

-
--

AT.T

UNIX@ SYSTEM V/386
RELEASE 4
Programmer's Guide:
SCSI Driver Interface

Sys

UNIX Software Operation

Copyright 1990, 1989, 1988, 1987 1986,1985,1984 AT&T
All Rights Reserved
Printed in USA

Published by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means-graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap­
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from AT&T.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document, AT&T
assumes no liability to any party for any loss or damage caused by errors or omissions or by state­
ments of any kind in this document, its updates, supplements, or special editions, whether such er­
rors are omissions or statements resulting from negligence, accident, or any other cause. AT&T furth­
er assumes no liability arising out of the application or use of any product or system described
herein; nor any liability for incidental or consequential damages arising from the use of this docu­
ment. AT&T disclaims all warranties regarding the information contained herein, whether expressed,
implied or statutory, including implied warranties of merchantllbility or fitness for II particular purpose.
AT&T makes no representation that the interconnection of products in the manner described herein
will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the
granting or license to make, use or sell equipment constructed in accordance with this description.

AT&T reserves the right to make changes without further notice to any products herein to improve
reliability, function, or design.

TRADEMARKS

UNIX is a registered trademark of AT&T.

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-957556-1

UNIX
PRESS

A Prentice Hall Title

PRE N T C E HAL L

ORDERING INFORMATION

UNIX® SYSTEM V, RELEASE 4 DOCUMENTATION

To order single copies of UNIX® SYSTEM V, Release 4 documentation,
please call (201) 767-5937.

ATIENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:
For bulk purchases in excess of 30 copies please write to:
Corporate Sales
Prentice Hall
Englewood Cliffs, N.J. 07632
Or call: (201) 592-2498

ATIENTION GOVERNMENT CUSTOMERS: For GSA and other pricing
information please call (201) 767-5994.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, SA, Mexico
Prentice-Hall of India Private Limited, New Oelhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

AT&T UNIX® System V Release 4
General Use and System Administration

·UNIX@ System V/386 Release 4 PC-Interface Administrator's Guide
·UNIX@ System V/386 Release 4 Network User's and Administrator's Guide
·UNIX@ System V/386 Release 4 Product Overview and Master Index
·UNIX® System V/386 Release 4 System Administrator's Reference Manual
·UNIX@ System V/386 Release 4 User's Reference Manual
·UNIX® System V/386 Release 4 MULTIBUS® Reference Manual
·UNIX® System V/386 Release 4 MULTIBUS® Installation and Configuration Guide
·UNIX® System V/386 Release 4 Mouse Driver Administrator's Guide
·UNIX® System V/386 Release 4 Transport Application Interface Guide
UNIX® System V Release 4 User's Guide
UNIX® System V Release 4 System Administrator's Guide

General Programmer's Series

·UNIX® System V/386 Release 4 Programmer's Reference Manual
·UNIX® System V/386 Release 4 Programmer's Guide: SCSI Driver Interface
UNIX® System V Release 4 Programmer's Guide: ANSI C and Programming Support Tools
UNIX® System V Release 4 Programmer's Guide: Character User Interface (FMLI and ETI)
UNIX® System V Release 4 Programmer's Guide: Networking Interfaces
UNIX® System V Release 4 Programmer's Guide: POSIX Conformance
UNIX® System V Release 4 Programmer's Guide: Support Services and Application

Packaging Tools

System Programmer's Series

·UNIX® System V/386 Release 4 Device Driver Interface/Driver-Kernel Interface (DOI/DKI)
Reference Manual

·UNIX® System V/386 Release 4 Integrated Software Development Guide
UNIX® System V Release 4 Programmer's Guide: STREAMS

Migration Series

UNIX® System V Release 4 ANSI C Transition Guide
UNIX® System V Release 4 BSD/XENIX® Compatibility Guide

*UNIX® System V/386 Release 4 Migration Guide

Graphics Series

UNIX® System V Release 4 OPEN LOOKTM Graphical User Interface Programmer's Reference
Manual

UNIX® System V Release 4 OPEN LOOKTM Graphical User Interface User's Guide
UNIX® System V Release 4 Programmer's Guide: XWIN™ Graphical Windowing System Xlib­

C Language Interface
UNIX® System V Release 4 Programmer's Guide: OPEN LOOKTM Graphical User Interface
UNIX® System V Release 4 Programmer's Guide: XIIINeWS® Graphical Windowing System

NeWS
UNIX® System V Release 4 Programmer's Guide: Xll/NeWS® Graphical Windowing System

Server Guide
UNIX® System V Release 4 Programmer's Guide: Xll/NeWS® Graphical Windowing System

tNt Thchnical Reference Manual
UNIX® System V Release 4 Programmer's Guide: XIIINeWS® Graphical Windowing System

XVIEW™
UNIX® System V Release 4 Programmer's Guide: XWINTM Graphical Windowing System

Addenda: Technical Papers
UNIX® System V Release 4 Programmer's Guide: XWIN™ Graphical Windowing System

The X Toolkit _

·386 specific titles -.
Available from Prentice Hall -

1

2

3

4

Contents

Introduction
Overview
Using This Manual
Programming Considerations
Suggested Reading

SOl Input/Output Controls
Introduction
Get Information
Reset a Bus or Target Controller
Send a SCSI Command (Pass-Through Interface)

Functions
Introduction
Manual Pages

Structures
Introduction
sb(041)
scb(041)
scm(041) and scs(041)
scsi_ad(041)
sfb(041)
ver no(041)

Table of Contents

1-1
1-4
1-6
1-10

2-1
2-4
2-6
2-9

3-1
3-2

4-1
4-2
4-4
4-11
4-12
4-13
4-15

Table of Contents

I Index

1/ SCSI Driver Interface (501)

Figures and Tables

Figure 1-1: SCSI Software Architecture
Table 1-1: Conventions Used In This Book
Table 1-2: Target Driver Routine Summary
Table 2-1: SOl 1/0 Controls
Table 2-2: SOl ioctl Arguments
Table 2-3: Host Adapter Minor Number

Table of Contents

1-2
1-5
1-6
2-1
2-2
2-3

iii

1 Introduction

Overview 1-1
SCSI Driver Interface 1-1
Relationship of SDI and the Device Driver Interface 1-3

Using This Manual 1-4
Name Referencing Conventions 1-4
Type Style Conventions 1-5

Programming Considerations 1-6
SDI Driver Routine Considerations 1-6

• Interrupts 1-7
• bctl 1~

SCSI Bus Reset 1-9

Suggested Reading 1-10

Table of Contents

Overview

SCSI Driver Interface

The Programmer's Guide: SCSI Driver Interface (SDI) is a machine-independent
mechanism for writing SCSI target drivers to access a SCSI device. Figure 1-1
illustrates the SCSI hardware and software.

Introduction 1-1

Overview

Figure 1-1: SCSI Software Architecture

User Program

USER SPACE

KERNEL SPACE

SCSI
Target Driver

Device Driver I
I

Interface (DOl) SCSI I SCSI

~ Driver Interface I Pass-though Interface
I

Driver Kernel (SOl) I

Interface (DKl) I
I

1 1
Backplane Host Adapter cardj

SCSI Bus J

SCSI
Target Controller

SDI interacts with the SCSI hardware and provides a driver or user program a
way in which to access a SCSI device.

1-2 SCSI Driver Interface (SOl)

Overview

Relationship of SOl and the Device Driver Interface

A SCSI target driver is written using the functions of the Device Driver Interface
(DDI). DDI is a library of functions. The DDI functions are incorporated in the
system software as part of UNIX® System V Release 4.

SDI augments the DDI functions to provide a set of services for exchanging
commands and data with the SCSI device and for allocating and freeing data
structures. SDI includes input/output controls that give user programs direct
command access to a SCSI device and to the SDI. These controls allow circum­
vention of the target driver for user testing of SCSI devices, state determination,
and diagnostics. The SDI functions are incorporated in the "SCSI Support Pack­
age" you receive with your SCSI host adapter feature card for the 386 computer.

A properly written target driver using DDI and SDI functions can be ported
directly between any 386 family member equipped with SCSI. Driver portabil­
ity is possible when strict compliance to the SDI and DDI functions and struc­
tures is maintained. DDI has a wide variety of features that offer a driver
developer an opportunity to write drivers that are faster to code, usable on a
variety of computers, and easier to maintain.

SCSI consists of both hardware and software. SCSI hardware includes a special
feature card called the host adapter, and a cable for connecting SCSI devices
called the SCSI bus. The host adapter provides a communication pipeline
between a target driver and the SCSI bus. The host adapter connects a AT&T
386 computer to the machine-independent SCSI bus.

Introduction 1·3

Using This Manual

The audience for this manual is driver developers wishing to write or maintain
a SCSI target driver.

The following is an overview of each chapter in this manual:

Chapter 1 - Introduction
An introduction to this manual. Also described are special pro­
gramming considerations.

Chapter 2 - SDI Input/Output Controls
a description of the special SDI input/output controls.

Chapter 3 - Functions
the SDI functions that are used to code a driver.

Chapter 4 - Structures
the data structures used when creating a driver and for use when
sending a command with the input/output controls.

Index a topical index.

Name Referencing Conventions

A reference numbering scheme is used throughout this manual and in the other
books in the Open Architecture documentation series. On driver routine names,
structure names, and function names, a code is suffixed that describes the origin
of each name. The code is in the format:

(Dni)

Where:

D = Driver interface designator

n = Name type: 2 = Driver Routine, 3 = Function, 4 = Structure

i = (optional) interface type: P = DDI, I = SDI, X = Block and Charac­
ter Interface (if omitted, the reference is to a driver routine).

For example, sdi _ send(D3I) is a SDI function, ver _ no(D4P) is a PDI structure.

1-4 SCSI Driver Interface (501)

Using This Manual

Type Style Conventions

The conventions given in Table 1-1 are used throughout the text.

Table 1-1: Conventions Used In This Book

Item Type Style Example

Book Titles Italics Programmer's Guide

C bitwise operators (I &-) FULL CAPITAL LETTERS OR

C typedef declarations Constant Width dma tuple

Driver prefix Italics prejixclose(Dl)

Driver routines Constant Width strategy(Dl) routine

Error values FULL CAPITAL LETTERS EINTR

File names Constant Width /usr/include/sys/ddi.h

Flag names FULL CAPITAL LETTERS B WRITE

Functions Constant Width sdi send(D2I)

Function arguments Italics bp

Keyboard keys (Key] (CTRt-d)

Structure members Constant Width b_flags

Structure names Constant width ver no(D2I) structure

Symbolic constants FULL CAPITAL LETTERS CE CONT

UNIX system C commands Constant Width with section reference ioctl(2)

Introduction 1-5

Programming Considerations

This section provides information on how to code a SCSI target driver.
Described are the differences between coding driver routines when using the
SOl or when using the DOL

SOl Driver Routine Considerations

Routines are called from a number of sources: the kernel through the bdevsw
and cdevsw, at initialization time and at startup, and by other routines. The
driver routines written for a SCSI target driver have the same attributes as those
of any other block driver with only two exceptions, you must include an
ioctl(D2) routine, and you should not include an interrupt routine that is
called by the kernel. Since the SCSI peripherals are not directly connected to
the backplane, the normal interrupt routine (intr) would never get called and
therefore would be useless.

A complete description of driver routines is provided in Chapter 2 of the Device
Driver Interface/Driver-Kernel Interface (DDI/DKI) Reference Manual.

Table 1-2 summarizes the driver routines that may be used to code a SCSI target
driver.

Table 1-2: Target Driver Routine Summary

Routine Name Description

prefixclose (device-number, flag, otype,cred-pointer) Oose a device

prefixinit 0 Initialize a device

prefixioctl (device-number, command, arg, mode, cred-pionter, rva/-pointer) I/O control

prefixopen (device-number, flag, otype,cred-pointer) Open a device

prefiXprint (device-number, string) Display error

prefixread (device-number, uio-pointer ,cred-pointer) Read data

prefixstart 0 Start device access

prefixstrategy (but-pointer) Block device I/O

prefixwrite (device-number,uio-pointer, cred-pointer) Write data

1-6 SCSI Driver Interface (501)

Programming Considerations

Interrupts

The interrupt routines of the SCSI target drivers are different from those of typi­
cal hardware drivers because the hardware they control is not directly con­
nected to the I/O bus on the 6386 computer. Hardware drivers using non-SCSI
interfaces with associated hardware connected directly to the I/O bus of a 6386
computer have interrupt routines that are called by the operating system.

The interrupt routine in a SCSI target driver is called by the host adapter
software with a pointer to an sb(D4I) structure as the input argument. The host
adapter controls hardware on the 6386 computer SCSI Bus.

Before sending the job, assign a value to the sC_int member of the scb(D4I)
structure. When a target driver completes, the driver passes the address of the
SCSI interrupt routine to the host adapter in the sb(D4I) structure (specifically
using sc _ int member structure>. Target drivers may define different interrupt
routines for different operations.

ioctl

An SCSI target driver must provide an ioctl routine with handling for the
B _ GETDEV and B _ GETTYPE pass-through interface commands. The following
code provides an example of how these two commands might be handled:

Introduction 1-7

Programming Considerations

finclude "sys/types.h"
finclude "sys/vtoc.h"
finclude "sys/sdi.h"
finclude "sys/scsi.h"
finclude "sys/errno.h"
finclude "sys/open.h"
finclude "sys/sdi_edt.h"

switch(ioctl-cmd);

case B GETTYPE:
if (copyout (" scsi" ,

«struct bus_type *) arg)->bus_name, 5»

return (EFAULT) ;

if (copyout ("driver-prefix",
«struct bus_type *) arg) ->d.rv_name, 5»

return (EFAULT) ;

return (D) ;

case B_GETDEV;
sdi _getdev (&dk.->dk_addr, &ipt _ dey) ;
if (copyout(&ipt_dev, arg, sizeof(ipt_dev»)
{

return (EFAULT) ;

returneD);

The bus_type structure is defined in /usr/include/sys/sdi_edt.h. In this
example, "5" is for "scsi" and a terminating NULL and assumes a four­
character driver prefix and a terminating NULL character.

1-8 SCSI Driver Interface (501)

Programming Considerations

SCSI Bus Reset

The SCSI bus can reset in the case of a software or hardware failure. (Reset
means that all jobs using the SCSI bus are interrupted and returned without
being completed with the sc _ conp _code member of the scb structure set to
SDI_RESET.) After a reset, SCSI target controllers may take up to 5 seconds to
reset themselves depending on the peripheral device. During this interval, all
SCSI jobs are blocked and not sent over the SCSI bus. Once the times has
elapsed, job processing on the bus is continued. Computers equipped with dif­
ferential multi-host functionality (presently unsupported on 6386) are given an
additional second to send immediate commands to regain device control (SCSI
RESERVE command). A target driver regains control so that pending job
requests can complete without intervention from other hosts on the bus. Should
the driver disregard this opportunity, a target driver on another host could
access the device and reserve it for its use.

Introduction 1-9

Suggested Reading

You must obtain the AT&T SCSI (Small Computer System Interface) Definition,
Select Code 305-013. This manual is required when sending commands to a
SCSI device (using either the pass-through interface or the sdi_send or
sdi icmd. functions described in this manual.

1·10 SCSI Driver Interface (SDI)

2 SOl Input/Output Controls

Introduction 2-1
The Host Adapter Minor Number 2-3

Get Information 2-4

Reset a Bus or Target Controller 2-6

Send a SCSI Command (Pass-Through
Interface) 2-9
Pass-Through Use Considerations 2-9

Table of Contents

Introduction

SDI provides a set of Input/Output (I/O) controls that can be used from a user
program. These controls permit a program to:

• Get information from a target driver or from the host adapter.

• Reset a SCSI bus or a target controller.

• Send a command to a SCSI device. This control is also called the pass­
through interface.

Most of the controls are built into SDI, but some must be provided by a SCSI
target driver.

This chapter describes information about using the ioctl(2) system call with the
SDI I/O controls. Following this section is a separate section on each set of con­
trols.

In Table 2-1, the "Purpose" describes what the SDI I/O controls perform. The
"Control" is the ioctl(2) control name. The "Source" column describes from
where the information is provided. (For example, if the source is TD, then a tar­
get driver must provide the information in its ioctl(D2) routine.) The "Com­
puter" indicates on which computer the control can be accessed. The "Header
File" indicates the name of the header file that defines the I/O control. All files
are in the /usr/include/sys directory.

Table 2-1: SOl I/O Controls

Purpose Control Source Header File
Get Information B GETDEV TDt sdi edt.h

B GETTYPE HA sdi edt.h
B GETTYPE TD sdi edt.h
GETVER HA scsi.h
HA VER HA sdi.h

Reset bus or SDI BRESET HA sdi.h
target controller SDI TRESET HA sdi.h
Send a command SDI SEND HA sdi.h

SOl Input/Output Controls 2-1

Introduction

Abbreviations:

TO = SCSI Target Driver HA = SCSI Host Adapter

1 /.
1

'& ..•..•. 1 A program must have super-user permissions to send an SDIIIO control.
NOTE

::;:\]]]\):: ::~)~:~ :::::];

The format for the ioctl(2) command is:

ioctl (file-descriptor, control-name, argument)

Where:

file-descriptor is generated by an open(2) call to the SCSI host adapter device
file.

control-name the name of the SOl I/O control.

argument an optional argument required by the I/O control.

Table 2-2 indicates the second and third arguments to the ioctl system call,
and the origin of the first argument. The first argument to the ioctl(2) com­
mand is always a file descriptor passed from a previous open(2) call. The path
(first) argument to the open(2) call defines the origins of the ioctl file descrip­
tor.

Table 2·2: SOl loctl Arguments

First Second Third
Argument Argument Argument
origin control-name
GEN HA VER struct ver _ no ... pointer
GEN SOl BRESET long ddi _ dey _ t - minor device

number of a device on the SCSI bus

PT SOl SEND struct sb ... pointer
PT SOl TRESET none

2·2 SCSI Orlver Interface (SOl)

Introduction

The meaning of the abbreviations in Table 2-2 are:

BRESET Bus Reset

GEN device number for a specific device. This is the major number
for the host adapter with the Oxff minor number.

HA Host Adapter

PT Pass-Through device number for a specific device.

TRESET Target device controller Reset

VER Version number

The Host Adapter Minor Number

Table 2-3 describes the minor number format for the host adapter driver I/O
controls:

Table 2-3: Host Adapter Minor Number

CONTENTS:
0 Controller Logical Unit

I I I I I

BITS: 7 6 5 4 3 2 1 o

This controller addressing is used rather than the address provided in the SCSI
Control Block. Requests for pass-through or controller reset are rejected if
addressed to the host adapter. The minor number is only used by the host
adapter for the SDI_SEND and SDI_TRESET controls.

The minor number Oxff defaults to the host adapter driver and should be used
when using general controls such as those for getting information.

SOl Input/Output Controls 2-3

Get Information

These I/O controls provide a variety of information sources that can be
obtained through the ioctl(2) commands. This information is useful for initiat­
ing other I/O controls and for verifying the usability of the current software or
hardware versions.

This information includes the:

• Bus type and driver type (using the B _ GETfYPE command) of either the
host adapter or of the target driver

• Target driver device type (using the B _ GETDEV command)

• The host adapter version number (using the GETVER command)

• Contents of the ver _no structure (using the HA _ VER command). This
structure contains the host adapter release number, the computer type,
and the release number of the SCSI software.

The procedure for accessing information is:

• Obtain a file descriptor by executing an open(2) system call on the host
adapter or target driver special device file.

• Send the command to either the host adapter or to the target driver using
the ioctl(2) command.

ERRORS

The following error can be returned by SDI in errno (errors returned by the tar­
get driver are dependent on the design of the driver). B _ GETfYPE and
HA_VER return EFAULT if the information cannot be copied to user space.

GETVER does not return an error.

2-4 SCSI Driver Interface (SOl)

Get Information

EXAMPLE

The following example illustrates the use of a get information I/O control.

char *special_device;
int file_des;

/* Path name of target device */
/* File descriptor */

dev_t pass_thru_device; /* Pass through device number */

/*
* Open the special device file so that we may query the target
* driver for the pass-through major minor numbers of the device.
*/

if «file_des = open (special_device, O_RDONLY» < 0)
{

/*

*
*
*/

fprintf(stderr, "Special device file open failedO);

Perform the B_GETDEV command to obtain the pass-through
device number for this particular device.

if (ioctl(file_des, B_GETDEV, &pass_thru_device) < 0)
{

fprintf(stderr,"Call to get pass-through device number failedO);
}

SDllnput/Output Controls 2-5

Reset a Bus or Target Controller

The SDI I/O controls provide a command to reset a SCSI bus and a command
to reset a target controller.

The method for executing these commands is:

1. Use B _ GETDEV to determine the major and minor numbers of the host
adapter handling this device.

2. Open the device special file to obtain the host adapter major and minor
numbers.

3. Use mkterrp(3C) to generate a unique host adapter node name, then
append this new name to the end of the pathname provided with the
device name.

4. Use mknod(2) to create the general access host adapter node so that the
pass-through interface can be used. NOTE: On SDI _ BRESET, when you
use makedev to form the device number (as the last argument of mknod)
use Oxff instead on a minor number. On SDI _ TRESET, use the pass­
through minor number.

5. Open the host adapter node for access by the pass-through interface.

6. Reset the bus or the target controller.

ERRORS

SDI_BRESET does not return any value in errna or in SCB. sc_camp_code.

SDI_TRESET returns EBUSY (jobs are outstanding at the device or the device is
not active) in errna. In addition, SCB. sc _camp_code may be set to
SDI_PROCRES (job not complete) during the time when the sb is being sent to
SDI.

EXAMPLE

tdefine HATEMP "HAXXXXXX"

char *special_device;
char *pass_through[];
int file_des;
dev_t pass_thru_device;

2-6

/* Path name of target device */
/* Path name of pass-through device */
/* File descriptor */
/* Pass-through device number */

SCSI Driver Interface (501)

Reset a Bus or Target Controller

/*
* Open the special device file so that we may query the target
* driver for the pass-throuqh major/minor numbers of the device.
*/

if «file_des = open (special_device, O_RDONLY» < 0)
{

fprintf(stderr, "Special device file <:pen failed\n");

/*
* Perform the B_GETDEV command to obtain the pass-throuqh
* device number for this particular device.
*/

if (ioctl(file_des, B_GETDEV, &pass_thru_device) < 0)
{

fprintf(stderr,"Call to qet pass-through device number failed\n");
}

(void) close(file_des);

/*
* Generate the pass-throuqh special device file for
* this device usinq mktemp(). To create the node in
* the same directory as the tarqet special device file,
* the new pass-throuqh name is appended on to the
* path name of the tarqet special device file.
*/

/* Copy the special device file name into the pass-through name */
(void) strcpy(pass_throuqh, special_device);

/*

*
*
*/

Search to the last' /'. Append the newly created pass-throuqh
device file onto the end. If no ,/, was found, then use the
current directory.

if «ptr - strrchr(pass_throuqh, , /'» != NULL)
{

else
{

(void) strcpy (++ptr, mktemp (HATEMP)) ;

(void) strcpy(pass_throuqh, mktemp (HATEMP»;

SOl Input/Output Controls 2-7

Reset a Bus or Target Controller

/*
* Make the pass-through device node using the pass-through
* major n\.1llt)er of the tarqet device and the general use
* pass-through minor n\.1llt)er (Oxff).
*/

if (mknod(pass_through, (S_IFCHR I S_IREAD I S IWRITE),
makedev(pass_thru_device.maj,Oxff» < 0)

fprintf(stderr, "Unable to make pass-through node\n");

/*
* Now that the pass-through node has been created, perform
* an open it so that the command can be issued.
*/

if «file_des = open(pass_through, O_RDWR» < 0)
(

fprintf(stderr,"Open of pass-through device failed\n");

/* Issue the bus reset ioctl to the Host Adapter driver.
* Pass it the pass-through minor number as an argument
* so it can determine which bus to reset.
*/

if(ioctl(file_des, SDI_BRESET, pass_thru_device.min) < 0)
(

fprintf(stderr,"SCSI bus reset failed\n");

2-8 SCSI Driver Interface (501)

Send a SCSI Command (Pass-Through
Interface)

The SCSI command pass-through interface gives a user program direct access to
a SCSI device. By permitting user programs to act in a manner similar to a tar­
get driver, the overhead of instructions needed to make device-specific requests
can be removed from a target driver. An example of device-specific requests
are the instructions required to format a disk. With the pass-through interface,
a user program can select different instruction packages for different vendors'
drives. Not only can many instructions be removed from a driver, but a driver
can be made to work on a wider range of different drives. In addition, a driver
need not be updated as frequently when a device changes.

The pass-through interface gives you a means of evaluating new peripherals and
controllers without developing a driver, checking device states, and eliminating
duplication of driver code.

Pass-Through Use Considerations T When a user program opens access to the pass<hrough interlace, all
) other jobs heading for th~ device using. a target driver are blocked until

<;> the pass-through access IS closed. ThiS means any use of read(2) or
. write(2) during pass-through access fails. In addition, a process using

pass-through cannot use system calls that require target driver access. If
a process opens the pass-through interface and then executes a system
call that accesses the device, the system call fails. When the system call
generates an SOl SEND, the process will hang. (Some ioctl com­
mands may not generate an SOl SEND.) If your pass-through interface
access requires device reads and writes, you must do so either before
pass-through is started or with COB commands utilizing SOl SEND
(explained later in this chapter). -

The following must be observed when writing a program that accesses the
pass-through interface:

• One major-minor number pair is associated with each logical unit

• Permissions on the special device files must be set so that only the owner
has read-write permissions

SOl Input/Output Controls 2-9

Send a SCSI Command (Pass-Through Interface)

• Only one process may have a special device file open. Processing of jobs
from the target driver to the logical unit is suspended while the device file
is open. For the 6386 computer, this is identical to the suspension which
takes place after a check condition.

• The only sb_type value which can be used is ISCB_1YPE. (sb_type is a
member of the sb structure.>

~ Tho paas-through interlaoo requires that a target drlvorlnc/ude access to tho
::ijdtlit two ieetl commands, B GETDEV and B GETIYPE. Implementation of
::::::::H}:H these two commands fora target driver is-discussed in Chapter 1 of this

manual.

The pass-through interface provides a command for sending a SCSI command
directly to a SCSI device. Any command described in the AT&T SCSI (Small
Computer System Interface) Definition, Select Code 305-013 can be sent directly to
the SCSI device. A sample of the functionality provided by these commands is:

• Data copying

• Device formatting

• Mode selecting

• Preventing/ Allowing media removal

• Reserve/Release unit

• Read/Write data

Commands are sent by creating a Command Descriptor Block (defined by the
ses and scm structures and described in the ANSI Small Computer System Inter­
face (SCSI), X3T9, 2/82-2, Revision 17B. Refer to the discussion of the ses and
scm structures in Chapter 4 of this manual for more information.

The method for using the SDI _SEND command is:

1. Open target driver

2. Use B _ GETDEV to obtain the pass-through host adapter device number

3. Close access to the target driver

2-10 SCSI Driver Interface (SDI)

Send a SCSI Command (Pass-Through Interface)

4. Use mknod(2) to create a host adapter node

5. Open the pass-through interface

6. Create sb and COB

7. Send the command to the SCSI device

ERRORS

SOl_SEND can return the following errors in errno:

• EBUSY - jobs are queued for the device (therefore, the device cannot be
accessed).

• EFAULT - an attempt to copy an sb or an scb to or from a user pro­
gram failed.

• EINV AL - sb. sb type is not set to ISCB TYPE or SCB. sc IOOde is set to
the unsupported sCB _ LINK value. - -

• ENOMEM - memory cannot be allocated for data from the sent COB or
for returned data.

SOl_SEND can return the following values in SCB. sc _ conp _code:

• SOI_HAERR (host adapter failure or parity error)

• SOI_PROGRES (the job is not complete during time when sb is being sent
to the host>

EXAMPLE

tdefine HATEMP "HAXXXJOCX"

char *special_ device;
char *pass_through [] ;
int file_des;
dev _ t pass _ thru _device;
struct sb sb, *sb...,ptr;
struct sea SCSi

char buffer[512];

SOl Input/OUtput Controls

/* Path name of target device */
/* Path name of pass-through device */
/* File descriptor */
/* Pass-through device number */
/* SCSI block and pointer */
/* SCSI command block */
/* Data buffer area */

2-11

Send a SCSI Command (Pass-Through Interface)

1*
* Open the special device file so that we may query the target
* driver for the pass-through major minor numbers of the device.
*1

if «file_des = open (special_device, O_RDONLY» < 0)
{

fprintf(stderr,nSpecial device file open failed\nn);

1*
* Perform the B GETDEV command to obtain the pass-through

* device number for this particular device.
*1

if (ioctl(file_des, B_GETDEV, &pass_thru_device) < 0)
{

fprintf(stderr,nCall to get pass-through device nunber failed\nn);
}

(void) close(file_des);

1*
* Generate the pass-through special device file for
* this device using mktemp(). To create the node in
* the same directory as the target special device file,
* the new pass-through name will be appended on to the
* path name of the target special device file.
*1

1* Copy the special device file name into the pass-through name *1
(void) strcpy(pass_through, special_device);

1*
*
*
*1

Search to the last '1'. Append the newly created pass-through
device file onto the end. If no 'I' was found, then use the
current directory.

if «ptr = strrchr(pass_through, 'I'» != NULL)
{

(void) strcpy(++ptr, mktemp(HATEMP»;

else

(void) strcpy(pass_through, mktemp(HATEMP»;

2-12 SCSI Driver Interface (501)

Send a SCSI Command (Pass-Through Interface)

/*
* Make the pass-through device node using the pass-through
* major number of the target device and the general use
* pass-through minor number (Oxff). */

if (mknod(pass_through, (S_IFCHR I S_IREAD I S_IWRITE),
makedev(pass_thru_device.maj,Oxff» < 0)

fprintf(stderr,"Unable to make pass-through node\n");

/*
* Now that the pass-through node has been created, perform
* an open it so that the cOJ'lll\aIld can be issued.
*/

if «file_des = open (pass_through, O_RDWR» < 0)
{

/*

*
*
*
*/

fprintf(stderr,"Open of pass-through device failed\n");

Set of the SCSI command descriptor block. In this
example the command will be a read of block 256 on
logical unit O.

scs.ss_op = SS_READ;
scs.ss_Iun = 0;
scs.ss_addr = 256;
scs.ss_Ien = 1;
scs.ss cont = 0;

/* Set up the SB */
sbytr = &sb;
sbytr->sb_type = ISCB_TYPE;

/* Fill in the cOJ'lll\aIld address and size, the data transfer
* address and the amount of data to be transferred, and
* set the transfer mode to be a read from the device. */

sbytr->SCB.sc_cmdpt = SCS_AD(scs);
sbytr->SCB.sc_cmdsz = SCS_SZ(scs);
sbytr->SCB.sc_datapt = data_buffer;
sbytr->SCB.sc_datasz = 512;
sbytr->SCB.sc_mode = SCB_READ;

501 Input/Output Controls 2-13

Send a SCSI Command (Pass-Through Interface)

/* Set the timeout to 5 seconds * /
sb-ptr->SCB.sc_time - 5000;

/*
* Issue the SOl SEND ioctl to send the command to
* the Host Adapter driver. The third argument is the
* pointer to the sa.
*/

if(ioctl(file_des, SOl_SEND, sb-ptr) < 0)
{

fprintf(stderr, "SCSI read command failed\n");

2·14 SCSI Driver Interface (SDI)

3 Functions

Introduction 3-1

Manual Pages 3-2

Table of eon tents

Introduction

This chapter describes the SDI functions for the target driver.

The SDI consists of eight functions. Each function is described one to a page
with the following headings used to describe each aspect of the command:

NAME The function name and a brief description

SYNOPSIS How a function appears in the source code

ARGUMENTS A deSCription of each argument

The description of the function DESCRIPTION

RETURN VALUE The value returned when the function is called from
a driver

LEVEL

EXAMPLE

Whether the function can be called from the base
level only or from the base and interrupt levels.

An example usage of the SOl function

A summary of the functions is:

SDI Computer IntelTUpt

Function Desaiption Type Usable?

8CIi_f~lk(l't) Release a SCSI block Any Yes
8CIi _qetblk () Get a SCSI block Any No

8CIi_qetdev(tuldr, dev) Get pass-through dev- Any Yes
ice number

8CIi_iaad(l't) Perform command now Any Yes
8CIi init () Initialize HA driver Any No

8CIi rum. (liddr, nIIme) Get controller name Any Yes
8CIi_aend(l't) Send command to dev- Any Yes

ice

8CIi_transla.te (l't,bjlagsil'rocl') Translate SCB virtual Any No
address

The Cooputer Type column indicates on which computers the function can be
called. /I Any" indicated in the CoIrputer Type column refers to the type of
computer the function is supported under. The Interrupt Usable? column
indicates whether the function can be called from within an interrupt routine.
HA stands for Host Adapter.

Functions 3-1

sdl_freeblk(D31) sdUreeblk(D31)

NAME
sdi _freeblk - release a previously allocated SCSI block

SYNOPSIS
long
sdi _ freeblk(pt)
struct sb *pt;

ARGUMENT
pt pointer to the sb (SCSI block) structure

DESCRIPTION
sdi _ freeblk returns an sb to the free block pool. The sb _ type member of the
sb structure is checked to ensure that a valid sb is returned.

RETURN VALUE

LEVEL

The normal return is SOl RET OK. A return value of SOl RET ERR indicates an
error with the pointer. - -

Base or Interrupt

EXAMPLE

10/89

This function is typically used after a job completes. In this example
diskfreejob cleans up after a disk job completes and is called with a pointer to
a struct job. job contains information about the disk job including a pointer to
the sb for the job. sdi_freeblk is called with the pointer to the job structure as
part of the clean-up operation.

struct job {
struct sb *j_sbptr;

diskfreejob (jp)
struct job *jp; {

/* PerfoDn job clean up */

/* Return sa to SOl */
if(sdi_freeblk(jp->j_sbptr) != SOI_RET_OK)
{

/* sa rejected - print error message */
CIm_err(CE_WARN, "OISK: SB rejected by SO!.");

}

Page 1

scI,-getblk (D31) sdl_getblk(D31)

NAME
sdi_qetblk - allocate a SCSI block for the target driver

SYNOPSIS
struct sb *
sdi_qetblk ()

DESCRIPTION
sdi_qetblk allocates an sb from SOL Only sdi_qetblk should be used to allo­
cate an sb. This function may sleep and should not be called at interrupt level.
sc _ cOllp _ code is set to SOl_UNUSED in the returned sb.

SOl may add fields to the end of the sb for use by SOL This implies that target
drivers may not use sb structures allocated themselves. Target drivers must allo­
cate an sb structure with sdi qetblk. Some of the information added at the end
of the sb includes physical addresses. If these addresses do not exist, the com­
puter will panic.

RETURN VALUE
Pointer to an sb structure

LEVEL
Base Only

EXAMPLE

10/89

In the example, diskopenl is called by the open routine for a disk target driver.
In this routine, a disk-specific structure is initialized the first time the disk is
accessed. This initialization includes allocating an sb for sending request sense
commands to the disk. The following structure is used in the example.

struct disk st {
long disk state;
struct scsi_ad disk_addr;

/* State of this disk */
/* Major/Minor nUJl'i:)er of device

*/
struct sb *disk_fltreq; /* SCSI block for request sense

*/

};
diskcpenl (n\a.jor, minor)
long major, minor;
{

struct disk st *disk;
/* Based on-the major and minor nUJl'i:)ers of the disk,

* index into the array of disk structures and get the
* pointer to the one for this disk.
*/

disk - &Disk[diskintmin(major, minor)];
/* Check to see if this disk has been initialized */
if «disk->disk state & DISK INIT) == 0)

{ - -
/* This is the first access to the disk so initialize

* same of the data structures for the disk.
*/

Page 1

sdl_getblk{D31)

Page 2

sdl_getblk{D31)

/* Get an SB for request sense jobs for this disk */
disk->disk_fltreq = sdi_getblk();

/* Fill in the major and minor numbers and the
* loqical unit number in the address structure.
*/

disk->disk addr.sa major = major;
disk->disk-addr.sa-minor ~ mdnor;
disk->disk:addr.sa:lun - LUN(minor);

10/89

sc:Il_getdev (031) sdl_getdev(D31)

NAME
sdi_getdev - convert device number to pass-through device number

SYNOPSIS
void
sdi getdev(addr, dev)
stroot scsi ad "addr;
dev_t dev; -

ARGUMENTS
addr pointer to the scsi_ad (SCSI device address) structure. The pass­

through device number is returned in sa_major and sa_minor members
of the structure.

dev device major/minor number pair.
DESCRIPTION

sdi_getdev translates a device major/minor number pair into the pass-through
interface major/minor number pair for that device. The pass-through major/
minor number is returned in the addr structure.

RETURN VALUE
None

LEVEL
Base or Interrupt

EXAMPLE

10/89

A target driver uses the pass-through device number when logging non-buffer
related errors. The following example shows how sdi_getdev can be used after
an unsuccessful call to sdi_iard.

struot sb *sbJltr;
struct scsi ad dk_addr;
dev_t pt._dev;

/* Call sdi iard to send an immediate command */
if (sdi_Iard(sbytr) !=- SDI_RET_OK)

/* The call was unsuccessful. Print an error massage,
* get the pass-through device nuni::ler, and log an error
* against the device.
*/
c:mn err(CE WARN, ItDISK: Bad sa type to SOI. It);
sdi~getdev(&disk addr, &pt dey);
logiiberr(pt. dev.maj, pt. dev.min, 0, 0, 0,

&dIsk->disk_stat.ios, 0, 0, 0);

Page 1

sdUcmd(D31) sdUcmd(D31)

NAME
sdi_iCDd - perform requested operation immediately

SYNOPSIS
int
sdi _ iCDd(pt)
struct sb "pt;

ARGUMENT
pt pointer to the sb (SCSI block) structure. The sb_type member of the sb

structure must be set to either SFB_TYPE or lSCB_TYPE.

DESCRIPTION
sdi iCDd sends an immediate sb to a device. Immediate means that this func­
tion-bypasses queued scbs and immediately accesses the device to perform the
requested operation. This function is typically used during error handling.

In contrast to an operation using an sfb, operations using an scb send the job to
the requested logical unit.

Coming in at immediate-priority, operations using an sfb are executed in the
order submitted and take priority over scb operations. Only one immediate of
each command type (SFB _ TYPE or lSCB _TYPE) may be outstanding to a particular
logical unit.

RETURN VALUE

LEVEL

A return code of SOl_RET_OK indicates that the request is in progress and the tar­
get driver interrupt routine will be called. A return code of SOl_RET_ERR indi­
cates that the type field is invalid. After a logical unit queue is resumed, all out­
standing immediate control and function blocks are returned before the next nor­
mal command is returned.

Base or Interrupt

EXAMPLE

10/89

The following example shows how an sb is re-sent using sdi_iCDd when the
completion code indicates that a retry (SOl_RETRY) is requested. diskint is an
example disk target driver interrupt routine.

void
diskint (sb ...,ptr)
struct sb *sb...,ptr;
{

/* Check the completion code of the SCB to see if the
* command needs to be retried.
*/

Page 1

sdUcmd(031)

Page 2

sdUcmd (031)

if (sb...,Ptr->SCB.sc_CCX!p_code & SOl_RETRY)
(

/* Retry the command request using sdi_icmd */
if (sdi_icmd(sb...,ptr) !- SOI_RET_OK)

/* If the return value of sdi icmd is not OK,
* print an error message. -
*/
CIm_err(CE_WARN, "DISK: Bad SB type to SOl. ");

return;

10/89

sdUnlt (031) sdUnlt(031)

NAME
sdi_init - initialize the host adapter

SYNOPSIS
extern int sdi started
void -
sdi_initO

DESCRIPTION
sdi_init initializes the host adapter to accept SDI functions. The sdi_started
flag is provided so that a target driver can determine if another target driver may
have already called sdi_init. If sdi_started is zero, sdi_init must be called.

RETURN VALUE
None

LEVEL
Base Only

EXAMPLE

10/89

This example shows the sequence of instructions used to test sdi _started and
call sdi_init.

extern int sdi_started

/* Check to see if the Host Adapter driver has
* already been started.
*/

if (! sdi _started)
{

/* Call the Host Adapter driver init routine */
sdi_init ();

Page 1

sdi_name(D31>

NAME
sdi_name - get name of addressed controller

SYNOPSIS
void
sdi name(addr, name)
strUct SCSi_ad "addr;
char "name;

ARGUMENTS
addr pointer to the scsi_ad (SCSI device address) structure

name string containing the device name

DESCRIPTION
sdi _ name decodes a device number into a character string so that the device
number can be displayed (with cmn_err). The controller name is copied into
name. The returned string may be as long as 48 bytes. (You must allocate 49
bytes.) Access to the controller name can only be used for display; the driver
should not attempt to decode the string for other uses. The string returned is
"SLar # TC #", with the slot number of the host adapter card filled in and the
target controller ID filled in. On the 3B4000 computer, the string returned is
"SLIC # Controller #,'. On the 3B4000, if the device is on an adjunct processor,
the string returned is "Controller #,'.

RETURN VALUE
None

LEVEL
Base or Interrupt

EXAMPLE
This example is a sample print routine in a disk target driver. The arguments to
the ann_err function are the device number and a string to display (on the sys­
tem console).

diskprint(dev, str)
dev_t dey;
char *str;
{

char name[49]; /* Character array for device name */
struct scsi_ad addr; /* SCSI address structure */

/* Fill in the SCSI device address based on the device
nunber */

addr.sa_major = emajor(dev);
addr.sa minor = eminor(dev);
addr.sa:=lun = LUN (eminor (dev));

1M9 ~~1

Page 2

/* Call sdi name with the address of the SCSI address
* structure and a pointer to the character array.
*/

sdi_name (&addr, name);

/* Print the error message */
cmn err(CE WARN, "%s, Unit %d, Partition %d: %s", name,

- a<idr.sa_lun, eminor(dev) & PARTMASK, str);

10/89

sdl_send(D31) sdi_send(D31)

NAME
sdi_send - send SCSI command to the controller

SYNOPSIS
long
sdi _ send(pt)
struet sb *pt;

ARGUMENT
pt pointer to the sb (SCSI block) structure

DESCRIPTION
sdi send accepts a pointer to an sb (SCSI block) and sends the SCSI command
to the controller for routing to a specific SCSI device. The SCSI block must have
been allocated from the host adapter pool of SCSI blocks and the addresses
translated via the sdi_translate function. The type field must be SCB_TYPE.
Commands sent via this function are executed in the order they are received.

RETURN VALUE
SOI_RET_OK return indicates that the request is in progress and the target driver
interrupt handler will be called. SOI_RET_RETRY indicates that sm cannot accept
the job at this time, and it should be retried later. SOI_RET_ERR indicates the
sb_type is invalid. When a device is opened for pass through, SOI_RET_RETRY is

/ returned.

LEVEL
Base or Interrupt

EXAMPLE

10/89

This example shows how sdi_send is used. disksend is an example disk target
driver routine that is called internally within the target driver to send a command
to a device. It is passed a pointer to an SCSI block.

disksend(sb-ptr)
struet sb *sb-ptr;
{

int sendret; /* sdi send return value */
extern int sendid; /* tiffieout IO for retry */

/* Call sdi send with the SB pointer for the job */
if «sendret = sdi_send(sb-ptr» != SOI_RET_OK)
{

/* If sdi send returned retry, set up a timeout to
* submit-the job later
*/

if (sendret = SOl RET RETRY)
(- -

/* Call timeout and save the IO */
sendid = timeout(disksendt, sb-ptr, LATER);
return;

Page 1

sdl_send(D31)

Page 2

else
(

/* The Host Adapter driver could not process the job.
* Print an error message.
*/

CIIIl err(CE WARN, "DISK: Bad SB type to SDI. ");
continue; -

10/89

sdUranslate (031) sdl_translate (031)

NAME
sdi_translate - translate scb virtual addresses

SYNOPSIS
void
sdi_translate (pt, bflags, procp)
struet sb "pt;
int bflags;
proc _ t procp;

ARGUMENTS
pt pointer to the sb (SCSI block) structure

bflags the b_flags member of the buf_t (buffer header) structure

procp pointer to the procp _ t process pointer

DESCRIPTION
sdi_translate is called to allow the SOl to perform machine-specific base level
virtual to physical address translation for the host adapter. This function is called
each time an scb is assembled for transmission before the sdi send or sdi iard
functions are called. - -

IMPORTANT: It is the COB aspect of the scb that requires translation; there-
fore, the sfb must never be run through sdi_translate.
Another important consideration is that if the data area is not a
contiguous segment of memory, the B _PHYS flag must be set.
Especially when allocating more than 2K (2048 bytes) of
memory. (This flag is defined in ddi . h.)

The sb type, se cmdpt, se cmdsz, se datapt, se datasz, and se link
fields must be valid. The bflags-argument is-the same as the b _flags member of
the buf_t(04P) structure. The B_REAO and B_PHYS flags are used by
sdi _translate. The target driver must guarantee that the data area and com­
mand area are locked into memory and are accessible by the requester.
sdi _translate should not be called if the data address is supplied by SOL

In the case of a block read or write, the data area is locked automatically by the
kernel.

This function may sleep and must be called while executing as the requesting
process.

RETURN VALUE
None.

LEVEL
Base Only

EXAMPLE

10/89

In this example, the values that must be initialized prior to the call to
sdi _translate are set in the sb structure.

Page 1

sdl_translata (D31) sdUranslata (D31)

Page 2

struct sb *sb-ptr;
struct scb *scb;
struct ses *cnrj;
buf t *bp;
char *buffer;
unsigned int size;
unsigned short mode;

/* SCSI Block */
/* SCSI control block */
/* SCSI command */
/* Buffer pointer */
/* Buffer for data */
/* Size of the buffer */
/* Direction of the transfer */

/* Set the command address and the command size */
scb->sc cmdpt - SCS AO(cnrj);
scb->sc:::::cnr:isz - SCS:::::SZ;

/* Set the data address and the data size */
scb->sc datapt - buffer;
scb->sc:::::datasz - size;

sdi_translate(sb-ptr, bp->b_flaqs, procp(»;

10/89

4 Structures

Introduction

sb(041)

scb(041)
sc_comp_code Values

scm(041) and scs(041)

sfb(041)

ver _ no(041)

Table of Contents

4-1

4-2

4-4
4-8

4-11

4-12

4-13

4-15

Introduction

This chapter describes the structures that are accessed when writing or main­
taining SCSI target drivers. Five data structures are used by SDI to handle data
transmission between the target drivers and the SCSI host adapter. Additional
structures, the scm and the ses structures, are used to send a command from a
user program to a SCSI device using the pass-through interface. All header files
names are shown with only the file name. All header files referenced in this
manual are found in the /usr/inelude/sys directory.

The structures discussed in this chapter are:

• sb SCSI Block Structure

• scb SCSI Control Block Structure

• scm and ses SCSI Command Structures

• scsi ad SCSI Device Address Structure

• sfb SCSI Function Block Structure

• ver no SCSI Version Number Structure

Structures 4-1

sb(D41)

Header File: sdi. h

This structure defines the SCSI block which can be either the scb (SCSI control
block) or sfb structures (SCSI function block). The sb _ type indicates whether
the sb structure contains an scb or sfb structure.

IMPORTANT: The target driver must only allocate a SCSI block using
sdi_qetblk(D3D. Allocation by any other means causes the
computer to panic. In addition, if one sb structure is copied,
the new structure must be processed with
sdi _ translate(D3I).

Use the sb structure when you call an SDI function that sends a request to a
SCSI device (either the sdi _send or sdi _ icm:i functions).

The method for using the sb structure is:

1. Use the sdi_qetblk function to allocate a SCSI block.

2. Set sb_type appropriately.

3. Assign values to the members of the structure as appropriate.

4. Call the appropriate function to send the data structure.

Refer to the individual sections on the scb and sfb structures for more detailed
information on structure use.

The members of the sb structure are:

Type Member Description

unsigned lonq sb_type; /* Type of SOl block */
union {
struct scb b_scb; /* SCSI control block */
struct sfb b_sfb; /* SCSI function block */
}sb_b;

4-2 SCSI Driver Interface (501)

sb(D41)

The members of this structure are:

sb_type indicates whether the sb b structure is an scb or an scb structure.
Values may be:

ISCB TYPE

SCBTYPE

SFB TYPE

sb_b is an immediate sob (used with sdi_iCItd)

sb_b is an scb (used with sdi_send)

sb_b is an sfb (used with sdi_iCItd)

b sob the SCSI Control Block structure

b sfb the SCSI Function Block structure

Structures 4-3

scb{D41)

Header File: sdi. h

The SCSI Control Block structure is used to send a command to a SCSI device.
The scb contains a pointer to a Command Descriptor Block (COB) that describes
the command to the target controller. (The COB command infonnation is
created using either the scn(04I) or the scs(D4I) structures, described later in
this chapter. The COB contains the operation code of the instruction you wish
to send and other command-specific data.)

The method of using the scb structure is:

1. Fill in the appropriate information in the COB, put the address of the
COB in the sC_crrrlpt member of the scb structure, and set sC_crrrlsz.

2. Set the sb_type member of the sb structure to indicate whether this
structure is being used by sdi_ icrrrl(03I) or for sdi_ send(03I).

3. Set the sc link member of the scb structure to NULL.

4. Set the sc datapt member of the scb structure to the virtual address of
the data area, and set sC_datasz. NOTE: Always assign values to
sc_datapt and sC_datasz if the command requires a data area. You
must set these two fields to NULL.

5. Call sdi_translate(03I) to resolve virtual to physical addressing. Before
calling this function, these fields must be set: sb, type, sC_crrrlpt,
sC_crrrlsz, sc_datapt, sC_datasz, and sc_link.

6. Call either sdi send or sdi icrrrl to send the COB to the SCSI device.

IMPORTANT: After the scb is sent, do not change the information in this
structure or anything referenced by it, for example, in the
structure that describes the COB, until after the job completes.

On successful job completion, sc_conp_code is set to SOI_ASW (all seems well).

For an error condition, check sc comp code for SOl CKSTAT, then check
sc_status to determine the type of error that was retumedby the target con­
troller. (When an error occurs on a SCSI device, the error is passed to the con­
troller and then through the firmware of the host adapter. SOl acknowledges
this interaction and sets the error code from the target controller in sc _status
and sets sc_comp_code to SOI_CKSTAT.)

4-4 SCSI Driver Interface (SDI)

scb(041)

If sc conp code is not SOl CKSTAT or SOl ASW, then the value in bits 0-27 of
SC_C~Itp_;-ode indicates the-nature of the error and the value in bits 28-31 indi­
cates how to process the error. NOTE: As an alternative, you may wish to
check bits 28-31 for SOl_ERROR and then test bits 0-27 for more specific infor­
mation. A scenario for this usage is shown in the explanation for
sc _ coItp _code later in this section.

The members of the scb structure are:

Type Member Description

unsigned long sc _ canp _code; /* Current job status */
void (*sc_int) 0 ; /* Target Driver interrupt handler */
caddr t sC_cnrlpt; /* Target command */
caddr t sC_datapt; /* Data area */
long sc_wd; 1* Target driver word */
time t sc_time; /* Time limit for job */
struct scsi ad sC_dev; /* SCSI device address */
unsigned short sc_m::xie; /* Mode flags for current job */
unsigned char sc_status; /* Target status byte */
char sc_fill; /* Fill byte */
struct sb *sc_link; /* Link to next scb command */
long sC_crrdsz; /* Size of command */
long sC_datasz; /* Size of data */
long sc_resid; /* Bytes to transfer after data */

The fields that the host adapter can change are: SC_coIYi'_code, sc_status, and
sc time.

More information on each member of the scb structure follows:

SC_coItp_code the job completion status. This member is tested in the inter­
rupt routine after the job has completed. Use SC_coIYi'_code
by testing for SOI_ASW (normal return). If SOl_ASW is not
present, test bits 28-31 to determine if SOl_ERROR was set to
indicate an error occurred. The remaining values in bits 28-31
indicate how to process the error. The values for bits 28-31
are covered in the following text. Values for bits 0-27 are
covered at the end of the scb structure section. Refer to the
header file for more information on how to extract the values
in each bit position. Values for bits 28-31 are:

Structures 4-5

scb(041)

SC int

sc wd

4-6

SDI ERROR

SDI RETRY

SDI MESS

SDI SUSPEND

an error occurred.

the error is unrelated to this job and the
job should be retried (device dependent).

a message describing this event has been
printed on the console and logged.

the host adapter has suspended sending
normal commands to the logical unit and
the target driver is responsible for resum­
ing the queue. Immediate commands can
still be sent with the sdi_ icmd function,
but the SCSI device cannot be opened for
pass-through.

a pointer to a target driver interrupt routine. This routine is
called when the job associated with the SCSI Control Block
completes. The interrupt routine is called with a single argu­
ment which is a pointer to the address of the sb of the job.
The interrupt routine runs at the SCSI interrupt level (12).
The functions in the interrupt routine must not call
pdi _ sleep(D3P), have user context, or run in the context of
any particular process. sC_int is called when the job sending
the information to the SCSI device completes. If sc _ int is
NULL, no interrupt routine is called when the job completes.

a virtual address pointing to the start of a target controller
command with the size indicated by the sC_cmdsz member.
The SCSI command pointed at by sc _ cmdpt is sent with no
interpretation by the SDI software. The command area must
be in kernel space and contiguous in physical memory. You
must allocate your own data structure to ensure contiguous
physical memory.

a virtual address pointer pointing to the start of the data area
for the given command with the size indicated by the
sc datasz member.

provided for use by the target drivers. This member is not
examined or changed by SDI; you can use this member for
any purpose.

SCSI Driver Interface (501)

_________________________ scb(D4l)

se time

se dev

se IOOde

se status

se fill

se link

Structures

se time is the maximum number of milliseconds SDI should
wait for the job to complete. The timing begins when the
command is sent to the controller. The completion status must
be retuined before the timer runs out. If a time out occurs,
The processing of queued jobs for that controller is suspended
until it is resumed by the target driver. If the se_time
member is zero, the job is not timed. This timing should only
be used to ensure the completion of the job and not for per­
formance measurements. The returned value of se time indi­
cates the actual amount of time that the job took and the reso­
lution is in minutes.

SCSI device address (an instance of the sesi ad(D4I) struc-
ture). -

This member is any special modes for this job. The
SCB HAAD bit in the se m:xie field refers to the data address - -
which is pointed to by the se _ datapt element. If the
SCB HAAD bit is set in the se IOOde field, then the data
address was supplied by SDI, Otherwise it was supplied by
the target driver.

When SCB_PARTBLK is set in the mode field, it should indi­
cate that the data area does not define the complete transfer.
In this case the se _ resid field indicates how many more
bytes to expect in the transfer. These extra bytes are not
transferred between system memory and the SCSI bus. If the
transfer is a write, zeros are sent to the controller.

contains the value returned by the target controller. If a
CHECK CONDITION status is returned, the host adapter
suspends processing of commands to that device. (CHECK
CONDITION is defined in the AT&T SCSI Definition, Select
Code 305-013.)

(not supported.) A character with which an incomplete data
block is padded. All incomplete data blocks are always pad­
ded with zeros.

(not supported.) You must set this member to NULL before
calling sdi_translate.

4·7

scb(D41)

se cm:isz

se datasz

se resid

command size in bytes.

data size in bytes of the requested input or output buffer.

(not supported by the 6386 Computer.) The number of bytes
not transferred to/from the target controller. This is used for
partial block transfers. Residue bytes which are received from
the target controller are discarded by SOL

sc _ comp _code Values

An alphabetic summary of the completion codes follows. The third column
indicates the hexadecimal value associated with the completion code value. The
fourth column indicates on which computer type the use of the completion code
is supported. The fifth column describes which flags in bit positions 28-31 of
se _ eomp _ eode are enabled by the completion code. (E is SDI _ERROR, M is
SOl_MESS, R is SOl_RETRY, S is SOl_SUSPEND, and "_" indicates that the
respective flag is not enabled.)

4·8 SCSI Driver Interface (SOl)

scb(D4l}

so_ooop_code Hex Computer

value Description Value Type Rags

SDI ABORT Command was aborted OX05 unsupported EMRS

SDI ASW Job completed normally Ox01 6386 -
SDI CKSTAT Check the status byte OxOe 6386 E-RS

SDI CRESET Reset caused by this unit Ox07 6386 E-RS

SDI HAERR Host adapter error OxOb 6386 EM-S

SOl LINKFO Linked cmd done without flag Ox02 unsupported -
SOI_LINKFI Linked cmd done with flag Ox03 unsupported -
SOl MEMERR Memory fault OXOC unsupported E-R-

SOI~ISMAT Parameter mismatch Ox12 6386 EMRS

SOl NOALLOC This block not allocated OXOO 6386 -
SDI NOSELE SCSI bus select failed Oxll 6386 E-S

SDtNOTEQ Addressed device not present Ox08 6386 EM-

SOl ONEIC More than one immediate request Ox17 6386 E-

SOl OOS Device out of service Oxl0 6386 EM-

SOl PROGRES Job in progress Ox13 6386 -
SOl QFLUSH Job was flushed Ox04 6386 EMR-

SOl RESET Reset detected on the bus Ox06 6386 EMRS

SOI_SBUSER SCSI bus error OxOd unsupported E-RS

SOl SCBERR SCB error OxOf 6386 E-

SOI_SFBERR SFB error Ox19 6386 E-

SOl SHORT TC did not transfer all data Oxlb unsupported E-RS

SOl TCERR Target protocol error detected Oxla unsupported E-S

SOl_TIME Job timed out Ox09 unsupported E-RS

SOl_UNUSED Job not in use Ox14 unsupported -
SOl V2PERR vtop failed OxOS unsupported EM-

The sc _ comp _code values are defined as follows:

Values for the 6386 Computer:

SDI SCBERR the SCSI control block contains an error or an invalid
type.

Structures 4-9

scb(D41)

SOl ASW

SOl CKSTAT

SOl HAERR

SOl NOALLOC

SOl NOSELE

SOl ONEIC

SOl OOS

SOl PROCRES

SOl RESET

SOl SFBERR

SOl TIME

SOl UNUSEO

4·10

(all seems well) the job completed without an error.

check the status byte. This value is set when the target
controller returns a status other than good.

a problem occurred between SOl and the host adapter
controller. Possible causes are I/O bus parity or a failed
host adapter.

the requested block was not allocated to a target driver by
SOL If a target driver detects this value, panic the system
(using the pdi_cmn_err(03P) function}. sc_comp_code is
set to this value when the SCSI block is released from the
target driver.

SOl timed out trying to select the controller.

more than one immediate request has been sent.

SOI_ OOS indicates that the firmware is not operational.

the job is not complete (set by SOl in the sell _ icmd and
sdi_ send functions)

when the target driver requested a job queue flush for a
device, all jobs in the queue are returned with this com­
pletion code set.

SOl detected a reset on the SCSI bus. All outstanding or
jobs queued at the target controller are returned to the
target drivers with this condition code set. If the job is
being controlled by SOl, but has not been sent out on the
bus, the job is not returned. This code is also returned if
a target driver requests that a target controller be reset.

there is an error in one of the fields in the sfb structure.

SOl timed out a job.

the host adapter is not using the control structure. SOl
sets the sc comp code to this value when it allocates a
SCSI block for a target driver.

SCSI Driver Interface (SOl)

scm(D41) and scs(D41)

Header File: scsi. h (both structures)

Both the scm and scs structures are used by target drivers and with the pass­
through interface to send a SCSI command to a SCSI device. The scs structure
defines the layout for a group 6 (six-byte command length) Command Descrip­
tor Block (CDB); scm is a group 10 (ten-byte command length) CDB. Both types
of CDBs are described in the ANSI Small Computer System Interface (SCSI), X3T9,
2/82-2, Revision 17B. Refer to the ANSI manual for more information on indivi­
dual structure members. The smyadO member ensures that the sm_addr
member does not cross a 32-bit word boundary.

The members of the scm structure are:

Type Member Description

int smyadO 16; /* 16-bit pad */
int sm_op 8; /* Opcode */
int smlun 3; /* Logical unit number */
int sm res1 5; /* reserved field */
unsigned sm_addr; /* Block address */
int sm res2 8; /* reserved field */
int sm len 16; /* Transfer length */
int sm cont 8; /* Control byte */

Because of the smyadO member, you must add 2 to the address of the scm
structure when specifying it in the sob structure.

The members of the scs structure are:

Type Member Description

int ss_op 8; /* Opcode */
int ss lun 3; /* Logical unit number */
int ss addr 21; /* Block address */
int ss len 8; /* Transfer length */
int ss cont 8; /* Control byte */

Structure. 4·11

SCSi_8d(D41)

Header File: sdi. h

The SCSI device address structure is used by every scb or sfb structure with
the appropriate SCSI device. SOl interprets the external major and minor
numbers, the logical unit number, and the extended logical unit number to send
the scb or sfb to the correct device.

The members of the scsi ad structure are:

Type Member Description

long sa_major; /* Major number */
long sa_minor; /* Minor number */
unsigned char sa_lun; /* loqical unit number */
unsigned char sa_exlun; /* extended loqical unit number */
short sa_fill; /* Fill word */

This structure consists of the device number which is passed to the target driver
by the kernel, and logical unit number. The sa_major and sa_minor members
(external major/minor numbers) are long integers to allow for future expansion
of the major and minor numbers.

jij
Ij:!\~ Use of the sa_exlun mom""';' not .upported 10, the 6386 romput",.

For example, if the target controller wanted to access extended logical unit
Ox02Ia, then sa_lun would equal Ox82, and sa_exlun would equal OxIa.

4-12 SCSI Driver Interface (SOl)

sfb(041)

Header File: sdi. h

The SCSI function block serves as a mechanism for sending control information
from a target driver, to the host adapter, or to a SCSI device. (The scb is sent
to the device, the sfb is generally sent to all other receiving entities.)

An sfb is sent to the device when an abort or reset message is required. (Abort
and reset messages have a different protocol than do the commands sent to the
SCSI device with a CDB.)

The members of the sfb structure are:

Type Member Description

unsigned long sf_camp_code; /* Current job stat us * /
void (*sf_int> 0; /* Target Driver interrupt handler */
struct scsi ad sf_dev; /* SCSI device address */
unsigned long sf_func; /* Function to be performed */
int sf wd /* Target driver word */

The sf camp code is identical to the sc camp code in the scb, and it takes on
the same vahl"es. - -

The sf int and sf dev entries are used the same as in the scb structure. The
only field which thehost adapter changes in the sfb structure is sf_camp_code.

The sf _ func member indicates the operation to be performed.

SFB ABORTM requests that an abort message be sent to the addressed logical
unit.

SFB FLUSHR requests that a logical queue unit be flushed.

SFB NOPF requests the target driver to not perform an operation.

SFB RESETM requests that SDI send a bus device reset message to the
addressed controller.

SFB RESUME requests that a queue permit normal job flow to a logical unit.
This command is used after SFB_SUSPEND, but no error
results if SFB RESUME is called first.

Structures 4-13

sfb(041)

SFB SUSPEND requests that a queue be suspended. This indicates that nor­
mal job flow to the logical unit is halted until the queue is
resumed by the target driver.

4-14 SCSI Driver Interface (501)

ver no(041)

Header File: sdi. h

The version number structure is used to ensure that the version of SDI is
appropriate for the target drivers.

The members of this structure are:

Type Member Description

unsigned char sv_release; /* Release number */
unsigned char sv_machine; /* Conputer type */
short sv_modes; /* SCSI Release Number */

sv _release indicates SDI release number (set to 1 for the first release). On the
3B4000 computer, the release is set in the SHA _RELEASE constant defined in
had. h. On the 3B2 computer, the release is hard coded as 1.

sv_machine indicates the type of computer you are using. Valid values are:

CDB Command Descriptor Block. Information that describes a
command that is sent to the SCSI device from a target driver
or from a user program. The commands described by the
CDB are listed in the AT&T SCSI Definition. The scrn(D4I)
and scs(D4I) structures are used describe the information in
a CDB to SDI.

device

EDT

HA

host computer

Structures

A single logical unit that may be attached to a target con­
troller or directly to the SCSI bus. If a target controller has
four disk drives attached to it, each disk drive constitutes a
device.

Equipped Device Table. A list maintained by the operating
system of all circuit boards (feature cards on a 3B2 com­
puter) that are attached to a computer.

Host Adapter. A machine-dependent hardware component
that provides access to the machine-independent SCSI bus.
The driver associated with the host adapter contains the SDI
functions.

The computer to which the SCSI bus is attached.

4-15

multi-host functionality

POI

sb(D4I)

scb(D4I)

scm(D4I)

scs(D41)

SCSI

SCSI bus

SOl

sdijreeblk(D31)

sdtgetblk(D31)

4-16

A feature on the 3B4000 Computer that permits more than
one computer to share a SCSI bus. LI "pass-through inter­
face" A feature of SDI that permits a user program to send a
command directly to a SCSI device without using a target
driver.

Portable Driver Interface. A library of functions used to code
a SCSI target driver.

The SCSI Block structure that contains either an scb or sfb
structure.

The SCSI Command Block structure that contains data for
identifying a command descriptor block to SOl, for handling
completion status, and for handling interrupts.

The SCSI Command Medium-size structure that contains
data for creating a ten-byte command descriptor block.

The SCSI Command Small-size structure that contains data
for creating a six-byte command descriptor block.

Small Computer System Interface. A hardware and
software standard that treats computer peripherals as
modules. These modules can be added more easily and in
greater numbers than have been previously available for
small computer systems.

A cable that connects SCSI devices and controllers to a com­
puter.

The SCSI device address structure that contains data identi­
fying the address of a specific SCSI device.

A set of structures and functions that permit a driver to
access a SCSI device.

A function used to release a previously allocated SCSI block.

A function used to allocate a SCSI block for the target
driver.

SCSI Driver Interface (SOl)

sdi -setdev(D3I)

sdUcmd(D3I)

sdi_init(D3I)

sdt name(D3I)

sdi_send(D3I)

A function used to convert device number to pass-through
device number.

A function used to perform requested operation immedi­
ately.

A function used to initialize the host adapter.

A function used to get name of addressed controller.

A function used to send SCSI command to the controller.

sdi_ translate(D3I) A function used to translate sob virtual addresses.

sfb(D4I)

target driver

Structures

The SCSI Function Block structure that contains data for
sending an immediate command to SOL

a UNIX operating system driver that controls a particular
class of a device, such as a disk drive or a tape driver.

The SCSI Version Number structure that identifies the
current release and version number of SCSI hardware and
software components.

4-17

Index

A
Allocating SCSI Block structures 4: 2
ANSI Specification document 1: 10

B
bdevsw (block device switch table)

1: 6
B_GETDEV 2: 6,10
B _ GETDEV code example 1: 7
B GEITYPE 2: 4

B _ GEITYPE code example 1: 7
b scb 4: 2

b sfb 4: 2

Bus reset 1 : 9

bus_type structure 1: 8

c
Caution about the pass-through inter­

face 2: 9
COB 4: 15

COB (Command Descriptor Block)
4:4

COB use 2: 10
cdevsw (character device switch

table) 1: 6

Copying SCSI Block structures 4: 2

D
device 4: 15

Driver portability 1: 3

Index

E
EBUSY error code 2: 6, 11

EDT 4: 15

EF AULT error code 2: 4, 11
EINV AL error code 2: 11

ENOMEM error code 2: 11
EXLUN value 4: 12
Extended logical unit 4: 12

F
Function summary 3: 1

G
GETVER 2:4
Group 10 COB 4: 11

Group 6 COB 4: 11

H
HA 4: 15

HA VER 2:4
Host adapter 1: 3, 7
Host adapter release number 2: 4,

4: 15
Host adapter version number 2: 4,

4: 15

host computer 4: 15

Interrupt routine 1: 7
ioctl routine B GETDEV and

B _ GETTYPE code example 1: 7

1-1

Index

ioct1(2) system call 2: 1

ioctl(02) routine 1 : 6

ISCB TYPE 4: 3

M
mknod(2) 2: 6

mktemp(3C) 2: 6

multi-host functionality 4: 16

o
open(2) system call 2: 4

p
Pass-through interface 4: 11

pass-through interface 4: 16
Pass-through interface caution 2: 9

POI 4: 16

R
Release number 2: 4, 4: 15

s
sa exlun 4: 12
sa fill 4: 12

sa lun 4: 12
sa_major 4: 12
sa minor 4: 12
SB (SCSI Block) 4: 2
sb b 4: 2
sb(D4I) 4: 16

1·2

sb(D4I) SCSI Block structure 1: 7
sb_type 4:2
sb _ type use with SCSI Control Block

4:4
SCB (SCSI Control Block) 4: 4
scb(D4I) 4: 16

SCB TYPE 4:3
sc_cmdpt 4: 6

sc_cmdpt use 4: 4
sc cmdsz 4: 8
sc cmdsz use 4: 4
sc _ comp _code 4: 5

sc_comp_code error condition usage
4:4

sc _ datapt 4: 6
sc_datapt use 4: 4

sc datasz 4: 8

sc datasz use 4: 4
sc dev 4: 7

sc fill 4: 7

sc int 4: 6

sc _ int member of scb(D4I) 1: 7
sc link 4: 7
sc link use 4: 4
scm(D4I) 4: 16

sc mode 4: 7
sc resid 4: 8
scs(D4I) 4: 16

SCSI 4: 16
SCSI Block 4: 2

SCSI bus 4: 16
SCSI Control Block 4: 4
SCSI device address structure 4: 12
SCSI Function Block 4: 13

SCSI modes 4: 15
SCSI software architecture figure 1: 2
SCSI target driver routines 1: 6
scsi_ad(D4I) 4: 16

SCSI Driver Interface (SDI)

sc status 4: 7

sc time 4: 7

sc wd 4: 6

SDI 4: 16

SDI defined 1: 1

SDI failure 4: 2

SDI input/ output controls 1: 3

SDI Interrupt routine 1 : 6

SDI ASW 4: 10

SDI_ CKSTAT 4: 4, 10
SDI ERROR 4: 5

sdi_freeblk(D31) 4: 16

sdU~etblk usage with sb(D41) 4: 2
sdi-zetblk(D31) 4: 16

sdi-zetdev(D31) 4: 17

SDI_HAERR 2: 11, 4: 10

sdi_icmd(D31) 4: 17

sdUcmd(D31) use with SCSI Control
Block 4: 4

sdi_init(D31) 4: 17

SDI MESS 4: 5

sdi_name(D31) 4: 17

SDI NOALLOC 4: 10

SDI NOSELE 4: 10

SDI ONEIC 4: 10

SDI OOS 4: 10

SDI_PROGRES 2: 6,11, 4: 10

SDI_QFLUSH 4: 10

SDI_RESET 1: 9, 4: 10

SDI RE1RY 4: 5

SDI SCBERR 4: 9

sdi_send(D31) 4: 17
sdi_send(D3I) use with SCSI Control

Block 4: 4

SDI SFBERR 4: 10

SDI SUSPEND 4: 5

SDI TIME 4: 10
sdi_translate(D3I) 4: 17

Index

Index

sdi_ translate(D31) use with SCSI Con-
trol Block 4: 4

SDI UNUSED 4: 10
SFB (SCSI Function Block) 4: 13

SFB ABORTM 4: 13

sfb(D41) 4: 17

SFB FLUSHR 4: 13

SFB NOPF 4: 13

SFB RESETM 4: 13

SFB RESUME 4: 13

SFB SUSPEND 4: 14
SFB TYPE 4: 3

stcomp_code 4: 13

sf dey 4: 13

sf func 4: 13

sf int 4: 13

sf wd 4: 13

sm cont 4: 11

sm len 4: 11

sm lun 4: 11

sm_op 4: 11

sm_padO 4: 11

sm rest 4: 11

sm res2 4: 11

ss addr 4: 11

ss cont 4: 11

ss len 4: 11

ss lun 4: 11

ss_op 4: 11

sv machine 4: 15

sv modes 4: 15

sv release 4: 15

T
Target controller reset 1: 9

target driver 4: 17

1·3

Index

v
ver_no(D4I) 4: 17

Version number (of host adapter)
2: 4, 4: 15

Version number structure 4: 15

1-4 SCSI Driver Interface (501)

