§ ATal
© UNIX System /38

PROGRAMMER'S REFERENCE MANUAL

IVANVIA 3ON3H343H SHININVYHOOHd

EEEEEEEE
L

W

B

UNIX® System V/386

Release 3.2
Programmer’s Reference Manual

Prentice Hall, Englewood Cliffs, New Jersey 07632

Library of Congress Catalog Card Number: 88-62527

Editorial/production supervision: Karen Skrable Fortgang
Manufacturing buyer: Mary Ann Gloriande

© 1989 by AT&T. All rights reserved.
Published by Prentice-Hall, Inc.

A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

NOTICE

The information in this document is subject to change without notice.
AT&T assumes no responsibility for any errors that may appear in
this document.

DEC is a trademark of Digital Equipment Corporation.
DOCUMENTER’S WORKBENCH is a trademark of AT&T.
HP is a trademark of Hewlett Packard Co.

Intel is a registered trademark of Intel Corporation.
TEKTRONIX is a registered trademark of Tektronix, Inc.
TELETYPE is a registered trademark of AT&T.

UNIX is a registered trademark of AT&T.

VAX is a trademark of Digital Equipment Corporation.
XENIX is a registered trademark of Microsoft Corporation.

The publisher offers discounts on this book when ordered
in bulk quantities. For more information, write or call:

Special Sales

Prentice-Hall, Inc.

College Technical and Reference Division
Englewood Cliffs, NJ 07632

(201) 592-2498

Printed in the United States of America

109 87 65 4321

ISBN 0-13-944901-9

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

TABLE OF CONTENTS

1. Commands

intro(1) . . .« 0 o e e e e e e e e e introduction to programming commands
admin(1)o 0o e e e e e e create and administer SCCS files
ar(I) . « v v o v e e e archive and library maintainer for portable archives
Y T common assembler
(1) v v e e e e e e e e e e e e e e e C program beautifier
L) TS C compiler
COff(1) « v v v v e e e e e e e e e e e e e e e e e convert a COFF file
cde(l) « v v v e e e e e e e e change the delta commentary of an SCCS delta
flow(l) « v v v i e e e e e e e e e e e e e e e e generate C flowgraph
chkshlib(1) . . . « « . v v v v v v v v v v v compare shared libraries tool
comb(1) '« . v v e e e e e e e e e e e e e e e combine SCCS deltas
conv(l) . . .o a e e e e e e e e e common object file converter
convert(l) . . . « o« o o o oo convert archive files to common formats
PP(1) v v v e e e e e e e e the C language preprocessor
cprs(l) « v o v e e e e e e compress a common object file
cscope(l) + v v o v e e e e e e interactively examine a C program
ctags(l) « v v v e e e e e e e e e e e e e e e e e create a tags file
ctrace(l) « « v v v v e e e e e e e e e e e e e e e e C program debugger
exref(1) « v v v v v e e e e e e e e e generate C program cross-reference
delta(1) . . . « o « v v v v v v oo make a delta (change) to an SCCS file
dis(1) « ¢ v v e e e e e e e e e e e e e e e e object code disassembler
dump(l) . o« v ¢ v o v e e e e e dump selected parts of an object file
gence(l) . . o v oo oo oo e create a front-end to the cc command
get(l) . . v o e e e e e get a version of an SCCS file
hdr(l) . . . ¢ « o oo oo display selected parts of a XENIX object file
i286emul(l) o « v v . o e e e e e e e e e e e e e e e e e e emulate 80286
inffoomp(IM) 000 compare or print out terminfo descriptions
10 T T link editor for common object files
lex(1) & v v v v v e e e e e e e e e generate programs for simple lexical tasks
BRt(1) « « v v v v e e e e e e e e e e e e e e e e e e a C program checker
list(1) . . « « ¢ v o v v v o produce C source listing from a common object file
lorder(1) . « « « v v v o v v oo oo find ordering relation for an object library
lprof(1) . . « « « « v v v oo display line-by-line execution count profile data
MAL) & o v e mMacroprocessor
make(1) maintain, update, and regenerate groups of programs
mes(l) « v v v v e e e e e e e e e manipulate the object file comment section
mkshlib(1) . . . « . v« o v v v v v e e e e create a shared library
nm(l) e e e e e e e e print name list of common object file
Prof(1) « . v v vt e e e e display profile data
Prs(l) « v v e e e e e e e e e e e e e e e print an SCCS file
regemp(l) oL oo e e e e e e e regular expression compile
rmdel(1) .« « « ¢« v 0o e e e e e remove a delta from an SCCS file
SACH(1) « ¢ v v e e e e e e e e e e e e print current SCCS file editing activity
scesdiff(1) « « & ¢ v 0 oo e e e compare two versions of an SCCS file
SAD(1) v v v v e e e e e e e e e e e e e e e e e e symbolic debugger
size(1) + ¢« ¢ ¢« v o 0 oo e print section sizes in bytes of common object files
stings(1) o o . e e e e e find the printable strings in an object file

Table of Contents

strip(1) strip symbol and line number info from a common object file
He(IM) . o oo oL terminfo compiler
tsort(l) topological sort
unget(1)o oL L L. L, undo a previous get of an SCCS file
val(l) o e e e validate SCCS file
ve(l) . e e e e, version control
what(1) L identify SCCS files
x286emul(1) emulate XENIX 80286
yace(l) . . . oo .. yet another compiler-compiler

2. System Calls

intro(2), introduction to system calls and error numbers
access(2) . . v v e e e e e e e e e e determine accessibility of a file
acct(2) ... L. enable or disable process accounting
alarm(2) oL Lo L L, set a process alarm clock
brk(2) L L0 L, change data segment space allocation
chdir(2) L L L., change working directory
chmod(2) L, change mode of file
chown(2). change owner and group of a file
chroot(2) change root directory
dose(2) e close a file descriptor
creat(2)o oL L. L. create a new file or rewrite an existing one
dup(2) L. duplicate an open file descriptor
eXeC(2) « v v i e e e e e e e e o, execute a file
exit(2) L terminate process
fentl(2) . . Lo file control
fork(2), create a new process
getdents(2) . . . read directory entries and put in a file-system-independent format
getmsg(2) L L., get next message off a stream
getpid(2) get process, process group, and parent process IDs
getuid(2) get real user, effective user, real group, and effective group IDs
joctl(2) control device
kill2), send a signal to a process or a group of processes
ink(2) link to a file
lseek(2), move read/write file pointer
mkdir(2) L make a directory
mknod(2) make a directory or a special or ordinary file or a FIFO
mount(2) e e e e e e e e e e e mount a file system
msgetl2) . . . L L. Lo message control operations
msgget(2) L. e e e e e e e get message queue
mSZOP(2) + v . . e e e e e e e e e e e message operations
nice(2) s change priority of a process
open(2)o e e e e open for reading or writing
pause(2)l suspend process until signal
pipe(2) s create an interprocess channel
plock(2), lock process, text, or data in memory
poll2) STREAMS input/output multiplexing
profil(2), execution time profile

Table of Contents

ptrace(2) o . e e e e e e e e e e e e e e e e e e process trace
putmsg(2) o e e e e e e e e e e e e send a message on a stream
read(2) . . v . e read from file
o v 4 Te 11,4 (72 T remove a directory
semctl(2) e e e e e e e semaphore control operations
semget(2) « . . . e e e e e e e e e e e e e e e e get set of semaphores
SEMOP(2) « v v ¢ v v o e e e e e e e e e e e e e e e semaphore operations
SEtPEIP(2) « -« v e e e e e e e e e e e e e e e e e e e set process group ID
setuid(2) « .« - o e e e e e e e e e e e e e e e e e set user and group IDs
shmetl(2) ¢« v v oo oo shared memory control operations
shmget(2) get shared memory segment identifier
shmop(2) . « « v ¢ ¢ v v v i b e e e e e e e shared memory operations
signal(2)o oo e specify what to do upon receipt of a signal
sigset(2) o . o e e e e e e e e e e e e signal management
1 1 72 S get file status
X4 11 72 TS get file system information
SHME(2) o« v v v e set time
SYNC(2) v v v v e update super block
SYSfS(2) .« v v e e e e e e e e e e e e e get file system type information
SYSiB6(2) .« v v e e e e e e e e e e e e e machine-specific functions
1510 11 72 T get time
mes(2) . « ¢ v . e e e e e e e e e e e e get process and child process times
uadmin(2) . . . 0 . e e e e e e e e e e e e e e e e e administrative control
ulimit(2) . . . o v e e e e e e e e e e e e e e e e e e get and set user limits
umask(2)o 0 oo e e e e e e e e e set and get file creation mask
umount(2) h e e e e e e e e e e e e e e e e e unmount a file system
uname(2) .+ . v v v e e e e e e e e e e e e get name of current UNIX system
unlink(2)0 0o e e e e e e e e e remove directory entry
ustat(2) « . v e e e e e e e e e e e e e e e e e e e get file system statistics
utime(2) 0 e e e e e e e e set file access and modification times
wait(2) « . . e e e e e e e e e e e e wait for child process to stop or terminate
WHE(2) & v v vt e write on a file

3. Subroutines

intro3) 0o oo oo e e e introduction to functions and libraries
a641l3C) convert between long integer and base-64 ASCII string
abort(3C) . . .t . e e e e e e e e e e e e e e e e e generate an abort fault
abs(83C) . . . o e e e e e e e e e e e e e e return integer absolute value
assert(3X) . . . v e e e e e e e e e e e e e e e e verify program assertion
bessel(BM) . « v v v vt i e e e e e e e e e e e e e e e e Bessel functions
bsearch(3C) « ¢ v ¢ ot it e e e e binary search a sorted table
cdock(BC) + v v e e e e e e e e e e e e e e e e e report CPU time used
aypt(3C) e e e e e e e e e e e e generate hashing encryption
ayptBX) . ..o oo e e password and file encryption functions
ctermid(3S) e e e e e e e e e e e generate file name for terminal
ctime(3C)o o e e e e e e e e convert date and time to string
ctype(3C) . . . e e e e e e e e e e e e e e e e e character handling
curses(3X) terminal screen handling and optimization package

Table of Contents

cuserid(3S)00l get character login name of the user
dial3C) establish an outgoing terminal line connection
directory(3C)o oo e e directory operations
drand48(3C) generate uniformly distributed pseudo-random numbers
dup2(3C) o o s duplicate an open file descriptor
ecvt3C)o convert floating-point number to string
endBC) Lo e e last locations in program
exffBM). error function and complementary error function
expGM). exponential, logarithm, power, square root functions
fclose(3S) i e e e e e e e e e e e e close or flush a stream
ferror(3S) e e e e e e e e e e . stream status inquiries
fieldBX) 0o e e e e e e FIELD library routines
fieldtype(3X) oo 0o FIELDTYPE library routines
floorBM) floor, ceiling, remainder, absolute value functions
fopen(3S) e e e . open a stream
formBX) e e e e FORM library routines
fpgetround(3C) IEEE floating point environment control
fread(3S)o e e e binary input/output
frexpB3C)o oo manipulate parts of floating-point numbers
fseek(3S)o L Lo oo ol reposition a file pointer in a stream
BwBC) . . e walk a file tree
gammaBM) L0000 log gamma function
gete(@BS) oo oo oo get character or word from a stream
getewd(3C)o Lo get path name of current working directory
getenv(3C)o 000 oL return value for environment name
getgrent(3C) Lo oo get group file entry
gethz(3C) return the frequency of the system clock in ticks per second
getloginBC) Lo e get login name
getopt3C)o oo oL get option letter from argument vector
getpass(B3C) L. e e e e e read a password
getpw(BC) L L o e get name from UID
getpwent3C) o000 o oo get password file entry
gets(3S) Lo oo oo e get a string from a stream
getutBC) L. Lo oo access utmp file entry
hsearch3C) manage hash search tables
hypotBM) oo oo Euclidean distance function
isnan(3C)o o test for floating point NaN (Not-A-Number)
itemBBX) e e e e e e e e e e e e e CRT item routines
13tol3C) convert between 3-byte integers and long integers
ldahread(3X) read the archive header of a member of an archive file
Idclose(3X) o oo o v i e e e close a common object file
ldfhread(3X) read the file header of a common object file

ldgetname(3X) . . retrieve symbol name for common object file symbol table entry
Idlread(3X) manipulate line number entries of a common object file function
ldlseek(3X) seek to line number entries of a section of a common object file

ldohseek(3X) seek to the optional file header of a common object file
ldopen(3X) open a common object file for reading
ldrseek(3X) seek to relocation entries of a section of a common object file

ldshread(3X) read an indexed/named section header of a common object file

-vi -

Table of Contents

ldsseek(3X) seek to an indexed/named section of a common object file
1dtbindex(3X) . . compute the index of a symbol table entry of a common object file
ldtbread(3X) read an indexed symbol table entry of a common object file
ldtbseek(3X) seek to the symbol table of a common object file
libwindows(3X) windowing terminal function library
Iockf(BC) « v v v v v v e e e e e e e e e e e e e record locking on files
logname(3X)o oo e e return login name of user
Isearch(3C) . . =« v v v v v e i e e e e e e e e e linear search and update
malloc(B3C) . . .« ¢ .t e e e e e e e e e e e main memory allocator
malloc(3X) . . .« . . o .o e e e e e fast main memory allocator
matherr(3M) oo e e e e e error-handling function
memory(3C) e e e e e e e e e e e e e memory operations
menu(3X) « « ¢ v vt e v e e e e e e e e e e e e e e e e CRT menu routines
mktemp(3C)o .o e e make a unique file name
monitor(3C) v e o e e e e e e e e e prepare execution profile
nlist(B3C) . . .+ ¢ v v e e e e e e e e e get entries from name list
nlsgetcall3N) get client’s data passed via the listener
nlsprovider3N)o 000 get name of transport provider
nlsrequest(3N) format and send listener service request message
panel(3X) oo e e e e PANEL library routines
perror(3C) o Lo e e e e e e e e e e system error messages
plotBX) oo e e e e graphics interface subroutines
popen(3S)o .t e e e e e e initiate pipe to/from a process
printf(3S) o o e print formatted output
putc3S) oo e e e put character or word on a stream
putenv(3C)o oo e change or add value to environment
putpwent(3C) oo e e e write password file entry
puts(3S) o e e e e e e e e e e e put a string on a stream
GSOrt(BC) e quicker sort
rand(3C) e e e e e e e e e e simple random-number generator
regemp(3X) oo e e e e . compile and execute regular expression
scanf(3S) . . ¢ v 4 e v e e e e e e e e e e e e e e e convert formatted input
setbuf(3S) . . + .« v it e e e e e e e e e e e e assign buffering to a stream
sefmp(BC) o o e e e e e e e e e e e e e e e e e non-local goto
sinh(B3M) .« « v v v o e e e e e e e e e e e e e hyperbolic functions
sleepBC) .+ v v v v v v e e e e e e e suspend execution for interval
sputl3X) access long integer data in a machine-independent fashion
ssignal(3C) « « « . o o e e e e e e e e e e e e e software signals
stdio3S) + .« . . v e e e e e e standard buffered input/output package
stdipcB3C)o e e standard interprocess communication package
string(3C) « « .« 4 4 o e e e e e e e e e e e e e e e e e e string operations
strtod(3C) oo e e e convert string to double-precision number
Y o) [) N convert string to integer
swab(8C) . .+« v v e e e e e e e e e e e e e e e e e swap bytes
system(3S) oo e e e e e e e e e e issue a shell command
tam(3C) . . e e e e e e e e e e e e e e e e e e e TAM transition libraries
tmpfile(3S) o oo create a temporary file
tmpnam(3S) oo e e e e e e create a name for a temporary file
trigBM) « . . . o e e e e e e e e e e trigonometric functions

Table of Contents

tsearch3C) manage binary search trees
ttyname(3C) L. Lo oL L. find name of a terminal
ttyslot(3C) find the slot in the utmp file of the current user
tacceptBN) L L o accept a connect request
tallocBN) allocate a library structure
t bind3N) bind an address to a transport endpoint
tcoseBN) close a transport endpoint
t connect3N) establish a connection with another transport user
terrorBN), produce error message
tfreeBN) e free a library structure
tgetinfoBN) get protocol-specific service information
tgetstateBN) L0 L o L., get the current state
tlistenBN) listen for a connect request
tlook(BN) look at the current event on a transport endpoint
topenBN), establish a transport endpoint
toptmgmt3N) manage options for a transport endpoint
trevBN)o, receive data or expedited data sent over a connection
t rcvconnect(3) receive the confirmation from a connect request
trevdisBN) L., retrieve information from disconnect
trcvrelBN) L L. acknowledge receipt of an orderly release indication
trevudataBN) oL L L L o receive a data unit
trecvuderrBN) L. oL L. L. L receive a unit data error indication
tsnd3BN) send data or expedited data over a connection
tsnddisBN) send user-initiated disconnect request
tsndrelBN) L oL initiate an orderly release
tsndudata@BN) L. send a data unit
tsyncBN)o oL, synchronize transport library
tunbindBN) L. disable a transport endpoint
ungetc(3S)o L. L. push character back into input stream
vprintf3S) print formatted output of a varargs argument list

4. File Formats

intro4) e introduction to file formats
aout4), common assembler and link editor output
acct(4) . . . L Lo e e e e e per-process accounting file format
ar(d) . . e e e e e e e e e e e e e e e common archive file format
cftime(4) L. L o o language specific strings
checklist(4) list of file systems processed by fsck and ncheck
core(4) oL e e e e format of core image file
CPio(4) - . . o e e e e e e e e e format of cpio archive
dir(4) . . . e e e e e e e e e e e e format of directories
dirent(4) file-system-independent directory entry
filehdr(4) file header for common object files
T format of system volume
fspec(4) e format specification in text files
fstab(4) e file-system-table
gettydefs(4) speed and terminal settings used by getty
gps(4), graphical primitive string, format of graphical files

- viii -

Table of Contents

GOUP(4) « « « v e e e e e e e e e e e e e e e e e e e group file
inittab(4) . « « . v . e e e e e e e e e e e e e e script for the init process
INOdE(4) « + « v v v e e e e e e e e e e e e e e e e e e e format of an inode
ISSUE(4) o v ¢ v e e e e e e e e e e e e e e e e e issue identification file
Idfen(4) . . &« . 0 e e e e e e e e e e e e common object file access routines
limits(4) . . « « « . 0 0.0 . file header for implementation-specific constants
linenum(4) . . . « « ¢ ¢« ¢ o 0o line number entries in a common object file
loginlog(4) . « « « « ¢t e e e e e e e e e log of failed login attempts
MAevice(4) .« .« ¢ e b e file format
MESYS(4) + « o . e e e e e e e e e e e e e e e e e e file format
mnttab(4) o e e e e e e e e e e e e e e e mounted file system table
MtuNe(4) « « v v v v e file format
passwd(4) . . . o e e e e e e e e password file
POt(4) « v v v e e e e e e e e graphics interface
pnch(4) .« . o o e et e e e e e file format for card images
profile(4) oo oo e e setting up an environment at login time
reloc(d) oo relocation information for a common object file
rfmaster(4)« . 0 o oo .. Remote File Sharing name server master file
SceSfile(d) o v v v v e e e e e e e e e e e e e e e e format of SCCS file
scnhdr(4) « « « & o 0 0o e e e e e section header for a common object file
scr—dump(4) . . . o e e e e e e e e e e e e format of curses screen image file
sdevice(d) « « « ¢ v v e file format
SESYS(4) « ¢« v v e e e e e e e e e e e e e e e e e file format
StUNE(4) « « ¢t e file format
2 111 € T common object file symbol table format
term(4) o o ¢ o e e e e e e e e e e e e e e e s format of compiled term file
terminfo(4) « « « ¢ v e e e e e e e e e e e e e s terminal capability data base
timezone(4) « « « « v v 4 . e e e e e e e e e e e set default system time zone
unistd(4) « ¢ ¢ 4 e e e e e e e e e e e e file header for symbolic constants
Wtmp(4) « « o - e e e e e e e e e e e e e e utmp and wtmp entry formats

5. Miscellaneous Facilities

intro5) e e e e e e e e e e e e e e e introduction to miscellany
F Y 11(-) J T I I map of ASCII character set
envViron(5) .+ -+ . v v e e e e e e e e e e e e e e e e e e user environment
Fntl(5) .« o ¢ e file control options
jagent(5) . . o 4 e e e e e e e e e e host control of windowing terminal
layers(5) protocol used between host and windowing terminal under
math(5) . « « ¢ v v v v e e e e e e e e e e e math functions and constants
Prof(5) « v v v e e e e e e e e e e e e e e e e profile within a function
regexp(5) « « « - o o e e e e e e regular expression compile and match routines
stat(B) .« 4 v v e e e e e e e e e e e e e e data returned by stat system call
term(5) « o ¢ ¢ 4 e e e e e e e e e e e e e e conventional names for terminals
types(5) « - v e e e e e e e e e e e e e primitive system data types
values(5) « « « v v v e e e e e e e e e e e e e e e e machine-dependent values
varargs(5) . . .+ o e e e e e e e e e e e e e e handle variable argument list
xtproto(5) multiplexed channels protocol used by xt(7) driver

Introduction

This manual describes the programming features of the UNIX system. For
more information on UNIX System V /386, see the available documentation
listed in the UNIX System V /386 Product Overview /Documentation Roadmap.

Not all commands, features, and facilities described in this manual are
available in every UNIX system. Some of the features require additional utili-
ties which may not exist on your system.

This manual is divided into five sections, some containing subsections.

1. Commands
2. System Calls
3. Subroutines:
3C. C Programming Language Libraries
3S. Standard I/O Library Routines
3M. Mathematical Library Routines
3N. Networking Support Utilities
3X. Specialized Libraries
4. File Formats
5. Miscellaneous Facilities.

Section 1 (Commands) describes commands that support C and other pro-
gramming languages.

Section 2 (System Calls) describes the services provided by the UNIX Sys-
tem kernel, including the C language interface.

Section 3 (Subroutines) describes available subroutines. Their binary ver-
sions reside in various system libraries in the directories /lib and /usr/lib.
See intro(3) for descriptions of these libraries and the files in which they are
stored.

Section 4 (File Formats) documents the structure of particular kinds of
files; for example, the format of the output of the link editor is given in
a.out(4). Excluded are files used by only one command (for example, the
assembler’s intermediate files). In general, the C language structures
corresponding to these formats can be found in the directories /usr/include
and /usr/include/sys.

INTRODUCTION 1

Introduction

Section 5 (Miscellaneous Facilities) contains a variety of things. Included
are descriptions of character sets, macro packages, etc.

References with numbers other than those above mean that the utility is
contained in the appropriate section of another manual. References with (1) or
(IM) following the command mean that the utility is contained in this manual
or the User’s/System Administrator’s Reference Manual. Those followed by (7)
are contained in the User’s /System Administrator’s Reference Manual.

Each section consists of a number of independent entries of a page or so.
Entries within each section are alphabetized, with the exception of the intro-
ductory entry that begins each section (also Section 3 is in alphabetical order
by suffixes). Some entries may describe several routines, commands, etc. In
such cases, the entry appears only once, alphabetized under its "primary"
name, the name that appears at the upper corners of each manual page.

All entries are based on a common format, not all of whose parts always
appear:

B The NAME part gives the name(s) of the entry and briefly states its
purpose.

B The SYNOPSIS part summarizes the use of the program being
described. A few conventions are used, particularly in Section 2 (Sys-
tem Calls):

0 Boldface strings are literals and are to be typed just as they
appear.

O Italic strings usually represent substitutable argument prototypes
and program names found elsewhere in the manual.

O Square brackets [] around an argument prototype indicate that the
argument is optional. When an argument prototype is given as
"name" or "file", it usually refers to a file name.

O Ellipses ... are used to show that the previous argument prototype
may be repeated.

L A final convention is used by the commands themselves. An
argument beginning with a minus - or plus + is often taken to be
some sort of flag argument, even if it appears in a position where a
file name could appear. Therefore, it is unwise to have files whose
names begin with - or +.

2 PROGRAMMER'S REFERENCE MANUAL

Introduction

The DESCRIPTION part describes the utility.

The EXAMPLE(S) part gives example(s) of usage, where appropriate.
The FILES part gives the file names that are built into the program.
The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic messages that may be
produced. Messages that are intended to be self-explanatory are not
listed.

R The NOTES part gives generally "helpful hints" about the use of the
utility.

B The WARNINGS part points out potential pitfalls.
B The BUGS part gives known bugs and deficiencies.

B The CAVEATS part gives details of the implementation that might
affect usage.

A "Table of Contents" and a "Permuted Index" derived from that table
precede Section 1. The "Permuted Index" is a list of keywords, given in the
second of three columns, together with the context in which each keyword is
found. Keywords are either topical keywords or the names of manual entries.
Entries are identified with their section numbers shown in parentheses. This
is important because there is considerable duplication of names among the
sections, arising principally from components that exist only to exercise a par-
ticular system call. The right column lists the name of the manual page on
which each keyword may be found. The left column contains useful informa-
tion about the keyword.

INTRODUCTION 3

INTRO(1) INTRO(1)

NAME
intro — introduction to programming commands

DESCRIPTION
This section describes, in alphabetical order, commands available for your
computer. The top of each page indicates the utilities package to which the
command belongs. The packages are:

Base System
C Software Development Set
Extended Terminal Interface

COMMAND SYNTAX
Unless otherwise noted, the commands described accept options and other
arguments according to the following syntax:
name [option(s)] [cmdarg(s)]
where:
name is the name of an executable file

option is - noargletter(s) or
- argletter<>optarg
where:
noargletter is a single letter representing an option without an
option-argument
argletter is a single letter representing an option requiring an
option-argument
<> is optional white space
optarg is an option-argument (character string) satisfying the
preceding argletter.

cmdarg is a path name (or other command argument) not beginning with
#_" or “~" by itself indicating the standard input.

Throughout the manual pages there are references to TMPDIR, BINDIR,
INCDIR, LIBDIR, and LLIBDIR. These represent directory names whose
value is specified on each manual page as necessary. For example, TMPDIR
might refer to /tmp or /usr/tmp. These are not environment variables and
cannot be set. [There is also an environment variable called TMPDIR
which can be set. See tmpnam(3S).]

SEE ALSO
exit(2), wait(2), getopt(3C).
getopts(1) in the User’s/System Administrator’s Reference Manual.
Programmer’s Guide.

DIAGNOSTICS
Upon termination, each command returns two bytes of status, one supplied
by the system and giving the cause for termination and (in the case of “‘nor-
mal” termination) one supplied by the program [see wait(2) and exit(2)].
The former byte is 0 for normal termination; the latter is customarily 0 for

-1-

INTRO(1) INTRO(1)

successful execution and non-zero to indicate troubles such as erroneous
parameters, or bad or inaccessible data. It is called variously “exit code,”
“exit status,” or “return code” and is described only where special conven-
tions are involved.

WARNINGS
Some commands produce unexpected results when processing files contain-
ing null characters. These commands often treat text input lines as strings
and therefore become confused upon encountering a null character (the
string terminator) within a line.

ADMIN(1) (C Software Development Set) ADMIN(1)

NAME
admin - create and administer SCCS files

SYNOPSIS
admin [-n] [-i[name]] [-rrel] [-t[name]] [-fflag[flag-val]] [-dflag[flag-val]]
[-alogin] [-elogin] [-m[mrlist]] [-y[comment]] [-h] [-Z] files

DESCRIPTION

The admin command is used to create new SCCS files and change parame-
ters of existing ones. Arguments to admin, which may appear in any order,
consist of keyletter arguments that begin with a hyphen (-), and named files
(note that SCCS file names must begin with the characters s.). If a named
file does not exist, it is created, and its parameters are initialized according
to the specified keyletter arguments. Parameters not initialized by a
keyletter argument are assigned a default value. If a named file does exist,
parameters corresponding to specified keyletter arguments are changed, and
other parameters are left as is.

If a directory is named, admin behaves as though each file in the directory
were specified as a named file, except that non-SCCS files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of the
standard input is taken to be the name of an SCCS file to be processed.
Again, non-SCCS files and unreadable files are silently ignored.

The keyletter arguments are as follows. Each is explained as though only
one named file is to be processed since the effects of the arguments apply
independently to each named file.

-n This keyletter indicates that a new SCCS file is to be created.

~i[name) The name of a file from which the text for a new SCCS file is
to be taken. The text constitutes the first delta of the file
(see -r keyletter for delta numbering scheme). If the -i
keyletter is used but the file name is omitted, the text is
obtained by reading the standard input until an end-of-file is
encountered. If this keyletter is omitted, then the SCCS file is
created empty. Only one SCCS file may be created by an
admin command on which the -i keyletter is supplied.
Using a single admin to create two or more SCCS files
requires that they be created empty (no -i keyletter). Note
that the -i keyletter implies the ~n keyletter.

~rrel The release into which the initial delta is inserted. This
keyletter may be used only if the -i keyletter is also used. If
the -r keyletter is not used, the initial delta is inserted into
release 1. The level of the initial delta is always 1 (by
default initial deltas are named 1.1).

~t[name]) The name of a file from which descriptive text for the SCCS
file is to be taken. If the -t keyletter is used and admin is
creating a new SCCS file (the -n and/or -i keyletters also
used), the descriptive text file name must also be supplied.
In the case of existing SCCS files: (1) a -t keyletter without a

-1-

ADMIN(1)

~fflag

(C Software Development Set) ADMIN(1)

file name causes removal of descriptive text (if any) currently
in the SCCS file, and (2) a -t keyletter with a file name
causes text (if any) in the named file to replace the descrip-
tive text (if any) currently in the SCCS file.

This keyletter specifies a flag, and, possibly, a value for the
flag, to be placed in the SCCS file. Several f keyletters may
be supplied on a single admin command line. The allowable
flags and their values are:

b

cceil

ffloor

dsIiD

i[str]

1list

<list>

Allows use of the -b keyletter on a get(1) command
to create branch deltas.

The highest release (i.e., “ceiling”’), a number greater
than 0 but less than or equal to 9999, which may be
retrieved by a get(l) command for editing. The
default value for an unspecified ¢ flag is 9999.

The lowest release (i.e., “floor’”), a number greater
than 0 but less than 9999, which may be retrieved
by a get(1) command for editing. The default value
for an unspecified f flag is 1.

The default delta number (SIDs+1) to be used by a
get(1) command.

Causes the "No id keywords (ge6)" message issued
by get(1) or delta(1) to be treated as a fatal error. In
the absence of this flag, the message is only a warn-
ing. The message is issued if no SCCS identification
keywords [see get(1)] are found in the text retrieved
or stored in the SCCS file. If a value is supplied, the
keywords must exactly match the given string; how-
ever, the string must contain a keyword and no
embedded newlines.

Allows concurrent get(1) commands for editing on
the same SID of an SCCS file. This allows multiple
concurrent updates to the same version of the SCCS
file.

A list of releases to which deltas can no longer be
made (get -e against one of these “locked” releases
fails). The list has the following syntax:

= <range> | <list> , <range>

<range>":= la

The character a in the list is equivalent to specifying
all releases for the named SCCS file.

Causes delta(1) to create a “null” delta in each of
those releases (if any) being skipped when a delta is
made in a new release (e.g., in making delta 5.1 after
delta 2.7, releases 3 and 4 are skipped). These null
deltas serve as “anchor points” so that branch deltas

-2

ADMIN(1)

-dflag

-alogin

~elogin

(C Software Development Set) ADMIN(1)

may later be created from them. The absence of this
flag causes skipped releases to be nonexistent in the
sccs file, preventing branch deltas from being
created from them in the future.

qtext User-definable text substituted for all occurrences of
the %Q% keyword in SCCS file text retrieved by
get(1).

mmod Module name of the SCCS file substituted for all
occurrences of the %M% keyword in SCCS file text
retrieved by get(1). If the m flag is not specified, the
value assigned is the name of the SCCS file with the
leading s. removed.

ttype Type of module in the SCCS file substituted for all
occurrences of %Y% keyword in SCCS file text
retrieved by get(1).

vpgm Causes delta(1) to prompt for Modification Request
(MR) numbers as the reason for creating a delta. The
optional value specifies the name of an MR number
validity checking program [see delta(1)]. (If this flag
is set when creating an SCCS file, the m keyletter
must also be used even if its value is null.)

Causes removal (deletion) of the specified flag from an SCCS
file. The -d keyletter may be specified only when processing
existing SCCS files. Several -d keyletters may be supplied on
a single admin command. See the -f keyletter for allowable
flag names.

1list A list of releases to be ‘“‘unlocked.” See the -f
keyletter for a description of the 1 flag and the syn-
tax of a list.

A login name or numerical UNIX system group ID to be added
to the list of users which may make deltas (changes) to the
SCCS file. A group ID is equivalent to specifying all login
names common to that group ID. Several a keyletters may
be used on a single admin command line. As many logins or
numerical group IDs as desired may be on the list simultane-
ously. If the list of users is empty, then anyone may add
deltas. If login or group ID is preceded by a ! it is to be
denied permission to make deltas.

A login name or numerical group ID to be erased from the list
of users allowed to make deltas (changes) to the SCCS file.
Specifying a group ID is equivalent to specifying all login
names common to that group ID. Several e keyletters may
be used on a single admin command line.

ADMIN(1) (C Software Development Set) ADMIN(1)

-m([mrlist] The list of Modification Requests (MR) numbers is inserted
into the SCCS file as the reason for creating the initial delta
in a manner identical to delta(1). The v flag must be set; the
MR numbers are validated if the v flag has a value (the name
of an MR number validation program). Diagnostics will occur
if the v flag is not set or MR validation fails.

-y[comment] The comment text is inserted into the SCCS file as a comment
for the initial delta in a manner identical to that of delta(1).
Omission of the -y keyletter results in a default comment
line being inserted in the form:

date and time created YY /MM /DD HH:MM:SS by login

The -y keyletter is valid only if the ~i and/or -n keyletters
are specified (i.e., a new SCCS file is being created).

-h Causes admin to check the structure of the SCCS file [see
sccsfile(5)], and to compare a newly computed check-sum
(the sum of all the characters in the SCCS file except those in
the first line) with the check-sum that is stored in the first
line of the SCCS file. Appropriate error diagnostics are pro-
duced.

This keyletter inhibits writing on the file, so that it nullifies
the effect of any other keyletters supplied, and is, therefore,
only meaningful when processing existing files.

-z The SCCS file check-sum is recomputed and stored in the
first line of the SCCS file (see -h, above).

Note that use of this keyletter on a truly corrupted file may
prevent future detection of the corruption.

The last component of all SCCS file names must be of the form s.file-name.
New SCCs files are given mode 444 [see chmod(1)]. Write permission in the
pertinent directory is, of course, required to create a file. All writing done
by admin is to a temporary x-file, called x.file-name [see get(1)] created with
mode 444 if the admin command is creating a new SCCS file, or with the
same mode as the SCCS file if it exists. After successful execution of admin,
the SCCS file is removed (if it exists), and the x-file is renamed with the
name of the SCCS file. This ensures that changes are made to the SCCS file
only if no errors occurred.

It is recommended that directories containing SCCS files be mode 755 and
that SCCS files themselves be mode 444. The mode of the directories allows
only the owner to modify SCCS files contained in the directories. The mode
of the SCCS files prevents any modification at all except by SCCS com-
mands.

If it should be necessary to patch an SCCS file for any reason, the mode
may be changed to 644 by the owner allowing use of ed(1). Care must be
taken! The edited file should always be processed by an admin -h to check
for corruption followed by an admin -z to generate a proper check-sum.
Another admin -h is recommended to ensure the SCCS file is valid.

-4 -

ADMIN(1)

(C Software Development Set) ADMIN(1)

The admin command also makes use of a transient lock file (called z.file-
name), which is used to prevent simultaneous updates to the SCCS file by
different users. See get(1) for further information.

FILES
g-file

p-file
g-file
x-file
z-file
d-file
/usr/bin/bdiff

SEE ALSO

Existed before the execution of delta; removed after com-
pletion of delta.

Existed before the execution of delta; may exist after com-
pletion of delta.

Created during the execution of delta; removed after com-
pletion of delta.

Created during the execution of delta; renamed to SCCS file
after completion of delta.

Created during the execution of delta; removed during the
execution of delta.

Created during the execution of delta; removed after com-
pletion of delta.

Program to compute differences between the “gotten” file
and the g-file.

delta(1), get(1), prs(1), what(1), sccsfile(4).
ed(1), in the User’s /System Administrator’s Reference Manual.

AR(1) (C Software Development Set) AR(1)

NAME
ar — archive and library maintainer for portable archives

SYNOPSIS
ar key [keyarg] [posname] afile [name] ...

DESCRIPTION

The ar command maintains groups of files combined into a single archive
file. Its main use is to create and update library files as used by the link
editor. It can be used, though, for any similar purpose. The magic string
and the file headers used by ar consist of printable ASCII characters. If an
archive is composed of printable files, the entire archive is printable.
Archives of text files created by ar are portable between implementations of
System V.

When ar creates an archive, it creates headers in a format that is portable
across all machines. The portable archive format and structure is described
in detail in ar(4). The archive symbol table [described in ar(4)] is used by
the link editor [ld(1)] to effect multiple passes over libraries of object files in
an efficient manner. An archive symbol table is only created and main-
tained by ar when there is at least one object file in the archive. The
archive symbol table is in a specially named file that is always the first file
in the archive. This file is never mentioned nor is it accessible to the user.
Whenever the ar(l) command is used to create or update the contents of
such an archive, the symbol table is rebuilt. The s option, described in the
following text, will force the symbol table to be rebuilt.

Unlike command options, the command key is a required part of ar’s com-
mand line. The key (which may begin with a -) is formed with one of the
following letters: drqtpmx. Arguments to the key, alternatively, are made
with one or more of the following set: vuaibcls. Posname is an archive
member name used as a reference point in positioning other files in the
archive. Afile is the archive file. The names are constituent files in the
archive file. The meanings of the key characters are as follows:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character
u is used with r, then only those files with dates of modification
later than the archive files are replaced. If an optional positioning
character from the set abi is used, then the posname argument must
be present and specify that new files are to be placed after (a) or
before (b or i) posname. Otherwise new files are placed at the end.

q Quickly append the named files to the end of the archive file.
Optional positioning characters are invalid. The command does not
check whether the added members are already in the archive. This
option is useful to avoid quadratic behavior when creating a large
archive piece-by-piece. Unchecked, the file may grow exponentially
up to the second degree.

t Print a table of contents of the archive file. If no names are given,
all files in the archive are tabled. If names are given, only those
files are tabled.

AR(1) (C Software Development Set) AR(1)

P Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning
character is present, then the posname argument must be present
and, as in r, specify where the files are to be moved.

b'e Extract the named files. If no names are given, all files in the
archive are extracted. In neither case does x alter the archive file.

The meanings of the key arguments are as follows:

v Give a verbose file-by-file description of the making of a new
archive file from the old archive and the constituent files. When
used with t, give a long listing of all information about the files.
When used with x, precede each file with a name.

c Suppress the message that is produced by default when dfile is
created.

1 Place temporary files in the local (current working) directory rather
than in the default temporary directory, TMPDIR.

s Force the regeneration of the archive symbol table even if ar(1) is
not invoked with a command which will modify the archive con-
tents. This command is useful to restore the archive symbol table
after the strip(1) command has been used on the archive.

FILES

$TMPDIR /* temporary files

$TMPDIR is usually /usr/tmp but can be redefined by setting the environ-

ment variable TMPDIR [see tempnam() in tmpnam(3S)].

SEE ALSO
1d(1), lorder(1), strip(1), tsort(1), tmpnam(3S), a.out(4), ar(4).
NOTES

If the same file is mentioned twice in an argument list, it may be put in the
archive twice.

AS(1) (C Software Development Set) AS(1)

NAME
as — common assembler

SYNOPSIS
as [options] file name
DESCRIPTION
The as command assembles the named file. The following flags may be
specified in any order:
-0 obffile Put the output of the assembly in objfile. By default, the out-
put file name is formed by removing the .8 suffix, if there is
one, from the input file name and appending a .o suffix.

-n Turn off long/short address optimization. By default, address
optimization takes place.

-m Run the m4 macro processor on the input to the assembler.

-R Remove (unlink) the input file after assembly is completed.

~dl Do not produce line number information in the object file.

-V ‘Write the version number of the assembler being run on the

standard error output.

-Y [md),dir Find the m4 preprocessor (m) and/or the file of predefined
macros (d) in directory dir instead of in the customary place.

FILES
TMPDIR /* temporary files

TMPDIR is usually /usr/tmp but can be redefined by setting the environ-
ment variable TMPDIR [see tempnam() in tmpnam(3S)].

SEE ALSO
cc(1), 1d(1), m4(1), nm(1), strip(1), tmpnam(3S), a.out(4).

NOTES
Wherever possible, the assembler should be accessed through a compilation
system interface program [such as cc(1)].

WARNING
If the -m (m4 macro processor invocation) option is used, keywords for m4
[see m4(1)] cannot be used as symbols (variables, functions, labels) in the
input file since m4 cannot determine which are assembler symbols and
which are real m4 macros.

BUGS
The .align assembler directive may not work in the text section when
optimization is performed.

CAVEATS
Arithmetic expressions may only have one forward referenced symbol per
expression.

CB(1) (C Software Development Set) CB(1)
NAME
cb — C program beautifier
SYNOPSIS
cb[-s][-j]][-1leng]][file ...]
DESCRIPTION
The cb command reads C programs either from its arguments or from the
standard input and writes them on the standard output with spacing and
indentation that display the structure of the code. Under default options, cb
preserves all user new-lines.
The cb command accepts the following options:
-8 Canonicalizes the code to the style of Kernighan and Ritchie in
The C Programming Language.
-j Causes split lines to be put back together.
-1 leng Causes cb to split lines that are longer than leng.
SEE ALSO
cc(1).
Kernighan, B. W., and Ritchie, D. M., The C Programming Language,
Prentice-Hall, 1978.
BUGS

Punctuation that is hidden in preprocessor statements will cause indentation
errors.

CC(1) (C Software Development Set) CC(1)

NAME
cc — C compiler

SYNOPSIS
cc [options] files

DESCRIPTION
The cc command is the interface to the C Compilation System. The compi-
lation tools consist of a preprocessor, compiler, optimizer, assembler, and
link editor. The cc command processes the supplied options and then exe-
cutes the various tools with the proper arguments. The cc command accepts
several types of files as arguments.

Files whose names end with .c are taken to be C source programs and may
be preprocessed, compiled, optimized, assembled, and link edited. The
compilation process may be stopped after the completion of any pass if the
appropriate options are supplied. If the compilation process runs through
the assembler, then an object program is produced and is left in the file
whose name is that of the source with .0 substituted for .c. However, the .0
file is normally deleted if a single C program is compiled and then immedi-
ately link edited. In the same way, files whose names end in .8 are taken to
be assembly source programs and may be assembled and link edited; and
files whose names end in .i are taken to be preprocessed C source programs
and may be compiled, optimized, assembled, and link edited. Files whose
names do not end in .c, .8, or .i are handed to the link editor.

Since the cc command usually creates files in the current directory during
the compilation process, it is necessary to run the cc command in a directory
in which a file can be created.

The following options are interpreted by cc:

-c Suppress the link editing phase of the compilation and do not
remove any produced object files.

-ds Do not generate symbol attribute information for the symbolic
debugger.

-dl Do not generate symbolic debugging line number information. This
and the above flag may be used in conjunction as -dsl (~dsl is the
default unless the -g flag is given).

-g Cause the compiler to generate additional information needed for
the use of sdb(1).
-0 outfile

Produce an output object file by the name outfile. The name of the
default file is a.out. This is a link editor option.

-p Arrange for the compiler to produce code that counts the number of
times each routine is called; also, if link editing takes place, profiled
versions of libc.a and libm.a (with ~-lm option) are linked and
monitor(3C) is automatically called. A mon.out file will then be
produced at normal termination of execution of the object program.
An execution profile can then be generated by use of prof(1).

cc(1)

-V

(C Software Development Set) CC(1)

Arrange for profiled code to be produced where the p argument
produces identical results to the -p option [allows profiling with
prof(1)].

Run only cpp(1) on the named C programs, and send the result to
the standard output.

Print out on stderr the path name of each file included during the
current compilation.

Do compilation phase optimization. This option will not have any
effect on .8 files.

Run only cpp(1) on the named C programs and leave the result in
corresponding files suffixed .i. This option is passed to cpp(1).

Compile and do not assemble the named C programs, and leave the
assembler-language output in corresponding files suffixed .s.

Print the version of the compiler, optimizer, assembler and/or link
editor that is invoked.

-Wc,argl[,arg2...]

Hand off the argument[s] argi to pass ¢ where c is one of [p02al]
indicating the preprocessor, compiler, optimizer, assembler, or link
editor, respectively. For example: -Wa,-m passes -m to the assem-
bler.

-Y [p02alSILU)} dirname

Specify a new path name, dirname, for the locations of the tools and
directories designated in the first argument. [p02alSILU] represents:

Ppreprocessor

compiler

optimizer

assembler

link editor

directory containing the start-up routines

default include directory searched by cpp(1)

first default library directory searched by Id(1)
second default library directory searched by ld(1)

cr~un=»Nog

If the location of a tool is being specified, then the new path name
for the tool will be dirname/tool. If more than one -Y option is
applied to any one tool or directory, then the last occurrence holds.

-Zp[1124]

Packs structure members in memory. Normally, structure members
are aligned as follows: items of type char are byte-aligned, items of
type short are aligned on two-byte boundaries, and all other types
of structure members are word-aligned.

Specifying an option to -Zp will force alignment on the given byte
boundary. If no option is used with -Zp, structure members will be
packed on one-byte boundaries. The alignment may be altered with
the #pragma pack preprocessor directive.

-2-

CC(1) (C Software Development Set) CC(1)
The cc command also recognizes —-C, -D, -I, and -U and passes these
options and their arguments directly to the preprocessor without using the
-W option. Similarly, the cc command recognizes -a, -1, -m, -1, -s, ~t, —u,
-x, -z, -L, -M, and -V and passes these options and their arguments
directly to the loader. See the manual pages for cpp(1) and ld(1) for
descriptions.

Other arguments are taken to be C compatible object programs, typically -
produced by an earlier cc run, or perhaps libraries of C compatible routines
and are passed directly to the link editor. These programs, together with
the results of any compilations specified, are link edited (in the order given)
to produce an executable program with name a.out unless the -o option of
the link editor is used.

If the cc command is put in a file prefixcc the prefix will be parsed off the
command and used to call the tools, i.e., prefixtool. For example, OLDcc
will call OLDcpp, OLDcomp, OLDoptim, OLDas, and OLDId and will link
OLDcrtl.o. Therefore, one MUST be careful when moving the cc command
around. The prefix will apply to the preprocessor, compiler, optimizer,
assembler, link editor, and the start-up routines.

The C language standard was extended to allow arbitrary length variable
names. The option pair “~-Wp,-T -W0,-XT"" will cause cc to truncate arbi-
trary length variable names.

FILES
file.c C source file
file.i preprocessed C source file
file.o - object file
file.s assembly language file
a.out link edited output
LIBDIR /*crtl.o start-up routine
LIBDIR /crtn.o start-up routine
TMPDIR /* temporary files
LIBDIR /cpp preprocessor, cpp(1)

LIBDIR /comp compiler

LIBDIR /optim optimizer

BINDIR /as assembler, as(1)

BINDIR/1d link editor, ld(1)

LIBDIR/libc.a standard C library

LIBDIR/libc_s.a standard C shared library

LIBDIR is usually /lib.

BINDIR is usually /bin.

TMPDIR is usually /usr/tmp but can be redefined by setting the environ-
ment variable TMPDIR [see tempnam() in tmpnam(3S)].

SEE ALSO

as(1), 1d(1), cpp(1), gencc(1M), lint(1), prof(1), sdb(1), tmpnam(3S).

Kernighan, B. W., and Ritchie, D. M., The C Programming Language,
Prentice-Hall, 1978.

CC(1) (C Software Development Set) CC(1)

DIAGNOSTICS
The diagnostics produced by the C compiler are sometimes cryptic.

NOTES
By default, the return value from a compiled C program is completely ran-
dom. The only two guaranteed ways to return a specific value is to expli-
citly call exit(2) or to leave the function main() with a “return expression;”
construct.

CCOFEFE(1) (C Software Development Set) CCOFF(1)

NAME
ccoff — convert a COFF file

SYNOPSIS
ccoff [-1] [-v] file ...

DESCRIPTION

The ccoff command converts a COFF file by byte-swapping all multi-byte
integers in the file. Thus, if the COFF file has been built by a cross com-
piler running on a big-endian development machine (Motorola 68000, etc.),
ccoff will convert the file to a format suitable for running on the target
(80386) machine. The ccoff command will convert relocated executables,
non-relocated objects, and archives (libraries). The -r flag performs the
reverse conversion, so that a file that has already been run through ccoff can
be restored to its original state; or a file that has been built on a target
machine can be manipulated on the development machine. The -v flag
causes ccoff to operate verbosely.

SEE ALSO
convert(1)

CDC(1) (C Software Development Set) CDC(1)

NAME
cdc - change the delta commentary of an SCCS delta

SYNOPSIS
cdc -rSID [-m[mrlist]] [-y[comment]] files

DESCRIPTION
The cdc command changes the delta commentary, for the SID (SCCS IDentif-
ication string) specified by the -r keyletter, of each named SCCS file.

Delta commentary is defined to be the Modification Request (MR) and com-
ment information normally specified via the delta(1) command (-m and -y
keyletters).

If a directory is named, cdc behaves as though each file in the directory
were specified as a named file, except that non-SCCS files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read (see WARNINGS)
and each line of the standard input is taken to be the name of an SCCS file
to be processed.

Arguments to cdc, which may appear in any order, consist of keyletter argu-
ments and file names.

All the described keyletter arguments apply independently to each named
file:

-1SID Used to specify the SCCS IDentification (SID) string of a
delta for which the delta commentary is to be changed.

-mmrlist If the SCCS file has the v flag set [see admin(1)] then a
list of MR numbers to be added and/or deleted in the
delta commentary of the SID specified by the -r keyletter
may be supplied. A null MR list has no effect.

MR entries are added to the list of MRs in the same
manner as that of delta(1). In order to delete an MR, pre-
cede the MR number with the character ! (see EXAM-
PLES). If the MR to be deleted is currently in the list of
MRs, it is removed and changed into a “comment” line.
A list of all deleted MRs is placed in the comment section
of the delta commentary and preceded by a comment line
stating that they were deleted.

If -m is not used and the standard input is a terminal,
the prompt MRs? is issued on the standard output before
the standard input is read; if the standard input is not a
terminal, no prompt is issued. The MRs? prompt always
precedes the comments? prompt (see -y keyletter).

CcDC(1)

=y[comment]

(C Software Development Set) CDC(1)

MRs in a list are separated by blanks and/or tab charac-
ters. An unescaped new-line character terminates the MR
list.

Note that if the v flag has a value [see admin(1)], it is
taken to be the name of a program (or shell procedure)
which validates the correctness of the MR numbers. If a
non-zero exit status is returned from the MR number vali-
dation program, cdc terminates and the delta commentary
remains unchanged.

Arbitrary text used to replace the comment(s) already
existing for the delta specified by the -r keyletter. The
previous comments are kept and preceded by a comment
line stating that they were changed. A null comment has
no effect.

If -y is not specified and the standard input is a terminal,
the prompt comments? is issued on the standard output
before the standard input is read; if the standard input is
not a terminal, no prompt is issued. An unescaped new-
line character terminates the comment text.

Simply stated, the rules are:

(1) If you made the delta, you can change its delta commentary.

or

(2) If you own the file and directory, you can modify the delta commen-

tary.
EXAMPLES

cde -r1.6 -m"bl78-12345 1bl77-54321 bl79-00001" —ytrouble s.file

adds bl78-12345 and bl79-00001 to the MR list, removes bl77-54321 from
the MR list, and adds the comment trouble to delta 1.6 of s.file.

cdc -rl.6 s.file
MRs? bl77-54321 bl78-12345 b179-00001
comments? trouble

does the same thing.

admin(1), delta(1), get(1), prs(1), sccsfile(4).

FILES
x-file [see delta(1)]
z-file [see delta(1)]
SEE ALSO
WARNINGS

If SCCS file names are supplied to the cdc command via the standard input
(- on the command line), then the -m and -y keyletters must also be used.

CFLOW(1) (C Software Development Set) CFLOW(1)

NAME

cflow - generate C flowgraph
SYNOPSIS

cflow [-r] [-ix] [-i-] [-dnum] files
DESCRIPTION

The cflow command analyzes a collection of C, yacc, lex, assembler, and
object files and attempts to build a graph charting the external references.
Files suffixed with .y, .1, and .c are yacced, lexed, and C-preprocessed as
appropriate. The results of the preprocessed files, and files suffixed with .i,
are then run through the first pass of lint(1). Files suffixed with .s are
assembled. Assembled files, and files suffixed with .0, have information
extracted from their symbol tables. The results are collected and turned into
a graph of external references which is displayed upon the standard output.

Each line of output begins with a reference number, followed by a suitable
number of tabs indicating tlie level, then the name of the global symbol fol-
lowed by a colon and its definition. Normally only function names that do
not begin with an underscore are listed (see the -i options below). For
information extracted from C source, the definition consists of an abstract
type declaration (e.g., char *), and, delimited by angle brackets, the name of
the source file and the line number where the definition was found. Defini-
tions extracted from object files indicate the file name and location counter
under which the symbol appeared (e.g., text). Leading underscores in C-
style external names are deleted.

Once a definition of a name has been printed, subsequent references to that
name contain only the reference number of the line where the definition
may be found. For undefined references, only <> is printed.

As an example, given the following in file.c:

int i;
main()

£();

g0

£0;
}
£()
{

i=h();
}

CFLOW(1) (C Software Development Set) CFLOW(1)

the command
cflow -ix file.c
produces the output
1 main: int(), <file.c 4>
2 f: int(), <file.c 11>
3 h: <>
4 i: int, <file.c 1>

6}

g <>

When the nesting level becomes too deep, the output of cflow can be piped
to pr(1), using the -e option, to compress the tab expansion to something
less than every eight spaces.

In addition to the -D, -1, and -U options [which are interpreted just as they
are by cc(1) and cpp(1)], the following options are interpreted by cflow:

-r Reverse the “caller:callee” relationship producing an inverted listing
showing the callers of each function. The listing is also sorted in
lexicographical order by callee.

-ix Include external and static data symbols. The default is to include
only functions in the flowgraph.

-i Include names that begin with an underscore. The default is to
exclude these functions (and data if -ix is used).

-dnum The num decimal integer indicates the depth at which the flow-
graph is cut off. By default this is a very large number. Attempts
to set the cutoff depth to a nonpositive integer will be ignored.

SEE ALSO

as(1), cc(1), cpp(1), lex(1), lint(1), nm(1), yace(1).
pr(1) in the User’s /System Administrator’s Reference Manual.

DIAGNOSTICS

BUGS

Complains about bad options. Complains about multiple definitions and
only believes the first. Other messages may come from the various pro-
grams used (e.g., the C-preprocessor).

Files produced by lex(1) and yacc(1) cause the reordering of line number
declarations which can confuse cflow. To get proper results, feed cflow the
yacc or lex input.

CHKSHLIB(1) (C Software Development Set) CHKSHLIB(1)

NAME

chkshlib — compare shared libraries tool
SYNOPSIS

chkshlib [-b] [-i] [-n] [-V] filel [file2 file3 ...]
DESCRIPTION

chkshlib checks for compatibility between files. Input files can be combina-
tions of host shared libraries, non-stripped target shared libraries, and non-
stripped executable files. A file is compatible with another file if every
library symbol in it that should be matched is matched in the second (i.e.,
the symbol exists and has the same address in both files). The path name
for the target shared library in both files must be identical (unless the -i
option is set).

It is possible for filel to be compatible with file2 without the reverse also
being true.

If one incompatibility is found it is reported to stdout and processing stops
(unless the -v option is set).

The options to chkshlib are:
-v Cause verbose reporting of all incompatibilities to stdout.

-b If there are symbols found in filel that are not in the bounds of
file2, report warning messages to stderr.

-i Turn off the restriction that the path names for the target shared
library need to be identical for two files to be compatible.

-n Indicate that there are exactly two input files, which are target
shared libraries, where the first references symbols in the second
("includes" the second).

The output of chkshlib depends upon the input. If the first input file is an
executable file and the other input files, if any, are target shared libraries,
the output states whether or not the executable file can execute using each
target shared library. If there are no target shared libraries supplied,
chkshlib performs the compatibility check against the target shared libraries
specified in the .lib section of the executable file.

If the first input file is an executable file and the other input file(s) is a host
shared library, the output states whether or not the executable file could
have been produced using each host.

If one input file is a host shared library and the other input file, if any, is a
target shared library, the output states whether or not the host shared
library could produce executable files that will run with the target shared
library. If no target shared library is supplied, then chkshlib performs the
compatibility check against the target specified in the .lib section of the
library definition file found in the host.

If both input files are target shared libraries or both input files are host
shared libraries, the output states whether or not the first file could replace
the second and vice versa.

CHKSHLIB(1) (C Software Development Set) CHKSHLIB(1)

If both input files are target libraries and the -n option is set, the output
states if the first file references symbols in the second file ("includes" the
second).

Compatibility of all other combinations of host shared libraries, target
shared libraries, and executable files has no useful meaning, and these other
combinations of files are not accepted as valid input to chkshlib.

SEE ALSO
mkshlib(1).
"Shared Libraries" chapter in the UNIX System V Programmer’s Guide.

DIAGNOSTICS
Exit status is 0 if no incompatibilities are found, 1 if an incompatibility is
found, and 2 if a processing error occurs.

CAVEAT
chkshlib requires that you use the -i option whenever you use the -n option.

Standard binaries distributed with the UNIX system are stripped, and
chkshlib cannot be used with them.

COMB(1) (C Software Development Set) COMB(1)

NAME

comb — combine SCCS deltas

SYNOPSIS

comb -0 -s [-pSID] [-clist] files

DESCRIPTION

FILES

The comb command generates a shell procedure [see sh(1)] which, when
run, will reconstruct the given SCCS files. The reconstructed files will,
hopefully, be smaller than the original files. The arguments may be speci-
fied in any order, but all keyletter arguments apply to all named SCCS files.
If a directory is named, comb behaves as though each file in the directory
were specified as a named file, except that non-SCCS files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of the
input is taken to be the name of an SCCS file to be processed; non-SCCS
files and unreadable files are silently ignored. The generated shell pro-
cedure is written on the standard output.

The keyletter arguments are as follows. Each is explained as though only
one named file is to be processed, but the effects of any keyletter argument
apply independently to each named file.

-0 For each get -e generated, this argument causes the recon-
structed file to be accessed at the release of the delta to be
created, otherwise the reconstructed file would be accessed at the
most recent ancestor. Use of the -0 keyletter may decrease the
size of the reconstructed SCCS file. It may also alter the shape of
the delta tree of the original file.

-pSID The SCCS IDentification string (SID) of the oldest delta to be
preserved. All older deltas are discarded in the reconstructed
file.

-s This argument causes comb to generate a shell procedure which,
when run, will produce a report giving, for each file: the file
name, size (in blocks) after combining, original size (also in
blocks), and percentage change computed by:

100 * (original — combined) / original

It is recommended that before any SCCS files are actually com-
bined, one should use this option to determine exactly how
much space is saved by the combining process.

If no keyletter arguments are specified, comb will preserve only leaf deltas
and the minimal number of ancestors needed to preserve the tree.

s.COMB The name of the reconstructed SCCS file.
comb????? Temporary.

COMB(1) (C Software Development Set) COMB(1)

SEE ALSO
admin(1), delta(1), get(1), prs(1), sccsfile(4).
sh(1) in the User’s/System Administrator’s Reference Manual.
BUGS
The comb command may rearrange the shape of the tree of deltas. It may

not save any space; in fact, it is possible for the reconstructed file to actually
be larger than the original.

CONV(1) (C Software Development Set) CONV(1)

NAME

conv — common object file converter
SYNOPSIS

conv [-a] [-o] [-p] -t target [~} files]
DESCRIPTION

The conv command converts object files in the common object file format
from their current byte ordering to the byte ordering of the target machine.
The converted file is written to file.v. The conv command can be used on
either the source (sending) or target (receiving) machine.

Command line options are:

- Indicates that the names of files should be read from the
standard input.

-a If the input file is an archive, produce the output file in the
UNIX System V Release 2.0 portable archive format.

-0 If the input file is an archive, produce the output file in the old
(pre- UNIX System V) archive format.

-p If the input file is an archive, produce the output file in the
UNIX System V Release 1.0 random access archive format.

-t target Convert the object file to the byte ordering of the machine
(target) to which the object file is being shipped. This may be
another host or a target machine. Legal values for target are:
pdp, vax, ibm, x86, b16, n3b, mc68, and m32.

The conv command is meant to ease the problems created by a multi-host,
cross-compilation development environment. The conv command is best
used within a procedure for shipping object files from one machine to
another.

The conv command will recognize and produce archive files in three for-
mats: the pre- UNIX System V format, the UNIX System V Release 1.0 ran-
dom access format, and the UNIX System V Release 2.0 portable ASCII for-
mat. By default, conv will create the output archive file in the same format
as the input file. To produce an output file in a different format than the
input file, use the -a, -0, or -p option. If the output archive format is the
same as the input format, the archive symbol table will be converted, other-
wise the symbol table will be stripped from the archive. The ar(l) com-
mand with its -t and -s options must be used on the target machine to
recreate the archive symbol table.

EXAMPLE
To ship object files from a VAX computer sytem to a 3B2 computer, execute
the following commands:

conv —t m32 *.out

uucp *.out.v my3b2!"/rje/

CONV(1) (C Software Development Set) CONV(1)

SEE ALSO
ar(1), convert(1), ar(4), a.out(4).

DIAGNOSTICS
The diagnostics are self-explanatory. Fatal diagnostics on the command
lines cause termination. Fatal diagnostics on an input file cause the pro-
gram to continue to the next input file.

CAVEATS
The conv command will not convert archives from one format to another if
both the source and target machines have the same byte ordering. The
UNIX system tool convert(1) should be used for this purpose.

CONVERT(1) (C Software Development Set) CONVERT(1)

NAME

convert — convert archive files to common formats

SYNOPSIS

convert [-x] infile outfile

DESCRIPTION

The convert command transforms input infile to output outfile. Infile must
be a UNIX System V Release 1.0 or XENIX archive file and outfile will be
the equivalent UNIX System V Release 2.0 archive file. All other types of
input to the convert command will be passed unmodified from the input file
to the output file (along with appropriate warning messages).

The -x option is required to convert a XENIX archive. Using this option will
convert the general archive structure but leave archive members unmodi-
fied.

Infile must be different from outfile.

FILES
TMPDIR /conv#* temporary files
TMPDIR is usually /usr/tmp but can be redefined by setting the environ-
ment variable TMPDIR [see tempnam() in tmpnam(3S)].

SEE ALSO

ar(1), tmpnam(3S), a.out(4), ar(4).

CPP(1) (C Software Development Set) CPP(1)

NAME

cpp - the C language preprocessor
SYNOPSIS

LIBDIR/cpp [option ...] [ifile [ofile]]
DESCRIPTION

The C language preprocessor, cpp, is invoked as the first pass of any C
compilation by the cc(1) command. Thus cpp’s output is designed to be in
a form acceptable as input to the next pass of the C compiler. As the C
language evolves, cpp and the rest of the C compilation package will be
modified to follow these changes. Therefore, the use of cpp other than
through the cc(1) command is not suggested, since the functionality of cpp
may someday be moved elsewhere. See m4(1) for a general macro proces-
sor.

The cpp command optionally accepts two file names as arguments. Ifile
and ofile are respectively the input and output for the preprocessor. They
default to standard input and standard output if not supplied.

The following options to cpp are recognized:

-P Preprocess the input without producing the line control information
used by the next pass of the C compiler.

-C By default, cpp strips C-style comments. If the -C option is speci-
fied, all comments (except those found on cpp directive lines) are
passed along.

-Uname
Remove any initial definition of name, where name is a reserved
symbol that is predefined by the particular preprocessor. Following
is the current list of these possibly reserved symbols. On the 80386,
unix and i386 are defined.

operating system: unix, dmert, gcos, ibm, os, tss

hardware: i286, i386, interdata, pdp11, u370, u3b,
u3b5, u3b2, udbl5, udb20d, vax

UNIX system variant: RES, RT

lint(1): lint

-Dname

-Dname=def
Define name with value def as if by a #define. If no =def is given,
name is defined with value 1. The -D option has lower precedence
than the -U option. That is, if the same name is used in both a -U
option and a -D option, the name will be undefined regardless of
the order of the options.

-T The -T option forces cpp to use only the first eight characters to
distinguish preprocessor symbols and is included for backward com-
patibility.

-Idir Change the algorithm for searching for #include files whose names
do not begin with / to look in dir before looking in the directories

-1-

CPP(1)

(C Software Development Set) CPP(1)

on the standard list. Thus, #include files whose names are
enclosed in " " will be searched for first in the directory of the file
with the #include line, then in directories named in -I options, and
last in directories on a standard list. For #include files whose
names are enclosed in <>, the directory of the file with the
#include line is not searched.

-Ydir Use directory dir in place of the standard list of directories when
searching for #include files.

-H Print, one per line on standard error, the path names of included
files.
Two special names are understood by cpp. The name __LINE__ is

defined as the current line number (as a decimal integer) as known by cpp,
and __FILE__ is defined as the current file name (as a C string) as known
by cpp. They can be used anywhere (including in macros) just as any other
defined name.

All cpp directive lines start with # in column 1. Any number of blanks and
tabs is allowed between the # and the directive. The directives are:

#define name token-string
Replace subsequent instances of name with token-string.

#define name(arg, ..., arg) token-string

Notice that there can be no space between name and the (. Replace
subsequent instances of name followed by a (, a list of comma-
separated sets of tokens, and a) followed with token-string. Each
occurrence of an arg is replaced by the corresponding set of tokens
in the comma-separated list. When a macro with arguments is
expanded, the arguments are placed into the expanded token-string
unchanged. After the entire token-string has been expanded, cpp
re-starts its scan for names to expand at the beginning of the newly
created token-string.

#undef name
Cause the definition of name (if any) to be forgotten from now on.
No additional tokens are permitted on the directive line after name.

#ident "string"
Put string into the .comment section of an object file.

#include " filename"

#include <filename>
Include at this point the contents of filename (which will then be
run through cpp). When the <filename> notation is used, filename
is only searched for in the standard places. See the -I and -Y
options above for more detail. No additional tokens are permitted
on the directive line after the final " or >.

#line integer-constant “filename"
Causes cpp to generate line control information for the next pass of
the C compiler. Integer-constant is the line number of the next line
and filename is the file from which it comes. If "filename" is not
given, the current file name is unchanged. No additional tokens are

2.

CPP(1)

(C Software Development Set) CPP(1)

permitted on the directive line after the optional filename.

#endif
Ends a section of lines begun by a test directive (#if, #ifdef, or
#ifndef). Each test directive must have a matching #endif. No
additional tokens are permitted on the directive line.

#ifdef name
The lines following will appear in the output if and only if name has
been the subject of a previous #define without being the subject of
an intervening #undef. No additional tokens are permitted on the
directive line after name.

#ifndef name

The lines following will appear in the output if and only if name has
not been the subject of a previous #define. No additional tokens
are permitted on the directive line after name.

#if constant-expression

Lines following will appear in the output if and only if the
constant-expression evaluates to non-zero. All binary non-
assignment C operators, the ?: operator, the unary -, !, and ~ opera-
tors are all legal in constant-expression. The precedence of the
operators is the same as defined by the C language. There is also a
unary operator defined, which can be used in constant-expression in
these two forms: defined (name) or defined name. This allows
the utility of #ifdef and #ifndef in a #if directive. Only these
operators, integer constants, and names which are known by cpp
should be used in constant-expression. In particular, the sizeof
operator is not available.

To test whether either of two symbols, foo and fum, are defined, use

#if defined(foo) # defined(fum)

#elif constant-expression

#else

An arbitrary number of #elif directives is allowed between a #if,
#ifdef, or #ifndef directive and a #else or #endif directive. The
lines following the #elif directive will appear in the output if and
only if the preceding test directive evaluates to zero, all intervening
#elif directives evaluate to zero, and the constant-expression evalu-
ates to non-zero. If constant-expression evaluates to non-zero, all
succeeding #elif and #else directives will be ignored. Any
constant-expression allowed in a #if directive is allowed in a #elif
directive.

The lines following will appear in the output if and only if the
preceding test directive evaluates to zero, and all intervening #elif
directives evaluate to zero. No additional tokens are permitted on
the directive line.

The test directives and the possible #else directives can be nested.

CPP(1) (C Software Development Set) CPP(1)

#pragma pack([112i4))

If an argument is present, subsequent structures will be aligned to
the given byte boundary. The packing of structure members remains
in effect until changed or disabled. If no argument is present and
the -Zp option was used with the cc command, packing reverts to
the packing specified on the cc command line. If the -Zp option was
not used with the cc command, structures are aligned to their nor-
mal settings.

FILES
INCDIR standard directory list for #include files, usually
/usr/include
LIBDIR usually /lib
SEE ALSO
cc(1), lint(1), m4(1).
DIAGNOSTICS

The error messages produced by cpp are intended to be self-explanatory.
The line number and file name where the error occurred are printed along
with the diagnostic.

NOTES
The unsupported -W option enables the #class directive. If it encounters a
#class directive, cpp will exit with code 27 after finishing all other process-
ing. This option provides support for “C with classes.”

Because the standard directory for included files may be different in dif-
ferent environments, this form of #include directive:

#include <file.h>

should be used, rather than one with an absolute path, like:
#include "/usr/include/file.h"

The cpp command warns about the use of the absolute path name.

CPRS(1) (C Software Development Set) . CPRS(1)

NAME
cprs — compress a common object file

SYNOPSIS
cprs [-p] filel file2

DESCRIPTION
The cprs command reduces the size of a common object file, filel, by
removing duplicate structure and union descriptors. The reduced file, file2,
is produced as output.

The sole option to cprs is:

-p Print statistical messages including: total number of tags, total dupli-
cate tags, and total reduction of filel.

SEE ALSO
strip(1), a.out(4), syms(4).

CSCOPE(1) (C Software Development Set) CSCOPE(1)

NAME
cscope — interactively examine a C program

SYNOPSIS
cscope [-f reffile] [-i namefile] [[-] incdir]] [-d] [files]
DESCRIPTION

cscope is an interactive screen-oriented tool that helps programmers browse
through C source code.

By default, cscope examines the C, yacc, and lex source files in the current
directory and builds a symbol cross-reference. It then uses this table to find
references to symbols (including C preprocessor symbols), function declara-
tions, and function calls.

cscope builds the symbol cross-reference the first time it is used on the
source files for the program being browsed. On a subsequent invocation,
cscope rebuilds the cross-reference only if a source file has changed or the
list of source files is different. When the cross-reference is rebuilt, the data
for the unchanged files are copied from the old cross-reference, which
makes rebuilding much faster than the initial build.

The following options can appear in any combination:

~f reffile
Use reffile as the cross-reference file name instead of the default
cscope.out.

-i namefile
Get the list of files (file names separated by spaces, tabs, or new-
lines) to browse from namefile. If this option is specified, cscope
ignores any files appearing on the command line.

-1 incdir

Look in incdir (before looking in INCDIR, the standard place for
header files that is normally /usr/include) for any #include files
whose names do not begin with / and that are not specified on the
command line or in namefile above. (The #include files may be
specified with either double quotes or angle brackets.) The incdir
directory is searched in addition to the current directory (which is
searched first) and the standard list (which is searched last). If more
than one occurrence of -I appears, the directories are searched in
the order they appear on the command line.

-d Do not update the cross-reference.

Requesting the Initial Search
After the cross-reference is ready cscope will display this menu:

List references to this C symbol:

Edit this function or #define:

List functions called by this function:
List functions calling this function:
List lines containing this text string:
Change this text string:

CSCOPE(1)

(C Software Development Set) CSCOPE(1)

Press the TAB key repeatedly to move to the desired input field, type the
text to search for, and then press the RETURN key.

Issuing Subsequent Requests
If the search is successful, any of these single-character commands can be

used:

1-9
SPACE

Edit the file referenced by the given line number.
Display next lines.

Display next lines.

Display previous lines.

Edit all lines.

Append the displayed list of lines to a file.

At any time these single-character commands can also be used:

TAB
RETURN

?
d

Move to next input field.

Move to next input field.

Move to next input field.

Move to previous input field.

Search with the last text typed.

Rebuild the cross-reference.

Start an interactive shell (type "d to return to cscope).
Redraw the screen.

Display this list of commands.

Exit cscope.

Note: If the first character of the text to be searched for matches one of the
above commands, escape it by typing a \ (backslash) first.

Substituting New Text for Old Text
After the text to be changed has been typed, cscope will prompt for the new
text, and then it will display the lines containing the old text. Select the
lines to be changed with these single-character commands:

1-9

SPACE

CAPE

VT ER O+

Mark or unmark the line to be changed.

Mark or unmark all displayed lines to be changed.
Display next lines.

Display next lines.

Display previous lines.

Mark all lines to be changed.

Change the marked lines and exit.

Exit without changing the marked lines.

Start an interactive shell (type d to return to cscope).
Redraw the screen.

Display this list of commands.

ENVIRONMENT VARIABLES

EDITOR
HOME
SHELL
TERM
VIEWER

Preferred editor, which defaults to vi(1).

Home directory, which is automatically set at login.

Preferred shell, which defaults to sh(1).

Terminal type, which must be a screen terminal.

Preferred file display program [such as pg(1)], which overrides
EDITOR (see above).

-2-

CSCOPE(1)
VPATH
FILES
cscope.out
ncscope.out
INCDIR
WARNINGS

(C Software Development Set) CSCOPE(1)

An ordered list of directory names, separated by colons. It can
be used by cscope to search for both source and header files, but
the two types of files have different orders of search. If VPATH
is set, cscope searches for source files in the directories specified;
if it is not set, cscope searches only in the current directory.
cscope searches for header files in the following order: (1) if
VPATH is set, in directories specified in VPATH and if VPATH is
not set, in the current directory; (2) in directories specified by
the -I option (if they exist); and (3) in the standard location for
header files (normally /usr/include).

Symbol cross-reference file, which is put in the home direc-
tory if it cannot be created in the current directory.
Temporary file containing new cross-reference before it
replaces the old cross-reference.

Standard directory for #include files (usually is
/usr/include).

cscope recognizes function definitions of the form:

fname blank (args) white arg_decs white {

where:
frname
blank
args
white
arg—decs

is the function name,

is zero or more spaces or tabs, not including newlines,
is any string that does not contain a " or a newline,
is zero or more spaces, tabs, or newlines, and

are zero or more argument declarations. arg_decs may include
comments and white space.

It is not necessary for a function declaration to start at the beginning of a
line. The return type may precede the function name; cscope will still recog-
nize the declaration. Function definitions that deviate from this form will
not be recognized by cscope.

CTAGS(1) (C Software Development Set) CTAGS(1)

NAME

ctags — create a tags file

SYNOPSIS

ctags [-a][-u][-v][-w][-x] name ..

DESCRIPTION

ctags makes a tags file for vi(1) from the specified C sources. A tags file
gives the locations of specified objects (in this case functions) in a group of
files. Each line of the tags file contains the function name, the file in which
it is defined, and a scanning pattern used to find the function definition.
These are given in separate fields on the line, separated by blanks or tabs.
Using the tags file, vi can quickly find these function definitions.

If the -x flag is given, ctags produces a list of function names and the line
number and file name on which each is defined, as well as the text of that
line, and prints this on the standard output. With the -x option, no tags file
is created. This is a simple index which can be printed out as an off-line
readable function index. Files whose name ends in .c or .h are assumed to
be C source files and are searched for C routine and macro definitions.

Other options are

-a Causes specified files to be appended to tags; that is, new values for
the files are appended to the tags file.

-u Causes the specified files to be updated in tags; that is, all references to
them are deleted, and the new values are appended to the file.
(Beware: this option is implemented in a way which is rather slow; it
is usually faster to simply rebuild the tags file.)

-v Produces a list of function names, the filename each function is
declared in, and the function’s line number. This list prints on the
standard output, and no tags file is created.

-w Suppresses warning diagnostics.

The tag main is treated specially in C programs. The tag formed is created
by prefixing M to the name of the file, with a trailing .c removed, if any,
and leading path name components also removed. This makes use of ctags
practical in directories with more than one program.

FILES

tags Output tags file
SEE ALSO

ex(1), vi(1) in the User’s/System Administrator’s Reference Manual.
CREDIT

This utility was developed at the University of California at Berkeley and is
used with permission.

CTRACE(1) (C Software Development Set) CTRACE(1)

NAME

ctrace — C program debugger

SYNOPSIS

ctrace [options] [file]

DESCRIPTION

The ctrace command allows you to follow the execution of a C program,
statement-by-statement. The effect is similar to executing a shell procedure
with the -x option. The ctrace command reads the C program in file (or
from standard input if you do not specify file), inserts statements to print
the text of each executable statement and the values of all variables refer-
enced or modified, and writes the modified program to the standard output.
You must put the output of ctrace into a temporary file because the cc(1)
command does not allow the use of a pipe. You then compile and execute
this file.

As each statement in the program executes it will be listed at the terminal,
followed by the name and value of any variables referenced or modified in
the statement, followed by any output from the statement. Loops in the
trace output are detected and tracing is stopped until the loop is exited or a
different sequence of statements within the loop is executed. A warning
message is printed every 1000 times through the loop to help you detect
infinite loops. The trace output goes to the standard output so you can put
it into a file for examination with an editor or the bfs(1) or tail(1) com-
mands.

The options commonly used are:

~f functions Trace only these functions.
-v functions Trace all but these functions.

You may want to add to the default formats for printing variables. Long
and pointer variables are always printed as signed integers. Pointers to
character arrays are also printed as strings if appropriate. Char, short, and
int variables are also printed as signed integers and, if appropriate, as char-
acters. Double variables are printed as floating point numbers in scientific
notation. You can request that variables be printed in additional formats, if
appropriate, with these options:

-0 Octal

-X Hexadecimal
-u Unsigned

-e Floating point

These options are used only in special circumstances:

-1n Check n consecutively executed statements for looping trace output,
instead of the default of 20. Use 0 to get all the trace output from
loops.

-8 Suppress redundant trace output from simple assignment statements
and string copy function calls. This option can hide a bug caused
by use of the = operator in place of the == operator.

-tn Trace n variables per statement instead of the default of 10 (the
maximum number is 20). The Diagnostics section explains when to

-1-

CTRACE(1) (C Software Development Set) CTRACE(1)

use this option.
-P Run the C preprocessor on the input before tracing it. You can also
use the -D, -I, and -U cpp(1) options.

These options are used to tailor the run-time trace package when the traced
program will run in a non-UNIX System environment:

-b Use only basic functions in the trace code, that is, those in
ctype(3C), printf(3S), and string(3C). These are usually available
even in cross-compilers for microprocessors. In particular, this
option is needed when the traced program runs under an operating
system that does not have signal(2), fflush(3S), longjmp(3C), or
setjmp (3C).

-p string
Change the trace print function from the default of ‘printf(’. For
example, ‘fprintf(stderr,” would send the trace to the standard error
output.

-rf Use file f in place of the runtime.c trace function package. This lets
you change the entire print function, instead of just the name and
leading arguments (see the -p option).

EXAMPLE
If the file Ic.c contains this C program:

1 #include <stdio.h>

2 main() /* count lines in input */
3 {
4 intc, nl;
5
6 nl = 0;
7 while ((c = getchar()) != EOF)
8 if (c = "\n’)
9 ++nl;
10 printf(" %d\n", nl);
11}
and you enter these commands and test data:
cc le.c
a.out
1
(cntl-d)

the program will be compiled and executed. The output of the program will
be the number 2, which is not correct because there is only one line in the
test data. The error in this program is common, but subtle. If you invoke
ctrace with these commands:

ctrace lc.c >temp.c
cc temp.c
a.out

CTRACE(1) (C Software Development Set) CTRACE(1)

the output will be:

2 main()
6 nl = 0;
/¥nl == 0%/

7 while ((c = getchar()) '= EOF)

The program is now waiting for input. If you enter the same test data as
before, the output will be:

/¥*c==49o0or’'l' %/

8 if (c ="\n")
/*¥c==10or \n’ */
9 ++nl;
/¥nl==1%/

7 while ((c = getchar()) != EOF)
/*c==10or \n’ */

8 if (c = "\n)
/xc==10 or \n’ */
9 ++nl;
*n]l == 2 */

7 while ((c = getchar()) '= EOF)

If you now enter an end-of-file character (cntl-d) the final output will be:

*xc==-1%/
10 printf(* %d\n", nl);
/*¥nl ==2%/2
return

Note that the program output printed at the end of the trace line for the nl
variable. Also note the return comment added by ctrace at the end of the
trace output. This shows the implicit return at the terminating brace in the
function.

The trace output shows that variable ¢ is assigned the value ‘1" in line 7, but
in line 8 it has the value "\n’. Once your attention is drawn to this if state-
ment, you will probably realize that you used the assignment operator (=)
in place of the equality operator (==). You can easily miss this error during
code reading.

EXECUTION-TIME TRACE CONTROL
The default operation for ctrace is to trace the entire program file, unless
you use the -f or -v options to trace specific functions. This does not give
you statement-by-statement control of the tracing, nor does it let you turn
the tracing off and on when executing the traced program.

You can do both of these by adding ctroff() and ctron() function calls to
your program to turn the tracing off and on, respectively, at execution time.
Thus, you can code arbitrarily complex criteria for trace control with if state-
ments, and you can even conditionally include this code because ctrace
defines the CTRACE preprocessor variable. For example:

CTRACE(1) (C Software Development Set) CTRACE(1)

#ifdef CTRACE
if (c == "V && i > 1000)
ctron();
#endif

You can also call these functions from sdb(1) if you compile with the -g
option. For example, to trace all but lines 7 to 10 in the main function,
enter:

sdb a.out
main:7b ctroff()
main:11b ctron()
r

You can also turn the trace off and on by setting static variable tr_ct_ to 0
and 1, respectively. This is useful if you are using a debugger that cannot
call these functions directly.

FILES
/usr/lib/ctrace /runtime.c run-time trace package

SEE ALSO
signal(2), ctype(3C), fclose(3S), printf(3S), setjmp(3C), string(3C).

bfs(1), tail(1) in the User’s/System Administrator’s Reference Manual.

DIAGNOSTICS
This section contains diagnostic messages from both ctrace and cc(1), since
the traced code often gets some cc warning messages. You can get cc error
messages in some rare cases, all of which can be avoided.

ctrace Diagnostics
warning: some variables are not traced in this statement

Only 10 variables are traced in a statement to prevent the C com-
piler "out of tree space; simplify expression" error. Use the -t
option to increase this number.

warning: statement too long to trace
This statement is over 400 characters long. Make sure that you are
using tabs to indent your code, not spaces.

cannot handle preprocessor code, use —P option

This is usually caused by #ifdef/#endif preprocessor statements in
the middle of a C statement, or by a semicolon at the end of a
#define preprocessor statement.

‘if ... else if’ sequence too long
Split the sequence by removing an else from the middle.

possible syntax error, try -P option
Use the -P option to preprocess the ctrace input, along with any

-4-

CTRACE(1) (C Software Development Set) CTRACE(1)

appropriate -D, -1, and -U preprocessor options. If you still get the
error message, check the WARNINGS section below.

Cc Diagnostics

warning: illegal combination of pointer and integer
warning: statement not reached
warning: sizeof returns 0

Ignore these messages.

compiler takes size of function

See the ctrace "possible syntax error" message above.

yacc stack overflow

See the ctrace "'if ... else if’ sequence too long" message above.

out of tree space; simplify expression

Use the -t option to reduce the number of traced variables per state-
ment from the default of 10. Ignore the "ctrace: too many variables
to trace" warnings you will now get.

redeclaration of signal

Either correct this declaration of signal(2), or remove it and #include
<signal.h>.

WARNINGS

BUGS

You will get a ctrace syntax error if you omit the semicolon at the end of
the last element declaration in a structure or union, just before the right
brace (}). This is optional in some C compilers.

Defining a function with the same name as a system function may cause a
syntax error if the number of arguments is changed. Just use a different
name.

The ctrace command assumes that BADMAG is a preprocessor macro, and
that EOF and NULL are #defined constants. Declaring any of these to be
variables, e.g., "int EOF;", will cause a syntax error.

The ctrace command does not know about the components of aggregates
like structures, unions, and arrays. It cannot choose a format to print all the
components of an aggregate when an assignment is made to the entire
aggregate. ctrace may choose to print the address of an aggregate or use the
wrong format (e.g., 3.149050e-311 for a structure with two integer
members) when printing the value of an aggregate.

Pointer values are always treated as pointers to character strings.

The loo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>