros, the meaning is changed to "directory
part" for D and "file part" for F. Thus, $(@D) refers to the directory part of
the string $@. If there is no directory part, ./ is generated. The only macro
excluded from this alternative form is $? The reasons for this are debatable.

- 3 -

..~

MAKE(I) MAKE(I)

r·
Suffixes

Certain names (for instance, those ending with .0) have inferable prerequisites
such as .c•.s. etc. If no update commands for such a file appear in makefile,
and if an inferable prerequisite exists, that prerequisite is compiled to make the
target. In this case. make has inference rules which allow building files from
other files by examining the suffixes and determining an appropriate inference
rule to usc. The current default inference rules arc:

.c .c· .sh .sh· .C.o .c·.o .c·.c .S.o .s·.o .y.o .y-.o .1.0 r.o

.y.c .y·.c .I.c .c.a .c·.a .s·.a .h·.h

The internal rules for make are contained in the source file rules.c for the
make program. These rules can be locally modified. To print out the rules
compiled into the make on any machine in a form suitable for recompilation,
the following command is used:

make -fp - 2>/dev/null </dev/null

The only peculiarity in this output is the (null) string which print/OS) prints
when handed a null string.

A tilde in the above rules refers to an sees file (see seesfile (4». Thus, the
rule .c-.o would transform an sees C source file into an object file (.0).
Because the s. of the sees files is a prefix, it is incompatible with make's suffix
point of view. Hence, the tilde is a way of changing any file reference into an
sees file reference.

A rule with only one suffix G.e., .c:) is the definition of how to build x from
x .c. In effect. the other suffix is null. This is useful for building targets from
only one source file (e.g.• shell procedures, simple C programs).

Additional sullixes are given as the dependency list for .SUFFIXES. Order is
significant; the first possible name for which both a file and a rule exist is
inferred as a prerequisite. The default list is:

.SUFFIXES: .0 .c .y .I .s

Here again. the above command for printing the internal rules will display the
list of suffixes implemented on the current machine. Multiple suffix lists accu­
mulate; .SUFFIXES: with no dependencies clears the list of suffixes.

Inference Rules
The first example can be done more briefly.

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o b.o: incl.h

This is because makt· has a set of internal rules for building files. The user
may add rules to this list by simply putting them in the makefile.

Certain macros are used by the default inference rules to permit the inclusion
of optional matter in any resulting commands. For example, CFLAGS. LFLAGS,
and YFLAGS are used for compiler options to cc(». lex(t). and yacc(J>,
respectively. Again, the previous method for examining the current rules is
recommended.

The inference of prerequisites can be controlled. The rule to create a file with
suffix .0 from a file with suffix .c is specified as an entry with .c.o: as the target
and no dependents. Shell commands associated with the target define the rule
for making a .0 file from a .c file. Any target that has no slashes in it and
starts with a dot is identified as a rule and not a true target.

- 4 -

MAKE(l} MAKE(J)

Libraries
If a target or dependency name contains parentheses, it is assumed to be an
archive library, the string within parentheses referring to a member within the
library. Thus lib(file.o} and $(LlB) (file.o) both refer to an archive library
which contains file.o. (This assumes the LIB macro has been previously
defined'> The expression $(LlB) (filel.o file2.0) is not legal. Rules pertaining to
archive libraries have the form .xX.a where the xx is the suffix from which the
archive member is to be made. An unfortunate byproduct of the current imple­
mentation requires the xx to be different from the suffix of the archive
member. Thus, one cannot have lib<file.o) depend upon file.o explicitly. The
most common use of the archive interface follows. Here, we assume the source
files are all C type source:

lib: lib (file 1.0) lib(file2.0) lib(file3.0)
@echo lib is now up-to-date

.c.a:
$(CC) -c $(CFLAGS) $<
ar rv $@ $*.0 .
rm -f $*.0

In fact, the .c.a rule listed above is built into make and is unnt;cessary in this
example. A more interesting, but more limited example of an archive library
maintenance construction follows:

lib: lib(file 1.0) Iib(file2.0) Iib(file3.0)
$(CC) -c $(CFLAGS) $(?:.o=.c)
ar rv lib $?
rm $? @echo lib is now up-to-date

.c.a:;

Here the substitution mode of the macro expansions is used. The $? list is
defined to be the set of object file names (inside lib) whose C source files are
out-of-date. The substitution mode translates the .0 to .c. (Unfortunately, one
cannot as yet transform to .c-; however, this may become possible in the
future'> Note also, the disabling of the .c.a: rule, which would have created
each object file, one by one. This particular construct speeds up archive library
maintenance considerably. This type of construct becomes very cumbersome if
the archive library contains a mix of assembly programs and C programs.

FILES
[Mm]akefile and s.[Mm]akefile

SEE ALSO
cc(», cd(), lex(). sh(), yacc().
printfOS), sccsfile(4) in the UNIX System V Programmer Reference Manual.

BUGS
Some commands return non-zero status inappropriately; use -i to overcome the
difficulty. File names with the characters = : @ will not work. Commands
that are directly executed by the shell, notably cd(), are ineffectual across
new-lines in make. The syntax (Ijb<filel.o file2.0 file3.0) is illegal. You cannot
build lib<file.o) from file.o. The macro $(a:.o=.c-) does not work.

- 5 -

MAKEKEY(I)

NAME

MAKEKEY(I)

makekey - generate encryption key

SYNOPSIS
lusrIlib/makekey

DESCRIPTION
Makekey improves the usefulness of encryption schemes depending on a key by
increasing the amount of time required to search the key space. It reads to
bytes from its standard input, and writes 13 bytes on its standard output. The
output depends on the input in a way intended to be difficult to compute (i.e.,
to require a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII characters.
The last two {the salt} are best chosen from the set of digits, ., I, and upper­
and lower-case letters. The salt characters are repeated as the first two charac­
ters of the output. The remaining 11 output characters are chosen from the
same set as the salt and constitute the output key.

The transformation performed is essentially the following: the salt is used to
select one of 4,096 cryptographic machines all based on the National Bureau of
Standards DES algorithm, but broken in 4,096 different ways. Using the input
key as key, a constant string is fed into the machine and recirculated a number
~ les. The 64 bits that come out are distributed into the 66 output key bits

result.

'ey is intended for programs that perform encryption (e.g., ed(t) and
». Csually, its input and output will be pipes.

SEE A
ed{I).
) in the UNIX System V Programmer Reference Manual.

- I -

MAN(t)

NAME

MAN(J)

man - print entries in this manual

SYNOPSIS
man (options] (section] titles

DESCRIPTION
Man locates and prints the entry of this manual named title in the specified
section. (For historical reasons, the word "page" is often used as a synonym
for "entry" in this context.> The title is entered in lower case. The section
number may not have a letter suffix. If no section is specified, the whole
manual is searched for title and all occurrences of it are printed. Options and
their meanings are:

-Tterm Print the entry as appropriate for terminal type term. For a list of
recognized values of term, type help term2. The default value of
term is 450.

-w Print on the standard output only the path names of the entries,
relative to lusr/man, or to the current directory for -d option.

-d Search the current directory rather than lusr/catman; requires the
full file name (e.g., co.le, rather than just CD).

-e Causes man to invoke coJ(O; note that coJ(I) is invoked automat­
ically by man unless term is one of 300, 3005,450, 37, 4000a, 382,
4014, tek, 1620, and X.

Man examines the environment variable STERM (see environ(S» and attempts
to select options that adapt the output to the terminal being used. The
-Tterm option overrides the value of $TERM; in particular, one should use
-Tip when sending the output of man to a line printer.

Section may be changed before each title.

As an example:

man man

would reproduce on the terminal this entry, as well as any other entries named
man that may exist in other sections of the manual.

FILES
lusr/catman!?_man/man(1-8]/. Preformatted manual entries

SEE ALSO
term(S) in the UNIX System V Programmer Reference Manual.

CAVEAT
The man command prints manual entries that were formatted by nroff when
the UN IX system was installed. Entries are originally formatted with terminal
type 37, and are printed using the correct terminal filters as derived from the
-Tterm and $TERM settings. Typesetting or other non-standard printing of
manual entries requires installation of the UNIX system Documenter's Work­
bench.

- 1 -

MESG(»

NAME

MESG(I)

mesg - permit or deny messages

SYNOPSIS
mesg [n] [y]

DESCRIPTION
Mesg with argument n forbids messages via write{I) by revoking non-user
write permission on the user's terminal. Mesg with argument y reinstates per­
mission. All by itself, mesg reports the current state without changing it.

FILES
/dev/tty·

SEE ALSO
write{I) .

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

- 1 -

MKDIR(I)

NAME

MKDIR(J)

mkdir - make a directory

SYNOPSIS
mkdir dirname ...

DESCRIPTION
Mkdir creates specified directories in mode 777 (possibly altered by
umask (I». Standard entries, ., for the directory itself, and .., for its parent,
are made automatically.

Mkdir requires write permission in the parent directory.

SEE ALSO
sh(t), rm(l), umask(t).

DIAGNOSTICS
Mkdir returns exit code 0 if all directories were successfully made; otherwise, it
prints a diagnostic and returns non-zero.

- 1 -

NET(IC)

NAME

(DEC only) NET(tC)

net - execute a command on the PCl network

SYNOPSIS
net system [command [args]1

DESCRIPTION
Net provides a bi-directional connection to another UNIX system. The first
argument is the name of the remote system. The second argument is a com­
mand to be executed. If command is not given, then an interactive shell
Ubin/sh -0 on the remote system is created and an initial working directory
of I is established. Any remaining arguments are passed to the given command
as arguments.

Net reads thc standard input, thus allowing command to be part of a "pipeline",
if command reads the standard input also.

EXAMPLES
Execute the who(I) command on systcm A and rcturn the output to your ter­
minal:

net A who

Copy a directory structure from system A to the local system:

cd /dir/on/localsys
net A "cd Idir/on/A; find • -print I cpio -oc" I cpio -icda

Copy one file from system A to the local system:

net A "cat /file/onlA" > lfile/on/localsys

Send a directory structure from the local system to system A (this uses the
command's ability to read standard input):

find. -print I cpio -0 I net A "cd Idir/on/A; cpio -id"

FILES
Idev/pell?[O-7] PCl channel interfaces for system ?
Idev/pel/ctrl PCl control channel.
lusr/adm/pcllog

activity log.

SEE ALSO
cpio(l). cu(IC). find(I). passwd(I). sh(I), su(I), who(I).

DIAGNOSTICS
net: cannot open channel to system

A connection cannot be made to the requested system.

connection broken
A non-recoverable write error occurred.

write error
A recoverable write error occurred. The write will be retried until it
completes successfully without losing data.

cannot fork reader process
Net is unable to create a reader process and a writer process.

WARNINGS
A successful invocation of net reads at least 2 blocks of the standard input. if
present. even if command does not use standard input. The standard input
must be explicitly e10sed (via < & -) or redirected (such as from Idev/null) if
this feature is not desired.

- 1 -

NET(lC)

BUGS

(DEC only) NET(IC)

The user's command environment is not carried forward to the remote system
except for the effective user ID.

Exccuting commands that do "funny" things with your tcrminal (Le., cu (1 C),
passwd (I), su (I), etc.) do not work as expected.

- 2 -

.~
........-

NEWFORM(l)

NAME

NEWFORM(t)

newform - change the format of a text file

SYNOPSIS
newform [-s] [-itabspec] [-otabspecl [-bn] [-en] [-pn] [-an] [-f]
[-ccharl [-In] [files]

DESCRIPTION
Newform reads lines from the named files, or the standard input if no input file
is named, and reproduces the lines on the standard output. Lines are reformat­
ted in accordance with command line options in effect.

Except for -s, command line options may appear in any order, may be
repeated, and may be intermingled with the optional files. Command line
options are processed in the order specified. This means that option sequences
like u-e15 -160" will yield results different from U-160 -e15". Options are
applied to all files on the command line.

-itabspec Input tab specification: expands tabs to spaces, according to the tab
specifications given. Tabspec recognizes all tab specification forms
described in tabs(I). In addition, tabspec may be - -, in which
newform assumes that the tab specification is to be found in the
first line read from the standard input (see fspec(4». If no tabspec
is given, tabspec defaults to -8. A tabspec of -0 expects no tabs;
if any are found, they are treated as -1.

-otabspec Output tab specification: replaces spaces by tabs, according to the
tab specifications given. The tab specifications are the same as for
-itabspec. If no tabspec is given, tabspec defaults to -8. A
tabspec of -0 means that no spaces will be converted to tabs on
output.

-In Set the effective line length to n characters. If n is not entered, -I
defaults to 72. The default line length without the -I option is 80
characters. Note that tabs and backspaces are considered to be one
character (use -i to expand tabs to spaces).

-bn Truncate n characters from the beginning of the line when the line
length is greater than the effective line length (see -In). Default is
to truncate the number of characters necessary to obtain the
effective line length. The default value is used when -b with no n
is used. This option can be used to delete the sequence numbers
from a COBOL program as follows:

newform -11 -b7 file-name

The -II must be used to set the effective line length shorter than
any existing line in the file so that the -b option is activated.

-en Same as -bn except that characters are truncated from the end of
the line.

-ck Change the prefix/append character to k. Default character for k
is a space.

-pn Prefix n characters (see -ck) to the beginning of a line when the
line length is less than the effective line length. Default is to prefix
the number of characters necessary to obtain the effective line
length.

-an Same as -pn except characters are appended to the end of a line.

-f Write the tab specification format line on the standard output
before any other lines are output. The tab specification format line
which is printed will correspond to the format specified in the last

- 1 -

NEWFORM(l)

-s

NEWFORM(l)

-0 option. If no -0 option is specified, the line which is printed
will contain the default specification of -8.

Shears off leading characters on each line up to the first tab and
places up to 8 of the sheared characters at the end of the line. If
more than 8 characters (not counting the first tab) are sheared, the
eighth character is replaced by a • and any characters to the right
of it are discarded. The first tab is always discarded.

An error message and program exit will occur if this option is used
on a file without a tab on each line. The characters sheared off are
saved internally until all other options specified are applied to that
line. The characters are then added at the end of the processed
line.

For example, to convert a file with leading digits, one or more tabs,
and text on each line, to a file beginning with the text, all tabs after
the first expanded to spaces, padded with spaces out to column 72
(or truncated to column 72), and the leading digits placed starting
at column 73, the command would be:

newform -s -i -I -a -e file-name

DIAGNOSTICS
All diagnostics are fatal.
usage: ...
not - s format
can't open file
internal line too long

tabspec in error

tabspec indirection illegal

Newform was called with a bad option.
There was no tab on one line.
Self-explanatory.
A line exceeds 512 characters after being expanded
in the internal work buffer.
A tab specification is incorrectly formatted, or
specified tab stops are not ascending.
A tabspec read from a file (or standard input) may
not contain a tabspec referencing another file (or
standard input).

EXIT CODES
0- normal execution
1 - for any error

SEE ALSO
csplit(l). tabs(I).
fspec(4) in the UNIX System V Programmer Reference Manual.

BUGS
Newform normally only keeps track of physical characters; however. for the -i
and -0 options, newform will keep track of backspaces in order to line up tabs
in the appropriate logical columns.

Newform will not prompt the user if a tabspec is to be read from the standard
input (by use of -i - - or -0 - -).

If the -f option is used, and the last -0 option specified was -0 - -. and was
preceded by either a -0 - - or a -i - -, the tab specification format line will
be incorrect.

- 2 -

NEWGRP(J)

NAME

NEWGRP(J)

newgrp - log in to a new group

SYNOPSIS
newgrp [-] (group]

DESCRIPTION
Newgrp changes a user's group identification. The user remains logged in and
the current directory is unchanged, but calculations of access permissions to
files are performed with respect to the new real and effective group IDs. The
user is always given a new shel1, replacing the current shell, by newgrp, regard­
less of whether it terminated successfully or due to an error condition (j.e., un­
known group).

Exported variables retain their values after invoking newgrp; however, all unex­
ported variables are either reset to their default value or set to null. System
variables (such as PSI, PS2, PATH, MAIL, and HOME), unless exported by
the system or explicitly exported by the user, are reset to default values. For
example, a user has a primary prompt string (PSI) other than $ (default) and
has not exported PSt. After an invocation of newgrp . successful or not, their
PSI will now be set to the default prompt string $. Note that the shell com­
mand export (see sh(l» is the method to export variables so that they retain
their assigned value when invoking new shells.

With no arguments, newgrp changes the group identification back to the group
specified in the user's password file entry.

If the flrst argument to newgrp is a -, the environment is changed to what
would be expected if the user actually logged in again.

A password is demanded if the group has a password and the user does not, or
if the group has a password and the uscr is not listcd in letelgroup as being a
mcmber of that group.

FILES
system's group flle
system's password file

/etc/group
/etc/passwd

SEE ALSO
10ginO), sh(J).
group(4), passwd(4), environ(S)
Manual.

in the UNIX System V Programmer Reference

BUGS
Therc is no convenient way to entcr a password into lete/group. Use of group
passwords is not encouraged, because, by their very nature, they encourage poor
security practices. Group passwords may disappear in the future.

- J -

NEWS(l}

NAME

NEWS(I}

news - print news items

SYNOPSIS
news [-a] [-n] [-s] [items]

DESCRIPTION
News is used to keep the user informed of current events. By convention, these
events are described by files in the directory /usr/news.

When invoked without arguments, news prints the contents of all current files
in /usr/news, most recent first, with each preceded by an appropriate header.
News stores the "currency" time as the modification date of a file named
.news_time in the user's home directory <the identity of this directory is deter­
mined by the environment variable SHOME); only files more recent than this
currency time ar~ considered "current."

The -a option causes news to print all items, regardless of currency. In this
case, the stored time is not changed.

The -n option causes news to report the names of the current items without
printing their contents, and without changing the stored time.

The -5 option causes news to report how many current items exist, without
printing their names or contents, and without changing the stored time. It is
useful to include such an invocation of news in one's .profile file, or in the
system's /ete/profile.

All other arguments are assumed to be specific news items that are to be
printed.

If a delete is typed during the printing of a news item, printing stops and the
next item is started. Another delete within one second of the first causes the
program to terminate.

FILES
/etc/profile
/usT/news/·
$HOME/.news_time

SEE ALSO
profile(4), environ(S) in the UNIX System V Programmer Reference Manual.

- I -

NICE(l)

NAME

NICE(l)

nice - run a command at low priority

SYNOPSIS
nice [-increment] command [arguments

DESCRIPTION
Nice executes command with a lower CPU scheduling Priority. If the incre­
ment argument (in the range 1-19) is given, it is used; if not, an increment of
lOis assumed.

The super-user may rUl1 commands with priority higher than normal by using a
negative increment, e.g., - -10.

SEE ALSO
nohup(I).
nice(2) in the UNIX System V Programmer Reference Manua/.

DIAGNOSTICS
Nice returns the exit status of the subject command.

BUGS
An increment larger than 19 is equivalent to 19.

- I -

NL(J)

NAME

NL(J)

nl - line numbering filter

SYNOPSIS
01 [-htype] [-btype] [-(type] [-vstart#) [-iincrl [-p] [-Inurn] [-ssep]
[-wwidth] [-nformat] [-ddelim] file

DESCRIPTION
NI reads lines from the named file or the standard input if no file is named and
reproduces the lines on the standard output. Lines are numbered on the left in
accordance with the command options in effect.

NI views the text it reads in terms of logical pages. Line numbering is reset at
the start of each logical page. A logical page consists of a header, a body, and
a footer section. Empty sections are valid. Different line numbering options
are independently available for header, body, and footer (e.g., no numbering of
header and footer lines while numbering blank lines only in the body).

The start of logical page sections are signaled by input lines containing nothing
but the following delimiter character(s}:

Line contents Start of

\:\:\: header

\:\: body

\: footer

Unless optioned otherwise, nl assumes the text being read is in a single logical
page body.

Command options may appear in any order and may be intermingled with an
optional file name. Only one file may be named. The options are:

-btype Specifies which logical page body lines are to be numbered. Recog­
nized types and their meaning are: a, number all lines; t, number
lines with printable text only; n, no line numbering; pstring, number
only lines that contain the regular expression specified in string.
Default type for logical page body is t (text lines numbered).

-htype Same as -btype except for header. Default type for logical page
header is n (no lines numbered).

-(type Same as -btype except for footer. Default for logical page footer
is n (no lines numbered).

-p Do not restart numbering at logical page delimiters.

-vstart# Start# is the initial value used to number logical page lines.
Default is 1.

-jincr Incr is the increment value used to number logical page lines.
Default is 1.

-ssep Sep is the character(s} used in separating the line number and the
corresponding text line. Default sep is a tab.

-wwidth Width is the number of characters to be used for the line number.
Default width is 6.

-oformat Format is the line numbering format. Recognized values are: In,
left justified, leading zeroes suppressed; ro, right justified, leading
zeroes supressed; rz, right justified, leading zeroes kept. Default
format is rn (right justified).

- 1 -

..~

~.""'"
('

NL(I)

-Inurn

-dxx

NL(I)

Nurn is the number of blank lines to be considered as one. For
example, -12 results in only the second adjacent blank being num­
bered (if the appropriate -ha, -ba, and/or -fa option is set).
Default is I.

The delimiter characters specifying the start of a logical page sec­
tion may be changed from the default characters (\:) to two user­
specified characters. If only one character is entered, the second
character remains the default character (:). No space should
appear between the -d and the delimiter characters. To enter a
backslash, use two backslashes.

r'"

EXAMPLE
The command:

nl -v 10 -iiO -d!+ filet

will number file I starting at line number 10 with an increment of ten. The log­
ical page delimiters are !+.

SEE ALSO
pr(l).

- 2 -

NM(I)

NAME

(not on PDP-II) NM(t)

nm - print name list of common object file

SYNOPSIS
nm [-0] [-x] [-h) [-v] [-0] [-e) [-f) [-u] [-V] [-1'] file-names

DESCRIPTION
The nln command displays the symbol table of each common object file file­
name. File-flame may be a relocatable or absolute common object file; or it
may be an archive of relocatable or absolute common object files. For each
symbol, the following information will be printed:

Name The name of the symbol.

Value Its value expressed as an offset or an address depending on its
storage class.

Class Its st'orage class.

Type Its type and derived type. If the symbol is an instance of a structure
or of a union then the structure or union tag will be given following
the type (e.g., struct-tag). If the symbol is an array, then the array
dimensions will be given following the type (e.g., charlnJ(mJ). Note
that the object file must have been compiled with the -g option of
the cd I) command for this information to appear.

Size Its size in bytes, if available. Note that the object file Ilmst have
been compiled with the -g option of the cc (I) command for this
information to appear.

Line The source line number at which it is defined, if available. Note that
the object file must have been compiled with the -g option of the
cc (I) command for this information to appear.

Section For storage classes static and external, the object file section contain-
ing the symbol (e.g., text, data or bss).

The output of f1m may be controlled using the following options:

-0 Print the value and size of a symbol in octal instead of decimal.

-x Print the value and size of a symbol in hexadecimal instead of
decimal.

-h

-n

-e

-f

-u

-V

-1'

Do not display the output header data.

Sort external symbols by value before they are printed.

Sort external symbols by name before they arc printed.

Print only external and static symbols.

Produce full output. Print redundant symbols <-text, .data and .bss),
normally suppressed.

Print undefined symbols only.

Print the version of the nm command executing on the standard error
output.

By default, nm prints the entire name of the symbols listed. Since
object files can have symbols names with an arbitrary number of
characters, a name that is longer than the width of the column set
aside for names will overflow its column, forcing every column after
the name to be misaligned. The -1' option causes nm to truncate
every name which would otherwise overflow its column and place an
asterisk as the last character in the displayed name to mark it as
truncated.

- I -

NM (J) (not on PDP-II) NM(J)

~'
FILES

Options may be used in any order, either singly or in combination, and may
appear anywhere in the command line. Therefore. both nm name -e -,. and
nm -\'e name print the static and external symbols in flame. with external sym­
bols sorted by value.

lusr/tmp/nm? ?????

CAVEATS
When all the symbols are printed. they must be printed in the order they
appear in the symbol table in order to preserve scoping information. Therefore,
the -v and -n options should be used only in conjunction with the -e option.

SEE ALSO
as(l), cdl), Id(l).
a,out(4), ad4) in the UNIX System V Programmer Reference Maflual.

DIAGNOSTICS
"nm: name: cannot open"

if name cannot be read.

"nm: name: bad magic"
if flame is not an appropriate common object tile.

"nm: name: no symbols"
if the symbols have been stripped from naml'.

- 2 -

NM(t)

NAME

(PDP-II only) NM(I)

nm - print name list

SYNOPSIS
om [- gooprsu] [file ...]

DESCRIPTION
Nm prints the name list (symbol table) of each object file in the argument list.
If an argument is an archive. a listing for each object file in the archive will be
produced. If no file is given, the symbols in a.out are listed.

Each symbol name is preceded by its value (blanks if undefined) and one of the
letters U (undefined), A (absolute), T (text segment symboI), D (data segment
symboO, B (bss segment symboO, R (register symboO. F (file symboO, or C
(common symbol). If the symbol is local (non-external) the type letter is in
lower case. The output is sorted alphabetically.

Options are:

-g Print only global (extern~l) symbols.

-0 Sort numerically rather than alphabetically.

-0 Prefix file or archive element name to each output line rather than only
once. This option can be used to make piping to grep(I) more mean­
ingful.

-p Do not sort; print in symbol-table order.

-r Sort in reverse order.

-s

-u

Sort according to the size of the external symbol (computed from the
difference between the value of the symbol and the value of the symbol
with the next highest value). This difference is the value printed. This
flag turns on -g and -0 and turns off -u and -po

Print only undefined symbols.

SEE ALSO
ar(l) .
a.out(4), ar(4) in the UNIX System V Programmer Reference Manual.

- 1 -

NOHUP(I)

NAME

NOHUP(I)

nohup - run a command immune to hangups and quits

SYNOPSIS
nohup command [arguments 1

DESCRIPTION
Nohup executes command with hangups and quits ignored. If output is not
re-directed by the user, both standard output and standard error are sent to
nohup.out. If nohup.out is not writable in the current directory, output is
redirected to SHOME/nohup.out.

EXAMPLE
It is frequently desirable to apply nohup to pipelines or lists of commands.
This can be done only by placing pipelines and command lists in a single file,
called a shell procedure. One can then issue:

nohup sh file

and the nohup applies to everything in file. If the shell procedure file is to be
executed often, then the need to type sh can be eliminated by giving file exe­
cute permission. Add an ampersand and the contents of file are run in the
background with interrupts also ignored (see sh (I»:

nohup file &

An example of what the contents of file could be is:

tbl ofile Ieqn Inrolf > nfile

SEE ALSO
chmod(I), nicc(I), sh(J).
signaI(2) in the UNIX System V Programmer Reference Manual.

WARNINGS
nohup command I; command2 nohup applies only to command/
nohup (command I; command2) is syntactically incorrect.

Be careful of where standard error is redirected. The following command may
put error messages on tape, making it unreadable:

nohup cpio -0 <list >/dev/rmt/lm&
while

nohup cpio -0 <list >/dev/rmt/lm 2>errors&

puts the error messages into file errors.

- I -

00(1)

NAME

00(1)

od - octal dump

SYNOPSIS
od [-bcdosx l [file l [[+ loffsetl •][b l l

DESCRIPTION
Od dumps file in one or more formats as selected by the first argument. If the
first argument is missing, -0 is default. The meanings of the format options
are:

-b Interpret bytes in octal.

-c Interpret bytes in ASCII. Certain non-graphic characters appear as C
escapes: null=\O, backspace==\b, form-feed=\f, new-Iine=\n, return=\r,
tab=\t; others appear as 3-digit octal numbers.

-d Interpret words in unsigned decimal.

-0 Interpret words in octal.

-s Interpret 16-bit words in signed decimal.

-x Interpret words in hex.

The file argument specifies which file is to be dumped. If no file argument is
specified, the standard input is used.

The offset argument specifies the offset in the file where dumping is to com­
mence. This argument is normally interpreted as octal bytes. If. is appended,
the offset is interpreted in decimal. If b is appended, the offset is interpreted in
blocks of 512 bytes. If the file argument is omitted, the offset argument must
be preceded by +.
Dumping continues until end-of-file.

SEE ALSO
dump(I).

- 1 -

PACK(I)

NAME

PACK(l)

pack, peat, unpack - compress and expand IIlcs

SYNOPSIS
pack [-] [-f] name ...

pcat name ...

unpack name ...

DESCRIPTION
Pack atlempts to store the specified Illes in a compressed form. Wherever pos­
sible <and usefuJ), each input fIle name is replaced by a packed file name.z
with the same access modes, access and modilled dates, and owner as those of
flame. The -f option will force packing of flame. This is useful for causing an
entire directory to be packed even if some of the files will not benefit. If pack
is successful, mWlt' will be removed. Packed files can be restored to their origi­
nal form using ullpack or peat.

Pack uses Hulfman <minimum redundancy) codes on a byte-by-byte basis. If
the - argument is used, an internal flag is set that causes the number of times
each byte is used. its relative frequency, and the code for the byte to be printed
on the standard output. Additional occurrences of - in place of name will
cause the internal flag to be set and reset.

The amount of compression obtained depends on the size of the input file and
the character frequency distribution. Because a decoding tree forms the first
part of each .7. file. it is usually not worthwhile to pack files smaller than three
blocks, unless the character frequency distribution is very skewed, which may
occur with printer plots or pictures.

Typically. text Illes are reduced to 60-75'k' of their original size. Load modules.
which lise a larger character set and have a more uniform distribution of char­
acters, show litlle compression. the packed versions being about 90% of the ori­
ginal size.

Pack returns a value that is the number of files that it failed to compress.

No packing will occur if:

the IIle appears to be already packed:
the file name has more than 12 characters;
the file has links;
the IIle is a directory:
the file cannot be opened:
no disk storage blocks will be saved by packing;
a tile called name.z already exists;
the .7. file cannot be created;
an I/O error occurred during processing.

The last segmcnt of the file name must contain no more than 12 characters to
allow space for the appended .z extension. Directories cannot be compressed.

Peat docs for packed liles what cat (1) docs for ordinary IIlcs, except that peat
cannot be used as a filter. The specified files arc unpacked and writlen to the
standard output. Thus to view a packed file named name.z usc:

peat name.z
or just:

peat name

• 1 •

PACK(I) PACK (l)

To make an unpacked copy, say nnn, of a packed file named name.z (without
destroying name.z) use the command:

pcat name> nnn

Peat returns the number of files it was unable to unpack. Failure may occur if:

the file name (exclusive of the .z) has more than 12 characters:
the file cannot be opened;
the file does not appear to be the output of pack.

Unpack expands files created by pack. For each file name specified in the
command, a search is made for a file called name.z (or just name, if name ends
in .z). If this file appears to be a packed file, it is replaced by its expanded ver­
sion. The new file has the .z suffix stripped from its name, and has the same
access modes, access and modification dates, and owner as those of the packed
file.

Unpack returns a value that is the number of files it was unable to unpack.
Failure may occur for the same reasons that it may in peat, as well as for the
following:

a file with the "unpacked" name already exists;
if the unpacked file cannot be created.

SEE ALSO
cat (I).

- 2 -

PASSWD(I)

NAME

PASSWD(I)

~.
passwd - change login password

SYNOPSIS
passwd [name J

DESCRIPTION
This command changes or installs a password associated with the login name.

Ordinary users may change only the password which corresponds to their login
name.

Passwd prompts ordinary users for their old password, if any. It then prompts
for the new password twice. The first time the new password is entered passwd
checks to see if the old password has "aged" sufficiently. If "aging" is
insufficient the new password is rejected and passwd terminates; see
passwd(4).

Assuming "aging" is sufficient, a check is made to insure that the new pass­
word meets construction requirements. When the new password is entered a
second time, the two copies of the new password are compared. If the two
copies are not identical the cycle of prompting for the new password is repeated
for at most two more times.

Passwords must be constructed to meet the following requirements:

Each password must have at least six characters. Only the first eight
characters are significant.

Each password must contain at least two alphabetic characters and at
least one numeric or special character. In this case, "alphabetic"
means upper and lower case letters.

Each password must differ from the user's login name and any reverse
or circular shift of that login name. For comparison purposes, an
upper case letter and its corresponding lower case letter are equivalent.

New passwords must differ from the old by at least three characters.
For comparison purposes, an upper case letter and its corresponding
lower case letter are equivalent.

One whose effective user ID is zero is called a super-user; see id(J), and su(l).
Super-users may change any password; hence, passwd does not prompt super­
users for the old password. Super-users are not forced to comply with password
aging and password construction requirements. A super-user can create a null
password by entering a carriage return in response to the prompt for a new
password.

FILES
/etc/passwd

SEE ALSO
login (J), id (I), su (I).
crypt(3C), passwd(4) in the UNIX System V Programmer Reference Manual.

- I -

PASTE(I)

NAME

PASTE (I)

paste - merge same lines of several files or subsequent lines of one file

SYNOPSIS
paste file I file2 ...
paste -d list file I file2
paste -s I -d list I file I file2

DESCRIPTION
In the first two forms, paste concatenates corresponding lines of the given input
files filel, file2, etc. It treats each file as a column or columns of a table and
pastes them together horizontally (parallel merging). If you will, it is the coun­
terpart of cat< I) which concatenates vertically, i.e., one file after the other. In
the last form above, paste replaces the function of an older command with the
same name by combining subsequent lines of the input file (serial merging). In
all cases, lines are glued together with the tab character, or with characters
from an option~lIy specified list. Output is to the standard output, so it can be
used as the start of a pipe, or as a filter, if - is used in place of a file name.

The meanings of the options are:

-d Without this option, the new-line characters of each but the last file
(or last line in case of the -s option) are replaced by a tab character.
This option allows replacing the tab character by one or more alternate
characters (see below).

list One or more characters immediately following -d replace the default
tab as the line concatenation character. The list is used circularly, i.e.,
when exhausted, it is reused. In parallel merging (j.e., no -s option),
the lines from the last file are always terminated with a new-line char­
acter, not from the list. The list may contain the special escape
sequences: \0 {new-line}, \t (tab), \ \ (backslash), and \0 {empty string,
not a null character}. Quoting may be necessary, if characters have
special meaning to the shell (e.g., to get one backslash, use -d"\\\\").

-s Merge subsequent lines rather than one from each input file. Use tab
for concatenation, unless a list is specified with -d option. Regardless
of the list, the very last character of the file is forced to be a new-line.

May be used in place of any file name, to read a line from the stan­
dard input. (There is no prompting).

EXAMPLES
Is I paste -d" " -

Is I paste - - - ­

paste -s -d',\ t\ n" file

SEE ALSO
cut(l), grep{l), pr(».

DIAGNOSTICS
line too long

too many files

list directory in one column

list directory in four columns

combine pairs of lines into lines

Output lines are restricted to 511 char­
acters.

Except for -s option, no more than 12
input files may be specified.

- 1 -

PGU)

NAME

PG(t)

pg - file perusal filter for soft-copy terminals

SYNOPSIS
pg [-numberl [-p stringl (-cefnsl (+linenumberl (+/pattern/l (files...1

DESCRIPTION
The pg command is a filter which allows the examination of files one screenful
at a time on a soft-copy terminal. (The file name - and/or NULL arguments
indicate that pg should read from the standard input.> Each screenful is fol­
lowed by a prompt. If the user types a carriage return, another page is
displayed; other possibilities are enumerated below.

This command is different from previous paginators in that it allows you to
back up and review something that has already passed. The method for doing
this is explained below.

In order to determine terminal attributes, pg scans the terminlo (4) data base
for the terminal type specified by the environment variable TERM. If TERM is
not defined, the terminal type dumb is assumed.

The command line options are:

-number
An integer specifying the size Gn lines) of the window that pg is to use
instead of the default. (On a terminal containing 24 lines, the default
window size is 23).

-p string
Causes pg to use string as the prompt. If the prompt string contains a
"%d", the first occurrence of "%d" in the prompt will be replaced by
the current page number when the prompt is issued. The default
prompt string is u:".

-c Home the cursor and clear the screen before displaying each page.
This option is ignored if clear_screen is not defined for this terminal
type in the terminlo(4) data base.

-e Causes pg not to pause at the end of each file.

-f Normally, pg splits lines longer than the screen width, but some
sequences of characters in the text being displayed (e.g., escape
sequences for underlining) generate undesirable results. The -I option
inhibits pg from splitting lines.

-0 Normally, commands must be terminated by a <newline> character.
This option causes an automatic end of command as soon as a com­
mand letter is entered.

-s Causes pg to print all messages and prompts in standout mode (usually
inverse video).

+linenumber
Start up at linenumber.

+/pattern/
Start up at the first line containing the regular expression pattern.

The responses that may be typed when pg pauses can be divided into three
categories: those causing further perusal, those that search, and those that
modify the perusal environment.

Commands which cause further perusal normally take a preceding address, an
optionally signed number indicating the point from which further text should be
displayed. This address is interpreted in either pages or lines depending on the
command. A signed address specifies a point relative to the current page or

- 1 -

PG(l> PO(I)

line. and an unsigned address specifies an address relative to the beginning of
the file. Each command has a default address that is used if none is provided.

The perusal commands and their defaults are as follows:

(+I) <newline> or <blank>
This causes one page to be displayed. The address is specified in
pages.

(+ I) I With a relative address this causes pg to simulate scrolling the screen.
forward or backward, the number of lines specified. With an absolute
address this command prints a screenful beginning at the specified line.

(+» d or AD
Simulates scrolling half a screen forward or backward.

The following perusal commands take no address .

• or AL Typing a single period causes the current page of text to be
redisplayed.

$ Displays the last windowful in the file. Use with caution when the
input is a pipe.

The following commands are available for searching for text patterns in the
text. The regular expressions described in ed(1) are available. They must
always be terminated by a <newline>. even if the -n option is specified.

i /pattern/
Search forward for the ith (default ;=I) occurrence of pattern.
Searching begins immediately after the current page and continues to
the end of the current file, without wrap-around.

;"pattern A

i?pattern?
Search backwards for the ith (default i= I) occurrence of pattern.
Searching begins immediately before the current page and continues to
the beginning of the current file, without wrap-around. The" notation
is useful for Adds I00 terminals which will not properly handle the ?

After searching, pg will normally display the line found at the top of the
screen. This can be modified by appending m or b to the search command to
leave the line found in the middle or at the bottom of the window from now on.
The suffix t can be used to restore the original situation.

The user of pg can modify the environment of perusal with the following com­
mands:

in Begin perusing the ith next file in the command line. The i is an
unsigned number, default value is 1.

ip Begin perusing the ith previous file in the command line. i is an
unsigned number, default is I.

iw Display another window of text. If i is present, set the window size to
i.

5 filename
Save the input in the named file. Only the current file being perused is
saved. The white space between the 5 and filename is optional. This
command must always be terminated by a <newline>, even if the -n
option is specified.

h Help by displaying an abbreviated summary of available commands.

q or Q Quit pg.

- 2 -

PG(I) PG(I)

!command
Command is passed to the shell, whose name is taken from the SHELL
environment variable. If this is not available, the default shell is used.
This command must always be terminated by a <newline>, even if
the - n option is specified.

At any time when output is being sent to the terminal, the user can hit the quit
key (normally control-\) or the interrupt (break) key. This causes pg to stop
sending output, and display the prompt. The user may then enter one of the
above commands in the normal manner. Unfortunately, some output is lost
when this is done, due to the fact that any characters waiting in the terminal's
output queue are flushed when the quit signal occurs.

If the standard output is not a terminal, then pg acts just like cat (I), except
that a header is printed before each file (if there is more than one).

EXAMPLE
A sample usage of pg in reading system news would be

news I pg -p "(Page %d):"

NOTES
While waiting for terminal input, pg responds to BREAK, DEL, and A by ter­
minating execution. Between prompts, however, these signals interrupt pg's
current task and place the user in prompt mode. These should be used with
caution when input is being read from a pipe, since an interrupt is likely to ter­
minate the other commands in the pipeline.

Users of Berkeley's more will find that the z and f commands are available, and
that the terminal I, ", or ? may be omitted from the searching commands.

FILES
I027.sp40u
lusr/lib/terminfo/*

Terminal information data base

Itmp/pg*
Temporary file when input is from a pipe

SEE ALSO
crypt0), ed 0), grepO).
terminfo(4) in the UNIX System V Programmer Reference Manual.

BUGS
If terminal tabs are not set every eight positions, undesirable results may occur.

When using pg as a filter with another command that changes the terminal I/O
options (e.g., crypt 0», terminal settings may not be restored correctly.

- 3 -

PR(t)

NAME

PR(I)

pr - print files

SYNOPSIS
pr [options] [files]

DESCRIPTION
Pr prints the named files on the standard output. If file is -, or if no files are
specified, the standard input is assumed. By default, the listing is separated
into pages, each headed by the page number, a date and time, and the name of
the file.

By default, columns are of equal width, separated by at least one space; lines
which do not fit are truncated. If the -s option is used, lines are not truncated
and columns are separated by the separation character.

If the standard, output is associated with a terminal, error messages are
withheld until pr has completed printing.

The below options may appear singly or be combined in any order:

+k Begin printing with page k (default is n.
-k Produce k-column output (default is I). The options -e and -i are

assumed for multi-column output.

-a Print multi-column output across the page.

-m Merge and print all files simultaneously, one per column (overrides the
-k, and -a options).

-d Double-space the output.

-eck Expand input tabs to character positions k+ I, 2.k+ 1, 3·k+ 1, etc. If
k is 0 or is omitted, default tab settings at every eighth position are
assumed. Tab characters in the input are expanded into the appropri­
ate number of spaces. If c (any non-digit character) is given, it is
treated as the input tab character (default for c is the tab character).

-ick In output, replace white space wherever possible by inserting tabs to
character positions k+l, 2.k+I, 3.k+l, etc. If k is 0 or is omitted,
default tab settings at every eighth position are assumed. If c (any
non-digit character) is given, it is treated as the output tab character
(default for c is the tab character).

-nck Provide k-digit line numbering (default for k is 5). The number occu­
pies the first k+ 1 character positions of each column of normal output
or each line of -m output. If c (any non-digit character) is given, it is
appended to the line number to separate it from whatever follows
(default for c is a tab).

-wk Set the width of a line to k character positions (default is 72 for
equal-width multi-column output, no limit otherwise).

-ok Offset each line by k character positions (default is 0). The number of
character positions per line is the sum of the width and offset.

-Ik Set the length of a page to k lines (default is 66).

-h Use the next argument as the header to be printed instead of the file
name.

-p Pause before beginning each page if the output is directed to a termi­
nal (pr will ring the bell at the terminal and wait for a carriage
return).

- 1 -

,-.......,:, ...

\

PR (I)

-f

-r

-t

-sc

PR(I)

Use form-feed character for new pages (default is to use a sequence of
line-feeds). Pause before beginning the first page if the standard out­
put is associated with a terminal.

Print no diagnostic reports on failure to open files.

Print neither the five-line identifying header nor the five-line trailer
normally supplied for each page. Quit printing after the last line of
each file without spacing to the end of the page.

Separate columns by the single character c instead of by the appropri­
ate number of spaces {default for c is a tab}.

EXAMPLES
Print filel and file2 as a double-spaced, three-column listing headed by "file
list":

pr -3dh "file list" filel file2

Write filel on fUe2, expanding tabs to columns 10, 19,28,37, ... :

pr -e9 -t < file I > file2

FILES
/dev/tty·

SEE ALSO
cat(I).

to suspend messages

- 2 -

PROF(1)

NAME

PROF(I)

prof - display profile data

SYNOPSIS
prof [-tcan] [-ox] [-g] [-z] [-b] [-5] [-m mdata] [prog]

DESCRIPTION
Prof interprets a profile file produced by the monilor(3C) function. The sym­
bol table in the object file prog (a.out by default) is read and correlated with a
profile file (mon.out by default). For each external text symbol the percentage
of time spent executing between the address of that symbol and the address of
the next is printed, together with the number of times that function was called
and the average number of milliseconds per call.

The mutually exclusive options t, c, a, and n determine the type of sorting of
the output lines:

-t Sort by decreasing percentage of total time (default).

-c Sort by decreasing number of calls.

-a Sort by increasing symbol address.

-n Sort lexically by symbol name.

The mutually exclusive options 0 and x specify the printing of the address of
each symbol monitored:

-0 Print each symbol address (in octal) along with the symbol name.

-x Print each symbol address (in hexadecimal) along with the symbol
name.

The following options may be used in any combination:

-g Include non-global symbols (static functions).

-z Include all symbols in the profile range (see monitor(3C» , even if
associated with zero number of calls and zero time.

-h Suppress the heading normally printed on the report. (This is useful if
the report is to be processed further.>

-s Print a summary of several of the monitoring parameters and statistics
on the standard error output.

-m mdata
Use file mdata instead of mon.out as the input profile file.

A program creates a profile file if it has been loaded with the -p option of
ceO). This option to the ce command arranges for calls to monitor(3C) at the
beginning and end of execution. It is the call to monitor at the end of execu­
tion that causes a profile file to be written. The number of calls to a function is
tallied if the -p option was used when the file containing the function was
compiled.

The name of the file created by a profiled program is controlled by the environ­
ment variable PROFDlR. If PROFDIR does not exist, "mon.out" is produced in
the directory current when the program terminates. If PROFDIR string,
"string/pid.progname" is produced, where progname consists of argv[O] with
any path prefix removed, and pid is the program's process id. If PROFDIR ­
nothing. no profiling output is produced.

A single function may be split into subfunctions for profiling by means of the
MARK macro (see prof(S».

- 1 -

PROF(J)

FILES

PROF(J)

mon.out for profile
a.out for namelist

SEE ALSO
cdt).
exit(2), profil(2), monitor(JC), prof(5) in the UNIX System V Programmer
Reference Manual.

WARNING
The times reported in successive identical runs may show variances of 20% or
more, because of varying cache-hit ratios due to sharing of the cache with other
processes. Even if a program seems to be the only one using the machine, hid­
den background or asynchronous processes may blur the data. In rare cases,
the clock ticks initiating recording of the program counter may "beat" with
loops in a program, grossly distorting measurements.

Call counts are always recorded precisely, however.

BUGS
Only programs that call exit (2) or return from main will cause a profile file to
be produced, unless a final call to monitor is explicitly coded.

The use of the -p option cd)) to invoke profiling imposes a limit of 600 (JOO
on the PDP-II) functions that may have call counters established during pro­
gram execution. For more counters you must call monitor(3C) directly. If
this limit is exceeded, other data will be overwritten and the moo.out file will be
corrupted. The number of call counters used will be reported automatically by
the prof command whenever the number exceeds 5/6 of the maximum.

- 2 -

PRS (\)

NAME

PRS(J)

prs - print an sees file

SYNOPSIS
prs [-d[dataspec]] [-r[SID]] [-e] [-I] [-ddate-time]] [-a] files

DESCRIPTION
Prs prints, on the standard output, parts or all of an sees file (sec sccsjile(4»
in a user-supplied formal. If a directory is named, prs behaves as though each
file in the directory were specified as a named file, except that non-SeeS files
(last component of the path name does not begin with s.), and unreadable files
arc silently ignored. If a name of - is given, the standard input is read: each
line of the standard input is taken to be the name of an sees file or directory
to be processed; non-SeeS files and unreadable files arc silently ignored.

Arguments to prs, which may appear in any order, consist of keylelter argu­
ments, and rile 'names.

All the described keyletler arguments apply independently to each named file:

-d[daraspec] Used to specify the output data specification. The
dataspec is a string consisting of sees file data key­
words (see DATA KHnVORD5i) interspersed with
optional user supplied texl.

-rlSII)] Used to specify the sees IDentification (SID) string of
a delta for which information is desired. If no SID is
specified, the SID of the most recently created delta is
assumed.

-e Requests information for all deltas created earlier than
and including the delta designated via the -r keyletler
or the date given by the -c option.

-I Requests information for all deltas created later than
and including the delta designated via the -r keyletter
or the date given by the -c option.

-ddate-time] The cutoff date-time -clcutofTIl is in the form:

yy[MM[DDI II II [M M[SS]]] I]

.~

-a

Units omitted from the date-time default to their max­
imum possible values; that is, -c7502 is equivalent to
-c750228235959. Any number of non-numeric charac­
ters may separate the various 2-digit pieces of the cutop'
date in the form: "-c77/2/2 9:22:25".

Requests printing of information for both removed, i.e.,
delta type = R, (see rmde/(l» and existing, i.e., delta
type = D, deltas. If the -a keyletter is not specified,
information for existing deltas only is provided.

DATA KEYWORDS
Data keywords specify which parts of an sees nte are to be retrieved and out­
put. All parts of an sees file (see sccsjile(4» have an associated data key­
word. There is no limit on the number of times a data keyword may appear in
a dataspec.

The information printed by prs consists of: (I) the user-supplied text: and (2)
appropriate values (extracted from the sees file) substituted for the recog­
nized data keywords in the order of appearance in the dataspec. The format of
a data keyword value is either Simple (S), in which keyword substitution is
direct, or Multi-line (M), in which keyword substitution is followed by a car­
riage return.

- I -

PRS (J) PRS (I)

User-supplied tcxt is any lexl other lhan rccognized data keywords.
A tab is specified by \t and carriage return/new-line is specified by \n. The
default data keywords are:

": Dt:\t: DL:\nM Rs:\n:M R:('OM M ENTS:\n:C:"

Fort/WI

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
5
S
S
S
S
S
S
S
S
M
:\'1
M
M
S
5
S
S
S
S
S
S
S
S
S
S
S
S
M
M
M
S
5
S
S
S

ye.{ or 110

text
text
text

:Z::M:\t:l:
:Z::Y::M::I::Z:

@(#)

text
text

VaI lit'

See below·
:Li:I:Ld:/:I.u:

nnnnn
nnnnn
nnnnn

D or R
:R:.:L:.:B:.:S:

nnnn
nnnn
nnnn
nnnn

:Dy:/:Dm:I:Dd:
nn
nn
nn

:1'h:::Tm:::Ts:
nn
nn
nn

logname
nnnn
nnnn

:Dn:/:Dx:/:Dg:
:DS: :I>S: .
:DS: :D5: ..
:[)5: :1>5: .

lext
text
text
text
lext

yes or "0
text

yes or "0
text

y£'s or 110

yes or 110

:R: ...
lext
lext
:R:
:R:
:1:

N/A
N/A
N/A
N/A
N/A

Comments
Body

User Names
Flags

TABLE 1. SCCS Files Data Keywords
Filt, St'Clio"
Delta Table

/Jaw /11'11I

Delta information
Delta line statistics
Lines inserted b)' I>elta
Lines deleted by Delta
Lines unchun~ed by Delta
1)eltu type
S("("S I D strin~ (SI D)
Release numher
Level number
Branch number
Sequence number
Date Delta created
Year Delta created
(\..Ionth Della created
Day I>ella created
Time I>ella created
Hour Delta created
Minutes Delta created
Seconds Delta created
Programmer who created Delta
Delta sequence number
Predecessor Della seq-no.
Seq-no. of deltus incl•• excl., i~norcd

Deltas included (seq #)
Deltas excluded (seq #)
Deltas i~nored (seq #)
M R numbers for delta
Comments for delta
User names
Flag list
Module type flag
MR \'alidation nag
MR \'alidation pgm name
Keyword error/warning nag
Keyword \'alidation string
Branch flag
Joint edit flag
Locked releases
User-defined keyword
Module mime
Floor boundary
Ceiling boundary
Default sin
Null delta flag
File descriptive text
Body
Gotten body
A form of W/WI (t) string
A form of what (t) string
wlral (I) strin~ delimiter
secs file name
secs file path name

* :01: ... :Il1': :1: :[): :1': :P: :OS: :DP:

Keyword

:Dt:
:OL:
:Li:
:Ld:
:I.u:
:D1':

:1:
:R:
:L:
:B:
:S:
:D:

:D)':
:Om:
:Od:
:T:
:1'h:
:1'm:
:Ts:
,P:

:I)S:
:DP:
:01:
:On:
:Ox:
:D~:

:MR:
:C:

:UN:
:FL:
:Y:

:M"':
:MP:
:KF:
:KV:
:BF:
:J:

:LK:
:Q:
:M:
:FB:
:CB:
:Ds:
:ND:
:FD:
:BD:
:GB:
:W:
:A:
:z:
:F:

:PN:

- 2 -

PRS(t)

EXAMPLES

PRS <t)

prs -d"Users and/or user IDs for :F: are:\n:UN:" s.file

may produce on the standard output:

Users and/or user IDs for s.file are:
xyz
131
abc

prs -d"Newest delta for pgm :M:: :1: Created :D: By :P:" -r s.file

may produce on the standard output:

Newest delta for pgm main.c: 3.7 Created 77/1 2/ I By cas

As a special case:

prs s.me

may produce on the standard output:

D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:
b178-12345
b179-54321
COMMENTS:
this is the comment line for s.file initial delta

for each delta table entry of the uD" type. The only keyletter argument
allowed to be used with the special case is the -a keyletter.

FILES
/tmp/pr?????

SEE ALSO
admin (), delta (I), get (I), help(I).
sccsfile(4) in the UNIX System V Programmer Reference Manual.

Source Code Control System User Guide in the UNIX System V User Guide.

DIAGNOSTICS
Usc help (I) for explanations.

- 3 -

PS(I)

NAME

PS(I)

ps - report process status

SYNOPSIS
ps [opt ions]

DESCRIPTION
Ps prints certain information about active processes. Without options, infor­
mation is printed about processes associated with the current terminal. The
output consists of a short listing containing only the process ID, terminal
identifier. cumulative execution time, and the command name. Otherwise. the
information that is displayed is controlled by the selection of Opt;OIlS.

Options using lists as arguments can have the list specified in one of two forms:
a list of identifiers separated from one another by a comma, or a list of
identifiers enclosed in double quotes and separated from one another by a
comma and/or one or more spaces.

The options are:

-e Print information about all processes.
-d Print information about all processes. except process group

leaders.
-a Print information about all processes. except process group

leaders and processes not associated with a terminal.
-f Generate a full listing. (See below for meaning of columns in a

full listing).
-I Generate a long listing. See below.
-c corefitt! Use the file corefile in place of /dev/mem.
-s swapdev Use the file swapdev in place of /dev/swap. This is useful when

examining a corefile; a swapdev of /dev/null will cause the user
block to be zeroed out.

-n namelist The argument will be taken as the name of an alternate system
namelist file in place of /unix.

-t termiisl Restrict listing to data about the processes associated with the
terminals given in lermlist. Terminal identifiers may be specified
in one of two forms: the device's file name (e.g .. tty04) or if the
device's file name starts with tty. just the digit identifier (e.g ..
04).

-p proc!ist Restrict listing to data about processes whose process ID numbers
are given in proc!;st.

-u uidlist Restrict listing to data about processes whose user ID numbers or
login names are given in uidlist. In the listing, the numerical
user ID will be printed unless the -f option is used. in which case
the login name will be printed.

-g grpiisl Restrict listing to data about processes whose process group
leaders are given in grpiisi.

The column headings and the meaning of the columns in a ps listing are given
below; the letters f and 1 indicate the option (full or long) that causes the
corresponding heading to appear; all means that the heading always appears.
Note that these two options determine only what information is provided for a
process; they do nOI determine which processes will be listed .

. I -

PS(I) PS (I)

200

(I)
(I)

(I)
(I)

PIl>

Flags {octal and additive} associated with the process:
o swapped;
I in core;
2 system process;
4 locked-in core (e.g., for physical I/O);
10 being swapped;
20 being traced by another process;
40 another tracing flag;
100 38 20 computer: swapin segment expansion;

VAX-I 1/780: text pointer valid:
38 20 computer: process is child (during fork
swap);
VAX-I 1/780: process is partially swapped.

The state of the process:
o non-existent;
S sleeping;
W waiting;
R running;
I intermediate;
Z terminated;
T stopped;
X growing.

(f,1> The user ID number of the process owner; the login name is
printed under the -f option.

(all) The process ID of the process; it is possible to kill a process if
you know this datum.

(f,I) The process ID of the parent process.
(f,I) Processor utilization for scheduling.
(I) The priority of the process; higher numbers mean lower

priority.
Nice value; used in priority computation.
The memory address of the process (a pointer to the segment
table array on the 38 20 computer), if resident: otherwise,
the disk address.
The size in blocks of the core image of the process.
The event for which the process is waiting or sleeping; if
blank, the process is running.

(f) Starting time of the process.
(all) The controlling terminal for the process.
(alI) The cumulative execution time for the process.
(all) The command name; the full command name and its argu-

ments are printed under the -f option.

A process that has exited and has a parent, but has not yet been waited for by
the parent, is marked <defunct>.

Under the -f option, ps tries to determine the command name and arguments
given when the process was created by examining memory or the swap area.
Failing this, the command name, as it would appear without the -f option, is
printed in square brackets.

NI
AI>DR

tHD

SZ
WCHAN

PPID
C
PRI

STIME
rrv
TIME
CMD

S

F

FILES
lunix
Idev/mem
Idcv/swap
letc/passwd
Ictc/ps_data
Idev

system namelist
memory
the default swap device
supplies UID information
internal data structure
searched to find terminal ("tty") names

- 2 -

PS (I)

SEE ALSO
acctcom(l), kill(I). nice(l).

BUGS

PS(I)

~,

Things can change while ps is running; the picture it gives is only a close
approximalion to reality. Some data printed for defunct processes are
irrelevant.

- 3 -

PTX(})

NAME

PTX (0

ptx - permuted index

SYNOPSIS
ptx [options 1 [input [output 1 1

DESCRIPTION
Ptx generates the file output that can be processed with a text formatter to
produce a permuted index of file input (standard input and output default). It
has three phases: the first does the permutation, generating one line for each
keyword in an input line. The keyword is rotated to the front. The permuted
file is then sorted. Finally, the sorted lines are rotated so the keyword comes at
the middle of each line. Ptx output is in the form:

.xx "tail" "before keyword" "keyword and after" "head"

where .xx is assumed to be an nroff or troff(I) macro provided by the user, or
provided by the mptx(S) macro package. The before keyword and keyword
and after fields incorporate as much of the line as will fit around the keyword
when it is printed. Tail and head, at least one of which is always the empty
string, are wrapped-around pieces small enough to fit in the unused space at the
opposite end of the line.

The following options can be applied:

-f Fold upper and lower case letters for sorting.

-t Prepare the output for the phototypesetter.

-w n Use the next argument, n, as the length of the output line. The
default line length is 72 characters for nroff and 100 for troff.

-g n Use the next argument, n, as the number of characters that piX
will reserve in its calculations for each gap among the four parts of
the line as finally printed. The default gap is 3.

-0 only Use as keywords only the words given in the only file.

-i ignore Do not use as keywords any words given in the ignore file. If the
-i and -0 options are missing, use /usr/Iib/eign as the ignore file.

-b break Use the characters in the break file to separate words. Tab, new-
line, and space characters are always used as break characters.

-r Take any leading non-blank characters of each input line to be a
reference identifier (as to a page or chapter>, separate from the
text of the line. Attach that identifier as a 5th field on each out­
put line.

The index for this manual was generated using ptx.

FILES
Ibin/sort
lusr/lib/eign
I usrIlibltmacltmac.ptx

SEE ALSO
nroff(I), troff(1) .
mm(S), mptx(S) in the UNIX System V Programmer Reference Manual.

BUGS
Line length counts do not account for overstriking or proportional spacing.
Lines that contain tildes (-) are botched, because ptx uses that character inter­
nally.

- I -

PWO(I)

NAME

PWO(I)

pwd - working directory name

SYNOPSIS
pwd

DESCRIPTION
Pwd prints the path name of the working (current) directory.

SEE ALSO
cd (J).

DIAGNOSTICS
"Cannot open and "Read error in indicate possible file system trouble
and should be referred to a UNIX system programming counselor.

- 1 -

RATFOR(l)

NAME
ratfor - rational Fortran dialect

RATFOR(I)

SYNOPSIS
ratfor [options] [files]

DESCRIPTION
Rat/or converts a rational dialect of Fortran into ordinary irrational Fortran.
Rat/or provides control flow constructs essentially identical to those in C:

statement grouping:
{ statement; statement; statement}

decision-making:
if (condition) statement [else statement]
switch (integer value> {

case integer: statement

loops:

[default:] statement

while (condition) statement
for (expression; condition; expression) statement
do limits statement
repeat statement [until (condition)
break
next

and some syntactic sugar to make programs easier to read and write:

free form input:
multiple statements/line; automatic continuation

comments:
this is a comment.

translation of rclationals:
>, > ... , etc., become .GT., .GE., etc.

return expression to caller from function:
return (expression)

define:
define name replacement

include:
include file

The option -h causes quoted strings to be turned into 27H constructs. The
-C option copies comments to the output and attempts to format it neatly.
Normally, continuation lines are marked with a & in column I; the option
-6x makes the continuation character x and places it in column 6.

Rat/or is best used withj77(J).

SEE ALSO
en(l}, n7().

B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, 1976.

- I -

REGCMP(I) REGCMP(I)

NAME
regcmp - regular expression compile

"([A-Za-z][A-Za-zO-9J.)$O"

"\ ({O, I}([2-9][OI][1-9])$O\){O,I) ."
n([2-9][0-9](2}) $ I[-](O, I)"
n([O-9]{4})$2"

telno

SYNOPSIS
regcmp [-] files

DESCRIPTION
Regcmp, in most cases, precludes the need for calling regcmp(3X) from C pro­
grams. This saves on both execution time and program size. The command
regcmp compiles the regular expressions in file and places the output in file.i.
If the - option is used, the output will be placed in file.c. The format of
entries in file is a name (C variable) followed by one or more blanks followed
by a regular expression enclosed in double quotes. The output of regcmp is C
source code. Compiled regular expressions are represented as extern char vec­
tors. Fi/e.i files may thus be included into C programs, or file.c files may be
compiled and later loaded. In the C program which uses the regcmp output,
regex (abc ,line) will apply the regular expression named abc to line. Diagnos­
tics are self-explanatory.

EXAMPLES
name

In the C program that uses the regcmp output,

regex <Leino, line, area, exch, rest)

will apply the regular expression named telno to line.

SEE ALSO
regcmp(3X) in the UNIX System V Programmer Reference Manual.

- I -

RJESTAT(lC)

NAME

RJESTAT(IC)

rjestat - RJE status report and interactive status console

SYNOPSIS
rjestat [host l... [-shost] [-chost cmd] [- jhost jobname] ..

DESCRIPTION
Rjestat provides a method of determining the status of an RJE link and of
simulating an IBM remote console (with UNIX system features added). When
invoked with no arguments, rjestat reports the current status of all the RJE
links connected to the UNIX system. The options are:

host Print the status of the line to host. Host is the pseudonym for a
particular IBM system. It can be any name that corresponds to
one in the first column of the RJE configuration file.

-shost After all the arguments have been processed, start an interactive
status console to host.

-chost cmd
Interpret cmd as if it were entered in status console mode to host.
See below for the proper format of cmd.

- jhost jobname
Print all status pertaining to a user job with name jobname that
has been sent by the host system to the rje system.

In status console mode, rjestat prompts with the host pseudonym followed by :
whenever it is ready to accept a command. Commands are terminated with a
new-line. A line that begins with! is sent to the UNIX system shell for execu­
tion. A line that begins with the letter q terminates rjestat. All other input
lines are assumed to have the form:

ibmcmd [redirect]

Ibmcmd is any IBM JES or HASP command. Only the super-user or rje login
can send commands other than display or inquiry commands. Redirect is a
pipeline or a redirection to a file (e.g., U> file" or " I grep ..."). The IBM
response is written to the pipeline or file. If redirect is not present, the
response is written to the standard output of rjestat.

An interrupt signal (DEL or BREAK) will cancel the command in progress and
cause rjestat to return to the command input mode.

EXAMPLE
The following command reports the status of all the card readers attached to
host A, remote 5. JES2 is assumed.

rjestat -cA '$du,rmt5 I grep RD'

DIAGNOSTICS
The message "RJE error: ..." indicates that rjestat found an inconsistency in
the RJE system. This may be transient but should be reported to the site
administrator.

FILES
lusr/rje/lines RJE configuration file

resp host response file that exists in the RJE subsystem directory
(e.g., /usr/rjeU.

SEE ALSO
send (I C).

- I -

RM(J)

NAME

RM(J)

rm, rmdir - remove files or directories

SYNOPSIS
rm (-fri) file ...

rmdir dir ...

DESCRIPTION
Rm removes the entries for one or more files from a directory. If an entry was
the last link to the file. the file is destroyed. Removal of a file requires write
permission in its directory, but neither read nor write permission on the file
itself.

If a file has no write permission and the standard input is a terminal. its per­
missions are printed and a line is read from the standard input. If that line
begins with y the file is deleted, otherwise the file remains. No questions are
asked when the -(option is given or if the standard input is not a terminal.

If a designated file is a directory, an error comment is printed unless the
optional argument -r has been used. In that case, rm recursively deletes the
entire contents of the specified directory. and the directory itself.

If the -i (interactive) option is in effect. rm asks whether to delete each file.
and. under -r. whether to examine each directory.

Rmdir removes entries for the named directories. which must be empty.

SEE ALSO
unlink(2) in the UNIX System V Programmer Reference Manual.

DIAGNOSTICS
Generally self-explanatory. It is forbidden to remove the file .. merely to avoid
the antisocial consequences of inadvertently doing something like:

rm -r,.

- I -

RMDEL(l)

NAME

RMDEL(I)

rmdel - remove a delta rrom an sees file

SYNOPSIS
rmdel -rSID files

DESCRIPTION
Rmdel removes the delta specified by the SID rrom each named sees file. The
delta to be removed must be the newest (most recent) delta in its branch in the
delta chain or each named sees file. In addition, the specified must not be
that or a version being edited ror the purpose or making a delta G. e., ir a p-jile
(see get< I» exists ror the named sees file, the specified must not appear in
any entry or the p-jile).

Ir a directory is named, rmdel behaves as though each file in the directory were
specified as a named file, except that non-SeeS files (last component or the
path name ddes not begin with s,) and unreadable files are silently ignored. Ir
a name or - is given, the standard input is read; each line or the standard
input is taken to be the name or an sees file to be processed; non-sees files
and unreadable files are silently ignored.

The exact permissions necessary to remove a delta are documented in the
Source Code Control System User Guide. Simply stated, they are either (I) ir
you make a delta you can remove it; or (2) ir you own the file and directory
you can remove a delta.

FILES
x.rile (see delta (I»
l..rile (see delta (I»

SEE ALSO
delta(l), get(J), help(J), prs(I).
sccsfile(4) in the UNIX System V Programmer Reference Manual.

Source Code Control System User Guide in the UNIX System V User Guide.

DIAGNOSTICS
Use help (I) ror explanations.

- I -

SACT(I)

NAME
sact - print current sees file editing activity

SYNOPSIS
sact files

SACT(I)

Field 4

Field S

Field 2

Field 3

DESCRIPTION
Sact informs the user of any impending deltas to a named sees file. This
situation occurs when gedl) with the -e option has been previously executed
without a subsequent execution of delta (I). If a directory is named on the
command line, sact behaves as though each file in the directory were specified
as a named file, except that non-SeeS files and unreadable files are silently
ignored. If a name of - is given, the standard input is read with each line
being taken as the name of an sees file to be processed.

The output for each named file consists of five fields separated by spaces.

Field 1 specifies the SID of a delta that currently exists in the sees
file to which changes will be made to make the new delta.

specifies the SID for the new delta to be created.

contains the logname of the user who will make the delta
(j.e., executed a get for editing).

contains the date that get -e was executed.

contains the time that get -e was executed.

SEE ALSO
delta (l), get (I), unget (I).

DIAGNOSTICS
Use help (J) for explanations.

- I -

SAG(lG)

NAME

SAG (IG)

sag - system activity graph

SYNOPSIS
sag l options]

DESCRIPTION
Sag graphically displays the system activity data stored in a binary data file by
a previous sadt> run. Any of the sar data items may be plotted singly. or in
combination; as cross plots. or versus time. Simple arithmetic combinations of
data may be specified. Sag invokes sar and finds the desired data by string­
matching the data column header (run sar to see what is available). These
options are passed through to sar:

-s time Select data later than time in the form hh [:mm]. Default is 08:00.

-e time Select data up to time. Default is 18:00.

-i sec Select data at intervals as close as possible to sec seconds.

-f file Use file as the data source for sar. Default is the current daily data
file lusr/adm/sa/sadd.

Other options:

-T term Produce output suitable for terminal term. See tplot< IG) for known
terminals. If term is vpr, output is processed by vpr -p and queued
to a Versatec printer. Default for term is STERM.

-x spec x axis specification with spec in the form:
"name lop name] ... [Io hi]"

-y spec y axis specification with spec in the same form as above.

Name is either a string that will match a column header in the sar report, with
an optional device name in square brackets, e.g., r +wIs(dsk - 11, or an integer
value. Op is + - • or 1 surrounded by blanks. Up to five names may be
specified. Parentheses are not recognized. Contrary to custom, + and ­
have precedence over • and I. Evaluation is left to right. Thus
A I A + B • 100 is evaluated (A/(A+B».100, and A + B I C + D is
(A+B)/(C+D). 1.0 and hi are optional numeric scale limits. If unspecified,
they are deduced from the data.

A single spec is permitted for the x axis. If unspecified, time is used. Up to 5
spec's separated by ; may be given for -yo Enclose the -x and -y argu­
ments in ... if blanks or \ <CR> are included. The -y default is:

-y "%usr 0 100; %usr + %sys 0 100; %usr + %sys + %wio 0 100"

EXAMPLES
To see tOOay's CPU utilization:

sag

To see activity over 15 minutes of all disk drives:
TS='date +%H:%M'
sar -0 tempfile 60 15
TE"""date +%H:%M'
sag -f tempfile -s STS -e STE -y "r+w/sldsk]"

FILES
lusr/adm/sa/sadd

SEE ALSO
sar(I), tplot (I G) .

daily data file for day dd.

- I -

SAR(I)

NAME

SAR(I)

sar - system activity reporter

SYNOPSIS
sar [-ubdycwaqvmA 1 [-0 file 1 t [n 1
sar [-ubdycwaqvmA 1 [-s time 1 [-e time 1 [-i sec] [-f file 1

DESCRIPTION
Sar. in the first instance, samples cumulative activity counters in the operating
system at n intervals of t seconds. If the -0 option is specified, it saves the
samples in file in binary format. The default value of n is I. In the second
instance, with no sampling interval specified, sar extracts data from a previ­
ously recorded file. either the one specified by -f option or, by default, the
standard system activity daily data file /usr/adm/sa/sadd for the current day
dd. The starting and ending times of the report can be bounded via the -s
and -e time arguments of the form hh[:mm[:ss ll. The -i option selects
records at sec second intervals. Otherwise, all intervals found in the data file
are reported.

In either case, subsets of data to be printed are specified by option:

-u Report CPU utilization (the default):
%usr, %sys, %wio, %idle - portion of time running in user mode, running
in system mode, idle with some process waiting for block I/O. and other­
wise idle.

-b Report buffer activity:
bread/s, bwrit/s - transfers per second of data between system buffers
and disk or other block devices;
Iread/s, Iwrit/s - accesses of system buffers;
%rcache, %wcache - cache hit ratios, e. g., I - bread/lread;
pread/s, pwrit/s - transfers via raw (physical) device mechanism.

-d Report activity for each block device, e. g., disk or tape drive. When data
is displayed, the device specification dsk- is generally used to represent a
disk drive. (On Digital Equipment Corporation machines, the device
specification dsk- is used to represent a MASSBUS disk, while the
specification dskR- is used to represent an RA disk'> The device
specification used to represent a tape drive is machine dependent. The
activity data reported is:
%busy, avque - portion of time device was busy servicing a transfer
request, average number of requests outstanding during that time;
r+w/s, blks/s - number of data transfers from or to device, number of
bytes transferred in 512-byte units;
avwait, avserv - average time in ms. that transfer requests wait idly on
queue, and average time to be serviced (which for disks includes seek,
rotational latency and data transfer times).

-y Report TTY device activity:
rawch/s, canch/s, outch/s - input character rate, input character rate
processed by canon, output character rate;
rcvin/s, xmtin/s, mdmin/s - receive, transmit and modem interrupt rates.

-c Report system calls:
scall/s - system calls of all types;
sread/s, swrit/s, fork/s, exec/s - specific system calls;
rchar/s, wchar/s - characters transferred by read and write system calls.

-w Report system swapping and switching activity:
swpin/s, swpot/s, bswin/s, bswot/s - number of transfers and number of
512-byte units transferred for swapins and swapouts (including initial
loading of some programs);
pswch/s - process switches.

- 1 -

SAR(t) SAR(t)

-a Report use of file access system routines:
iget/s, namei/s, dirblk/s.

-q Report average queue length while occupied, and % of time occupied:
runq-sz, %runocc - run queue of processes in memory and runnable;
swpq-sz, %swpocc - swap queue of processes swapped out but ready to
run.

-v Report status of text, process, inode and file tables:
text-sz, proc-sz, inod-sz, file-sz - entries/size for each table, evaluated
once at sampling point;
text-ov, proc-ov, inod-ov. file-ov - overflows occurring between sampling
points.

-m Report message and semaphore activities:
msg/s, sema/s - primitives per second.

-A Report all data. Equivalent to -udqbwcayvm.
EXAMPLES .

To see today's CPU activity so far:
sar

To watch CPU activity evolve for to minutes and save data:
sar -0 temp 60 10

To later review disk and tape activity from that period:
sar -d -f temp

FILES
/usr/adm/sa/sadd daily data file, where dd are digits representing the day of
the month.

SEE ALSO
sagO G).
sarO M) in the UNIX System V Administrator Reference Manual.

- 2 -

SCC(I) (DEC only) SCC(I)

NAME
scc - C compiler for stand-alone programs

SYNOPSIS
see [+[lib]] [option] ... [file] ...

DESCRIPTION
See prepares the named files for stand-alone execution. The option and file
arguments may be anything that can legally be used with the cc command; it
should be noted, though, that the -p (profiling) option, as well as any object
module that contains system calls, will cause the executable not to run.

See defines the compiler constant, STANDALONE, so that sections of C pro­
grams may be compiled conditionally when the executable will be run stand­
alone.

The first argument specifies an auxiliary library that defines the device
configuration of the PDP-II computer for which the stand-alone executable--is
being prepared. Lib may be one of the following:

A RP04/05106 disk and TUI6 magnetic tape, or equivalent on the PDP­
II plus RM05 and RM80 disks, and TU78 and TS II tapes, or
equivalent on the VAX

8 RKII/RK05 disk, RPII/RP03 disk, and TMII/TUI6 magnetic tape, or
equivalent

If no +lib argument is specified, +A is assumed. If the + argument is
specified alone, no configuration library is loaded unless the user supplies his
own.

FILES

(PDP-II only)
(PDP-II only)

execution start-off
stand-alone library
+A configuration library
+8 configuration library

llib/crt2.0
IusrIiib/lib2.a
lusr/lib/lib2A.a
I usrIlib/lib2 8.a

SEE ALSO
cc(l),ldO).
a.out(4) in the UNIX System V Programmer Reference Manual.

- 1 -

SCCSDIFF(t)

NAME

SCCSDIFF (1)

sccsdiff - compare two versions of an sees file

SYNOPSIS
sccsdiff -rSIDI -rSID2 [-p] [-sn] files

DESCRIPTION
Sccsdi./J compares two versions of an sees file and generates the differences
between the two versions. Any number of sees files may be specified, but
arguments apply to all files.

-rSID? SID} and SID2 specify the deltas of an sees file that are to
be compared. Versions are passed to bdiff(I) in the order
given.

-p pipe output for each file through pr(I).

-sn n is the file segment size that bdiff will pass to diff(l).
This is useful when diff fails due to a high system load.

FILES
Itmp/get????? Temporary files

SEE ALSO
bdiff(I), get(I), help(I), pr(I).

Source Code Control System User Guide in the UNIX System V User Guide.

DIAGNOSTICS
"file: No differences" If the two versions are the same.
Use help(I) for explanations.

- 1 •

SDB(I)

NAME

(not on PDP-II) SDB(I)

sdb - symbolic debugger

SYNOPSIS
sdb [-w] [-wI [objfil [corlll [directory-list I I]

DESCRIPTION
Sdh is a symbolic debugger that can be uscd with C and F77 programs. It
may be used to examine their object files and core files and to provide a con­
trolled environment for their execution.

Ohjfil is normally an executable program file which has been compiled with the
-g (debug) option; if it has not been compiled with the -~ option. or if it is
not an executable file. the symbolic capabilities of sdb will be limited. but the
file can still be examined and the program debugged. The default for obifil is
a.out. Cor/il is assumed to be a core image file produced after executing obifil:
the default for corjil is core. The core file need not be present. A - in place
of cor/il will force sdb to ignore any core image tile. The colon separated list
of directories (directory-list) is used to locate the source files used to build
objfil.

It is useful to know that at any time there is a ('"rre1l1 Iille and ('"rre1l1 file. II'
('or/il exists then they are initially set to the line and tile containing the source
statement at which the process terminated. Otherwise. they are set to the first
line in main U. The current line and file may be changed with the source file
examination commands.

By default. warnings arc provided if the source files used in producing obijil
cannot be found. or are newer than objjil. This checking feature and the
accompanying warnings may be disabled by the use of the - W llag.

Names of variables are written just as they are in C or F77. Note that names
in C are now of arbitrary length. sdb will no longer truncate names. Variables
local to a procedure may be accessed using the form I'f'Ocet/ure:variahle. If no
procedure name is given. the procedure containing the current line is used by
default.

It is also possible to refer to structure members as variabh>.memher. pointers to
structure members as variahle->member and array clements as
variahlelllllmherl. Pointers may be dereferenced by using the form l'0i1l1erlOI.
Combinations of these forms may also be used. F77 common variables may be
referenced by using the name of the common block instead of the structure
name. Blank common variables may be named by the form .variable. A
number may be used in place of a structure variable name. in which case the
number is viewed as the address of the structure. and the template used for the
structure is that of the last structure referenced by .'it/b. An unqualified struc­
ture variable may also be used with various commands. Generally. sdb will
interpret a structure as a set of variables. Thus. sdh will display the values of
all the clements of a structure when it is requested to display a structure. An
exception to this interpretation occurs when displaying variable addresses. An
entire structure does have an address. and it is this value sdb displays. not the
addresses of individual clements.

Elcmcnts of a multidimensional array may be referenced as
variahle(llumberllllumberl ..., or as variablelllllmber.llumber.... 1. In place of
Ilumher, thc form number;number may be used to indicatc a range of values. •
may be used to indicatc all legitimate values for that subscript. or subscripts
may be omitted entirely if they are the last subscripts and the full range of
valucs is desired. As with structures. sdh displays all the values of an array or
of the section of an array if trailing subscripts arc omitted. It displays only the
address of the array itself or of the section specilled by the user if subscripts

- I -

SDB(l) (not on PDP-II) SDB(J)

arc omitted. A multidimensional parameter in an F77 program cannot be
displayed as an array, but it is actually a pointer, whose value is the location of
the array. The array itself can be accessed symbolically from the calling func­
tion.

A particular instance of a variable on the stack may be referenced by using the
form procedure:variable,number. All the variations mentioned in naming vari­
ables may be used. Number is the occurrence of the specified procedure on the
stack. counting the top, or most current, as the first. If no procedure is
specified, the procedure currently executing is used by default.

It is also possible to specify a variable by its address. All forms of integer con­
stants which are valid in C may be used, so that addresses may be input in
decimal, octal or hexadecimal.

Line numbers in the source program are referred to as file-name:number or
procedure:number. In either case the number is relative to the beginning of the
file. If no procedure or file name is given, the current file is used by default. If
no number is given, the first line of the named procedure or file is used.

While a process is running under sdb, all addresses refer to the executing pro­
gram; otherwise they refer to objfil or corfil. An initial argument of -w per­
mits overwriting locations in objfil.

Addresses
The address in a file associated with a written address is determined by a map­
ping associated with that file. Each mapping is represented by two triples (h/.
e/. Jf) and (b2. e2, J2) and the file address corresponding to a written address
is calculated as follows:

bl address < e I

.file address=address+JI -bl
otherwise

b2address < e2

file address=address+f2 -b2,

otherwise, the requested address is not legal. In some cases (e.g .• for programs
with separated I and D space) the two segments for a file may overlap.

The initial setting of both mappings is suitable for normal a.out and core files.
If either file is not of the kind expected then, for that file, bl is set to 0, el is
set to the maximum file size, and JI is set to 0; in this way the whole file can
be examined with no address translation.

In order for sdb to be used on large files, all appropriate values are kept as
signed 32-bit integers.

Commands
The commands for examining data in the program arc:

Print a stack trace of the terminated or haltcd program.

T Print the top line of the stack trace.

variable/elm
Print the value of variable according to length I and format 111. A
numeric count c indicates that a region of memory, beginning at the
address implied by variable, is to be displayed. The length specifiers arc:

b one byte
h two bytes (half word)
I four bytes (long word)

- 2 -

SOR(1) (not on POp· I I) SOR(I)

Legal values for marc:
c character
d dccimal
u decimal, unsigned
o octal
x hexadecimal
f 32-bit singlc precision floating point
g 64-bit double precision floating point
s Assumc variable is a string pointer and print characters

starting at the address pointed to by the variable.
a Print characters starting at the variablc's address. This

format may not be used with register variablcs.
p pointer to procedure
i disassemble machine-language instruction with addresses

printed numerically and symbolically.
disassemble machine-language instruction with addresses
just printed numerically.

The length specifiers arc only effective with thc formats c. d. u, 0 and x.
Any of the specifiers, c, I. and m, may be omitted. If all arc omitted, sdb
choses a length and a format suitable for thc variablc's type as declarcd
in the program. If m is specified, then this format is used for displaying
thc variable. A length specifier determines the output length of thc value
to be displayed, sometimes resulting in truncation. A count specifier c
tells sdb to display that many units of memory, beginning at the address
of variable. The number of bytcs in one such unit of memory is deter­
mined by thc Icngth specifier I, or if no length is given, by the size associ­
atcd with the variable. If a count specifier is used for the s or a com­
mand, then that many characters are printed. Otherwise successive char­
acters arc printed until either a null byte is reached or 128 charactcrs are
printed. The last variable may be redisplayed with the command .I.
The sh (J) metacharacters • and ? may be used within procedure and
variable names, providing a limited form of pattern matching. If no pro­
cedure name is given, variables local to the current procedure and global
variables arc matched; if a procedure name is specified then only vari­
ables local to that procedure are matched. To match only global vari­
ables. the form :pallern is used.

linenumber?1m
variable:?1m

Print the value at the address from a.out or I space given by finenumber
or variable (procedure name), according to the format 1m. The dcfaull
format is 'i'.

variable =1m
linenumber =1m
number =Im

Print the address of variable or finenumber, or the value of numbn, in
the format specified by 1m. If no format is given, then Ix is used. The
last variant of this command provides a convenient way to convert
between decimal, octal and hexadecimal.

variable!value
Set variable to the given value. The value may be a number. a character
constant or a variable. The value must be well defined; expressions which
produce more than one value, such as structures, arc not allowed. Char­
acter constants arc denoted 'character. Numbers arc viewed as integers
unless a decimal point or exponent is used. In this case, they arc treated
as having the type double. Registers arc viewed as integers. The

- 3 -

SDB(J) (not on PDP-II) SDB(I)

variable may be an expression which indicates more than one variable,
such as an array or structure name. If the address of a variable is given,
it is regarded as the address of a variable of type illt. C conventions are
used in any type conversions necessary to perform the indicated assign­
ment.

x Print the machine registers and the current machine-language instruction.

X Print the current machine-language instruction.

The commands for examining source files are:

e procedure
e file-name
e directory/
e directory file-name

The first two forms set the current file to the file containing procedure or
to file-name. The current line is set to the first line in the named pro­
cedure or file. Source files are assumed to be in directory. The default is
the current working directory. The latter two forms change the value of
directory. If no procedure, file name, or directory is given, the current
procedure name and file name are reported.

/ regular expression /
Search forward from the current line for a line containing a string match­
ing regular expression as in ed(]). The trailing / may be deleted.

?regular expression?
Search backward from the current line for a line containing a string
matching regular expression as in ed(]). The trailing? may be deleted.

p Print the current line.

70 Print the current line followed by the next 9 lines. Set the current line to
the last line printed.

w Window. Print the 10 lines around the current line.

number
Set the current line to the given line number. Print the new current line.

coullt +
Advance the current line by count lines. Print the new current line.

count-
Retreat the current line by count lines. Print the new current line.

The commands for controtting the execution of the source program are:

count r args
count R

Run the program with the given arguments. The r command with no
arguments reuses the previous arguments to the program while the R
command runs the program with no arguments. An argument beginning
with < or > causes redirection for the standard input or output. respec­
tively. If COUIll is given, it specifies the number of breakpoints to be
ignored.

linenumber c coullt
Iinenurnber C cOUIll

Continue after a breakpoint or interrupt. If COUIlt is given. it specifics the
breakpoint at which to stop after ignoring count - I breakpoints. C con­
tinues with the signal which caused the program to stop reactivated and c
ignores it. If a line number is specified then a temporary breakpoint is
placed at the line and execution is continued. The breakpoint is deleted
when the command finishes.

- 4 -

SOB(I) (not on PDP·)) SOB (l)

lillellumher 2 c()ull1
Continue after a breakpoint with execution resumed at the given line. If
count is given. it specifics the number of breakpoints to be ignored.

S C()Uflf

S count
Single step the program through count lines. If no count is given then
the program is run for one line. S is equivalent to s except it steps
through proccdure calls.

Single step by one machinc·language instruction. I steps with the signal
which caused the program to stop reactivatcd and i ignores it.

variabh'$m cowrr
luJdress:m counl

Single step (as with s) until thc specified location is modified with a new
value. If count is omitted. it is effcctively infinity. Variable must be
accessible from the current procedure. Since this command is done by
software. it can be very slow.

level v
Toggle verbose mode. for use when single stepping with S. s or m. If
Ie\'£>I is omitted. then just the current source file and/or subroutine name
is printed when cither changes. If level is I or greater. each C source
line is printed before it is executed; if level is 2 or greater. each assembler
statement is also printed. A v turns verbose mode off if it is on for any
level.

k Kill the program being debugged.

procedurc(arg l.arg2•.. ,}
proccdurC<arg l.arg2•.. J 1m

Execute the named procedure with the given arguments. Arguments can
be integer. character or string constants or names of variables accessible
from thc current procedure. The second form causes the value returned
by the procedure to be printed according to format m. If no format is
given. it defaults to d.

linenumber b commands
Sct a breakpoint at the given line. If a proccdure name without a line
number is given (e.g.• "proc:"). a breakpoint is placed at the first line in
thc procedure even if it was not compiled with the -g option. If no
linenumber is given. a breakpoint is placed at the current line. If no
commands are given. execution stops just before the breakpoint and con­
trol is returned to sdb. Otherwise the commands are executed when the
breakpoint is encountered and execution continues. Multiple commands
are specified by separating them with semicolons. If k is used as a com­
mand to execute at a breakpoint. control returns to sdb. instead of con­
tinuing execution.

B Print a list of the currently active breakpoints.

lillenumber d
Delete a breakpoint at the given line. If no Iinenumber is given then the
breakpoints are deleted interactively. Each breakpoint location is printed
and a line is read from the standard input. If the line begins with a y or
d then the breakpoint is deleted.

D Delete all breakpoints.

I Print the last executed line.

SDB(l) (not on PDP-II) SDB(I)

FILES

Jinenumber a
Announce. If linenumber is of the form proc:nllmber. the command
effectively does a linenumber b I. If linenumber is of the form proc:. the
command effectively does a proc: b T.

Miscellaneous commands:

!command
The command is interpreted by sir (I).

new-line
If the previous command printed a source line. then advance the current
line by one line and print the new current line. If the previous command
displayed a memory location, then display the next memory location.

control-D
Scroll. Print the next 10 lines of instructions. source or data depending
on which was printed last.

< filenam£'
Read commands from filename until the end of file is reached. and then
continue to accept commands from standard input. When sdh is told to
display a variable by a command in such a file. the variable name is
displayed along with the value. This command may not be nested; <
may not appear as a command in a file.

M Print the address maps.

M (?lII·1 h e f
Record new values for the address map. The arguments? and / specify
the text and data maps, respectively. The first segment (hi. d. fl) is
changed unless • is specified. in which case the second segment (hi. el.
fl) of the mapping is changed. If fewer than three values are given. the
remaining map parameters are left unchanged.

" string
Print the given string. The C escape sequences of the form \character
are recognized, where character is a nonnumeric character.

q Exit the debugger.

The following commands also exist and are intended only for debugging the
debugger:

V Print the version number.
Q Print a list of procedures and files being debugged.
Y Toggle debug output.

a.out
core

SEE ALSO
cd». f77(1), sh(l).
a.out(4), corc(4) in the UNIX System V Programmer Reference Manlla/.

WARNINGS
On the VAX-II, C variables are identified internally with an underscore
prepended. User variables which differ by only an initial underscore cannot be
distinguished, as sdb recognizes both internal and external names.

When sdb prints the value of an external variable for which there is no debug­
ging information, a warning is printed before the value. The value is assumed
to be int (integer).

- 6 -

SDB(I) (not on PDP-II) SDB (I)

BUGS

Data which are stored in text sections are indistinguishable from functions.

Line number information in optimized functions is unreliable, and some infor­
mation may be missing.

If a procedure is called when the program is not stopped at a breakpoint (such
as when a core image is being debugged), all variables arc initialized before the
procedure is started. This makes it impossible to use a procedure which for­
mats data from a core image.

The default type for printing F77 parameters is incorrect. Their address is
printed instead of their value.

Tracebacks containing F77 subprograms with multiple entry points may print
too many arguments in the wrong order, but their values are correct.,
The range of an F77 array subscript is assumed to be I to fl, where fl is the
dimension corresponding to that subscript. This is only significant when the
user omits a subscript, or uses • to indicate the full range. There is no problem
in general with arrays having subscripts whose lower bounds are not I.

On the 3B 20 computer there is no hardware trace mode and single-stepping is
implemented by setting pseudo breakpoints where possible. This is slow. The
.'I, S, i, and I commands do not always convert on the 3B 20 computer due to
pseudo-breakpointing. Thus sdb will not allow single-stepping from an indirect
jump, a switch instruction, or a switdt instruction.

The entry point to an optimized function cannot be found on the 3B 20 com­
puter. Setting a breakpoint at the beginning of an optimized function may
eause the middle of some instruction within the function to be overwritten.
This problem can be circumvented by disassembling the first few instructions of
the function, and manually setting a breakpoint at the first instruction after the
stack pointer is adjusted.

- 7 -

SDIFF<t)

NAME

SDIFF(I)

sdiff - side-by-side difference program

SYNOPSIS
sdiff [options ...] file 1 file2

DESCRIPTION
Sdiff uses the output of diff(I) to produce a side-by-side listing of two files
indicating those lines that are different. Each line of the two files is printed
with a blank gutter between them if the lines are identical, a < in the gutter if
the line only exists in file1, a > in the gutter if the line only exists in file 2, and
a I for lines that are different.

For example:

..~

x
a
b
c
d

y
a

<
<

d
> c

The following options exist:

-w n Use the next argument, n, as the width of the output line. The
default line length is 130 characters.

-I Only print the left side of any lines that are identical.

-s Do not print identical lines.

-0 output Use the next argument, output, as the name of a third file that is
created as a user-controlled merging of filel and file2. Identical
lines of file! and file2 are copied to output. Sets of differences, as
produced by diff(I), are printed; where a set of differences share a
common gutter character. After printing each set of differences,
sdiff prompts the user with a % and waits for one of the following
user-typed commands:

I append the left column to the output file

r append the right column to the output file

s turn on silent mode; do not print identical lines

v turn off silent mode

e I call the editor with the left column

e r call the editor with the right column

e b call the editor with the concatenation of left and
right

e call the editor with a zero length file

q exit from the program

On exit from the editor, the resulting file is concatenated on the
end of the output file.

SEE ALSO
diff(I), ed(I).

- 1 -

SED(t)

NAME
sed - stream editor

SED (I)

SYNOPSIS
sed [-n] [-e script] [-f sfile] [files]

DESCRIPTION
Sed copies the named files (standard input default) to the standard output,
edited according to a script of commands. The -f option causes the script to
be taken from file sfile; these options accumulate. If there is just one -e
option and no -f options, the flag -e may be omitted. The -0 option
suppresses the default output. A script consists of editing commands, one per
line, of the following form:

[address [, address] 1 function [arguments 1
In normal operation, sed cyclically copies a line of input into a pattern space
(unless there is something left after a D command), applies in sequence all
commands whose addresses select that pattern space, and at the end of the
script copies the pattern space to the standard output (except under -n) and
deletes the pattern space.

Some of the commands use a hold space to save all or part of the pattern
space for subsequent retrieval.

An address is either a decimal number that counts input lines cumulatively
across files, a $ that addresses the last line of input, or a context address, i.e., a
/regular expression/ in the style of ed{I) modified thus:

In a context address, the construction Vregular expression?, where?
is any character, is identical to /regular expression/. Note
that in the context address \xabc\xdefx, the second x stands
for itself, so that the regular expression is abcxdef.

The escape sequence \n matches a new-line embedded in the pattern
space.

A period • matches any character except the terminal new-line of the
pattern space.

A command line with no addresses selects every pattern space.
A command line with one address selects each pattern space that

matches the address.
A command line with two addresses selects the inclusive range from

the first pattern space that matches the first address through
the next pattern space that matches the second. (If the second
address is a number less than or equal to the line number first
selected, only one line is selected.) Thereafter the process is
repeated, looking again for the first address.

Editing commands can be applied only to non-selected pattern spaces by use of
the negation function! (below).

In the following list of functions the maximum number of permissible addresses
for each function is indicated in parentheses.

The text argument consists of one or more lines, all but the last of which end
with \ to hide the new-line. Backslashes in text are treated like backslashes in
the replacement string of an s command, and may be used to protect initial
blanks and tabs against the stripping that is done on every script line. The rfile
or wfile argument must terminate the command line and must be preceded by
exactly one blank. Each wfile is created before processing begins. There can
be at most 10 distinct wfile arguments.

- 1 -

SED(I) SED(J)

(I) a\
text Append. Place text on the output before reading the next input

line.
(2) b label Branch to the: command bearing the label. If label is empty,

branch to the end of the script.

g

Change. Delete the pattern space. With 0 or 1 address or at the
end of a 2-address range, place text on the output. Start the next
cycle.
Delctc the pattern space. Start the next cycle.
Delete the initial segment of the pattern space through the first
new-line. Start the next cycle.
Replace the contents of the pattern space by the contents of the
hold space.
Append the contents of the hold space to the pattern space.
Replace the contents of the hold space by thc contcnts of the pat­
tern space.
Appcnd the contents of the pattern space to the hold space.

n= 1 - 512. Substitute for just the n th occurrence
of the regular expression.
Global. Substitute for all nonoverlapping instances
of the regular expression rather than just the first
one.

p Print the pattern space if a replacement was made.
w wfile Write. Append the pattern space to wfile if a

replacement was made.
(2) t label Test. Branch to the: command bearing the label if any substitu­

tions have been made since the most recent reading of an input line
or execution of a t. If label is empty, branch to the end of the
script.

(2) w wfile Write. Append the pattern space to wfile.
(2) x Exchange the contents of the pattern and hold spaces.
(2) y/string! /string2/

Transform. Replace all occurrences of characters in string! with
the corresponding character in string2. The lengths of stringl and
string2 must be equal.

Insert. Place text on the standard output.
List the pattern space on the standard output in an unambiguous
form. Non-printing characters are spelled in two-digit ASCII and
long lines are folded.
Copy thc pattern space to the standard output. Replace the pattern
space with the next line of input.
Append the next line of input to the pattern space with an embed­
ded new-line. (The current line number changes.>
Print. Copy the pattern space to the standard output.
Copy the initial segment of the pattern space through the first
new-line to the standard output.

(I) q Quit. Branch to the end of the script. Do not start a new cycle.
(2) r rfile Read the contents of rfile. Place them on the output before rcading

the next input line.
(2) s/regular expression/replacement/flags

Substitute the replacement string for instances of the regular
expression in the pattern space. Any character may be used
instead of I. For a fuller description see ed (1). Flags is zero or
more of:

n

(2) d
(2) D

(2) g

(2) G
(2) h

(2) H
(1) i\
text
(2)1

(2) c\
text

- 2 -

(0)
(0) #

SED (I) SED<t)

(2)! function
Don't. Apply the function (or group, if function is () only to lines
not selected by the address (es) .

(0): label This command does nothing; it bears a label for band t commands
to branch to.
Place the current line number on the standard output as a line.
Execute the following commands through a matching) only when
the pattern space is selected.
An empty command is ignored.
If a # appears as the first character on the first line of a script file,
then that entire line is treated as a comment, with one exception. If
the character after the # is an 'n', then the default output will be
suppressed. The rest of the line after #n is also ignored. A script
file must contain at least one non-comment line.

r

SEE ALSO
awk(I), ed(I), grep(I).

- 3 -

SEND(IC)

NAME

SEND(IC)

send, gath - gather files and/or submit RJE jobs

SYNOPSIS
gath [-ih] file ...

send argument

DESCRIPTION
Gath

Gath concatenates the named files and writes them to the standard output.
Tabs are expanded into spaces according to the format specification for each
file (see !sped4». The size limit and margin parameters of a format
specification are also respected. Non-graphic characters other than tabs are
identified by a diagnostic message and excised. The output of gath contains no
tabs unless the -h flag is set, in which case the output is written with standard
tabs (every eighth column).

Any line of any of the files which begins with - is interpreted by gath as a con­
trol line. A line beginning u- U (tilde,space) specifies a sequence of files to be
included at that point. A line beginning -! specifies a UNIX system command;
that command is executed, and its output replaces the -! line in the gath out­
put.

Setting the -i flag prevents control lines from being interpreted and causes
them to be output literally.

A file name of - at any point refers to standard input, and a control line con­
sisting of -. is a logical EOF. Keywords may be defined by specifying a replace­
ment string which is to be substituted for each occurrence of the keyword.
Input may be collected directly from the terminal, with several alternatives for
prompting. In fact, all of the special arguments and flags recognized by the
send command are also recognized and treated identically by gath. Several of
them only make sense in the context of submitting an RJE job.

Send
Send is a command-level interface to the RJE subsystems. It allows the user to
collect input from various sources in order to create a run stream consisting of
card images, and submit this run stream for transmission to an IBM host com­
puter. Output from the IBM system may be returned to the user in either
ASCII text form or EBCDIC punch format (see pnch (4». How output is to be
disposed of once it returns from the host is determined by a "usr=" specification
which should be embedded in each job that a user submits for transmission. A
detailed description of RJE operation and the "usr=" specification is given in
UNIX System Remote Job Entry User Guide.

Possible sources of input to send are: ordinary files, standard input, the termi­
nal, and the output of a command or shell file. Each source of input is treated
as a virtual file, and no distinction is made based upon its origin. Typical input
is an ASCII text file of the sort that is created by the editor ed(I). An optional
format specification appearing in the first line of a file (see jspec (4» deter­
mines the settings according to which tabs are expanded into spaces. In addi­
tion, lines that begin with - are normally interpreted as commands controlling
the execution of send. They may be used to set or reset flags, to define key­
word substitutions, and to open new sources of input in the midst of the current
source. Other text lines are translated one-for-one into card images of the run
stream.

The run stream that results from this collection is treated as one job by the RJE
subsystems. Send prints the card count of the run stream, and the queuer that
is invoked prints the name of the temporary file that holds the job while it is
awaiting transmission. The initial card of a job submitted to a host must have

- 1 -

SEND(IC) SEND(IC)

sources,
e.g., :m6t -12:

Print message on the terminal.

Open standard input and, if it is a terminal, print
prompt.

Open the terminal and print prompt.

Set the specified flags, which are described below.

Reset the specified flags.

Restore the specified flags to their state at the previ­
ous level.

Execute the specified UN IX system command via the
one-line shell, with input redirected to Ide\'/nuli as a
default. Open the standard output of the command
as a new source.

Collect contiguous arguments of this form and write
them as consecutive lines to a temporary file; then
have the file executed by the shell. Open the stan­
dard output of the shell as a new source.

The current directory for the send process is changed
to directory. The original r.irectory will be restored
at the end of the current s Jurce.

Ignore this argument.

Prompt for a definition of keyword from the termi­
nal unless keyword has an existing definition.

Define the keyword as a two-digit hexadecimal char­
acter code unless it already has a non-null replace­
ment.

Define the keyword in terms of a replacement string
unless it already has a non-null replacement.

Prompt for a definition of keyword from the termi­
nal.

Define keyword as a two-digit hexadecimal character
code.

Define keyword in terms of a replacement string.keyword=string

keyword = "xx

=:keyword

?keyword 1:1 "xx

?keyword = string

@directory

+:prompt

-flags

+flags

=flags

-comment

?:keyword

Stine

+

!command

:spec:

:message

-:prompt

all in the first column. Any cards preceding this card will be excised. If a
host computer is not specified before the first card of the runstream is ready to
be sent, send will select a reasonable default. All cards beginning with 1·$ will
be excised from the runstream, because they are HASP command cards.

The arguments that send accepts are described below. An argument is inter­
preted according to the first pattern that it matches. Preceding a character
with \ causes it to loose any special meaning it might otherwise have when
matching against an argument pattern.

Close the current source.

Open standard input as a new source.

Open the terminal as a new source.

Establish a default format specification for included

~'

r-"

- 2 -

SENO(IC) SENO((C)

host The host machine that the job should be submitted
to. It can be any name that corresponds to one in
the first column of the RJE configuration file
(Jusr/rje/lines) .

file-name Open the specified file as a new source of input.

When commands are executed via $ or ! the shell environment (see
env;ron(S» will contain the values of all send keywords that begin with $
and have the syntax of a shell variable.

The flags recognized by send are described in terms of the special processing
that occurs when they are set:

-I List card images on standard output. EBCDIC characters are
translated back to ASCII.

-q Do not output card images.

-f Do not fold lower case to upper.

- t Trace progress on diagnostic output, by announcing the opening of
input sources.

-k Ignore the keywords that are active at the previous 'evel and erase
any keyword definitions that have been made at the current level.

-r Process included sources in raw mode; pack arbitrary S-bit bytes one
per column (SO columns per card) until an EOF.

-i Do not interpret control lines in included sources; treat them as text.

-s Make keyword substitutions before detecting and interpreting control
lines.

-y Suppress error diagnostics and submit job anyway.

-g Gather mode, qualifying -I flag; list text lines before converting
them to card images.

-h Write listing with standard tabs.

-p Prompt with • when taking input from the terminal.

-m When input returns to the terminal from a lower level, repeat the
prompt, if any.

-a Make -k flag propagate to included sources, thereby protecting
them from keyword substitutions.

-c List control lines on diagnostic output.

-d Extend the current set of keyword definitions by adding those active
at the end of included sources.

-x This flag guarantees that the job will be transmitted in the order of
submission (relative to other jobs sent with this flag).

Control lines are input lines that begin with -. In the default mode +ir,
they are interpreted as commands to send. Normally they are detected
immediately and read literally. The -s flag forces keyword substitutions
to be made before control lines are intercepted and interpreted. This can
lead to unexpected results if a control line uses a keyword which is defined
within an immediately preceding -$ sequence. Arguments appearing in
control lines are handled exactly like the command arguments to send,
except that they are processed at a nested level of input.

The two possible formats for a control line are: "-argument" and ..- argu­
ment ...". In the first case, where the - is not followed by a space, the
remainder of the line is taken as a single argument to send. In the second

- 3 -

SEND(IC) SEND()C)

case, the line is parsed to obtain a sequence of arguments delimited by
spaces. In this case the quotes' and" may be employed to pass embedded
spaces.

The interpretation of the argument • is chosen so that an input line con­
sisting of -. is treated as a logical EOF. The following example illustrates
some of the above conventions:

send -
- argument ...

This sequence of three lines is equivalent to the command synopsis at the
beginning of this description. In fact, the - is not even required. By con­
vention, the send command reads standard input if no other input source is
specified. Send may therefore be employed as a filter with side-effects.

The exedution of the send command is controlled at each instant by a
current environment, which includes the format specification for the input
source, a default format specification for included sources, the settings of
the mode flags, and the active set of keyword definitions. This environ­
ment can be altered dynamically. When a control line opens a new source
of input, the current environment is pushed onto a stack, to be restored
when input resumes from the old source. The initial format specification
for the new source is taken from the first line of the file. If none is pro­
vided, the established default is used or, in its absence, standard tabs. The
initial mode settings and active keywords are copied from the old environ­
ment. Changes made while processing the new source will not affect the
environment of the old source, with one exception: if -d mode is set in the
old environment, the old keyword context will be augmented by those
definitions that are active at the end of the new source.

When send first begins execution, all mode flags are reset, and the values
of the shell environment variables become the initial values for keywords of
the same name with a $ prefixed.

The initial reset state for all mode flags is the + state. In general, special
processing associated with a mode N is invoked by flag -Nand is revoked
by flag +N. Most mode settings have an immediate effect on the process­
ing of the current source. Exceptions to this are the -r and -i flags,
which apply only to included source, causing it .(be processed in an unin­
terpreted manner.

A keyword is an arbitrary 8-bit ASCII string for which a replacement has
been defined. The replacement may be another string or the hexadecimal
code for a single 8-bit byte. At any instant, a given set of keyword
definitions is active. Input text lines are scanned, in one pass from left to
right, and longest matches are attempted between substrings of the line
and the active set of keywords. Characters that do not match are output,
subject to folding and the standard translation. Keywords are replaced by
the specified hexadecimal code or replacement string, which is then output
character by character. The expansion of tabs and length checking,
according to the format specification of an input source, are delayed until
substitutions have been made in a line.

All of the keywords definitions made in the current source may be deleted
by setting the -k flag. It then becomes possible to reuse them. Setting
the -k flag also causes keyword definitions active at the previous source
levcl to be ignored. Setting the +k flag causes keywords at the previous
level to be ignored but does not delete the definitions made at the current
level. The =k argument reactivates the definitions of the previous level.

- 4 -

SEND(lC) SEND(IC)

When keywords are redefined, the previous definition at the same level of
source input is lost. however the definition at the previous level is only hid­
den, to be reactivated upon return to that level unless a -d flag causes the
current definition to be retained.

Conditional prompts for keywords, ?:A,Ip which have already been defined
at some higher level to be null or have a replacement will simply cause the
definitions to be copied down to the current level; new definitions will not
be solicited.

Keyword substitution is an elementary macro facility that is easily
explained and that appears useful enough to warrant its inclusion in the
send command. More complex replacements are the function of a general
macro processor (m4(I). perhaps). To reduce the overhead of string com­
parison, it is recommended that keywords be chosen so that their initial
characters are unusual. For example. let them all be upper case.

Send performs two types of error checking on input text lines. Primarily,
only ASCII graphics and tabs are permitted in input text. Secondly, the
length of a text line, after substitutions have been made. may not exceed
80 bytes. The length of each line may be additionally constrained by a
size parameter in the format specification for an input source. Diagnostic
output provides the location of each erroneous line. by line number and
input source, a description of the error, and the card image that results.
Other routine errors that are announced are the inability to open or write
files. and abnormal exits from the shell. Normally. the occurrence of any
error causes send, before invoking the queuer. to prompt for positive
affirmation that the suspect run stream should be submitted.

Before submitting a job to a host, send translates 8-bit ASCII characters
into their EBCDIC equivalents. The conversion for 8-bit ASCII characters
in the octal range 040-176 is based on the character set described in
"Appendix H'~ of IBM System/370 Principles of Operation (IBM SRL
GA22-7000). Each 8-bit ASCII character in the range 040-377 possesses
an EBCDIC equivalent into which it is mapped, with five exceptions: - into
.... 0345 into -, 0325 into~, 0313 into 1,0177 (DEL) is illegal. In listings
requested from send and in printed output returned by the subsystem, the
reverse translation is made with the qualification that EBCDIC characters
that do not have valid 8-bit ASCII equivalents are translated into "'.

Additional control over the translation process is afforded by the -f flag
and hexadecimal character codes. As a default, send folds lower-case
letters into upper case. Setting the -f flag inhibits any folding. Non­
standard character codes are obtained as a special case of keyword substi­
tution. The users should check with the remote IBM system to be sure the
special processing will be accepted.

SEE ALSO
m4(J). rjestat(IC), sh(I).
Iseek(2) , fspec(4). pnch(4). ascii(5), environ(S) in the UNIX System V Pro­
grammer Reference Manual.

UNIX System Remote Job Entry User Guide in the UNIX System V User
Guide.

BUGS
Standard input is read in blocks, and unused bytes are returned via Iseek (2).
If standard input is a pipe. multiple arguments of the form - and -:prompt
should not be used. nor should the logical EOF (-.).

- 5 -

SH(I)

NAME

SH(I)

sh, rsh - shell, the stalldard/restrieted command programming language

SYNOPSIS
sh [-acefhiknrstuvx 1 [args 1
rsh [- acefhiknrstuvx 1 [args 1

DESCRIPTION
Sh is a command programming language that executes commands read from a
terminal or a file. Rsh is a restricted version of the standard command inter­
preter sh; it is used to set up login names and execution environments whose
capabilities are more ~ontrolled than those of the standard shell. See Invoca­
tion below for the mea 'ling of arguments to the shell.

Definitions
A blank is a tab or a space. A I:ame is a sequence of letters, digits, or under­
scores beginning with a letter or underscore. A parameter is a name, a digit,
or any of the characters ., @, #, ?, -, $, and !.

Commands
/\. simple-command is a sequence of non-blank words separated by blanks.
The first word specifies the name of the command to be executed. Except as
:ipecified below, the remaining words are passed as arguments to the invoked
command. The command name is passed as argument 0 (see exe(2». The
value of a simple-command is its exit status if it terminates normally, or
(octa)) 2CO-Lstatus if it terminates abnormally (see signa[(2) for a list of status
values) .

/\. pipeline is a sequence of one or more commands separated by I (or, for his­
torical compatibility, by"'). The standard output of each command but the last
is connected by a pipe (2) to the standard input of the next command. Each
command is run as a separate process; the shell waits for the last command to
terminate. The exit status of a pipeline is the exit status of the last command.

A list is a sequence of one or more pipelines separated by;, &, & &, or I I,
and optionally terminated by ; or &. Of these four symbols, ; and & have
equal precedence, which is lower than that of & & and I I. The symbols & &
and I I also have equal precedence. A semicolon (;) causes sequential execu­
tion of the preceding pipeline: an ampersand (&) causes asynchronous execu­
tion of the preceding pipeline (j.e., the shell does not wait for that pipeline to
finish). The symbol & & (II) causes the list following it to be executed only
if the preceding pipeline returns a zero (non-zero) exit status. An arbitrary
number of new-lines may appear in a list, instead of semicolons, to delimit
commands.

/\. command is either a simple-command or one of the following. Unless other­
wise stated, the value returned by a command is that of the last smple­
command executed in the command.

for name [in word ... 1do list done
Each time a for command is executed, name is set to the next word
taken from the in word list. If in word... is omitted, then the for
command executes the do list once for each positional parameter that
is set (see Parameter Substitution below). Execution ends when there
are no more words in the list.

case .word in [pattern [I pattern] ...) list ;; 1... esac
A case command executes the list associated with the first pattern that
matches word. The form of the patterns is the same as that used for
file-name generation (see File Name Generation) except that a slash, a
leading dot, or a dot immediately following a slash need not be
matched explicitly.

- I -

8H(I) 8H(1)

if lisl then lisl [elif list then list 1... [else list 1fi
The list following if is executed and, if it returns a zero exit status, the
list following the first then is executed. Otherwise, the list following
clif is executed and, if its value is zero, the list following the next then
is executed. Failing that, the else list is executed. If no else list or
then list is executed, then the if command returns a zero exit status.

while list do list done
A while command repeatedly executes the while list and. if the exit
status of the last command in the list is zero, executes the do list; oth­
erwise the loop terminates. If no commands in the do list are exe­
cuted. then the while command returns a zero exit status; until may be
used in place of while to negate the loop termination test.

(list)
Execute list in a sub-shell.

{list ;}
list is simply executed.

name 0 {list;}
Define a function which is referenced by name. The body of the func­
tion is the list of commands between { and}. Execution of functions is
described below (see Execution).

The following words are only recognized as the first word of a command and
when not quoted:

if then else elif fi case esac for while until do done { }

Comments
A word beginning with # causes that word and all the following characters up
to a new-line to be ignored.

Command Substitution
The standard output from a command enclosed in a pair of grave accents (,,)
may be used as part or all of a word; trailing new-lines are removed.

Parameter Substitution
The character $ is used to introduce substitutable parameters. There are two
types of parameters, positional and keyword. If parameter is a digit, it is a
positional parameter. Positional parameters may be assigned values by set.
Keyword parameters (also known as variables) may be assigned values by writ­
ing:

name =vallie [name =value 1...
Pattern-matching is not performed on value. There cannot be a function and a
variable with the same name.

$ {parameter}
The value. if any, of the parameter is substituted. The braces are
required only when parameter is followed by a letter, digit, or under­
score that is not to be interpreted as part of its name. If parameter is
• or @, all the positional parameters, starting with $1, are substituted
(separated by spaces). Parameter $0 is set from argument zero when
the shell is invoked.

$ {parameter: -word}
If parameter is set and is non-null. substitute its value; otherwise sub­
stitute word.

$ {parameter: =word}
If parameter is not set or is null set it to word; the value of the param­
ctcr is substitutcd. Positional parameters may not be assigned to in
this way.

- 2 -

SH (I) SH (J)

$ {parameter:'? word}
If parameter is set and is non-null, substitute its value; otherwise. print
word and exit from the shell. If word is omitted. the message "param­
eter null or not set" is printed.

$ {parllmeter: +word}
If {'arameter is set and is non-null. substitute word; otherwise substi­
tute nothing.

In the above, ~vord is not evaluated unless it is to be used as the substituted
string. so that. in the following example. pwd is executed only if d is not set or
is null:

echo $Id:-' p'vd'}

If the colon (:) is omitted from the above expressions. the shell only checks
whether parameter is set or not.

The following parameters are automatically set by the shell:
The number of positional parameters in decimal.

Flags supplied to the shell on invocation or by the set com­
mand.

? The decimal value returned by the last synchronously executed
command.

$ The process number of this shell.
The process number of the last background command invoked.

The following parameters are used by the shell:
HOi\IE The default argument (home directory) for the cd command.
PATH The search path for commands (sec Executioll below). The

user may not change PATH if executing under rsh.
CDPATH

The search path for the cd command.
MAIL If this parameter is set to the name of a mail IIle and the

MAILPATH parameter is not set. the shell informs the user of
the arrival of mail in the specillcd file.

MAILCHECK
This parameter specifies how often (in seconds) the shell will
check for the arrival of mail in the files specified by the MAIL­
PATH or MAIL parameters. The default value is 600 seconds
(10 minutes). If set to O. the shell will check before each
prompt.

MAILPATH
A colon (:) separated list of file names. If this parameter is
set, the shell informs the user of the arrival of mail in any of
the specified files. Each file name can be followed by % and a
message that will be printed when the modification time
changes. The default message is you have mail.

PSI Primary prompt string, by default "$ ".
PS2 Secondary prompt string, by default "> ".
IFS Internal field separators, normally space. tab. and new-line.
SHACCT

If this parameter is set to the name of a file writable by the
user, the shell will write an accounting record in the file for
each shell procedure executed. Accounting routines such as
acctcom(l) and acctcms(IM) can be used to analyze the data
collected.

- 3 -

8H(I) 8H(I)

SHELL When the shell is invoked, it scans the environment (see
Environment below) for this name. If it is found and there is
an 'r' in the file name part of its value, the shell becomes a
restricted shell.

The shell gives default values to PATH, PSI, PS2, MAILCHECK and IFS. HOME
and MAIL are set by login (I).

Blank Interpretation
After parameter and command substitution, the results of substitution are
scanned for internal field separator characters (those found in IFS) and split
into distinct arguments where such characters are found. Explicit null argu­
ments ("" or ,,) are retained. Implicit null arguments <those resulting from
parameters that have no values) are removed.

File Name Generation
Following substitution, each command word is scanned for the characters ., ?,
and [. If one of these characters appears the word is regarded as a pattern.
The word is replaced with alphabetically sorted file names that match the pal­
tern. If no file name is found that matches the pattern, the word is left
unchanged. The character. at the start of a file name or immediately follow­
ing a I, as well as the character I itself, must be matched explicitly.

• Matches any string, including the null string.
? Matches any single character.
[•.. J Matches anyone of the enclosed characters. A pair of charac­

ters separated by - matches any character lexically between
the pair, inclusive. If the first character following the opening
"[" is a U!" any character not enclosed is matched.

Quoting
The following characters have a special meaning to the shell and cause tenni­
nation of a word unless quoted:

; & () I A < > new-line space tab

A character may be quoted (i,e., made to stand for itself) by preceding it with
a \. The pair \new-Iine is ignored. All characters enclosed between a pair of
single quote marks ("), except a single quote, are quoted. Inside double quote
marks (""), parameter and command substitution occurs and \ quotes the char­
acters \, " ", and $. "$*" is equivalent to "$1 $2 ... ", whereas "$@" is
equivalent to "$1" "$2" ... ,

Prompting
When used interactively, the shell prompts with the value of PSI before reading
a command. If at any time a new-line is typed and further input is needed to
complete a command, the secondary prompt (i.e., the value of PS2) is issued.

Input/Output
Before a command is executed, its input and output may be redirected using a
special notation interpreted by the shell. The following may appear anywhere
in a simple-command or may precede or follow a command and are IlOt passed
on to the invoked command; substitution occurs before word or digit is used:

<word Use file word as standard input (file descriptor 0).
> word Use file word as standard output (file descriptor I). If the file

does not exist it is created; otherwise, it is truncated to zero
length.

> word Use file word as standard output. If the file exists output is
appended to it (by first seeking to the end-of-file); otherwise,
the file is created.

- 4 -

SH (t) SH(t)

«[- lword The shell input is read up to a line that is the same as word. or
to an end-of-file. The resulting document becomes the stan­
dard input. If any character of word is quoted. no interpreta­
tion is placed upon the characters of the document~ otherwise,
parameter and command substitution occurs, (unescaped)
\new-line is ignored, and \ must be used to quote the characters
\, $, " and the first character of word. If - is appended to
«, all leading tabs are stripped from word and from the
document.

< & digit Use the file associated with file descriptor digit as standard
input. Similarly for the standard output using> & digit.

< & - The standard input is closed. Similarly for the standard output
using >&-.

If any of the above is preceded by a digit, the file descriptor which will be asso­
ciated with the file is that specified by the digit (instead of the default 0 or l).
For example:

... 2>&1

associates fIle descriptor 2 with the file currently associated with file descriptor
I.

The order in which redirections are specified is significant. The shell evaluates
redirections left-to-right. For example:

... I>xxx2>&1

first associates file descriptor I with file xxx. It associates file descriptor 2 with
the file associated with file descriptor 1 (j.e .. xxx). If the order of redirections
were reversed, file descriptor 2 would be associated with the terminal (assuming
I1le descriptor 1 had been) and file descriptor I would be associated with file
xxx.

If a command is followed by & the default standard input for the command is
the empty file /dev/null. Otherwise, the environment for the execution of a
command contains the file descriptors of the invoking shell as modified by
input/output specifications.

Redirection of output is not allowed in the restricted shell.

Environment
The environment (see environ(S» is a list of name-value pairs that is passed to
an executed program in the same way as a normal argument list. The shell
interacts with the environment in several ways. On invocation. the shell scans
the environment and creates a parameter for each name found, giving it the
corresponding value. If the user modifies the value of any of these parameters
or creates new parameters, none of these affects the environment unless the
export command is used to bind the shell's parameter to the environment (see
also set -a). A parameter may be removed from the environment with the
unset command. The environment seen by any executed command is thus com­
posed of any unmodified name-value pairs originally inherited by the shell,
minus any pairs removed by unset, plus any modifications or additions, all of
which must be noted in export commands.

The environment for any simple-command may be augmented by prefixing it
with one or more assignments to parameters. Thus:

TERM=4S0 cmd and
(export TERM; TERM=4S0; cmd)

are equivalent (as far as the execution of cmd is concerned).

- 5 -

SH(I) SH(I)

If the -k flag is set, all keyword arguments are placed in the environment,
even if they occur after the command name. The following first prints a = b c
and c:

echo a=b c
set -k
echo a=b c

Signals
The INTERRUPT and QUIT signals for an invoked command are ignored if the
command is followed by &; otherwise signals have the values inherited by the
shell from its parent, with the exception of signal II (but see also the trap com­
mand below).

Execution
Each time a command is executed, the above substitutions are carried out. If
the command name matches one of the Special Commands listed below, it is
executed in the shell process. If the command name does not match a Special
Command, but matches the name of a defined function, the function is exe­
cuted in the shell process (note how this differs from the execution of shell pro­
cedures). The positional parameters $1. $2, are set to the arguments of
the function. If the command name matches neither a Special Command nor
the name of a defined function, a new process is created and an attempt is
made to execute the command via exec (2).

The shell parameter PATH defines the search path for the directory containing
the command. Alternative directory names are separated by a colon (:). The
default path is :/bin:/usr/bin (specifying the ~urrent directory, Ibin, and
lusr/bin, in that order), Note that the current directory is specified by a null
path name, which can appear immediately after the equal sign or between the
colon delimiters anywhere else in the path list. If the command name contains
a I the search path is not used; such commands will not be executed by the res­
tricted shell. Otherwise, each directory in the path is searched for an execut­
able file. If the file has execute permission but is not an a.out file, it is assumed
to be a file containing shell commands. A sub-shell is spawned to read it. A
parenthesized command is also executed in a sub-shell.

The location in the search path where a command was found is remembered by
the shell <to help avoid unnecessary execs later}. If the command was found in
a relative directory, its location must be re-determined whenever the current
directory changes. The shell forgets all remembered locations whenever the
PATH variable is changed or the hash -r command is executed (see below),

Special Commands
Input/output redirection is now permitted for these commands. File descriptor
I is the default output location.

No effect; the command does nothing. A zero exit code is returned.
. file Read and execute commands from file and return. The search path

specified by PATH is used to find the directory containing file.
break [n]

Exit from the enclosing for or while loop, if any. If n is specified break
n levels.

continue [n]
Resume the next iteration of the enclosing for or while loop. If n is
specified resume at the n-th enclosing loop.

cd [arg]
Change the current directory to argo The shell parameter HOME is the
default argo The shell parameter CDPATH defines the search path for
the directory containing argo Alternative directory names are
separated by a colon (:). The default path is <null> (specifying the

- 6 -

SH(I) SH(I)

current directory). Note that the current directory is specified by a
null path name, which can appear immediately after the equal sign or
between the colon delimiters anywhere else in the path list If arg
begins with a / the search path is not used. Otherwise, each directory
in the path is searched for argo The cd command may not be executed
by rsh.

echo [arg ...]
Echo arguments. See echo(I) for usage and description.

eval [arg ...]
The arguments are read as input to the shell and the resulting
command (s) executed.

exec [arg ...]
The command specified by the arguments is executed in place of this
shell without creating a new process. Input/output arguments may
appeal' and, if no other arguments are given, cause the shell
input/output to be modified.

exit [n]
Causes a shell to exit with the exit status specified by n. If n is omit­
ted the exit status is that of the last command executed (an end-of-file
will also cause the shell to exit.>

export (name ...]
The given names are marked for automatic export to the environmell1
of subsequently-executed commands. If no arguments are given, a list
of all names that are exported in this shell is printed. function names
may not be exported.

hash (- r] [name ...]
For each name, the location in the search path of the command
specified by name is determined and remembered by the shell. The-r
option causes the shell to forget all remembered locations. If no argu­
ments are given, information about remembered commands is
presented. Hits is the number of times a command has been invoked
by the shell process. Cost is a measure of the work required to locate a
command in the search path. There are certain situations which
require that the stored location of a command be recalculated. Com­
mands for which this will be done are indicated by an asterisk (*)
adjacent to the hits information. Cost will be incremented when the
recalculation is done.

newgrp [arg ...]
Equivalent to exec newgrp arg See newgrp{ I) for usage and
description.

pwd Print the current working directory. See pwdU) for usage and
descri ption.

read [name ...]
One line is read from the standard input and the first word is assigned
to the first name, the second word to the second flame, etc.. with left­
over words assigned to the last name. The return code is 0 unless an
end-of-file is encountered.

readonly [flame ...]
The given names are marked readonly and the values of the these
names may not be changed by subsequent assignment. If no argu­
ments are given, a list of all readoflly names is printed.

return [n]
Causes a function to exit with the return value specified by fl. If fl is
omitted, the return status is that of the last command executed.

- 7 -

8H(1) 8H(I)

set [- -aefhkntuvx [arg ...]]
-3 Mark variables which are modified or created for export.
-e Exit immediately if a command exits with a non-zero exit

status.
-f Disable file name generation
-h Locate and remember function commands as functions are

defined (function commands are normally located when the
function is executed).

-k All keyword arguments are placed in the environment for a
command, not just those that precede the command name.

-0 Read commands but do not execute them.
-t Exit after reading and executing one command.
-u Treat unset variables as an error when substituting.
-v Print shell input lines as they are read.
-x Print commands and their arguments as they are executed.

Do not change any of the flags; useful in setting $1 to -.
Using + rather than - causes these flags to be turned off. These flags
can also be used upon invocation of the shell. The current set of flags
may be found in $ -. The remaining arguments are positional parame­
ters and are assigned, in order, to $1, $2, If no arguments are
given the values of all names are printed.

shift [n]
The positional parameters from $0 +1 are renamed $1 If n is
not given, it is assumed to be I. .

test
Evaluate conditional expressions. See test (I) for usage and description.

times
Print the accumulated user and system times for processes run from
the shell.

trap [arg] [n] ...
The command arg is to be read and executed when the shell receives
signa)(s) n. (Note that arg is scanned once when the trap is set and
once when the trap is taken'> Trap commands are executed in order of
signal number. Any attempt to set a trap on a signal that was ignored
on entry to the current shell is ineffective. An attempt to trap on sig­
nal II (memory fault) produces an error. If arg is absent al1 trap(s) n
are reset to their original values. If arg is the null string this signal is
ignored by the shell and by the commands it invokes. If n is 0 the
command arg is executed on exit from the shell. The trap command
with no arguments prints a list of commands associated with each sig­
nal number.

type [name ...]
For each name, indicate how it would be interpreted if used as a com­
mand name.

uUrnit [-fp I [n I
imposes a size limit of n
-f imposes a size limit of n blocks on files written by child

processes (files of any size may be read). With no argument,
the current limit is printed.

-p changes the pipe size to n (UNIX system/RT only).
If no option is given, -f is assumed.

umask [nnn]
The user file-creation mask is set to nnn (see umask (2». If mrn is
omitted, the current value of the mask is printed.

- 8 -

SH(I) SH(I)

unset [name ...]
For each name, remove the corresponding variable or function. The
variables PATH, PSt, PS2, MAILCHECK and IFS cannot be unset.

wait [n]
Wait for the specified process and report its termination status. If n is
not given all currently active child processes are waited for and the
return code is zero.

Invocation
If the shell is invoked through exec(2) and the first character of argument zero
is -, commands are initially read from letc/profile and from SHOME/.profile,
if such files exist. ThefLafter, commands are read as described below, which is
also the case when the shell is invoked as Ibin/sh. The flags below are inter­
preted by the shell on invocation only; Note that unless the -c or -s flag is
specified, the first argument is assumed to be the name of a file containing
commands, and the remaining arguments are passed as positional parameters to
that command file:

-c string If the -c flag is present commands are read from string.
-s If the -s flag is present or if no arguments remain commands are

read from the standard input. Any remaining arguments specify
the positional parameters. Shell output (except for Special Com­
mands) is written to file descriptor 2.

-i If the -i flag is present or if the shell input and output are
attached to a terminal, this shell is interactive. In this case TER­
MINATE is ignored (so that kill 0 does not kill an interactive shell)
and INTERRUPT is caught and ignored (so that wait is interrupti­
ble). In all cases, QUIT is ignored by the shell.

-r If the -r nag is present the shell is a restricted shell.

The remammg flags and arguments are described under the set command
above.

Rsh Only
Rsh is used to set up login names and execution environments whose capabili­
ties are more controlled than those of the standard shell. The actions of rsh
are identical to those of sh, except that the following are disallowed:

changing directory (see cd ((»,
setting the value of SPATH,
specifying path or command names containing I,
redirecting output (> and »).

The restrictions above are enforced after .profile is interpreted.

When a command to be executed is found to be a shell procedure, rsh invokes
sh to execute it. Thus, it is possible to provide to the end-user shell procedures
that have access to the full power of the standard shell, while imposing a lim­
ited menu of commands; this scheme assumes that the end-user does not have
write and execute permissions in the same directory.

The net effect of these rules is that the writer of the .profile has complete con­
trol over user actions, by performing guaranteed setup actions and leaving the
user in an appropriate directory (probably not the login directory).

The system administrator often sets up a directory of commands (i.e.,
lusr/rbin) that can be safely invoked by rsh. Some systems also provide a res­
tricted editor red.

- 9 -

SH(I) SH (I)

EXIT STATUS
Errors detected by the shell, such as syntax errors, cause the shell to return a
non-zero exit status. If the shell is being used non-interactively execution of
the shell file is abandoned. Otherwise, the shell returns the exit status of the
last command executed (see also the exit command above).

FILES
/etc/profile
$HOM E/.profile
Itmp/sh·
/dev/null

SEE ALSO
acctcom(}), cdC!), echo(I), env(I), login(l), newgrp(l), pwd(l), test(l).
umask(I).
acctcms(I M) in the UNIX System V Administrator Reference Manual.
dup(2), exec(2), fork(2), pipe(2), signal(2), ulimit(2), umask(2), wait(2),
a.out(4), profile(4). environ(S) in the UNIX System V Programmer Reference
Manual.

CAVEATS
If a command is executed, and a command with the same name is installed in a
directory in the search path before the directory where the original command
was found, the shell will continue to exec the original command. Use the hash
command to correct this situation.

If you move the current directory or one above it, pwd may not give the correct
response. Use the cd command with a full path name to correct this situation.

- 10 -

SHL(l)

NAME

(not on PDP-I t) SHL(t)

shl - shell layer manager

SYNOPSIS
shl

DESCRIPTION
Shl aIlows a user to interact with more than one sheIl from a single terminal.
The user controls these sheIls, known as layers. using the commands described
below.

The current layer is the layer which can receive input from the keyboard.
Other layers attempting LO read from the keyboard are blocked. Output from
multiple layers is multiplexed onto the terminal. To have the output of a layer
blocked when it is not current, the stty option loblk may be set within the
layer. ,
The stty character swtch (set to "z if NUL) is used to switch control to shl
from a layer. Shl has its own prompt, »>, to help distinguish it from a
layer.

A layer is a shell which has been bound to a virtual tty device Udev/sxt???).
The virtual device can be manipulated like a real tty device using stty (I) and
iocll (2). Each layer has its own process group id.

Definitions
A name is a sequence of characters delimited by a blank, tab or new-line.
Only the first eight characters are significant. The names (I) through (7) can­
not be used when creating a layer. They are used by shl when no name is sup­
plied. They may be abbreviated to just the digit.

Commands
The following commands may be issued from the shl prompt level. Any unique
prefix is accepted.

create [name]
Create a layer called name and make it the current layer. If no argu­
ment is given, a layer will be created with a name of the form (#)
where # is the last digit of the virtual device bound to the layer. The
shell prompt variable PSI is set to the name of the layer foIlowed by a
space. A maximum of seven layers can be created.

block name [name ...]
For each name, block the output of the corresponding layer when it is
not the current layer. This is equivalent to setting the slly option loblk
within the layer.

delete name [name ...]
For each name, delete the corresponding layer. All processes in the
process group of the layer are sent the SIGHUP signal (see signa/(2».

help (or ?)
Print the syntax of the shl commands.

layers [-I] [name ...]
For each name, list the layer name and its process group. The -I
option produces a ps(I)-like listing. If no arguments are given, infor­
mation is presented for all existing layers.

resume [name]
Make the layer referenced by name the current layer. If no argument
is given, the last existing current layer will be resumed.

toggle Resume the layer that was current before the last current layer.
unblock name [name ...]

For each name, do not block the output of the corresponding layer
when it is not the current layer. This is equivalent to setting the stty

- I -

SHL(I)

FILES

quit
name

(not on PDP-I I)

option loblk within the layer.
Exit shl. All layers are sent the SIGHUP signal.
Make the layer referenced by name the current layer.

SHL(I)

Idev/sxt???
$SHELL

Virtual tty devices
Variable containing path name of the shell to use (default
is Ibin/sh).

SEE ALSO
sh(I), stty(I).
ioctI(2), signal(2) in the UNIX System V Programmer Reference Manual.
sxt(7) in the UNIX System V Administrator Reference Manual.

- 2 -

SIZE(l)

NAME

(not on PDP-II) SIZE (I)

size - print section sizes of common object files

SYNOPSIS
size [-0] [-x] [-V] files

DESCRIPTION
The size command produces section size information for each section in the
common object files. The size of the text, data and bss (uninitialized data) sec­
tions are printed along with the total size of the object file. If an archive file is
input to the size command the information for all archive members is
displayed.

Numbers will be printed in decimal unless either the -0 or the -x option is
used, in which case they will be printed in octal or in hexadecimal, respectively.

The - V flag will supply the version information on the size command.

SEE ALSO
as(I), ccO), IdO).
a.out(4), ar(4) in the UNIX System V Programmer Reference Manual.

DIAGNOSTICS
size: name: cannot open

if name cannot be read.

size: name: bad magic
if name is not an appropriate common object file.

- I -

SIZE(I)

NAME

(PDP-II only) SIZE())

size - print sizes of object files

SYNOPSIS
size [object ...]

DESCRIPTION
Size prints the (decimal) number of bytes required by the text, data, and bss
portions, and their sum in octal and decimal, of each object-file argument. If
no file is specified, a.out is used.

SEE ALSO
a.out(4) in the UNIX System V Programmer Reference Manual.

- I -

SLEEP (I)

NAME

SLEEP (I)

sleep -- suspend execution for interval

SYNOPSIS
unsigned sleep <seconds>
unsigned seconds;

DESCRIPTION
The current process is suspended from execution for the number of seconds
specified by the argument. The actual suspension time may be less than that
requested for two reasons: (0 Because scheduled wakeups occur at fixed }­
second intervals, (on the second, according to an internal clock) and (2)
because any caught signal will terminate the sleep following execution of that
signal's catching routine. Also, the suspension time may be longer than
requested by an arbitrary amount due to the scheduling of other activity in the
system. The, value returned by sleep will be the "unslept" amount (the
requested time minus the time actually slept) in case the caller had an alarm
set to go off earlier than the end of the requested sleep time, or premature
arousal due to another caught signal.

The routine is implemented by setting an alarm signal and pausing until it (or
some other signal) occurs. The previous state of the alarm signal is saved and
restored. The calling program may have set up an alarm signal before calling
sleep. If the sleep time exceeds the time till such alarm signal, the process
sleeps only until the alarm signal would have occurred. The caller's alarm
catch routine is executed just before the sleep routine returns. But if the sleep
time is less than the time till such alarm, the prior alarm time is reset to go off
at the same time it would have without the intervening sleep.

SEE ALSO
alarm(2), pause(2), signal(2).

- I -

'SNO(})

NAME

SNO<I)

sno - SNOBOL interpreter

SYNOPSIS
sno [files]

DESCRIPTION
Sno is a SNOBOL compiler and interpreter (with slight differences). Sno
obtains input from the concatenation of the named files and the standard input.
All input through a statement containing the label end is considered program
and is compiled. The rest is available to syspit.

Sno differs from SNOBOL in the following ways:

There are no unanchored searches. To get the same effect:

a .. b unanchored search for b.
a .x. b x c unanchored assignment

There is no back referencing.

is an unanchored search for abc.

Function declaration is done at compile time by the use of the (non­
unique> label define. Execution of a function call begins at the state­
ment following the define. Functions cannot be defined at run time,
and the use of the name define is preempted. There is no provision for
automatic variables other than parameters. Examples:

define f()
define f(a, b, c)

All labels except define (even end) must have a non-empty statement.

Labels, functions and variables must all have distinct names. In partic­
ular, the non-empty statement on end cannot merely name a label.

If start is a label in the program, program execution will start there.
If not, execution begins with the first executable statement; define is
not an executable statement.

There are no built-in functions.

Parentheses for arithmetic are not needed. Normal precedence applies.
Because of this, the arithmetic operators I and • must be set off by
spaces.

The right side of assignments must be non-empty.

Either' or • may be used for literal quotes.

The pseudo-variable sysppt is not available.

SEE ALSO
awk(I).

- 1 -

SORT(J)

NAME

SORT(J)

sort - sort and/or merge files

SYNOPSIS
sort [-emu] [-ooutput] [-ykmem] [-zrecsz] [-dfiMorl [-btx] [+pos I
[-pos2]] [files]

DESCRIPTION
Sort sorts lines of all the named files together and writes the result on the stan­
dard output. The standard input is read if - is used as a file name or no input
files are named.

Comparisons are based on one or more sort keys extracted from each line of
input. By default, there is one sort key, the entire input line, and ordering is
lexicographic by bytes in machine collating sequence.

The following options alter the default behavior:

-e Check that the input file is sorted according to the ordering rules: give no
output unless the file is out of sort.

-m Merge only, the input files are already sorted.

-u Unique: suppress all but one in each set of lines having equal keys.

-ooutpUI
The argument given is the name of an output file to use instead of the
standard output. This file may be the same as one of the inputs. There
may be optional blanks between -0 and output.

-ykmem
The amount of main memory used by the sort has a large impact on its
performance. Sorting a small file in a large amount of memory is a
waste. If this option is omitted, sort begins using a system default
memory size, and continues to usc more space as needed. If this option is
presented with a value, kmem, sort will start using that number of kilo­
bytes of memory, unless the administrative minimum or maximum is
violated, in which case the corresponding extremum will be used. Thus,
-yO is guaranteed to start with minimuIT. memory. By convention, -y
(with no argument) starts with maximum memory.

-zrecsz
The size of the longest line read is recorded in the sort phase so buffers
can be allocated during the merge phase. If the sort phase is omitted via
the -e or -m options, a popular system default size will be used. Lines
longer than the buffer size will cause sort to terminate abnormally. Sup­
plying the actual number of bytes in the longest line to be merged (or
some larger value) will prevent abnormal termination.

The following options override the default ordering rules.

-d "Dictionary" order: only letters, digits and blanks (spaces and tabs) are
significant in comparisons.

-f Fold lower case letters into upper case.

-i Ignore characters outside the ASCII range 040-0176 in non-numeric com-
parisons.

- M Compare as months. The first three non-blank characters of the field are
folded to upper case and compared so that "JAN" < "FEB" < .,. <
UDEC". Invalid fields compare low to "JAN". The -M option implies
the -b option (see below),

-0 An initial numeric string, consisting of optional blanks, optional minus
sign, and zero or more digits with optional decimal point, is sorted by

- 1 -

SORT(t) SORT(t)

arithmetic value. The -0 option implies the -b option (see below).
Note that the -b option is only effective when restricted sort key
specifications are in effect.

-r Reverse the sense of comparisons.

When ordering options appear before restricted sort key specifications, thc
rcquested ordering rules are applied globally to all sort keys. When attached to
a specific sort key (described below), the specified ordering options override all
global ordering options for that key.

The notation +posl -pos2 restricts a sort key to one beginning at posl and
ending at pos2. The characters at positions posl and pos2 are included in the
sort key (provided that pos2 does not precede posJ). A missing -pos2 means
the end of the line.

Specifying pos) and pos2 involves the notion of a field, a minimal sequence of
characters followed by a field separator or a new-line. By default, the first
blank (space or tab) of a sequence of blanks acts as the field separator. All
blanks in a sequence of blanks are considered to be part of the next field; for
examplc, all blanks at the beginning of a line are considered to be part of the
first field. The treatment of field separators can be altered using the options:

-tx Use x as the field separator character; x is not considered to be part of a
field (although it may be included in a sort key). Each occurrence of x is
significant (e.g., xx delimits an empty field).

-b Ignore leading blanks when determining the starting and ending positions
of a restricted sort key. If the -b option is specified before the first
+posl argument, it will be applied to all +posJ arguments. Otherwise,
the b flag may be attached independently to each +posJ or -pos2 argu­
ment (see below).

Posl and pos2 each have the form m.n optionally followed by one or more of
the flags bdfinr. A starting position specified by +m.n is interpreted to mean
the n+lst character in the m+lst field. A missing .n means .0, indicating the
first character of the m+1st field. If the b flag is in effect n is counted from
the first non-blank in the m+ 1st field; +m.Ob refers to the first non-blank
character in the m+1st field.

A last position specified by -m.n is interpreted to mean the nth character
(including separators) after the last character of the m th field. A missing .n
means .0, indicating the last character of the mth field. If the b flag is in effect
n is counted from the last leading blank in the m+lst field; -m.lb refers to
the first non-blank in the m+1st field.

When there are multiple sort keys, later keys are compared only after all ear­
lier keys compare equal. Lines that otherwise compare cqual are ordered with
all bytes significant.

EXAMPLES
Sort the contents of infile with the second field as the sort key:

sort + I -2 infile

Sort, in reverse order, the contents of infi/e/ and infiJe2, placing the output in
outfile and using the first character of the second field as the sort key:

sort -r -0 outfile + 1.0 -1.2 infile1 infile2

Sort, in reverse order, the contents of infilel and infi/e2 using the first non­
blank character of the second field as the sort key:

sort -r + I.Db -1.1 b infile1 infile2

- 2 -

SORT(I) SORT(l)

Print the password file (passwd(4» sorted by the numeric user ID (the third
colon-separated field):

sort -t: +2n -3 letc/passwd

Print the lines of the already sorted file infi/e, suppressing all but the first
occurrence of lines having the same third field <the options -um with just one
input file make the choice of a unique representative from a set of equal lines
predictable) :

sort -urn +2 -3 infile

FILES
lusr/tmp/stm???

SEE ALSO
comm(l), join(l), uniq(]).

DIAGNOSTICS
Comments and exits with non-zero status for various trouble conditions (e.g..
when input lines are too long), and for disorder discovered under the -c
option. When the last line of an input file is missing a new-line character, sort
appends one, prints a warning message, and continues.

- 3 -

SPELL(I)

NAME

SPELL(I)

spell, hashmake, spellin, hashcheck - find spelling errors

SYNOPSIS
spell [-y] [-b] [-x] [-I] [-i] [+local_fiIe] [files]

lusrllib/speli/hashmake

lusrllib/speil/spellin n

lusrIlib/spell/hasbcheck spellingJist

DESCRIPTION
Spell collects words from the named files and looks them up in a spelling list.
Words that neither occur among nor are derivable (by applying certain
inflections, prefixes, and/or suffixes) from words in the spelling list are printed
on the standard output. If no files are named, words are collected from the
standard input.

Spell ignores most trojJ(I), thl (I), and eqn (I) constructions.

Under the -Y option, all words not Iiteral1y in the spel1ing list are printed, and
plausible derivations from the words in the spelling list are indicated. (Not
available on PDP-II.)

Under the -b option, British spelling is checked. Besides preferring centre,
colour, programme, speciality, travelled, etc., this option insists upon -ise in
words like standardise, Fowler and the OED to the contrary notwithstanding.

Under the -x option, every plausible stem is printed with = for each word.

By default, spell (like deroff(I» fol1ows chains of included files (.50 and .nx
trojJ(I) requests), unless the names of such included files begin with lusr/lib.
Under the -I option, spell will follow the chains of all included files. Under
the -i option, spell will ignore all chains of included files.

Under the +loealJile option, words found in loealJile are removed from
spell's output. LoealJile is the name of a user-provided file that contains a
sortcd list of words, one per line. With this option, the uscr can specify a set of
words that are correct spellings Gn addition to spell's own spelling list) for
each job.

The spelling list is based on many sources, and while more haphazard than an
ordinary dictionary, is also more effective with respect to proper namcs and
popular technical words. Coverage of the specialized vocabularies of biology,
medicine, and chemistry is light.

Pertinent auxiliary files may be specified by name arguments, indicated below
with their default settings (see FILES). Copies of all output are accumulated in
the history file. The stop list filters out misspellings (e.g., thier=thy-y+ied
that would otherwise pass.

Three routines help maintain and check the hash lists used by spell:

hashmake Reads a list of words from the standard input and writes the
corresponding nine-digit hash code on the standard output.

spellin n Reads n hash codes from the standard input and writes a
compressed spelling list on the standard output. Information
about the hash coding is printed on standard error.

hashcheck Reads a compressed spe//ing-,ist and recreates the nine-digit hash
codes for all the words in it; it writes these codes on the standard
output.

- I -

SPELL(t) SPELL(t)

hashed spelling lists. American & British
hashed stop list
history file
program

EXAMPLES
The following example creates the hashed spell list hlist and checks the result
by comparing the two temporary files; they should be equal.

cat g~)odwds I /usr/lib/spell/hashmake I sort -u >tmpl
cat tmpl I /usr/lib/spell/spellin 'cat tmp I I we -I' > hlist
cat hlist I /usr/lib/spell/hashcheck > lmp2
diff tmpl tmp2

FILES
D_SPELL-/usr/lib/spell/hlistlab]
S_SPELL=/usr/lib/spell/hstop
H_SPELL=/usr/lib/spell/spellhist
/usr/lib/spell/spellprog

SEE ALSO
deroff(}), eqn(}), sed(}), sort(}), tbJ(I), tee(}), troff(l),

BUGS
The spelling list's coverage is uneven; new installations will probably wish to
monitor the output for several months to gather local additions; typically, these
are kept in a separate local file that is added to the hashed spelling_list via
spellin.
The British spelling feature was done by an American.

- 2 -

SPLINE(IG)

NAME

SPLINE(lG)

spline - interpolate smooth curve

SYNOPSIS
spline [options]

DESCRIPTION
Spline takes pairs of numbers from the standard input as abscissas and ordi­
nates of a function. It produces a similar set, which is approximately equally
spaced and includes the input set, on the standard output. The cubic spline
output (R. W. Hamming, Numerical Methods for Scientists and Engineers,
2nd ed., pp. 349ff) has two continuous derivatives, and sufficiently many points
to look smooth when plotted, for example by graph (t G).

The following options are recognized, each as a separate argument:

-a Supply abscissas automatically (they are missing from the input);
spacing is given by the next argument, or is assumed to be if next
argument is not a number.

-k The constant k used in the boundary value computation:
Yo ky~, y; = kYn--l

is set by the next argument (default k = 0).

-0 Space output points so that approximately n intervals occur between
the lower and upper x limits (default n = 100).

-p Make output periodic, i.e., match derivatives at ends. First and last
input values should normally agree.

-x Next I (or 2) arguments are lower (and upper) x limits. Normally,
these limits are calculated from the data. Automatic abscissas start at
lower limit (default 0).

SEE ALSO
graph<lG).

DIAGNOSTICS
When data is not strictly monotone in x, spline reproduces the input without
interpolating extra points.

BUGS
A limit of 1,000 input points is enforced silently.

- I -

.~

SPLIT(I)

NAME

SPLIT (1)

split - split a file into pieces

SYNOPSIS
split [-n] [file [name]]

DESCRIPTION
Split reads file and writes it. in n-line pieces (default 1000 lines) onto a set of
output files. The name of the first output file is name with aa appended, and so
on lexicographically, up to zz (a maximum of 676 files). Name cannot be
longer than 12 characters. If no output name is given, x is default.

If no input file is given, or if - is given in its stead, then the standard input file
is used.

SEE ALSO
bfs (1), csplit (I).

- 1 -

STAT(tG) STAT(IG)

NAME
stat - statistical network useful with graphical commands

SYNOPSIS
node-name [options] [filesl

DESCRIPTION
Stat is a collection of command level functions (nodes) that can be intercon­
nected using sh (I) to form a statistical network. The nodes reside in
/usr/bin/graf (see graphics (I G». Data is passed through the network as
sequences of numbers (vectors), where a number is of the form:

[sign] (digits) (.digits) [e[signldigits]

evaluated in the usual way. Brackets and parentheses surround fields. All
fields are optional, but at least one of the fields surrounded by parentheses must
be present. Any character input to a node that is not part of a number is taken
as a delimiter.

Stat nodes are divided into four classes.

Transformers, which map input vector elements into output vec-
tor elements;

Summarizers, which calculate statistics of a vector;

Translators, which convert among formats; and

Generators, which are sources of definable vectors.

Below is a list of synopses for stat nodes. Most nodes accept options indicated
by a leading minus (-).)n general, an option is specified by a character fol­
lowed by a value, such as cS. This is interpreted as c := 5 (c is assigned 5).
The following keys are used to designate the expected type of the value:

c characters,

[-ci1- absolute value
columns (similarly for -c options that follow)

[-c; tv] - arithmetic function
titled output, verbose

[-c;] - round up to next integer

[-ci1- cumulative sum

[-c;] - exponential

[-c;] - round down to next integer

[-cil - gamma

[-ci dstring] - list vector elements
delimiter(s>

[-ci bf] - logarithm
base

log

ceil

exp

floor

gamma

list

af

cusum

f
file

integer,

floating point or integer,

file name, and

SIring string of characters, surrounded by quotes to include a shell
argument delimiter.

Options without keys are flags. All nodes except generators accept files as
input, hence it is not indicated in the synopses.

Transformers:

abs

. I -

STAT()G)

mod

pair

power

root

round

sUine

sin

subset

Summarizers:

bucket

cor

~ hilo

Ireg

mean

point

prod

qsort

rank

total

var

Translators:

bar

r
hist

STAT(IG)

[-ci mfl - modulus
modulus

[-ci Ffile xi 1- pair elements
File containing base vector, x group size

[-ci pfl - raise to a power
power

[-ci rf] - take a root
root

[-ci pi si] - round to nearest integer, .5 rounds to 1
places after decimal point, significant digits

[-ciifnisf] - generate a line given slope and intercept
intercept, number of positive integers, slope

[-cil - sine

[-af bf ci Ffile ii V nl np pf si til - generate a subset
above, below, File with master vector, interval, leave, master
contains element numbers to leave, master contains element
numbers to pick, pick, start, terminate

[-ai ci Ffile hf ii V nil - break into buckets
average size, File containing bucket boundaries, high, interval,
low, number
Input data should be sorted

[-Ffile] - correlation coefficient
File containing base vector

[- h I 0 ox oy]- find high and low values
high only, low only, option form, option form with x
prepended, option form with y prepended

[- Ffile i 0 s] - linear regression
File containing base vector, intercept only, option form for
si/ine, slope only

[-fJ ni pfl - {trimmed} arithmetic mean
fraction, number, percent

[-ff ni pf s] - point from empirical cumulative density func­
tion
fraction, number, percent, sorted input

- internal product

[-ci] - quick sort

- vector rank

- sum total

- variance

[-a b f g ri wi xf xa yf ya yV yhf] - build a bar chart
suppress axes, bold, suppress frame, suppress grid, region,
width in percent, x origin, suppress x-axis label, y origin,
suppress y-axis label, y-axis lower bound, y-axis high bound
Data is rounded off to integers.

[-a b f g ri xf xa yfya yV yhf] - build a histogram
suppress axes, bold, suppress frame, suppress grid, region, x

- 2 -

STAT(IG)

label

pie

plot

title

Generators:

gas

prime

rand

STAT(tG)

origin. suppress x-axis label. y origin. suppress y-axis label. y­
axis lower bound, y-axis high bound

[-b c Fjile h p ri x xu y yr] - label the axis of a GPS file
bar chart input, retain case, label File, histogram input. plot
input, rotation, x-axis, upper x-axis. y-axis, right y-axis

[-b 0 p poi ppi ri v xi yi] - build a pie chart
bold, values outside pie, value as percentage (:= 100). value as
percentage(:=j), draw percent of pie, region, no values, x ori­
gin, y origin
Unlike other nodes, input is lines of the form

[< i e f cc >] value [label]
ignore (do not draw) slice, explode slice, fill slice, color
slice c== (black, red, green, blue)

, [-a b cstring d f Fjile g m ri xf xa xif xhf xlf xni xt yfya
yif yhf ylf yni yt] - plot a graph
suppress axes, bold, plotting characters, disconnected, suppress
frame, File containing x vector, suppress grid, mark points,
region, x origin, suppress x-axis label. x interval. x high
bound, x low bound, number of ticks on x-axis. suppress x­
axis title, y origin. suppress y-axis label. y interval. y high
bound, y low bound, number of ticks on y-axis, suppress y-axis
title

[-b c lstring vstring ustring] - title a vector or a GPS
title bold, retain case, lower title, upper title, vector title

[-ci if ni sf if] - generate additive sequence
interval, number, start, terminate

[-ci hi Ii ni] - generate prime numbers
high, low, number

[-ci hf If mf ni sil - generate random sequence
high, low, multiplier, number, seed

RESTRICTIONS
Some nodes have a limit on the size of the input vector.

SEE ALSO
graphics(IG).
gps(4) in the UNIX System V Programmer Reference Manual.

- 3 -

STRIP(])

NAME

(not on PDP-II) STRIP(l)

strip - strip symbol and line number information from a common object file

SYNOPSIS
strip [-I] [-x] [-rl [-V] filename

DESCRIPTION
The strip command strips the symbol table and line number information from
common object files, including archives. Once this has been done, no symbolic
debugging access will be available for that file; therefore, this command is nor­
mally run only on production modules that have been debugged and tested.

The amount of information stripped from the symbol table can be controlled by
using any of the following options:

-I Strip line number information only; do not strip any symbol table
information.

-x Do not strip static or external symbol information.

-r Reset the relocation indexes into the symbol table.

- V Print the version of the strip command executing on the standard
error output.

If there are any relocation entries in the object file and any symbol table infor­
mation is to be stripped, strip will complain and terminate without stripping
file-name unless the -r flag is used.

If the strip command is executed on a common archive file (see ar(4» the
archive symbol table will be removed. The archive symbol table must be
restored by executing the ar(0 command with the s option before the archive
can be link-edited by the Id(O command. Strip will instruct the user with
appropriate warning messages when this situation arises.

The purpose of this command is to reduce the file storage overhead taken by
the object file.

FILES
/usr/tmp/strp? ?????

SEE ALSO
adO, as(I), cc(]), Id(]).
a.out(4), ar(4) in the UNIX System V Programmer Reference Manual.

DIAGNOSTICS
strip: name: cannot open

if name cannot be read.

strip: name: bad magic
if name is not an appropriate common object file.

strip: name: relocation entries present; cannot strip
if name contains relocation entries and the -r flag

is not used, the symbol table information cannot be
stripped.

- 1 -

STRIP(t>

NAME

(PDP-II only) STRIP(I)

strip - remove symbols and relocation bits

SYNOPSIS
strip name ...

DESCRIPTION
Strip removes the symbol table and relocation bits ordinarily attached to the
output of the assembler and link editor. This is useful to save space after a
program has been debugged.

The effect of strip is the same as use of the -s option of IdO).

If name is an archive file, strip will remove the local symbols from any a.out
format files it finds in the archive. Certain libraries, such as those residing in
/Iib, have no need for local symbols. By deleting them, the size of the archive
is decreased and link editing performance is increased.

FILES
Itmp/stm. temporary file

SEE ALSO
Id(O.
ar(4), a.out(4) in the UNIX System V Programmer Reference Manual.

- I -

STTY(t) STTY(I)

NAME
sHy - set the options for a terminal

post-process output (do not post-process output; ignore
all other output modes).
map (do not map) lower-case alphabetics to upper case
on output.

ignore (do not ignore) break on input.
signal (do not signal) INTR on break.
ignore (do not ignore) parity ('rrors.
mark (do not mark) parity er lJ~S (see termio (7».
enable (disable) input parity· '.ccking.
strip (do not strip) input chata<.:ters to seven bits.
map (do not map) NL to CR on input.
ignore (do not ignore) CR on input.
map (do not map) CR to ;\l L on input.
map (do not map) upper-case alphabetics to lower case
on input.
enable (disable) START/STOP output control. Output is
stopped by sending an ASCII DC3 and started by send­
ing an ASCII DCI.
allow any character (only DCI) to restart output.
request that the system send (not send) START/STOP
characters when the input queue is nearly empty/full.

ixany (-ixany)
ixoff (- ixoff)

ixon (-ixon)

hupel (-hupeI)

oleue (-oleuc>

Output Modes
opost (-opost>

hup (-hup)
estopb (-estopb)
eread (-eread)
eloeal (-elocaI)
loblk (-loblk)

Input Modes
ignbrk (-ignbrk)
brkint (- brkint)
ignpar (- ignpar)
parmrk (-parmrk)
inpck (-inpck)
istrip (- istrip)
inler (- inler)
igner (- igner)
iernl (- iernO
iucle (- iuclC>

SYNOPSIS
stty [-a] [-g] [options]

DESCRIPTION
SlIy ,:;ets certain terminal I/O options for the device that is the current standard
input; without arguments. it reports the settings of <.:crtain options; with the -a
option. it reports all of the option settings; with the -g option. it reports
current settings in a form that can be used as an argument to another slly
command. Detailed information about the modes listed in the first five groups
below may be found in term;o(7) for asynchronous lines, or in stermio(7) for
synchronous lines in the UNIX System V Administrator Reference Manual.
Options in the last group are implemented using options in the previous groups.
Note that many combinations of options make no sense, but no sanity checking
is performed. The options are selected from the following:

Control Modes
parenb (-parenb) enable (disable) parity generation and detection.
parodd (-parodd) select odd (even) parity.
es5 es6 es7 es8 select character size (see termio (7) >.
o hang up phone line immediately.
50 75 110 134 150200 300 600 1200 1800 2400 48009600 exta extb

Set terminal baud rate to the number given. if possible.
(All speeds are not supported by all hardware inter­
faces.)
hang up (do not hang up) DATA-PHONE® connection on
last close.
same as hupel (-hupel) .
use two (one) stop bits per character.
enable (disable) the receiver.
n assume a line without (with) modem control.
block (do not block) output from a non-current layer.

- 1 -

STTY(I) STTY(I)

onler (-onler)
oerol (-oern»
onocr (-onoer)
onlret (-onlred

olill (-olin)
ofdel (-ofde»
crO crt cr2 cr3
nlO nil
tabO tabI tab2 tab3

bsO bst
ffO fft
vtO vtl

Local Modes
isig (- isig)

icanon (-icanon)

xcase (-xcase)
echo (-echo)
echoe (-echoe)

echok (-eehok)
Ifkc (-Ifkc)
echon) (-echon»
noOsh (-noOsh)
stwrap (-stwrap)

stOush (-stOush)

stappl (-stapp»

map (do not map) NL to CR·NL on output.
map (do not map) CR to NL on output.
do not (do) output CRs at column zero.
on the terminal NL performs (does not perform) the CR
function.
use fill characters (use timing) for delays.
fill characters are DELs (NULs).
select style of delay for carriage returns (see termio (7».
select style of delay for line-feeds (see termio (7».
select style of delay for horizontal tabs (see termio (7) or
stermio (7».
select style of delay for backs(Jaces (see termio (7».
select style of delay for form-feeds (see termio (7».
select style of delay for vertical tabs (see termio (7».

enable (disable) the checking of characters against the
special control characters INTR, QUIT, and SWTCH.
enable (disable) canonical input (ERASE and KILL pro­
cessing).
canonical (unprocessed) upper/lower-cas~ presentation.
echo back (do not echo back) every character typed.
echo (do not echo) ERASE character as a backspace­
space-backspace string. Note: this mode will erase the
ERASEed character on many CRT tcrminals; however, it
does not keep track of column position and, as a result,
may be confusing on escaped characters, tabs, and back­
spaces.
echo (do not echo) NL after KILL character.
the same as eehok (-echok); obsolete.
echo (do not echo) NL.
disable (enable) flush after INTR, QUIT, or SWTCH.
disablc (enable) truncation of lines longer than 79 char­
acters on a synchronous line.
enable (disable) flush on a synchronous line after every
write (2).
use application mode (use .line mode) on a synchronous
line.

set control-character to c, where control-character is
erase, kill, intr, quit, swtch, eof, ctab, min, or time (ctab
is used with -stapp); see stermio (7», (min and time are
used with -ieanon; see termio(7».)f c is preceded by
an (escaped from the shell) caret ("), then the value
used is the corresponding CTRL character (c.g.,d.. is
a CfRL-d); ?.. is interpreted as DEL and.... .. is
interpreted as undefined.
set line discipline to i (0 < i < 127).line i

Combination Modes
evenp or parity cnable parenb and es7.
oddp cnable parenb, cs7, and parodd.
-parity, -evenp, or -oddp

disable parenb, and set cs8.
raw (-raw or cooked)

enable (disable) raw input and output (no ERASE,
KILL, INTR, QUIT, SWTCH, EOT, or output post pro­
cessing).

Control Assignments
control-character c

- 2 -

STTY(J)

nl (-nl)

lease (-lease)
LCASE (-LCASE)
tabs (- tabs or tab3)
ek

sane
term

STTY(I)

unset (set> iernl, onler. In addition -nl unscts inler,
igner, oernl, and onlret.
set (unset> xease, iucle, and oleue.
same as lease (-lease).
preserve (expand to spaces) tabs when printing.
reset ERASE and KILL characters back to normal # and
@.

resets all modes to some reasonable values.
set all modes suitable for the terminal type term, where
term is one of tty33, tty37, vtOS, tn300, ti700, or tek.

SEE ALSO
tabs(I).
ioctt(2) in the UNIX System V Programmer Reference Manual.
stermio(7), termio(7) in the UNIX System V Administrator Reference Manual.

- 3 -

SU(t)

NAME

SU(t)

su - become super-user or another user

SYNOPSIS
su [-] [name [arg ...]]

DESCRIPTION
Su allows one to become another user without logging off. The default user
name is root (i.e., super-user).

To use su, the appropriate password must be supplied (unless one is already
root). If the password is correct, su will execute a new shell with the real and
effective user tD set to that of the specified user. The new shell will be the
optional program named in the shell field of the specified user's password file
entry (see passwd(4», or /bin/sh if none is specified (see sh (I». To restore
normal user ID privileges, type an EOF (cntr/-d) to the new shell.

Any additional arguments given on the command line are passed to the pro­
gram invoked as the shell. When using programs like sh (t), an arg of the
form -e string executes string via the shell and an arg of -r will give the user
a restricted shell.

The following statements are true only if the optional progran named in the
shell field of the specified user's password file entry is like sh(l). If the first
argument to su is a -, the environment will be changed to what would be
expected if the user actually logged in as the specified user. This is done by
invoking the program used as the shell with an argO value whose first character
is -, thus causing first the system's profile (lete/profile) and then the specified
user's profile (.profile in the new HOME directory) to be executed. Otherwise,
the environment is passed along with the possible exception of SPATH, which is
set to /bin:/ete:/usr/bin for root. Note that if the optional program used as the
shell is /bin/sh, the user's .profile can check argO for -sh or -su to determine
if it was invoked by Jogin(I) or suO), respectively. If the user's program is
other than /bin/sh, then .profile is invoked with an argO of -program by both
Jogin(I) and su(I).

All attempts to become another user using su are logged in the log file
/usr/adm/sulog.

EXAMPLES
To become user bin while retaining your previously exported environment, exe­
cute:

su bin

To become user bin but change the environment to what would be expected if
bin had originally logged in, execute:

su - bin

To execute command with the temporary environment and permissions of user
bin, type:

su - bin -c "command args"

- 1 -

suet) SU(I)

system's password file
system's profile
user's profile
log file

FILES
/ctc/passwd
/ etc/profile
$HOME/.profilc
/usr/adm/sulog

SEE ALSO
env(I), login(l), sh(I).
passwd(4), profilc(4), environ(5) in the UNIX System V Programmer Reference
Manual.

- 2 -

SUM(t)

NAME

SUM(I)

sum - print checksum and block count of a file

SYNOPSIS
sum [-r] file

DESCRIPTION
Sum calculates and prints a 16-bit checksum for the named file, and also prints
the number of blocks in the file. It is typically used to look for bad spots, or to
validate a file communicated over some transmission line. The option -r
causes an alternate algorithm to be used in computing the checksum.

SEE ALSO
wc(O.

DIAGNOSTICS
"Read error" is indistinguishable from end of file on most devices; check the
block count. '

- 1 -

SYNC(I)

NAME

SYNC<t>

sync - update the supr.r block

SYNOPSIS
sync

DESCRIPTION
Sync executes the sync system primitive. If the system is to be stopped, sync
must be called to insure file system integrity. It will flush all previously unwrit~

ten system buffers out to disk, thus assuring that all file modifications up to
that point will be saved. See sync(2) for details.

SEE ALSO
sync(2) in the UNIX System V Programmer Reference Manual.

- 1 ~

TA BS(J)

NAME

TABS(J)

tabs - set tabs on a terminal

SYNOPSIS
tabs [tabspec) [+mn) [-Ttype)

DESCRIPTION
Tabs sets the tab stops on the user's terminal according to the tab specification
tabspec, after clearing any previous settings. The user's terminal must have
remotely-settable hardware tabs.

Users of GE TermiNet terminals should be aware that they behave in a
different way than most other terminals for some tab settings. The first
number in a list of tab settings becomes the left margin on a TermiNet termi­
nal. Thus, any list of tab numbers whose first element is other than I causes a
margin to be left on a TermiNet, but not on other terminals. A tab list begin­
ning with I causes the same effect regardless of terminal type. It is possible to
set a left margin on some other terminals, although in a different way (see
below).

Four types of tab specification are accepted for tabspec: "canned," repetitive,
arbitrary, and file. If no tabspec is given, the default value is -8, i.e., UNIX
system "standard" tabs. The lowest column number is I. Note that for tabs,
column 1 always refers to the leftmost column on a terminal, even one whose
column markers begin at 0, e.g., the DASI 300, DASI 300s, and DASI 450.

-code Gives the name of one of a set of "canned" tabs. The legal codes and
their meanings are as follows:

-a 1,10,16,36,72
Assembler, IBM 8/370, first format

-a2 1,10,16,40,72
Assembler, IBM 8/370, second format

-c 1,8,12,16,20,55
COBOL, normal format

- c2 1,6,10,14,49
COBOL compact format {columns 1-6 omitted}. Using this code, the
first typed character corresponds to card column 7, one space gets you
to column 8, and a tab reaches column 12. Files using this tab setup
should include a format specification as follows:

<:t-c2 m6 566 d:>
-c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67

COBOL compact format {columns 1-6 omitted}, with more tabs than
-c2. This is the recommended format for COBOL. The appropriate
format specification is:

<:t -c3 m6 566 d:>
-f 1,7,11,15,19,23

FORTRAN
-p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61

PUI
-5 1,10,55

SNOBOL
-u 1,12,20,44

UNIVAC 1100 Assembler

In addition to these "canned" formats, three other types exist:

-n A repetitive specification requests tabs at columns 1+n, 1+2.n, etc.
Note that such a setting leaves a left margin of n columns on Ter­
miNet terminals only. Of particular importance is the value -8: this
represents the UNIX system "standard" tab setting, and is the most
likely tab setting to be found at a terminal. It is required for use with

- 1 -

TABS (I) TABS(t)

when arbitrary tabs are ordered incorrectly.
when a zero or missing increment is found in an arbitrary
specification.
when a "canned" code cannot be found.
if - -file option used, and file can't be opened.
if - -file option used and the specification in that file
points to yet another file. Indirection of this form is not
permitted.

+mn

unknown tab code
can't open
file indirection

the nroff -h option for high-speed output. Another special case is the
value -0. implying no tabs at all.

nJ .n2•... The arbitrary format permits the user to type any chosen set of
numbers. separated by commas. in ascending order. Up to 40
numbers are allowed. If any number (except the first one) is pre­
ceded by a plus sign, it is taken as an increment to be added to the
previous value. Thus, the tab lists 1,10,20,30 and 1,10.+10,+ 10 are
considered identical.

- -file If the name of a file is given. tabs reads the first line of the file,
searching for a format specification. If it finds one there, it sets the
tab stops according to it, otherwise it sets them as -8. This type of
specification may be used to make sure that a tabbed file is printed
with correct tab settinf'\. and would be used with the prO) command:

tabs -- file; pI' file

Any of the following may be used also; if a given flag occurs more than once,
the last value given takes effect:

-Ttype Tabs usually needs to know the type of terminal in order to set tabs
and always needs to know the type to set margins. Type is a name
listed in term (5). If no -T flag is supplied, tabs searches for the
$TERM value in the environment (see environ (5». If no type can be
found, tabs tries a sequence that will work for many terminals.
The margin argument may be used for some terminals. It causes all
tabs to be moved over n columns by making column n +J the left
margin. If +m is given without a value of n, the value assumed is 10.
For a TermiNet. the first value in the tab list should be I, or the mar­
gin will move even further to the right. The normal (leftmost> margin
on most terminals is obtained by +mO. The margin for most termi­
nals is reset only when the +m flag is given explicitly.

Tab and margin setting is performed via the standard output.

DIAGNOSTICS
illegal tabs
illegal increment

SEE ALSO
prO) .
environ(5), term(5) in the UNIX System V Programmer Reference Manual.

BUGS
There is no consistency among different tcrminals regarding ways of clearing
tabs and setting the left margin.
It is gcncrally impossible to usefully change the left margin without also setting
tabs.
Tabs clears only 20 tabs (on terminals requiring a long sequence), but is wil­
ling to set 64.

- 2 -

TAlLO)

NAME

TAIL(»

tail - deliver the last part of a file

SYNOPSIS
tail [± [number][Ibc[f]]] [file]

DESCRIPTION
Tail copies the named file to the standard output beginning at a designated
place. If no file is named, the standard input is used.

Copying begins at distance +number from the beginning, or -number from
the end of the input (if number is null, the value lOis assumed). Number is
counted in units of lines, blocks, or characters, according to the appended
option I, b, or c. When no units are specified, counting is by lines.

With the -f ("follow") option, if the input file is not a pipe, the program will
not terminate after the line of the input file has been copied, but will enter an
endless loop, wherein it sleeps for a second and then attempts to read and copy
further records from the input file. Thus it may be used to monitor the growth
of a file that is being written by some other process. For example, the com­
mand:

tail -f fred

will print the last ten lines of the file fred, followed by any lines that are
appended to fred between the time tail is initiated and killed. As another
example, the command:

tail -15cf fred

will print the last 15 characters of the file fred, followed by any lines that are
appended to fred between the time tail is initiated and killed.

SEE ALSO
dd(I} .

BUGS
Tails relative to the end of the file are treasured up in a buffer, and thus are
limited in length. Various kinds of anomalous behavior may happen with char­
acter special files.

- 1 -

TAR (I)

NAME

TAR(l)

f

tar - tape file archiver

SYNOPSIS
tar [key] [files]

DESCRIPTION
Tar saves and restores files on magnetic tape. Its actions are controlled by the
key argument. The key is a string of characters containing at most one func­
tion letter and possibly one or more function modifiers. Other arguments to the
command are files (or directory names) specifying which files are to be
dumped or restored. In all cases, appearance of a directory name refers to the
files and (recursively) subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

r The named files are written on the end of the tape. The c function
implies this function.

x The named files are extracted from the tape. If a named file matches
a directory whose contents had been written onto the tape, this direc­
tory is (recursively) extracted. If a named file on tape does not exist
on the system, the file is created with the same mode as the one on
tape except that the set-user-ID and set-group-ID bits are not set
unless you are super-user. If the files exist, their modes are not
changed except for the bits described above. The owner, group, and
modification time are restored (if possible). If no files argument is
given, the entire content of the tape is extracted. Note that if several
files with the same name are on the tape, the last one overwrites all
earlier ones.
The names of all the files on the tape are listed.

u The named files are added to the tape if they are not already there, or
have been modified since last written on that tape.

c Create a new tape; writing begins at the beginning of the tape, instead
of after the last file. This command implies the r function.

The following characters may be used in addition to the letter that selects the
desired function:

#5 Where # is a tape drive number (0,... ,7), and s is the density (I - low
(800 bpj), m - medium (1600 bpj), or h - high (6250 bpi». This
modifier selects the drive on which the tape is mounted. The default
is Om.

v Normally, tar does its work silently. The v (verbose) option causes it
to type the name of each file it treats, preceded by the function letter.
With the t function, v gives more information about the tape entries
than just the name.

w Causes tar to print the action to be taken, followed by the name of
the file, and then wait for the user's confirmation. If a word begin­
ning with y is given, the action is performed. Any other input means
"no".
Causes tar to use the next argument as the name of the archive
instead of /dev/mt!?? If the name of the file is -, tar writes to the
standard output or reads from the standard input, whichever is
appropriate. Thus, tar can be used as the head or tail of a pipeline.
Tar can also be used to move hierarchies with the command:

cd fromdir; tar cf - . I (cd todir; tar xf -)

- I -

TAR (t)

FILES

b

m

o

TAR(t)

Causes tar to use the next argument as the blocking factor for tape
records. The default is I, the maximum is 20. This option should
only be used with raw magnetic tape archives (see f above). The
block size is determined automatically when reading tapes (key letters
x and d.
Tells tar to complain if it cannot resolve all of the links to the files
being dumped. If I is not specified, no error messages are printed.
Tells tar not to restore the modification times. The modification time
of the file will be the time of extraction.
Causes extracted files to take on the user and group identifier of the
user running the program rather than those on the tape.

/dev/mt/*
Itmp/tar.

DIAGNOSTICS
Complaints about bad key characters and tape read/write errors.
Complaints if enough memory is not available to hold the link tables.

BUGS
There is no way to ask for the n-th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.
The b option should not be used with archives that are going to be updated.
The current magnetic tape driver cannot backspace raw magnetic tape. If the
archive is on a disk file, the b option should not be used at all, because updat­
ing an archive stored on disk can destroy it.
The current limit on file-name length is 100 characters.
Note that tar cOm is not the same as tar cmO.

- 2 -

TEE(t)

NAME

TEE(I)

~\

~i

tee - pipe fitting

SYNOPSIS
tee [-i] [-a] [file] ...

DESCRIPTION
Tee transcribes the standard input to the standard output and makes copies in
the jiles. The -i option ignores interrupts; the -a option causes the output to
be appended to the jiles rather than overwriting them.

- 1 •

TEST(t>

NAME
test - condition evaluation command

TEST(I)

SYNOPSIS
test expr
[expr I

DESCRIPTION
Test evaluates the expression expr and, if its value is true, returns a zero (true)
exit status; otherwise, a non-zero (false) exit status is returned; test also returns
a non-zero exit status if there are no arguments. The following primitives are
used to construct expr:

-r file true if file exists and is readable.

-w file true if file exists and is writable.

-x file tru~ if file exists and is executable.

-f file true if file exists and is a regular file.

-d file true if file exists and is a directory.

-c file true if file exists and is a character special file.

-b file true if file exists and is a block special file.

-p file true if file exists and is a named pipe (fifo).

-ufile true if file exists and its set-user-ID bit is set.

-gfUe true if file exists and its set-group-ID bit is set.

-k file true if file exists and its sticky bit is set.

-8 file true if file exists and has a size greater than zero.

-t [fildes] true if the open file whose file descriptor number is fildes (1 by
default) is associated with a terminal device.

-z s1 true if the length of string s1 is zero.

-n s/ true if the length of the string s1 is non-zero.

s/ = s2 true if strings s1 and s2 are identical.

s / ! = s2 true if strings s1 and s2 are not identical.

s / true if s / is not the null string.

n/ -eq n2 true if the integers nJ and n2 are algebraically equal. Any of the
comparisons -ne, -gt, -ge, -It, and -Ie may be used in place
of -eq.

These primaries may be combined with the following operators:

unary negation operator.

-3 binary and operator.

-0 binary or operator (-a has higher precedence than -0).

(expr > parentheses for grouping.

Notice that all the operators and flags are separate arguments to test. Notice
also that parentheses are meaningful to the shell and, therefore, must be
escaped.

- 1 -

TEST(l) TEST(l)

SEE ALSO
find(l), sh(I).

WARNING
In the second form of the command (i.e., the one that uses [l. rather than the
word test), the square brackets must be delimited by blanks.
Some UNIX systems do not recognize the second form of the command.

- 2 -

TIME(I)

NAME
time - time a command

SYNOPSIS
time command

TIME(I)

DESCRIPTION
The command is executed; after it is complete. time prints the elapsed time
during the command, the time spent in the system, and the time spent in exe­
cution of the command. Times are reported in seconds.

The times are printed on standard error.

SEE ALSO
timex(l).
times(2) in the UNIX System V Programmer Reference Manual.

CAVEATS
When time is used on a 38 20A dual computer system the sum of system and
user time could be greater than real time. This is the result when command is a
multi-threaded task running on a 38 20A computer system with both processors
active.

- I -

TIMEX (t)

NAME

TIMEX(I)

timex - time a command; report process data and system activity

SYNOPSIS
timex [options] command

DESCRIPTION
The given command is executed; the elapsed time, user time and system time
spent in execution are reported in seconds. Optionally, process accounting data
for the command and all its children can be listed or summarized, and total
system activity during the execution interval can be reported.

The output of timex is written on standard error.

Options are:

-p List process accounting records for command and all its children.
Suboptions f, h. k. m. r. and t modify the data items reported, as defined
in acctcom (I). The number of blocks read or written and the number
of characters transferred are always reported.

-0 Report the total number of blocks read or written and total characters
transferred by command and all its children.

-s Report total system activity (not just that due to command) that
occurred during the execution interval of command. All the data items
1isted in .mr(I) are reported.

SEE ALSO
acctcom (I), sad I).

CAVEATS
When timex is used on a 38 20A dual computer system the sum of system and
user time could be greater than real time. This is the result when command is
a multi-threaded task runing on a 38 20A computer system with both processors
active.

WARNING
Process records associated with command are selected from the accounting file
/usr/adm/pacct by inference, since process genealogy is not available. Back­
ground processes having the same user-id, terminal-id, and execution time win­
dow will be spuriously included.

EXAMPLES
A simple example:

timex -ops sleep 60

A terminal session of arbitrary complexity can be measured by timing a sub­
shell:

timex -opskmt sh

session commands
EOT

- I -

TOC(IG)

NAME

TOC(IG)

where:

id

toe - graphical table of contents routines

SYNOPSIS
dtoe [directory]
ttoe mm-file
vtoe [-edhnimsvn] [TTOC file]

DESCRIPTION
All of the commands listed below reside in /usr/bin/graf (see graphics (I G».
dtoe Dtoc makes a textual table of contents, TTOC, of all subdirectories

beginning at directory (directory defaults to .). The list has one
entry per directory. The entry fields from left to right are level
number, directory name, and the number of ordinary readable files
in t~e directory. Dtoc is useful in making a visual display of all or
parts of a file system. The following will make a visual display of
all the readable directories under /:

dtoe / I vtoe I td

ttoe Output is the table of contents generated by the .TC macro of
mm() translated to TTOC format. The input is assumed to be an
mm file that uses the .H family of macros for section headers. If no
file is given, the standard input is assumed.

vtoe Vtoc produces a GPS describing a hierarchy chart from a TTOC.
The output drawing consists of boxes containing text connected in a
tree structure. If no file is given, the standard input is assumed.
Each TTOC entry describes one box and has the form:

id [/ine-weight,line-style] "text" [mark]

is an alternating sequence of numbers and dots. The
id specifies the position of the entry in the hierarchy.
The id O. is the root of the tree.

line-weight is either:
n, normal-weight; or
m, medium-weight; or
b, bold-weight.

~
I

' -

line-style

text

mark

is either:
so, solid-line;
do, dotted-line;
dd, dot-dash line;
da, dashed-line; or
Id, long-dashed

is a character string surrounded by quotes. The char­
acters between the quotes become the contents of the
box. To include a quote within a box it must be
escaped (\").

is a character string (surrounded by quotes if it con­
tains spaces), with included dots being escaped. The
string is put above the top right corner of the box. To
include either a quote or a dot within a mark it must
be escaped.

Entry example: 1.1 b,da "ABC" DEF
Entries may span more than one line by escaping the new-line
{\new-line> .

- I -

TOC(tG) TOC(tG)

Comments are surrounded by the /*,*/ pair. They may appear
anywhere in a TTOC.

Options:

c Use text as entered (default is all upper case).

d Connect the boxes with diagonal lines.

hn Horizontal interbox space is n% of box width.

Suppress the box id.

m Suppress the box mark.

s Do not compact boxes horizontally.

vn Vertical interbox space is n% of box height.

SEE ALSO
graphics(IG).
gps(4) in the UNIX System V Programmer Reference Manual.

- 2 -

TOUCH()

NAME

TOUCH(t)

touch - update access and modification times of a file

SYNOPSIS
touch l -amc) l mmddhhmmlyy]] files

DESCRIPTION
Touch causes the access and modification times of each argument to be
updated. The file name is created if it does not exist. If no time is specified
(see date (I» the current time is used. The -a and -m options cause touch
to update only the access or modification times respectively (default is -am).
The -c option silently prevents touch from creating the file if it did not previ-
ously exist. .

The return code from touch is the number of files for which the times could not
be successfully modified (including files that did not exist and were not
created).

SEE ALSO
date(t>.
utimc(2) in the UNIX System V Programmer Reference Manual.

- 1 -

.~

TPLOT(IG)

NAME

TPLOT(IG)

tplot - graphics filters

SYNOPSIS
tplot [- Tterminal [-e raster]]

DESCRIPTION
These commands read plotting instructions (see plot (4» from the standard
input and in general produce, on the standard output, plotting instructions suit­
able for a particular terminal. If no terminal is specified, the environment
parameter STERM (see environ (5» is used. Known terminals are:

300 DASI 300.
300S DASI 300s.
450 DASI 450.
4014 TEKTRONIX 4014.
ver Versatec D1200A. This version of plot places a scan-converted image

in lusr/tmp/raster$$ and sends the result directly to the plotter device,
rather than to the standard output. The -e option causes a previously
scan-converted file raster to be sent to the plotter.

FILES
/usr/lib/t300
/usr/liblt300s
lusr/lib/t450
lusr/lib/t40 14
lusr/lib/vplot
lusr/tmp/raster$$

SEE ALSO
plot(JX), plot(4), term(S) in the UNIX System V Prograrnmer Reference
Manual.

- 1 -

TPUT(t)

NAME

TPUT(I)

tput - query terminfo database

SYNOPSIS
tput [.Ttype I capname

DESCRIPTION
Tput uses the terminfoU) database to make terminal-dependent capabilities
and information available to the shell. Tput outputs a string if the attribute
(capability name) is of type string. or an integer if the attribute is of type
integer. If the attribute is of type boolean. tput simply sets the exit code (0 for
TRUE, I for FALSE). and does no output.

-Ttype indicates the type of terminal. Normally this flag is unnecessary.
as the default is taken from the environment variable $TERM.

Capname indicates the attribute from the terminfo database. See ler­
minfo(4).

EXAMPLES
tput clear
tput cols
tput -T450 cols
bold ='tput smso'

tput hc

fILES

Echo clear-screen sequence for the current terminal.
Print the number of columns for the current terminal.
Print the number of columns for the 450 terminal.
Set shell variable "bold" to stand-out mode sequence for
current terminal. This might be followed by a prompt:
echo ·S{bold}Please type in your name: \c·
Set exit code to indicate if current terminal is a hardcopy
terminal.

Terminal descriptor files
Definition files

/etc/term!?1*
/usr/include/term.h
lusr/include/curses.h

DIAGNOSTICS
Tput prints error messages and returns the following error codes on error:
-I Usage error.
-2 Bad terminal type.
-3 Bad capname.

In addition, if a capname is requested for a terminal that has no value for that
capname (e.g., tput -T4S0 lines), -1 is printed.

SEE ALSO
stty(J) .
terminfo(4) in the UNIX System V Programmer Reference Manual.

- I -

TR(t)

NAME
tr - translatc charactcrs

TR(t)

SYNOPSIS
tr [-cds] [string I [string2]]

DESCRIPTION
Tr copics the standard input to the standard output with substitution or dele­
tion of selected characters. Input charactcrs found in string! arc mappcd into
the corresponding characters of string2. Any combination of the options -cds
may be uscd:

-c Complements the set of charactcrs in string! with respect to thc
univcrse of characters whose ASCII codes are 00 I through 377 octal.

-d Deletes all input characters in string! .

-s Squedes all strings of repeated output characters that are in string2
to single characters.

The following abbreviation conventions may be used to introduce ranges of
characters or repeated characters into the strings:

la -zl Stands for the string of characters whose ASCII codes run from char­
actcr a to character z, inclusivc.

la-nl Stands for n repetitions of a. If thc first digit of n is O. n is con­
sidered octal; otherwise, n is taken to be decimal. A zero or missing n
is taken to be huge; this facility is useful for padding string2.

The escape character \ may be used as in the shell to remove special meaning
from any character in a string. In addition, \ followed by I. 2, or 3 octal digits
stands for the character whose ASCII code is given by those digits.

The following example creates a list of all the words in file! one per line in
fi!e2, where a word is taken to be a maximal string of alphabetics. The strings
are quoted Lo protect the special characters from interpretation by the shell;
012 is the ASCII code for newline.

Lr -cs n[A-Z][a-z]n n(\O\2*]" <filel >file2

SEE ALSO
ed ()), sh <t).
ascii(S) in the UNIX System V Programmer Reference Manual.

BUGS
Will not handle ASCII NUL in string I or string2; always deletes NUt from
input.

- I -

TRUE{J)

NAME

TRUE(J)

true, false - provide truth values

SYNOPSIS
true

false

DESCRIPTION
True does nothing, successfully. False does nothing, unsuccessfully. They are
typically used in input to sh (1) such as:

while true
do

command
done

SEE ALSO
sh(I).

DIAGNOSTICS
True has exit status zero, false nonzero.

- 1 -

.~- .

TSORT(I)

NAME

TSORT(I)

tsort - topological sort

SYNOPSIS
tsort [file]

DESCRIPTION
Tsorl produces on the standard output a totally ordered list of items consistent
with a partial ordering of items mentioned in the input file. If no file is
specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separated by blanks.
Pairs of dilTerent items indicate ordering. Pairs of identical items indicate pres­
ence, but not ordering.

SEE ALSO
lorder(I).

DIAGNOSTICS
Odd data: there is an odd number of fields in the input file.

BUGS
Uses a quadratic algorithm; not worth fixing for the typical use of ordering a
library archive file.

- I -

TTY(t>

NAME

TTY(J)

if invalid options were specified,
if standard input is a terminal,
otherwise.

Uy - get the name of the terminal

SYNOPSIS
tty [-I] [-s]

DESCRIPTION
Tty prints the path name of the user's terminal. The -I option prints the syn­
chronous line number to which the user's terminal is connected, if it is on an
active synchronous line. The -s option inhibits printing of the terminal path
name, allowing one to test just the exit code.

EXIT CODES
2
o
I

DIAGNOSTICS
"not on an active synchronous line" if the standard input is not a synchronous
terminal and -I is specified.
"not a tty" if the standard input is not a terminal and -s is not specified.

- 1 -

UMASK(t)

NAME

UMASK(I)

umask - set file-creation mode mask

SYNOPSIS
umask [000]

DESCRIPTION
The user file-creation mode mask is set to 000. The three octal digits refer to
read/wri te/execute permissions for owner, group, and athers, respectively (see
chmod (2) and umask (2». The value of each specified digit is subtracted from
the corresponding "digit" specified by the system for the creation of a file (see
creat(2». For example, umask 022 removes group and others write permission
(files normally created with mode 777 become mode 755: files created with
mode 666 become mode 644).

If 000 is omitted, the current value of the mask is printed.

Umask is recognized and executed by the shell.

SEE ALSO
chmod(1), sh(]).
chmod(2), creat(2), umask(2) in the UNIX System V Programmer Reference
Manual.

- 1 -

UNAME(I)

NAME

UNAME(I)

uname - print name of current UNIX system

SYNOPSIS
uname [-snrvma]

DESCRIPTION
Uname prints the current system name of the UNIX system on the standard
output file. It is mainly useful to determine which system one is using. The
options cause selected information returned by uname(2) to be printed:

-s print the system name (default).

-n print the nodename <the nodename may be a name that the system is
known by to a communications network).

-r print the operating system release.

-v print the operating system version.

-m print the machine hardware name.

-a print all the above information.

SEE ALSO
uname(2) in the UNIX System V Programmer Reference Manual.

- 1 •

UNGET(J)

NAME

UNGET(I)

unget - undo a previous get of an SCCS file

SYNOPSIS
uoget [-rSIO] [-5] [-0] files

DESCRIPTION
Unget undoes the effect of a get -e done prior to creating the intended new
delta. If a directory is named, unget behaves as though each file in the direc­
tory were specified as a named file, except that non-SCeS files and unreadable
files are silently ignored. If a name of - is given, the standard input is read
with each line being taken as the name of an sees file to be processed.

Keyletter arguments apply independently to each named file.

-rSID Uniquely identifies which delta is no longer intended. (This
would have been specified by get as the "new delta"). The
use of this keyletter is necessary only if two or more out­
standing gets for editing on the same sees file were done
by the same person (login name). A diagnostic results if
the specified SID is ambiguous, or if it is necessary and
omitted on the command line.

-5 Suppresses the printout, on the standard output, of the
intended delta's SID.

-0 Causes the retention of the gotten file which would nor­
mally be removed from the current directory.

SEE ALSO
delta(I), get(!), help(I), sact(I).

DIAGNOSTICS
Use help (I) for explanations.

- 1 -

UNIQ()

NAME

UNIQ()

uniq - report repeated lines in a file

SYNOPSIS
uniq [-udc [+n] [-n]] [input [output J]

DESCRIPTION
Uniq reads the input file comparing adjacent lines. In the normal case. the
second and succeeding copies of repeated lines are removed: the remainder is
written on the output file. Input and output should always be different. Note
that repeated lines must be adjacent in order to be found; see sort(J). If the
-u flag is used, just the lines that are not repeated in the original file are out­
put. The -d option specifies that one copy of just the repeated lines is to be
written. The normal mode output is the union of the -u and -d mode out­
puts.

The -c optioll supersedes -u and -d and generates an output report in
default style but with each line preceded by a count of the number of times it
occurred.

The n arguments specify skipping an initial portion of each line in the com­
parison:

-n The first n fields together with any blanks before each are ignored. A
field is defined as a string of non-space, non-tab characters separated
by tabs and spaces from its neighbors.

+n The first n characters are ignored. Fields are skipped before charac­
ters.

SEE ALSO
comm(J), sort(l).

- I -

UNITS(I)

NAME
units - conversion program

SYNOPSIS
units

UNITS())

DESCRIPTION
Units converts quantItIes expressed in various standard scales to their
equivalents in other scales. It works interactively in this fashion:

You have: inch
You want: em

• 2.540000e+OO
/3.937008e-Ol

A quantity is specified as a multiplicative combination of units optionally pre­
ceded by a numeric multiplier. Powers are indicated by suffixed positive
integers, division by the usual sign:

You have: 15 Ibs foree/in2
You want: atm

• 1.02068ge+OO
/ 9.79729ge-Ol

Units only does multiplicative scale changes; thus it can convert Kelvin to
Rankine, but not Celsius to Fahrenheit. Most familiar units, abbreviations, and
metric prefixes are recognized, together with a generous leavening of exotica
and a few constants of nature including:

pi
e
e
g
force
mole
water
au

ratio of circumference to diameter,
speed of light,
charge on an electron,
acceleration of gravity,
same as g,
Avogadro's number,
pressure head per unit height of water,
astronomical unit.

Pound is not recognized as a unit of mass; Ib is. Compound names are run
together, (e.g., lightyear). British units that differ from their U.S. counterparts
are prefixed thus: brgallon. For a complete list of units, type:

cat lusrlIib/unittab

FILES
lusr/lib/unittab

- 1 -

UUCP(IC)

NAME

UUCP(lC)

uucp, uulog, uuname - UNIX system to UNIX system copy

SYNOPSIS
uucp [options] source-files destination-file

uulog [options]

uuname [-I] [- v]

DESCRIPTION
Uucp

Uucp copies files named by the source-file arguments to the destination-file
argument. A file name may be a path name on your machine, or may have the
form:

system-name!path-name

where system-name is taken from a list of system names which uucp knows
about. The system-name may also be a list of names such as

system-name!system-name!...!system-name!path-name

in which case an attempt is made to send the file via the specified route, and
only to a destination in PUBDIR (see below). Care should be taken to insure
that intermediate nodes in the route are willing to foward information.

The shell metacharacters ?, • and 1... 1 appearing in path-name will be
expanded on the appropriate system.

Path names may be one of:

(1) a full path name;

(2) a path name preceded by -user where user is a login name on
the specified system and is replaced by that user's login direc­
tory;

(3) a path name preceded by - /user where user is a login name on
the specified system and is replaced by that user's directory
under PUBDIR;

(4) anything else is prefixed by the current directory.

If the result is an erroneous path name for the remote system the copy will fail.
If the destination-fi'e is a directory, the last part of the source-file name is
used.

Uucp preserves execute permissions across the transmission and gives 0666 read
and write permissions {see chmod (2».

The following options are interpreted by uucp:

-d Make all necessary directories for the file copy (default).

-f Do not make intermediate directories for the file copy.

-c Use the source file when copying out rather than copying the file to
the spool directory (default).

-C Copy the source file to the spool directory.

-mfile Report status of the transfer in file. If file is omitted, send mail to the
requester when the copy is completed.

-nuser Notify user on the remote system that a file was sent.

-esys Send the uucp command to system sys to be executed there. (Note:
this will only be successful if the remote machine allows the uucp
command to be executed by /usr/lib/uucp/uuxqt.)

- 1 -

UUCP(IC) UUCP(IC)

-r

-j

Queue job but do not start the file transfer process. By default a file
transfer process is started each time uucp is evoked.

Control writing of the uucp job number to standard output {see
below}.

Uucp associates a job number with each request. This job number can be used
by uustat to obtain status or terminate the job.

The environment variable JOBNO and the -j option are used to control the list­
ing of the uucp job number on standard output. If the environment variable
JOBNO is undefined or set to OFF, the job number will not be listed (default).
If uucp is then invoked with the -j option, the job number will be listed. If the
environment variable JOBNO is set to ON and is exported, a job number will
be written to standard output each time uucp is invoked. In this case, the -j
option will supress output of the job number.

Uulog
Uulog queries a summary log of uucp and uux(IC) transactions in the file
/usr /spool/uucp/LOGFILE.

The options cause uulog to print logging information:

-ssys Print information about work involving system sys. If sys is not
specified, then logging information for all systems will be printed.

-uuser Print information about work done for the specified. user. If user is
not specified then logging information for all users will be printed.

Uuname
Uuname lists the uucp names of known systems. The -I option returns the
local system name. The -v option will print additional information about each
system. A description will be printed for each system that has a line of infor­
mation in /usr/lib/uucp/ADMIN. The format of ADMIN is: sysname tab
description tab.

FILES
/usrlspoolluucp spool directory
lusrlspool/uucppublic public directory for receiving and sending (PUBDIR)
/usr/lib/uucp/. other data and program files

SEE ALSO
mail(I). uux <t C).
chmod(2) in the UNIX System V Programmer ReJer£r:e Manual.

WARNING
The domain of remotely accessible files can (and for obvious security reasons,
usually should) be severely restricted. You will very likely not be able to fetch
files by path name; ask a responsible person on the remote system to send them
to you. For the same reasons, you will probably not be able to send files to
arbitrary path names. As distributed, the remotely accessible files are those
whose names begin /usr/spool/uucppublic (equivalent to -nuucp or just -).

NOTES
In order to send files that begin with a dot (e.g., .profile) the files must by
qualified with a dot. For example: .profile, .prof"', .profil? are correct; whereas
• prof'" , ?profile are incorrect.

Uucp will not generate a job number for a strictly local transaction.

- 2 -

UUCP(lC) UUCP(tC)

BUGS
All files received by uucp will be owned by uucp.
The -m option will only work sending files or receiving a single file. Receiving
multiple files specified by special shell characters? • 1. .. 1will not activate the
-m option.
The -m option will not work if all transactions are local or if uucp is executed
remotely via the -e option.
The -0 option will function only when the source and destination are not on
the same machine.
Only the first six characters of a system-name are significant. Any excess
characters are ignored.

- 3 -

UUSTAT(IC) UUSTAT<IC)

NAME
uustat - uucp status inquiry and job control

-q

-0

-ohollr

-chour

-yhour

-mmch

-Uliser
-ssys

-rjohn

-kjohn

SYNOPSIS
uustat [options]

DESCRIPTION
Uustat will display the status of, or cancel. previously specified uucp com­
mands, or provide general status on uuep connections to other systems. The
following options are recognized:

-jjobn Report the status of the uue!' request jobn. If all is used for jobn,
the status of all uucp requests is reported. An argument must be
supplied; otherwise, the usage message will be printed and the
request will fail.
Kill the uuep request whose job number is jobn. The killed uucp
request must belong to the person issuing the uustat command
unless one is the super-user.
Rejuvenate jobn. That is, jobn is touched so that its modification
time is set to the current time. This prevents uuclean from deleting
the job until the jobs modification time reaches the limit imposed by
uuclean.
Remove the status entries which are older than hour hours. This
administrative option can only be initiated by the user uucp or the
su per-user.
Report the status of all uuep requests issued by user.
Report the status of all uucp requests which communicate with
remote system sys.
Report the status of all uucp requests which are older than hour
hours.
Report the status of all uuep requests which are younger than hour
hours.
Report the status of accessibility of machine meh. If meh is
specified as all, then the status of all machines known to the local
IIUCp are provided.

-Mmch This is the same as the -m option except that two times are
printed. The time that the last status was obtained and the time
that the last successful transfer to that system occurred.
Report the uucp status using the octal stn .s codes listed below. If
this option is not specified, the verbose (t:scription is printed with
each uucp request.
List the number of jobs and other control files queued for each
machine and the time of the oldest and youngest file queued for
each machine. If a lock file exists for that system, its date of crea­
tion is listed.

~/ ,-
~r

When no options are given, uustat outputs the status of all uuep requests
issued by the current user. Note that only one of the options -j, -m, -k,
-c, -r, can be used with the rest of the other options.

For example, the command:

uustat -uhdc -smhtsa -y72

will print the status of all uucp requests that were issued by user hde to com­
municate with system mhtsa within the last 72 hours. The meanings of the job
request status arc:

job-number user remote-system command-time status-time status

- I -

UUSTAT(IC) UUSTAT(IC)

where the status may be either an octal number or a verbose description. The
octal code corresponds to the following description:

OCTAL STATUS
00000) the copy failed, but the reason cannot be determined
000002 permission to access local file is denied
000004 permission to access remote file is denied
0000 Ia bad uucp command is generated
000020 remote system cannot create temporary file
000040 cannot copy to remote directory
000 I00 cannot copy to local directory
000200 local systcm cannot create temporary file
000400 cannot execute uucp
00) 000 copy (partially) succeeded
002000 copy finished, job deleted
004000 job is queued
0) 0000 job killed (incomplete)
020000 job killed (complete)

The meanings of the machine accessibility status are:

system-name time status

where time is the latcst status time and status is a self-explanatory description
of the machine status.

FILES
lusrlspool/uucp
lusrllib/uucp/L_stat
lusrllib/uucp/R_stat

SEE ALSO
uucp(IC).

spool directory
system status file
request status file

- 2 -

UUTO(IC}

NAME

UUTO(IC}

<new-line>

d

m [dir]

uuto, uupick - public UNIX-to-UNIX system file copy

SYNOPSIS
Duto [options] source-files destination
uupick [-s system]

DESCRIPTION
Uuto sends source-files to destination. Uuto uses the uucp(I C) facility to
send files, while it allows the local system to control the file access. A source­
file name is a path name on your machine. Destination has the form:

system!user

where system IS taken from a list of system names that uucp knows about (see
uuname). Logname is the login name of someone on the specified system.

Two options are available:

-p Copy the source file into the spool directory before transmission.
-m Send mail to the sender when the copy is complete.

The files (or sub-trees if directories are specified) are sent to PUBDIR on sys­
tem, where PUBDIR is a public directory defined in the uucp source.
Specifically the files are sent to

PUBDIR/receive/userlmysystem/files.

The destind recipient is notified by mai/{I) of the arrival of files.

Uupick accepts or rejects the files transmitted to the user. Specifically, uupick
searches PUBJIR for files destined for the user. For each entry (file or direc­
tory) found, the following message is printed on the standard output:

from system: [file file-name] [dir dirname] ?

Uupick then reads a line from the standard input to determine the disposition
of the file:

Go on to next entry.

Delete the entry.

Move the entry to named directory dir (current directory is
default).

a [dir] Same as m except moving all the files sent from system.

p Print the content of the file.

q Stop.

EOT (control-d) Same as q.

!command Escape to the shell to do command.

* Print a command summary.

Uupick invoked with the -ssystem option will only search the PUBDIR for files
sent from system.

FILES
PUBDIR/usrlspool/uucppublic public directory

NOTES
In order to send files that begin with a dot (e.g., .profile) the files must by
qualified with a dot. For example: .profile, .prof*, .profil? are correct; whereas
prof, '?profile are incorrect.

SEE ALSO
mail(I), uucp(IC), uustat(IC), uux(tC).
uuclean(l M) in the UNIX System V Administrator Reference Manual.

- I -

uux(tC)

NAME

uux (IC)

uux - UNIX-to-UNIX system command execution

SYNOPSIS
uux [options] command-string

DESCRIPTION
Uux will gather zero or more files from various systems, execute a command on
a specified system and then send standard output to a file on a specified system.
Note that, for security reasons, many installations will limit the list of com­
mands executable on behalf of an incoming request from uux. Many sites will
permit little more than the receipt of mail (see mai/O» via uux.

The command-string is made up of one or more arguments that look like a
shell command line, except that the command and file names may be prefixed
by system-name!. A null system-name is interpreted as the local system.

File names m~y be one of

(I) a full path name;

(2) a path name preceded by -xxx where xxx is a login name on the
specified system and is replaced by that user's login directory;

(3) anything else is prefixed by the current directory.

As an example, the command

uux "!diff usg!/usr/dan/fl pwba!/a4/dan/fl > !fI.diff"

will get the fI files from the "usg" and "pwba" machines, execute a diff com­
mand and put the results in fl.diff in the local directory.

Any special shell characters such as < >; I should be quoted either by quoting
the entire command-string, or quoting the special characters as individual
arguments.

Uux will attempt to get all files to the execution system. For files which are
output files, the file name must be escaped using parentheses. For example, the
command

uux a!uucp b!/usr/file \<C!/usr/file\)

will send a uucp command to system "a" to get /usr/file from system "b" and
send it to system "c".

Uux will notify you if the requested command on the remote system was disal­
lowed. The response comes by remote mail from the remote machine. Execut­
able commands are listed in /usr/lib/uucp/L.cmds on the remote system. The
format of the L.cmds file is:

cmd,machine I,machine2, ...

If no machines are specified, then any machine can execute cmd. If machines
are specified, only the listed machines can execute cmd. If the desired com­
mand is not listed in L.sys then no machine can execute that command.

Redirection of standard input and output is usually restricted to files in PUB­
DIR. Directories into which redirection is allowed must be specified in
/usr/lib/uucp/USERFILE by the system administrator. See the UUCP Adminis­
trator Manual in the UNIX System V Administrator Guide.

The following options are interpreted by uux:

The standard input to uux is made the standard input to the
command-string.

-n Send no notification to user.

- I -

UUX(IC) UUX(IC)

spool directory
public directory (PUBDIR)
other data and programs

-mJ"e Report status of the transfer in file. If file is omitted, send mail to the
requestcr whcl' the copy is complcted.

-j Control writing of the uuep job number to standard output.

Uux asso...:iatcs a job number with each request. This job number can be used
by ullstat to obtain status or terminate the job.

The environment variable JOBNO and the -j option are used to control the list­
ing of the uux job number on standard output. If the environment variable
JOBNO is undefined or set to OFF, the job number will not be listed (default).
If lIueo is then invoked with the -j option, the job number will be listed. If
the environmcnt v;:rial,le JOBNO is set to ON and is exported, a job number will
be written to sta:ldard O'ltput each time uux is invoked. In this case, the -j
option will suppress Oillput of ..he job number.

FILES
/usr/spool/uucp
/usr/spool/uucppublic
/usr/lib/uucp/*

SEE ALSO
ro1ail(J), uuclean(IM), uucp(IC).

BUGS
Only the first command of a shell pipeline may have a system-name!. All other
command-; a"c executed on the system of the first command.
The use oi ti1e shell metacharacter • will probably not do what you want it to
do. The shell toke:1s < < and> > are not implemented.
Only the tlrst six characters of the system-name are significant. Any excess
characters are ignored.

- 2 -

VAL(t)

NAME

VAL(I)

val - validate sees file

SYNOPSIS
val -
val [-5] [-rSID] [-mname] [-ytype] files

DESCRIPTION
Val determines if the specified file is an sees file meeting the characteristics
specified by the optional argument list. Arguments to val may appear in any
order. The arguments consist of keyletter arguments, which begin with a -,
and named files.

Val has a special argument. -. which causes reading of the standard input
until an end-of-file condition is detected. Each line read is independently pro­
cessed as if it were a command line argument list.

Val generates diagnostic messages on the standard output for each command
line and file processed, and also returns a single 8-bit code upon exit as
described below.

The keyletter arguments are defined as follows. The effects of any keyletter
argument apply independently to each named file on the command line.

-5 The presence of this argument silences the diagnostic
message normally generated on the standard output for
any error that is detected while processing each named
file on a given command line.

-rSID The argument value SID (Sees IDentification String) is
an sees delta number. A check is made to determine if
the SID is ambiguous (e. g., rl is ambiguous because it
physically does not exist but implies I. I, 1.2, etc., which
may exist) or invalid (e. g., r 1.0 or r 1.1.0 are invalid
because neither case can exist as a valid delta number).
If the SID is valid and not ambiguous, a check is made
to determine if it actually exists.

-mname The argument value name is compared with the sees
%M% keyword in file.

-ytype The argument value type is compared with the sees
%Y% keyword infile.

The 8-bit code returned by val is a disjunction of the possible errors. i. e.• can
be interpreted as a bit string where (moving from left to right) set bits are
interpreted as follows:

bit 0 = missing file argument;
bit 1 = unknown or duplicate keyletter argument;
bit 2 = corrupted sees file;
bit 3 =:I cannot open file or file not sees;
bit 4 =:I SID is invalid or ambiguous;
bit 5 =:I SID does not exist;
bit 6 = %Y%. -y mismatch;
bit 7 =:I %M%, -m mismatch;

Note that val can process two or more files on a given command line and in
turn can process multiple command lines (when reading the standard input>.
In these cases an aggregate code is returned - a logical OR of the codes gen­
erated for each command line and file processed.

- 1 -

VAL(J)

SEE ALSO
admin(I), dclta(I). get(I). help(I), prs(I).

DIAGNOSTICS
Use help (1) for explanations.

BUGS

VAL(I)

Val can process up to 50 files on a single command line. Any number above 50
will produce a core dump.

- 2 -

VC(l)

NAME
vc - version control

VC(l)

SYNOPSIS
vc [-a] [-t] [-cchar] [-5] [keyword=value ... keyword=value]

DESCRIPTION
The vc command copies lines from the standard input to the standard output
under control of its arguments and control statements encountered in the stan­
dard input. In the process of performing the copy operation, user declared key­
words may be replaced by their string value when they appear in plain text
and/or control statements.

The copying of lines from the standard input to the standard output is condi­
tional, based on tests (in control statements) of keyword values specified in con­
trol statements or as vc command arguments.,
A control statement is a single line beginning with a control character. except
as modified by the -t keyletter (see below). The default control character is
colon (:), except as modified by the -c keyletter (see below). Input lines
beginning with a backslash (\) followed by a control character are not control
lines and are copied to the standard output with the backslash removed. Lines
beginning with a backslash followed by a non-control character are copied in
their entirety.

A keyword is composed of 9 or less alphanumerics; the first must be alphabetic.
A value is any ASCII string that can be created with ed(l); a numeric value is
an unsigned string of digits. Keyword values may not contain blanks or tabs.

Replacement of keywords by values is done whenever a keyword surrounded by
control characters is encountered on a version control statement. The -a
keyletter (see below) forces replacement of keywords in all lines of text. An
uninterpreted control character may be included in a value by preceding it with
\. If a literal \ is desired, then it too must be preceded by \.

Keyletter Arguments

-a Forces replacement of keywords surrounded by control
characters with their assigned value in all text lines and
not just in vc statements.

-t All characters from the beginning of a line up to and
including the first tab character are ignored for the pur­
pose of detecting a control statement. If one is found,
all characters up to and including the tab are discarded.

-cchar Specifies a control character to be used in place of :.

-s Silences warning messages (not error) that are normally
printed on the diagnostic output.

Version Control Statements

:dcl keyword[, ..., keyword]
Used to declare keywords. All keywords must be declared.

:asg keyword=value
Used to assign values to keywords. An asg statement overrides the
assignment for the corresponding keyword on the vc command line and
all previous asg's for that keyword. Keywords declared, but not assigned
values have null values.

:if condition

:end

- I -

VC(I) VC()

Used to skip lines of the standard input. If the condition is true all lines
between the if statement and the matching end statement are copied to
the standard output. If the condition is false. all intervening lines are dis­
carded. including control statements. Note that intervening if statements
and matching end statements are recognized solely for the purpose of
maintaining the proper if-end matching.
The syntax of a condition is:

<cond>
<or>
<and>
<exp>
<op>
<value>

::= ["not"] <or>
::= <and> I <and> "I" <or>
::= <exp> I <exp> "&" <and>
::= "(It <or> ")" I <value> <op> <value>
::= "=" I "!=" I "<" I">"
::= <arbitrary ASCII string> I <numeric string>

The available operators and their meanings are:

,=
&
I
>
<
()

not

equal
not equal
and
or
greater than
less than
used for logical groupings
may only occur immediately after the if. and
when present, inverts the value of the
entire condition

~' The> and < operate only on unsigned integer values (e.g., : 012 > 12
is false). All other operators take strings as arguments (e.g., : 012 != 12
is true). The precedence of the operators (from highest to lowest) is:

= != > < all of equal precedence
&
I

Parentheses may be used to alter the order of precedence.
Values must be separated from operators or parentheses by at least one
blank or tab.

::text
Used for keyword replacement on lines that are copied to the standard
output. The two leading control characters are removed, and keywords
surrounded by control characters in text are replaced by their value
before the line is copied to the output file. This action is independent of
the -a keyletter.

:on

:off
Turn on or off keyword replacement on all lines.

:ctl char
Change the control character to char.

:msg message
Prints the given message on the diagnostic output.

- 2 -

VCO) VC(I)

:err message
Prints the given message followed by:

ERROR: err statement on line ... (915)
on the diagnostic output. Vc halts execution, and returns an exit code of
1.

SEE ALSO
ed(I), help(I).

DIAGNOSTICS
Use he/pO) for explanations.

EXIT CODES
0- normal
1 - any error

- 3 -

VI (I)

NAME

VI(I)

Normal and initial mode. Other modes return to command
mode upon completion. ESC (escape) is used to cancel a par­
tial command.

vi - screen-oriented (visual) display editor based on ex

SYNOPSIS
vi [-t tag) [-r .file) [-I] [-wn) [-x] [-R] [+command]
name ...
view [-t tag] [-r file] [-I) [-wn] [-x] [- R] [+command
] name ...
vedit [-t tag] [-r file 1 [-I] [-wn 1 [-x 1 [-R) [+com­
mand] name ...

DESCRIPTION
Vi (visual) is a display-oriented text editor based on an underlying line editor
ex(J). It is possible to use the command mode of ex from within vi and vice­
versa.

When using vi, changes you make to the file are renected in what you see on
your terminal screen. The position of the cursor on the screen indicates the
position within the file. The Vi Quick Reference card, the Introduction to
Display Editing with Vi and the Ex Reference Manllal provide full details on
using vi.

INVOCATION
The following invocation options are interpreted by vi:

-t tag Edit the file containing the tag and position the editor at its
definition.

-rfile Recover file after an editor or system crash. [I' file is not
specified a list of all saved flies will be printed.

-I LISP mode; indents appropriately for lisp code. the 0 {} ((and
II commands in vi and open are modified to have meaning for
lisp.

-wn Set the default window size to n. This is useful when using
the editor over a slow speed line.

-x Encryption mode; a key is prompted for allowing creation or
editing of an encrypted file.

- R Read only mode; the readonly nag is set. preventing accidental
overwriting of the file.

+commane/ The specified ex command is interpreted before editing
begins.

The natne argument indicates files to be edited.

The view invocation is the same as vi except that the readonly flag is set.

The vee/it invocation is intended for beginners. The report nag is set to I, and
the showmode and novice flags are set. These defaults make it easier to get
started learning the editor.

·VI MODES·
Command

Input.

Last line

Entered by a i A I 0 0 c C s S R. Arbitrary text may then be
entered. Input mode is normally terminated with ESC charac­
ter, or abnormally with interrupt.

Reading input for: / ? or !; terminate with CR to execute,
interrupt to cancel.

-] -

VI (I)

arrow keys move the cursor
same as arrow keys
insert text abc
change word to flew
pluralize word
delete a character
delete a word
delete a line
... 3 lines
undo previous change
exit vi, saving changes
quit, discarding changes
search for text
scroll up or down
any ex or ed command

They are interpreted in

z G I
"D AU
most of the rest

u
ZZ
:q!CR
ItextCR
AU AD
:ex cmdCR

Counts before vi commands
Numbers may be typed as a prefix to some commands.
one of these ways.
line/column number
scroll amount
repeat effect

Interrupting, canceling
ESC end insert or incomplete cmd
A? (delete or rubout> interrupts
AL reprint screen if A? scrambles it
"R reprint screen if AL is - key

COMMAND SUMMARY
Sample commands

-! T-
h j k I
itextESC
cwnewESC
easESC
x
dw
dd
3dd

File manipulation
:wCR
:qCR
:q!CR
:e nameCR
:e!CR
:e + flameCR
:e +nCR
:e#CR

write back changes
quit
quit, discard changes
edit file name
reedit, discard changes
edit, starting at end
edit starting at line n
edit alternate file
synonym for :e #

:w nameCR write file name
:w! nameCR overwrite file name
:shCR run shell, then return
:!ClndCR run cmd, then return
:nCR edit next file in arglist
:n argsCR specify new arglist
"G show current file and line
:ta tagCR to tag file entry tag
A) :ta, following word is tag

In general, any ex or ed command <such as substitute or global) may be typed,
preceded by a colon and followed by a CR.

- 2 -

VI (I) VI(J)

top line on screen
last line on screen
middle line on screen
next line, at first non-white
previous line, at first non-white
return, same as +
next line, same column
previous line. same column

CR
! or j
t or k

Positioning within file
"F forward screen
"8 backward screen
"D scroll down half screen
"u scroll up half screen
G go to specified line (end default>
/pat next line matching pat
?par prev line matching pat
n repeat last / or ?
N reverse last / or ?
/pat / +11 nth h",e after pat
'?par'? -fl nth lin~ before pat
]) next section/function
II previous section/function
(beginning of sentence
) end of sentence
{ beginning of paragraph
} end of paragraph
% find matching () { or }

Adjusting the screen
"L clear and redraw
"R retype, eliminate @ lines
zCR redraw, current at window top
z -CR at bottom
z .CR at center
/pat /z -CR pat line at bottom
zn.cR use n line window
"'E scroll window down I line
"'y scroll window up I line

Marking and returning
" move cursor to previous context

... at first non-white in line
rox mark current position with letter x
'x move cursor to mark x
'x ... at first non-white in line

Line positioning
H
L
M
+

~.

- 3 -

VI (t) VI(f)

append after cursor
insert before cursor
append at end of line
insert before first non-blank
open line below
open above
replace single char with x
replace characters

o
o
rx
RtextESC

Character positioning
~ first non white
o beginning of line
$ end of line
h or - forward
I or - backwards
~H same as -
space same as -
fx find x forward
Fx f backward
tx upto x forward
Tx back upto x

repeat last f F t or T
inverse of;i Lo specified column

% find matching (() or }

Words, sentences, paragraphs
w word forward
b back word
e end of word
) to next sentence
} to next paragraph
(back sentence
(back paragraph
W blank delimited word
B back W
E to end of W

Commands for LISP Mode
) Forward s-expression
} ... but do not stop at atoms
(Back s-expression
(... but do not stop at atoms

Corrections during insert
~H erase last character
"w crase last word
erase your erase, same as "H
kill your kill, erase input this line
\ quotes "H, your erase and kill
ESC ends insertion, back to command
"? interrupt, terminates insert
"'D backtab over autoindent
rD kill autoindent, save for next
O~D ... but at margin next also
"V quote non-printing character

nsert and replace
a
i
A
I

- 4 -

VI (I)

Operators
Operators are followed by a cursor motion. and alfect all text that would have
been moved over. For example. since w moves over a word. dw deletes the word
that would be moved over. Double the operator. e.g.. dd to affect whole lines.
d delete
c change
y yank lines to buffer
< Icrt shift
> right shift
! niter through command

indent for LISP

M iscellaneous Operations
C change rest of line (c$)
n delete rest of line (d$)
s substitute chars (cl)
S substitute lines (cc)
J join lines
x delete characters (dl)
X ... before cursor (db)
Y yank lines Cyy)

Yank and Put
Put inserts the text most recently deleted or yanked. However. if a butTer is
named. the text in that butTer is put instead.

p put back text after cursor
P put before cursor
"xp put from buffer x
"xy yank to butTer x
"xd delete into buffer x

Undo, Redo, Retrieve
u undo last change
lJ restore current line

repeat last change
"el p retrieve d'th last delete

AUTHOR
Vi and ex were developed by The University of California. Berkeley California,
Computer Science Division, Department of Electrical Engineering and Com­
puter Science.

SEE ALSO
ex (J).

Vi Quick Rell'rence Card.
AI/ Illfroduction to Display Editing with Vi. and Ex Reference Manual in the
UNIX .~·y.\"tem Documentation Workbench.

CAVEATS AND BUGS
The PUP-II version of vi does not support the full command set due to space
limitations. The commands which are not supported are detailed in "An Intro­
duction to Display Editing with Vi". The most notable commands which are
missing are the macro and abbreviation facilities. and the vedit invocation.
(Since arrow keys are done with macros, arrow keys do not work on the PDP­
II.)

- 5 -

VI (1) VI (1)

Software tabs using "T work only immediately after the aUlOindent.

Left and right shifts on intelligent terminals do not make usc of insert and
delete character operations in the terminal.

There should be an interactive help facility and a tutorial suited for beginners.

- 6 -

,~

VPR(I)

NAME

(DEC only) VPR (I)

user identification and accounting data
spool area
line printer daemon
print filter
plot filter

vpr - Versatec printer spooler

SYNOPSIS
"pr [options] [files]

DESCRIPTION
Vpr causes the named files to be queued for printing on a Versatec printer. If
no names appear, the standard input is assumed; thus vpr may be used as a
filter.

The following options may be given (each as a separate argument and in any
order> before any file name arguments:

-c Make a copy of the file to be sent before returning to the user.
-r Remove the file after sending it.
-m When printing is complete, report that fact by rnai/O).
-0 Do not report the completion of printing by mai/(I). This is the

default option.
-ffile Use file as a dummy file name to report back in the mail. (This is use­

ful for distinguishing multiple runs, especially when vpr is being used
as a filter>.

-p [-e raster]
Use the plot filter vplot to output files produced by graph (I G). The
-e option will cause a previously scan converted file raster to be sent
to the Versatec.

EXAMPLES
Two common uses are:

pr [options] file I vpr

and

graph [options] file I vpr -p

FILES
letc/passwd
lusrlspool/vpd/.
lusr/lib/vpd
lusrllib/vpd.pr
lusr/lib/vplot

SEE ALSO
dpr(IC), Ipr(J), mail(J), tplot(JG).

- I -

WAIT(l)

NAME
wait - await completion of process

SYNOPSIS
wait

WAIT(»

DESCRIPTION
Wait until all processes started with & have completed, and report on abnor­
mal terminations.

Because the wail (2) system call must be executed in the parent process, the
shell itself executes wait. without creating a new process.

SEE ALSO
she}).
wait(2) in the UNIX System V Programmer Reference Manual.

BUGS
Not all the processes of a 3- or more-stage pipeline are children of the shell,
and thus cannot be waited for.

- 1 -

WC(t)

NAME
wc - word count

WC(O

SYNOPSIS
we [-lwe] [names

DESCRIPTION
We counts lines, words, and characters in the named files, or in the standard
input if no names appear. It also keeps a total count for all named files. A
word is a maximal string of characters delimited by spaces, tabs, or new-lines.

The options I, w, and c may be used in any combination to specify that a subset
of lines, words, and characters are to be reported. The default is -Iwe.

When names are specified on the command line, they will be printed along with
the counts.

- 1 -

WHAT(I)

NAME

WHAT(l)

what - identify sees files

SYNOPSIS
what [-s] files

DESCRIPTION
What searches the given files for all occurrences of the pattern that get (1) sub­
stitutes for %Z% <this is @(#) at this printing) and prints out what follows
until the first ", >, new-line, \, or null character. For example, if the C pro­
gram in file f.c contains

char ident[] :::: It @ (#)identification information ";

and f.c is compiled to yield f.o and a.out, then the command

what f.c f.o a.out

will print

f.c:
identification information

f.o:
identification information

a.out:
identification information

What is intended to be used in conjunction with the command get (I), which
automatically inserts identifying information, but it can also be used where the
information is inserted manually. Only one option exists:

-s Quit after finding the first occurrence of pattern in each
file.

SEE ALSO
get(l), help(l).

DIAGNOSTICS
Exit status is 0 if any matches are found, otherwise I. Usc help (1) for expla­
nations.

BUGS
It is possible that an unintended occurrence of the pattern @(#) could be
found just by chance, but this causes no harm in nearly all cases.

- 1 -

WHO(t)

NAME
who - who is on the system

SYNOPSIS
who [-uTHlpdbrtasq] [file

who am

who am

WHO(I)

DESCRIPTION
Who can list the user's name, terminal line, login time, elapsed time since
activity occurred on the line, and the process-ID of the command interpreter
(shell) for each current UNIX system user. It examines the /etc/utmp file to
obtain its information. If file is given, that file is examined. Usually, file will
be /etc/wtmp, which contains a history of all the logins since the file was last
created.

Who with the am i or am I option identifies the invoking user.

Except for the default -s option, the general format for output entries is:

name [state] line time activity pid [commend [exit]

With options, who can list logins, logoffs, reboots, and changes to the system
clock, as well as other processes spawned by the init process. These options are:

-u This option lists only those users who are currently logged in. The name
is the user's login name. The line is the name of the line as found in the
directory /dev. The time is the time that the user logged in. The
activity is the number of hours and minutes since activity last occurred
on that particular line. A dot L) indicates that the terminal has seen
activity in the last minute and is therefore "current". If more than
twenty-four hours have elapsed or the line has not been used since boot
time, the entry is marked old. This field is useful when trying to deter­
mine whether a person is working at the terminal or not. The pid is the
process-ID of the user's shell. The comment is the comment field associ­
ated with this line as found in /etc/inittab (see inittab (4». This can
contain information about where the terminal is located, the telephone
number of the dataset, type of terminal if hard-wired, etc.

-T This option is the same as the -u option, except that the state of the
terminal line is printed. The state describes whether someone else can
write to that terminal. A + appears if the terminal is writable by any­
one; a - appears if it is not. Root can write to all lines having a + or a
- in the state field. If a bad line is encountered, a ? is printed.

-I This option lists only those lines on which the system is waiting for
someone to login. The name field is LOGIN in such cases. Other f1elds
are the same as for user entries except that the stale field does not exist.

- H This option will print column headings above the regular output.

-q This is a quick who. displaying only the names and the number of users
currently logged on. When this option is used. all other options are
ignored.

-p This option lists any other process which is currently active and has been
previously spawned by ;n;t. The name field is the name of the program
executed by init as found in /etc/inittab. The state. line. and activity
fields have no meaning. The comment field shows the id field of the line
from /etc/inittab that spawned this process. See inittab (4).

- I -

WHO(I) WHO(I)

FILES

-d This option displays all processes that have expired and not been
respawned by init. The exit field appears for dead processes and con­
tains the termination and exit values (as returned by wait (2», of the
dead process. This can be useful in determining why a process ter­
minated.

-b This option indicates the time and date of the last reboot.

-r This option indicates the current run-level of the init process.

-t This option indicates the last change to the system clock (via the
date (I) command) by root. See su (I).

-8 This option processes letc/utmp or the named file with all options turned
on.

-s This option is the default and lists only the name, line, and time fields.

letc/utmp
letc/wtmp
letc/inittab

SEE ALSO
date(t), login(t), mesg(t), su(t).
wait(2), iniUab(4), utmp(4) in the UNIX System V Programmer Reference
Manual.
init(tM) in the UNIX System V Administrator Reference Manual.

- 2 -

WRITE(l)

NAME
write - write to another user

WRITE(I)

SYNOPSIS
write user [line]

DESCRIPTION
Write copies lines from your terminal to that of another user. When first
called, it sends the message:

Message from yourname <tty??) [date J...
to the person you want to talk to. When it has successfully completed the con­
nection, it also sends two bells to your own terminal to indicate that what you
are typing is being sent.

The recipient of the message should write back at this point. Communication
continues until an end of file is read from the terminal, an interrupt is sent, or
the recipient has executed "mesg nil. At that point write writes EOT on the
other terminal and exits.

If you want to write to a user who is logged in more than once, the line argu­
ment may be used to indicate which line or terminal to send to (e.g., ttyOO);
otherwise, the first writable instance of the user found in letc/utmp is assumed
and the following message posted:

user is logged on more than one place.
You are connected to IIterminal".
Other locations are:
terminal

Permission to write may be denied or granted by use of the mesg(J) command.
Writing to others is normally allowed by default. Certain commands, in partic­
ular nroff{ I) and pr(I) disallow messages in order to prevent interference with
their output. However, if the user has super-user permissions, messages can be
forced onto a write-inhibited terminal.

If the character! is found at the beginning of a line, write calls the shell to exe­
cute the rest of the line as a command.

The following protocol is suggested for using write: when you first write to
another user, wait for them to write back before starting to send. Each person
should end a message with a distinctive signal (j.e., (0) for "over") so that the
other person knows when to reply. The signal (00) (for "over and out") is sug­
gested when conversation is to be terminated.

FILES
/etc/utmp to find user
Ibin/sh to execute!

SEE ALSO
maiI(I), mesg(I), nroff(I), pr(I), sh(I), who(I).

DIAGNOSTICS
"user is not logged on" if the person you are trying to write to is not logged on.
"Permission denied" if the person you are trying to write to denies that permis­

sion (with mesg).
"Warning: cannot respond. set mesg -y" if your terminal is set to mesg nand

the recipient cannot respond to you.
"Can no longer write to user" if the recipient has denied permission (mesg n)

after you had started writing.

- 1 -

XARGS(l)

NAME

XARGS(I)

xargs - construct argument list(s) and execute command

SYNOPSIS
xargs [flags] [command [initial-arguments]]

DESCRIPTION
Xargs combines the fixed initial-arguments with arguments read from standard
input to execute the specified command one or more times. The number of
arguments read for each command invocation and the manner in which they
are combined are determined by the flags specified.

Command, which may be a shell file, is searched for, using one's SPATH. If
command is omitted, Ibinlecho is used.

Arguments read in from standard input are defined to be contiguous strings of
characters delimited by one or more blanks, tabs, or new-lines; empty lines are
always discarded. Blanks and tabs may be embedded as part of an argument if
escaped or quoted. Characters enclosed in quotes (single or double) are taken
literally, and the delimiting quotes are removed. Outside of quoted strings a
backslash (\) will escape the next character.

Each argument list is constructed starting with the initial-argumems, followed
by some number of arguments read from standard input (Exception: see -i
flag). Flags -i, -I, and -0 determine how arguments are selected for each
command invocation. When none of these nags are coded, the initial­
arguments are followed by arguments read continuously from standard input
until an internal buffer is full, and then command is executed with the accumu­
lated args. This process is repeated until there are no more args. When there
are flag conflicts (e.g., -I vs. -0), the last flag has precedence. Flag values
are:

-Inumber

-ireplstr

-nnumber

Command is executed for each non-empty number lines
of arguments from standard input. The last invocation
of command will be with fewer lines of arguments if
fewer than number remain. A line is considered to end
with the first new-line unless the last character of the
line is a blank or a tab; a trailing blankltab signals con­
tinuation through the next non-empty line. If number is
omitted, I is assumed. Option -x is forced.

Insert mode: command is executed for each line from
standard input, taking the entire line as a single arg,
inserting it in initial-arguments for each occurrence of
replstr. A maximum of 5 arguments in initial­
arguments may each contain one or more instances of
replstr. Blanks and tabs at the beginning of each line
are thrown away. Constructed arguments may not grow
larger than 255 characters, and option -x is also
forced. () is assumed for replstr if not specified.

Execute command using as many standard input argu­
ments as possible, up to number arguments maximum.
Fewer arguments will be used if their total size is
greater than size characters, and for the last invocation
if there are fewer than number arguments remaining. If
option -x is also coded, each number arguments must
fit in the size limitation, else xargs terminates execu­
tion.

. I -

XARGS(I) XARGS(I)

-t

-x

-p

-ssize

Trace mode: The command and each constructed argu­
ment list are echoed to file descriptor 2 just prior to
their execution.

Prompt mode: The user is asked whether to execute
command each invocation. Trace mode (-t) is turned
on to print the command instance to be executed, fol­
lowed by a ? •• prompt. A reply of y (optionally fol­
lowed by anything) will execute the command; anything
else, including just a carriage return, skips that particu­
lar invocation of command.

Causes xargs to terminate if any argument list would be
greater than size characters; -x is forced by the options
-i and -I. When neither of the options -i, -I, or -0

are coded, the total length of all arguments must be
within the size limit.

The maximum total size of each argument list is set to
size characters; size must be a positive integer less than
or equal to 470. If -s is not coded, 470 is taken as the
default. Note that the character count for size includes
one extra character for each argument and the count of
characters in the command name.

-eeoJslr EoJslr is taken as the logical end-of-file string. Under­
bar (_) is assumed for the logical EOF string if -e is
not coded. The value -e with no eoJslr coded turns off
the logical EOF string capability (underbar is taken
literally). Xargs reads standard input until either end­
of-file or the logical EOF string is encountered.

Xargs will terminate if either it receives a return code of -1 from, or if it can­
not execute, command. When command is a shell program, it should explicitly
exit (see sh (1» with an appropriate value to avoid accidentally returning with
-1.

EXAMPLES
The following will move all files from directory $1 to directory $2, and echo
each move command just before doing it:

Is $1 I xargs -i -t mv $1/{} $2/{}

The following will combine the output of the parenthesized commands onto one
line, which is then echoed to the end of file log:

Oogname; date; echo $0 $.) I xargs > > log

The user is asked which files in the current directory are to be archived and
archives them into arch (I.) one at a time, or (2.) many at a time.

1. Is Ixargs -p -I ar r arch
2. Is xargs -p -I I xargs ar r arch

The following will execute diff(I) with successive pairs of arguments originally
typed as shell arguments:

echo $. I xargs -n2 diff

r
SEE ALSO

sh()) .

DIAGNOSTICS
Self-explanatory.

- 2 -

YACC(I)

NAME

YACC(I)

yacc - yet another compiler-compiler

SYNOPSIS
yacc [-vdlt] grammar

DESCRIPTION
Yacc converts a context-free grammar into a set of tables for a simple automa­
ton which executes an LRO) parsing algorithm. The grammar may be ambigu­
ous; specified precedence rules are used to break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a pro­
gram yyparse. This program must be loaded with the lexical analyzer pro­
gram, yylex, as well as main and yyerror, an error handling routine. These
routines must be supplied by the user; lex(I) is useful for creating lexical
analyzers usable by yacc.

If the -v flag is given, the file y.output is prepared, which contains a descrip­
tion of the parsing tables and a report on conflicts generated by ambiguities in
the grammar.

If the -d flag is used, the file y.tab.h is generated with the #define statements
that associate the yacc-assigned "token codes" with the user-declared "token
names". This allows source files other than y.tab.c to access the token codes.

If the -I flag is given, the code produced in y.tab.c will not contain any #line
constructs. This should only be used after the grammar and the associated
actions are fully debugged.

Runtime debugging code is always generated in y.tab.c under conditional com­
pilation control. By default, this code is not included when y.tab.c is compiled.
However, when yacc's -t option is used, this debugging code will be compiled
by default. Independent of whether the -t option was used, the runtime
debugging code is under the control of YYDEBUG, a pre-processor symbol. If
YYQEBUG has a non-zero value, then the debugging code is included. If its
value is zero, then the code will not be included. The size and execution time
of a program produced without the runtime debugging code will be smaller and
slightly faster.

FILES
y.output
y.tab.c
y.tab.h defines for token names
yacc.tmp,
yacc.debug, yacc.acts temporary files
/usr/lib/yaccparparser prototype for C programs

SEE ALSO
lex(I).
malloc(3X) in the UNIX System V Programmer Reference Manual.

YACC- Yet Another Compiler Compiler in the UNIX System V Support Tools
Guide.

DIAGNOSTICS
The number of reduce-reduce and shift-reduce conflicts is reported on the stan­
dard error output; a more detailed report is found in the y.output file. Simi­
larly, if some rules are not reachable from the start symbol, this is also
reported.

BUGS
Because file names are fixed, at most one yacc process can be active in a given
directory at a time.

- 1 -

INTRO(6)

NAME

INTRO(6)

~I

intro - introduction to games

DESCRIPTION
This sect:on describes the recreational and educational programs found in the
directory /usr/games. The availability of these programs may vary from sys­
tem to system.

- 1 -

ARITHMETIC(6)

NAME

ARITHMETIC(6)

arithmetic - provide drill in number facts

SYNOPSIS
lusr/games/arithmetic [+ -xl] [range

DESCRIPTION
Arithmetic types out simple arithmetic problems, and waits for an answer to be
typed in. If the answer is correct, it types back "Right!", and a new problem.
If the answer is wrong, it replies "What?", and waits for another answer.
Every twenty problems, it publishes statistics on correctness and the time
required to answer.

To quit the program, type an interrupt (delete).

The first optional argument determines the kind of problem to be generated; +,
-, x, and I respectively cause addition, subtraction, multiplication, and division
problems to be generated. One or more characters can be given; if more than
one is given, the different types of problems will be mixed in random order;
default is + -.
Range is a decimal number; all addends, subtrahends, differences, multipli­
cands, divisors, and quotients will be less than or equal to the value of range.
Default range is 10.

At the start, all numbers less than or equal to range are equally likely to
appear. If the respondent makes a mistake, the numbers in the problem which
was missed become more likely to reappear.

As a maller of educational philosophy, the program will not give correct
answers, since the learner should, in principle, be able to calculate them. Thus
the program is intended to provide drill for someone just past the first learning
stage, not to teach number facts de novo. For almost all users, the relevant
statistic should be time per problem, not percent correct.

- 1 -

BACK(6)

NAME

BACK(6)

back - the game of backgammon

SYNOPSIS
/usr/garnes/back

DESCRIPTION
Back is a program which provides a partner for the game of backgammon. It
is designed to play at three different levels of skill, one of which you must
select. In addition to selecting the opponent's level, you may also indicate that
you would like to roll your own dice during your turns (for the superstitious
players). You will also be given the opportunity to move first. The practice of
each player rolling one die for the first move is not incorporated.

The points are numbered 1-24, with I being white's extreme inner table, 24
being brown's inner table, 0 being the bar for removed white pieces and 25 the
bar for brown.' For details on how moves are expressed, type y when back asks
"Instructions'?" at the beginning of the game. When back first asks "Move?",
type? to see a list of move options other than entering your numerical move.

When the game is finished, back will ask you if you want the log. If you
respond with y, back will attempt to append to or create a file back.log in the
currcnt directory.

FILES

BUGS

I usrI gamcs/l ib/backru les
Itmp/b*
back.log

rules file
log tcmp file
log file

Thc only level really worth playing is "cxpert", and it only plays the forward
gamc.
Back will complain loudly if you attcmpt to makc too many moves in a turn,
but will become very silent if you makc too Jew.
Doubling is not implemented.

- I -

8J(6)

NAME

8J(6)

bj - the game of black jack

SYNOPSIS
/usr/games/bj

DESCRIPTION
Hj is a serious attempt at simulating the dealer in the game of black jack (or
twenty-one) as might be found in Reno. The following rules apply:

The bet is $2 every hand.

A player "natural" (black jack) pays $3. A dealer natural loses $2.
Both dealer and player naturals is a "push" (no money exchange).

If the dealer has an ace up, the player is allowed to make an "insurance"
bet against the chance of a dealer natural. If this bet is not taken, play
resumes as normal. If the bet is taken, it is a side bet where the player
wins $2 if the dealer has a natural and loses $1 if the dealer does not.

If the player is dealt two cards of the same value, he is allowed to "dou­
ble". He is allowed to play two hands, each with one of these cards.
(The bet is doubled also; $2 on each hand'>

If a dealt hand has a total of ten or eleven, the player may "double
down". He may double the bet ($2 to $4) and receive exactly one more
card on that hand.

Under normal play, the player may "hit" (draw a card) as long as his
total is not over twenty-one. If the player "busts" (goes over twenty-one),
the dealer wins the bet.

When the player "stands" (decides not to hit), the dealer hits until he ~

attains a total of seventeen or more. If the dealer busts, the player wins
the bet.

If both player and dealer stand, the one with the largest total wins. A tie
is a push.

The machine deals and keeps score. The following questions will be asked at
appropriate times. Each question is answered by y followed by a new-line for
"yes", or just new-line for "no".

? (means, "do you want a hit?")
Insurance?
Double down?

Every time the deck is shuffled, the dealer so states and the "~ction" <total bet>
and "standing" (total won or lost) is printed. To exit, hit me interrupt key
(DEL) and the action and standing will be printed.

- 1 -

CHESS(6)

NAME

(PDP-II only) CHESS(6)

chess - the game of chess

SYNOPSIS
/usr/gan1es/chess

DESCRIPTION
Chess is a computer program that plays class D chess. Moves may be given
either in standard (descriptive) notation or in algebraic notation. The symbol
+ must be placed at the end of a line when the move on that line places the
opponent's king in che-:k. The values 0-0 and 0-0-0 specify castling, king side
or quecn side, rcspectively.

The uscr is prompted for a move or command by a •. To play black, type first
at the onset of the game. To print a copy of the board in play, type a carriage
return only. Each move is echoed in the appropriatc notation, followed by the
program's rcply. Near the middle and end games, the program can take can­
siderablc timc in computing its moves.

A ? or help may be typed to gct a help mcssagc that bricfly describes the possi­
ble commands.

DIAGNOSTICS
Thc most cryptic diagnostic is Uch?" which mcans that the input was syntacti­
cally incorrect.

BUGS
Pawns may be promoted only to qucens.

- 1 -

CRAPS(6)

NAME

CRAPS (6)

craps - the game of craps

SYNOPSIS
/usr/gaDles/craps

DESCRIPTION
Craps is a form of the game of craps that is played in Las Vegas. The pro­
gram simulates the roller, while the user (the player) places bets. The player
may choose, at any time, to bet with the roller or with the House. A bet of a
negative amount is taken as a bet with the House, any other bet is a bct with
the roller.

The player starts off with a "bankroll" of $2,000.

The program prompts with:

bet? ,

The bet can be all or part of the player's bankroll. Any bet over the total
bankroll is rejected and the program prompts with bet? until a proper bet is
made.

Once the bet is accepted, the roller throws the dice. The following rules apply
(the player wins or loses depending on whether the bet is placed with the roller
or with the House~ the odds are even). The first roll is the roll immediately
following a bct:

I. On the first roll:

7 or I I wins for the rollcr~

2, 3, or 12 wins for the House;
any other number is the point, roll again (Rule 2 applies).

2. On subsequent rolls:
point roller wins;
7 House wins~

any other number roll again.

If a player loses the entire bankroll, the House will ofTer to lend the player an
additional $2,000. The program will prompt:

marker?

A yes (or y) consummates the loan. Any other reply terminates the game.

If a player owes the House money, the House reminds the player, before a bet
is placed, how many markers are outstanding.

If, at any time, the bankroll of a player who has outstanding markers exceeds
$2,000, the House asks:

Repay marker?

A reply of yes (or y) indicates the player's willingness to repay the loan. If
only I marker is outstanding, it is immediately repaid. However, if more than
I marker is outstanding, the House asks:

How many?

markers the player would like to repay. If an invalid number is entcrcd (or
just a carriage return), an appropriate mcssage is printed and the program will
prompt with How Dlany? until a valid number is entered.

If a player accumulates 10 markers (a total of $20,000 borrowed from the
House), the program informs the player of the situation and exits.

- I -

CRAPS(6) CRAPS(6)

Should the bankroll of a player who has outstanding markers exceed $50,000,
the total amount of money borrowed will be automatically repaid to the
House.

Any player who accumulates $100,000 or more breaks the bank. The program
then prompts:

New game?

to give the House a chance to win back its money.

Any reply other than yes is considered to be a no (except in the case of bet? or
How many?). To exit, send an interrupt (break), DEL, or control-D. The pro­
gram will indicate whether the player won, lost, or broke even.

MISCELLANEOUS
The random number generator for the die numbers uses the seconds from the
time of day. Depending on system usage, these numbers, at times, may seem
strange but occurrences of this type in a real dice situation are not uncommon.

- 2 -

HANGMAN (6)

NAME

HANGMAN (6)

hangman - guess the word

SYNOPSIS
lusr/games/hangman [arg

DESCRIPTION
Hangman chooses a word at least seven letters long from a dictionary. The
user is to guess letters one at a time.

The optional argument arg names an alternate dictionary.

FILES
lusr/lib/w2006

BUGS
Hyphenated compounds are run together.

- I -

.~

JOTTO(6)

NAME

JOTTO(6)

~.

jOllo - secret word game

SYNOPSIS
/usr/games/jotto [-p]

DESCRIPTION
Jotto is a word guessing game. You try to guess the computer's secret word
before it guesses yours. Clues are obtained by entcring probe words. For
example, if the computer's secret word is "brown" and you probe with "stare",
it will reply "1" indicating that there is one lctter in common between your
probe and the secret word. Double letters count only once unless they appear
in both words. For example, if the hidden word is "igloo" and you probe with
"broke", the computer will reply "I ". But if you probe with "gloom", the com­
puter will respond "4". All secret words and probe words should be non-proper
English five-letter words. If the computer guesses your word exactly, please
respond with "y". It will then tell you what its secret word was. The -p flag
instructs the computer to report its progress in guessing your word.

BUGS
The dictionary contains some unusual words and lacks somc common ones.

- 1 -

MAZE(6)

NAME
maze - generate a maze

SYNOPSIS
lusr/garnes/rnaze

DESCRIPTION
Maze asks a fe~ questions and then prints a maze.

BUGS
Some mazes (especially small ones) have no solutions.

- 1 -

MAZE(6)

~'.

.~
'.~ -

MOO(6)

NAME

MOO(6)

~I

~,

moo - guessing game

SYNOPSIS
/usr/games/moo

DESCRIPTION
Moo is a guessing game imported from England. The computer picks a
number consisting of four distinct decimal digits. The player guesses four dis­
tinct digits being scored on each guess. A "cow" is a correct digit in an
incorrect position. A "bull" is a correct digit in a correct position. The game
continues until the player guesses the number (a score of four bulls).

- 1 -

QUIZ(6)

NAME

QUIZ(6)

quiz - test your knowledge

SYNOPSIS
/usr/games/quiz [-i file] [-t] [category I category2]

DESCRIPTION
Quiz gives associative knowledge tests on various subjects. It asks items chosen
from categoryJ and expects answers from category2. or vice versa. If no
categories are specified, quiz gives instructions and lists the available categories.

Quiz tells a correct answer whenever you type a bare new-line. At the end of
input, upon interrupt, or when questions run out, quiz reports a score and ter­
minates.

The -t flag specifies "tutorial" mode, where missed questions are repeated
later, and matc!rial is gradually introduced as you learn.

The -i flag causes the named file to be substituted for the default index file.
The lines of these files have the syntax:

line = category new-line I category: line
category = alternate I category I alternate
alternate = empty I alternate primary
primary = character Il category I Ioption
option = (category)

The first category on each line of an index file names an information file. The
remaining categories specify the order and contents of the data in each line of
the information file. Information files have the same syntax. Backslash \ is
used as with sh (J) to quote syntactically significant characters or to insert tran­
sparent new-lines into a line. When either a question or its answer is empty,
quiz will refrain from asking it.

FILES
/usr/games/lib/quiz/index
/usr/games/lib/quiz/·

BUGS
The construct "a Iab" does not work in an information file. Use "a(b}".

- I -

REVERSI (6) (PDP-II only) REVERSI (6)

NAME
reversi - a game of dramatic reversals

In

t n

gn

to continue the game after hitting break (this is only necessary
if you interrupt the machine while it is deliberating),
to start revers; playing against itself for the next n moves (or
until the break key is hit),

n to stop printing the board after each move,
o to start it up again,
p to print the board regardless,
q to quit {without dishonor},
s to print the score, and, as always,
! to escape to the shell. Control-d gets you back.

Revers; also recognizes several commands which are valid only at the start of
the game, before any moves have been made. They are:

f to let the machine go first.
h n to ask for a handicap of from one to four corner squares. If

you're really good, you can give the machine a handicap by
typing a negative number.
to set the amount of look-ahead used by the machine in
searching for moves. Zero means none at all. Four is the
default. Greater than six means you may fall asleep waiting
for the machine to move.
to tell revers; that you will only need n seconds to consider
each move. If you fail to respond in the allotted time, you for-
feit your turn.

If revers; is given a file name as an argument, it will checkpoint the game.
move by move, by dumping the board onto file. The -r option will cause
revers; to restart the game from file and continue logging.

DIAGNOSTICS
"Illegal!" for an illegal move, and "Huh?" for a move that even the machine
cannot understand.

SYNOPSIS
/usr/~ames/reversi [[-r 1 file 1

DESCRIPTION
Revers; (also known as "friends", "Chinese friends" and "Othello") is played
on an 8 by 8 board using two-sided tokens. Each player takes his turn by plac­
ing a token with his side up in an empty square. During the first four turns,
players may only place tokens in the four central squares of the board. Subse­
quently, with each turn, a player must capture one or more of his opponent's
tokens. Hc does this by placing one of his tokens such that it and another of
his tokens embrace a solid line of his opponent's tokens horizontally, vertically
or diagonally. Captured tokens are flipped over and thus can be re-captured.
If a player cannot outflank his opponent, he forfeits his turn. The play contin­
ues until the board is filled or until no more outflanking is possible.

In this game, your tokens are asterisks (.) and the machine's are at-signs (@).
You move by typing in the row and column at which you want to place your
token as two digits (1-8), optionally separated by blanks or tabs. You can also
type in:

c

- I -

SKY(6)

NAME

(PDP-II only)

sky - obtain ephemerides

SYNOPSIS
/usr/games/sky [-I]

DESCRIPTION
Sky predicts the apparent locations of the Sun, the Moon, the planets out to
Saturn, stars of magnitude at least 2.5, and certain other celestial objects. Sky
reads the standard input to obtain a GMT time typed on one line with blanks
separating year, month number, day, hour, and minute; if the year is missing
the current year is used. If a blank line is typed, the current time is used. The
program prints the azimuth, elevation, and magnitude of objects which are
above the horizon at the ephemeris location of Murray Hill at the indicated
time. The -I flag causes it to ask for another location.

Placing a "I" input after the minute entry causes the program to print out the
Greenwich Sidereal Time at the indicated moment and to print for each body
its topographic right ascension and declination as well as its azimuth and eleva­
tion. Also, insteiu of the magnitude, the semidiameter of the body, in seconds
of arc, is reporteJ

A "2" after the minute entry makes the coordinate system geocentric.

The effects of atmospheric extinction on magnitudes are not included; the
brightest magnitudes of variable stars are marked with -.

For all bodies, the program takes into account precession and nutation of the
equinox, annual (but not diurnal) aberration, diurnal parallax, and the proper
motion of stars. In no case is refraction included.

The program takes into account perturbations of the Earth due to the Moon,
Venus, Mars, and Jupiter. The expected accuracies are: for the Sun and other
stellar bodies a few tenths of seconds of arc; for the Moon (on which particular
care is lavished) likewise a few tenths of seconds. For the Sun, Moon and stars
the accuracy is sufficient to predict the circumstances of eclipses and occulta­
tions to within a few seconds of time. The planets may be off by several
minutes of arc.

There are lots of special options not described here, which do things like substi­
tuting named star catalogs, smoothing nutation and aberration to aid generation
of mean places of stars, and making conventional adjustments to the Moon to
improve eclipse predictions.

For the most accurate use of the program it is necessary to know that it actu­
ally runs in Ephemeris time.

SEE ALSO
American Ephemeris and Nautical Almanac, for the appropriate years; also,
the Explanatory Supplement to the American Ephemeris and Nautical
Almanac.

- I -

TTT(6)

~.
~~ ,

NAME
ltt, cubic - lic-lac-toe

SYNOPSIS
/usr/games/ttt
/usr/games/cubic

DESCRIPTION
Tit is the X and 0 game popular in the first grade. This is a learning program
that never makes the same mistake twice.

Although it learns, it learns slowly. It must lose nearly 80 games to campi :tely
know the game.

Cubic plays three-dimensional tic-tac-toe on a 4x4x4 board. Moves are
specified as a sC1Cjuence of three coordinate numbers in the range 1-4.

FILES
lusr/gamcslttt.klearning file

BUGS
Cubic docs not yet work on the VAX.

- 1 -

WUMP(6)

NAME

WUMP(6)

.wump - the game of hunt-the-wumpus

SYNOPSIS
/usr/games/wump

DESCRIPTION
Wump plays the game of "Hunt the Wumpus." A Wumpus is a creature that
lives in a cave with several rooms connected by tunnels. You wander among
the rooms, trying to shoot the Wumpus with an arrow, meanwhile avoiding
being eaten by the Wumpus and falling into Bottomless Pits. There are also
Super Bats which are likely to pick you up and drop you in some random room.

The program asks various questions which you answer one per line; it will give
a more detailed description if you want.

This program is based on one described in People's Computer Company, 2, 2
<November 1973).

BUGS
It will never replace Adventure.

- 1 -

	Introduction
	Contents
	Index
	1
	6

