

T UNIX™ System V — Release 2.0
User Reference Manual
DEC™ Processors

April 1984
307-109, Issue 2

UNIX is a trademark of AT&T Bell Laboratories
DEC is a trademark of Digital Equipment Corporation

Copyright © 1984 AT&T Technologies
All Rights Reserved
Printed in U.S.A.

ATl

i

DEC, PDP, UNIBUS, and MASSBUS are trademarks of Digital Equipment
Corporation.

HP is a trademark of Hewlett-Packard, Inc.

DIABLO is a trademark of Xerox Corporation.
TEKTRONIX is a registered trademark of Tektronix, Inc.
Versatec is a registered trademark of Versatec Corporation.
TELETYPE is a trademark of AT&T Teletype Corporation.

3JB and DOCUMENTER'S WORKBENCH are trademarks of AT&T
Technologies.

UNIX is a trademark of AT&T Bell Laboratories.

This manual was set on an AUTOLOGIC, Inc.
APS-5 phototypesetter driven by the TROFF
Jormatter operating under the UNIX system.

INTRODUCTION

This manual describes the features of the UNIX system. It provides neither a general
overview of the UNIX system nor details of the implementation of the system.

Not all commands, features, and facilities described in this manual are available in
every UNIX system. The entries not applicable for a particular hardware line will have
an appropriate caveat stamped in the center of the mast of an entry. Also, programs or
facilities being phased out will be marked as *“Obsolescent™ on the top of the entry.
When in doubt, consult your system’s administrator.

This manual is divided into two sections, some containing inter-filed sub-classes:

1. Commands and Application Programs:
1. General-Purpose Commands
1C. Communications Commands
1G. Graphics Commands

6. Games

Section 1 (Commands and Application Programs) describes programs intended to be
invoked directly by the user or by command language procedures, as opposed to subrou-
tines, which are intended to be called by the user’s programs. Commands generally
reside in the directory /bin (for bimary programs). Some programs also reside in
/usr/bin, to save space in /bin. These directories are searched automatically by the
command interpreter called the shell. Sub-class 1C contains communication programs
such as cu, send, uucp, etc. These entries may not apply from system to system
depending upon the hardware included on your processor. Some UNIX systems may
have a directory called /usr/lbin, containing local commands.

Section 6 (Games) describes the games and educational programs that, as a rule, reside
in the directory /usr/games.

Each section consists of a number of independent entries of a page or so each. The
name of the entry appears in the upper corners of its pages. Entries within each section
are alphabetized, with the exception of the introductory entry that begins each section.
Some entries may describe several routines, commands, etc. In such cases, the entry
appears only once, alphabetized under its “major” name.

All entries are based on a common format, not all of whose parts always appear:
The NAME part gives the name(s) of the entry and briefly states its purpose.

The SYNOPSIS part summarizes the use of the program being described. A few
conventions are used, particularly in Section 1 (Commands):

Boldface strings are literals and are to be typed just as they appear.

Italic strings usually represent substitutable argument prototypes and program
names found elsewhere in the manual (they are underlined in the typed ver-
sion of the entries).

Square brackets [] around an argument prototype indicate that the argument
is optional. When an argument prototype is given as “name” or “file”, it
always refers to a file name.

Ellipses ... are used to show that the previous argument prototype may be
repeated.

A final convention is used by the commands themselves. An argument begin-
ning with a minus —, plus +, or an equal sign = is often taken to be some sort
of flag argument, even if it appears in a position where a file name could
appear. Therefore, it is unwise to have files whose names begin with —, +, or

Introduction

The DESCRIPTION part discusses the subject at hand.

The EXAMPLE(S) part gives example(s) of usage, where appropriate.
The FILES part gives the file names that are built into the program.
The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic indications that may be produced.
Messages that are intended to be self-explanatory are not listed.

The WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes deficiencies. Occasionally, the
suggested fix is also described.

A table of contents and a permuted index derived from that table precede Section 1.
On cach index line, the title of the entry to which that line refers is followed by the
appropriate section number in parentheses. This is important because there is consider-
able duplication of names among the sections, arising principally from commands that
exist only to exercisc a particular system call.

On most systems, all entries are available on-line via the man (1) command.

J

HOW TO GET STARTED

(This discussion provides the basic information you need to get started on the UNIX sys-

) tem: how to log in and log out, how to communicate through your terminal, and how to
run a program. (See the UNIX System User Guide for a more complete introduction to
the system.)

Logging in. You must dial up the UNIX operating system from an appropriate termi-
nal. The UNIX system supports full-duplex ASCIl terminals. You must also have a
valid user name, which may be obtained (together with the telephone number(s) of
your UNIX system) from the administrator of your system. Common terminal speeds
are 10, 15, 30, and 120 characters per second (110, 150, 300, and 1,200 baud); occa-
sionally, speeds of 240, 480, and 960 characters per second (2,400, 4,800, and 9,600
baud) are also available. On some UNIX systems, there are separate telephone numbers
for each available terminal speed, while on other systems several spceds may be served
by a single tclephone number. In the latter case, there is one “preferred” speed; if you
dial in from a terminal set to a different speed, you will be greeted by a string of mean-
ingless characters (the login: message at the wrong speed). Keep hitting the “break” or
“attention” key until the login: message appears. Hard-wired terminals usually are set
to the correct speed.

Most terminals have a speed switch that should be sct to the appropriate speed and a
half-/full-duplex switch that should be set to full-duplex. When a connection (at the
speed of the terminal) has been established, the system types login: and you then type
your user name followed by the *“return” key. If you have a password (and you
should!), the system asks for it, but does not print (“echo”) it on the terminal. After

"

you have logged in, the “return”, “new-line”, and “line-feed” keys will give exactly the

same result.

(It is important that you type your login name in lower case if possible; if you type
upper-case letters, the UNIX system will assume that your terminal cannot generate
lower-case letters and that you mean all subsequent upper-case input to be treated as
lower case. When you have logged in successfully, the shell will type a $ to you. (The
shell is described below under How to run a program.)

For more information, consult fogin(l), which discusses the login sequence in more
detail, and sty (1), which tells you how to describe the characteristics of your terminal
to the system. The command (profile(4) in The UNIX System Programmer Reference
Manual explains how to accomplish this last task automatically every time you log in).

Logging out. There are two ways to log out:

1. You can simply hang up the phone.

2. You can log out by typing an end-of-file indication (ASCII EOT character, usu-
ally typed as “control-d”) to the shell. The shell will terminate and the login:
message will appear again.

How to communicate through your terminal. When you type to UNIX system, a gnome
deep in the system is gathering your characters and saving them. These characters will
not be given to a program until you type a “return” (or “new-line™), as described above
in Logging in.

UNIX system terminal input/output is full-duplex. It has full read-ahead, which means
that you can type at any time, even while a program is typing at you. Of course, if you
type during output, the output will have interspersed in it the input characters. How-
ever, whatever you type will be saved and interpreted in the correct sequence. There is
w a limit to the amount of read-ahead, but it is generous and not likely to be excceded

unless the system is in trouble. When the read-ahcad limit is exceeded, the system
silently throws away all the saved characters.

How To Get Started

On an input line from a terminal, the character @ “kills” all the characters typed
before it. The character # erases the last character typed. Successive uses of # will
erase characters back to, but not beyond, the beginning of the line; @ and # can be
typed as themselves by preceding them with \ (thus, to erase a \, you need two #s).
These default crase and kill characters can be changed; see stzy(1).

The ASCIH1 DC3 (control-s) character can be used to temporarily stop output. It is use-
ful with CRT terminals to prevent output from disappearing before it can be read. Out-
put is resumed when a DC1 (control-g) or a second DC3 (or any other character, for
that matter) is typed. The DC1 and DC3 characters are not passed to any other pro-
gram when used in this manner.

The ASCII DEL (a.k.a. “rubout™) character is not passed to programs, but instead gen-
erates an interrupt signal, just like the “break”, “interrupt”, or “‘attention” signal. This
signal generally causes whatever program you are running to terminate. It is typically
used to stop a long printout that you do not want. However, programs can arrange
cither to ignore this signal altogether, or to be notified when it happens (instead of
being terminated). The editor ed (1), for example, catches interrupts and stops what it
is doing, instead of terminating, so that an interrupt can be used to halt an editor print-
out without losing the file being edited.

The quit signal is generated by typing the ASCII FS character. It not only causes a
running program to terminate, but also, if possible, generates a file with the ‘“‘core
image” of the terminated process. Quit is useful for debugging.

Besides adapting to the speed of the terminal, the UNIX system tries to be intelligent as
to whether you have a terminal with the *“new-line” function, or whether it must be
simulated with a “‘carriage-return” and “line-feed” pair. In the latter case, all input
*“carriage-return” characters are changed to “line-feed” characters (the standard line
delimiter), and a “carriage-return” and “line-feed” pair is echoed 1o the terminal. If
you get into the wrong mode, the sezy (1) command will rescue you.

Tab characters are used freely in UNIX system source programs. If your terminal does
not have the tab function, you can arrange to have tab characters changed into spaces
during output, and echoed as spaces during input. Again, the stry (1) command will set
or reset this mode. The system assumes that tabs are set every cight character posi-
tions. The rabs (1) command will set tab stops on your terminal, if that is possible.

How to run a program. When you have successfully logged into the UNIX system, a
program called the shell is listening to your terminal. The shell reads the lines you
type, splits them into a command name and its arguments, and executes the command.
A command is simply an executable program. Normally, the shell looks first in your
current directory (see The current directory below) for a program with the given name,
and if none is there, then in system directories. There is nothing special about system-
provided commands except that they are kept in directories where the shell can find
them. You can also keep commands in your own directories and arrange for the shell
to find them there.

The command name is the first word on an input line to the shell; the command and its
arguments are scparated from one another by space and/or tab characters.

When a program terminates, the shell will ordinarily regain control and type a $ at you
to indicate that it is ready for another command. The shell has many other capabilities,
which are described in detail in sk (1).

The current directory. The UNIX system has a file system arranged in a hierarchy of
directories. When the system administrator gave you a user name, he or she also
created a directory for you (ordinarily with the same name as your user name. and
known as your login or home directory). When you log in, that directory becomes vour
current or working directory, and any file name you type is, by default, assumed to be
in that directory. Because you are the owner of this directory, you have full permissions

-6-

How To Get Started

to read, write, alter, or destroy its contents. Permissions to have vour will with other
directorics and files will have been granted or denied to you by their respective owners,
or by the system administrator. To change the current directory use cd(1).

Path names. To refer to files not in the current directory, you must use a path name.
Full path names begin with /. which is the name of the root directory of the whole file
system. After the slash comes the name of cach directory containing the next sub-
dircctory (followed by a /), until finally the file name is rcached (c.g.. /usr/ae/filex
refers to file filex in dircctory ae, while ae is itsclf a subdirectory of usr; usr springs
directly from the root directory). See intro(2) for a formal definition of path name.

If your current directory contains subdirectories, the path names of files therein begin
with the name of the corresponding subdirectory (without a prefixed /). Without
important exception, a path name may be used anywhere a file name is required.

Important commands that modify the contents of files are cp(1), mv. and rm(1), which
respectively copy, move (i.e.. rename), and remove files. To find out the status of files
or directories, use Is(1). Use mkdir(1) for making directories and rmdir(1) for des-
troying them.

For a fuller discussion of the file system, see the references cited at the beginning of the
INTRODUCTION above. It may also be useful to glance through Section 2 of The
UNIX System Programmer Reference Manual, which discusses system calls, even if you
do not intend to deal with the system at that level.

Writing a program. To enter the text of a source program into a UNIX system file, use
ed(1). The principal languages available under the UNIX system are C (see cc(1)),
Fortran (see f77(1)), and assembly language (sec as(1)). After the program text has
been entered with the editor and written into a file (whose name has the appropriate
suffix), you can give the name of that file to the appropriate language processor as an
argument. Normally, the output of the language processor will be left in a file in the
current directory named a.out (if that output is precious, use mv(l1) to give it a less
vulncrable name). If the program is written in assembly language, you will probably
need to load with it library subroutines (see /d(1)). Fortran and C call the loader
automatically.

When you have finally gone through this entire process without provoking any diagnos-
lics, the resulting program can be run by giving its name to the shell in response to the
$ prompt.

If any execution (run-time) errors occur, you will need sdb(1) or adb(1) 10 examine the
remains of your program.

Your programs can receive arguments from the command line just as system programs
do; see exec(2).

Text processing. Almost all text is entered through the editor ed(1). The commands
most often used to write text on a terminal are car(1), pr(1), and nroff. The car(1)
command simply dumps ASCII text on the terminal, with no processing at all. The

pr(1) command paginates the text, supplies headings, and has a facility for multi-
column output.

Surprises. Certain commands provide inter-user communication. Even if you do not
plan to use them, it would be well to learn something about them, because someone else
may aim them at you. To communicate with another user currently logged in, write(1)
is used; mail(1) will leave a message whose presence will be announced to another user
when he or she next logs in. The corresponding entries in this manual also suggest how
to respond to these two commands if you are their target.

When you log in, a message-of-the-day may greet you before the first $.

TABLE OF CONTENTS

1. Commands and Application Programs

introintroduction to commands and application programs
360handle special functions of DASI 300 and 300s terminals
4014paginator for the TEKTRONIX 4014 terminal
450handle special functions of the DASI 450 terminal
acctcomsearchand print process accounting file(s)
adb absolute debugger
admincreate and administer SCCS files
1 .archlve and library maintainer for portable archives
arpdparchive and library maintainer
arcv.,convert archive ﬁles from PDP-11 to common archive format
@5 . . L 4 s e e e s e e e e e e e e e e e s w scommon assembler
aspdp+assemblerfor PDP-11
@88+ . . ¢ s+interpret ASA carriage control characters
at o4 e v v e v v v« . .execule commands at a later time
awkpaternscanning and processing language
banmermake posters
basenamedeliver portions of path names
bcarbitrary-precision arithmetic language
bdif e s bigdiff
bfs e e e e e e ...blgﬁlcscanner
bs.acompiler/interpreter for modest-sized programs
' .« < . .print calendar
calendar.........................rcmindcrservice
catconcatenate and print files
cb. ... o oo o ooC program beautifier
€C v v vt e i e e et e s e et e e e e e e e e . . Ccompiler
ed 0L . .+« . .change worklngdnrcctory
ede ..o L0l .change Lhe delta commentary of an SCCS delta
cflow cflow— generate C flow graph
chmodchange mode
chownchangeowner or group
CMP . v v v v v 4 v e s v o e e s e a e a e v« .« . .compare two files
col e e e e vfilter reverse line-feeds
comb eeee......combineSCCS deltas
comm.selectorrejectlines common to two sorted files
convertconvertobject and archive files to common formats
CP v ¢ ¢ v s i it i e e e e e e e e e e s s« .cOpY, link or move files
CPI0 . = . v . s v e 4 v e v e ecopyfilearchives in and out
CPP + « + « « « « ¢ e 4 e e s s etheC language preprocessor
crontabusercrontab file
CIYPt + &« « v v .t i e i i e i e e e v e e s e e e .. .encode/decode
esplitcontextsplit
Cle v ¢ v v v v o v v v 4 v e v s e+ . . .Spawn getly to a remote terminal
ctrac€ét v v e e e . Cprogram debugger
€U v v v v vt et e e call another UNIX system
cutcutoutselected fields of each line of a file
exrefpgenerate C program cross-reference
date.printand set the date
« + « « « « . .desk calculator

W dd e ¢« « « « « . .convert and copy a file

- |

deltamakcadelta (change) to an SCCS file
df differential file comparator
diff3 e e .3-way differential file comparison
difmkmarkdifferences between files

Table of Contents

diremp et odirectory comparison
du . . . s e e e e e e e e e e e e e« .summarize disk usage
dump. . .« v v« e e e+ oo« odumpsclected parts of an object file
€Cho + v v v 4 v s e i e e i e s e 4 e s s e v e e . . .echoarguments
€0 vt e s e v . . texteditor
edit . . v v v v« v+ ... texteditor (variant of ex for casual users)
el¢.e¢.eeeee....Extended Fortran Language
emable.«......cnable/disable LP printers
NV . « « « « s« s v e+ s« « .« . .setenvironment for command execution
X + v e s . . . texteditor
@XPI + + « « « « « « « « « « + « « . «evaluate arguments as an expression
f77 « v « v v v e v e e v e e e v e e s e . .Fortran 77 compiler
fACtOr + v « 4 « e & e 4 « e s e e s e s s e s v o« .factora number
file © v v v v v i i e e e e e s e e e e e« . .determine file type
find L0 e e e e e e e e« s o o . .find files
fsplitsphtﬂ7ratfororcﬂﬁlcs
gdevgraphical device routines and filters
ged e et e e e e .graphical editor
BBl o v v v e e e e e e e e e e e e e e getavcrsmnofanSCCSﬁle
BEOPL « < « « + « + « s s + 4 e s s e e e o« . . .parsccommand options
grapht odrawagraph
graphicsaccess graphical and numerical commands
greek ot v s e u e e .. .select terminal filter
Br€P + « « « « « s s o s o s s e s e oo« . .searcha file for a pattern
gutil+pgraphical utilitics
help e e e e e e . « . .« . .ask for help
hp . handlc apecna] functlons of Hewlelt Packard 2640 and 2621-series terminals
hpioHewlett-Packard 2645A terminal tape file archiver
hyphcn.......................ﬁndhyphenatedwords
id . .« . v s s s e e e e e oprintuser and group IDs and names
jpermremove a message queue, semaphore sct or shared memory id
ip¢s . .« .«reportinter-process communication facilities status
L .rclauonaldalabaseopcrator
kasbassemblcr/un assembler for the KMCI11B microprocessor
kil « oo o v v el . « . . .terminate a process
Id . . . e e e e e s e e e e e e lnnkednorforcommonobjectﬁlcs
pdp . « v v v s e e e e e e e e e e e e e e e e e v v o . link editor
lex« ¢¢.generate programs for simple Iexlcal tasks
linc.............................readonchne
lint + . .+ v v e v v v ees e aewaeso..aCprogram checker
login...............................signon
I0BNAME « « « « « « « o s o s s 4 s o e s s w e o+« o« . .getlogin name
lorder00 e e ﬁndordcrmg relation for an object library
P .send/cancel requests to an LP line printer
Ipstat s v v e+print LPstatus information
IS v v v v e e e e e e e e e e e e e e w e« . .listcontents of directory
MA & v v v v 4 e 4 e s e s s e e s e s e e e s e s s . . Mmacro processor
machid prov1de truth value about your processor type
mailscndmalltousersorrcadmanl
mailX+« .+ ..«interactive message processing system
makemaintain, update, and regeneratc groups of programs
makekeygenerate cncryption key
MAN + « « « « « o « = « « « s o « « « « + « « .print entries in this manual
MESE o o « « » « o o o o s s s o o « o « « « « - - permit or deny messages
MKAir « « v v v ¢ « « 4 ¢ e s e e w e s e s s e s« . . .makeadirectory
Net « « « « v « v+ o o « + « « « « « «execute a command on the PCL network
newform+« < .o v+« .« « . .changethe formatof a text file

-2-

Table of Contents

MEWEIp .+ « . ¢ v v . . . v vtttlogintoa new group
MEWS & . o . . s i i s e s e e e e u sprint news items
MCE v v v v v v e e e e e e e e e e e e . run a command at low priority
nl..........................linenumberingﬁlter
mprint name list of common object file
nmpdpprint name list
nohuprunacommand immune to hangups and quits
od..............................octaldump
pack.compressand expand files
passwdchange login password
pastemerge same lines of several files or subsequent lines of one file
Pg. .«fileperusal filter for soft-copy terminals
Pr. v v v v v et e s s s s e s s e e e e o w e . . . print files
prof e e . display profile data
PlS « « « . ¢ . . . et vprintanSCCS file
ps..........................reportprocessstatus
PLX. « . oo v v oo oo oo w opermuted index
pwd........................workingdirccloryname
ratforrational Fortran dialect
regemprecgular expression compile
rjestat L L. .. RJE status report and interactive status console
m eremove files or directories
rmdelremoveadelta froman SCCS file
sactprintcurrent SCCS file editing activity
SAB . . . v . v e osystem activity graph
SAr .«ot o .4 esystem activily reporter
SCC . ¢ v v e e e e e e e e e e Ccompllcr for stand-alone programs
scesdiff compare two versions of an SCCS file
sdb . . L L e e . .+ . .symbolic debugger
sdiff . . .o 0oL, .sndc -by-side difference program
sed . . L. Lo « « « « « .+ . .stream editor
send, e gathcr ﬁles and/or submit RJE jobs
sh.shel thc slandard/rcstncled command programming language
shl..........................shelllaycrmanager
size.oprintsection sizes of common object files
sizepdp . . L L L L L s e e e e e . print sizes of object files
sleepsuspend exccution for an interval
M0SNOBOL interpreter
sortsortand/or merge files
spell..........................ﬁndspcllingerrors
spline interpolate smooth curve
split.........................sphtaﬁlemtopleces
statstatistical nctwork useful with graphical commands
strip strip symbol and line number information from a common object file
strippdpremovesymbols and relocation bits
Sty .« . o wsetthe options for a terminal
SU .«become super-user or another user
SUM . « + & v 0 v . . « « « . print checksum and block count of a file
Sym€update the super block
tabs.settabsona terminal
taill ..o o s, . deliver the last part of a file
taro o Lo o oo1tape file archiver
lee . . v . v e e s oo oo oo pipe fitting
testcondition evaluation command
time L ., . « . .lime a command
timextimea command; report proccss data and system activity
to¢cgraphical table of contents routines

.
.

-3-

Table of Contents

touch « « « « « « + « « .« . . .update access and modification times of a file
POt + v v o e e e e e e e s e e e e w e e e« . . graphics filters
tPUL & & @« « v 4 e s e e w s s e s« o« . «query terminfo database
LF v 4 4 o s e v s s o s 4 e e s s e s s s e« s . .translate characters
LTUE + + « & o ¢ « o o o o o o o s o o s o« s+« « .provide truth values
BSOTL + & + 4 o « o o« o « o o o s o o o o « o « o+« « . .«topological sort
Y & v v e e e e e e e e e e e e e e gctlhenameofthetermmal
UMask .+ « « « « « « « e« e« v o s s+« o . .sectfile-creation mode mask
UNAME . « « « « « « « « « « « « « « o o print name of current UNIX system
unget . .« « « « « + « s+« « « .+« .. .undoa previous get of an SCCS file
UNIG & v v v v v e e e e e e e e e e e e .reportrepeatedlinesinaﬁle
UNIS + v v v v v v e e e e e e e e .« « « .« . .conversion program
UUCD « o o o o o o o o o o o o o o o o .UNleyslemtoUNIXsystemcopy
UUSEAL « « « « o + o o o o « o o« « « « « »uuCp status inquiry and job control
WULO + « ¢ « « + s « o o « « + « « «public UNIX-to-UNIX system file copy
UUX « « o « « o+ o o o « o« + o« UNIX-to-UNIX system command execution
valvalidatcSCCSﬁ]e
2 version control
Vi o v v v s 4+ e s« . . .SCreen- onented (vnsual) dlsplay editor based on ex
VDT + « « e s st s e a v e e e e e s e« . . Versatec printer spooler
WAL o v v o o 0 o o v a e e e e e e e e e e .awaitcompletionofprocess
WE o v o o o o o ot ot e e e e e e e e e e e e e . + . word count
what|denufySCCSﬁles
Who +» v v v+ v v e e e v vt e e s e e .whoison the system
WHLE < o« « « o o o o « o o « « « o « o « s s « « o owrite to another user
Xargs . « « « « « « « « « . . cCORStruct argumem list(s) and execute command
YACC & v v o o o v v o o e e e e e e s . yet another compiler-compiler

6. Games

INFO + & & = + o = o o « o« o v a o s« s+ s« + + « .introduction to games
arithmetic « « « « « « o o « « « « « « + « « « «provide drill in number facts
BACK . « + + « + 4 4 e 4 e e e e o e s s« o« o« .the game of backgammon
Bj « « « v 4t e e e e e e .thegameof black jack
CHESS « = = + « « o 4 s e e v e v e s o s e e oo .thegame of chess
CIAPS + « o o « « o o o ¢ s+ o s o s o v oo« o+« . «the game of craps
hangman . . « « « « « « « « o« e 4 s s o+ o+« « .+ o . pguessthe word
JOWO ' o v v e v o s o o a o v e u e e e u e e e . . .secret word game
MAZE « « = « o o o « o o « s+ s o o s o o« « « » « « « « «generate a maze
INOO = « « o « + o o o o o s o o o o s o s s o o o o« « « .guessing game
QUIZ + « « o o o o« et u e e e e u e e e s« o+« . testyour knowledge
FEVEISi + o o o o « « « o s = « « o o « « « .+ »agame of dramatic reversals
sky..........................obtainephemerides
BE o o e o b e e e e e e e e e e e e s e e s e e e e e e . . . tic-tac-toe
wump....................thcgameofhuntthe-wumpus

PERMUTED INDEX

70boot:

archiver. hpio: HP

300: DASI

terminals.

300: DASI 300 and

[3tol: convert between
comparison. diff3:
TEKTRONIX 4014 terminal.
paginator for the TEKTRONIX
of the DASI 450 terminal.
special functions of the DASI
procedures.

operations.

{77: Fortran

operations.

integer and base-64 ASCI11/

program.

value.

adb:

abs: return integer

abs: Fortran

/floor, ceiling, remainder,
requests.

of a file. touch: update
utime: set file

accessibility of a file.
commands. graphics:
machine-independent/ sputl:
sadp: disk

Idfen: common object file
copy file systems for optimal
getutent:

access: determine

acctdisk: overview of
cnable or disable process
acctconl: connect-time
acctprcl: process

shell procedures for
diskusg: generate disk

acct: per-process

search and print process
acctmerg: merge or add total
mclock: return Fortran time
summary from per-process
fwtmp: manipulate connect
runacct: run daily

process accounting.

file format.

per-process accounting/
process accounting file(s).
accounting.

accounting

accounting files.

intrinsic function.
killall: kill all
sag: system

sal: system

sar: system

11/70 bootstrap procedures. . . . , . 70buot (8)
2645A terminal tape file hpio(1)

300 and 300s terminals., . . . 300(1)

300: DASI 300 and 300s 300(1)

300s terminals. 300(1)
3-byte integers and long/ 13t01(3C)
3-way differential file diff3(1)
4014: paginator forthe 4014(1)
4014 terminal. 4014:, . 4014(1)

450: handle special functions 450(1)

450 terminal. 450: handle 450(1)
70boot: 11/70 bootstrap 70boot(8)
7500ps: VAX-11/750 console 7500ps(8)
77 compiler. r77Q1)
7800ps: VAX-11/780 console 7800ps(8)
a64l: convert betweenlong 2641(3C)
abort: generate an IOT fault. abort(3C)
abort: terminate Fortran abort(3F)
abs: Fortran absolute value. abs(3F)

abs: return intcger absolute abs(3C)
absolute debugger. adb(1)
absolute value. abs(3C)
absolutevalue. abs(3F)
absolute value functions. floor(3M)
accept: allow/prevent LP, . accept (1M)
access and modification times touch(1)
access and modification times. utime(2)
access: determine access(2)
access graphical and numerical . . graphics(1G)
access long integer dataina sputl(3X)
access profiler. sadp(1M)
access routings. Idfen(4)
access time. deopy: dcopy(1M)
access utmp fileentry. getut(3C)
accessibilityofafile. access(2)
accountingo acct(1M)
accounting. acct: acct(2)
accounting. acctcon(1M)
accounting. acctpre(1M)
accounting. chargefee: acctsh(1M)
accounting data by user ID. diskusg(1M)
accounting file format. acct(4)
accounting file(s). acctcom: acctcom(1)
accounting files. acctmerg(1 M)
accounting. 0 mclock (3F)
accounting records. /command . acctems(1M)
accounting records. fwimp(1 M)
accounting. o4 ... runacct(1M)
acct: enablcordisable acct(2)

acct: per-process accounting acct(4)
acctems: command summary from . . . acctcms(1M)
acctcom: search and print acctcom(1)
accteonl: connect-time, . acctcon(1M)
acctdisk: overviewof acct(1M)
acctmerg: merge or add total acctmerg(1M)
acctprcl: process accounting. acctprc(1M)
acos: Fortran arccosine acos(3F)
active Processes. killall(1 M)
activity graph. sag(1G)
activity report package. sar(1M)
activity reporter. sar(1)

Permuted Index

current SCCS file editing
report process data and system
interface.

acu: Automatic Call Unit

acctmerg: merge or
putenv: change or

SCCS files.

admin: create and

of complex argument.
intrinsic function.

alarm: set a process
clock.

brk: change data segment space
malloc: main memory
malloc: fast main memory
accept:

boolean functions.

disk packs. format: format
sort: sort

send: gather files
functions.

link editor output.
mkboot: convert

link editor output.
maintainer.

maintainer for portable/

format.

language. bc:

acos: Fortran

maintainer. ar:

for portable archives. ar:
cpio: format of cpio

ar: common

ar:

common format. arcv: convert
Idahread: read the

HP 2645A terminal tape file
tar: tape file

maintainer for portable

cpio: copy file

asin: Fortran

atan2: Fortran

atan: Fortran

from PDP-11 to common format.
imaginary part of complex
return Fortran command-line
varargs: handle variable
formatted output of a varargs
formatted output of a varargs
command. xargs: construct
getopt: get option letter from
expr: evaluate

echo: echo

be: arbitrary-precision
number facts.

expr: evaluate arguments

characters. asa: interpret
control characters.

ascii: map of

set.

activity. sact: print. sact(1)
activity. /time a command; timex(1)
acu: Automatic Call Unit (ACU) . . . acu(7)
(ACU) interface. acu(?)
adb: absolute debugger. adb(l)
add total accounting files. acctmerg(1M)
add value to environment. putenv(3C)
admin: create and administer admin(1)
administer SCCSfiles. admin(1)
aimag: Fortran imaginary part aimag(3F)
aint: Fortran integer part aint(3F)
alarmclock. alarm(2)
alarm: sct a process alarm alarm(2)
aliocation. e e e e e brk(2)
allocator. malloc(3C)
allocator. . v v v v v v v e e malloc(3X)
allow/prevent LP requests. accept(1M)
and, or, xor, not: Fortran bool(3F)
and/or check RP06 and RMO5 format(1M)
and/or merge files. sort(1)
and/or submit RJE jobs. send(1C)
anint; Fortran nearest integer round(3F)
a.out: common assemblerand a.out(4)
a.out file to boot image. mkboot(IM)
a.out: PDP-11 assemblerand a.out.pdp(4)
ar: archive and library ar.pdp(])
ar: archiveand library ar(1)

ar: archive file format. ar.pdp(4)
ar: common archive file ar(4)
arbitrary-precision arithmetic be(1)
arccosine intrinsic function. acos(3F)
archive and library ar.pdp(1)
archive and library maintainer ar(l)
archive. v v v v 0. . cpio(4)
archive file format. ar(4)
archive file format. ar.pdp(4)
archive files from PDP-1110 arcv.pdp(1)
archive header ldahread (3X)
archiver. hpio: hpio(1)
archiver. .« . . v v v v v 0 0. tar(1)
archives. /archive and library ar(l)
archivesinandout. cpio(l)
arcsine intrinsic function. asin(3F)
arctangent intrinsic function. atan2(3F)
arctangent intrinsic function. atan(3F)
arcv: convert archive files arcv.pdp(1)
argument. aimag: Fortran aimag(3F)
argument. etarg: getarg (3F)
argument list. varargs(S)
argument list. vprintf: print vprimf(3S)
argument list. vprintf: print vprimf(3X)
argument list(s) and exccute xargs(l)
argument vector. getopt(3C)
arguments as an expression. expr(1)
ATRUMCALS. < o « o & ¢ o o o o o o o echo(l)
arithmetic language. be(l)
arithmetic: provide drillin arithmetic(6)
as an expression. e oeewexpr(l)

as: assembler for PDP-11. as.pdp(1)
as: common assembler. as(1)

ASA carriage control asa(l)

asa: interpret ASA carriage asa(l)
ASCII characterset. ascii(5)
ascii: map of ASCII character ascii(5)

-2-

-

™

™

long integer and basc-64
intrinsic function.

help:

output. a.out; common
output. a.out: PDP-11
as: common

as:

KMCI1IB kasb:
assertion.

assert: verify program
sctbuf:

qasurvey: Quality

kl: KL-11 or DL-11
/DZ-11, DZ-11/KMC-11B, DH-11
intrinsic function.
intrinsic function.
interface. acu:

wait:

processing language.
ungetc: push character

back: the game of

UNIX system file system
finc: fast incremental
frec: recover files from a
print, initialize, update

terminal capability data
between long integer and
portions of path names.
arithmetic language.

update bad information

cb: C program
JO. j1. jn, yO, y1, yn:

cpset: install object files in
fread:

bsearch:

tsearch: manage

remove symbols and relocation

bj: the game of

bcopy: interactive

sum: print checksum and
sync: update the super

df: report number of free disk
and, or, xor, not: Fortran
mkboot: convert a.out file to
UNIX system startup and
romboot: special ROM
70boot: 11/70

tapeboot: magnetic tape
diskboot: disk

shell scripts.

allocation.

modest-sized programs.
sorted table.

stdio: standard

N sctbuf: assign
mknod:

dmc: communications link with

swab: swap

ASCII string. /convert between

asin: Fortran arcsine, .

ask for help.

assembler.
assembler for PDP-11.
assembler/un-assembler for the
assert: verify program
asscrtion.

Assurance Survey,
asynchronous interface.
asynchronous multiplexers.
atan: Fortran arctangent
atan2: Fortran arctangent

Automatic Call Unit (ACU) . .
await completion of process. . .

awk: pattern scanning and
back into input stream.

back: the game of backgammon.

backgammon.
backup. /daily/weekly
backup.
backup tape.
bad information bdbik:
banner: make posters.

base. terminfo:
base-64 ASCII string. /convert
basename, dirname: deliver
be: arbitrary-precision

bcopy: interactive block copy. . .

bdblk: print, initialize,

bdiff: bigdiff.

beautifier.
Bessel functions.
bfs: big file scanner.
binary directories.
binary input/output.

binary search trees.
bits. strip:
bj: the game of black jack.
black jack.
block copy.
block count of a file.
block.

boolean functions.
boot image.
boot procedures. unixboot:
bootstrap loaders.
bootstrap procedures.
bootstrap program.
bootstrap programs.
bre: system initialization
brk: change data segment space
bs: a compiler/interpreter for
bsearch: binary search a
buffered input/output package.
buffering 10 a strecam.
build special file.
built-in DDCMP protocol.
bytes.

-3.

assembler and link editor
assembiler and link editor

assign buffering to a stream. . .

........
...........
.........

........

.

binary scarch a sorted table. . .

............

.......
DR
.......

Permuted Index

. 2641(3C)

. . . asin(3F)

. . . help(D)

.« . aout(4)

. « . a.out.pdp(4)
.« .oas(h)

.« . as.pdp(l)

. kasb(1)

. . . assert(3X)
. . . assert(3X)
. . . setbuf(3S)
.+ . qasurvey(IM)
. . . klpdp(D
.. dz(7)

. . . atan(3F)
. . . atan2(3F)
.w.oacu(D

. o owait(l)
.. .oawk(D)

. . . ungetc(3S)

. back(6)

. . . back(6)

.« .« filesave(1M)
. . . fincOM)

v oo frec(IM)

. . . bdblk(1M)
. . . banner(1)

. . . terminfo(4)

. . a64l(3C)

. . . basename(1)
. . . be(l)

.« . beopy(1M)
. . . bdblk(1M)
. . . bdiff(1)
.. .ocb(l)

.+ . bessel(3M)
. . . bfs(1)

.« . cpset(1M)
. . . fread(3S)

. . . bsearch(3C)
. . . tsearch(3C)
.« . strip.pdp(1)
... bj(6)

.. by

.« . mkboot (1 M)
.« . unixboot(8)
. . . romboot(8)
. . . 70boot(8)

. . . lapeboot(8)
. . . diskboot(8)
.« . brc(IM)

. brk(2)

... bs(D)
.« . bsearch(3C)
. . . s1dio(38)
. . . sctbuf(3S)
.« . mknod(1M)
. e . dme(7)
. . . swab(3C)

Permuted Index

cc:
programs. scc:
cflow: generate
cpp: the

cb:

lint: a

cxref: generate
ctrace:

dc: desk
cal: print

cu:

data returned by stat system
acu: Automatic

intro: introduction to system
link and unlink system

to an LP line printer. Ip,
terminfo: terminal

pnch: file format for

asa: interpret ASA

files.

commentary of an SCCS delta.
value/ floor: floor,

delta: make a delta

pipe: create an interprocess
stream. ungetc: push

user. cuserid: get

stream. getc: get

putc: put

ascii: map of ASCII
interpret ASA carriage control
toupper: translate

isalpha: classify

tr: translate

for accounting.

directory.

fsck: file system consistency
packs. format: format and/or
checking procedure.

lint: a C program

pwck: password/group file
checkall: faster file system
copy file systems with label
systems processed by fsck.
file. sum: print

chess: the game of

times: get process and
terminate. wait: wait for

of a file.

for a command.

isalpha:

uuclean: uucp spool directory
clri:

alarm: set a process alarm

Ccompiler. cc(l)

C compiler for stand-alone scc(1)
Cflowgraph., clow(1)

C language preprocessor. cpp(l)

C program beautifier. cb(1)

C program checker. lint(1)

C program cross-reference. cxref(1)

C program debugger. ctrace(1)
cal: print calendar. cal(1)
calculator. de(D)
calendar. cal(1)
calendar: reminder service. calendar(1)
call another UNIX system. cu(1C)
call. stat: stat(5)
Call Unit (ACU) interface. acu(7)
calls and error numbers. intro(2)
calls. link: exercise link (1M)
cancel: send/cancel requests Ip(1)
capability data base. terminfo(4)
card images: pnch(4)
carriage control characters. asa(t)

cat: concatenate and print ., cat(1)

cb: C program beautifier. cb(1)

cc: Ccompiler. ce(1)

cd: change working directory. cd(1)

cdc: change thedelta cde(1)
ceiling, remainder, absolute, . floor (3M)
cflow: generate C flow graph. cflow(l)
(change) toan SCCS file. delta(1)
chanmel. pipe(2)
character back intoinput ungetc(3S)
character login name of the cuserid (3S)
character or word froma getc(3S)
character or word on a stream. putc(3S)
characterset. ascii(5)
characters. asa: asa(l)
characters. conv(3C)
characters. ctype(3C)
characters. tr(1)
chargefee: shell procedures acctsh(1M)
chdir: change working chdir(2)
check fsck(1M)
check RP06 and RMOS disk format(1M)
checkall: faster file system checkall(1M)
checker., lint(1)
checkers. pwek(1M)
checking procedure. checkall (1M
checking. volcopy: volcopy (1M)
checklist: listof file checklist(4)
checksum and block count of a . sum(l)
chess. L. chess(6)
chess: the game of chess. chess(6)
child process times. times(2)
child process tostopor wait(2)
chmod: changemode. chmod(1)
chmod: change mode of file. chmod(2)
chown: change owner and group chown(2)
chown: change owner or group. . chown(1)
chroot: change root directory. chroot(2)
chroot: change root directory chroot (1M)
classify characters. ctype(3C)
clean-up. uuclean(1M)
cleari-node. clri(1M)
clock. alarm(2)

o

cron:

Idclose:
close:
descriptor.
fclose:

line-feeds.

comb:

common to two sorted files.
nice: run a

change root directory for a
env: set environment for

uux: UNIX-to-UNIX system
system: issue a shell

quits. nohup: run a

net: exccute a

getopt: parse

/shell, the standard/restricted
and system/ timex: time a
per-process/ acctems:
system: issue a shell

test: condition evaluation
time: time a

argument list(s) and cxccute
getarg: return Fortran

at: execute

access graphical and numerical
install: install

intro: introduction to
introduction to maintenance
how to remake the system and
network uscful with graphical
cdc: change the delta

ar:

ceditor output. a.out:

as:

archive files from PDP-11 1o
object/archive files to
function. logl0: Fortran
routines. ldfen:

rcading. Idopen: open a
Idclose: close a

rcad the file header of a

seck 1o the symbol table of a
line number entries in a

am: print name list of
relocation information for a
scnhdr: section header for a
table format. syms:

filehdr: file header for

Id: link editor for

size: print section sizes of
comm: select or reject lines
ipes: report inter-process
ftok: standard interprocess
pel: parallel

uilt-in DDCMP protocol. dmc:
diff: differential file

cmp:

SCCS file. scesdiff:
functions. lge: string

Permuted Index

clock daemon. cron(1M)
clock: report CPU time used. clock (3C)
close a common object file. ldclose(3X)
close a file descriptor. close(2)
close:closeafile close(2)
close or flush a stream. fclose(3S)
clri: clear i-node. v o clei(IM)
cmp: compare two files. cmp(1)
col: filter reverse col(1)
comb: combine SCCS deltas. comb(])
combine SCCS deltas. comb(1)
comm: select or reject lines comm(1)
command at low priority. nice(1)
command. chroot: chroot(1M)
command execution. oenvl(l)
command execution. uux(1C)
command from Fortran. system (3F)
command immune to hangups and . . . nohup(l)
command on the PCL network. .. .onet(10)
command options. getopt (1)
command programming language. . . . sh(1)
command; report process data timex (1)
command summary from acctems(1M)
command.0 . 0. . .. system(3S)
command. oo test(1)
command. 0 time(l)
command. xargs: construct xargs(1)
command-line argument. getarg(3F)
commands at a later time. at(1)
commands. graphics: graphics(1G)
commands. install (1M)
commands 04 intro(l)
commands intro: intro(IM)
commands. mk: mk(8)
commands. stat: statistical stat(1G)
commentary of an SCCS delta. cdc(l)
common archive file format. ar(4)
common assembler and link a.out(4)
common assembler. as(l)
common format. arcv: convert arcv.pdp(l)
common formats. /convert convert{l)

common logarithm intrinsic

. logl0(3F)

common object file access ldfen(4)
common object filefor ldopen(3X)
common object file. 1dclose(3X)
common object file. ldfhread: Idfhread(3X)
common object file. Idtbseek: Idtbseek (3X)
common object file. linenum: lincnum(4)
common object file. nm(1)
common object file. reloc: reloc(4)
common object file. scnhdr(4)
common object file symbol syms(4)
common object files. filehdr(4)
common object files. 1d(1)
common object files. size(1)
common to two sorted files. comm(l)
communication facilities/ ipes(1)
communication package. stdipc(3C)
communications link interface. pcl(7)
communications link with, dme(?)
comparator. o4 o0 . o4 . . . diff (1)
compare twofiles. cmp(l)

compare two versionsof an
comparision intrinsic

-5-

. scesdiff(1)

stremp(3F)

Permuted Index

diff3: 3-way differential file
dircmp: directory
cxpression. regcmp:
regexp: regular expression
regemp: regular expression
term: format of

cc: C

f77: Fortran 77

programs. scc: C

protocol machine. vpmc:
tic: terminfo

yacc: yet another
modest-sized programs. bs: a
crf: crror function and
wait: await

Fortran imaginary part of
function. conjg: Fortran
pack:

table entry of a/ !dibindex:
cat:

test:

system.

program. vcf: VAX-11/780
config:

system. |padmin:
conjugate intrinsic function.
conjg: Fortran complex
fwtmp: manipulate
KMC11-B dmkset:

an out-going terminal line
vpmsct:

acciconl:

fsck: file system

vix: VAX-11/780 LSI
7500ps: VAX-11/750
7800ps: VAX-11/780
math: math functions and
mkfs:

execute command. xargs:
Is: list

toc: graphical table of
csplit:

asa: interpret ASA carriage
1octl:

fentl: file

init: process

dmk: DM11-BA modem
msgctl: message

semctl: semaphore

shmetl: shared memory
fentl: file

uucp status inquiry and job
vc: version

interface. tiy:

terminals. term:

int: explicit Fortran type
units:

dd:

image. mkboot:

PDP-11 to common/ arcv:
integers and long/ 13tol:
and base-64 ASCII/ a64l:
object/archive files to/
string. ctime:

COMPAriSOM. . v « v o v & v o o +
COMPArison. .+ + « « & « « & . e
compile and execute regular

compile and match routines.
compile. .

diff3(1)
dircmp(1)
regemp(3X)
regexp(5)

. regemp(1)

compiled termfile.. term(4)
compiler. ce(1)
compiler. f71701)
compiler for stand-alone sce(1)
compiler for the virwal vpme.dec(1M)
compiler. c e tic(IM)
compiler-compiler. yace(l)
compiler/interpreter for bs(l)
complementary error function. . erf(3M)
completion of process. « o wait(1)

complex argument. aimag:

. aimag(3F)

complex conjugate intrinsic conjg(3F)
compress and expand files. pack (1)
compute the index of a symbol Idtbindex(3X)
concatenate and print files. cat(l)
condition evaluation command. test(l)

config: configure a UNIX config.dc(1M)
configuration verification . .ovefUM)
configure a UNIX system. config.dc(1M)
configure the LP spooling Ipadmin(1 M)
conjg: Fortran complex conjg(3F)
conjugate intrinsic function. , conjg(3F)
connect accounting records, fwtmp(1M)
connect DM11-BA modemsto dmkset(1M)
connection. dial: establish , . dial(3C)

connect/load VPM drivers
conncct-time accounting.

. vpmset(1M)
. accteon(1 M)

consistencycheck fsck(1M)
console floppy interface. vIx(1M)
console operations. 7500ps(8)
console operations. 7800ps(8)
constants. math(5)
construct a filesystem. mkfs(1M)
construct argument list(s) and .o xargs(l)
contents of directory. Is(]}
contents routines. toc{IG)
context split. e e e csplit(1)
control characters. asa(l)
control device. ioctl(?)
control. e e e e fentl(2)
control initialization. init(1M)
control multiplexor. dmk(7)
control operations. msgetl(2)
control operations. semctl(2)
control operations. shmcti(?)
control options. fenl(5)
control. uustat: uustat(1C)
control.ovel(l)
controlling terminal 1uy(7)
conventional names for term(5)
conversion. e e e e e e e . ftype(3F)
CONVErSION program. units(1)
convert and copy a file. . . ., dd(1)
convert a.out file to boot mkboot (1 M)
convert archive files from . arcv.pdp(1)
converl between 3-byte 13101(3C)
convert between long integer . u641(3C)
convert: convert convert(1)

convert date and time 10

D

-6 -

ctime(3C)

and VAX-11/780 systems. fscv;
to string. ecvt:

scanf:

to common formats. convert:
double-precision/ strtod:
strtol:

dd: convert and

beopy: interactive block

cpio:

access time. dcopy:

checking. volcopy:

cp, In, mv:

UNIX system to UNIX system
UNIX-t0-UNIX system file
file.

core: format of

mem:

function.

cosine intrinsic function.

cos: Fortran

cosh: Fortran hyperbolic

sum: print checksum and block
wc: word

files.

cpio: format of

and out.

preprocessor.
binary directorics.

clock: report
craps: the game of

system crashes.

what to do when the system
rewrite an existing one.

file. tmpnam:

an existing one. creat:

fork:

tmpfile:

channcl. pipe:

files. admin:

umask: set and get file

crontab: user

cxref: generate C program
optimization package. curses:

encryption.

terminal.
for terminal.
to string.

activity. sact: print
unpame: print name of
uname: get name of

slot in the utmp file of the
getcwd: get path-name of
and optimization package.
spline: interpolate smooth
name of the user.

Permuted Index

convert files between PDP-11 ., fscv.vax(1M)
convert floating-point number ecvt (3C)
convert formatted input. scanf(3S)
convert object/archive files convert(l)
convert Stringto . + + « striod(3C)
convert string to integer. strtol(3C)
copyafilee. dd(1)

COPY. v o v v e e e e e e e e e e beopy (1 M)
copy file archivesinandout. cpio(l)
copy file systems for optimal deopy(1M)
copy file systems with label volcopy (1M)
copy, link or move files. cp(l)

COPY. UUCP: =+ v v v o v o v 0 v 4 s uucp(1C)
copy. uute: public uuto(1C)
core: format of core image core(4)
core image file. corc(d)
COrEMEMOrY. . « « « « o« « « + + « o mem(7)
cos: Fortran cosine intrinsic cos(3F)
cosh: Fortran hyperbolic cosh(3F)
cosine intrinsic function. cos(3F)
cosine intrinsic function. cosh(3F)
countofafile. sum(1)
COUNL. v v v v v e v e e e e e e a s we(l)

cp, In, mv: copy. link or move cp(l)
cpioarchive. cpio(d)
cpio: copy file archivesin cpio(1)
cpio: format of cpio archive. cpio(4)
cpp: the C language cpp(l)
cpset: install object filesin cpscttM)
CPUtimeused. clock(3C)
Craps. .+ « v v v v v v v o o o o . . craps(6)
craps: the game of craps. craps(6)
crash: examine system images. crash(1M)
crash; what todo whenthe crash.dec(8)
crashes. crash: crash.dec(8)
creat: create a new filcor creat(2)
create a name for a temporary tmpnam(3S)
create a new file or rewrite creat(2)
create a new process. fork(2)
create a temporary file. tmpfile(3S)
create an interprocess pipe(2)
create and administer SCCS admin(1)
creationmask. umask(2)
cron: clock daemon. cron(IM)
crontabfile. crontab(1)

crontab: user crontab file.

. crontab(l)

cross-reference. cxref(1)
CRT screen handlingand curses(3X)
crypt: encode/decode. crypt(1)
crypt: generate DES crypt(3C)
csplit: context split. esplit(1)

ct: spawn getty toa remote ct(1C)
ctermid: generate file name ctermid(3S)
ctime: convert date and time clime(3C)
ctrace: C program debugger. ctrace(1)
cu: call another UNIX system. . .ocauQ1€)
current SCCS file editing sact(1)
current UNIX system. uname(1)
current UNIX system. uname(2)
current user. /findthe tyslot(3C)
current working directory. getewd (3C)
curses: CRT screen handling curses(3X)
CUIVE. v v v v v v v e o o o e e spline(1G)
cuserid: get character login cuserid(3S)

-7-

Permuted Index

of each line of a file. cut: cut out selected fields cut(l)

each line of a file. cut: cut out selected fieldsof cut(1)
cross-reference. cxref: generate C program cxref(1)
cron:clock daemon. cron(1M))
errdemon: error-logging daemon. cerrdemon(1M)
terminate the error-logging daemon. errstop: . .+ errstop(1M)
runacct: run daily accounting. runacct(1 M)
system backup. filesave: daily/weekly UNIX system file filesave(1M)
300: DASI 300 and 300s terminals. 300(1)
special functions of the DASI 450 terminal. /handle 450(1)
/time a command; rcport process data and system activity. timex(1)
terminfo: terminal capability database. terminfo(4)
generate disk accounting data by user ID. diskusg: diskusg{(1M)
sputl: access long integer data in a machine-independent/ sputl(3X)
plock: lock process, text, or datainmemory. plock(2)
prof: display profile data., prof(1)
call. stat: data returned by stat system stat(5)
brk: change data segment space allocation. brk(2)
types: primitive system datatypes. types(5)
join: relational database operator. join(1)
tput: query terminfo database. tput(1)
ctime: convert date and time tostring. ctime(3C)
date: print and set the date. date(1)
date: print and set thedate. date(1)
dc: desk calculator. de(1)
optimal access time. dcopy: copy file systems for dcopy (1 M)
dd: convert and copy a file. dd(1)
/link with built-in DDCMP protocol. dmc(7)
adb: absolute debugger. adb(1)
ctrace: C program debugger. ctrace(l)
fsdb: file system debugger. fsdb() M)
sdb: symbolic debugger. sdb(1) ' ﬁ
sysdef: system definition. L0 .. L. sysdef(1M)
names. basename, dirname: decliver portionsof path basename(1)
file. tail: deliver the last partofa 1ail (1)
delta commentary of an SCCS delta. cdc: changethe cde(1)
file. delta: make a delta (change) toanSCCS delta(l)
delta. cdc: change the delta commentary of an SCCS cdc(1)
rmdel: remove a delta from an SCCS file. rmdel (1)
to an SCCS file. delta: make a delta (change) delta(1)
comb: combine SCCS delas. comb(1)
mesg: permit or deny messages. o. o0 . . mesg(1)
crypt: generate DES encryption. crypt(3C)
close: close a file descriptor. close(2)
dup: duplicate an open file descriptor.+0 .. dup(2)
dc: desk calculator. de(1)
file. access: determine accessibilityofa access(2)
file: determine filetype. file(1)
master: master device information table. master.dec(4)
ioctl: control device., ioctl(2)
devnm: devicename., devam(1M)
hpd: graphical device routines and filters. gdev(1G)
devom: devicename. devam(1M)
blocks. df: report number of free disk df(1M)
dz: DZ-11, DZ-11/KMC-11B, DH-11 asynchronous/ dz(7)
terminal line connection. dial: establish an out-going dial(3C)
ratfor: rational Fortran dialect.« v o . o . . ratfor(1)
bdiff:big diff., bdiff (1)
comparator. diff: differentialfile diff(1)
comparison. diff3: 3-way differential file diff3(1) ’)
functions. dim: positive difference intrinsic dim(3F) /
sdiff: side-by-side difference program. sdiff (1)
diffmk: mark differences between files. diffmk (1)
diff: differential file comparator. diff (1)

-8-

diff3: 3-way
between files.
intrinsic functions.

install object files in binary
dir: format of

rm: remove files or

cd: change working

chdir: change working
chroot: change root

uuclean: uucp spool

dircmp:

unlink: remove

chroot: change root
path-name of current working
Is: list contents of

mkdir: make a

mvdir: move a

pwd: working

ordinary file. mknod: make a
path names. basename,

acct: enable or

type, modes, speed, and line
sadp:

ID. diskusg: generate

df: report number of free
diskboot:
RH11/RJS03-RJS04 fixed-head
rf: RF11/RS11 fixed-head
hm: RMO0S moving-hcad
moving-head

mlll: ML11 solid-state
and/or check RP06 and RMOS5
rk: RK-11/RKO03 or RKO0S
rl: RL-11/RLO1

rm80: RM80 moving-head
medium moving-head

rp: RP-11/RP03 moving-head
du: summarize

programs.

general driver for moving-head
accounting data by user ID.
mount: mount and

prof:

hypot: Euclidean

drand48: generate uniformly
kl: KL-11 or

multiplexor. dmk:

dmkset: connect

built-in DDCMP protocol.
multiplexor.

to KMCI11-B

whodo: who is

intrinsic function. dprod:
strtod: convert string to
product intrinsic function.
reversi: a game of
distributed pscudo-random/
graph:

arithmetic: provide

gd: general

gt: general

sxt: pscudo-device

differential file comparison.
diffmk: mark differences
dim: positive difference

dircmp: directory comparison.
directories. cpset:
directories.
directories.
directory.
directory.
directory.
directory clean-up.
directory comparison.
directory entry.

directory. getcwd: get
directory.
directory.
directory.
directory name.
directory, or a special or
dirname: deliver portions of
disable process accounting.
discipline. /set terminal
disk access profiler.
disk accounting data by user
disk blocks.
disk bootstrap programs.
disk file. hs:
disk file.
disk.
disk. /RP04/RP0S/RP06
disk.
disk packs. format: format
disk.
disk.
disk.
disk. /RP0O7 non-removable
disk.
disk usage.
diskboot: disk bootstrap
disks. gd:
diskusg: generate disk
dismount file system.
display profile data.
distance function.
distributed pscudo-random/
DL-11 asynchronous interface.
DM11-BA modem control
DMI11-BA modems to KMC11-B
dmc: communications link with
dmk: DM11-BA modem control .
dmkset: connect DM11-BA modems
doing what.
double precision product
double-precision number.
dprod: double precision
dramatic reversals.
drand48: gencrate uniformly
draw a graph.
drill in number facts.
driver for moving-head disks.
driver for tape drives.

dir: format of directories.
directory for a command.

o e e .

..........
.....
.....
......
o e e
.........
......
. e e

......

driver. « « v v ¢« v 4 v e e e

Permuted Index
.. diff3()
diffmk (1)
dim(3F)
dir(4)
dircmp(1)
cpset(1M)
dir(4)

o o

cd(1)
chdir(2)
chroot(2)
uuclean(1M)
dircmp(1)
unlink (2)
chroot(1M)
getewd (3C)
Is(1)
mkdir(1)
mvdir(1 M)

basename(1)
acct(2)
getty(1M)

. . sadp(1M)
diskusg(1M)
df(iM)
diskboot (8)

. .

hm(7)

hp(7)
mi11.pdp(7)
format(1M)

. .

diskboot (8)
gd(7)
diskusg(1M)
mount(1 M)
prof(1)
hypot (3M)
drand48(3C)
. kl.pdp(7)
dmk(7)
. . dmkset(1M)
. dmc(7)

. .

. dmk(

. dmkset(1M)
whodo(1M)
dprod(3F)
strtod (3C)
dprod(3F)
reversi(6)
drand48(3C)
graph(1G)
arithmetic(6)

. .
. .
.« .
.o .
..
.o
..

gt(D
sxt(7)

Permuted Index

trace: event-tracing
vpmset: connect/load VPM
gt: general driver for tape
interface.

interface. du:

an object file.

extract error records from
od: octal

object file. dump:
descriptor.

descriptor. dup:

DH-11 asynchronous/
asynchronous/ dz:
asynchronous/ dz: DZ-11,
echo:

number to string.

sact: print current SCCS file
ed, red: text

edit: text

ex: text

files. Id: link

ged: graphical

Id: link

common asscmbler and link
PDP-11 asscmbler and link
sed: stream

vi: screen-oriented
Language.

fsplit: split £77, ratfor, or
printers.

accounting. acct:

cnable:

crypt:

crypt: generate DES
makekey: gencrate
program.

trenter:

nlist: get

file. linenum: line number
man: print

/manipulatc line number
Idlscek: seck to line number
Idrseek: scck to relocation
utmp: utmp and wtmp
getgrent: get group file
getpwent: get password file
getutent: access utmp file
name for file symbol table
the index of a symbol table
read an indexed symbol table
putpwent: write password file
rje: RJE (Remote Job
unlink: remove dircctory
command execution.

profile: setting up an

environ: uscr

exccution. env: set

getenv: return value for
putenv: change or add value to

driver. trace(7)
drivers ¢« ¢ ..o vpmsct(IM)
drives. e e e e e e gt(7)

du: DU-11 synchronous line du.pdp(7)
du: summarize disk usage. du(l)
DU-11 synchronous line du.pdp(7)
dump: dump selected partsof dump(l)
dump. errdead: errdead (1M)
dump. e e e o .ood(D)
dump selected parts ofan dump(l)
dup: duplicate anopen file dup(2)
duplicatcanopenfile dup(2)

dz: DZ-11, DZ-11/KMC-11B, .. dz(D)
DZ-11, DZ-11/KMC-11B, DH-11 . . dz(?)
DZ-11/KMC-11B, DH-11 dz(7)

echo arguments. echo(l)
echo: echo arguments. echo(1)

ecvt; convert floating-point ecvt(3C)
ed, red: text editor. ed(1)

edit: text editor edit(1)
editing activity. oo e e osact(l)
editor. e e e e e e ed(1)

editor0 edit(1)
editor.o ex(1)

editor for common object 1d(1)

editor. e e e e 2ed(1G)
editor, e e e e 1d.pdp(1)
editor output. aout: a.out(4)
editor output. a.out: a.out.pdp(4)
editor. 0. sed(1)
editor vi(l)

efl: Extended Fortran efl(1)
efifiles. e e e e fsplit(1)
enable: enable/disable L « « « . . . enable(l)
enablc or disable process acct(2)
enable/disable LP printers. cnable(i)
encode/decede. crypt(l)
encryption. o .. . crypt(3C)
encryptionkey. makekey(1)
end: last locationsin end(3C)
enter a trouble report. trenter(l)
entries from name list. nlist(3C)
entries in a common object linenum(4)
entrics in thismanual. man(1)
entries of a file function. Idlread (3X)
entries of a section of a/ . Idlseck(3X)
entrics of a sectionofa/ Idrseek (3X)
entry formats. utmp(4)
ENMFY. v ¢+« v 4 o v o o o o o o . getgrent(3C)
COMEY. v v v v o v o e e e e e e getpwent (3C)
ENITY. v v v v e e e e e e e e e e getut(3C)
entry. /retrieve symbol ldgetname(3X)
entry of a file. /compute Idtbindex(3X)
entry of a file. Idtbread: Idtbread(3X)
EOLEY. & v v v e e e e e e e e e putpwent (3C)
Entry) toIBM. oL rje(8)

entry. .+ « + v o v v v v v s« « . . unlink(2)
env: set environment for env(l)
environ: user environment. environ(5)
environment at login time. profile(4)
environment. environ(5)
environment for command env(l)
environment name. getenv(3C)
environment. putenv(3C)

-10 -

getenv: return Fortran
sky: obtain
complementary error function.

from dump.

daemon.

format.

complementary crror/ erf:
function and complementary
perror: system

to system calls and
errdead: extract

matherr:

errfile:

crrdemon:

crrstop: terminate the

err:

process a report of logged
spell: find spelling

logged errors.
crror-logging daemon.
terminal line/ dial:
setmnt:

hypot:

expression. expr:

test: condition

vpmsave: save and print VPM
trace:

crash:

network. net:

execl:

construct argument list(s) and
time. at:

regemp: compile and

set environment for command
sleep: suspend

sleep: suspend

monitor: prepare

profil:

UNIX-to-UNIX system command

system calls. link:
a new file or rewrite an

power, square root functions.
intrinsic function.

pack: compress and
conversion. int:

function. ¢xp: Fortran
square root functions. exp:
expression.

routines. regexp: regular
regemp: regular

expr: evaluate arguments as an
compile and execute regular
efl:

dump. errdead:

fsplit: split
factor:

data in a machine-independent
finc:

environment variable. . .

ephemerides.
erf: error function and e e e

err: error-logging interface. . .
errdead: extract crror records .

errdemon: error-logging

errfile: error-log file
error functionand

error function. crf: error
error messages.
error numbers. /mlroducuon ..

error records from dump. . . .
error-handling function. . . .
error-log file format.

error-logging daemon.
error-logging daecmon.

error-logging interface.
errors. errpt:
errors.
errpt: process a rcporl of .o
crrstop: terminate the

establish an out-going

establish mount table.

Euclidean distance function. . .

evaluate arguments as an . . .
evaluation command.

event traces. L

event-tracing driver. ..
ex: text editor.
examine system images. . . .

execl: executca file.

exccute a command on the PCL
execute a file, . ..
execute command. xargs: . . .
executc commands at a later .
execute regular exprcssion. -
execution. env:
execution for an mu.rval ..
execution for interval.

execution profile.
exccution time profile.
execution. uux: .

exercise link and unhnk

existing one. creat: create

exit: terminate process. .

exp: exponential, logarithm, .
exp: Fortran exponential

expand files.

explicit Fortran type
exponential intrinsic
exponential, logarithm, power,
expr: evaluate arguments as an
expression compile and match
expression compile.
expression.
expression. regemp:
Extended Fortran Language.
extract error records from

f77: Fortran 77 compiler. .

£77, ratfor, or efl files.

factor a number. .

factor: factor a number.

fashion /access long intcger

fast incremental backup. . . .

- 11 -

Permuted Index

. getenv(3F)

sky(6)

. crf(3M)

crr(7)

. crrdcad(1M)

crrdemon{(1M)

. crrfile(4)
. erf(3M)

erf(3M)
perror(3C)

. intro(2)

errdcad (1 M)
matherr(3M)

: ercfile(4)
. errdemon(1M)

errstop(1M)
err(7)

. . errpt{1M)
. spell(1)

: . errpt(1M)

errstop(1M)
dial(3C)
setmnt(1M)

. hypot(3M)

. expr(l)

. test(1)

. vpmsave(1M)

. trace(7)

. .oex(1)
. crash(IM)

exec(2)

. net(10)

excc(2)

. xargs(l)
. at(1)

regemp(3X)
env(l)
sleep(1)

. sleep(3C)

monitor(3C)

. profil(2)
. uux(1C)

. link(1M)

. creat(2)
. exit(2)

. exp(3IM)

. ¢exp(3F)
. pack(1)

fiype(3F)

: exp(3F)
. exp(3M)
. expr(1)

regexp(5)

: regemp(1)
. expr(l)

regemp(3X)

. efl(l)

errdead (1 M)
f77(1)
fsplit(1)
factor(1)
factor(1)

. sputl(3X)

finc(1M)

Permuted Index

malloc:

procedure. checkall:
abort: generate an 10T
stream.

inquiries.

statistics for a file system.
times. utime: set

Idfcn: common object
determine accessibility of a
hpio: HP 2645A terminal tape
tar: tape

cpio: copy

pwck: password/group
chmod: change mode of
change owner and group of a
diff: differential

diff3: 3-way differential
fentl:

fentl:

public UNIX-to-UNIX system
core: format of core image
umask: set and get

crontab: user crontab

fields of each line of a

dd: convert and copy a

a delta (change) to an SCCS
close: close a

dup: duplicate an open

sclected parts of an object
sact: print current SCCS
getgrent: get group
getpwent: get password
getutent: access utmp
putpwent: write password
execl: execute a

grep: search a

Idopen: open a common object
acct: per-process accounting
ar: common archive

ar: archive
errfile: error-log
pnch:

intro: introduction to

line number entrics of a

get: get a version of an SCCS
group: group

files. filehdr:

file. Idfhread: read the
Idohseek: seck to the optional
fixed-head disk

split: split a

issue: issue identification
ldclose: close a common object
file header of a common object
entries of a section of a

the optional file header of a
entries of a section of a
section header of a

section of an object

of a symbol table entry of a
symbol table entry of a

fast main memory allocator. malloc(3X)
faster file system checking checkall() M)
fault. abort (3C)
fclose: closeor lusha fclose(3S)
fentl: filecontrol. fentl(2)
fentl: file control options., fentl(5)
ferror: streamstatus ferror(3S)

f: list file namesand T(1M)

filc access and modification utime(2)

file access routines. Idfen(4)

file. access: « ! . . access(2)
filearchiver. hpio(1)
filearchiver. ., tar(1)

file archivesinandout. . . ., cpio(1)
filecheckers. pwek(I1M)
file. e e e chmod(2)
file. chown: chown(2)
file comparator. diff(1)

file comparison. diff3(1)
filecontrol. fentl(2)

file control options. fentl(5)
filecopy. uuto: uuto(1C)
file., core(4)

file creationmask. umask (2)
file. crontab(1)
file. cut: cut out selected cut(l)

file. 0000 ... dd(1)

file. deltaimake delta(1)

file descriptor. closc(2)

file descriptor. dup(2)

file: determine file type. file(1)

file. dump:dump dump(1)

file editing activity. sact(1)
fileentry. getgrent(3C)
fileentry. getpwent (3C)
fileentry. getut (3C)
fileentry. putpwent(3C)
file. 0000 exec(2)

file for a pattern. grep(1)
fileforreading. Idopen(3X)
file format. acct(4)
fileformat. ar(4)
fileformat. ar.pdp(4)
fileformat. errfile(4)

file format for card images. pnch(4)
fileformats. intro(4)

file function. /manipulatec Idiread (3X)
file. get(l)

file. 000 ... group(4)

file header for common object filehdr(4)

file header of a common object . Idfhread(3X)
file headerofafile. Idohseek (3X)
file. hs: RH11/RJS03-RJS04 hs.pdp(7)
file into pieces. split(1)

file. issuc(4)

file. 0.0 L Idclose(3X)
file. Idfhread: read the Idfhread(3X)
file. /seck to line number Idiseck (3X)
file. Idohseek: seekto Idohscek (3X)
file. /seek to relocation Idrseck (3X)
file. /read an indexed/named Idshread (3X)
file. /to an indexed/named Idsseek (3X)
file. /compute the index Idibindex(3X)
file. /freadanindexed Idtbread (3X)

-12-

)

table of a common object
entries in a common object
link: link to a

mknod: build special

or a special or ordinary
ctermid: gencrate

mktemp: make a unique

a file system. T list

change the format of a text
name list of common object
null: the null

/find the slot in the utmp
/identify processes using a
one. creat: create a new
passwd: password

merge same lines of several
soft-copy terminals. pg:

fseck: reposition a

Iseck: move read/write

prs: print an SCCS

read: read from

for a common object

rf: RF11/RS11 fixed-head disk
remove a delta from an SCCS
bfs: big

two versions of an SCCS
scesfile: format of SCCS
header for a common object
stat: get

line number information from a
processes using a filc or
checksum and block count of a
/retrieve symbol name for
syms: common object
daily/weekly UNIX system
procedure. checkall: faster
fsck:

fsdb:

names and statistics for a
volume.

mkfs: construct a

mount: mount and dismount
mount: mount a

ustat: get

mnttab: mounted

umount: unmount a

access time. dcopy: copy

fsck. checklist: list of
checking. volcopy: copy
deliver the last part of a

term: format of compiled term
tmpfile: create a temporary
create a name for a temporary
mkboot: convert a.out

and modification times of a
ftw: walk a

file: determine

undo a previous get of an SCCS
report repeated lines in a

val: validate SCCS

write: write on a

umask: set

common object files.

and print process accounting

Permuted Index

file. /seck to the symbol .,, Idtbseek (3X)
file. lincnum: line number linenum(4)
fle. L L, link(2)

file. © ... L L, mknod (1M)
file. /make a directory, mknod (2)
file name for terminal., ctermid(3S)
filename. mkiemp(3C)
file names and statistics for . , fr(1M)

file. newform:, newform(1)
file. nm:print . . .,, nm(1)

file. L., null(7)

file of the currentuser, , tyslot(3C)
file or file structure. fuser(1M)
file or rewrite an existing, . creat(2)

file. passwd(4)
filepaste: paste(1)

file perusal filter for pa(1)

file pointer in a stream. . .,, fseck (3S)
filepointer. Iscek (2)

file. L., prs(1)

file. L L. read(2)

file. /relocation information reloc(4)

file. ©, rf.pdp(7)
file. emdel: . . . L L0 0L, L . rmdel (1)
file scanner., bfs(1)

file. scesdiff: compare scesdiff (1)
file. L. scesfile(4)
file. senhdr: section scnhdr(4)
filestatus. L., sat(?)

file. strip: strip symboland strip(1)

file structure. /identify fuser(1M)
file. sum:print sum(l)

file symbol table entry. ldgetname(3X)
filc symbol table format. syms(4)

file system backup. filesave:, . filesave (1M)
file system checking checkall(1M)
file system consistency check fsck (1M)
file system debugger. fsdb(1 M)
file system. ff: listfile F(IM)

file system: format of system fs(4)
filesystem., mkfs(1M)
filesystem. mount(1M)
filesystem. mount(2)
file system statistics., ., . . ustat(2)

file systemtable. . . .,, . mnitab(4)
filesystem.,... umount (2)
file systems for optimal deopy(1M)
file systems processed by checklist (4)
file systems with label , . . volcopy (1M)
file. tail: tail(1)

file. term(4)

file., tmpfile(3S)
file. tmpnam: . . .,, .. tmpnam(3S)
file toboot image., .. mkboot (1M)
file. touch: update access touch(1)
filetree. ftw (3C)
filetype. file(1)

file. unget:,.. unget(1)
file.unig:, uniq{1)

file. 0L ... val(1)

file. L L. write(2)
file-creation mode mask., . umask(1)
filehdr: file header for, . . . filchdr(4)
file(s). acctcom: search acctcom(1)

-13-

Permuted Index

merge or add total accounting
create and administer SCCS
send: gather

VAX-11/780/ fscv: convert
cat; concatenate and print
cmp: compare two

lines common to two sorted
cp, In, mv: copy, link or move
mark differences between

file header for common object
find: find

frec: recover

format. arcv: convert archive
formal specification in text
split 77, ratfor, or efl

string, format of graphical
cpset: install object

intro: introduction to special
link editor for common object
rm: remove

pack: compress and expand
pr: print

section sizes of common object
size: print sizes of object

sort: sort and/or merge
/convert object/archive

what: identify SCCS

system file system backup.
terminals. pg: file perusal
greek: select terminal

nl: line numbering

col:

graphical device routines and
tplot: graphics

find:

ttyname:

object library. lorder:
spell:

of the current user. ttyslot:
tee: pipe

hs: RH11/RJS03-RJS04
rf: RF11/RS11

string. ecvt: convert

frexp: manipulate parts of
absolute value/ floor:
remainder, absolute value/
vix: VAX-11/780 LSI console
cflow: generate C

fclose: close or

per-process accounting file
RMOS disk packs. format:
ar: common archive file

files from PDP-11 to common
ar: archive file

errfile: error-log file

pnch: file

RP06 and RMOS disk packs.
newform: change the

inode:

term:

files. acctmerg:0 0. . . acctmerg(1M)
files. admin: admin(1)
files and/or submit RJE jobs. send(1C)
files between PDP-11and fscv.vax(1M)
files. o .. i i e e cat(1)

files. . . .00 n e cmp(l)
files. comm: select or reject comm(1)
files. . .. i i e e ep(1)

files. diffmk: diffmk(1)
files. filehdr: filchdr(4)
files. . v v v e e e e e e e e find(1)

files from a backup tape. frec(1M)
files from PDP-11 to common arcv.pdp(1)
files. fspec: . . v v 0 . 0 e 4. . fspec(4)
files. fsplit: fsplit(1)
files. /graphical primitive gps(4)

files in binary directories. cpset (1M)
files. .+ . .. 0t e intro(7)
files. Id: 0.0 1d(1)

files or directories. rm(1)

files.l pack(1)
files. .« ¢« ¢ v e i e e e pr(1)

files. sizezprint size(1)
files. 0L size.pdp(1)
files. . . . v i e e e . sort(1)

files to common formats. convert(1)
files. .« . 0 i e et e e e e e what(1)
filesave: daily/weekly UNIX filesave (1M)
filter for soft-copy pe(l)

filter. + ¢ v v e e e e e e e e greek (1)
fiter. v v oo ni(1)

filter reverse line-feeds. col(1)
filters. hpd: gdev(1G)
filters. v . v . 0o tplot(1G)
finc: fast incremental backup. finc(1M)
findfiles. find(1)
find: findfiles. find(1)

find name of a terminal. ttyname(3C)
find ordering relation foran lorder (1)
find spellingerrors. spell(})
find the slot in the utmp file ttyslot(3C)
fitling, « « v v v v e e tee(1)
fixed-head disk file. hs.pdp(7)
fixed-head disk file. rf.pdp(7)
floating-point numberto ecvt(3C)
floating-point numbers. frexp(3C)
floor, ceiling, remainder, floor (3M)
floor: floor, ceiling, floor (3M)
floppy interface. vix(1M)
flowgraph. cflow(1)
flushastream. fclose(3S)
fopen: open a stream. fopen(3S)
fork: create a new process. fork(2)
format. acct:00 .. acct(4)
format and/or check RP06 and . format(1M)
format. e ar(4)
format. arcv: convert archive arcv.pdp(l)
format. . .« v v v 0 e e e e ar.pdp(4)
format. . . . v 0 v v e errfile(4)
format for card images. pnch(4)
format: format and/or check format(1M)
formatofatextfile. newform(1)
format of ani-node. inode(4)
format of compiled term file.. term(4)

-14 -

core;
cpio:

dir:

/graphical primitive string,
scesfile:

file system:

files. fspec:

object file symbol table
object/archive files to common
intro: introduction to file
utmp: utmp and wtmp entry
scanf: convert

argument list. vprintf: print
argument list. vprintf: print
printf: print

f77:

abs:

system/ signal: specify
function. acos:

function. asin:

function. atan2:

function. atan:

and, or, xor, not:

getarg: return

intrinsic function. loglQ:
intrinsic function. conjg:
function. cos:

ratfor: rational

getenv: return

function. exp:

intrinsic function. cosh:
intrinsic function. sinh:
intrinsic function. tanh:
complex argument. aimag:
function. aint:

efl: Extended

functions. max:

functions. min:

intrinsic function. log:
functions. anint:

abort: terminate

functions. mod:

function. sin:

function. sqrt:

len: return length of

index: return location of
issuc a shetl command from
function. tan:

mclock: return

intrinsic function. sign:

int: explicit

backup tape.

df: report number of
floating-point numbers.

frec: recover files

and line number information
gete: get character or word
gets: get a string

rmdel: remove a delta
getopt: get option letter
errdead: extract error records
read: read

system: issue a shell command

Permuted Index

format of core image file.
format of cpio archive.
format of directories.
format of graphical files.
format of SCCSfile.
format of system volume.
format specification in text
format. syms: common
formats. convert: convert
formats. 000
formats. 000 0.
formatted input.
formatted output of a varargs
formatted output of a varargs
formatted output.
Fortran 77 compiler.
Fortran absolute value.
Fortran action on receiptofa
Fortran arccosine intrinsic
Fortran arcsine intrinsic
Fortran arctangent intrinsic
Fortran arctangent intrinsic
Fortran boolean functions.
Fortran command-line argument. . . .
Fortran common logarithm
Fortran complex conjugate
Fortran cosine intrinsic
Fortran dialect.

core(4)
cpio(4)
dir(4)
gps(4)
scesfile(4)
fs(4)

. fspec(4)

syms(4)

. convert(l)

intro(4)
utmp(4)
scanf(3S)

. vprintf(3S)

vprintf(3X)
printf(3S)

. f7(n)
. abs(3F)

signal 3F)
acos(3F)
asin(3F)
atan2(3F)
atan(3F)
bool (3F)
getarg(3F)
log10(3F)
conjg(3F)

. cos(3F)
. ratfor(1)

Fortran environment variable. getenv(3F)
Fortran exponential intrinsic exp(3F)
Fortran hyperbolic cosine cosh(3F)
Fortran hyperbolicsine sinh(3F)
Fortran hyperbolic tangent tanh(3F)
Fortran imaginary partof aimag(3F)
Fortran integer part intrinsic aint(3F)
Fortran Language. efi(1)
Fortran maximum-value max(3F)
Fortran minimum-value min(3F)
Fortran natural logarithm log(3F)
Fortran nearest integer round(3F)

Fortran program.

. abort(3F)

Fortran remaindering intrinsic mod(3F)
Fortran sine intrinsic sin(3F)
Fortran square root intrinsic sqrt(3F)
Fortranstring. len(3F)
Fortran substring. index(3F)
Fortran. system: « system(3F)

Fortran tangent intrinsic
Fortran time accounting.

tan(3F)

. mclock(3F)

Fortran transfer-of-sign sign(3F)
Fortran type conversion. ftype(3F)
fread: binary input/output. fread (3S)
frec: recover files froma frec(1M)
freedisk blocks. df(O0M)
frexp: manipulate partsof frexp(3C)
from a backup tape.« . frec(IM)
from a file. /strip symbol strip(1)
fromastream. getc(3S)
fromastream. gets(3S)
froman SCCSfile. rmdecl(1)
from argument vector. getopt (3C)
fromdump. errdead(1M)
fromfilee. read(2
from Fortran. system(3F)

-15-

Permuted Index

ncheck: generate names
nlist: get entries

arcv: convert archive files
acctems: command summary
getpw: get name

of file systems processed by
check

PDP-11 and VAX-11/780/

pointer in a strcam.

text files.

efl files.

communication package.

Fortran arccosine intrinsic
Fortran integer part intrinsic
crror function. erf: error
Fortran arcsine intrinsic
Fortran arctangent intrinsic
Fortran arctangent intrinsic
complex conjugate intrinsic
cos: Fortran cosine intrinsic
hyperbolic cosine intrinsic
precision product intrinsic
and complementary error
Fortran cxponential intrinsic
gamma: log gamma

hypot: Euclidean distance
line number entries of a file
common logarithm intrinsic
natural logarithm intrinsic
matherr: error-handling

prof: profile within a
transfer-of-sign intrinsic

sin: Fortran sine intrinsic
hyperbolic sine intrinsic
Fortran square root intrinsic
tan: Fortran tangent intrinsic
hyperbolic tangent intrinsic
math: math

j0, j1, jn, yO, y1, yn: Bessel
or, xor, not: Fortran boolean
positive difference intrinsic
logarithm, power, square root
remainder, absolute value
max: Fortran maximum-value
min: Fortran minimum-value
Fortran remaindering intrinsic
hp: handle special

terminal. 450: handle special
anint: Fortran ncarest integer
sinh: hyperbolic

string comparision intrinsic
sin: trigonometric

using a file or file/
accounting records.

jotto: secret word

moo: guessing

back: the

bj: the

chess: the

craps: the

reversi: a

wump: the

from i-numbers. ncheck(IM)
from namelist.« alist(3C)
from PDP-11 to common format. . . . arcv.pdp(1)
from per-process accounting/ acctems{1M)
fromUID. getpw(30)
fsck. checklist: list checklist(4)
fsck: file system consistency fsck(IM)
fscv: convert files between fscv.vax(1M)
fsdb: file system debugger. fsdb(IM)
fseek: repositiona file fseck(3S)
fspec: format specificationin fspec(4)
fsplit: split 77, ratfor,or Tsplit(1)
ftok: standard interprocess stdipc(3C)
ftw: walk a filetree. ftw(3C)
function. acos: acos(3F)
function. aint: aint(3F)
function and complementary erf(3M)
function. asin: v v v o o . asin(3F)
function. atan2: atan2(3F)
function. atan: atan(3F)
function. conjg: Fortran conjg(3F)
function. e v+« . cos(3F)
function. cosh: Fortran+ . cosh(3F)
function. dprod: double dprod(3F)
function. erf: error function erf(3M)
function. exp: e e e e o .. expP)
function. gamma(3M)
function. « « « . hypot(3M)
function. IdIrecad: manipulate . Idlread(3X)
function. logl0: Fortran logl0(3F)
function. log: Fortran log(3F)
function. matherr(3M)
function. prof(5)
function. sign: Fortran sign(3F)
function. sin(3F)
function. sinh: Fortran sinh(3F)
function. sqrt: sqrt(3F)
function. tan(3F)
function. tanh: Fortran tanh(3F)
functions and constants. math(5)
functions. bessel(3M)
functions. and, bool (3F)
functions. dim: dim(3F)
functions. exp: exponential, exp(3M)
functions. /floor, ceiling, floor(3M)
functions. max(3F)
functions. min(3F)
functions. mod: mod(3F)
functions of HP terminals. hp(1)
functions of the DAS1 450 450(1)
functions. round(3F)
functions. sinh(3M)
functions. Ige: stremp(3F)
functions. trig(3M)
fuser: identify processes fuser(IM)

fwtmp: manipulate connect

. fwtmp(IM)

AME. . . .+ . . v v v e e . . . jolto(6)
game. e e e e e e e e e e moo(6)
game of backgammon. back(6)
game of black jack.« . bjle)
gameofchess. chess(6)
gameofcraps. craps(6)
game of dramatic reversals. reversi(6)
game of hunt-the-wumpus. wump(6)

- 16 -

™

™

™

-

intro: introduction to
gamma: log

jobs. send:
moving-head disks.

maze:
abort:

cflow:

cross-reference. cxref:
crypt:

by user ID. diskusg:
makekey:

terminal. ctermid:
ncheck:

lexical tasks. lex:
pscudo-random/ drand48:
rand: simple random-number
irand: random number
gets:

get:

ulimit:

the user. cuserid:

strcam. getc:

nlist:

umask: set and

stat:

ustat:

file.

getgrent:

getlogin:

logname:

msgget:

getpw:

system. uname:

unget: undo a previous
argument vector. getopt:
getpwent:

working directory. getcwd:
times. times:

and parent process/ getpid:
semget:

shmget:

tty:

time:

getuid:

command-line argument.
from a stream.

current working directory.
environment variable.
environment name.

entry.

argument vector.

group, and parent process/

entry.

stream.

and terminal settings used by
modes, speed, and line/

ct: spawn

settings used by getty.

Permuted Index

BAMES. « o « o o 4 o b e e e intro(6)
gamma function. gamma(3M)
gamma: log gamma function. gamma(3M)
gather files and/or submit RJE send(1C)
gd: gencral driver for pd(7)

ged: graphical editor. ged(1G)
generate a Maze. .« + « « & « + . . . maze(6)
generate an 1OT fault. abort(3C)
generate C flow graph. cflow(l)
generate C program cxref(1)
generate DES cncryption. crypt(3C)

generate disk accounting data

. diskusg(1M)

generate encryption key. makekey(1)
generate file pame for ctermid(3S)
generate names from i-numbers. ncheck(1M)
generate programs for simple lex(1)
generate uniformly distributed drand48(3C)
BENETALOT. & « o v o o o 4 ¢+ 4 . . rand(3C)
BENETAtOT. .« = o « & . e 4 . . o . . rand(3F)
get a string from a stream. gets(38)
get a version of an SCCS file. get(l)

get and set user limits.
get character login nameof
get character or word froma
get entries from name list.
get file creationmask.
get filestatus.
get file system statistics.
get: get a version of an SCCS
get group fileentry.

. ulimit(2)

cuserid (3S)
getc(3S)
nlist (3C)
umask(2)

. stat(?)

ustat(2)
get(1)

. getgrent(3C)

getloginname. getlogin(3C)
getloginpame. logname(1)
get message queue. msgget(2)
get name from UID. ogetpw(30)
get name of current UNIX uname(2)
getofanSCCSfile. unget(1)

get option letter from getopt (3C)
get password fileentry. getpwent (3C)
get path-name of current getewd (3C)
get process and child process times(2)
get process, process group, getpid(2)
get set of semaphores. semget(2)
get shared memory secgment. shmget(2)
get the name of the terminal. uy(l)
gettime. 40w e e e e time(2)
getuserIDs getuid(2)
getarg: return Fortran getarg(3F)
getc: get characteror word getc(3S)
getcwd: get path-nameof getewd(3C)
getenv: return Fortran getenv(3F)
getenv: return value for getenv(3C)
getgrent: get group file getgrent(3C)
getlogin: get login name. getlogin(3C)
getopt: get option letter from getopt (3C)
getopt: parse command options. getopt(1)
getpass: read a password. getpass(3C)
getpid: get process, process getpid(2)

getpw: get name from UID.
getpwent: get password file
gets: get a string froma
getty. gettydefsispeed
getty: set terminal type,
getty to a remote terminal.
gettydefs: speed and terminal

-17-

. getpw(3C)
. getpwent (3C)

gets(3S)
gettydefs(4)
getty(1M)
ct(1C)
gettydefs(4)

Permuted Index

entry.

setjmp: non-local

string, format of graphical/
cflow: generate C flow

graph: draw a

sag: system activity
commands. graphics: access
/network useful with
filters. hpd:

ged:

primitive string, format of
format of graphical/ gps:
routines. toc:

gutil:

numerical commands.
tplot:

plot:

subroutines. plot:

pattern.

getpid: get process, process
chown: change owner or
gelgrent: get

group:

setpgrp: set process

id: print user and

setuid, setgid: set user and
newgrp: log in to a new
chown: change owner and
a signal 1o a process or a
update, and regenerate
drives.

hangman:

moo:

terminals. hp:

the DASI 450 terminal. 450:
varargs:

package. curses: CRT screen

nohup: run a command immune to
hscarch: manage

file. scnhdr: section

files. filchdr: file

Idahread: read the archive

file. ldfhread: read the file

seck to the optional file

read an indexed/named section

help: ask for

archiver. hpio:

of HP terminals.
moving-head disk.

handle special functions of
and filters.

file archiver.

fixed-head disk file.
tables.

interface.

wump: the game of

getuid: getuser IDs getuid(2)
getutent: access utmp file getut(3C)
BOMO. « . i e e e e e e e e setjymp(3C)
gps: graphical primitive gps(4)
graph.o cflow(1)
graph: drawa graph. graph(1G)
graph. graph(1G)
graph. sag(1G)
graphical and numericai graphics(1G)
graphical commands. stat(1G)
graphical device routinesand gdev(1G)
graphical editor. ged(1G)
graphical files. /graphical gps(4)
graphical primitive string, gps(4)
graphical table of contents, . toc(1G)
graphical utilities. gutil(1G)
graphics: access graphical and . graphics(1G)
graphics filters. tplot (1G)
graphics interface. plot(4)
graphics interface plot(3X)
greek: select terminal filter. greek(1)
grep: searchafilefora grep(1)
group, and parent process IDs. . getpid(2)
BIOUP. « o v ¢ o o o 0 o o e e e chown(1)
group fileentry. getgrent(3C)
groupfile. group(4)
group: group file. group(4)
groupID. setpgrp(2)
group IDs and names. id(1)
groupIDs., setuid(2)
BIOUP. &« « o o ot e e newgrp(1)
groupofafile. chown(2)}
group of processes. /send kill(2)
groups of programs. /maintain, . . make(l)

gt: general driver for tape gt(7)
guesstheword. hangman(6)
guessing game. moo(6)

gutil: graphical utilities. gutil(1G)
handle special functions of HP . hp(D)

handle special functionsof 450(1)
handle variable argument list. varargs(5)
handling and optimization curses(3X)
hangman: guess the word. hangman(6)
hangups and quits. nohup(1)
hash scarch tables. hscarch(3C)
header for a common object scnhdr(4)
header for common object filehdr{(4)
header Idahread(3X)
header of a common object Idfhread (3X)
header of a file. ldohseek: ldohseek (3X)
header of a file. ldshread: ldshread (3X)
help: ask forhelp. help(1)

help.o, .« help(D)

hm: RMOS moving-head disk. hm(7)

HP 2645A terminal tape file hpio(1)

hp: handle special functions . . ., . . . hp(l)

hp: RPO4/RPOS/RPO6 hp(7)

HP terminals. hp: hp(1)

hpd: graphical device routines gdev(1G)
hpio: HP 2645A terminal tape . hpio(1)

hs: RHI1/RJSO3-RJSO4 hs.pdp(7)
hsearch: manage hash search hsearch(3C)
ht: TU16/TE16 magnetic tape . ht(7)
hunt-the-wumpus. wump(6)

-18 -

-

function. cosh: Fortran

sinh:
function. sinh: Fortran
function. tanh: Fortran

function.

rje: RJE (Remote Job Entry) to
disk accounting data by user
and names.

SCLpgrp: set process group

issue: issue

file or file/ fuser:

what:

id: print user and group

group, and parent process
getuid: get user

setgid: set user and group

core: format of core
convert a.out file to boot
crash: examine system
pnch: file format for card
argument. aimag: Fortran
nohup: run a command
finc: fast

of a/ Idtbindex: compute the
Fortran substring.

a file. Idtbread: read an
of a file. Idshread: read an
object/ Ildsscek: seck to an
initialization.

inittab: script for the

init: process control

bre: system

information bdblk: print,
process. popen:

process.

clri: clear

inode: format of an
scanf: convert formatted
push character back into
fread: binary

stdio: standard buffered
ferror: stream status
uustat: vucp status
install:

dircctories. cpset:

conversion.

abs: return

a64l1: convert between long
sputl: access long

anint: Fortran nearest
function. aint: Fortran

strtol: convert string to

13tol: convert between 3-byte
3-byte integers and long
beopy:

system. mailx:

acu: Automatic Call Unit (ACU)
du: DU-11 synchronous line
err: error-logging

ht: TU16/TE16 magnetic tape
KL-11 or DL-11 asynchronous

Permuted Index

hyperbolic cosine intrinsic cosh(3F)
hyperbolic functions. sinh(3M)
hyperbolic sine intrinsic sinh(3F)
hyperbolic tangent intrinsic tanh(3F)
hyphen: find hyphenated words. . . . hyphen(1)
hypot: Euclidean distance hypot(3M)
JATEC. « v v e e e e e e e e e e iargc(3F)
IBM. . . . i it e e e e e rje(8)

ID. diskusg: generate diskusg(1M)
id: print user and group IDs id(1)

ID. « e e e e e e e setpgrp(2)
identification file. issue(4)
identify processes usinga fuser(1M)
identify SCCS files. what(1)
IDsandnames. . . . « .« . o o o4 o. . id(1)

IDs. /get process, process getpid(2)
IDS v v v v v e e e e e e e e getuid(2)
IDs. setuid, . . . v« v v . 0. .. setuid(2)
imagefile. core(4)
image. mkboot: mkboot (1M)
images. . . . v e e e e e e e e e crash(1M)
images. e e e e 0. pnch(4)
imaginary part of complex aimag(3F)
immune to hangups and quits. nohup(l)
incremental backup. finc(1M)
index of a symbol table entry ldtbindex (3X)
index: return locationof index(3F)
indexed symbol table entry of Idtbread(3X)
indexed/named section header ldshread(3X)
indexed/named sectionofan ldsseek (3X)
init: process control init(1M)
initprocess. 0. inittab(4)
initialization. init(1M)
initialization shell scripts. bre(1M)
initialize, update bad bdblk (1M)
initiate pipe to/froma popen(3S)
inittab: script for the init inittab(4)
inode. « v . .0 e e e e clri(1M)
inode: format of ani-node. inode(4)
isnode.o e e e inode(4)
input.o e e e scanf(3S)
input stream. ungetc: ungetc(3S)
input/output. fread (3S)
input/output package. stdio(3S)
inquiries.o 0. . ferror(3S)
inquiry and job control. uustat(1C)
install commands. install(1M)
install: install commands. install(1M)
install object files in binary™ cpset(1M)
int; explicit Fortrantype ftype(3F)
integer absolute value. abs(3C)
integer and base-64 ASCIl/ 2641(3C)
integerdataina/ sputl(3X)
integer functions. round(3F)
integer part intrinsic aint(3F)
iNteger. « « v v v v e e e e e e strtol (3C)
integers and long integers. 13t01(3C)
integers. /convert between 13101(3C)
interactive block copy. beopy (1M)
interactive message processing mailx(1)
interface. v 4 e e e 0 e . acu(7)
interface. du.pdp(7)
interface. 0. ... err(7)
interfface. 000 .. ht(7)
interface. kl: kl.pdp(7)

-19-

Permuted Index

parallel communications link
plot: graphics

plot: graphics

termio: general terminal

tm: TM11/TU10 magnetic tape
ts: TS11 magnetic tape

tty: controlling terminal
tu78: TU78 magnetic tape
VAX-11/780 LSI console floppy
spline:

characters. asa:

sno: SNOBOL

pipe: create an

facilities/ ipcs: report
package. ftok: standard
suspend execution for an
sleep: suspend execution for
acos: Fortran arccosine

aint: Fortran integer part
asin: Fortran arcsine

atan2: Fortran arctangent
atan: Fortran arctangent
Fortran complex conjugate
cos: Fortran cosine

Fortran hyperbolic cosine
double precision product
cxp: Fortran exponential
Fortran common logarithm
log: Fortran natural logarithm
sign: Fortran transfer-of-sign
sin: Fortran sine

sinh: Fortran hyperbolic sine
sqrt: Fortran square root
tan: Fortran tangent

Fortran hyperbolic tangent
dim: positive difference

mod: Fortran remaindering
Ige: string comparision
commands

formats.

maintenance commands
miscellany.

files.

subroutines and libraries.
calls and error numbers.
maintenance procedures,
intro:

intro:

intro:

commands intro:

intro:

intro:

and libraries. intro:

and error numbers. intro:
maintenance/ intro:
ncheck: generate names from

abort: gencrate an

communication facilitics/
generator,

Fortran. system:

interface. pcl:
interface.
interface subroutines. . . .
interface.
interface.
interface.
interface.
interface.
interface. vix:
interpolate smooth curve.
interpret ASA carriage control
interpreter.
interprocess channel. . .
inter-process communication

interprocess communication . .

interval. sleep:
interval.
intrinsic function. . . .
intrinsic function.
intrinsic function. . . .
intrinsic function.
intrinsic function.
intrinsic function. conjg: . .
intrinsic function.
intrinsic function. cosh:
intrinsic function. dprod:
intrinsic function. . .
intrinsic function. logl0: . .

L Y

intrinsic function.

intrinsic function.
intrinsic function. . . , . .
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function. tanh:
intrinsic functions.
intrinsic functions.
intrinsic functions,
intro: introductionto
intro: introduction to file
intro: introduction to games.
intro: introduction to .

intro: introductionto . . .
intro: introduction to special
intro: introductionto
intro: introduction to system
intro: introduction to system
introduction to commands .
introduction to file formats.
introduction to games.
introduction to maintenance
introduction to miscellany. .
introduction to special files.
introduction to subroutines .
introduction to system calls .
introduction to system . .
i-numbers. .
ioctl: control device. . . .
10T fault. .

ipcrm: remove a message qucue

ipcs: report inter-process . .
irand: random number . . .
isalpha: classify characters.

issue a shell command from .

-20 -

.

: ts11(7)

pel(7)
plot(4)
plot(3X)
termio(7)
tm.pdp(7)

1ty (7)
1u78(7)
vix(1M)
spline(1G)

. asa(l)
. sno(1)

pipe(2)
ipes(1)

. stdipc(3C)

sleep(1)

. sleep(3C)

acos(3F)
aint(3F)

. asinGP)

atan2(3F)
atan(3F)
conjg(3F)

: cos(3F)

cosh(3F)
dprod (3F)
exp(3F)
log10(3F)
log(3F)

: sign(3F)
. sin(3F)

. sqrt(3F)

sinh(3F) %
tan(3F) -
tanh(3F)

: dim(3F)

mod (3F)
stremp(3F)
intro(1)

. intro(4)

intro(6)
intro(1M)
intro(5)
intro(7)
intro(3)
intro(2)

intro(8)

intro(1)
intro(4)
intro(6)
intro(1M)
intro(5)
intro(7)
intro(3)
intro(2)
intro(8)
ncheek (1M)
ioctl(2)

: abort(3C)

. ipes(1)

iperm(l) ﬂ
rand(3F)

ctype(3C)

system(3F)

system:

issue:

file.

news: print news
functions.

functions. j0,

bj: the game of black
functions. jO, jl,
operator.

for the KMCI11B

makekey: generate encryption
killall:

process or a group of/

processes.
asynchronous interface.
interface. kl:

microprocessor.

vpmtest: test

conncct DM11-BA modems to
assembler/un-assembler for the
microprocessor. kmc:

quiz: test your

integers and long integers.
copy file systems with

scanning and processing
arbitrary-precision arithmetic
efl: Extended Fortran

cpp: the C

command programming

shi: shell

object files.

header

file.

access routines.

of a common object file.
name for file symbol table/
number entries of a file/
centrics of a section of a/

file header of a file.

file for reading.

entries of a section of a/
indexcd/named section hcader/
indexed/named section of an/
of a symbol table entry of a/
symbol table entry of a file.
table of a common object/
string.

len: return

getopt: get option

simple lexical tasks.
generate programs for simple
intrinsic functions.

to subroutines and

relation for an object

ar: archive and

portable/ ar: archive and
ulimit: get and set user

an out-going terminal

type, modes, speed, and

du: DU-11 synchronous

line: read one

Permuted Index

issuc a shell command. system(3S)
issue identification file. issuc(4)
issue: issuc identification issue(4)
HEMS. « v v« v v v e e e e e e e news(1)

j0, j1, jm, yO, y1, yn: Bessel bessel (3M)
j1,jn, y0, yl, yn: Bessel bessel (3M)
Jack, . o e e e e e e e bj(6)

jn, y0, yl, yn: Bessel bessel (3M)
join: relational database join(1)

jotto: secret word game. jotto(6)
kasb: assembler/un-assembler kasb(1)

KEY. « « v v v e e e e e e e e e makekey(1)
kill all active processes. killall (1 M)
kill: send a signaltoa kill(2)

kill: terminate a process. kill(1)

killall: kill all active killall(1M)
ki: KL-1lorDL-11 kl.pdp(7)
KL-11 or DL-11 asynchronous . kl.pdp(?7)
kmc: KMC-11B/KMStH kme(7)
KMClines. oo vpmtest (1M)
KMCI11-B dmkset: dmkset(1M)
KMClIB kasb: kasb(1)
KMC-11B/KMSI1 kmc(7)
knowledge. quiz(6)

13tol: convert between 3-byte 13t01(3C)
label checking. volcopy: volcopy (1M)
language. awk: pattern awk(1)
language. be: 0 0oL be(1)
Language. . . . « .+« ¢ o v .. . efi(1)
language preprocessor. cpp(1)
language. /standard/restricted sh(1)

layer manager. 0. o0 s shl(1)

1d: link editor for common 1d(1)

Id: link editor. « « v v e e e b 1d.pdp(1)
Idahread: read the archive ldahread (3X)
Idclose: close a common object . Ildclose(3X)
ldfcn: common object file ldfen(4)
Idfhread: read the file header ldfhread (3X)
ldgetname: retrieve symbol ldgetname(3X)
Idlread: manipulate line IdIread (3X)
\diseck: scek to line number Idiseek(3X)
Idohseck: seek to the optional ldohseek (3X)
Idopen: open a common object . ldopen(3X)
Idrseek: seek to relocation Idrseek(3X)
\dshread: readan ldshread (3X)
Idsseek: seek toan « o 0 o . . ldsseek (3X)
Idtbindex: compute the index ldtbindex (3X)
Idtbread: read an indexed Idtbread (3X)
Idtbseek: seek to the symbol Idtbseck (3X)
len: return length of Fortran len(3F)
length of Fortran string. len(3F)
letter from argument vector. getopt (3C)
lex: generate programs for lex(1)

lexical tasks. lex: lex(1)

Ige: string comparision stremp(3F)
libraries. /introduction intro(3)
library. /find ordering lorder(1)
library maintainer. ar.pdp(1)
library maintainer for ar(1)

limits. . . o 000 e s e e ulimit(2)
line connection. /establish dial(3C)

line discipline. /set terminal getty(1M)
line interface. du.pdp(7)
line. . .« . .o i e line(1)

Permuted Index

common object file. linenum:
function. Idlread: manipulate
section of a/ ldlseek: seek to
file. strip: strip symbol and
nl:

out sclected fields of each
send/cancel requests to an LP

Ip:

Isearch:

col: filter reverse

in a common object file.

files. comm: select or reject
uniq: report repeated

paste: merge same

vpmtest: test KMC

link: exercise

files. 1d:

Id:

a.out: common asscmbler and
a.out: PDP-11 assembler and
system calls.

pel: parallel communications

pcldacmon: PCL

cp, In, mv: copy,

link:

protocol. dmc: communications

Is:

for a file system. fT:

nlist: get entries from name
nm: print name

am: print name

by fsck. checklist:

handle variable argument
output of a varargs argument
output of a varargs argument
xargs: construct argument
files. cp,

romboot: special ROM bootstrap
index: return

end: last

memory. plock:

intrinsic function.

gamma:

newgrp:

logarithm intrinsic function.
log10: Fortran common

log: Fortran natural
functions. exp: exponential,
errpt: process a report of
getlogin: get

logname: get

cuscrid: get character
logname: return

passwd: change

setting up an environment at

user.
string. a64l: convert between
sputl: access

between 3-byte integers and

line number entriesina lincnum(4)
linc number entriecsof a file Idlread(3X)
line number entriesofa Idiseek (3X)
line number information froma strip(1)
line numbering filter. nl{l)
lincofafile. cuticut cutl)

line printer. Ip,cancel: Ip(D

line printer. R | 1 4]

line: read one line. line(l)
lincar search and update. Iscarch(3C)
line-feeds. e v e wo.ocol(])
linenum: line number entries linenum(4)
lines common to twosorted comm(1)
linesinafile. e v v e e e unigQl)
lines of several file « « + .« . paste(l)
lines. v v o« . vpmtest(IM)
link and unlink system cal]s link(1M)
link editor for common object Id(1)

link editor. c e e e e e Idopdp(l)
link editor output. ¢ o .. acout(d)
link editoroutput. a.out.pdp(4)
link: exercise link and unlink link(1M)
link interface. pel(7)
link: linktoafile. link(2)

link monitor.+« + . . pcldacmon(1M)
link or move files. cp())
linktoafile. A 11302
link with built-in DDCMP dme(7)
lint: a C program checker. lint(1)

list contents of directory. Is(1)

list filc names and statistics (M)

list.0 ... nlist (3C)
list. « v o v o« . nm.pdp(l)
list of common object ﬁlc nm(])

list of file systems processed

. checklist(4)

list. varargs: varargs(5)
list. /print formatted« . vprintf(3S)
list. /print formatted vprintf(3X)
list(s) and execute command. xargs(1)

In, mv: copy, linkormove cp(l)
loaders. romboot(8)
location of Fortran substring. index(3F)
locations in program. end(3C)
lock process, text, or datain plock(2)
log: Fortran natural logarithm log(3F)

log gamma function.+« . . gamma(3M)
logintoanewgroup. newgrp(1)
log10: Fortran common log10(3F)
logarithm intrinsic function. log10(3F)
logarithm intrinsic function. log(3F)
logarithm, power, squarc root exp(3M)
logged errors. « o« .oerrpt(iIM)
loginname. getlogin(3C)
login name. v v v« . . logname(l)
login name of thewser. cuserid (3S)
login name of wuser. logname (3X)
loginpassword. passwd(l)
login:signon. login(1)
login time. profile: profile(4)
logname: get login name. logname(l)
logname: return login name of logname(3X}
long integer and base-64 ASCII a641(3C)

long integer dataina/, ..
long integers. 13tol: convert

-22-

. sputl(3X)

13101(3C)

for an object library.

nice: run a command at

requests 10 an LP line/

ﬂﬁ send/cancel requests to an
enable: enable/disable
Ipsched: start/stop the
accept: allow/prevent
Ipadmin: configure the
Ipstat: print

spooling system.
request scheduler
information.

dircctory.

update.

pointer.

vix: VAX-11/780

vpm: Virtual Protocol

for the virtual protocol
values:

/access long integer data in a
m4:

program. lapeboot:

ht: TUI6/TE16

tm: TM11/TU10

ts: TSI

tu78: TU78

send mail to users or read
rcad mail.

mail: send

processing system.

malloc:

malloc: fast

regenerate groups of/ make:
ar: archive and library

ar: archive and library
intro: introduction to

intro: introduction to system
SCCS file. delta:

mkdir:

or ordinary file. mknod:
mktemp:

regenerate groups of/
banner:

key.

allocator.

manual.

tsearch:

hsearch:

shl: shell layer

records. fwtmp:

of a file function. Idlread:
floating-point/ frexp:

man: print entrics in this
ascii:

files. diffmk:

umask: set file-creation mode
set and get file creation
table. master:

information table.

regular expression compile and
math:

~

Permuted Index

lorder: find ordering relation lorder(1)
low priority. nice(1)

Ip, cancel: send/cancel Iph)

LP line printer. Ip, cancel: Ip(1)

Ip: line printer. Ip(7)
LPoprinters, enable(1)
LP request scheduler Ipsched (1M)
LPrequests. .+ « v v v v v v 0 v . . accept(1M)
LP spooling system. lpadmin(I1M)
LP status information. lpstat(1)
Ipadmin: configure the LP lpadmin(IM)
Ipsched: start/stopthe LP Ipsched(1M)
Ipstat: print LPstatus 1pstat(1)

Is: list contentsof Is(1)
Isearch: linear searchand Isearch(3C)
Iseek: move read/write file Iseek(2)

LSI console floppy interface. vIx(1M)
m4: macro processor. md(l)
Machine. e e e i e e e e e vpm(D)
machine. vpme: compiler vpmc.dec(1M)
machine-dependent values. values(5)
machine-independent fashion sputl(3X)
MACro ProCessor. .+ o « & « « & « + .« mda(1)
magnetic tape bootstrap tapeboot(8)
magnetic tape interface. ht(7)
magnetic tape interface. tm.pdp(7)
magnetic tape interface. 1s11(7)
magnetic tape interface. tu78(7)
mail. mail: mail(1)
mail: send mail tousersor mail(1)

mail to users or read mail. mail(1)
mailx: intcractive message mailx (1)
main memory allocator. malloc(3C)
main memory allocator. malloc(3X)
maintain, update,and make(1)
maintainer. ar.pdp(l)
maintainer for portable/ ar(l)
maintenance commands intro(IM)
maintenance procedures. intro(8)
make a delta (change) toan delia())
make a directory.« . . mkdir(1)
make a directory, or a special mknod(2)
make a unique file name. mktemp(3C)
make: maintain, update,and make(1)
make posters. 4 4 4 banner(1)
makekey: generate encryption makekey(1)
malloc: fast main memory malloc(3X)
malloc: main memory allocator. malloc(3C)
man: print entriesin this man(1)
manage binary search trees. tsearch(3C)
manage hash search tables. hsearch(3C)
ManNager. .« « « v o « « + 4 4 4. . shl(1)
manipulate connect accounting fwtmp(IM)
manipulate line number entries Idlread(3X)
manipulate partsof frexp(3C)
manual. e e e e e . man(1)
map of ASCII character set. ascii(5)
mark differences between diffmk (1)
mask. . . . 0 e e e e e e umask(1)
mask. umask: umask(2)
master device information master.dec(4)

master: master device
match routines. regexp:
math functions and constants.

=23 -

master.dec(4)
regexp(5)
math(5)

Permuted Index

constants.

function.
multiple-access-user-space/
functions.

max: Fortran

maze: generate a
accounting.
rp07: RP07 non-removable

malloc: main
malloc: fast main
shmctl: shared
mem: core
/(shared
memccepy:

shmop: shared
lock process, text, or data in
shmget: get shared
sort: sort and/or
files. acctmerg:
file paste:

msgctl:

msgop:

mailx: interactive
ipcrm: remove a
msgget: get

mesg: permit or deny
perror: system error
kmc: KMC-11B/KMS11
functions.

min: Fortran

and commands.

boot image.

special or ordinary file.
name.

mill:

table.

intrinsic functions.

chmod: change

umask: set file-creation
chmod: change

dmk: DM11-BA

dmkset: connect DM11-BA
getty: set terminal type,

bs: a compiler/interpreter for
touch: update access and
utime: set file access and
pcldaemon: PCL link
profile.

uusub:

mount:
system. mount:

system.
setmnt: establish
mnttab:

math: math functionsand
matherr: error-handling
maus:
max: Fortran maximum-value
maximum-value functions.
maze: generate a maze.
MAZE. + ¢ v o 4 4 o o o o o o o 4
mclock: return Fortran time
medium moving-head disk.
mem: core memory.
memccpy: memory operations.
memory allocator.
memory allocator. . . . e e e,

L S A Y

L R S S S Y

math(5)
matherr(3M)
maus(2)
max(3F)
max (3F)
maze(6)
maze(6)
mclock (3F)
rp07(7)
mem(7)

. memory(3C)

malloc(3C)

. malloc(3X)

memory control operauons e v o« « o« shmectl(2)
MEMOTY. « « v ¢ v o o o o v o o o o mem(7)
memory) operations. maus(2)
memory operations. memory(3C)
memory operations. shmop(2)
memory. plock: plock(2)
memory segment. shmget(2)
mergefiles.sort(l)
merge or add total accounting acctmerg(1M)
merge same lines of several paste(l)
mesg: permit or deny messages. . mesg(1)
message control operations. msgctl(2)
message operations. msgop(2)
message processing system. mailx(1)
messagequeue ipcrm(1)
message queue. msgget(2)
MESSAZES. .+ + o v « + o o o « o . o mesg(l)
messages. « .« « « « o+ . . perror(3C)
MICIOProcessor. + « « v v « « + o 4 & kme(7)
min: Fortran minimum- valuc .+« .+ . min(3F)
minimum-value functions. min(3F)
mk: how to remake the system mk(8)
mkboot: convert a.out fileto mkboot (1M)
mkdir: make a directory. mkdir(1)
mkfs: construct a file system. mkfs(IM)
mknod: build special file. mknod(1M)
mknod: make a directory,ora mknod(2)
mktemp: make a unique file mktemp(3C)
mili: MLI1 solid-state disk. mll1.pdp(7)
MLI11 solid-statedisk. mll1.pdp(7)
mnttab: mounted file system mnttab(4)
mod: Fortran remaindering mod(3F)
mode.¢eee. ..o . chmod(l)
modemask. umask(1)
modeoffile. chmod(2)
modem control multiplexor. dmk(7)
modems to KMCI11-B dmksect(1M)
modes, speed, and line/ getty(1M)
modest-sized programs. bs(})
modification times of a file. touch(1)
modification times. utime(2)
monitor. . . + + v « + + « + + « « . pcldaemon(1M)
monitor: prepare execution monitor(3C)
monitor uucp network. uusub(IM)
moo: guessing game. moo(6)
mount a filesystem. mount(2)
mount and dismount file mount(IM)
mount: mount a file system. mount(2)
mount: mount and dismount file mount(I1M)
mounttable. setmnt (1 M)
mounted file system table. mnttab(4)

-2 -

mvdir:

cp, In, mv: copy, link or
Iseek:

hm: RMOS

hp: RP04/RPOS/RPO6
rm80: RM80

RPO7 non-removable medium
rp: RP-11/RP03

gd: general driver for
operations.

(shared memory)/ maus:
DH-11 asynchronous

dmk: DM11-BA modem control
cp, In,

function. log: Fortran
i-numbers.

anint: Fortran

PCL network.

exccute a command on the PCL
commands. stat: statistical
uusub: monitor uucp

a text file.

news: print

process.
priority.

list.

object file.

hangups and quits.
setymp:

moving-head/ rp07: RPO7
null: the

nl: line

graphics: access graphical and
Idfcen: common

dump sclected parts of an
Idopen: open a common
Idclose: close a common

the file header of a common
indexed/named section of an
the symbol table of a common
number entries in a common
nm: print name list of common
information for a common
section header for a common
format. syms: common

file header for common
dircctories. cpset: install

Id: link editor for common
print section sizes of common
size: print sizes of

find ordering relation for an
formats. convert: convert

sky:

od:

reading. Idopen:

move a directory.
move files.
move rcad/write file pointer.
moving-head disk.
moving-head disk.
moving-head disk.
moving-head disk. rp07:
moving-hcad disk.
moving-hcad disks.
msgctl: message control
msgget: get message queuc.,
msgop: message operations.
multiple-access-user-space
multiplexers. /DZ-11/KMC-11B,
multiplexor.
mv: copy, link or move files.
mvdir: move a directory.
natural logarithm intrinsic
ncheck: generate names from
nearest integer functions.
net: execute a command on the
network. net:
network useful with graphical
network.
newform: change the format of
newgrp: log in to a new group.
news items.
news: print news items.
nice: change priority of a
nice: run a command at low
nl: line numbering filter.
nlist: get entries from name . . .
nm: print name list.
nm: print name list of common

.......

.

.......

« e e

e .

. .

o v e

.o

nohup: run a command immune to . .

non-local goto.
non-removable medium
nullfile.0 0L
null: the null file.
numbering filter.
numerical commands.
object file access routines.
object file. dump:
object file for reading.
object file.
object file.
object file.
object file.
object file.
object file.
object file. /relocation
object file. scnhdr:

object file symbol table
object files. filehdr:
object files in binary
object files.
object files. size:
objectfiles.
object library. lorder:
object/archive files to common

obtain ephemerides.
octal dump.
od: octal dump.
open a common object file for

v e e e

.......

D

..........

Idfhread: rcad
/seek to an
/seek to

o e e
.....

..........
.....

......

.........

225

e

PR

PRI

PR

o« v .

e e

o« s .

o .

e

.o e

o s e

PR

e e

o e

s

.

o

“ 4

DR

« .o

. .

. e e

Permuted Index

mvdir (1 M)
cp(1)
Iseck (2)

msgetl(2)
msgget(2)
msgop(2)
maus(2)
. . dz(D)
dmk(7)
cp(1)
mvdir(1M)
log(3F)
ncheck (1M)
round (3F)
. net(1C)
net(1C)
stat(1G)
uusub(1M)
. . newform(1)
. newgrp(l)
news(1)
news(1)
nice(2)
nice(1)
nl(1)
nlist (3C)
nm.pdp(1)
. . nam(l)
. nohup(1)
setjmp(3C)
rp07(7)
null(7)
null(7)
ni(1)
graphics(1G)
Idfcn(4)
dump(1)
ldopen (3X)
Idclose(3X)
1dfhread (3X)
Idsseck (3X)
Idtbseck (3X)
linenum(4)
nm(1)
reloc(4)
scnhdr(4)
syms(4)
filchdr(4)
cpset(1M)
1d(1)
size(1)
size.pdp(1)
lorder(1)

. . . convert(})

od(1)

Permuted Index

fopen:

dup: duplicate an

open:

writing.

prf:

prfid:

7500ps: VAX-11/750 console
7800ps: VAX-11/780 console
/(shared memory)
memecpy: memory

msgctl: message control
msgop: message

semctl: semaphore control
semop: semaphore

shmetl: shared memory control
shmop: shared memory
strcat: string

join: relational database
dcopy: copy file systems for
CRT screen handling and
vector. getopt: get

file. ldohseck: seck to the
fentl: file control

stty: set the

getopt: parse command
functions. and,

object library. lorder: find

a directory, or a special or
dial: establish an

assembler and link editor
assembler and link editor
vprintf: print formatted
vprintf: print formatted
printf: print formatted
acctdisk:

chown: change

chown: change

files.

handling and optimization
sal: system activity report
standard buffered input/output
interprocess communication
check RP06 and RMOS disk
4014 terminal. 4014:
interface. pcl:

process, process group, and
getopt:

getpwent: get

putpwent: write

passwd:

getpass: read a

passwd: change login

pwek:

several file

dirname: deliver portions of
dircctory. getewd: get
grep: search a file for a
processing language. awk:
signal.

pcldaemon:

nct: execute a command on the
link interface.

open a stream.
open file descriptor.
open for reading or writing.
open: open for reading or
operating system profiler.
operating system profiler.
operations.
operations.
operations.
operations.
operations.
operations.
operations.
operations.
operations.
operations.
operations.
OPErAlOr. « + v v v 4 v ¢« v o 4 e . s
optimal access time.
optimization package. curses:
option letter from argument
optional file header of a
options.
options for a terminal.
options.
or, xor, not: Fortran boolcan
ordering relation for an
ordinary file. mknod: make
out-going terminal line/
output. a.out: common
output. aout: PDP-11
output of a varargs argument/
output of a varargs argument/

.............

.............

.............

..............

........

..............

......

.......

profiler (M)
7500ps(8)
7800ps(8)
maus(2)
memory(3C)
msgctl (2)
msgop(2)
semct](2)
semop(2)
shmetl(2)
shmop(2)
string (3C)
join(1)
deopy(1M)
curses(3X)
getopt (3C)
ldohseek (3X)
fentl(5)
stty(1)
getopt(1)
bool (3F)
lorder(1)
mknod(2)
dial(3C)
a.out(4)
a.out.pdp(4)

. vprintf(3S)
. vprintf(3X)

QULPUL. v v v o o e e e e e . printf(3S)
overview of accounting acct(IM)
owner and groupof a file. chown(2)
OWREr OF Group. . . « « « + « « « . - chown(1)
pack: compress and expand pack(1)
package. curses: CRT screen curses(3X)
package. v .. e 0. sar(1M)
package. stdio: stdio(3S)
package. ftok: standard stdipc(30)
packs. format: format and/or format(1M)
paginator for the TEKTRONIX . 4014(1)
parallel communications link pel(7)
parent process IDs. /get getpid(2)
parse command options. getopt(l)
passwd: change login password. . passwd(1)
passwd: password file. passwd(4)
password fileentry. getpwent (3C)
password fileentry. putpwent (3C)
passwordfile. passwd(4)
password. 0 . e a e e . . getpass(3C)
password. . . v v e e e e e passwd{(1)
password/group file checkers, pwek(1M)
paste: merge same linesof paste(1)}
path names. bascname, basename(1)
path-name of current working getewd(3C)
pattern. u e e e e e grep(1)
pattern scanningand awk(1)
pause: suspend process until pausc(2)
PCL link monitor. « pcldaemon(1 M)
PCL network. net(1C)

pcl: parallel communications pel(7)

- 26 -

fscv: convert files between

as: assembler for

cditor output. a.out:

/convert archive files from

value about processor type.

mesg:

pix:

format. acct:

acctcms: command summary from

~

terminals. pg: file
soft-copy terminals.
split: split a file into
channel.

tee:

popen: initiate

data in memory.

subroutines.

images.

fseck: reposition a file

Iseek: move read/write file
process.

and library maintainer for
bascname, dirname: deliver
functions. dim:

banner: make

exp: exponential, logarithm,

function. dprod: double
monitor:

cpp: the C language
unget: undo a

profiler.

profiler.

graphical/ gps: graphical
types:

prs:

date:

cal:

of a file. sum:

editing activity. sact:
man:

cat: concatenate and

pr:

varargs argument/ vprintf:
varargs argument/ vprintf:
printf:

information bdblk:

Ipstat:

nm:

object file. nm:

system. uname:

news:

file(s). acctcom: search and
object files. sizc:

size:

names. id:

vpmsave: save and
requests to an LP line

Ip: line

vpr: Versatec

vp: Versatece

enable: enable/disable LP

Permuted Index

pcldacmon: PCL link monitor.
PDP-11 and VAX-11/780 syslems. .
PDP-11. . . .

PDP-11 assembler and link
PDP-11 to common format.
pdpll, vax: provide truth

L Y o ..

pcldaemon(] M)
fscv.vax (1M)

. as.pdp(1)

a.out.pdp(4)

. arcv.pdp(1)
. machid(1)

permit or deny messages. mesg(1)
permuted index. e e e e e e . ptx(1)
per-process accounting file acct(4)
per-process accounting/ acctems(1M)
perror: system error messages. perror(3C)
perusal filter for soft-copy pg(l)

pg: file perusal filter for pe(l)
pieces. e e e e split(1)
pipe: create an interprocess pipe(2)
pipe fitting. oo tee(l)
pipe to/from a process. popen(3S)
plock: lock process, text,or plock(2)
plot: graphics interface. plot(4)
plot: graphics interface plot(3X)
pnch: file format for card pnch(4)
pointer in a stream. fseek(3S)
pointer.4 a4 e .. oo Iseek(2)
popen: initiate pipc to/froma popen(3S)
portable archives. /archive ar(l)
portions of path names. basename(1)
positive difference intrinsic dim(3F)
POSLETS. &+ ¢ v ¢ 4 4 4+ . banner(1)
power, square root functions. exp(3M)
prprintfiles. pr(D)
precision product 1nlr|m|c dprod (3F)
prepare exccution profile. monitor(3C)
preprocessor. e e e e e cpp(1)
previous get of an SCCS file. unget(l)
prf: operating system prf(7)
prfld: operating system profiler(1M)
primitive string, formatof gps(4)
primitive system data types. types(5)
print an SCCSfile. prs(l)
print and set thedate. date(1)
print calendar. voe e cal(n)
print checksum and block count sum(l)
print current SCCSfile sact(l)
print entries in this manual. man(1)
printfiles. e cat(l)
print files. e oowopr(D)
print formatted outputof a vprintf(3S)

print formatted outputof a

. vprintf(3X)

print formatted output. printf(3S)
print, initialize, update bad bdblk(I1M)
print LP status information. Ipstat (1)
print name list. am.pdp(1)
print name list of common nm(1)
print name of current UNIX, uname(1)
print newsitems. news(1)
print process accounting acctcom(l)
print section sizes of common . . , ., . size(l)
print sizes of object files. size.pdp(1)
print user and group iDsand id(1)

print VPM event traces., . . vpmsave(IM)
printer. /cancel: send/cancel Ip(1)
printer. N (1)
printer spooler. vpr(l)
printer. e e vp.pdp(7)
printers. cnable(1)

-27-

Permuted Index

output.

nice: run a command at low
nice: change

errors. errpt:

acct: cnable or disable
acctprcl:

acctcom: scarch and print
alarm: set a

times. times: get
initialization. init:

timex: time a command; report
exit: terminate

fork: create a new

process/ getpid: get process,
setpgrp: set

process group, and parent
inittab: script for the init
kill: terminate a

nice: change priority of a
kill: send a signal to a
popen: initiate pipe to/from a
parent process/ getpid: get
ps: report

memory. plock: lock

times: get process and child
wait: wait for child

ptrace:

pause: suspend

wait: await completion of
list of file systems

to a process or a group of
killall: kill all active
structure. fuser: identify
awk: pattern scanning and
shutdown: terminate all
mailx: interactive message
m4: macro

vax: provide truth value about
dprod: double precision

function.

profile.

prof: display

monitor: prepare execution
profil: execution time
environment at login time.
prof:

prf: operating system

prild: operating system

sadp: disk access
standard/restricted command
link with built-in DDCMP
vpm: Virtual

vpmc: compiler for the virtual
arithmetic:

processor type. pdpll, vax:
truc:

sxt:
/gencrate uniformly distributed

stream. ungetc:
a stream.

printf: print formatted

. printf(3S)

priofity. nice(1)
priority of a process. nice(2)
process a report of logged errpt(1M)
process accounting. acct(2)
process accounting. acctpre(1M)
process accounting file(s). acctcom(1)
process alarmclock. alarm(2)
process and child process times(2)
processcontrol init(IM)
process data and system/ timex(1)
Process. . « v .« . v v e e w4 .. . exit(2)
process. u v fork(2)
process group, and parcnl <o e .. getpid(2)
processgroup ID. setpgrp(2)
process IDs. /get process, getpid(2)
process. inittab(4)
process. kil
ProCESS. v v v v v e v e e e . nice(2)
process or a group of/ e kill2)
Process. . .+ .« . 4« . . popen(3S)
process, process group, and getpid(2)
processstatus. ps(])
process, text,ordatain plock(2)
process times. times(2)
process to stop or terminate. wait(2)
process trace. e e e ptrace(2)
process until signal. pausc(2)
PrOCESS. « v v v v e e e e e e e . wait(1)

processed by fsck. checklist:

cheeklist (4)

processes. /send a signal kill(2)
Processes. killall(1M)
processes usmgaﬁlc orfile fuserM)
processing language. awk(l)
processing. v« « « . . shutdown(1M)
processing system. mailx(1)
Processor. v v v v v 4 o4 w4 .. m4(1)
processor type. pdpll, machid(1)
product intrinsic function. dprod(3F)
prof: display profilcdata. prof (1)
prof: profile withina prof(3)
profil: execution time« . oprofil(2)
profiledata. prof(D)
profile., monitor (3C)
profile. L L. < . profil(2)
profile: settingupan profile(4)
profile within a function. profts)
profiler. pri(7)
profiler. ., « « . . prohler(1M)
profiler. sadp(IM)
programming language. /the shil)
protocol. dme: communications . dme(D)
Protocol Machine. vpm(7)
protocol machine. vpme.dec(1M)
provide drill in number facts. arithmetic(6)
provide truth value about | machid(1)
provide truth values. true(1)

prs: print an SCCS file. prs(1)

ps: report process status. ops(l)
pseudo-device driver. sxt(7)
pseudo-random numbers. drand48(3C)
ptrace: process trace. ptrace(2)

push character back into input
putc: put character or word on

228 -

. . ungetce(3S)
. pute(3S)

™

environment.
entry.
stream.
checkers.

Survey.

qasurvey:
tput:

IPCIIN: FEMOVE 4 MESSage
msgget: get message
gsort:

command immune to hangups and

generator.

irand:

rand: simple

fsplit: split {77,

dialect.

ratfor:

getpass:

entry of a file. ldtbread:
header of a file. ldshread:
read:

mail: send mail to users or
line:

Idahread:
common object file. Idfhread:
open a common object file for

open: open for

Iseek: move

specify what to do upon
/specify Fortran action on
from per-process accounting
errdead: extract error
manipulate connect accounting
tape. frec:

ed,

regular expression.

compile.

make: maintain, update, and
compile and match routines.
match routines. regexp:
regemp:

regemp: compile and execute
sorted files. comm: select or
lorder: find ordering

join:

for a common object file.
strip: remove symbols and
section of a/ Idrseek: seck to
common object file. reloc:
floor: floor, ceiling,
functions. mod: Fortran
commands. mk: how to
calendar:

rje: RJE

ct: spawn getty to a

file. rmdel:

ipcrm:

uflink:

rm:

bits. strip:

Permuted Index

putenv: change or add value to . putenv(3C)
putpwent: write password file putpwent (3C)
puts:putastringona puts(3S)
pwck: password/group file pwck (1M)
pwd: working directory name. . . pwd(1)
qasurvey: Quality Assurance qasurvey(1M)
gsort: quickersort. gsort(3C)
Quality Assurance Survey. gasurvey(1M)
query terminfo database. tput (1)
QUEUE « v ¢ v e v e e e e e e e ipcrm(1)
QUEHMC. + « v v b e e e e e e e msgget(2)
quickersort. gsort(3C)
quits. nohup: runa nohup(l)
quiz: test your knowledge. quiz(6)

rand: simple random-number .« . . rand(3C)
random number generator. rand(3F)
random-number generator. rand (3C)
ratfor,orefifiles. fsplit(1)
ratfor: rational Fortran ratfor(1)
rational Fortran dialect. ratfor(1)
read a password. getpass(3C)
read an indexed symbol table Idibread (3X)
read an indexed/named section . Idshread (3X)
read fromfile. read(2)
readmail. 0L L. mail (1)
readoneline. line(1)

read: read from file. read(2)

read the archive header Idahread(3X)
read the file headerofa Idfhread (3X)
reading. Idopen: NN . Idopen(3X)
reading or writing. open(2)
read/write file pointer. lscek(2)
receipt of a signal. signal: signal(2)
receipt of a system signal. signal 3F)
records. /command summary acctems(1M)
records fromdump. errdead (1 M)
records. fwtmp: fwimp(1M)
recover files from a backup frec(1M)
red: text editor. e e e ed(1)
regemp: compile and execute regemp(3X)
regemp: regular expression regemp(1)
regenerate groups of programs. . . make(1)
regexp: regular expression regexp(5)
regular expression compile and regexp(5)
regular expression compile. regemp(1)
regular expression. regemp(3X)
reject lines common to two . . ., . comm(1)
relation for an object/ lorder(1)
relational database operator. join(1)

reloc: relocation information .+ . . rcloc(4)
relocation bits. strip.pdp(l)

relocation entries of a

relocation information fora

remainder, absolute value/ .
remaindering intrinsic

remake the system and
reminder service.
(Remote Job Entry) to IBM.

remote terminal.
remove a delta from an SCCS
remove a message queuc
remove directory entry.

remove files or directories. .
remove symbols and relocation

.29 .

. . ldrseek(3X)
. reloc(4)

floor (3M)

. mod(3F)

mk(8)

calendar(1)

. rje(8)
. ct10)

rmdel (1)
iperm(1)

. unlink(2)

rm(1)

. strip.pdp(1)

Permuted Index

uniq: report

clock:

communication/ ipcs:
blocks. df:

errpt: process a

sal: system activity
timex: time a command;
ps:

file. uniq:

rjestat: RJE status
trenter: enter a trouble
sar: system activity
stream. fseek:

Ipsched: start/stop the LP
accept: allow/prevent LP
Ip, cancel: send/cancel
symbol table/ ldgetname:
argument. getarg:
variable. getenv:
accounting. mclock:

abs:

string. len:

substring. index:
logname:

name. getenv:

stat: data

reversi: a game of dramatic
col: filter

reversals.

creat: create a new file or
file.

file. rf:

disk file. hs:

gather files and/or submit
rje:

1BM.

rjestat:

rk: RK-11/RKO03 or
rk:

rl:

directories.

format and/or check RP06 and
hm:

rm80:

SCCS file.

romboot: special

loaders.

chroot: change

chroot: change

logarithm, power, square
sqrt: Fortran square

hpd: graphical device
common object file access
expression compile and match
graphical table of contents
disk.

moving-head disk. hp:
format: format and/or check
moving-head disk. rp07:
medium moving-head disk.

repeated linesinafile. uniq(1)
report CPU timeused. clock(3C)
report inter-process ipes(1)
report number of frec disk dr(im)
report of logged errors. . .+ crrpt(1M)
report package. sar(1M)
report process data and system/ . timex(1)
report process status. ps(l)
report repeated linesina unig(1)
TEPOTL v v v v v e v e e e e e e e rjestat (1C)
TEPOTL. v v v v o v v v e e e e e e trenter(1)
FEPOTLEr. « v « v v v v v v v e e . sar(1)
reposition a file pointerina fseck(3S)
request scheduler L. Ipsched (1 M)
FEQUESIS. o+ v v v e b e e e e accept(1M)
requeststoan LP line/ Ip(1)
retricve symbol name for file ldgetname(3X)
rcturn Fortran command-line getarg(3F)
return Fortran environment . ., getenv(3F)
return Fortrantime mclock (3F)
return integer absolute value. abs(3C)
return length of Fortran len(3F)
return location of Fortran index (3F)
return login namec of user. logname(3X)
return value for environmemt getenv(3C)
returned by stat systemcall. stat(5)
reversals. reversi(6)
reverse line-feeds. col(1)
reversi: a game of dramatic, . reversi(6)
rewrite an existingone. creat(2)

rf: RF11/RS11 fixed-head disk . rf.pdp(?)
RF11/RS11 fixed-head disk rl.pdp(7)
RHI11/RJS03-RJS04 fixed-head . . . hs.pdp(7)
RJEjobs.send: send(1C)
RJE (Remote Job Entry) to IBM. . . . rje(8)

rje: RJE (Remote Job Entry) to rje(8)
RJEstatusreport rjestat (1C)
rjestat: RJE status report rjestat (1C)
rk: RK-11/RK03 or RKO5 disk. rk.pdp(7)
RKOSdisk. o « v v v v v voe v rk.pdp(7)
RK-11/RKO3 or RKOS disk. rk.pdp(7)
rl: RL-11/RLO) disk. rl(7)
RL-11/RLOL disk. (M

rm: remove filesor rm(1)
RMOS disk packs. format: format(1M)
RMO5 moving-head disk. hm(7)
RM80 moving-head disk. rm80(7)
rm80: RM80 moving-head disk. . . rm80(7)
rmdel: remove a delta from an . rmdel(1)
ROM bootstrap loaders. romboot (8)
romboot: special ROM bootstrap . romboot (8)
ToOL direCtory. « o ¢ v v 4 4 4 o4 4 . chroot(2)
root directory for a command. chroot (1M)
root functions. /exponential, exp(3M)
root intrinsic function. sqrt(3F)
routines and filters. gdev(1G)
routines. Idfen: L .. oL L Idfen(4)
routines. regexp: regular regexp(5)
rOUtines. 10C: « « « v 4 4 4 0 4 o4 . . toc(1G)

rp: RP-11/RP03 moving-head . . 1p.pdp(7)
RP04/RPOS/RPO6 hp(?)
RP06 and RMOS disk packs. format(1M)
RPO7 non-removable medium rp07(7)
rp07: RPO7 non-removable rp07(7)

-30-

rp:
nice:

hangups and quits. nohup:
runacct:

package.
editing activity.

traces. vpmsave:

input.

bfs: big file

language. awk: pattern
stand-alone programs.

the delta commentary of an
comb: combine

make a delta (change) to an
sact: print current

get: get a version of an

prs: print an

rmdel: remove a delta from an
compare two versions of an
scesfile: format of

undo a previous get of an
val: validate

admin: crcate and administer
what: identify

of an SCCS file.

start/stop the LP request
common object file.
optimization/ curses: CRT
vi:

inittab:

system initialization shell

program.
grep:

bsearch: binary

accounting file(s). acctcom:
Isearch: linear

hsearch: manage hash
tsearch: manage binary
jotto:

object file. scnhdr:

/rcad an indexed/named

to linec number entries of a
to relocation entries of a
/seek to an indexed/named
files. size: print

section of an object/ ldsscek:
a section of a file. Idlseek:

a scction of a file. Idrseek:
header of a file. Idohseck:
common object file. ldtbseck:
shmget: get shared memory
brk: change data

to two sorted files. comm:
greek:

of a file. cut: cut out

file. dump: dump

semctl:

RP-11/RP03 moving-hcad disk.

run a command at low priority.

Permuted Index

. rp.pdp(7)

.« . nice(l)

run a command immuncto nohup(1)
run daily accounting. runacct(1M)
runacct: run daily accounting. runacct(1M)
sal: system aclivity report sar(1M)
sact: print current SCCS file sact(l)
sadp: disk access profiler. sadp(IM)
sag: system activity graph. sag(1G)

sar: system activity reporter. sar(1)

save and print VPM event vpmsave (1 M)
scanf: convert formatted scan{(3S)
SCANNET. + v ¢ v+ v v o 4 0 v e e bfs(1)
scanning and processing awk(1)

scc: C compiler for sce(1)
SCCS dclta. cdc: change cde(1)
SCCSdehtas. comb(1)
SCCSfile.delta: delta(1)
SCCS file editing activity. sact(1}
SCCSfile. . . v v v v v v v v get(1)
SCCSfile. prs(1)
SCCSfile. rmdel(1)
SCCS file. scesdifl: scesdiff(1)
SCCSfile. scesfile(4)
SCCS file. unget: unget(1)
SCCSfile. val(1)
SCCSfiles. « v ¢« v v v v v v v v .. admin(1)
SCCSfiles. « v v v v v v v v v v . what(1)
scesdiff: compare two versions scesdiff(1)
scesfile: format of SCCS file. scesfile(4)
scheduler Ipsched: Ipsched (1M)
scnhdr: section header fora scnhdr(4)
screen handlingand curses(3X)
screen-oriented editor L .. vi(l)

script for the init process. inittab(4)
scripts. bre: . . . oL L0 . L L bre(1M)
sdb: symbolic debugger. sdb(1)

sdiff: side-by-side difference sdiff (1)
search a file for a pattern. grep(1)
search a sorted table. bscarch(3C)
search and print process acctecom(1)
search and update. Iscarch(3C)
searchtables. hsearch(3C)
searchtrees. tscarch(3C)
secret word game. jotto(6)
section header for a common scnhdr(4)
section hcader of a file. ldshread(3X)
sectionof a file. /seek Idlseek (3X)
section of a file. /seek Idrseck (3X)
scction of an object file. Idsseck (3X}
section sizes of common object size(l)

sed: stream editor. sed(1)

seek to an indexed/named ldsseek (3X)
seck to linc number entriesof Idlseck (3X)
seck to relocation entriesof ldrseck (3X)
seek to the optional file Idohseck (3X)
seek (o the symbol tableofa Idtbscek (3X)
SEEMENL. « + v 4 v e 4 e e e e . shmget(2)
segment space allocation., brk(2)

select or reject lines common comm(1)
select terminal filter. greek (1)
selected fields of each line cut(1)
selected parts of an object dump(1)
semaphore control operations. semctl(2)

=31 -

Permuted Index

semop:
semget: get set of
operations.

a group of processes. kill:
submit RJE jobs.

mail. mail:

line printer. lp, cancel:
stream.

IDs. setuid,

login time. profile:

gettydefs: speed and terminal
group IDs.
standard/restricted command/
operations. shmctl:
/multiple-access-user-space
shmop:

shmget: get

system: issue a

system: issuc a

shl:

accounting. chargefec:

brc: system initialization
command programming/ sh:

operations.

segment.

operations.

processing.

program. sdiff:

intrinsic function.

login:

pause: suspend process until
what to do upon receipt of a
action on receipt of a system
on receipt of a system/
upon receipt of a signal.

of processes. kill: send a
ssignal: software

lex: gencrate programs for
generator. rand:

function.

sin: Fortran
sinh: Fortran hyperbolic
intrinsic function.

common object files.
files.

size: print section
size: print

an interval.

interval.

current/ tiyslot: find the
spline: interpolate

sno:
pg: file perusal filter for
ssignal:

semaphore operations. semop(2)
semaphores. semget(2)
semctl: semaphore control semctl(2)
semget: get set of semaphores. . semget(2)
semop: semaphore operations. semop(2)
send a signal to a processor kill(2)
send: gather filessand/or send(1C)
send mail tousersorread mail(1)
send/cancel requests toan LP Ip(1)
setbuf: assign bufferingtoa setbuf(3S)
setgid: set user and group setuid (2)
setjmp: non-local goto. setjmp(3C)
setmnt: establish mount table. setmnt(1M)
setpgrp: set process group ID. setpgrp(2)
setting up an environmentat profilc(4)
settings used by getty. gettydefs(4)
setuid, setgid: set userand sctuid(2)
sh:shell, the e e e e e sh(1)
shared memory control shmetl(2)
(shared memory) operations. maus(2)
shared memory operations. shmop(2)
shared memory segment. shmget (2)
shell command from Fortran. system(3F)
shell command. system(3S)
shell layer manager. shl(1)

shell proceduresfor acctsh(1M)
shellseripts. bre(I1M)
shell, the standard/restricted sh(1)

shl: shell layer manager. shi(1)
shmectl: shared memory control . shmctl(2)
shmget: get shared memory shmget(2)
shmop: shared memory shmop(2)
shutdown: terminateall shutdown (1 M)
side-by-side difference sdiff (1)
sign: Fortran transfer-of-sign sign(3F)
SIBNON. & v v vt e e e .. login(1)
signal. 0oL, pausc(2)
signal. signal: specify signal(2)
signal. /specify Fortran signal(3F)
signal: specify Fortran action signal (3F)
signal: specify what todo signal(2)
signal to a process or a group kill(2)
signals. ssignal (3C)
simple lexical tasks. lex(1)
simple random-number rand (3C)
sin: Fortran sine intrinsic sin(3F)
sin: trigonometric functions. trig(3M)
sinc intrinsic function. sin(3F)
sine intrinsic function. sinh(3F)
sinh: Fortran hyperbolic sine sinh(3F)
sinh: hyperbolic functions. sinh(3M)
size: print section sizesof size(1)
size: print sizes of object size.pdp(1)
sizes of common object files. size(1)
sizes of object files. size.pdp(1)
sky: obtain ephemerides. sky(6)
sleep: suspend execution for steep(1)
sleep: suspend exccution for sleep(3C)
slot in the utmp filcof the ttyslot (3C)
smoothcurve. spline(1G)
sno: SNOBOL interpreter. sno(l)
SNOBOL interpreter. sno(1)
soft-copy terminals. pg(l1}
softwaresignals. ssignal (3C)

-32-

R

)

mlll: ML11
sort:
gsort: quicker

tsort: topological

or rcject lines common to two
bsearch: binary scarch a

brk: change data segment
terminal. ct:

fspec: format

receipt of a system/ signal:
receipt of a signal. signal:
/set terminal type, modes,
used by getty. gettydefs:

spell: find

curve.

split:

csplit: context

files. fsplit:

pieces.

uuclean: uucp

vpr: Versatec printer

Ipadmin: configure the LP
data in a machine-independent/
intrinsic function.

exponential, logarithm, power,
function. sqrt: Fortran

scc: C compiler for

package. stdio:
communication package. ftok:
programming/ sh: sheli, the
scheduler psched:

unixboot: UNIX system
system call.

useful with graphical/
stat: data returned by
with graphical/ stat:
ff: list file names and
ustat: get file system
Ipstat: print LP
ferror: stream

control. uustat: uucp
communication facilitics
ps: report process
riestat: RJE

stat: get file
input/output package.

wait for child process to

sed:

fclose: close or flush a

fopen: open a

reposition a file pointer in a
get character or word from a
gets: get a string from a

put character or word on a

N puts: put a string on a
sctbuf: assign buffering to a

ferror:

push character back into input

Permuted Index

solid-statedisk. mllipdp(D
sort and/or merge files. sort(1)
SOTt. « v v 4 . . e e e e e e .. gsort(30)
sort: sort and/or merge files. sort(])
SOTL. v v v ot e v e e .. o oo tsort(1)
sorted files. comm: select comm(1)
sortedtable. bsearch(3C)
spacc allocation. brk(2)
spawn getty toaremote ct(IC)
specification in text files. fspec(4)
specify Fortran actionon signal(3F)
specify what todoupon signal(2)
speed, and line discipline. getty(1M)
speed and terminal settings gettydefs(4)
spell: find spelling errors. spell(1)
spellingerrors. spell(1)
spline: interpolate smooth spline(1G)
split a file into pieces. split(1)
split. .+ . v o oo oo . . csplit(1)
split f77, ratfor,orefl fsplit(1)
split: splita fileinto split(1)
spool directory clean-up. uuclean(iM)
spooler. e e e e e e e e e vpr(1)

spooling system. . .
sputl: access long integer
sqrt: Fortran squareroot
square root functions. exp:
square root intrinsic
ssignal: software signals.
stand-alone programs.
standard buffered input/output . ., .

LI T T S S

. Ipadmin(1M)

sputl(3X)
sqrt(3F)
exp(3M)
sqr1(3F)
ssignal (3C)

. sce(l)
. stdio(3S)

standard interprocess stdipc(3C)
standard/restricted command sh(l)
start/stop the LP request Ipsched (1M)
startup and boot procedures. unixboot(8)
stat: data returned by stat stat(5)
stat: get filestatus. stat(2)
stat: statistical network stat(1G)
stat systemcall. e v o . . ostat(s)
statistical network useful stal(1G)
statistics for a file system. FM)
statistics. ustat(2)
status infermation. lpstat(l)
status inquiries. v v v o . ferror(3S)
status inquiry and job uustat(1C)
status. /report inter-process ipes(1)
SLALUS, v 4 0 s e e e e e e e ps(1)
STAtUS FEPoOrt .« & v v . ow e . e . . rjiestat(1C)
status. e e e e e e e e e e stat(2)
stdio: standard buffered stdio(3S)
stime: set time. stime(2)
stop or terminate. wait: wait(2)
strcat: string operations. string(3C)
stream editor. sed(])
SLTEAM. &+ + o 4 v 4 v e e e e .. . fclose(3S)
stream. fopen(3S)
stream. fseek: fseck(3S)
stream. getc e e e e e getc(3S)
SIrEam. . .+ v v v 0w b o0 v oo . . . gets(3S)
stream. putc: e v e v e o .. pute(3S)
SIFEAM. v v v v 4 4 e e e e e e . . puts(3S)
SUFEAM. v ¢ v v 4 e e e e e . . setbuf(3S)

stream status inquiries.
stream. ungetc:

-33-

. ferror(3S)
. ungetc(3S)

Permuted Index

long integer and basc-64 ASCII
functions. lge:

convert date and time to
floating-point number to
gps: graphical primitive
gets: get a

len: return length of Fortran
puts: put a

streat:

number. strtod: convert
strtol: convert

relocation bits.

number information from a/
information from a/ strip:
double-precision number.
integer.

processes using a file or file
terminal.

another user.

send: gather files and/or
intro: introduction to

plot: graphics interface
return location of Fortran
count of a file.

du:

accounting/ acctcms: command
sync: update the

sync: update

su: become

qasurvey: Quality Assurance
interval. sleep:

interval. sleep:

pause:

swab:

information from/ strip: strip
table/ ldgetname: retrieve
/retricve symbol name for file
/compute the index of a
Idtbread: read an indexed
syms: common object file
object/ Idtbseek: seek 1o the
sdb:

strip: remove

symbol table format.

du: DU-11

binary search a sorted
symbol name for file symbol
/compute the index of a symbol
/read an indexed symbol
common object file symbol
master device information
mnttab: mounted file system
Idtbscck: seck to the symbol
toc: graphical

setmnt: establish mount
hscarch: manage hash search
tabs: set

a file.

string. a64l: convert between a641(3C)
string comparision intrinsic stremp(3F)
string. ctime? . . .« ctime(3C)
string. ecvt:convert ecvt(3C)
string, format of graphical/ gps(4)
string from a stream. gets(3S)
SUing. « . . o e e e e e e . len(3F)
stringonastream. puts(3S)
string operations. string(3C)
string to double-precision striod (3C)
string to integer. v e ... ostrol(30)

strip: remove symbols and
strip; strip symbol and line
strip symbol and linc number

. strip.pdp(1)
. strip(1)
. strip(1)

strtod: convert stringto strtod(3C)
strtol: convert stringto strtol (3C)
structure. fuser: identify fuser(IM)
stty: set theoptions fora suy(l)

su: become super-useror su(l)

submit RIEjobs. send(IC)
subroutines and librarics. intro(3)
subroutines, plot(3X)
substring. index: index(3F)
sum: print checksum and block sum(l)
summarize disk usage. du(l)
summary from per-process acctems(1M)
superblock. sync(1)
super-block. sync(?)
super-user or another user. su(l)

SUIVEY. « v v v e e e e e e e qasurvey(1M)
suspend execution foran sleep(1)
suspend execution for sleep(3C)
suspend process until signal. pause(2)
swab:swapbytes. swab(3C)
swapbytes. swab(3C)
sxt: pseudo-device driver. sxt(7)
symbol and line number strip(l)
symbol name for file symbol Idgetname(3X)
symbol tableentry. ldgetname(3X)
symbol table entry of a file. Idtbindex(3X)
symbol table entryof a file. Idtbread(3X)
symbol table format. syms(4)
symbol table of a common 1dtbseck (3X)
symbolic debugger. sdb(1)
symbols and relocation bits. strip.pdp(1)
syms: common object file syms(4)
sync: update super-block. sync(2)

sync: update the super block. sync(1)
synchronous line interface. du.pdp(?)
sysdef: system definition. sysdef(1M)
table. bsearch: bsearch(3C)
table entry. /retrieve ldgetname(3X)
table entry ofa file. Idtbindex(3X)
table entryof afile. 1dtbread (3X)
table format. syms: syms(4)
table. master: masterdec(4)
table. mnttab(4)
table of a common object file. Idtbseek (3X)
table of contents routines. toc(1G)
table., setmnt(1 M)
tables. 00w hsearch(3C)
tabsonaterminal. tabs(})

tabs: set tabs on a terminal. tabs(1)

tail: deliver the last partof tait(1)

-34-

function.

tan: Fortran

tanh: Fortran hyperbolic
tangent intrinsic function.
tapeboot: magnetic

gt: general driver for

hpio: HP 2645A terminal
tar:

recover files from a backup
ht: TU16/TE16 magnetic
tm: TM11/TU10 magnetic
ts: TS11 magnetic

tu78: TU78 magnetic
bootstrap program.

programs for simple lexical

4014: paginator for the
tmpfile: create a

tmpnam: create a name for a
terminals.

{erm: format of compiled
file..

for the TEKTRONIX 4014
functions of the DASI 450
terminfo:

ct: spawn getty to a remote
generate file name for
greek: select

termio: general

tty: controlling

dial: cstablish an out-going
getty. gettydefs: speed and
stty: sct the options for a
tabs: set tabs on a

hpio: HP 2645A

tty: get the name of the
ttyname: find name of a
and line/ getty: set

300: DASI 300 and 300s
handle special functions of HP
perusal filter for soft-copy
term: conventional names for
kill:

shutdown:

abort:

exit:

dacmon. errstop:

for child process to stop or
tic:

tput: query

data base.

interface.

command.

vpmtest:

quiz:

ed, red:

edit:

ex:

change the format of a
fspec: format specification in
plock: lock process,

-

ttt:

Permuted Index

tan: Fortran tangent intrinsic tan(3F)
tangent intrinsic function. tan(3F)
tangent intrinsic function. tanh(3F)
tanh: Fortran hyperbolic tanh(3F)
tape bootstrap program. tapeboot(8)
tapedrives. « « « ¢« ¢ o 4 v .. w . gt(7)

tape file archiver.« .+ . hpio(1)
tape file archiver. tar(l)
tape. frec: . .+ v . . v v v v v .. . frec(IM)
tape interface. h(D)
tapeinterface. tm.pdp(7)
tape interface. ts11(7)
tape interface. tu78(7)
tapeboot: magnetictape tapeboot (8)
tar: tape file archiver. tar(1)
tasks. lex: generate lex(1)

tee: pipe fitting. teel)
TEKTRONIX 4014 terminal. 4014(1)
temporary file. tmpfile(3S)
temporary file. tmpnam(3S)
term: conventional names for term(5)
termfile. term(4)
term: format of compiled term term(4)
terminal. 4014: paginator 4014(1)
terminal. 450: handle special 450(1)
terminal capability data base. terminfo(4)
terminal. e
terminal. ctermid: ctermid (3S)
terminal filter. greek(l)
terminal interface. termio(7)
terminal interface. wy(7
terminal line connection. dial(3C)
terminal settings used by gettydefs(4)
terminal. L. L L. L. .. sty (1)
terminal. L. tabs(1)
terminal tape file archiver. hpio(1)
terminal. uy(1)
terminal. 0oL ttyname(3C)
terminal type, modes, speed, getty (1M)
terminals. 30001
terminals. hp: hp()
terminals. pg:file pe(1)
terminals. L. L L. L term(5)
terminate a process. - kill(1)
terminate all processing. shutdown(IM)
terminate Fortran program. abort(3F)
terminate process. o..oexit(2)
terminate the error-logging errstop(1M)
terminate. wait: wait wait(2)
terminfo compiler. tic(1M)
terminfo database. tput (1)
terminfo: terminal capability terminfo(4)
termio: general terminal termio(7)
test: condition evaluation test(1)

test KMClines. vpmtest (I M)
test your knowledge. quiz(6)
texteditor. ed(D)
texteditor edit(1)
text editor. e eoex(D)

text file. newform: newform(1)
textfiles. [spec4)
text, or data in memory. plock(2)
tic: terminfo compiler. tic(OM)
tic-tac-toe. . . . v v . v w6)

-35-

Permuted Index

data and system/ timex:
time:

mclock: return Fortran
execute commands ata laler
systems for optimal access

profil: execution
up an environment at login
stime: set

time: get

ctime: convert date and
clock: report CPU

process times.

update access and modification
get process and child process
file access and modification
process data and system/
interface.

interface. tm:

file.

temporary file.

contents routines.

popen: initiate pipe

tsort:

acctmerg: merge or add
modification times of a file.

ptrace: process

save and print VPM cvent
function. sign: Fortran
toupper:

tr:

ftw: walk a file

tscarch: manage binary search
freport.

sin:

trenter: enter a

type. pdpll, vax: provide
true: provide

interface.

ts:

trecs.

interface.

terminal.

terminal.

utmp file of the current/
interface. ht:

tu78:

interface.

int: explicit Fortran

file: determine file

truth value about processor
getty: sct terminal

types.

types: primitive system data
gelpw: get name from

time a cqmmand; report process
time a command. .
time accounting.
time. at:
time. dcopy: copy file . .
time: get time.
time profile.

time. profile:setting
time. . ..
time: time a command.
time. .« v v v o v e e e
time to string.
timeused.
times: get process and child
times of a file. touch:
times. times:
times. utime:set
timex: time a command; report
tm: TM11/TUI0 magnetic tape
TMI11/TU10 magnetic tape
tmpfile: create a temporary
tmpnam: create a name fora
toc: graphical tableof
to/froma process. . . .« .+ .+
topological sort.
total accounting files. .
touch: update access and
toupper: translate characters.
tplot: graphics filters.
tput: query terminfo database. . . .
tr: translate characters.
trace: event-tracing driver.
WPACC. v v v v o v 0 o e e e e e
traces. vpmsave:

D

D I T I

timex (1)
time(1)
mclock (3F)
at(1)
decopy(1M)
time(2)
profil(2)
profile(4)

. stime(2)

time(1)
time(2)

. ctime(3C)

clock (3C)
times(2)
touch(1)
times(2)
utime(2)
timex(1)
tm.pdp(7)
tm.pdp(7)
tmpfile(3S)
tmpnam(3S)
toc(1G)

. popen(3S)

tsort(1)
acctmerg(1M)
touch(1)
conv(3C)

. tplot(1G)
. tput(l1)

tr(1)
trace(7)
ptrace(2)

. vpmsave(IM)

transfer-of-sign intrinsic sign(3F)
translate characters. conv(3C)
translate characters. tr(l)
UEC. « v v v v v v v v v v o v o . . [tw(3C)
TEES. v v v v o v v e e e e . tsearch(3C)
trenter: entera trouble trenter (1)
trigonometric functions. trig(3M)
trouble report. e e e trenter(1)
true: provide truth values. true(l)
truth value about processor machid (1)
truth values. e o v . true(l)
ts: TS11 magnetic tape ts11(7)
TS11 magnetic tape interface. . ts11(7)

tsearch: manage binary search

. . tsearch(3C)

tsort: topological sort. tsort(1)
ue tictac-toe. o0 o. ttl6)

tty: controlling terminal ty(7)

tty: get the nameof the tty(l)
ttyname: find nameofa ttyname(3C)
ttyslot: find the slotinthe ttyslot (3C)
TUI16/TE16 magnetic tape he(7)
TU78 magnetic tape interface. tu78(7)
tu78: TU78 magnetictape tu78(7)
typcconversion. ftype(3F)
YPE. v v v v e e e v e e e .. . file(D)
type. pdpll, vax: provide machid(l)
type, modes, speed, and line/ getty(1M)
types: primitive system data types(5)
LYPES. ¢ ¢ o ¢ o v o 0 v 0 v o« . . types(5)
UID. 0o getpw(3C)

- 36 -

limits.
creation mask.
mask.

UNIX system.
UNIX system.

file. unget:

an SCCS file.

into input stream.
drand48: gencrate

a file.

mktemp: make a
acu: Automatic Call

and boot procedures.
execution. uux:

uuto: public

entry.

link: exercise link and
umount:

times of a file. touch:

of programs. make: maintain,
bdblk: print, initialize,
Isearch: linear search and
sync:

sync:

du: summarize disk

stat: statistical network

id: print

setuid, setgid: set

crontab:

character login name of the
environ:

disk accounting data by
getuid: get

ulimit: get and set
logname: return login name of
become super-user or another
the utmp file of the current
write: write to another
mail: send mail to

wall: write to all

fuser: identify processes
statistics.

gutil: graphical
maodification times.

utmp:

getutent: access

ttyslot: find the slot in the
formats.

clean-up.

uusub: monitor

uuclean:

control. uustat:

system copy.

and job control.

system file copy.
command execution.

val:

pdpl [, vax: provide truth
abs: return integer absolute
abs: Fortran absolute

Permuted Index

ulimit: get and setuser ulimit(2)
umask: setand get file umask(2)
umask: set file-creation mode . . umask(l)
umount: unmount a file system. . . umount(2)
uname: get name of current uname(2)
uname: print name of current uname(l)
undo a previous get of an SCCS unget(l)
unget: undo a previous getof unget(1)
ungetc: push character back ungetc(3S)
uniformly distributed/ drand48(3C)
uniq: report repeated linesin unig(1)
unique file name. mktemp(3C)
Unit (ACU) interface. acu(?)
units: conversion program. units(])
unixboot: UNIX system startup . . unixboot(8)
UNIX-to-UNIX system command . . . uux{(1C)
UNIX-to-UNIX system file copy. . . . uuto(1C)
unlink: remove directory unlink(2)
unlink systemcalls. link(IM)
unmount a file system. umount(2)
update access and modification touch(1)
update, and regencrate groups make(l)
update bad information bdblk(1M)
update. Iscarch(3C)
update super-block. sync(2)
update the super block. sync(1)
usage. v v o du(l)
useful with graphical/ stat(1G)
user and group IDs and names. id(1)
userand group IDs. setuid(2)
usercrontabfile. crontab(1)
user. cuseridiget cuserid(3S)

user environment.

user ID. diskusg: generate

user 1Ds
user limits.
USET. v v v v e v e e e e e
USET. SUD v v v 4 v e e 4 e e .
user. /find theslotin
user.
users or read mail.
USETS. & 0 o 4 0 . . .
using a fileor file/

ustat: get file system

utilitics. Ce e
utime: set file access and

e s e s

utmp and wtmp entry formats. . . .

utmp file entry.

utmp file of the current user. . . .
utmp: utmp and wtmp entry . . .
uuclean: uucp spool directory . . .
uucp network.

uucp spool directory clean-up.
P Spoo! Y p

uucp status inquiry and job

uucp: UNIX system to UNIX . . .

uustat: uucp status inquiry
uusub: monitor uucp network. . . .

uuto: public UNIX-t0-UNIX

uux: UNIX-to-UNIX system . . .
val: validate SCCS file.
validate SCCSfile.
valuc about processor type.
value.

S e e e e 4 4 s e 8 e e e

value. 0oL L,

-37-

LI L T T S

. . environ(5)

. diskusg(1M)
. . getuid(2)

. . ulimit(2)

. . logname(3X)
. .osu(1)

< .. ttyslot(3C)

. . write(1)
mail(1)
wall(1M)
fuser (1M)
. ustat(2)
gutil(iG)
utime(2)

. utmp(4)

. getut(3C)
. . ttyslot(3C)
utmp(4)
uuclean(1M)
uusub(1M)
uuclean(1M)
. . uustat(1C)
. uucp(1C)
. . uustat(1C)
uusub(1M)
. uuto(1C)
uux(1C)
.. oval(l)
val(1)

. . machid(1)
. . abs(3Q)

. abs(3F)

Permutéd Index

getenv: return

ceiling, remainder, absolute
putenv: change or add
values.

truc: provide truth

values: machine-dependent
/print formatted output of a
/print formatted output of a
argument list.

varargs: handle

return Fortran environment
processor type. pdpll,
7500ps:

verification program. vcf:
780o0ps:

interface. vix:

files between PDP-11 and

verification program.

option letter from argument
vef: VAX-11/780 configuration
assert:

vpr:

vp:

ve:

get: get a

scesdiff: compare two

vpm:
vpmc: compiler for the
floppy interface.

with label checking.

file system: format of system

vpmset: connect/load
vpmsave: save and print

protocol machine.
event traces.
drivers

output of a varargs argument/
output of a varargs argument/
process.

or terminate. wait:

to stop or tcrminate.

ftw:

signal. signal: specify
crashes. crash:
whodo:

who:

cd: change

chdir: change

get path-name of current
pwd:

write:

putpwent:

wall:

value for environment name. getenv(3C)
value functions. /floor, floor (3M)
value to environment. putenv(3C)
values: machine-dependent values(5)
values.o o L. ., true(l)
values. .« . v v v v e e e e e e e values(5)
varargs argument list. vprintf(3S)
varargs argument list. vprintf(3X)
varargs: handle variable varargs(5)
variable argument list, varargs(5)
variable. getenv: getenv(3F)
vax: provide truth value about machid(1)
VAX-11/750 console operations. . 7500ps(8)
VAX-11/780 configuration vef(1M)
VAX-11/780 console operations. . . 7800ps(8)
VAX-11/780 LSI console floppy . vix(IM)

VAX-11/780 systems. /convert

. . fscv.vax(1M)

vc:version control. L L .. ve(l)

vef: VAX-11/780 configuration . vef(1M)
vector. getopt: get+ - . . getopt(3C)
verification program. vef(IM)
verify program assertion. assert(3X)
Versatec printer spooler. vpr(l)
Versatec printer. vp.pdp(7)
versioncontrol. oL L L. ve(l)

version of an SCCS file. get(1)
versions of an SCCSfile. scesdiff(1)

vi: screen-oriented editor, vi(l)

Virtual Protocol Machine. vpm(7)
virtual protocol machine. vpme.dec(1M)
vix: VAX-11/780 LSl console vix(1M)
volcopy: copy file systems volcopy(1M)
volume., fs(4)

vp: Versatec printer. vp.pdp(7)
VPMdrivers vpmset (1 M)
VPM event traces. vpmsave(1M)
vpm: Virtual Protocol Machine. . vpm(7)
vpmc: compiler for the virtual vpmc.dec(i M)
vpmsave: save and print VPM . . , . ., vpmsave(1M)
vpmset: connect/load VPM vpmset (1 M)
vpmtest: test KMC lines. vpmtest (1M)
vpr: Versatec printer spooler. vpr(1)
vprintf: print formatted vprint((3S)
vprintf: print formatted vprintf(3X)
wait: await completionof wait(1)

wait for child process tostop wait(2)

wait: wait for child process, wait(2)
walkafiletree., ftw(3C)

wall: writetoallusers. wall(1M)
we:wordcount. we(l)

what: identify SCCS files. what(1)

what to do upon receiptofa signal(2)
what to do when the system crash.dec(8)
whoisdoingwhat. whodo(1M)
who is on the system. who(1)

who: who is on the system. who(1)
whodo: who is doing what. whodo(1M)
working directory. cd(1)
working directory. chdir(2)
working directory. getewd: getewd (3C)
working directory name. pwd(1)
writeonafile. write(2)
write password fileentry. putpwent(3C)
write toallusers. wall(1M)

-38 -

write:

W\\ open: open for reading or
utmp: utmp and

hunt-the-wumpus.

list(s) and execute command.

functions. and, or,

j0, j1, jn,

j0, j1, jn, y0,

compiler-compiler.

i, ji, jn, 0, y1,

Permuted Index

write to anotheruser.
write: writeona file.
write: write to another user.
WHting, . . . 0 v e e e e e e .
wimp entry formats.
wump: the gamecof

xargs: construct argument

xor, not: Fortran boolean
y0, y1, yn: Bessel functions.
yl, yn: Bessel functions.
yacc: yet another -

yn: Bessel functions.

-39.

write(1)
write(2)
write(1)
open(2)
utmp(4)
wump(6)
xargs(1)
bool (3F)
bessel (3M)
bessel (3M)
yacc(1)

. bessel(3M)

5

INTRO(1) INTRO(1)

NAME
intro — introduction to commands and application programs
DESCRIPTION
This section describes, in alphabetical order, publicly-accessible commands.
Certain distinctions of purpose are made in the headings:
) Commands of general utility.
(1C) Commands for communication with other systems.
(IG) Commands used primarily for graphics and computer-aided design.

COMMAND SYNTAX
Unless otherwise noted, commands described in this scction accept options and
other arguments according to the following syntax:

name loption(s)] lemdarg(s)]

where:
name The name of an executable file.
option — noargletter(s) or,

— argletter <>optarg
where <> is optional white space.

noargletter A single letter representing an option without an argument.

argletter A single letter representing an option requiring an argument.
optarg Argument (character string) satisfying preceding argletter.
cmdarg Path name (or other command argument) not beginning with —
or, — by itself indicating the standard input.

SEE ALSO
getopt (1),
exit(2), wait(2), getopt(3C) in the UNIX System V Programmer Reference
Manual.
How to Get Started, at the front of this volume.

DIAGNOSTICS

Upon termination, cach command returns two bytes of status, one supplied by
the system and giving the cause for termination, and (in the case of “normal”
termination) one supplied by the program (see wair(2) and exit(2)). The
former byte is 0 for normal termination; the latter is customarily O for success-
ful execution and non-zero to indicate troubles such as erroncous parameters,
bad or inaccessible data, or other inability to cope with the task at hand. It is
called variously *“exit code”, “‘exit status™, or “return code”, and is described
only where special conventions are involved.

BUGS
Regretfully, many commands do not adhere to the aforementioned syntax.

WARNINGS
Some commands produce unexpected results when processing files containing
null characters. These commands often treat text input lines as strings and
therefore become confused upon encountering a null character (the string ter-
minator) within a line,

300(1) 300(1)

NAME
300, 300s — handie special functions of DAS1 300 and 300s terminals

SYNOPSIS
300[+121[=n][—dtlc]

300s [+12)1 [—a) [—dtlc]

DESCRIPTION

The 300 command supports special functions and optimizes the use of the DASI
300 (GSI 300 or DTC 300) terminal; 300s performs the same functions for the
DASI 300s (GSI 300s or DTC 300s) terminal. It converts half-line forward,
half-line reverse, and full-line reverse motions to the correct vertical motions.
It also attempts to draw Greek letters and other special symbols. It permits
convenient use of 12-pitch text. It also reduces printing time 5 to 70%. The
300 command can be used to print equations neatly, in the sequence:

neqn file ... | nroff | 300

WARNING: if your terminal has a PLOT switch, make sure it is turned on
before 300 is used.

The behavior of 300 can be modified by the optional flag arguments to handle
12-pitch text, fractional line spacings, messages, and delays.

+12 permits use of 12-pitch, 6 lines/inch text. DASI 300 terminals nor-
mally allow only two combinations: 10-pitch, 6 lines/inch, or 12-
pitch, 8 lines/inch. To obtain the 12-pitch, 6 lines per inch combina-
tion, the user should turn the PITCH switch to 12, and use the +12
option.

-n controls the size of half-line spacing. A half-line is, by default, equal
to 4 vertical plot increments. Because each increment equals 1/48 of
an inch, a 10-pitch line-feed requires 8 increments, while a 12-pitch
line-feed needs only 6. The first digit of n overrides the default
value, thus allowing for individual taste in the appearance of sub-
scripts and superscripts. For example, nroff half-lines could be made
to act as quarter-lines by using —2. The user could also obtain
appropriate half-lines for 12-pitch, 8 lines/inch mode by using the
option =3 alone, having set the PITCH switch to 12-pitch.

=ds,l,c controls delay factors. The default setting is —d3,90,30. DASI 300
terminals sometimes produce peculiar output when faced with very
long lines, too many tab characters, or long strings of blankless, non-
identical characters. One null (delay) character is inserted in a line
for every set of 7 tabs, and for every contiguous string of ¢ non-
blank, non-tab characters. If a line is longer than / bytes, 1+(total
length) /20 nulls are inserted at the end of that line. Items can be
omitted from the end of the list, implying use of the default values.
Also, a value of zero for ¢ (¢) results in two null bytes per tab (char-
acter). The former may be needed for C programs, the latter for
files like /etc/passwd. Because terminal behavior varies according to
the specific characters printed and the load on a system, the user
may have to experiment with these values to get correct output. The
—d option exists only as a last resort for those few cases that do not
otherwise print properly. For example, the file /etc/passwd may be
printed using —d3,30,5. The value —d0,1 is a good one to use for C
programs that have many levels of indentation.

Note that the delay control interacts heavily with the prevailing car-
riage return and line-feed delays. The stzy (1) modes nl0 cr2 or nl0
er3 are recommended for most uses.

-

300(1)

300(1)

The 300 command can be used with the nroff —s flag or .rd requests, when it
is necessary to insert paper manually or change fonts in the middle of a docu-
ment. Instead of hitting the return key in these cases, you must use the line-
feed key to get any response.

In many (but not all) cases, the following sequences are equivalent:

nroff —T300 files... and nroff files ... | 300
nroff =T300—12 files ... and nroff files... | 300 +12

The use of 300 can thus often be avoided unless special delays or options are
required; in a few cases, however, the additional movement optimization of 300
may produce better-aligned output.

The neqn names of, and resulting output for, the Greek and special characters
supported by 300 are shown in greek (5).

SEE ALSO

BUGS

450(1), eqn(1), graph(1G), mesg(1), nroff(1), stty(1), tabs(1}, tbl(1),
tplot(1G).
greek(5) in the UNIX System V Programmer Reference Manual.

Some special characters cannot be correctly printed in column 1 because the
print head cannot be moved to the left from there.

If your output contains Greek and/or reverse line-feeds, use a friction-feed pla-
ten instead of a forms tractor; although good enough for drafts, the latter has a
tendency to slip when reversing direction, distorting Greek characters and
misaligning the first line of text after one or more reverse line-feeds.

4014(1) 4014 (1)

NAME

4014 — paginator for the TEKTRONIX 4014 terminal
SYNOPSIS

4014 [=t 1[=n][=eN) [=pL 1 [file]
DESCRIPTION

The output of 40/4 is intended for a TEKTRONIX 4014 terminal; 40/4
arranges for 66 lines to fit on the screen, divides the screen into N columns, and
contributes an eight-space page offset in the (default) single-column case.
Tabs, spaces, and backspaces are collected and plotted when necessary. TELE-
TYPE Model 37 half- and reverse-line sequences are interpreted and plotted.
At the end of each page, 40/4 waits for a new-line (empty line) from the key-
board before continuing on to the next page. In this wait state, the command
lemd will send the emd to the shell.

The command line options are:

-t Do not wait between pages (useful for directing output into a file).

-n Start printing at the current cursor position and never crase the screen.
—cN Divide the screen into NV columns and wait after the last column.

—pL Set page length to L; L accepts the scale factors i (inches) and I
(lines); default is lines.
SEE ALSO
pr(1), tc(1), troff(1).

450(1) 450(1)

NAME
450 — handle special functions of the DASI 450 terminal

SYNOPSIS
450

DESCRIPTION
The 450 command supports special functions of, and optimizes the use of, the
DASI 450 terminal, or any terminal that is functionally identical, such as the
DIABLO 1620 or XEROX 1700. It converts half-line forward, half-line reverse,
and full-line reverse motions to the correct vertical motions. It also attempts to
draw Greek letters and other special symbols in the same manner as 300(1).
Use 450 to print equations neatly, in the sequence:

neqn file ... | nroff | 450

WARNING: make sure that the PLOT switch on your terminal is ON before 450
is used. The SPACING switch should be put in the desired position (either 10-
or 12-pitch). In either case, vertical spacing is 6 lines/inch, unless dynamically
changed to 8 lines per inch by an appropriate escape sequence.

Use 450 with the nroff —s flag or .rd requests when it is necessary to insert
paper manually or change fonts in the middle of a document. Instead of hit-
ting the return key in these cases, you must use the line-feed key to get any
response.

In many (but not all) cases, the use of 450 can be eliminated in favor of one of
the following:

nroff —T450 files ...
or
nroff —T450—12 files ...

The use of 450 can thus often be avoided unless special delays or options are
required; in a few cases, however, the additional movement optimization of 450
may produce better-aligned output.

The negn names of, and resulting output for, the Greek and special characters
supported by 450 are shown in greek (5).

SEE ALSO
300(1), eqn(1), graph(1G), mesg(1), nroff(1), stty(1), tabs(l), tbl(1),
tplot(1G).
greek(S) in the UNIX System V Programmer Reference Manual.

BUGS
Some special characters cannot be correctly printed in column 1 because the
print head cannot be moved to the left from there.
If your output contains Greek and/or reverse line-feeds, use a friction-feed pla-
ten instead of a forms tractor; although good enough for drafts, the latter has a
tendency to slip when reversing direction, distorting Greek characters and
misaligning the first line of text after one or more reverse line-feeds.

ACCTCOM (1) ACCTCOM(1)

NAME

acctcom — search and print process accounting file(s)
SYNOPSIS

acctcom [[options][file]] . . . -
DESCRIPTION

Acctcom reads file, the standard input, or /usr/adm/pacct, in the form
described by accr(4) and writes selected records to the standard output. Each
record represents the execution of one process. The output shows the COM-
MAND NAME, USER, TTYNAME, START TIME, END TIME, REAL (SEC), CPU
(SEC), MEAN SIZE(K), and optionally, F (the fork/exec Rag: 1 for fork
without exec), STAT (the system exit status), HOG FACTOR, KCORE MIN, CPU
FACTOR, CHARS TRNSFD, and BLOCKS /WD (total blocks read and written).

The command name is prepended with a # if it was cxecuted with super-user
privileges. If a process is not associated with a known terminal, a ? is printed
in the TTYNAME field.

If no files arc specified, and if the standard input is associated with a terminal
or /dev/null (as is the case when using & in the shell), /usr/adm/pacct is read;
otherwise, the standard input is read.

If any file arguments are given, they are read in their respective order. Each
file is normally read forward, i.e., in chronological order by process completion
time. The file /usr/adm/pacct is usually the current file to be cxamined; a busy
system may need several such files of which all but the current file are found in
/usr/adm/pacct?. The options are:

-a Show some average statistics about the processes sclected. The
statistics will be printed after the output records.

—-b Read backwards, showing latest commands first. This option has ﬁ%)
no effect when the standard input is read. ,'

-f Print the fork/exec flag and system exit status columns in the o
output.

—h Instead of mean memory size, show the fraction of total available

CPU time consumed by the process during its execution. This
*“hog factor™ is computed as:
(total CPU time)/(elapsed time).

=i Print columns containing the 1/0 counts in the output.

-k Instead of memory size, show total kcore-minutes.

-m Show mean core size (the default).

-r Show CPU factor (user time/(system-time + user-time).

-t Show separate system and user CPU times.

—v Exclude column headings from the output.

=1 line Show only processes belonging to terminal /dev/line.

—u user Show only processes belonging to user that may be specified by: a

user ID, a login name that is then converted to a user ID, a #
which designates only those processes executed with super-user
privileges, or ? which designates only those processes associated
with unknown user IDs.

—g group Show only processes belonging to group. The group may be
designated by either the group ID or group name.

=s time Select processes existing at or after time, given in the format
hr(:minl:secl].

—e lime Select processes existing at or before time.

=S time Select processes starting at or after time.

—E time Select processes ending at or before time. Using the same fime

for both =S and —E shows the processes that existed at time.

-

ACCTCOM (1) ACCTCOM(1)

FILES

—n pattern Show only commands matching pattern that may be a regular
expression as in ed(l) except that + means one or more

occurrences.

—q Do not print any output records, just print the average statistics
as with the —a option.

—o ofile Copy sclected process records in the input data format to ofile:

supress standard output printing.

—H factor Show only processes that exceed factor, where factor is the “hog
factor” as explained in option —h above.

-0 sec Show only processes with CPU system time exceeding sec scconds.

=C sec Show only processes with total CPU time, system plus user,
exceeding sec seconds.

=1 chars Show only processes transferring more characters than the cut-off
number given by chars.

/etc/passwd
/usr/adm/pacct
/etc/group

SEE ALSO

BUGS

ps(1), su(1).

acct(2), acct(4), utmp{4) in the UNIX System V Programmer Reference
Manual.

acct(1M), acctems(IM), acctcon(1M), acctmerg(1M), acctpre(1M),
acctsh(1M), fwtmp(1M), runacct(IM) in the UNIX Svstem V Administrator
Reference Manual.

Acctcom only reports on processes that have terminated; use ps(1) for active
processes. If time exceeds the present time, then time is interpreted as occur-
ring on the previous day.

ADB(1) (DEC only) ADB(1)

NAME

adb — absolute debugger
SYNOPSIS

adb [—w] [objfil [corfil 1]
DESCRIPTION

Adb is a gencral purpose debugging program. It may be used to examine files
and 1o provide a controlled environment for the exccution of UNIX system pro-
grams.

Objfil is normally an exccutable program file, preferably containing a symbol
lable: if not then the symbolic features of adbh cannot be used although the file
can still be examined. The default for objfil is a.out. Corfil is assumed to be a
core image file produced after exccuting objfil; the default for corfil is core.

Requests to adb are read from the standard input and responses are to the
standard output. If the —w flag is present then both objfil and corfil are
created if necessary and opencd for reading and writing so that files can be
modificd using adb. Adb ignores QUIT; INTERRUPT causes return to the next
adb command.

In general requests to adb arce of the form
Laddress] [, count] [command) [;]

Il address is present then dot is set to address. Initially dot is set to 0. For
most commands count specifies how many times the command will be executed.
The default count is 1. Address and count are expressions.

The interpretation of an address depends on the context it is used in. If a sub-
process is being debugged then addresses are interpreted in the usual way in
the address space of the subprocess. For further details of address mapping sce
ADDRESSES.
EXPRESSIONS
The value of dor.

+ The valuc of dot incremented by the current increment.

-

The value of dot decremented by the current increment.

The last address typed.

integer An octal number if integer begins with a 0: a hexadecimal number if
preceded by #; otherwise a decimal number.

integer fraction
A 32-bit floating point number.

ccce” The ASCIIl value of up to 4 characters. A \ may be used 1o escape a ',

< name
The valuc of nante, which is cither a variable name or a register name.
Adb maintains a number of variables (see VARIABLES) named by sin-
gle letters or digits. If name is a register name then the value of the
register is obtained from the system header in corfil. The register
names arc r0 ... r11 sp pc ps fp ap for the VAX
and
r0 ... rS sp pe ps for the PDP-11.

symbol A symbol is a scquence of upper or lower casc letters, underscores or
digits, not starting with a digit. The value of the symbol is taken
from the symbol table in 0bjfil. An initial _ or ~ will be prefixed 1o
symbol if needed.

ADB(1) (DEC only) ADB(1)

_ symbol
. In C, the “truc name™ of an cxternal symbol begins with . It may be
necessary to utter this name to distinguish it from internal or hidden

variables of a program.

routine.name
The address of the variable name in the specified C routine. Both rou-
tine and name are symbols. If name is omitted the value is the
address of the most recently activated C stack frame corresponding to
routine.

(exp) The valuc of the expression exp.

Monadic operators:
sexp The contents of the location addressed by exp in corfil.
@exp The contents of the location addressed by exp in objfil.
—exp Integer ncgation.
~exp Bitwise complement.

Dyadic operators are left associative and are less binding than monadic opera-
tors.

el +e2 Integer addition.
el —e2 Integer subtraction.
else2 Integer multiplication.

el %e2 Integer division.
el & e2 Bitwise conjunction.
(W\ el |e2 Bitwisc disjunction.
el#e2 EI rounded up to the next multiple of e2.

COMMANDS
Most commands consist of a verb followed by a modifier or list of modificrs.
The following verbs are available. (The commands ? and / may be followed by
*: scc ADDRESSES for further details.)

193 Locations starting at address in objfil arc printed according to the
format f and dot is incremented by the sum of the increments for
each format letter (q.v.).

Iy Locations starting at address in corfil arc printed according to the
format f and dot is incremented as for 2.

=f The value of address itsclf is printed in the styles indicated by the
format f. (For i format ? is printed for the parts of the instruction
that rcference subsequent words.)

A format consists of one or morc characters that specify a style of printing.
Each format character may be preceded by a decimal integer that is a repeat
count for the format character. While stepping through a format, dot is incre-
mented by the amount given for each format letter. If no format is given then
the last format is used. The format letters available are as follows:

o 2 Print 2 bytes in octal. All octal numbers output by adb are
preceded by 0.

Print 4 bytes in octal.

Print in signed octal.

Print long signed octal.

Print in decimal.

eo= O
NI NININ

ADB(1)

—
L4

- <A
_—— e et o 4

~eo T~ c

o

n

o
N

-
T OO o

new-line

(DEC only) ADB(1)

Print long decimal.

Print 2 bytes in hexadecimal.

Print 4 bytes in hexadecimal.

Print as an unsigned decimal number.

Print long unsigned decimal.

Print the 32 bit value as a floating point number.

Print double floating point.

Print the addressed byte in octal.

Print the addressed character.

Print the addressed character using the following escape con-
vention. Character values 000 to 040 are printed as @ fol-
lowed by the corresponding character in the range 0100 to
0140. The character @ is printed as @@.

Print the addressed characters until a zero character is
reached.

Print a string using the @ escape convention. The value 2 is
the length of the string including its zero terminator.

Print 4 bytes in date format (sce ctime (3C)).

Print as PDP-11 instructions. The value » is the number of
bytes occupicd by the instruction. This style of printing causcs
variables 1 and 2 to be set to the offset parts of the source and
destination, respectively.

Print the value of dot in symbolic form. Symbols arc checked
to ensure that they have an appropriate type as indicated
below.

/ local or global data symbol
? local or global text symbol
= local or global absolute symbol

Print the addressed value in symbolic form using the same
rules for symbol lookup as a.

When preceded by an integer, tabs to the next appropriate tab
stop. For example, 8t moves to the next 8-space tab stop.

Print a space.

Print a new-linc.

Print the enclosed string.

Dot is decremented by the current increment. Nothing is
printed.

Dot is incremented by 1. Nothing is printed.

Dot is decremented by 1. Nothing is printed.

Repeat the previous command with a count of 1.

[2/1 value mask
Words starting at dot arc masked with mask and compared with value
until a match is found. If L is used then the match is for 4 bytes at a
time instead of 2. If no match is found then dor is unchanged; other-
wisc dot is sct to the matched location. If mask is omitted then —1 is

used.

(2/)w value ...

Write the 2-byte value into the addressed location. If the command is
W, write 4 bytes. Odd addresses arc not allowed when writing to the
subprocess address space.

(2/Im b1 et f1[2/]
New values for (b7, el, f1) are recorded. If less than three expressions
arc given then the remaining map parameters are left unchanged. If

-3-

ADB(1) (DEC only) ADB(1)

the ? or / is followed by * then the second scgment (b2.e2./2) of the
mapping is changed. If the list is terminated by ? or / then the file
(objfil or corfil, respectively) is used for subsequent requests. (So that,
for example. /m? will cause / to refer 1o ohjfil)

>name Dot is assigned to the variable or register named.

! A shell is called to read the rest of the line following !.
Smaodifier
Miscellancous commands. The available modifiers are:
<f Read commands from the file fand return.
>f Send output to the file f, which is created if it does not exist.
r Print the general registers and the instruction addressed by pe.
Dot is sct to pe.
f Print the floating registers in single or double length. If (he

floating point status of ps is sct to double (0200 bit) then dou-
ble length is used anyway.

b Print all breakpoints and their associated counts and com-
mands.
a ALGOL 68 stack backtrace. [If address is given then it is

taken to be the address of the current frame Gnstead of rd).
If count is given then only the first counr frames are printed.

¢ C stack backtrace. If address is given then it is taken as the
address of the current frame Gnstead of r8). Il C is used then
the names and (16-bit) values of all automatic and static vari-
ables are printed for cach active function. Il count is given
then only the first count frames are printed.

e The names and values of external variables are printed.
w Sct the page width for output 1o address (default 80).
s Sct the limit for symbol matches to address (default 255).
0 All integers input are regarded as octal.
d Resct integer input as described in ENPRESSIONS.
q Exit from adb.
\ Print all non-zero variables in octal.
m Print the address map.
modifier

Manage a subprocess. Available modifiers are:

be Sct breakpoint at address. The breakpoint is executed
count=1 times before causing a stop. Each time the break-
point is encountered the command ¢ is exccuted. If this com-
mand sets dot o zero then the breakpoint causes a stop.

d Delete breakpoint at address.

r Run objfil as a subprocess. I address is given explicitly then
the program is entered at this point: otherwise the program is
entered at its standard entry point. The value count specifies
how many breakpoints are to be ignored before stopping.
Arguments to the subprocess may be supplied on the same line
as the command. An argument starting with < or > causes
the standard input or output to be cstablished for the com-
mand. All signals are turned on on ¢entry to the subprocess.

cs The subprocess is continued with signal s (see signal(2)). If
address is given then the subprocess is continued at this
address. If no signal is specified then the signal that caused
the subprocess to stop is sent. Breakpoint skipping is the same
as forr.

ADB(1)

(DEC only) ADB(1)

ss§ As for ¢ cxcept that the subprocess is single stepped count
times. If there is no current subprocess then objfil is run as a
subprocess as for r. In this case no signal can be sent; the
remainder of the line is trcated as arguments to the subpro-
cess.

k The current subprocess, if any, is terminated.

VARIABLES

Adb provides a number of variables. Named variables arc set initially by adb
but are not used subsequently. Numbered variables are reserved for communi-
cation as follows.

0 The last value printed.
1 The last offsct part of an instruction source.
2« The previous value of variable 1.

On cntry the following are set from the system header in the corfil. 1f corfil
docs not appear to be a core file, then these values are set from objfil.

The basc address of the data scgment.

The data segment size.

The entry point.

The “magic™ number (0405, 0407, 0410 or 0411).
The stack segment size.

The text segment size.

~msma.c'

ADDRESSES

FILES

The address in a file associated with a written address is determined by a map-
ping associated with that file. Each mapping is represented by two triples (b1,
el, f1) and (b2, €2, f2) and the file address corresponding to a written address
is calculated as follows:

bl Saddress <el => file address=address+f1 —b1
otherwise

b2<address <e2 => file address=address+f2—b2,

otherwise, the requested address is not legal. In some cases (e.g.. for programs
with separated [and D space) the two segments for a file may overlap. If a ?
or / is followed by an * then only the second triple is used.

The initial sctting of both mappings is suitable for normal a.out and core filcs.
If cither file is not of the kind expected then, for that file, b/ is sct 10 0, e/ is
set to the maximum file size and f7 is set to 0; in this way the whole file can be
examined with no address translation.

In order for adb 1o be used on large files all appropriate values are kept as
signed 32-bit integers.

/dev/mem
/dev/swap
a.out

core

SEE ALSO

ptrace(2), a.out(4), core(4) in the UNIX System V Programmer Reference
Manual.

ADB(1) (DEC only) ADB(1)

DIAGNOSTICS
G “Adb™ when there is no current command or format. Comments about inac-
’ cessible files, syntax crrors, abnormal termination of commands, ctc. Exit
¥

status is 0. unless last command failed or returned nonzero status.

BUGS
A breakpoint set at the entry point is not effective on initial entry to the pro-
gram,
When single stepping, system calls do not count as an executed instruction.
Local variables whose names are the same as an external variable may foul up
the accessing of the external.

On the VAX. there is some confusion about 2-byte versus 4-byte quantities.

ADMIN(1) ADMIN(1)

NAME
admin — create and administer SCCS files

SYNOPSIS
admin [-n] [=ilnamel]l {-rrel] [-tlnamell [—fAaglflag-valll
l—d?ag[ﬂag-val]] | —alogin] [—elogin] [-—mlmrlist]] [—ylcomment]] [—h]
[=z] files

DESCRIPTION

Admin is used to create new SCCS files and change parameters of existing ones.
Arguments to admin, which may appear in any order, consist of keyletter argu-
ments, which begin with —, and named files (note that SCCS file names must
begin with the characters s.). If a named file does not exist, it is created, and
its parameters arc initialized according to the specified keyletter arguments.
Parameters not initialized by a keyletter argument arc assigned a default value.
If a named file docs exist, parameters corresponding to specificd keyletter argu-
ments arc changed, and other parameters are left as is.

If a directory is named, admin behaves as though cach file in the directory
were specified as a named file, except that non-SCCS files (last component of
the path name does not begin with s.) and unreadable files are silently ignored.
If a name of — is given, the standard input is read; each line of the standard
input is taken to be the name of an SCCS file to be processed. Again, non-
SCCS files and unrcadable files are silently ignored.

The keyletter arguments are as follows. Each is explained as though only one
named file is to be processed since the effects of the arguments apply indepen-
dently to each named file.

-n This keyletter indicates that a new SCCS file is to be
created.
—ilname) The name of a file from which the text for a new SCCS

file is to be taken. The text constitutes the first delta of
the file (sec —r keyletter for delta numbering scheme).
If the i keyletter is used, but the file name is omitted,
the text is obtained by reading the standard input until
an end-of-file is encountered. If this keyletter is omit-
ted, then the SCCS file is created empty. Only one
SCCS file may be created by an admin command on
which the i keyletter is supplied. Using a single admin
to create two or more SCCS files requires that they be
created empty (no —i keyletter). Note that the —i
keyletter implies the —n keyletter.

=rrel The release into which the initial delta is inserted. This
keyletter may be used only if the —i keyletter is also
used. If the —r keyletter is not used, the initial delta is
inserted into release 1. The level of the initial delta is
always 1 (by default initial deltas arc named 1.1).

—tlnamel The name of a file from which descriptive text for the
SCCS file is to be taken. If the —t keyletter is used and
admin is creating a new SCCS file (the —n and/or —i
keyletters also used), the descriptive text file name must
also be supplied. In the case of existing SCCS files: (1)
a —t keyletter without a file name causes removal of
descriptive text (if any) currently in the SCCS file, and
(2) a —t keyletter with a file name causes text (if any)
in the named file to replace the descriptive text (if any)
currently in the SCCS file.

-1-

-

ADMIN (1)

—fflag

cceil

ffloor

dsip

ilser]

ist

n

qtext

mmod

ADMIN (1)

This keyletter specifies a flag, and, possibly, a value for
the flag, to be placed in the SCCS file. Several f
keyletters may be supplied on a single admin command
line. The allowable flags and their values are:

Allows use of the —b keyletter on a gez (1) command to
create branch deltas.

The highest release (i.c., “ceiling™), a number less than
or equal to 9999, which may be retrieved by a ger(1)
command for editing. The default value for an
unspecified ¢ flag is 9999.

The lowest release (i.c., “floor™), a number greater than
0 but less than 9999, which may be retrieved by a
get(1) command for editing. The default value for an
unspecified f flag is 1.

The default delta number (SID) to be used by a ger(1)
command.’

Causes the "No id keywords {(ge6)” message issued by
get(1) or delta(1) to be treated as a fatal error. In the
absence of this flag, the message is only a warning. The
message is issued if no SCCS identification keywords
(see get(1)) are found in the text retrieved or stored in
the SCCS file. If a value is supplied, the keywords must
exactly match the given string; however, the string must
contain a keyword and no embedded new-lincs.

Allows concurrent get(1) commands for editing on the
same SID of an SCCS file. This allows multiple con-
current updates to the same version of the SCCS file.

A list of releases to which deltas can no longer be made
(get —e against one of these “locked™ releases fails).
The list has the following syntax:

<list> = <range> | <list> , <range>
<range> .= RELEASE NUMBER | a

The character a in the /ist is equivalent to specifying all
releases for the named SCCS 1.

Causes delta(1) to create a “null” delta in each of those
releases (if any) being skipped when a delta is made in
a new release (c.g., in making delta 5.1 after delta 2.7,
releases 3 and 4 are skipped). These null deltas serve as
“anchor points” so that branch deltas may later be
created from them. The absence of this flag causes
skipped releases to bc non-existent in the SCCS file,
preventing branch deltas from being created from them
in the future.

User definable text substituted for all occurrences of the
%Q% keyword in SCCS file text retrieved by ger(1).

Module name of the SCCS file substituted for all
occurrences of the %M% keyword in SCCS file text
retrieved by ger(1). If the m flag is not specified, the
value assigned is the name of the SCCS file with the
leading s. removed.

ADMIN(1)

ttype

vipgm]

—dflag

Wist

—alogin

—elogin

—ylcomment]

—mlmrlist]

ADMIN (1)

Type of module in the SCCS file substituted for all
occurrences of %Y% keyword in SCCS file text retrieved
by get(1).

Causes delta(1) to prompt for Modification Request
(MR) numbers as the reason for creating a delta. The
optional value specifies the name of an MR number vali-
dity checking program (see delta(1)). (If this flag is set
when creating an SCCS file, the m keyletter must also be
used even if its value is null).

Causes removal (deletion) of the specified flag from an
SCCS file. The —d keylettcr may be specified only
when processing existing SCCS files. Several =-d
keyletters may be supplied on a single admin command.
See the —f keyletter for allowable flag names.

A list of releases to be “unlocked”. See the -—f
keyletter for a description of the 1 flag and the syntax of
a list.

A login name, or numerical UNIX system group ID, to
be added to the list of users which may make deltas
(changes) to the SCCS file. A group ID is equivalent to
specifying all login names common to that group ID.
Several a keyletters may be used on a single admin
command line. As many logins, or numerical group IDs,
as desired may be on the list simultancously. If the list
of users is empty, then anyone may add deltas. If login
or group ID is preceded by a ! they are to be denied per-
mission to make deltas.

A login name, or numerical group ID, to be erased from
the list of users allowed to make deltas (changes) to the
SCCS file. Specifying a group ID is equivalent to speci-
fying all login names common to that group ID. Several
e keyletters may be used on a single admin command
line.

The comment text is inserted into the SCCS file as a
comment for the initial delta in a manner identical to
that of delta(1). Omission of the —y keyletter results
in a default comment line being inserted in the form:

date and time created YY/MM/DD HH:MM:SS by login

The =y keyletter is valid only if the —i and/or —n
keyletters are specified (i.e., a new SCCS file is being
created).

The list of Modification Requests (MR) numbers is
inserted into the SCCS file as the reason for creating the
initial delta in a manner identical to delta(1). The v
flag must be set and the MR numbers arc validated if
the v flag has a value (the name of an MR number vali-
dation program). Diagnostics will occur if the v flag is
not set or MR validation fails.

Causes admin to check the structure of the SCCS file
(see sccsfile(5)), and to compare a newly computed
check-sum (the sum of all the characters in the SCCS
file except those in the first line) with the check-sum
that is stored in the first line of the SCCS file.

-3-

-~

ADMIN (1) ADMIN (1)

FILES

Appropriate error diagnostics are produced.

This keyletter inhibits writing on the file, so that it
nullifies the effect of any other keyletters supplied, and

is, therefore, only meaningful when processing existing
files.

-z The SCCS file check-sum is recomputed and stored in
the first line of the SCCS file (see —h, above).

Note that use of this keyletter on a truly corrupted file
may prevent future detection of the corruption.

The last component of all SCCS file names must be of the form s.file-name.
New SCCS files are given mode 444 (sce chmod(1)). Write permission in the
pertinent directory is, of course, required to create a file. All writing done by
admin is to a temporary x-file, called x.file-name, (see get(1)), created with
mode 444 if the admin command is creating a new SCCS file, or with the same
mode as the SCCS file if it exists. After successful exccution of admin, the
SCCS file is removed (if it exists), and the x-file is renamed with the name of
the SCCS file. This ensures that changes are made to the SCCS file only if no
errovs occurred.

It is recommended that directories containing SCCS files be mode 755 and that
SCCS files themselves be mode 444. The mode of the directories allows only
the owner to modify SCCS files contained in the directories. The mode of the
SCCS files prevents any modification at all except by SCCS commands.

If it should be necessary to patch an SCCS file for any reason, the mode may be
changed to 644 by the owner allowing use of ed(1). Care must be taken! The
cdited file should always be processed by an admin —h-to check for corruption
followed by an admin —~z to generate a proper check-sum. Another admin —h
is recommended to ensure the SCCS file is valid.

Admin also makes use of a transient lock file (called z.file-name), which is
used to prevent simultancous updates to the SCCS file by different users. See
get (1) for further information.

SEE ALSO

delta(1), ed(1), get(1), help(1), prs(1), what(1).
scesfile(4) in the UNIX System V Programmer Reference Manual.

Source Code Control System User Guide in the UNIX System V User Guide.

DIAGNOSTICS

Use help(1) for explanations.

AR(1) (not on PDP-11) AR (1)

NAME

ar — archive and library maintainer for portable archives
SYNOPSIS

ar key [posname] afile [name] ...
DESCRIPTION

The Ar command maintains groups of files combined into a single archive file.
Its main use is to create and update library files as used by the link editor. It
can be used, though, for any similar purpose. The magic string and the file
headers used by ar consist of printable ASCII characters. If an archive is com-
posed of printable files, the entire archive is printable.

When ar creates an archive, it creates headers in a format that is portable
across all machines. The portable archive format and structure is described in
detail in ar(4). The archive symbol table (described in ar(4)) is used by the
link editor (/4(1)) to effect multiple passes over libraries of object files in an
efficient manner. An archive symbol table is only created and maintained by
ar when there is at least one object file in the archive. The archive symbol
table is in a specially named file which is always the first file in the archive.
This file is never mentioned or accessible to the user. Whenever the ar(l)
command is used to create or update the contents of such an archive, the sym-
bol table is rebuilt. The s option described below will force the symbol table to
be rebuilt.

Key is an optional —, followed by one character from the sct drqtpmx, option-
ally concatenated with one or more of vuaibels. Afile is the archive file. The
names are constituent files in the archive file. The meanings of the key charac-

ters are:
d Deletc the named files from the archive file.
T Replace the named files in the archive file. If the optional character u

is used with r, then only those files with dates of modification later
than the archive files are replaced. If an optional positioning character
from the set abi is used, then the posname argument must be present
and specifics that new files are to be placed after (a) or before (b or i)
posname. Otherwise new files are placed at the end.

q Quickly append the named files to the end of the archive file. Optional
positioning characters are invalid. The command does not check
whether the added members are already in the archive. Useful only to
avoid quadratic behavior when creating a large archive piece-by-piece.

t Print a table of contents of the archive file. If no names are given, all
files in the archive are tabled. If names are given, only those files are
tabled.

p Print the named files in the archive.

Move the named files to the end of the archive. If a positioning char-
acter is present, then the posname argument must be present and, as in
r, specifies where the files are to be moved.

X Extract the named files. If no names are given, all files in the archive
are extracted. In neither case does x alter the archive file.

] Give a verbose file-by-file description of the making of a new archive
file from the old archive and the constituent files. When used with ¢,
give a long listing of all information about the files. When used with
x, precede each file with a name.

¢ Suppress the message that is produced by default when afile is created.

AR(1) (not on PDP-11) AR(1)

| Place temporary files in the local current working directory, rather
than in the directory specified by the environment variable TMPDIR or
in the default directory /tmp.

s Force the regeneration of the archive symbol table even if ar(1) is not
invoked with a command which will modify the archive contents. This
command is useful to restore the archive symbol table after the
strip(1) command has been used on the archive.

FILES
/tmp/ars temporaries

SEE ALSO
arev(1), convert (1), 1¢(1), lorder(1), strip(1).
tmpnam(3S), a.out(4), ar(4) in the UNIX System V Programmer Reference
Manual.

NOTES
This archive format is new to this rclease. The convert(1) command can be
used to change an older archive file into an archive file that is recognized by
this ar command.

BUGS

If the same file is mentioned twice in an argument list, it may be put in the
archive twice.

AR(1) (PDP-11 only) AR(1)

NAME

ar — archive and library maintainer
SYNOPSIS

ar key [posname] afile name ...
DESCRIPTION

Ar maintains groups of files combined into a single archive file. Its main use is
to create and update library files as used by the link editor. It can be used,
though, for any similar purpose.
When ar creates an archive, it always creates the header in the format of the
local system. A conversion program exists to convert PDP-11 archives to UNIX
system 5.0 VAX-11/780 archive format (see arcv(1)). Another conversion pro-
gram, convert(1), exists on the VAX and 3B 20 computers to convert archives
from the UNIX system 5.0 format to the “common” archive format described in
ar(4). Individual files are inserted without conversion into the archive file.

Key is one character from the set drgtpmx, optionally concatenated with one or

more of vuaibcl. Afile is the archive file. The names are constituent files in the

archive file. The meanings of the key characters are:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character u
is used with r, then only those files with dates of modification later
than the archive files are replaced. If an optional positioning character
from the set abi is used, then the posname argument must be present
and it specifies that new files are to be placed after (a) or before (b or
i) posname. Otherwise, new files are placed at the end.

q Quickly append the named files to the end of the archive file. Optional
positioning characters are invalid. The command does not check
whether the added members are already in the archive. Useful only to
avoid quadratic behavior when creating a large archive piece-by-picce.

t Print a table of contents of the archive file. If no names are given, all
files in the archive are tabled. If names are given, only those files are
tabled.

p Print the named files in the archive.

Move the named files to the end of the archive. If a positioning char-
acter is present, then the posname argument must be present and, as in
r, specifies where the files are to be moved.

X Extract the named files. If no names are given, all files in the archive
are extracted. In neither case does x alter the archive file.

v Give a verbose file-by-file description of the making of a new archive
file from the old archive and the constituent files. When used with t,
give a long listing of all information about the files. When used with
X, precede each file with a name.

c Suppress the message that is produced by default when afile is created.

1 Place temporary files in the local current working directory, rather
than in the default directory /tmp. This option causes them to be
placed in the current working directory.

FILES

/tmp/v*temporaries

AR (1) (PDP-11 only) AR(1)

SEE ALSO

arcv(1), convert(1), 1d(1), lorder(1).
@‘ \ ar(4) in the UNIX System V Programmer Reference Manual.

BUGS

If the same file is mentioned twice in an argument list, it may be put in the
archive twice.

ARCVY(1) (PDP-11 only) ARCV(1)

NAME
arcv — convert archive files from PDP-11 to common archive format

SYNOPSIS
arcv infile outfile

DESCRIPTION
Arev converts source archive files from the PDP-11 format to the UNIX system
5.0 portable archive format. The input archive file infile is converted to an
equivalent output archive file outfile . Note that there is no conversion of the
members of the input archive file.

FILES
/tmp/arcye

SEE ALSO
ar(1), convert(1).
ar(4) in the UNIX System V Programmer Reference Manual.

AS(1) (not on PDP-11) AS(1)

NAME
as — common assembler

SYNOPSIS
as [—o objfile] [=n] [=j] {=m] [=R] [=r] [—Ibwll] [—=V] file-name

DESCRIPTION
The as command assembles the named file. The following flags may be
specified in any order:

—o objfile Put the outlput of the assembly in objfile. By default, the output
file name is formed by removing the .s suffix, if there is one, from
the input file name and appending a .o suffix.

-n Turn off long/short address optimization. By default, address
optimization takes place.

-j Invoke the long-jump assembler (for the VAX version of the com-
mon assembler only). The address optimization algorithm chooses
between long and short address lengths, with short lengths chosen
when possible. Often, three distinct lengths are allowed by the
machine architecture; a choice must bec made between two of those
lengths. When the two choices given to the assembler exclude the
largest length allowed, then some addresses might be unrepresent-
able. The long-jump assembler will always have the largest length
as one of its allowable choices. If the assembler is invoked without
this option, and the case arises where an address is unrepresentable
by either of the two allowed choices, then the user will be informed
of the error, and advised to try again using the —j option.

-m Run the m4 macro pre-processor on the input to the assembler.
-R Remove (unlink) the input file after assembly is completed.
-r Place all assembled data (normally placed in the .data section) into

the .text section (for the VAX version of the common assembler
only). This option effectively disables the .data pseudo operation.
This option is off by default.

—[bwll Create byte (b), halfword (w) or long (I} displacements for
undefined symbols (for the VAX version of the common assembler
only). (An undefined symbol is a reference to a symbol whose
definition is external to the input file or a forward reference.) The
default value for this option is long (1) displacements.

-V Write the version number of the assembler being run on the stan-
dard error output. ’
FILES
/usr/tmp/as[1-6JXXXXXX temporary files
SEE ALSO

1d(1), m4(1), nm(1), strip(1).
a.out(4) in the UNIX System V Programmer Reference Manual.

WARNING
If the —=m (m4 macro pre-processor invocation) option is used, keywords for
m4 (see m4(1)) cannot be used as symbols (variables, functions, labels) in the
input file since m4 cannot determinc which are assembler symbols and which
are real m4 macros.

Use the —b or —w option only when undefined symbols are known to refcr to
locations representablc by the specified default displacement. Usc of cither
option when assembling a file containing a reference to a symbol that is to be
resolved by the loader can lead to unpredictable results, since the loader may

-1 -

AS(1) (not on PDP-11) AS(1)

be unable to place the address of the symbol into the space provided.
BUGS

The .align assembler directive is not guaranteed to work in the .text section
when optimization is performed.

Arithmetic expressions may only have one forward referenced symbol per
expression.

AS(1) (PDP-11 only) AS(1)

NAME

as — assembler for PDP-11
SYNOPSIS

as [—] [—o objfile] file ...
DESCRIPTION

As assembles the concatenation of the named files. If the optional first argu-
ment — is used, all undefined symbols in the assembly are treated as global.

The output of the assembly is left on the file objfile; if that is omitted, a.out is
used. [t is executable if no errors occurred during the assembly, and if there
were no unresolved exteinal references.

FILES
/lib/as2 pass 2 of the assembler
/tmp/atm[1-3]? temporary
a.out object

SEE ALSO

adb(1), 1d(1), nm(1).
a.out(4) in the UNIX System V Programmer Reference Manual.

UNIX System Assembler Manual by D. M. Ritchie.

DIAGNOSTICS
If the name chosen for the output file is of the form *?.lcsl, the assembler
issues an appropriate complaint and quits. When an input file cannot be read,
its name followed by a question mark is typed and assembly ceases. When syn-
tactic or semantic errors occur, a single-character diagnostic is typed out
together with the line number and the file name in which it occurred. Errors in
pass | cause cancellation of pass 2. The possible errors are:

) Parentheses error
] Parentheses crror
< String not terminated properly

Indirection used illegally

Illegal assignment to .

Error in address

Branch instruction is odd or too remote
Error in expression

Error in local (f or b) type symbol
Garbage (unknown) character

End of file inside an .if
Multiply-defined symbol as label

Word quantity assembled at odd address
. different in pass 1 and 2

Relocation error

Undefined symbol

Syntax error

X:"'UOB"'GQ"’OU’”'

BUGS
Syntax errors can cause incorrect line numbers in subsequent diagnostics.

ASA(1) ASA (1)

NAME
asa — interpret ASA carriage control characters

SYNOPSIS
asa {files]

DESCRIPTION
Asa interprets the output of FORTRAN programs that utilize ASA carriage con-
trol characters. It processes cither the files whosc names arc given as argu-
ments or the standard input if no file names are supplied. The first character
of cach line is assumed to be a control character; their meanings are:

(blank) single new line before printing

0 double new line before printing
1 new page before printing
+ overprint previous line.

Lines beginning with other than the above characters are treated as if they
began with * ". The first character of a line is not printed. If any such lines
appear, an appropriate diagnostic will appear on standard error. This program
forces the first line of each input file to start on a new page.

To view correctly the output of FORTRAN programs which use ASA carriage
control characters, asa could be used as a filter thus:

a.out | asa|lp

and the output, properly formatted and paginated, would be directed to the line
printer. FORTRAN output sent to a file could be viewed by:

asa file

SEE ALSO
efl(1), £77(1), fsplit(1), ratfor(1).

AT(1)

NAME

AT (1)

at, batch — execute commands at a later time

SYNOPSIS

at time [date 1 [+ increment]
at -rjob...
at -ljob...J

batch

DESCRIPTION

At and batch read coramands from standard input to be executed at a later
time. At allows you to .pecify when the commands should be exccuted, while
jobs queued with batch will execute when system load level permits. Ar -r
removes jobs previously scheduled with ar. The -1 option reports all jobs
scheduled for the invoking user.

Standard output and standard error output are mailed to the user unless they
are redirected elsewhere. The shell environment variables, current directory,
umask, and ulimit are retained when the commands are executed. Open file
descriptors, traps, and priority are lost.

Users are permitted to use at if their name appears in the file
/usr/lib/cron/at.allow. If that file does not exist, the file /usr/lib/cron/at.deny
is checked to determine if the user should be denied access to at. If neither file
exists, only root is allowed to submit a job. If cither file is at.deny, global usage
is permitted. The allow/deny files consist of one user name per line.

The time may be specified as 1, 2, or 4 digits. One and two digit numbers are
taken to be hours, four digits to be hours and minutes. The time may alter-
nately be specified as two numbers separated by a colon, meaning hour:minute.
A suffix am or pm may be appended; otherwise a 24-hour clock time is under-
stood. The suffix zulu may be used to indicate GMT. The special names noon,
midnight, now, and next are also recognized.

An optional date may be specified as cither a month name followed by a day
number (and possibly year number preceded by an optional comma) or a day
of the week (fully spelled or abbreviated to three characters). Two special
“days”, today and tomorrow are recognized. If no date is given, today is
assumed if the given hour is greater than the current hour and tomorrow is
assumed if it is less. If the given month is less than the current month (and no
year is given), next year is assumed.

The optional increment is simply a number suffixed by one of the following:
minutes, hours, days, weeks, months, or years. (The singular form is also
accepted.)

Thus legitimate commands include:

at 0815am Jan 24
at 8:15am Jan 24
at now + 1 day
at 5 pm Friday

At and batch write the job number and schedule time to standard error.

Batch submits a batch job. It is almost equivalent to *“‘at now”, but not quite.
For one, it goes into a different queue. For another, “‘at now™ will respond with
the error message too late.

At -r removes jobs previously scheduled by ar or batch. The job number is the
number given to you previously by the ar or batch command. You can also get
job numbers by typing @z -l. You can only remove your own jobs unless you
are the super-user.

AT(1)

AT (1)

EXAMPLES

The at and batch commands read from standard input the commands to be
executed at a later time. Sh(1) provides different ways of specifying standard
input. Within your commands, it may be useful to redirect standard output.

This sequence can be used at a terminal:
batch
nroff filename > outfile
<control-D> (hold down ’control’ and depress 'D")

This sequence, which demonstrates redirecting standard error to a pipe, is use-
ful in a shell procedure (the sequence of output redirection specifications is
significant):

batch < <!

nroff filename 2> &1 > outfile | mail loginid

]

To have a job reschedule itself, invoke at from within the shell procedure, by
including code similar to the following within the shell file:
echo "sh shellfile" | at 1900 thursday next week

FILES
/usr/lib/cron - main cron directory
/usr/lib/cron/at.allow - list of allowed users
/usr/lib/cron/at.deny - list of denied users
/usr/lib/cron/queue - scheduling information
/usr/spool/cron/atjobs - spool area
SEE ALSO
kill(1), mail(1), nice(1), ps(1), sh(1).
cron(1M) in the UNIX System V Administrator Reference Manual.
DIAGNOSTICS

Complains about various syntax errors and times out of range.

AWK (1) AWK(1)

NAME

awk — pattern scanning and processing language
SYNOPSIS

awk [—Fc] [prog] [parameters] [files]
DESCRIPTION

Awk scans each input file for lines that match any of a set of patterns specified
in prog. With each pattern in prog there can be an associated action that will
be performed when a line of a file matches the pattern. The set of patterns
may appear literally as prog, or in a file specified as —f file. The prog string
should be enclosed in single quotes (') to protect it from the shell.

Parameters, in the form x=... y=_. elc., may be passed to awk.

Files are read in order; if there are no files, the standard input is read. The file
name — mecans the standard input. Each line is matched against the pattern

portion of every pattern-action statement; the associated action is performed for
cach matched pattern.

An input line is made up of fields separated by white space. (This default can
be changed by using FS; see below). The fields are denoted $1, $2, ...; $0
refers to the entire line.

A pattern-action statement has the form:
pattern { action }

A missing action means print the line; a missing pattern always matches. An
action is a sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement]

while (conditional) statement

for (expression ; conditional ; expression) statement
break

continue

{ [statement] ...}

variable = expression

print [expression-list 1 [>expression]

printf format [, expression-list 1 [>expression |
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right braces. An empty
expression-list stands for the whole line. Expressions take on string or numeric
values as appropriate, and are built using the operators +, —, ¢, /, %, and
concatenation (indicated by a blank). The C operators ++, ——, +=, —=,
e= /=, and % = are also available in expressions. Variables may be scalars,
array elements (denoted x[i]) or fields. Variables are initialized to the null
string. Array subscripts may be any string, not necessarily numeric; this allows
for a form of associative memory. String constants are quoted (").

The print statement prints its arguments on the standard output (or on a file if
>expr is present), separated by the current output field separator, and ter-
minated by the output record separator. The printf statement formats its
expression list according to the format (see printf(3S)).

The built-in function length returns the length of its argument taken as a
string, or of the whole line if no argument. There are also built-in functions
exp, log, sqrt, and int. The last truncates its argument to an integer;
substr (s, m, n) returns the n-character substring of s that begins at position m.
The function sprintf(fmt, expr, expr, ...} formats the expressions according to
the printf(3S) format given by fmt and returns the resulting string.

AWK(1) AWK(1)

Patterns are arbitrary Boolean combinations (!, ||, & &, and parentheses) of
regular expressions and relational expressions. Regular expressions must be
surrounded by slashes and are as in egrep (see grep(1)). Isolated regular
expressions in a pattern apply to the entire line. Regular expressions may also
occur in relational expressions. A pattern may conmsist of two patterns
separated by a comma; in this case, the action is performed for all lines
between an occurrence of the first pattern and the next occurrence of the
second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is
cither ~ (for contains) or !" (for does not contain). A conditional is an arith-
metic expression, a relational expression, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before
the first input line is read and after the last. BEGIN must be the first pattern,
END the last.

A single character ¢ may be used to separate the fields by starting the program
with:

BEGIN {FS =}
or by using the —Fc¢ option.

Other variable names with special meanings include NF, the number of fields in
the current record; NR, the ordinal number of the current record; FILENAME,
the name of the current input file; OFS, the output field separator (default
blank); ORS, the output record separator (default new-line); and OFMT, the
output format for numbers (default %.6g).

EXAMPLES
Print lines longer than 72 characters:

length > 72
Print first two fields in opposite order:
{ print $2, $1 }
Add up first column, print sum and average:

[s +=$1)
END { print "sum is", s, " average is", s/NR)

Print fields in reverse order:
{ for i = NF; i > 0; —i) print $i }

Print all lines between start/stop pairs:
/start/, /stop/

Print all lines whose first ficld is different from previous one:
$1 != prev { print; prev = $1 }

Print file, filling in page numbers starting at 5:

/Page/ { $2 = n++; }
{ print }

command line: awk —f program n=5 input

™

AWK (1) AWK(1)

SEE ALSO

BUGS

grep(1), lex(1), sed(1).
malloc(3X) in the UNIX System V Programmer Reference Manual.

UNIX System V Support Tools Guide.

Input white space is not preserved on output if fields are involved.

There are no explicit conversions between numbers and strings. To force an
expression o be treated as a number add 0 to it; to force it to be treated as a
string concatenate the null string (") to it.

BANNER(1) BANNER(1)

NAME
banner — make posters
SYNOPSIS
banner strings
DESCRIPTION
Banner prints its arguments (each up to 10 characters long) in large letters on
the standard output.
SEE ALSO

echo(1).

BASENAME(1) BASENAME(1)

NAME
basename, dirname — deliver portions of path names

SYNOPSIS
basename string [suffix]
dirname string

DESCRIPTION
Basename dcletes any prefix ending in / and the suffix (if present in string)
from string, and prints the result on the standard output. It is normally used
inside substitution marks () within shell procedures.

Dirname delivers all but the last level of the path name in string.

EXAMPLES
The following example, invoked with the argument /usr/src/cmd/cat.c, com-

piles the named file and moves the output to a file named cat in the current
directory:

cc §1
mv a.out “‘bascname $1 "\.c*

The following example will set the shell variable NAME to /usr/src/cmd:
NAME="dirname /usr/src/cmd/cat.c®

SEE ALSO
sh(1).

BUGS
The basename of / is null and is considered an error.

BC(1) BC (1)

NAME
bc — arbitrary-precision arithmetic language

SYNOPSIS ')

be(=c1[=11 file ..}

DESCRIPTION
Bc is an interactive processor for a language that resembles C but provides
unlimited precision arithmetic. It takes input from any files given, then reads
the standard input. The —1 argument stands for the name of an arbitrary pre-
cision math library. The syntax for bc programs is as follows; L means letter
a—z, E means expression, S means statement.

Comments
are enclosed in /+ and /.

Names
simple variables: L
array ciements: L [E]
The words “ibase”, “obase”, and “scale™

Other operands
arbitrarily long numbers with optional sign and decimal point.

(E)
sqrt (E)
length (E) number of significant decimal digits
scale (E) number of digits right of decimal point
L(E,..,E)
Opcrators
+ — */ % " (% is remainder; " is power)
++ —- (prefix and postfix; apply to names) %)

= = =—=a=/=%='

Statements
E
{S:..:S}
if(E)S
while (E) S
for (E;E;E)S
null statement
break
quit
Function definitions
define L (L ..., L) {
auto L, ..., L
S;...S
return (E)

}

Functions in —I math library
s(x) sine
c(x) cosine
c(x) exponential
1(x) log
a(x) arctangent
j(n,x) Bessel function

All function arguments are passed by value.

BC(1)

BC(1)

The value of a statement that is an expression is printed unless the main opera-
tor is an assignment. Either semicolons or new-lines may separalc statcments.
Assignment to scale influcnces the number of digits to be retained on arith-
metic operations in the manner of dc(1). Assignments 1o ibase or obase set
the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable
simultaneously. All variables are global to the program. *“Auto™ variables are
pushed down during function calls. When using arrays as function arguments
or defining them as automatic variables, empty squarc brackets must follow the
array name.

Bc is actually a preprocessor for dc(1), which it invokes automatically, unless
the —¢ (compile only) option is present. In this case the dc input is sent to the
standard output instcad.

EXAMPLE

scale = 20
define c(x){
autoa, b, c, i, s

a=|
b=1
s =1
for(i=1: 1==1; i++){
a = a»x
b = b#
c=al/b
if(c == 0) return(s)
s = s+c¢
}

}

defines a function to compute an approximate valuc of the exponential function
and

for(i=1: i<=10: i++) e(i)

prints approximate values of the exponential function of the first ten integers.

FILES
/usr/lib/lib.b mathematical library
/usr/bin/dc desk calculator proper
SEE ALSO
de(1).

BUGS

UNIX System V Programmer Guide.

No & &, || yet.
For statement must have all three E's.
Quit ic interpreted when read, not when exccuted.

BDIFF(1) BDIFF(1)

NAME

bdifl — big diff

SYNOPSIS

bdiff filel file2 [n] [—s]

DESCRIPTION

FILES

Bdiff is used in a manner analogous to diff(1) to find which lines must be
changed in two files to bring them into agreement. Its purpose is to allow pro-
cessing of files which are too large for diff. Bdiff ignores lines common to the
beginning of both files, splits the remainder of each file into n-line segments,
and invokes diff upon corresponding segments. The value of n is 3500 by
default. If the optional third argument is given, and it is numeric, it is used as
the value for n. This is useful in those cases in which 3500-line segments are
too large for diff, causing it to fail. If filel (file2) is —, the standard input is
read. The optional —s (silent) argument specifies that no diagnostics are to be
printed by bdiffl (note, however, that this does not suppress possible exclama-
tions by diff. If both optional arguments are specified, they must appear in the
order indicated above.

The output of bdiff is cxactly that of diff, with line numbers adjusted to
account for the segmenting of the files (that is, to make it look as if the files
had been processed whole). Note that because of the segmenting of the files,
bdiff’ does not necessarily find a smallest sufficient set of file differences.

SEE ALSO

diff(1).

DIAGNOSTICS

Use help(1) for explanations.

BFS (1) BFS(1)

NAME

bfs — big file scanner
SYNOPSIS

bfs [—] name
DESCRIPTION

The Bfs command is (almost) like ed(1) except that it is read-only and
processes much larger files. Files can be up to 1024K bytes (the maximum
possible size) and 32K lines, with up to 512 characters, including new-line, per
line (255 for 16-bit machines). Bfs is usually more cfficient than ed for scan-
ning a file, since the file is not copied to a buffer. It is most useful for identify-
ing sections of a large file where csplit(1) can be used to divide it into more
manageable pieces for cditing.

Normally, the size of the file being scanned is printed, as is the size of any file
written with the w command. The optional — suppresses printing of sizes.
Input is prompted with » if P and a carriage return are typed as in ed.
Prompting can be turned off again by inputting another P and carriage return.
Note that messages are given in response to errors if prompting is turned on.

All address expressions described under ed are supported. In addition, regular
cxpressions may be surrounded with two symbols besides / and ?: > indicates
downward search without wrap-around, and < indicates upward search without
wrap-around. There is a slight difference in mark names: only the letters a
through z may be used, and all 26 marks are remembered.

The e, g. v, k, p, q, w. =, ! and null commands operate as described under ed.
Commands such as ———, +++—, +++=, —12, and +4p are accepted.
Notc that 1,10p and 1,10 will both print the first ten lines. The f command
only prints the name of the file being scanned; there is no remembered file
name. The w command is independent of output diversion, truncation, or
crunching (see the xo, xt and x¢ commands, below). The following additional
commands arc available:

xf file
Further commands are taken from the named file. When an end-
of-file is rcached, an interrupt signal is reccived or an error occurs,
reading resumes with the file containing the xf. The xf commands
may be nested to a depth of 10.

xn List the marks currently in use {marks are set by the k command).

xo [file]
Further output from the p and null commands is diverted to the
named file, which, if necessary, is created mode 666. If file is miss-
ing, output is diverted to the standard output. Note that cach
diversion causes truncation or creation of the file.

: label
This positions a label in a command file. The label is terminated
by new-line, and blanks between the : and the start of the label are
ignored. This command may also be used to insert comments into a
command file, since labels need not be referenced.

BFS(1)

BFS(1)

.)xb/regular expression/label

A jump (cither upward or downward) is made to /abel if the com-
mand succeeds. It fails under any of the following conditions:
1. Either address is not between 1 and $.
2. The second address is less than the first.
3. The regular expression does not match at least one line
in the specified range, including the first and last lines.

On success, . is set to the line matched and a jump is made to
label. This command is the only one that does not issuc an error
message on bad addresses, so it may be used to test whether
addresses arc bad before other commands are execcuted. Note that
the command

xb/"/ label

is an unconditional jump.

The xb command is allowed only if it is read from someplace other
than a terminal. If it is read from a pipe only a downward jump is
possible.

xt number

Output from the p and null commands is truncated to at most
number characters. The initial number is 255.

xvldigit}[spaces)[valuel

The variable name is the specified digir following the xv. The com-
mands xv5100 or xvS§ 100 both assign the value 100 to the variable
5. The command Xv61,100p assigns the value 1,100p to the vari-
able 6. To reference a variable, put a2 % in front of the variable
name. For example, using the above assignments for variables §
and 6:

1,%5p
1,%5
%6

will all print the first 100 lines.

g/%5/p

would globally search for the characters 100 and print each line
containing a match. To escape the special meaning of %, a \ must
precede it.

g/" M\ %lcds)/p

could be used to match and list lines containing printf of characters,
decimal integers, or strings.

Another feature of the xv command is that the first line of output
from a UNIX system command can be stored into a variable. The
only requirement is that the first character of value be an !. For
example:

.w junk

xv5lcat junk
'rm junk

lecho "%S5"
xvélexpr %6 + 1

-2-

BFS(1) BFS(1)

xv7\!date
stores the value !date into variable 7.
xbz label
xbn label

These two commands will test the last saved return code from the
execution of a UNIX system command (‘command) or nonzero
value, respectively, to the specified label. The two examples below
both search for the next five lines containing the string size.

xv55
1
Isize/
xvStexpr %5 — 1
fif 0%5 '= 0 exit 2
xbn 1
xv45
1
Isize/
xv4lexpr %4 — 1
lif 0%4 = 0 exit 2
xbz |
xc [switch]
If switch is 1, output from the p and null commands is crunched; if
switch is 0 it is not. Without an argument, xc reverses switch. Ini-
tially switch is set for no crunching. Crunched output has strings of
tabs and blanks reduced to one blank and blank lines suppressed.
SEE ALSO
csplit(1), ed(1).
regemp(3X) in the UNIX System V Programmer Reference Manual.

DIAGNOSTICS

? for errors in commands, if prompting is turned off. Self-explanatory error
messages when prompting is on.

BS(1) BS(1)

NAME
bs — a compiler/interpreter for modest-sized programs

SYNOPSIS ‘ ’}

bs [file [args 1] —

DESCRIPTION

Bs is a remote descendant of Basic and Snobol4 with a little C language
thrown in. Bs is designed for programming tasks where program development
time is as important as the resulting speed of exccution. Formalities of data
declaration and file/process manipulation arc minimized. Linc-at-a-time
debugging, the trace and dump statements, and uscful run-time error messages
all simplify program testing. Furthermore, incomplete programs can be
debugged; inner functions can be tested before outer functions have been writ-
ten and vice versa.

If the command line file argument is provided, the file is used for input before
the console is read. By default, statements read from the file argument arc
compiled for later execution. Likewise, statements entered from the console arc
normally executed immediately (see compile and execute below). Unless the
final operation is assignment, the result of an immediate expression statement is
printed.

Bs programs are made up of input lines. If the last character on a line is a \,
the line is continued. Bs accepts lines of the following form:

statement
label statement

A label is a name (sce below) followed by a colon. A label and a variable can
have the same name.

A bs statement is either an cxpression or a keyword followed by zero or more
expressions. Some keywords (clear, compile, !, execute, include, ibase, obase,
and run) arc always executed as they are compiled.

Statement Syntax:

expression
The expression is executed for its side effects (value, assignment, or function
call). The details of expressions follow the description of statement types
below.

break
Break exits from the inner-most forfwhile loop.

clear
Clears the symbol table and compiled statements. Clear is executed
immediately.

compile [expression]
Succeeding statements are compiled (overrides the immediate execution
default). The optional expression is evaluated and used as a file name for
further input. A clear is associated with this latter case. Compile is exe-
cuted immediately.

continue
Continue transfers to the loop-continuation of the current forihile loop.

dump [name]
The name and current value of every non-local variable is printed. Option-
ally, only the named variable is reported. After an error or interrupt, the
number of the last statement and (possibly) the user-function trace are
displayed.

BS(1)

BS(1)

exit [expression]
Return to system level. The expression is returned as process status.

execute
Change to immediate execution mode (an interrupt has a similar effect).
This statement does not cause stored statements to execute (see run below).

for name = cxpression expression statement
for name = expression cxpression

next

for expression , cxpression , expression statcment
for expression , cxpression , expression

next

The for statement repetitively executes a statement (first form) or a group
of statements (second form) under control of a named variable. The vari-
able takes on the value of the first expression, then is incremented by one on
each loop, not 10 exceed the value of the second expression. The third and
fourth forms require three expressions separated by commas. The first of
these is the initialization, the sccond is the test (truc to continue), and the
third is the loop-continuation action (normally an increment).

fun ([a,...]) [v, ...]

nuf
Fun defincs the function name, arguments, and local variables for a user-
written function. Up to ten arguments and local variables are allowed.
Such names cannot be arrays, nor can they be 1/0 associated. Function
definitions may not be nested.

freturn
A way to signal the failure of a user-written function. Sce the interrogation
opcrator (?) below. If interrogation is not present, freturn merely returns
zero. When interrogation is active, freturn transfers 1o that expression
(possibly by-passing intermediate function returns).

goto name
Control is passed to the internally stored statement with the matching label.

ibase N
Ibase scts the input base (radix) to N. The only supported values for N are
8, 10 (the default), and 16. Hexadecimal values 10—15 are entered as a—f.
A leading digit is required (i.e., f0a must be entered as 0f0a). Ibase (and
obase, below) arc exccuted immediately.

if expression statement
if expression

[else
]

fi
The statement (first form) or group of statements (second form) is executed
il the expression evaluates to non-zero. The strings 0 and ™ (null) evaluate
as zero. In the sccond form, an optional else allows for a group of statc-
ments to be exccuted when the first group is not. The only statement per-
mitted on thc same line with an efse is an if; only other fi’s can be on the
same linc with a fi. The elision of else and if into an elif is supported.
Only a single fi is required to close an if ... elif ... [else ...] sequence.

BS(1)

BS(1)

include expression
The expression must evaluate to a file name. The file must contain bs
source statements. Such statements become part of the program being com-
piled. Include statements may not be nested.

obase NV
Obase sets the output base to N (sce ibase above).

onintr label

onintr
The onintr command provides program control of interrupts. In the first
form, control will pass to the label given, just as if a goto had been exe-
cuted at the time onintr was executed. The effect of the statement is
cleared after each interrupt. In the second form, an interrupt will cause bs
to terminate.

return [expressjon]
The expression is evaluated and the result is passed back as the value of a
function call. If no expression is given, zero is returned.

run
The random number generator is reset. Control is passed to the first inter-
nal statement. If the run statement is contained in a file, it should be the
last statement.

stop
Execution of internal statements is stopped. Bs reverts to immediate mode.

trace [expression]
The trace statement controls function tracing. If the expression is null (or
evaluates to zero), tracing is turned off. Otherwise, a record of user-
function calls/returns will be printed. Each return decrements the rrace
expression value.

while expression statement
while expression

next
While is similar to for except that only the conditional expression for loop-
continuation is given.

! shell command
An immediate escape to the shell.

#

This statement is ignored. It is used to interject commentary in a program.
Expression Syntax:

name
A name is used to specify a variable. Names are composed of a letter
(upper or lower case) optionally followed by letters and digits. Only the
first six characters of a name are significant. Except for names declared in
Jun statements, all names are global to the program. Names can take on
numeric (double float) values, string values, or can be associated with
input/output (see the built-in function open() below).

name ([expression [, expression] ...])
Functions can be called by a name followed by the arguments in
parentheses separated by commas. Except for built-in functions (listed
below), the name must be defined with a fun statement. Arguments to
functions are passed by value.

BS(1)

BS(1)

name [expression [, expression] ... |
This syntax is used to reference either arrays or tables (see built-in table
functions below). For arrays, each expression is truncated 1o an integer and
used as a specifier for the name. The resulting array reference is syntacti-
cally identical to a name; al1,2] is the samc as al1ll2]. The truncated
expressions are restricted to values between 0 and 32767.

number
A number is used to represent a constant value. A number is written in
Fortran style, and contains digits, an optional decimal point, and possibly a
scale factor consisting of an e followed by a possibly signed exponent.

string
Character strings are delimited by " characters. The \ escape character
allows the double quote (\"), new-line (\n), carriage return (\r), backspace

(\b), and tab (\t) characters to appear in a string. Otherwise, \ stands for
itself.

(expression)
Parentheses arc used to alter the normal order of cvaluation.

(expression, expression [, expression ... 1) [expression |
The bracketed expression is used as a subscript to select a comma-separated
expression from the parenthesized list. List clements are numbered from
the left, starting at zero. The expression:

(False, Truc)[a ==b]
has the value True if the comparison is true.
? expression
The interrogation operator tests for the success of the expression rather than
its value. At the moment, it is uscful for testing end-of-file (see examples in
the Programming Tips section below), the result of the eval built-in func-
tion, and for checking the return from user-written functions (see freturn).
An interrogation “trap” (end-of-file, etc.) causes an immediate transfer to

the most recent interrogation, possibly skipping assignment statements or
intervening function levels.

— expression
The result is the ncgation of the expression.

+ 4+ name

Increments the value of the variable (or array reference). The result is the
new value.

- = name
Decrecments the value of the variable. The result is the new value.

! expression

The logical negation of the expression. Watch out for the shell escape com-
mand.

expression operator expression
Common functions of two arguments are abbreviated by the two arguments
separated by an operator denoting the function. Except for the assignment,

concatenation, and relational operators, both operands are converted to
numeric form before the function is applied.

Binary Operators (in increasing precedence):

= is the assignment operator. The left opcrand must be a name or an

array element. The result is the right operand. Assignment binds right to
left, all other operators bind left to right.

-4-

BS(1)

BS(1)

_ (underscore) is the concatenation operator.

&
& (logical and) has result zero if either of its arguments are zero. It has
result one if both of its arguments are non-zero; | (logical or) has result
zero if both of its arguments are zero. It has result one if either of its argu-
ments is non-zero. Both operators treat a null string as a zero.

< <= > >= == I=
The relational operators (< less than, <= less than or equal, > greater
than, > = greater than or cqual, == equal to, != not equal to) rcturn one
if their arguments are in the specified relation. They return zero otherwise.
Relational opcrators at the same level extend as follows: a>h>¢ is the
same as a>b & b>c. A string comparison is made if both operands are
strings.

+ -
Add and subtract.

/%
Multiply, divide, and remainder.

Exponentiation.
Built-in Functions:
Dealing with arguments

arg(i)
is the valuc of the i-th actual parameter on the current level of function
call. At level zero, arg returns the i-th command-line argument (arg(0)
rcturns bs).

narg()
returns the number of arguments passed. At level zero, the command argu-
ment count is returned.

Mathematical

abs(x)

is the absolute value of x.
atan(x)

is the arctangent of x. Its value is between —x/2 and #/2.
ceil(x)

returns the smallest integer not less than x.
cos(x)

is the cosine of x (radians).
exp(x)

is the exponential function of x.
floor(x)

returns the largest integer not greater than x.
log(x)

is the natural logarithm of x.
rand()

is a uniformly distributed random number between zero and one.

sin(x)
is the sine of x (radians).

)

BS(1)

BS(1)

sqrt(x)
is the square root of x.

String operations

size(s)
the size (length in bytes) of s is returned.

format(f, a)
returns the formatted value of a. F is assumed to be a format specification

in the style of printf(3S). Only the %...f, %...e, and %...s types are
safe.

index(x, y)

returns the number of the first position in x that any of the characters from
y matches. No match yiclds zero.

trans(s, f, ¢)
Translates characters of the source s from matching characters in Soa
character in the same position in f. Source characters that do not appear in
S are copicd to the result. If the string f is longer than ¢, source characters
that match in the excess portion of f do not appear in the result.

substr(s, start, width)
returns the sub-string of s defined by the starting position and width.

match(string, pattern)

mstring(n)
The pattern is similar to the regular expression syntax of the ed(1) com-
mand. The characters o, [, 1, ~ (inside brackets), = and $ are special. The
mstring function returns the n-th (1 <= n <= 10) substring of the subject
that occurred between pairs of the pattern symbols \(and \) for the most
recent call to maich. To succeed, patterns must match the beginning of the
string (as if all patterns began with ~). The function returns the number of
characters matched. For example:

match(*al123ab123", ".s\([a—z]\)") == 6
mstring(1) == "b"

File handling

open(name, file, function)
close(name)
The name argument must be a bs variable name (passed as a string). For
the open, the file argument may be 1) a 0 (zero), 1, or 2 representing stan-
dard input, output, or error output, respectively; 2) a string representing a
file name; or 3) a string beginning with an ! representing a command to be
exccuted (via sh —c). The function argument must be cither r (read), w
(write), W (writc without new-linc), or a (append). After a close, the
name reverts 10 being an ordinary variable. The initial associations are:
open("get”, 0, "r")
open{("put”, 1, "w")
open("puterr”, 2, "w")
Examples are given in the following section.

access(s, m)
execules access(2),
ftype(s)
returns a single character file type indication: f for regular file, p for FIFO

(i.c.. named pipe), d for directory, b for block special, or ¢ for character
special.

BS(1)

BS (1)

Tables

table(name, size)
A table in bs is an associatively accessed, single-dimension array. “Sub-
scripts” (called keys) arc strings (numbers are converted). The name argu-
ment must be a bs variable name (passed as a string). The size argument
sets the minimum number of elements to be allocated. Bs prints an error
message and stops on table overflow.

item(name, i)

key()
The item function accesses table elements sequentially (in normal use, there
is no orderly progression of key values). Where the item function accesses
values, the key function accesses the “subscript™ of the previous item call.
The name argument should not be quoted. Since exact table sizes are not
defined, the interrogation operator should be used to detect end-of-table; for
example:

table("t", 100)

#.l'l' word contains "party", the following expression adds one
to the count of that word:
++t[word]

#"i‘o print out the the key/value pairs:
fori=0,?(s =item(1, i)), ++i if key() put = key() "" s
iskey(name, word)

The iskey function tests whether the key word cxists in the table name and
returns one for true, zero for false.

Odds and ends

eval(s)
The string argument is evaluated as a bs expression. The function is handy
for converting numeric strings to numeric internal form. Eval can also be
used as a crude form of indirection, as in:

name = "xyz"

eval("++"_ name)
which increments the variable xyz. In addition, eval preceded by the inter-
rogation operator permits the user to control bs error conditions. For exam-
ple:

?eval ("open(\"X\", \"XXX\", \"r\")")
returns the value zero if there is no file named “XXX” (instead of halting
the user’s program). The following executes a goto to the label L Gf it
exists):

label="L"

if '(7eval("goto "_ label)) puterr = "no label"

plot(request, args)

The plot function produces output on devices recognized by tplor(1G). The
requests are as follows:

Call Function

plot(0, term) causes further plot output to be piped
into tplor(1G) with an argument of
=Tterm.

BS(1)

plot(4)
plot(2, string)
plot(3, x1, y1, x2, y2)

plor4, x, y,)
plot(5, x1, y1, x2, y2, x3, y3)
plot(6)

plot(7, x, y)
plot(8, x, y)

plot(9, x, y)
plot(10, string)
plot(11, x1, yl, x2, y2)

plot(12, x1, y1, x2, y2)

BS(1)

“erases” the plotter.
labels the current point with string.

draws the line between (x/,y!) and
(x2,y2).

draws a circle with center (x,y) and
radius .

draws an arc (counterclockwise) with
center (x/,yI) and endpoints (x2,y2)
and (x3,y3).

is not implemented.
makes the current point (x,y).

draws a line from the current point to
(x,p).

draws a point at (x,p).
sets the line mode to string.

makes (x/,yl) the lower left corner of
the plotting area and (x2,y2) the
upper right corner of the plotting area.

causes subscquent x (y) coordinates to
be multiplied by x/ (y/) and then
added to x2 (y2) before they are plot-
ted. The initial scaling is plot(12, 1.0,
1.0, 0.0, 0.0).

Some requests do not apply to all plotters. All requests except zero and
twelve are implemented by piping characters to 1plot (1G). See plot(4) for

more details.
last()

in immediate mode, last returns the most recently computed value.

PROGRAMMING TIPS
Using bs as a calculator:

$ bs

Distance (inches) light travels in a nanosecond.

186000 + 5280 » 12 / 1¢9
11.78496

Compound interest (6% for 5 years on $1,000).

int=.06/4

bal = 1000

fori =1 5+4 bal = bal + bal*int
bal — 1000

346.855007

exit

The outline of a typical bs program:

initialize things:
varl = 1
open(“read”, "infile", "r")

compute:

BS(1) BS(1)

while ?(str = read)

next
clean up:
close("read")

last statement executed (exit or stop):
exit

last input line:

run

Input/Output examples:

Copy "oldfile" to "newfile".
open("read”, "oldfile", "r")

" on

open("write", "newfile", "w")
while ?{write = read)

closc "read” and "write";
close("read")
close("write")

Pipc between commands.
open("ls*, "!s =", "r")

open("pr”, "Ipr ~2 ~h ‘List™, "w")
while ?7(pr = 1s) ...

#.be sure to close (wait for) these:
close("ls")
close("pr")

SEE ALSO
ed(1), sh(1), tplot(1G).
access(2), printf(38), stdio(3S), plot(4) in the UNIX System V Programmer
Reference Manual.
Sce Scction 3 of the UNIX System V Programmer Reference Manual for a
further description of the mathematical functions (pow on exp(3M) is used for
exponentiation); bs uses the Standard Input/Output package.

CAL(1) CAL(1)

NAME
cal — print calendar

SYNOPSIS
cal [[month] year]

DESCRIPTION
Cal prints a calendar for the specified year. If a month is also specified, a
calendar just for that month is printed. If neither is specified, a calendar for
the present month is printed. Year can be between | and 9999. The month is
a number between 1 and 12. The calendar produced is that for England and
her colonies.

Try September 1752.

BUGS
The year is always considered to start in January even though this is histori-
cally naive.
Beware that *“cal 83" refers to the early Christian era, not the 20th century.

CALENDAR(1) CALENDAR(1)

NAME

calendar — reminder service
SYNOPSIS

calendar [—]
DESCRIPTION

Calendar consults the file calendar in the current directory and prints out lines
that contain today’s or tomorrow’s date anywhere in the line. Most reasonable
month-day dates such as “Aug. 24,” “august 24,” “8/24,” etc., are recognized,
but not “24 August” or “24/8”. On weekends “tomorrow” extends through
Monday.

When an argument is present, calendar does its job for every user who has a
file calendar in the login directory and sends them any positive results by
mail(1). Ngrmally this is done daily by facilities in the UNIX operating sys-
tem.

FILES
/usr/lib/calprog to figure out today’s and tomorrow’s dates

/etc/passwd
/tmp/cal»

SEE ALSO
mail(1).

BUGS
Your calendar must be public information for you to get reminder service.
Calendar's extended idea of “tomorrow” does not account for holidays.

CAT (1) CAT(1)

NAME
cat — concatenate and print files
SYNOPSIS
cat [—~u][—=s][—v [—t] [—el]fie ...
DESCRIPTION
Cat reads each file in sequence and writes it on the standard output. Thus:

cat file
prints the file, and:
cat filel file2 > file3
concatenates the first two files and places the result on the third.

If no input file is given, or if the argument — is encountered, cat reads from
the standard input file. Output is buffered unless the —u option is specified.
The —s option makes cat silent about non-existent files.

The —v option causes non-printing characters (with the exception of tabs,
new-lines and form-feeds) to be printed visibly. Control characters are printed
“X (control-x); the DEL character (octal 0177) is printed “?. Non-ASCII
characters (with the high bit set) are printed as M-x, where x is the character
specified by the seven low order bits.

When used with the —v option, —t causes tabs to be printed as “I's, and —e
causes a $ character to be printed at the end of each line (prior to the new-
line). The —t and —e options are ignored if the —v option is not specified.
WARNING
Command formats such as
cat filel file2 >filel
will cause the original data in filel to be lost; therefore, take care when using
shell special characters.
SEE ALSO
cp(1), pg(1), pr(1).

CB(1) CB(1)

NAME

cb — C program beautifier
SYNOPSIS

b [=sT[=j1[=lleng 11 file ...]
DESCRIPTION

Cb reads C programs either from its arguments or from the standard input and
writes them on the standard output with spacing and indentation that displays
the structure of the code. Under default options, cb preserves all user new-
lines. Under the —s flag cb canonicalizes the code to the style of Kernighan
and Ritchie in The C Programming Language. The —j flag causes split lines
to be put back together. The —I flag causes cb to split lines that are longer
than leng.

SEE ALSO
ce(1).

The C Programming Language by B. W. Kernighan and D. M. Ritchie.

BUGS -
Punctuation that is hidden in preprocessor statements will cause indentation
errors.

cc) CC(1)

NAME

cc, pec — C compiler
SYNOPSIS

cc [option } ... file ...

pee [option] ... file ...
DESCRIPTION

Cc is the UNIX system C compiler. Pcc is the portable version for a PDP-11
machine. They accept several types of arguments.

Arguments whose names cnd with .c are taken to be C source programs. They
arc compiled, and cach object program is left on the filc whose name is that of
the source with .o substituted for .c. The .o file is normally deleted, however, if
a single C program is compiled and loaded all at one go.

In the same way, arguments whose names end with .s are taken to be assembly
source programs and are assembled, producing a .o file.

The following options arc interpreted by cc and pec. See /d (1) for link editor
options and cpp (1) for more preprocessor options.

-c Suppress the link edit phase of the compilation and force an object file
to be produced even if only one program is compiled.

-p Arrange for the compiler to produce code that counts the number of
times each routine is called; also, if link editing takes place, replace
the standard startoff routinc by one that automatically calls
monitor(3C) at the start and arranges Lo write out a mon.out file at
normal termination of execution of the object program. An execution
profile can then be generated by use of prof(1). For the PDP-11 only,
the libraries /lib/libp/libm.a (f the —Im option is used) and
/lib/libp/libe.a must be specified cxplicitly if the versions reporting
function call counts are to be loaded.

—f Link the object program with the floating-point interpreter for systems
without hardware floating-point.

-g Cause the compiler to generate additional information needed for the
use of sdb(1). (Not for PDP-11.)

-0 Invoke an object-code optimizer.

=S Compile the named C programs and leave the assembler-language

output on corresponding files suffixed .s.

-E Run only ¢pp(1) on the named C programs and send the result to the
standard output.

-P Run only ¢pp(1) on the named C programs and leave the result on
corresponding files suffixed .i.

~—Bstring
Construct path names for substitute preprocessor, compiler, assembler
and link editor passes by concatenating string with the suffixes cpp, c0
(or ccom or comp, see under FILES below), c1, c¢2 (or optim), as and
Id. If string is empty it is taken to be /lib/o.

—t(p012al]
Find only the designated preprocessor, compiler, assembler and link
editor passes in the files whose names are constructed by a —B option.
In the abscnce of a —B option, the string is taken 1o be /lib/n. The
value —t "" is cquivalent to —tp012.

—Wec,argilarg?..]
Hand off the argumentls] argi to pass ¢ where ¢ is one of [p012al]

cc(1)

cc(n)

indicating preprocessor, compiler first pass, compiler second pass,
optimizer, assembler, or link editor, respectively.

Other arguments are taken to be either link editor option arguments, C prepro-
cessor option arguments, or C-compatible object programs, typically produced
by an earlier cc or pcc run, or perhaps libraries of C-compatible routines.
These programs, together with the results of any compilations specified, are
linked (in the order given) to produce an executable program with the name
a.out.

The C language standard was extended to include arbitrary length variable
names. This standard has been implemented on the VAX and the 3B 20 com-
puter, but not on the PDP-11. The option pair *“~Wp,—T —W0,—XT" will
cause the current compiler (on the 3B 20 computer and the VAX) to behave the
same as previous compilers with respect to the length of variable names.

FILES
file.c input file
file.o object file
a.out linked output
/tmp/ctms temporary
{usr/tmp/ctm= temporary
/lib/cpp C preprocessor cpp (1)
/lib/cl01] PDP-11 compiler, cc
/usr/lib/comp compiler, pce
/lib/ccom VAX compiler, cc
/lib/comp 3B 20 computer compiler cc
/lib/c2 VAX and PDP-11 optional optimizer
/lib/optim 3B 20 computer optional optimizer
Jusr/lib/Oc+ backup compiler, Occ
/bin/as assembler, as(1)
/bin/Id link editor, /d(1)
/lib/crt0.0 runtime startoff
/lib/mcrt0.0 profiling startoff
/lib/fert0.0 floating-point interpretation startoff (PDP-11)
/lib/fmcrt0.0 floating-point interpretation and profiling
startoff (PDP-11)
/lib/libc.a standard C library, see section (3) in the UNIX
System V Programmer Reference Manual
/1ib/libp/lib».a profiled versions of libraries
SEE ALSO
adb(1), cpp(1), as(1), 1d(1), prof(1)}, sdb(1).
exit(2), monitor(3C) in the UNILX System V Programmer Reference Manual.
The C Programming Language by B. W. Kernighan.
Programming in C-A Tutorial by B. W. Kernighan.
C Reference Manual by D. M. Ritchie.
NOTES
By default, the return value from a C program is completely random. The only
two guaranteed ways to return a specific value are to explicitly call exir(2) or
to leave the function main() with a ““return expression;” construct.
DIAGNOSTICS

The diagnostics produced by C itself are intended to be self-explanatory. Occa-
sional messages may be produced by the assembler or the link editor. Of these,
the most mystifying arc from the PDP-11 assembler, in particular m, which
means a multiply-defined external symbol (function or data).

CD(1) CDp(1)

NAME
cd — change working directory

SYNOPSIS
cd [directory]

DESCRIPTION

If directory is not specified, the value of shell parameter SHOME is used as the
new working directory. If directory specifies a complete path starting with /, .,
.., directory becomes the new working directory. If neither case applies, cd
tries to find the designated directory relative to one of the paths specified by
the SCDPATH shell variable. $CDPATH has the same syntax as, and similar
semantics to, the SPATH shell variable. Cd must have execute (search) permis-
sion in directory.

Because a new process is created to execute each command, cd would be
ineffective if it were written as a normal command; therefore, it is recognized
and is internal to the shell.

SEE ALSO
pwd(1), sh(1).
chdir(2) in the UNIX System V Programmer Reference Manual.

CDC(1)

NAME

CDC(1)

cdc — change the delta commentary of an SCCS delta

SYNOPSIS

edc —rSID [—mlmrlist]) [—ylcomment]] files

DESCRIPTION

Cdc changes the delta commentary, for the SID specified by the —r keyletter,
of each named SCCS file.

Delta commentary is defined to be the Modification Request (MR) and com-
ment information normally specified via the delta(1) command (—m and —y
keyletters).

If a directory is named, cdc behaves as though each file in the directory were
specified as a named file, except that non-SCCS files (last component of the
path name does not begin with s.) and unreadable files are silently ignored. If
a name of — is given, the standard input is read (see WARNINGS); each line of
the standard input is taken to be the name of an SCCS file to be processed.

Arguments to cdc, which may appear in any order, consist of keyletter argu-
ments and file names.

All the described keyletter arguments apply independently to ecach named file:

il A/ Used to specify the SCCS IDentification (SID) string of
a delta for which the delta commentary is to be
changed.

—mlmrlist] {f the SCCS file has the v flag set (sec admin(1)) then a
list of MR numbers to be added and/or deleted in the
delta commentary of the SID specified by the —r
keyletter may be supplied. A null MR list has no effect.

MR entries are added to the list of MRs in the same
manner as that of delta(1). In order to delete an MR,
precede the MR number with the character ! (see
EXAMPLES). If the MR to be deleted is currently in
the list of MRs, it is removed and changed into a “‘com-
ment” line. A list of all deleted MRs is placed in the
comment section of the delta commentary and preceded
by a comment line stating that they were deleted.

If —m is not used and the standard input is a terminal,
the prompt MRs? is issued on the standard output
before the standard input is read; if the standard input
is not a terminal, no prompt is issued. The MRs?
prompt always precedes the comments? prompt (see —y
keyletter).

MRs in a list are separated by blanks and/or tab charac-
ters. An unescaped new-line character terminates the
MR list.

Note that if the v flag has a value (see admin(1)), it is
taken to be the name of a program (or shell procedure)
which validates the correctness of the MR numbers. If a
non-zero exit status is returned from the MR number
validation program, cdc terminates and the delta com-
mentary remains unchanged.

cDC(1) CDC(1)

—ylcomment] Arbitrary text used to replace the comment(s) already
existing for the delta specified by the —r keyletter. The
previous comments are kept and preceded by a comment
line stating that they were changed. A null comment
has no effect.

If —y is not specified and the standard input is a termi-
nal, the prompt comments? is issued on the standard
output before the standard input is read; if the standard
input is not a terminal, no prompt is issued. An unes-
caped new-linec character terminates the comment text.

The exact permissions necessary to modify the SCCS file are documented
in the Source Code Control System User Guide. Simply stated, they are
either (1) if you made the delta, you can change its delta commentary; or
(2) if you own the file and directory you can modify the delta commen-
tary.

EXAMPLES
cdc —rl.6 —m"bl78-12345 !bl77-54321 b179-00001" —ytrouble s.file

adds bl78-12345 and bl79-00001 to the MR list, removes bl77-54321 from the
MR list, and adds the comment trouble to delta 1.6 of s.file.

cdc —rl.6 s.file

MRs? 1bl77-54321 bl78-12345 bl79-00001

comments? trouble
does the same thing.

WARNINGS

If SCCS file names are supplied to the cdc command via the standard input (—
on the command line), then the —m and —y keyletters must also be used.

FILES
x-file (sec delta(1))
z-file (see delta(1))
SEE ALSO

admin(1), delta(1), get(1), help(1), prs(1).
sccsfile(4) in the UNIX System V Programmer Reference Manual.

Source Code Control System User Guide in the UNIX System V User Guide.

DIAGNOSTICS
Use help (1) for explanations.

CFLOW(1) CFLOW (1)

NAME

cflow— generate C flowgraph
SYNOPSIS

cflow [—r] [—=ix]) [—i_] [—dnum] files
DESCRIPTION

Cflow analyzes a collection of C, YACC, LEX, assembler, and object files and
attempts to build a graph charting the external references. Files suffixed in .y,
A .¢, and .i are YACC'd, LEX'd, and C-preprocessed (bypassed for .i files) as
appropriate and then run through the first pass of /int(1). (The —I, —D, and
—U options of the C-preprocessor are also understood.) Files suffixed with .s
are assembled and information is extracted (as in .o files) from the symbol
table. The output of all this non-trivial processing is collected and turned into
a graph of external references which is displayed upon the standard output.

Each line of output begins with a reference (i.e., line) number, followed by a
suitable number of tabs indicating the level. Then the name of the global (nor-
mally only a function not defined as an external or beginning with an under-
score; see below for the —i inclusion option) a colon and its definition. For
information extracted from C source, the definition consists of an abstract type
declaration (e.g., char *), and, delimited by angle brackets, the name of the
source file and the line number where the definition was found. Definitions
extracted from object files indicate the file name and location counter under
which the symbol appeared (e.g., text). Leading underscores in C-style exter-
nal names are deleted.

Once a definition of a name has been printed, subsequent references to that
name contain only the reference number of the line where the definition may be
found. For undefined references, only < > is printed.

As an example, given the following in file.c:

int i;
main()
f0;
g0);
f0;
)
fO
{
i=ho;
)

the command
cflow —ix file.c
produces the output
main: int(Q), <file.c 4>
f: int(), <filec 11>

h: <>
i: int, <file.c 1>

Wb W N -

CFLOW (1) CFLOW (1)

When the nesting level becomes too deep, the —e option of pr(1) can be used
to compress the tab expansion to something less than every eight spaces.

The following options are interpreted by ¢flow:

-r Reverse the “caller:callee” relationship producing an inverted listing
showing the callers of each function. The listing is also sorted in lexi-
cographical order by callee.

—ix Include external and static data symbols. The default is to include
only functions in the flowgraph.

-i Include names that begin with an underscore. The default is to
exclude these functions (and data if —ix is used).

—dnum The num decimal integer indicates the depth at which the flowgraph
is cut off. By default this is a very large number. Attempts to set the
cutoff depth to a nonpositive integer will be met with contempt.

DIAGNOSTICS

Complains about bad options. Complains about multiple definitions and only

believes the first. Other messages may come from the various programs used

{e.g., the C-preprocessor).

SEE ALSO
as(1), cc(1), cpp(i), lex(1), lint(1), nm(1), pr(1), yacc(1).
BUGS
Files produced by /ex(1) and yacc(1) cause the reordering of line number

declarations which can confuse cflow. To get proper results, feed cflow the
yacc or lex input.

CHMOD(1) CHMOD(1)

NAME

chmod — change mode

SYNOPSIS

chmod mode files

DESCRIPTION

The permissions of the named files are changed according to mode, which may
be absolute or symbolic. An absolute mode is an octal number constructed
from the OR of the following modes:

4000 set user ID on execution

2000 set group ID on execution

1000 sticky bit, see chmod (2)

0400 read by owner

0200 write by owner

0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:
[who) op permission [op permission |

The who part is a combination of the letters u (for user’s permissions), g
(group) and o (other). The letter a stands for ugo, the default if who is omit-
ted.

Op can be + to add permission to the file’s mode, — to take away permission,
or = to assign permission absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (write), x (execute), s
(set owner or group ID) and t (save text, or sticky); u, g, or o indicate that per-
mission is to be taken from the current mode. Omitting permission is only
useful with = to take away all permissions.

Multiple symbolic modes separated by commas may be given. Operations are
performed in the order specified. The letter s is only useful with u or g and t
only works with u.

Only the owner of a file (or the super-user) may change its mode. Only the
super-user may set the sticky bit. In order to set the group ID, the group of the
file must correspond to your current group ID.

EXAMPLES

The first example denies write permission to others, the second makes a file
executable:

chmod o—w file
chmod +x file

SEE ALSO

Is(1).
chmod(2) in the UNIX System V Programmer Reference Manual.

CHOWN(1) CHOWN(1)

NAME
chown, chgrp — change owner or group

SYNOPSIS
chown owner file ...

chgrp group file ...

DESCRIPTION
Chown changes the owner of the files 10 owner. The owner may be either a
decimal user ID or a login name found in the password file.

Chgrp changes the group ID of the files to group. The group may be cither a
decimal group ID or a group name found in the group file.

If either command is invoked by other than the super-user, the set-user-1D and
sct-group-ID bits of the file mode, 04000 and 02000 respectively, will be
cleared.

FILES
/etc/passwd
/etc/group
SEE ALSO
chmod(1).

chown(2), group(4), passwd(4) in the UNIX System V Programmer Reference
Manual.

CMP(1)

CMP(1)
NAME
cmp — compare two files
SYNOPSIS
emp [=1][—s] filel file2
DESCRIPTION

The two files are compared. (If filel is —, the standard input is used.} Under

default options, cmp makes no comment if the files are the same; if they differ,

it announces the byte and line number at which the difference occurred. If one

file is an initial subsequence of the other, that fact is noted.

Options:

=1 Print the byte number (decimal) and the differing bytes (octal) for each
difference.

—s Print nothing for differing files; return codes only.

SEE ALSO
comm(1), diff(1).

DIAGNOSTICS

Exit code O is returned for identical files, 1 for different files, and 2 for an inac-
cessible or missing argument.

COL(1) COL(1)

NAME
col — filter reverse line-feeds

SYNOPSIS
col [—bfpx]

DESCRIPTION
Col reads from the standard input and writes onto the standard output. It per-
forms the line overlays implied by reverse line feeds (ASCII code ESC-7), and
by forward and reverse half-line feeds (ESC-9 and ESC-8). Col is particularly
useful for filtering multicolumn output made with the .rt command of nroff and
output resulting from use of the tb/(1) preprocessor.

If the —b option is given, col assumes that the output device in use is not capa-
ble of backspacing. In this case, if two or more characters are to appear in the
same place, only the last one read will be output.

Although col 'accepts half-line motions in its input, it normally does not emit
them on output. Instead, text that would appear between lines is moved to the
next lower full-line boundary. This treatment can be suppressed by the —f
(fine) option; in this case, the output from col/ may contain forward half-line
feeds (ESC-9), but will still never contain either kind of reverse line motion.

Unless the —x option is given, col will convert white space to tabs on output
wherever possible to shorten printing time.

The ASCII control characters SO (\016) and SI (\017) are assumed by col to
start and end text in an alternate character set. The character set to which
each input character belongs is remembered, and on output SI and SO charac-
ters are generated as appropriate to ensure that each character is printed in the
correct character set.

On input, the only control characters accepted are space, backspace, tab,
return, new-line, SI, SO, VT (\013), and ESC followed by 7, 8, or 9. The VT
character is an alternate form of full reverse line-feed, included for compatibil-
ity with some earlier programs of this type. All other non-printing characters
are ignored.

Normally, co! will ignore any unknown to it escape sequences found in its
input; the —p option may be used to cause col to output these sequences as
regular characters, subject to overprinting from reverse line motions. The use
of this option is highly discouraged unless the user is fully aware of the textual
position of the escape sequences.

SEE ALSO
nroff (1), tbl(1).

NOTES
The input format accepted by col matches the output produced by nroff with
either the —T37 or —Tlp options. Use —T37 (and the —f option of col) if the
ultimate disposition of the output of co/ will be a device that can interpret
half-line motions, and —TIlp otherwise.

BUGS
Cannot back up more than 128 lines.
Allows at most 800 characters, including backspaces, on a line.
Local vertical motions that would result in backing up over the first line of the
document are ignored. As a result, the first line must not have any super-
scripts.

COMB(1) COMB(1)

NAME

comb — combine SCCS deltas

SYNOPSIS

comb [—o] [—s] [—psid] [—eclist] files

DESCRIPTION

Comb generates a shell procedure (see sk (1)) which, when run, will reconstruct
the given SCCS files. The reconstructed files will, hopefully, be smalier than
the original files. The arguments may be specified in any order, but all
keyletter arguments apply to all named SCCS files. If a directory is named,
comb behaves as though each file in the directory were specified as a named
file, except that non-SCCS files (last component of the path name does not
begin with s.) and unreadable files are silently ignored. If a name of — is
given, the standard input is read; each line of the input is taken to be the name
of an SCCS file to be processed; non-SCCS files and unreadable files are silently
ignored. The generated shell procedure is written on the standard output.

The keyletter arguments are as follows. Each is explained as though only one
named file is to be processed, but the effects of any keyletter argument apply
independently to each named file.

—pSID The SCCS IDentification string (SID) of the oldest delta to be
preserved. All older deltas are discarded in the reconstructed file.

~clist A list (see ger(1) for the syntax of a list) of deltas to be preserved.
All other deltas are discarded.

-0 For each get —e generated, this argument causes the reconstructed
file to be accessed at the release of the delta to be created, otherwise
the reconstructed file would be accessed at the most recent ancestor.
Use of the —o keyletter may decrease the size of the reconstructed
SCCS file. It may also alter the shape of the delta tree of the original
file.

-s This argument causes comb to generate a shell procedure which, when
run, will produce a report giving, for each file: the file name, size (in
blocks) after combining, original size (also in blocks), and percentage
change computed by:

100 « (original — combined) / original
It is recommended that before any SCCS files are actually combined,
one should use this option to determine exactly how much space is
saved by the combining process.

If no keyletter arguments are specified, comb will preserve only leaf deltas and
the minimal number of ancestors needed to preserve the tree.

FILES
s.COMB The name of the reconstructed SCCS file.
comb????? Temporary.

SEE ALSO

admin(1), delta(1), get(1), help(1), prs(1), sh(1).
sccsfile(4) in the UNIX System V Programmer Reference Manual.

Source Code Control System User Guide in the UNIX System V User Guide.

DIAGNOSTICS

BUGS

Use help(1) for explanations.

Comb may rearrange the shape of the tree of deltas. It may not save any
space; in fact, it is possible for the reconstructed file to actually be larger than
the original.

-1-

™

COMM(1) COMM (1)

NAME

comm — select or reject lines common to two sorted files
SYNOPSIS

comm [— [123]] filel file2
DESCRIPTION

Comm reads filel and file2, which should be ordered in ASCIHl collating
sequence (see sort (1)), and produces a three-column output: lines only in fife!;
lines only in file2; and lines in both files. The file name — means the standard
input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm
=12 prints only the lines common to the two files; comm —23 prints only lines
in the first file but not in the second; comm —123 is a no-op.

SEE ALSO
cmp(1), diff (1), sort(1), uniq(1).

CONVERT(1) (not on PDP-11) CONVERT (1)

NAME

convert — convert object and archive files to common formats
SYNOPSIS

convert [—5l] infile outfile T~
DESCRIPTION

Convert transforms input infile to output outfile. Infile must be different from
outfile. The —S5 option causes convert to work exactly as it did for UNIX Sys-
tem V Release 1.0. Infile may be any one of the following:

1) a pre-UNIX System V Release 1.0 VAX object file or link-
edited (a.out) module (only with the —5 option),

2) a pre-UNIX System V Release 1.0 VAX archive of object files
or link edited (a.out) modules (only with the ~5§ option),

3) . a pre-UNIX System V Release 1.0 3B 20 computer archive of
object files or link edited (a.out) modules (only with the —5
option), or

4) a UNIX System V Release 1.0 VAX or 3B 20 computer archive
file (without the —5 option).

Convert will transform infile to one of the following (respectively):

1) an equivalent UNIX System V Release 1.0 VAX object file or
link edited (a.out) module (with the —5 option),

2) an equivalent UNIX System V Release 1.0 VAX archive of
equivalent object files or link edited (a.out) medules (with the
-5 option),

3) an equivalent UNIX System V Release 1.0 archive of unaltered /‘“ﬁﬁ
3B 20 computer object files or link edited (a.out) modules '
(with the =5 option) and

4) an equivalent VAX or 3B 20 computer UNIX System V
Release 2.0 portable archive containing unaltered members
(without the —5 option).

All other types of input to the convert command will be passed unmodified
from the input file to the output file (along with appropriate warning mes-
sages). When transforming archive files with the —5 option, the convert(1)
command will inform the user that the archive symbol table has been deleted.
To generate an archive symbol table, this archive file must be transformed
again by convert without the ~5 option to create a UNIX System V Release
2.0 archive file. Then the archive symbol table may be created by executing
the ar(1) command with the ts option. If a UNIX System V Release 1.0
archive with an archive symbol table is being transformed, the archive symbol
table will automatically be converted.

The arcv(1) command may be used in conjunction with the convert command
to transform PDP-11 archives into the UNIX System V Release 2.0 portable
archive format. The arcv command creates a UNIX System Release 1.0 archive
which is then transformed by convert. The conversion is useful only when the
archive contains portable information such as text files.

FILES
/tmp/conve
SEE ALSO
ar(1), arcv(1).
a.out(4), ar(4) in the UNIX System V Programmer Reference Manual,

CP(1) CP(1)

NAME
cp, In, mv — copy, link or move files

{ ‘ SYNOPSIS

cp filel [file2 ...] target
In [—f] filel [file2 ..] target
mv [—f] filel [file2 ...] target

DESCRIPTION
Filel is copied (linked, moved) to target. Under no circumstance can filel and
target be the same (take care when using sh (1) metacharacters). If target is a
directory, then one or more files are copied (linked, moved) to that directory.
If target is a file, its contents are destroyed.

If mv or In determines that the mode of rarger forbids writing, it will print the
mode (see chmod(2)), ask for a response, and read the standard input for one
line; if the line begins with y, the mv or In occurs, if permissable; if not, the
command exits. No questions are asked and the mv or /n is done when the —f
option is used or if the standard input is not a terminal.

Only mv will allow filel to be a directory, in which case the directory rename
will occur only if the two directories have the same parent; filel is renamed
target. If filel is a file and target is a link to another file with links, the other
links remain and target becomes a new file.

When using cp, if target is not a file, a new file is created which has the same
mode as filel except that the sticky bit is not set unless you are super-user; the
owner and group of target are those of the user. If target is a file, copying a
file into rarget does not change its mode, owner, nor group. The last
modification time of targer (and last access time, if target did not exist) and
the last access time of filel are set to the time the copy was made. If rarget is
() a link to a file, all links remain and the file is changed.

SEE ALSO
cpio(l), rm(1).
chmod(2) in the UNIX System V Programmer Reference Manual.

"\

BUGS

If filel and target lie on different file systems, mv must copy the file and delete
the original. In this case any linking relationship with other files is lost.

Ln will not link across file systems.

CP10(1) CPIO(1)

NAME

cpio — copy file archives in and out

SYNOPSIS

cpio —o [acBv]
cpio —i [BedmrtuvfsSb6] [patterns]
cpio —p [adlmruv] directory

DESCRIPTION

Cpio —o (copy out) reads the standard input to obtain a list of path names and
copies those files onto the standard output together with path name and status
information. Qutput is padded to a 512-byte boundary.

Cpio —i (copy in) extracts files from the standard input, which is assumed to
be the product of a previous cpio —o. Only files with names that match pat-
terns are selected. Patterns are given in the name-generating notation of
sh(1). In patterns, meta-characters ?, », and [...] match the slash / character.
Multiple patterns may be specified and if no patterns are specified, the default
for patterns is » (i.c., select all files). The extracted files are conditionally
created and copied into the current directory tree based upon the options
described below. The permissions of the files will be those of the previous cpio
—o. The owner and group of the files will be that of the current user unless
the user is super-user, which causes cpio to retain the owner and group of the
files of the previous cpio —o.

Cpio —p (pass) reads the standard input to obtain a list of path names of files
that are conditionally created and copied into the destination directory tree
based upon the options described below.

The meanings of the available options are:

a Reset access times of input files after they have been copied.

B Input/output is to be blocked 5,120 bytes to the record (does not apply
to the pass option; meaningful only with data directed to or from
/dev/rmt/??).

d Directories are to be created as needed.

c Write header information in ASCII character form for portability.

r Interactively rename files. If the user types a null line, the file is
skipped.

t Print a table of contents of the input. No files are created.

u Copy unconditionally (normally, an older file will not replace a newer
file with the same name).

] Verbose: causes a list of file names to be printed. When used with the

t option, the table of contents looks like the output of an Is —1 com-
mand (see /s(1)).

1 Whenever possible, link files rather than copying them. Usable only
with the —p option.
m Retain previous file modification time. This option is ineffective on

directories that are being copied.

Copy in all files except those in patterns.

Swap bytes. Use only with the —i option.

Swap halfwords. Use only with the —i option.

Swap both bytes and halfwords. Use only with the —i option.

Process an old (i.e., UNIX System Sixth Edition format) file. Only
useful with —i (copy in).

AT NGO ™

CPIO(1) CPIO(1)

EXAMPLES
The first example below copies the contents of a directory into an archive; the
sccond duplicates a directory hierarchy:
Is | cpio —o >/dev/mt/Om
cd olddir
find . —depth —print | cpio —pdl newdir
The trivial case “find . —depth —print | cpio —oB >/dev/rmt/Om” can be
handled more efficiently by:
find . —cpio /dev/rmt/Om
SEE ALSO
ar(1), find(1), 1s(1).
cpio(4) in the UNIX System V Programmer Reference Manual.
BUGS
Path names arc restricted to 128 characters. If there are too many unique
linked files, the program runs out of memory to keep track of them and,
thereafter, linking information is lost. Only the super-user can copy special

files. The —B option does not work with certain magnetic tape drives (see
un32(7) in the UNIX System V Administrator Reference Manual).

CPP(1) CPP(1)

NAME

cpp — the C language preprocessor
SYNOPSIS

Nib/cpp | option ... 11 ifile [ofile]]
DESCRIPTION

Cpp is the C language preprocessor which is invoked as the first pass of any C
compilation using the cc(1) command. Thus the output of cpp is designed to
be in a form acceptable as input to the next pass of the C compiler. As the C
language evolves, ¢pp and the rest of the C compilation package will be
modified to follow these changes. Therefore, the use of cpp other than in this
framework is not suggested. The preferred way to invoke cpp is through the
cc(1) command, since the functionality of cpp may someday be moved else-
where. See m4(1) for a general macro processor.

Cpp optionally'acccpts two file names as arguments. Ifile and ofile are respec-
tively the input and output for the preprocessor. They default to standard
input and standard output if not supplied.

The following options to ¢pp are recognized:

-P Preprocess the input without producing the line control information
used by the next pass of the C compiler.

-C By default, cpp strips C-style comments. If the —C option is specified,
all comments (except those found on cpp dircctive lines) are passed
along.

—Uname
Remove any initial definition of name, where name is a reserved sym-
bol that is predefined by the particular preprocessor. The current list
of these possibly reserved symbols includes:

operating system: ibm, gcos, os, tss, unix
hardware: interdata, pdpl1, u370, u3b, u3b5, vax
UNIX system variant: RES, RT
lint(1): lint
—Dname
—Dname =def

Define name as if by a #define directive. 1f no =def is given, name is
defined as 1. The —D option has lower precedence than the —U
option. That is, if the same name is used in both a —U option and a
—D option, the name will be undefined regardless of the order of the
options.

-T Except on the PDP-11, preprocessor symbols are no longer restricted to
cight characters. The —T option forces cpp to use only the first eight
characters for distinguishing different preprocessor names. This
behavior is the same as previous preprocessors with respect to the
length of names and is included for backward compatability.

—Idir Change the algorithm for searching for #include files whose names do
not begin with / to look in dir before looking in the directories on the
standard list. Thus, #include files whose names are enclosed in "" will
be searched for first in the directory of the file with the #include line,
then in directories named in —I options, and last in directories on a
standard list. For #include files whose names are enclosed in <>, the
directory of the file with the #include line is not scarched.

Two special names are understood by ¢pp. The name __LINE__ is defined as
the current line number (as a decimal integer) as known by cpp, and __FILE__
is defined as the current file name (as a C string) as known by cpp. They can

-1-

CPP(1)

be used anywhere (including in macros) just as any other defined name.

All ¢cpp directives start with lines begun by #. Any number of blanks and tabs
arc allowed between the # and the directive. The directives are:

#define name token-string
Replace subsequent instances of name with token-string.

#define name(arg, ..., arg) token-string

Notice that there can be no space between name and the (. Replace
subsequent instances of name followed by a (, a list of comma-
separated set of tokens, and a) by roken-string, where each
occurrence of an arg in the token-string is replaced by the correspond-
ing set of tokens in the comma-separated list. When a macro with
arguments is expanded, the arguments are placed into the expanded
token-string unchanged. After the entire token-string has been
expanded, cpp re-starts its scan for names to expand at the beginning
of newly created token-string.

#undef name
Cause the definition of name (if any) to be forgotten from now on.

#include "filename"

#include <filename>
Include at this point the contents of filename (which will then be run
through cpp). When the <filename> notation is used, filename is
only searched for in the standard places. See the —I option above for
more detail.

#line integer-constant "filename"
Causes cpp to generate line control information for the next pass of the
C compiler. Integer-constant is the line number of the next line and
filename is the file where it comes from. If "filename" is not given, the
current file name is unchanged.

#endif
Ends a scction of lines begun by a test directive (#if, #ifdef, or
#ifndef). Each test directive must have a matching #endif.

#ifdef name
The lines following will appear in the output if and only if name has
been the subject of a previous #define without being the subject of an
intervening #undef.

#ifndef name
The lines following will not appear in the output if and only if name
has been the subject of a previous #define without being the subject of
an intervening #undef.

#if constant-expression

Lines following will appear in the output if and only if the constant-
expression cvaluates to non-zero. All binary non-assignment C opera-
tors, the ?: operator, the unary —, !, and ~ operators are all legal in
constant-expression. The precedence of the operators is the same as
defined by the C language. There is also a unary operator defined,
which can be used in constant-expression in these two forms: defined (
name) or defined name. This allows the utility of #ifdef and #ifndef
in a #if dircctive. Only these operators, integer constants, and names
which are known by cpp should be used in constant-expression. In
particular, the sizeof operator is not available.

CPP(1) CPP(1)

#else Reverses the notion of the test directive which matches this directive.
So if lines previous to this directive are ignored, the following lines will
appear in the output. And vice versa.

The test directives and the possible #else directives can be nested.

FILES
/usr/include standard directory for #include files

SEE ALSO
cc(1), m4(1).

DIAGNOSTICS
The error messages produced by cpp are intended to be self-explanatory. The
line number and filename where the error occurred are printed along with the
diagnostic.

NOTES
When new-line characters were found in argument lists for macros to be
expanded, previous versions of cpp put out the new-lines as they were found
and expanded. The current version of cpp replaces these new-lines with blanks
to alleviate problems that the previous versions had when this occurred.

™

CRONTAB(1) CRONTAB(1)

NAME

crontab — user crontab file

SYNOPSIS

crontab [filc]
crontab -r
crontab -l

DESCRIPTION

Crontab copies the specified file, or standard input if no file is specified, into a
directory that holds all users’ crontabs. The —r option removes a user’s crontab
from the crontab directory. Crontab —] will list the crontab file for the invok-
ing uscr.

Users arc permitted 10 usc cromtab if their names appear in the file
/usr/lib/cron/cron.allow. If that file does not exist, the file
/usr/lib/cron/cron.deny is checked to determine if the user should be denied
access 1o crontab. If ncither file exists, only root is allowed to submit a job. If
either file is at.deny, global usage is permitted. The allow/deny files consist of
onc uscr name per line.

A crontab file consists of lines of six ficlds cach. The fields are separated by
spaces or tabs. The first five are integer patterns that specify the following:

minute (0—59),

hour (0—23),

day of the month (1-=31),

month of the year (1—12),

day of the week (0—6 with 0=Sunday).

Each of these patterns may be cither an asterisk (meaning all legal values) or
a list of clements separated by commas. An clement is cither a number or two
numbers scparated by a minus sign (mecaning an inclusive range). Note that
the specification of days may be made by two ficlds (day of the month and day
of the week). If both are specified as a list of clements, both are adhered to.
For example, 0 0 1,15 + 1 would run a command on the first and fiftcenth of
cach month, as well as on every Monday. To specify days by only one ficld, the
other ficld should be sct 1o * (for example, 0 0 * « 1 would run a command only
on Mondays).

The sixth ficld of a line in a crontab filc is a string that is executed by the shell
at the specified times. A percent character in this field (unless escaped by \) is
translated to a new-line character. Only the first line {up to a % or end of linc)
of the command ficld is executed by the shell. The other lines are made avail-
able 10 the command as standard input.

The shell is invoked from your SHOME directory with an arg0 of sh. Uscrs who
desire to have their .profile executed must explicitly do so in the crontab file.
Cron supplices a default environment for cvery shell, defining HOME, LOGNAME,
SHELL(=/bin/sh), and PATH(=:/bin:/usr/bin:/usr/1bin).

NOTE: Users should remember to redireet the standard output and standard
error of their commands! If this is not done, any genecrated output or crrors
will be mailed to the user.

CRONTAB(1) CRONTAB(1)

FILES
/usr/lib/cron main cron directory
/usr/spool/cron/crontabs spool area
/usr/lib/cron/log accounting information
/usr/lib/cron/cron.allow list of allowed users
/usr/lib/cron/cron.deny list of denied users
SEE ALSO

sh(1).
cron(1M) in the UNIX System V Administrator Reference Manual.

CRYPT (1) CRYPT(1)

NAME

crypt — encode/decode

SYNOPSIS

crypt [password]

DESCRIPTION

FILES

Crypt reads from the standard input and writes on the standard output. The
password is a key that sclects a particular transformation. If no password is
given, crypt demands a key from the terminal and turns off printing while the
key is being typed in. Crypt encrypts and decrypts with the same key:

crypt key <clear >cypher
crypt key <cypher | pr

will print the clear.

Files encrypted by crypt are compatible with those treated by the editor ed in
encryption mode.

The security of encrypted files depends on three factors: the fundamental
method must be hard to solve; direct search of the key space must be infeasible;
“sneak paths” by which keys or clear text can become visible must be minim-
ized.

Crypt implements a one-rotor machine designed along the lines of the German
Enigma, but with a 256-element rotor. Methods of attack on such machines
are known, but not widely; moreover the amount of work required is likely to
be large.

The transformation of a key into the internal settings of the machine is deli-
berately designed to be expensive, i.e., to take a substantial fraction of a second
to compute. However, if keys are restricted to (say) three lower-case letters,
then encrypted files can be read by expending only a substantial fraction of five
minutes of machine time.

Since the key is an argument to the crypt command, it is potentially visible to
users executing ps(1) or a derivative. The choice of keys and key security are
the most vulnerable aspect of crypt.

/dev/tty for typed key

SEE ALSO

BUGS

ed(1), makekey(1), stty(1).

If output is piped to nroff and the encryption key is not given on the command
line, crypt can leave terminal medes in a strange state (see stry(1)).

If two or more files encrypted with the same key arc concatenated and an
attempt is made to decrypt the result, only the contents of the first of the origi-
nal files will be decrypted correctly.

CSPLIT(1) CSPLIT(1)

NAME
csplit — context split
SYNOPSIS
csplit [—s] [—Kk] [—f prefix] file argl [... argn]
DESCRIPTION
Csplit reads file and separates it into n+1 sections, defined by the arguments
argl... argn. By default the sections are placed in xx00 ... xxn (7 may not

be greater than 99). These sections get the following pieces of file:

00: From the start of file up to (but not including) the line refer-
enced by argl.

01: From the linc referenced by arg/ up to the line referenced by
arg2.

n+1: From the line referenced by argn 1o the end of file.
If the file argument is a — then standard input is used.
The options to csplit are:

-s Csplit normally prints the character counts for each file
created. If the —s option is present, csplit suppresses the
printing of all character counts.

-k Csplit normally removes created files if an error occurs. If
the —k option is present, csplit leaves previously created files
intact.

=1 prefix If the —f option is used, the created files are named prefix00
... prefixn. The default is xx00 ... xxn.

The arguments (arg/ ... argn) to csplit can be a combination of the follow-
ing:

/rexp/ A file is 10 be created for the section from the current line up
to (but not including) the line containing the regular expression
rexp. The current line becomes the line containing rexp. This
argument may be followed by an optional + or — some
number of lines (e.g., /Page/—5).

%rexp% This argument is the same as /rexp/, except that no file is
created for the section.

Inno A file is to be created from the current line up to (but not
including) /nno. The current line becomes /nno.

(num) Repeat argument. This argument may follow any of the above
arguments. If it follows a rexp type argument, that argument
is applied num more times. If it follows Inno, the file will be
split every Inno lines (num times) from that point.

Enclose all rexp type arguments that contain blanks or other characters mean-
ingful to the shell in the appropriate quotes. Regular expressions may not con-
tain embedded new-lines. Csplit does not affect the original file; it is the users
responsibility to remove it.

EXAMPLES
csplit —f cobol file '/procedure division/' /parS./ /parl6./

This example creates four files, cobolG0 ... cobol03. After editing the “split”
files, they can be recombined as follows:

cat cobol0[0-3] > file

-1-

CSPLIT(1) CSPLIT(1)

Note that this example overwrites the original file.
csplit —k file 100 {99)

This example would split the file at every 100 lines, up to 10,0600 lines. The
—k option causes the created files to be retained if there are less than 10,000
lines; however, an error message would still be printed.

csplit —k prog.c "“%main(%’ '/"}/+1' {20}

Assuming that prog.c follows the normal C coding convention of ending rou-
tines with a } at the beginning of the line, this example will create a file con-
taining cach separate C routine (up to 21) in prog.c.

SEE ALSO
ed(1), sh(1).
regexp(5) in the UNIX System V Programmer Reference Manual.

DIAGNOSTICS
Self-explanatory except for:
arg — out of range
which means that the given argument did not reference a line between the
current position and the end of the file.

CT(1C) CT(1C)

NAME

ct — spawn getty to a remote terminal
SYNOPSIS

et [=h][=v][—wn][—sspeed] telno ...
DESCRIPTION

Ct dials the phone number of a modem that is attached to a terminal, and
spawns a gerty process to that terminal. Telno is a telephone number, with
equal signs for secondary dial tones and minus signs for delays at appropriate
places. If more than one telephone number is specified, ¢t will try each in suc-
cession until one answers; this is useful for specifying alternate dialing paths.

Ct will try each line listed in the file /usr/lib/uucp/L-devices until it finds an
available line with appropriate attributes or runs out of entries. If there are no
free lines, ct will ask if it should wait for one, and if so, for how many minutes
it should wait*before it gives up. Cr will continue to try to open the dialers at
one-minute intervals until the specified limit is cxceeded. The dialogue may be
overridden by specifying the —wn option, where n is the maximum number of
minutes that ¢t is to wait for a line.

Normally, ¢t will hang up the current line, so that that line can answer the
incoming call. The —h option will prevent this action. If ths —v option is
used, ¢f will send a running narrative to the standard error output strcam.

The data rate may be set with the —s option, where speed is expressed in
baud. The default rate is 300.

After the user on the destination terminal logs out, ¢t prompts, Reconnect? If
the response begins with the letter n the line will be dropped; otherwise, getty
will be started again and the login: prompt will be printed.

Of course, the destination terminal must be attached to a modem that can
answer the telephone.
FILES

/usr/lib/uucp/L-devices
/usr/adm/ctlog

SEE ALSO
cu(1C), login(1), uucp(1C).

CTRACE(1) CTRACE(1)

NAME

ctrace — C program debugger
SYNOPSIS

ctrace [options | [file]
DESCRIPTION

Ctrace allows you to follow the cxecution of a C program, statement-by-
statement. The cffect is similar to exccuting a shell procedure with the -x
option. Ctrace reads the C program in file (or from standard input if you do
not specify file), inserts statements to print the text of cach executable state-
ment and the values of all variables referenced or modified, and writes the
modificd program to the standard output. You must put the output of ctrace
into a temporary file because the cc(1) command docs not allow the use of a
pipe. You then compile and execute this file.

As each statement in the program exccutes it will be listed at the terminal, fol-
lowed by the name and value of any variables referenced or modified in the
statement, followed by any output from the statement. Loops in the trace out-
put arc detected and tracing is stopped until the loop is exited or a different
sequence of statcments within the loop is exccuted. A warning message is
printed every 1000 times through the loop to help you detect infinite loops.
The trace output goes to the standard output so you can put it into a file for
examination with an editor or the 4fs(1) or zail(1) commands.

The only options you will commonly use are:

—f functions Trace only these functions.
—=v functions Trace all but these functions.

You may want to add to the default formats for printing variables. Long and
pointer variables arc always printed as signed intcgers. Pointers to character
arrays arc also printed as strings if appropriate. Char, short, and int variables
are also printed as signed integers and, if appropriate, as characters. Double
variables are printed as floating point numbers in scientific notation. You can
request that variables be printed in additional formats, if appropriate, with
these options:

-0 Octal
-x Hexadecimal
—-u Unsigned

—e Floating point
These options are used only in special circumstances:

—ln Check n consecutively executed statements for looping trace output,
instead of the default of 20. Use O to get all the trace output from
loops.

-s Suppress redundant trace output from simple assignment statements
and string copy function calls. This option can hide a bug caused by
use of the = operator in place of the == opcrator.

—tn Trace n variables per statement instead of the default of 10 (the max-
imum number is 20). The Diagnostics section explains when to use this
option.

-P Run the C preprocessor on the input before tracing it. You can also
use the -D, -1, and -U cc(1) preprocessor options.

These options are used to tailor the run-time tracc package when the traced
program will run in a non-UNIX system environment:

—b Use only basic functions in the trace code, that is, thosc in ctype (3C),
printf(3S), and string(3C). These are usually available even in cross-
compilers for microprocessors. In particular, this option is needed when

-1-

CTRACE(1) CTRACE(1)

the traced program runs under an operating system that does not have
signal(2), fflush (3S), longjmp (3C), or setjmp (3C).
—p s’ Change the trace print function from the default of ’printf(’. For)
example, 'fprintf(stderr,” would send the trace to the standard error
output.
-rf Use file f in place of the runtime.c trace function package. This lets
you change the entire print function, instead of just the name and lead-
ing arguments (sec the -p option).

7

EXAMPLE
If the file lc.c contains this C program:
1 #include <stdio.h>

2 ;nain() /* count lines in input */

3

4 int ¢, nl;

5

6 nl = 0;

7 while ((c = getchar()) != EOF)

8 if (¢ ="\n" '

9 ++nl; 10 printf ("%d\n", nl); 11 } and you enter

these commands and test data: cc Ic.c a.out 1 (cntl-d), the program will be
compiled and executed. The output of the program will be the number 2,
which is not correct because there is only one line in the test data. The error in
this program is common, but subtle. If you invoke ctrace with these com-
mands: ctrace lc.c >temp.c cc temp.c a.out the output will be:

2 main()
6 nl = 0;
/* nl ==0 */
7 while ((c = getchar()) != EOF) The program is now waiting for input.)

If you enter the same test data as before, the output will be:
/*c==49 or'1’ ¥/

8 if (c ="\n"
/*c==10o0r \n' */
9 ++nl;

/*nl==1%
7 while ((c = getchar()) !'= EOF)
/* c==100r \n'*/

8 if c ="\n"
/*c==100r\n"*/
9 +-+nl;
/* nl == 2%/
7 while ((c = getchar()) != EOF) If you now cnter an end of file char-

acter {(cntl-d) the final output will be:
/¥c==-1%*/10 printf("%d\n", nl);
/* nl==2*%/2 return

Note that the program output printed at the end of the trace line for the nl
variable. Also note the return comment added by ctrace at the end of the trace
output. This shows the implicit return at the terminating brace in the function.

The trace output shows that variable ¢ is assigned the value 'I” in line 7, but in
line 8 it has the valuc "\n’. Once your attention is drawn to this if statement,
you will probably realize that you used the assignment operator (=) in place of
the cqual operator (==). You can easily miss this error during code reading. %

EXECUTION-TIME TRACE CONTROL
The default operation for ctrace is to trace the entire program file, unless you
use the -f or -v options to trace specific functions. This does not give you

-2.

CTRACE(1) CTRACE(1)

statement-by-statement control of the tracing, nor does it let you turn the trac-
PN ing off and on when executing the traced program.

{ You can do both of these by adding ctroff O and ctron() function calls to your
program to turn the tracing off and on, respectively, at cxecution time. Thus,
you can code arbitrarily complex criteria for trace control with if statements,
and you can even conditionally include this code because ctrace defines the
CTRACE preprocessor variable. For example:

#ifdel CTRACE
if (c=="" && i > 1000)
ctron();
#endif

You can also cali these functions from sdb (1) if you compile with the -g option.
For example, to trace all but lines 7 to 10 in the main function, enter:

sdb a.out
main:7b ctroff()
main:11b ctron(
r

You can also turn the trace off and on by setting static variable tr_ct_to 0 and
I, respectively. This is useful if you are using a debugger that cannot call these
functions directly, such as adb(1).

DIAGNOSTICS
This section contains diagnostic messages from both ctrace and cc(1), since the
traced code often gets some cc warning messages. You can gel ¢¢ ¢rror mes-
t’ sages in some rare cases, all of which can be avoided.

Ctrace Diagnostics
warning: some variables are not traced in this statement
Only 10 variables are traced in a statement to prevent the C compiler
"out of trec space; simplify expression" error. Use the -t option to
increase this number.

warning. statement too long to trace
This statement is over 400 characters long. Make sure that you are
using tabs to indent your code, not spaces.

cannot handle preprocessor code, use -P option
This is usually caused by #ifdef/#endifl preprocessor statements in the
middle of a C statement, or by a semicolon at the end of a #define
preprocessor statement.

‘if ... else if° sequence too long
Split the sequence by removing an else from the middle.

possible syntax error, try -P option
Use the -P option to preprocess the ctrace input, along with any
appropriate -D, -I, and -U preprocessor options. If you still get the
error message, check the Warnings section below.
Cc Diagnostics
warning: floating point not implemented
warning: illegal combination of pointer and integer
@\ warning: statement not reached
y warning: sizeof returns 0
Ignore these messages.

CTRACE(1) CTRACE(1)

compiler takes size of function
See the ctrace "possible syntax error" message above.

yacc stack overflow
See the ctrace ™if ... else if* sequence too long" message above.

out of tree space; simplify expression
Use the -t option to reduce the number of traced variables per state-
ment from the default of 10. Ignore the "ctrace: t0o many variables to
trace" warnings you will now get.

redeclaration of signal
Either correct this declaration of signal(2), or remove it and #include
<signal.h>.

unimplemented structure assignment
This is caused by a bug in the C compiler for the PDP—11. Use
pec(1)'instead of cc(1).

offset xxxx in control section ...
This is caused by a problem in the current UNIX/370 C compiler.
Use the cc(1) -b2,2 option.

expression causes compiler loop: try simplifying
This is caused by a bug in the UNIX/370 C compiler. Unfortunately,
the only way to avoid it is to use the crrace -v option to not trace the
function containing this line.

WARNINGS

You will get a ctrace syntax crror if you omit the semicolon at the end of the
last clement declaration in a structure or union, just before the right brace (}).
This is optional in some C compilers.

Defining a function with the same name as a system function may causc a syn-
tax error if the number of arguments is changed. Just use a different name.

Ctrace assumes that BADMAG is a preprocessor macro, and that EOF and
NULL are #defined constants. Declaring any of these to be variables, e.g., "int
EOF:", will cause a syntax error.

BUGS
Ctrace does not know about the components of aggregates like structures,
unions, and arrays. It cannot choose a format to print all the components of an
aggregate when an assignment is made to the entirc aggregate. Ctrace may
choose to print the address of an aggregate or use the wrong format (e.g., %c
for a structure with two intcger members) when printing the value of an aggre-
galte.
Pointer values arc always treated as pointers to character strings.
The loop trace output climination is done separately for each file of a multi-file
program. This can result in functions called from a loop still being traced, or
the elimination of trace output from one function in a file until another in the
same file is called.

FILES
runtime.c run-time trace package

SEE ALSO

signal(2), ctype(3C), Mush(3S), longjmp(3C), printf(3S), setjmp(3C),
string(3C) in the UNIX System V Programmer Reference Manual.

cuc) cuic)

NAME
cu — call another UNIX system

SYNOPSIS
cu [—sspeed] [=llinc] [=h] [=t] [=d] [—=m} [—o] [—e) [—n] telno |
systemname | dir

DESCRIPTION

Cu calls up another UNIX system, a terminal, or possibly a non-UNIX system.
It manages an interactive conversation with possible transfers of ASCII files.

cu accepts the following options and arguments.

—sspeed
Specifies the transmission speed (110, 150, 300, 600, 1200, 4800, 9600):
300 is the default value. Most modems are cither 300 or 1200 baud.
Directly connected lines may be set to a speed higher than 1200 baud.

—lline Spccifics a device name to use as the communication line. This can be
used to override searching for the first available line having the right
speed. When the -1 option is uscd without the -s option. the speed of a
line is taken from the file /usr/lib/uucp/L-devices. When the -l and -s
options arc used simultancously, cu will search the L-devices file to
check if the requested speed for the requested line is available. If so,
the connection will be made at the requested speed; otherwise an error
message will be printed and the call will not be made. The specified
device is generally a directly connected asynchronous line (e.g..
/dev/tivab), in this case a telephone number is not required but the
string dir may be use to specify a null acu. I the specified device is
associated with an auto dialer, a telephone number must be provided.

—h Emulates local ccho, supporting calls to other computer systems which
expect terminals to be set to half-duplex mode.

-t Used when dialing an ASCII terminal which has been set to auto
answer. Appropriate mapping of carriage-return to carriage-return-
linc-feed pairs is set.

-d Causcs diagnostic traces to be printed.

—e Designates that cven parity is to be gencrated for data sent to the
remote.

-0 Designates that odd parity is 10 be gencrated for data semt to the
remote.

-m Designates a direct line which has modem control.

-n Will request the telephone number to be dialed from the user rather
than taking it from the command line.

telno When using an automatic dialer the argument is the teletelephone
number with cqual signs for sccondary dial tone or minus signs for
delays. at appropriate places.

systemname
A uucp system name may be used rather than a telephone number; in
this case, cu will obtain an appropriate dircct line or telephone number
from /usr/lib/uucp/L.sys (the appropriate baud rate is also read along
with telephone numbers). Cu will try each telephone number or direct
line for systemname in the L.sys file until a connection is made or all
the entries are tried.

dir Using dir insures that cu will use the line specified by the -1 option.

cuao)

After making the conncction, cu runs as two processes: the transmit process
reads data from the standard input and, except for lines beginning with
passes il to the remote system; the receive process accepts data {rom the remote
system and, except for lines beginning with ~, passes it to the standard output.
Normally, an automatic DC3/DCI protocol is used to control input from the
remotc so the buffer is not overrun. Lines beginning with ~ have special mean-
ings.

The transmit process interprets the following:

i terminate the conversation.

o escape to an interactive shell on the local system.

Tlemd . .. run cmd on the local system (via sh —c¢).

“Semd ... run cmd locally and send its output to the remote sys-
tem.

"% cd change the directory on the local system. NOTE: “led

will cause the command to be run by a sub-shell; prob-
ably not what was intended.

“%take from [1o 1 copy file from (on the remote system) to file z0 on the
local system. If to is omitted, the from argument is
used in both places.

“%put from [101 copy file from (on local system) to filc 70 on remote sys-
tem. If to is omitted, the from argument is used in

both places.
L send the line ~... to the remote system.
"% break transmit a BREAK to the remote system.
~ % nostop toggles between DC3/DC1 input control protocol and no

input control. This is uscful in casc the remote system
is one which does not respond properly to the DC3 and
DC1 characters.

The receive process normally copies data from the remote system 1o its stan-
dard output. A line from the remote that begins with ~> initiates an output
diversion to a file. The complete sequence is:

>[>1:file
zero or more lines to be written to file
>

Data from the remote is diverted (or appended, if >> is used) to file. The
trailing > terminates the diversion.

The use of “%put requires stzy(1) and car(1) on the remote side. It also
requires that the current crase and kill characters on the remote system be
identical to the current ones on the local system. Backslashes are inserted at
appropriate places.

The use of "% take requires the existence of echo(1) and car(1) on the remote
system. Also, stty tabs mode should be set on the remote system if tabs are to
be copied without expansion.

D

)

cuic)

cu(1cC)

When cu is used on system X to connect 1o system Y and subscquently used on
system Y to connect to system Z, commands on system Y can be cxecuted by
using ~~. For cxample, uname can be exccuted on Z, X, and Y as follows:

uname

Z

“luname

X

““luname

Y

In general, ~ causes the command to be cxecuted on the original machine, ™
causes the command to be executed on the next machine in the chain.

EXAMPLES

FILES

To dial a system whose number is 9 201 555 1212 using 1200 baud:
cu -s1200 9=2015551212

If the speed is not specified, 300 is the default valuc.

To login to a system connected by a direct line:
cu -l /dev/tiyXX dir

To dial a system with the specific line and a specific speed:
cu -51200 -1 /dev/ttyXX dir

To dial a system using a specific line:
cu -l /dev/culXX 2015551212

To use a system name:
cu YYYZZZ

/usr/lib/uucp/L.sys
/usr/lib/uucp/L-devices
/usr/spool/uucp/1.CK..(tty-device)
/dev/null

SEE ALSO

cat(1), ct(1C). echo(1), stty(1), uname(1), uucp(1C).

DIAGNOSTICS

BUGS

Exit code is zero for normal exit, non-zero (various values) otherwise.

Cu buffers input internally.

There is an artificial slowing of transmission by cu during the “% put operation
so that loss of data is unlikely.

You cannot use cu from the 3B 20 computer system console.

cuT(1) cuT()

NAME
cut — cut out selected fields of each line of a file

SYNOPSIS
cut —clist [filel file2 ...
cut —flist [—dchar] [—sl] [filel file2 ...]

DESCRIPTION
Use cut to cut out columns from a table or fields from each line of a file; in
data base parlance, it implements the projection of a relation. The fields as
specified by /ist can be fixed length, i.e., character positions as on a punched
card (—c option) or the length can vary from linc to line and be marked with a
field delimiter character like tab (—f option). Cur can be used as a filter; if no
files are given, the standard input is used.

The meanings of the options are:

list A cdmma-separated list of integer field numbers (in increasing order),
with optional — to indicate ranges as in the —o option of nroff/troff
for page ranges; ¢.g., 1,4,7; 1—3,8; —5,10 (short for 1—5,10); or 3~
(short for third through last field).

—clist The list following —c¢ (no space) specifies character positions (c.g.,
—c1—72 would pass the first 72 characters of each line).

—flist The list following —f is a list of fields assumed to be separated in the
file by a delimiter character (see —d); e.g., —f1,7 copies the first
and seventh field only. Lines with no field delimiters will be passed
through intact (useful for table subheadings), unless —s is specified.

—~dchar The character following —d is the ficld delimiter (—f option only).
Default is tab. Space or other characters with special meaning to the
shell must be quoted.

-s Suppresses lines with no delimiter characters in case of —f option.
Unless specified, lines with no delimiters will be passed through
untouched.

Either the —c or —f option must be specified.

HINTS
Use grep(1) to make horizontal “cuts” (by context) through a file, or paste(1)
to put files together column-wise (i.e., horizontally). To reorder columns in a
table, use cut and paste.

EXAMPLES
cut —=d: —f1,5 /etc/passwd mapping of user IDs to names
name="who am i | cut —f1 —d" " to set name to current login name.
DIAGNOSTICS
line too long A line can have no more than 1023 characters or fields.

bad list for c/f option Missing —c or —f option or incorrectly specified lisz.
No error occurs if a line has fewer fields than the lis
calls for.

no fields The list is empty.

SEE ALSO
grep(1), paste(1).

CXREF(1) CXREF (1)

NAME

cxrel — generate C program cross-reference

SYNOPSIS

cxref [options] files

DESCRIPTION

Cxref analyzes a collection of C files and attempts to build a cross-reference
table. Cxref utilizes a special version of cpp to include #define’d information in
its symbol table. It produces a listing on standard output of all symbols (auto,
static, and global) in each file separately, or with the —c¢ option, in combina-
tion. Each symbol contains an asterisk (+) before the declaring reference.

In addition to the —D, —=I and —U options (which are identical to their
interpretation by cc(1)), the following options are interpreted by cxref:
-c Print a combined cross-reference of all input files.
—w<num>
Width option which formats output no wider than <num> (decimal)

columns. This option will default to 80 if <num> is not specified or
is less than S1.

—o file Direct output to named file.

-s Operate silently; does not print input file names.
—t Format listing for 80-column width.
FILES
/usr/lib/xcpp special version of C-preprocessor.
SEE ALSO
ce(1).
DIAGNOSTICS

BUGS

Error messages are unusually cryptic, but usually mean that you cannot com-
pile these files, anyway.

Cxref considers a formal argument in a #define macro definition to be a
declaration of that symbol. For example, a program that #includes ctype.h, will
contain many declarations of the variable c.

DATE(1) DATE(1)

NAME
date — print and sct the date

SYNOPSIS
date [mmddhhmmlyy] 1 [+format]

DESCRIPTION
If no argument is given, or if the argument begins with +, the current date
and time are printed. Otherwise, the current date is set. The first mm is the
month number; dd is the day number in the month; kA is the hour number (24
hour system); the second mm is the minute number; yy is the last 2 digits of
the year number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is
mentioned. The system operates in GMT. Date takes care of the conversion to
and from local standard and daylight time.

If the argument begins with +, the output of date is under the control of the
user. The format for the output is similar to that of the first argument to
printf(3S). All output fields are of fixed size (zero padded if necessary). Each
field descriptor is preceded by % and will be replaced in the output by its
corresponding value. A single % is encoded by % %. All other characters are
copied to the output without change. The string is always terminated with a
new-line character.

Field Descriptors:

insert a new-line character
insert a tab character

month of year — 01 to 12

day of month — 01 to 31

last 2 digits of year — 00 to 99
date as mm/dd/yy

hour — 00 to 23

minute — 00 to 59

second — 00 to 59

time as HH:MM:SS

day of year — 001 to 366

day of week — Sunday = 0
abbreviated weekday — Sun to Sat
abbreviated month — Jan to Dec
time in AM/PM notation

nTER ESNZIOC g ™S

EXAMPLE
date '+DATE: %m/%d/%y%nTIME: %H:%M:%S'
would have generated as output:
DATE: 08/01/76
TIME: 14:45:05

DIAGNOSTICS
No permission if you are not the super-user and you try to change the
date;
bad conversion if the date set is syntactically incorrect;
bad format character if the field descriptor is not recognizable.
FILES
/dev/kmem
SEE ALSO

printf(3S) in the UNIX System V Programmer Reference Manual.
WARNING
It is a bad practice to change the date while the system is running multi-user.

DC(1) DC(1)

NAME
dc — desk calculator

SYNOPSIS
de [file]

DESCRIPTION

Dc is an arbitrary precision arithmetic package. Ordinarily it operates on
decimal integers, but one may specify an input base, output base, and a number
of fractional digits to be maintained. (See bc(1), a preprocessor for dc that
provides infix notation and a C-like syntax that implements functions. Bc also
provides reasonable control structures for programs.) The overall structure of
de is a stacking (reverse Polish) calculator. If an argument is given, input is
taken from that file until its end, then from the standard input. The following
constructions are recognized:

number
The value of the number is pushed on the stack. A number is an unbro-
ken string of the digits 0—9. It may be preceded by an underscore ()
to input a negative number. Numbers may contain decimal points.
+~/+%"
The top two values on the stack are added (+), subtracted (—), multi-
plied (»), divided (/), remaindered (%), or exponentiated (7). The two
entries are popped off the stack; the result is pushed on the stack in their
place. Any fractional part of an exponent is ignored.

(34 The top of the stack is popped and stored into a register named x, where
x may be any character. If the s is capitalized, x is treated as a stack
and the value is pushed on it.

Ix The value in register x is pushed on the stack. The register x is not
altered. All registers start with zero value. If the | is capitalized, regis-
ter x is trcated as a stack and its top value is popped onto the main
stack.

d The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains
unchanged. P interprets the top of the stack as an ASCIl string,
removes it, and prints it.

f All values on the stack are printed.

q exits the program. If executing a string, the recursion level is popped by
two. If q is capitalized, the top value on the stack is popped and the
string execution level is popped by that value.

X treats the top element of the stack as a character string and executes it
as a string of dc commands.

X replaces the number on the top of the stack with its scale factor.
[..] puts the bracketed ASCII string onto the top of the stack.

<x >x =x

The top two clements of the stack are popped and compared. Register x
is evaluated if they obey the stated relation.

v replaces the top element on the stack by its square root. Any existing
fractional part of the argument is taken into account, but otherwise the
scale factor is ignored.

-

interprets the rest of the line as a UNIX system command.

DC(1) DC(1)

c All values on the stack are popped.

i The top value on the stack is popped and used as the number radix for
further input. I pushes the input base on the top of the stack.

0 The top value on the stack is popped and used as the number radix for
further output.

o pushes the output base on the top of the stack.

k the top of the stack is popped, and that value is used as a non-negative
scale factor: the appropriate number of places are printed on output, and
maintained during multiplication, division, and exponentiation. The
interaction of scale factor, input base, and output base will be reasonable
if all are changed together.

z The stack level is pushed onto the stack.

z replaces.the number on the top of the stack with its length.

? A line of input is taken from the input source (usually the terminal) and
executed.

;e are used by bc for array operations.

EXAMPLE
This example prints the first ten values of n':
(lal+dsaplal0>ylsy
Osal
lyx
SEE ALSO
be(l). ;
DIAGNOSTICS "‘:)
x is unimplemented :
where x is an octal number.
stack empty
for not enough clements on the stack to do what was asked.
Out of space
when the free list is exhausted (too many digits).
Out of headers
for too many numbers being kept around.
Out of pushdown
for too many items on the stack.
Nesting Depth
for too many levels of nested execution.

DD (1) DD (1)

NAME

_ dd — convert and copy a file
(SYNOPSIS

dd [option=value] ...

DESCRIPTION
Dd copies the specified input file to the specified output with possible conver-
sions. The standard input and output are used by default. The input and out-
put block size may be specified to take advantage of raw physical 1/0.

option values

if=file input file name; standard input is default

of =file output file name; standard output is default

ibs=n input block size n bytes (default 512)

obs=n output block size (default 512)

bs=n sct both input and output block size, superseding ibs and obs;

also, if no conversion is specified, it is particularly efficient since
no in-core copy need be done

chs=n conversion buffer size

skip=n skip n input blocks before starting copy

seek=n seek n blocks from beginning of output file before copying
count=n copy only n input blocks

conv=ascii convert EBCDIC to ASCII
ebedic convert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC
lcase map alphabetics to lower case
ucase map alphabetics to upper case
swab swap every pair of bytes

w noerror do not stop processing on an error

syrc pad every input block to ibs
.++ 5 ... several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may end
with Kk, b, or w to specify multiplication by 1024, 512, or 2, respectively; a pair
of numbers may be separated by x to indicate a preduct.

Cbs is used only if ascii or ebedic conversion is specified. In the former case
cbs characters are placed into the conversion buffer, converted to ASCII, and
trailing blanks trimmed and new-line added before sending the line to the out-
put. In the latter case ASCII characters are read into the conversion buffer,
converted to EBCDIC, and blanks added to make up an output block of size cbs.

After completion, dd reports the number of whole and partial input and output
blocks.

EXAMPLE

This command will read an EBCDIC tape blocked ten 80-byte EBCDIC card
images per block into the ASCII file x:

dd if=/dev/rmt/Om of=x ibs=800 cbs=80 conv=ascii,lcase

Note the use of raw magtape. Dd is especially suited to 1/O on the raw physi-
cal devices because it allows reading and writing in arbitrary block sizes.

3HE ALSO
cp(1).

F«

DD(1) DD(1)

DIAGNOSTICS
f+p blocks inlout) numbers of full and partial blocks read(written)
BUGS
The ASCII/EBCDIC conversion tables are taken from the 256-character stan-

dard in the CACM Nov, 1968. The ibm conversion, while less blessed as a

standard, corresponds better to certain IBM print train conventions. There is no
universal solution.

New-lines are inserted only on conversion to ASCII; padding is done only on
conversion to EBCDIC. These should be separate options.

DELTA(1) DELTA(1)

NAME
delta — make a delta (change) to an SCCS file

SYNOPSIS
delta [—=rSID) [=s) [—n] [—glist] [—=mlmrlist]] { —ylcomment]] [—p] files

DESCRIPTION
Delta is used to permanently introduce into the named SCCS file changes that
were made to the file retrieved by get (1) (called the g-file, or generated file).

Delta makes a delta to cach named SCCS file. If a directory is named, delta
behaves as though cach file in the directory were specified as a named file,
except that non-SCCS files (last component of the path name does not begin
with s.) and unreadable files are silently ignored. 1f a name of — is given, the
standard input is rcad (see WARNINGS); cach linc of the standard input is
taken 10 be the name of an SCCS file to be processed.

Delta may issuc prompts on the standard output depending upon certain
keyletters specificd and flags (see admin(1)) that may be present in the SCCS
file (scc —m and —y keyletters below).

Keyletier arguments apply independently to cach named file.

-rSID Uniquely identifics which delta is to be madc to the
SCCS file. The use of this keyletter is necessary only if
two or more outstanding gers for editing (get —e) on
the same SCCS file were done by the same person (login
name). The SID value specified with the —r keyletter
can be either the SID specified on the get command line
or the SID to be made as reported by the ger command
(sce get(1)). A diagnostic results if the specificd SID is
ambiguous, or, il necessary and omitted on thc com-
mand linc.

-5 Suppresses the issuc, on the standard output, of the
created delta’s SID, as well as the number of lincs
inserted, deleted and unchanged in the SCCS file.

-n Specifies retention of the edited g-file (normally
removed at completion of delta processing).
—glist Specifies a list (sec get(1) for the definition of list) of

deltas which are to be ignored when the file is accessed
at the change level (SID) created by this delta.

—mlmrlist] If the SCCS file has the v flag set (see admin(1)) then a
Modification Request (MR) number must be supplied as
the reason for creating the new dclta.

If —m is not used and the standard input is a terminal,
the prompt MRs? is issued on the standard output before
the standard input is read; if the standard input is not a
terminal, no prompt is issued. The MRs? prompt always
precedes the comments? prompt (sec —y keyletter).

MRs in a list arc separated by blanks and/or tab charac-
ters. An unescaped new-line character terminates the
MR list.

Note that if the v flag has a value (sec admin(1)), it is
taken to be the name of a program (or shell procedure)
which will validate the correctness of the MR numbers.
If a non-zero exit status is rcturned from MR number
validation program, delta terminates. (It is assumed

DELTA(1) DELTA (1)

FILES

that the MR numbers were not all valid.)

=ylcomment] Arbitrary text used to describe the reason for making
the delta. A null string is considered a valid comment.

If =y is not spccified and the standard input is a termi-
nal, the prompt comments? is issucd on the standard
output before the standard input is read: if the standard
input is not a terminal, no prompt is issucd. An unes-
caped new-line character terminates the comment text.

-p Causes delta to print (on the standard output) the SCCS
file differences before and after the dela is applied in a
diff (1) format.

All files of the form ?-file are cxplained in the Source Code Control System
User Guide. The naming convention for these files is also described there.

g-file Existed before the cxecution of delta: removed after comple-
tion of delta.

p-file Existed before the exccution of delta; may exist after comple-
tion of delta.

q-file Created during the exccution of delta; removed after comple-
tion of delta.

x-file Created during the execution of delta; renamed to SCCS file
after completion of delta.

z-file Created during the execution of delta; removed during the cxe-
cution of delta.

d-file Created during the exccution of delta; removed after comple-

tion of delta.
fusr/bin/bdilf Program to compute differences between the “gotten™ file and
the g-file.

WARNINGS

Lines beginning with an SOH ASCII character (binary 001) cannot be placed in
the SCCS file unless the SOH is escaped. This character has special meaning to
SCCS (see scesfile(4) (5)) and will cause an error.

A get of many SCCS files, followed by a delta of those files, should be avoided
when the ger gencrates a large amount of data. Instead, multiple getfdelta
sequences should be used.

I the standard input (=) is specified on the delta command line, the —m (f
necessary) and —y keyletters must also be present. Omission of these
keyletters causes an error 1o occur.

Comments arc limited to text strings of at most 512 characters.

SEE ALSO

admin(1). bdiff (1), cde(1), get(1), help(1), prs(1), rmdel(1).
scesfile(d) in the UNLX System V Programmer Reference Manual.

Source Code Control System User Guide in the UNIX System V User Guide.

DIAGNOSTICS

Use help(1) for explanations.

DIFF(1) DIFF(1)

NAME

diff — differential file comparator

SYNOPSIS

diff [—efbh] filel file2

DESCRIPTION

Diff tells what lines must be changed in two files to bring them into agreement.
If filel (file2) is —, the standard input is used. If filel (file2) is a directory,
then a file in that directory with the name file2 (filel) is used. The normal
output contains lines of these forms:

nl a n3,n4
nl.n2 d n3
ni,n2 ¢ n3,n4

These lines resemble ed commands to convert filel into file2. The numbers
after the letters pertain to file2. In fact, by exchanging a for d and reading
backward one may ascertain equally how to convert file2 into filel. As in ed,
identical pairs, where n/ = n2 or n3 = n4, arc abbreviated as a single number.

Following cach of these lines come all the lines that are affected in the first file
flagged by <, then all the lines that are affected in the second file flagged by
>,

The —b option causes trailing blanks (spaces and tabs) to be ignored and other
strings of blanks to compare equal.

The —e option produces a script of a, ¢, and d commands for the editor ed,
which will recreate file2 from filel. The —f option produces a similar script,
not useful with ed, in the opposite order. In connection with —e, the following
shell program may help maintain multiple versions of a file. Only an ancestral
file (1) and a chain of version-to-version ed scripts ($2,$3,...) made by diff
need be on hand. A “latest version” appears on the standard output.

(shift; cat $+; echo ‘1,8p") | ed — $1

Except in rarc circumstances, diff finds a smallest sufficient set of file
differences.

Option =h does a fast, half-hearted job. It works only when changed stretches
are short and well separated, but does work on files of unlimited length.
Options —e and —f are unavailable with —h.

FILES
/tmp/d1797?
/usr/lib/diffh for —h
SEE ALSO
cmp(1), comm(1), ed(1).
DIAGNOSTICS
Exit status is 0 for no differences, 1 for some differences, 2 for trouble.
BUGS
Editing scripts produced under the —e or —f option arec naive about creating
lines consisting of a single period ().
WARNINGS

Missing newline at end of file X
indicates that the last line of file X did not have a new-line. If the lines
are different, they will be flagged and output: although the output will
seem to indicate they are the same.

DIFF3(1) DIFF3(1)

NAME

diff3 — 3-way differential file comparison

SYNOPSIS

diff3 [—ex3] filel file2 file3

DESCRIPTION

FILES

Diff3 compares three versions of a file, and publishes disagreeing ranges of text
flagged with these codes:

i all three files differ
=== filel is different
====) file2 is different
====3 file3 is different

The type of change suffered in converting a given range of a given file to some
other is indicated in one of these ways:

f:ala Text is to be appended after line number ! in file f,
where f =1, 2, or 3.
Sfinl jn2c Text is to be changed in the range line n/ to line n2.

If nl = n2, the range may be abbreviated to n/.

The original contents of the range follows immediately after a ¢ indication.
When the contents of two files are identical, the contents of the lower-
numbered file is suppressed.

Under the —e option, diff3 publishes a script for the editor ed that will incor-
porate into filel all changes between file2 and file3, i.e., the changes that nor-
mally would be flagged and 3. Option —x (—3) produces a
script to incorporate only changes flagged ==== (====3). The following
command will apply the resulting script to filel.

(cat script; echo '1,8p") | ed — filel

/tmp/d3s
/usr/lib/diff3prog

SEE ALSO

BUGS

difr(1).

Text lines that consist of a single . will defeat —e.
Files longer than 64K bytes will not work.

™

DIFFMK (1) DIFFMK (1)

NAME

diffmk — mark differences between files

SYNOPSIS

diffmk namel name2 name3

DESCRIPTION

Diffmk compares two versions of a file and creates a third file that includes
“change mark” commands for nroff or troff (1). Namel and name?2 are the old
and new versions of the file. Diffmk generates name3, which contains the lines
of name?2 plus inserted formatter “change mark™ (.me) requests. When name3
is formatted, changed or inserted text is shown by | at the right margin of each
line. The position of deleted text is shown by a single ».

If anyone is so inclined, diffmk can be used to produce listings of C (or other)
programs with changes marked. A typical command line for such use is:

diffmk old.c new.c tmp; nroff macs tmp | pr

where the file macs contains:
pt 1l
A 77
.nf
.€0
.ne

The .1l request might specify a different line length, depending on the nature of
the program being printed. The .eo and .nc requests are probably needed only
for C programs.

If the characters | and » are inappropriate, a copy of diffmk can be edited to
change them (diffmk is a shell procedure).

SEE ALSO

BUGS

diff (1), nroff(1), troff(1).

Aesthetic considerations may dictate manual adjustment of some output. File
differences involving only formatting requests may produce undesirable output,
i.c., replacing .sp by .sp 2 will produce a “change mark™ on the preceding or
following line of output.

DIRCMP(1) DIRCMP(1)

NAME

dircmp — directory comparison
SYNOPSIS

diremp [=d 1 [=s 1 [—wn] dirl dir2
DESCRIPTION

Dircmp examines dirl and dir2 and generates various tabulated information
about the contents of the directories. Listings of files that arc unique to cach
directory are gencrated for all the options. If no option is entered. a list is out-

put indicating whether the file names common to both directories have the
same contents.

-d Compare the contents of files with the same name in both dircctories
and output a list telling what must be changed in the two files to bring
them into agreement. The list format is described in diff(1).

-s Suppress messages about identical files.

—wn Change the width of the output line to n characters. The default width
is 72.

SEE ALSO
cmp(1), diff(1).

DU(1) DU(1)

NAME

du — summarize disk usage
SYNOPSIS

du [—ars] [names |
DESCRIPTION

Du gives the number of blocks contained in all files and (recursively) direc-
tories within each directory and file specified by the names argument. The
block count includes the indirect blocks of the file. If names is missing, . is
used.

The optional argument —s causes only the grand total (for each of the specified
names) to be given. The optional argument —a causes an entry to be gen-
crated for each file. Absence of either causes an entry to be generated for cach
directory only.

Du is normally silent about directories that cannot be read, files that cannot be
opened, etc. The —r option will cause du to generate messages in such
instances.

A file with two or more links is only counted once.

BUGS
If the —a option is not used, non-directories given as arguments are not listed.
If there are too many distinct linked files, du will count the excess files more
than once.
Files with holes in them will get an incorrect block count.

DUMP(1) (not on PDP-11) DUMP(1)

NAME

dump — dump sclected parts of an object file
SYNOPSIS .

dump [—acfghlorst] [—z name] files
DESCRIPTION

The dump command dumps sclected parts of each of its object file arguments.

This command will accept both object files and archives of object files. It
processes each file argument according to one or more of the following options:

—a Dump the archive header of each member of cach archive file
argument.

-g Dump the global symbols in the symbol table of an archive.

-f Dump cach file header.

] Dump cach optional header.

-h Dump section headers.

-s Dump section contents.

-r Dump relocation information.

-1 Dump line number information.

—t Dump symbol table entrics.

—z name Dump line number entries for the named function.
-c Dump the string table.

The following modifiers are used in conjunction with the options listed above to
modify their capabilities.

—d number Dump the section number or range of scctions starting at number
and ending either at the last section number or number specified
by +d.

+d number Dump scctions in the range cither beginning with first section or
beginning with section specified by —d.

=n name Dump information pertaining only to the namecd entity. This
modifier applies to —h, —s, —r, —I, and —t.

-p Supress printing of the headers.

=t index Dump only the indexed symbol table entry. The —t used in con-
junction with =+t, specifies a range of symbol table entries.

+t index Dump thc symbol table entries in the range ending with the
indexed entry. The range begins at the first symbol table entry or
at the entry specified by the —t option.

—u Underline the name of the file for emphasis.

-y Dump information in symbolic representation rather than numeric
(c.g., C_STATIC instead of 0X02). This modifier can be used with
all the above options except —s and —o options of dimp.

—z name,number
Dump linc number entry or range of linc numbers starting at
number for the named function.

+z number Dump line numbers starting at cither function name or number
specified by —z, up to number specified by +z.

R

DUMP(1) (not on PDP-11) DUMP(1)

Blanks separating an option and its modifier arc optional. The comma scparat-
ing the name from the number modifying the —z option may be replaced by a
blank.

The dump command attempts to format the information it dumps in a mean-
ingful way, printing certain information in character, hex, octal or decimal
represcntation as appropriate.

SEE ALSO
a.out(4), ar(4) in the UNIX System V Programmer Reference Manual.

ECHO(1)

NAME

ECHO(1)

echo — echo arguments

SYNOPSIS

echo [arg] ...

DESCRIPTION

Echo writes its arguments separated by blanks and terminated by a new-line on
the standard output. It also understands C-like escape conventions; beware of
conflicts with the shell’s use of \:

\b
\c
\f

backspace

print line without new-line

form-feed

new-line

carriage return

tab

vertical tab

backslash

the 8-bit character whose ASCII code is the 1-, 2- or 3-digit
octal number n, which must start with a zero.

Echo is useful for producing diagnostics in command files and for sending
known data into a pipe.

SEE ALSO
sh(1).

™

ED(1) ED(1)

NAME
ed, red — text cditor

SYNOPSIS
ed [=][=pstring 1 [—x][file]

red [—][=pstring] [—x][file]

DESCRIPTION

Ed is the standard text editor. If the file argument is given, ed simulates an e
command (sec below) on the named file; that is to say, the file is read into ed’s
buffer so that it can be edited. The optional — suppresses the printing of char-
acter counts by e, r, and w commands, of diagnostics from e and g commands,
and of the ! prompt after a !shell command. The —p option allows the user to
specify a prompt string. If —x is present, an x command is simulated first to
handle an encrypted file. Ed operatcs on a copy of the file it is cditing; changes
made to the copy have no effect on the file until a w (write) command is given.
The copy of the text being edited resides in a temporary file called the buffer.
There is only one buffer.

Red is a restricted version of ed. It will only allow editing of files in the
current directory. It prohibits executing shell commands via !shell command.

Attempts to bypass these restrictions result in an error message (restricted
shell).

Both ed and red support the fspec(4) formatting capability. After including a
format specification as the first line of file and invoking ed with your terminal
in stty —tabs or stty tab3 mode (see stty(1), the specified tab stops will
automatically be used when scanning file. For example, if the first line of a file
contained:
<:15,10,15 s72:>

tab stops would be set at columns 5, 10, and 15, and a maximum line length of
72 would be imposed. NOTE: while inputting text, tab characters when typed
are expanded to every cighth column as is the default.

Commands to ed have a simple and regular structure: zero, one, or two
addresses followed by a single-character command, possibly followed by
parameters to that command. These addresses specify one or more lines in the
buffer. Every command that requires addresses has default addresses, so that
the addresses can very often be omitted.

In general, only one command may appear on a line. Certain commands allow
the input of text. This text is placed in the appropriate place in the buffer.
While ed is accepting text, it is said to be in input mode. In this mode, no
commands are recognized; all input is merely collected. Input mode is left by
typing a period (.) alonc at the beginning of a line.

Ed supports a limited form of regular expression notation; regular expressions
are used in addresses to specify lines and in some commands (e.g., s) to specify
portions of a line that are to be substituted. A regular expression (RE)
specifies a set of character strings. A member of this set of strings is said to be
matched by the RE. The REs allowed by ed are constructed as follows:

The following one-character REs match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a one-
character RE that matches itsell.

1.2 A backslash (\) followed by any special character is a one-character RE
that matches the special character itself. The special characters are:

a. . ¢ [, and \ (period, asterisk, left square bracket, and backslash,
respectively), which are always special, excepr when they appear
within square brackets ([1; see 1.4 below).

-1-

ED(1) ED(1)

b. ~ (caret or circumflex), which is special at the beginning of an
entire RE (see 3.1 and 3.2 below), or when it immediately follows
the left of a pair of square brackets ([1) (see 1.4 below).

c. $ (currency symbol), which is special at the end of an entire RE (see
3.2 below).

d. The character used to bound (i.c., delimit) an entire RE, which is
special for that RE (for example, sec how slash (/) is used in the g
command, below.)

1.3 A period (.) is a one-character RE that matches any character except
new-line.

1.4 A non-empty string of characters enclosed in square brackets (I1) is a
onc-character RE that matches any one character in that string. If, how-
ever, the first character of the string is a circumflex (*), the one-
character RE matches any character except new-line and the remaining
characters in the string. The “ has this special meaning only if it occurs
first in the string. The minus (=) may be used to indicate a range of
consecutive ASCII characters; for example, [0-9] is equivalent to
[0123456789]. The — loses this special meaning if it occurs first (after
an initial #, if any) or last in the string. The right square bracket (1)
does not terminate such a string when it is the first character within it
(after an initial ~, if any); e.g., [la—f] matches cither a right square
bracket (1) or one of the letters a through f inclusive. The four charac-
ters listed in 1.2.a above stand for themselves within such a string of

characters.

The following rules may be used to construct REs from one-character REs:

2.1 A one-character RE is a RE that matches whatever the one-character RE 'N
matches.)

2.2 A onc-character RE followed by an asterisk (#) is a RE that matches zero
or more occurrences of the one-character RE. If there is any choice, the
longest leftmost string that permits a match is chosen.

2.3 A one-character RE followed by \{m\}, \{m\}, or \{m,n\} is a RE that
matches ‘a range of occurrences of the one-character RE. The values of
m and n must be non-negative integers less than 256: \{m\} matches
exactly m occurrences; \{m,\} matches at least m occurrences; \{nm.n\}
matches any number of occurrences between m and n inclusive. When-
ever a choice exists, the RE matches as many occurrences as possible.

2.4 The concatenation of REs is a RE that matches the concatenation of the
strings matched by each component of the RE.

2.5 A RE enclosed between the character sequences \(and \) is a RE that
matches whatever the unadorned RE matches.

2.6 The expression \r matches the same string of characters as was matched
by an cxlipression enclosed between \(and \) earlier in the samec RE.
Here n is a digit; the sub-expression specified is that beginning with the
n-th occurrence of \(counting from the left. For example, the expression
\(.\)\1$ matches a line consisting of two repeated appearances of the
same string.

Finally, an entire RE may be constrained to match only an initial segment or
final segment of a line (or both).

3.1 A circumflex (*) at the beginning of an entire RE constrains that RE to)
match an initial segment of a line. -

ED(1)

3.2

ED(1)

A currency symbol ($) at the end of an entire RE constrains that RE to
match a final segment of a linc.

The construction “entire RES$ constrains the entire RE to match the entire line.

The null RE (e.g., //) is equivalent to the last RE encountered. See also the
last paragraph before FILES below.

To understand addressing in ed it is necessary to know that at any time there is
a current line. Generally speaking, the current line is the last line affected by a
command; the exact effect on the current line is discussed under the description
of each command. Addresses are constructed as follows:

1.

2.
3.
4

The character . addresses the current linc.
The character $ addresses the last line of the buffer.
A decimal number n addresses the n-th line of the buffer.

x addresses thc line marked with the mark name character x, which
must be a lower-case letter. Lines are marked with the & command
described below.

A RE enclosed by slashes (/) addresses the first line found by scarching
forward from the line following the current line toward the end of the
buffer and stopping at the first line containing a string matching the RE.
If necessary, the search wraps around to the beginning of the buffer and
continues up to and including the current line, so that the entire buffer is
scarched. Sec also the last paragraph before FILES below.

A RE enclosed in question marks (?) addresses the first line found by
scarching backward from the line preceding the current line toward the
beginning of the buffer and stopping at the first line containing a string
matching the RE. If necessary, the scarch wraps around to the end of
the buffer and continues up to and including the current line. See also
the Jast paragraph before FILES below.

An address followed by a plus sign (4) or a minus sign (=) followed by
a decimal number specifies that address plus (respectively minus) the
indicated number of lines. The plus sign may be omitted.

Il an address begins with + or —, thc addition or subtraction is taken
with respect to the current line; e.g, —5 is understood to mean . —5.

If an address ends with + or —, then 1 is added to or subtracted from
the address, respectively. As a consequence of this rule and of rule 8
immediately above, the address — refers to the line preceding the current
line. (To maintain compatibility with carlier versions of the editor, the
character ~ in addresses is entirely equivalent to —.) Moreover, trailing
+ and — characters have a cumulative effect, so —— refers to the
current line less 2.

For convenience, a comma (,) stands for the address pair 1,8, while a
semicolon (;) stands for the pair .,$.

ED(1)

ED(1)

Commands may require zero, one, or two addresses. Commands that require
no addresses regard the presence of an address as an crror. Commands that
accept onc or two addresses assume default addresses when an insufficient
number of addresses is given; if more addresses arc given than such a command
requircs, the last one(s) are used.

Typically, addresses are separated from each other by a comma (,). They may
also be separated by a semicolon (;). In the latter case, the current line (.) is
set 1o the first address, and only then is the second address calculated. This
feature can be used to determine the starting line for forward and backward
searches (sce rules 5. and 6. above). The second address of any two-address
sequence must correspond to a line that follows, in the buffer, the line
corresponding to the first address.

In the following list of ed commands, the default addresses are shown in
parentheses. The parentheses are not part of the address; they show that the
given addresses are the default.

It is generally illegal for more than one command to appear on a line. How-
ever, any command (except e, f, r, or w) may be suffixed by I, n, or p in which
case the current line is cither listed, numbered or printed, respectively, as dis-
cussed below under the /, n, and p commands.

(.)a
<text>

The append command reads the given text and appends it after the
addressed line; . is left at the last inserted line, or, if there were nonc,
at the addressed line. Address O is legal for this command: it causcs
the “‘appended™ text to be placed at the beginning of the buffer. The
maximum number of characters that may be entered from a terminal
is 256 per line (including the new-line character).

(Je
<text>

The change command deletes the addressed lines, then accepts input
text that replaces these lines; . is left at the last line input, or, if there
were none, at the first line that was not deleted.

(,.)d
The delete command deletes the addressed lines from the buffer. The
line after the last linc deleted becomes the current line; if the lines
dcleted were originally at the end of the buffer, the new last line
becomes the current line.

e file

The edit command causes the entire contents of the buffer to be
deleted, and then the named file to be read in; . is set to the last line of
the buffer. If no file name is given, the currently-remembered file
name, if any, is used (sce the f command). The number of characters
read is typed; file is remembered for possible usc as a default file name
in subsequent e, r, and w commands. If file is replaced by !, the rest
of the line is taken to be a shell (sh(1)) command whose output is to
be read. Such a shell command is nor remembered as the current file
name. See also DIAGNOSTICS below.

E file
The Edit command is like e, except that the editor does not check to

sec if any changes have been made to the buffer since the last w com-
mand.

ED(1)

f file

ED(1)

If file is given, the file-name command changes the currently-
remembered file name to file; otherwise, it prints the currently-
remembered file name.

(1,8)g/RE/command list

In the global command, thc first step is to mark cvery line that
matches the given RE. Then, for every such line, the given command
list is executed with . initially set to that linc. A single command or
the first of a list of commands appears on the same linc as the global
command. All lines of a multi-line list except the last line must be
ended with a \; a, i, and ¢ commands and associated input arc permit-
ted. The . terminating input mode may be omitted if it would be the
last line of the command list. An empty command list is equivalent to
the p command. The g, G, v, and V commands are nor permitted in
the command list. See also BUGS and the last paragraph before FILES
below.

(1,8)G/RE/

()i
<text>

In the interactive Global command, the first step is to mark every linc
that matches the given RE. Then, for cvery such line, that line is
printed, . is changed to that line, and any one command (other than
one of the a, ¢, i, g, G, v, and ¥ commands) may be input and is exe-
cuted. After the execution of that command, the next marked line is
printed, and so on; a new-linc acts as a null command; an & causes
the re-exccution of the most recent command exccuted within the
current invocation of G. Note that the commands input as part of the
cxecution of the G command may address and affect any lines in the
buffer. The G command can be terminated by an interrupt signal
(ASCII DEL or BREAK).

The help command gives a short error message that explains the reason
for the most recent ? diagnostic.

The Help command causes ed to enter a mode in which error messages
arc printed for all subsequent ? diagnostics. It will also explain the
previous ? if there was one. The H command alternately turns this
mode on and off; it is initially off.

The insert command inserts the given text before the addressed line; .
is left at the last inserted line, or, if there were none, at the addressed
line. This command differs from the a command only in the placement
of the input text. Address 0 is not legal for this command. The max-
imum number of characters that may be entered from a terminal is
256 per line (including the new-line character).

(.. +1)j

F‘ ()kx

The join command joins contiguous lines by removing the appropriate
new-line characters. If exactly one address is given, this command
does nothing.

The mark command marks the addressed line with name x, which
must be a lower-case letter. The address x then addresses this line; .
is unchanged.

ED(1)

Q

ED(1)

The /ist command prints the addressed lines in an unambiguous way:
a few non-printing characters (e.g., tab, backspace) arc represented by
(hopefully) mnemonic overstrikes. All other non-printing characters
are printed in octal, and long lines are folded. An / command may be
appended to any other command other than e, f, r, or w.

The move command repositions the addressed line(s) after the line
addressed by a. Address 0 is legal for a and causes the addressed
line(s) to be moved to the beginning of the file. It is an error if
address a falls within the range of moved lines; . is left at the last line
moved.

The number command prints the addressed lines, preceding each line
by its line number and a tab character; . is left at the last line printed.
The n command may be appended to any other command other than e,
S, r, orw.

The print command prints the addressed lines; . is left at the last line
printed. The p command may be appended to any other command
other than e, f, r, or w. For example, dp deletes the current line and
prints the new current line.

The cditor will prompt with a + for all subsequent commands. The P
command alternately turns this mode on and off; it is initially off.

The guit command causes ed to cxit. No automatic write of a file is
done (but see DIAGNOSTICS below).

The editor exits without checking if changes have been made in the
buffer since the last w command.

($)r file

The read command reads in the given file after the addressed line. If
no filc name is given, the currently-remembered file name, if any, is
used (sce e and f commands). The currently-remembered file name is
not changed unless file is the very first file name mentioned since ed
was invoked. Address O is legal for r and causes the file to be read at
the beginning of the buffer. If the read is successful, the number of
characters read is typed; . is set to the last line read in. If file is
replaced by !, the rest of the line is taken to be a shell (s#(1)) com-
mand whose output is to be read. For example, "$r !ls" appends
current directory to the end of the file being edited. Such a shell com-
mand is not remembered as the current file name.

(.,.)s/RE/replacement / or
(.,.)s/RE/replacement /g or
(.,.)s/RE/replacement /n n=1-512

The substitute command searches cach addressed line for an
occurrence of the specified RE. In each line in which a match is found,
all (non-overlapped) matched strings are replaced by the replacement
if the global replacement indicator g appears after the command. If
the global indicator does not appear, only the first occurrence of the
matched string is replaced. If a number n appears after the command,
only the n th occurrence of the matched string on each addressed line

-6 -

ED(1)

(.,.)ta

ED(1)

is replaced. 1t is an error for the substitution to fail on a/l addressed
lincs. Any character other than space or ncw-line may be used instead
of / to delimit the RE and the replacement; . is left at the last line on
which a substitution occurred. See also the last paragraph before
FILES below.

An ampersand (&) appearing in the replacement is replaced by the
string matching the RE on the current line. The special meaning of &
in this context may be suppressed by preceding it by \. As a more
general feature, the characters \n, where n is a digit, are replaced by
the text matched by the n-th regular subexpression of the specified RE
enclosed between \(and \). When nested parenthesized subexpressions
arc present, n is determined by counting occurrences of \(starting
from the left. When the character % is the only character in the
replacement, the replacement used in the most recent substitute com-
mand is used as the replacement in the current substitute command.
The % loses its special meaning when it is in a replacement string of
morc than one character or is preceded by a \.

A line may be split by substituting a new-line character into it. The
new-line in the replacement must be escaped by preceding it by \.
Such substitution cannot be done as part of a g or v command list.

This command acts just like the m command, except that a copy of the
addressed lines is placed after address a (which may be 0); . is left at
the last line of the copy.

The undo command nullifies the cffect of the most recent command
that modified anything in the buffer, namely the most recent a, ¢, d, g,
i,j,m,r,s,1,v,G,or ¥ command.

(1,8)v/RE/command list

This command is the same as the global command g except that the
command list is executed with . initially sct to cvery line that does not
match the RE.

(1,$)V/RE/

This command is the same as the interactive global command G except
that the lines that are marked during the first step arc those that do
noi match the RE.

(1,8)w file

The writc command writes the addressed lines into the named file. If
the file docs not exist, it is created with mode 666 (rcadable and writ-
able by everyone), unless your umask sctting (see sh(1)) dictates oth-
erwise. The currently-remembered file name is #ot changed unless file
is the very first file name mentioned since ed was invoked. If no file
name is given, the currently-remembered filc name, if any, is used (sec
¢ and f commands); . is unchanged. If the command is successful, the
number of characters written is typed. If file is replaced by !, the rest
of the line is taken to be a shell (s4#(1)) command whose standard
input is the addressed lines. Such a shell command is not remembered
as the current file name.

A key string is demanded from the standard input. Subsequent e, 7,
and w commands will encrypt and decrypt the text with this key by the
algorithm of crypt(1). An cexplicitly empty key turns off encryption.

ED(1)

FILES

DIAGNOSTICS
?

ED(1)

($)=
The line number of the addressed line is typed; . is unchanged by this
command.

Ishell command

The remainder of the line after the ! is sent to the UNIX system shell
(s~ (1)) to be interpreted as a command. Within the text of that com-
mand, the unescaped character % is replaced with the remembered file
name; if a ! appears as the first character of the shell command, it is
replaced with the text of the previous shell command. Thus, ! will
repeat the last shell command. If any cxpansion is performed, the
cxpanded line is echoed; . is unchanged.

(.+1) <ncw-line>
An address alone on a line causes the addressed line to be printed. A
new-lind alone is cquivalent to .+1p; it is uscful for stepping forward
through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and rcturns
to its command level.

Some size limitations: 512 characters per line, 256 characters per global com-
mand list, 64 characters per file name, and 128K characters in the buffer. The
limit on the number of lines depends on the amount of user memory: cach line
takes 1 word.

When reading a file, ed discards ASCII NUL characters and all characters after
the last ncw-line. Files (c.g.. a.out) that contain characters not in the ASCII
set (bit 8 on) cannot be edited by ed.

If the closing delimiter of a RE or of a replacement string (c.g., /) would be the
last character before a new-line, that delimiter may be omitted, in which case
the addressed linc is printed. The following pairs of commands are equivalent:

s/sl/s2 s/sl/s2lp

g/sl g/sl/p

sl 7s1?

/tmp/c# temporary; # is the process number.
ed.hup work is saved here if the terminal is hung up.

? for command errors.
?ile for an inaccessible file.
(use the help and Help commands for detailed explanations).

If changes have been made in the buffer since the last w command that wrote
the entire buffer, ed warns the user if an attempt is made to destroy ed’s buffer
via the ¢ or g commands. It prints ? and allows one to continue cditing. A
sccond e or ¢ command at this point will take cffect. The — command-line
option inhibits this feature.

SEE ALSO

crypt(1), grep(1), sed(1), sh(1), stty(1).
fspec(4), regexp(5) in the UNIX System V Programmer Reference Manual.

UNIX System V Editing Guide.

-

ED(1) ED(1)

CAVEATS AND BUGS
A !/ command cannot be subject to a g or a v command.
The ! command and the ! escape from the e, , and w commands cannot be
used if the the editor is invoked from a restricted shell (see sk(1)).
The sequence \n in a RE does not match a new-line character.
The / command mishandles DEL.
Files encrypted directly with the cryps (1) command with the null key cannot
be edited.
Characters are masked to 7 bits on input.
If the editor input is coming from a command file (i.c., ed file < ed-cmd-file),

the editor will exit at the first failure of a command that is in the command
file.

EDIT (1) EDIT(1)

NAME

edit — text editor (variant of ex for casual users)
SYNOPSIS

edit [=r] name ...
DESCRIPTION

Edit is a variant of the text editor ex recommended for new or casual users
who wish to use a command-oriented editor. The following brief introduction
should help you get started with edit. If you are using a CRT terminal you may
want to learn about the display editor vi.

BRIEF INTRODUCTION
To edit the contents of an existing file you begin with the command “edit
name” to the shell. Edit makes a copy of the file which you can then edit, and
tells you how many lines and characters are in the file. To create a new file,
just make up a name for the file and try to run edit on it; you will cause an
error diagnostic, but do not worry.

Edit prompts for commands with the character *’, which you should see after
starting the editor. If you are editing an existing file, then you will have some
lines in edit’s buffer (its name for the copy of the file you are editing). Most
commands to edit use its “current line” if you do not tell them which line to
use. Thus if you say print (which can be abbreviated p) and hit carriage return
(as you should after all edit commands) this current line will be printed. If
you delete (d) the current line, edit will print the new current line. When you
start editing, edit makes the last line of the file the current line. If you delete
this last line, then the new last line becomes the current one. In general, after
a delete, the next line in the file becomes the current line. (Deleting the last
line is a special case.)

If you start with an empty file or wish to add some new lines, then the append
(a) command can be used. After you give this command (typing a carriage
return after the word append) edit will read lines from your terminal until you
give a line consisting of just a “.”, placing these lines after the current line.
The last line you type then becomes the current line. The command insert (i)
is like append but places the lines you give before, rather than after, the current
line.

Edit numbers the lines in the buffer, with the first line having number 1. If
you give the command “1” then edit will type this first line. If you then give
the command delete edit will delete the first line, line 2 will become line 1, and
edit will print the current line (the new line 1) so you can see where you are.
In general, the current line will always be the last line affected by a command.

You can make a change to some text within the current line by using the sub-
stitute (s) command. You say “s/old/new/” where old is replaced by the old
characters you want to get rid of and new is the new characters you want to
replace it with.

The command file (f) will tell you how many lines there are in the buffer you
are editing and will say “[Modified]” if you have changed it. After modifying
a file you can put the buffer text back to replace the file by giving a write (w)
command. You can then leave the editor by issuing a quit (q9) command. If
you run edit on a file, but do not change it, it is not necessary (but does no
harm) to write the file back. If you try to quit from edit after modifying the
buffer without writing it out, you will be warned that there has been “No write
since last change” and edit will await another command. If you wish not to
write the buffer out then you can issue another quit command. The buffer is
then irretrievably discarded, and you return to the shell.

W
!
i

EDIT(1) EDIT (1)

By using the delete and append commands, and giving linc numbers to scc lines
in the file you can make any changes you desire. You should learn at least a
few more things, however, if you are to use edit more than a few times.

The change (¢) command will change the current line to a sequence of lines
you supply (as in append you give lines up to a line consisting of only a *.”).
You can tell change to change more than one line by giving the line numbers of
the lines you want to change, i.e., “3,5change”. You can print lines this way
too. Thus “1,23p” prints the first 23 lines of the file.

The undo (u) command will reverse the effect of the last command you gave
which changed the buffer. Thus if you give a substitute command which does
not do what you want, you can say undo and the old contents of the line will be
restored. You can also undo an undo command so that you can continue to
change your mind. Edit will give you a warning message when commands you
do affect more than one line of the buffer. If the amount of change seems
unreasonable, you should consider doing an undo and looking to see what hap-
pened. If you decide that the change is ok, then you can undo again to get it
back. Note that commands such as write and quit cannot be undone.

To look at the next line in the buffer you can just hit carriage return. To look
at a number of lines hit "D (control key and, while it is held down D key, then
let up both) rather than carriage return. This will show you a half screen of
lines on a CRT or 12 lines on a hardcopy terminal. You can look at the text
around where you are by giving the command “z.”. The current line will then
be the last line printed; you can get back to the line where you were before the
2.” command by saying “”. The z command can also be given other follow-
ing characters “z—" prints a screen of text (or 24 lines) ending where you are;
“z+" prints the next screenful. If you want less than a screenful of lines, type
in "z.12" to get 12 lines total. This method of giving counts works in general;
thus you can delete 5 lines starting with the current line with the command
“delete 5.

To find things in the file, you can use line numbers if you happen to know
them; since the line numbers change when you insert and delete lines this is
somewhat unreliable. You can search backwards and forwards in the file for
strings by giving commands of the form /text/ to search forward for text or
?text? to search backward for textz. If a search reaches the end of the file
without finding the text it wraps, end around, and continues to search back to
the line where you are. A useful feature here is a search of the form /“text/
which searches for text at the beginning of a line. Similarly /text$/ searches
for text at the end of a line. You can leave off the trailing / or ? in these com-
mands.

The current line has a symbolic name *.”; this is most useful in a range of lines
as in “..$print” which prints the rest of the lines in the file. To get to the last
line in the file you can refer to it by its symbolic name “$”. Thus the com-
mand “$ delete” or “$d” deletes the last line in the file, no matter which line
was- the current line before. Arithmetic with line references is also possible.
Thus the line “$—5" is the fifth before the last, and “.+20” is 20 lines after the
present.

You can find out which line you are at by doing *.=". This is useful if you
wish to move or copy a section of text within a file or between files. Find out
the first and last line numbers you wish to copy or move (say 10 to 20). For a
move you can then say “10,20delete a” which deletes these lines from the file
and places them in a buffer named a. Edir has 26 such buffers named a
through z. You can later get these lines back by doing “put a” to put the con-
tents of buffer a after the current line. If you want to move or copy these lines
between files you can give an edit (e) command after copying the lines,

-2

EDIT(1) EDIT(1)

following it with the name of the other file you wish to edit, i.c., “edit
chapter2”. By changing delete to yank above you can get a pattern for copying
lines. If the text you wish to move or copy is all within one file then you can
just say “10,20move $” for example. It is not necessary to use named buffers
in this case (but you can if you wish).

SEE ALSO
ex(1), vi(1).

~

EFL(1) EFL(1)

NAME
efl — Extended Fortran Language

SYNOPSIS
efl [options] [files]

DESCRIPTION
Ef! compiles a program written in the EFL language into clean Fortran on the
standard output. Ef7 provides the C-like control constructs of ratfor(1):

statement grouping with braces.

decision-making;:
if, if-else, and select-case (also known as switch-case);
while, for, Fortran do, repeat, and repeat ... until loops;
multi-level break and next.

EFL has C-like data structures, e.g.:
struct

{

integer flags(3)
character(8) name
fong real coords(2)
} table(100)

The language offers generic functions, assignment operators (+ =, & =, etc.),
and sequentially evaluated logical operators (& & and ||). There is a uniform
input/output syntax:

write(6,x,y:f(7,2), do i=1,10 { a(i,)),z.b() })
EFL also provides some syntactic “sugar’:

free-form input:
multiple statements per line; automatic continuation; statement
label names (not just numbers).

comments:
this is a comment.

translation of relational and logical operators:
>, > =, &, etc., become .GT., .GE., .AND,, ctc.

return expression to caller from function:
return (expression)

defines:
define name replacement

includes:
include file

Efl understands several option arguments: —w suppresses warning messages,
—# suppresses comments in the generated program, and the default option —C
causes comments to be included in the generated program.

An argument with an embedded = (equal sign) sets an EFL option as if it had
appeared in an option statement at the start of the program. Many options are
described in the reference manual. A set of defaults for a particular target
machine may be selected by one of the choices: system =unix, system=gcos, or
system=cray. The default setting of the system option is the same as the
machine the compiler is running on.

EFL(1) EFL(1)

Other specific options determine the style of input/output, error handling, con-

tinuation conventions, the number of characters packed per word, and default
formats.

Ef1 is best used with 77(1).

SEE ALSO
cc(1), £77(1), ratfor(1).

ENABLE(1) ENABLE(1)

NAME
(W\ enable, disable — enable/disable LP printers

SYNOPSIS
enable printers
disable [—¢] [—rlreason]] printers

DESCRIPTION

Enable activates the named printers, enabling them to print requests taken by
Ip(1). Use Ipstat(1) to find the status of printers.

" Disable deactivates the named printers, disabling them from printing requests
taken by Ip(1). By default, any requests that are currently printing on the
designated printers will be reprinted in their entirety either on the same printer
or on another member of the same class. Use Ipstar(1) to find the status of
printers. Options useful with disable are:

-c Cancel any requests that are currently printing on any of the
designated printers.

—rlreason] Associates a reason with the deactivation of the printers. This
reason applies to all printers mentioned up to the next —r option.
If the —r option is not present or the —r option is given without
a reason, then a default reason will bc used. Reason is reported
by Ipstat (1).
FILES
/usr/spool/lp/»

SEE ALSO
Ip(1), lpstat(1).

ENV(1) ENV(1)

NAME
env — set environment for command execution

SYNOPSIS
env [—] [name=value] ... [command args]

DESCRIPTION
Env obtains the current environment, modifies it according to its arguments,
then executes the command with the modified environment. Arguments of the
form name =value are merged into the inherited environment before the com-
mand is executed. The — flag causes the inherited environment to be ignored
completely, so that the command is executed with exactly the environment
specified by the arguments.
If no command is specified, the resulting environment is printed, one name-
value pair pex line.

SEE ALSO

sh(1).

exec(2), profile(4), environ(5) in the UNIX System V Programmer Reference
Manual.

EX (1) EX(1)

NAME
ex — text editor

SYNOPSIS
ex [=)J[=v]l —=ttagll =c][-R1[+command 1 [-11[—x
} name ...

DESCRIPTION
Ex is the root of a family of editors: ex and vi. Ex is a supersct of ed, with
the most notable extension being a display editing facility. Display based edit-
ing is the focus of vi.
If you have a CRT terminal, you may wish to usc a display based editor; in this
case sec vi (1), which is a command which focuses on the display editing por-
tion of ex.

DOCUMENTATION

The Ex Reference Manual is a comprehensive and complete manual for the
command mode features of ex, but you cannot learn to use the cditor by read-
ing it. For an introduction to more advanced forms of editing using the com-
mand mode of ex sec the editing documents written by Brian Kernighan for the
editor ed, the material in the introductory and advanced documents works also
with ex.

An Introduction to Display Editing with Vi introduces the display editor vi
and provides reference material on vi. The Vi Quick Reference card summar-
izes the commands of vi in a useful, functional way, and is useful with the
Introduction. The vi(1) manual page can also be used as reference.

FOR ED USERS

If you have used ed you will find that ex has a number of new features useful
on CRT terminals. Intelligent terminals and high speed terminals are very
pleasant to use with vi. Generally, the editor uses far more of the capabilities
of terminals than ed docs, and uses the terminal capability data base rer-
minfo(4) and the type of the terminal you are using from the variable TERM
in the environment to determine how to drive your terminal efficiently. The
editor makes usc of features such as insert and delete character and line in its
visual command (which can be abbreviated vi) and which is the central mode of
editing when using vi (1).

Ex contains a number of new features for ecasily viewing the text of the file.
The z command gives casy access to windows of text. Hitting "D causes the
editor to scroll a half-window of text and is more useful for quickly stepping
through a file than just hitting rcturn. Of course, the screen-oriented visual
mode gives constant access to editing context.

Ex gives you more help when you make mistakes. The unde (u) command
allows you to reverse any single change which goes astray. Ex gives you a lot
of feedback, normally printing changed lines, and indicates when more than a
few lines are affected by a command so that it is casy to detect when a com-
mand has affected more lines than it should have.

The editor also normally prevents overwriting existing files unless you edited
them so that you do not accidentally clobber with a write a file other than the
one you are editing. If the system (or editor) crashes, or you accidentally hang
up the telephone, you can use the editor recover command to retrieve your
work. This will get you back to within a few lines of where you left off.

Ex has several features for dealing with more than one file at a time. You can
give it a list of files on the command line and use the next (n) command to deal
with each in turn. The next command can also be given a list of file names, or
a pattern as used by the shell to specify a new set of files to be dealt with. In

-1-

EX(1)

EX (1)

general, file names in the editor may be formed with full shell metasyntax. The
metacharacter ‘%’ is also available in forming file names and is replaced by the
name of the current file.

For moving text between files and within a file the editor has a group of
buffers, named a through z. You can place text in these named buffers and
carry it over when you edit another file,

There is a command & in ex which repeats the last substitute command. In
addition there is a confirmed substitute command. You give a range of substi-
tutions to be done and the editor interactively asks whether each substitution is
desired.

It is possible to ignore case of letters in searches and substitutions. Ex also
allows regular expressions which match words to be constructed. This is con-
venient, for example, in scarching for the word “cdit” if your document also
contains the word “editor.”

Ex has a set of options which you can set to tailor it to your liking. One
option which is very useful is the autoindent option which allows the editor to
automatically supply leading white space to align text. You can then use the
"D key as a backtab and space and tab forward to align new code casily.

Miscellancous new useful features include an intelligent join (j) command
which supplics white space between joined lines automatically, commands <
and > which shift groups of lines, and the ability to filter portions of the buffer
through commands such as sort.

INVOCATION OPTIONS

The following invocation options are interpreted by ex:

- Suppress all interactive-user feedback. This is useful in pro-
cessing editor scripts.

-y Invokes vi

—t tag/R Edit the file containing the tag and position the editor at its
definition.

—r file Recover file after an editor or system crash. If file is not
specified a list of all saved files will be printed.

-R Readonly mode sct, prevents accidentally overwriting the file.

+command Begin editing by executing the specified editor scarch or posi-

tioning command.

-1 LISP mode; indents appropriately for lisp code, the O {} Il
and 1] commands in vi are modified to have meaning for /isp.

-X Encryption mode; a key is prompted for allowing creation or
editing of an encrypted file.

The name argument indicates files to be edited.

Ex States

Command Normal and initial state. Input prompted for by :. Your kill
character cancels partial command.

Insert Entered by a i and c¢. Arbitrary text may be entered. Insert
is normally terminated by line having only . on it, or abnor-
mally with an interrupt.

Visual Entered by vi, terminates with Q or "\,

™

-

EX (1)

Ex command names and abbreviations

EX (1)

abbrev ab next n unabbrev una
append a number nu undo u
args ar unmap unm
change c preserve pre version ve
copy co print P visual vi
delete d put pu write w
edit e quit q Xit X
file f read re yank ya
global g recover rec window z
insert i rewind rew escape !
join j set se Ishift <
list i shell sh print next CR
map source SO resubst &
mark ma stop st rshift >
move m substitute s scroll D

Ex Command Addresses
n line n /pat next with pat
. current ?pat previous with pat
3 last x-n n before x
+ next X,y x through y
- previous ‘x marked with x
+n n forward " previous context
% 1.$

Initializing options

EXINIT place set’s here in environment var.
$HOME/.exrc cditor initialization file
J.exre cditor initialization file
set x cnable option
set nox disable option
set x=val give value val
set show changed options
set all show all options
set x? show value of option x

Most useful options

autoindent ai
autowrite aw
ignorecase ic
lisp

list

magic

number nu
paragraphs para
redraw

scroll

sections sect
shiftwidth swW
showmatch sm
showmode smd
slowopen slow
window

wrapscan ws
wrapmargin wm

supply indent

write before changing files
in scanning

() [} are s-exp’s

print "1 for tab, $ at end

. [* special in patterns
number lines

macro names which start ...
simulate smart terminal
command mode lines
macro names ...

for < >, and input "D
to) and } as typed

show insert mode in vi
stop updates during insert
visual mode lines

around end of buffer?
automatic line splitting

EX(1)

EX (1)

Scanning pattern formation

beginning of line

$ end of line

. any character

\< beginning of word
\> end of word

[str] any char in str
[{ser] ... not in str

(x—yl ... between x and y
*

any number of preceding

AUTHOR

Vi and ex are based on software developed by The University of California,
Berkeley California, Computer Science Division, Department of Electrical
Engineering and Computer Science.

FILES
/usr/lib/ex?.Istrings €rror messages
/usr/lib/ex?.7recover recover command
/usr/lib/ex?.?preserve preserve command
{usr/lib/*/* describes capabilities of terminals
SHOME/.exrc editor startup file
[.exrc editor startup file
/tmp/Exnnnnn editor temporary
/tmp/Rxnnnnn named buffer temporary
/usr/preserve preservation directory
SEE ALSO

awk(1), ed(1), edit(1), grep(1), sed(1), vi(1).
curses(3X), term(4), terminfo(4) in the UNIX System V Programmer Refer-
ence Manual.

CAVEATS AND BUGS

The version of ex that runs on the PDP-11 does not support the full command
set due to spacc limitations. The commands which are not supported are
detailed in the “Ex Reference Manual.” The most notable commands which
are missing are the macro and abbreviation facilities.

The undo command causes all marks to be lost on lincs changed and then
restored if the marked lines were changed.

Undo never clears the buffer modified condition.

The z command prints a number of logical rather than physical lines. More
than a screen full of output may result if long lines are present.

File input/output errors do not print a name if the command line ¢ =’ option is
used.

There is no casy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used before
exiting the editor.

Null characters are discarded in input files and cannot appear in resultant files.

EXPR(1) EXPR (1)

NAME
expr — evaluate arguments as an expression

SYNOPSIS
expr arguments

DESCRIPTION

The arguments are taken as an expression. After evaluation, the result is writ-
ten on the standard output. Terms of the expression must be separated by
blanks. Characters special to the shell must be escaped. Note that 0 is
returned to indicate a zero value, rather than the null string. Strings contain-
ing blanks or other special characters should be quoted. Integer-valued argu-
ments may be preceded by a unary minus sign. Internally, integers are treated
as 32-bit, 2s complement numbers.

The operators and keywords are listed below. Characters that need to be
escaped are preceded by \. The list is in order of increasing precedence, with
equal precedence operators grouped within {} symbols.

expr \| expr
returns the first expr if it is neither null nor 0, otherwise returns the
second expr.

expr \& expr
returns the first expr if neither expr is null or 0, otherwise returns 0.

expr { =,\>,\>=,\<,\<=,1=} expr
returns the result of an integer comparison if both arguments are
integers, otherwise returns the result of a lexical comparison.

expr{ +, =} expr
addition or subtraction of integer-valued arguments.

expr {\s,/, % } expr
multiplication, division, or remainder of the integer-valued arguments.
expr : expr
The matching operator : compares the first argument with the second
argument which must be a regular expression. Regular expression
syntax is the same as that of ed(1), except that all patterns are
“anchored” (i.e., begin with *) and, therefore, * is not a special char-
acter, in that context. Normally, the matching operator returns the
number of characters matched (0 on failure). Alternatively, the

\(...\) pattern symbols can be used to return a portion of the first
argument.

EXAMPLES
1. a=‘expr $a + I*

adds 1 to the shell variable a.

2. # ‘For $a equal to either "/usr/abc/file” or just "file””
expr $a : “sNA(*\)” \| $a

returns the last segment of a path name (i.e., file). Watch out
for / alone as an argument: expr will take it as the division
operator (see BUGS below).

EXPR(1) EXPR (1)

3. # A better representation of example 2.
expr //8a : 7o/\(s)”

The addition of the // characters eliminates any ambiguity
about the division operator and simplifies the whole expression.

4. expr $VAR : ’.”
returns the number of characters in $VAR.

SEE ALSO
ed(1), sh(1).
EXIT CODE
As a side effect of expression evaluation, expr returns the following exit values:
0 if the expression is neither null nor 0
1 if the expression is null or 0
2 for invalid expressions.
DIAGNOSTICS
syntax error for operator/operand errors
non-numeric argument if arithmetic is attempted on such a string
BUGS

After argument processing by the shell, expr cannot tell the difference between
an operator and an operand except by the value. If $a is an =, the command:

expr $a = ’=’
looks like:

as the arguments are passed to expr (and they will all be taken as the =
operator). The following works:

expr X$a = X=

R

™

F77(1)

NAME

F77(1)

f77 — Fortran 77 compiler

SYNOPSIS

£77 [options] files

DESCRIPTION

F77 is the UNIX System Fortran 77 compiler; it accepts several types of file

arguments:

Arguments whose names end with .f are taken to be Fortran 77 source
programs; they are compiled and each object program is left in the
current directory in a file whose name is that of the source, with .o
substituted for .f.

Arguments whose names end with .r or .e are taken to be RATFOR or
EFL source programs, respectively. These are first transformed by the
appropriate preprocessor, then compiled by f77, producing .o files.

In the same way, arguments whose names end with .c or .s are taken to
be C or assembly source programs and are compiled or assembled, pro-
ducing .o files.

The following options have the same meaning as in cc(1) (see /d(1) for link
editor options):

—-C
-Pp
=0
=S

—ooutput
-f

—8

Suppress link editing and produce .o files for each source file.
Prepare object files for profiling (see prof(1)).

Invoke an object-code optimizer.

Compile the named programs and leave the assembler-language
output in corresponding files whose names are suffixed with .s.
(No .o files are created.)

Name the final output file output, instead of a.out.

In systems without floating-point hardware, use a version of f77
that handles floating-point constants and links the object program
with the floating-point interpreter.

Generate additional information needed for the use of sdb(1).

The following options are peculiar to f77:

—onetrip

-1
~66
-C
-uU

-=u

Compile DO loops that are performed at least once if reached.
(Fortran 77 DO loops are not performed at all if the upper limit
is smaller than the lower limit.)

Same as —onetrip.

Suppress extensions which enhance Fortran 66 compatibility.
Generate code for run-time subscript range-checking.

Do not "fold" cases. F77 is normally a no-case language (i.e., a is
equal to A). The —U option causes f77 to treat upper and lower
cases to be separate.

Make the default type of a variable undefined, rather than using
the default Fortran rules.

Verbose mode. Provide diagnostics for each process during com-
pilation.

Suppress all warning messages. [f the option is —wé6, only For-
tran 66 compatibility warnings are suppressed.

Apply EFL and RATFOR preprocessor to relevant files, put the
result in files whose names have their suffix changed to .f. (No .o
files are created.)

Apply the M4 preprocessor to each EFL or RATFOR source file
before transforming with the ratfor (1) or efi (1) processors.

The remaining characters in the argument are used as an EFL
flag argument whenever processing a .e file.

-1-

F17(1)

F17(1)

=R The remaining characters in the argument are used as a RATFOR
flag argument whenever processing a .r file.

Other arguments are taken to be either link-editor option arguments or f77-
compilable object programs (typically produced by an carlier run), or libraries
of f77-compilable routines. These programs, together with the results of any
compilations specified, are linked (in the order given) to produce an executable
program with the default name a.out .

FILES
file.[fresc]
file.o
a.out
[fortlpid).?
/usr/1ib/f77pass]
/usr/1ib/f77pAss2
/lib/c2
/usr/1ib/1ibF77.a
/usr/lib/1ibl77.a
/lib/libc.a

SEE ALSO

input file

object file

linked output

temporary

compiler

pass 2

optional optimizer

intrinsic function library

Fortran 1/0 library

C library; sec Section 3 of this Manual.

asa(1), cc(1), efl(1), fsplit(1), 1d(1), m4(1), prof(1), ratfor(1), sdb(1).

DIAGNOSTICS

The diagnostics produced by f77 itself are intended to be self-explanatory.
Occasional messages may be produced by the link editor /4(1).

FACTOR(1) FACTOR(1)

NAME
factor — factor a number

SYNOPSIS
factor [number]

DESCRIPTION
When factor is invoked without an argument, itS\gaits for a numble6r to be typed
in. If you type in a positive number less than 2°° (about 7.2x10°°) it will fac-
tor the number and print its prime factors; each one is printed the proper
number of times. Then it waits for another number. [t exits if it encounters a
zero or any non-numeric character.
If factor is invoked with an argument, it factors the number as above and then
exits.
Maximum time to factor is proportional to /n and occurs when n is prime or
the square of a prime. It takes 1 minute to factor a prime near 10'* on a
PDP-11.

DIAGNOSTICS

“Ouch” for input out of range or for garbage input.

FILE(1) FILE(1)

NAME

file — determine file type
SYNOPSIS

file [—c 1[—f file] [—m mfile] arg ...
DESCRIPTION

File performs a series of tests on each argument in an attempt to classify it. If
an argument appears to be ASCII, file examines the first 512 bytes and tries to
guess its language. If an argument is an executable a.out, file will print the
version stamp, provided it is greater than 0 (see /d(1)).

If the —f option is given, the next argument is taken to be a file containing the
names of the files to be examined.

File uses the file /etc/magic to identify files that have some sort of magic
number, that is, any file containing a numeric or string constant that indicates
its type. Commentary at the beginning of /etc/magic explains its format.

The —m option instructs file to use an alternate magic file.

The —c flag causes file to check the magic file for format errors. This valida-
tion is not normally carried out for reasons of efficiency. No file typing is done
under —e.

SEE ALSO
1d(1).

FIND(1) FIND (1)

NAME
find — find files

SYNOPSIS
find path-name-list expression

DESCRIPTION
Find recursively descends the directory hicrarchy for each path name in the
path-name-list (i.e., one or more path names) seeking files that match a
boolean expression written in the primaries given below. In the descriptions,
the argument 7 is used as a decimal integer where +n means more than n, —n
means less than n and n means exactly n.

—name file True if file matches the current file name. Normal shell
argument syntax may be used if escaped (watch out for [, ?
and *).

—perm onum True if the file permission flags exactly match the octal

number onum (see chmod(1)). 1If onum is prefixed by a
minus sign, more flag bits (017777, see star(2)) become
significant and the flags arc compared.

—type ¢ True if the type of the file is ¢, where ¢ is b, ¢, d, p, or f for
block special file, character special file, directory, fifo (a.k.a
named pipe), or plain file respectively.

—links n True if the file has n links.
—user uname True if the file belongs to the user uname. If uname is

numeric and does not appear as a login name in the
/etc/passwd file, it is taken as a user ID.

ﬂ.,_ ‘ —group gname True if the file belongs to the group gname. If gname is
numeric and does not appear in the /etc/group file, it is
taken as a group ID.

—size nlc] True if the file is # blocks long (512 bytes per block). If nis
followed by a c, the size is in characters.

—atime n True if the file has been accessed in n days. The access time
of directories in path-name-list is changed by find itself.

—mtime n True if the file has been modified in n days.

—ctime 7 True if the file has been changed in n days.

—exec cmd True if the executed cmd returns a zero value as exit status.

The end of cmd must be punctuated by an escaped semi-
colon. A command argument {} is replaced by the current
path name.

—ok cmd Like —exec except that the generated command line is
printed with a question mark first, and is executed only if the
user responds by typing y.

—print Always true; causes the current path name to be printed.

—cpio device Always true; write the current file on device in cpio (4) for-
mat (5120-byte records).

—newer file True if the current file has been modified more recently than

the argument file.

FIND(1) FIND(1)

—depth Always true; causes descent of the directory hierarchy to be
done so that all entries in a directory are acted on before the
directory itself. This can be useful when find is used with ' %
cpio(1) to transfer files that are contained in directories
without write permission.

(expression) True if the parenthesized expression is true (parentheses are
special to the shell and must be escaped).

The primaries may be combined using the following operators (in order of
decreasing precedence):
1) The negation of a primary (! is the unary not operator).
2) Concatenation of primaries (the and operation is implied by the juxtaposi-
tion of two primaries).
3) Alternation of primaries (—o is the or operator).
EXAMPLE
To remove all files named a.out or +.0 that have not been accessed for a week:
find / \(—name a.out —o —name 's.0’' \) —atime +7 —exec rm {} \;
FILES
/etc/passwd, /etc/group

SEE ALSO
chmod(1), cpio(1), sh(1), test(1).
stat(2), cpio(4), fs(4) in the UNIX System V Programmer Reference Manual.

FSPLIT(1)

NAME

FSPLIT (1)

fsplit — split f77, ratfor, or efl files

SYNOPSIS

fsplit options files

DESCRIPTION

Fsplit splits the named file(s) into separate files, with one procedure per file. A
procedure includes blockdata, function, main, program, and subroutine pro-
gram segments. Procedure X is put in file X.f, X.r, or X.e depending on the
language option chosen, with the following exceptions: main is put in the file
MAIN lefrl and unnamed blockdata segments in the files blockdataN lefr)
where N is a unique integer value for cach file.

The following options pertain:

-f
-r
—e
-s

EE ALSO

(default) Input files are 77.
Input files are ratfor.
Input files are EfI.

Strip f77 input lines to 72 or fewer characters with trailing blanks
removed.

csplit(1), efl(1), £77(1), ratfor(1), split(1).

GDEV (1G)

NAME

GDEV (1G)

hpd, erase, hardcopy, tekset, td — graphical device routines and filters

SYNOPSIS

hpd [—options] [GPS file ...]

erase
hardcopy
tekset

td [—eurn] [GPS file ...]

DESCRIPTION
All of

the commands described below reside in /usr/bin/graf (see

graphics (1G)).

hpd

erase
hardcopy

tekset

td

SEE ALSO

Hpd translates a GPS (see gps(4)), to instructions for the Hewlett-
Packard 7221A Graphics Plotter. A viewing window is computed
from the maximum and minimum points in file unless the —u or
=r option is provided. If no file is given, the standard input is
assumed. Options are:

cn Select character set n, n between 0 and 5 (see the HP7221A4
Plotter Operating and Programming Manual, Appendix A).

pn Select pen numbered n, n between 1 and 4 inclusive.

rn Window on GPS region n, n between 1 and 25 inclusive.
sn Slant characters n degrees clockwise from the vertical.
u Window on the entire GPS universe.

xdn Set x displacement of the viewport's lower left corner to n
inches.

xva Set width of viewport to 7 inches.

ydn Set y displacement of the viewport’s lower left corner to n
inches.

yvn Set height of viewport to n inches.

Erase sends characters to a TEKTRONIX 4010 series storage termi-
nal to erase the screen.

When issued at a TEKTRONIX display terminal with a hard copy
unit, hardcopy generates a screen copy on the unit.

Tekset sends characters to a TEKTRONIX terminal to clear the
display screen, set the display mode to alpha, and set characters to
the smallest font.

Td translates a GPS to scope code for a TEKTRONIX 4010 series
storage terminal. A viewing window is computed from the max-
imum and minimum points in file unless the —u or —r option is
provided. If no file is given, the standard input is assumed.
Options are:

e Do not erase screen before initiating display.
rn Display GPS region n, n between 1 and 25 inclusive.
u Display the entire GPS universe.

ged(1G), graphics(1G).
gps(4) in the UNLX System V Programmer Reference Manual.

GED(1G) GED(1G)

NAME
ged — graphical cditor

SYNOPSIS
ged [—euRrn] [GPS file ...]

DESCRIPTION
Ged is an interactive graphical editor used to display, construct, and edit GPS
filess on TEKTRONIX 4010 series display terminals. If GPS file(s) are given,
ged rcads them into an internal display buffer and displays the buffer. The
GPS in the buffer can then be edited. If — is given as a file name, ged rcads a
GPS from the standard input.

Ged accepts the following command linc options:
e Do not crasc the screen before the initial display.
rn Display region number n.
u Display the entire GPS universe.
R Restricted shell invoked on use of !.

A GPS file is composed of instances of three graphical objects: lines, arc, and
text. Arc and lines objects have a start point, or object-handle, followed by
7€ro or morc points, or point-handles. Text has only an object-handle. The
objects arc positioned within a Cartesian plane, or universe, having 64K (—32K
to +32K) points, or universe-units, on cach axis. The universe is divided into
25 cqual sized areas called regions. Regions are arranged in five rows of five
squarcs cach, numbered 1 10 25 from the lower left of the universe to the upper
right.

Ged maps rectangular arcas, called windows, from the universe onto the display
screen. Windows allow the user to view pictures from different locations and at
different magnifications. The universe-window is the window with minimum
magnification, i.c., the window that views the entire universe. The home-
window is thc window that completely displays the contents of the display
buffer.

COMMANDS
Ged commands arc cntered in stages. Typically each stage ends with a <cr>
(return). Prior to the final <er> the command may be aborted by typing
rubout. The input of a stage may be cdited during the stage using the crase
and kill characters of the calling shell. The prompt * indicates that ged is wait-
ing at stage 1.

Each command consists of a subset of the following stages:

1. Command line
A command line consists of a command name followed by
argument(s) followed by a <er>. A command name is a single
character. Command arguments are cither option(s) or a file-
name. Options are indicated by a leading —.

2. Text Text is a scquence of characters terminated by an unescaped
<er> (120 lines of text maximum).

3. Points Points is a sequence of onc or more screen locations (maximum
of 30) indicated either by the terminal crosshairs or by name.
The prompt for entering points is the appearance of the
crosshairs. When the crosshairs are visible, typing:

sp (spacc) enters the current location as a point. The point is
identified with a number.

GED(1G)

$n
>x
$x

GED(1G)

enters the previous point numbered n.
labels the last point entered with the upper case letter x. /%
enters the point labeled x.

establishes the previous points as the current points. At the
start of a command the previous points are those locations
given with the previous command.

echoes the current points.

enters the point numbered n from the previous points.
erases the last point entered.

crases all of the points entered.

4. Pivot The pivot is a single lecation, entered by typing <cr> or by
using the $ operator, and indicated with a ».

S. Destination

The destination is a single location entered by typing <er> or
by using $.

COMMAND SUMMARY
In the summary, characters typed by the user arc printed in bold. Command
stages arc printed in iralics. Arguments surrounded by brackets “[1" are
optional. Parentheses “()” surrounding arguments scparated by “or” means
that exactly one of the arguments must be given.

Construct commands:
Arc

Box
Circle
Hardware
Lines
Text

Edit commands:
Delete

Edit

Kopy
Move

Rotate
Scale

View commands:
coordinates

erasc
new-display

[—echo,style,weight] points 'W
[—echo,style,weight] points]
[—echo,style,weight] points

{ —echo] text points

[—echo,style,weight) points

[—angle,echo,height,mid-point,right-point,text,weight] rexs
points

(= (universe or view) or points)

[—angle,echo,height,style,weight] (— (universe or view) or
points)

[—echo,points,x] points pivot destination
[—echo,points,x] points pivot destination
[—angle,echo,kopy,x] points pivot destination
[—echo,factor,kopy,x] points pivotr destination

points

object-handles (— (universe or view) or points)

GED(1G)

point-handles

view

X

zoom
Other commands:

quit or Quit

rcad

sct

write

Scommand

?

Options:

GED(1G)

(= (labelled-points or universc or view) or points)

(= (home or universe or region) or [—x] pivot desti-
nation)

[—view] points

[—out] points

[—angle,echo,height,mid-point,right-point, text,weight
Sile-name [destination]

[—angle,echo,factor, height kopy,mid-point,points,
right-point,style,text,weight,x]

Sile-name

Options specify parameters used to construct, edit, and view graphical objects.
If a parameter used by a command is not specifed as an option, the default
value for the parameter will be used (see set below). The format of command

options is:

—optionl,option]
where option is keyletterlvaluel. Flags take on the values of true or false indi-

cated by + and

assumed.

Object options:
anglen
echo
factorn
heightn
kopy
mid-point
points
right-point
styletype

— respectively. If no value is given with a flag, true is

Angle of n degrees.

When true, echo additions to the display buffer.

Scale factor is n percent.

Height of rext is n universc-units (0 <7< 1280).

When true, copy rather than move.

When true, mid-point is used to locate text string.

When true, operate on points; otherwise operate on objects.
When true, right-point is used to locate zext string.

Line style set to one of following rypes:

S0 solid

da dashed

dd dot-dashed
do dotted

Id long-dashed

GED(1G)

Area options:

GED(1G)
text When false, text strings are outlined rather than drawn.
weighttype Sets line weight to one of following types:

n narrow
m medium
b bold
home Reference the home-window.
out Reduce magnification.
regionn Reference region n.
universe Reference the universe-window.
view Reference those objects currently in view.
X Indicate the center of the referenced area.

COMMAND DESCRIPTIONS
Construct commands:
Arc and Lines

behave similarly. Each consists of a command line followed by points.
The first point entered is the object-handle. Successive points are point-
handles. Lines connect the handles in numerical order. Arc fits a curve
1o the handles (currently a maximum of 3 points will be fit with a circu-
lar arc; splines will be added in a later version).

Box and Circle

are special cases of Lines and Arc, respectively. Box generates a rectan-
gle with sides parallel to the universe axes. A diagonal of the rectangle
would connect the first point entered with the last point. The first point
is the object-handle. Point-handles are created at cach of the vertices.
Circle generates a circular arc centered about the point numbered zero
and passing through the last point. The circle’s object-handle coincides
with the last point. A point-handle is gencrated 180 degrees around the
circle from the object-handle.

Text and Hardware

generate text objects. Each consists of a command line, text and points.
Text is a sequence of characters delimited by <er>. Multiple lines of
text may be entered by preceding a cr with a backslash (i.e., \er). The
Text command creates software-generated characters. Each line of
software text is treated as a separate fext object. The first point entered
is the object-handle for the first line of text. The Hardware command
sends the characters in rext uninterpreted to the terminal.

Edit commands:

Edit commands operate on portions of the display buffer called defined areas.
A defined area is referenced either with an areca option or interactively. If an
area option is not given, the perimeter of the defined area is indicated by
points. If no point is entered, a small defined area is built around the location
of the <er>. This is useful to reference a single point. If only one point is
entered, the location of the <cr> is taken in conjunction with the point to
indicate a diagonal of a rectangle. A defined area refcrenced by points will be
outlined with dotted lines.

Delete

removes all objects whose object-handle lies within a defined area. The
universe option removes all objects and crases the screen.

™

-

GED(1G) GED(1G)

Edit modifies the parameters of the objects within a defined areca. Parameters
that can be edited are:
angle angle of rext
height height of rext
style style of lines and arc
weight weight of lines, arc, and text.

Kopy (or Move)
copies (or moves) object- and/or point-handles within a defined arca by
the displacement from the pivot to the destination.

Rotate
rotates objccts within a defined area around the pivor. If the kopy flag is
true then the objects are copied rather than moved.

Scale
For objects whose object handics are within a defined arca, point displace-
ments from the pivot are scaled by factor percent. If the kopy flag is
true then the objects are copied rather than moved.

View commands:
coordinates
prints the location of point(s) in universe- and screcn-units.
erasc
clears the screen (but not the display buffer).
new-display
erascs the screen then displays the display buffer.

object-handles (or point-handles)
labels object-handles (and/or point-handles) that lic within the defined
arca with O (or P). Point-handlcs identifies labeled points when the
labelled-points flag is true.

vicw moves the window so that the universe point corresponding to the pivor
coincides with the screen point corresponding to the destination. Options
for home, universe, and region display particular windows in the universe.

X indicates the center of a defined area. Option view indicates the center of
the screen.

zoom
decrcases (zoom out) or increases the magnification of the viewing win-
dow bascd on the defined area. For increased magnification, the window
is set to circumscribe the defined arca. For a decreasc in magnification
the current window is inscribed within the defined area.

Other commands:
quit or Quit
exit from ged. Quit responds with ? if the display buffer has not been
written since the last modification.

rcad inputs the contents of a file. If the file contains a GPS it is rcad dircctly.
If the file contains text it is converted into text objcct(s). The first line of
a text file begins at destination.

set when given option(s) resets default parameters, otherwise it prints current
default values.

write outputs the contents of the display buffer to a file.

GED(1G) GED(1G)

! cscapes ged to execute a UNIX system command.

? lists ged commands. "‘““N
SEE ALSO S

gdev(1G), graphics(1G), sh(1).
gps(4) in the UNIX System V Programmer Manual.

An Introduction to the Graphical Editor in the UNIX System V Graphics
Guide.

WARNING
See Appendix A of the TEXTRONIX 4014 Computer Display Terminal User's
Manual for the proper terminal strap options.

GET(1) GET(1)

NAME
get — get a version of an SCCS file

SYNOPSIS
get [—rSID] [~ccutoff]l [—ilist] [—xlist] [—wstring] [—aseq-no.] [—k]
[—e] [—1[p)] [=p] [=m] [—n] [~s] [-b] [—g] [—t] file ...

DESCRIPTION
Get generates an ASCII text file from each named SCCS file according to the
specifications given by its keyletter arguments, which begin with —. The argu-
ments may be specified in any order, but all keyletter arguments apply to all
named SCCS files. If a directory is named, get behaves as though each file in
the directory were specified as a named file, except that non-SCCS files (last
component of the path name does not begin with s.) and unreadable files are
silently ignored. If a name of — is given, the standard input is read; each line
of the standard input is taken to be the name of an SCCS file to be processed.
Again, non-SCCS files and unreadable files are silently ignored.

The generated text is normally written into a file called the g-file whose name
is derived from the SCCS file name by simply removing the leading s.; (see also
FILES, below).

Each of the keyletter arguments is explained below as though only one SCCS
file is to be processed, but the effects of any keyletter argument applies
independently to each named file.

—rSID The SCCS IDentification string (SID) of the version (delta) of an
SCCS file to be retrieved. Table 1 below shows, for the most useful
cases, what version of an SCCS file is retrieved (as well as the SID
of the version to be eventually created by delta(l) if the —e
keyletter is also used), as a function of the SID specified.

—ccutoff Cutoff date-time, in the form:
YYIMMIDDIHHIMMISS1IIII

No changes (deltas) to the SCCS file which were created after the
specified cutoff date-time are included in the generated ASCII text
file. Units omitted from the date-time default to their maximum
possible values; that is, —¢7502 is equivalent to —c750228235959.
Any number of non-numeric characters may separate the various
2-digit pieces of the cutoff date-time. This feature allows one to
specify a cutoff date in the form: "—c77/2/2 9:22:25". Note that
this implies that one may use the %E% and %U% identification
keywords (see below) for nested gets within, say the input to a
send (1C) command:

“get "—c%E% %U%" s.file

—e Indicates that the get is for the purpose of editing or making a
change (delta) to the SCCS file via a subsequent use of delta(l).
The —e keyletter used in a get for a particular version (SID) of the
SCCS file prevents further gets for editing on the same SID until
delta is executed or the j (joint edit) flag is set in the SCCS file
(see admin(1)). Concurrent use of get —e for different SIDs is
always allowed.

If the g-file generated by get with an —e keyletter is accidentally
ruined in the process of editing it, it may be regenerated by re-
executing the get command with the —k keyletter in place of the
—e keyletter.

GET(1)

—ilist

—xlist

=1lp]

-P

-Ss

-8

-t

—W string

GET (1)

SCCS file protection specified via the ceiling, floor, and authorized
user list stored in the SCCS file (see admin(1)) are enforced when
the —e keyletter is used.

Used with the —e keyletter to indicate that the new delta should
have an SID in a new branch as shown in Table 1. This keyletter is
ignored if the b flag is not present in the file (see admin(1)) or if
the retrieved delta is not a leaf delta. (A leaf delta is one that has
no successors on the SCCS file tree.)

Note: A branch delta may always be created from a non-leaf
delta.

A list of deltas to be included (forced to be applied) in the creation
of the generated file. The list has the following syntax:

<list> = <range> | <list> , <range>
<range> :=SID | SID — SID

SID, the SCCS Identification of a delta, may be in any form shown
in the “SID Specified” column of Table 1. Partial SIDs are inter-
preted as shown in the “SID Retrieved” column of Table 1.

A list of deltas to be excluded (forced not to be applied) in the
creation of the generated file. See the ~—i keyletter for the list for-
mat.

Suppresses replacement of identification keywords (see below) in
the retrieved text by their value. The —k keyletter is implied by
the —e keyletter.

Causes a delta summary to be written into an /-file. If ~Ip is used
then an /-file is not created; the delta summary is written on the
standard output instead. See FILES for the format of the /-file.

Causes the text retrieved from the SCCS file to be written on the
standard output. No g-file is created. All output which normally
goes to the standard output goes to file descriptor 2 instead, unless
the —s keyletter is used, in which case it disappears.

Suppresses all output normally written on the standard output.
However, fatal error messages (which always go to file descriptor
2) remain unaffected.

Causes each text line retrieved from the SCCS file to be preceded
by the SID of the delta that inserted the text line in the SCCS file.
The format is: SID, followed by a horizontal tab, followed by the
text line.

Causes each generated text line to be preceded with the %M%
identification keyword value (see below). The format is: %M%
value, followed by a horizontal tab, followed by the text line.
When both the —m and —n keyletters are used, the format is:
%M% value, followed by a horizontal tab, followed by the —m
keyletter generated format.

Suppresses the actual retrieval of text from the SCCS file. It is pri-
marily used to generate an /-file, or to verify the existence of a
particular SID.

Used to access the most recently created (“top”) delta in a given
release (e.g., —rl), or release and level (e.g., —rl.2).

Substitute string for all occurrences of @ (#)get.1 6.2 when
geting the file.

™

GET(1)

GET(1)

—aseq-no. The delta sequence number of the SCCS file delta (version) to be
retrieved (see sccsfile(5)). This keyletter is used by the comb(1)
command; it is not a generally useful keyletter, and users should
not use it. If both the —r and —a keyletters are specified, the —a
keyletter is used. Care should be taken when using the -—a
keyletter in conjunction with the —e keyletter, as the SID of the
delta to be created may not be what one expects. The —r keyletter
can be used with the —a and —e keyletters to control the naming
of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with the SID
being accessed and with the number of lines retrieved from the SCCS file.

If the —e keyletter is used, the SID of the delta to be made appears after the
SID accessed and before the number of lines generated. If there is more than
one named file or if a directory or standard input is named, each file name is
printed (preceded by a new-line) before it is processed. If the —i keyletter is
used included deltas are listed following the notation “Included”; if the —x
keyletter is used, excluded deltas are listed following the notation “Excluded”.

TABLE 1. Determination of SCCS Identification String

SID* —b Keyletter Other SID SID of Delta
Specified Usedt Conditions Retrieved to be Created
nones no R defaults to mR mR.mL mR.(mL+1)
nonc# yes R defaults to mR mR.mL mR.mL.(mB+1).1
R no R > mR mR.mL R.1***

R no R = mR mR.mL mR.(mL+1)
R yes R > mR mR.mL mR.mL.(mB+1).1
R yes R = mR mR.mL mR.mL.(mB+1).1
_ R < mR and .
R R does not exist hR.mL hR.mL.(mB+1).1
Trunk succ.#
R - in release > R R.mL R.mL.(mB+1).1
and R exists
R.L no No trunk succ. R.L R.(L+1)
R.L yes No trunk succ. R.L. R.L.(mB+1).1
Trunk succ.
R.L in release > R R.L R.L.(mB+1).1
R.LB no No branch succ. R.L.B.mS R.L.B.(mS+1)
R.L.B yes No branch succ. R.L.B.mS R.L.(mB+1).1
R.LBS no No branch succ. R.L.BS R.L.B.(S+1)
R.L.B.S yes No branch succ. R.L.B.S R.L.(mB+1).1
R.L.BS - Branch succ. R.L.BS R.L.(mB+1).1
* “R”, “L”, “B”, and “S” are the “relcasc”, “level”, “branch”, and
“sequence” components of the SID, respectively; *m” means “maximum’.
Thus, for example, “R.mL” means “the maximum level number within
release R”; “R.L.(mB+1).1” means “the first sequence number on the
new branch (i.e., maximum branch number plus one) of level L within
release R”. Note that if the SID specified is of the form “R.L”, “R.L.B”,
or “R.L.B.S”, each of the specificd components must exist.
** “hR” is the highest existing release that is lower than the specified,
nonexistent, release R.
*** This is used to force creation of the first delta in a new release.
Successor.

GET(1)

GET(1)

T The —b keyletter is effective only if the b flag (see admin (1)) is present
in the file. An entry of — means “irrelevant”.

] This case applies if the d (default SID) flag is not present in the file. If
the d flag is present in the file, then the SID obtained from the d fag is
interpreted as if it had been specified on the command line. Thus, one of
the other cases in this table applies.

IDENTIFICATION KEYWORDS

FILES

Identifying information is inserted into the text retrieved from the SCCS file by
replacing identification keywords with their value wherever they occur. The
following keywords may be used in the text stored in an SCCS file:

Keyword Value
%M % Module name: either the value of the m flag in the file (see
admin(1)), or if absent, the name of the SCCS file with the leading

s. semoved.

%1% SCCS identification (SID) (%R%.%1.%.%B%.%S%) of the retrieved
text.

% R % Release.

% L% Level.

% B % Branch.

%S % Sequence.

% D% Current date (YY/MM/DD).

%H% Current date (MM/DD/YY).

%T% Current time (HH:MM:SS).

% E % Date newest applied delta was created (YY/MM/DD).

%G % Date newest applied delta was created (MM/DD/YY).

% U % Time newest applicd delta was created (HH:MM:SS). !

%Y % Module type: value of the t flag in the SCCS file (see admin(1)).

% F % SCCS file name.

% P % Fully qualified SCCS file name.

% Q% The value of the q flag in the file (see admin(1)).

% C % Current line number. This keyword is intended for identifying mes-
sages output by the program such as “this should not have hap-
pened” type crrors. It is nor intended to be used on every line to
provide sequence numbers.

%Z% The 4-character string @ (#) recognizable by what (1).

%W% A shorthand notation for constructing what (1) strings for UNIX sys-
tem program files. %W% = %Z%%M% < horizontal-tab> %1%

% A % Another shorthand notation for constructing what(1) strings for
non-UNIX system program files.

%A% = %Z%%Y % %M% %1%%Z%

Several auxiliary files may be created by ger. These files are known generically
as the g-file, I-file, p-file, and z-file. The letter before the hyphen is called
the tag. An auxiliary file name is formed from the SCCS file name: the last
component of all SCCS file names must be of the form s.module-name, the aux-
iliary files are named by replacing the leading s with the tag. The g-file is an
exception to this scheme: the g-file is named by removing the s. prefix. For
example, s.xyz.c, the auxiliary file names would be xyz.c, L.xyz.c, p.xyz.c, and
z.xyz.c, respectively.

The g-file, which contains the generated text, is created in the current direc-
tory (unless the —p keyletter is used). A g-file is created in all cases, whether
or not any lines of text were generated by the ger. It is owned by the real user.
If the —k keyletter is used or implied its mode is 644; otherwise its mode is
444. Only the real user nced have write permission in the current directory.

-

GET (1) GET(1)

The I-file contains a table showing which deltas were applied in generating the

. retrieved text. The [-file is created in the current directory if the —I keyletter

(“ is used; its mode is 444 and it is owned by the real user. Only the real user
need have write permission in the current directory.

Lines in the /-file have the following format:

a. A blank character if the delta was applied;
» otherwise.
b. A blank character if the delta was applied or was not applied

and ignored;
» if the delta was not applied and was not ignored.
c. A code indicating a “special” reason why the delta was or was
not applied:
“I": Included.
“X™: Excluded.
“C™: Cut off (by a —c keyletter).
Blank.
SCCS identification (SID).
Tab character.
Date and time (in the form YY/MM/DD HH:MM:SS) of crea-
tion.
Blank.
i. Login name of person who created delta.

‘T mme o

The comments and MR data follow on subsequent lines, indented one
horizontal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an —e keyletter

P i) along to delta. Its contents are also used to prevent a subsequent execution of

L get with an —e keyletter for the same SID until delta is executed or the joint

- edit flag, j, (see admin(1)) is set in the SCCS file. The p-file is created in the
directory containing the SCCS file and the effective user must have write per-
mission in that directory. Its mode is 644 and it is owned by the effective user.
The format of the p-file is: the gotten SID, followed by a blank, followed by the
SID that the new delta will have when it is made, followed by a blank, followed
by the login name of the real user, followed by a blank, followed by the date-
time the get was exccuted, followed by a blank and the —i keyletter argument
if it was present, followed by a blank and the —x keyletter argument if it was
present, followed by a new-line. There can be an a-titrary number of lines in
the p-file at any time; no two lines can have the sam : new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its
contents are the binary (2 bytes) process ID of the command (i.e., get) that
created it. The z-file is created in the directory containing the SCCS file for
the duration of get. The same protection restrictions as those for the p-file
apply for the z-file. The z-file is created mode 444.

SEE ALSO
admin(1), delta(1), help(1), prs(1), what(1).
sccsfile(4) in the UNIX System V Programmer Reference Manual.

Source Code Control System in the UNIX System V Support Tools Guide.

DIAGNOSTICS
Use help(1) for explanations.

BUGS
(If the effective user has write permission (either explicitly or implicitly) in the
directory containing the SCCS files, but the real user does not, then only one file
may be named when the —e keyletter is used.

-5.

GETOPT(1) GETOPT(1)

NAME

getopt — parse command options
SYNOPSIS

set —— “getopt optstring $e*
DESCRIPTION

Getopt is used to break up options in command lines for easy parsing by shell
procedures and to check for legal options. Optstring is a string of recognized
option letters (see getopt(3C)); if a letter is followed by a colon, the option is
expected to have an argument which may or may not be separated from it by
white space. The special option — — is used to delimit the end of the options.
If it is used explicitly, getopt will recognize it; otherwise, getopt will generate
it; in either case, getopt will place it at the end of the options. The positional
parameters (81 $2 ...) of the shell are reset so that each option is preceded by
a — and is in its own positional parameter; each option argument is also parsed
into its own positional parameter.

EXAMPLE
The following code fragment shows how one might process the arguments for a

command that can take the options a or b, as well as the option o, which
requires an argument:

set —— “getopt abo: $+°

ir[s2=01

then
echo SUSAGE
exit 2

fi

for i in $»

do
case $i in
—a | —b) FLAG=$i; shift;;
—0) OARG=$2; shift 2;;
-—) shift; break:;
esac

done

This code will accept any of the following as equivalent:

cmd —aoarg file file
cmd —a —o arg file file
cmd —oarg —a file file

cmd —a —oarg —— file file
SEE ALSO
sh(1), getopt(3C).
DIAGNOSTICS

Getopt prints an error message on the standard error when it encounters an
option letter not included in optstring.

R

GRAPH(1G) GRAPH(1G)

NAME

graph — draw a graph

SYNOPSIS

graph [options]

DESCRIPTION

Graph with no options takes pairs of numbers from the standard input as
abscissas and ordinates of a graph. Successive points are connected by straight
lines. The graph is encoded on the standard output for display by the
tplot (1G) filters.

If the coordinates of a point are followed by a non-numeric string, that string is
printed as a label bezinning on the point. Labels may be surrounded with

quotes ", in which case they may be empty or contain blanks and numbers;
labels never contain new-lines.

The following options are recognized, each as a separate argument:

-a Supply abscissas automatically (they are missing from the input);
spacing is given by the next argument (default 1). A second
optional argument is the starting point for automatic abscissas
(default 0 or lower limit given by —x).

=b Break (discornect) the graph after each label in the input.

-c Character string given by next argument is default label for each
point.

-g Next argument is grid style, 0 no grid, 1 frame with ticks, 2 full
grid (default).

-1 Next argument is label for graph.

-m Next argument is mode (style) of connecting lines: 0 disconnected,

1 connected (default). Some devices give distinguishable line styles
for other small integers (e.g., the TEKTRONIX 4014: 2=dotted,
3=dash-dot, 4=short-dash, 5=long-dash).

-s Save screen, do not erase before plotting.

—x [11 If s present, x axis is logarithmic. Next 1 (or 2) arguments are
lower (and upper) x limits. Third argument, if present, is grid
spacing on x axis. Normally these quantitics are determined
automatically.

—y[1] Similarly for y.

—h Next argument is fraction of space for height.

-w Similarly for width.

-r Next argument is fraction of space to move right before plotting.
-u Similarly to move up before plotting.

-t Transpose horizontal and vertical axes. (Option —x now applies to

the vertical axis.)
A legend indicating grid range is produced with a grid unless the —s option is
present. If a specified lower limit exceeds the upper limit, the axis is reversed.

SEE ALSO

BUGS

graphics(1G), splinc(1G), tplot(1G).

Graph stores all points internally and drops those for which there is no room.
Segments that run out of bounds are dropped, not windowed.
Logarithmic axes may not be reversed.

GRAPHICS(1G) GRAPHICS (1G)

NAME

graphics — access graphical and numerical commands
SYNOPSIS

graphics [—r]
DESCRIPTION

Graphics prefixes the path name /usr/bin/graf to the current $PATH value,
changes the primary shell prompt to *, and executes a new shell. The directory
/usr/bin/graf contains all of the Graphics subsystem commands. If the —r
option is given, access to the graphical commands is created in a restricted
environment; that is, SPATH is set to
:/usr/bin/graf:/rbin: /usr /rbin

and the restricted shell, rsh, is invoked. To restore the environment that
existed prior to issuing the graphics command, type EOT (control-d on most
terminals). Tq logoff from the graphics environment, type quit.

The command line format for a command in graphics is command name fol-
lowed by argument(s). An argument may be a file name or an option string.
A file name is the name of any UNIX system file except those beginning with
—. The file name — is the name for the standard input. An option string con-
sists of — followed by one or more option(s). An option consists of a keyletter
possibly followed by a value. Options may be separated by commas.

The graphical commands have been partitioned into four groups.
Commands that manipulate and plot numerical data; see star(1G).
Commands that generate tables of contents; see toc(1G).

Commands that interact with graphical devices; see gdev(1G) and
ged(1G).

A collection of graphical utility commands; see gutil (1G).

A list of the graphics commands can be generated by typing whatis in the
graphics environment.
SEE ALSO
gdev(1G), ged(1G), gutil(1G), stat(1G), toc(1G).
gps(4) in the UNIX System V Programmer Reference Manual.

UNIX System V Graphics Guide.

GREEK (1) GREEK (1)

NAME

greck — select termina! filter
SYNOPSIS

greek [—Tterminal]
DESCRIPTION

Greek is a filter that reinterprets the extended character set, as well as the
reverse and half-line motions, of a 128-character TELETYPE Model 37 termi-
nal (which is the nroff(1) default terminal) for certain other terminals. Special
characters are simulated by overstriking, if necessary and possible. If the argu-
ment is omitted, grerk attempts to use the environment variable STERM (see
environ(5)). The foilowing terminals are recognized currently:

300 DASI 300.
300-12 DASI 300 in [2-pitch.
300s DASI 300s.
300s-12 DASI 300s in 12-pitch.
450 DASI 450.
450-12 DASI 450 in 12-pitch.
1620 Diablo 1620 (alias DASI 450).
1620-12 Diablo 1620 (alias DASI 450) in 12-pitch.
2621 Hewlett-Packard 2621, 2640, and 2645.
2640 Hewlett-Packard 2621, 2640, and 2645.
2645 Hewlett-Packard 2621, 2640, and 2645.
4014 TEKTRONIX 4014,
hp Hewlett-Packard 2621, 2640, and 2645.
tek TEKTRONIX 4014.
FILES

/usr/bin/300

/usr/bin/300s

/usr/bin/4014

/usr/bin/450

/usr/bin/hp

SEE ALSO

300(1), 4014(1), 450(1), eqn(1), hp(1), mm(1), nroff (1), tplot(1G).
environ(5), greek(5), term(5) in the UNIX System V Programmer Reference
Manual.

GREP(1) GREP(1)

NAME

grep, egrep, fgrep — search a file for a pattern

SYNOPSIS

grep [options 1 expression [files]
egrep [options] [expression 1 [files]
fgrep [options 1 [strings 1 [files]

DESCRIPTION

Commands of the grep family search the input files (standard input defauit)
for lines matching a pattern. Normally, each line found is copied to the stan-
dard output. Grep patterns are limited regular expressions in the style of
ed(1); it uses a compact non-deterministic algorithm. Egrep patterns are full
regular expressions; it uses a fast deterministic algorithm that sometimes needs
exponential space. Fgrep patterns are fixed strings; it is fast and compact.
The following options are recognized:

—v All lines but those matching are printed.

=x (Exact) only lines matched in their entirety are printed (fgrep only).

—c Only a count of matching lines is printed.

—i Ignore upper/lower case distinction during comparisons.

=1 Only the names of files with matching lines are listed (once), separated
by new-lines.

—n Each line is preceded by its relative line number in the file.

—b Each line is preceded by the block number on which it was found. This
is sometimes useful in locating disk block numbers by context.

—s The error messages produced for nonexistent or unreadable files are
suppressed (grep only).

—e expression
Same as a simple expression argument, but useful when the expression
begins with a — (does not work with grep).

~f file
The regular expression (egrep) or strings list (fgrep) is taken from the

file.

In all cases, the file name is output if there is more than one input file. Care
should be taken when using the characters 8, *, [, *, |, (,), and \ in expression,
because they are also meaningful to the shell. It is safest to enclose the entire
expression argument in single quotes '...".

Fgrep searches for lines that contain one of the strings separated by new-lines.

Egrep accepts regular expressions as in ed(1), except for \(and \), with the
addition of:

1. A regular expression followed by + matches one or more occurrences of
the regular expression.

2. A regular expression followed by ? matches 0 or 1 occurrences of the
regular expression.

3. Two regular expressions separated by | or by a new-line match strings
that are matched by either.

4. A regular expression may be enclosed in parentheses () for grouping.

The order of precedence of operators is [], then *? +, then concatenation, then
| and new-line.

SEE ALSO

ed(1), sed(1), sh(1).

DIAGNOSTICS

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inac-
cessible files (even if matches were found).

-1-

GREP(1) GREP(1)

BUGS
. Ideally there should be only one grep, but we do not know a single algorithm
<' that spans a wide enough range of space-time tradeoffs.
Lines are limited to BUFSIZ characters; longer lines are truncated. (BUFSIZ is
defined in /usr/include/stdio.h.)
Egrep does not recognize ranges, such as [a—zl, in character classes.
If there is a line with embedded nulls, grep will only match up to the first null;
if it matches, it will print the entire line.

GUTIL (1G)

NAME

GUTIL(1G)

gutil — graphical utilities

SYNOPSIS

command-name [options] [files]

DESCRIPTION

Below is a list of miscellancous device independent utility commands found in
/usr/bin/graf. If no files arc given, input is from the standard input. All out-
put is to the standard output. Graphical data is stored in GPS format; sce

gps(4).

bel
cvrtopt

gd

gtop

pd

ptog

quit
remcom

— send bel character to terminal

[=sstring fstring istring tstring] [args] — options converter
Cvriopt reformats args (usually the command line arguments of a
calling shell procedure) to facilitate processing by shell procedures.
An arg is either a file name (a string not beginning with a —, or a
— by itself) or an option string (a string of options beginning with a
=). Output is of the form:

—option —option . . . file name(s)
All options appear singularly and preceding any file names. Options
that take values (e.g., —rl.1) or are two letters long must be
described through options to cvriopt.

Cvrtopt is usually used with set in the following manner as the first
line of a shell procedure:

set — “cvrtopt =loprions| $@*
Options to cvrtopt are:

sstring String accepts string values.

fstring String accepts floating point numbers as values.
istring String accepts integers as values. _
tstring String is a two-letter option name that takes no value.

String is a one- or two-letter option name.

[GPS files 1 — GPS dump

Gd prints a human readable listing of GPS.

[—rnu] [GPS files 1 — GPS to plor(4) filter

Grop transforms a GPS into plot(4) commands displayable by plor
filters. GPS objects are translated if they fall within the window
that circumscribes the first file unless an option is given.

Options:

rn translate objects in GPS region n.
u translate all objects in the GPS universe.

[plot(5) files 1 — plot(4) dump
Pd prints a human readable listing of plot(4) format graphical
commands.

[plot(5) files 1 — plot(4) to GPS filter
Ptog transforms plot (4) commands into a GPS.

— terminatc session

[files] — remove comments
Remcom copics its input to its output with comments removed.
Comments are as defined in C (i.e., /* comment /).

GUTIL(1G) GUTIL(1G)
whatis [-0) [names 1 — brief on-line documentation
Whatis prints a brief description of each name given. If no name is
given, then the current list of description names is printed. The
command whatis \s prints out cvery description.
Option:
o just print command options
yoo Jile — pipe fitting
Yoo is a piping primitive that deposits the output of a pipeline into
a file used in the pipeline. Note that, without yoo, this is not usu-
ally successful as it causes a read and write on the same file simul-
tancously.
SEE ALSO
graphics(1G).

gps(4), plot(4) in the UNIX System V Programmer Reference Manual.

HELP(1) HELP(1)

NAME
help — ask for help
SYNOPSIS
help [args]
DESCRIPTION
Help finds information to explain a message from a command or explain the
use of a command. Zero or more arguments may be supplied. [f no arguments
are given, help will prompt for one.
The arguments may be either message numbers (which normally appear in
parentheses following messages) or command names, of one of the following
types:
type 1 Begins with non-numerics, ends in numerics. The non-
numeric prefix is usually an abbreviation for the pro-
gram or set of routines which produced the message
(c.g., ge6, for message 6 from the get command).
type 2 Does not contain numerics (as a command, such as get)
type 3 Is all numeric (e.g., 212)
The response of the program will be the explanatory information related to the
argument, if there is any.
When all else fails, try “help stuck”.
FILES
/usr/lib/help directory containing files of message text.
/usr/lib/help/helploc file containing locations of help files not in
/usr/lib/help.
DIAGNOSTICS

Use help(1) for explanations.

HP(1) HP(1)

NAME
hp — handle special functions of Hewlett-Packard 2640 and 2621-series termi-
nals

SYNOPSIS
hpl —e][-m]

DESCRIPTION

Hp supports special functions of the Hewlett-Packard 2640 series of terminals,
with the primary purpose of producing accurate representations of most nroff
output. A typical use is:

nroff —h files ... | hp

Regardless of the hardware options on your terminal, Ap tries to do sensible
things with underlining and reverse line-feeds. If the terminal has the “display
enhancements” feature, subscripts and superscripts can be indicated in distinct
ways. If it has the “mathematical-symbol” feature, Greek and other special
characters can be displayed.

The flags are as follows:

—-e It is assumed that your terminal has the “display enhancements”
feature, and so maximal use is made of the added display modes.
Overstruck characters are presented in the Underline mode. Super-
scripts are shown in Half-bright mode, and subscripts in Half-bright,
Underlined mode. If this flag is omitted, hAp assumes that your termi-
nal lacks the “display enhancements” feature. In this case, all over-
struck characters, subscripts, and superscripts are displayed in Inverse
Video mode, i.e., dark-on-light, rather than the usual light-on-dark.

-m Requests minimization of output by removal of new-lines. Any con-
tiguous sequence of 3 or more new-lines is converted into a sequence of
only 2 new-lines; i.e., any number of successive blank lines produces
only a single blank output line. This allows you to retain more actual
text on the screen.

With regard to Greek and other special characters, hp provides the same set as
does 300(1), except that “not” is approximated by a right arrow, and only the
top half of the integral sign is shown. The display is adequate for examining
output from negn.

DIAGNOSTICS
“line too long"” if the representation of a line exceeds 1,024 characters.
The exit codes are 0 for normal termination, 2 for all errors.

SEE ALSO
300(1), col(1), eqn(1), greek(1), nroff(1), tbl(1).

BUGS

An “overstriking sequence” is defined as a printing character followed by a
backspace followed by another printing character. In such sequences, if either
printing character is an underscore, the other printing character is shown
underlined or in Inverse Video; otherwise, only the first printing character is
shown (again, underlined or in Inverse Video). Nothing special is done if a
backspace is adjacent to an ASCII control character. Sequences of control
characters (e.g., reverse line-feeds, backspaces) can make text *“‘disappear”; in
particular, tables generated by tb/(1) that contain vertical lines will often be
missing the lines of text that contain the “foot™ of a vertical line, unless the
input to kp is piped through col(1).

Although some terminals do provide numerical superscript characters, no
attempt is made to display them.

HPIO(1) HPIO(1)

NAME
hpio — Hewlett-Packard 2645A terminal tape file archiver

SYNOPSIS
hpio —olrc] file ...

hpio —ilrta] [—n count]

DESCRIPTION

Hpio is designed to take advantage of the tape drives on Hewlett-Packard
2645A terminals. Up to 255 UNIX system files can be archived onto a tape
cartridge for off-linc storage or for transfer to another UNIX system. The
actual number of files depends on the sizes of the files. One file of about
115,000 bytes will almost fill a tape cartridge. Almost 300 1-byte files will fit
on a tape, but the terminal will not be able to retrieve files after the first 255.
This manual page is not intended to be a guide for using tapes on Hewlett-
Packard 2645A"terminals, but tries to give enough information to be able to
create and read tape archives and to position a tape for access to a desired file
in an archive.

Hpio —o (copy out) copics the specified file(s), together with path name and
status information to a tape drive on your terminal (which is assumed to be
positioned at the beginning of a tape or immediately after a tapc mark). The
left tape drive is used by default. Each file is written to a separate tape file
and terminated with a tape mark. When hpio finishes, the tape is positioned
following the last tape mark written.

Hpio —i (copy in) extracts a file(s) from a tape drive (which is assumed to be
positioned at the beginning of a file that was previously written by a hpio —o).
The default action extracts the next file from the left tape drive.

Hpio always leaves the tape positioned after the last file read from or written to
the tape. Tapes should always be rewound before the terminal is turned off.
To rewind a tape depress the green function button, then function key 5, and
then select the appropriate tape drive by depressing cither function key 5 for
the left tape drive or function key 6 for the right. If several files have been
archived onto a tape, the tape may be positioned at the beginning of a specific
file by depressing the green function button, then function key 8, followed by
typing the desired file number (1—255) with no RETURN, and finally function
key 5 for the left tape or function key 6 for the right. The desired file number
may also be specified by a signed number relative to the current file number.

The meanings of the available options are:

r Use the right tape drive.

Include a checksum at the end of cach file. The checksum is always
checked by hpio —i for each file written with this option by hpio —o.

n count The number of input files to be extracted is set to count. If this
option is not given, count defaults to 1. An arbitrarily large count
may be specified to extract all files from the tape. Hpio will stop at
the end of data mark on the tape.

t Print a table of contents only. No files are created. Printed informa-
tion gives the file size in bytes, the file name, the file access modes,
and whether or not a checksum is included for the file.

a Ask before creating a file. Hpio —i normally prints the file size and
name, creates and reads in the file, and prints a status message when
the file has been read in. If a checksum is included with the file, it
reports whether the checksum matched its computed value. With this
option, the file size and name arc printed followed by a 2. Any
response beginning with y or Y will cause the file to be copied in as
above. Any other response will cause the file to be skipped.

-1-

™

™

HP1O (1) HPIO(1)

FILES

/dev/ity?? to block messages while accessing a tape

SEE ALSO

cu(10).

DIAGNOSTICS

BREAK
An interrupt signal terminated processing.

Can’t create ‘file'.
File system access permissions did not allow file to be created.

Can’t get tty options on stdout.
Hpio was unab.e to get the input-output control scttings associated
with the terminal.

Can’t open ‘file’.
File could not be accessed to copy it to tape.

End of Tape.
No tape record was available when a read from a tape was rcquested.
An end of data mark is the usual reason for this, but it may also occur
if the wrong tape drive is being accessed and no tape is present.

‘file’ not a regular file.
File is a directory or other special file. Only rcgular files will be copied
to tape.

Readcent = re, terment = fc.
Hpio expected to read re bytes from the next block on the tape, but
the block contained fc bytes. This is caused by having the tape
improperly positioned or by a tape block being mangled by interference
from other terminal 1/0.

Skip to next file failed.
An attempt to skip over a tape mark failed.

Tape mark write failed.
An attempt to write a tape mark at the end of a file failed.

Write failed.
A tape write failed. This is most frequently caused by specifying the
wrong tape drive, running off the end of the tape, or trying to write on
a tape that is write protected.

WARNINGS

BUGS

Tape 1/0 opcrations may copy bad data if any other 1/0 involving the terminal
occurs. Do not attempt any type ahead while hpio is running. Hpio turns off
write permissions for other users while it is running, but processes started asyn-
chronously from your terminal can still interfere. The most common indication
of this problem, while a tape is being written, is the appcarance of characters
on the display screen that should have been copied to tape.

The keyboard, including the terminal BREAK key, is locked during tape write
operations; the BREAK key is only functional between writes.

Hpio must have complete control of the attributes of the terminal to communi-
cate with the tape drives. Interaction with commands such as cu(1C) may
interfere and prevent successful operation.

Some binary files contain sequences that will confuse the terminal.

An hpio —i that encounters the end of data mark on the tape (e.g., scanning
the entire tape with hpio —itn 300), leaves the tape positioned after the end of
data mark. If a subsequent hpio —o is done at this point, the data will not be
retricvable. The tape must be repositioned manually using the terminal FIND
FILE —1 operation (depress the green function button, function key 8, and then
function key S for the left tape or function key 6 for the right tape) before the

2.

HPIO(1) HPIO (1)
hpio —o is started.

may be left with the keyboard locked. If this happens, the terminal’s RESET

If an interrupt is received by Apio while a tape is being written, the terminal /%
TERMINAL key will unlock the keyboard. _—

HYPHEN (1) HYPHEN (1)

NAME

hyphen — find hyphenated words
SYNOPSIS

hyphen [files]
DESCRIPTION

Hyphen finds all the hyphenated words ending lines in files and prints them on
the standard output. If no arguments are given, the standard input is used;
thus, hyphen may be used as a filter.

EXAMPLE
The following will allow the proofreading of nroff hyphenation in textfile.

mm textfile | hyphen

SEE ALSO
mm(1), nroff(1).

BUGS
Hyphen cannot cope with hyphenated italic (i.e., underlined) words; it will
often miss them completely, or mangle them.
Hyphen occasionally gets confused, but with no ill effects other than spurious
extra output.

ID(1) ID(1)

NAME

id — print user and group IDs and names
SYNOPSIS

id
DESCRIPTION

Id writes a message on the standard output giving the user and group IDs and
the corresponding names of the invoking process. If the effective and real IDs
do not match, both are printed.

SEE ALSO
logname(1).
getuid(2) in the UNiX System V Programmer Reference Manual.

-

IPCRM (1)

NAME

IPCRM (1)

ipcrm — remove a message queue, semaphore set or shared memory id

SYNOPSIS

iperm [options]

DESCRIPTION

Ipcrm will remove one or more specified messages, semaphore or shared
memory identifiers. The identifiers are specified by the following options:

—q msqid

—m shmid

—s semid

—Q msgkey

—M shmkey

=S semkey

The details

removes the message queue identifier msqid from the system and
destroys the message queue and data structure associated with it.

removes the shared memory identifier shmid from the system.
The shared memory segment and data structure associated with it
are destroyed after the last detach.

removes the semaphore identifier semid from the system and des-
troys the set of semaphores and data structure associated with it.

removes the message queue identifier, created with key msgkey,
from the system and destroys the message queue and data struc-
ture associated with it.

removes the shared memory identifier, created with key shmkey,
from the system. The shared memory segment and data struc-
ture associated with it are destroyed after the last detach.

removes the semaphore identifier, created with key semkey, from
the system and destroys the set of semaphores and data structure
associated with it.

of the removes are described in msgeti(2), shmctl(2), and

semctl(2). The identifiers and keys may be found by using ipcs(1).

SEE ALSO
ipes(1).

msgctl(2), msgget(2), msgop(2), semctl(2), semget(2), semop(2), shmectl(2),
shmget(2), shmop(2) in the UNIX System V Programmer Reference Manual.

IPCS(1) IPCS(1)

NAME
ipcs — report inter-process communication facilities status

SYNOPSIS
ipes [options]

DESCRIPTION
Ipcs prints certain information about active inter-process communication facili-
ties. Without options, information is printed in short format for message
queues, shared memory, and semaphores that are currently active in the sys-
tem. Otherwise, the information that is displayed is controlled by the following
options:

380.spOu

-q Print information about active message queues.

-m Print information about active shared memory segments.
-s Print information about active semaphores.

If any of the options —q, —m, or —s are specified, information about only
those indicated will be printed. If none of these three are specified, information
about all three will be printed.

-b Print biggest allowable size information. (Maximum number of bytes
in messages on queue for message queues, size of segments for shared
memory, and number of semaphores in each set for semaphores.) See
below for meaning of columns in a listing.

—-c Print creator’s login name and group name. Sec below.

-0 Print information on outstanding usage. (Number of messages on
queue and total number of bytes in messages on queue for message
queues and number of processes attached to shared memory scg-
ments.)

-p Print process number information. (Process ID of last process to send a
message and process ID of last process to receive a message on message
queues and process 1D of creating process and process ID of last process
to attach or detach on shared memory segments) See below.

-t Print time information. (Time of the last control operation that
changed the access permissions for all facilities. Time of last msgsnd
and last msgrcv on message queues, last shmat and last shmd: on
shared memory, last semop(2) on semaphores.) See below.

-a Use all print options. (This is a shorthand notation for —b, —¢, —o,

-p, and —t.)
—C corefile

Use the file corefile in place of /dev/kmem.
—N namelist

The argument will be taken as the name of an alternate namelist
(/unix is the default).

The column headings and the meaning of the columns in an ipes listing are
given below; the letters in parentheses indicate the options that cause the
corresponding heading to appear; all means that the heading always appears.
Note that these options only determine what information is provided for each
facility; they do not determine which facilities will be listed. ’

T (all)
Type of the facility:
q message queue;
m shared memory segment;

s semaphore.

R

IPCS(1)

ID

KEY

MODE

OWNER

GROUP

CREATOR

CGROUP

CBYTES

QNUM

QBYTES

LSPID

IPCS (1)

(all)
The identifier for the facility entry.

(all)
The key used as an argument to msgget, semget, or shmget
to create the facility entry. (Note: The key of a shared
memory segment is changed to IPC_PRIVATE when the seg-
ment has been removed until all processcs attached to the
segment detach it.)

Gl
The facility access modes and flags: The mode consists of 11
characters that are interpreted as follows:
The first two characters are:

R if a process is waiting on a msgrev,

S if a process is waiting on a msgsnd;

D if the associated shared memory segment has
been removed. It will disappear when the last
process attached to the segment detaches it;

C if the associated shared memory segment is to
be cleared when the first attach is executed;

— if the corresponding special flag is not set.

The next 9 characters are interpreted as three sets of three
bits each. The first sct refers to the owner’s permissions; the
next to permissions of others in the user-group of the facility
entry; and the last to all others. Within each set, the first
character indicates permission to read, the second character
indicates permission to write or alter the facility entry, and
the last character is currently unused.

The permissions are indicated as follows:

if read permission is granted;
if write permission is granted;
if alter permission is granted;
if the indicated permission is not granted.

| 2"

(al)

; The login name of the owner of the facility entry.

all)
The group name of the group of the owner of the facility
entry.

(a,0)

()Thc login name of the creator of the facility entry.

a,c
The group name of the group of the creator of the facility
entry.

(a,0)
The number of bytes in messages currently outstanding on
the associated message queuc.

(a,0)
The number of messages currently outstanding on the associ-
ated message qucue.

(a,b)
The maximum number of bytes allowed in messages out-
standing on the associated message queue.

(a,p)
The process ID of the last process to send a message to the
associated queuc.

IPCS (1)

FILES

LRPID

STIME

RTIME

CTIME

NATTCH

SEGSZ
CPID

LPID

ATIME

DTIME

NSEMS

OTIME

/unix
/dev/kmem
/etc/passwd
/etc/group

SEE ALSO
msgop(2), semop(2), shmop(2) in the UNIX System V Programmer Reference

BUGS

Manual.

IPCS(1)

(a,p)
The process 1D of the last process to receive a message from
the associated queue.

(a,t)

()Thc time the last message was sent to the associated queue.

a,t
The time the last message was received from the associated
queue.

(a,t)

’)The time when the associated entry was created or changed.

a,0,
The number of processes attached to the associated shared
memory segment.

(a,b)

a)The size of the associated shared memory segment.

a,p.

()The process ID of the creator of the shared memory entry.

a,p
The process ID of the last process to attach or detach the
shared memory segment.

(a,t)
The time the last attach was completed to the asscciated
shared memory segment.

(a,t)
The time the last detach was completed on the associated
shared memory segment.

(a,b)
The number of semaphores in the set associated with the
semaphore entry.

a,t)
The time the last semaphore operation was completed on the
set associated with the semaphore entry.

system namelist
memory

user names
group names

Things can change while ipcs is running; the picture it gives is only a close
approximation to reality.

™

JOIN(1) JOIN(1)

NAME

join — relational database operator

SYNOPSIS

join [options] filel file2

DESCRIPTION

Join forms, on the standard output, a join of the two relations specified by the
lines of filel and file2. If filel is —, the standard input is used.

Filel and file2 must be sorted in increasing ASCII collating sequence on the
fields on which they are to be joined, normally the first in each line.

There is one line in the output for each pair of lines in file! and file2 that have
identical join fields. The output line normally consists of the common field,
then the rest of the line from file!, then the rest of the line from file2.

The default input field separators are blank, tab, or new-line. In this case, mul-
tiple separators count as one field separator, and leading scparators are ignored.
The default output field separator is a blank.

Some of the below options use the argument n. This argument should be a 1

or a 2 referring to either filel or file2, respectively. The following options are
recognized:

—an In addition to the normal output, produce a line for each unpairable
line in file n, where nis 1 or 2.

—e s Replace empty output fields by string s.

—jn m Join on the mth field of file n. If n is missing, use the mth field in
each file. Fields are numbered starting with 1.

—o list Each output line comprises the fields specified in list, each element of
which has the form n.m, where n is a file number and m is a field
number. The common field is not printed unless specifically requested.

—tc Use character ¢ as a separator (tab character). Every appearance of ¢
in a line is significant. The character ¢ is used as the field separator
for both input and output.

EXAMPLE

The following command line will join the password file and the group file,
matching on the numeric group ID, and outputting the login name, the group
name and the login directory. It is assumed that the files have been sorted in
ASCII collating sequence on the group ID fields.

join —j1 4 —j2 3 —o 1.1 2.1 1.6 —t: /etc/passwd /etc/group

SEE ALSO

BUGS

awk (1), comm(1), sort(1), uniq(1).

With default field separation, the collating scquence is that of sort —b; with
—t, the sequence is that of a plain sort.

The conventions of join, sort, comm, uniq and awk (1) are wildly incongruous.

Filenames that are numeric may cause conflict when the -o option is used right
before listing filenames.

KASB (1) (DEC only) KASB(1)

NAME

kasb, kunb — assembler/un-assembler for the KMC11B microprocessor

SYNOPSIS

kasb [name 1 [—o namel 1 [—d name2]
kunb [name] [—o namel]

DESCRIPTION

Kasb is an assembler/debugger/loader for the KMC11B microprocessor. The
optional argument name specifies the input file; default is standard input. The
optional argument —o indicates that the next argument name! will be the out-
put of the assembler; default is a.out. The optional argument —d indicates that
the assembler is to be used in debug mode and that the next argument name?
is the device file name of the microprocessor. No output file is created in
debug mode.

Error diagnostics arc written on the standard error output and contain the
input file name and line number and a brief description of the error. The C
preprocessor control lines to change the file name and line number are recog-
nized. This allows the use of the preprocessor to expand the input before
assembly.

Kunb is an un-assembler for the KMC11/DMCI1 microprocessor. It produces
an output listing, acceptable to the assembler kasb, from the input object.

The optional argument name specifies the input object, default is standard
input. The format of the input is either assembler output (first word magic
0410), or formatted dump (first word magic 0440), or raw dump (anything
clse). In the first two cases, the header is ignored.

The optional argument —o indicates that the next argument namel! is to con-
tain the output listing, default is standard output.

The input object is first scanned to determine branch destinations. Labels will
be inserted at these locations with format Lint:, where int is the octal value of
the location in words. Immediate values of instructions are also printed in
octal. Page breaks are noted by the labels PO:, ..., P3:.

FILES
a.out output object
/dev/kmc? microprocessor device
/lib/cpp C preprocessor

SEE ALSO

kme(7), vpm(7).

Assembler for the DEC KMCI1 Microprocessor

™

™

KILL(1) KILL (1)

NAME
kill — terminate a proccss

SYNOPSIS
kill [—signo 1 PID ...

DESCRIPTION
Kill sends signal 15 (tcrminate) to the specified processes. This will normally
kill processes that do not catch or ignore the signal. The process number of
cach asynchronous process started with & is reported by the shell (unless more
than onc process is started in a pipeline, in which case the number of the last
process in the pipeline is reported). Process numbers can also be found by
using ps(1).

The details of the kill are described in kifl(2). For example, if process number
0 is specified, all processes in the process group are signaled.

The killed process must belong to the current user unless he is the super-user.

If a signal number preceded by — is given as first argument, that signal is sent
instead of terminate (sec signal(2)). In particular “kill =9 ...” is a sure kill.

SEE ALSO
ps(1), sh(1).
kill(2), signal(2) in the UNiX System V Programmer Reference Manual.

LD(1) (not on PDP-11) LD(1)

NAME
Id — link editor for common object files

SYNOPSIS ,
Id loptions) filename o

DESCRIPTION

The /d command combines several object files into one, performs relocation,
resolves external symbols, and supports symbol table information for symbolic
debugging. In the simplest case, the names of several object programs are
given, and /d combines them, producing an abject module that can either be
executed or used as input for a subsequent /d run. The output of {d is left in
a.out. By default this file is executable if no errors occurred during the load.
If any input file, file-name, is not an object file, /d assumes it is cither an
archive library or a text file containing link editor directives. (See the Link
Editor User Guide in the UNIX System V Programmer Guide for a discussion
of input directives.)

If any argument is a library, it is searched exactly once at the point it is
encountered in the argument list. Only those routines defining an unresolved
external reference are loaded. The library (archive) symbol table (see ar(4)) is
searched sequentially with as many passes as are necessary to resolve external
references which can be satisfied by library members. Thus, the ordering of
library members is unimportant.

The following options are recognized by /d.

—e epsym
Set the default entry point address for the output file to be that of the
symbol epsym.

—=f fill Set the default fill pattern for “holes™ within an output section as well)
as initialized bss sections. The argument fill is a two-byte constant. -

—lIx Search a library libx.a, where x is up to seven characters. A library is
searched when its name is encountered, so the placement of a =1 is
significant. By default, libraries are located in /lib and /usr/lib/.

=m Produce a map or listing of the input/output sections on the standard
output.

—o outfile
Produce an output object file by the name outfile. The name of the
default object file is a.out.

-r Retain relocation entries in the output object file. Relocation cntries
must be saved if the output file is to become an input file in a subse-
quent /d run. The link editor will not complain about unresolved refer-

ences.

-s Strip line number entries and symbol table information from the output
object file.

-t Turn off the warning about multiply-defined symbols that are not the
same size.

—u symname

Enter symname as an undefined symbol in the symbol table. This is
useful for loading entirely from a library, since initially the symbol
table is empty and an unresolved reference is needed to force the load-
ing of the first routine.

-

LD(1)

(not on PDP-11) LD(1)

-X Do not preserve local (non-.globl) symbols in the output symbol table;
enter external and static symbols only. This option saves some space in
the output file.

—L dir Change the algorithm of searching for libx.a to look in dir before look-
ing in /lib and /usr/lib. This option is effective only if it precedes the
—1 option on the command line.

—M Output a message for each multiply-defined external definition. How-
ever, if the objects being loaded include debugging information,
extrancous output is produced (see the —g option in cc(1)).

-N Put the data section immediately following the text in the output file.

-V Output a message giving information about the version of Id being
used.
=VS num

Use num as a decimal version stamp identifying the a.out file that is
produced. The version stamp is stored in the optional header.

FILES

/lib/libx.a libraries

/usr/lib/libx.a libraries

a.out output file
SEE ALSO

as(1), cc(1).

exit(2), a.out(4), ar(4) in the UNLX System V Programmer Reference Manual.
CAVEATS

Through its options and input directives, thc common link editor gives users
great flexibility; however, those who usc the input directives must assume some
added responsibilities. Input directives and options should insurc the following
properties for programs:

— C defines a zero pointer as null. A pointer to which zecro has been
assigned must not point to any object. To satisfy this, users must not
place any object at virtual address zero in the data space.

— When the link editor is called through cc(1), a startup routine is linked
with the user’s program. This routine calls exit() (see exit(2)) after exe-
cution of the main program. If the user calls the link editor directly, then
the user must insure that the program always calls exit() rather than fal-
ling through the end of the entry routine.

LD(1) (PDP-11 only) LD(1)

NAME
Id — link editor

SYNOPSIS
Id [—sulxXrdnim 1 [—o name 1 [=t name] [=V num] fle ...

DESCRIPTION

Ld combines several object programs into one; resolves external references; and
searches libraries (as created by ar(1)). In the simplest case several object
files are given, and /d combines them, producing an object module which can
be either executed or become the input for a further /d run. (In the latter
case, the —r option must be given to preserve the relocation bits.) The output
of Id is left on a.out. This file is made executable if no errors occurred during
the load and the —r flag was not specified.

The argument routines are concatenated in the order specified. The entry point
of the output is the beginning of the first routine.

If any argument is a library, it is searched exactly once at the point it is
encountered in the argument list. Only those routines defining an unresolved
external reference are loaded. If a routine from a library references another
routine in the library, the referenced routine must appear after the referencing
routine in the library. Thus the order of programs within libraries is important.

The symbols _etext, _edata and _end (etext, edata and end in C) are reserved,
and if referred to, are set to the first location above the program, the first loca-
tion above initialized data, and the first location above all data respectively. It
is erroneous to define these symbols.

Ld understands several flag arguments which are written preceded by a —.
Except for —1, they should appear before the file names.

-s “Strip” the output, that is, remove the symbol table and relocation bits
to save space (but impair the usefulness of the debugger). This infor-
mation can also be removed by strip(1). This option is turned off if
there are any undefined symbols.

-u Take the following argument as a symbol and enter it as undefined in
the symbol table. This is useful for loading wholly from a library,
since initially the symbol table is empty and an unresolved reference is
needed to force the loading of the first routine.

| This option is an abbreviation for a library name. —I alone stands for
/lib/libc.a, which is the standard system library for C and assembly
language programs. —lx stands for /lib/libx.a, where x is a string. If
that does not exist, /d tries /usr/lib/libx.a A library is searched when
its name is encountered, so the placement of a —I is significant.

-x Do not preserve local (non-.globl) symbols in the output symbol table;
only enter external symbols. This option saves some space in the out-
put file.

-X Save local symbols except for those whose names begin with L. This
option is used by cc to discard internally generated labels while retain-
ing symbols local to routines.

-r Generate relocation bits in the output file so that it can be the subject
of another /d run. This flag also prevents final definitions from being
given to common symbols, and suppresses the “undefined symbol” diag-
nostics.

—-d Force definition of common storage even if the —r flag is present.

-n Arrange that when the output file is executed, the text portion will be
read-only and shared among all users executing the file. This involves

-1-

LD(1)

(PDP-11 only) LD (1)

moving the data areas up to the first possible 4K-word boundary fol-
lowing the end of the text. Use —N to turn it off.

When the output file is executed, the program text and data areas will
live in scparate address spaces. The only difference between this option
and —n is that here the data starts at location 0.

—m The names of all files and archive members used to create the output
file are written to the standard output.

-0 The name argument after —o is used as the name of the /d output file,
instead of a.out.

—t The name argument is taken to be a symbol name, and any references
to or definitions of that symbol are listed, along with their types. There
can be up to 16 occurrences of —tname on the command line.

-V The num argument is taken as a decimal version number identifying
the a.out that is produced. Num must be in the range 0—32767. The
version stamp is stored in the a.out header; sec a.our(4).

FILES

/1ib/lib?.a libraries

/usr/lib/1ib?.a more libraries

a.out output file

SEE ALSO

ar(1), as(1), cc(1), strip(1).
a.out(4), ar(4) in the UNIX System V Programmer Reference Manual.

LEX(1) LEX (1)
NAME
lex — generatc programs for simple lexical tasks
SYNOPSIS
lex [—rctvn 1 [file] ...
DESCRIPTION

Lex generates programs to be used in simple lexical analysis of text.

The input files (standard input default) contain strings and cxpressions to be
searched for, and C text to be executed when strings are found.

A file lex.yy.c is gencrated which, when loaded with the library, copies the
input to the output except when a string specified in the file is found; then the
corresponding program text is executed. The actual string matched is left in
yytext, an cxternal character array. Matching is done in order of the strings in
the file. The strings may contain square brackets to indicate character classes,
as in labx —z] to indicate a, b, x, y, and z; and the operators *, +, and ? mean
respectively any non-negative number of, any positive number of, and either
zcro or one occurrence of, the previous character or character class. The char-
acter . is the class of all ASCII characters except new-line. Parentheses for
grouping and vertical bar for alternation arc also supported. The notation
r{d,e} in a rule indicates between d and e instances of regular expression r. It
has higher precedence than |, but lower than *, ?, +, and concatenation. The
character " at the beginning of an expression permits a successful match only
immediately after a ncw-line, and the character $ at the end of an expression
requires a trailing new-linc. The character / in an cexpression indicates trailing
context; only the part of the expression up to the slash is returned in yytext,
but the remainder of the expression must follow in the input stream. An opera-
tor character may be used as an ordinary symbol if it is within " symbols or
preceded by \. Thus [a—zA ~=Z] 4+ matches a string of lctters.

Three subroutines defined as macros are expected: input() to read a character;
unput(c) to replace a character read; and output(c) to place an output charac-
ter. They arc defined in terms of the standard streams, but you can override
them. The program gencrated is named yylex(), and the library contains a
main() which calls it. The action REJECT on the right side of the rule causes
this match to be rejected and the next suitable match exccuted; the function
yymore() accumulates additional characters into the same yytexs; and the func-
tion yyless(p) pushes back the portion of the string matched beginning at p,
which should be between yyrext and pytext+yyleng. The macros input and
output use files yyin and yyout to rcad from and write to, dcfaulted to stdin
and stdout, respectively.

Any linc beginning with a blank is assumed to contain only C text and is
copied; if it precedes % % it is copied into the cxternal definition area of the
lex.yy.c file. All rules should follow a % %, as in YACC<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>