

©1987 AT&T
All Rights Reserved
Printed in USA

NOTICE
The information in this document is subject to change without notice. AT&T
assumes no responsibility for any errors that may appear in this document.

DOCUMENTER'S WORKBENCH is a trademark of AT&T.
Intel is a registered trademark of Intel Corporation.
PDP is a trademark of Digital Equipment Corporation.
TEKTRONIX is a registered trademark of Tektronix Inc.
TELETYPE and UNIX are registered trademarks of AT&T.
VAX is a trademark of Digital Equipment Corporation.
VERSATEC is a registered trademark of Versatec, Inc.
XEROX is a trademark of Xerox Corporation.

AT&T Products and Services

To order documents from the Customer Information Center:

• Within the continental United States, call 1-800-432-6600

• Outside the continental United States, call 1-317-352-8556

• Send mail orders to:
AT&T Customer Information Center
Customer Service Representative
P.O. Box 19901
Indianapolis, Indiana 46219

To sign up for UNIX system or AT&T computer courses:

• Within the continental United States, call 1-800-221-1647

• Outside the continental United States, call 1-609-639-4458

To contact marketing representatives about AT&T computer hardware
products and UNIX software products:

• Within the continental United States, call 1-800-372-2447

• Outside the continental United States, call collect 1-215-266-2973 or
1-215-266-2975

iii

To find out about UNIX system source licenses:

iv

• Within the continental United States, except North Carolina, call 1-
800-828-UNIX

• In North Carolina and outside the continental United States, call
1-919-279-3666

• Or write to:
Software Licensing
Guilford Center
P.O. Box 25000
Greensboro, NC 27420

Introduction

This manual describes the features of the UNIX system. It provides neither
a general overview of the UNIX system nor details of the implementation of
the system. Commands that constitute the basic software running on your
computer are described.

The manual is divided into four sections:

• 1 - System Commands, System Maintenance Commands, and Applica-
tion Programs

• 7 - Special Files

• 8 - System Maintenance Procedures

• Index to Packages.

Throughout this volume each reference of the form name(lM), name(7),
name(8), or followed by a (I), (lC), or (lG), refers to entries in this manual.
The numbers following the command are intended for easy cross-reference.
(Section 1 commands appropriate for use by programmers are located in the
Programmer's Reference Manual.) All other references to entries of the form
name(N), where N is a number [(2), (3), (4), or (5)] possibly followed by a
letter, refer to entry name in Section N of the Programmer's Reference Manual.

Each entry in the "Commands" section appears under a single name
shown at the upper corners of its page(s). Entries are alphabetized, with the
exception of the intro(l) entry, which is first. Entries may consist of more
than one page. Some entries may describe several routines, commands, etc.
In such cases, the entry appears only once, alphabetized under its "primary"
name, the name that appears at the upper corners of the page. An example of
such an entry is mount(lM), which also describes the umount command. The
"secondary" commands are listed dir~ctly below their associated primary
command.

Section 1 (System Commands, System Maintenance Commands and Applica­
tion Programs) contains eommands and programs that are:

• Used in administering a UNIX system.

• Invoked directly by the user or by command language procedures, as
opposed to subroutines, which are called by the user's programs.

INTRODUCTION 1

Introduction

Commands generally reside in the directory /bin (for binary programs).
In addition, some programs reside in /usr/bin. These directories are searched
automatically by the command interpreter called the shell. The shell will
search the path in your .profile. Make sure you have set this path in your
.profile file. UNIX systems running on your computer also have a directory
called /usr/lbin, containing local commands.

The following sub-classes are in this section:

• 1 - General-purpose Commands

• 1 C - Communications Commands

• 1G - Graphics Commands

• 1M - Maintenance Commands

Each entry in the "Commands" section appears under a single name
shown at the upper corners of its page(s).

Section 7 (Special Files) discusses the characteristics of system files that
refer to input/output devices. The names in this section generally refer to
device names for the hardware, rather than to the names of the special files
themselves.

Section 8 (System Maintenance Procedures) discusses crash recovery,
firmware programs, boot procedures, facility descriptions, etc.

Index to Packages. The utilities packages represented in this section are:

1. Base System
2. Editing Package
3. Remote Terminal Package

The Security Administration Utilities Package is expressly provided for
U. S. customers.

All entries are presented using the following format (though some of these
headings might not appear in every entry):

• NAME gives the primary name [and secondary name(s), as the case may
be] and briefly states its purpose.

• SYNOPSIS summarizes the usage of the program being described. A
few explanatory conventions are used, particularly in Section 1M and
the SYNOPSIS:

2 USER'S I SYSTEM ADMINISTRATOR'S REFERENCE MANUAL

Introduction

D Boldface strings are literals and are to be typed just as they appear.

D Italic strings usually represent substitutable argument prototypes
and command names found elsewhere in the manual. (They are
underlined in the typed version of the entries.)

D Square brackets [] around an argument prototype indicate that the
argument is optional. When an argument prototype is given as
"name" or "file," it always refers to a file name.

D Ellipses '" are used to show that the previous argument prototype
may be repeated.

D A final convention is used by the commands themselves. An argu­
ment beginning with a minus (-), plus (+), or an equal sign (=) is
often taken to be some sort of flag argument, even if it appears in a
position where a file name could appear. Therefore, it is unwise to
have files whose names begin with -, +, or =.

• DESCRIPTION discusses how to use these commands.

• EXAMPLE(S) gives example(s) of usage, where appropriate.

• FILES contains the file names that are referenced by the program.

• EXIT CODES discusses values set when the command terminates. The
value set is available in the shell environment variable '?' [see sh(l)].

• NOTES gives information that may be helpful under the particular cir­
cumstances described.

• SEE ALSO offers pointers to related information.

• DIAGNOSTICS discusses the error messages that may be produced.
Messages that are intended to be self-explanatory are not listed.

• WARNINGS discusses the limits or boundaries of the respective com­
mands.

• BUGS lists known faults in software that have not been rectified. Occa­
sionally, a suggested short-term remedy is also described.

Preceding Section 1 are a "Table of Contents" (listing both primary and
secondary command entries) and a "Permuted Index." Each line of the
"Table of Contents" lists an abstract of the command. The "Permuted
Index" is used by searching the middle column for a key word or phrase.
The right column will then contain the name of the manual page that contains

INTRODUCTION 3

Introduction

the command. The left column contains additional useful information about
the command.

How to Get Started
This discussion provides the basic information you need to get started on

the UNIX system: how to log in and log out, how to communicate through
your terminal, and how to run a program. (See the User's Guide for a more
complete introduction to the system.)

Logging In
You must connect to the UNIX system from the console or a full-duplex

ASCII terminal. You must also have a valid login id, which may be obtained
[together with how to access your UNIX system] from the administrator of
your system. Common terminal speeds are 120, 240, 480, and 960 characters
per second (1200, 2400, 4800, and 9600 baud). Some UNIX systems have dif­
ferent ways of accessing each available terminal speed, while other systems
offer several speeds through a common access method. In the latter case,
there is one "preferred" speed; if you access it from a terminal set to a dif­
ferent speed, you will be greeted by a string of meaningless characters (the
login: message at the wrong speed). Keep hitting the "break," "interrupt,"
or "attention" key until the login: message appears.

Most terminals have a speed switch that should be set to the appropriate
speed and a half-/full-duplex switch that should be set to full-duplex. When
a connection has been established, the system types login:. You respond by
typing your login id followed by the "return" key. If you have a password,
the system asks for it but will not print, or "echo," it on the terminal. After
you have logged in, the "return," "new-line," and "line-feed" keys all have
equivalent meanings.

Make sure you type your login name in lowercase letters. Typing upper­
case letters causes the UNIX system to assume that your terminal can generate
only uppercase letters and will treat all letters as uppercase for the remainder
of your login session. ..

When you log in, a message-of-the-day may greet you before you receive
your prompt. For more information, consult login(1), which discusses the
login sequence in more detail, and stty(1), which tells you how to describe
your terminal to the system. profile(4) (in the Programmer's Reference Manual)
explains how to accomplish this last task automatically every time you log in.

4 USER'S I SYSTEM ADMINISTRATOR'S REFERENCE MANUAL

Introduction

Logging Out
There are two ways to log out:

• If you've dialed in, you can simply hang up the phone.

• You can log out by typing an end-of-file indication (ASCII EOT charac­
ter, usually typed as "CONTROL-D") to the shell. The shell will ter­
minate, and the login: message will appear again.

How to Communicate Through Your Terminal
When you type to the UNIX system, your individual characters are being

gathered and temporarily saved. Although they are echoed back to you, these
characters will not be given to a program until you type a "return" (or
"new-line") as described above in "Logging In. "

UNIX system terminal input/output is full duplex. It has full read-ahead,
which means that you can type at any time, even while a program is typing at
you. Of course, if you type during output, your input characters will have
output characters interspersed among them. In any case, whatever you type
will be saved and interpreted in the correct sequence. There is a limit to the
amount of read-ahead, but it is generous and not likely to be exceeded.

The character @ cancels all the characters typed before it on a line, effec­
tively deleting the line. (@ is called the line kill character.) The character #
erases the last character typed. Successive uses of # will erase characters back
to, but not beyond, the beginning of the line; @ and # can be typed as them­
selves by preceding them with \ (thus, to erase a \, you need two #s). These
default erase and line kill characters can be changed; see stty(l).

CONTROL-S (also known as the ASCII DC3 character) is typed by pressing
the control key and the alphabetic s simultaneously and is used to stop output
temporarily. It is useful with CRT terminals to prevent output from disappear­
ing before it can be read. Output is resumed when a CONTROL-Q (also
known as DCI) is typed. Thus, if you had typed cat yourfile and the contents
of yourfile were passing by on the screen more rapidly than you could read
it, you would type CONTROL-S to freeze the output for a moment. Typing
CONTROL-Q would allow the output to resume its rapid pace. The
CONTROL-S and CONTROL-Q characters are not passed to any other program
when used in this manner.

INTRODUCTION 5

Introduction

The ASCII DEL (a.k.a. "rubout") character is not passed to programs but
instead generates an interrupt signal, just like the "break," "interrupt," or
"attention" signal. This signal generally causes whatever program you are
running to terminate. It is typically used to stop a long printout that you do
not want. Programs, however, can arrange either to ignore this signal alto­
gether or to be notified and take a specific action when it happens (instead of
being terminated). The editor ed(l), for example, catches interrupts and stops
what it is doing, instead of terminating, so an interrupt can be used to halt an
editor printout without losing the file being edited.

Besides adapting to the speed of the terminal, the UNIX system tries to be
intelligent as to whether you have a terminal with the "new-line" function, or
whether it must be simulated with a "carriage-return" and" line-feed" pair.
In the latter case, all input "carriage-return" characters are changed to "line­
feed" characters (the standard line delimiter), and a "carriage-return" and
"line-feed" pair is echoed to the terminal.

Tab characters are used freely in UNIX system source programs. If your
terminal does not have the tab function, you can arrange to have tab charac­
ters changed into spaces during output, and echoed as spaces during input.
Again, the stty(l) command will set or reset this mode. The system assumes
that tabs are set every eight character positions. The tabs(l) command will set
tab stops on your terminal, if that is possible.

How to Run a Program
When you have successfully logged into the UNIX system, a program

called the shell is communicating with your terminal. The shell reads each
line you type, splits the line into a command name and its arguments, and
executes the command. A command is simply an executable program. Nor­
mally, the shell looks first in your current directory (see" The Current Direc­
t~" below) for a program with the given name, and if none is there, then in
system directories, such as thin and /usr thin. There is nothing special about
system-provided commands except that they are kept in directories where the
shell can find them. You can also keep commands in your own directories
and instruct the shell to find them there. See the manual entry for sh(l),
under the sub-heading "Parameter Substitution," for the discussion of the
$P ATH shell environment variable.

6 USER'S I SYSTEM ADMINISTRATOR'S REFERENCE MANUAL

Introduction

The command name is the first word on an input line to the shell; the
command and its arguments are separated from one another by space or tab
characters.

When a program terminates, the shell will ordinarily regain control and
give you back your prompt to indicate that it is ready for another command.
The shell has many other capabilities, which are described in detail in sh(l).

The Current Directory
The UNIX system has a file system arranged in a hierarchy of directories.

When you received your login id, the system administrator also created a
directory for you (ordinarily with the same name as your login id,and known
as your login or home directory). When you log in, that directory becomes
your current or working directory, and any file name you type is, by default,
assumed to be in that directory. Because you are the owner of this directory,
you have full permissions to read, write, alter, or remove its contents. Permis­
sions to enter or modify other directories and files will have been granted or
denied to you by their respective owners or by the system administrator. To
change the current directory, use cd(l).

Path Names
To refer to files or directories not in the current directory, you must use a

path name. Full path names begin with j, which is the name of the root
directory of the whole file system. After the slash comes the name of each
directory containing the next sub-directory (followed by a j), until finally the
file or directory name is reached (e.g., jusrjaejfilex refers to file fHex in
directory ae, while ae is itself a subdirectory of usr, and usr is a subdirectory
of the root directory). Use pwd(l) to print the full path name of the directory
you are working in. See intro(2) in the Programmer's Reference Manual for a
formal definition of path name.

If your current directory contains subdirectories, the path names of their
respective files begin with the name of the corresponding subdirectory
(without a prefixed j). A path name may be used anywhere a file name is
required.

INTRODUCTION 7

Introduction

Important commands that affect files are cp(l), mv (see cp(l», and rm(l),
which respectively copy, move (Le., rename), and remove files. To find out
the status of files or directories, use Is(l). Use mkdir(l) for making directories
and rmdir (see rm(l» for removing them.

Text Entry and Display
Almost all text is entered through an editor. Common examples of UNIX

system editors are ed(l) and vi(l). The commands most often used to print
text on a terminal are cat(l), pr(l), and pg(l). The cat(l) command displays
the contents of ASCII text files on the terminal, with no processing at all. The
pr(l) command paginates the text, supplies headings, and has a facility for
multi-column output. The pg(l) command displays text in successive portions
no larger than your terminal screen.

Communicating with Others
Certain commands provide inter-user communication. Even if you do not

plan to use them, it would be well to learn something about them because
someone else may try to contact you. mail(l) or mailx(l) will leave a message
whose presence will be announced to another user when he or she next logs
in and at periodic intervals during the session. To communicate with another
user currently logged in, write(l) is used. The corresponding entries in this
manual also suggest how to respond to these two commands if you are their
target.

See the tutorials in Chapter 8 of the Operations/System Administration
Guide for more information on communicating with others.

8 USER'S I SYSTEM ADMINISTRATOR'S REFERENCE MANUAL

TABLE OF CONTENTS

1. System Maintenance Commands and Application Programs

intro(l) introduction to commands and application programs
300(1) handle special functions of DASI 300 and 300s terminals
4014(1) paginator for the TEKTRONIX 4014 terminal
450(1) handle special functions of the DASI 450 terminal
accept(lM) allow or prevent LP requests
acct(lM) overview of accounting and miscellaneous accounting commands
acctcms(lM) command summary from per-process accounting records
acctcom(l) search and print process accounting file(s)
acctcon(lM) connect-time accounting
acctmerg(lM) merge or add total accounting files
acctprc(lM)•...•........ process accounting
acctsh(lM) shell procedures for accounting
adm(l) . invoke the AT&T Administration interface
adv(lM) advertise a directory for remote access
at(l) execute commands at a later time
awk(l) pattern scanning and processing language
backup(IM) performs backup functions
banner(l) make posters
basename(l) ...•.. deliver portions of path names
bc(l) . . • arbitrary-precision arithmetic language
bdiff(l) • . big diff
bfs(l) ..•......................... big file scanner
brc(lM) . system initialization procedures
cal(l) • • . . . • print calendar
calendar(l) reminder service
captoinfo(IM) . • convert a termcap description into a terminfo description
cat(l)•.•............... concatenate and print files
cd(l) change working directory
chmod(l) ...•......................• change mode
chown(l) .••................•... change owner or group
chroot(lM)•....... change root directory for a command
chrtbl(IM) • generate character classification and conversion tables
clri(lM) • . . • • . . . • • . . . clear i-node
cmp(l) . . . • • • . • compare two files
col(l) • . . • filter reverse line-feeds
comm(l) •.....•..... select or reject lines common to two sorted files
cp(l)•..... copy, link, or move files
cpio(l) • . • . • copy file archives in and out
crash(lM)•.••...... examine system images
cron(lM) ...•.•.....•.•..•...•...... clock daemon
crontab(l) • • • . . • • . . user crontab file
crypt(l)••...••..•.......... encode/decode
csplit(l) . • • • • . . . • • . • context split
ct(lC) •.....•...•...•••... spawn getty to a remote terminal
cu(lC)•...•...•.•..• call another UNIX system
cut(l) • . . . • • . . . • . . cut out selected fields of each line of a file
date(l) • • print and set the date
dc(l) . • . • . • • . • . . • . • . • . . • . . • • . . desk calculator
dcopy(lM) .•...•.•.••..• copy file systems for optimal access time

- 1 -

Table of Contents

dd(lM) convert and copy a file
deroff(l) • remove nroff/troff, tbl, and eqn constructs
devnm(lM) . device name
df(lM) •............. report number of free disk blocks and i-nodes
diff(l) . • differential file comparator
diff3(1) • . . . 3-way differential file comparison
dircmp(l) directory comparison
diskadd(lM) . disk partitioning utility
diskusg(lM) generate disk accounting data by user ID
displaypkg(l) • display installed packages
dname(lM) . • Print Remote File Sharing domain and network names
du(lM) summarize disk usage
echo(l) echo arguments
ed(1) . text editor
edit(l) text editor (variant of ex for casual users)
egrep(l) search a file for a pattern using full regular expressions
enable(l) . enable/disable LP printers
env(l) •................ set environment for command execution
ex(1) text editor
expr(l) evaluate arguments as an expression
factor(l) obtain the prime factors of a number
fdisk(lM) . . . create or modify hard disk partition table
ff(lM) list file names and statistics for a file system
fgrep(l) search a file for a character string
file(l). determine file type
find(1) . find files
format(lM) format floppy disk tracks
fsba(lM) file system block analyzer
fsck(lM) check and repair file systems
fsdb(lM) file system debugger
fsstat(lM). report file system status
fstyp(lM) determine file system identifier
fumount(lM) forced unmount of an advertised resource
fusage(lM) disk access profiler
fuser(lM) identify processes using a file or file structure
fwtmp(lM) manipulate connect accounting records
getopt(l)•. parse command options
getopts(l)•... parse command options
getty(lM) . set terminal type, modes, speed, and line diScipline
graph(lG) . draw a graph
greek(l) • . . • . . • select terminal filter
grep(l) search a file for a pattern
hp(l) •.......... handle special functions of Hewlett-Packard terminals
id(lM)•............ print user and group IDs and names
idbuild(lM) •................. build new UNIX system kernel
idcheck(lM) returns selected information
idinstall(lM). add, delete, update, or get device driver configuration data
idload(lM)• Remote File Sharing user and group mapping
idmkinit(lM) reads files containing specifications
idmknod(lM) . . removes nodes and reads specifications of nodes
idspace(lM) ... investigates free space
idtune(lM) . • • attempts to set value of a tunable parameter
infocmp(lM) compare or print out terminfo descriptions

- 2 -

Table of Contents

init(lM) process control initialization
installpkg(l) install package
ipcrm(l) • . remove a message queue, semaphore set, or shared memory id
ipcs(l) report interprocess communication facilities status
ismpx(l) return windowing terminal state
join(l) • relational data base operator
jterm(l) reset layer of windowing terminal
jwin(l) • . print size of layer
kill(l) terminate a process
killall(lM) . kill all active processes
labelit(lM) provide labels for file systems
layers(l) . layer multiplexer for windowing terminals
line(l) • read one line
link(lM) • link and unlink files and directories
login(l) • . . . • . • . sign on
logname(l)•... get login name
Ip(l) send/cancel requests to an LP line printer
Ipadmin(lM) configure the LP spooling system
Ipsched(lM) start/stop the LP scheduler and move requests
Ipstat(l) . print LP status information
Is(l) . list contents of directory
machid(l) get processor type truth value
mail(l)•...... send mail to users or read mail
mailx(l) .•............... interactive message processing system
makekey(l) generate encryption key
mesg(l) permit or deny messages
mkdir(l) make directories
mkfs(lM)•.................. construct a file system
mkfs(lM)•........ construct a file system
mknod(lM) build special file
mkpart(lM) disk maintenance utility
mount(lM) mount and unmount file systems and remote resources
mountall(lM) mount, unmount multiple file systems
mvdir(lM) move a directory
nawk(l) pattern scanning and processing language
ncheck(lM)•.... generate path names from i-numbers
newform(l). change the format of a text file
newgrp(lM)•............. log in to a new group
news(l) •.......................... print news items
nice(l)•. run a command at low priority
nl(l) line-numbering filter
nlsadmin(lM) . • • network listener service administration
nohup(l)•.•. run a command immune to hangups and quits
nsquery(lM) Remote File Sharing name server query
od(l) .'. . octal dump
pack(l)•................. compress and expand files
passmgmt(lM) . • password files management
passwd(l) change login password
passwd(lM)•..... change login password and password attributes
paste(l) merge same lines of several files or subsequent lines of one file
pg(l) • . . . • file perusal filter for CRTs
pr(l) • print files
profiler(lM) . . • . • . ••.. UNIX system profiler

- 3 -

Table of Contents

ps(l) report process status
pwck(lM) password/group file checkers
pwconv(lM) install and update
pwd(l) working directory name
rcO(lM)• run commands performed to stop the operating system
rc2(lM) ..••....•. run commands performed for multiuser environment
relogin(lM) . ~ rename login entry to show current layer
removepkg(l) . remove installed package
restore(lM). • restore file to original directory
rfadmin(lM) Remote File Sharing administration
rfpasswd(lM) change Remote File Sharing host password
rfstart(lM). start Remote File Sharing
rfuadmin(lM) . . Remote File Sharing notification shell script
rfudaemon(lM) Remote File Sharing daemon process
rm(l). remove files or directories
rmntstat(lM) display mounted resource information
rmount(lM) retry remote resource mounts
rmountall(lM) mount, unmount Remote File Sharing resources
runacct(lM) run daily accounting
sag(lG) system activity graph
sar(l) . system activity reporter
sar(lM) . system activity report package
sdiff(l) side-by-side difference program
sed(1) • stream editor
setmnt(lM) . establish mount table
sh(l) shell, the standard/restricted command programming language
shl(l) shell layer manager
shutdown(lM) shut down system, change system state
sleep(l) suspend execution for an interval
sort(l) sort and/or merge files
spell(l) . find spelling errors
spline(lG) interpolate smooth curve
split(l) . split a file into pieces
strace(lM) print STREAMS trace messages
strclean(lM) . STREAMS error logger cleanup program
strerr(lM) STREAMS error logger daemon
stty(l) • set the options for a terminal
su(lM) become super-user or another user
sum(l) . print checksum and block count of a file
swap(lM) . swap administrative interface
sync(lM) . update the super block
sysdef(lM) . output system definition
tabs(l) . set tabs on a terminal
tail(l). deliver the last part of a file
tapecntl(l) tape control for QIC-24/QIC-02 tape device
tar(l) . tape file archiver
tee(l) pipe fitting
test(l) condition evaluation command
tic(lM)•........ terminfo compiler
time(l) time a command
timex(l) • time a command; report process data and system activity
touch(l) . update access and modification times of a file
tplot(lG) • graphics filters

- 4 -

Table of Contents

tput(l) • . . initialize a terminal or query terminfo data base
tr(l) • . . . • . translate characters
true(l). • • . • • . • provide truth values
tty(l)• get the name of the terminal
Uutry(lM) ..•........ try to contact remote system with debugging on
uadmin(lM) ..•..•....•........... administrative control
umask(l)• set file-creation mode mask
unadv(lM)•..... unadvertise a Remote File Sharing resource
uname(l). print name of current UNIX system
uniq(l). report repeated lines in a file
units(l)•. conversion program
uucheck(lM) . check the uucp directories and permissions file
uucico(lM) file transport program for the uucp system
uucleanup(lM). • • • . . . uucp spool directory clean-up
uucp(lC). UNIX system to UNIX system copy
uugetty(lM) .. set terminal type, modes, speed, and line discipline
uusched(lM) ..•....... the scheduler for the uucp file transport program
uustat(lC)•. uucp status inquiry and job control
uuto(lC) public UNIX system to UNIX system file copy
uux(lC) UNIX system to UNIX system command execution
uuxqt(lM)•.. execute remote command requests
vi(l) • screen-oriented (visual) display editor based on ex
volcopy(lM) • . . . • • . make literal copy of file system
wait(l)•.•........• await completion of process
wall(1) • • write to all users
wc(l) • . . . • • • word count
who(l) who is on the system
whodo(lM) . . • . • • . . • . . • • . • . who is doing what
write(l) • • • • . . . • write to another user
wtinit(lM) • • object downloader for the 5620 DMD terminal
xargs(l) . construct argument list(s) and execute command
xtd(lM) • extract and print xt driver link structure
xts(lM) • . . • . " extract and print xt driver statistics
xtt(lM) . . • • extract and print xt driver packet traces

7. Special Files

intro(7) • • . . • • introduction to special files
asy(7) . . . • . • . • . . • asynchronous serial port
clone(7) ••.•.•....... open any minor device on a STREAMS driver
console(7) • . • • • . . . • . . . • • • . . console interface
cram(7) •.•.....•...•.......•... CMOS RAM interface
disk(7) . random access bulk storage medium
display(7) . . . system console display
fd(7) • . diskette (floppy disk)
hd(7) . • • . . . • • hard (fixed) disk
keyboard(7) . . . • . • system console keyboard
log(7) . . • . • interface to STREAMS error logging and event tracing
Ip(7) • • . • parallel printer interface
mem(7)•.•..••........•...•..•• core memory
null(7). • . • • • . . . • • . • . . . • the null file
prf(7) . . • . . • . . • • • • operating system profiler
qt(7) • • • . • • • QIC cartridge magnetic tape streamer interface

- 5 -

Table of Contents

rtc(7). . . . • . real time clock interface
streamio(7). • . • . . • • . STREAMS ioctl commands
sxt(7) . . • . pseudo-device driver
termio(7) • general terminal interface
timod(7) . . . • . • • Transport Interface cooperating STREAMS module
tirdwr(7) •...... Transport Interface read/write interface STREAMS module
tp4(7)•. Intel ISO TC4 compatible TLI network device driver
tty(7) •.. . • . . . • controlling terminal interface
xt(7)•.•... multiplexed tty driver for AT&T windowing terminals

8. System Maintenance Procedures

intro(8) • introduction to system maintenance procedures
sysdump(8) •.... boot option to dump system memory image to floppy disk(s)

- 6 -

PERMUTED INDEX

functions of DASI 300 and/ 300, 3005: handle special
/special functions of DASI 300 and 300s terminals. .

of DASI 300 and 300s/ 300, 300s: handle special functions
functions of DASI 300 and 300s terminals. /special

comparison. diff3: 3-way differential file .
TEKTRONIX 4014 terminal. 4014: paginator for the

paginator for the TEKTRONIX 4014 terminal. 4014:
of the DASI 450 terminal. 450: handle special functions

special functions of the DASI 450 terminal. 450: handle .
object downloader for the 5620 DMD terminal. wtinit:

prevent LP requests. accept, reject: allow or
a directory for remote access. adv: advertise • . .

of a file. touch: update access and modification times
disk: random access bulk storage medium.

fusage: disk access profiler.
copy file systems for optimal access time. dcopy: . .

acctcon2: 'connect-time accounting. /acctcon1,
acctprc1, acctprc2: process accounting. acctprc:

tumacct: shell procedures for accounting. /startup, .
/accton, acctwtmp: overview of accounting and miscellaneous/

accounting and miscellaneous accounting commands. /of
diskusg: generate disk accounting data by user !D.

search and print process accounting filets). acctcom:
acctmerg: merge or add total accounting files.

summary from per-process accounting records. /command
wtmpfix: manipulate connect accounting records. fwtmp,

runacct: run daily accounting. •.•.•....
accton, acctwtmp: overview off acct: acctdisk, acctdusg,

per-process accounting/ acctcms: command summary from
process accounting filets). acctcom: search and print .
connect-time accounting. acctcon: acctcon 1, acctcon2:

connect-time/ acctcon: acctcon1, acctcon2: ...
acctcon: acctcon1, acctcon2: connect-time/ . .

acctwtmp: overview off acct: acctdisk, acctdusg, accton, .
overview off acct: acctdisk, acctdusg, accton, acctwtmp:

accounting files. acctmerg: merge or add total
acct: acctdisk, acctdusg, accton, acctwtmp: overview off

process accounting. acctprc: acctprc1, acctprc2:
accounting. acctprc: acctprc1, acctprc2: process .

acctprc: acctprc1, acctprc2: process accounting.
dodisk, lastlogin, monacct,j acctsh: chargefee, ckpacct, .

acctdisk, acctdusg, accton, acctwtmp: overview off acct:
killall: kill all active processes.

sag: system activity graph. • . . .
sar: sal, sa2, sadc: system activity report package.

sar: system activity reporter.
report process data and system activity. /time a command;

device driver / idinstall: add, delete, update, or get
acctmerg: merge or add total accounting files.

Administration interface. adm: invoke the AT&T
adm: invoke the AT&T Administration interface.
network listener service administration. nlsadmin:

rfadmin: Remote File Sharing administration.
uadmin: administrative control.

swap: swap administrative interface.
remote access. adv: advertise a directory for

remote access. adv: advertise a directory for

- 1 -

300(1)
300(1)
300(1)
300(1)
diff3(1)
4014(1)
4014(1)
450(1)
450(1)
wtinit(lM)
accept(lM)
adv(lM)
touch(l)
disk(7)
fusage(lM)
dcopy(lM)
acctcon(1 M)
acctprc(1 M)
acctsh(lM)
acct(1M)
acct(lM)
diskusg(lM)
acctcom(l)
acctmerg(1 M)
acctcms(lM)
fwtmp(lM)
runacct(lM)
acct(lM)
acctcms(1 M)
acctcom(l)
acctcon(1 M)
acctcon(lM)
acctcon(lM)
acct(lM)
acct(1M)
acctmerg(lM)
acct(lM)
acctprc(1 M)
acctprc(1 M)
acctprc(lM)
acctsh(lM)
acct(lM)
killall(1M)
sag(lG)
sar(lM)
sar(l)
timex(l)
idinstall(lM)
acctmerg(lM)
adm(l)
adm(l)
nlsadmin(lM)
rfadmin(1M)
uadmin(lM)
swap(lM)
adv(lM)
adv(lM)

Permuted Index

fumount: forced unmount of an advertised resource.
accept, reject: allow or prevent LP requests.

fsba: file system block analyzer. ..••....
sort: sort and/or merge files. . • . . •

introduction to commands and application programs. intro: •
language. bc: arbitrary-precision arithmetic

tar: tape file archiver. .••.....
cpio: copy file archives in and out.

command. xargs' construct argument list(s) and execute
expr: evaluate arguments as an expression.

echo: echo arguments.
bc: arbitrary-precision arithmetic language.

expr: evaluate arguments as an expression. . .
asy: asynchronous serial port.

asy: asynchronous serial port.
a later time. at, batch: execute commands at

adm: invoke the AT&T Administration interface.
xt: multiplexed tty driver for AT&T windowing terminals.

tunable parameter. idtune: attempts to set value of a
login password and password attributes. passwd: change

wait: await completion of process.
processing language. awk: pattern scanning and

backup: performs backup functions.
functions. backup: performs backup

banner: make posters.
join: relational data base operator.

or query terminfo data base. /initialize a terminal
(visual) display editor based on ex. /screen-oriented

portions of path names. basename, dirname: deliver
later time. at, batch: execute commands at a

arithmetic language. bc: arbitrary-precision
initialization/ brc, bcheckrc: system .

bdiff: big diff.
bfs: big file scanner.

fsba: file system block analyzer. • •
sum: print checksum and block count of a file.

sync: update the super block. •
df: report number of free disk blocks and i-nodes. .
memory image to/ sysdump: boot option to dump system

initialization procedures. brc, bcheckrc: system . . •
idbuild: build new UNIX system kernel.
mknod: build special file. . .

disk: random access bulk storage medium.
cal: print calendar.

dc: desk calculator.
cal: print calendar.

calendar: reminder service.
cu: call another UNIX system. .

to an LP line printer. lp, cancel: send/cancel requests
description into a terminfo / captoinfo: convert a termcap

streamer interface. qt: QIC cartridge magnetic tape .
text editor (variant of ex for casual users). edit:

files. cat: concatenate and print
cd: change working directory.

conversion/ chrtbl: generate character classification and
fgrep: search a file for a character string.

tr: translate characters.
lastlogin, monacct,/ acctsh: chargefee, ckpacct, dodisk,

fsck, dfsck: check and repair file systems.

- 2 -

fumount(lM)
accept(lM)
fsba(lM)
sort(l)
intro(l)
bc(l)
tar(l)
cpio(l)
xargs(l)
expr(l)
echo(l)
bc(l)
expr(l)
asy(7)
asy(7)
at(l)
adm(l)
xt(7)
idtune(lM)
passwd(lM)
wait(l)
awk(l)
backup(lM)
backup(lM)
banner(l)
join(l)
tput(1)
vi(l)
basename(l)
at(l)
bc(l)
brc(lM)
bdiff(l)
bfs(l)
fsba(IM)
sum(1)
sync(lM)
df(lM)
sysdump(8)
brc(lM)
idbuild(lM)
mknod(IM)
disk(7)
cal(l)
dc(l)
cal(l)
calendar(l)
cu(lC)
lp(l)
captoinfo(IM)
qt(7)
edit(l)
cat(l)
cd(l)
chrtbl(IM)
fgrep(l)
tr(l)
acctsh(IM)
fsck(lM)

permissions file. uucheck: check the uucp directories and
grpck: password/group file checkers. pwck, ••.•..

file. sum: print checksum and block count of a
chown, chgrp: change owner or group.

chmod: change mode.
group. chown, chgrp: change owner or

for a command. chroot: change root directory
classification and conversion/ chrtbl: generate character

monacctJ acctsh: chargefee, ckpacct, dodisk, lastlogin, . .
chrtbl: generate character classification and conversion/

strclean: STREAMS error logger cleanup program.
uucp spool directory clean-up. uucleanup:

c1ri: clear i-node. •
cron: clock daemon. • . .

rtc: real time clock interface. . • .
on a STREAMS driver. clone: open any minor device

c1ri: clear i-node. . . •
cram 7: CMOS RAM interface.

cmp: compare two files.
line-feeds. col: filter reverse . . •

common to two sorted files. comm: select or reject lines
nice: run a command at low priority.

change root directory for a command. chroot:
env: set environment for command execution.

UNIX system to UNIX system command execution. uux:
quits. nohup: run a command immune to hangups and

getopt: parse command options.
getopts, getoptcvt: parse command options. •.•....

/shell, the standard/restricted command programming language.
and system/ timex: time a command; report process data

uuxqt: execute remote command requests. . . .
per-process/ acctcms: command summary from

test: condition evaluation command. • • • • . . .
time: time a command. . . •

argument Iist(s) and execute command. xargs: construct
and miscellaneous accounting commands. /of accounting

intro: introduction to commands and application/
at, batch: execute commands at a later time. .

multiuser/ rc2: run commands performed for
operating system. rcO: run commands performed to stop the
streamio: STREAMS ioctI commands. ••..•..

comm: select or reject lines common to two sorted files.
ipcs: report interprocess communication facilities/ .

diff: differential file comparator. •.•.•..
descriptions. infocmp: compare or print out terminfo

cmp: compare two files.
diff3: 3-way differential file comparison.

dircmp: directory comparison.
driver. tp4: Intel ISO TC4 compatible TLI network device

tic: terminfo compiler. •..•....
wait: await completion of process.

pack, pcat, unpack: compress and expand files.
cat: concatenate and print files.

test: condition evaluation command.
update, or get device driver configuration data. / delete,

system. Ipadmin: configure the LP spooling •
fWlmp, wlmpfix: manipulate connect accounting records.
acctcon: acctconl, acctcon2: connect-time accounting.

console: console interface.

- 3 -

Permuted Index

uucheck(IM)
pwck(IM)
sum(l)
chown(l)
chmod(l)
chown(l)
chroot(IM)
chrtbl(IM)
acctsh(IM)
chrtbl(IM)
strclean(IM)
uucleanup(IM)
c1ri(IM)
cron(IM)
rtc(7)
c1one(7)
c1ri(IM)
cram(7)
cmp(l)
col(l)
comm(l)
nice(l)
chroot(IM)
env(l)
uux(lC)
nohup(l)
getopt(l)
getopts(l)
sh(l)
timex(l)
uuxqt(IM)
acctcms(IM)
test(l)
time(l)
xargs(l)
acct(IM)
intro(l)
at(l)
rc2(IM)
rcO(IM)
streamio(7)
comm(l)
ipcs(l)
diff(l)
infocmp(IM)
cmp(l)
diff3(1)
dircmp(l)
tp4(7)
tic(IM)
wait(l)
pack(l)
cat(l)
test(l)
idinstall(IM)
Ipadmin(lM)
fwtmp(IM)
acctcon(lM)
console(7)

Permuted Index

display: system console display.
console: console interface.

keyboard: system console keyboard.
mkfs: construct a file system.
mkfs: construct a file system.

execute command. xargs: construct argument list(s) and
nroff /troff, tbl, and eqn constructs. deroff: remove .

debugging on. Uutry: try to contact remote system with
idmkinit: reads files containing specifications.

Is: list contents of directory.
csplit: context split. • .

device. tapecntl: tape control for QIC-24/QIC-02 tape
init, telinit: process control initialization.

uadmin: administrative control.
uucp status inquiry and job control. uustat:

interface. tty: controlling terminal
units: conversion program.

character classification and conversion tables. / generate
into a terminfo/ captoinfo: convert a termcap description

dd: convert and copy a file. • . .
timod: Transport Interface cooperating STREAMS module.

dd: convert and copy a file. •.......
cpio: copy file archives in and out.

access time. dcopy: copy file systems for optimal
cp, In, mv: copy, link, or move files.

vo1copy: make literal copy of file system. . . . •
UNIX system to UNIX system copy. uucp, uulog, uuname:

system to UNIX system file copy. /uupick: public UNIX
mem, kmem: core memory.

sum: print checksum and block count of a file. . . • . .
wc: word count. •

move files. cp, In, mv: copy, link, or
and out. cpio: copy file archives in

cram 7: CMOS RAM interface.
crash: examine system images.

partition table. fdisk: create or modify hard disk
cron: clock daemon.

crontab: user crontab file.
crontab: user crontab file.

pg: file perusal filter for CRTs. • . . . • . .
crypt: encode/decode.
csplit: context split. "

terminal. ct: spawn getty to a remote
cu: call another UNIX system.

rename login entry to show current layer. relogin:
uname: print name of current UNIX system. . .

spline: interpolate smooth curve. . • . . . • • • .
of each line of a file. cut: cut out selected fields

each line of a file. cut: cut out selected fields of
cron: clock daemon.

rfudaemon: Remote File Sharing daemon process.
strerr: STREAMS error logger daemon.

runacct: run daily accounting.
/handle special functions of DASI 300 and 300s terminals.

special functions of the DASI 450 terminal. /handle
/time a command; report process data and system activity.

join: relational data base operator. . . .
a terminal or query terminfo data base. tput: initialize

generate disk accounting data by user 10. diskusg:

- 4 -

display(7)
console(7)
keyboard(7)
mkfs(lM)
mkfs(lM)
xargs(l)
deroff(l)
Uutry(IM)
idmkinit(IM)
Is(l)
csplit(l)
tapecntl(l)
init(IM)
uadmin(lM)
uustat(lC)
tty(7)
units(l)
chrtbl(IM)
captoinfo(IM)
dd(IM)
timod(7)
c:ki(IM)
cpio(l)
dcopy(IM)
cp(l)
vo1copy(IM)
uucp(lC)
uuto(lC)
mem(7)
sum(l)
wc(l)
cp(l)
cpio(l)
cram(7)
crash(IM)
fdisk(IM)
cron(IM)
crontab(l)
crontab(l)
pg(l)
crypt(l)
csplit(l)
ct(lC)
cu(lC)
relogin(IM)
uname(l)
spline(lG)
cut(l)
cut(l)
cron(IM)
rfudaemon(IM)
strerr(lM)
runacct(1 M)
300(1)
450(1)
timex(l)
join(l)
tput(l)
diskusg(lM)

device driver configuration data. / delete, update, or get
date: print and set the date. •...••....

date: print and set the date.
dc: desk calculator. • • . .

optimal access time. dcopy: copy file systems for
dd: convert and copy a file.

fsdb: file system debugger. •• . • . . •
to contact remote system with debugging on. Uutry: try •

sysdef: output system definition. • • . • • . • •
driver / idinstall: add, delete, update, or get device

names. basename, dirname: deliver portions of path
file. tail: deliver the last part of a .

mesg: permit or deny messages.
tbl, and eqn constructs. deroff: remove nroff/troff,

description into a terminfo description. /a termcap •
captoinfo: convert a termcap description into a terminfo/

compare or print out terminfo descriptions. infocmp:
dc: desk calculator.

identifier. fstyp: determine file system .
file: determine file type. • •

/add, delete, update, or get device driver configuration/
ISO TC4 compatible TLI network device driver. tp4: Intel . .

devnm: device name. • ..•..
clone: open any minor device on a STREAMS driver.

control for QIC-24/QIC-02 tape device. tapecntl: tape • . . .
devnm: device name. . • • •

blocks and i-nodes. df: report number of free disk
systems. fsck, dfsck: check and repair file

bdiff: big diff.
comparator. diff: differential file •.•.
comparison. diff3: 3-way differential file

sdiff: side-by-side difference program. • • • .
diff: differential file comparator.

diff3: 3-way differential file comparison.
dircmp: directory comparison.

file. uucheck: check the uucp directories and permissions
link and unlink files and directories. link, unlink:

mkdir: make directories.
rm, rmdir: remove files or directories.

cd: change working directory.
uucleanup: uucp spool directory clean-up.

dircmp: directory comparison.
chroot: change root directory for a command.

adv: advertise a directory for remote access.
Is: list contents of directory.

mvdir: move a directory.
pwd: working directory name.

restore file to original directory. restore:
path names. basename, dirname: deliver portions of

printers. enable, disable: enable/disable LP
type, modes, speed, and line discipline. /set terminal
type, modes, speed, and line discipline. /set terminal

fusage: disk access profiler. • •
!D. diskusg: generate disk accounting data by user

df: report number of free disk blocks and i-nodes.
fd: diskette (floppy disk). • • • . . • • • .

hd: hard (fixed) disk. •.••••..•
mkpart: disk maintenance utility.

fdisk: create or modify hard disk partition table.

- 5 -

Permuted Index

idinstall(lM)
date(l)
date(l)
dc(l)
dcopy(lM)
dd(lM)
fsdb(lM)
Uutry(lM)
sysdef(lM)
idinstall(lM)
basename(l)
tail(l)
mesg(l)
deroff(l)
captoinfo(lM)
captoinfo(lM)
infocmp(lM)
dc(l)
fstyp(lM)
file(l)
idinstall(lM)
tp4(7)
devnm(1M)
clone(7)
tapecrttl(l)
devnm(lM)
df(lM)
fsck(lM)
bdiff(l)
diff(l)
diff3(1)
sdiff(l)
diff(1)
diff3(1)
dircmp(1)
uucheck(lM)
link(1M)
mkdir(1)
rm(1)
cd(l)
uucleanup(lM)
dircmp(1)
chroot(lM)
adv(lM)
Is(l)
mvdir(lM)
pwd(l)
restore(lM)
basename(l)
enable(l)
getty(lM)
uugetty(lM)
fusage(lM)
diskusg(lM)
df(lM)
fd(7)
hd(7)
mkpart(1M)
fdisk(lM)

Permuted Index

diskadd: disk partitioning utility. .
storage medium. disk: random access bulk

format: format floppy disk tracks. •...•.
du: summarize disk usage.

utility. diskadd: disk partitioning
fd: diskette (floppy disk). . .

system memory image to floppy disk(s). /boot option to dump
accounting data by user !D. diskusg: generate disk

display: system console display.
/screen-oriented (visual) display editor based on ex.

displaypkg: display installed packages.
information. rmntstat: display mounted resource .

display. display: system console . .
packages. displaypkg: display installed

object downloader for the 5620 DMD terminal. wtinit:
Sharing domain and network/ dname: Print Remote File •

acctsh: chargefee, ckpacct, dodisk, lastlogin, monacct,j
whodo: who is doing what.

/Print Remote File Sharing domain and network names.
terminal. wtinit: object downloader for the 5620 DMD

graph: draw a graph.
any minor device on a STREAMS driver. clone: open • . . . •

/ delete, update, or get device driver configuration data.
xt: multiplexed tty driver for AT&T windowing/

xtd: extract and print xt driver link structure.
xtt: extract and print xt driver packet traces.
xts: extract and print xt driver statistics.

sxt: pseudo-device driver.
compatible TLI network device driver. tp4: Intel ISO TC4

du: summarize disk usage.
od: octal dump.

sysdump: boot option to dump system memory image to/
echo: echo arguments.

echo: echo arguments.
ed, red: text editor. • .

ex for casual users). edit: text editor (variant of
/(visual) display editor based on ex.

ed, red: text editor.
ex: text editor.

sed: stream editor.
casual users). edit: text editor (variant of ex for

pattern using full regular / egrep: search a file for a
enable/disable LP printers. enable, disable:

enable, disable: enable/disable LP printers.
crypt: encode/decode.

makekey: generate encryption key.
relogin: rename login entry to show current layer.
command execution. env: set environment for

execution. env: set environment for command
performed for multiuser environment. /run commands

remove nroff/troff, tbl, and eqn constructs. deroff:
strclean: STREAMS error logger cleanup program.

strerr: STREAMS error logger daemon.
log: interface to STREAMS error logging and event/

hash check: find spelling errors. /hashmake, spellin,
setrnnt: establish mount table.

expression. expr: evaluate arguments as an
test: condition evaluation command. • .

to STREAMS error logging and event tracing. log: interface

- 6 -

diskadd(IM)
disk(7)
format(IM)
du(IM)
diskadd(IM)
fd(7)
sysdump(8)
diskusg(IM)
display(7)
vi(l)
displaypkg(l)
rmntstat(IM)
display(7)
displaypkg(l)
wtinit(IM)
dname(IM)
acctsh(IM)
whodo(IM)
dname(IM)
wtinit(IM)
graph(IG)
c1one(7)
idinstall(IM)
xt(7)
xtd(IM)
xtt(IM)
xts(IM)
sxt(7)
tp4(7)
du(IM)
od(l)
sysdump(8)
echo(l)
echo(l)
ed(l)
edit(l)
vi(l)
ed(l)
ex(l)
sed(l)
edit(l)
egrep(l)
enable(l)
enable(l)
crypt(l)
makekey(l)
relogin(IM)
env(l)
env(l)
rc2(IM)
deroff(l)
strclean(IM)
strerr(IM)
log(7)
spelI(l)
setrnnt(IM)
expr(l)
test(l)
log(7)

edit: text editor (variant of ex for casual users).
ex: text editor.•.

display editor based on ex. /screen-oriented (visual)
crash: examine system images. • .

construct argument list(s) and execute command. xargs:
time. at, batch: execute commands at a later

requests. uuxqt: execute remote command
set environment for command execution. env:

sleep: suspend execution for an interval.
system to UNIX system command execution. uux: UNIX . .

pcat, unpack: compress and expand files. pack, . • .
expression. expr: evaluate arguments as an

expr: evaluate arguments as an expression. .•....
a pattern using full regular expressions. / a file for

link structure. xtd: extract and print xt driver
packet traces. xtt: extract and print xt driver

statistics. xts: extract and print xt driver
factors of a number. factor: obtain the prime .

factor: obtain the prime factors of a number.
true, false: provide truth values.

fd: diskette (floppy disk).
disk partition table. fdisk: create or modify hard

statistics for a file system. ff: list file names and .
character string. fgrep: search a file for a

. tar: tape file archiver. . . . • .
cpio: copy file archives in and out.

pwck, grpck: password/group file checkers. . •
diff: differential file comparator.

diff3: 3-way differential file comparison.
UNIX system to UNIX system file copy. /uupick: public

crontab: user crontab file. . . . • . . • . • .
fields of each line of a file. cut: cut out selected

dd: convert and copy a file. • • • . . .
file: determine file type ..

fgrep: search a file for a character string.
grep: search a file for a pattern. • . . .

regular / egrep: search a file for a pattern using full
split: split a file into pieces.

mknod: build special file. . . • • . .
a file system. ff: list file names and statistics for

change the format of a text file. newform:
null: the null file. . . . • . . • . • .

/identify processes using a file or file structure.
or subsequent lines of one file. /lines of several files

pg: file perusal filter for CRTs.
bfs: big file scanner. .•....

rfadmin: Remote File Sharing administration.
rfudaemon: Remote File Sharing daemon process.

network/ dname: Print Remote File Sharing domain and
rfpasswd: change Remote File Sharing host password.

query. nsquery: Remote File Sharing name server
shell/ rfuadmin: Remote File Sharing notification

unadv: unadvertise a Remote File Sharing resource. •
/mount, unmount Remote File Sharing resources.

rfstart: start Remote File Sharing. . • . . .
mapping. idload: Remote File Sharing user and group

processes using a file or file structure. /identify
checksum and block count of a file. sum: print . . • . •

fsba: file system block analyzer.

- 7 -

Permuted Index

edit(l)
ex(l)
vi(l)
crash(IM)
xargs(l)
at(l)
uuxqt(IM)
env(l)
sleep(l)
uux(lC)
pack(l)
expr(l)
expr(l)
egrep(l)
xtd(IM)
xtt(IM)
xts(IM)
factor(l)
factor(l)
true(l)
fd(7)
fdisk(IM)
ff(IM)
fgrep(l)
tar(l)
cpio(l)
pwck(IM)
diff(l)
diff3(1)
uuto(lC)
crontab(l)
cut(l)
dd(IM)
file(l)
fgrep(l)
grep(l)
egrep(l)
split(l)
mknod(IM)
f£(IM)
newform(l)
null(7)
fuser(IM)
paste(l)
pg(l)
bfs(l)
rfadmin(IM)
rfudaemon(IM)
dname(IM)
rfpasswd(IM)
nsquery(IM)
rfuadmin(IM)
unadv(lM)
rmountall(IM)
rfstart(lM)
idload(IM)
fuser(lM)
sum(l)
fsba(IM)

Permuted Index

fsdb:
names and statistics for a

fstyp: determine
mkfs: construct a
mkfs: construct a

fsstat: report
voIcopy: make literal copy of

/umount: mount and unmount
access time. dcopy: copy

fsck, dfsck: check and repair
labelit: provide labels for

mount, unmount multiple
deliver the last part of a

restore: restore
and modification times of a

uucp system. uucico:
/the scheduler for the uucp

file: determine
report repeated lines in a

directories and permissions
umask: set

and print process accounting
merge or add total accounting

link, unlink: link and unlink
cat: concatenate and print

cmp: compare two
lines common to two sorted

idmkinit: reads
In, mv: copy, link, or move

find: find

file system debugger.
file system. ff: list file
file system identifier.
file system.
file system.
file system status.
file system.
file systems and remote /
file systems for optimal
file systems. • • • • • •
file systems. • • . . • •
file systems. /umountall:
file. tail: . • . • . • • •
file to original directory.
file. touch: update access
file transport program for the
file transport program.
file type. . .•.•...•
file. uniq: • . . • . . . • .
file. uucheck: check the uucp
file-creation mode mask.
file(s). acctcom: search
files. acctmerg: . •
files and directories.
files.•
files.
files. comm: select or reject
files containing/
files. cp,
files.

intro: introduction to special files.
passmgrnt: password files management.

rm, rmdir: remove files or directories.
/merge same lines of several files or subsequent lines off

unpack: compress and expand files. pack, pcat,
pro print files.

sort: sort and/or merge files.
pg: file perusal filter for eRTs.

greek: select terminal filter.
nl: line-numbering filter.

col: filter reverse line-feeds.
tplot: graphics filters. • . • •

find: find files. ,.....
find: find files. • • • .

hashmake, spellin, hashcheck: find spelling errors. spell,
tee: pipe fitting.
hd: hard (fixed) disk.

fd: diskette (floppy disk).
format: format floppy disk tracks.

to dump system memory image to floppy disk(s). /boot option
advertised resource. fumount: forced unmount of an •.

format: format floppy disk tracks.
tracks. format: format floppy disk

newform: change the format of a text file.
df: report number of free disk blocks and i-nodes.
idspace: investigates free space. • • • . . • • •

ncheck: generate path names from i-numbers.
acctcrns: command summary from per-process accounting/

analyzer. fsba: file system block

- 8 -

fsdb(lM)
ff(lM)
fstyp(lM)
mkfs(lM)
mkfs(lM)
fsstat(lM)
voIcopy(lM)
mount(lM)
dcopy(lM)
fsck(lM)
labelit(lM)
mountall(lM)
tail(l)
restore(1 M)
touch(l)
uucico(lM)
uusched(lM)
file(l)
uniq(l)
uucheck(lM)
umask(l)
acctcom(l)
acctmerg(lM)
link(lM)
cat(l)
cmp(l)
comm(l)
idmkinit(lM)
cp(l)
find(l)
intro(7)
passmgrnt(1 M)
rm(l)
paste(l)
pack(l)
pr(l)
sort(l)
pg(l)
greek(l)
nl(l)
col(l)
tplot(lG)
find(l)
find(l)
spell(l)
tee(l)
hd(7)
fd(7)
format(lM)
sysdump(8)
fumount(lM)
format(lM)
format(lM)
newform(l)
df(lM)
idspace(lM)
ncheck(lM)
acctcrns(lM)
fsba(lM)

file systems. fsck, dfsck: check and repair
fsdb: file system debugger.

status. fsstat: report file system . .
identifier. fstyp: determine file system

/ a file for a pattern using full regular expressions. . .
advertised resource. fumount: forced unmount of an

backup: performs backup functions.
300, 300s: handle special functions of DASI 300 and 300s/

terminals. hp: handle special functions of Hewlett-Packard
terminal. 450: handle special functions of the DASI 450 •

fusage: disk access profiler.
using a file or file/ fuser: identify processes . .

connect accounting records. fwtmp, wtmpfix: manipulate
classification and/ chrtbl: generate character

by user !D. diskusg: generate disk accounting data
makekey: generate encryption key.

i-numbers. ncheck: generate path names from .
add, delete, update, or get device driver/ idinstall:

logname: get login name.
value. machid: i386: get processor type truth . .

tty: get the name of the terminal.
getopt: parse command options.

options. getopts, getoptcvt: parse command
command options. getopts, getoptcvt: parse

modes, speed, and line/ getty: set terminal type, .
ct: spawn getty to a remote terminal.

graph: draw a graph.
graph: draw a graph.

sag: system activity graph.
tplot: graphics filters.

greek: select terminal filter.
pattern. grep: search a file for a

chown, chgrp: change owner or group.•.
id: print user and group IDs and names.

Remote File Sharing user and group mapping. idload:
newgrp: log in to a new group. .••....

checkers. pwck, grpck: password/group file
DASI 300 and 300s/ 300, 300s: handle special functions of

Hewlett-Packard/ hp: handle special functions of
the DASI 450 terminal. 450: handle special functions of

nohup: run a command immune to hangups and quits. . . .
fdisk: create or modify hard disk partition table.

hd: hard (fixed) disk.
spell, hashmake, spellin, hashcheck: find spelling/

find spelling errors. spell, hashmake, spellin, hash check:
hd: hard (fixed) disk.

/handle special functions of Hewlett-Packard terminals.
change Remote File Sharing host password. rfpasswd: •

of Hewlett-Packard terminals. hp: handle special functions
value. machid: i386: get processor type truth

disk accounting data by user !D. diskusg: generate
set, or shared memory id. /message queue, semaphore

and names. id: print user and group IDs . .
kernel. idbuild: build new UNIX system

information. idcheck: returns selected
fstyp: determine file system identifier. •.•...

file or file/ fuser: identify processes using a
update, or get device driver / idinstall: add, delete,

user and group mapping. idload: Remote File Sharing

- 9 -

Permuted Index

fsck(IM)
fsdb(IM)
fsstat(IM)
fstyp(IM)
egrep(l)
fumount(IM)
backup(IM)
300(1)
hp(l)
450(1)
fusage(IM)
fuser(IM)
fwtmp(IM)
chrtbl(IM)
diskusg(IM)
makekey(l)
ncheck(IM)
idinstall(IM)
logname(l)
machid(l)
tty(l)
getopt(l)
getopts(l)
getopts(l)
getty(IM)
ct(lC)
graph(IG)
graph(IG)
sag(IG)
tplot(IG)
greek(l)
grep(l)
chown(l)
id(IM)
idload(IM)
newgrp(IM)
pwck(IM)
300(1)
hp(l)
450(1)
nohup(l)
fdisk(IM)
hd(7)
spell(l)
spell(l)
hd(7)
hp(l)
rfpasswd(IM)
hp(l)
machid(l)
diskusg(IM)
ipcrm(l)
id(IM)
idbuild(IM)
idcheck(IM)
fstyp(IM)
fuser(lM)
idinstall(IM)
idload(lM)

Permuted Index

containing specifications. idmkinit: reads files
reads specifications off idmknod: removes nodes and

id: print user and group IDs and names.
space. idspace: investigates free

of a tunable parameter. idtune: attempts to set value .
option to dump system memory image to floppy disk(s). /boot

crash: examine system images.•
nohup: run a command immune to hangups and quits.

terminfo descriptions. infocmp: compare or print out
initialization. init, telinit: process control

init, telinit: process control initialization.
brc, bcheckrc: system initialization procedures.

terminfo data base. tput: initialize a terminal or query
clri: clear i-node. .•.....

number of free disk blocks and i-nodes. df: report
uustat: uucp status inquiry and job control.

pwconv: install and update.
installpkg: install package.

removepkg: remove installed package.
displaypkg: display installed packages.

installpkg: install package.
network device driver. tp4: Intel ISO TC4 compatible TLl

system. mailx: interactive message processing
invoke the AT&T Administration interface. adm: .•.•...

console: console interface. .•...•...
module. timod: Transport Interface cooperating STREAMS

cram 7: CMOS RAM interface. .•.•....
Ip: parallel printer interface.

magnetic tape streamer
STREAMS/ tirdwr: Transport

rtc: real time clock
/Transport Interface read/write

swap: swap administrative
termio: general terminal
logging and event/ log:
tty: controlling terminal

spline:
facilities/ ipcs: report

suspend execution for an
commands and application/

files.
maintenance procedures.

application programs. intro:
intro:

maintenance/ intro:
generate path names from

idspace:
interface. adm:

streamio: STREAMS
semaphore set, or shared/
communication facilities/

terminal state.
device driver. tp4: Intel

news: print news
operator.

windowing terminal.

idbuild: build new UNIX system
makekey: generate encryption

interface. qt: QIC cartridge
Interface read/write interface
interface. • •.•....
interface STREAMS module.
interface.
interface. •
interface to STREAMS error
interface.
interpolate smooth curve. •
interprocess communication
interval. sleep:..
intro: introduction to
intro: introduction to special
intro: introduction to system
introduction to commands and
introduction to special files.
introduction to system
i-numbers. ncheck: • . • •
investigates free space.
invoke the AT&T Administration
ioctl commands.
ipcrm: remove a message queue,
ipcs: report interprocess
ismpx: return windowing
ISO TC4 compatible TLl network
items
join: relational data base
jterm: reset layer of . •
jwin: print size of layer.
kernel.
key.

- 10 -

idmkinit(lM)
idmknod(lM)
id(lM)
idspace(lM)
idtune(lM)
sysdump(8)
crash(lM)
nohup(l)
infocmp(lM)
init(lM)
init(lM)
brc(lM)
tput(l)
clri(lM)
df(lM)
uustat(lC)
pwconv(lM)
installpkg(l)
removepkg(l)
displaypkg(l)
installpkg(l)
tp4(7)
mailx(l)
adm(l)
console(7)
timod(7)
cram(7)
Ip(7)
qt(7)
tirdwr(7)
rtc(7)
tirdwr(7)
swap(lM)
termio(7)
log(7)
tty(7)
spline(lG)
ipcs(l)
sleep(l)
intro(l)
intro(7)
intro(8)
intro(l)
intro(7)
intro(8)
ncheck(lM)
idspace(lM)
adm(l)
streamio(7)
ipcrm(l)
ipcs(l)
ismpx(l)
tp4(7)
news(l)
join(l)
jterm(l)
jwin(l)
idbuild(lM)
makekey(l)

keyboard: system console keyboard.
keyboard. keyboard: system console

killall: kill all active processes.
kill: terminate a process.

processes. killall: kill all active . .
mem, kmem: core memory. •

file systems. labelit: provide labels for
labelit: provide labels for file systems.

scanning and processing language. awk: pattern
arbitrary-precision arithmetic language. bc:

scanning and processing language. nawk: pattern
command programming language. /standard/restricted

/chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm,/
jwin: print size of layer.

shl: shell layer manager. •
windowing terminals. layers: layer multiplexer for

jterm: reset layer of windowing terminal.
login entry to show current layer. relogin: rename

windowing terminals. layers: layer multiplexer for
type, modes, speed, and line discipline. /set terminal
type, modes, speed, and line discipline. /set terminal

line: read one line. . ..••...
out selected fields of each line of a file. cut: cut .

send/cancel requests to an LP line printer. Ip, cancel:
line: read one line.

col: filter reverse line-feeds. •
nl: line-numbering filter. .

files. comm: select or reject lines common to two sorted
uniq: report repeated lines in a file.

of several files or subsequent lines of one file. /same lines
subsequent/ paste: merge same lines of several files or

directories. link, unlink: link and unlink files and
cp, In, mv: copy, link, or move files. . . •

extract and print xt driver link structure. xtd:
files and directories. link, unlink: link and unlink

Is: list contents of directory.
for a file system. ff: list file names and statistics
nlsadmin: network listener service/

xargs: construct argument list(s) and execute command.
volcopy: make literal copy of file system. .

files. cp, In, mv: copy, link, or move
newgrp: log in to a new group.

error logging and event/ log: interface to STREAMS
strclean: STREAMS error logger cleanup program.

strerr: STREAMS error logger daemon.
/interface to STREAMS error logging and event tracing.

layer. relogin: rename login entry to show current
logname: get login name. •••..••

attributes. passwd: change login password and password
passwd: change login password.

login: sign on.
logname: get login name.

nice: run a command at low priority. . •
requests to an LP line/ lp, cancel: send/cancel

send/cancel requests to an LP line printer. Ip, cancel:
interface. Ip: parallel printer

disable: enable/disable LP printers. enable,
reject: allow or prevent LP requests. accept,

/Ipshut, Ipmove: start/stop the LP scheduler and move/

- 11 -

Permuted Index

keyboard(7)
keyboard(7)
killall(lM)
kill(l)
killall(IM)
mem(7)
labelit(1M)
labelit(lM)
awk(l)
bc(l)
nawk(l)
sh(l)
acctsh(lM)
jwin(l)
shl(1)
layers(l)
jterm(l)
relogin(lM)
layers(l)
getty(lM)
uugetty(lM)
line(l)
cut(l)
Ip(l)
line(l)
col(l)
nl(l)
comm(l)
uniq(l)
paste(l)
paste(l)
link(lM)
cp(l)
xtd(lM)
link(lM)
Is(1)
ff(lM)
nlsadmin(1 M)
xargs(l)
volcopy(lM)
cp(l)
newgrp(lM)
log(7)
strclean(lM)
strerr(lM)
log(7)
relogin(lM)
10gname(1)
passwd(lM)
passwd(l)
10gin(1)
10gname(1)
nice(l)
lp(l)
Ip(l)
Ip(7)
enable(l)
accept(lM)
Ipsched(lM)

Permuted Index

Ipadmin: configure the LP spooling system.
Ipstat: print LP status information.

spooling system. Ipadmin: configure the LP
scheduler/ Ipsched,lpshut, Ipmove: start/stop the LP

start/stop the LP scheduler/ Ipsched, Ipshut, Ipmove:
LP scheduler and/ Ipsched, Ipshut, Ipmove: start/stop the

information. Ipstat: print LP status . • •
directory. Is: list contents of

type truth value. machid: i386: get processor
interface. qt: QIC cartridge magnetic tape streamer
send mail to users or read mail. mail, rmail:

users or read mail. mail, rmail: send mail to
mail, rmail: send mail to users or read mail.

processing system. mailx: interactive message
intro: introduction to system maintenance procedures.

mkpart: disk maintenance utility.
mkdir: make directories. . . .

system. volcopy: make literal copy of file
banner: make posters.

key. makekey: generate encryption
passmgmt: password files management. .••..•.

shl: shell layer manager. . •....•
records. fwlmp, wtmpfix: manipulate connect accounting

File Sharing user and group mapping. idload: Remote
umask: set file-creation mode mask.

random access bulk storage medium. disk: • • . • . .
mem, kmem: core memory.

semaphore set, or shared memory id. /a message queue,
/hoot option to dump system memory image to floppy /

mem, kmem: core memory.
sort: sort and/or merge files. •.....

files. acctmerg: merge or add total accounting
files or subsequent/ paste: merge same lines of several

mesg: permit or deny messages.
mailx: interactive message processing system.

or shared/ ipcrm: remove a message queue, semaphore set,
mesg: permit or deny messages. •• • • .

strace: print STREAMS trace messages. .• • . .
driver. clone: open any minor device on a STREAMS

mkdir: make directories.
mkfs: construct a file system.
mkfs: construct a file system.
mknod: build special file.

utility. mkpart: disk maintenance
chmod: change mode.

umask: set file-creation mode mask.
getty: set terminal type, modes, speed, and line/

uugetty: set terminal type, modes, speed, and line/
touch: update access and modification times of a file.

table. fdisk: create or modify hard disk partition
Interface cooperating STREAMS module. timod: Transport .
read/write interface STREAMS module. /Transport Interface

/ckpacct, dodisk, lastlogin, monacct, nulladm, prctmp,f .
and remote/ mount, umount: mount and unmount file systems

selmnt: establish mount table. . •
unmount file systems and/ mount, umount: mount and .

systems. mountall, umountall: mount, unmount multiple file
rmountaIl, rumountall: mount, unmount Remote File/
unmount multiple file/ mountall, umountall: mount,

- 12 -

Ipadmin(lM)
Ipstat(l)
Ipadmin(lM)
Ipsched(lM)
Ipsched(lM)
Ipsched(lM)
Ipstat(l)
Is(l)
machid(l)
qt(7)
mail(l)
mail(l)
mail(l)
mailx(l)
intro(8)
mkpart(lM)
mkdir(l)
volcopy(lM)
banner(l)
makekey(l)
passmgmt(lM)
shl(l)
fwtmp(lM)
idload(lM)
umask(l)
disk(7)
mem(7)
ipcrm(l)
sysdump(8)
mem(7)
sort(l)
acctmerg(lM)
paste(l)
mesg(l)
mailx(l)
ipcrm(l)
mesg(l)
strace(lM)
c1one(7)
mkdir(l)
mkfs(lM)
mkfs(lM)
mknod(lM)
mkpart(lM)
chmod(l)
umask(l)
getty(lM)
uugetty(lM)
touch(l)
fdisk(lM)
timod(7)
tirdwr(7)
acctsh(lM)
mount(lM)
setmnt(lM)
mount(lM)
mountall(lM)
rmountall(lM)
mountall(lM)

rmntstat: display mpunted resource information.
rmount: retry remote resource mounts. • • • .

mvdir: move a directory.
cp, In, mv: copy, link, or move files.

the LP scheduler and move requests. /start/stop
/umountall: mount, unmount multiple file systems. • • •

AT&T windowing terminals. xt: multiplexed tty driver for •
terminals. layers: layer multiplexer for windowing

run commands performed for multiuser environment. re2:
cp, In, mv: copy, link, or move files.

mvdir: move a directory.
processing language. nawk: pattel"\l scanning and •

from i-numbers. ncheck: generate path names
Intel ISO TC4 compatible TLI network device driver. tp4:

administration. nlsadmin: network listener service • • •
Remote File Sharing domain and network names. dname: Print

a text file. newform: change the format of
newgrp: log in to a new group.

news: print news items. ..,....
news: print news items. • •

priority. nice: run a command at low
nl: line-numbering filter.

service administration. nIsadmin: network listener
of nodes. idmknod: removes nOlies and reads specifications

and reads specifications of nodes. idmknod: removes nodes
hangul'S and quits. nohup: run a command immune to

rfuadmin: Remote File Sharing notification shell script. • • .
constructs. deroff: remove nroff/troff, tbl, and eqll • • •

name server query. nsquery: Remote File Sharing
null: the null file. • • • • • • • • •

null: the null file. • • • • • •
/dodisk, lastlogin, monacct, nulladm, prelmp, prdaily,/

DMD terminal. wtinit: object downioader for the 5620
number. factor: obtain the prime f(lctors of a

od: octal dump. •••••••
od: octal dump.

STREAMS driver. clone: open any minor device on a
prf: operating system profiler.

commands performed to stop the operating system. reO: run
join: relational data base operator. • ••••.•

dcopy: copy file systems for optimal access time.
image to floppy / sysdump: boot option to dump system memory

stty: set the options for a terminal.
getopt: parse command options. • • • •

getoptcvt: parse command options. getopts, • • •
restore: restore file to original <;iirectory.

sysdef: output system definition.
/acctdusg, accton, acctwtmp: overview of accounting and/

chown, chgrp: change owner or group. ••••••
and expand files. pack, peat, unpack: compress
installpkg: install package. ••••••

removepkg: remove installed package. •••.••
sadc: system activity report package. sar: sal, sa2,

displaypkg: display installed packages. ••••••
extract and print xt driver packet traces. xtt:

4014 terminal. 4014: paginator for the TEKT~ONlX •
II': parallelprint!!1' interface. •

to set value of a tunabie parameter. idtune: attempts
getopt: parse command options.

- 13 -

Permuted Index

rmntstat(1M)
rmount(lM)
mvdir(lM)
cp(l)
Ipsched(lM)
mountall(lM)
xt(7)
layers(l)
rc2(lM)
cp(l)

• mvdir(lM)
nawk(l)
ncheck(lM)
tp4(7)
nlsadmin(lM)
dname(lM)
newform(l)
newgrp(lM)
news(l)
news(l)
nice(l)
nl(l)
nlsadmin(lM)
idmknod(lM)
idmknod(lM)
nohup(l)
rfuadmin(lM)
deroff(l)
IlSquery(lM)
null(7)
nUll(7)
acctsh(lM)
wtinit(lM)
factor(l)
od(l)
od(l)
clone(7)
prf(7)
reO(lM)
join(l)
dcopy(lM)
sysdump(8)
stty(l)
getopt(l)
getopts(l)
restore(lM)
sysdef(lM)
acct(lM)
chown(l)
pack(l)
installpkg(l)
removepkg(l)
sar(lM)
displaypkg(l)
xtt(lM)
4014(1)
Ip(7)
idtune(lM)
getopt(l)

Permuted Index

getopts, getoptcvt: parse command options.
create or modify hard disk partition table. fdisk: •

diskadd: disk partitioning utility. • •
management. passmgmt: password files

and password attributes. passwd: change login password
passwd: change login password.

passwd: change login password and password/ . •
change login password and password attributes. passwd:

passmgmt: password files management.
passwd: change login password. • • • • • • . . •

Remote File Sharing host password. rfpasswd: change •
pwck, grpck: password/group file checkers.

several files or subsequent/ paste: merge same lines of
dirname: deliver portions of path names. basename, • .

ncheck: generate path names from i-numbers.
grep: search a file for a pattern. . • • • • •

processing language. awk: pattern scanning and • •
processing language. nawk: pattern scanning and • •

egrep: search a file for a pattern using full regular/
expand files. pack, peat, unpack: compress and
rc2: run commands performed for multiuser/

operating/ reO: run commands performed to stop the • • •
backup: performs backup functions.

check the uucp directories and permissions me. uucheck:
mesg: permit or deny messages.

acctcms: command summary from per-process accounting/
pg: file perusal filter for CRTs.
CRTs. pg: file perusal filter for

split: split a me into pieces.
tee: pipe fitting.

asy: asynchronous serial port.
basename, dirname: deliver portions of path names.

banner: make posters. • • • . • • .
pr: print meso

/lastIogin, monacct, nulladm, prctmp, prdaily, prtacct,j
/monacct, nulladm, prctmp, prdaily, prtacct, runacct,/

accept, reject: allow or prevent LP requests.
profiler. prf: operating system • •

profiler: prfld, prfstat, prfdc, prfsnap, prfpr: UNIX/
prfsnap, prfpr:/ profiler: prfld, prfstat, prfdc, ••.•

/prfstat, prfdc, prfsnap, prfpr: UNIX system profiler.
/prfld, prfstat, prEdc, prfsnap, prEpr: UNIX system/

prfpr: UNIX/ promer: prfld, prfstat, prfdc, prEsnap,
factor: obtain the prime factors of a number.

date: print and set the date.
cal: print calendar. . • • • .

of a file. sum: print checksum and block count
cat: concatenate and print meso • • • • • • • •

pr: print meso • . • • • . • •
Ipstat: print LP status information.

system. uname: print name of current UNIX
news: print news items. • • .

infocmp: compare or print out terminfo/ •••
file(s). acctcom: search and print process accounting

domain and network/ dname: Print Remote File Sharing
jwin: print size of layer.

strace: print STREAMS trace messages.
names. id: print user and group IDs and

sttueturt!. xtd: extract and print xt driver link ••••••

- 14 -

getopts(l)
fdisk(lM)
diskadd(lM)
passmgmt(lM)
passwd(lM)
passwd(l)
passwd(lM)
passwd(lM)
passmgmt(lM)
passwd(l)
rfpasswd(lM)
pwck(lM)
paste(l)
basename(l)
ncheck(lM)
grep(l)
awk(l)
nawk(l)
egrep(l)
pack(l)
rc2(lM)
rcO(lM)
backup(lM)
uucheck(lM)
mesg(l)
acctcms(lM)
pg(l)
pg(l)
split(l)
tee(l)
asy(7)
basename(l)
banner(l)
pr(l)
acctsh(lM)
acctsh(lM)
accept(lM)
prf(7)
profiler(lM)
profiler(lM)
profiler(lM)
profiler(lM)
profiler(1 M)
factor(l)
date(l)
cal(l)
sum(l)
cat(l)
pr(l)
Ipstat(l)
uname(l)
news(l)
infocmp(lM)
acctcom(l)
dname(lM)
jwin(l)
strace(lM)
id(lM)
xtd(lM)

xtt: extract and print xt driver packet traces.
xts: extract and print xt driver statistics. . .

lp: parallel printer interface.
requests to an LP line printer. /cancel: send/cancel

disable: enable/disable LP printers. enable,
nice: run a command at low priority.

acctprc: acctprc1, acctprc2: process accounting. . . .
acctcom: search and print process accounting file(s).

init, telinit: process control/
timex: time a command; report process data and system/

kill: terminate a process.
Remote File Sharing daemon process. rfudaemon:

ps: report process status.
wait: await completion of process.

killall: kill all active processes.
structure. fuser: identify processes using a file or file

awk: pattern scanning and processing language.
nawk: pattern scanning and processing language.

mailx: interactive message processing system.
machid: i386: get processor type truth value.

fusage: disk access profiler.
prf: operating system profiler.

prfdc, prfsnap, prfpr: UNIX/ profiler: prfld, prfstat,
prfsnap, prfpr: UNIX system profiler. /prfstat, prfdc,

standard/restricted command programming language. /the
systems. labelit: provide labels for file . .

true, false: provide truth values-;
/nulladm, prctmp, prdaily, prtacct, runacct, shutacct,j

ps: report process status.
sxt: pseudo-device driver. . .

file checkers. pwck, grpck: password/group
pwconv: install and update.
pwd: working directory name.

streamer interface. qt: QIC cartridge magnetic tape
tapecntl: tape control for QIC-24/QIC-02 tape device.

tape streamer interface. qt: QIC cartridge magnetic
File Sharing name server query. nsquery: Remote .

tput: initialize a terminal or query terminfo data base.
ipcrm: remove a message queue, semaphore set, or /

command immune to hangups and quits. nohup: run a . . .
cram 7: CMOS RAM interface.
medium. disk: random access bulk storage

stop the operating system. rcO: run commands performed to
for multiuser environment. rc2: run commands performed

nnail: send mail to users or read mail. mail,
line: read one line.

specifications. idmkinit: reads files containing
idmknod: removes nodes and reads specifications of nodes.

tirdwr: Transport Interface read/write interface STREAMS/
from per-process accounting records. /command summary

manipulate connect accounting records. fwtmp, wtmpfix:
ed, red: text editor.

file for a pattern using full regular expressions. /search a
requests. accept, reject: allow or prevent LP

sorted files. comm: select or reject lines common to two
join: relational data base operator:

show current layer. relogin: rename login entry to
calendar: reminder service.

adv: advertise a directory for remote access.

- 15 -

Permuted Index

xtt(lM)
xts(lM)
Ip(7)
lp(l)
enable(l)
nice(l)
acctprc(1 M)
acctcom(l)
init(lM)
timex(l)
kill(l)
rfudaemon(lM)
ps(l)
wait(l)
killall(lM)
fuser(lM)
awk(l)
nawk(l)
mailx(l)
machid(l)
fusage(lM)
prf(7)
profiler(1 M)
profiler(1 M)
sh(l)
labelit(lM)
true(l)
acctsh(lM)
ps(l)
sxt(7)
pwck(lM)
pwconv(lM)
pwd(l)
qt(7)
tapecntl(l)
qt(7)
nsquery(lM)
tput(l)
ipcrm(l)
nohup(l)
cram(7)
disk(7)
rcO(lM)
rc2(lM)
mail(l)
line(l)
idmkinit(1 M)
idmknod(lM)
tirdwr(7)
acctcms(lM)
fwtmp(lM)
ed(l)
egrep(l)
accept(lM)
comm(l)
join(l)
relogin(l¥)
calendar(l)
adv(lM)

Permuted Index

uuxqt: execute remote command requests.
administration. rfadmin: Remote File Sharing

process. rfudaemon: Remote File Sharing daemon
network names. dname: Print Remote File Sharing domain and

password. rfpasswd: change Remote File Sharing host
server query. nsquery: Remote File Sharing name

notification shell/ rfuadmin: Remote File Sharing
unadv: unadvertise a Remote File Sharing resource.

/rumountall: mount, unmount Remote File Sharing resources.
rfstart: start Remote File Sharing.

group mapping. idload: Remote File Sharing user and
rmount: retry remote resource mounts.

and unmount file systems and remote resources. /mount . •
on. Uutry: try to contact remote system with debugging

ct: spawn getty to a remote terminal.
semaphore set, or/ ipcrm: remove a message queue,

rm, rmdir: remove files or directories.
removepkg: remove installed package.

eqn constructs. deroff: remove nroff/troff, tbl, and
package. removepkg: remove installed

specifications off idmknod: removes nodes and reads
current layer. relogin: rename login entry to show
fsck, dfsck: check and repair file systems.

uniq: report repeated lines in a file.
fsstat: report file system status.

communication/ ipcs: report interprocess
blocks and i-nodes. df: report number of free disk

sa2, sadc: system activity report package. sar: sal,
timex: time a command; report process data and system/

ps: report process status.
file. uniq: report repeated lines in a

sar: system activity reporter ..••.....
reject: allow or prevent LP requests. accept,

the LP scheduler and move requests. /Ipmove: start/stop
Ip, cancel: send/cancel requests to an LP line/

uuxqt: execute remote command requests.
terminal. jterm: reset layer of windowing

unmount of an advertised resource. fumount: forced
rmntstat: display mounted resource information. • •

rmount: retry remote resource mounts. • • • •
a Remote File Sharing resource. unadv: unadvertise

file systems and remote resources. /mount and unmoun~
unmount Remote File Sharing resources. /rumountall: mount,

directory. restore: restore file to original •••.
original directory. restore: restore file to • • • .

rmount: retry remote resource mounts.
state. ismpx: return windowing terminal

idcheck: returns selected information. .
col: filter reverse line-feeds.

administration. rfadmin: Remote File Sharing
Sharing host password. rfpasswd: change Remote File

Sharing. rfstart: start Remote File . • .
notification shell script. rfuadmin: Remote File Sharing

daemon process. rfudaemon: Remote File Sharing
directories. rm, rmdir: remove files or .

read mail. mail, rmail: send mail to users or
directories. rm' rmdir: remove files or • • •

resource information. rmntstat: display mounted .
mounts. rmount: retry remote resource

- 16 -

uuxqt(lM)
rfadmin(lM)
rfudaemon(lM)
dname(lM)
rfpasswd(lM)
nsquery(lM)
rfuadmin(1M)
unadv(lM)
rmountall(lM)
rfstart(1M)
idload(1M)
rmount(lM)
mount(lM)
Uutry(1M)
ct(lC)
ipcrm(1)
rm(1)
removepkg(l)
deroff(1)
removepkg(l)
idmknod(1M)
relogin(1M)
fsck(lM)
uniq(l)
fsstat(lM)
ipcs(l)
df(1M)
sar(1M)
timex(l)
ps(1)
uniq(l)
sar(1)
accept(lM)
Ipsched(lM)
Ip(1)
uuxqt(1M)
jterm(l)
fumount(lM)
rmntstat(lM)
rmount(1M)
unadv(1M)
mount(lM)
rmountall(1M)
restore(1 M)
restore(1 M)
rmount(lM)
ismpx(l)
idcheck(1M)
col(1)
rfadmin(1M)
rfpasswd(1M)
rfstart(1M)
rfuadmin(1M)
rfudaemon(1M)
rm(1)
mail(1)
rm(1)
rmntstat(1M)
rmount(1M)

unmount Remote File Sharing/ rmountall, rumountall: mount,
chroot: change root directory for a command.

standard/restricted/ sh, rsh: shell, the
interface. rtc: real time dock

Remote File/ rmountall, rumountall: mount, unmount
nice: run a command at low priority.

hangups and quits. nohup: run a command immune to
multiuser environment. rc2: run commands performed for

the operating system. rcO: run commands performed to stop
runacct: run daily accounting. • . . .

runacct: run daily accounting.
/prctmp, prdaily, prtacct, runacct, shutacct, startup';

activity report package. sar: sal, sa2, sadc: system . • .
report package. sar: sal, sa2, sadc: system activity

package. sar: sal, sa2, sadc: system activity report
sag: system activity graph.

activity report package. sar: sal, sa2, sadc: system .
sar: system activity reporter.

bfs: big file scanner. • . .
language. awk: pattern scanning and processing

language. nawk: pattern scanning and processing
/Ipmove: start/stop the LP scheduler and move requests.

transport/ uusched: the scheduler for the uucp file • •
display/vi, view, vedit: screen-oriented (visual) •..
Sharing notification shell script. rfuadmin: Remote File

program. sdiff: side-by-side difference
string. fgrep: search a file for a character

grep: search a file for a pattern.
using full regular / egrep: search a file for a pattern

accounting file(s). acctcom: search and print process
sed: stream editor.

to two sorted files. comm: select or reject lines common
greek: select terminal filter.

of a file. cut: cut out selected fields of each line
idcheck: returns selected information.

ipcrm: remove a message queue, semaphore set, or shared/
mail. mail, rmail: send mail to users or read

line printer. Ip, cancel: send/cancel requests to an LP
asy: asynchronous serial port.

Remote File Sharing name server query. nsquery:
/a message queue, semaphore set, or shared memory id.

setmnt: establish mount table.
standard/restricted command/ sh, rsh: shell, the

queue, semaphore set, or shared memory id. /a message
rfadmin: Remote File Sharing administration. . . .

rfudaemon: Remote File Sharing daemon process.
dname: Print Remote File Sharing domain and network/

rfpasswd: change Remote File Sharing host password. . .
nsquery: Remote File Sharing name server query.

script. rfuadmin: Remote File Sharing notification shell
unadvertise a Remote File Sharing resource. unadv:

/mount, unmount Remote File Sharing resources.
rfstart: start Remote File Sharing. . . •

mapping. idload: Remote File Sharing user and group
shl: shell layer manager.

shutacct, startup, turnacct: shell procedures fori /runacct,
File Sharing notification shell script. /Remote • . .

command programming/ sh, rsh: shell, the standard/restricted
shl: shell layer manager.

- 17 -

Permuted Index

rmountall(I M)
chroot(IM)
sh(l)
rtc(7)
rmountall(IM)
nice(l)
nohup(l)
rc2(IM)
rcO(IM)
runacct(IM)
runacct(IM)
acctsh(IM)
sar(IM)
sar(IM)
sar(IM)
sag(IG)
sar(IM)
sar(l)
bfs(l)
awk(l)
nawk(l)
Ipsched(IM)
uusched(IM)
vi(l)
rfuadmin(IM)
sdiff(l)
fgrep(l)
grep(l)
egrep(l)
acctcom(l)
sed(l)
comm(l)
greek(l)
cut(l)
idcheck(IM)
ipcrm(l)
mail(l)
Ip(l)
asy(7)
nsquery(IM)
ipcrm(l)
setrnnt(IM)
sh(l)
ipcrm(l)
rfadmin(IM)
rfudaemon(IM)
dname(IM)
rfpasswd(IM)
nsquery(IM)
rfuadmin(IM)
unadv(IM)
rmountall(IM)
rfstart(IM)
idload(IM)
shl(l)
acctsh(IM)
rfuadmin(IM)
sh(l)
shl(1)

Permuted Index

system state. shutdown: shut down system, change
/prdaily, prtacct, runacct, shutacct, startup, turnacct:/

change system state. shutdown: shut down system,
program. sdiff: side-by-side difference

login: sign on.
jwin: print size of layer.

an interval. sleep: suspend execution for
spline: interpolate smooth curve.

sort: sort and/or merge files. . .
sort: sort and/or merge files.

or reject lines common to two sorted files. comm: select
idspace: investigates free space.

terminal. ct: spawn getty to a remote
reads files containing specifications. idmkinit:

/removes nodes and reads specifications of nodes.
/set terminal type, modes, speed, and line discipline.
/set terminal type, modes, speed, and line diScipline.
hashcheck: find spelling/ spell, hashmake, spellin,

spelling/ spell, hash make, spellin, hash check: find .
spellin, hashcheck: find spelling errors. /hashmake,

curve. spline: interpolate smooth
split: split a file into pieces.

csplit: context split.
pieces. split: split a file into

uucleanup: uucp spool directory clean-up.
Ipadmin: configure the LP spooling system.

sh, rsh: shell, the standard/restricted command/
rfstart: start Remote File Sharing. .

and/ lpsched, lpshut, lpmove: start/stop the LP scheduler
/prtacct, runacct, shutacct, startup, turnacct: shell/ .

ff: list file names and statistics for a file system.
extract and print xt driver statistics. xts:

fsstat: report file system status.
lpstat: print LP status information.

control. uustat: uucp status inquiry and job
communication facilities status. /report interprocess

ps: report process status.
rcO: run commands performed to stop the operating system. .

disk: random access bulk storage medium.
messages. strace: print STREAMS trace

cleanup program. strclean: STREAMS error logger
sed: stream editor.

QIC cartridge magnetic tape streamer interface. qt:
commands. streamio: STREAMS ioctl

open any minor device on a STREAMS driver. clone:
program. strclean: STREAMS error logger cleanup

strerr: STREAMS error logger daemon.
event/ log: interface to STREAMS error logging and

streamio: STREAMS ioctl commands.
Interface cooperating STREAMS module. /Transport

Interface read/write interface STREAMS module. /Transport
strace: print STREAMS trace messages.

daemon. strerr: STREAMS error logger
search a file for a character string. fgrep:
processes using a file or file structure. fuser: identify

and print xt driver link structure. xtd: extract .
terminal. stty: set the options for a

another user. su: become super-user or
/same lines of several files or subsequent lines of one file.

- 18 -

shutdown(lM)
acctsh(lM)
shutdown(1M)
sdiff(l)
login(l)
jwin(l)
sleep(l)
spline(lG)
sort(l)
sort(1)
comm(l)
idspace(lM)
ct(lC)
idmkinit(l M)
idmknod(lM)
getty(lM)
uugetty(IM)
spell(l)
spell(l)
spell(l)
spline(lG)
split(l)
csplit(l)
split(l)
uucleanup(lM)
Ipadmin(IM)
sh(l)
rfstart(lM)
Ipsched(IM)
acctsh(lM)
ff(lM)
xts(IM)
fsstat(lM)
Ipstat(l)
uustat(lC)
ipcs(l)
ps(l)
rcO(IM)
disk(7)
strace(IM)
strclean(lM)
sed(l)
qt(7)
streamio(7)
clone(7)
strclean(lM)
strerr(IM)
log(7)
streamio(7)
timod(7)
tirdwr(7)
strace(lM)
strerr(IM)
fgrep(l)
fuser(lM)
xtd(lM)
stty(l)
su(lM)
paste(l)

count of a file. sum: print checksum and block
duo summarize disk usage.

accounting/ acctcms: command summary from per-process
sync: update the super block. •

suo become super-user or another user.
interval. sleep: suspend execution for an

swap: swap administrative interface.
interface. swap: swap administrative

sxt: pseudo-device driver. . .
sync: update the super block.

definition. sysdef: output system • . • •
system memory image to floppy / sysdump: boot option to dump

shutdown: shut down system, change system state.
or modify hard disk partition table. fdisk: create

setmnt: establish mount table. • • • . . • • . . .
classification and conversion tables. /generate character

tabs: set tabs on a terminal.
tabs: set tabs on a terminal.

a file. tail: deliver the last part of
tape device. tapecntl: tape control for QIC-24/QIC-02

tape control for QIC-24/QIC-02 tape device. tapecntI: .
tar: tape file archiver. . . • •

qt: QIC cartridge magnetic tape streamer interface.
QIC-24/QIC-02 tape device. tapecntI: tape control for

tar: tape file archiver. . .
deroff: remove nroff/troff, tbl, and eqn constructs.

device driver. tp4: Intel ISO TC4 compatible TLI network
tee: pipe fitting.

4014: paginator for the TEKTRONIX 4014 terminal.
initialization. init, telinit: process control

terminfo/ captoinfo: convert a termcap description into a .
for the TEKTRONIX 4014 terminal. 4014: paginator .
functions of the DASI 450 terminal. 450: handle special

ct: spawn getty to a remote terminal.
greek: select terminal filter.

termio: general terminal interface.
tty: controlling terminal interface.

reset layer of windowing terminal. jterm:
data· base. tput: initialize a terminal or query terminfo

ismpx: return windowing terminal state.
stty: set the options for a terminal.

tabs: set tabs on a terminal.
tty: get the name of the terminal.

and line/ getty: set terminal type, modes, speed,
and line/ uugetty: set terminal type, modes, speed,

downloader for the 5620 DMD terminal. wtinit: object
functions of 0 ASI 300 and 300s terminals. /handle special

functions of Hewlett-Packard terminals. hp: handle special
multiplexer for windowing terminals. layers: layer

tty driver for AT&T windowing terminals. xt: multiplexed
kill: terminate a process.
tic: terminfo compiler.

initialize a terminal or query terminfo data base. tput:
a termcap description into a terminfo description. /convert

infocmp: compare or print out terminfo descriptions. • .
interface. termio: general terminal •

command. test: condition evaluation
ed, red: text editor.

ex: text editor.

- 19 -

Permuted Index

sum(l)
du(IM)
acctcms(IM)
sync(IM)
su(IM)
sleep(l)
swap(IM)
swap(IM)
sxt(7)
sync(IM)
sysdef(IM)
sysdump(8)
shutdown(IM)
fdisk(IM)
setmnt(IM)
chrtbl(IM)
tabs(l)
tabs(l)
tail(l)
tapecntI(l)
tapecntI(l)
tar(l)
qt(7)
tapecntI(l)
tar(l)
deroff(l)
tp4(7)
tee(l)
4014(1)
init(IM)
captoinfo(IM)
4014(1)
450(1)
ct(lC)
greek(l)
termio(7)
tty(7)
jterm(l)
tput(l)
ismpx(l)
stty(l)
tabs(l)
tty(l)
getty(IM)
uugetty(IM)
wtinit(IM)
300(1)
hp(l)
layers(l)
xt(7)
kill(l)
tic(IM)
tput(l)
captoinfo(IM)
infocmp(IM)
termio(7)
test(l)
ed(l)
ex(l)

Permuted Index

casual users). edit: text editor (variant of ex for
change the format of a text file. newform:

tic: terminfo compiler.
data and system/ timex: time a command; report process

time: time a command. •
execute commands at a later time. at, batch: . . .

rtc: real time clock interface.
systems for optimal access time. dcopy: copy file

time: time a command.
update access and modification times of a file. touch: .

process data and system/ timex: time a command; report
cooperating STREAMS module. timod: Transport Interface

read/write interface STREAMS/ tirdwr: Transport Interface
tp4: Intel ISO TC4 compatible TLI network device driver.

acctmerg: merge or add total accounting files. . •
modification times of a file. touch: update access and
TLI network device driver. tp4: Intel ISO TC4 compatible

tplot: graphics filters. . . .
query terminfo data base. tpul: initialize a terminal or

tr: translate characters.
strace: print STREAMS trace messages.

and print xt driver packet traces. xtl: extract
error logging and event tracing. /interface to STREAMS

format: format floppy disk tracks.
tr: translate characters.

cooperating STREAMS/ timod: Transport Interface •
interface STREAMS/ tirdwr: Transport Interface read/write

system. uucico: file transport program for the uucp
scheduler for the uucp file transport program. /the

values. true, false: provide truth
i386: get processor type truth value. machid:

true, false: provide truth values.
with debugging on. Uutry: try to contact remote system

interface. tty: controlling terminal • •
terminals. xl: multiplexed tty driver for AT&T windowing

terminal. tty: get the name of the • • •
attempts to set value of a tunable parameter. idtune:

/runacct, shutacct, startup, tumacct: shell procedures for/
file: determine file type.
getty: set terminal type, modes, speed, and line/

uugetty: set terminal type, modes, speed, and line/
machid: i386: get processor type truth value. . •

control. uadmin: administrative
mask. umask: set file-creation mode

systems and remote/ mount, umount: mount and unmount file
multiple file/ mountall, umountall: mount, unmount •

File Sharing resource. unadv: unadvertise a Remote
Sharing resource. unadv: unadvertise a Remote File • .

UNIX system. uname: print name of current
a file. uniq: report repeated lines in

units: conversion program.
link, unlink: link and unlink files and directories.
and directories. link, unlink: link and unlink files

mount, umount: mount and unmount file systems and/
mountall' umountall: mount, unmount multiple file systems.

resource. fumount: forced unmount of an advertised • •
rmountall, rumountall: mount, unmount Remote File Sharing/

files. pack, pcat, unpack: compress and expand
times of a file. touch: update access and modification

- 20 -

edit(l)
newform(l)
tic(lM)
timex(l)
time(l)
at(l)
rtc(7)
dcopy(lM)
time(l)
touch(l)
timex(l)
timod(7)
tirdwr(7)
tp4(7)
acctmerg(lM)
touch(l)
tp4(7)
tplot(lG)
tput(l)
tr(l)
strace(lM)
xtt(lM)
log(7)
format(lM)
tr(l)
timod(7)
tirdwr(7)
uucico(lM)
uusched(lM)
true(l)
machid(l)
true(l)
Uutry(lM)
tty(7)
xt(7)
tty(l)
idtune(lM)
acctsh(lM)
file(l)
getty(lM)
uugetty(lM)
machid(l)
uadmin(lM)
umask(l)
mount(lM)
mountall(lM)
unadv(lM)
unadv(lM)
uname(l)
uniq(l)
units(l)
link(lM)
link(lM)
mount(lM)
mountall(lM)
fumount(lM)
rmountall(lM)
pack(l)
touch(l)

idinstall: add, delete,
pwconv: install and

. sync:
du: summarize disk

id: print
idload: Remote File Sharing

crontab:
disk accounting data by

become super-user or another
write: write to another

(variant of ex for casual
mail, rmail: send mail to

wall: write to all
fuser: identify processes

search a file for a pattern
diskadd: disk partitioning
mkpart: disk maintenance

directories and permissions I
for the uucp system.

directory clean-up.
uucheck: check the

uusched: the scheduler for the
uucleanup:

control. uustat:
file transport program for the
system to UNIX system copy.

modes, speed, and linel
UNIX system copy. uucp,

system copy. uucp, uulog,
UNIX system file copy. uuto,
uucp file transport program.

and job control.
system to UNIX system filel

system with debugging on.
system command execution.

requests.
i386: get processor type truth

idtune: attempts to set
true, false: provide truth

users). edit: text editor
(visual) display I vi, view,

screen-oriented (visual)1
(visual) display editorl vi,

Iview, vedit: screen-oriented
file system.

process.

whodo:
who:

jterm: reset layer of
ismpx: return

layers: layer multiplexer for
I tty driver for AT&T

cd: change
pwd:
wall:

update, or get device driver I
update. • .•••.•
update the super block. . .
usage .•.•.......
user and group IDs and names.
user and group mapping.
user crontab file. • • . •
user ID. diskusg: generate
user. su:
user.
users). edit: text editor
users or read mail.
users.
using a file or file I . .
using full regular I egrep:
utility. • •.....•
utility. • .•.•...
uucheck: check the uucp
uucico: file transport program
uucleanup: uucp spool
uucp directories andl
uucp file transport program. •
uucp spool directory clean-up.
uucp status inquiry and job
uucp system. uucico: . . .
uucp, uulog, uuname: UNIX
uugetty: set terminal type, •
uulog. uuname: UNIX system to
uuname: UNIX system to UNIX
uupick: public UNIX system to
uusched: the scheduler for the
uustat: uucp status inquiry
uuto, uupick: public UNIX
Uutry: try to contact remote
uux: UNIX system to UNIX
uuxqt: execute remote command
value. machid: • . • . • . .
value of a tunable parameter.
values. . .•....
(variant of ex for casual
vedit: screen-oriented .
vi, view, vedit:
view, vedit: screen-oriented
(visual) display editor basedl
volcopy: make literal copy of
wait: await completion of
wall: write to ail users.
wc: word count.
who is doing what. . •
who is on the system.
who: who is on the system.
whodo: who is doing what.
windowing terminal.
windowing terminal state.
windowing terminals.
windowing terminals. • .
working directory.
working directory name.
write to all users.

- 21 -

Permuted Index

idinstall(IM)
pwconv(IM)
sync(IM)
du(IM)
id(IM)
idload(IM)
crontab(l)
diskusg(IM)
su(IM)
write(l)
edit(l)
maH(I)
wall(l)
fuser(IM)
egrep(l)
diskadd(IM)
mkpart(IM)
uucheck(IM)
uucico(IM)
uucleanup(IM)
uucheck(IM)
uusched(IM)
uucleanup(IM)
uustat(lC)
uucico(IM)
uucp(lC)
uugetty(IM)
uucp(lC)
uucp(lC)
uuto(lC)
uusched(IM)
uustat(lC)
uuto(lC)
Uutry(IM)
uux(lC)
uuxqt(IM)
machid(l)
idtune(1M)
true(l)
edit(l)
vi(l)
vi(l)
vi(l)
vi(l)
volcopy(IM)
wait(l)
wall(l)
wc(l)
whodo(IM)
whorl)
whorl)
whodo(IM)
jterm(l)
ismpx(l)
layers(l)
xt(7)
cd(l)
pwd(l)
wall(1)

Permuted Index

write: write to another user. • • . •
write: write to another user. •

the 5620 DMD terminal. wtinit: object downloader for
accounting records. fwtmp, wtmpfix: manipulate comlect

list(s) and execute command. xargs: construct argument
xtd: extract and print xt driver link structure.
xU: extract and print xt driver packet traces.
xts: extract and print xt driver statistics.

AT&T windowing terminals. xt: multiplexed tty driver for
driver link structure. xtd: extract and print xt

driver statistics. xts: extract and print xt
driver packet traces. xtt: extract and print xt

- 22 -

write(1)
write(1)
wtinit(1M)
fwtmp(1M)
xargs(1)
xtd(1M)
xtt(1M)
xts(1M)
xt(7)
xtd(1M)
xts(1M)
xtt(1M)

INTRO(l) INTRO(l)

NAME
intro - introduction to commands and application programs

DESCRIPTION
This section describes, in alphabetical order, commands (including system
maintenance commands) available for your computer. The commands in
this section should be used along with those listed in Sections 1, 2, 3, 4, and
5 of the Programmer's Reference Manual. References of the form name(l),
name(2), name(3), name(4), and name(5) refer to entries in the above manual.
References of the form name(1), name(1M), name(1C), name(1G), name(7), or
name(8) refer to entries in this manual. Certain distinctions of purpose are
made in the headings.

The following Utility packages are delivered with the computer:

Base System
Editing Package
Remote Terminal Package
Security Administration Package
2 Kilobyte File System Utility Package
Network Support Utilities Package
Remote File Sharing Utilities Package

Manual Page Command Syntax
Unless otherwise noted, commands described in the SYNOPSIS section of a
manual page accept options and other arguments according to the following
syntax and should be interpreted as explained below.

name [-option ...] [cmdarg ...]
where:

[]

name

option

noargletter

argletter

optarg

cmdarg

Surround an option or cmdarg that is not required.

Indicates multiple occurrences of the option or cmdarg.

The name of an executable file.

(Always preceded by a "-".)
noargletter ... or,
argletter optarg[, ...]

A single letter representing an option without an option­
argument. Note that more than one noargletter option can be
grouped after one "-" (Rule 5, in the following text).

A single letter representing an option requiring an option­
argument.

An option-argument (character string) satisfying a preceding
argletter. Note that groups of optargs following an argletter
must be separated by commas, or separated by white space
and quoted (Rule 8, below).

Path name (or other command argument) not beginning with
"-", or "-" by itself indicating the standard input.

Command Syntax Standard: Rules
These command syntax rules are not followed by all current commands, but

- 1 -

INTRO(l) INTRO(l)

all new commands will obey them. getopts(1) should be used by all shell
procedures to parse positional parameters and to check for legal options. It
supports Rules 3-10 below. The enforcement of the other rules must be
done by the command itself.

1. Command names (name above) must be between two and nine
characters long.

2. Command names must include only lowercase letters and
digits.

3. Option names (option above) must be one character long.

4. All options must be preceded by "-".

5. Options with no arguments may be grouped after a single "_".

6. The first option-argument (optarg above) following an option
must be preceded by white space.

7. Option-arguments cannot be optional.

8. Groups of option-arguments following an option must either
be separated by commas or separated by white space and
quoted (e.g., -0 xxx, Z , yy or -0" xxx Z yy").

9. All options must precede operands (cmdarg above) on the
command line.

10. "--" may be used to indicate the end of the options.

11. The order of the options relative to one another should not
matter.

12. The relative order of the operands (cmdarg above) may affect
their significance in ways determined by the command with
which they appear.

13. "-" preceded and followed by white space should only be
used to mean standard input.

SEE ALSO
getopts(1), exit(2).

wait(2), getopt(3C) in the Programmer's Reference Manual.

How to Get Started at the front of this document.

DIAGNOSTICS

BUGS

Upon termination, each command returns two bytes of status, one supplied
by the system and giving the cause for termination, and (in the case of
"normal" termination) one supplied by the program [see wait(2) and
exit(2)]. The former byte is 0 for normal termination; the latter is cus­
tomarily 0 for successful execution and non-zero to indicate troubles such as
erroneous parameters or bad or inaccessible data. It is called variously "exit
code", "exit status", or "return code", and is described only where special
conventions are involved.

Regrettably, not all commands adhere to the aforementioned syntax.

- 2 -

INTRO(l) INTRO(l)

WARNINGS
Some commands produce unexpected results when processing files contain­
ing null characters. These commands often treat text input lines as strings
and therefore become confused upon encountering a null character (the
string terminator) within a line.

- 3 -

300(1) (Remote Terminal Package) 300(1)

NAME
300, 300s - handle special functions of DASI 300 and 300s terminals

SYNOPSIS
300 [+12] [-n] [-dt,l,c]

300s [+12] [-n] [-dt,l,c]

DESCRIPTION
The 300 command supports special functions and optimizes the use of the
DASI 300 (GSI 300 or DTC 300) terminal; 3005 performs the same functions
for the DASI 300s (GSI 3005 or DTC 300s) terminal. It converts half-line for­
ward, half-line reverse, and full-line reverse motions to the correct vertical
motions. In the following discussion of the 300 command, it should be
noted that unless your system contains the DOCUMENTER'S WORKBENCH
Software, references to certain commands (e.g., nroff, neqn, eqn, etc.) will
not work. It also attempts to draw Greek letters and other special symbols.
It permits convenient use of 12-pitch text. It also reduces printing time 5 to
70%. The 300 command can be used to print equations neatly, in the
sequence:

neqn file ... I nroff I 300

WARNING: if your terminal has a PLOT switch, make sure it is turned on
before 300 is used.

The behavior of 300 can be modified by the optional flag arguments to han­
dle 12-pitch text, fractional line spacings, messages, and delays.

+12 permits use of 12-pitch, 6 lines/inch text. DASI 300 terminals nor­
mally allow only two combinations: lO-pitch, 6 lines/inch, or 12-
pitch, 8 lines/inch. To obtain the 12-pitch, 6 lines per inch com­
bination, the user should turn the PITCH switch to 12, and use the
+12 option.

-n

-dt,l,c

controls the size of half-line spacing. A half-line is, by default,
equal to 4 vertical plot increments. Because each increment
equals 1/48 of an inch, a 10-pitch line-feed requires 8 increments,
while a 12-pitch line-feed needs only 6. The first digit of n over­
rides the default value, thus allowing for individual taste in the
appearance of subscripts and superscripts. For example, nroff
half-lines could be made to act as quarter-lines by using -2. The
user could also obtain appropriate half-lines for 12-pitch, 8
lines/inch mode by using the option -3 alone, having set the
PITCH switch to 12-pitch.

controls delay factors. The default setting is -d3,90,30. DASI 300
terminals sometimes produce peculiar output when faced with
very long lines, too many tab characters, or long strings of blank­
less, non-identical characters. One null (delay) character is
inserted in a line for every set of t tabs, and for every contiguous
string of c non-blank, non-tab characters. If a line is longer than I
bytes, 1 + (total length)/20 nulls are inserted at the end of that
line. Items can be omitted from the end of the list, implying use
of the default values. Also, a value of zero for t (c) results in two

- 1 -

300(1) (Remote Terminal Package) 300(1)

null bytes per tab (character). The former may be needed for C
programs, the latter for files like /etc/passwd. Because terminal
behavior varies according to the specific characters printed and
the load on a system, the user may have to experiment with these
values to get correct output. The -d option exists only as a last
resort for those few cases that do not otherwise print properly.
For example, the file /ete/passwd may be printed using -d3,30,5.
The value -dO,1 is a good one to use for C programs that have
many levels of indentation.

Note that the delay control interacts heavily with the prevailing
carriage return and line-feed delays. The stty(1) modes nl0 er2 or
nlO er3 are recommended for most uses.

The 300 command can be used with the nroff -s flag or .rd requests, when
it is necessary to insert paper manually or change fonts in the middle of a
document. Instead of hitting the return key in these cases, you must use
the line-feed key to get any response.

In many (but not all) cases, the following sequences are equivalent:

nroff - T300 files ... and nroff files ... I 300
nroff -T300-12 files ... and nroff files ... I 300 +12

The use of 300 can thus often be avoided unless special delays or options
are required; in a few cases, however, the additional movement optimization
of 300 may produce better-aligned output.

SEE ALSO

BUGS

450(1), mesg(1), graph(1G), stty(1), tabs(1), tplot(1G).

Some special characters cannot be correctly printed in column 1 because the
print head cannot be moved to the left from there.
If your output contains Greek and/or reverse line-feeds, use a friction-feed
platen instead of a forms tractor; although good enough for drafts, the latter
has a tendency to slip when reversing direction, distorting Greek characters
and rnisaligning the first line of text after one or more reverse line-feeds.

- 2 -

4014(1) (Remote Terminal Package) 4014(1)

NAME
4014 - paginator for the TEKTRONIX 4014 terminal

SYNOPSIS
4014 [-t] [-n] [-cN] [-pL] [file]

DESCRIPTION
The output of 4014 is intended for a TEKTRONIX 4014 terminal; 4014
arranges for 66 lines to fit on the screen, divides the screen into N columns,
and contributes an eight-space page offset in the (default) single-column
case. Tabs, spaces, and backspaces are collected and plotted when neces­
sary. TELETYPE Model 37 half- and reverse-line sequences are interpreted
and plotted. At the end of each page, 4014 waits for a new-line (empty
line) from the keyboard before continuing on to the next page. In this wait
state, the command !cmd will send the cmd to the shell.

The command line options are:

-t Do not wait between pages (useful for directing output into a file).

-n Start printing at the current cursor position and never erase the
screen.

-cN Divide the screen into N columns and wait after the last column.

-pL Set page length to L; L accepts the scale factors i (inches) and 1

SEE ALSO
pr(l).

(lines); default is lines.

- 1 -

450(1) (Remote Terminal Package) 450(1)

NAME
450 - handle special functions of the DASI 450 terminal

SYNOPSIS
450

DESCRIPTION
The 450 command supports special functions of, and optimizes the use of,
the DASI 450 terminal, or any terminal that is functionally identical, such as
the Diablo 1620 or Xerox 1700. It converts half-line forward, half-line
reverse, and full-line reverse motions to the correct vertical motions. It also
attempts to draw Greek letters and other special symbols in the same
manner as 300(1). It should be noted that, unless your system contains
DOCUMENTER'S WORKBENCH Software, certain commands (e.g., eqn, nroff,
tbl, etc.) will not work. Use 450 to print equations neatly, in the sequence:

neqn file ... I nroff I 450

WARNING: make sure that the PLOT switch on your terminal is ON before
450 is used. The SPACING switch should be put in the desired position
(either 10- or 12-pitch). In either case, vertical spacing is 6 lines/inch,
unless dynamically changed to 8 lines per inch by an appropriate escape
sequence.

Use 450 with the nroff -8 flag or .rd requests when it is necessary to insert
paper manually or change fonts in the middle of a document. Instead of
hitting the return key in these cases, you must use the line-feed key to get
any response.

In many (but not all) cases, the use of 450 can be eliminated in favor of one
of the following:

nroff - T450 files ...
or

nroff -T450-12 files

The use of 450 can thus often be avoided unless special delays or options
are required; in a few cases, however, the additional movement optimization
of 450 may produce better-aligned output.

SEE ALSO

BUGS

300(1), mesg(l), stty(l), tabs(l), graph(lG), tplot(lG).

Some special characters cannot be correctly printed in column 1 because the
print head cannot be moved to the left from there.
If your output contains Greek and/or reverse line-feeds, use a friction-feed
platen instead of a forms tractor; although good enough for drafts, the latter
has a tendency to slip when reversing direction, distorting Greek characters
and misaligning the first line of text after one or more reverse line-feeds.

- 1 -

ACCEPT(lM) (Base System) ACCEPT(lM)

NAME
accept, reject - allow or prevent LP requests

SYNOPSIS
lusr llib I accept destinations
lusr llib Ireject [-r[reason]] destinations

DESCRIPTION

FILES

The accept command allows lp(l) to accept requests for the named destina­
tions. A destination can be either a line printer (LP) or a class of printers.
Use lpstat(l) to find the status of destinations.

The reject command prevents lp(l) from accepting requests for the named
destinations. A destination can be either a printer or a class of printers. Use
lpstat(l) to find the status of destinations. The following option is useful
with reject.

-r[reason] Associates a reason with preventing lp from accepting requests.
This reason applies to all printers mentioned up to the next -r
option. Reason is reported by Ip when users direct requests to
the named destinations and by lpstat(l). If the -r option is not
present or the -r option is given without a reason, then a
default reason will be used.

JusrJspoolJlpJ*

SEE ALSO
enable(l), lp(l), Ipadmin(lM), Ipsched(lM), lpstat(l).

- 1 -

ACCT(1M) (Base System) ACCT(lM)

NAME
acct: acctdisk, acctdusg, accton, acctwtmp - overview of accounting and
miscellaneous accounting commands

SYNOPSIS
/ usr /lib / acct / acctdisk

/usr/lib/acct/acctdusg [-u file] [-p file]

/usr/lib/acct/accton [file]

/usr/lib/acct/acctwtmp "reason"

DESCRIPTION
Accounting software is structured as a set of tools (consisting of both C pro­
grams and shell procedures) that can be used to build accounting systems.
When the system is installed, accounting is initially in the "off" state.
acctsh(lM) describes the set of shell procedures built on top of the C pro­
grams.

Connect time accounting is handled by various programs that write records
into /etc/utmp, as described in utmp(4). The programs described in
acctcon(lM) convert this file into session and charging records, which are
then summarized by acctmerg(IM).

Process accounting is performed by the UNIX system kernel. Upon termina­
tion of a process, one record per process is written to a file (normally
/usr/adm/pacct). The programs in acctprc(IM) summarize this data for
charging purposes; acctcms(IM) is used to summarize command usage.
Current process data may be examined using acctcom(l).

Process accounting and connect time accounting [or any accounting records
in the format described in acct(4)] can be merged and summarized into total
accounting records by acctmerg [see tacct format in acct(4)]. prtacct [see
acctsh (1M)] is used to format any or all accounting records.

acctdisk reads lines that contain user ID, login name, and number of disk
blocks and converts them to total accounting records that can be merged
with other accounting records.

acctdusg reads its standard input (usually from find / -print) and computes
disk resource consumption (including indirect blocks) by login. If -u is
given, records consisting of those file names for which acctdusg charges no
one are placed in file (a potential source for finding users trying to avoid
disk charges). If -p is given, file is the name of the password file. This
option is not needed if the password file is /etc/passwd. (See diskusg(IM)
for more details.)

accton alone turns process accounting off. If file is given, it must be the
name of an existing file, to which the kernel appends process accounting
records [see acct(2) and acct(4)].

acctwtmp writes a utmp(4) record to its standard output. The record con­
tains the current time and a string of characters that describe the reason. A
record type of ACCOUNTING is assigned [see utmp(4)]. Reason must be a
string of 11 or fewer characters, numbers, $, or spaces. For example, the
following are suggestions for use in reboot and shutdown procedures,

- 1 -

ACCT(lM) (Base System) ACCT(lM)

FILES

respectively:

acctwtmp uname » /etc/wtmp
acctwtmp "file save" »/etc/wtmp

/etc/passwd
/usr/lib/acct

/usr/adm/pacct
/etc/wtmp

used for login name to user ID conversions
holds all accounting commands listed in sub-class 1M of
this manual
current process accounting file
login/logoff history file

SEE ALSO
acctcms(lM), acctcom(l), acctcon(lM), acctmerg(lM), acctprc(lM),
acctsh(lM), diskusg(lM), fwtmp(lM), runacct(lM).

acct(2), acct(4), utmp(4) in the Programmer's Reference Manual.

- 2 -

ACCTCMS(lM) (Base System) ACCTCMS(lM)

NAME
acctcms - command summary from per-process accounting records

SYNOPSIS
jusrjlibjacctjacctcms [options] files

DESCRIPTION
acctcms reads one or more files, normally in the form described in acct(4).
It adds all records for processes that executed identically-named commands,
sorts them, and writes them to the standard output, normally using an inter­
nal summary format. The options are:

-a Print output in ASCII rather than in the internal summary format.
The output includes command name, number of times executed,
total kcore-minutes, total CPU minutes, total real minutes, mean size
(in K), mean CPU minutes per invocation, "hog factor", characters
transferred, and blocks read and written, as in acctcom(l). Output is
normally sorted by total kcore-minutes.

-c Sort by total CPU time, rather than total kcore-minutes.
-j Combine all commands invoked only once under "***other".
-n Sort by number of command invocations.
-s Any file names encountered hereafter are already in internal sum-

mary format.
-t Process all records as total accounting records. The default internal

summary format splits each field into prime and non-prime time
parts. This option combines the prime and non-prime time parts
into a single field that is the total of both, and provides upward
compatibility with old (i.e., UNIX System V) style acctcms internal
summary format records.

The following options may be used only with the -a option.

-p Output a prime-time-only command summary.
-0 Output a non-prime (offshift) time only command summary.

When -p and -0 are used together, a combination prime and non-prime
time report is produced. All the output summaries will be total usage
except number of times executed, CPU minutes, and real minutes which will
be split into prime and non-prime.

A typical sequence for performing daily command accounting and for main­
taining a running total is:

SEE ALSO

acctcms file ... >today
cp total previous total
acctcms -s today previoustotal >total
acctcms -a -s today

acct(1M), acctcom(l), acctcon(lM), acctmerg(lM), acctprc(lM), acctsh(lM),
fwtmp(lM), runacct(lM).

acct(2), acct(4), utmp(4) in the Programmer's Reference Manual.

- 1 -

ACCTCMS(lM) (Base System) ACCTCMS(lM)

BUGS
Unpredictable output results if -t is used on new style internal summary
format files, or if it is not used with old style internal summary format files.

- 2 -

ACCTCOM(l) (Base System) ACCTCOM(l)

NAME
acctcom - search and print process accounting file(s)

SYNOPSIS
acctcom [[options 1 [file 11 . . .

DESCRIPTION
acctcom reads file, the standard input, or /usr/adm/pacct, in the form
described by acct(4) and writes selected records to the standard output.
Each record represents the execution of one process. The output shows the
COMMAND NAME, USER, TTYNAME, START TIME, END TIME, REAL
(SEC), CPU (SEC), MEAN SIZE(K), and optionally, F (the fork/exec flag: 1 for
fork without exec), STAT (the system exit status), HOG FACTOR, KCORE
MIN, CPU FACTOR, CHARS TRNSFD, and BLOCKS READ (total blocks read
and written).

The command name is prepended with a # if it was executed with super­
user privileges. If a process is not associated with a known terminal, a ? is
printed in the TTYNAME field.

If no files are specified, and if the standard input is associated with a termi­
nal or /dev/null (as is the case when using & in the shell),
/usr/adm/pacct is read; otherwise, the standard input is read.

If any file arguments are given, they are read in their respective order. Each
file is normally read forward, i.e., in chronological order by process comple­
tion time. The file /usr/adm/pacct is usually the current file to be exam­
ined; a busy system may need several such files of which all but the current
file are found in /usr/adm/pacct? The options are:

-a

-b

-f

-h

-i
-k
-m
-r
-t
-v
-1 line
-u user

Show some average statistics about the processes selected.
The statistics will be printed after the output records.
Read backwards, showing latest commands first. This option
has no effect when the standard input is read.
Print the fork/exec flag and system exit status columns in the
output.
Instead of mean memory size, show the fraction of total avail­
able CPU time consumed by the process during its execution.
This "hog factor" is computed as:

(total CPU time)/(elapsed time).
Print columns containing the I/O counts in the output.
Instead of memory size, show total kcore-minutes.
Show mean core size (the default).
Show CPU factor (user timej(system-time + user-time).
Show separate system and user CPU times.
Exclude column headings from the output.
Show only processes belonging to terminal / dey /line.
Show only processes belonging to user that may be specified
by: a user ID, a login name that is then converted to a user ID,
a # which designates only those processes executed with
super-user privileges, or ? which designates only those
processes associated with unknown user IDs.

- 1 -

ACCTCOM(l) (Base System) ACCTCOM(l)

FILES

-g group

-8 time

-e time
-5 time
-E time

-n pattern

-q

-0 ofile

-H factor

-0 sec

-c sec

-I chars

Show only processes belonging to group. The group may be
designated by either the group ID or group name.
Select processes existing at or after time, given in the format
hr [:min [:sec lJ.
Select processes existing at or before time.
Select processes starting at or after time.
Select processes ending at or before time. Using the same time
for both -5 and -E shows the processes that existed at time.
Show only commands matching pattern that may be a regular
expression as in ed(l) except that + means one or more
occurrences.
Do not print any output records, just print the average statis­
tics as with the -a option.
Copy selected process records in the input data format to ofile;
supress standard output printing.
Show only processes that exceed factor, where factor is the
"hog factor" as explained in option -b above.
Show only processes with CPU system time exceeding sec

seconds.
Show only processes with total CPU time, system plus user,
exceeding sec seconds.
Show only processes transferring more characters than the'

cut-off number given by chars.

/etc/passwd
/usr/adm/pacct
/etc/group

SEE ALSO

BUGS

acct(1M), acctcms(lM), acctcon(lM), acctmerg(lM), acctprc(lM), acctsh(lM),
fwtmp(lM), ps(l), runacct(lM), su(lM).

acct(2), acct(4), utmp(4) in the Programmer's Reference Manual.

acctcom reports only on processes that have terminated; use ps(l) for active
processes. If time exceeds the present time, then time is interpreted as
occurring on the previous day.

- 2 -

ACCTCON(lM) (Base System) ACCTCON(lM)

NAME
acctcon: acctconl, acctcon2 - connect-time accounting

SYNOPSIS
/usr /lib / acct / acetconl [options]

/usr /lib / acct/ acctcon2

DESCRIPTION
acctconl converts a sequence of login/logoff records read from its standard
input to a sequence of records, one per login session. Its input should nor­
mally be redirected from /etc/wtmp. Its output is ASCII, giving device, user
ID, login name, prime connect time (seconds), non-prime connect time
(seconds), session starting time (numeric), and starting date and time. The
options are:

-p Print input only, showing line name, login name, and time (in both
numeric and date/time formats).

-t acctconl maintains a list of lines on which users are logged in.
When it reaches the end of its input, it emits a session record for
each line that still appears to be active. It normally assumes that its
input is a current file, so that it uses the current time as the ending
time for each session still in progress. The -t flag causes it to use,
instead, the last time found in its input, thus assuring reasonable
and repeatable numbers for non-current files.

-1 file File is created to contain a summary of line usage showing line
name, number of minutes used, percentage of total elapsed time
used, number of sessions charged, number of logins, and number of
logoffs. This file helps track line usage, identify bad lines, and find
software and hardware oddities. Hang-up, termination of login(l)
and termination of the login shell each generate logoff records, so
that the number of logoffs is often three to four times the number of
sessions. See init(lM) and utmp(4).

-0 file File is filled with an overall record for the accounting period, giving
starting time, ending time, number of reboots, and number of date
changes.

acctcon2 expects as input a sequence of login session records and converts
them into total accounting records [see tacet format in acct(4)].

EXAMPLES

FILES

These commands are typically used as shown below. The file ctmp is
created only for the use of acctprc(lM) commands:

acctconl -t -llineuse -0 reboots <wtmp I sort +In +2 >ctmp
acctcon2 <ctmp I acctmerg >ctacct

/etc/wtmp

SEE ALSO
acct(lM), acctcms(lM), acctcom(l), acctmerg(lM), acctprc(lM), acctsh(lM),
fwtrnp(lM), init(lM), runacct(lM).
acct(2), acct(4), utmp(4) in the Programmer's Reference Manual.

~ 1 -

ACCTCON(lM) (Base System) ACCTCON(lM)

BUGS
The line usage report is confused by date changes. Use wtmpfix [see
fwtmp(lM)] to correct this situation.

- 2 -

ACCTMERG(lM) (Base System) ACCTMERG(lM)

NAME
acctmerg - merge or add total accounting files

SYNOPSIS
lusr llib I acetl acctmerg [options] [file] . . .

DESCRIPTION
acctmerg reads its standard input and up to nine additional files, all in the
tacet format [see acct(4)] or an ASCII version thereof. It merges these inputs
by adding records whose keys (normally user 10 and name) are identical,
and expects the inputs to be sorted on those keys. Options are:

-a Produce output in ASCII version of tacet.
-i Input files are in ASCII version of tacct.
-p Print input with no processing.
-t Produce a single record that totals all input.
-u Summarize by user 10, rather than user 10 and name.
-v Produce output in verbose ASCII format, with more precise notation for

floating point numbers.

EXAMPLES
The following sequence is useful for making "repairs" to any file kept in
this format:

SEE ALSO

acctmerg -v <filel >file2
edit file2 as desired . ..

acctmerg -i <file2 >filel

acct(lM), acctcms(lM), acctcom(l), acctcon(lM), acctprc(lM), acctsh(lM),
fwtmp(lM), runacct(lM).

acct(2), acct(4), utmp(4) in the Programmer's Reference Manual.

- 1 -

ACCTPRC(lM) (Base System) ACCTPRC(lM)

NAME
acctprc: acctprc1, acctprc2 - process accounting

SYNOPSIS
/usr/lib/acctjacctprc1 [ctmp]

/usr /lib / acct/ acctprc2

DESCRIPTION

FILES

acctprcl reads input in the form described by acct(4), adds login names
corresponding to user IDs, then writes for each process an ASCII line giving
user ID, login name, prime CPU time (tics), non-prime CPU time (tics), and
mean memory size (in memory segment units). If ctmp is given, it is
expected to contain a list of login sessions, in the form described in
acctcon(lM), sorted by user ID and login name. If this file is not supplied, it
obtains login names from the password file. The information in ctmp helps
it distinguish among different login names that share the same user ID.

acctprc2 reads records in the form written by acctprcl, summarizes them by
user ID and name, then writes the sorted summaries to the standard output
as total accounting records.

These commands are typically used as shown below:

acctprc1 ctmp </usr/adm/pacct I acctprc2 >ptacct

/etc/passwd

SEE ALSO

BUGS

acct(lM), acctcms(lM), acctcom(l) acctcon(lM), acctmerg(lM), acctsh(lM),
cron(lM), fwtmp(lM), runacct(lM).

acct(2), acct(4), utmp(4) in the Programmer's Reference Manual.

Although it is possible to distinguish among login names that share user IDs
for commands run normally, it is difficult to do this for those commands
run from cron(lM), for example. More precise conversion can be done by
faking login sessions on the console via the acctwtmp program in acct(1M).

CAVEAT
A memory segment of the mean memory size is a unit of measure for the
number of bytes in a logical memory segment on a particular processor. For
example, on a PDP-ll/70 this measure would be in 64-byte units, while on
a VAXll/780 it would be in 512-byte units.

- 1 -

ACCTSH(lM) (Base System) ACCTSH(lM)

NAME
acctsh: charge fee, ckpacct, dodisk, lastlogin, monacct, nulladm, prctmp,
prdaily, prtacct, runacct, shutacct, startup, turnacct - shell procedures for
accounting

SYNOPSIS
jusrjlibjacctjchargefee login-name number

jusr jlib j acctjckpacct [blocks]

jusrjlibjacctjdodisk [-0] [files ...]

jusr jlib j acct jlastlogin

jusrjlibjacctjmonacct number

jusrjlibjacctjnulladm file

jusr jlib j acctjprctmp

jusrjlibjacctjprdaily [-I] [-c] [mmdd]

jusrjlibjacctjprtacct file ["heading"]

jusrjlibjacctjrunacct [mmdd] [mmdd state]

jusrjlibjacctjshutacct ["reason"]

jusrjlibjacctjstartup

jusrjlibjacctjturnacct on I off I switch

DESCRIPTION
chargefee can be invoked to charge a number of units to login-name. A
record is written to jusrjadmjfee, to be merged with other accounting
records during the night.

ckpacct should be initiated via cron(lM). It periodically checks the size of
jusrjadmjpacct. If the size exceeds blocks, 1000 by default, turnacct will
be invoked with argument switch. If the number of free disk blocks in the
jusr file system falls below 500, ckpacct will automatically turn off the col­
lection of process accounting records via the off argument to turnacd.
When at least this number of blocks is restored, the accounting will be
activated again. This feature is sensitive to the frequency at which ckpacct
is executed, usually by cron.

dodisk should be invoked by cron to perform the disk accounting func­
tions. By default, it will do disk accounting on the special files in
jetcjfstab. If the -0 flag is used, it will do a slower version of disk account­
ing by login directory. Files specify the one or more filesystem names
where disk accounting will be done. If files are used, disk accounting will
be done on these filesystems only. If the -0 flag is used, files should be
mount points of mounted filesystem. If omitted, they should be the special
file names of mountable filesystems.

lastlogin is invoked by runacct to update jusrjadmjacctjsumjloginlog,
which shows the last date on which each person logged in.

monacct should be invoked once each month or each accounting period.
Number indicates which month or period it is. If number is not given, it

- 1 -

ACCTSH(lM) (Base System) ACCTSH(lM)

FILES

defaults to the current month (01-12). This default is useful if monacct is
to executed via cron(lM) on the first day of each month. monacct creates
summary files in /usr/adm/acct/fiscal and restarts summary files in
/usr/adm/acct/sum.

nulladm creates file with mode 664 and ensures that owner and group are
adm. It is called by various accounting shell procedures.

prctmp can be used to print the session record file (normally
/usr/adm/acct/nite/ctmp created by acctcon(lM).

prdaily is invoked by runacct to format a report of the previous day's
accounting data. The report resides in /usr/adm/acct/sum/rprtmmdd
where mmdd is the month and day of the report. The current daily account­
ing reports may be printed by typing prdaily. Previous days' accounting
reports can be printed by using the mmdd option and specifying the exact
report date desired. The -I flag prints a report of exceptional usage by login
id for the specifed date. Previous daily reports are cleaned up and therefore
inaccessible after each invocation of monacct. The -c flag prints a report of
exceptional resource usage by command, and may be used on current day's
accounting data only.

prtacct can be used to format and print any total accounting (tacct) file.

runacct performs the accumulation of connect, process, fee, and disk
accounting on a daily basis. It also creates summaries of command usage.
For more information, see runacct(lM).

shutacct is invoked during a system shutdown to turn process accounting
off and append a "reason" record to /etc/wtmp.

startup is called by /etc/init.d/acct to turn the accounting on whenever
the system is brought to a multi-user state.

turnacct is an interface to accton [see acct(1M)] to turn process accounting
on or off. The switch argument turns accounting off, moves the current
/usr/adm/pacct to the next free name in /usr/adm/pacctincr (where incr
is a number starting with 1 and incrementing by one for each additional
pacct file), then turns accounting back on again. This procedure is called by
ckpacct and thus can be taken care of by the cron and used to keep pacct
to a reasonable size. acct starts and stops process accounting via init and
shutdown accordingly.

/usr/adm/fee
/usr/adm/pacct
/usr/adm/pacct*

/etc/wtmp
/usr/lib/acct/ptelus.awk

/usr/lib/acct/ptecms.awk

/usr/adm/acct/nite

accumulator for fees
current file for per-process accounting
used if pacct gets large and during execution of
daily accounting procedure
login/logoff summary
contains the limits for exceptional usage by login
id
contains the limits for exceptional usage by com­
mand name
working directory

- 2 -

ACCTSH(lM)

/usr/lib/acct

/usr/adm/acct/sum

SEE ALSO

(Base System) ACCTSH(lM)

holds all accounting commands listed in sub­
class 1M of this manual
summary directory, should be saved

acct(1M), acctcms(1M), acctcom(1), acctcon(1M), acctmerg(1M), acctprc(1M),
cron(1M), diskusg(1M), fwtmp(1M), runacct(1M).

acct(2), acct(4), utmp(4) in the Programmer's Reference Manual.

- 3 -

ADM(l) (Base System) ADM(l)

NAME
adm - invoke the AT&T Administration interface

SYNOPSIS
adm

DESCRIPTION
The adm command is used to invoke the forms-and-menus interface for
administering the computer. It is designed to make administration easy
enough for the average user to handle, with sufficient help to make each
step self-explanatory. Using this interface, you can:

Administer user logins*

Set up peripheral devices"'

Change the date and time*

Shut down the computer to turn it off"'

Administer an attached printer

Format and copy floppy diskettes

Create, mount", and unmount* file systems

Backup and Restore files from the hard disk"'

Set up your system for electronic mail"

Report system configuration information

For additional information, see the Operations/System Administration Guide.
Items marked with an asterisk require system administration privileges,
which can be given to any user by root, or by another user with such
privileges.

The interface is designed to keep the administration files of the computer
self-consistent. Making changes to system files with an editor, outside the
interface, could create inconsistencies that the interface is not prepared to
handle, and could result in a non-functional system.

The interface looks at the TERM environment variable to determine what
term info entry to use. Basic navigation is accomplished with arrow keys to
move, the return/enter key to select, and function keys as labeled for other
tasks. To refresh the screen in the event of unexpected error messages
(such as from disk bad-block handling), type control-Z followed by
"refresh" and a return/enter.

- 1 -

ADV(lM) (Remote File Sharing Utilities) ADV(lM)

NAME
adv - advertise a directory for remote access

SYNOPSIS
adv [-r] [-d description] resource path name [clients ...]

adv -m resource -d description: [clients ...]

adv -m resource [-d description] : clients .. .

adv

DESCRIPTION
The adv command is the Remote File Sharing command used to make a
computer's resource available to other computers. The machine that adver­
tises the resource is called the server, while computers that mount and use
the resource are clients. [See mount(lM).] (A resource represents a direc­
tory, which could contain files, subdirectories, named pipes and devices.)

There are three ways adv is used: 1. to advertise the directory pathname
under the name resource so it is available to Remote File Sharing clients; 2.
to modify client and description fields for currently advertised resources; or
3. to print a list of all locally advertised resources.

The following options are available:

-r Restricts access to the resource to a read-only basis. The
default is read-write access.

-d description Provides brief textual information about the advertised
resource. description is a single argument surrounded by
double quotes (,,) and has a maximum length of 32 charac­
ters.

resource This is the symbolic name used by the server and all
authorized clients to identify the resource. It is limited to a
maximum of 14 characters and must be different from every
other resource name in the domain. All characters must be
printable ASCII characters but must not include periods (.),
slashes (/), or white space.

pathname This is the local path name of the advertised resource. It is
limited to a maximum of 64 characters. This path name
cannot be the mount point of a remote resource and it can
only be advertised under one resource name.

clients These are the names of all clients that are authorized to
remotely mount the resource. The default is that all
machines that can connect to the server are authorized to
access the resource. Valid input is of the form nodename,
domain.nodename, domain., or an alias that represents a list
of client names. A domain name must be followed by a
period (.) to distinguish it from a host name. The aliases
are defined in jetejhost.alias and must conform to the
alias capability in mailx(l).

- 1 -

ADV(lM) (Remote File Sharing Utilities) ADV(lM)

-m resource This option modifies information for a resource that has
already been advertised. The resource is identified by a
resource name. Only the clients and description fields can
be modified. (To change the pathname, resource name, or
read/write permissions, you must unadvertise and re-
advertise the resource.) .

When used with no options, adv displays all local resources that have been
advertised; this includes the resource name, the path name, the description,
the read-write status, and the list of authorized clients. The resource field
has a fixed length of 14 characters; all others are of variable length. Fields
are separated by two white spaces, double quotes (") surround the descrip­
tion, and blank lines separate each resource entry.

This command may be used without options by any user; otherwise it is
restricted to the super-user.

Remote File Sharing must be running before adv can be used to advertise or
modify a resource entry.

EXIT STATUS
If there is at least one syntactically valid entry in the clients field, a warning
will be issued for each invalid entry and the command will return a success­
ful exit status. A non-zero exit status will be returned if the command fails.

ERRORS

FILES

If (1) the network is not up and running, (2) path name is not a directory, (3)
pathname isn't on a file system mounted locally, or (4) there is at least one
entry in the clients field but none are syntactically valid, an error message
will be sent to standard error.

/ etc/host. alias

SEE ALSO
mailx(l) mount(lM), rfstart(1M), unadv(1M).

- 2 -

AT(l) (Base System) AT(l)

NAME
at, batch - execute commands at a later time

SYNOPSIS
at time [date 1 [+ increment 1
at -r job ...
at -I [job

batch

DESCRIPTION
The at and batch commands read commands from standard input to be exe­
cuted at a later time. at allows you to specify when the commands should
be executed, while jobs queued with batch will execute when system load
level permits. at may be used with the following options:

-r Removes jobs previously scheduled with at.

-I Reports all jobs scheduled for the invoking user.

Standard output and standard error output are mailed to the user unless
they are redirected elsewhere. The shell environment variables, current
directory, umask, and ulimit are retained when the commands are executed.
Open file descriptors, traps, and priority are lost.

Users are permitted to use at if their name appears in the file
fusrflibfcronfat.allow. If that file does not exist, the file
fusrflibfcronfat.deny is checked to determine if the user should be denied
access to at. If neither file exists, only root is allowed to submit a job. If
at.deny is empty, global usage is permitted. The allow jdeny files consist of
one user name per line. These files can only be modified by the super-user.

The time may be specified as 1, 2, or 4 digits. One-and two-digit numbers
are taken to be hours, four digits to be hours and minutes. The time may
alternately be specified as two numbers separated by a colon, meaning
hour:minute. A suffix am or pm may be appended; otherwise a 24-hour
clock time is understood. The suffix zulu may be used to indicate GMT.
The special names noon, midnight, now, and next are also recognized.

An optional date may be specified as either a month name followed by a
day number (and possibly year number preceded by an optional comma) or
a day of the week (fully spelled or abbreviated to three characters). Two
special "days", today and tomorrow are recognized. If no date is given,
today is assumed if the given hour is greater than the current hour and
tomorrow is assumed if it is less. If the given month is less than the
current month (and no year is given), next year is assumed.

The optional increment is simply a number suffixed by one of the following:
minutes, hours, days, weeks, months, or years. (The singular form is also
accepted.)

- 1 -

AT(l) (Base System)

Thus legitimate commands include:

at 0815am Jan 24
at 8:15am Jan 24
at now + 1 day
at 5 pm Friday

at and batch write the job number and schedule time to standard error.

AT(l)

The at -r command removes jobs previously scheduled by at or batch. The
job number is the number given to you previously by the at or batch com­
mand. You can also get job numbers by typing at -1. You can remove only
your own jobs unless you are the super-user.

EXAMPLES

FILES

The at and batch commands read from standard input the commands to be
executed at a later time. sh(l) provides a different ways of specifying stan­
dard input. Within your commands, it may be useful to redirect standard
output.

This sequence can be used at a terminal:
batch
sort filename >outfile
<control-D> (hold down 'control' and depress 'D')

This sequence, which demonstrates redirecting standard error to a pipe, is
useful in a shell procedure (the sequence of output redirection specifications
is significant):

batch «!
sort filename 2>&1 >outfile I mailloginid
!

To have a job reschedule itself, invoke at from within the shell procedure,
by including code similar to the following within the shell file:

echo "sh shellfile" I at 1900 thursday next week

lusr llib I cron
lusr llib I cronl at.allow
lusr llib I cronl at. deny
lusr llib I cronl queue
lusrlspooljcron/atjobs

main cron directory
list of allowed users
list of denied users
scheduling information
spool area

SEE ALSO
cron(lM), kill(l), mail(l), nice(l), ps(l), sh(l), sort(l).

DIAGNOSTICS
Complains about various syntax errors and times out of range.

- 2 -

AWK(l) (Editing Package) AWK(l)

NAME
awk - pattern scanning and processing language

SYNOPSIS
awk [-Fc 1 [prog 1 [parameters 1 [files 1

DESCRIPTION
The awk language scans each input file for lines that match any of a set of
patterns specified in prog. With each pattern in prog there can be an associ­
ated action that will be performed when a line of a file matches the pattern.
The set of patterns may appear literally as prog, or in a file specified as -f
file. The prog string should be enclosed in single quotes (') to protect it
from the shell.

Parameters, in the form x= ... y= ... etc., may be passed to awk.

Files are read in order; if there are no files, the standard input is read. The
file name - means the standard input. Each line is matched against the pat­
tern portion of every pattern-action statement; the associated action is per­
formed for each matched pattern.

An input line is made up of fields separated by white space. (This default
can be changed by using FS; see below). The fields are denoted $1, $2, ... ;
$0 refers to the entire line.

A pattern-action statement has the form:

pattern { action }

A missing action means print the line; a missing pattern always matches.
An action is a sequence of statements. A statement can be one of the fol­
lowing:

if (conditional) statement [else statement 1
while (conditional) statement
for (expression ; conditional ; expression) statement
break
continue
{ [statement 1 ... }
variable = expression
print [expression-list 1 [>expression 1
printf format [, expression-list 1 [>expression 1
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right braces. An
empty expression-list stands for the whole line. Expressions take on string
or numeric values as appropriate, and are built using the operators +, -, *,
j, %, and concatenation (indicated by a blank). The C operators ++, --,
+=, -=, *=, j=, and %= are also available in expressions. Variables may
be scalars, array elements (denoted xli]) or fields. Variables are initialized to
the null string. Array subscripts may be any string, not necessarily numeric;
this allows for a form of associative memory. String constants are quoted
(").

- 1 -

AWK(l) (Editing Package) AWK(l)

The print statement prints its arguments on the standard output (or on a file
if >expr is present), separated by the current output field separator, and ter­
minated by the output record separator. The print! statement formats its
expression list according to the format [see printf(3S) in the Programmer's
Reference Manual].

The built-in function length returns the length of its argument taken as a
string, or of the whole line if no argument. There are also built-in functions
exp, log, sqrt, and int. The last truncates its argument to an integer;
substr(s, m, n) returns the n-character substring of s that begins at position
m. The function sprintf(fmt, expr, expr, ...) formats the expressions accord­
ing to the printf(3S) format given by fmt and returns the resulting string.

Patterns are arbitrary Boolean combinations (!, 11,&&, and parentheses) of
regular expressions and relational expressions. Regular expressions must be
surrounded by slashes and are as in egrep [see grep(l)]. Isolated regular
expressions in a pattern apply to the entire line. Regular expressions may
also occur in relational expressions. A pattern may consist of two patterns
separated by a comma; in this case, the action is performed for all lines
between an occurrence of the first pattern and the next occurrence of the
second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is
either - (for contains) or r (for does not contain). A conditional is an arith­
metic expression, a relational expression, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before
the first input line is read and after the last. BEGIN must be the first pattern,
END the last.

A single character c may be used to separate the fields by starting the pro­
gram with:

BEGIN { FS = c }

or by using the -Fc option.

Other variable names with special meanings include NF, the number of
fields in the current record; NR, the ordinal number of the current record;
FILENAME, the name of the current input file; OFS, the output field separator
(default blank); ORS, the output record separator (default new-line); and
OFMT, the output format for numbers (default %.6g).

EXAMPLES
Print lines longer than 72 characters:

length> 72

Print first two fields in opposite order:

{ print $2, $1 }

- 2 -

AWK(l) (Editing Package)

Add up first column, print sum and average:

{ s += $1 }
END {print" sum is", s, " average is", s/NR }

Print fields in reverse order:

{ for (i = NF; i > 0; --i) print $i

.Print all lines between start/stop pairs:

/start/, /stop/

Print all lines whose first field is different from previous one:

$1 != prev { print; prev = $1 }

Print file, filling in page numbers starting at 5:

/Page/ { $2 = n++; }
{ print}

command line: awk -f program n=5 input

AWK(l)

SEE ALSO

BUGS

grep(l), sed(1).
lex(l), printf(3S) in the Programmer's Reference Manual.

Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To force an
expression to be treated as a number, add 0 to it; to force it to be treated as
a string, concatenate the null string (" ,,) to it.

- 3 -

BACKUP(lM) BACKUP(lM)

NAME
backup - performs backup functions

SYNOPSIS
backup [-t] [-p I -c I -£ <files> I -u "<userl> [user2]"]

-d <device>

backup -h

DESCRIPTION
-h produces a history of backups. Tells the user when the last com­

plete and incremental/partial backups were done.

-c complete backup. All files changed since the system was installed
are backed up.

-p incremental/partial backup. If a incremental/partial backup was
done, all files modified since that time are backed up, otherwise all
files modified since the last complete backup are backed up. A
complete backup must be done before a partial backup.

-£ backup files specified by the <files> argument. File names may
contain characters to be expanded (i.e., *, .) by the shell. The argu­
ment must be in quotes.

-u backup a users files. At least one user must be specified but it can
be more. The argument must be in quotes if more than one user is
specified. User name of "all" causes all users to be backed up. All
the files belonging to the specified users will be backed up.

-d used to specify the device to be used. It defaults to
/dev /rdsk/£OqlSd (the I.2M floppy).

-t used when the device is the tape. It must be used with the -d
option.

A complete backup must be done before a partial backup can be done.

Raw devices rather than block devices should always be used.

The program can handle multi-volume backups.

The program will prompt the user when it is ready for the next media.

The program will give you an estimated number of floppies/tapes that will
be needed to do the backup.

Floppies MUST be formatted before the backup is done.

Tapes do not need to be formatted.

If backup is done to tape, the tape must be rewound.

SEE ALSO
qt(7).

- 1 -

BANNER(l)

NAME
banner - make posters

SYNOPSIS
banner strings

DESCRIPTION

(Base System) BANNER(l)

The banner command prints its arguments (each up to 10 characters long) in
large letters on the standard output. Spaces can be included in an argument
by surrounding it with quotes. The maximum number of characters that can
be accommodated in a line is implementation-dependent; excess characters
are simply ignored.

SEE ALSO
echo(l).

- 1 -

BASENAME(l) (Base System) BASENAME(l)

NAME
basename, dimame - deliver portions of path names

SYNOPSIS
basename string [suffix 1
dirname string

DESCRIPTION
The basename command deletes any prefix ending in / and the suffix (if
present in string) from string, and prints the result on the standard output.
It is normally used inside substitution marks (' ') within shell procedures.

The dirname command delivers all but the last level of the path name in
string.

EXAMPLES
The following example, invoked with the argument /usr/src/cmd/cat.c,
compiles the named file and moves the output to a file named cat ·in the
current directory:

cc $1
mv a.out 'basename $1 '\.c"

The following example will set the shell variable NAME to /usr/src/cmd:

SEE ALSO
sh(l).

NAME='dimame /usr/src/cmd/cat.c'

- 1 -

BC(l) (Base System) BC(l)

NAME
be - arbitrary-precision arithmetic language

SYNOPSIS
be [-e 1 [-1 1 [file ... 1

DESCRIPTION
The be command is an interactive processor for a language that resembles C
but provides unlimited precision arithmetic. It takes input from any files
given, then reads the standard input. The be(l) utility is actually a prepro­
cessor for de(l), which it invokes automatically unless the -e option is
present. In this case the de input is sent to the standard output instead.
The options are as follows:

-e Compile only. The output is send to the standard output.

-1 Argument stands for the name of an arbitrary precision math
library.

The syntax for be programs is as follows; L means letter a-z, E means
expression, S means statement.

Comments
are enclosed in /* and */.

Names
simple variables: L
array elements: L [E 1
The words "ibase", "obase", and "scale"

Other operands
arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt (E)
length (E)
scale (E)
L(E, ... ,E)

number of significant decimal digits
number of digits right of decimal point

Operators
+ - * / % (% is remainder; is power)
++ -- (prefix and postfix; apply to names)

<= >= != < >
=+ =- =* =/=% =-

Statements
E
{ S; ... ; S }
if(E)S
while (E) S
for (E ; E ; E) S
null statement
break
quit

- 1 -

BC(l)

Function definitions
define L (L , ... , L) {

auto L, ... , L
S; ... S
return (E)

Functions in -1 math library
s(x) sine
c(x) cosine
e(x) exponential
l(x) log
a(x) arctangent

(Base System)

j(n,x) Bessel function

All function arguments are passed by value.

BC(l)

The value of a statement that is an expression is printed unless the main
operator is an assignment. Either semicolons or new-lines may separate
statements. Assignment to scale influences the number of digits to be
retained on arithmetic operations in the manner of dc(l). Assignments to
ibase or abase set the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable
simultaneously. All variables are global to the program. "Auto" variables
are pushed down during function calls. When using arrays as function
arguments or defining them as automatic variables, empty square brackets
must follow the array name.

EXAMPLE
scale = 20
define e(x){

}

auto a, b, c, i, s
a = 1
b=1
s = 1
for(i=1; 1==1; i++){

a = a*x
b = b*i
c = alb
if(c == 0) return(s)
s = s+c

defines a function to compute an approximate value of the exponential func­
tion and

for(i=1; i<=10; H+) e(i)

prints approximate values of the exponential function of the first ten
integers.

- 2 -

BC(l)

FILES

(Base System)

jusrjlibjlib.b mathematical library
jusrjbinjdc desk calculator proper

BC(l)

SEE ALSO

BUGS

dc(l).

The be command does not yet recognize the logical operators, && and 1 I.
For statement must have all three expressions (E's).
Quit is interpreted when read, not when executed.

- 3 -

BDIFF(l) (Editing Package) BDIFF(l)

NAME
bdiff - big diff

SYNOPSIS
bdiff filel file2 [n] [-8]

DESCRIPTION

FILES

The bdiff command is used in a manner analogous to diff(l) to find which
lines in two files must be changed to bring the files into agreement. Its pur­
pose is to allow processing of files which are too large for diff.

The parameters to bdiff are:

filel (file2)
The name of a file to be used. If filel (file2) is -, the standard input
is read.

n The number of line segments. The value of n is 3500 by defa1,llt. If
the optional third argument is given and it is numeric, it is used as
the value for n. This is useful in those cases in which 3500-line
segments are too large for diff, causing it to fail.

-8 Specifies that no diagnostics are to be printed by bdiff (silent
option). Note, however, that this does not suppress possible diag­
nostic messages from diff(l), which bdiff calls.

The bdiff command ignores lines common to the beginning of both files,
splits the remainder of each file into n-line segments, and invokes diff upon
corresponding segments. If both optional arguments are specified, they
must appear in the order indicated above.

The output of bdiff is exactly that of diff, with line numbers adjusted to
account for the segmenting of the files (that is, to make it look as if the files
had been processed whole). Note that because of the segmenting of the
files, bdiff does not necessarily find a smallest sufficient set of file differ­
ences.

/ tmp /bd ?????

SEE ALSO
diff(l).

DIAGNOSTICS
Use help(l) for explanations.

- 1 -

BFS(l) (Editing Package) BFS(l)

NAME
bfs - big file scanner

SYNOPSIS
bfs [-] name

DESCRIPTION
The bfs command is (almost) like ed(1) except that it is read-only and
processes much larger files. Files can be up to 1024K bytes and 32K lines,
with up to 512 characters, including new-line, per line (255 for 16-bit
machines). bfs is usually more efficient than ed(1) for scanning a file, since
the file is not copied to a buffer. It is most useful for identifying sections of
a large file where csplit(1) can be used to divide it into more manageable
pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of any
file written with the w command. The optional - suppresses printing of
sizes. Input is prompted with * if P and a carriage return are typed, as in
ed(1). Prompting can be turned off again by inputting another P and car­
riage return. Note that messages are given in response to errors if prompt­
ing is turned on.

All address expressions described under ed(1) are supported. In addition,
regular expressions may be surrounded with two symbols besides / and 7:
> indicates downward search without wrap-around, and < indicates upward
search without wrap-around. There is a slight difference in mark names:
only the letters a through z may be used, and all 26 marks are remembered.

The e, g, v, k, p, q, W, =, I and null commands operate as described under
ed(1). Commands such as ---, +++-, +++=, -12, and +4p are accepted.
Note that 1,10p and 1,10 will both print the first ten lines. The f command
only prints the name of the file being scanned; there is no remembered file
name. The W command is independent of output diversion, truncation, or
crunching (see the xo, xt, and xc commands, below). The following addi­
tional commands are available:

xf file
Further commands are taken from the named file. When an
end-of-file is reached, an interrupt signal is received or an error
occurs, reading resumes with the file containing the xf. The xf
commands may be nested to a depth of 10.

xn List the marks currently in use (marks are set by the k com­
mand).

xo [file]
Further output from the p and null commands is diverted to the
named file, which, if necessary, is created mode 666 (readable
and writable by everyone), unless your umask setting [see
umask(1)] dictates otherwise. If file is missing, output is diverted
to the standard output. Note that each diversion causes trunca­
tion or creation of the file.

: label
This positions a label in a command file. The label is terminated

- 1 -

BFS(l) (Editing Package) BFS(l)

by new-line, and blanks between the: and the start of the label
are ignored. This command may also be used to insert com­
ments into a command file, since labels need not be referenced.

(• , •)xb/regular expression/label
A jump (either upward or downward) is made to label if the
command succeeds. It fails under any of the following condi­
tions:

1. Either address is not between 1 and $.
2. The second address is less than the first.
3. The regular expression does not match at least one
line in the specified range, including the first and last
lines.

On success, • is set to the line matched and a jump is made to
label. This command is the only one that does not issue an error
message on bad addresses, so it may be used to test whether
addresses are bad before other commands are executed. Note
that the command

xb/ A

/ label

is an unconditional jump.
The xb command is allowed only if it is read from someplace
other than a terminal. If it is read from a pipe only a downward
jump is possible.

xl number
Output from the p and null commands is truncated to at most
number characters. The initial number is 255.

xv[digit] [spaces] [value]
The variable name is the specified digit following the xv. The
commands xv5100 or xv5 100 both assign the value 100 to the
variable 5. The command xv61,100p assigns the value 1,100p to
the variable 6. To reference a variable, put a % in front of the
variable name. For example, using the above assignments for
variables 5 and 6:

1,%5p
1,%5
%6

will all print the first 100 lines.

g/%5/p

would globally search for the characters 100 and print each line
containing a match. To escape the special meaning of %, a \
must precede it.

g/ "."\ % [cdsl/p

- 2 -

BFS(l) (Editing Package) BFS(l)

could be used to match and list lines containing print! of charac­
ters, decimal integers, or strings.

Another feature of the xv command is that the first line of out­
put from a UNIX system command can be stored into a variable.
The only requirement is that the first character of value be an !.
For example:

.wjunk
xv5!cat junk
!rm junk
!echo "%5"
xv6!expr %6 + 1

would put the current line into variable 5, print it, and increment
the variable 6 by one. To escape the special meaning of ! as the
first character of value, precede it with a \.

xv7\!date

stores the value !date into variable 7.

xbz label

xbn label
These two commands will test the last saved return code from
the execution of a UNIX system command (!command) or nonzero
value, respectively, to the specified label. The two examples
below both search for the next five lines containing the string
size.

xc [switch]

xv55
: I
/size/
xv5!expr %5 - 1
!if 0%5 != 0 exit 2
xbn I
xv45
: I
/size/
xv4!expr %4 - 1
!if 0%4 = 0 exit 2
xbz I

If switch is 1, output from the p and null commands is crunched;
if switch is 0, it is not. Without an argument, xc reverses switch.
Initially switch is set for no crunching. Crunched output has
strings of tabs and blanks reduced to one blank and blank lines
suppressed.

- 3 -

BFS(l) (Editing Package) BFS(l)

SEE ALSO
csplit(l), ed(l), umask(l).

DIAGNOSTICS
? for errors in commands, if prompting is turned off. Self-explanatory error
messages when prompting is on.

- 4 -

BRC(lM) (Base System) BRC(lM)

NAME
brc, bcheckrc - system initialization procedures

SYNOPSIS
/etc/brc

/ etc /bcheckrc

DESCRIPTION
These shell procedures are executed via entries in /etc/inittab by init(lM)
whenever the system is booted (or rebooted).

First, the beheekre procedure checks the status of the root file system. If the
root file system is found to be bad, beheekre repairs it.

Then, the bre procedure clears the mounted file system table, /etc/mnttab
and puts the entry for the root file system into the mount table.

After these two procedures have executed, init checks for the initdefauIt
value in /etc/inittab. This tells init in which run level to place the system.
Since initdefault is initially set to 2, the system will be placed in the multi­
user state via the /ete/re2 procedure.

Note that beheekre should always be executed before bre. Also, these shell
procedures may be used for several run-level states.

SEE ALSO
fsck(lM), init(lM), rc2(lM), shutdown(lM).

- 1 -

CAL(l) (Base System) CAL(l)

NAME
cal - print calendar

SYNOPSIS
cal [[month] year]

DESCRIPTION
The cal command prints a calendar for the specified year. If a month is also
specified, a calendar just for that month is printed. If neither is specified, a
calendar for the present month is printed. Year can be between 1 and 9999.
The month is a number between 1 and 12. The calendar produced is that
for England and the United States.

EXAMPLES

BUGS

An unusual calendar is printed for September 1752. That is the month 11
days were skipped to make up for lack of leap year adjustments. To see
this calendar, type: cal 9 1752

The year is always considered to start in January even though this is histori­
cally naive.
Beware that "cal 83" refers to the early Christian era, not the 20th century.

- 1 -

CALENDAR(l) (Base System) CALENDAR(l)

NAME
calendar - reminder service

SYNOPSIS
calendar [- 1

DESCRIPTION

FILES

The calendar command consults the file calendar in the current directory
and prints· out lines that contain today's or tomorrow's date anywhere in the
line. Most reasonable month-day dates such as "Aug. 24," "august 24,"
"8/24," etc., are recognized, but not "24 August" or "24/8". On weekends
"tomorrow" extends through Monday.

When an argument is present, calendar does its job for every user who has a
file calendar in his or her login directory and sends them any positive
results by mail (1). Normally this is done daily by facilities in the UNIX
operating system.

/usr /lib / calprog

/etc/passwd

/tmp/cal*

to figure out today's and tomorrow's dates

SEE ALSO
mail(l).

BUGS
Your calendar must be public information for you to get reminder service.
calendar's extended idea of "tomorrow" does not account for holidays.

- 1 -

CAPTOINFO(lM) (Remote Terminal Package) CAPTOINFO(lM)

NAME
captoinfo - convert a termcap description into a terminfo description

SYNOPSIS
captoinfo [-v ...] [-V] [-1] [-w width] file ...

DESCRIPTION

FILES

The cap to info command looks in file for term cap descriptions. For each one
found, an equivalent term info (4) description is written to standard output,
along with any comments found. A description which is expressed as rela­
tive to another description (as specified in the term cap tc= field) will be
reduced to the minimum superset before being output.

If no file is given, then the environment variable TERM CAP is used for the
file name or entry. If TERMCAP is a full path name to a file, only the termi­
nal whose name is specified in the environment variable TERM is extracted
from that file. If the environment variable TERMCAP is not set, then the
file /etc/termcap is read.

-v print out tracing information on standard error as the program
runs. Specifying additional -v options will cause more detailed
information to be printed.

-V print out the version of the program in use on standard error and
exit.

-1 cause the fields to print out, one to a line. Otherwise, the fields
will be printed several to a line to a maximum width of 60 char­
acters.

-w change the output to width characters.

/usr/lib/terminfo/?/* compiled terminal description data base

CAVEATS
Certain termcap defaults are assumed to be true. For example, the bell char­
acter (terminfo bel) is assumed to be "G. The linefeed capability (termcap nl)
is assumed to be the same for both cursor_down and scrolLforward (term info
cud1 and ind, respectively.) Padding information is assumed to belong at
the end of the string.

The algorithm used to expand parameterized information for termcap fields
such as cursor_position (term cap cm, term info cup) will sometimes produce a
string which, though technically correct, may not be optimal. In particular,
the rarely used term cap operation %n will produce strings that are especially
long. Most occurrences of these non-optimal strings will be flagged with a
warning message and may need to be recoded by hand.

The short two-letter name at the beginning of the list of names in a termcap
entry, a hold-over from an earlier version of the UNIX system, has been
removed.

- 1 -

CAPTOINFO(lM) (Remote Terminal Package) CAPTOINFO(lM)

DIAGNOSTICS
tgetent failed with return code n (reason).

The termcap entry is not valid. In particular, check for an
invalid 'tc=' entry.

unknown type given for the termcap code cc.
The termcap description had an entry for cc whose type
was not Boolean, numeric, or string.

wrong type given for the Boolean (numeric, string) termcap code cc.
The Boolean term cap entry cc was entered as a numeric or
string capability.

the Boolean (numeric, string) termcap code cc is not a valid name.
An unknown termcap code was specified.

tgetent failed on TERM=term.
The terminal type specified could not be found in the
term cap file.

TERM=term: cap cc (info it) is NULL: REMOVED
The term cap code was specified as a null string. The
correct way to cancel an entry is with an '@', as in
':bs@:'. Giving a null string could cause incorrect
assumptions to be made by the software which uses
term cap or term info.

a function key for cc was specified, but it already has the value vv.
When parsing the ko capability, the key cc was specified
as having the same value as the capability cc, but the key
cc already had a value assigned to it.

the unknown termcap name cc was specified in the ko termcap capability.
A key was specified in the ko capability which could not
be handled.

the vi character v (info ii) has the value xx, but ma gives n.
The ma capability specified a function key with a value
different from that specified in another setting of the same
key.

the unknown vi key v was specified in the ma termcap capability.
A vi(l) key unknown to captoinfo was specified in the ma
capability.

Warning: termcap sg (nn) and termcap ug (nn) had different values.
terminfo assumes that the sg (now xmc) and ug values
were the same.

Warning: the string produced for ii may be inefficient.
The parameterized string being created should be rewrit­
ten by hand.

- 2 -

CAPTOINFO(lM) (Remote Terminal Package) CAPTOINFO(lM)

Null termname given.
The terminal type was null. This is given if the environ­
ment variable TERM is not set or is null.

cannot open file for reading.
The specified file could not be opened.

SEE ALSO

NOTES

infocmp(lM), tic(lM).
curses (3X), terminfo(4) in the Programmer's Reference Manual.
Chapter 10 in the Programmer's Guide.

The captoinfo command should be used to convert termcap entries to ter­
minfo(4) entries because the term cap data base (from earlier versions of
UNIX System V) may not be supplied in future releases.

- 3 -

CAT(l) (Base System) CAT(l)

NAME
cat - concatenate and print files

SYNOPSIS
cat [-u] [-8] [-v [-t] [-ell file ...

DESCRIPTION
cat reads each file in sequence and writes it on the standard output. Thus:

cat file

prints file on your terminal, and:

cat filet file2 >file3

concatenates filet and file2, and writes the results in file3.

If no input file is given, or if the argument - is encountered, cat reads from
the standard input file.

The following options apply to cat:

-u The output is not buffered. (The default is buffered output.)

-8 cat is silent about non-existent files.

-v Causes non-printing characters (with the exception of tabs, new-
lines, and form-feeds) to be printed visibly. ASCII control characters
(octal 000 - 037) are printed as -n, where n is the corresponding
ASCII character in the range octal 100 - 137 (@' A, B, C, ... , X, Y,
Z, [, \,], -, and _); the DEL character (octal 0177) is printed -?
Other non-printable characters are printed as M-x, where x is the
ASCII character specified by the low-order seven bits.

When used with the -v option, the following options may be used:

-t Causes tabs to be printed as -I's.

-e Causes a $ character to be printed at the end of each line (prior to
the new-line).

The -t and -e options are ignored if the -v option is not specified.

WARNING
Redirecting the output of cat onto one of the files being read will overwrite
the data originally in the file being read. For example, typing:

cat filet file2 >filet

will cause the original data in filet to be lost.

SEE ALSO
cp(l), pg(l), pr(l).

- 1 -

CD(l) (Base System) CD(l)

NAME
cd - change working directory

SYNOPSIS
cd [directory]

DESCRIPTION
If directory is not specified, the value of shell parameter $HOME is used as
the new working directory. If directory specifies a complete path starting
with /, ., .. , directory becomes the new working directory. If neither case
applies, cd tries to find the designated directory relative to one of the paths
specified by the $CDPATH shell variable. $CDPATH has the same syntax as,
and similar semantics to, the $PATH shell variable. cd must have execute
(search) permission in directory .

Because a new process is created to execute each command, cd would be
ineffective if it were written as a normal command; therefore, it is recog­
nized and is internal to the shell.

SEE ALSO
pwd(l), sh(l).
chdir(2) in the Programmer's Reference Manual.

- 1 -

CHMOD(l) (Base System) CHMOD(l)

NAME
chmod - change mode

SYNOPSIS
chmod mode file ...

chmod mode directory

DESCRIPTION
The permissions of the named files or directories are changed according to
mode, which may be symbolic or absolute. Absolute changes to permis­
sions are stated using octal numbers:

chmod nnn file(s)

where n is a number from 0 to 7. Symbolic changes are stated using
mnemonic characters:

chmod a operator b file(s)

where a is one or more characters corresponding to user, group, or other;
where operator is +, -, and =, signifying assignment of permissions; and
where b is one or more characters corresponding to type of permission.

An absolute mode is given as an octal number constructed from the OR of
the following modes:

4000 set user ID on execution
20#0 set group ID on execution if # is 7, 5, 3, or 1

1000
0400
0200
0100
0070
0007

enable mandatory locking if # is 6, 4, 2, or 0
sticky bit is turned on [see chmod(2)]
read by owner
write by owner
execute (search in directory) by owner
read, write, execute (search) by group
read, write, execute (search) by others

Symbolic changes are stated using letters that correspond both to access
classes and to the individual permissions themselves. Permissions to a file
may vary depending on your user identification number (UID) or group
identification number (GID). Permissions are described in three sequences
each having three characters:

User Group Other

rwx rwx rwx

This example (meaning that user, group, and others all have reading, writ­
ing, and execution permission to a given file) demonstrates two categories
for granting permissions: the access class and the permissions themselves.

Thus, to change the mode of a file's (or directory's) permissions using
chmod's symbolic method, use the following syntax for mode:

[who] operator [permission(s)], ...

A command line using the symbolic method would appear as follows:

chmod g+rw file

- 1 -

CHMOD(l) (Base System) CHMOD(l)

This command would make file readable and writable by the group.

The who part can be stated as one or more of the following letters:
u user's permissions
g group's permissions
o others permissions

The letter a (all) is equivalent to ugo and is the default if who is omitted.

Operator can be + to add permission to the file's mode, - to take away per­
mission, or = to assign permission absolutely. (Unlike other symbolic opera­
tions, = has an absolute effect in that it resets all other bits.) Omitting per­
mission is only useful with = to take away all permissions.

Permission is any compatible combination of the following letters:
r reading permission
w writing permission
x execution permission
s user or group set-ID is turned on
t sticky bit is turned on
I mandatory locking will occur during access

Multiple symbolic modes separated by commas may be given, though no
spaces may intervene between these modes. Operations are performed in
the order given. Multiple symbolic letters following a single operator cause
the corresponding operations to be performed simultaneously. The letter s
is only meaningful with u or g, and t only works with u.
Mandatory file and record locking (I) refers to a file's ability to have its
reading or writing permissions locked while a program is accessing that file.
lt is not possible to permit group execution and enable a file to be locked on
execution at the same time. In addition, it is not possible to tum on the
set-group-ID and enable a file to be locked on execution at the same time.
The following examples,

chmod g+x,+l file
chmod g+s,+l file

are, therefore, illegal usages and will elicit error messages.

Only the owner of a file or directory (or the super-user) may change a file's
mode. Only the super-user may set the sticky bit on a non-directory file.
In order to tum on a file's set-group-ID, your own group ID must
correspond to the file's, and group execution must be set.

EXAMPLES
chmod a-x file

chmod 444 file

The first examples deny execution permission to all. The absolute (octal)
example permits only reading permissions.

chmod go+rw file

chmod 606 file

These examples make a file readable and writable by the group and others.

- 2 -

CHMOD(l) (Base System) CHMOD(l)

NOTES

chmod +1 file

This causes a file to be locked during access.

chmod =rwx,g+s file

chmod 2777 file

These last two examples enable all to read, write, and execute the file; and
they turn on the set group-ID.

In a Remote File Sharing environment, you may not have the permissions
that the output of the Is -I command leads you to believe. For more infor­
mation see the "Mapping Remote Users" section of Chapter 10 of the Sys­
tem Administrator's Guide.

SEE ALSO
Is(1).
chmod(2) in the Programmer's Reference Manual.

- 3 -

CHOWN(l) (Base System) CHOWN(l)

NAME
chown, chgrp - change owner or group

SYNOPSIS
chown owner file ...

chown owner directory

chgrp group file ...

chgrp group directory

DESCRIPTION

FILES

NOTES

The chown command changes the owner of the files or directories to owner.
The owner may be either a decimal user ID or a login name found in the
password file.

The chgrp command changes the group ID of the files or directories to group.
The group may be either a decimal group ID or a group name found in the
group file.

If either command is invoked by other than the super-user, the set-user-ID
and set-group-ID bits of the file mode, 04000 and 02000 respectively, will
be cleared.

Only the owner of a file (or the super-user) may change the owner or group
of that file.

jetcjpasswd
jetcjgroup

In a Remote File Sharing environment, you may not have the permissions
that the output of the Is -1 command leads you to believe. For more infor­
mation see the "Mapping Remote Users" section of Chapter 10 of the Sys­
tem Administrator's Guide.

SEE ALSO
chmod(l).
chown(2), group(4), passwd(4) in the Programmer's Reference Manual.

- 1 -

CHROOT(lM) (Base System) CHROOT(lM)

NAME
chroot - change root directory for a command

SYNOPSIS
/etc/chroot newroot command

DESCRIPTION
The chroot command causes the given command to be executed relative to
the new root. The meaning of any initial slashes (f) in the path names is
changed for the command and any of its child processes to newroot. Furth­
ermore, upon execution, the initial working directory is newroot.

Notice, however, that if you redirect the output of the command to a file:

chroot newroot command >x

will create the file x relative to the original root of the command, not the
new one.

The new root path name is always relative to the current root; even if a
chroot is currently in effect, the newroot argument is relative to the current
root of the running process.

This command can be run only by the super-user.

SEE ALSO
cd(l).

BUGS

chroot(2) in the Programmer's Reference Manual.

One should exercise extreme caution when referencing device files in the
new root file system.

- 1 -

CHRTBL(lM) (Base System) CHRTBL(lM)

NAME
chrtbl - generate character classification and conversion tables

SYNOPSIS
chrtbl [file]

DESCRIPTION
The chrtbl command creates a character classification table and an
upper/lower-case conversion table. The tables are contained in a byte-sized
array encoded such that a table lookup can be used to determine the charac­
ter classification of a character or to convert a character [see ctype(3C)]. The
size of the array is 257*2 bytes: 257 bytes are required for the 8-bit code
set character classification table and 257 bytes for the upper- to lower-case
and lower- to upper-case conversion table.

chrtbl reads the user-defined character classification and conversion infor­
mation from file and creates two output files in the current directory. One
output file, ctype.c (a C-Ianguage source file), contains the 257*2-byte array
generated from processing the information from file. You should review the
content of ctype.c to verify that the array is set up as you had planned. (In
addition, an application program could use ctype.c.) The first 257 bytes of
the array in ctype.c are used for character classification. The characters
used for initializing these bytes of the array represent character classifica­
tions that are defined in /usr/include/ctype.h; for example, _L means a
character is lower case and -B I _B means the character is both a spacing
character and a blank. The last 257 bytes of the array are used for character
conversion. These bytes of the array are initialized so that characters for
which you do not provide conversion information will be converted to
themselves. When you do provide conversion information, the first value of
the pair is stored where the second one would be stored normally, and vice
versa; for example, if you provide <Ox41 Ox61>, then Ox61 is stored where
Ox41 would be stored normally, and Ox61 is stored where Ox41 would be
stored normally.

The second output file (a data file) contains the same information, but is
structured for efficient use by the character classification and conversion
routines [see ctype(3C)]. The name of this output file is the value of the
character classification chrclass read in from file. This output file must be
installed in the /lib/chrclass directory under this name by someone who is
super-user or a member of group bin. This file must be readable by user,
group, and other; no other permissions should be set. To use the character
classification and conversion tables on this file, set the environmental vari­
able CHRCLASS [see environ(5)] to the name of this file and export the vari­
able; for example, if the name of this file (and character class) is xyz, you
should issue the commands: CHRCLASS=xyz; export CHRCLASS .

If no input file is given, or if the argument - is encountered, chrtbl reads
from the standard input file.

The syntax of file allows the user to define the name of the data file created
by chrtbl, the assignment of characters to character classifications and the
relationship between upper- and lower-case letters. The character classifica­
tions recognized by chrtbl are:

- 1 -

CHRTBL(lM)

chrclass

isupper

islower

is digit

isspace

ispunct

iscntrl

(Base System) CHRTBL(lM)

name of the data file to be created by chrtbl.

character codes to be classified as upper-case letters.

character codes to be classified as lower-case letters.

character codes to be classified as numeric.

character codes to be classified as a spacing (delimiter)
character.

character codes to be classified as a punctuation char­
acter.

character codes to be classified as a control character.

isblank character code for the space character.

isxdigit character codes to be classified as hexadecimal digits.

ul relationship between upper- and lower-case characters.

Any lines with the number sign (#) in the first column are treated as com­
ments and are ignored. Blank lines are also ignored.

A character can be represented as a hexadecimal or octal constant (for
example, the letter a can be represented as Ox61 in hexadecimal or 0141 in
octal). Hexadecimal and octal constants may be separated by one or more
space and tab characters.

The dash character (-) may be used to indicate a range of consecutive
numbers. Zero or more space characters may be used for separating the
dash character from the numbers.

The backslash character (\) is used for line continuation. Only a carriage
return is permitted after the backslash character.

The relationship between upper- and lower-case letters (ul) is expressed as
ordered pairs of octal or hexadecimal constants: <upper-case_character
lower-case_character>. These two constants may be separated by one or
more space characters. Zero or more space characters may be used for
separating the angle brackets « » from the numbers.

EXAMPLE
The following is an example of an input file used to create the ASCII code
set definition table on a file named ascii.

chrclass ascii
isupper Ox41 oxSa
islower Ox61 - Ox7a
isdigit Ox30 - Ox39
is space Ox20 Ox9 - Oxd
ispmct Ox21 - Ox2f 0x3a - Ox40 \

OxSb - 0x60 Ox7b - Ox7e
iscntrl OxO - Ox1f Ox7f
isblank Ox20
isxdigit 0x30 - 0x39 0x61 - OX66 \

- 2 -

CHRTBL(lM) (Base System) CHRTBL(lM)

FILES

Ox41 - Ox46
ul <Ox41 OxG1> <Ox42 0xG2> <Ox43 OxG3> \

<Ox44 Ox64> <Ox45 OxG5> <Ox46 0x66> \
<Ox47 OxG7> <Ox48 0xG8> <Ox49 0xG9> \
<Ox4a Ox6a> <Ox4b Ox6b> <Ox4c OxGc> \
<Qx4d 0x6d> <Ox4e Ox6e> <Ox4f OxGf> \
<0x50 Ox70> <0x51 Ox71> <0x52 Ox72> \
<0x53 Ox73> <0x54 Ox74> <0x55 Ox75> \
<0x56 Ox76> <0x57 Ox77> <0x58 Ox78> \
<0x59 Ox79> <Ox5a Ox7a>

/lib/chrclass/* data file containing character classification and conversion
tables created by chrtbl

/usr/include/ctype.h
header file containing information used by character clas­
sification and conversion routines

SEE ALSO
environ(5).
ctype(3C) in the Programmer's Reference Manual .

DIAGNOSTICS
The error messages produced by chrtbl are intended to be self-explanatory.
They indicate errors in the command line or syntactic errors encountered
within the input file.

- 3 -

CLRI(lM) (Base System) CLRI(lM)

NAME
clri - clear i-node

SYNOPSIS
/etc/c1ri special i-number ...

DESCRIPTION
The clri command writes nulls on the 64 bytes at offset i-number from the
start of the i-node list. This effectively eliminates the i-node at that address.
Special is the device name on which a file system has been defined. After
clri is executed, any blocks in the affected file will show up as "not
accounted for" when fsck(lM) is run against the file-system. The i-node
may be allocated to a new file.

Read and write permission is required on the specified special device.

This command is used to remove a file which appears in no directory; that
is, to get rid of a file which cannot be removed with the rm command.

SEE ALSO
fsck(lM), fsdb(lM), ncheck(lM) rm(l).
fs(4) in the Programmer's Reference Manual.

WARNINGS
If the file is open for writing, clri will not work. The file system containing
the file should NOT be mounted.

If clri is used on the i-node number of a file that does appear in a directory,
it is imperative to remove the entry in the directory at once, since the i-node
may be allocated to a new file. The old directory entry, if not removed,
continues to point to the same file. This sounds like a link, but does not
work like one. Removing the old entry destroys the new file.

- 1 -

CMP(l) (Base System) CMP(l)

NAME
cmp - compare two files

SYNOPSIS
cmp [-1] [-8] filel file2

DESCRIPTION
The two files are compared. (If filel is -, the standard input is used.)
Under default options, cmp makes no comment if the files are the same; if
they differ, it announces the byte and line number at which the difference
occurred. If one file is an initial subsequence of the other, that fact is noted.

Options:

-1 Print the byte number (decimal) and the differing bytes (octal) for
each difference.

-8 Print nothing for differing files; return codes only.

SEE ALSO
comm(l), diff(l).

DIAGNOSTICS
Exit code 0 is returned for identical files, 1 for different files, and 2 for an
inaccessible or missing argument.

- 1 -

COL(l) (Editing Package) COL(l)

NAME
col - filter reverse line-feeds

SYNOPSIS
col [-b] [-f] [-x] [-p]

DESCRIPTION

NOTES

col reads from the standard input and writes onto the standard output. It
performs the line overlays implied by reverse line feeds (ASCII code ESC-7),
and by forward and reverse half-line-feeds (ESC-9 and ESC-8). col is partic­
ularly useful for filtering multicolumn output made with the .rt command of
nroff and output resulting from use of the tbl(l) preprocessor.

If the -b option is given, col assumes that the output device in use is not
capable of backspacing. In this case, if two or more characters are to appear
in the same place, only the last one read will be output.

Although col accepts half-line motions in its input, it normally does not
emit them on output. Instead, text that would appear between lines is
moved to the next lower full-line boundary. This treatment can be
suppressed by the -f (fine) option; in this case, the output from col may
contain forward half-line-feeds (E5C-9), but will still never contain either
kind of reverse line motion.

Unless the -x option is given, col will convert white space to tabs on output
wherever possible to shorten printing time.

The ASCII control characters 50 (\017) and SI (\016) are assumed by col to
start and end text in an alternate character set. The character set to which
each input character belongs is remembered, and on output 51 and 50 char­
acters are generated as appropriate to ensure that each character is printed
in the correct character set.

On input, the only control characters accepted are space, backspace, tab,
return, new-line, SI, SO, VT (\013), and E5C followed by 7, 8, or 9. The VT
character is an alternate form of full reverse line-feed, included for compati­
bility with some earlier programs of this type. All other non-printing char­
acters are ignored.

Normally, col will ignore any escape sequences unknown to it that are
found in its input; the -p option may be used to cause col to output these
sequences as regular characters, subject to overprinting from reverse line
motions. The use of this option is highly discouraged unless the user is
fully aware of the textual position of the escape sequences.

The input format accepted by col matches the output produced by nroff with
either the -T37 or -TIp options. Use -T37 (and the -f option of col) if the
ultimate disposition of the output of col will be a device that can interpret
half-line motions, and -TIp otherwise.

- 1 -

COL(l)

BUGS

(Editing Package) COL(l)

Cannot back up more than 128 lines.

Allows at most 800 characters, including backspaces, on a line.

Local vertical motions that would result in backing up over the first line of
the document are ignored. As a result, the first line must not have any
superscripts.

- 2 -

COMM(l) (Editing Package) COMM(l)

NAME
comm - select or reject lines common to two sorted files

SYNOPSIS
comm [- [123]] file1 file2

DESCRIPTION
The camm command reads filel and file2, which should be ordered in ASCII
collating sequence [see sart(1)], and produces a three-column output: lines
only in filel; lines only in file2; and lines in both files. The file name -
means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm
-12 prints only the lines common to the two files; comm -23 prints only
lines in the first file but not in the second; comm -123 prints nothing.

SEE ALSO
cmp(l), diff(l), sort(l), uniq(l).

- 1 -

CP(l) (Base System) CP(l)

NAME
cp, In, mv - copy, link, or move files

SYNOPSIS
cp file 1 [file2 ...] target
In [-£] file 1 [file2 ...] target
mv [-£] filel [file2 ...] target

DESCRIPTION
filel is copied (linked, moved) to target. Under no circumstance can filel
and target be the same [take care when using sh(l) metacharacters]. If tar­
get is a directory, then one or more files are copied (linked, moved) to that
directory. If target is a file, its contents are destroyed.

If mv or In determines that the mode of target forbids writing, it will print
the mode [see chmod(2)], ask for a response, and read the standard input for
one line; if the line begins with y, the mv or In occurs, if permissable; if not,
the command exits. For mv, when source parent directories or the target
directory is writable and has the sticky bit set, any of the following condi­
tions must be true:

the user must own the file
the user must own the directory
the file must be writable to the user
the user must be the super-user

When the -£ option is used or if the standard input is not a terminal, no
questions are asked and the mv or In is done.

Only mv will allow filel to be a directory, in which case the directory
rename will occur only if the two directories have the same parent; filel is
renamed target. If filel is a file and target is a link to another file with links,
the other links remain and target becomes a new file.

When using cp, if target is not a file, a new file is created which has the
same mode as filel except that the sticky bit is not set unless you are
super-user; the owner and group of target are those of the user. If target is
a file, copying a file into target does not change its mode, owner, nor group.
The last modification time of target (and last access time, if target did not
exist) and the last access time of filel are set to the time the copy was made.
If target is a link to a file, all links remain and the file is changed.

SEE ALSO
chmod(l), cpio(l), rm(l).

WARNINGS

BUGS

In will not link across file systems. This restriction is necessary because file
systems can be added and removed.

If filel and target lie on different file systems, mv must copy the file and
delete the original. In this case any linking relationship with other files is
lost.

- 1 -

CPIO(l) (Base System) CPIO(l)

NAME
cpio - copy file archives in and out

SYNOPSIS
cpio -o[acBvV] [-C bufsize] [[-0 file] [-M message]]

cpio -i[BcdmrtuvVfsSb6k] [-C bufsize] [[-I file] [-M message]] [pattern
...]
cpio -p [adImuvV] directory

DESCRIPTION
cpio -0 (copy out) reads the standard input to obtain a list of path names
and copies those files onto the standard output together with path name
and status information. Output is padded to a 512-byte boundary by
default.

cpio -i (copy in) extracts files from the standard input, which is assumed to
be the product of a previous cpio -0. Only files with names that match pat­
terns are selected. patterns are regular expressions given in the filename­
generating notation of sh(l). In patterns, meta-characters ?, *, and [... J
match the slash (f) character, and backslash (\) is an escape character. A!
meta-character means not. (For example, the !abc* pattern would exclude
all files that begin with abc.) Multiple patterns may be specified and if no
patterns are specified, the default for patterns is * (Le., select all files). Each
pattern must be enclosed in double quotes otherwise the name of a file in
the current directory is used. Extracted files are conditionally created and
copied into the current directory tree based upon the options described
below. The permissions of the files will be those of the previous cpio -0.

The owner and group of the files will be that of the current user unless the
user is super-user, which causes cpio to retain the owner and group of the
files of the previous cpio -0. NOTE: If cpio -i tries to create a file that
already exists and the existing file is the same age or newer, cpio will output
a warning message and not replace the file. (The -u option can be used to
unconditionally overwrite the existing file.)

cpio -p (pass) reads the standard input to obtain a list of path names of files
that are conditionally created and copied into the destination directory tree
based upon the options described below. Archives of text files created by
cpio are portable between implementations of System V.

The meanings of the available options are

-a Reset access times of input files after they have been copied. Access
times are not reset for linked files when cpio -pIa is specified.

-b Reverse the order of the bytes within each word. Use only with the
-i option.

-B Input/output is to be blocked 5,120 bytes to the record. The default
buffer size is 512 bytes when this and the C options are not used.
(-B does not apply to the pass option; -B is meaningful only with
data directed to or from a character-special device, e.g.
jdev jrdskjfOqlSdt.)

-c Write header information in ASCII character form for portability.
Always use this option when origin and destination machines are

- 1 -

CPIO(l) (Base System) CPIO(l)

different types.
-C bufsize

Inputjoutput is to be blocked bufsize bytes to the record, where buf­
size is replaced by a positive integer. The default buffer size is 512
bytes when this and B options are not used. (-C does not apply to
the pass option; -C is meaningful only with data directed to or from
a character special device, e.g. jdev jrmtjcOsO.)

-d directories are to be created as needed.
-f Copy in all files except those in patterns. (See the paragraph on cpio

-i for a description of patterns.)
-I file Read the contents of file as input. If file is a character special dev-

ice, when the first medium is full replace the medium and type a
carriage return to continue to the next medium. Use only with the
-i option.

-k Attempt to skip corrupted file headers and IjO errors that may be
encountered. If you want to copy files from a medium that is cor­
rupted or out of sequence, this option lets you read only those files
with good headers. (For cpio archives that contain other cpio
archives, if an error is encountered cpio may terminate prematurely.
cpio will find the next good header, which may be one for a smaller
archive, and terminate when the smaller archive's trailer is encoun­
tered.) Used only with the -i option.

-1 Whenever possible, link files rather than copying them. Usable only
with the -p option.

-m Retain previous file modification time. This option is ineffective on
directories that are being copied.

-M message
Define a message to use when switching media. When you use the
-0 or -I options and specify a character special device, you can use
this option to define the message that is printed when you reach the
end of the medium. One %d can be placed in the message to print
the sequence number of the next medium needed to continue.

-0 file Direct the output of cpio to file. If file is a character special device,
when the first medium is full replace the medium and type a car­
riage return to continue to the next medium. Use only with the -0

option.
-r Interactively rename files. If the user types a null line, the file is

skipped. If the user types a "." the original pathname will be
copied. (Not available with cpio -p.)

-s swap bytes within each half word. Use only with the -i option.
-S Swap halfwords within each word. Use only with the -i option.
-t Print a table of contents of the input. No files are created.
-u Copy unconditionally (normally, an older file will not replace a

newer file with the same name).
-v verbose: causes a list of file names to be printed. When used with

the -t option, the table of contents looks like the output of an Is -1
command [see Is(I)].

-v Special Verbose: print a dot for each file seen. Useful to assure the
user that cpio is working without printing out all file names.

- 2 -

CPIO(l) (Base System) CPIO(l)

-6 Process an old (Le., UNIX System Sixth Edition format) file. Use
only with the -i option.

NOTE: cpio assumes 4-byte words.

If cpio reaches end of medium (end of a diskette for example), when writing
to (-0) or reading from (-i) a character-special device, and -0 and -I aren't
used, cpio will print the message:

If you want to go on, type device jfile name when ready.

To continue, you must replace the medium and type the character special
device name (fdev /rdsk/fOqI5dt for example) and carriage return. You
may want to continue by directing cpio to use a different device. For exam­
ple, if you have two floppy drives you may want to switch between them
so cpio can proceed while you are changing the floppies. (A carriage return
alone causes the cpio process to exit.)

EXAMPLES
The following examples show three uses of cpio.

When standard input is directed through a pipe to cpio -0, it groups the
files so they can be directed (» to a single file (.. /newfiIe). The c option
insures that the file will be portable to other machines. Instead of 15(1), you
could use find(l), echo(l), cat(l), etc., to pipe a list of names to cpio. You
could direct the output to a device instead of a file.

Is I cpio -oc > .. /newfile

cpio -i uses the output file of cpio -0 (directed through a pipe with cat in
the example), extracts those files that match the patterns (memo/aI,
memo/b*), creates directories below the current directory as needed (-d
option), and places the files in the appropriate directories. The c option is
used when the file is created with a portable header. If no patterns were
given, all files from newfile would be placed in the directory.

cat newfile I cpio -icd "memo/al" "memo/b*"

cpio -p takes the file names piped to it and copies or links (-1 option) those
files to another directory on your machine (newdir in the example). The-d
options says to create directories as needed. The -m option says retain the
modification time. [It is important to use the -depth option of find(l) to
generate path names for cpio. This eliminates problems cpio could have try­
ing to create files under read-only directories.]

find. -depth -print I cpio -pdImv newdir

SEE ALSO

NOTES

cat(l), echo(l), find(l), Is(l), tar(l).
cpio(4) in the Programmer's Reference Manual.

1) Path names are restricted to 256 characters.
2) Only the super-user can copy special files.
3) Blocks are reported in 512-byte quantities.
4) If a file has 000 permissions, contains more than 0 characters of data,

and the user is not root, the file will not be saved or restored.

- 3 -

CRASH(lM) (Base System) CRASH(lM)

NAME
crash - examine system images

SYNOPSIS
/etc/crash [-d dumpfile] [-n namelist] [-w outputfile]

DESCRIPTION
The crash command is used to examine the system memory image of a live
or a crashed system by formatting and printing control structures, tables,
and other information. Command line arguments to crash are dumpfile,
namelist, and outputfile.

Dumpfile is the file containing the system memory image. The default
dumpfile is /devjmem.

The text file namelist contains the symbol table information needed for sym­
bolic access to the system memory image to be examined. The default
namelist is junix. If a system image from another machine is to be exam­
ined, the corresponding text file must be copied from that machine.

When the crash command is invoked, a session is initiated. The output from
a crash session is directed to outputfile. The default outputfile is the stan­
dard output.

Input during a crash session is of the form:

function [argument ...]

where function is one of the crash functions described in the "FUNCTIONS"
section of this manual page, and arguments are qualifying data that indicate
which items of the system image are to be printed.

The default for process-related items is the current process for a running
system and the process that was running at the time of the crash for a
crashed system. If the contents of a table are being dumped, the default is
all active table entries.

The following function options are available to crash functions wherever
they are semantically valid.

-e Display every entry in a table.

-f Display the full structure.

-p Interpret all address arguments in the command line as physical
addresses.

-s process
Specify a process slot other than the default.

-w file Redirect the output of a function to file.

Note that if the -p option is used, all address and symbol arguments expli­
citly entered on the command line will be interpreted as physical addresses.
If they are not physical addresses, results will be inconsistent.

The functions mode, defproc, and redirect correspond to the function options
-p, -s, and -w. The mode function may be used to set the address transla­
tion mode to physical or virtual for all subsequently entered functions; def­
proc sets the value of the process slot argument for subsequent functions;

- 1 -

CRASH(lM) (Base System) CRASH(lM)

and redirect redirects all subsequent output.

Output from crash functions may be piped to another program in the fol­
lowing way:

function [argument ...]! shelLcommand

For example,

mount! grep rw

will write all mount table entries with an rw flag to the standard output.
The redirection option (-w) cannot be used with this feature.

Depending on the context of the function, numeric arguments will be
assumed to be in a specific radix. Counts are assumed to be decimal.
Addresses are always hexadecimal. Table slot arguments are always
decimal. Table slot arguments larger than the size of the function table will
not be interpreted correctly. Use the findslot command to translate from an
address to a table slot number. Default bases on all arguments may be
overridden. The C conventions for designating the bases of numbers are
recognized. A number that is usually interpreted as decimal will be inter­
preted as hexadecimal if it is preceded by Ox and as octal if it is preceded by
O. Decimal override is designated by Od, and binary by Ob.

Aliases for functions may be any uniquely identifiable initial substring of
the function name. Traditional aliases of one letter, such as p for proc,
remain valid.

Many functions accept different forms of entry for the same argument.
Requests for table information will accept a table entry number or a range.
A range of slot numbers may be specified in the form a-b where a and bare
decimal numbers. An expression consists of two operands and an operator.
An operand may be an address, a symbol, or a number; the operator may
be +, -, ", /' &, or !. An operand which is a number should be preceded
by a radix prefix if it is not a decimal number (0 for octal, Ox for hexide­
cimal, Ob for binary). The expression must be enclosed in parentheses ().
Other functions will accept any of these argument forms that are meaning­
ful.

Two abbreviated arguments to crash functions are used throughout. Both
accept data entered in several forms. They may be expanded into the fol­
lowing:

FUNCTIONS

table_entry = table entry! range

starLaddr = address! symboU expression

7 [-w file] List available functions.

!cmd Escape to the shell to execute a command.

adv [-e] [-w file] [[-p] tablLentry ...]
Print the advertise table.

base [-w file] number ...
Print number in binary, octal, decimal, and hexadecimal. A number
in a radix other then decimal should be preceded by a prefix that

- 2 -

CRASH(lM) (Base System) CRASH(lM)

indicates its radix as follows: Ox, hexidecimal; 0, octal; and ~b,
binary.

buffer [-w file] [-format] bufferslot

or

buffer [-w file] [-format] [-p] starLaddr
Alias: b.
Print the contents of a buffer in the designated format. The follow­
ing format designations are recognized: -b, byte: -c, character; -d,
decimal; -x, hexadecimal; -0, octal; -r, directory; and -i, inode. If
no format is given, the previous format is used. The default format
at the beginning of a crash session is hexadecimal.

bufhdr [-f) [-w file] [[-p] table_entry ...]
Alias: buf.
Print system buffer headers.

callout [-w file]
Alias: c.
Print the callout table.

dballoc [-w file] [class ...]
Print the dballoc table. If a class is entered, only data block alloca­
tion information for that class will be printed.

dbfree [-w file] [class...]
Print free streams data block headers. If a class is entered, only
data block headers for the class specified will be printed.

dblock [-e) [-w file] [-c class ...]

or

dblock [-e) [-w file] [[-p] table_entry ...]
Print allocated streams data block headers. If the class option (-c) is
used, only data block headers for the class specified will be printed.

defproc [-w file] [-c)

or

defproc [-w file] [slot]
Set the value of the process slot argument. The process slot argu­
ment may be set to the current slot number (-c) or the slot number
may be specified. If no argument is entered, the value of the previ­
ously set slot number is printed. At the start of a crash session, the
process slot is set to the current process.

dis [-w file] [-a] starLaddr [count]
Disassemble from the start address for count instructions. The
default count is 1. The absolute option (-a) specifies a non­
symbolic disassembly.

ds [-w file] virtuaLaddress ...
Print the data symbol whose address is closest to, but not greater
than, the address entered.

- 3 -

CRASH(lM) (Base System)

file [-e] [-w file] [[-p] table_entry ...]
Alias: f.
Print the file table.

findaddr [-w file] table slot

CRASH(lM)

Print the address of slot in table. Only tables available to the size
function are available to findaddr.

findslot [-w file] virtuaLaddress ...
Print the table, entry slot number, and offset for the address
entered. Only tables available to the size function are available to
findslot.

fs [-w file] [[-p] table_entry ...]
Print the file system information table.

gdp [-e] [-f] [-w file] [[-p] table_entry ...]
Print the gift descriptor protocol table.

gdt [-e] [-w file] [[-p] table_entry ...]
Print the global descriptor table.

help [-w file] function ...
Print a description of the named function, including syntax and
aliases.

idt [-e] [-w file] [[-p] table_entry ...]
Print the interrupt descriptor table.

inode [-e] [-f] [-w file] [[-p] tablLentry ...]
Alias: i.
Print the inode table, including file system switch information.

kfp [-w file] [value]
Print the frame pointer for the start of a kernel stack trace. If the
value argument is supplied, the kfp is set to that value.

lck [-e] [-w file] [[-p] table_entry ...]
Alias: l.
Print record-locking information. If the -e option is used or table
address arguments are given, the record lock list is printed. If no
argument is entered, information on locks relative to inodes is
printed.

ldt [-e] [-w file] [-s process] [[-p] table_entry ...]
Print the local descriptor table for the given process, or for the
current process if none is given.

linkblk [-e] [-w file] [[-p] table_entry ...]
Print the linkblk table.

map [-w file] mapname ...
Print the map structure of the given mapname.

mbfree [-w file]
Print free streams message block headers.

- 4 -

CRASH(lM) (Base System) CRASH(lM)

mblock [-e] [-w filename] [[-p] tablLentry ...]
Print allocated streams message block headers.

mode [-w file] [mode]
Set address translation of arguments to virtual (v) or physical (p)
mode. If no mode argument is given, the current mode is printed.
At the start of a crash session, the mode is virtual.

mount [-e] [-w file] [[-p] table_entry ...]
Alias: m.
Print the mount table.

nm [-w file] symbol ...
Print value and type for the given symbol.

od [-p] [-w file] [-format] [-mode] [-8 process] starLaddr [count]
Alias: rd.

panic

Print count values starting at the start address in one of the follow­
ing formats: character (-c), decimal (-d), hexadecimal (-x), octal
(-0), ASCII (-a), or hexadecimal/character (-h), and one of the fol­
lowing modes: long (-I), short (-t), or byte (-b). The default mode
for character and ASCII formats is byte; the default mode for
decimal, hexadecimal, and octal formats is long. The format -h
prints both hexadecimal and character representations of the
addresses dumped; no mode needs to be specified. When format or
mode is omitted, the previous value is used. At the start of a crash
session, the format is hexadecimal and the mode is long. If no
count is entered, 1 is assumed.

Print the latest system notices, warnings, and panic messages from
the limited circular buffer kept in memory.

pcb [-w file] [process]
Print the process control block (TSS) for the given process. If no
arguments are given, the active TSS for the current process is
printed.

pdt [-e] [-w file] [-8 process] [-p] starLaddr [count]
The page descriptor table of the designated memory section and seg­
ment is printed. Alternatively, the page descriptor table starting at
the start address for count entries is printed. If no count is entered,
1 is assumed.

pfdat [-e] [-w file] [[-p] table_entry ...]
Print the pfdata table.

proc [-e] [-f] [-w file] [[-p] table_entry ... #procid ...]

or

proc [-f] [-w file] [-r]
Alias: p.
Print the process table. Process table information may be specified
in two ways. First, any mixture of table entries and process ids may
be entered. Each process id must be preceded by a #. Alternatively,

- 5 -

CRASH(lM) (Base System) CRASH(lM)

process table information for runnable processes may be specified
with the runnable option (-r). The full option (-f) details most of
the information in the process table as well as the region table for
that process.

qrun [-w file]
Print the list of scheduled streams queues.

queue [-e] [-w file] [[-p] tablLentry ...]
Print streams queues.

quit Alias: q.
Terminate the crash session.

rcvd [-e] [-£] [-w file] [[-p] table_entry ...]
Print the receive descriptor table.

redirect [-w file] [-c]

or

redirect [-w file] [file]
Used with a file name, redirects output of a crash session to the
named file. If no argument is given, the file name to which output
is being redirected is printed. Alternatively, the close option (-c)
closes the previously set file and redirects output to the standard
output.

region [-e] [-w file] [[-p] tablLentry ...]
Print the region table.

sdt [-e] [-w file] [-s process] section

or

sdt [-e] [-w file] [-s process] [-p] starLaddr [count]
The segment descriptor table for the current process is printed.

search [-p] [-w file] [-m mask] [-s process] pattern starLaddr count
Print the long words in memory that match pattern, beginning at
the start address for count long words. The mask is anded (&) with
each memory word and the result compared against the pattern.
The mask defaults to Oxffffffff.

size [-w file] [-x] [structure_name ...]
Print the size of the designated structure. The (-x) option prints the
size in hexadecimal. If no argument is given, a list of the structure
names for which sizes are available is printed.

sndd [-e] [-£] [-w file] [[-p] tablLentry ...]
Print the send descriptor table.

srmount [-e] [-w file] [[-p] tablLentry ...]
Print the server mount table.

stack [-w file] [process]
Alias: s.
Dump stack. If no arguments are entered, the kernel stack for the
current process is printed. The interrupt stack and the stack for the

- 6 -

CRASH(lM) (Base System) CRASH(lM)

FILES

current process are not available on a running system.

stat [-w file]
Print system statistics.

stream [-e) [-f) [-w file] [[-p] table_entry ...]
Print the streams table.

strstat [-w file]
Print streams statistics.

trace [-w file] [-r] [process]
Alias: t.
Print kernel stack trace. The kfp value is used with the -r option.

ts [-w file] virtuaLaddress ...
Print closest text symbol to the designated address.

tty [-e) [-f) [-w file] [-t type [[-p] table_entry ...]]
Valid types: co, el, e2 (console, coml, com2).
Print the tty table. If no arguments are given, the tty table for the
console is printed. If the -t option is used, the table for the single
tty type specified is printed. If no argument follows the type
option, all entries in the table are printed. A single tty entry may be
specified from the start address.

user [-f) [-w file] [process]
Alias: u.
Print the ublock for the designated process.

var [-w file]
Alias: v.
Print the tunable system parameters.

vtop [-w file] [-s process] starLaddr ...
Print the physical address translation of the virtual start address.

/dev/mem system image of currently running system

- 7 -

CRON(lM) (Base System) CRON(lM)

NAME
cron - clock daemon

SYNOPSIS
jetcjcron

DESCRIPTION

FILES

The cron command executes commands at specified dates and times. Regu­
larly scheduled commands can be specified according to instructions found
in crontab fIles in the directory jusrjspooljcronjcrontabs. Users can sub­
mit their own crontab fIle via the crontab(l) command. Commands which
are to be executed only once may be submitted via the at(l) command.

The cron command only examines crontab files and at command files during
process initialization and when a file changes via crontab or at. This
reduces the overhead of checking for new or changed files at regularly
scheduled intervals.

Since cron never exits, it should be executed only once. This is done rou­
tinely through jetcjrc2.djS75cron at system boot time.
jusrjlibjcronjFIFO is used as a lock fIle to prevent the execution of more
than one cron.

jusrjlibjcron main cron directory
jusrjlibjcronjFIFO used as a lock file
jusr jlib j cronjlog accounting information
jusrjspooljcron spool area

SEE ALSO
at(l), crontab(l), sh(l).

DIAGNOSTICS
A history of all actions taken by cron are recorded in jusrjlibjcronjlog.

- 1 -

CRONTAB(l) (Base System) CRONTAB(l)

NAME
crontab - user crontab file

SYNOPSIS
crontab [file]
crontab -r
crontab -I

DESCRIPTION
The crontab command copies the specified file, or standard input if no file is
specified, into a directory that holds all users' crontabs. The -r option
removes a user's crontab from the crontab directory. crontab -1 will list the
crontab file for the invoking user.

Users are permitted to use crontab if their names appear in the file
jusrjlibjcronjcron.allow. If that file does not exist, the file
jusrjlibjcronjcron.deny is checked to determine if the user should be
denied access to crontab. If neither file exists, only root is allowed to submit
a job. If cron.allow does not exist and cron.deny exists but is empty, glo­
bal usage is permitted. The allow j deny files consist of one user name per
line.

A crontab file consists of lines of six fields each. The fields are separated by
spaces or tabs. The first five are integer patterns that specify the following:

minute (0-59),
hour (0-23),
day of the month (1-31),
month of the year (1-12),
day of the week (0-6 with O=Sunday).

Each of these patterns may be either an asterisk (meaning all legal values)
or a list of elements separated by commas. An element is either a number
or two numbers separated by a minus sign (meaning an inclusive range).
Note that the specification of days may be made by two fields (day of the
month and day of the week). If both are specified as a list of elements,
both are adhered to. For example, 0 0 1,15 * 1 would run a command on
the first and fifteenth of each month, as well as on every Monday. To
specify days by only one field, the other field should be set to * (for exam­
ple, 0 0 * * 1 would run a command only on Mondays).

The sixth field of a line in a crontab file is a string that is executed by the
shell at the specified times. A percent character in this field (unless escaped
by \) is translated to a new-line character. Only the first line (up to a % or
end of line) of the command field is executed by the shell. The other lines
are made available to the command as standard input.

The shell is invoked from your $HOME directory with an argO of sh. Users
who desire to have their .profile executed must explicitly do so in the cron­
tab file. Cron supplies a default environment for every shell, defining
HOME, LOGNAME, SHELL(=jbin/sh), and
P ATH(=:jbin:jusrjbin:jusrjlbin).

- 1 -

CRONTAB(l) (Base System) CRONTAB(l)

FILES

If you do not redirect the standard output and standard error of your com­
mands, any generated output or errors will be mailed to you.

/usr /lib / cron
/usr/spool/cron/crontabs
/usr/lib / cron/log
/usr /lib / cron/ cron.allow
/usr /lib / cron/ cron.deny

main cron directory
spool area
accounting information
list of allowed users
list of denied users

SEE ALSO
cron(lM), sh(l).

WARNINGS
If you inadvertently enter the crontab command with no argument(s), do
not attempt to get out with a CTRL-d. This will cause all entries in your
crontab file to be removed. Instead, exit with a DEL.

- 2 -

CRYPT(l) (Security Administration Utilities) CRYPT(l)

NAME
crypt - encode j decode

SYNOPSIS
crypt [password]
crypt [-k]

DESCRIPTION

FILES

The crypt command reads from the standard input and writes on the stan­
dard output. The password is a key that selects a particular transformation.
If no argument is given, crypt demands a key from the terminal and turns
off printing while the key is being typed in. If the -k option is used, crypt
will use the key assigned to the environment variable CRYPTKEY. The crypt
command encrypts and decrypts with the same key:

crypt key <clear >cypher
crypt key <cypher I pr

Files encrypted by crypt are compatible with those treated by the editors
ed(l), edit(l), ex(l), and vi(l) in encryption mode.

The security of encrypted files depends on three factors: the fundamental
method must be hard to solve; direct search of the key space must be
infeasible; "sneak paths" by which keys or clear text can become visible
must be minimized.

The crypt command implements a one-rotor machine designed along the
lines of the German Enigma, but with a 256-element rotor. Methods of
attack on such machines are known, but not widely; moreover the amount
of work required is likely to be large.

The transformation of a key into the internal settings of the machine is deli­
berately designed to be expensive, i.e., to take a substantial fraction of a
second to compute. However, if keys are restricted to (say) three lower-case
letters, then encrypted files can be read by expending only a substantial
fraction of five minutes of machine time.

If the key is an argument to the crypt command, it is potentially visible to
users executing ps(l) or a derivative. The choice of keys and key security
are the most vulnerable aspect of crypt.

jdev jtty for typed key

SEE ALSO
ed(l), edit(l), ex(l), makekey(l), ps(l), stty(l), vi(l).

WARNING
This command is provided with the Security Administration Utilities, which
is only available in the United States. If two or more files encrypted with
the same key are concatenated and an attempt is made to decrypt the result,
only the contents of the first of the original files will be decrypted correctly.

- 1 -

CSPLlT(l) (Editing Package) CSPLlT(l)

NAME
csplit - context split

SYNOPSIS
csplit [-s] [-k] [-f prefix] file arg1 [... argn]

DESCRIPTION
The csplit command reads file and separates it into n+1 sections, defined by
the arguments argl. .• argn. By default the sections are placed in xxOO ...
xxn (n may not be greater than 99). These sections get the following pieces
of file:

00:

01:

From the start of file up to (but not including) the line refer­
enced by argl.
From the line referenced by argl up to the line referenced by
~rg2.

n+1: From the line referenced by argn to the end of file.

If the file argument is a -, then standard input is used.

The options to csplit are:

-s csplit normally prints the character counts for each file
created. If the -s option is present, csplit suppresses the
printing of all character counts.

-k csplit normally removes created files if an error occurs. If
the -k option is present, csplit leaves previously created
files intact.

-f prefix If the -f option is used, the created files are named prefixOO
... prefixn. The default is xxOO ... xxn.

The arguments (argl ... argn) to csplit can be a combination of the follow­
ing:

/rexp / A file is to be created for the section from the current line up
to (but not including) the line containing the regular expres­
sion rexp. The current line becomes the line containing
rexp. This argument may be followed by an optional + or -
some number of lines (e.g., /Page/-5).

%rexp%
This argument is the same as /rexp /' except that no file is
created for the section.

lnno A file is to be created from the current line up to (but not
including) lnno. The current line becomes lnno.

{num} Repeat argument. This argument may follow any of the
above arguments. If it follows a rexp type argument, that
argument is applied num more times. If it follows lnno, the
file will be split every lnno lines (num times) from that
point.

- 1 -

CSPLlT(l) (Editing Package) CSPLlT(l)

Enclose all rexp type arguments that contain blanks or other characters
meaningful to the shell in the appropriate quotes. Regular expressions may
not contain embedded new-lines. csplit does not affect the original file; it is
the users' responsibility to remove it.

EXAMPLES
csplit -f cobol file ' /procedure division/' /par5./ /par16./

This example creates four files, cobolOO ... cobol03. After editing the
"split" files, they can be recombined as follows:

cat cobolO[0-3] > file

Note that this example overwrites the original file.

csplit -k file 100 {99}

This example would split the file at every 100 lines, up to 10,000 lines. The
-k option causes the created files to be retained if there are less than 10,000
lines; however, an error message would still be printed.

csplit -k prog.c '%main(%' '/}/+1' {20}

Assuming that prog.c follows the normal C coding convention of ending
routines with a } at the beginning of the line, this example will create a file
containing each separate C routine (up to 21) in prog.c.

SEE ALSO
ed(l), sh(l).
regexp(5) in the Programmer's Reference Manual.

DIAGNOSTICS
Self-explanatory except for:

arg - out of range
which means that the given argument did not reference a line between the
current position and the end of the file.

- 2 -

CT(lC) (Base System) CT(lC)

NAME
ct - spawn getty to a remote terminal

SYNOPSIS
ct [-wn] [-xn] [-h] [-v] [-sspeed] telno ...

DESCRIPTION

FILES

The ct command dials the telephone number of a modem that is attached to
a terminal, and spawns a getty process to that terminal. TeinD is a tele­
phone number, with equal signs for secondary dial tones and minus signs
for delays at appropriate places. (The set of legal characters for teinD is 0
through 9, -, =, *, and #. The maximum length teinD is 31 characters). If
more than one telephone number is specified, The ct command will try each
in succession until one answers; this is useful for specifying alternate dialing
paths.

ct will try each line listed in the file /usr/lib/uucp/Devices until it finds
an available line with appropriate attributes or runs out of entries. If there
are no free lines, ct will ask if it should wait for one, and if so, for how
many minutes it should wait before it gives up. ct will continue to try to
open the dialers at one-minute intervals until the specified limit is exceeded.
The dialogue may be overridden by specifying the -wn option, where n is
the maximum number of minutes that ct is to wait for a line.

The -xn option is used for debugging; it produces a detailed output of the
program execution on stderr. The debugging level, n, is a single digit; -x9
is the most useful value.

Normally, ct will hang up the current line, so the line can answer the
incoming call. The -h option will prevent this action. The -h option will
also wait for the termination of the specified ct process before returning
control to the user's terminal. If the -v option is used, ct will send a run­
ning narrative to the standard error output stream.

The data rate may be set with the -s option, where speed is expressed in
baud. The default rate is 1200.

After the user on the destination terrninallogs out, there are two things that
could occur depending on what type of getty is on the line (getty or
uugetty). For the first case, ct prompts, Reconnect? If the response begins
with the letter n, the line will be dropped; otherwise, getty will be started
again and the login: prompt will be printed. In the second case, there is
already a getty (uugetty) on the line, so the login: message will appear.

To log out properly, the user must type control D.

Of course, the destination terminal must be attached to a modem that can
answer the telephone.

/ usr /lib juucp jDevices
jusrjadmjctlog

SEE ALSO
cu(lC), getty(lM), 10gin(1), uucp(lC), uugetty(lM).

- 1 -

CT(lC)

BUGS

(Base System) CT(lC)

For a shared port, one used for both dial-in and dial-out, the uugetty pro­
gram running on the line must have the -r option specified [see
uugetty(lM)].

- 2 -

CU(lC) (Base System) CU(lC)

NAME
cu - call another UNIX system

SYNOPSIS
cu [-sspeed 1 [-lline] [-h] [-t] [-d] [-0 I -e] [-n] telno
cu [-s speed] [-h] [-d] [-0 : -e] -1 line
cu [-h] [-d] [-0 I -e] systemname

DESCRIPTION
The cu command calls up another UNIX system, a terminal, or possibly a
non-UNIX system. It manages an interactive conversation with possible
transfers of ASCII files.

The cu command accepts the following options and arguments:

-sspeed Specifies the transmission speed (300, 1200, 2400, 4800, 9600);
The default value is "Any" speed which will depend on the
order of the lines in the /usr/lib/uucp/Devices file. Most
modems are either 300 or 1200 baud. Directly connected lines
may be set to a speed higher than 1200 baud.

-lline

-h

-t

-d
-0

-n

-e

Specifies a device name to use as the communication line. This
can be used to override the search that would otherwise take
place for the first available line having the right speed. When
the -1 option is used without the -s option, the speed of a line
is taken from the Devices file. When the -1 and -s options are
both used together, cu will search the Devices file to check if
the requested speed for the requested line is available. If so,
the connection will be made at the requested speed; otherwise
an error message will be printed and the call will not be made.
The specified device is generally a directly connected asyn­
chronous line (e.g., /dev/ttyab) in which case a telephone
number (teInD) is not required. The specified device need not
be in the /dev directory. If the specified device is associated
with an auto dialer, a telephone number must be provided.
Use of this option with system name rather than teInD will not
give the desired result (see systemname below).

Emulates local echo, supporting calls to other computer sys­
tems which expect terminals to be set to half-duplex mode.

Used to dial an ASCII terminal which has been set to auto
answer. Appropriate mapping of carriage-return to carriage-
return-line-feed pairs is set.

Causes diagnostic traces to be printed.

Designates that odd parity is to be generated for data sent to
the remote system.

For added security, will prompt the user to provide the tele­
phone number to be dialed rather than taking it from the com-
mand line.

Designates that even parity is to be generated for data sent to
the remote system.

- 1 -

CU(lC) (Base System) CU(lC)

telno When using an automatic dialer, the argument is the telephone
number with equal signs for secondary dial tone or minus
signs placed appropriately for delays of 4 seconds.

system name A uucp system name may be used rather than a telephone
number; in this case, cu will obtain an appropriate direct line
or telephone number from jusrjlibjuucpjSystems. Note: the
system name option should not be used in conjunction with the
-1 and -s options as cu will connect to the first available line
for the system name specified, ignoring the requested line and
speed.

After making the connection, cu runs as two processes: the transmit process
reads data from the standard input and, except for lines beginning with *,
passes it to the remote system; the receive process accepts data from the
remote system and, except for lines beginning with *, passes it to the stan­
dard output. Normally, an automatic DC3jDCl protocol is used to control
input from the remote system so the buffer is not overrun. Lines beginning
with * have special meanings.

The transmit process interprets the following user-initiated commands:

terminate the conversation.

*!

*!cmd . . .

*$cmd .. .

*%take from [to]

*%put from [to]

** line

*%break

*%debug

escape to an interactive shell on the local system.

run cmd on the local system (via sh -c).

run cmd locally and send its output to the remote sys­
tem.

change the directory on the local system. Note: *!cd
will cause the command to be run by a sub-shell,
probably not what was intended.

copy fIle from (on the remote system) to file to on the
local system. If to is omitted, the from argument is
used in both places.

copy file from (on local system) to file to on remote
system. If to is omitted, the from argument is used in
both places.

For both *%take and put commands, as each block of
the fIle is transferred, consecutive single digits are
printed to the terminal.

send the line * line to the remote system.

transmit a BREAK to the remote system (which can
also be specified as *%b).

toggles the -d debugging option on or off (which can
also be specified as *%d).

prints the values of the termio structure variables for
the user's terminal (useful for debugging).

- 2 -

CU(lC)

-%nostop

(Base System) CU(lC)

prints the values of the termio structure variables for
the remote communication line (useful for debugging).

toggles between DC3 JDCI input control protocol and
no input control. This is useful in case the remote
system is one which does not respond properly to the
DC3 and DC1 characters.

The receive process normally copies data from the remote system to its stan­
dard output. Internally the program accomplishes this by initiating an out­
put diversion to a file when a line from the remote begins with -.

Data from the remote is diverted (or appended, if » is used) to file on the
local system. The trailing -> marks the end of the diversion.

The use of -%put requires stty(l) and cat(l) on the remote side. It also
requires that the current erase and kill characters on the remote system be
identical to these current control characters on the local system.
Backslashes are inserted at appropriate places.

The use of -%take requires the existence of echo(l) and cat(l) on the remote
system. Also, tabs mode [see stty(1)] should be set on the remote system if
tabs are to be copied without expansion to spaces.

When cu is used on system X to connect to system Y and subsequently used
on system Y to connect to system Z, commands on system Y can be exe­
cuted by using --. Executing a tilde command reminds the user of the local
system uname. For example, uname can be executed on Z, X, and Y as fol­
lows:

uname
Z
-[X]!uname
X
--[Y]!uname
Y

In general, - causes the command to be executed on the original machine, -­
causes the command to be executed on the next machine in the chain.

EXAMPLES
To dial a system whose telephone number is 9 201 555 1212 using 1200
baud (where dial tone is expected after the 9):

cu -s1200 9=12015551212

If the speed is not specified, "Any" is the default value.

To log in to a system connected by a direct line, enter:
cu -1 jdev jttyXX

or
cu -1 ttyXX

To dial a system with the specific line and a specific speed, enter:
cu -s1200 -1 ttyXX

- 3 -

CU(lC)

FILES

(Base System) CU(lC)

To dial a system using a specific line associated with an auto dialer, enter:
cu -1 culXX 9=12015551212

To use a system name, enter:
cu systemname

jusr jlib juucp jSystems
jusr jlib j uucp jDevices
jusrjspoolflocksjLCK..(tty-device)

SEE ALSO
cat(1), ct(1C), echo(1), stty(1), uucp(1C), uname(1).

DIAGNOSTICS
Exit code is zero for normal exit, otherwise, one.

WARNINGS

BUGS

The cu command does not do any integrity checking on data it transfers.
Data fields with special cu characters may not be transmitted properly.
Depending on the interconnection hardware, it may be necessary to use a -.
to terminate the conversion even if stty 0 has been used. Non-printing
characters are not dependably transmitted using either the -%put or -%take
commands. cu between some modems will not return a login prompt
immediately upon connection. A carriage return will return the prompt.

There is an artificial slowing of transmission by cu during the -%put opera­
tion so that loss of data is unlikely.

- 4 -

CUT(l) (Editing Package) CUT(l)

NAME
cut - cut out selected fields of each line of a file

SYNOPSIS
cut -clist [file ...]
cut -£list [-dchar] [-5] [file ...]

DESCRIPTION
Use cut to cut out columns from a table or fields from each line of a file; in
data base parlance, it implements the projection of a relation. The fields as
specified by list can be fixed length, Le., character positions as on a
punched card (-c option) or the length can vary from line to line and be
marked with a field delimiter character like tab (-f option). cut can be used
as a filter; if no files are given, the standard input is used. In addition, a file
name of "-" explicitly refers to standard input.

The meanings of the options are:

list A comma-separated list of integer field numbers (in increasing
order), with optional - to indicate ranges [e.g., 1,4,7; 1-3,8; -5,10
(short for 1-5,10); or 3- (short for third through last field)].

-clist The list following -c (no space) specifies character positions (e.g.,
-c1-72 would pass the first 72 characters of each line).

-flist The list following -f is a list of fields assumed to be separated in
the file by a delimiter character (see -d); e.g., -£1,7 copies the first
and seventh field only. Lines with no field delimiters will be
passed through intact (useful for table subheadings), unless -5 is
specified.

-dchar The character following -d is the field delimiter (-f option only).
Default is tab. Space or other characters with special meaning to
the shell must be quoted.

-5 Suppresses lines with no delimiter characters in case of -f option.
Unless specified, lines with no delimiters will be passed through
untouched.

Either the -c or -f option must be specified.

Use grep(l) to make horizontal "cuts" (by context) through a file, or paste(1)
to put files together column-wise (Le., horizontally). To reorder columns in
a table, use cut and paste.

EXAMPLES
cut -d: -f1,S /etc/passwd mapping of user IDs to names

name='who am i I cut -f1 -d II II' to set name to current login name.

DIAGNOSTICS
ERROR: line too long A line can have no more than 1023 characters or

fields, or there is no new-line character.

ERROR: bad list for c / f option
Missing -c or -f option or incorrectly specified list.
No error occurs if a line has fewer fields than the list
calls for.

- 1 -

CUT(l) (Editing Package)

ERROR: no fields The list is empty.

ERROR: no delimeter Missing char on -d option.

ERROR: cannot handle multiple adjacent backspaces

CUT(l)

Adjacent backspaces cannot be processed correctly.

WARNING: cannot open <filename>
Either filename cannot be read or does not exist. If
multiple file names are present, processing continues.

SEE ALSO
grep(l), paste(l).

- 2 -

DATE(l) (Base System) DATE(l)

NAME
date - print and set the date

SYNOPSIS
date [+format]
date [mmddhhmm[[yy] I [ccyy III

DESCRIPTION
If no argument is given, or if the argument begins with +, the current date
and time are printed. Otherwise, the current date is set (only by super­
user). The first mm is the month number; dd is the day number in the
month; hh is the hour number (24-hour system); the sec;:ond mm is the
minute number; cc is the century minus one and is optional; yy is the last 2
digits of the year number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year
is mentioned. The system operates in GMT. date takes care of the conver­
sion to and from local standard and daylight saving time. Only the super­
user may change the date.

If the argument begins with +, the output of date is under the control of the
user. All output fields are of fixed size (zero-padded if necessary). Each
Field Descriptor is preceded by % and will be replaced in the output by its
corresponding value. A single % is encoded by %%. All other characters
are copied to the output without change. The string is always terminated
with a new-line character. If the argument contains embedded blanks it
must be quoted (see the EXAMPLE section).

Specifications of native language translations of month and weekday names
are supported. The language used depends on the value of the environment
variable LANGUAGE [see environ(5)]. The month and weekday names used
for a language are taken from strings in the file for that language in the
/lib/cftime directory [see cftime(4)].

After successfully setting the date and time, date will display the new date
according to the format defined in the environment variable CFTIME [see
environ (5)].

Field Descriptors (must be preceded by a %):
a abbreviated weekday name
A full weekday name
b abbreviated month name
B full month name
d day of month - 01 to 31
D date as mm/dd/yy
e day of month - 1 to 31 (single digits are preceded by a blank)
h abbreviated month name (alias for %b)
H hour - 00 to 23
I hour - 01 to 12
j day of year - 001 to 366
m month of year - 01 to 12

- 1 -

DATE(l) (Base System) DATE(l)

M
n
p

r

R
S
t
T
U

w
W

x
X
y
Y
Z

minute - 00 to 59
insert a new-line character
string containing ante-meridiem or post-meridiem indicator (by
default, AM or PM)
time as hh:mm:ss pp where pp is the ante-meridiem or post­
meridiem indicator (by default, AM or PM)
time as hh:mm
second - 00 to 59
insert a tab character
time as hh:mm:ss
week number of year (Sunday as the first day of the week) -
01 to 52
day of week - Sunday = 0
week number of year (Monday as the first day of the week) -
01 to 52
Country-specific date format
Country-specific time format
year within century - 00 to 99
year as ccyy (4 digits)
timezone name

EXAMPLE
date '+DATE: %m/%d/%y%nTIME: %H:%M:%S'

would have generated as output:

DATE: 08/01/76
TIME: 14:45:05

DIAGNOSTICS

FILES

NOTE

No permission

bad conversion
bad format character

jdevjkmem

if you are not the super-user and you try to change
the date
if the date set is syntactically incorrect
if the field descriptor is not recognizable.

Administrators should note the following: if you attempt to set the current
date to one of the dates that the standard and alternate time zones change
(for example, the date that daylight time is starting or ending), and you
attempt to set the time to a time in the interval between the end of standard
time and the beginning of the alternate time (or the end of the alternate
time and the beginning of standard time), the results are unpredictable.

SEE ALSO
cftime(4), environ(5).

- 2 -

DC(l) (Base System) DC(l)

NAME
dc - desk calculator

SYNOPSIS
de [file]

DESCRIPTION
The de command is an arbitrary precision arithmetic package. Ordinarily it
operates on decimal integers, but one may specify an input base, output
base, and a number of fractional digits to be maintained. [see be(l), a
preprocessor for de that provides infix notation and a C-like syntax that
implements functions. Be also provides reasonable control structures for
programs.] The overall structure of de is a stacking (reverse Polish) calcula­
tor. If an argument is given, input is taken from that file until its end, then
from the standard input. The following constructions are recognized:

number
The value of the number is pushed on the stack. A number is an
unbroken string of the digits 0-9. It may be preceded by an under­
score (_) to input a negative number. Numbers may contain decimal
points.

+-/*Ofo·
The top two values on the stack are added (+), subtracted (-), multi­
plied (*), divided (f), remaindered (Ofo), or exponentiated n. The two
entries are popped off the stack; the result is pushed on the stack in
their place. Any fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register named x,
where x may be any character. If the s is capitalized, x is treated as a
stack and the value is pushed on it.

Ix The value in register x is pushed on the stack. The register x is not
altered. All registers start with zero value. If the I is capitalized,
register x is treated as a stack and its top value is popped onto the
main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains
unchanged.

P Interprets the top of the stack as an ASCII string, removes it, and
prints it.

f All values on the stack are printed.

q Exits the program. If executing a string, the recursion level is popped
by two.

Q Exits the program. The top value on the stack is popped and the
string execution level is popped by that value.

x Treats the top element of the stack as a character string and executes
it as a string of de commands.

X Replaces the number on the top of the stack with its scale factor.

- 1 -

OC(l) (Base System) OC(l)

[...] Puts the bracketed ASCII string onto the top of the stack.

<x >x =x

v

c

i

o

o
k

z
Z

?

, .

The top two elements of the stack are popped and compared. Regis­
ter x is evaluated if they obey the stated relation.

Replaces the top element on the stack by its square root. Any exist­
ing fractional part of the argument is taken into account, but other­
wise the scale factor is ignored.

Interprets the rest of the line as a UNIX system command.

All values on the stack are popped.

The top value on the stack is popped and used as the number radix
for further input. I Pushes the input base on the top of the stack.

The top value on the stack is popped and used as the number radix
for further output.

Pushes the output base on the top of the stack.

The top of the stack is popped, and that value is used as a non­
negative scale factor: the appropriate number of places are printed
on output, and maintained during multiplication, division, and
exponentiation. The interaction of scale factor, input base, and out­
put base will be reasonable if all are changed together.

The stack level is pushed onto the stack.

Replaces the number on the top of the stack with its length.

A line of input is taken from the input source (usually the terminal)
and executed.

are used by bc(l) for array operations.

EXAMPLE
This example prints the first ten values of n!:

SEE ALSO
bc(l).

DIAGNOSTICS

[lal +dsa*plalO>y]sy
Osal
lyx

x is unimplemented
where x is an octal number.

stack empty
for not enough elements on the stack to do what was asked.

Out of space
when the free list is exhausted (too many digits).

Out of headers
for too many numbers being kept around.

- 2 -

OC(l) (Base System) OC(l)

Out of pushdown
for too many items on the stack.

Nesting Depth
for too many levels of nested execution.

- 3 -

DCOPY(lM) (Base System) DCOPY(lM)

NAME
dcopy - copy file systems for optimal access time

SYNOPSIS
/etc/dcopy [-sX] [-an] [-d] [-v] [-ffsize[:isize]] inputfs outputfs

DESCRIPTION
The deopy command copies file system inputfs to outputfs. Inputfs is the
device file for the existing file system; outputfs is the device file to hold the
reorganized result. For the most effective optimization, inputfs should be
the raw device and outputfs should be the block device. Both inputfs and
outputfs should be unmounted file systems.

With no options, deopy copies files from inputfs compressing directories by
removing vacant entries, and spacing consecutive blocks in a file by the
optimal rotational gap. The possible options are

-sX supply device information for creating an optimal organization of
blocks in a file. The forms of X are the same as the -s option of
fsek(lM).

-an place the files not accessed in n days after the free blocks of the
destination file system (default for n is 7). If no n is specified,
then no movement occurs.

-d leave order of directory entries as is (default is to move sub­
directories to the beginning of directories).

-v currently reports how many files were processed, and how big
the source and destination freelists are.

-ffsize [:isize]
specify the outputfs file system and inode list sizes (in blocks). If
the option (or :isize) is not given, the values from the inputfs are
used.

deopy catches interrupts and quits, and reports on its progress. To terminate
deopy send a quit signal, followed by an interrupt or quit.

SEE ALSO
fsck(lM), mkfs(lM), ps(l).

- 1 -

DD(lM) (Base System) DD(lM)

NAME
dd - convert and copy a file

SYNOPSIS
dd [option=value] ...

DESCRIPTION
The dd command copies the specified input file to the specified output with
possible conversions. The standard input and output are used by default.
The input and output block size may be specified to take advantage of raw
physical I/O.

option
if=file
of=file
ibs=n
obs=n
bs=n

values
input file name; standard input is default
output file name; standard output is default
input block size n bytes (default 512)
output block size (default 512)
set both input and output block size, superseding ibs and
obs; also, if no conversion is specified, it is particularly effi-
cient since no in-core copy need be done

ebs=n conversion buffer size
skip=n skip n input blocks before starting copy
seek=n seek n blocks from beginning of output file before copying
eount=n copy only n input blocks
eonv=ascii convert EBCDIC to ASCII

ebedie convert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC
lease map alphabetics to lower case
uease map alphabetics to upper case
swab swap every pair of bytes
noerror

do not stop processing on an error
sync pad every input block to ibs
••. , •.. several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may
end with k, b, or w to specify multiplication by 1024, 512, or 2, respec­
tively; a pair of numbers may be separated by x to indicate multiplication.

The cbs is used only if conv=ascii or conv=ebcdic is specified. In the former
case, cbs characters are placed into the conversion buffer (converted to
ASCII). Trailing blanks are trimmed and a new-line added before sending
the line to the output. In the latter case, ASCII characters are read into the
conversion buffer (converted to EBCDIC). Blanks are added to make up an
output block of size cbs.

After completion, dd reports the number of whole and partial input and out­
put blocks.

DIAGNOSTICS
f+p blocks in(out) numbers of full and partial blocks read(written)

- 1 -

DEROFF(l) (Editing Package) DEROFF(l)

NAME
deroff - remove nroffjtroff, tbl, and eqn constructs

SYNOPSIS
deroff [-mx 1 [-w 1 [files 1

DESCRIPTION

BUGS

The deroft command reads each of the files in sequence and removes all
troft(l) requests, macro calls, backslash constructs, eqn(l) constructs
(between .EQ and .EN lines, and between delimiters), and tbl(l) descriptions,
perhaps replacing them with white space (blanks and blank lines), and
writes the remainder of the file on the standard output. deroft follows
chains of included files (.so and .nx troft commands); if a file has already
been included, a .so naming that file is ignored and a .nx naming that file
terminates execution. If no input file is given, deroft reads the standard
input.

The -m option may be followed by an m, s, or 1. The -mm option causes
the macros to be interpreted so that only running text is output (Le., no text
from macro lines.) The -ml option forces the -mm option and also causes
deletion of lists associated with the mm macros.

If the -w option is given, the output is a word list, one "word" per line,
with all other characters deleted. Otherwise, the output follows the origi­
nal, with the deletions mentioned above. In text, a "word" is any string
that contains at least two letters and is composed of letters, digits, amper­
sands (&), and apostrophes ('); in a macro call, however, a "word" is a
string that begins with at least two letters and contains a total of at least
three letters. Delimiters are any characters other than letters, digits, apos­
trophes, and ampersands. Trailing apostrophes and ampersands are
removed from "words."

deroft is not a complete troft interpreter, so it can be confused by subtle con­
structs. Most such errors result in too much rather than too little output.
The -ml option does not handle nested lists correctly.

- 1 -

DEVNM(lM) (Base System) DEVNM(lM)

NAME
devnm - device name

SYNOPSIS
/etc/devnm [names]

DESCRIPTION
The devnm command identifies the special file associated with the mounted
file system where the argument name resides.

This command is most commonly used by /etc/brc [see brc(lM)] to con­
struct a mount table entry for the root device.

EXAMPLE
The command:

/etc/devnm /usr
produces

/dev /dsk/Os3
if /usr is mounted on /dev/dsk/Os3.

FILES
/dev/dsk/*
/etc/mnttab

SEE ALSO
brc(lM).

- 1 -

DF(lM) (Base System) DF(lM)

NAME
df - report number of free disk blocks and i-nodes

SYNOPSIS
df [-It] [-f] [file-system I directory I mounted-resource]

DESCRIPTION

NOTE

FILES

The df command prints out the number of free blocks and free i-nodes in
mounted file systems, directories, or mounted resources by examining the
counts kept in the super-blocks.

The file-system may be specified either by device name (e.g., jdevjdskjOsl)
or by mount point directory name (e.g., jusr).

directory can be a directory name. The report presents information for the
device that contains the directory.

mounted-resource can be a remote resource name. The report presents infor­
mation for the remote device that contains the resource.

If no arguments are used, the free space on all locally and remotely
mounted file systems is printed.

The df command uses the following options:

-1 only reports on local file systems.

-t causes the figures for total allocated blocks and i-nodes to be
reported as well as the free blocks and i-nodes.

-f an actual count of the blocks in the free list is made, rather than
taking the figure from the super-block (free i-nodes are not
reported). This option will not print any information about
mounted remote resources.

If multiple remote resources are listed that reside on the same file system on
a remote machine, each listing after the first one will be marked with an
asterisk.

/dev/dsk/*
/etc/mnttab

SEE ALSO
mount(lM).
fs(4), mnttab(4) in the Programmer's Reference Manual.

- 1 -

DIFF(l) (Base System) DIFF(l)

NAME
diff - differential file comparator

SYNOPSIS
diff [-efbh] file1 file2

DESCRIPTION

FILES

The diff command tells what lines must be changed in two files to bring
them into agreement. If file I (file2) is -, the standard input is used. If filel
(file2) is a directory, then a file in that directory with the name file2 (filel) is
used. The normal output contains lines of these forms:

nl a n3,n4
nl,n2 d n3
nl,n2 c n3,n4

These lines resemble ed commands to convert file I into file2. The numbers
after the letters pertain to file2. In fact, by exchanging a for d and reading
backward one may ascertain equally how to convert file2 into filel. As in
ed, identical pairs (where nl = n2 or n3 = n4) are abbreviated as a single
number.

Following each of these lines corne all the lines that are affected in the first
file flagged by <, then all the lines that are affected in the second file
flagged by >.

The -b option causes trailing blanks (spaces and tabs) to be ignored and
other strings of blanks to compare equal.

The -e option produces a script of a, c, and d commands for the editor ed,
which will recreate file2 from filel. The -f option produces a similar script,
not useful with ed, in the opposite order. In connection with -e, the follow­
ing shell program may help maintain multiple versions of a file. Only an
ancestral file ($1) and a chain of version-to-version ed scripts ($2,$3, ...)
made by diff need be on hand. A "latest version" appears on the standard
output.

(shift; cat $*; echo 'l,$p') I ed - $1

Except in rare circumstances, diff finds a smallest sufficient set of file differ­
ences.

Option -h does a fast, half-hearted job. It works only when changed
stretches are short and well separated, but does work on files of unlimited
length. Options -e and -f are unavailable with -h.

/trnp/d?????
/usr/lib/diffh for -h

SEE ALSO
bdiff(l), crnp(l), comm(l), ed(l).

DIAGNOSTICS
Exit status is 0 for no differences, 1 for some differences, 2 for trouble.

- 1 -

DIFF(l)

BUGS

(Base System) DIFF(l)

Editing scripts produced under the -e or -f option are naive about creating
lines consisting of a single period (.).

WARNINGS
Missing newline at end of file X
indicates that the last line of file X did not have a new-line. If the lines are
different, they will be flagged and output; although the output will seem to
indicate they are the same.

- 2 -

DIFF3(1) (Editing Package) DIFF3(1)

NAME
diff3 - 3-way differential file comparison

SYNOPSIS
diff3 [-ex3] file 1 file2 file3

DESCRIPTION

FILES

The diff3 command compares three versions of a file, and publishes
disagreeing ranges of text flagged with these codes:

all three files differ

====1 filel is different

====2 file2 is different

====3 file3 is different

The type of change suffered in converting a given range of a given file to
some other is indicated in one of these ways:

f : nl a Text is to be appended after line number nl in file
f, where f = 1, 2, or 3.

f: nl , n2 c Text is to be changed in the range line nl to line
n2. If nl = n2, the range may be abbreviated to
n1.

The original contents of the range follows immediately after a c indication.
When the contents of two files are identical, the contents of the lower­
numbered file is suppressed.

Under the -e option, diff3 publishes a script for the editor ed that will incor­
porate into filel all changes between file2 and file3, i.e., the changes that
normally would be flagged ==== and ====3. Option -x (-3) produces a
script to incorporate only changes flagged ==== (====3). The following
command will apply the resulting script to filel.

(cat script; echo 'l,$p') I ed - file1

/tmpjd3*
jusr jlib j diff3prog

SEE ALSO

BUGS

diff(l).

Text lines that consist of a single. will defeat -e.
Files longer than 64K bytes will not work.

- 1 -

DIRCMP(l) (Editing Package) DIRCMP(l)

NAME
dircmp - directory comparison

SYNOPSIS
dircmp [-d] [-8] [-wn] dirl dir2

DESCRIPTION
The dircmp command examines dirl and dir2 and generates various tabu­
lated information about the contents of the directories. Listings of files that
are unique to each directory are generated for all the options. If no option
is entered, a list is output indicating whether the file names common to
both directories have the same contents.

-d Compare the contents of files with the same name in both direc­
tories and output a list telling what must be changed in the two files
to bring them into agreement. The list format is described in diff(l).

-8 Suppress messages about identical files.

-wn Change the width of the output line to n characters. The default
width is 72.

SEE ALSO
cmp(1), diff(l).

- 1 -

DISKADD(lM) (Base System) DISKADD(lM)

NAME
diskadd - disk partitioning utility

SYNOPSIS
/ete/diskadd [dis1<-number]

DESCRIPTION
This shell script (in conjunction with the program /ete/adddisk) allows the
system administrator to set up additional disks for use by the UNIX system.
(The initial system disk is configured during system installation.) It is an
interactive program which prompts the user for information about the setup
of the disk and allows specification of known media defects. It allows the
partitioning of the disk into a tmp filesystem (if desired), additional
swap/paging space (if desired), and from 1 to 4 user filesystems. All input
is double-checked with the user for correctness. The user is then asked
whether the filesystems on the new disk should be mounted automatically.
Finally, the disk is verified and filesystems are created. If automatic mount­
ing was specified, directories are created in the root filesystem to hold the
new filesystems, they are mounted, and /ete/fstab is updated to re-mount
them on subsequent bootups of the system. Device and partition stanzas
for the new disk are appended to the fete/partitions file for use with
mkpart(lM).

Prior to running diskadd the system administrator must create special files in
/dev/dsk and /dev/rdsk for accessing the new disk. The names of these
files are of the form /dev/{rJdsk/{cidJjsk, where 'i' is the controller number
('cid' is omitted for controller 0), 'j' is the drive number on the controller,
and 'k' is the partition number on the disk. The minimum set of special
files for a new disk is a character (rdsk) device for partition 0
(fdev/rdsk/lsO for the second drive on the first controller), and block (dsk)
device for each partition added. Partition 1 is always tmp (if specified), par­
tition 2 is always swap (if specified), and new user filesystems are made in
partitions 3-6.

The fdisk program will be run by diskadd to create a DOS-style partition
table. The user is expected to use fdisk to create a UNIX partition. By
default, diskadd will set up /dev /rdsk/lsO (the second disk on Con­
troller 0). A different disk can be used by giving one of the following argu­
ments to diskadd:

/dev/rdsk/lsO (default)
/dev/rdsk/eldOsO
/dev/rdsk/eldlsO

During the execution of the mkpart command, warnings about having no
root partition from which to boot will be issued. These may be ignored, as
added disks are not bootable.

If swap space is added on the new drive, it must be made available for sys­
tem use with the swap(lM) program. Diskadd doesn't do this, as there is no
automatic facility for adding swap space on bootup.

- 1 -

DISKADD(lM)

FILES
/tmp/partitions
/tmp/addparts
/tmp/mkfs.data
/tmp / diskname
/ etc/partitions
/dev /rdsk/*sO
/dev /dskj*s?
/etc/fstab

SEE ALSO

(Base System)

mkfs(lM), mknod(l), mkpart(lM), swap(lM).

- 2 -

DISKADD(lM)

DISKUSG(lM) (Base System) DISKUSG(lM)

NAME
diskusg - generate disk accounting data by user ID

SYNOPSIS
diskusg [options] [files]

DESCRIPTION
diskusg generates intermediate disk accounting information from data in
files, or the standard input if omitted. diskusg output lines on the standard
output, one per user, in the following format: uid login #blocks

where

uid -

login -

#blocks -

the numerical user ID of the user.

the login name of the user; and

the total number of disk blocks allocated to this user.

diskusg normally reads only the i-nodes of file systems for disk accounting.
In this case, files are the special filenames of these devices.

diskusg recognizes the following options:

-s the input data is already in diskusg output format. diskusg
combines all lines for a single user into a single line.

-v

-i fnmlist

-p file

verbose. Print a list on standard error of all files that are
charged to no one.

ignore the data on those file systems whose file system name
is in fnmlist. Fnmlist is a list of file system names separated by
commas or enclosed within quotes. diskusg compares each
name in this list with the file system name stored in the
volume ID [see labelit(lM)].

use file as the name of the password file to generate login
names. /etc/passwd is used by default.

-u file write records to file of files that are charged to no one.
Records consist of the special file name, the i-node number,
and the user ID.

The output of diskusg is normally the input to acctdisk [see acct(1M)] which
generates total accounting records that can be merged with other accounting
records. diskusg is normally run in dodisk [see acctsh(lM)].

EXAMPLES

FILES

The following will generate daily disk accounting information:

for i in /dev /dsk/Osl /dev /dsk/Os3; do
diskusg $i > dtmp.'basename $i' &

done
wait
diskusg -s dtmp." I sort +On + 1 I acctdisk > disktacct

/etc/passwd used for user ID to login name conversions

- 1 -

DISKUSG(lM) (Base System") DISKUSG(lM)

SEE ALSO
acct(lM), acctsh(lM)
acct(4) in the Programmer's Reference Manual

- 2 -

DISPLAYPKG(l) (Base System)

NAME
displaypkg - display installed packages

SYNOPSIS
displaypkg

DESCRIPTION

DISPLAYPKG(l)

The displaypkg command will list the names of all the packages that were
installed using the installpkg command.

SEE ALSO
installpkg(l), removepkg(l).

- 1 -

DNAME(lM) (Remote File Sharing Utilities) DNAME(lM)

NAME
dname - Print Remote File Sharing domain and network names

SYNOPSIS
dname [-D domain] [-N netspec] [-dna]

DESCRIPTION
The dname command prints or defines a host's Remote File Sharing domain
name or the network used by Remote File Sharing as transport provider.
When used with d, n, or a options, dname can be run by any user to print
the domain name, network name, or both, respectively. Only a user with
root permission can use the -D domain option to set the domain name for
the host or -N netspec to set the network specification used for Remote File
Sharing. (The value of netspec is the network device name, relative to the
/dev directory. For example, the STARLAN NETWORK uses starlan.)

The domain must consist of no more than 14 characters, consisting of any
combination of letters (upper and lower case), digits, hyphens (-), and
underscores (_)

When dname is used to change a domain name, the host's password is
removed: The administrator will be prompted for a new password the next
time Remote File Sharing is started [rfstart(lM)].

If dname is used with no options, it will default to dname -d.

ERRORS
You cannot use the -N or -D options while Remote File Sharing is running.

SEE ALSO
rfstart(lM).

- 1 -

DU(lM) (Base System) DU(lM)

NAME
du - summarize disk usage

SYNOPSIS
du [-sar] [names]

DESCRIPTION

BUGS

The du command reports the number of blocks contained in all files and
(recursively) directories within each directory and file specified by the names
argument. The block count includes the indirect blocks of the file. If names
is missing, the current directory is used.

The optional arguments are as follows:

-s causes only the grand total (for each of the specified names) to be
given.

-a causes an output line to be generated for each file.

If neither -s or -a is specified, an output line is generated for each directory
only.

-r will cause du to generate messages about directories that cannot be
read, files that cannot be opened, etc., rather than being silent (the
default).

A file with two or more links is only counted once.

If the -a option is not used, non-directories given as arguments are not
listed.

If there are links between files in different directories where the directories
are on separate branches of the file system hierarchy, du will count the
excess files more than once.

Files with holes in them will get an incorrect block count. (See Chapter 5,
File System Administration, in the System Administrator's Guide.)

- 1 -

ECHO(l) (Base System) ECHO(l)

NAME
echo - echo arguments

SYNOPSIS
echo [arg 1 ...

DESCRIPTION
The echo command writes its arguments separated by blanks and terminated
by a new-line on the standard output. It also understands C-like escape
conventions; beware of conflicts with the shell's use of \:

\b backspace
\c print line without new-line
\f form-feed
\n new-line
\r carriage return
\t tab
\ v vertical tab
\ \ backslash
\On where n is the 8-bit character whose ASCII code is the 1-, 2-

or 3-digit octal number representing that character.

The echo command is useful for producing diagnostics in command files and
for sending known data into a pipe.

SEE ALSO
sh(l).

CAVEATS
When representing an 8-bit character by using the escape convention \On,
the n must always be preceded by the digit zero (0).

For example, typing: echo 'WARNING:\07' will print the phrase WARNING:
and sound the "bell" on your terminal. The use of single (or double) quotes
(or two backslashes) is required to protect the "\" that precedes the "07".

For the octal equivalents of each character, see ascii(5) in the Programmer's
Reference Manual.

- 1 -

ED(l) (Base System) ED(l)

NAME
ed, red - text editor

SYNOPSIS
ed [-s] [-p string] [-x] [-C] [file]

red [-s] [-p string] [-x] [-C] [file]

DESCRIPTION
ed is the standard text editor. If the file argument is given, ed simulates an
e command (see the following text) on the named file; that is to say, the file
is read into ed's buffer so that it can be edited.

-s Suppresses the printing of character counts bye, r, and w com­
mands, of diagnostics from e and q commands, and of the I prompt
after a !shell command.

-p Allows the user to specify a prompt string.

-x Encryption option; when used, ed simulates an X command and
prompts the user for a key. This key is used to encrypt and decrypt
text using the algorithm of crypt(I). The X command makes an
educated guess to determine whether text read in is encrypted or
not. The temporary buffer file is encrypted also, using a
transformed version of the key typed in for the -x option. See
crypt(I). Also, see the WARNINGS section at the end of this manual
page.

-C Encryption option; the same as the -x option, except that ed simu­
lates a C command. The C command is like the X command,
except that all text read in is assumed to have been encrypted.

ed operates on a copy of the file it is editing; changes made to the copy
have no effect on the file until a w (write) command is given. The copy of
the text being edited resides in a temporary file called the buffer. There is
only one buffer.

red is a restricted version of ed. It will allow editing of files only in the
current directory. It prohibits executing shell commands via Ishell command.
Attempts to bypass these restrictions result in an error message (restricted
shell).

Both ed and red support the fspec(4) formatting capability. After including a
format specification as the fIrst line of file and invoking ed with your termi­
nal in stty -tabs or sUy tab3 mode [see stty(I)], the specifIed tab stops will
automatically be used when scanning file. For example, if the first line of a
file contained:

<:t5,10,15 s72:>

tab stops would be set at columns 5, 10, and 15, and a maximum line
length of 72 would be imposed. NOTE: When you are entering text into the
file, this format is not in effect; instead, because of being in stty -tabs or
stty tab3 mode, tabs are expanded to every eighth column.

Commands to ed have a simple and regular structure: zero, one, or two
addresses followed by a single-character command, possibly followed by

- 1 -

ED(l) (Base System) ED(l)

parameters to that command. These addresses specify one or more lines in
the buffer. Every command that requires addresses has default addresses,
so that the addresses can very often be omitted.

In general, only one command may appear on a line. Certain commands
allow the input of text. This text is placed in the appropriate place in the
buffer. While ed is accepting text, it is said to be in input mode. In this
mode, no commands are recognized; all input is merely collected. Leave
input mode by typing a period (.) at the beginning of a line, followed
immediately by a carriage return.

ed supports a limited form of regular expression notation; regular expressions
are used in addresses to specify lines and in some commands (e.g., s) to
specify portions of a line that are to be substituted. A regular expression
(RE) specifies a set of character strings. A member of this set of strings is
said to be matched by the RE. The REs allowed by ed are constructed as fol­
lows:

The following one-character REs match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a
one-character RE that matches itself.

1.2 A backslash (\) followed by any special character is a one-character
RE that matches the special character itself. The special characters are:

a. ., *, [, and \ (period, asterisk, left square bracket, and backslash,
respectively), which are always special, except when they appear
within square brackets ([J; see 1.4 below).

b. A • (caret or circumflex), which is special at the beginning of an
entire RE (see 3.1 and 3.2 below), or when it immediately follows
the left of a pair of square brackets ([J) (see 1.4 below).

c. $ (dollar sign), which is special at the end of an entire RE (see 3.2
below).

d. The character used to bound (Le., delimit) an entire RE, which is
special for that RE [for example, see how slash (f) is used in the
g command, below.]

1.3 A period (.) is a one-character RE that matches any character except
new-line.

1.4 A non-empty string of characters enclosed in square brackets ([» is a
one-character RE that matches anyone character in that string. If,
however, the first character of the string is a circumflex C), the one­
character RE matches any character except new-line and the remaining
characters in the string. The A has this special meaning only if it
occurs first in the string. The minus (-) may be used to indicate a
range of consecutive ASCII characters; for example, [0-9] is equivalent
to [0123456789]. The - loses this special meaning if it occurs first
(after an initial A, if any) or last in the string. The right square
bracket (J) does not terminate such a string when it is the first charac­
ter within it (after an initial A, if any); e.g., []a-f] matches either a
right square bracket (J) or one of the letters a through f inclusive.

- 2 -

EO(I) (Base System) EO(I)

The four characters listed in 1.2.a above stand for themselves within
such a string of characters.

The following rules may be used to construct REs from one-character REs:

2.1 A one-character RE is a RE that matches whatever the one-character RE
matches.

2.2 A one-character RE followed by an asterisk (*) is a RE that matches
zero or more occurrences of the one-character RE. If there is any
choice, the longest leftmost string that permits a match is chosen.

2.3 A one-character RE followed by \{m\}, \{m,\}, or \{m,n\} is aRE
that matches a range of occurrences of the one-character RE. The
values of m and n must be non-negative integers less than 256;
\ {m \} matches exactly m occurrences; \ {m, \} matches at least m
occurrences; \ { m,n \} matches any number of occurrences between m
and n inclusive. Whenever a choice exists, the RE matches as many
occurrences as possible.

2.4 The concatenation of REs is a RE that matches the concatenation of the
strings matched by each component of the RE.

2.5 A RE enclosed between the character sequences \(and \) is a RE that
matches whatever the unadorned RE matches.

2.6 The expression \n, matches the same string of characters as was
matched by an expression enclosed between \(and \) earlier in the
same RE. Here n is a digit; the sub-expression specified is that begin­
ning with the n-th occurrence of \(counting from the left. For exam­
ple, the expression A\(.*\)\l$ matches a line consisting of two
repeated appearances of the same string.

Finally, an entire RE may be constrained to match only an initial segment or
final segment of a line (or both).

3.1 A circumflex () at the beginning of an entire RE constrains that RE to
match an initial segment of a line.

3.2 A dollar sign ($) at the end of an entire RE constrains that RE to match
a final segment of a line.

The construction A entire RE $ constrains the entire RE to match the entire
line.

The null RE (e.g., / /) is equivalent to the last RE encountered. See also the
last paragraph before FILES below.

To understand addressing in ed it is necessary to know that at any time
there is a current line. Generally speaking, the current line is the last line
affected by a command; the exact effect on the current line is discussed
under the description of each command. Addresses are constructed as fol­
lows:

1. The character. addresses the current line.

2. The character $ addresses the last line of the buffer.

- 3 -

EO(1) (Base System) EO(1)

3. A decimal number n addresses the n-th line of the buffer.

4. 'x addresses the line marked with the mark name character x, which
must be an ASCII lower-case letter (a-z). lines are marked with the k
command described below.

5. A RE enclosed by slashes (f) addresses the first line found by search­
ing forward from the line following the current line toward the end of
the buffer and stopping at the first line containing a string matching
the RE. If necessary, the search wraps around to the beginning of the
buffer and continues up to and including the current line, so that the
entire buffer is searched. See also the last paragraph before FILES.

6. A RE enclosed in question marks (?) addresses the first line found by
searching backward from the line preceding the current line toward the
beginning of the buffer and stopping at the first line containing a
string matching the RE. If necessary, the search wraps around to the
end of the buffer and continues up to and including the current line.
See also the last paragraph before FILES.

7. An address followed by a plus sign (+) or a minus sign (-) followed
by a decimal number specifies that address plus (respectively minus)
the indicated number of lines. The plus sign may be omitted.

8. If an address begins with + or -, the addition or subtraction is taken
with respect to the current line; e.g, -5 is understood to mean .-5.

9. If an address ends with + or -, then 1 is added to or subtracted from
the address, respectively. As a consequence of this rule and of Rule 8,
immediately above, the address - refers to the line preceding the
current line. (To maintain compatibility with earlier versions of the
editor, the character A in addresses is entirely equivalent to -.) More­
over, trailing + and - characters have a cumulative effect, so -- refers
to the current line less 2.

to. For convenience, a comma (,) stands for the address pair 1,$, while a
semicolon (;) stands for the pair .,$.

Commands may require zero, one, or two addresses. Commands that
require no addresses regard the presence of an address as an error. Com­
mands that accept one or two addresses assume default addresses when an
insufficient number of addresses is given; if more addresses are given than
such a command requires, the last one(s) are used.

Typically, addresses are separated from each other by a comma (,). They
may also be separated by a semicolon (;). In the latter case, the current line
(.) is set to the first address, and only then is the second address calculated.
This feature can be used to determine the starting line for forward and
backward searches (see Rules 5 and 6, above). The second address of any
two-address sequence must correspond to a line that follows, in the buffer,
the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown in
parentheses. The parentheses are not part of the address; they show that
the given addresses are the default.

- 4 -

ED(l) (Base System) ED(l)

It is generally illegal for more than one command to appear on a line.
However, any command (except e, f, T, or w) may be suffixed by 1, n, or p
in which case the current line is either listed, numbered or printed, respec­
tively, as discussed below under the I, n, and p commands.

(.)a
<text>

(.)c
<text>

c

(.f .)d

e file

E file

f file

The append command reads the given text and appends it after the
addressed line; • is left at the last inserted line, or, if there were
none, at the addressed line. Address 0 is legal for this command: it
causes the "appended" text to be placed at the beginning of the
buffer. The maximum number of characters that may be entered
from a terminal is 256 per line (including the new-line character).

The change command deletes the addressed lines, then accepts
input text that replaces these lines; . is left at the last line input, or,
if there were none, at the first line that was not deleted.

Same as the X command, except that ed assumes all text read in for
the e and r commands is encrypted unless a null key is typed in.

The delete command deletes the addressed lines from the buffer.
The line after the last line deleted becomes the current line; if the
lines deleted were originally at the end of the buffer, the new last
line becomes the current line.

The edit command causes the entire contents of the buffer to be
deleted, and then the named file to be read in; • is set to the last
line of the buffer. If no file name is given, the currently remem­
bered file name, if any, is used (see the f command). The number
of characters read is typed; file is remembered for possible use as a
default file name in subsequent e, r, and w commands. If file is
replaced by I, the rest of the line is taken to be a shell [sh(l)] com­
mand whose output is to be read. Such a shell command is not
remembered as the current file name. See also DIAGNOSTICS.

The Edit command is like e, except that the editor does not check to
see if any changes have been made to the buffer since the last w
command.

If file is given, the file-name command changes the currently
remembered file name to file; otherwise, it prints the currently
remembered file name.

- 5 -

ED(l) (Base System) ED(l)

(1, $)g/RE / command list
In the global command, the first step is to mark every line that
matches the given RE. Then, for every such line, the given command
list is executed with. initially set to that line. A single command or
the first of a list of commands appears on the same line as the glo­
bal command. All lines of a multi-line list except the last line must
be ended with a \; a, i, and c commands and associated input are
permitted. The. terminating input mode may be omitted if it would
be the last line of the command list. An empty command list is
equivalent to the p command. The g, G, v, and V commands are
not permitted in the command list. See also BUGS and the last para­
graph before FILES.

(1,$)G/RE/

h

H

(.)i
<text>

(.,.+1)j

(.)kx

In the interactive Global command, the first step is to mark every
line that matches the given RE. Then, for every such line, that line
is printed, • is changed to that line, and anyone command (other
than one of the a, c, i, g, G, v, and V commands) may be input and
is executed. After the execution of that command, the next marked
line is printed, and so on; a new-line acts as a null command; an &
causes the re-execution of the most recent command executed
within the current invocation of G. Note that the commands input
as part of the execution of the G command may address and affect
any lines in the buffer. The G command can be terminated by an
interrupt signal (ASCII DEL or BREAK).

The help command gives a short error message that explains the
reason for the most recent ? diagnostic.

The Help command causes ed to enter a mode in which error mes­
sages are printed for all subsequent ? diagnostics. It will also
explain the previous ? if there was one. The H command alter­
nately turns this mode on and off; it is initially off.

The insert command inserts the given text before the addressed line;
• is left at the last inserted line, or, if there were none, at the
addressed line. This command differs from the a command only in
the placement of the input text. Address 0 is not legal for this com­
mand. The maximum number of characters that may be entered
from a terminal is 256 per line (including the new-line character).

The join command joins contiguous lines by removing the appropri­
ate new-line characters. If exactly one address is given, this com­
mand does nothing.

The mark command marks the addressed line with name x, which
must be an ASCII lower-case letter (a-z). The address 'x then

- 6 -

ED(I)

(.,.)1

(Base System) ED(I)

addresses this line; . is unchanged.

The list command prints the addressed lines in an unambiguous
way: a few non-printing characters (e.g., tab, backspace) are
represented by visually mnemonic overstrikes. All other non­
printing characters are printed in octal, and long lines are folded.
An I command may be appended to any command other than e, I,
r, or w.

(.,.)ma

(., .)0

(., .)p

p

q

Q

The move command repositions the addressed line(s) after the line
addressed by a. Address 0 is legal for a and causes the addressed
line(s) to be moved to the beginning of the file. It is an error if
address a falls within the range of moved lines; • is left at the last
line moved.

The number command prints the addressed lines, preceding each
line by its line number and a tab character; . is left at the last line
printed. The n command may be appended to any command other
than e, I, r, or w.

The print command prints the addressed lines; . is left at the last
line printed. The p command may be appended to any command
other than e, I, r, or w. For example, dp deletes the current line
and prints the new current line.

The editor will prompt with a * for all subsequent commands. The
P command alternately turns this mode on and off; it is initially off.

The quit command causes ed to exit. No automatic write of a file is
done; however, see DIAGNOSTICS.

The editor exits without checking if changes have been made in the
buffer since the last w command.

($)r file
The read command reads in the given file after the addressed line.
If no file name is given, the currently remembered file name, if any,
is used (see e and I commands). The currently remembered file
name is not changed unless file is the very first file name mentioned
since ed was invoked. Address 0 is legal for r and causes the file to
be read at the beginning of the buffer. If the read is successful, the
number of characters read is typed; . is set to the last line read in. If
file is replaced by!, the rest of the line is taken to be a shell [sh(l)]
command whose output is to be read. For example, "$r !Is"
appends current directory to the end of the file being edited. Such a
shell command is not remembered as the current file name.

- 7 -

ED(l) (Base System) ED(l)

(.,.)S/RE/replacement/ or
(.,.)s/RE/replacement/g or
(.,.)s/RE/replacement/n n = 1-512

(.,.)ta

u

The substitute command searches each addressed line for an
occurrence of the specified RE. In each line in which a match is
found, all (non-overlapped) matched strings are replaced by the
replacement if the global replacement indicator g appears after the
command. If the global indicator does not appear, only the first
occurrence of the matched string is replaced. If a number n appears
after the command, only the n-th occurrence of the matched string
on each addressed line is replaced. It is an error for the substitution
to fail on all addressed lines. Any character other than space or
new-line may be used instead of / to delimit the RE and the replace­
ment; • is left at the last line on which a substitution occurred. See
also the last paragraph before FILES.

An ampersand (&) appearing in the replacement is replaced by the
string matching the RE on the current line. The special meaning of
& in this context may be suppressed by preceding it by \. As a
more general feature, the characters \n, where n is a digit, are
replaced by the text matched by the n-th regular subexpression of
the specified RE enclosed between \(and \). When nested
parenthesized subexpressions are present, n is determined by count­
ing occurrences of \(starting from the left. When the character % is
the only character in the replacement, the replacement used in the
most recent substitute command is used as the replacement in the
current substitute command. The % loses its special meaning when
it is in a replacement string of more than one character or is pre­
ceded by a \.

A line may be split by substituting a new-line character into it. The
new-line in the replacement must be escaped by preceding it by \.
Such substitution cannot be done as part of a g or v command list.

This command acts just like the m command, except that a copy of
the addressed lines is placed after address a (which may be 0); . is
left at the last line of the copy.

The undo command nullifies the effect of the most recent command
that modified anything in the buffer, namely the most recent a, c, d,
g, i, j, m, r, s, t, v, G, or V command.

(1, $)v /RE / command list
This command is the same as the global command g except that the
command list is executed with . initially set to every line that does
not match the RE.

(l,$)V /RE/
This command is the same as the interactive global command G
except that the lines that are marked during the first step are those
that do not match the RE.

- 8 -

ED(l) (Base System) ED(l)

(1, $)w file

x

($)=

The write command writes the addressed lines into the named file.
If the file does not exist, it is created with mode 666 (readable and
writable by everyone), unless your umask setting [see umask(l}] dic­
tates otherwise. The currently remembered file name is not changed
unless file is the very first file name mentioned since ed was
invoked. If no file name is given, the currently remembered file
name, if any, is used (see e and f commands); . is unchanged. If the
command is successful, the number of characters written is typed.
If file is replaced by!, the rest of the line is taken to be a shell
[sh(l}] command whose standard input is the addressed lines. Such
a shell command is not remembered as the current file name.

A key is prompted for, and it is used in subsequent e, r, and w
commands to decrypt and encrypt text using the crypt(l} algorithm.
An educated guess is made to determine whether text read in for
the e and r commands is encrypted. A null key turns off encryp­
tion. Subsequent e, r, and w commands will use this key to encrypt
or decrypt the text [see crypt(l}]. An explicitly empty key turns off
encryption. Also, see the -x option of ed.

The line number of the addressed line is typed; . is unchanged by
this command.

!shell command
The remainder of the line after the! is sent to the UNIX system shell
[sh(l}] to be interpreted as a command. Within the text of that com­
mand, the unescaped character % is replaced with the remembered
file name; if a ! appears as the first character of the shell command,
it is replaced with the text of the previous shell command. Thus,!!
will repeat the last shell command. If any expansion is performed,
the expanded line is echoed; . is unchanged.

(. + 1)<new-line>
An address alone on a line causes the addressed line to be printed.
A new-line alone is equivalent to .+lp; it is useful for stepping for­
ward through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and returns
to its command level.

Some size limitations: 512 characters in a line, 256 characters in a global
command list, and 64 characters in the pathname of a file (counting
slashes). The limit on the number of lines depends on the amount of user
memory: each line takes 1 word.

When reading a file, ed discards ASCII NUL characters.

If a file is not terminated by a new-line character, ed adds one and puts out
a message explaining what it did.

If the closing delimiter of a RE or of a replacement string (e.g., /) would be
the last character before a new-line, that delimiter may be omitted, in which

- 9 -

ED(l)

FILES

NOTES

(Base System) ED(l)

case the addressed line is printed. The following pairs of commands are
equivalent:

s/sl/s2 s/sl/s2/p
g/sl g/sl/p
?sl ?sl?

$TMPDIR if this environmental variable is not null, its value is used in
place of jusrjtmp as the directory name for the temporary
work file.

/usr/tmp if jusrjtmp exists, it is used as the directory name for the tem­
porary work file.

/tmp if the environmental variable TMPDIR does not exist or is null,
and if jusrjtmp does not exist, then jtmp is used as the direc­
tory name for the temporary work file.

ed.hup work is saved here if the terminal is hung up.

The - option, although it continues to be supported, has been replaced in
the documentation by the -s option that follows the Command Syntax
Standard [see intro(I)].

SEE ALSO
edit(I), ex(I), grep(I), sed(I), sh(I), stty(I), umask(I), vi(I).
fspec(4), regexp(5) in the Programmer's Reference Manual.

DIAGNOSTICS
? for command errors.

?file for an inaccessible file.
(use the help and Help commands for detailed explanations).

If changes have been made in the buffer since the last w command that
wrote the entire buffer, ed warns the user if an attempt is made to destroy
ed's buffer via the e or q commands. It prints? and allows one to continue
editing. A second e or q command at this point will take effect. The-s
command-line option inhibits this feature.

WARNINGS

BUGS

The encryption options and commands are provided with the Security
Administration Utilities package, which is available only in the United
States.

A ! command cannot be subject to a g or a v command.

The! command and the ! escape from the e, r, and w commands cannot be
used if the editor is invoked from a restricted shell [see sh(I)].

The sequence \n in a RE does not match a new-line character.

If the editor input is coming from a command file (e.g., ed file < ed-cmd­
file), the editor will exit at the first failure.

- 10 -

EDIT(l) (Editing Package) EDIT(l)

NAME
edit - text editor (variant of ex for casual users)

SYNOPSIS
edit [-r] [-x] [-C] name ...

DESCRIPTION
edit is a variant of the text editor ex recommended for new or casual users
who wish to use a command-oriented editor. It operates precisely as ex(l)
with the following options automatically set:

novice ON

report ON

showmode ON

magic OFF

These options can be turned on or off via the set command in ex(l).

-r Recover file after an editor or system crash.

-x Encryption option; when used the file will be encrypted as it is
being written and will require an encryption key to be read. edit
makes an educated guess to determine if a file is encrypted or not.
See crypt(l). Also, see the WARNING section at the end of this
manual page.

-c Encryption option; the same as -x except that edit assumes files are
encrypted.

The following brief introduction should help you get started with edit. If
you are using a CRT terminal you may want to learn about the display editor
vi.
To edit the contents of an existing file you begin with the command edit
name to the shell. edit makes a copy of the file that you can then edit, and
tells you how many lines and characters are in the file. To create a new
file, you also begin with the command edit with a filename:. edit name; the
editor will tell you it is a New Fi Ie].

The edit command prompt is the colon (:), which you should see after start­
ing the editor. If you are editing an existing file, then you will have some
lines in edit's buffer (its name for the copy of the file you are editing).
When you start editing, edit makes the last line of the file the current line.
Most commands to edit use the current line if you do not tell them which
line to use. Thus if you say print (which can be abbreviated p) and type
carriage return (as you should after all edit commands), the current line will
be printed. If you delete (d) the current line, edit will print the new current
line, which is usually the next line in the file. If you delete the last line,
then the new last line becomes the current one.

If you start with an empty file or wish to add some new lines, then the
append (a) command can be used. After you execute this command (typing
a carriage return after the word append), edit will read lines from your ter­
minal until you type a line consisting of just a dot (.); it places these lines
after the current line. The last line you type then becomes the current line.

- 1 -

EDIT(l) (Editing Package) EDIT(l)

The command insert (i) is like append, but places the lines you type before,
rather than after, the current line.

edit numbers the lines in the buffer, with the first line having number 1. If
you execute the command 1, then edit will type the first line of the buffer.
If you then execute the command d, edit will delete the first line, line 2 will
become line 1, and edit will print the current line (the new line 1) so you
can see where you are. In general, the current line will always be the last
line affected by a command.

You can make a change to some text within the current line by using the
substitute (s) command: s/old/new/ where old is the string of characters
you want to replace and new is the string of characters you want to replace
old with.

The command file (f) will tell you how many lines there are in the buffer
you are editing and will say [Modi f i ed] if you have changed the buffer.
After modifying a file, you can save the contents of the file by executing a
write (w) command. You can leave the editor by issuing a quit (q) com­
mand. If you run edit on a file, but do not change it, it is not necessary (but
does no harm) to write the file back. If you try to quit from edit after
modifying the buffer without writing it out, you will receive the message
No write since last change (: qui t! overrides), and
edit will wait for another command. If you do not want to write the buffer
out, issue the quit command followed by an exclamation point (q!). The
buffer is then irretrievably discarded and you return to the shell.

By using the d and a commands and giving line numbers to see lines in the
file, you can make any changes you want. You should learn at least a few
more things, however, if you will use edit more than a few times.

The cbange (c) command changes the current line to a sequence of lines
you supply (as in append, you type lines up to a line consisting of only a
dot (.). You can tell cbange to change more than one line by giving the line
numbers of the lines you want to change, i.e., 3,5c. You can print lines this
way too: 1,23p prints the first 23 lines of the file.

The undo (u) command reverses the effect of the last command you exe­
cuted that changed the buffer. Thus if you execute a substitute command
that does not do what you want, type u and the old contents of the line will
be restored. You can also undo an undo command. edit will give you a
warning message when a command affects more than one line of the buffer.
Note that commands such as write and quit cannot be undone.

To look at the next line in the buffer, type carriage return. To look at a
number of lines, type AD (while holding down the control key, press d)
rather than carriage return. This will show you a half-screen of lines on a
CRT or 12 lines on a hardcopy terminal. You can look at nearby text by
executing the z command. The current line will appear in the middle of the
text displayed, and the last line displayed will become the current line; you
can get back to the line where you were before you executed the z com­
mand by typing". The z command has other options: z- prints a screen of
text (or 24 lines) ending where you are; z+ prints the next screenful. If you
want less than a screenful of lines, type z.l1 to display five lines before and

- 2 -

EDIT(l) (Editing Package) EDIT(l)

five lines after the current line. (Typing z.n, when n is an odd number,
displays a total of n lines, centered about the current line; when n is an
even number, it displays n-l lines, so that the lines displayed are centered
around the current line.) You can give counts after other commands; for
example, you can delete 5 lines starting with the current line with the com­
mand d5.

To find things in the file, you can use line numbers if you happen to know
them. Since the line numbers change when you insert and delete lines this
is somewhat unreliable. You can search backward and forward in the file
for strings by giving commands of the form /text/ to search forward for text
or ?text? to search backward for text . If a search reaches the end of the file
without finding text, it wraps around and continues to search back to the
line where you are. A useful feature here is a search of the form {text/
which searches for text at the beginning of a line. Similarly /text$/
searches for text at the end of a line. You can leave off the trailing / or ? in
these commands.

The current line has the symbolic name dot (.); this is most useful in a range
of lines as in .,$p which prints the current line plus the rest of the lines in
the file. To move to the last line in the file, you can refer to it by its sym­
bolic name $. Thus the command $d deletes the last line in the file, no
matter what the current line is. Arithmetic with line references is also possi­
ble. Thus the line $-5 is the fifth before the last and .+20 is 20 lines after
the current line.

You can determine the current line by typing .=. This is useful if you wish
to move or copy a section of text within a file or between files. Find the
first and last line numbers you wish to copy or move. To move lines 10
through 20, type lO,20d a to delete these lines from the file and place them
in a buffer named a. edit has 26 such buffers named a through z. To put
the contents of buffer a after the current line, type put a. If you want to
move or copy these lines to another file, execute an edit (e) command after
copying the lines; following the e command with the name of the other file
you wish to edit, i.e., edit chapter2. To copy lines without deleting them,
use yank (y) in place of d. If the text you wish to move or copy is all
within one file, it is not necessary to use named buffers. For example, to
move lines 10 through 20 to the end of the file, type lO,20m $.

SEE ALSO
ed(I), ex(I), vi(I).

WARNING
The encryption options are provided with the Security Administration Utili­
ties package, which is available only in the United States.

- 3 -

EGREP(l) (Editing Package) EGREP(l)

NAME
egrep - search a file for a pattern using full regular expressions

SYNOPSIS
egrep [options] full regular expression [file ...]

DESCRIPTION
The egrep command (expression grep) searches files for a pattern of charac­
ters and prints all lines that contain that pattern. egrep uses full regular
expressions (expressions that have string values that use the full set of
alphanumeric and special characters) to match the patterns. It uses a fast
deterministic algorithm that sometimes needs exponential space.

The egrep command accepts full regular expressions as in ed(1), except for
\(and \), with the addition of:

1. A full regular expression followed by + that matches one or more
occurrences of the full regular expression.

2. A full regular expression followed by ? that matches 0 or 1
occurrences of the full regular expression.

3. Full regular expressions separated by I or by a new-line that match
strings that are matched by any of the expressions.

4. A full regular expression that may be enclosed in parentheses () for
grouping.

Be careful using the characters $, *, [, ~, I, (,), and \ in full regular expres­
sion, because they are also meaningful to the shell. It is safest to enclose
the entire full regular expression in single quotes' ... '.

The order of precedence of operators is [I, then *? +, then concatenation,
then I and new-line.

If no files are specified, egrep assumes standard input. Normally, each line
found is copied to the standard output. The file name is printed before each
line found if there is more than one input file.

Command line options are:

-b Precede each line by the block number on which it was found. This
can be useful in locating block numbers by context (first block is 0).

-c Print only a count of the lines that contain the pattern.
-i Ignore upper/lower case distinction during comparisons.
-1 Print the names of files with matching lines once, separated by new-

lines. Does not repeat the names of files when the pattern is found
more than once.

-n Precede each line by its line number in the file (first line is 1).
-v Print all lines except those that contain the pattern.
-e speciaLexpression

Search for a special expression (full regular expression that begins with
a -).

-£ file Take the list of full regular expressions from file.
SEE ALSO

ed(1), fgrep(1), grep(1), sed(1), sh(1).

- 1 -

EGREP(l) (Editing Package) EGREP(l)

DIAGNOSTICS

BUGS

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or
inaccessible files (even if matches were found).

Ideally there should be only one grep command, but there is not a single
algorithm that spans a wide enough range of space-time tradeoffs. Lines
are limited to BUFSIZ characters; longer lines are truncated. BUFSIZ is
defined in /usr/include/stdio.h.

- 2 -

ENABLE(l) (Base System) ENABLE(l)

NAME
enable, disable - enable/disable LP printers

SYNOPSIS
enable printers
disable [-c 1 [-r[reason 11 printers

DESCRIPTION

FILES

The enable command activates the named printers, enabling them to print
requests taken by lp(l). Use lpstat(l) to find the status of printers.

The disable command deactivates the named printers, disabling them from
printing requests taken by lp(l). By default, any requests that are currently
printing on the designated printers will be reprinted in their entirety either
on the same printer or on another member of the same class. Use Ipstat(1)
to find the status of printers. Options useful with disable are:

-c Cancel any requests that are currently printing on any of the
designated printers.

-r[reason 1 Associates a reason with the deactivation of the printers. This
reason applies to all printers mentioned up to the next -r
option. If the -r option is not present or the -r option is given
without a reason, then a default reason will be used. Reason is
reported by lpstat(l).

/usr/spool/lp/*

SEE ALSO
lp(l), lpstat(l).

- 1 -

ENV(l) (Base System) ENV(l)

NAME
env - set environment for command execution

SYNOPSIS
env [-] [name=value] ... [command args]

DESCRIPTION
The env command obtains the current environment, modifies it according to
its arguments, then executes the command with the modified environment.
Arguments of the form name=va/ue are merged into the inherited environ­
ment before the command is executed. The - flag causes the inherited
environment to be ignored completely, so that the command is executed
with exactly the environment specified by the arguments.

If no command is specified, the resulting environment is printed, one
name-value pair per line.

SEE ALSO
sh(l).
exec(2), profile(4), environ(5) in the Programmer's Reference Manual.

- 1 -

EX(l). (Editing Package) EX(l)

NAME
ex - text editor

SYNOPSIS
ex [-s] [-v] [-t tag] [-r file] [-L] [-R] [-x] [-C] [-c command] file

DESCRIPTION
ex is the root of a family of editors: ex and vi. ex is a superset of ed, with
the most notable extension being a display editing facility. Display-based
editing is the focus of vi.

If you have a CRT terminal, you may wish to use a display-based editor; in
this case see vi(l), which is a command which focuses on the display­
editing portion of ex.

For ed Users
If you have used ed(l) you will find that, in addition to having all of the
ed(l) commands available, ex has a number of additional features useful on
CRT terminals. Intelligent terminals and high-speed terminals are very
pleasant to use with vi. Generally, the ex editor uses far more of the capa­
bilities of terminals than ed(l) does and uses the terminal capability data
base [see terminfo(4)] and the type of the terminal you are using from the
environmental variable TERM to determine how to drive your terminal effi­
ciently. The editor makes use of features such as insert and delete character
and line in its visual command (which can be abbreviated vi) and which is
the central mode of editing when using vi(l).

ex contains a number of features for easily viewing the text of the file. The
z command gives easy access to windows of text. Typing -D (control-d)
causes the editor to scroll a half-window of text and is more useful for
quickly stepping through a file than just typing return. Of course, the
screen-oriented visual mode gives constant access to editing context.

ex gives you help when you make mistakes. The undo (u) command
allows you to reverse any single change which goes astray. ex gives you a
lot of feedback, normally printing changed lines, and indicates when more
than a few lines are affected by a command so that it is easy to detect when
a command has affected more lines than it should have.

The editor also normally prevents overwriting existing files, unless you
edited them, so that you do not accidentally overwrite a file other than the
one you are editing. If the system (or editor) crashes, or you accidentally
hang up the telephone, you can use the editor recover command (or -r file
option) to retrieve your work. This will get you back to within a few lines
of where you left off.

ex has several features for dealing with more than one file at a time. You
can give it a list of files on the command line and use the next (n) com­
mand to deal with each in turn. The next command can also be given a list
of file names or a pattern as used by the shell to specify a new set of files to
be dealt with. In general, file names in the editor may be formed with full
shell metasyntax. The metacharacter '%' is also available in forming file
names and is replaced by the name of the current file.

- 1 -

EX(l) (Editing Package) EX(l)

The editor has a group of buffers whose names are the ASCII lower-case
letters (a-z). You can place text in these named buffers where it is available
to be inserted elsewhere in the file. The contents of these buffers remain
available when you begin editing a new file using the edit (e) command.

There is a command & in ex which repeats the last substitute command.
In addition, there is a confirmed substitute command. You give a range of
substitutions to be done and the editor interactively asks whether each sub­
stitution is desired.

It is possible to ignore the case of letters in searches and substitutions. ex
also allows regular expressions which match words to be constructed. This
is convenient, for example, in searching for the word "edit" if your docu­
ment also contains the word "editor."

ex has a set of options which you can set to tailor it to your liking. One
option which is very useful is the autoindent option that allows the editor
to supply leading white space to align text automatically. You can then use
-D as a backtab and space or tab to move forward to align new code easily.

Miscellaneous useful features include an intelligent join (j) command that
supplies white space between joined lines automatically, commands ,,<"
and ">" which shift groups of lines, and the ability to filter portions of the
buffer through commands such as sort(1).

Invocation Options
The following invocation options are interpreted by ex (previously docu­
mented options are discussed in the NOTES section at the end of this
manual page):

-s

-v
-t tag

-r file

-L

-R

-x

Suppress all interactive-user feedback. This is useful in
processing editor scripts.

Invoke vi

Edit the file containing the tag and position the editor at its
definition.

Edit file after an editor or system crash. (Recovers the ver­
sion of file that was in the buffer when the crash occurred.)

List the names of all files saved as the result of an editor or
system crash.

Readonly mode; the readonly flag is set, preventing
accidental overwriting of the file.

Encryption option; when used, ex simulates an X command
and prompts the user for a key. This key is used to
encrypt and decrypt text using the algorithm of crypt(l).
The X command makes an educated guess to determine
whether text read in is encrypted or not. The temporary
buffer file is encrypted also, using a transformed version of
the key typed in for the -x option. [See crypt(l)]. Also,
see the WARNINGS section at the end of this manual page.

- 2 -

EX(l)

-C

-c command

(Editing Package) EX(l)

Encryption option; the same as the -x option, except that ex
simulates a C command. The C command is like the X
command, except that all text read in is assumed to have
been encrypted.

Begin editing by executing the specified editor command
(usually a search or positioning command).

The file argument indicates one or more files to be edited.

ex States
Command Normal and initial state. Input prompted for by •. Your

line kill character cancels a partial command.

Insert

Visual

Entered by a, i, or c. Arbitrary text may be entered. Insert
state normally is terminated by a line having only "." on
it, or, abnormally, with an interrupt.

Entered by typing vi; terminated by typing Q or \
(control-\).

ex Command Names and Abbreviations
abbrev ab map set se
append a mark ma shell sh
args ar move m source so
change c next n substitute s
copy co number nu unabbrev unab
delete d preserve pre undo u
edit e print . p unmap unm
file f put pu version ve
global g quit q visual vi
insert i read r write w
join j recover rec xit x
list I rewind rew yank ya

ex Commands
forced encryption C heuristic encryption X
resubst & print next CR
rshift > lshift <
scroll D window z
shell escape !

ex Command Addresses
n line n /pat next with pat

current ?pat previous with pat
$ last x-n n before x
+ next x,y x through y

previous 'x marked with x
+n n forward previous context
% 1,$

Initializing options
EXINIT place set's here in environment variable
$HOMEj.exrc editor initialization file
.j.exrc editor initialization file

- 3 -

EX(l) (Editing Package) EX(l)

set x enable option x
set nox disable option x
set x=val give value val to option x
set show changed options
set all show all options
set x? show value of option x

Most useful options and their abbreviations
autoindent ai supply indent
autowrite aw write before changing files
directory dir specify the directory
exrc ex allow vi/ex to read the .exrc in the current

ignorecase
list
magic
modelines

number
paragraphs
redraw
report

scroll
sections
shiftwidth
showmatch
showmode
slowopen
term

window

ic

nu
para

sect
sw
sm
smd
slow

directory. This option is set in the
EXINIT shell variable or in the .exrc file
in the $HOME directory.

ignore case of letters in scanning
print 'I for tab, $ at end
treat. I * special in patterns
first five lines and last five lines executed as

vi/ex commands if they are of the form
ex:command: or vi:command:

number lines
macro names that start paragraphs
simulate smart terminal
informs you if the number of lines modified

by the last command is greater than the
value of the report variable

command mode lines
macro names that start sections
for < >, and input 'D
to) and } as typed
show insert mode in vi
stop updates during insert
specifies to vi the type of terminal

being used (the default is the value
of the environmental variable TERM)

visual mode lines
wrapmargin wm automatic line splitting
wrapscan ws search around end (or beginning) of buffer

Scann]ng pattern formation

$

\<
\>
Istr]
rstr]
Ix-y]
*

beginning of line
end of line
any character
beginning of word
end of word
any character in str
any character not in str
any character between x and y
any number of preceding characters

- 4 -

EX(l) (Editing Package) EX(l)

AUTHOR

FILES

NOTES

vi and ex are based on software developed by The University of California,
Berkeley California, Computer Science Division, Department of Electrical
Engineering and Computer Science.

jusr jlib j exstrings
jusr jlib j exrecover
jusr jlib j expreserve
jusr jlib jterminfo j *
$HOMEj.exrc
.j.exrc
jtmpjExnnnnn
jtmpjRxnnnnn
jusrjpreservejlogin

error messages
recover command
preserve command
describes capabilities of terminals
editor startup file
editor startup file
editor temporary
named buffer temporary
preservation directory
(where login is the user's login)

Several options, although they continue to be supported, have been
replaced in the documentation by options that follow the Command Syntax
Standard [see intro(l)]. The - option has been replaced by -8, a -r option
that is not followed with an option-argument has been replaced by -L, and
+command has been replaced by -c command.

SEE ALSO
crypt(l), ed(l), edit(l), grep(l), sed(l), sort(l), vi(l).

curses(3X), term(4), terminfo(4) in the Programmer's Reference Manual.

User's Guide.

"cursesjterminfo" chapter of the Programmer's Guide.

WARNINGS

BUGS

The encryption options and commands are provided with the Security
Administration Utilities package, which is available only in the United
States.

The z command prints the number of logical rather than physical lines.
More than a screen full of output may result if long lines are present.

File inputjoutput errors do not print a name if the command line -8 option
is used.

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used
before exiting the editor.

Null characters are discarded in input files and cannot appear in resultant
files.

- 5 -

EXPR(l) (Base System) EXPR(l)

NAME
expr - evaluate arguments as an expression

SYNOPSIS
expr arguments

DESCRIPTION
The arguments are taken as an expression. After evaluation, the result is
written on the standard output. Terms of the expression must be separated
by blanks. Characters special to the shell must be escaped. Note that 0 is
returned to indicate a zero value, rather than the null string. Strings con­
taining blanks or other special characters should be quoted. Integer-valued
arguments may be preceded by a unary minus sign. Internally, integers are
treated as 32-bit, 2s complement numbers.

The operators and keywords are listed below. Characters that need to be
escaped are preceded by \. The list is in order of increasing precedence,
with equal precedence operators grouped within {} symbols.

expr \ I expr
returns the first expr if it is neither null nor 0, otherwise returns the
second expr.

expr \& expr
returns the first expr if neither expr is null or 0, otherwise returns O.

expr { =, \>, \>=, \<, \<=, != } expr
returns the result of an integer comparison if both arguments are
integers, otherwise returns the result of a lexical comparison.

expr { +, - } expr
addition or subtraction of integer-valued arguments.

expr { *, I, % } expr
multiplication, division, or remainder of the integer-valued argu­
ments.

expr: expr
The matching operator : compares the first argument with the
second argument which must be a regular expression. Regular
expression syntax is the same as that oJ ed(l), except th'lt all pat­
terns are "anchored" (i.e., begin with) and, therefore, is not a
special character, in that context. Normally, the matching operator
returns the number of characters matched (0 on failure). Alterna­
tively, the \(... \) pattern symbols can be used to return a portion
of the first argument.

- 1 -

EXPR(l) (Base System) EXPR(l)

EXAMPLES
1. a='expr $a + l'

2.

adds 1 to the shell variable a.

'For $a equal to either "/usr/abc/file" or just "file'"
expr $a : '.*/\(.*\)' \ I $a

returns the last segment of a path name (i.e., file). Watch
out for / alone as an argument: expr will take it as the divi­
sion operator (see BUGS below).

3. # A better representation of example 2.
expr / /$a : '.*/\(.*\)'

The addition of the / / characters eliminates any ambiguity
about the division operator and simplifies the whole expres­
sion.

4. expr $VAR : '.*'
returns the number of characters in $V AR.

SEE ALSO
ed(l), sh(l).

DIAGNOSTICS

BUGS

As a side effect of expression evaluation, expr returns the following exit
values:

o
1
2

if the expression is neither null nor 0
if the expression is null or 0
for invalid expressions.

syntax error
non-numeric argument

for operator/operand errors
if arithmetic is attempted on such a string

After argument processing by the shell, expr cannot tell the difference
between an operator and an operand except by the value. If $a is an =, the
command:

expr $a = '='
looks like:

expr

as the arguments are passed to expr (and they will all be taken as the =
operator). The following works:

expr X$a = X=

- 2 -

FACTOR(l) (Base System) FACTOR(l)

NAME
factor - obtain the prime factors of a number

SYNOPSIS
factor [integer]

DESCRIPTION
When you use factor without an argument, it waits for you to ~xe it an
integer. After you give it a positive integer less than or equal to 10 ,it fac­
tors the integer, prints its prime factors the proper number of times, and
then waits for another integer. factor exits if it encounters a zero or any
non-numeric character.

If you invoke factor with an argument, it factors the integer as described
above, and then it exits.

The maximum time to factor an integer is proportional to Vii. factor will
take this time when n is prime or the square of a prime.

DIAGNOSTICS
factor prints the error message, "Ouch," for input out of range or for gar­
bageinput.

- 1 -

FDISK(lM) (Base System) FDISK(lM)

NAME
fdisk - create or modify hard disk partition table

SYNOPSIS
fdisk

DESCRIPTION
This command is used to create and modify the partition table that is put in
the first sector of the hard disk. This table is used by DOS and by the
first-stage bootstrap to identify parts of the disk reserved for different
operating systems, and to identify the partition containing the second-stage
bootstrap (the active partition). The optional argument can be used to
specify the raw device associated with the hard disk; the default value is
/dev /rdsk/OsO.

The program displays the partition table as it exists on the disk, and then
presents a menu allowing the user to modify the table. The menu, ques­
tions, warnings, and error messages are intended to be self-explanatory.

If there is no partition table on the disk, the user is given the option of
creating a default partitioning or specifying the initial table values. The
default partitioning allows 10% of the disk for MS-DOS and 90% for the
UNIX system, and makes the UNIX system partition active. In either case,
when the initial table is created, fdisk also writes out the first-stage bootstrap
code [see hd(7)] along with the partition table. After the initial table is
created, only the table is changed; the bootstrap is not modified.

Menu Options
The following are the menu options given by the fdisk program:

Create a partition
This option allows the user to create a new partition. The max­
imum number of partitions is 4. The program will ask for the type
of the partition (MS-DOS, UNIX system, or other). It will then ask
for the size of the partition as a percentage of the disk. The user
may also enter the letter c at this point, in which case the program
will ask for the starting cylinder number and size of the partition in
cylinders. If a c is not entered, the program will determine the
starting cylinder number where the partition will fit. In either case,
if the partition would overlap an existing partition, or will not fit, a
message is displayed and the program returns to the original menu.

Change Active (Boot from) partition
This option allows the user to specify the partition where the first­
stage bootstrap will look for the second-stage bootstrap, otherwise
known as the active partition.

Delete a partition
This option allows the user to delete a previously created partition.
Note that this will destroy all data in that partition.

Exit This option writes the new version of the table created during this
session with fdisk out to the hard disk, and exits the program.

- 1 -

------~~~~~~~-

FDISK(lM) (Base System) FDISK(lM)

Cancel This option exits without modifying the partition table.

DIAGNOSTICS

FILES

Most messages will be self-explanatory. The following may appear immedi­
ately after starting the program:

Fdisk: cannot open <device>
This indicates that the device name argument is not valid.

Fdisk: unable to get device parameters for device <device>
This indicates a problem with the configuration of the hard disk, or
an error in the hard disk driver.

Fdisk: error reading partition table
This indicates that some error occurred when trying initially to read
the hard disk. This could be a problem with the hard disk con­
troller or driver, or with the configuration of the hard disk.

This message may appear after selecting the Exit option from the menu.

Fdisk: error writing boot record
This indicates that some error occurred when trying to write the
new partition table out to the hard disk. This could be a problem
with the hard disk controller, the disk itself, the driver, or the confi­
guration of the hard disk.

/dev /rdsk/OsO

SEE ALSO
mkpart(lM), disk(7), hd(7).

WARNING
Compatable with MS-DOS Version 3.2.

- 2 -

FF(lM) (Base System) FF(lM)

NAME
ff - list file names and statistics for a file system

SYNOPSIS
/etc/ff [options] special

DESCRIPTION
The ff command reads the i-list and directories of the special file, assuming
it is a file system. I-node data is saved for files which match the selection
criteria. Output consists of the path name for each saved i-node, plus other
file information requested Using the print options below. Output fields are
positional. The output is produced in i-node order; fields are separated by
tabs. The default line produced by ff is:

path-name i-number

With all options enabled, output fields would be:

path-name i-number size uid

The argument n in the option descriptions that follow is used as a decimal
integer (optionally signed), where +n means more than n, -n means less
than n, and n means exactly n. A day is defined as a 24-hour period.

-I Do not print the i-node number after each path name.

-1 Generate a supplementary list of all path names for multiply-

-p prefix

-8

-u
-a n

-mn
-c n

-n file

linked files.

The specified prefix will be added to each generated path
name. The default is • (dot).

Print the file size, in bytes, after each path name.

Print the owner's login name after each path name.

Select if the i-node has been accessed in n days.

Select if the i-node has been modified in n days.

Select if the i-node has been changed in n days.

Select if the i-node has been modified more recently than the
argument file.

-i i-node-list Generate names for only those i-nodes specified in i-node-list.

SEE ALSO

BUGS

find(l), ncheck(lM).

If the -1 option is not specified, only a single path name out of all possible
ones is generated for a multiply-linked i-node. If -1 is specified, all possible
names for every linked file on the file system are included in the output.
However, no selection criteria apply to the names generated.

- 1 -

FGREP(l) (Editing Package) FGREP(l)

NAME
fgrep - search a file for a character string

SYNOPSIS
fgrep [options] string [file ...]

DESCRIPTION
The fgrep (fast grep) command seaches files for a character string and prints
all lines that contain that string. fgrep is different from grep(l) and egrep(l)
because it searches for a string, instead of searching for a pattern that
matches an expression. It uses a fast and compact algorithm.

The characters $, *, [, A, I, (,), and \ are interpreted literally by fgrep, that
is, fgrep does not recognize full regular expressions as does egrep. Since
these characters have special meaning to the shell, it is safest to enclose the
entire string in single quotes' ... '.

If no files are specified, fgrep assumes standard input. Normally, each line
found is copied to the standard output. The file name is printed before each
line found if there is more than one input file.

Command line options are:

-b Precede each line by the block number on which it was found. This
can be useful in locating block numbers by context (first block is 0).

-c Print only a count of the lines that contain the pattern.
-i Ignore upper/lower case distinction during comparisons.
-1 Print the names of files with matching lines once, separated by new-

lines. Does not repeat the names of files when the pattern is found
more than once.

-n Precede each line by its line number in the file (first line is 1).
-v Print all lines except those that contain the pattern.
-x Print only lines matched entirely.
-e speciaL..string

Search for a special string (string begins with a -).
-f file Take the list of strings from file.

SEE ALSO
ed(l), egrep(l), grep(l), sed(l), sh(l).

DIAGNOSTICS

BUGS

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or
inaccessible files (even if matches were found).

Ideally there should be only one grep command, but there is not a single
algorithm that spans a wide enough range of space-time tradeoffs. Lines
are limited to BUFSIZ characters; longer lines are truncated. BUFSIZ is
defined in /usr/inc1ude/stdio.h.

- 1 -

FILE(l) (Base System) FILE(l)

NAME
file - determine file type

SYNOPSIS
file [-c] [-f ffile] [-m mfile] arg ...

DESCRIPTION

FILES

The file command performs a series of tests on each argument in an attempt
to classify it. If an argument appears to be ASCII, file examines the first 512
bytes and tries to guess its language. If an argument is an executable a.out,
file will print the version stamp, provided it is greater than O.

-c The -c option causes file to check the magic file for format errors.
This validation is not normally carried out for reasons of efficiency.
No file typing is done under -c.

-f If the -f option is given, the next argument is taken to be a file con-
taining the names of the files to be examined.

-m The -m option instructs file to use an alternate magic file.

The file command uses the file /etc/magic to identify files that have some
sort of magic number, that is, any file containing a numeric or string con­
stant that indicates its type. Commentary at the beginning of /etc/magic
explains its format.

/etc/magic

SEE ALSO
filehdr(4) in the Programmer's Reference Manual.

- 1 -

-----~---------~~ ---

FIND(l) (Editing Package) FIND(l)

NAME
find - find files

SYNOPSIS
find path-name-list expression

DESCRIPTION
The find command recursively descends the directory hierarchy for each
path name in the path-name-list (that is, one or more path names) seeking
files that match a Boolean expression written in the primaries given below.
In the descriptions, the argument n is used as a decimal integer where +n
means more than n, -n means less than n, and n means exactly n. Valid
expressions are:

-name file True if file matches the current file name. Normal shell
argument syntax may be used if escaped (watch out for [,
? and *).

[-perm] -onum True if the file permission flags exactly match the octal
number onum [see chmod(l)]. If onum is prefixed by a
minus sign, only the bits that are set in onum are com­
pared with the file permission flags, and the expression
evaluates true if they match.

-type c True if the type of the file is c, where c is b, c, d, p, or f
for block special file, character special file, directory, fifo
(a.k.a named pipe), or plain file respectively.

-links n True if the file has n links.

-user uname True if the file belongs to the user uname. If uname is
numeric and does not appear as a login name in the
/etc/passwd file, it is taken as a user ID.

-group gname True if the file belongs to the group gname. If gname is
numeric and does not appear in the /etc/group file, it is
taken as a group ID.

-size nrc] True if the file is n blocks long (512 bytes per block). If n
is followed by a c, the size is in characters.

-atime n True if the file has been accessed in n days. The access
time of directories in path-name-list is changed by find
itself.

-mtime n True if the file has been modified in n days.

-clime n True if the file has been changed in n days.

-exec cmd True if the executed cmd returns a zero value as exit
status. The end of cmd must be punctuated by an escaped
semicolon. A command argument {} is replaced by the
current path name.

-ok cmd Like -exec except that the generated command line is
printed with a question mark first and is executed only if
the user responds by typing y.

- 1 -

FIND(l)

-print

-cpio device

-newer file

-depth

-mount

-local

(expression)

(Editing Package) FIND(l)

Always true; causes the current path name to be printed.

Always true; write the current file on device in cpio (1) for­
mat (5120-byte records).

True if the current file has been modified more recently
than the argument file.

Always true; causes descent of the directory hierarchy to
be done so that all entries in a directory are acted on
before the directory itself. This can be useful when find is
used with cpio(1) to transfer files that are contained in
directories without write permission.

Always true; restricts the search to the file system contain­
ing the directory specified, or if no directory was specified,
the current directory.

True if the file physically resides on the local system.

True if the parenthesized expression is true (parentheses
are special to the shell and must be escaped).

The primaries may be combined using the following operators (in order of
decreasing precedence):

(1) The negation of a primary (! is the unary not operator).

(2) Concatenation of primaries (the and operation is implied by the juxta­
position of two primaries).

(3) Alternation of primaries (-0 is the or operator).

EXAMPLE

FILES

To remove all files named a.out or *.0 that have not been accessed for a
week:

find / \(-name a.out -0 -name '*.0' \) -atime +7 -exec rm {} \;

/etc/passwd, /etc/group

SEE ALSO

BUGS

chmod(1), cpio(l), sh(1), test(1).
stat(2), umask(2), fs(4) in the Programmer's Reference Manual.

find / -depth always fails with the message: "find: stat failed: : No such
file or directory".

c 2 -

FORMAT(lM) FORMAT(lM)

NAME
format - format floppy disk tracks

SYNOPSIS
/bin/format [-vVE] [-f first] [-1 last] [-i interleave] device[t]

DESCRIPTION

FILES

The format command formats floppy disks. Unless otherwise specified, for­
matting starts at track 0 and continues until an error is returned at the end
of a partition.

The -f and -1 options specify the first and last track to be formatted. The
default interleave of 4 may be modified by using the -i option. Device must
specify a raw (character) floppy device. The t indicates the entire disk.
Absence of this letter indicates that the first track of the diskette cannot be
accessed.

-v verbose.

-v verify. After tracks are formatted, a random sector is chosen and
a write of test data is done into it. The sector is then read back
and a compare is made.

-E exhausive verify. Every sector is verified by write/read/compare.

/dev /rdsk/* raw device for partition to be formatted

SEE ALSO
mkpart(lM), fd(7).

- 1 -

FSBA(lM) (2K File System) FSBA(lM)

NAME
fsba - file system block analyzer

SYNOPSIS
jetcjfsba [-b targeLblock-Size 1 file-system 1 [file-system2 ... 1

DESCRIPTION
The fsba command determines the number of additional 512-byte sectors
required to store the data from an existing file system in a new file system
with a different lOgical block size. Each file-system listed on the command
line refers to an existing file system and should be specified by device name
(e.g., jdev jrdskjOs2).

The targeLbloclLsize specifies the logical block size in bytes of the new file
system. Valid target block sizes are 512, 1024, and 2048. Default target
block size is 1024. A block size of 2048 is supported only if the 2K file sys­
tem package is installed.

The fsba command prints information about how many sectors are allocated
to store the data in the old (existing) file system and how many would be
required for a new file system with the specified logical block size. It also
prints out the number of allocated and free i-nodes for the existing file sys­
tem.

If the number of free sectors listed for the new file system is negative, the
data will not fit in the new file system unless the new file system is larger
than the existing file system. The new file system must be made at least as
large as the number of sectors listed by fsba as allocated for the new file
system. The maximum size of the new file system is limited by the disk
partition used for the new file system.

Note that it is possible to specify a targeLblocL . ..size that is smaller than the
logical block size of the existing file system. In this case the new file sys­
tem would require fewer sectors to store the data.

SEE ALSO
mkfs(lM).

- 1 -

FSCK(lM) (Base System) FSCK(lM)

NAME
fsck, dfsck - check and repair file systems

SYNOPSIS
jetcjfsck [-y] [-n] [-sx] [-Sx] [-t file] [-q] [-D) [-f] [-b) [file-systems]
jetcjdfsck [options 1] fsys1 ... - [options2] fsys2 '"

DESCRIPTION
fsck

The fsck command audits and interactively repairs inconsistent conditions
for file systems. If the file system is found to be consistent, the number of
files, blocks used, and blocks free are reported. If the file system is incon­
sistent, the user is prompted for concurrence before each correction is
attempted. It should be noted that most corrective actions will result in
some loss of data. The amount and severity of data loss may be determined
from the diagnostic output. The default action for each correction is to wait
for the user to respond yes or no. If the user does not have write permis­
sion, fsck defaults to a -n action.

The following options are accepted by fsck.

-y Assume a yes response to all questions asked by fsck.

-n Assume a no response to all questions asked by fsck; do not open the
file system for writing.

-sX Ignore the actual free list and (unconditionally) reconstruct a new one
by rewriting the super block of the file system. The file system
should be unmounted while this is done; if this is not pOSSible, care
should be taken that the system is quiescent and that it is rebooted
immediately afterwards. This precaution is necessary so that the old,
bad, in-core copy of the super block will not continue to be used, or
written on the file system.

The -sX option allows for creating an optimal free-list organization.

If X is not given, the values used when the file system was created
are used. The format of X is cylinder size:gap size.

-SX Conditionally reconstruct the free list. This option is like -sX above
except that the free list is rebuilt only if there were no discrepancies
discovered in the file system. Using -S will force a "no response" to
all questions asked by fsck. This option is useful for forcing free list
reorganization on uncontaminated file systems.

-t If fsck cannot obtain enough memory to keep its tables, it uses a
scratch file. If the -t option is specified, the file named in the next
argument is used as the scratch file, if needed. Without the -t flag,
fsck will prompt the user for the name of the scratch file. The file
chosen should not be on the file system being checked, and if it is
not a special file or did not already exist, it is removed when fsck
completes.

-q Quiet fsck. Do not print size-check messages. Unreferenced fifos will
silently be removed. If fsck requires it, counts in the super block will
be automatically fixed and the free list salvaged.

- 1 -

FSCK(lM) (Base System) FSCK(lM)

-0 Directories are checked for bad blocks. Useful after system crashes.

-f Fast check. Check block and sizes and check the free list. The free
list will be reconstructed if it is necessary.

-b Reboot. If the file system being checked is the root file system and
modifications have been made, then either remount the root file sys­
tem or reboot the system. A remount is done only if there was minor
damage.

If no file-systems are specified, fsck will read a list of default file systems
from the file /etc/checklist.

Inconsistencies checked are as follows:

1.
2.

3.
4.

5.
6.
7.

8.

9.
10.

Blocks claimed by more than one i-node or the free list.
Blocks claimed by an i-node or the free list outside the range
of the file system.
Incorrect link counts.
Size checks:

Incorrect number of blocks.
Directory size not 16-byte aligned.

Bad i-node format.
Blocks not accounted for anywhere.
Directory checks:

File pointing to unallocated i-node.
I-node number out of range.

Super Block checks:
More than 65536 i-nodes.
More blocks for i-nodes than there are in the file sys­
tem.

Bad free block list format.
Total free block and/or free i-node count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with the
user's concurrence, reconnected by placing them in the lost+found direc­
tory, if the files are nonempty. The user will be notified if the file or direc­
tory is empty or not. Empty files or directories are removed, as long as the
-n option is not specified. fsck will force the reconnection of nonempty
directories. The name assigned is the i-node number. The only restriction
is that the directory lost+found must preexist in the root of the file system
being checked and must have empty slots in which entries can be made.
This is accomplished by making lost+found, copying a number of files to
the directory, and then removing thein (before fsck is executed).

Checking the raw device is almost always faster and should be used with
everything but the root file system.

dfsck
The dfsck command allows two file system checks on two different drives
simultaneously. optionsl and options2 are used to pass options to fsck for
the two sets of file systems. A - is the separator between the file system
groups.

- 2 -

FSCK(lM) (Base System) FSCK(lM)

FILES

The dfsck command permits a user to interact with two fsck programs at
once. To aid in this, dfsck will print the file system name for each message
to the user. When answering a question from dfsck, the user must prefix the
response with a 1 or a 2 (indicating that the answer refers to the first or
second file system group).

/etc/checklist contains default list of file systems to check.

SEE ALSO
mkfs(lM), ncheck(lM), crash(lM).
uadmin(2), checklist(4), fs(4) in the Programmer's Reference Manual.

BUGS
I-node numbers for. and •. in each directory are not checked for validity.

- 3 -

FSDB(lM) (Base System) FSDB(lM)

NAME
fsdb - file system debugger

SYNOPSIS
/etc/fsdb special [-]

DESCRIPTION
The fsdb command can be used to patch up a damaged file system after a
crash. It has conversions to translate block and i-numbers into their
corresponding disk addresses. Also included are mnemonic offsets to access
different parts of an i-node. These greatly simplify the process of correcting
control block entries or descending the file system tree.

The fsdb command contains several error-checking routines to verify i-node
and block addresses. These can be disabled if necessary by invoking fsdb
with the optional - argument or by the use of the 0 symbol. (fsdb reads
the i-size and f-size entries from the super block of the file system as the
basis for these checks.)

Numbers are considered decimal by default. Octal numbers must be pre­
fixed with a zero. During any assignment operation, numbers are checked
for a possible truncation error due to a size mismatch between source and
destination.

The fsdb command reads a block at a time and will therefore work with raw
as well as block I/O. A buffer management routine is used to retain com­
monly used blocks of data in order to reduce the number of read system
calls. All assignment operations result in an immediate write-through of the
corresponding block.

The symbols recognized by fsdb are:
absolute address
i
b
d
+,-
q
>,<

=+

="
o
P
f
B
W
D

convert from i-number to i-node address
convert to block address
directory slot offset
address arithmetic
quit
save, restore an address
numerical assignment
incremental assignment
decremental assignment
character string assignment
error checking flip flop
general print facilities
file print facility
byte mode
word mode
double word mode
escape to shell

The print facilities generate a formatted output in various styles. The
current address is normalized to an appropriate boundary before printing
begins. It advances with the printing and is left at the address of the last
item printed. The output can be terminated at any time by typing the

- 1 -

FSDB(lM) (Base System) FSDB(lM)

delete character. If a number follows the p symbol, that many entries are
printed. A check is made to detect block boundary overflows since logically
sequential blocks are generally not physically sequential. If a count of zero
is used, all entries to the end of the current block are printed. The print
options available are:

i
d
o
e
c
b

print as i-nodes
print as directories
print as octal words
print as decimal words
print as characters
print as octal bytes

The f symbol is used to print data blocks associated with the current i­
node. If followed by a number, that block of the file is printed. (Blocks are
numbered from zero.) The desired print option letter follows the block
number, if present, or the f symbol. This print facility works for small as
well as large files. It checks for special devices and that the block pointers
used to find the data are not zero.

Dots, tabs, and spaces may be used as function delimiters but are not neces­
sary. A line with just a new-line character will increment the current
address by the size of the data type last printed. That is, the address is set
to the next byte, word, double word, directory entry, or i-node, allowing the
user to step through a region of a file system. Information is printed in a
format appropriate to the data type. Bytes, words, and double words are
displayed with the octal address followed by the value in octal and decimal.
A .8 or .0 is appended to the address for byte and double word values,
respectively. Directories are printed as a directory slot offset followed by
the decimal i-number and the character representation of the entry name.
I-nodes are printed with labeled fields describing each element.

The following mnemonics are used for i-node examination and refer to the
current working i-node:

EXAMPLES
386i

In=4

In=+1

fc

md mode
In link count
uid user ID number
gid group ID number
sz file size
a# data block numbers (0 - 12)
at access time
mt modification time
maj major device number
min minor device number

prints i-number 386 in an i-node format. This now
becomes the current working i-node.

changes the link count for the working i-node to 4.

increments the link count by 1.

prints, in ASCII, block zero of the file associated with the
working i-node.

- 2 -

FSDB(lM) (Base System) FSDB(lM)

2i.fd prints the first 32 directory entries for the root i-node of
this file system.

d5i.fc changes the current i-node to that associated with the 5th
directory entry (numbered from zero) found from the
above command. The first logical block of the file is then
printed in ASCII.

512B.pOo prints the super block of this file system in octal.

2i.aOb.d7=3 changes the i-number for the seventh directory slot in the
root directory to 3. This example also shows how several
operations can be combined on one command line.

d7.nm="name" changes the name field in the directory slot to the given
string. Quotes are optional when used with nm if the first
character is alphabetic.

a2b.pOd prints the third block of the current i-node as directory
entries.

SEE ALSO
fsck(lM).
dir(4), fs(4) in the Programmer's Reference Manual.

- 3 -

FSSTAT(lM) (Base System) FSSTAT(lM)

NAME
fsstat - report file system status

SYNOPSIS
jetcjfsstat speciaLfile

DESCRIPTION
The fsstat command reports on the status of the file system on speciaLfile.
During startup, this command is used to determine if the file system needs
checking before it is mounted. fsstat succeeds if the file system is
unmounted and appears okay. For the root file system, it succeeds if the
file system is active and not marked bad.

SEE ALSO
fs(4) in the Programmer's Reference Manual.

DIAGNOSTICS
The command has the following exit codes:

o -- the file system is not mounted and appears okay,
(except for root where 0 means mounted and okay).

1 -- the file system is not mounted and needs to be checked.
2 -- the file system is mounted.
3 -- the command failed.

- 1 -

FSTYP(lM) (Base System) FSTYP(lM)

NAME
fstyp - determine file system identifier

SYNOPSIS
fstyp special

DESCRIPTION
The fstyp command allows the user to determine the file system identifier of
mounted or unmounted file systems using heuristic programs. The file sys­
tem type is required by mount(2) and sometimes by mount(lM) to mount file
systems of different types.

The directory /etc/fstyp.d contains a program for each file system type to
be checked; each of these programs applies some appropriate heuristic to
determine whether the supplied special file is of the type for which it
checks. If it is, the program prints on standard output the usual file-system
identifier for that type and exits with a return code of 0; otherwise it prints
error messages on standard error and exits with a non-zero return code.
fstyp runs the programs in /etc/fstyp.d in alphabetical order, passing special
as an argument; if any program succeeds, its file-system type identifier is
printed and fstyp exits immediately. If no program succeeds, fstyp prints
"UnknoWIl-fstyp" to indicate failure.

WARNING
The use of heuristics implies that the result of fstyp is not guaranteed to be
accurate.

SEE ALSO
mount(lM).
mount(2), sysfs(2) in the Programmer's Reference Manual.

- 1 -

FUMOUNT(lM) (Remote File Sharing Utilities) FUMOUNT(lM)

NAME
fumount - forced unmount of an advertised resource

SYNOPSIS
fumount [-w sec] resource

DESCRIPTION
The fumount command unadvertises resource and disconnects remote access
to the resource. The -w sec causes a delay of sec seconds prior to the execu­
tion of the disconnect.

When the forced unmount occurs, an administrative shell script is started on
each remote computer that has the resource mounted (fusr/hin/rfuadmin).
If a grace period of seconds is specified, rfuadmin is started with the
fuwarn option. When the actual forced unmount is ready to occur, rfuad­
min is started with the fumount option. See the rfuadmin(lM) man page
for information on the action taken in response to the forced unmount.

This command is restricted to the super-user.

ERRORS
If resource (1) does not physically reside on the local machine, (2) is an
invalid resource name, (3) is not currently advertised and is not remotely
mounted, or (4) the command is not run with super-user privileges, an error
message will be sent to standard error.

SEE ALSO
adv(lM), mount(lM), rfuadmin(lM), rfudaemon(lM), rmount(lM),
unadv(lM).

- 1 -

FUSAGE(lM) (Remote File Sharing Utilities) FUSAGE(lM)

NAME
fusage - disk access pro filer

SYNOPSIS
fusage [[mount-point] I [advertiseLresource] I [blocL.speciaLdevice] [...]]

DESCRIPTION
When used with no options, fusage reports block i/o transfers, in kilobytes,
to and from all locally mounted file systems and advertised Remote File
Sharing resources on a per client basis. The count data are cumulative since
the time of the mount. When used with an option, fusage reports on the
named file system, advertised resource, or block special device.

The report includes one section for each file system and advertised resource
and has one entry for each machine that has the directory remotely
mounted, ordered by decreasing usage. Sections are ordered by device
name; advertised resources that are not complete file systems will immedi­
ately follow the sections for the file systems they are in.

SEE ALSO
adv(lM), mount(lM), df(lM), crash(lM).

- 1 -

FUSER(lM) (Base System) FUSER(lM)

NAME
fuser - identify processes using a file or file structure

SYNOPSIS
jetejfuser [-ku] files I resources [-] [[-ku] files I resources]

DESCRIPTION

FILES

The fuser command outputs the process IDs of the processes that are using
the files or remote resources specified as arguments. Each process ID is fol­
lowed by a letter code, interpreted as follows: if the process is using the file
as 1. its current directory, the code is c; 2. the parent of its current directory
(only when the file is being used by the system), the code is p; or 3. its root
directory, the code is r. For block-special devices with mounted file sys­
tems, all processes using any file on that device are listed. For remote
resource names, all processes using any file associated with that remote
resource (Remote File Sharing) are reported. (fuser cannot use the mount
point of the remote resource; it must use the resource name.) For all other
types of files (text files, executables, directories, devices, etc.) only the
processes using that file are reported.

The following options may be used with fuser:

-u the user login name, in parentheses, also follows the process ID.

-k the SIGKILL signal is sent to each process. Since this option
spawns kills for each process, the kill messages may not show up
immediately [see kill(2)].

If more than one group of files are specified, the options may be respecified
for each additional group of files. A lone dash cancels the options currently
in force; then, the new set of options applies to the next group of files.

The process IDs are printed as a single line on the standard output,
separated by spaces and terminated with a single new line. All other output
is written on standard error.

You cannot list processes using a particular file from a remote resource
mounted on your machine. You can only use the resource name as an
argument.

Any user with permission to read jdev jkmem and jdev jmem can use
fuser. Only the super-user can terminate another user's process

junix
jdevjkmem
jdevjmem

for system name list
for system image
also for system image

SEE ALSO
mount(lM), ps(l).
kill(2), signal(2) in the Programmer's Reference Manual.

- 1 -

FWTMP(lM) FWTMP(lM)

NAME
fwtmp, wtmpfix - manipulate connect accounting records

SYNOPSIS
/usr/lib/aecl/fwtmp [-ie]
/usr/lib/aecl/wtmpfix [fIles]

DESCRIPTION
fwtmp

[wtmp reads from the standard input and writes to the standard output, con­
verting binary records of the type found in wtmp to formatted ASCII
records. The ASCII version is useful to enable editing, via ed(l), bad records
or general purpose maintenance of the fIle.

The argument -ie is used to denote that input is in ASCII form, and output
is to be written in binary form.

wtmpfix

FILES

wtmpfix examines the standard input or named fIles in wtmp format,
corrects the time/date stamps to make the entries consistent, and writes to
the standard output. A - can be used in place of files to indicate the stan­
dard input. If time/date corrections are not performed, acctcon(lM) will
fault when it encounters certain date-change records.

Each time the date is set, a pair of date change records are written to
/ete/wtmp. The first record is the old date denoted by the string old time
placed in the line field and the flag OLD_TIME placed in the type field of
the <utmp.h> structure. The second record specifies the new date and is
denoted by the string new time placed in the line field and the flag
NEW_TIME placed in the type field. wtmpfix uses these records to syn­
chronize all time stamps in the fIle.

In addition to correcting time/date stamps, wtmpfix will check the validity
of the name field to ensure that it consists solely of alphanumeric characters
or spaces. If it encounters a name that is considered invalid, it will change
the login name to INVALID and write a diagnostic to the standard error. In
this way, wtmpfix reduces the chance that acctcon(lM) will fail when pro­
cessing connect accounting records.

/etc/wtmp

SEE ALSO
acct(lM), acctcms(lM), acctcom(l), acctcon(lM), acctmerg(lM), acctprc(lM),
acctsh(lM), ed(l), runacct(lM).

acct(2), acct(4), utmp(4) in the Programmer's Reference Manual.

- 1 -

GETOPT(l) (Base System) GETOPT(l)

NAME
getopt - parse command options

SYNOPSIS
set -- 'getopt optstring $*'

DESCRIPTION
WARNING: Start using the new command getopts(l) in place of getopt(l).
getopt(l) will not be supported in the next major release. For more infor­
mation, see the WARNINGS section, below.

The getopt command is used to break up options in command lines for easy
parsing by shell procedures and to check for legal options. optstring is a
string of recognized option letters [see getopt(3C)]; if a letter is followed by a
colon, the option is expected to have an argument which may or may not
be separated from it by white space. The special option -- is used to del­
imit the end of the options. If it is used explicitly, getopt will recognize it;
otherwise, getopt will generate it; in either case, getopt will place it at the
end of the options. The positional parameters ($1 $2 ...) of the shell are
reset so that each option is preceded by a - and is in its own positional
parameter; each option argument is also parsed into its own positional
parameter.

EXAMPLE
The following code fragment shows how one might process the arguments
for a command that can take the options a or b, as well as the option 0,

which requires an argument:

set -- 'getopt abo: $*'
if [$? 1= 0]
then

fi

echo $USAGE
exit 2

for i in $*
do

case
-a I
-0)
--)
esac

done

$i in
-b) FLAG=$i; shift;;

OARG=$2; shift 2;;
shift; break;;

This code will accept any of the following as equivalent:

cmd -aoarg file file

SEE ALSO

cmd -a -0 arg file file
cmd -oarg -a file file
cmd -a -oarg -- file file

getopts(l), sh(l).
getopt(3C) in the Programmer's Reference Manual.

- 1 -

GETOPT(l) (Base System) GETOPT(l)

DIAGNOSTICS
The getopt command prints an error message on the standard error when it
encounters an option letter not included in optstring.

WARNINGS
The getopt(1) command does not support the part of Rule 8 of the com­
mand syntax standard [see intro(1)] that permits groups of option-arguments
following an option to be separated by white space and quoted. For exam­
ple,

cmd -a -b -0 "xxx z yy" file

is not handled correctly. To correct this deficiency, use the new command
getopts (1) in place of getopt (1).

getopt (1) will not be supported in the next major release. For this release a
conversion tool has been provided, getoptcvt. For more information about
getopts and getoptcvt, see the getopts (1) manual page.

If an option that takes an option-argument is followed by a value that is the
same as one of the options listed in optstring (referring to the earlier EXAM­
PLE section, but using the follOwing command line: cmd - 0 - a f i 1 e),
getopt will always treat -a as an option-argument to -0; it will never recog­
nize -a as an option. For this case, the for loop in the example will shift
past the file argument.

- 2 -

GETOPTS(l) (Base System) GETOPTS(l)

NAME
getopts, getoptcvt - parse command options

SYNOPSIS
getopts optstring name [arg ...]

/usr/lib/getoptcvt [-b] file

DESCRIPTION
The getopts command is used by shell procedures to parse positional param­
eters and to check for legal options. It supports all applicable rules of the
command syntax standard [see Rules 3-10, intro(1)]. It should be used in
place of the getopt(1) command. (See the WARNING, below.)

optstring must contain the option letters the command using getopts will
recognize; if a letter is followed by a colon, the option is expected to have
an argument, or group of arguments, which must be separated from it by
white space.

Each time it is invoked, getopts will place the next option in the shell vari­
able name and the index of the next argument to be processed in the shell
variable OPTIND. Whenever the shell or a shell procedure is invoked,
OPTIND is initialized to 1.

When an option requires an option-argument, getopts places it in the shell
variable OPTARG.

If an illegal option is encountered, ? will be placed in name.

When the end of options is encountered, getopts exits with a non-zero exit
status. The special option "--" may be used to delimit the end of the
options.

By default, getopts parses the positional parameters. If extra arguments (arg
...) are given on the getopts command line, getopts will parse them instead.

The jusr jlib jgetoptcvt command reads the shell script in file, converts it to
use getopts(1) instead of getopt(1}, and writes the results on the standard
output.

-b the results of running jusrjlibjgetoptcvt will be portable to earlier
releases of the UNIX system. jusrjlibjgetoptcvt modifies the shell
script in file so that when the resulting shell script is executed, it
determines at run time whether to invoke getopts(1) or getopt(1).

So all new commands will adhere to the command syntax standard
described in intro (1), they should use getopts (1) or getopt (3C) to parse posi­
tional parameters and check for options that are legal for that command (see
WARNINGS, below).

- 1 -

GETOPTS(l) (Base System) GETOPTS(l)

EXAMPLE
The following fragment of a shell program shows how one might process
the arguments for a command that can take the options a or b, as well as
the option 0, which requires an option-argument:

while getopts abo: c
do

done

case
a I
0)

'\?)

esac

$c
b)

in
FLAG=$C; ;
OARG=$OPTARG; ;
echo $USAGE
exit 2 • • , ,

shift 'expr $OPTIND - l'

This code will accept any of the following as equivalent:

cmd -a -b -0 "xxx Z YY" file
cmd -a -b -0 "xxx Z YY" file
cmd -ab -0 xxx,z,YY file
cmd -ab -0 "xxx Z YY" file
cmd -0 xXX,Z,YY -b -a file

SEE ALSO
intro(l), sh(l).
getopt(3C) in the Programmer's Reference Manual.
UNIX System V Release 3.0 Release Notes.

WARNING
Although the following command syntax rule [see intro(l)] relaxations are
permitted under the current implementation, they should not be used
because they may not be supported in future releases of the system. As in
the EXAMPLE section above, a and b are options, and the option 0 requires
an option-argument:

cmd -aboxxx f i 1 e (Rule 5 violation: options with
option-arguments must not be grouped with other options)

cmd -ab -oxxx f i 1 e (Rule 6 violation: there must be
white space after an option that takes an option-argument)

Changing the value of the shell variable OPTIND or parsing different sets of
arguments may lead to unexpected results.

DIAGNOSTICS
getopts prints an error message on the standard error when it encounters an
option letter not included in optstring.

- 2 -

GETTY(lM) (Base System) GETTY(lM)

NAME
getty - set terminal type, modes, speed, and line discipline

SYNOPSIS
jetejgetty [-h 1 [-t timeout 1 line [speed [type [linedisc 1 1 1
jetejgetty -e file

DESCRIPTION
The getty command is a program that is invoked by init(lM). It is the
second process in the series, (init-getty-Iogin-shell) that ultimately connects a
user with the UNIX system. It can only be executed by the super-user; that
is, a process with the user-ID of root. Initially getty prints the login mes­
sage field for the entry it is using from jetejgettydefs. getty reads the
user's login name and invokes the login(l) command with the user's name
as argument. While reading the name, getty attempts to adapt the system to
the speed and type of terminal being used. It does this by using the options
and arguments specified.

Line is the name of a tty line in jdev to which getty is to attach itself. getty
uses this string as the name of a file in the jdev directory to open for read­
ing and writing. Unless getty is invoked with the -h flag, getty will force a
hangup on the line by setting the speed to zero before setting the speed to
the default or specified speed. The -t flag plus timeout (in seconds), speci­
fies that getty should exit if the open on the line succeeds and no one types
anything in the sp,ecified number of seconds.

Speed, the optional second argument, is a label to a speed and tty definition
in the file jetejgettydefs. This definition tells getty at what speed to ini­
tially run, what the login message should look like, what the initial tty set­
tings are, and what speed to try next should the user indicate that the speed
is inappropriate (by typing a <break> character). The default speed is 300
baud.

Type, the optional third argument, is a character string describing to getty
what type of terminal is connected to the line in question. getty recognizes
the following types:

none
ds40-1
tektronix,tek
vt61
vt100
hp45
clOO

default
DATASPEED terminal 40/1
TEKTRONIX
Digital Equipment vt61
Digital Equipment vt100
Hewlett-Packard 45
Concept 100

The default terminal is none; i.e., any crt or normal terminal unknown to
the system. Also, for terminal type to have any meaning, the virtual termi­
nal handlers must be compiled into the operating system. They are avail­
able, but not compiled in the default condition.

Linedisc, the optional fourth argument, is a character string describing which
line discipline to use in communicating with the terminal. Again the hooks
for line diSciplines are available in the operating system but there is only
one presently available, the default line discipline, LDISCO.

- 1 -

GETTY(lM) (Base System) GETTY(lM)

FILES

When given no optional arguments, getty sets the speed of the interface to
300 baud, specifies that raw mode is to be used (awaken on every charac­
ter), that echo is to be suppressed, either parity allowed, new-line characters
will be converted to carriage return-line feed, and tab expansion performed
on the standard output. It types the login message before reading the user's
name a character at a time. If a null character (or framing error) is received,
it is assumed to be the result of the user pushing the "break" key. This will
cause getty to attempt the next speed in the series. The series that getty tries
is determined by what it finds in /etc/gettydefs.

After the user's name has been typed in, it is terminated by a new-line or
carriage-return character. The latter results in the system being set to treat
carriage returns appropriately [see ioctl(2»).

The user's name is scanned to see if it contains any lower case alphabetic
characters; if not, and if the name is non-empty, the system is told to map
any future upper case characters into the corresponding lower case charac­
ters.

Finally, login is exec'd with the user's name as an argument. Additional
arguments may be typed after the login name. These are passed to login,
which will place them in the environment [see login(l»).

A check option is provided. When getty is invoked with the -c option and
file, it scans the file as if it were scanning /etc/gettydefs and prints out the
results to the standard output. If there are any unrecognized modes or
improperly constructed entries, it reports these. If the entries are correct, it
prints out the values of the various flags. See ioctl (2) to interpret the
values. Note that some values are added to the flags automatically.

/ etc / gettydefs

SEE ALSO

BUGS

ct(lC), init(lM), login(l), tty(7).
ioctl(2), gettydefs(4), inittab(4) in the Programmer's Reference Manual.

While getty understands simple single character quoting conventions, it is
not possible to quote certain special control characters used by gelty. AThus,
you cannot log in via getty and type a #, @' /, !, _, backspace, U, D, or
& as part of your login name or arguments. getty uses them to determine
when the end of the line has been reached, which protocol is being used,
and what the erase character is. They will always be interpreted as having
their special meaning.

- 2 -

GRAPH(lG) (Base System) GRAPH(lG)

NAME
graph - draw a graph

SYNOPSIS
graph [options]

DESCRIPTION
The graph command with no options takes pairs of numbers from the stan­
dard input as abscissas and ordinates of a graph. Successive points are con­
nected by straight lines. The graph is encoded on the standard output for
display by the tp/ot(IG) filters.

If the coordinates of a point are followed by a non-numeric string, that
string is printed as a label beginning on the point. Labels may be sur­
rounded with quotes ", in which case they may be empty or contain blanks
and numbers; labels never contain new-lines.

The following options are recognized, each as a separate argument:

-a Supply abscissas automatically (they are missing from the input);
spacing is given by the next argument (default 1). A second
optional argument is the starting point for automatic abscissas

-b
-c

-g

-1
-m

-8
-x [1]

-y [1]
-h
-w
-r
-u
-t

(default 0 or lower limit given by -x).
Break (disconnect) the graph after each label in the input.
Character string given by next argument is default label for each
point.
Next argument is grid style, 0 no grid, 1 frame with ticks, 2 full
grid (default).
Next argument is label for graph.
Next argument is mode (style) of connecting lines: 0 discon­
nected, 1 connected (default). Some devices give distinguishable
line styles for other small integers (e.g., the Tektronix 4014:
2=dotted, 3=dash-dot, 4=short-dash, 5=long-dash).
Save screen, do not erase before plotting.
If 1 is present, x axis is logarithmic. Next 1 (or 2) arguments are
lower (and upper) x limits. Third argument, if present, is grid
spacing on x axis. Normally these quantities are determined
automatically.
Similarly for y.
Next argument is fraction of space for height.
Similarly for width.
Next argument is fraction of space to move right before plotting.
Similarly to move up before plotting.
Transpose horizontal and vertical axes. (Option -x now applies
to the vertical axis.)

A legend indicating grid range is produced with a grid unless the -8 option
is present. If a specified lower limit exceeds the upper limit, the axis is
reversed.

SEE ALSO
graphics(IG), spline(IG), tplot(IG).

- 1 -

GRAPH(lG) (Base System) GRAPH(lG)

BUGS
The graph command stores all points internally and drops those for which
there is no room.
Segments that run out of bounds are dropped, not windowed.
Logarithmic axes may not be reversed.

- 2 -

GREEK(l) (Remote Terminal Package) GREEK(l)

NAME
greek - select terminal filter

SYNOPSIS
greek [- Tterminal]

DESCRIPTION

FILES

greek is a filter that reinterprets the extended character set, as well as the
reverse and half-line motions, of a 128-character TELETYPE Model 37 ter­
minal for certain other terminals. Special characters are simulated by over­
striking, if necessary and possible. If the argument is omitted, greek
attempts to use the environment variable $TERM [see environ(5)]. Currently,
the following terminal s are recognized:

300 DASI 300.
300-12 DASI 300 in 12-pitch.
300s DASI 300s.
300s-12 DASI 300s in 12-pitch.
450 DASI 450.
450-12 DASI 450 in 12-pitch.
1620 Diablo 1620 (alias DASI 450).
1620-12 Diablo 1620 (alias DASI 450) in 12-pitch.
2621 Hewlett-Packard 2621, 2640, and 2645.
2640 Hewlett-Packard 2621, 2640, and 2645.
2645 Hewlett-Packard 2621, 2640, and 2645.
4014 Tektronix 4014.
hp Hewlett-Packard 2621, 2640, and 2645.
tek Tektronix 4014.

/usr/bin/300
/usr /bin/300s
/usr/bin/4014
/usr/bin/450
/usr/bin/hp

SEE ALSO
300(1), 4014(1), 450(1), hp(1), tplot(1G).
environ(5), term(5) in the Programmer's Reference Manual.

- 1 -

GREP(l) (Base System) GREP(l)

NAME
grep - search a file for a pattern

SYNOPSIS
grep [options] limited regular expression [file ...]

DESCRIPTION
The grep command searches files for a pattern and prints all lines that con­
tain that pattern. The grep command uses limited regular expressions
(expressions that have string values that use a subset of the possible
alphanumeric and special characters) like those used with ed (1) to match
the patterns. It uses a compact non-deterministic algorithm.

Be careful using the characters $, *, [, A, I, (,), and \ in the limited regular
expression because they are also meaningful to the shell. It is safest to
enclose the entire limited regular expression in single quotes' ... '.

If no files are specified, grep assumes standard input. Normally, each line
found is copied to standard output. The file name is printed before each
line found if there is more than one input file.

Command line options are:

-b Precede each line by the block number on which it was found. This
can be useful in locating block numbers by context (first block is 0).

-c Print only a count of the lines that contain the pattern.
-i Ignore upper/lower case distinction during comparisons.
-1 Print the names of files with matching lines once, separated by new-

lines. Does not repeat the names of files when the pattern is found
more than once.

-n Precede each line by its line number in the file (first line is 1).
-s Suppress error messages about nonexistent or unreadable files
-v Print all lines except those that contain the pattern.

SEE ALSO
ed(l), egrep(l), fgrep(l), sed(l), sh(l).

DIAGNOSTICS

BUGS

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or
inaccessible files (even if matches were found).

Lines are limited to BUFSIZ characters; longer lines are truncated. BUFSIZ is
defined in /usr/include/stdio.h.
If there is a line with embedded nulls, grep will only match up to the first
null; if it matches, it will print the entire line.

- 1 -

HP(I) (Remote Terminal Package) HP(I)

NAME
hp - handle special functions of Hewlett-Packard terminals

SYNOPSIS
hp [-e] [-m]

DESCRIPTION
hp supports special functions of the Hewlett-Packard 2640 series of termi­
nals, with the primary purpose of producing accurate representations of
most nroff output. A typical usage is in conjunction with DOCUMENTER'S
WORKBENCH Software:

nroff -h files ... I hp

Regardless of the hardware options on your terminal, hp tries to do sensible
things with underlining and reverse line-feeds. If the terminal has the
"display enhancements" feature, subscripts and superscripts can be indi­
cated in distinct ways. If it has the "mathematical-symbol" feature, Greek
and other special characters can be displayed.

The flags are as follows:

-e It is assumed that your terminal has the "display enhancements"
feature, and so maximal use is made of the added display modes.
Overstruck characters are presented in the Underline mode. Super­
scripts are shown in Half-bright mode, and subscripts in Half-bright,
Underlined mode. If this flag is omitted, hp assumes that your ter­
minal lacks the "display enhancements" feature. In this case, all
overstruck characters, subscripts, and superscripts are displayed in
Inverse Video mode, i.e., dark-on-light, rather than the usual light­
on-dark.

-m Requests minimization of output by removal of new-lines. Any
contiguous sequence of 3 or more new-lines is converted into a
sequence of only 2 new-lines; i.e., any number of successive blank
lines produces only a single blank output line. This allows you to
retain more actual text on the screen.

With regard to Greek and other special characters, hp provides the same set
as does 300(1), except that "not" is approximated by a right arrow, and
only the top half of the integral sign is shown.

DIAGNOSTICS
"line too long" if the representation of a line exceeds 1,024 characters.
The exit codes are 0 for normal termination, 2 for all errors.

SEE ALSO

BUGS

300(1), greek(1).

An "overstriking sequence" is defined as a printing character followed by a
backspace followed by another printing character. In such sequences, if
either printing character is an underscore, the other printing character is
shown underlined or in Inverse Video; otherwise, only the first printing
character is shown (again, underlined or in Inverse Video). Nothing special
is done if a backspace is adjacent to an ASCII control character. Sequences
of control characters (e.g., reverse line-feeds, backspaces) can make text

- 1 -

HP(l) (Remote Terminal Package) HP(l)

"disappear"; in particular, tables generated by tbl (1) that contain vertical
lines will often be missing the lines of text that contain the "foot" of a vert­
icalline, unless the input to hp is piped through col(1).

Although some terminals do provide numerical superscript characters, no
attempt is made to display them.

- 2 -

ID(lM) (Base System)

NAME
id - print user and group IDs and names

SYNOPSIS
id

DESCRIPTION

ID(lM)

The id command outputs the user and group IDs and the corresponding
names of the invoking process. If the effective and real IDs are different,
both are printed.

SEE ALSO
logname(l).
getuid(2) in the Programmer's Reference Manual.

- 1 -

IDBUILD(lM) (Base System) IDBUILD(lM)

NAME
idbuild - build new UNIX system kernel

SYNOPSIS
/etc/conf/bin/idbuild

DESCRIPTION
This script builds a new UNIX system kernel using the current system confi­
guration in etc/conf/. Kernel reconfigurations are usually done after a dev­
ice driver is installed, or system tunable parameters are modified. The script
uses the shell variable $ROOT from the user's environment as its starting
path. Except for the special case of kernel development in a non-root
source tree, the shell variable ROOT should always be set to null, or to "/".
Idbuild exits with a return code of zero on success and non-zero on failure.

Building a new UNIX system image consists of generating new system con­
figuration files, then link-editing the kernel and device driver object
modules in the etc/conf/pack.d object tree. This is done by idbuild by cal­
ling the following commands:

etc/conf/bin/idconfig To build kernel configuration files.

etcjconfjbinjidmkunix To process the configuration files and link-edit a
new UNIX system image.

The system configuration files are built by processing the Master and Sys­
tem files representing device driver and tunable parameter specifications.
For the i386 UNIX system the files etcjconfjcf.djmdevice, and
etcjconfjcf.d/mtune represent the Master information. The files
etcjconfjcf.d/stune, and the files specified in etcjconfjsdevice.dj* represent
the System information. The kernel also has file system type information
defined in the files specified by etc/conf/sfsys.d/* and etc/confjmfsys.d/*
Once a new UNIX system kernel has been configured a lock file is set in
etc/new_unix which causes the new kernel to replace junix on the next
system shutdown (Le. on the next entry to the init 0 state). Upon the next
system boot the new kernel will be executed.

ERROR MESSAGES
Since idbuild calls other system commands to accomplish system reconfi­
guration and link editing, it will report all errors encountered by those com­
mands, then clean up intermediate files created in the process. In general,
the exit value 1 indicates an error was encountered by idbuild.

The errors encountered fall into the following categories:

Master file error messages.
System file error messages.
Tunable file error messages.
Compiler and Link-editor error messages.

All error messages are designed to be self-explanatory.

SEE ALSO
idinstall(lm), idtune(lm).
mdevice(4), mfsys(4), mtune(4), sdevice(4), sfsys(4), stune(4) in the
Programmer's Reference Manual.

- 1 -

IDCHECK(lM) (Base System) IDCHECK(lM)

NAME
idcheck - returns selected information

SYNOPSIS
/ etc/ conf/bin/idcheck

DESCRIPTION
This command returns selected information about the system configuration.
It is useful in add-on device Driver Software Package (DSP) installation
scripts to determine if a particular device driver has already been installed,
or to verify that a particular interrupt vector, I/O address or other selectable
parameter is in fact available for use. The various forms are:

idcheck -p device-name [-i dir] [-r]

idcheck -v vector [-i dir] [-r]

idcheck -d dma-channel [-i dir] [-r]

idcheck -a -I lower-address -u upper-address [-i dir] [-r]

idcheck -c -I lower-address -u upper---.address [-i dir] [-r]

This command scans the System and Master modules and returns:

100, if an error occurs.

0, if no conflict exists.

a positive number greater than 0 and less than 100 if a conflict
exists.

The command line options are:

-r Report device name of any conflicting device on stdout.

-p device-name This option checks for the existence of four different com-
ponents of the DSP. The exit code is the addition of the
return codes from the four checks.

Add 1 to the exit code if the DSP directory under
j etc j con! jpack.d exists.

Add 2 to the exit code if the Master module has been
installed.

Add 4 to the exit code if the System module has been
installed.

Add 8 to the exit code if the Kernel was built with the
System module.

Add 16 to the exit code if a Driver.o is part of the DSP
(vs. a stubs.c file).

-v vector Returns 'type' field of device that is using the vector
specified (i.e. Another DSP is already using the vector).

-d dma-channel Returns 1 if the dma channel specified is being used.

-a This option checks whether the lOA region bounded by
"lower" and "upper" conflict with another DSP
("lower" and "upper" are specified with the -1 and -u

- 1 -

IDCHECK(lM)

-c

-I address

-u address

-i dir

ERROR MESSAGES

(Base System) IDCHECK(lM)

options). The exit code is the addition of two different
return codes.

Add 1 to the exit code if the lOA region overlaps with
another device.

Add 2 to the exit code if the lOA region overlaps with
another device and that device has the '0' option speci­
fied in the type field of the Master module. The '0'
option permits a driver to overlap the lOA region of
another driver.

Returns 1 if the CMA region bounded by "lower" and
n upper" conflict with another DSP ("lower" and
"upper" are specified with the -1 and -u options).

Lower bound of address range specified in hex. The lead­
ing Ox is unnecessary.

Upper bound of address range specified in hex. The lead­
ing Ox is unnecessary.

Specifies the directory in which the ID files sdevice and
mdevice reside. The default directory is /etc/conf/cf.d.

There are no error messages or checks for valid arguments to options.
Idcheck interprets these arguments using the rules of scanf(3) and queries
the sdevice, and mdevice files. For example, if a letter is used in the place of
a digit, scanf(3) will translate the letter to O. Idcheck will then use this value
in its query.

SEE ALSO
idinstall(lm).

mdevice(4), sdevice(4) in the Programmer's Reference Manual.

- 2 -

IDINSTALL(lM) (Base System) IDINSTALL(lM)

NAME
idinstall - add, delete, update, or get device driver configuration data

SYNOPSIS
/etc/conf/bin/idinstall -[adug] [-e] -[msoptnirhcl] dev-Ilame

DESCRIPTION
The idinstall command is called by a Driver Software Package (DSP) Install
script or Remove script to Add (-a), Delete (-d), Update (-u), or Get (-g)
device driver configuration data. Idinstall expects to find driver component
files in the current directory. When components are installed or updated
they are moved or appended to files in the /etc/conf directory and then
deleted from the current directory unless the -k flag is used. The options
for the command are as follows:

Action Specifiers:

-a Add the DSP components

-d Remove the DSP components

-u Update the DSP components

-g Get the DSP components (print to std out, except Master)

Component Specifiers: (*)

-m Master component

-s System component

-0 Driver.o component

-p Space.c component

-t Stubs.c component

-n Node (special file) component

-i Inittab component

-r Device Initialization (rc) component

-h Device shutdown (sd) component

-c Mfsys component: file system type config (Master) data.

-1 Sfsys component: file system type local (System) data.

(*) If no component is specified the default is all except for the -g
option where a single component must be specified explicitly.

Miscellaneous:

-e Disable free disk space check

-k Keep files (do not remove from current directory) on add or update.

In the simplest case of installing a new DSP the command syntax used by
the DSP's Install script should be idinstall -a dev_name . In this case the
command will require and install a Driver.o, Master and System entry, and
optionally install the Space.c, Stubs.c, Node, Init, Rc, Shutdown, Mfsys, and
Sfsys components if those modules are present in the current directory.

- 1 -

IDINSTALL(lM) (Base System) IDINSTALL(lM)

The Driver.o, Space.c, and Stubs.c files are moved to a directory in
/etc/conflpack.d. The dev_name is passed as an argument, which is used as
the directory name. The remaining components are stored in the
corresponding directories under /etc/conf in a file whose name is dev_name.
For example, the Node file would be moved to /etc/conf/node.d/dev_name.

The idinstall -m usage provides an interface to the idmaster command which
will add, delete and update mdevice file entries using a Master file from the
local directory. An interface is provided here so that driver writers have a
consistent interface to install any DSP component.

As stated above, driver writers will generally use only the idinstall -a
dev_name form of the command. Other options of idinstall are provided to
allow an Update DSP (Le. one that replaces an existing device driver com­
ponent) to be installed, and to support installation of multiple controller
boards of the same type.

If the call to idinstall uses the -u (update) option, it will:

overlay the files of the old DSP with the files of the new DSP.

invoke the idmaster command with the 'update' option if a Master
module is part of the new DSP.

Idinstall also does a verification that enough free disk space is available to
start the reconfiguration process. This is done by calling the idspace com­
mand. Idinstall will fail if insufficient space exists, and exit with a non-zero
return code. The -e option bypasses this check.

Idinstall makes a record of the last device installed in a file
(jetc/.lasLdev_add) , and saves all removed files from the last delete opera­
tion in a directory (jetc/.lasLdev-fiel) . These files are recovered by
/etc/conf/bin/idmkenv whenever it is determined that a system reconfigura­
tion was aborted due to a power failure or unexpected system reboot.

ERROR MESSAGES
An exit value of zero indicates success. If an error was encountered idinstall
will exit with a non-zero value, and report an error message. All error mes­
sages are designed to be self-explanatory. Typical error message that can be
generated by idinstall are as follows:

SEE ALSO

Device package already exists.
Cannot make the driver package directory.
Cannot remove driver package directory
Local directory does not contain a Driver object (Driver.o) file.
Local directory does not contain a Master file.
Local directory does not contain a System file.
Cannot remove driver entry.

idspace(lm), idcheck(lm).
mdevice(4), sdevice(4) in the Programmer's Reference Manual.

- 2 -

IDLOAD(lM) (Remote File Sharing Utilities) IDLOAD(lM)

NAME
idload - Remote File Sharing user and group mapping

SYNOPSIS
idload [-n] [-g g_rules] [-u u_rules] [directory]
idload -k

DESCRIPTION

Rules

idload is used on Remote File Sharing server machines to build translation
tables for user and group ids. It takes your /etc/passwd and fete/group
files and produces translation tables for user and group ids from remote
machines, according to the rules set down in the u_rules and g_rules files.
If you are mapping by user and group name, you will need copies of remote
/ete/passwd and fete/group files. If no rules files are specified, remote
user and group ids are mapped to MAXUID+ 1 (this is an id number that is
one higher than the highest number you could assign on your system.)

By default, the remote password and group files are assumed to reside in
/usr/nserve/auth.info/domain/nodename/[passwd I group]. The directory
argument indicates that some directory structure other than
/usr/nserve/auth.info contains the domain/nodename passwd and group
files. (nodename is the name of the computer the files are from and domain
is the domain that computer is a member.)

You must run idload to put the mapping into place. Global mapping will
take effect immediately for machines that have one of your resources
currently mounted. Mapping for other specific machines will take effect
when each machine mounts one of your resources.

-n This is used to do a trial run of the id mapping. No transla­
tion table will be produced; however, a display of the mapping
is output to the terminal (stdout).

-k This is used to print the idmapping that is currently in use.
(Specific mapping for remote machines will not be shown until
that machine mounts one of your resources.)

-u u_rules The u_rules file contains the rules for user id translation. The
default rules file is /usr/nserve/auth.info/uid.rules.

-g g_rules The g_rules file contains the rules for group id translation.
The default rules file is /usr/nserve/auth.info/gid.rules.

This command is restricted to the super-user.

The rules files have two types of sections (both optional): global and host.
There can be only one global section, though there can be one host section
for each computer you want to map.

The global section describes the default conditions for translation for any
machines that are not explicitly referenced in a host section. If the global
section is missing, the default action is to map all remote user and group ids
from undefined computers to MAXUID+ 1. The syntax of the first line of
the global section is:

- 1 -

IDLOAD(lM) (Remote File Sharing Utilities) IDLOAD(lM)

global

A host section is used for each machine or group of machines that you
want to map differently from the global definitions. The syntax of the first
line of each host section is:

host name ...
where name is replaced by the full name of a computer (domain.nodename).

The format of a rules file is described below. (All lines are optional, but
must appear in the order shown.)

global
default local: transparent
exclude remote_id-remote_id : remote_id
map remote_id:local

host domain.nodename [domain.nodename ...]
default local : transparent
exclude remote_id-remote_id : remote_id : remote_name
map remote:local : remote: all

Each of these instruction types is described below.

The line

default local: transparent

defines the mode of mapping for remote users that are not specifically
mapped in instructions in other lines. transparent means that each remote
user and group id will have the same numeric value locally unless it
appears in the exclude instruction. local can be replaced by a local user
name or id to map all users into a particular local name or id number. If
the default line is omitted, all users that are not specifically mapped are
mapped into a "special guest" login id.

The line

exclude remote_id-remote_id : remote_id I remote_name

defines remote ids that will be excluded from the default mapping. The
exclude instruction must precede any map instructions in a block. You can
use a range of id numbers, a single id number, or a single name.
(remote_name cannot be used in a global block.)

The line

map remote:local : remote: all

defines the local ids and names that remote ids and names will be mapped
into. remote is either a remote id number or remote name; local is either a
local id number or local name. Placing a colon between a remote and a local
will give the value on the left the permissions of the value on the right. A
single remote name or id will assign the user or group permissions of the
same local name or id. all is a predefined alias for the set of all user and
group ids found in the local /ete/passwd and fete/group files. (You

- 2 -

IDLOAD(lM) (Remote File Sharing Utilities) IDLOAD(lM)

cannot map by remote name in global blocks.)

NOTE: idload will always output warning messages for map all, since pass­
word flles always contain multiple administrative user names with the same
id number. The first mapping attempt on the id number will succeed; each
subsequent attempt will produce a warning.

Remote File Sharing doesn't need to be running to use idload.

EXIT STATUS
On successful completion, idload will produce one or more translation
tables and return a successful exit status. If idload fails, the command will
return an exit status of zero and not produce a translation table.

ERRORS

FILES

If (1) either rules file cannot be found or opened; (2) there are syntax errors
in the rules file; (3) there are semantic errors in the rules file; (4) host pass­
word or group information could not be found; or (5) the command is not
run with super-user privileges, an error message will be sent to standard
error. Partial failures will cause a warning message to appear, though the
process will continue.

/ete/passwd
fete/group
/usr /nserve / auth.info / domain I nodename I[user I group 1
/usr/nserve/auth.info/uid.rules
/usr /nserve / auth.info / gid.rules

SEE ALSO
mount(1M).
"Remote File Sharing" chapter of the System Administrator's Guide for
detailed information on ID mapping.

- 3 -

IDMKINIT(lM) (Base System) IDMKINIT(lM)

NAME
idmkinit - reads files containing specifications

SYNOPSIS
/etc/conf/bin/idmkinit

DESCRIPTION
This command reads the files containing specifications of /etc/inittab entries
from /etc/conf/init.d and constructs a new inittab file in /etc/conf/cf.d. It
returns 0 on success and a positive number on error.

The files in /etc/conf/init.d are copies of the Init modules in device Driver
Software Packages (DSP). There is at most one Init file per DSP. Each file
contains one line for each inittab entry to be installed. There may be multi­
ple lines (Le. multiple inittab entries) per file. An inittab entry has the form

id:rstate:action:process.

The Init module entry must have either of the following forms:

action:process or rstate:action:process.

When idmkinit encounters an entry of the first type, a valid id field will be
generated, and an rstate field of 2 (indicating run on init state 2) will be
generated. When a entry of the second type is encountered only the id field
is prepended.

The idmkinit command is called automatically upon entering init state 2 on
the next system reboot after a kernel reconfiguration to establish the correct
/etc/inittab for the running /unix kernel. Idmkinit can be called as a user
level command to test modification of inittab before a DSP is actually built.
It is also useful by installation scripts that do not reconfigure the kernel, but
need to create inittab entries. In this case the inittab generated by idmkinit
must be copied to /etc/inittab, and a telinit q command must be run to
make the new entry take affect.

The command line options are:

-0 directory Inittab will be installed in the directory specified rather than
/etc/conf/cf·d.

-i directory The ID file II init.base II , which normally resides in
/etc/conf/cf.d, can be found in the directory specified.

-e directory The Init modules that are usually in /etc/conf/init.d can be
found in the directory specified.

-# Print debugging information.

ERROR MESSAGES
An exit value of zero indicates success. If an error was encountered, idmk­
in it will exit with a non-zero value, and report an error message. All error
messages are designed to be self-explanatory.

SEE ALSO
idbuild(l), idinstall(lm), idmknod(lm), init(lm).

- 1 -

IDMKNOD(lM) (Base System) IDMKNOD(lM)

NAME
idmknod - removes nodes and reads specifications of nodes

SYNOPSIS
/etc/conf/bin/idmknod

DESCRIPTION
This command performs the following functions:

Removes the nodes for non-required devices (those that do not have
an 'r' in field 3 of the the device's mdevice entry) from /dev. Ordi­
nary files will not be removed. If the / dev directory contains sub­
directories, those subdirectories will be transversed and nodes found
for non-required devices will be removed as well. If empty sub­
directories result due to the removal of nodes, the subdirectories are
then removed.

Reads the specifications of nodes given in the files contained in
/etc/conf/node.d and installs these nodes in /dev. If the node
specification defines a path containing subdirectories, the subdirec­
tories will be made automatically.

Returns 0 on success and a positive number on error.

The idmknod command is run automatically upon entering init state 2 on the
next system reboot after a kernel reconfiguration to establish the correct
representation of device nodes in the /dev directory for the running /unix
kernel. idmknod can be called as a user level command to test modification
of the j dev directory before a DSP is actually built. It is also useful in ins­
tallation scripts that do not reconfigure the kernel, but need to create j dev
entries.

The files in jetcjconfjnode.d are copies of the Node modules installed by
device Driver Software Packages (DSP). There is at most one file per DSP.
Each file contains one line for each node that is to be installed. The format
of each line is:

Name of device entry (field 1) in the mdevice file (The mdevice entry
will be the line installed by the DSP from its Master module). This
field must be from 1 to 8 characters in length. The first character
must be a letter. The others may be letters, digits, or underscores.

Name of node to be inserted in jdev. The first character must be a
letter. The others may be letters, digits, or underscores. This field
can be a path relative to jdev, and idmknod will create subdirec­
tories as needed.

The character 'b' or 'c'. A 'b' indicates that the node is a 'block'
type device and 'c' indicates 'character' type device.

Minor device number. This value must be between 0 and 255. If
this field is a non-numeric, it is assumed to be a request for a
streams clone device node, and idmknod will set the minor number
to the value of the major number of the device specified.

- 1 -

IDMI<NOD(lM) (Base System) IDMI<NOD(lM)

Some example node file entries are as follows:

asy ttyOO c 1 makes /dev /ttyOO for device 'asy' using minor device
1.

qt rmt/cOsO c 4 makes /dev/rmt/cOsO for device 'qt' using minor dev­
ice 4.

clone net/nau/clone c nau
makes /dev /net/nau/clone for device 'clone'. The
minor device number is set to the major device
number of device 'nau'.

The command line options are:

-0 directory Nodes will be installed in the directory specified rather than
/dev.

-i directory The file "mdevice" which normally resides in /etc/conf/cf.d,
can be found in the directory specified.

-e directory The Node modules that normally reside in /etc/conf/node.d
can be found in the directory specified.

-s Suppress removing nodes Gust add new nodes).

ERROR MESSAGES
An exit value of zero indicates success. If an error was encountered due to
a syntax or format error in a node entry an advisory message will be printed
to stdout and the command will continue. If a serious error is encountered
(Le. a required file can not be found) idmknod will exit with a non-zero
value, and report an error message. All error messages are designed to be
self-explanatory .

SEE ALSO
idinstall(lm), idmkinit(lm).

mdevice(4), sdevice(4) in the Programmer's Reference Manual.

- 2 -

IDSPACE(lM) (Base System) IDSPACE(lM)

NAME
idspace - investigates free space

SYNOPSIS
letc/conf/bin/idspace [-i inodes] [-r blocks] [-u blocks]

[-t blocks]

DESCRIPTION
This command investigates free space in I, lusr, and Itmp file systems to
determine whether sufficient disk blocks and inodes exist in each of poten­
tially 3 file systems. The default tests that idspace performs are as follows:

Verify that the root file system (f) has 400 blocks more than the
size of the current lunix. This verifies that a device driver being
added to the current lunix can be built and placed in the root direc­
tory. A check is also made to insure that 100 inodes exist in the
root directory.

Determine whether a lusr file system exists. If it does exist a test is
made that 400 free blocks and 100 inodes are available in that file
system. If the file system does not exist idspace does not complain
since files created in lusr by the reconfiguration process will be
created in the root file system and space requirements are covered
by the test in (1.) above.

Determine whether a Itmp file system exists. If it does exist a test
is made that 400 free blocks and 100 inodes are available in that file
system. If the file system does not exist idspace does not complain
since files created in Itmp by the reconfiguration process will be
created in the root file system and space requirements are covered
by the test in (1.) above.

The command line options are:

-i inodes This option overrides the default test for 100 inode in all of the
idspace checks.

-r blocks This option overrides the default test for lunix size + 400 blocks
when checking the root (j) file system. When the -r option is
used the lusr and limp file systems are not tested unless also
explicitly specified.

-u blocks This option overrides the default test for 400 blocks when
checking the lusr file system. When the -u option is used the
root (f) and Itmp file systems are not tested unless also expli­
citly specified. If lusr is not a separate file system an error is
reported.

-t blocks This option overrides the default test for 400 blocks when
checking the limp file system. When the -t option is used the
root (f) and lusr file systems are not tested unless also expli­
citly specified. If Itmp is not a separate file system an error is
reported.

- 1 -

IDSPACE(lM) (Base System) IDSP ACE(lM)

ERROR MESSAGES
An exit value of zero indicates success. If insufficient space exists in a file
system or an error was encountered due to a syntax or format error idspace
will report a message. All error messages are designed to be self­
explanatory. The specific exit values are as follows:

o success.

1 command syntax error, or needed file does not exist.

2 file system has insufficient space or inodes.

3 requested file system does not exist (-u and -t options only).

SEE ALSO
idbuild(lm), idinstall(lm).

- 2 -

IDTUNE(lM) (Base System) IDTUNE(lM)

NAME
idtune - attempts to set value of a tunable parameter

SYNOPSIS
/etc/conf/bin/idtune [-f I -m] name value

DESCRIPTION
This script attempts to set the value of a tunable parameter. The tunable
parameter to be changed is indicated by name. The desired value for the
tunable parameter is value.

If there is already a value for this parameter (in the stune file), the user will
normally be asked to confirm the change with the following message:

Tunable Parameter name is currently set to old_value.
Is it OK to change it to value? (y In)

If the user answers 'y', the change will be made. Otherwise, the tunable
parameter will not be changed, and the following message will be
displayed:

name left at old_value.

However, if the -f (force) option is used, the change will always be made,
and no messages will ever be given.

If the -m (minimum) option is used and there is an existing value which is
greater than the desired value, no change will be made and no message will
be given.

If system tunable parameters are being modified as part of a device driver or
application add-on package, it may not be desirable to prompt the user with
the above question. The add-on package Install script may chose to over­
ride the existing value using the -f or -m options. However, care must be
taken not to invalidate a tunable parameter modified earlier by the user or
another add-on package.

In order for the change in parameter to become effective, the UNIX system
kernel must be rebuilt, and the system rebooted.

DIAGNOSTICS
The exit status will ne non-zero if errors are encountered.

SEE ALSO
idbuild(l).

mtune(4), stune(4) in the Programmer's Reference Manual.

- 1 -

INFOCMP(lM) (Remote Terminal Package) INFOCMP(lM)

NAME
infocmp - compare or print out terminfo descriptions

SYNOPSIS
infocmp [-d] [-c] [-n] [-I] [-L] [-C] [-r] [-u] [-s dlilllc] [-v] [-V] [-1] [-w
width] [-A directory] [-B directory] [termname ...]

DESCRIPTION
The intocmp command can be used to compare a binary terminto(4) entry
with other terminfo entries, rewrite a terminto(4) description to take advan­
tage of the use= terminfo field, or print out a terminto(4) description from
the binary file [term(4)] in a variety of formats. In all cases, the Boolean
fields will be printed first, followed by the numeric fields, followed by the
string fields.

Default Options
If no options are specified and zero or one termnames are specified, the -I
option will be assumed. If more than one term name is specified, the -d
option will be assumed.

Comparison Options [-d] [-c] [-n]
The intocmp command compares the terminto(4) description of the first ter­
minal termname with each of the descriptions given by the entries for the
other terminal's termnames. If a capability is defined for only one of the ter­
minals, the value returned will depend on the type of the capability: F for
boolean variables, -1 for integer variables, and NULL for string variables.

-d produce a list of each capability that is different. In this manner, if
one has two entries for the same terminal or similar terminals,
using intocmp will show what is different between the two entries.
This is sometimes necessary when more than one person produces
an entry for the same terminal and one wants to see what is dif­
ferent between the two.

-c produce a list of each capability that is common between the two
entries. Capabilities that are not set are ignored. This option can
be used as a qUick check to see if the -u option is worth using.

-n produce a list of each capability that is in neither entry. If no term­
names are given, the environment variable TERM will be used for
both of the termnames. This can be used as a quick check to see if
anything was left out of the description.

Source Listing Options [-I] [-L] [-C] [-r]
The -I, -L, and -C options will produce a source listing for each terminal
named.

-I use the terminto(4) names

-L use the long C variable name listed in <term.h>

-C use the termcap names

-r when using -C, put out all capabilities in termcap form

If no termnames are given, the environment variable TERM will be used for
the terminal name.

- 1 -

INFOCMP(lM) (Remote Terminal Package) INFOCMP(lM)

The source produced by the -C option may be used directly as a term cap
entry, but not all of the parameterized strings may be changed to the
termcap format. infocmp will attempt to convert most of the parameterized
information, but that which it doesn't will be plainly marked in the output
and commented out. These should be edited by hand.

All padding information for strings will be collected together and placed at
the beginning of the string where term cap expects it. Mandatory padding
(padding information with a trailing' j') will become optional.

All termcap variables no longer supported by terminfo(4), but which are
derivable from other terminfo(4) variables, will be output. Not all ter­
minfo(4) capabilities will be translated; only those variables which were part
of termcap will normally be output. Specifying the -r option will take off
this restriction, allowing all capabilities to be output in termcap form.

Note that because padding is collected to the beginning of the capability,
not all capabilities are output, mandatory padding is not supported, and
termcap strings were not as flexible, it is not always possible to convert a
terminfo(4) string capability into an equivalent term cap format. Not all of
these strings will be able to be converted. A subsequent conversion of the
termcap file back into terminfo(4) format will not necessarily reproduce the
original terminfo(4) source.

Some common terminfo parameter sequences, their termcap equivalents, and
some terminal types which commonly have such sequences, are:

Terminfo

%pl%c
%pl%d
%pl %'x'%+%c
%i
%pl %?%'x'%>%t%pl %'y'%+%;
%p2 is printed before %pl

Use= Option [-u]

Termcap Representative Terminals

%.
%d
%+x
%i
%>xy
%r

adm
hp, ANSI standard, vt100
concept
ANSI standard, vt1 00
concept
hp

-u produce a terminfo(4) source description of the first terminal term­
name which is relative to the sum of the descriptions given by the
entries for the other terminals termnames. It does this by analyzing
the differences between the first termname and the other term names
and producing a description with use= fields for the other termi­
nals. In this manner, it is possible to retrofit generic terminfo
entries into a terminal's description. Or, if two similar terminals
exist, but were coded at different times or by different people so
that each description is a full description, using infocmp will show
what can be done to change one description to be relative to the
other.

A capability will get printed with an at-sign (@) if it no longer exists in the
first term name , but one of the other termname entries contains a value for it.
A capability's value gets printed if the value in the first term name is not
found in any of the other term name entries, or if the first of the other

- 2 -

INFOCMP(lM) (Remote Terminal Package) INFOCMP(lM)

termname entries that has this capability gives a different value for the capa­
bility than that in the first termname.
The order of the other termname entries is significant. Since the terminfo
compiler tic{1M) does a left-to-right scan of the capabilities, specifying two
use= entries that contain differing entries for the same capabilities will pro­
duce different results depending on the order that the entries are given in.
infocmp will flag any such inconsistencies between the other term name
entries as they are found.

Alternatively, specifying a capability after a use= entry that contains that
capability will cause the second specification to be ignored. Using infocmp
to recreate a description can be a useful check to make sure that everything
was specified correctly in the original source description.

Another error that does not cause incorrect compiled files, but will slow
down the compilation time, is specifying extra use= fields that are superflu­
ous. infocmp will flag any other term name use= fields that were not
needed.

Other Options [-s dlilllc] [-v] [-V] [-1] [-w width]
-s sort the fields within each type according to the argument below:

d leave fields in the order that they are stored in the term info
data base.

i sort by term info name.

1 sort by the long C variable name.

c sort by the term cap name.

If no -s option is given, the fields printed out will be sorted alpha­
betically by the term info name within each type, except in the case
of the -C or the -L options, which cause the sorting to be done by
the term cap name or the long C variable name, respectively.

-v print out tracing information on standard error as the program
runs.

-V print out the version of the program in use on standard error and
exit.

-1 cause the fields to print out one to a line. Otherwise, the fields
will be printed several to a line to a maximum width of 60 charac­
ters.

-w change the output to width characters.

Changing Data Bases [-A directory] [-B directory]
The location of the compiled terminfo(4) data base is taken from the
environment variable TERMINFO. If the variable is not defined, or the ter­
minal is not found in that location, the system terminfo(4) data base, usually
in /usr/lib/terminfo, will be used. The options -A and -B may be used to
override this location. The -A option will set TERMINFO for the first term­
name and the -B option will set TERMINFO for the other termnames. With
this, it is possible to compare descriptions for a terminal with the same
name located in two different data bases. This is useful for comparing

- 3 -

INFOCMP(lM) (Remote Terminal Package) INFOCMP(lM)

FILES

descriptions for the same terminal created by different people. Otherwise
the terminals would have to be named differently in the terminfo(4) data
base for a comparison to be made.

jusr jlib jterminfo j? /* compiled terminal description data base

DIAGNOSTICS
malloc is out of space!

There was not enough memory available to process all the
terminal descriptions requested. Run infocmp several
times, each time including a subset of the desired term­
names.

use= order dependency found:
A value specified in one relative terminal specification was
different from that in another relative terminal specifica­
tion.

'use=term' did not add anything to the description.
A relative terminal name did not contribute anything to
the final description.

must have at least two terminal names for a comparison to be done.
The -U, -d, and -c options require at least two terminal
names.

SEE ALSO
captoinfo(IM).

NOTE

tic(IM), curses(3X), term(4), terminfo(4) in the Programmer's Reference
Manual.
Chapter 10 of the Programmer's Guide.

The termcap data base (from earlier releases of UNIX System V) may not be
supplied in future releases.

- 4 -

INIT(lM) (Base System) INIT(lM)

NAME
init, telinit - process control initialization

SYNOPSIS
jetcjinit [0123456SsQqabc)

jetcjtelinit [0123456SsQqabc)

DESCRIPTION
Init

init is a general process spawner. Its primary role is to create processes
from information stored in the file jetcjinittab [see inittab(4»).
At any given time, the system is in one of eight possible run levels. A run
level is a software configuration of the system under which only a selected
group of processes exist. The processes spawned by init for each of these
run levels is defined in jetcjinittab. in it can be in one of eight run levels,
0-6 and S or s (run levels Sand s are identical). The run level changes
when a privileged user runs jetcjinit. This user-spawned init sends
appropriate signals to the original init spawned by the operating system
when the system was booted, telling it which run level to change to.

The following are the arguments to init.

o shut the machine down so it is safe to remove the power.
Have the machine remove power if it can. This state can be
executed only from the console.

1 put the system in Single-user mode. Unmount all file sys­
tems except root. All user processes are killed except those
connected to the console. This state can be executed only
from the console.

2 put the system in multi-user mode. All multi-user environ­
ment terminal processes and daemons are spawned. This
state is commonly referred to as the multi-user state.

3 start the remote file sharing processes and daemons. Mount
and advertise remote resources. Run level 3 extends multi­
user mode and is known as the remote-file-sharing state.

4 is available to be defined as an alternative multi-user
environment configuration. It is not necessary for system
operation and is usually not used.

5 Stop the UNIX system and go to the firmware monitor.

6 Stop the UNIX system and reboot to the state defined by the
ini tdefaul t entry in jetcjinittab.

a,b,c process only those jetcjinittab entries having the a, b or c
run level set. These are pseudo-states, which may be
defined to run certain commands, but which do not cause
the current run level to change.

Q,q re-examine jetcjinittab.

- 1 -

INIT(lM) (Base System) INIT(lM)

S,s enter single-user mode. When this occurs, the terminal
which executed this command becomes the system console.
This is the only run level that doesn't require the existence
of a properly formatted jetcjinittab file. If this file does
not exist, then by default the only legal run level that in it
can enter is the single-user mode. When the system enters
S or s, all mounted file systems remain mounted and only
processes spawned by init are killed.

When a UNIX system is booted, init is invoked and the following occurs.
First, init looks in jetcjinittab for the ini tdefaul t entry [see init­
tab(4)]. If there is one, in it uses the run level specified in that entry as the
initial run level to enter. If there is no initdefault entry in
jetcjinittab, init requests that the user enter a run level from the virtual
system console. If an S or s is entered, init goes to the single-user state. In
the single-user state the virtual console terminal is assigned to the user's ter­
minal and is opened for reading and writing. The command jbinjsu is
invoked and a message is generated on the physical console saying where
the virtual console has been relocated. Use either init or telinit, to signal
in it to change the run level of the system. Note that if the shell is ter­
minated (via an end-of-file), init will only re-initialize to the single-user
state if the jetcjinittab file does not exist.

If a 0 through 6 is entered, init enters the corresponding run level. Note
that, on the 80386 computer, the run levels 0, 1, 5, and 6 are reserved states
for shutting the system down; the run levels 2, 3, and 4 are available as nor­
mal operating states.

On your computer, the run-levels 0 and 1 are reserved states for shutting the
system down, and run-levels 2, 3, and 4 are available as normal operating
states.

If this is the first time since power up that init has entered a run level other
than single-user state, init first scans jetcjinittab for boot and
bootwai t entries [see inittab(4)]. These entries are performed before any
other processing of jetcjinittab takes place, providing that the run level
entered matches that of the entry. In this way any special initialization of
the operating system, such as mounting file systems, can take place before
users are allowed onto the system. init then scans jetcjinittab and exe­
cutes all other entries that are to be processed for that run level.

In a multi-user environment, jetcjinittab is set up so that in it will create a
getty process for each terminal that the administrator sets up to respawn.

To spawn each process in jetcjinittab, init reads each entry and for each
entry that should be respawned, it forks a child process. After it has
spawned all of the processes specified by jetcjinittab, in it waits for one of
its descendant processes to die, a powerfail signal, or a signal from another
init or telinit process to change the system's run level. When one of these
conditions occurs, init re-examines jetcjinittab. New entries can be added
to jetcjinittab at any time; however, init still waits for one of the above

- 2 -

INIT(lM) (Base System) INIT(lM)

three conditions to occur before re-examining /ete/inittab. To get around
this, init Q or init q command wakes init to re-examine /ete/inittab
immediately.

When init comes up at boot time and whenever the system changes from
the single-user state to another run state, init sets the ioctl(2) states of the
virtual console to those modes saved in the file /ete/ioetl.syscon. This file
is written by in it whenever the single-user state is entered.

When a run level change request is made in it sends the warning signal
(SIGTERM) to all processes that are undefined in the target run level. init
waits 5 seconds before forcibly terminating these processes via the kill sig­
nal (SIGKILL).

The shell running on each terminal will terminate when the user types an
end-of-file or hangs up. When init receives a signal telling it that a process
it spawned has died, it records the fact and the reason it died in /ete/utmp
and /ete/wtmp if it exists [see who(1)]. A history of the processes spawned
is kept in /ete/wtmp.

If in it receives a powerfail signal (SIGPWR) it scans /ete/inittab for special
entries of the type powerfail and powerwait. These entries are invoked (if
the run levels permit) before any further processing takes place. In this way
init can perform various cleanup and recording functions during the power­
down of the operating system. Note that in the single-user states, Sand s,
only powerfail and powerwait entries are executed.

telinit

FILES

telinit, which is linked to /ete/init, is used to direct the actions of init. It
takes a one-character argument and signals init to take the appropriate
action.

/etc/inittab
/etc/utmp
/etc/wtmp
/ etc /ioctl.syscon
/ dev / console
/dev /contty

SEE ALSO
getty(lM), login(l), sh(l), shutdown(lM), stty(l), who(l), gettydefs(4), init­
tab(4), utmp(4), termio(7).
kill(2) in the Programmer's Reference Manual.

DIAGNOSTICS
If init finds that it is respawning an entry from /ete/inittab more than 10
times in 2 minutes, it will assume that there is an error in the command
string in the entry, and generate an error message on the system console. It
will then refuse to respawn this entry until either 5 minutes has elapsed or
it receives a signal from a user-spawned init (telinit). This prevents init
from eating up system resources when someone makes a typographical
error in the inittab file or a program is removed that is referenced in
/ete/inittab.

- 3 -

INIT(lM) (Base System) INIT(lM)

When attempting to boot the system, failure of init to prompt for a new run
level may be because the virtual system console is linked to a device other
than the physical system console.

WARNINGS
init and telinit can be run only by someone who is super-user.

The S or s state must not be used indiscriminately in the /etc/inittab file.
A good rule to follow when modifying this file is to avoid adding this state
to any line other than the initdefault.

The change to /etc/gettydefs described in the WARNINGS section of the
gettydefs(4) manual page will permit terminals to pass 8 bits to the system
as long as the system is in multi-user state (run level greater than 1). When
the system changes to single-user state, the getty is killed and the terminal
attributes are lost. To permit a terminal to pass 8 bits to the system in
single-user state, after you are in single-user state, type:

stty -istrip cs8

The /etc/TIMEZONE file must exist.

- 4 -

INSTALLPKG(l) (Base System) INSTALLPKG(l)

NAME
installpkg - install package

SYNOPSIS
installpkg

DESCRIPTION
The insta/lpkg command is used to install a UNIX system software package
on the AT&T 386 UNIX System. It will install software that conforms to
the PC 6300 PLUS Installation specificiation and the sysadm installation
specifications.

You will have to be root to install certain packages successfully.

You will be prompted to insert the floppy disk that the installation package
resides on. Everything else is automatic.

LIMITATIONS
You must envoke insta/lpkg on the console.

SEE ALSO
displaypkg(l), removepkg(l).

- 1 -

IPCRM(l) (Base System) IPCRM(l)

NAME
ipcrm - remove a message queue, semaphore set, or shared memory id

SYNOPSIS
ipcrm [options 1

DESCRIPTION
The ipcrm command will remove one or more specified messages, sema­
phore or shared memory identifiers. The identifiers are specified by the fol­
lowing options:

-q msqid removes the message queue identifier msqid from the system
and destroys the message queue and data structure associated
with it.

-m shmid removes the shared memory identifier shmid from the system.
The shared memory segment and data structure associated
with it are destroyed after the last detach.

-8 semid removes the semaphore identifier semid from the system and
destroys the set of semaphores and data structure associated
with it.

-Q msgkey removes the message queue identifier, created with key
msgkey, from the system and destroys the message queue and
data structure associated with it.

-M shmkey removes the shared memory identifier, created with key
shmkey, from the system. The shared memory segment and
data structure associated with it are destroyed after the last
detach.

-5 semkey removeS the semaphore identifier, created with key semkey,
from the system and destroys the set of semaphores and data
structure associated with it.

The details of the removes are described in msgctl(2), shmctl(2), and
semctl(2). The identifiers and keys may be found by using ipcs(l).

SEE ALSO
ipcs(l).
msgctl(2), msgget(2), msgop(2), semctl(2), semget(2), semop(2), shmctl(2),
shmget(2), shmop(2) in the Programmer's Reference Manual.

- 1 -

IPCS(l) (Base System) IPCS(l)

NAME
ipcs - report interprocess communication facilities status

SYNOPSIS
ipcs [options 1

DESCRIPTION
The ipcs command prints certain information about active interprocess com­
munication facilities. Without options, information is printed in short format
for message queues, shared memory, and semaphores that are currently
active in the system. Otherwise, the information that is displayed is con­
trolled by the follOwing options:

-q Print information about active message queues.

-m Print information about active shared memory segments.

-8 Print information about active semaphores.

If any of the options -q, -m, or -8 are specified, information about only
those indicated will be printed. If none of these three are specified, infor­
mation about all three will be printed subject to these options:

-b Print biggest allowable size information (maximum number of bytes
in messages on queue for message queues, size of segments for
shared memory, and number of semaphores in each set for sema­
phores). See below for meaning of columns in a listing.

-c Print creator's login name and group name. See below.

-0 Print information on outstanding usage (number of messages on
queue, total number of bytes in messages on queue for message
queues, and number of processes attached to shared memory seg­
ments).

-p Print process number information (process ID of last process to send
a message, process ID of last process to receive a message on mes­
sage queues, process ID of creating process, and process 1D of last
process to attach or detach on shared memory segments). See
below.

-t Print time information (time of the last control operation that
changed the access permissions for all facilities; time of last msgsnd
and last msgrcv on message queues, last shmat and last shmdt on
shared memory, last semop(2) on semaphores). See below.

-a Use all print options. (This is a shorthand notation for -b, -c, -0,

-p, and -t.)

-C corefile
Use the file corefile in place of /dev/kmem.

-N namelist
The argument will be taken as the name of an alternate name list
(funix is the default).

- 1 -

IPCS(l) (Base System) IPCS(l)

The column headings and the meaning of the columns in an ipes listing are
given below; the letters in parentheses indicate the options that cause the
corresponding heading to appear; all means that the heading always
appears. Note that these options only determine what information is pro­
vided for each facility; they do not determine which facilities will be listed.

T (all)

ID

KEY

MODE

OWNER

GROUP

(all)

(all)

(all)

(all)

Type of the facility:
q message queue;
m shared memory segment;
s semaphore.

The identifier for the facility entry.

The key used as an argument to msgget, semget, or shmget
to create the facility entry. (Note: The key of a shared
memory segment is changed to IPCJRIVATE when the
segment has been removed until all processes attached to
the segment detach it.)

The facility access modes and flags: The mode consists of
11 characters that are interpreted as follows:
The first two characters are:

R if a process is waiting on a msgrev;
S if a process is waiting on a msgsnd;
D if the associated shared memory segment has

been removed. It will disappear when the
last process attached to the segment detaches
it;

C if the associated shared memory segment is to
be cleared when the first attach is executed;
if the corresponding special flag is not set.

The next 9 characters are interpreted as three sets of three
bits each. The first set refers to the owner's permissions;
the next to permissions of others in the user-group of the
facility entry; and the last to all others. Within each set,
the first character indicates permission to read, the second
character indicates permission to write or alter the facility
entry, and the last character is currently unused.

The permissions are indicated as follows:

r if read permission is granted;
w if write permission is granted;
a if alter permission is granted;

if the indicated permission is not granted.

The login name of the owner of the facility entry.
(all)

The group name of the group of the owner of the facility
entry.

- 2 -

IPCS(l)

CREATOR

CGROUP

CBYTES

QNUM

QBYTES

LSPID

LRPID

STIME

RTIME

CTIME

NATTCH

SEGSZ

CPID

LPID

ATIME

DTIME

NSEMS

(Base System) IPCS(l)

(a/c)
The login name of the creator of the facility entry.

(a/c)
The group name of the group of the creator of the facility
entry.

(a/o)
The number of bytes in messages currently outstanding on
the associated message queue.

(a/o)
The number of messages currently outstanding on the
associated message queue.

(a,b)
The maximum number of bytes allowed in messages out­
standing on the associated message queue.

(a,p)
The process ID of the last process to send a message to the
associated queue.

(a,p)

(a/t)

(a/t)

(a/t)

(a/o)

(a,b)

The process ID of the last process to receive a message
from the associated queue.

The time the last message was sent to the associated
queue.

The time the last message was received from the associ­
ated queue.

The time when the associated entry was created or
changed.

The number of processes attached to the associated shared
memory segment.

The size of the associated shared memory segment.
(a,p)

The process ID of the creator of the shared memory entry.
(a,p)

(a/t)

(a/t)

(a,b)

The process ID of the last process to attach or detach the
shared memory segment.

The time the last attach was completed to the associated
shared memory segment.

The time the last detach was completed on the associated
shared memory segment.

The number of semaphores in the set associated with the
semaphore entry.

- 3 -

IPCS(l)

FILES

OTIME

junix
jdevjkmem
jetcjpasswd
jetcjgroup

(Base System) IPCS(l)

(a,t)
The time the last semaphore operation was completed on
the set associated with the semaphore entry.

system name list
memory
user names
group names

WARNING
The user's real UID and effective UID must be the same.

The user's real GID and effective GID must be the same.

SEE ALSO

BUGS

msgop(2), semop(2), shmop(2) in the Programmer's Reference Manual.

Things can change while ipcs is running; the picture it gives is only a close
approximation to reality.

- 4 -

ISMPX(l) (Base System)

NAME
ismpx - return windowing terminal state

SYNOPSIS
ismpx [-s]

DESCRIPTION

ISMPX(l)

The ismpx command reports whether its standard input is connected to a
multiplexed xt(7) channel; i.e., whether it's running under layers(l) or not.
It is useful for shell scripts that download programs to a windowing termi­
nal or depend on screen size.

The ismpx command prints yes and returns 0 if invoked under layers(l), and
prints no and returns 1 otherwise.

-s Do not print anything; just return the proper exit status.

EXIT STATUS
Returns 0 if invoked under layers(l), 1 if not.

SEE ALSO
jwin(l), layers(l), xt(7).

EXAMPLE
if ismpx -s
then

jwin
fi

- 1 -

JOIN(l) (Editing Package) JOIN(l)

NAME
join - relational data base operator

SYNOPSIS
join [options] file 1 file2

DESCRIPTION
The join command forms, on the standard output, a join of the two relations
specified by the lines of filel and file2. If filel is -, the standard input is
used.

Filel and file2 must be sorted in increasing ASCII collating sequence on the
fields on which they are to be joined, normally the first in each line [see
sort(1)].

There is one line in the output for each pair of lines in filel and file2 that
have identical join fields. The output line normally consists of the common
field, then the rest of the line from filel, then the rest of the line from file2.

The default input field separators are blank, tab, or new-line. In this case,
multiple separators count as one field separator, and leading separators are
ignored. The default output field separator is a blank.

Some of the below options use the argument n. This argument should be a
1 or a 2 referring to either filel or file2, respectively. The following options
are recognized:

-an In addition to the normal output, produce a line for each unpairable
line in file n, where n is 1 or 2.

-e s Replace empty output fields by string s.

-jn m Join on the mth field of file n. If n is missing, use the mth field in
each file. Fields are numbered starting with 1.

-0 list Each output line comprises the fields specified in list, each element
of which has the form n.m, where n is a file number and m is a field
number. The common field is not printed unless specifically
requested.

-tc Use character c as a separator (tab character). Every appearance of c
in a line is significant. The character c is used as the field separator
for both input and output.

EXAMPLE
The following command line will join the password file and the group file,
matching on the numeric group ID, and outputting the login name, the
group name and the login directory. It is assumed that the files have been
sorted in ASCII collating sequence on the group ID fields.

join -j1 4 -j2 3 -0 1.1 2.1 1.6 -t: /etc/passwd /etc/group

SEE ALSO

BUGS

awk(1), comm(1), sort(1), uniq(1).

With default field separation, the collating sequence is that of sort -b; with
-t, the sequence is that of a plain sort.

- 1 -

JOIN(l) (Editing Package) JOIN(l)

The conventions of join, sort, comm, uniq, and awk(l) are wildly incongru­
ous.

File names that are numeric may cause conflict when the -0 option is used
right before listing file names.

- 2 -

JTERM(l) (Base System) JTERM(l)

NAME
jterm - reset layer of windowing terminal

SYNOPSIS
jterm

DESCRIPTION
The jterm command is used to reset a layer of a windowing terminal after
downloading a terminal program that changes the terminal attributes of the
layer. It is useful only under layers{l}. In practice, it is most commonly
used to restart the default terminal emulator after using an alternate one
provided with a terminal-specific application package. For example, on the
AT&T TELETYPE 5620 DMD terminal, after executing the hp2621{1} com­
mand in a layer, issuing the jterm command will restart the default terminal
emulator in that layer.

EXIT STATUS

NOTE

Returns 0 upon successful completion, 1 otherwise.

The layer that is reset is the one attached to standard error; that is, the win­
dow you are in when you type the jterm command.

SEE ALSO
layers{l}.

- 1 -

JWIN(l)

NAME
jwin - print size of layer

SYNOPSIS
jwin

DESCRIPTION

(Base System) JWIN(l)

The jwin command runs only under layers(l) and is used to determine the
size of the layer associated with the current process. It prints the width and
the height of the layer in bytes (number of characters across and number of
lines, respectively). For bit-mapped terminals only, it also prints the width
and height of the layer in bits.

EXIT STATUS
Returns 0 on successful completion, 1 otherwise.

DIAGNOSTICS
If layers(l) has not been invoked, an error message is printed:

jwin: not mpx

NOTE
The layer whose size is printed is the one attached to standard input; that
is, the window you are in when you type the jwin command.

SEE ALSO
layers(l).

EXAMPLE
jwin
bytes: 86 25
bits: 780 406

- 1 -

KILL(I) (Base System) KILL(I)

NAME
kill - terminate a process

SYNOPSIS
kill [-signo] PID ...

DESCRIPTION
The kill command sends signal 15 (terminate) to the specified processes.
This will normally kill processes that do not catch or ignore the signal. The
process number of each asynchronous process started with &: is reported by
the shell (unless more than one process is started in a pipeline, in which
case the number of the last process in the pipeline is reported). Process
numbers can also be found by using ps(l).

The details of the kill are described in kill (2). For example, if process
number 0 is specified, all processes in the process group are signaled.

The killed process must belong to the current user unless he is the super­
user.

If a signal number preceded by - is given as first argument, that signal is
sent instead of terminate [see signa/(2»). In particular "kill -9 ... " is a sure
kill.

SEE ALSO
ps(l), sh(l).
kill(2), signal(2) in the Programmer's Reference Manual.

- 1 -

I<ILLALL(lM) (Base System) I<ILLALL(lM)

NAME
killall - kill all active processes

SYNOPSIS
/ete/killall [signal]

DESCRIPTION

FILES

The killall command is used by fete/shutdown to kill all active processes
not directly related to the shutdown procedure.

The killall command terminates all processes with open files so that the
mounted file systems will be unbusied and can be unmounted.

The killall command sends signal [see kill(l)] to all processes not belonging
to the above group of exclusions. If no signal is specified, a default of 9 is
used.

/etc/shutdown

SEE ALSO
fuser(lM), kill(l), ps(l), shutdown(lM).
signal(2) in the Programmer's Reference Manual.

WARNINGS
The killall command can be run only by the super-user.

- 1 -

LABELIT(lM) (Base System) LABELIT(lM)

NAME
labelit - provide labels for file systems

SYNOPSIS
/etc/labelit special [fsname volume [-n]]

DESCRIPTION
The labelit command can be used to provide labels for unmounted disk file
systems or file systems being copied to tape. The -n option provides for
initial labeling only. (This destroys previous contents.)

With the optional arguments omitted, labelit prints current label values.

The special name should be the physical disk section (e.g., /dev /dsk/Os3).
The device may not be on a remote machine.

The fsname argument represents the mounted name (e.g., root, ut, etc.) of
the file system.

Volume may be used to equate an internal name to a volume name applied
externally to the disk pack, diskette, or tape.

For file systems on disk, fsname and volume are recorded in the super block.

SEE ALSO
sh(l).
fs(4) in the Programmer's Reference Manual.

- 1 -

LAYERS(l) (Base System) LAYERS(l)

NAME
layers - layer multiplexer for windowing terminals

SYNOPSIS
layers [-s] [-t] [-d] [-p] [-f file] [layersys-prgm]

DESCRIPTION
The layers command manages asynchronous windows [see layers(S)] on a
windowing terminal. Upon invocation, layers finds an unused xt(7) channel
group and associates it with the terminal line on its standard output. It then
waits for commands from the terminal.

Command-line options:

-s Reports protocol statistics on standard error at the end of the ses­
sion after you exit from layers. The statistics may be printed during
a session by invoking the program xts(lM).

-t Turns on xt(7) driver packet tracing, and produces a trace dump on
standard error at the end of the session after you exit from layers.
The trace dump may be printed during a session by invoking the
program xtt(lM).

-d If a firmware patch has been downloaded, prints out the sizes of
the text, data, and bss portions of the firmware patch on standard
error.

-p If a firmware patch has been downloaded, prints the down-loading
protocol statistics and a trace on standard error.

-f file Starts layers with an initial configuration specified by file. Each
line of the file represents a layer to be created, and has the follow­
ing format:

origin_x origin_y
command_list

The coordinates specify the size and position of the layer on the
screen in the terminal's coordinate system. If all four are 0, the user
must define the layer interactively. command_list, a list of one or
more commands, must be provided. It is executed in the newlayer
using the user's shell (by executing: $SHELL -i -c
"command_list"). This means that the last command should
invoke a shell, such as /bin/sh. (If the last command is not a shell,
then, when the last command has completed, the layer will not be
functional.)

layersys-prgm
A file containing a firmware patch that the layers command down­
loads to the terminal before layers are created and command_list is
executed.

Each layer is in most ways functionally identical to a separate terminal.
Characters typed on the keyboard are sent to the standard input of the UNIX
system process attached to the current layer (called the host process), and
characters written on the standard output by the host process appear in that

- 1 -

LAYERS(l) (Base System) LAYERS(l)

layer. When a layer is created, a separate shell is established and bound to
the layer. If the environment variable SHELL is set, the user will get that
shell: otherwise, /bin/sh will be used. In order to enable communications
with other users via write(l), layers invokes the command relogin(lM) when
the fIrst layer is created. relogin(lM) will reassign that layer as the user's
logged-in terminal. An alternative layer can be designated by using
relogin(lM) directly. layers will restore the original assignment on termina­
tion.

Layers are created, deleted, reshaped, and otherwise manipulated in a
terminal-dependent manner. For instance, the AT&T TELETYPE 5620 DMD
terminal provides a mouse-activated pop-up menu of layer operations. The
method of ending a layers session is also defined by the terminal.

EXAMPLE

NOTES

layers -f startup

where startup contains

8 8 700 200 date ; pwd ; exec SSHELL
8 300 780 850 exec $SHELL

The xt(7) driver supports an alternate data transmission scheme known as
ENCODING MODE. This mode makes layers operation possible even over
data links which intercept control characters or do not transmit 8-bit charac­
ters. ENCODING MODE is selected either by setting a configuration option
on your windowing terminal or by setting the environment variable
DMDLOAD to the value hex before running layers:

export DMDLOAD; DMDLOAD=hex

If, after executing layers -f file, the terminal does not respond in one or
more of the layers, often the last command in the command-list for that
layer did not invoke a shell.

WARNING

FILES

When invoking layers with the -s, -t, -d, or -p options, it is best to redirect
standard error to another file to save the statistics and tracing output (e.g.,
layers -s 2>stats)i otherwise all or some of the output may be lost.

/dev /xt??[O-7]
/usr/lib/layersys/lsys.8;7i3
/usr /lib /layersys /lsys.8;?;?

SEE ALSO
relogin(lM), sh(l), write(l), wtinit(lM), xts(lM), xtt(lM), xt(7).

libwindows(3X), layers(5) in the Programmer's Reference Manual.

- 2 -

UNE(l)

NAME
line - read one line

SYNOPSIS
line

DESCRIPTION

(Base System) UNE(l)

The line command copies one line (up to a new-line) from the standard
input and writes it on the standard output. It returns an exit code of 1 on
EOF and always prints at least a new-line. It is often used within shell files
to read from the user's terminal.

SEE ALSO
sh(l).
read(2) in the Programmer's Reference Manual.

- 1 -

LINK(lM) (Base System) LINK(lM)

NAME
link, unlink - link and unlink files and directories

SYNOPSIS
fete/link filel file2
fete/unlink file

DESCRIPTION
The link command is used to create a file name that points to another file.
Linked files and directories can be removed by the unlink command; how­
ever, it is strongly recommended that the rm{l) and rmdir{l) commands be
used instead of the unlink command.

The only difference between In{l) and link/unlink is that the latter do
exactly what they are told to do, abandoning all error checking. This is
because they directly invoke the link(2) and unlink(2) system calls.

SEE ALSO
rm{l).
link(2), unlink(2) in the Programmer's Reference Manual.

WARNINGS
These commands can be run only by the super-user.

- 1 -

LOGIN(l) (Base System) LOGIN(l)

NAME
login - sign on

SYNOPSIS
login [name [env-var .,.]]

DESCRIPTION
The login command is used at the beginning of each terminal session and
allows you to identify yourself to the system. It may be invoked as a com­
mand or by the system when a connection is first established. Also, it is
invoked by the system when a previous user has terminated the initial shell
by typing a cntrl-d to indicate an "end-of-file." (See How to Get Started at
the beginning of this volume for instructions on how to dial up initially.)

If login is invoked as a command, it must replace the initial command inter­
preter. This is accomplished by typing:

exec login

from the initial shell.

login asks for your user name (if not supplied as an argument), and, if
appropriate, your password. Echoing is turned off (where possible) during
the typing of your password, so it will not appear on the written record of
the session.

At some installations, an option may be invoked that will require you to
enter a second "dialup" password. This will occur only for dial-up connec­
tions, and will be prompted by the message "dialup password:". Both
passwords are required for a successful login.

If you make any mistake in the login procedure you will receive the mes­
sage:

Login incorrect

and a new login prompt will appear. If you make five incorrect login
attempts, all five will be logged in LOGINLOG (defined to be
/usr/adm/loginlog) and the line will be dropped.

If you do not complete the login successfully within a certain period of time
(e.g., one minute), you are likely to be silently disconnected.

After a successful login, accounting files are updated, the procedure
fete/profile is performed, the message-of-the-day, if any, is printed, the
user-ID, the group-ID, the working directory, and the command interpreter
[usually sh(l)] is initialized, and the file .profile in the working directory is
executed, if it exists. These specifications are found in the /ete/passwd file

, entry for the user. The name of the command interpreter is - followed by
the last component of the interpreter's path name (i.e., -sh). If this field in
the password file is empty, then the default command interpreter, /bin/sh
is used. If this field is "*", then the named directory becomes the root
directory, the starting point for path searches for path names beginning with
a /. At that point login is re-executed at the new level which must have its
own root structure, including fete/login and /ete/passwd.

- 1 -

LOGIN(l) (Base System) LOGIN(l)

FILES

The basic environment is initialized to:

HOME=your-login-directory
PATH=:/bin:/usr/bin
SHELL=last-field-of-passwd-entry
MAIL= /usr /mail/your-login-name
Tz=timezone-specification

The environment may be expanded or modified by supplying additional
arguments to login, either at execution time or when login requests your
login name. The arguments may take either the form xxx or xxx=yyy. Argu­
ments without an equal sign are placed in the environment as

Ln=xxx

where n is a number starting at 0 and is incremented each time a new vari­
able name is required. Variables containing an = are placed into the
environment without modification. If they already appear in the environ­
ment, they replace the older value. There are two exceptions. The variables
PATH and SHELL cannot be changed. This prevents people, logging into
restricted shell environments, from spawning secondary shells which are not
restricted. Both login and getty understand simple single-character quoting
conventions. Typing a backslash in front of a character quotes it and allows
the inclusion of such things as spaces and tabs.

/etc/utmp
/etc/wtmp
/usr/mail/your-name
/usr / adm/loginlog
/etc/motd
/etc/passwd
/etc/profile
.profile

accounting
accounting
mailbox for user your-name
record of failed login attempts
message-of-the-day
password file
system profile
user's login profile

SEE ALSO
mail(l), newgrp(lM), sh(l), su(lM).

loginlog(4), passwd(4), profile(4), environ(5) in the Programmer's Reference
Manual.

DIAGNOSTICS
login incorrect if the user name or the password cannot be matched.

No shell, cannot open password file, or no directory: consult a UNIX system
programming counselor.

No utmp entry. You must exec "login" from the lowest level "sh" if you
attempted to execute login as a command without using the shell's exec
internal command or from other than the initial shell.

- 2 -

LOGNAME(l)

NAME
logname - get login name

SYNOPSIS
logname

DESCRIPTION

(Base System) LOGNAME(l)

The logname command returns the contents of the environment variable
$LOGNAME, which is set when a user logs into the system.

FILES
fete/profile

SEE ALSO
env(l), login(l).
logname(3X), environ(S) in the Programmer's Reference Manual.

- 1 -

LP(l) (Base System) LP(l)

NAME
lp, cancel - send/cancel requests to an LP line printer

SYNOPSIS
lp [-c] [-ddest] [-m] [-nnumber] [-ooption] [-s] [-ttitle] [-w] files
cancel [ids] [printers]

DESCRIPTION
The lp command arranges for the named files and associated information
(collectively called a request) to be printed by a line printer. If no file names
are mentioned, the standard input is assumed. The file name - stands for
the standard input and may be supplied on the command line in conjunc­
tion with named files. The order in which files appear is the same order in
which they will be printed.

The lp command associates a unique id with each request and prints it on
the standard output. This id can be used later to cancel (see cancel) or find
the status [see Ipstat(l)] of the request.

The following options to lp may appear in any order and may be intermixed
with file names:

-c Make copies of the files to be printed immediately when lp is
invoked. Normally, files will not be copied, but will be linked
whenever possible. If the -c option is not given, then the user
should be careful not to remove any of the files before the
request has been printed in its entirety. It should also be noted
that in the absence of the -c option, any changes made to the
named files after the request is made but before it is printed will
be reflected in the printed output.

-ddest Choose dest as the printer or class of printers that is to do the
printing. If dest is a printer, then the request will be printed
only on that specific printer. If .dest is a class of printers, then
the request will be printed on the first available printer that is a
member of the class. Under certain conditions (printer unavaila­
bility, file space limitation, etc.), requests for specific destina­
tions may not be accepted [see accept(lM) and Ipstat(l)]. By
default, dest is taken from the environment variable LPDEST (if
it is set). Otherwise, a default destination (if one exists) for the
computer system is used. Destination names vary between sys­
tems [see Ipstat(l)].

-m Send mail [seemail(1)] after the files have been printed. By
default, no mail is sent upon normal completion of the print
request.

-nnumber Print number copies (default of 1) of the output.

-ooption Specify printer-dependent or class-dependent options. Several
such options may be collected by specifying the -0 keyletter
more than once. For more information about what is valid for
options, see Models in Ipadmin(lM).

- 1 -

LP(l)

FILES

-8

-ttitle

-w

(Base System)

Suppress messages from lp (1) such as "request id is ... ".

Print title on the banner page of the output.

LP(l)

Write a message on the user's terminal after the files have been
printed. If the user is not logged in, then mail will be sent
instead.

The cancel command cancels line printer requests that were made by the
Ip(1) command. The command line arguments may be either request ids [as
returned by Ip(1)] or printer names [for a complete list, use Ipstat(1)]. Speci­
fying a request id cancels the associated request even if it is currently print­
ing. Specifying a printer cancels the request which is currently printing on
that printer. In either case, the cancellation of a request that is currently
printing frees the printer to print its next available request.

/usr/spool/lp/*

SEE ALSO
accept(lM), enable(1), Ipadmin(1M), Ipsched(1M), Ipstat(1), mail(1).

- 2 -

LPADMIN(lM) (Base System) LP ADMIN(lM)

NAME
Ipadmin - configure the LP spooling system

SYNOPSIS
/usr /Iib /Ipadmin -p printer [options]
/usr /lib /Ipadmin -x dest
/usr/lib/Ipadmin -d[dest]

DESCRIPTION
The Ipadmin command configures line printer (LP) spooling systems to
describe printers, classes, and devices. It is used to add and remove desti­
nations, change membership in classes, change devices for printers, change
printer interface programs, and to change the system default destination.
Ipadmin may not be used when the LP scheduler, Ipsched(lM), is running,
except where noted below.

Exactly one of the -p, -d, or -x options must be present for every legal
invocation of Ipadmin.

-pprinter

-xdest

-d[dest]

names a printer to which all of the options below refer. If
printer does not exist, then it will be created.

removes destination dest from the LP system. If dest is a
printer and is the only member of a class, then the class will
be deleted, too. No other options are allowed with -x.

makes dest, an existing destination, the new system default
destination. If dest is not supplied, then there is no system
default destination. This option may be used when
Ipsched(lM) is running. No other options are allowed with -d.

The following options are only useful with -p and may appear in any order.
For ease of discussion, the printer will be referred to as P below.

-cclass inserts printer P into the specified class. Class will be created if
it does not already exist.

-eprinter copies an existing printer's interface program to be the new
interface program for P.

-h indicates that the device associated with P is hard-wired. This
option is assumed when adding a new printer unless the -1
option is supplied.

-iinterface establishes a new interface program for P. Interface is the path
name of the new program.

-1 indicates that the device associated with P is a login terminal.
The LP scheduler, Ipsched, disables all login terminals automat­
ically each time it is started. Before re-enabling P, its current
device should be established using Ipadmin.

-mmodel selects a model interface program for P. Model is one of the
model interface names supplied with the LP Spooling Utilities
(see Models below).

-rclass removes printer P from the specified class. If P is the last
member of the class, then the class will be removed.

- 1 -

LPADMIN(lM) (Base System) LP ADMIN(lM)

-vdevice associates a new device with printer P. Device is the pathname
of a file that is writable by Ip. Note that the same device can
be associated with more than one printer. If only the -p and
-v options are supplied, then Ipadmin may be used while the
scheduler is running.

Restrictions
When creating a new printer, the -v option and one of the -e, -i, or -m
options must be supplied. Only one of the -e, -i, or -m options may be
supplied. The -h and -I keyletters are mutually exclusive. Printer and class
names may be no longer than 14 characters and must consist entirely of the
characters A-Z, a-z, 0-9 and _ (underscore).

Models
Model printer interface programs are supplied with the LP Spooling Utilities.
They are shell procedures which interface between Ipsched and devices. All
models reside in the directory jusrjspooljlpjmodel and may be used as is
with Ipadmin -m. Copies of model interface programs may also be modified
and then associated with printers using Ipadmin -i. The following describes
the models which may be given on the Ip command line. The -0 keyletter is
used with the Ip cpmmand to access options in the model files.

ATT455 Letter quality printer using XONjXOFF protocol at 9600 baud.

ATT473 Dot matrix draft quality printer using XON/XOFF protocol at 9600
baud.

EXAMPLES
1. For a ATT473 printer named cI8, it will use the DQP-I0 model inter­

face after the command:

FILES

jusrjlibjlpadmin -pcI8 -matt473

2. An ATT455 printer called prl can be added to the lp configuration with
the command:

jusrjlibjlpadmin -pprl -v jdev jcontty -matt455

jusrjspooljlpj*

SEE ALSO
accept(IM), enable(1), Ip(I), Ipsched(IM), Ipstat(I).

- 2 -

LPSCHED(lM) (Base System) LPSCHED(lM)

NAME
lpsched, lpshut, lpmove - start/stop the LP scheduler and move requests

SYNOPSIS
/usr /lib /lpsched
/usr/lib/lpshut
/usr/lib/lpmove requests dest
/usr/lib/lpmove destl dest2

DESCRIPTION

FILES

lpsched schedules requests taken by lp(l) for printing on line printers (LP's).

Lpshut shuts down the line printer scheduler. All printers that are printing
at the time lpshut is invoked will stop printing. Requests that were printing
at the time a printer was shut down will be reprinted in their entirety after
lpsched is started again.

Lpmove moves requests that were queued by lp(l) between LP destinations.
This command may be used only when lpsched is not running.

The first form of the command moves the named requests to the LP destina­
tion, dest. Requests are request ids as returned by lp(l). The second form
moves all requests for destination dest1 to destination dest2. As a side
effect, lp (1) will reject requests for dest1.

Note that lpmove never checks the acceptance status [see accept(lM)] for the
new destination when moving requests.

/usr/spoolflp/*

SEE ALSO
accept(lM), enable(l), lp(l), Ipadmin(lM), lpstat(l).

- 1 -

LPSTAT(l) (Base System) LPSTAT(l)

NAME
lpstat - print LP status information

SYNOPSIS
Ip8tat [options]

DESCRIPTION

FILES

The Ipstat command prints information about the current status of the LP
spooling system.

If no options are given, then Ipstat prints the status of all requests made to
Ip(l) by the user. Any arguments that are not options are assumed to be
request ids (as returned by Ip). Ipstat prints the status of such requests.
Options may appear in any order and may be repeated and intermixed with
other arguments. Some of the keyletters below may be followed by an
optional list that can be in one of two forms: a list of items separated from
one another by a comma, or a list of items enclosed in double quotes and
separated from one another by a comma and/or one or more spaces. For
example:

-u "userl, user2, user3"

The omission of a list following such keyletters causes all information
relevant to the keyletter to be printed, for example:

lpstat -0

prints the status of all output requests.

-a[list] Print acceptance status (with respect to Ip) of destinations for
requests. List is a list of intermixed printer names and class
names.

-c[list] Print class names and their members. List is a list of class names.

-d Print the system default destination for Ip.

-or list] Print the status of output requests. List is a list of intermixed
printer names, class names, and request ids.

-p[list] Print the status of printers. List is a list of printer names.

-r Print the status of the LP request scheduler

-8 Print a status summary, including the system default destination,
a list of class names and their members, and a list of printers and
their associated devices.

-t Print all status information.

-u[list] Print status of output requests for users. List is a list of login
names.

-v[list] Print the names of printers and the path names of the devices
associated with them. List is a list of printer names.

/usr/spooljlp/*

SEE ALSO
enable(l), lp(l).

- 1 -

LS(l) (Base System) LS(l)

NAME
Is - list contents of directory

SYNOPSIS
Is [-RadCxmInogrtucpFbqisf] [names]

DESCRIPTION
For each directory argument, Is lists the contents of the directory; for each
file argument, Is repeats its name and any other information requested. The
output is sorted alphabetically by default. When no argument is given, the
current directory is listed. When several arguments are given, the argu­
ments are first sorted appropriately, but file arguments appear before direc­
tories and their contents.

There are three major listing formats. The default format is to list one entry
per line, the -C and -x options enable multi-column formats, and the -m
option enables stream output format. In order to determine output formats
for the -C, -x, and -m options, Is uses an environment variable, COLUMNS,
to determine the number of character positions available on one output line.
If this variable is not set, the terminfo(4) data base is used to determine the
number of columns, based on the environment variable TERM. If this infor­
mation cannot be obtained, 80 columns are assumed.

The Is command has the following options:

-R Recursively list subdirectories encountered.

-a List all entries, including those that begin with a dot (.), which are
normally not listed.

-d If an argument is a directory, list only its name (not its contents);
often used with -I to get the status of a directory.

-C Multi-column output with entries sorted down the columns.

-x Multi-column output with entries sorted across rather than down
the page.

-m Stream output format; files are listed across the page, separated by
commas.

-I List in long format, giving mode, number of links, owner, group,
size in bytes, and time of last modification for each file (see below).
If the file is a special file, the size field will instead contain the
major and minor device numbers rather than a size.

-n The same as -I, except that the owner's UID and group's GID
numbers are printed, rather than the associated character strings.

-0 The same as -I, except that the group is not printed.

-g The same as -I, except that the owner is not printed.

-r Reverse the order of sort to get reverse alphabetic or oldest first as
appropriate.

-t Sort by time stamp (latest first) instead of by name. The default is
the last modification time. (See -n and -c.)

- 1 -

LS(l)

-u

-c

-p
-F

-b

-q

-i

-8

-f

(Base System) LS(l)

Use time of last access instead of last modification for sorting (with
the -t option) or printing (with the -1 option).

Use time of last modification of the i-node (file created, mode
changed, etc.) for sorting (-t) or printing (-1).

Put a slash (f) after each file name if that file is a directory.

Put a slash (f) after each file name if that file is a directory and put
an asterisk (*) after each file name if that file is executable.

Force printing of non-printable characters to be in the octal \ddd
notation.

Force printing of non-printable characters in file names as the char­
acter question mark (?).

For each file, print the i-number in the fIrst column of the report.

Give size in blocks, including indirect blocks, for each entry.

Force each argument to be interpreted as a directory and list the
name found in each slot. This option turns off -1, -t, -s, and -r,
and turns on -a; the order is the order in which entries appear in
the directory.

The mode printed under the -1 option consists of ten characters. The fIrst
character may be one of the following:

d the entry is a directory;
b the entry is a block special file;
c the entry is a character special file;
p the entry is a fifo (a.k.a. "named pipe") special file;

the entry is an ordinary file.

The next 9 characters are interpreted as three sets of three bits each. The
first set refers to the owner's permissions; the next to permissions of others
in the user-group of the file; and the last to all others. Within each set, the
three characters indicate permission to read, to write, and to execute the file
as a program, respectively. For a directory, "execute" permission is inter­
preted to mean permission to search the directory for a specified file.

Is -1 (the long list) prints its output as follows:

-rwxrwxrwx 1 smith dev 10876 May 16 9:42 part2

This horizontal configuration provides a good deal of information. Reading
from right to left, you see that the current directory holds one file, named
"part2." Next, the last time that file's contents were modified was 9:42
A.M. on May 16. The file is moderately sized, containing 10,876 characters,
or bytes. The owner of the file, or the user, belongs to the group "dev"
(perhaps indicating "development"), and his or her login name is "smith."
The number, in this case "1," indicates the number of links to file "part2."
Finally, the row of dash and letters tell you that user, group, and others
have permissions to read, write, execute "part2."

- 2 -

LS(l) (Base System) LS(l)

The execute (x) symbol here occupies the third position of the three­
character sequence. A - in the third position would have indicated a denial
of execution permissions.

The permissions are indicated as follows:

r the file is readable
w the file is writable
x the file is executable

the indicated permission is not granted
I mandatory locking will occur during access (the set-group-ID bit

is on and the group execution bit is off)
s the set-user-ID or set-group-ID bit is on, and the corresponding

user or group execution bit is also on
S undefined bit-state (the set-user-ID bit is on and the user execu­

tion bit is off)
t the toOO (octal) bit, or sticky bit, is on [see chmod(l)], and exe­

cution is on
T the toOO bit is turned on, and execution is off (undefined bit-

state)

For user and group permissions, the third position is sometimes occupied by
a character other than x or -. s also may occupy this position, referring to
the state of the set-ID bit, whether it be the user's or the group's. The abil­
ity to assume the same ID as the user during execution is, for example, used
during login when you begin as root but need to assume the identity of the
user stated at "login."

In the case of the sequence of group permissions, I may occupy the third
position. I refers to mandatory file and record locking. This permission
describes a file's ability to allow other files to lock its reading or writing per­
missions during access.

For others permissions, the third position may be occupied by t or T. These
refer to the state of the sticky bit and execution permissions.

EXAMPLES
An example of a file's permissions is:

-rwxr--r--

This describes a file that is readable, writable, and executable by the user
and readable by the group and others.

Another example of a file's permissions is:

-rwsr-xr-x

This describes a file that is readable, writable, and executable by the user,
readable and executable by the group and others, and allows its user-ID to
be assumed, during execution, by the user presently executing it.

Another example of a file's permissions is:

-rw-rwl-

- 3 -

LS(l)

FILES

(Base System) LS(l)

This describes a file that is readable and writable only by the user and the
group and can be locked during access.

An example of a command line:

Is -a

This command will print the names of all files in the current directory,
including those that begin with a dot (.), which normally do not print.

Another example of a command line:

Is -aisn

This command will provide you with quite a bit of information including all
files, including non-printing ones (a), the i-number-the memory address of
the i-node associated with the file-printed in the left-hand column (i); the
size (in blocks) of the files, printed in the column to the right of the i­
numbers (s); finally, the report is displayed in the numeric version of the
long list, printing the UID (instead of user name) and GID (instead of group
name) numbers associated with the files.

When the sizes of the files in a directory are listed, a total count of blocks,
including indirect blocks, is printed.

jetcjpasswd
/etc/group
jusr jlib j terminfo j? j*

user IDs for Is -I and Is -0

group IDs for Is -I and Is -g
terminal information database

SEE ALSO

NOTES

BUGS

chmod(I), find(I).

In a Remote File Sharing environment, you may not have the permissions
that the output of the Is -I command leads you to believe. For more infor­
mation see the "Mapping Remote Users" section of Chapter 10 of the Sys­
tem Administrator's Guide.

Unprintable characters in file names may confuse the columnar output
options.

- 4 -

MACHID(l) (Base System)

NAME
machid: i386 - get processor type truth value

SYNOPSIS
i386

DESCRIPTION
The following commands will return a true value (exit code of 0).

MACHID(l)

The commands that do not apply will return a false (non-zero) value.
These commands are often used within makefiles [see make(l)] and shell
procedures [see sh(l)] to increase portability.

SEE ALSO
sh(l), test(l), true(l).
make(l) in the Programmer's Reference Manual.

- 1 -

MAIL(l) (Base System) MAIL(l)

NAME
mail, rmail - send mail to users or read mail

SYNOPSIS
Sending mail:

mail [-wt 1 persons

rmail [-wt 1 persons

Reading mail:

mail [-ehpqr 1 [-f file 1 [-F persons 1
DESCRIPTION

Sending mail:

The command-line arguments that follow affect SENDING mail:

-w causes a letter to be sent to a remote user without waiting for the
completion of ,the remote transfer program.

-t causes a To: line to be added to the letter, showing the intended
recipients.

A person is usually a user name recognized by login(l). When persons are
named, mail assumes a message is being sent (except in the case of the -F
option). It reads from the standard input up to an end-of-file (control-d), or
until it reads a line consisting of just a period. When either of those signals
is received, mail adds the letter to the mailfile for each person. A letter is a
message preceded by a postmark. The message is preceded by the sender's
name and a postmark. A postmark consists of one or more 'From' lines fol­
lowed by a blank line.

If a letter is found to be undeliverable, it is returned to the sender with
diagnostics that indicate the location and nature of the failure. If mail is
interrupted during input, the file dead.letter is saved to allow editing and
resending. dead.letter is recreated every time it is needed, erasing any pre­
vious contents.

rmail only permits the sending of mail; uucp(lC) uses rmail as a security
precaution.

If the local system has the Basic Networking Utilities installed, mail may be
sent to a recipient on a remote system. Prefix person by the system name
and exclamation point. A series of system names separated by exclamation
points can be used to direct a letter through an extended network.

Reading Mail:

The command-line arguments that follow affect READING mail:

-e causes mail not to be printed. An exit value of 0 is returned if the
user has mail; otherwise, an exit value of 1 is returned.

-h causes a window of headers to be displayed rather than the latest
message. The display is followed by the '7' prompt.

-p causes all messages to be printed without prompting for disposition.
-q causes mail to terminate after interrupts. Normally an interrupt

causes only the termination of the message being printed.

- 1 -

MAIL(1) (Base System) MAIL(l)

-r causes messages to be printed in first-in, first-out order.
-ffile causes mail to use file (e.g., mbox) instead of the default mailfile.
-Fpersons

entered into an empty mailbox, causes all incoming mail to be for­
warded to persons.

mail, unless otherwise influenced by command-line arguments, prints a
user's mail messages in last-in, first-out order. For each message, the user is
prompted with a 1, and a line is read from the standard input. The follow­
ing commands are available to determine the disposition of the message:

<new-line>, +, or n
d, or dp
d#

dq
h

h#
ha

hd
P

a

r [users]

s [files]
y
u[#]
w [files]

m [persons]
q, or ctl-d

x

!command
1

Go on to next message.
Delete message and go on to next message.
Delete message number #. Do not go on to next
message.
Delete message and quit mail.
Display a window of headers around current mes­
sage.
Display header of message number #.
Display headers of ALL messages in the user's mail­
file.
Display headers of messages scheduled for deletion.
Print current message again.
Print previous message.
Print message that arrived during the mail session.
Print message number #.
Reply to the sender and other user(s), then delete
the message.
Save message in the named files (mbox is default).
Same as save.
Undelete message number # (default is last read).
Save message, without its top-most header, in the
named files (mbox is default).
Mail the message to the named persons.
Put undeleted mail back in the mailfile and quit
mail.
Put all mail back in the mailfile unchanged and exit
mail.
Escape to the shell to do command.
Print a command summary.

When a user logs in, the presence of mail, if any, is indicated. Also, notifica­
tion is made if new mail arrives while using mail.

The mailfile may be manipulated in two ways to alter the function of mail.
The other permissions of the file may be read-write, read-only, or neither
read nor write to allow different levels of privacy. If changed to other than
the default, the file will be preserved even when empty to perpetuate the
desired permissions. The file may also contain the first line:

Forward to person

- 2 -

MAIL(l)

FILES

(Base System) MAIL(l)

which will cause all mail sent to the owner of the mailfile to be forwarded
to person. A "Forwarded by ... " message is added to the header. This is
especially useful in a multi-machine environment to forward all of a
person's mail to a single machine, and to keep the recipient informed if the
mail has been forwarded. Installation and removal of forwarding is done
with the -F option.

To forward all of one's mail to systema!user enter:

mail -Fsystema!user

To forward to more than one user enter:

mail -F" userl,systema!user2,systema!systemb!user3"

Note that when more than one user is specified, the whole list should be
enclosed in double quotes so that it may all be interpreted as the operand of
the -F option. The list can be up to 1024 bytes; either commas or white
space can be used to separate users.

The following list of characters are prohibited from appearing anywhere in
the mail -F argument list:

; & I A < > I I " ? * [] () { } $ # , -

To remove forwarding enter:

mail-F ""

The pair of double quotes is mandatory to set a NULL argument for the -F
option.

In order for forwarding to work properly the mailfile should have "mail" as
group ID, and the group permission should be read-write.

/etc/passwd
/usr/mail/user
$HOME/mbox
$MAIL
/tmp/ma*
/usr /mail/*.lock
dead.letter

to identify sender and locate persons
incoming mail for user; i.e., the mailfile
saved mail
variable containing path name of mailfile
temporary file
lock for mail directory
unmailable text

SEE ALSO
10gin(I), mailx(I), write(I).

User's/System Administrator's Guide.

WARNING

BUGS

The "Forward to person" feature may result in a loop, if sys1!userb for­
wards to sys2!userb and sys2!userb forwards to sysl!userb. The symptom is a
message saying "unbounded ... saved mail in dead.letter."

Conditions sometimes result in a failure to remove a lock file.

After an interrupt, the next message may not be printed; printing may be
forced by typing a p.

- 3 -

MAILX(l) (Base System) MAILX(l)

NAME
mailx - interactive message processing system

SYNOPSIS
mailx [options] [name ...]

DESCRIPTION
The command mailx provides a comfortable, flexible environment for send­
ing and receiving messages electronically. When reading mail, mailx pro­
vides commands to facilitate saving, deleting, and responding to messages.
When sending mail, mailx allows editing, reviewing, and other modification
of the message as it is entered.

Many of the remote features of mailx will only work if the Basic Networking
Utilities are installed on your system.

Incoming mail is stored in a standard file for each user, called the mailbox
for that user. When mailx is called to read messages, the mailbox is the
default place to find them. As messages are read, they are marked to be
moved to a secondary file for storage, unless specific action is taken, so that
the messages need not be seen again. This secondary file is called the mbox
and is normally located in the user's HOME directory [see "MBOX"
(ENVIRONMENT VARIABLES) for a description of this file]. Messages can be
saved in other secondary files named by the user. Messages remain in a
secondary file until forcibly removed.

The user can access a secondary file by using the -f option of the mailx
command. Messages in the secondary file can then be read or otherwise
processed using the same COMMANDS as in the primary mailbox. This gives
rise within these pages to the notion of a current mailbox.

On the command line, options start with a dash (-) and any other arguments
are taken to be destinations (recipients). If no recipients are specified, mailx
will attempt to read messages from the mailbox. Command line options are:

-e Test for presence of mail. mailx prints nothing and
exits with a successful return code if there is mail to
read.

-f [filename] Read messages from filename instead of mailbox. If
no filename is specified, the mbox is used.

-F Record the message in a file named after the first
recipient. Overrides the "record" variable, If set
(see ENVIRONMENT VARIABLES).

-h number The number of network "hops" made so far. This
is provided for network software to avoid infinite
delivery loops. (See addsopt under ENVIRONMENT
VARIABLES)

-H Print header summary only.
-i Ignore interrupts. See also "ignore" (ENVIRON-

MENT VARIABLES).
-n Do not initialize from the system default mailx.rc

file.

- 1 -

MAILX(l)

-N
-r address

-s subject
-u user

-u

(Base System) MAILX(l)

Do not print initial header summary.
Pass address to network delivery software. All tilde
commands are disabled. (See addsopt under
ENVIRONMENT VARIABLES)
Set the Subject header field to subject.
Read user's mailbox. This is only effective if user's
mailbox is not read protected.
Convert uucp style addresses to internet standards.
Overrides the "conv" environment variable. (See
addsopt under ENVIRONMENT VARIABLES)

When reading mail, mailx is in command mode. A header summary of the
first several messages is displayed, followed by a prompt indicating mailx
can accept regular commands (see COMMANDS below). When sending mail,
mailx is in input mode. If no subject is specified on the command line, a
prompt for the subject is printed. (A "subject" longer than 1024 characters
will cause mailxtodump core)Asthemessageistyped,mailx will read the
message and store it in a temporary file. Commands may be entered by
beginning a line with the tilde n escape character followed by a single
command letter and optional arguments. See TILDE ESCAPES for a summary
of these commands.

At any time, the behavior of mailx is governed by a set of environment vari­
ables. These are flags and valued parameters which are set and cleared via
the set and unset commands. See ENVIRONMENT VARIABLES below for a
summary of these parameters.

Recipients listed on the command line may be of three types: login names,
shell commands, or alias groups. Login names may be any network
address, including mixed network addressing. If mail is found to to
undeliverable, an attempt is made to return it to the sender's mailbox. If the
recipient name begins with a pipe symbol (I), the rest of the name is taken
to be a shell command to pipe the message through. This provides an
automatic interface with any program that reads the standard input, such as
Ip(1) for recording outgoing mail on paper. Alias groups are set by the alias
command (see COMMANDS below) and are lists of recipients of any type.

Regular commands are of the form

[command] [msglist] [arguments]

If no command is specified in command mode, print is assumed. In input
mode, commands are recognized by the escape character, and lines not
treated as commands are taken as input for the message.

Each message is assigned a sequential number, and there is at any time the
notion of a current message, marked by a right angle bracket (» in the
header summary. Many commands take an optional list of messages
(msglist) to operate on. The default for msglist is the current message. A
msglist is a list of message identifiers separated by spaces, which may
include:

- 2 -

MAILX(l)

n

$
*
n-m
user
/string
:c

(Base System)

Message number n.
The current message.
The first undeleted message.
The last message.
All messages.
An inclusive range of message numbers.
All messages from user.

MAILX(l)

All messages with string in the subject line (case ignored).
All messages of type c, where c is one of:

d deleted messages
n new messages
o old messages
r read messages
u unread messages

Note that the context of the command determines whether
this type of message specification makes sense.

Other arguments are usually arbitrary strings whose usage depends on the
command involved. File names, where expected, are expanded via the nor­
mal shell conventions [see sh(l»). Special characters are recognized by cer­
tain commands and are documented with the commands below.

At start-up time, mailx tries to execute commands from the optional
system-wide file (fusr/lib/mailx/mailx.rc) to initialize certain parameters,
then from a private start-up file ($HOME/.mailrc) for personalized vari­
ables. With the exceptions noted below, regular commands are legal inside
start-up files. The most common use of a start-up file is to set up initial
display options and alias lists. The following commands are not legal in the
start-up file: !, Copy, edit, followup, Followup, hold, mail, preserve, reply,
Reply, shell, and visual. An error in the start-up file causes the remaining
lines in the file to be ignored. The .mailrc file is optional and must be con­
structed locally.

COMMANDS
The following is a complete list of mailx commands:

!shell-command
Escape to the shell. See n SHELL" (ENVIRONMENT VARIABLES).

comment
Null command (comment). This may be useful in .mailrc files.

Print the current message number.

?
Prints a summary of commands.

alias alias name .. .
group alias name .. .

Declare an alias for the given names. The names will be substituted
when alias is used as a recipient. Useful in the .mailrc file.

- 3 -

MAILX(1) (Base System) MAILX(l)

alternates name ...
Declares a list of alternate names for your login. When responding
to a message, these names are removed from the list of recipients
for the response. With no arguments, alternates prints the current
list of alternate names. See also "allnet" (ENVIRONMENT VARI­
ABLES).

cd [directory]
chdir [directory]

Change directory. If directory is not specified, $HOME is used.

copy [filename]
copy [msglist] filename

Copy messages to the file without marking the messages as saved.
Otherwise equivalent to the save command.

Copy [msglist]
Save the specified messages in a file whose name is derived from
the author of the message to be saved, without marking the mes­
sages as saved. Otherwise equivalent to the Save command.

delete [msglist]
Delete messages from the mailbox. If "autoprint" is set, the next
message after the last one deleted is printed (see ENVIRONMENT
VARIABLES).

discard [header-field ...]
ignore [header-field ...]

Suppresses printing of the specified header fields when displaying
messages on the screen. Examples of header fields to ignore are
"status" and "cc." The fields are included when the message is
saved. The Print and Type commands override this command.

dp [msglist]
dt [msglist]

Delete the specified messages from the mailbox and print the next
message after the last one deleted. Roughly equivalent to a delete
command followed by a print command.

echo string ...
Echo the given strings [like echo(l)].

edit [msglist]
Edit the given messages. The messages are placed in a temporary
file and the "EDITOR" variable is used to get the name of the edi­
tor (see ENVIRONMENT VARIABLES). Default editor is ed(l).

- 4 -

MAILX(l)

exit
xit

(Base System) MAILX(l)

Exit from mailx, without changing the mailbox. No messages are
saved in the mbox (see also quit).

file [filename]
folder [filename]

Quit from the current file of messages and read in the specified file.
Several special characters are recognized when used as file names,
with the following substitutions:

% the current mailbox.
%user

the mailbox for user.
the previous file.
& the current mbox.

Default file is the current mailbox.

folders
Print the names of the files in the directory set by the "folder" vari­
able (see ENVIRONMENT VARIABLES).

followup [message]
Respond to a message, recording the response in a file whose name
is derived from the author of the message. Overrides the "record"
variable, if set. See also the Followup, Save, and Copy commands
and "outfolder" (ENVIRONMENT VARIABLES).

Followup [msglist]
Respond to the first message in the msglist, sending the message to
the author of each message in the msglist. The subject line is taken
from the first message and the response is recorded in a file whose
name is derived from the author of the first message. See also the
followup, Save, and Copy commands and "outfolder" (ENVIRON­
MENT VARIABLES).

from [msglist]
Prints the header summary for the specified messages.

group alias name .. .
alias alias name .. .

Declare an alias for the given names. The names will be substituted
when alias is used as a recipient. Useful in the .mailre file.

headers [message]
Prints the page of headers which includes the message specified.
The "screen" variable sets the number of headers per page (see
ENVIRONMENT VARIABLES). See also the z command.

- 5 -

MAILX(l) (Base System) MAILX(l)

help
Prints a summary of commands.

hold [msglist]
preserve [msglist]

if sIr
s
else
s
endif

Holds the specified messages in the mailbox.

Conditional execution, where s will execute following s, up to an
else or endif, if the program is in send mode, and r causes the s to
be executed only in receive mode. Useful in the .mailrc file.

ignore header-field .. .
discard header-field .. .

list

Suppresses printing of the specified header fields when displaying
messages on the screen. Examples of header fields to ignore are
"status" and "cc." All fields are included when the message is
saved. The Print and Type commands override this command.

Prints all commands available. No explanation is given.

mail name ...
Mail a message to the specified users.

Mail name
Mail a message to the specified user and record a copy of it in a file
named after that user.

mbox [msglist]
Arrange for the given messages to end up in the standard mbox save
file when mailx terminates normally. See "MBOX" (ENVIRONMENT
VARIABLES) for a description of this file. See also the exit and quit
commands.

next [message]
Go to next message matching message. A msglist may be specified,
but in this case the first valid message in the list is the only one
used. This is useful for jumping to the next message from a specific
user, since the name would be taken as a command in the absence
of a real command. See the discussion of msglists above for a
description of possible message specifications.

- 6 -

MAILX(l) (Base System) MAILX(l)

pipe [msglist] [shell-command]
; [msglist] [shell-command]

Pipe the message through the given shell-command. The message is
treated as if it were read. If no arguments are given, the current
message is piped through the command specified by the value of
the "cmd" variable. If the "page" variable is set, a form feed char­
acter is inserted after each message (see ENVIRONMENT VARIABLES).

preserve [msglist]
hold [msglist]

Preserve the specified messages in the mailbox.

Print [msg/ist]
Type [msglist]

Print the specified messages on the screen, induding all header
fields. Overrides suppression of fields by the ignore command.

print [msg/ist]
type [msglist]

quit

Print the specified messages. If" crt" is set, the messages longer
than the number of lines specified by the "crt" variable are paged
through the command specified by the "PAGER" variable. The
default command is pg(l) (see ENVIRONMENT VARIABLES).

Exit from mailx, storing messages that were read in mbox and unread
messages in the mailbox. Messages that have been explicitly saved
in a file are deleted.

Reply [msglist]
Respond [msg/ist]

Send a response to the author of each message in the msglist. The
subject line is taken from the first message. If "record" is set to a
file name, the response is saved at the end of that file (see
ENVIRONMENT VARIABLES).

reply [message]
respond [message]

Reply to the specified message, induding all other recipients of the
message. If "record" is set to a file name, the response is saved at
the end of that file (see ENVIRONMENT VARIABLES).

Save [msg/ist]
Save the specified messages in a file whose name is derived from
the author of the first message. The name of the file is taken to be
the author's name with all network addressing stripped off. See
also the Copy, followup, and Followup commands and "outfolder"
(ENVIRONMENT VARIABLES).

- 7 -

MAILX(l) (Base System) MAILX(l)

save ffilename]
save [msglist] filename

set

Save the specified messages in the given file. The file is created if it
does not exist. The message is deleted from the mailbox when mailx
terminates unless "keepsave" is set (see also ENVIRONMENT VARI­
ABLES and the exit and quit commands).

set name
set name=string
set name=number

shell

Define a variable called name. The variable may be given a null,
string, or numeric value. Set by itself prints all defined variables
and their values. See ENVIRONMENT VARIABLES for detailed
descriptions of the mailx variables.

Invoke an interactive shell [see also " SHELL" (ENVIRONMENT
VARIABLES)].

size [msglist]
Print the size in characters of the specified messages.

source filename
Read commands from the given file and return to command mode.

top [msglist]
Print the top few lines of the specified messages. If the "toplines"
variable is set, it is taken as the number of lines to print (see
ENVIRONMENT VARIABLES). The default is 5.

touch [msglist]
Touch the specified messages. If any message in msglist is not
specifically saved in a file, it will be placed in the mbox, or the file
specified in the MBOX environment variable, upon normal termina­
tion. See exit and quit.

Type [msglist]
Print [msglist]

Print the specified messages on the screen, including all header
fields. Overrides suppression of fields by the ignore command.

type [msg/ist]
print [msglist]

Print the specified messages. If "crt" is set, the messages longer
than the number of lines specified by the "crt" variable are paged
through the command specified by the "PAGER" variable. The
default command is pg(l) (see ENVIRONMENT VARIABLES).

- 8 -

MAILX(l) (Base System) MAILX(l)

undelete [msg/ist]
Restore the specified deleted messages. Will only restore messages
deleted in the current mail session. If" autoprint" is set, the last
message of those restored is printed (see ENVIRONMENT VARI­
ABLES).

unset name ...

version

Causes the specified variables to be erased. If the variable was
imported from the execution environment (Le., a shell variable) then
it cannot be erased.

Prints the current version and release date.

visual [msgIist]
Edit the given messages with a screen editor. The messages are
placed in a temporary file and the "VISUAL" variable is used to get
the name of the editor (see ENVIRONMENT VARIABLES).

write [msglist] filename

xit
exit

z[+ 1-]

Write the given messages on the specified file, minus the header
and trailing blank line. Otherwise equivalent to the save command.

Exit from mailx, without changing the mailbox. No messages are
saved in the mbox (see also quit).

Scroll the header display forward or backward one full screen. The
number of headers displayed is set by the "screen" variable (see
ENVIRONMENT VARIABLES).

TILDE ESCAPES
The following commands may be entered only from input mode, by begin­
ning a line with the tilde escape character (l. See "escape" (ENVIRON­
MENT VARIABLES) for changing this special character.

-! shell-command
Escape to the shell.

Simulate end of file (terminate message input).

Perform the command-level request. Valid only when sending a
message while reading mail.

- 9 -

MAILX(l) (Base System) MAILX(l)

Print a summary of tilde escapes.

Insert the autograph string n Sign" into the message (see ENVIRON­
MENT VARIABLES).

Insert the autograph string "sign" into the message (see ENVIRON­
MENT VARIABLES).

-b name ...
Add the names to the blind carbon copy (Bcc) list.

-c name ...
Add the names to the carbon copy (Cc) list.

Read in the dead.letter file. See "DEAD" (ENVIRONMENT V ARI­
ABLES) for a description of this file.

Invoke the editor on the partial message. See also "EDITOR"
(ENVIRONMENT VARIABLES).

- f [msglistj

-i string

Forward the specified messages. The messages are inserted into the
message without alteration.

Prompt for Subject line and To, Cc, and Bcc lists. If the field is
displayed with an initial value, it may be edited as if you had just
typed it.

Insert the value of the named variable into the text of the message.
For example, -A is equivalent to '-i Sign: Environment variables set
and exported in the shell are also accessible by -i,

-m [msglistj
Insert the specified messages into the letter, shifting the new text to
the right one tab stop. Valid only when sending a message while
reading mail.

Print the message being entered.

Quit from input mode by simulating an interrupt. If the body of the
message is not null, the partial message is saved in dead.letter. See

- 10-

MAILX(l) (Base System) MAILX(l)

"DEAD" (ENVIRONMENT VARIABLES) for a description of this file.

-r filename
--<filename
--< !shell-command

Read in the specified file. If the argument begins with an exclama­
tion point (!), the rest of the string is taken as an arbitrary shell
command and is executed, with the standard output inserted into
the message.

-s string ...
Set the subject line to string.

-t name ...
Add the given names to the To list.

Invoke a preferred screen editor on the partial message. See also
"VISUAL" (ENVIRONMENT VARIABLES).

-w filename
Write the partial message onto the given file, without the header.

Exit as with -q except the message is not saved in dead.letter.

-I shell-command
Pipe the body of the message through the given shell-command. If
the shell-command returns a successful exit status, the output of the
command replaces the message.

ENVIRONMENT VARIABLES
The following are environment variables taken from the execution environ­
ment and are not alterable within mailx.

HOME=directory
The user's base of operations.

MAILRC=filename
The name of the start-up file. Default is $HOME/.mailrc.

The following variables are internal mailx variables. They may be imported
from the execution environment or set via the set command at any time.
The unset command may be used to erase variables.

addsopt
Enabled by default. If /bin/mail is not being used as the deliverer,
noaddsopt should be specified. (See WARNINGS below)

- 11 -

MAILX(l)

aHnet

append

askcc

asksub

(Base System) MAILX(l)

All network names whose last component (login name) match are
treated as identical. This causes the msglist message specifications
to behave similarly. Default is noallnet. See also the alternates
command and the "metoo" variable.

Upon termination, append messages to the end of the mbox file
instead of prepending them. Default is noappend.

Prompt for the Cc list after message is entered. Default is noaskcc.

Prompt for subject if it is not specified on the command line with
the -8 option. Enabled by default.

autoprint

bang

Enable automatic printing of messages after delete and undelete
commands. Default is noautoprint.

Enable the special-casing of exclamation points (!) in shell escape
command lines as in vi (1). Default is nobang.

cmd=shell-command
Set the default command for the pipe command. No default value.

conv=conversion
Convert uucp addresses to the specified address style. The only
valid conversion now is internet, which requires a mail delivery pro­
gram conforming to the RFC822 standard for electronic mail
addressing. Conversion is disabled by default. See also "send­
mail" and the -U command line option.

crt=number
Pipe messages having more than number lines through the com­
mand specified by the value of the "PAGER" variable [pg(l) by
default]. Disabled by default.

DEAD=filename

debug

The name of the file in which to save partial letters in case of
untimely interrupt. Default is $HOMEjdead.letter.

Enable verbose diagnostics for debugging. Messages are not
delivered. Default is nodebug.

- 12 -

MAILX(l)

dot

(Base System) MAILX(l)

Take a period on a line by itself during input from a terminal as
end-of-file. Default is nodot.

EDITOR=shell-command
The command to run when the edit or -e command is used. Default
is ed(l).

escape=c
Substitute c for the - escape character. Takes effect with next mes­
sage sent.

folder=directory

header

hold

ignore

The directory for saving standard mail files. User-specified file
names beginning with a plus (+) are expanded by preceding the file
name with this directory name to obtain the real file name. If direc­
tory does not start with a slash (f), $HOME is prepended to it. In
order to use the plus (+) construct on a mailx command line,
"folder" must be an exported sh environment variable. There is no
default for the "folder" variable. See also "outfolder" below.

Enable printing of the header summary when entering mailx.
Enabled by default.

Preserve all messages that are read in the mailbox instead of putting
them in the standard mbox save file. Default is nohold.

Ignore interrupts while entering messages. Handy for noisy dial-up
lines. Default is noignore.

ignoreeof

keep

Ignore end-of-file during message input. Input must be terminated
by a period (.) on a line by itself or by the -. command. Default is
noignoreeof. See also "dot" above.

When the mailbox is empty, truncate it to zero length instead of
removing it. Disabled by default.

keepsave
Keep messages that have been saved in other files in the mailbox
instead of deleting them. Default is nokeepsave.

MBOX=filename
The name of the file to save messages which have been read. The
xit command overrides this function, as does saving the message
explicitly in another file. Default is $HOME/mbox.

- 13 -

MAILX(l)

metoo

(Base System) MAILX(l)

If your login appears as a recipient, do not delete it from the list.
Default is nometoo.

LISTER=shell-command

onehop

The command (and options) to use when listing the contents of the
"folder" directory. The default is Is(l).

When responding to a message that was originally sent to several
recipients, the other recipient addresses are normally forced to be
relative to the originating author's machine for the response. This
flag disables alteration of the recipients' addresses, improving effi­
ciency in a network where all machines can send directly to all
other machines (Le., one hop away).

outfolder

page

Causes the files used to record outgoing messages to be located in
the directory specified by the "folder" variable unless the path
name is absolute. Default is nooutfolder. See "folder" above and
the Save, Copy, followup, and Followup commands.

Used with the pipe command to insert a form feed after each mes­
sage sent through the pipe. Default is nopage.

PAGER=shell-command
The command to use as a filter for paginating output. This can also
be used to specify the options to be used. Default is pg(l).

prompt=string

quiet

Set the command mode prompt to string. Default is ,,? "

Refrain from printing the opening message and version when enter­
ing mailx. Default is noquiet.

record =filename

save

Record all outgoing mail in filename. Disabled by default. See also
"outfolder" above.

Enable saving of messages in dead.letter on interrupt or delivery
error. See "DEAD" for a description of this file. Enabled by
default.

screen=number
Sets the number of lines in a full screen of headers for the headers
command.

- 14 -

MAILX(l) (Base System) MAILX(l)

FILES

sendmail=shell-command
Alternate command for delivering messages. Default is
jbinjrmail(I).

sendwait
Wait for background mailer to finish before returning. Default is
nosendwait.

SHELL=shell-command
The name of a preferred command interpreter. Default is sh(I).

showto
When displaying the header summary and the message is from you,
print the recipient's name instead of the author's name.

sign=string
The variable inserted into the text of a message when the -a (auto­
graph) command is given. No default [see also -i (TILDE ESCAPES)].

Sign=string
The variable inserted into the text of a message when the -A com­
mand is given. No default [see also -i (TILDE ESCAPES)].

toplines=number
The number of lines of header to print with the top command.
Default is 5.

VISUAL=shell-command
The name of a preferred screen editor. Default is vi(I).

$HOMEj.mailrc
$HOMEjmbox
jusrjmail/*
jusr jlib jmailxjmailx.help*
jusr jlib jmailxjmailx.rc
jtmpjR[emqsx]*

personal start-up file
secondary storage file
post office directory
help message files
optional global start-up file
temporary files

SEE ALSO
Is(I), mail(I), pg(I).

WARNINGS

BUGS

The -h, -r and -U options can be used only if mailx is built with a delivery
program other than jbinjmail.

Where shell-command is shown as valid, arguments are not always allowed.
Experimentation is recommended.

Internal variables imported from the execution environment cannot be
unset.

- 15 -

MAILX(l) (Base System) MAILX(l)

The full internet addressing is not fully supported by mailx. The new stan­
dards need some time to settle down.

Attempts to send a message having a line consisting only of a "." are
treated as the end of the message by mail(1) (the standard mail delivery
program).

- 16 -

MAKEKEY(l) (Security Administration Utilities) MAKEKEY(l)

NAME
makekey - generate encryption key

SYNOPSIS
jusr jlib /makekey

DESCRIPTION
The makekey command improves the usefulness of encryption schemes
depending on a key by increasing the amount of time required to search the
key space. It reads 10 bytes from its standard input and writes 13 bytes on
its standard output. The output depends on the input in a way intended to
be difficult to compute (Le., to require a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII characters.
The last two (the salt) are best chosen from the set of digits, ., /, and upper­
case and lowercase letters. The salt characters are repeated as the first two
characters of the output. The remaining 11 output characters are chosen
from the same set as the salt characters and constitute the output key.

The transformation performed is essentially the following: the salt is used
to select one of 4,096 cryptographic machines all based on the National
Bureau of Standards DES algorithm, but broken in 4,096 different ways.
Using the input key as key, a constant string is fed into the machine and
recirculated a number of times. The 64 bits that come out are distributed
into the 66 output key bits in the result.

The makekey command is intended for programs that perform encryption,
Usually, its input and output will be pipes.

SEE ALSO
ed(I), crypt(I), vi(I).
passwd(4) in the Programmer's Reference Manual.

WARNING
This command is provided with the Security Administration Utilities, which
is only available in the United States.

- 1 -

MESG(l) (Base System)

NAME
mesg - permit or deny messages

SYNOPSIS
mesg [-n] [-y]

DESCRIPTION

MESG(l)

The mesg command with argument n forbids messages via write(l) by
revoking non-user write permission on the user's terminal. The mesg com­
mand with argument y reinstates permission. All by itself, mesg reports the
current state without changing it.

FILES
/dev/tty*

SEE ALSO
write(l).

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

- 1 -

MKDIR(l) (Base System) MKDIR(l)

NAME
mkdir - make directories

SYNOPSIS
mkdir [-m mode 1 [-p 1 dirname

DESCRIPTION
The mkdir command creates the named directories in mode 777 [possibly
altered by umask(l)].

Standard entries in a directory (e.g., the files ., for the directory itself, and .. ,
for its parent) are made automatically. mkdir cannot create these entries by
name. Creation of a directory requires write permission in the parent direc­
tory.

The owner ID and group ID of the new directories are set to the process's
real user ID and group ID, respectively.

Two options apply to mkdir:

-m This option allows users to specify the mode to be used for new direc­
tories. Choices for modes can be found in chmod(l).

-p With this option, mkdir creates dirname by creating all the non-existing
parent directories first.

EXAMPLE
To create the subdirectory structure ltr/jd/jan, type:

mkdir -p ltr/jd/jan

SEE ALSO
sh(l), rm(l), umask(l).
intro(2), mkdir(2) in the Programmer's Reference Manual.

DIAGNOSTICS
The mkdir command returns exit code 0 if all directories given in the com­
mand line were made successfully. Otherwise, it prints a diagnostic and
returns non-zero. An error code is stored in errno .

- 1 -

MKFS(lM) (Base System) MKFS(lM)

NAME
mkfs - construct a file system

SYNOPSIS
/etc/mkfs special blocks[:i-nodes] [gap blocks/cyl]
/etc/mkfs special proto [gap blocks/cyl]

DESCRIPTION
The mkfs command constructs a file system by writing on the special file
using the values found in the remaining arguments of the command line.
The command waits 10 seconds before starting to construct the file system.
During this lO-second pause, the command can be aborted by entering a
delete (DEL).

If the second argument is a string of digits, the size of the file system is the
value of blocks interpreted as a decimal number. This is the number of phy­
sical (512-byte) disk blocks the file system will occupy. If the number of i­
nodes is not given, the default is the number of logical (1024-byte) blocks
divided by 4. mkfs builds a file system with a single empty directory on it.
The boot program block (block zero) is left uninitialized.

If the second argument is the name of a file that can be opened, mkfs
assumes it to be a prototype file proto, and will take its directions from that
file. The prototype file contains tokens separated by spaces or new-lines. A
sample prototype specification follows (line numbers have been added to
aid in the explanation):

1. /stand/diskboot
2. 4872 110
3. d--7773 1
4. usr d--777 3 1
5. sh ---755 3 1 /bin/sh
6. ken d--755 6 1
7. $
8. bO b--644 3 1 0 0
9. cO c--644 3 1 0 0
10. $
11. $

Line 1 in the example is the name of a file to be copied onto block zero as
the bootstrap program.

Line 2 specifies the number of physical (512-byte) blocks the file system is
to occupy and the number of i-nodes in the file system.

Lines 3-9 tell mkfs about files and directories to be included in this file sys­
tem.

Line 3 specifies the root directory.

lines 4-6 and 8-9 specifies other directories and files.

The $ on line 7 tells mkfs to end the branch of the file system it is on, and
continue from the next higher directory. The $ on lines 10 and 11 end the
process, since no additional specifications follow.

- 1 -

MKFS(lM) (Base System) MKFS(lM)

FILES

File specifications give the mode, the user ID, the group ID, and
the initial contents of the file. Valid syntax for the contents field
depends on the first character of the mode.

The mode for a file is specified by a 6-character string. The first character
specifies the type of the file. The character range is -bed to specify regular,
block special, character special and directory files respectively. The second
character of the mode is either u or - to specify set-user-id mode or not.
The third is g or - for the set-group-id mode. The rest of the mode is a 3-
digit octal number giving the owner, group, and other read, write, execute
permissions [see chmod(l»).

Two decimal number tokens come after the mode; they specify the user and
group IDs of the owner of the file.

If the file is a regular file, the next token of the specification may be a path
name whence the contents and size are copied. If the file is a block or char­
acter special file, two decimal numbers follow which give the major and
minor device numbers. If the file is a directory, mkfs makes the entries.
and .. and then reads a list of names and (recursively) file specifications for
the entries in the directory. As noted above, the scan is terminated with the
token $.

The final argument in both forms of the command specifies the rotational
gap and the number of blocks/cyl. The gap size should always be 2. If the
gap and blocks/cyl are not specified or are considered illegal values a default
value of gap size 7 and 400 blocks/cyl is used.

/etc/vtoc/*

SEE ALSO
chmod(l).

BUGS

dir(4), fs(4) in the Programmer's Reference Manual.

With a prototype file, it is not possible to copy in a file larger than 64K
bytes, nor is there a way to specify links. The maximum number of i-nodes
configurable is 65500.

- 2 -

MKFS(lM) (2K File System) MKFS(lM)

NAME
mkfs - construct a file system

SYNOPSIS
/etc/mkfs special blocks[:i-nodes] [gap blocks/cyl] [-b blocksize]
/etc/mkfs special proto [gap blocks/cyl] [-b blocksize]

DESCRIPTION
mkfs constructs a file system by writing on the special file using the values
found in the remaining arguments of the command line. The command
waits 10 seconds before starting to construct the file system. During this
10-second pause the command can be aborted by entering a delete (DEL).

The -b blocksize option specifies the logical block size for the file system.
The logical block size is the number of bytes read or written by the operat­
ing system in a single I/O operation. Valid values for blocksize are 512,
1024, and 2048. The default is 1024. A block size of 2048 may be chosen
only if the 2K file system package is installed. If the -b option is used it
must appear last on the command line.

If the second argument to mkfs is a string of digits, the size of the file sys­
tem is the value of blocks interpreted as a decimal number. This is the
number of physical (512 byte) disk blocks the file system will occupy. If the
number of i-nodes is not given, the default is approximately the number of
logical blocks divided by 4. mkfs builds a file system with a single empty
directory on it. The boot program block (block zero) is left uninitialized.

If the second argument is the name of a file that can be opened, mkfs
assumes it to be a prototype file proto, and will take its directions from that
file. The prototype file contains tokens separated by spaces or new-lines. A
sample prototype specification follows (line numbers have been added to
aid in the explanation):

1. /stand/ diskboot
2. 4872 110
3. d--777 3 1
4. usr d--777 3 1
5. sh ---755 3 1 /bin/sh
6. ken d--755 6 1
~ $
8. bO b--644 3 0 0
9. cO c--644 3 0 0
10. $
11. $

Line 1 in the example is the name of a file to be copied onto block zero as
the bootstrap program.

Line 2 specifies the number of physical (512 byte) blocks the file system is
to occupy and the number of i-nodes in the file system.

Lines 3-9 tell mkfs about files and directories to be included in this file sys­
tem.

- 1 -

MKFS(lM) (2K File System) MKFS(lM)

FILES

line 3 specifies the root directory.

lines 4-6 and 8-9 specifies other directories and files.

The $ on line 7 tells mkfs to end the branch of the file system it is on, and
continue from the next higher directory. The $ on lines 10 and 11 end the
process, since no additional specifications follow.

File specifications give the mode, the user ID, the group ID, and the initial
contents of the file. Valid syntax for the contents field depends on the first
character of the mode.

The mode for a file is specified by a 6-character string. The first character
specifies the type of the file. The character range is -bed to specify regular,
block special, character special and directory files respectively. The second
character of the mode is either u or - to specify set-user-id mode or not.
The third is g or - for the set-group-id mode. The rest of the mode is a 3
digit octal number giving the owner, group, and other read, write, execute
permissions [see chmod(l)].

Two decimal number tokens come after the mode; they specify the user and
group IDs of the owner of the file.

If the file is a regular file, the next token of the specification may be a path
name whence the contents and size are copied. If the file is a block or char­
acter special file, two decimal numbers follow which give the major and
minor device numbers. If the file is a directory, mkfs makes the entries.
and .. and then reads a list of names and (recursively) file specifications for
the entries in the directory. As noted above, the scan is terminated with the
token $.

The gap blocks/cyl argument in both forms of the command specifies the
rotational gap and the number of blocks/cylinder.

/etc/vtoc/*

SEE ALSO
chmod(l).

BUGS

dir(4), fs(4) in the Programmer's Reference Manual.

With a prototype file, it is not possible to copy in a file larger than 64K
bytes, nor is there a way to specify links. The maximum number of i-nodes
configurable is 65500.

- 2 -

MKNOD(lM) (Base System) MKNOD(lM)

NAME
mknod - build special file

SYNOPSIS
jetcjmknod name b I c major minor
jetcjmknod name p

DESCRIPTION
The mknod command makes a directory entry and corresponding i-node for
a special file.

The first argument is the name of the entry. The UNIX System convention is
to keep such files in the jdev directory.

In the first case, the second argument is b if the special file is block-type
(disks, tape) or c if it is character-type (other devices). The last two argu­
ments are numbers specifying the major device type and the minor device
(e.g., unit, drive, or line number). They may be either decimal or octal. The
assignment of major device numbers is specific to each system. The infor­
mation is contained in the system source file conf.c. You must be the
super-user to use this form of the command.

The second case is the form of the mknod that is used to create FIFO's (a.k.a
named pipes).

WARNING
If mknod is used to create a device in a remote directory (Remote File Shar­
ing), the major and minor device numbers are interpreted by the server.

SEE ALSO
mknod(2} in the Programmer's Reference Manual.

- 1 -

MKPART(lM) (Base System) MKPART(lM)

NAME
mkpart - disk maintenance utility

SYNOPSIS
jetcjmkpart [-£ filename 1 [-p partition 1 ... [-P partition 1 ... [-b 1
[-B filename 1 [-A sector 1 ... [-v 1 [-v 1 [-i 1 [-x file 1
[-t [vpa 1 1 device

jetcjmkpart -F interleave raw_device

DESCRIPTION
This program allows the system administrator to display and modify the
data structures that the disk driver uses to access disks. These structures
describe the number, size, and type of the partitions, as well as the physical
characteristics of the disk drive itself.

The user maintains a file of stanzas, each of which contains comments and
parameters. The stanzas are of two varieties: those that describe disk parti­
tions, and disk devices. Stanzas may refer to other stanzas of the same type
so that common device or partition types may be customized. By default,
the stanza file is named jetc/partitions. The required parameter, device,
specifies the device stanza for the disk to be used.

The following options may be used with mkpart:

-£ filename
specifies the partition and device specification stanza file. If not
present, /etc/partitions is assumed.

-p partition
removes a partition from the vtoc on the specified device. The par­
tition is a stanza that indicates the partition to be removed by its
partition number parameter; no comparisons are made by attribute.
NOTE: Alternate partitions cannot be removed.

-P partition
adds a partition to the vtoc on the specified device. partition is a
stanza which contains and/or refers to other stanzas that contain all
of the necessary parameters for a vtoc partition.

-b causes only the boot program to be updated, unless other options
are specified.

-B filename
specifies a different boot program than the one given by the device
stanza.

-F interleave
causes the entire device to be hardware formatted. This process re­
writes all the sector headers on each track of the disk, enabling sub­
sequent access using normal reads and writes. interleave is the dis­
tance in physical sectors between each successive logical sector.
Normal values are 1 for track-cache controllers, 3-4 for standard
controllers. The device for this option must be a raw UNIX system
device. The -F option precludes all other options, thus should be
used alone.

- 1 -

MKPART(lM) (Base System) MKPART(lM)

-A sector
marks the specified sector as bad and assigns it an alternate if possi­
ble. sector is a zero-based absolute sector number from the begin­
ning of the drive. To compute a sector number given cylinder,
head, and (O-based) sector in track, the formula is cylinder *
(sectors-per-track * heads-per-cylinder) + head * (sectors-per-track)
+ sector.

-V causes a complete surface-analysis pass to be run. This first writes a
data pattern (currently OxeS in every byte) to each sector of the disk,
then reads each sector. Any errors are noted and the bad sectors
found are added to the alternates table if possible.

-v causes a non-destructive surface-analysis pass to be run. This just
reads every sector of the disk, noting bad sectors as above.

-i initializes the VTOC on the drive to default values, clearing any
existing partition and bad-sector information which may have
existed. This is the only way to remove an alternates partition and
can be used to re-initialize a drive which may have obsolete or
incorrect VTOC data on it.

-x file writes a complete device and partition stanza list for the specified
device to file "filename". Note: The tags in the file are pseudo
names used to identify the slice.

-t [vpal
creates a listing of the current vtoc. The sub-parameters specify
pieces to be printed: a - alternate sectors, p - partitions, and v - vtoc
and related structures.

The partitions file is composed of blank-line-separated stanzas. (Blank lines
have only tabs and spaces between new-lines). Commentary consists of all
text between a '#' and a new-line. Stanzas begin with an identifier fol­
lowed by a ':', and are followed by a comma-separated list of parameters.
Each parameter has a keyword followed by an '=' followed by a value. The
value may be a number, another stanza's name, a double quoted string, or a
parenthesis-surrounded, comma-separated list of numbers or ranges of
numbers, as appropriate for the keyword. Numbers may be written as
decimal, octal, or hexadecimal constants in the form familiar to C program­
mers.

Device specification stanzas may contain the following parameters:

usedevice = name
causes the named stanza's parameters to be included in the device
definition.

boot = string
indicates that the string is the filename of a bootstrap program to
install on the disk.

device = string
gives the filename of the character special device for the disk.

- 2 -

MKPART(lM) (Base System) MKPART(lM)

heads = number
specifies the number of tracks per cylinder on the device.

cyls = number
is the number of cylinders on the disk.

sectors = number
is the number of sectors per track.

bpsec = number
is the number of bytes per sector.

dserial = string
is an arbitrary string which is recorded in the volume label. (Mul­
tibus systems only)

vtocsec = number
gives the sector number to use for the volume table of contents.
NOTE: for AT386 systems, this number MUST be 17.

altsec = number
is the sector to use for the alternate block table.

badsec = number-list
lists the known bad sectors. These are appended to any specified in
the command line or found during surface analysis.

Partition stanzas may have the following parameters:

usepart = name
refers to another partition stanza.

partition = number
gives this partition's entry number in the vtoc.

tag = tagname
A partition tag specifies the purp.:se of the partition. The tagnames
are reserved words which are presently used for identification pur­
poses ONLY:
BACKUP means the entire disk.
ROOT is a root file system partition.
BOOT is a bootstrap partition.
SWAP is a partition that does not contain a file system.
USR is a partition that does contain a file system.
ALTS contains alternate sectors to which the driver re-maps bad sec­
tors. Currently a maximum of 62 alternate sectors is supported.
OTHER is a partition that the UNIX system does not know how to
handle, such as MS-DOS space.

perm = permname
specifies a permission type for the partition. Permissions are not
mutually exclusive.
RO indicates that the partition cannot be written upon. Normally,
write access is granted (standard UNIX system file permissions not­
withstanding).
NOMOUNT disallows the driver from mounting the file system that
may be contained in the partition.

- 3 -

MKPART(lM) (Base System) MKPART(lM)

FILES

BUGS

VALID indicates that the partition contains valid data. Any partition
added with the -A flag will be marked VALID.

start = number
is the starting sector number for the partition. NOTE: For AT386
systems, the root file system should start at the second track of the
cylinder which is the beginning of the active UNIX system 'fdisk'
partition. This allows space for the writing of the boot code.

size = number
is the size, in sectors, of the partition.

When mkpart is run, it first attempts to read the volume label (for multibus
systems) or the 'fdisk' table (for AT386 systems), the VTOC block, and the
alternate sector table. If any of the structures is invalid or cannot be read,
or if the -i flag is specified, the internal tables are initialized to default
values for the device specified (taken from the device stanza in the partition
file). If the -F flag is specified, the device is formatted. If either the -V or
-v flag is specified, the appropriate surface analysis is performed. After
these steps, partitions are deleted or added as required. Next, any bad sec­
tors specified in the partition file, found during surface analysis, or specified
in the command line with -A flags are merged into the alternate sectors
table. Note that an alternates partition must exist for any bad-sector mark­
ing to occur, as bad sectors are assigned good alternates at this point.
Finally, the boot program is written to track 0 of cylinder 0 (Multibus sys­
tems) or the cylinder where the active UNIX system 'fdisk' partition starts
(AT386 systems). If -b was not the only parameter specified, the updated
VTOC and alternates tables are written, and the disk driver is instructed to
re-read the tables when the drive is opened the next time. When only -t is
specified, only a listing is created and no updating occurs.

/etc/partitions /etc/boot /dev /rdskj*sO

Currently, very little consistency checking is done. No checks are made to
ensure that the 'fdisk' partition table is consistent with the UNIX system
partitions placed in the VTOC. If a DOS 'fdisk' partition is started at
cylinder 0, DOS will happily overwrite the UNIX system VTOC.

- 4 -

MOUNT(lM) (Base System) MOUNT(lM)

NAME
mount, umount - mount and unmount file systems and remote resources

SYNOPSIS
fete/mount [-r] [-f fstyp] special directory
fete/mount [-r] [-c] -d resource directory
fete/mount
/ete/umount special
/ete/umount -d resource

DESCRIPTION
File systems other than root (/) are considered removable in the sense that
they can be either available to users or unavailable. mount announces to
the system that special, a block special device or resource, a remote resource,
is available to users from the mount point directory. directory must exist
already; it becomes the name of the root of the newly mounted special or
resource. A unique resource may be mounted only once (no multiple
mounts).

mount, when entered with arguments, adds an entry to the table of mounted
devices, /ete/mnttab. umount removes the entry. If invoked with no argu­
ments, mount prints the entire mount table. If invoked with any of the fol­
lowing partial argument lists, mount will search /ete/fstab to fill in the
missing arguments: special, -d resource, directory, or -d directory.
The following options are available:

-r indicates that special or resource is to be mounted read-only. If
special or resource is write-protected or read-only advertised, this
flag must be used.

-d indicates that resource is a remote resource that is to be mounted
on directory or unmounted. To mount a remote resource,
Remote File Sharing must be up and running and the resource
must be advertised by a remote computer [see rfstart(lM) and
adv(lM)]. If -d is not used, special must be a local block special
device.

-e indicates that remote reads and writes should not be cached in
the local buffer pool. -e is used in conjunction with -d.

-f fstyp indicates that fstyp is the file system type to be mounted. If this
argument is omitted, it defaults to the root fstyp.

special indicates the block special device that is to be mounted on direc­
tory.

resource indicates the remote resource name that is to be mounted on a
directory.

directory indicates the directory mount point for special or resource. (The
directory must already exist.)

umount announces to the system that the previously mounted special or
resource is to be made unavailable. If invoked with directory or -d directory,
umount will search /ete/fstab to fill in the missing argument(s).

- 1 -

MOUNT(lM) (Base System) MOUNT(lM)

FILES

mount can be used by any user to list mounted file systems and resources.
Only a super-user can mount and unmount file systems.

/etc/mnttab
/etc/fstab

mount table
file system table

SEE ALSO
adv(lM), fuser(lM), nsquery(lM), rfstart(lM), rmntstat(lM), setmnt(lM),
unadv(lM), fstab(4), mnttab(4).
mount(2), umount(2) in the Programmer's Reference Manual.
"Remote File Sharing" chapter, System Administrator's Guide, for guidelines
on mounting remote resources.

DIAGNOSTICS
If the mount(2) system call fails, mount prints an appropriate diagnostic.
mount issues a warning if the file system to be mounted is currently labeled
under another name. A remote resource mount will fail if the resource is
not available or if Remote File Sharing is not running or if it is advertised
read-only and not mounted with -r.

umount fails if special or resource is not mounted or if it is busy. special or
resource is busy if it contains an open file or some user's working directory.
In such a case, you can use fuser(lM) to list and kill processes that are using
special or resource.

WARNINGS
Physically removing a mounted file system diskette from the diskette drive
before issuing the umount command damages the file system.

- 2 -

MOUNTALL(lM) (Base System) MOUNTALL(lM)

NAME
mountall, umountall - mount, unmount multiple file systems

SYNOPSIS
/etc/mountall [-] [file-system-table]
/etc/umountall [-k]

DESCRIPTION

FILES

These commands may be executed only by the super-user.

The mountall command is used to mount file systems according to a file­
system-table. (jetc/fstab is the default file system table.) The special file
name "-" reads from the standard input.

Before each file system is mounted, it is checked using fsstat(lM) to see if it
appears mountable. If the file system does not appear mountable, it is
checked, using fsck(lM), before the mount is attempted.

The umountall command causes all mounted file systems except root to be
unmounted. The -k option sends a SIGKILL signal, via fuser(lM), to
processes that have files open.

File-system-table format:

column 1 block special file name of file system

column 2 mount-point directory

column 3 "-r" if to be mounted read-only; "-d" if remote

column 4 (optional) file system type string

column 5+ ignored

White space separates columns. Lines beginning with "#" are comments.
Empty lines are ignored.

A typical file-system-table might read:

/dev/dsk/Osl /usr -r S51K

SEE ALSO
fsck(lM), fsstat(lM), fuser(lM), mount(lM).

signal(2), fstab(4) in the Programmer's Reference Manual.

DIAGNOSTICS
No messages are printed if the file systems are mountable and clean.

Error and warning messages come from fsck(lM), fsstat(lM), and mount(lM).

- 1 -

MVDIR(lM)

NAME
mvdir - move a directory

SYNOPSIS
/etc/mvdir dirname name

DESCRIPTION

(Base System) MVDIR(lM)

The mvdir command moves directories within a file system. Dirname must
be a directory. If name does not exist, it will be created as a directory. If
name does exist, dirname will be created as name/dirname. Dirname and
name may not be on the same path; that is, one may not be subordinate to
the other. For example:

mvdir x/y x/z

is legal, but

mvdir x/y x/y /z

is not.

SEE ALSO
mkdir(l), mv(l).

WARNINGS
Only the super-user can use mvdir.

- 1 -

NAWK(l) (Editing Package) NAWK(l)

NAME
nawk - pattern scanning and processing language

SYNOPSIS
nawk [-F re] [parameter ...] ['prog'] [-f progfile] [file ...]

DESCRIPTION
nawk is a new version of awk that provides capabilities unavailable in previ­
ous versions. This version will become the default version of awk in the
next major UNIX system release.

The -F re option defines the input field separator to be the regular expres­
sion reo
Parameters, in the form x= ... y= ... may be passed to nawk, where x and y
are nawk built-in variables (see list below).

nawk scans each input file for lines that match any of a set of patterns speci­
fied in prog. The prog string must be enclosed in single quotes (') to protect
it from the shell. For each pattern in prog there may be an associated action
performed when a line of a file matches the pattern. The set of pattern­
action statements may appear literally as prog or in a file specified with the
-f progfile option.

Input files are read in order; if there are no files, the standard input is read.
The file name - means the standard input. Each input line is matched
against the pattern portion of every pattern-action statement; the associated
action is performed for each matched pattern.

An input line is normally made up of fields separated by white space. (This
default can be changed by using the FS built-in variable or the -F re
option.) The fields are denoted $1, $2, ... ; $0 refers to the entire line.

A pattern-action statement has the form:

pattern { action }

Either pattern or action may be omitted. If there is no action with a pattern,
the matching line is printed. If there is no pattern with an action, the action
is performed on every input line.

Patterns are arbitrary Boolean combinations (!, II, &t&, and parentheses) of
relational expressions and regular expressions. A relational expression is
one of the follOwing:

expression relop expression
expression matchop regular expression

where a relop is any of the six relational operators in C, and a matchop is
either - (contains) or I - (does not contain). A conditional is an arith­
metic expression, a relational expression, the special expression

var in array,

or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before
the first input line has been read and after the last input line has been read
respectively.

- 1 -

NAWK(l) (Editing Package) NAWK(l)

Regular expressions are as in egrep [see grep(l)]. In patterns they must be
surrounded by slashes. Isolated regular expressions in a pattern apply to
the entire line. Regular expressions may also occur in relational expressions.
A pattern may consist of two patterns separated by a comma; in this case,
the action is performed for all lines between an occurrence of the first pat­
tern and the next occurrence of the second pattern.

A regular expression may be used to separate fields by using the -F re
option or by assigning the expression to the built-in variable FS. The
default is to ignore leading blanks and to separate fields by blanks and/or
tab characters. However, if FS is assigned a value, leading blanks are no
longer ignored.

Other built-in variables include:

ARGC

ARGV

FILENAME

FNR

command line argument count

command line argument array

name of the current input file

ordinal number of the current record in the current file

input field separator regular expression (default blank)

number of fields in the current record

FS

NF

NR ordinal number of the current record

OFMT output format for numbers (default %.6g)

OFS output field separator (default blank)

ORS output record separator (default new-line)

RS input record separator (default new-line)

An action is a sequence of statements. A statement may be one of the fol­
lowing:

if (conditional) statement [else statement]
while (conditional) statement
do statement while (conditional)
for (expression ; conditional ; expression) statement
for (var in array) statement
delete array[subscript]
break
continue
{ [statement] ... }
expression # commonly variable expression
print [expression-list] [>expression]
printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit [expr] # skip the rest of the input; exit status is expr
return [expr]

Statements are terminated by semicolons, new-lines, or right braces. An
empty expression-list stands for the whole input line. Expressions take on
string or numeric values as appropriate, and are built using the operators +,

- 2 -

NAWK(l) (Editing Package) NAWK(l)

-, *, j, %, and concatenation (indicated by a blank). The C operators ++,
--, +=, -=, *=, j=, and %= are also available in expressions. Variables
may be scalars, array elements (denoted xli]), or fields. Variables are initial­
ized to the null string or zero. Array subscripts may be any string, not
necessarily numeric; this allows for a form of associative memory. String
constants are quoted (").

The print statement prints its arguments on the standard output, or on a file
if >expression is present, or on a pipe if ; cmd is present. The arguments are
separated by the current output field separator and terminated by the output
record separator. The printf statement formats its expression list according
to the format [see printf(3S) in the Programmer's Reference Manual].

nawk has a variety of built-in functions: arithmetic, string, input/output,
and general.

The arithmetic functions are: atan2, cos, exp, int, log, rand, sin, sqrt, and
srand. int truncates its argument to an integer. rand returns a random
number between 0 and 1. srand (expr) sets the seed value for rand to expr
or uses the time of day if expr is omitted.

The string functions are:

gsub(for, repl, in) behaves like sub (see below), except that it replaces suc­
cessive occurrences of the regular expression (like the ed
global substitute command).

index(s, t)

length(s)

returns the position in string s where string t first occurs,
or 0 if it does not occur at all.

returns the length of its argument taken as a string, or of
the whole line if there is no argumel1t.

match(s, re) returns the position in string s where the regular expres­
sion re occurs, or 0 if it does not occur at all. RSTART is
set to the starting position (which is the same as the
returned value), and RLENGTH is set to the length of the
matched string.

split(s, a, fs) splits the string s into array elements a[1], a[2], a[n], and
returns n. The separation is done with the regular expres­
sion fs or with the field separator FS if fs is not given.

sprintf(fmt, expr, expr, ...)
formats the expressions according to the printf(3S) format
given by fmt and returns the resulting string.

sub(for, repl, in) substitutes the string repl in place of the first instance of
the regular expression for in string in and returns the
number of substitutions. If in is omitted, nawk substitutes
in the current record ($0).

substr(s, m, n) returns the n-character substring of s that begins at posi­
tion m.

The input/output and general functions are:

- 3 -

NAWK(l) (Editing Package) NAWK(l)

closes the fIle or pipe named filename. close (filename)

cmd I getline pipes the output of cmd into getline; each successive call
to getline returns the next line of output from cmd.

getline

getline <file

getline var

getline var <file

system (cmd)

sets $0 to the next input record from the current input fIle.

set& $0 to the next record from file.

sets variable var instead.

sets var from the next record of file.

executes cmd and returns its exit status.

All forms of getline return 1 for successful input, 0 for end of file, and -1 for
an error.

nawk also provides user-defined functi9ns. Such functions may be defined
(in the pattern position of a pattern-action statement) as

function name(args, ...) { stmts }
func name(args, ...) { stmts }

Function arguments are passed by value if scalar and by reference if array
name. Argument names are local to the function; all other variable names
are global. Function calls may be nested and functions may be recursive.
The return statement may be used to return a value.

EXAMPLES
Print lines longer than 72 characters:

length> 72

Print first two fields in opposite order:

{ print $2, $1 }

Same, with input fields separated by comma and/or blanks and tabs:

BEGIN { FS = ",[\t)·I[\t)+" }
{ print $2, $1 }

Add up first column, print sum and average:

{ s += $1 }
END {print" sum is", s, " average is", s/NR }

Print fields in reverse order:

{ for (i = NF; i > 0; --i) print $i }

Print all lines between start/stop pairs:

/start/, /stop/

Print all lines whose first field is different from previous one:

$1 != prev { print; prev = $1 }

Simulate echo(l):

BEGIN {
for (i = 1; i < ARGC; H+)

printf "%s", ARGV[i)

- 4 -

NAWK(l) (Editing Package) NAWK(l)

printf "\n"
exit
}

Print file, filling in page numbers starting at 5:

/Page/ { $2 = n++; }
{ print}

command line: nawk -£ program n=S input

SEE ALSO

BUGS

grep(l), sed(l).

lex(l), printf(3S) in the Programmer's Reference Manual.
Programmer's Guide.

Input white space is not preserved on output if fields are involved.

There are no explicit conversions between numbers and strings. To force an
expression to be treated as a number add 0 to it; to force it to be treated as a
string concatenate the null string (" ,,) to it.

- 5 -

NCHECK(lM) (Base System) NCHECK(lM)

NAME
ncheck - generate path names from i-numbers

SYNOPSIS
letc/ncheck [-i i-numbers 1 [-a] [-s 1 [file-system 1

DESCRIPTION
The ncheck command with no arguments generates a path name vs. i­
number list of all files on a set of default file systems (see /etc/checklist).
Names of directory files are followed by I ..
The options are as follows:

-i limits the report to only those files whose i-numbers follow.

-a allows printing of the names . and .. , which are ordinarily
suppressed.

-s limits the report to special files and files with set-user-JD mode.
This option may be used to detect violations of security policy.

File system must be specified by the file system's special file.

The report should be sorted so that it is more useful.

SEE ALSO
fsck(lM), sort(1).

DIAGNOSTICS
If the file system structure is not consistent, ?? denotes the "parent" of a
parentless file, and a path name beginning with .•. denotes a loop.

- 1 -

NEWFORM(l) (Editing Package) NEWFORM(l)

NAME
newform - change the format of a text file

SYNOPSIS
newform [-s] [-itabspec] [-otabspec] [-bn] [-en] [-pn] [-an] [-f] [-cchar]
[-In] [files]

DESCRIPTION
The newform command reads lines from the named files, or the standard
input if no input file is named, and reproduces the lines on the standard
output. Lines are reformatted in accordance with command line options in
effect.

Except for -s, command line options may appear in any order, may be
repeated, and may be intermingled with the optional files. Command line
options are processed in the order specified. This means that option
sequences like "-e15 -160" will yield results different from "-160 -e15".
Options are applied to all files on the command line.

-s Shears off leading characters on each line up to the first tab and
places up to 8 of the sheared characters at the end of the line. If
more than 8 characters (not counting the first tab) are sheared,
the eighth character is replaced by a * and any characters to the
right of it are discarded. The first tab is always discarded.

An error message and program exit will occur if this option is
used on a file without a tab on each line. The characters sheared
off are saved internally until all other options specified are
applied to that line. The characters are then added at the end of
the processed line.

For example, to convert a file with leading digits, one or more
tabs, and text on each line, to a file beginning with the text, all
tabs after the first expanded to spaces, padded with spaces out to
column 72 (or truncated to column 72), and the leading digits
placed starting at column 73, the command would be:

newform -s -i -1 -a -e file-name

-itabspec Input tab specification: expands tabs to spaces, according to the
tab specifications given. Tabspec recognizes all tab specification
forms described in tabs(l). In addition, tabspec may be --, in
which newform assumes that the tab specification is to be found
in the first line read from the standard input [see fspec(4)]. If no
tabspec is given, tabspec defaults to -8. A tabspec of -0 expects
no tabs; if any are found, they are treated as -1.

-otabspec Output tab specification: replaces spaces by tabs, according to
the tab specifications given. The tab specifications are the same
as for -itabspec. If no tabspec is given, tabspec defaults to -8. A
tabspec of -0 means that no spaces will be converted to tabs on
output.

-bn Truncate n characters from the beginning of the line when the
line length is greater than the effective line length (see -In).
Default is to truncate the number of characters necessary to

- 1 -

NEWFORM(l)

DIAGNOSTICS

(Editing Package) NEWFORM(l)

obtain the effective line length. The default value is used when
-b with no n is used. This option can be used to delete the
sequence numbers from a COBOL program as follows:
newform -11 -b7 file-name

-en Same as -bn except that characters are truncated from the
end of the line.

-pn Prefix n characters (see -ck) to the beginning of a line when
the line length is less than the effective line length. Default
is to prefix the number of characters necessary to obtain the
effective line length.

-an Same as -pn except characters are appended to the end of a
line.

-f Write the tab specification format line on the standard out­
put before any other lines are output. The tab specification
format line which is printed will correspond to the format
specified in the last -0 option. If no -0 option is specified,
the line which is printed will contain the default specifica­
tion of -8.

-ck Change the prefix/append character to k. Default character
for k is a space.

-In Set the effective line length to n characters. If n is not
entered, -1 defaults to 72. The default line length without
the -1 option is 80 characters. Note that tabs and back­
spaces are considered to be one character (use -i to expand
tabs to spaces).

The -11 must be used to set the effective line length shorter than
any existing line in the file so that the -b option is activated.

All diagnostics are fatal.
usage: ... newform was called with a bad option.

There was no tab on one line.
Self-explanatory.

not -s format
can't open file
internal line too long

tabspec in error

tabspec indirection illegal

o - normal execution
1 - for any error

SEE ALSO
csplit(l), tabs(l).

A line exceeds 512 characters after being
expanded in the internal work buffer.
A tab specification is incorrectly formatted, or
specified tab stops are not ascending.
A tabspec read from a file (or standard input) may
not contain a tabspec referencing another file (or
standard input).

fspec(4) in the Programmer's Reference Manual.

- 2 -

NEWFORM(l) (Editing Package) NEWFORM(l)

BUGS
The newform command normally only keeps track of physical characters;
however, for the -i and -0 options, newform will keep track of backspaces
in order to line up tabs in the appropriate logical columns.

newform will not prompt the user if a tabspec is to be read from the standard
input (by use of -i-- or -0--).

If the -f option is used, and the last -0 option specified was -0--, and was
preceded by either a -0-- or a -i--, the tab specification format line will be
incorrect.

- 3 -

NEWGRP(lM) (Base System) NEWGRP(lM)

NAME
newgrp - log in to a new group

SYNOPSIS
newgrp [-] [group]

DESCRIPTION

FILES

The newgrp command changes a user's group identification. The user
remains logged in and the current directory is unchanged, but calculations
of access permissions to files are performed with respect to the new real and
effective group IDs. The user is always given a new shell, replacing the
current shell, by newgrp, regardless of whether it terminated successfully or
due to an error condition (i.e., unknown group).

Exported variables retain their values after invoking newgrp; however, all
unexported variables are either reset to their default value or set to null.
System variables (such as PSl, PS2, PATH, MAIL, and HOME), unless
exported by the system or explicitly exported by the user, are reset to
default values. For example, a user has a primary prompt string (PSl) other
than $ (default) and has not exported PSl. After an invocation of newgrp ,
successful or not, their PSl will now be set to the default prompt string $.
Note that the shell command export [see sh(l)] is the method to export vari­
ables so that they retain their assigned value when invoking new shells.

With no arguments, newgrp changes the group identification back to the
group specified in the user's password file entry. This is a way to exit the
effect of an earlier newgrp command.

If the first argument to newgrp is a -, the environment is changed to what
would be expected if the user actually logged in again as a member of the
new group.

A password is demanded if the group has a password and the user does
not, or if the group has a password and the user is not listed in jete/group
as being a member of that group.

/etc/group
/etc/passwd

system's group file
system's password file

SEE ALSO

BUGS

login(l), sh(l).
group(4), passwd(4), environ(5) in the Programmer's Reference Manual.

There is no convenient way to enter a password into jete/group. Use of
group passwords is not encouraged, because, by their very nature, they
encourage poor security practices. Group passwords may disappear in the
future.

- 1 -

NEWS(l) (Base System) NEWS(l)

NAME
news - print news items

SYNOPSIS
news [-a 1 [-n 1 [-s 1 [items 1

DESCRIPTION

FILES

The news command is used to keep the user informed of current events. By
convention, these events are described by files in the directory /usr/news.

When invoked without arguments, news prints the contents of all current
files in /usr/news, most recent first, with each preceded by an appropriate
header. news stores the "currency" time as the modification date of a file
named .news-time in the user's home directory (the identity of this direc­
tory is determined by the environment variable SHOME); only files more
recent than this currency time are considered "current."

-a option causes news to print all items, regardless of currency. In this
case, the stored time is not changed.

-n option causes news to report the names of the current items without
printing their contents, and without changing the stored time.

-s option causes news to report how many current items exist, without
printing their names or contents, and without changing the stored
time. It is useful to include such an invocation of news in one's
.profile file, or in the system's fete/profile.

All other arguments are assumed to be specific news items that are to be
printed.

If a delete is typed during the printing of a news item, printing stops and
the next item is started. Another delete within one second of the first
causes the program to terminate.

/etc/profile
/usr/news/*
SHOME/.news_time

SEE ALSO
profile(4), environ(5) in the Programmer's Reference Manual.

- 1 -

NICE(l) (Base System)

NAME
nice - run a command at low priority

SYNOPSIS
nice [-increment 1 command [arguments 1

DESCRIPTION

NICE(l)

The nice command executes command with a lower CPU scheduling priority.
If the increment 'argument (in the range 1-19) is given, it is used; if not, an
increment of 10 is assumed.

The super-user may run commands with priority higher than normal by
using a negative increment, e.g., --10.

SEE ALSO
nohup(l).
nice(2) in the Programmer's Reference Manual.

DIAGNOSTICS
The nice command returns the exit status of the subject command.

BUGS
An increment larger than 19 is equivalent to 19.

- 1 -

NL(l) (Editing Package) NL(l)

NAME
nl - line-numbering filter

SYNOPSIS
nl [-htype] [-btype] [-£type] [-vstart#] [-iincr] [-p] [-Inurn] [-ssep]
[-wwidth] [-nformat] [-ddelim] file

DESCRIPTION
The nl command reads lines from the named file or the standard input if no
file is named and reproduces the lines on the standard output. Lines are
numbered on the left in accordance with the command options in effect.

nl views the text it reads in terms of logical pages. Line numbering is reset
at the start of each logical page. A logical page consists of a header, a
body, and a footer section. Empty sections are valid. Different line­
numbering options are independently available for header, body, and footer
(e.g., no numbering of header and footer lines while numbering blank lines
only in the body).

The start of logical page sections are signaled by input lines containing
nothing but the following delimiter character(s):

Line contents Start of

\:\:\:
\:\:
\:

header

body

footer

Unless optioned otherwise, nl assumes the text being read is in a single log­
ical page body.

Command options may appear in any order and may be intermingled with
an optional file name. Only one file may be named. The options are:

-btype Specifies which logical page body lines are to be numbered.
Recognized types and their meaning are:

-htype Same as -btype except for header. Default type for logical page
header is n (no lines numbered).

a
t
n
pstring

number all lines
number lines with printable text only
no line-numbering
number only lines that contain the regular expression
specified in string.

Default type for logical page body is t (text lines numbered).

-ftype Same as -btype except for footer. Default for logical page footer
is n (no lines numbered).

-vstart# Start# is the initial value used to number logical page lines.
Default is 1.

-iincr Incr is the increment value used to number logical page lines.
Default is 1.

- 1 -

NL(l) (Editing Package) NL(l)

-p Do not restart numbering at logical page delimiters.

-Inum Num is the number of blank lines to be considered as one. For
example, -12 results in only the second adjacent blank being
numbered (if the appropriate -ha, -ba, and/or -fa option is set).
Default is 1.

-ssep Sep is the character(s) used in separating the line number and the
corresponding text line. Default sep is a tab.

-wwidth Width is the number of characters to be used for the line number.
Default width is 6.

-nformat Format is the line-numbering format. Recognized values are: In,
left justified, leading zeroes suppressed; rn, right justified, lead­
ing zeroes supressed; rz, right justified, leading zeroes kept.
Default format is rn (right justified).

-dxx The delimiter characters specifying the start of a logical page sec­
tion may be changed from the default characters (\:) to two
user-specified characters. If only one character is entered, the
second character remains the default character (:). No space
should appear between the -d and the delimiter characters. To
enter a backslash, use two backslashes.

EXAMPLE
The command:

nl -vlO -itO -d!+ file1

will number file1 starting at line number 10 with an increment of ten. The
logical page delimiters are !+.

SEE ALSO
pr(l).

- 2 -

NLSADMIN(lM) (Networking Support Utilities) NLSADMIN(lM)

NAME
nlsadmin - network listener service administration

SYNOPSIS
nlsadmin -x
nlsadmin [options] neLspec

DESCRIPTION
nlsadmin administers the network listener process(es) on a machine. Each
network has a separate instance of the network listener process associated
with it; each instance (and thus, each network) is configured separately.
The listener process "listens" to the network for service requests, accepts
requests when they arrive, and spawns servers in response to those service
requests. The network listener process will work with any network (more
precisely, with any transport provider) that conforms to the transport pro­
vider specification.

The listener supports two classes of service: a general listener service, serv­
ing processes on remote machines, and a terminal login service, for termi­
nals connected directly to a network. The terminal login service provides
networked access to this machine in a form suitable for terminals connected
directly to the network. However, this direct terminal service requires spe­
cial associated software, and is only available with some networks (for
example, the AT&T STARLAN network).

nlsadmin can establish a listener process for a given network, configure the
specific attributes of that listener, and start and kill the listener process for
that network. nlsadmin can also report on the listener processes on a
machine, either individually (per network) or collectively.

The following list shows how to use nlsadmin. In this list, net-spec
represents a particular listener process. Specifically, net-spec is the relative
path name of the entry under Jdev for a given network (that is, a transport
provider). Changing the list of services provided by the listener produces
immediate changes, while changing an address on which the listener listens
has no effect until the listener is restarted. The following combination of
options can be used.

no options

-x

net-spec

-q net-spec

-v net-spec

will give a brief usage message.

will report the status of all of the listener processes
installed on this machine.

will print the status of the listener process for
net-spec.

will query the status of the listener process for the
specified network, and will reflect the result of that
query in its exit code. If a listener process is active,
nlsadmin will exit with a status of 0; if no process is
active, the exit code will be 1; the exit code will be
greater than 1 in case of error.

will print a verbose report on the servers associated
with net-spec, giving the service code, status, com­
mand, and comment for each. It also specifies the

- 1 -

NLSADMIN(lM) (Networking Support Utilities) NLSADMIN(lM)

uid the server will run as, and the list of modules to
be pushed, if any, before the server is started.

-z service_code neL..spec
will print a report on the server associated with
neL..spec that has service code service_code, giving
the same information as in the -v option.

-q -z service_code net-spec
will query the status of the service with service code
service_code on network net-spec, and will exit with
a status of 0 if that service is enabled, 1 if that ser­
vice is disabled, and greater than 1 in case of error.

-1 addr net-spec will change or set the address on which the listener
listens (the general listener service). This is the
address generally used by remote processes to access
the servers available through this listener (see the -a
option, below). addr is the transport address on
which to listen and is interpreted using a syntax that
allows for a variety of address formats. By default
addr is interpreted as the symbolic ASCII representa­
tion of the transport address. An addr preceded by a
\x will let you enter an address in hexadecimal nota­
tion. Note that addr must appear as a single word to
the shell and must be quoted if it contains any
blanks.

-t addr net-spec

-i net-spec

If addr is just a dash (" - "), nlsadmin will report the
address currently configured, instead of changing it.

A change of address will not take effect until the
next time the listener for that network is started.

will change or set the address on which the listener
listens for requests for terminal service, but is other­
wise similar to the -1 option above. A terminal ser­
vice address should not be defined unless the
appropriate remote login software is available; if
such software is available, it must be configured as
service code 1 (see the -a option, below).

will initialize or change a listener process for the net­
work specified by net-spec; that is, it will create and
initialize the files required by the listener. Note that
the listener should only be initialized once for a
given network, and that doing so does not actually
invoke the listener for that network. The listener
must be initialized before assigning addressing or
services.

[-m] -a service.-eode [-p modules] [-w id] -c cmd -y comment net-spec
will add a new service to the list of services available
through the indicated listener. service_code is the

- 2 -

NLSADMIN(lM) (Networking Support Utilities) NLSADMIN(lM)

code for the service, cmd is the command to be
invoked in response to that service code, comprised
of the full path name of the server and its argu­
ments, and comment is a brief (free-form) description
of the service for use in various reports. Note that
cmd must appear as a single word to the shell, so if
arguments are required the cmd and its arguments
must be surrounded by quotes. Similarly, the com­
ment must also appear as a single word to the shell.
When a service is added, it is initially enabled (see
the -e and -d options, below).

If the -m option is specified, the entry will be
marked as an administrative entry. Service codes 1
through 100 are reserved for administrative entries,
which are those that require special handling inter­
nally. In particular, code 1 is assigned to the remote
login service, which is the service automatically
invoked for connections to the terminal login
address.

The -m option used with the -a option indicates that
special handling internally is required for those
servers added with the -m set. This internal han­
dling is in the form of code embedded on the listener
process.

If the -p option is specified, then modules will be
interpreted as a list of STREAMS modules for the
listener to push before starting the service being
added. The modules are pushed in the order they
are specified. modules should be a comma-separated
list of modules, with no white space included.

If the -w option is specified, then id is interpreted as
the user name from /etc/passwd that the listener
should look up. From the user name, the listener
should obtain the user ID, the group 10, and the
home directory for use by the server. If -w is not
specified, the default is to use the user 10 listen.

A service must explicitly be added to the listener for
each network on which that service is to be avail­
able. This operation will normally be performed
only when the service is installed on a machine, or
when populating the list of services for a new net­
work.

-r service_code net---spec
will remove the entry for the service_code from that
listener's list of services. This will normally be per­
formed only in conjunction with the de-installation
of a service from a machine.

- 3 -

NLSADMIN(lM) (Networking Support Utilities) NLSADMIN(lM)

FILES

-e service-code neL.spec
-d service-code neL.spec

-s net-spec
-k net-spec

will enable or disable (respectively) the service indi­
cated by service_code for the specified network. The
service must have previously been added to the
listener for that network (see the -a option, above).
Disabling a service will cause subsequent service
requests for that service to be denied, but the
processes from any prior service requests that are
still running will continue unaffected.

will start and kill (respectively) the listener process
for the indicated network. These operations will
normally be performed as part of the system startup
and shutdown procedures. Before a listener can be
started for a particular network, it must first have
been initialized, and an address must be defined for
the general listener service (see the -i and -1 options,
above). When a listener is killed, processes that are
still running as a result of prior service requests will
continue unaffected.

The listener runs as user ID root, with group ID sys. A special ID, user ID
listen and group ID adm, should be entered in the /etc/passwd file as a
default ID for servers. The listener always uses as its home directory
/usr/net/nls, which is concatenated with net-spec to determine the loca­
tion of the listener configuration information for each network. The home
directory specified in the /etc/passwd entry for listener will used by
servers that run as ID listen.

nlsadmin may be invoked by any user to generate reports, but all operations
that affect a listener's status or configuration are restricted to the super-user.

/usr/net/nls/net-spec

SEE ALSO
Network Programmer's Guide

- 4 -

NOHUP(l) (Base System) NOHUP(l)

NAME
nohup - run a command immune to hangups and quits

SYNOPSIS
nohup command [arguments)

DESCRIPTION
The nohup command executes command with hangups and quits ignored. If
output is not re-directed by the user, both standard output and standard
error are sent to nohup.out. If nohup.out is not writable in the current
directory, output is redirected to $HOME/nohup.out.

EXAMPLE
It is frequently desirable to apply nohup to pipelines or lists of commands.
This can be done only by placing pipelines and command lists in a single
file, called a shell procedure. One can then issue:

nohup sh file

and the nohup applies to everything in file. If the shell procedure file is to
be executed often, then the need to type sh can be eliminated by giving file
execute permission. Add an ampersand and the contents of file are run in
the background with interrupts also ignored [see sh(l»):

nohup file &

An example of what the contents of file could be is:

sort ofile > nfile

SEE ALSO
chmod(l), nice(l), sh(l),
signal(2) in the Programmer's Reference Manual.

WARNINGS
In the case of the following command

nohup commandl; command2

nohup applies only to commandl. The command

nohup (commandl; command2)

is syntactically incorrect.

- 1 -

NSQUERY(lM) (Remote File Sharing Utilities) NSQUERY(lM)

NAME
nsquery - Remote File Sharing name server query

SYNOPSIS
nsquery [-h] [name]

DESCRIPTION
The nsquery command provides information about resources available to the
host from both the local domain and from other domains; all resources are
reported, regardless of whether the host is authorized to access them.
When used with no options, nsquery identifies all resources in the domain
that have been advertised as sharable. A report on selected resources can
be obtained by specifying name, where name is:

nodename The report will include only those resources available
from nodename.

domain. The report will include only those resources available
from domain.

domain.nodename The report will include only those resources available
from domain.nodename.

When the name does not include the delimiter ". ", it will be interpreted as
a nodename within the local domain. If the name ends with a delimiter ". II ,
it will be interpreted as a domain name.

The information contained in the report on each resource includes its adver­
tised name (domain. resource), the read/write permissions, the server
(nodename.domain) that advertised the resource, and a brief textual descrip­
tion.

When -h is used, the header is not printed.

A remote domain must be listed in your rfmaster file in order to query that
domain.

EXIT STATUS
If no entries are found when nsquery is executed, the report header is
printed.

ERRORS
If your host cannot contact the domain name server, an error message will
be sent to standard error.

SEE ALSO
adv(lM), unadv(lM).
rfmaster(4) in the Programmer's Reference Manual.

- 1 -

00(1) (Editing Package) 00(1)

NAME
od - octal dump

SYNOPSIS
od [-bcd08X 1 [file 1 [[+ loffset[•][b 1 1

DESCRIPTION
The od command dumps file in one or more formats as selected by the first
argument. If the first argument is missing, -0 is default. The meanings of
the format options are:

-b Interpret bytes in octal.

-c Interpret bytes in ASCII. Certain non-graphic characters appear as C
escapes: null=\O, backspace=\b, form-feed=\f, new-line=\n,
retum=\r, tab=\t; others appear as 3-digit octal numbers.

-d Interpret words in unsigned decimal.

-0 Interpret words in octal.

-8 Interpret 16-bit words in signed decimal.

-x Interpret words in hex.

The file argument specifies which file is to be dumped. If no file argument
is specified, the standard input is used.

The offset argument specifies the offset in the file where dumping is to
commence. This argument is normally interpreted as octal bytes. If. is
appended, the offset is interpreted in decimal. If b is appended, the offset is
interpreted in blocks of 512 bytes. If the file argument is omitted, the offset
argument must be preceded by +.
Dumping continues until end-of-file.

- 1 -

PACK(l) (Editing Package) PACK(l)

NAME
pack, pcat, unpack - compress and expand files

SYNOPSIS
pack [- 1 [-f 1 name

pcat name ...

unpack name ...

DESCRIPTION
The pack command attempts to store the specified files in a compressed
form. Wherever possible (and useful), each input file name is replaced by a
packed file name.z with the same access modes, access and modified dates,
and owner as those of name. The -f option will force packing of name.
This is useful for causing an entire directory to be packed even if some of
the files will not benefit. If pack is successful, name will be removed.
Packed files can be restored to their original form using unpack or pcat.

The pack command uses Huffman (minimum redundancy) codes on a byte­
by-byte basis. If the - argument is used, an internal flag is set that causes
the number of times each byte is used, its relative frequency, and the code
for the byte to be printed on the standard output. Additional occurrences of
- in place of name will cause the internal flag to be set and reset.

The amount of compression obtained depends on the size of the input file
and the character frequency distribution. Because a decoding tree forms the
first part of each .z file, it is usually not worthwhile to pack files smaller
than three blocks, unless the character frequency distribution is very
skewed, which may occur with printer plots or pictures.

Typically, text files are reduced to 60-75% of their original size. Load
modules, which use a larger character set and have a more uniform distribu­
tion of characters, show little compression, the packed versions being about
90% of the original size.

The pack command returns a value that is the number of files that it failed
to compress.

No packing will occur if:

the file appears to be already packed;
the file name has more than 12 characters;
the file has links;
the file is a directory;
the file cannot be opened;
no disk storage blocks will be saved by packing;
a file called name.z already exists;
the .z file cannot be created;
an I/O error occurred during processing.

The last segment of the file name must contain no more than 12 characters
to allow space for the appended .z extension. Directories cannot be
compressed.

- 1 -

PACK(l) (Editing Package) PACK(l)

The pcat command does for packed files what cat(l) does for ordinary files,
except that pcat cannot be used as a filter. The specified files are unpacked
and written to the standard output. Thus to view a packed file named
name.z use:

pcat name.z
or just:

pcat name

To make an unpacked copy, say nnn, of a packed file named name.z
(without destroying name.z), use the command:

pcat name >nnn

The pcat command returns the number of files it was unable to unpack.
Failure may occur if:

the file name (exclusive of the .z) has more than 12 characters;
the file cannot be opened;
the file does not appear to be the output of pack.

Unpack expands files created by pack. For each file name specified in the
command, a search is made for a file called name .z (or just name, if name
ends in .z). If this file appears to be a packed file, it is replaced by its
expanded version. The new file has the .z suffix stripped from its name,
and has the same access modes, access and modification dates, and owner
as those of the packed file.

Unpack returns a value that is the number of files it was unable to unpack.
Failure may occur for the same reasons that it may in pcat, as well as for
the following:

SEE ALSO
cat(l).

a file with the "unpacked" name already exists;
if the unpacked file cannot be created.

- 2 -

PASSMGMT(lM) P ASSMGMT(lM)

NAME
passmgmt - password files management

SYNOPSIS
passmgmt -a [-c comment] [-h homedir] [-u uid [-0]] [-g gid] [-s shell]
name
passmgmt -m [-c comment] [-h homedir] [-u uid [-0]] [-g gid] [-s shell]
[-I logname] name
passmgmt -d name

DESCRIPTION

FILES

passmgmt -a adds an entry for user name to the login password files. This
command does not create any directory for the new user and the new login
remains locked until the passwd command is executed to set the password.

passmgmt -m modifies the entry for user name in the login password files.
All the fields (except the password field) in the password entry and the
name field in the shadow password entry can be modified by this com­
mand. Only fields entered on the command line will be modified.

passmgmt -d deletes the entry for user name from the login password files.
It will not remove any files that the user owns on the system; they must be
removed manually.

The following options are available:

-c comment A short description of the login. It is limited to a maximum of
128 characters and defaults to an empty fielQ.

-h homedir Default home directory of the user. It is limited to a maximum
of 256 characters and defaults to jusrjname.

-u uid UID of the name. This number must range from 0 to the max­
imum non-negative value for the system. It defaults to the
next available UID greater than 100. Without the -0 option, it
enforces the uniqueness of aUlD.

-0 This option allows a UID to be non-unique.

-g gid GID of the name. This number must range from 0 to the max-
imum non-negative value for the system. The default is 1.

-s shell Login shell for name. It should be the full pathname of the
program that will be. executed when the user logs in. The
maximum size of shell is 256 characters. It defaults to jhinjsh.

-Ilogname Change logname. This option changes the name to /ogname.
name The login name of the user. It must be unique and

alphanumeric.

The total size of each login entry for the password and shadow files,
whether existing or new, is limited to a maximum of 511 bytes.

/etc/passwd, jetc/shadow, /etc/opasswd, /etc/oshadow

- 1 -

P ASSMGMT(lM) P ASSMGMT(lM)

SEE ALSO
passwd(l), passwd(lM).

passwd(4) in the Programmer's Reference Manual.
DIAGNOSTICS

The passmgmt command exits with one of the following values:

o SUCCESS.

1 Permission denied.

2 Invalid command syntax. Usage message of the passmgmt com-
mand will be displayed.

3 Invalid argument provided to option.

4 UID in use.

S Inconsistent password files (e.g., name is in the /ete/passwd file
and not in the fete/shadow file, or vice versa).

6 Unexpected failure. Password files unchanged.

7 Unexpected failure. Password file(s) missing.

8 Password file(s) busy. Try again later.

9 name does not exist (if -m or -d is specified), already exists (if -a
is specified), or logname already exists (if -m -I is specified).

WARNING
Do not use a colon in the comment (-e option) because it will be interpreted
as a field separator.

- 2 -

PASSWD(l) (Base System) PASSWD(l)

NAME
passwd - change login password

SYNOPSIS
passwd [name]

passwd -s [name]

DESCRIPTION
The passwd command changes the password associated with the login name.
The -s option shows password attributes for the login name.
The format of the display will be:

name status mm/dd/yy min max
or, if password aging information is not present,

name status
where:

name The login ID of the user.

status The password status of name: "PS" stands for passworded or
locked, "LK" stands for locked, and "NP" stands for no pass­
word.

mm/dd/yy The date password was last changed for name.
min The minimum number of days required between password

changes for name.
max The maximum number of days the password is valid for name.
Ordinary users may change only their own password or display the pass­
word attributes that correspond to their login name.
The passwd command prompts ordinary users for their old password, if any.
It then prompts for the new password twice. When the old password is
entered, passwd checks to see if it has "aged" sufficiently. If "aging" is
insufficient, passwd terminates; see passwd(4).
Assuming aging is sufficient, a check is made to ensure that the new pass­
word meets construction requirements. When the new password is entered
a second time, the two copies of the new password are compared. If the
two copies are not identical, the cycle of prompting for the new password is
repeated for at most two more times.

Passwords must be constructed to meet the following requirements:

Each password must have at least six characters. Only the first
eight characters are significant.

Each password must contain at least two alphabetic characters and
at least one numeric or special character. In this case, "alphabetic"
refers to all uppercase or lowercase letters.

Each password must differ from the user's login name and any
reverse or circular shift of that login name. For comparison pur­
poses, an uppercase letter and its corresponding lower case letter are
equivalent.

- 1 -

PASSWD(l) (Base System) PASSWD(l)

FILES

New passwords must differ from the old by at least three characters.
For comparison purposes, an uppercase letter and its corresponding
lowercase letter are eqUivalent.

Super-users [e.g., real and effective uid equal to zero, [see id(lM) and
su(lM)] may change any password; hence, passwd does not prompt super­
users for the old password. Super-users are not forced to comply with pass­
word aging and password construction requirements. A super-user can
create a null password by entering a carriage return in response to the
prompt for a new password.

/etc/passwd
/etc/shadow
/ etc/ opasswd
/ etc/ oshadow

SEE ALSO
login(l).

crypt(3C), passwd(4) in the Programmer's Reference Manual.

DIAGNOSTICS
The passwd command exits with one of the following values:

o SUCCESS.

1 Permission denied.

2 Invalid combination of options.

3 Unexpected failure. Password file unchanged.

4 Unexpected failure. Password file(s) missing.

5 Password file(s) busy. Try again later.

- 2 -

PASSWD(lM) PASSWD(lM)

NAME
passwd - change login password and password attributes

SYNOPSIS
passwd [name]

passwd -1 [-f] [-x max] [-n min] name

passwd -d [-f] [-x max] [-n min] name

passwd -s [-a]

passwd -s [name]

DESCRIPTION
This command changes or installs login passwords and password attributes
associated with the login name. The options to passwd are:

-1 Locks password entry for name.

-d Deletes password for name. The login name will not be prompted for
password.

-x Set maximum field for name. The max field contains the number of
days that the password is valid for name. The aging for name will be
turned off if max is set to O.

-n Set minimum field for name. The min field contains the minimum
number of days between password changes for name.

-s Shows password attributes for name. The format of the display will be:

name status mm/dd/yy min max

or, if password aging information is not present,

name status

name is the login ID of the user. status is the password status of name.
" PS" stands for passworded or locked, "LK" stands for locked, and "NP"
stands for no password. mm/dd/yy is the date password was last changed
of name. min is the minimum number of days required between password
changes of name. max is the maximum number of days the password is
valid of name.

-a Show password attributes for all entries. Use only with -s option;
name must not be provided.

-f Force the user to change password at the next login by expiring the
password for name.

Privileged users may change any password; hence, passwd does not prompt
privileged users for the old password. Privileged users are not forced to
comply with password aging and password construction requirements. A
privileged user can create a null password by entering a carriage return in
response to the prompt for a new password.

- 1 -

PASSWD(lM)

FILES
/etc/passwd
/etc/shadow
/ etc/ opasswd
/ etc/ oshadow

SEE ALSO
id(lM), login(l), passmgmt(lM), passwd(l), su(lM).
crypt(3C), passwd(4) in the Programmer's Reference Manual.

DIAGNOSTICS
The passwd command exits with one of the following values:

o SUCCESS.

1 Permission denied.

2 Invalid combination of options.

3 Unexpected failure. Password file unchanged.

4 Unexpected failure. Password file missing.

5 Password file(s) busy. Try again later.

6 Invalid argument to option.

- 2 -

PASSWD(lM)

PASTE(l) (Editing Package) PASTE(l)

NAME
paste - merge same lines of several files or subsequent lines of one file

SYNOPSIS
paste file 1 file2 ...
paste -d list file 1 file2
paste -s [-dlist] filel file2

DESCRIPTION
In the first two forms, paste concatenates corresponding lines of the given
input files filel, file2, etc. It treats each file as a column or columns of a
table and pastes them together horizontally (parallel merging). If you will,
it is the counterpart of cat(l) which concatenates vertically, Le., one file
after the other. In the last form above, paste replaces the function of an
older command with the same name by combining subsequent lines of the
input file (serial merging). In all cases, lines are glued together with the tab
character, or with characters from an optionally specified list. Output is to
the standard output, so it can be used as the start of a pipe, or as a filter, if
- is used in place of a file name.

The meanings of the options are:

-d Without this option, the new-line characters of each but the last file
(or last line in case of the -s option) are replaced by a tab character.
This option allows replacing the tab character by one or more alter­
nate characters (see below).

list One or more characters immediately following -d replace the
default tab as the line concatenation character. The list is used cir­
cularly, Le., when exhausted, it is reused. In parallel merging (Le.,
no -s option), the lines from the last file are always terminated with
a new-line character, not from the list. The list may contain the
special escape sequences: \n (new-line), \t (tab), \ \ (backslash),
and \0 (empty string, not a null character). Quoting may be neces­
sary, if characters have special meaning to the shell (e.g., to get one
backslash, use -d "\ \ \ \ ").

-s Merge subsequent lines rather than one from each input file. Use
tab for concatenation, unless a list is specified with -d option.
Regardless of the list, the very last character of the file is forced to
be a new-line.

May be used in place of any file name, to read a line from the stan­
dard input. (There is no prompting).

EXAMPLES
Is I paste -d" " -

Is I paste - - - -

paste -s -d" \ t\ n" file

SEE ALSO
cut(l), grep(l), pr(l).

list directory in one column

list directory in four columns

combine pairs of lines into lines

- 1 -

PASTE(l)

DIAGNOSTICS
line too long

too many files

(Editing Package) PASTE(l)

Output lines are restricted to 511 characters.

Except for -s option, no more than 12 input files
may be specified.

- 2 -

PG(l) (Editing Package) PG(l)

NAME
pg - file perusal filter for CRTs

SYNOPSIS
pg [-number] [-p string] [-cefns] [+linenumber] [+/pattern/] [fIles ...]

DESCRIPTION
The pg command is a filter which allows the examination of files one
screenful at a time on a CRT. (The file name - and/or NULL arguments
indicate that pg should read from the standard input.) Each screenful is fol­
lowed by a prompt. If the user types a carriage return, another page is
displayed; other possibilities are enumerated below.

This command is different from previous paginators in that it allows you to
back up and review something that has already passed. The method for
doing this is explained below.

In order to determine terminal attributes, pg scans the terminfo(4) data base
for the terminal type specified by the environment variable TERM. If TERM
is not defined, the terminal type dumb is assumed.

The command line options are:

-number
An integer specifying the size (in lines) of the window that pg is to
use instead of the default. (On a terminal containing 24 lines, the
default window size is 23).

-p string
Causes pg to use string as the prompt. If the prompt string contains
a "%d", the first occurrence of "%d" in the prompt will be replaced
by the current page number when the prompt is issued. The default
prompt string is ":".

-c Home the cursor and clear the screen before displaying each page.
This option is ignored if clear_screen is not defined for this termi­
nal type in the terminfo(4) data base.

-e Causes pg not to pause at the end of each file.

-£ Normally, pg splits lines longer than the screen width, but some
sequences of characters in the text being displayed (e.g., escape
sequences for underlining) generate undesirable results. The-f
option inhibits pg from splitting lines.

-n Normally, commands must be terminated by a <newline> character.
This option causes an automatic end of command as soon as a com­
mand letter is entered.

-s Causes pg to print all messages and prompts in standout mode (usu­
ally inverse video).

+linenumber
Start up at linenumber.

+/pattern/
Start up at the first line containing the regular expression pattern.

- 1 -

PG(l) (Editing Package) PG(l)

The responses that may be typed when pg pauses can be divided into three
categories: those causing further perusal, those that search, and those that
modify the perusal environment.

Commands which cause further perusal normally take a preceding address,
an optionally signed number indicating the point from which further text
should be displayed. This address is interpreted in either pages or lines
depending on the command. A signed address specifies a point relative to
the current page or line, and an unsigned address specifies an address rela­
tive to the beginning of the file. Each command has a default address that
is used if none is provided.

The perusal commands and their defaults are as follows:

(+I)<newline> or <blank>
This causes one page to be displayed. The address is specified in
pages.

(+ 1) I With a relative address this causes pg to simulate scrolling the
screen, forward or backward, the number of lines specified. With
an absolute address this command prints a screenful beginning at
the specified line.

(+1) d or"D
Simulates scrolling half a screen forward or backward.

The following perusal commands take no address .

. or"L Typing a single period causes the current page of text to be
redisplayed.

$ Displays the last windowful in the file. Use with caution when the
input is a pipe.

The following commands are available for searching for text patterns in the
text. The regular expressions described in ed(l) are available. They must
always be terminated by a <newline>, even if the -n option is specified.

ijpatternj
Search forward for the ith (default i=l) occurrence of pattern.
Searching begins immediately after the current page and continues
to the end of the current file, without wrap-around.

(pattern"
i?pattern?

Search backwards for the ith (default i=l) occurrence of pattern.
Searching begins immediately before the current page and continues
to the beginning of the current file, without wrap-around. The"
notation is useful for Adds 100 terminals which will not properly
handle the ?

After searching, pg will normally display the line found at the top of the
screen. This can be modified by appending m or b to the search command
to leave the line found in the middle or at the bottom of the window from
now on. The suffix t can be used to restore the original situation.

- 2 -

PG(l) (Editing Package) PG(l)

The user of pg can modify the environment of perusal with the following
commands:

in Begin perusing the ith next file in the command line. The i is an
unsigned number, default value is 1.

ip Begin perusing the ith previous file in the command line. i is an
unsigned number, default is 1.

iw Display another window of text. If i is present, set the window size
to i.

s filename
Save the input in the named file. Only the current file being
perused is saved. The white space between the s and filename is
optional. This command must always be terminated by a <new­
line>, even if the -n option is specified.

h Help by displaying an abbreviated summary of available commands.

q or Q Quit pg.

!command
Command is passed to the shell, whose name is taken from the
SHELL environment variable. If this is not available, the default
shell is used. This command must always be terminated by a
<newline>, even if the -n option is specified.

At any time when output is being sent to the terminal, the user can hit the
quit key (normally control-\) or the interrupt (break) key. This causes pg to
stop sending output, and display the prompt. The user may then enter one
of the above commands in the normal manner. Unfortunately, some output
is lost when this is done, due to the fact that any characters waiting in the
terminal's output queue are flushed when the quit signal occurs.

If the standard output is not a terminal, then pg acts just like cat(l), except
that a header is printed before each file (if there is more than one).

EXAMPLE

NOTES

A sample usage of pg in reading system news would be

news I pg -p "(Page %d):"

While waiting for terminal input, pg responds to BREAK, DEL, and A by ter­
minating execution. Between prompts, however, these signals interrupt pg's
current task and place the user in prompt mode. These should be used with
caution when input is being read from a pipe, since an interrupt is likely to
terminate the other commands in the pipeline.

Users of Berkeley's more will find that the z and f commands are available,
and that the terminal I, A, or ? may be omitted from the searching com­
mand!!.

- 3 -

PG(l)

FILES
/usr /lib /terminfo /? /*
/tmp/pg*

(Editing Package) PG(l)

terminal information database
temporary file when input is from a pipe

SEE ALSO

BUGS

ed(l), grep(l).
terminfo(4) in the Programmer's Reference Manual.

If terminal tabs are not set every eight positions, undesirable results may
occur.

When using pg as a filter with another command that changes the terminal
I/O options, terminal settings may not be restored correctly.

- 4 -

PR(l) (Base System) PR(l)

NAME
pr - print files

SYNOPSIS
pr [[-column] [-wwidth] [-a]] [-eck] [-ick] [-drtfp] [+page] [-nck]
[-ooffset] [-llength] [-sseparator] [-hheader] [file ...]

pr [[-m] [-wwidth]] [-eck] [-ick] [-drtfp] [+page] [-nck] [-ooffset]
[-llength] [-sseparator] [-hheader] file1 file2 ...

DESCRIPTION
pr is used to format and print the contents of a file. If file is -, or if no files
are specified, pr assumes standard input. pr prints the named files on stan­
dard output.

By default, the listing is separated into pages, each headed by the page
number, the date and time that the file was last modified, and the name of
the file. Page length is 66 lines, which includes 10 lines of header and
trailer output. The header is composed of 2 blank lines, 1 line of text (can
be altered with -h), and 2 blank lines; the trailer is 5 blank lines. For sin­
gle column output, line width may not be set and is unlimited. For mul­
ticolumn output, line width may be set and the default is 72 columns.
Diagnostic reports (failed options) are reported at the end of standard output
associated with a terminal, rather than interspersed in the output. Pages are
separated by series of line feeds rather than form feed characters.

By default, columns are of equal width, separated by at least one space;
lines which do not fit are truncated. If the -s option is used, lines are not
truncated and columns are separated by the separator character.

Either -column or -m should be used to produce multi-column output. -a
should only be used with -column and not -m.

Command line options are

+page Begin printing with page numbered page (default is 1).

-column Print column columns of output (default is 1). Output appears as
if -e and -i are turned on for multi-column output. May not use
with -m.

-a Print multi-column output across the page one line per column.
columns must be greater than one. If a line is too long to fit in a
column, it is truncated.

-m Merge and print all files simultaneously, one per column. The
maximum number of files that may be specified is eight. If a line
is too long to fit in a column, it is truncated. May not use with
-column.

-d Double-space the output. Blank lines that result from double-
spacing are dropped when they occur at the top of a page.

-eck Expand input tabs to character positions k+1, 2*k+1, 3*k+l, etc.
If k is 0 or is omitted, default tab settings at every eighth posi­
tion are assumed. Tab characters in the input are expanded into
the appropriate number of spaces. If c (any non-digit character)

- 1 -

PR(l) (Base System) PR(l)

is given, it is treated as the input tab character (default for c is
the tab character).

-ick In output, replace white space wherever possible by inserting
tabs to character positions k+ 1, 2*k+ 1, 3*k+ 1, etc. If k is 0 or is
omitted, default tab settings at every eighth position are
assumed. If c (any non-digit character) is given, it is treated as
the output tab character (default for c is the tab character).

-nck Provide k-digit line numbering (default for k is 5). The number
occupies the first k+ 1 character positions of each column of sin­
gle column output or each line of -m output. If c (any non-digit
character) is given, it is appended to the line number to separate
it from whatever follows (default for c is a tab).

-wwidth Set the width of a line to width character positions (default is
72). This is effective only for multi-column output (-column and
-m). There is no line limit for single column output.

-ooffset Offset each line by offset character positions (default is 0). The
number of character positions per line is the sum of the width
and offset.

-llength Set the length of a page to length lines (default is 66). -lo is
reset to -166. When the value of length is 10 or less, -t appears
to be in effect since headers and trailers are suppressed. By
default, output contains 5 lines of header and 5 lines of trailer
leaving 56 lines for user-supplied text. When -llength is used
and length exceeds 10, then length-1O lines are left per page for
user-supplied text. When length is 10 or less, header and trailer
output is omitted to make room for user-supplied text.

-h header Use header as the text line of the header to be printed instead of
the file name. -h is ignored when -t is specified or -llength is
specified and the value of length is 10 or less. (-h is the only pr
option requiring space between the option and argument.)

-p Pause before beginning each page if the output is directed to a
terminal (pr will ring the bell at the terminal and wait for a car­
riage return).

-f Use single form-feed character for new pages (default is to use a
sequence of line-feeds). Pause before beginning the first page if
the standard output is associated with a terminal.

-r Print no diagnostic reports on files that will not open.

-t Print neither the five-line identifying header nor the five-line

-sseparator

trailer normally supplied for each page. Quit printing after the
last line of each file without spacing to the end of the page. Use
of -t overrides the -h option.

Separate columns by the single character separator instead of by
the appropriate number of spaces (default for separator is a tab).
Prevents truncation of lines on multicolumn output unless -w is

- 2 -

PR(l) (Base System) PR(l)

specified.

EXAMPLES

FILES

Print filel and file2 as a double-spaced, three-column listing headed by
"fIle list":

pr -3dh II file list II filel file2

Copy filel to file2, expanding tabs to columns 10, 19, 28, 37, ... :

pr -e9 -t <filel > file2

Print filel and file2 simultaneously in a two-column listing with no header
or trailer where both columns have line numbers:

pr -t -n filel I pr -t -m -n file2 -

fdevftty. If standard output is directed to one of the special files
fdev ftty., then other output directed to this terminal is
delayed until standard output is completed. This prevents
error messages from being interspersed throughout the out­
put.

SEE ALSO
cat(I), pg(I).

- 3 -

PROFILER(lM) (Base System) PROFILER(lM)

NAME
profiler: prfld, prfstat, prfdc, prfsnap, prfpr - UNIX system profiler

SYNOPSIS
jetejprfld [systeIILnamelist 1
jetejprfstat on
jetejprfstat off
jetejprfde file [period [ofLhour 1 1
jetejprfsnap file
jetejprfpr file [cutoff [systeIILnamelist 1 1

DESCRIPTION

FILES

The prfld, prfstat, prfde, prfsnap, and prfpr routines form a system of pro­
grams to facilitate an activity study of the UNIX operating system.

The prfld program is used to initialize the recording mechanism in the sys­
tem. It generates a table containing the starting address of each system sub­
routine as extracted from system_namelist.

The prfstat program is used to enable or disable the sampling mechanism.
Profiler overhead is less than 1 % as calculated for 500 text addresses.
Prfstat will also reveal the number of text addresses being measured.

The prfde and prfsnap programs perform the data collection function of the
profiler by copying the current value of all the text address counters to a file
where the data can be analyzed. Prfde will store the counters into file every
period minutes and will tum off at off_hour (valid values for off_hour are
0-24). Prfsnap collects data at the time of invocation only, appending the
counter values to file.

The prfpr program formats the data collected by prfde or prfsnap. Each text
address is converted to the nearest text symbol (as found in
system_name list) and is printed if the percent activity for that range is
greater than cutoff.

jdevjprf
junix

interface to profile data and text addresses
default for system namelist file

- 1 -

PS(l) (Base System) PS(l)

NAME
ps - report process status

SYNOPSIS
ps [options]

DESCRIPTION
ps prints certain ,information about active processes. Without options, infor­
mation is printed about processes associated with the controlling terminal.
Output consists. of a short listing containing only the process 10, terminal
identifier, cumulative execution time, and the command name. Otherwise,
the information that is displayed is controlled by the selection of options.
Options accept names or lists as arguments. Arguments can be either
separated from one another by commas or enclosed in double quotes and
separated from one another by commas or spaces. Values for proclist and
grplist must be numeric.

The options are given in descending order according to volume and range of
information provided:

-e
-d

-a

-£

-I
-n name

-t termlist

-p proclist

-u uidlist

-g grplist

Print information about every process now running.
Print information about all processes except process group
leaders.
Print information about all processes most frequently
requested: all those except process group leaders and
processes not associated with a terminal.
Generate a full listing. (See below for significance of columns
in a full listing.)
Generate a long listing. (See the following text.)
Valid only for users with a real user id of root or a real group
id of sys. Takes argument signifying an alternate system name
in place of /unix.
list only process data associated with the terminal given in
termlist. Terminal identifiers may be specified in one of two
forms: the device's me name (e.g., tty04) or, if the device's file
name starts with tty, just the digit identifier (e.g., 04).
list only process data whose process 10 numbers are given in
proclist.
list only process data whose user 10 number or login name is
given in uidlist. In the listing, the numerical user 10 will be
printed unless you give the -£ option, which prints the login
name.
list only process data whose process group leader's 10
number(s) appears in grplist. (A group leader is a process
whose process 10 number is identical to its process group 10
number. A login shell is a common example of a process
group leader.)

Under the -£ option, ps tries to determine the command name and argu­
ments given when the process was created by examining the user block.
Failing this, the command name is printed, as it would have appeared
without the -£ option, in square brackets.

- 1 -

PS(l) (Base System) PS(l)

The column headings and the meaning of the columns in a ps listing are
given in the following text; the letters f and 1 indicate the option (full or
long, respectively) that causes the corresponding heading to appear; all
means that the heading always appears. Note that these two options deter­
mine only what information is provided for a process; they do not deter­
mine which processes will be listed.

F (1) Flags (hexadecimal and additive) associated with the pro­
cess

s

UID

PID

PPID

C

PRI

NI

ADDR

SZ

(1)

00 Process has terminated: process table entry now
available.

01 A system process: always in primary memory.
02 Parent is tracing process.
04 Tracing parent's signal has stopped process:

parent is waiting [ptrace(2)].
08 Process is currently in primary memory.
10 Process currently in primary memory: locked

until an event completes.

The state of the process:

o Process is running on a processor.

S Sleeping: process is waiting for an event to com­
plete.

R Runnable: process is on run queue.

Idle: process is being created.

Z Zombie state: process terminated and parent not
waiting.

T Traced: process stopped by a signal because
parent is tracing it.

X SXBRK state: process is waiting for more primary
memory.

(f,l) The user ID number of the process owner (the login
name is printed under the -f option).

(aU) The process ID of the process (this datum is necessary in
order to kill a process).

(f,I) The process ID of the parent process.

(f,I) Processor utilization for scheduling.

(1) The priority of the process (higher numbers mean lower
priority).

(1) Nice value, used in priority computation.

(1) The memory address of the process.

(1) The size (in pages or clicks) of the swappable process's
image in main memory.

- 2 -

PS(l)

FILES

WCHAN

STIME

TTY

TIME

(Base System) PS(l)

(1) The address of an event for which the process is sleep­
ing, or in SXBRK state, (if blank, the process is running).

(f) The starting time of the process, given in hours, minutes,
and seconds. (A process begun more than twenty-four
hours before the ps inquiry is executed is given in
months and days.)

(aU) The controlling terminal for the process (the message, ?,
is printed when there is no controlling terminal).

(aU) The cumulative execution time for the process.

COMMAND (all) The command name (the full command name and its
arguments are printed under the -f option).

A process that has exited and has a parent, but has not yet been waited for
by the parent, is marked <defunct>.

/dev
/dev/sxt/*
/dev/tty*
/dev/xt/*
/dev/kmem
/dev/swap
/dev/mem
/etc/passwd
/ etc/ps...-<iata
/unix

terminal ("tty") names searcher flles
kernel virtual memory
the default swap device
memory
UID information supplier
internal data structure
system name list

SEE ALSO
getty(lM), kill(l), nice(l).

WARNING
Things can change while ps is running; the snap-shot it gives is only true
for a split-second, and it may not be accurate by the time you see it. Some
data printed for defunct processes is irrelevant.

If no term list, proclist, uidlist, or grplist is specified, ps checks stdin, stdout,
and stderr in that order, looking for the controlling terminal and will
attempt to report on processes associated with the controlling terminal. In
this situation, if stdin, stdout, and stderr are all redirected, ps will not find a
controlling terminal, so there will be no report.

On a heavily loaded system, ps may report an Iseek(2) error and exit. ps
may seek to an invalid user area address: having obtained the address of a
process' user area, ps may not be able to seek to that address before the
process exits and the address becomes invalid.

ps -ef may not report the actual start of a tty login session, but rather an
earlier time, when a getty was last respawned on the tty line.

- 3 -

PWCK(lM) (Base System) PWCK(lM)

NAME
pwck, grpck - password/group file checkers

SYNOPSIS
/ete/pwek [file]
/ete/grpek [file]

DESCRIPTION

FILES

The pwck command scans the password file and notes any inconsistencies.
The checks include validation of the number of fields, login name, user 10,
group 10, and whether the login directory and the program-to-use-as-Shell
exist. The default password file is /ete/passwd.

The grpck command verifies all entries in the group file. This verification
includes a check of the number of fields, group name, group 10, and
whether all login names appear in the password file. The default group file
is /ete/group.

/etc/group
/etc/passwd

SEE ALSO
group(4), passwd(4) in the Programmer's Reference Manual.

DIAGNOSTICS
Group entries in /ete/group with no login names are flagged.

- 1 -

PWCONV(lM) PWCONV(lM)

NAME
pwconv - install and update fete/shadow with information from
/ete/passwd

SYNOPSIS
pweonv

DESCRIPTION

FILES

The pwconv command creates and updates fete/shadow with information
from /etc/passwd. If the fete/shadow file does not exist, this command
will create fete/shadow with information from /ete/passwd. The com­
mand populates fete/shadow with the user's login name, password, and
password aging information. If password aging information does not exist
in /ete/passwd for a given user, none will be added to fete/shadow.
However, the "last changed" information will always be updated. The
passwd command should be used to add or change password aging informa­
tion.

If the fete/shadow file does exist, the following tasks will be performed:

Entries that are in the /ete/passwd file and not in the fete/shadow
file will be added to the fete/shadow file.

Entries that are in the fete/shadow file and not in the /ete/passwd
file will be removed from /ete/passwd.

Password attributes (e.g., password and aging information) that exist
in an /ete/passwd entry will be moved to the corresponding entry
in fete/shadow.

The following is the format of an entry in /ete/passwd:

name:passwd,aging:uid:gid:comment:homedir:shell

The following shows how changes made to /ete/passwd affect
fete/shadow and /ete/passwd when pconv is run:

name
passwd
aging
uid
gid
comment
homedir
shell

delete old entry from fete/shadow, add new entry to fete/shadow
update entry in fete/shadow, place an x in /ete/passwd
update entry in fete/shadow, clear aging field in /ete/passwd
ignore-no change to fete/shadow
ignore-no change to fete/shadow
ignore-no change to fete/shadow
ignore-no change to fete/shadow
ignore-no change to fete/shadow

pwconv is a privileged system command that cannot be executed by ordi­
nary users.

/etc/passwd
/etc/shadow
/etc/opasswd
/etc/oshadow

SEE ALSO
passmgmt(lM), passwd(lM).

- 1 -

PWCONV(lM) PWCONV(lM)

DIAGNOSTICS
The pwconv command exits with one of the following values:

o SUCCESS.

1 Permission denied.

2 Invalid command syntax.

3 Unexpected failure. Conversion not done.

4 Unexpected failure. Password file(s) missing.

5 Password file(s) busy. Try again later.

- 2 ~

PWD(l) (Base System)

NAME
pwd - working directory name

SYNOPSIS
pwd

DESCRIPTION

PWD(l)

The pwd command prints the path name of the working (current) directory.

SEE ALSO
cd(l).

- 1 -

RCO(lM) (Base System) RCO(lM)

NAME
rcO - run commands performed to stop the operating system

SYNOPSIS
fete/reO

DESCRIPTION

FILES

This file is executed at each system state change that needs to have the sys­
tem in an inactive state. It is responsible for those actions that bring the
system to a quiescent state, traditionally called "shutdown".

One system state requires this procedure: state 0 (the system halt state).
Whenever a change to this state occurs, the fete/reO procedure is run. The
entry in /ete/inittab might read:

sO:O:wait:/etc/rcO >/dev/console 2>&1 </dev/console

Some of the actions performed by jete/reO are carried out by files in the
directory /ete/shutdown.d. and files beginning with K in /ete/reO.d.
These files are executed in ASCII order (see FILES below for more informa­
tion), terminating some system service. The combination of commands in
jete/reO and files in /ete/shutdown.d and /ete/reO.d determines how the
system is shut down.

The recommended sequence for jete/reO is:

Stop System Services and Daemons.

Various system services (such as Remote File Sharing or LP Spooler)
are gracefully terminated.

When new services are added that should be terminated when the
system is shut down, the appropriate files are installed in
/ete/shutdown.d and /ete/reO.d.

Terminate Processes

SIGTERM signals are sent to all running processes by killall(lM).
Processes stop themselves cleanly if sent SIGTERM.

Kill Processes

SIGKILL signals are sent to all remaining processes; no process can
resist SIGKILL.

At this point the only processes left are those associated with
jete/reO and processes 0 and 1, which are special to the operating
system.

Unmount All File Systems

Only the root file system (j) remains mounted.

The execution by /bin/sh of any files in /ete/shutdown.d occurs in ASCII
sort-sequence order. See re2(lM) for more information.

SEE ALSO
killall(lM), rc2(lM), shutdown(lM).

- 1 -

RC2(lM) (Base System) RC2(lM)

NAME
rc2 - run commands performed for multiuser environment

SYNOPSIS
jetejre2

DESCRIPTION
This file is executed via an entry in jetejinittab and is responsible for those
initializations that bring the system to a ready-to-use state, traditionally
state 2, called the "multiuser" state.

The actions performed by jetejre2 are found in files in the directory
jetejre.d and files beginning with S in jetejrc2.d. These files are executed
by jbinjsh in ASCII sort-sequence order (see FILES for more information).
When functions are added that need to be initialized when the system goes
multiuser, an appropriate file should be added in jetejre2.d.

The functions done by jetejre2 command and associated jetejre2.d files
include:

Setting and exporting the TIMEZONE variable.

Setting up and mounting the user (fusr) file system.

Cleaning up (remaking) the jtmp and jusrjtmp directories.

Loading the network interface and ports cards with program data
and starting the associated processes.

Starting the cron daemon by executing jetejeron.

Cleaning up (deleting) uucp locks status and temporary files in the
jusrjspooljuucp directory.

Other functions can be added, as required, to support the addition of
hardware and software features.

EXAMPLES
The following are prototypical files found in jetejre2.d. These files are pre­
fixed by an S and a number indicating the execution order of the files.

MOUNTFILESYS
Set up and mount file systems

cd j
jetcjmountall jetcjfstab

RMTMPFILES

uucp

clean up jtmp
rm -rf jtmp
mkdir jtmp
chmod 777 jtmp
chgrp sys jtmp
chown sys jtmp

clean-up uucp locks, status, and temporary files

rm -rf jusrjspooljlocksj*

- 1 -

RC2(lM) (Base System) RC2(lM)

FILES

The file /etc/TIMEZONE is included early in /etc/rc2, thus establishing
the default time zone for all commands that follow.

Here are some hints about files in /etc/rc.d:

The order in which files are executed is important. Since they are executed
in ASCII sort-sequence order, using the first character of the file name as a
sequence indicator will help keep the proper order. Thus, files starting with
the following characters would be:

[0-9].
[A-Z].
[a-n].
[o-z].

very early
early
later
last

3.mountfs

Files in /etc/rc.d that begin with a dot (.) will not be executed. This
feature can be used to hide files that are not to be executed for the time
being without removing them. The command can be used only by the
super-user.

Files in jetc/rc2.d must begin with an S or a K followed by a number and
the rest of the file name. Upon entering run level 2, files beginning with S
are executed with the start option; files beginning with K, are executed with
the stop option. Files beginning with other characters are ignored.

SEE ALSO
shutdown(lM).

- 2 -

RELOGIN(lM) (Base System) RELOGIN(lM)

NAME
relogin - rename login entry to show current layer

SYNOPSIS
/usr/lib/layersys/relogin [-s] [line]

DESCRIPTION

FILES

The relogin command changes the terminal line field of a user's utmp(4)
entry to the name of the windowing terminal layer attached to standard
input. write(l) messages sent to this user are directed to this layer. In addi­
tion, the who(l) command will show the user associated with this layer.
The relogin command may only be invoked under layers(l).

relogin is invoked automatically by layers(l) to set the utmp(4) entry to the
terminal line of the first layer created upon startup and to reset the utmp(4)
entry to the real line on termination. It may be invoked by a user to desig­
nate a different layer to receive write(l) messages.

-s Suppress error messages.

line Specifies which utmp(4) entry to change. The utmp(4) file is
searched for an entry with the specified line field. That field is
changed to the line associated with the standard input. (To learn
what lines are associated with a given user, say jdoe, type ps -f -u
jdoe and note the values shown in the TTY field [see ps(l)].

/etc/utmp data base of users versus terminals

EXIT STATUS
Returns 0 upon successful completion, 1 otherwise.

SEE ALSO

NOTES

layers(l), mesg(l), ps(l), who(l), write(l).
utmp(4) in the Programmer's Reference Manual.

If line does not belong to the user issuing the relogin command or standard
input is not associated with a terminal, relogin will fail.

- 1 -

REMOVEPKG(l) (Base System) REMOVEPKG(l)

NAME
removepkg - remove installed package

SYNOPSIS
removepkg [software_package]

DESCRIPTION
The removepkg command will remove the software package specified as an
arguement to removepkg or will remove the software package the user
selects if no argument is given to removepkg.
If an argument is specified, removepkg will search the list of previously
installed packages and remove the first name it matchs. If no name is
matched, the user is given an error message.

If no argument is specified, removepkg will query the user, via a menu,
which package to remove.

You will need to be root to remove some packages.

LiMITATIONS
You must envoke removepkg on the console.

SEE ALSO
displaypkg(l), installpkg(l).

- 1 -

RESTORE(lM) RESTORE(lM)

NAME
restore - restore file to original directory

SYNOPSIS
restore [-c) [-i) [-0] [-t] [-d <device>] [pattern [pattern] ...]

DESCRIPTION
-c complete restore. All files on the tape are restored.

-i gets the tndex file off of the medium. This only works when the
archive was created using backup. The output is a list of all the
files on the medium. No files are actually restored.

-0 overwrite existing files. If the file being restored already exists it
will not be restored unless this option is specified.

-t indicates that the tape device is to be used. MUST be used with the
-d option when restoring from tape.

-d <device> is the raw device to be used. It defaults to the 1.2M
floppy (jdev jrdskjfOq15d).

One or more patterns can be specified. These patterns are matched against
the files on the tape. When a match is found, the file is restored. Since
backups are done using full pathnames, the file is restored to its original
directory. Metacharacters can be used to match multiple files. Patterns
should be in quotes to prevent the characters from being expanded before
they are passed to the command. If no patterns are specified, it defaults to
restoring all files. If a pattern does not match any file on the tape, a mes­
sage is printed.

When end of medium is reached, the user is prompted for the next media.
The user can exit at this point by typing "q". (This may cause files to be
corrupted if a file happens to span a medium.) In general, quitting in the
middle is not a good idea.

If the file already exists and an attempt is made to restore it without the -0

option, the file name will be printed on the screen followed by a question
mark.

In order for multi-volume restores to work correctly, the raw device MUST
be used.

SEE ALSO
qt(7).

- 1 -

RFADMIN(lM) (Remote File Sharing Utilities) RFADMIN(lM)

NAME
rfadmin - Remote File Sharing administration

SYNOPSIS
rfadmin

rfadmin -far] domain.nodename

rfadmin -[pq]

rfadmin -0 option

DESCRIPTION
rfadmin is primarily used to add and remove computers and their associ­
ated authentication information from a domain/passwd file on a Remote
File Sharing primary domain name server. It is also used to transfer domain
name server responsibilities from one machine to another. Used with no
options, rfadmin returns the domain.nodename of the current domain name
server for the local domain. Other options let you check if RFS is running
and tum on the RFS loop back feature.

rfadmin can only be used to modify domain files on the primary domain
name server (-a and -r options). If domain name server responsibilities are
temporarily passed to a secondary domain name server, that computer can
use the -p option to pass domain name server responsibility back to the pri­
mary. rfadmin can be used on any computer with no options or with the q
or 0 options. To print information about the current domain name server,
the user must have root permissions to use the command.

-a domain.nodename Used to add a computer to the member list of the
domain that is served by this primary domain name
server. The computer's name must be of the form
domain.nodename. This command creates an entry for
nodename in the domain/passwd file, which has the
same format as /etc/passwd, and prompts for an ini­
tial authentication password. The password prompting
process conforms with that of passwd(l).

-r domain.nodename Used to remove a computer from its domain by
removing it from the domain/passwd file.

-p

-q

-0 option

Used to pass the domain name server responsibilities
back to a primary or to a secondary name server.

Prints a message that will tell you whether or not RFS
is running.

Lets you set RFS system options, by replacing option
with one of the following:

loopback - Enables loop back facility for your com­
puter. When this is set, you can mount a resource that
is advertised from your own computer. This is used
for testing applications in RFS when only one com­
puter is available. Loop back is off by default.

- 1 -

RFADMIN(lM) (Remote File Sharing Utilities) RFADMIN(lM)

noloopback - Turns off the loop back facility for your
computer. This is the default.

ERRORS

FILES

When used with the -a option, if domain.nodename is not unique in the
domain, an error message will be sent to standard error.

When used with the -r option, if (1) domain.nodename does not exist in the
domain, (2) domain.nodename is defined as a domain name server, or (3)
there are resources advertised by domain.nodename, an error message will be
sent to standard error.

When used with the -p option to change the domain name server, if there
are no backup name servers defined for domain, a warning message will be
sent to standard error.

jusrjnservejauth.infojdomainjpasswd
(For each domain, this file: is created on the primary,
should be copied to all secondaries, and should be copied to
all computers that want to do password verification of computers
in the domain.)

SEE ALSO
passwd(l), rfstart(lM), rfstop(lM), umount(lM).

- 2 -

RFPASSWD(lM) (Remote File Sharing Utilities) RFPASSWD(lM)

NAME
rfpasswd - change Remote File Sharing host password

SYNOPSIS
rfpasswd

DESCRIPTION
The rfpasswd command updates the Remote File Sharing authentication
password for a host; processing of the new password follows the same cri­
teria as passwd(l). The updated password is registered at the domain name
server (jusr/nserve/auth.info/domain/passwd) and replaces the password
stored at the local host (fusr/nserve/loc.passwd file).

This command is restricted to the super-user.

NOTE: If you change your host password, make sure that hosts that vali­
date your password are notified of this change. To receive the new pass­
word, hosts must obtain a copy of the domain/passwd file from the
domain's primary name server. If this is not done, attempts to mount
remote resources may fail!

ERRORS

FILES

If (1) the old password entered from this command does not match the
existing password for this machine, (2) the two new passwords entered from
this command do not match, (3) the new password does not satisfy the
security criteria in passwd(l), (4) the domain name server does not know
about this machine, or (5) the command is not run with super-user
privileges, an error message will be sent to standard error. Also, Remote
File Sharing must be running on your host and your domain's primary
name server. A new password cannot be logged if a secondary is acting as
the domain name server.

/usr/nserve/auth.info/domain/passwd
/usr /nserve /loc.passwd

SEE ALSO
passwd(l), rfstart(lM), rfadmin(lM).

- 1 -

RFSTART(lM) (Remote File Sharing Utilities) RFSTART(lM)

NAME
rfstart - start Remote File Sharing

SYNOPSIS
rfstart [-v] [-pprimary_addr]

DESCRIPTION
The rfstart command starts Remote File Sharing and defines an authentica­
tion level for incoming requests. [This command can only be used after the
domain name server is set up and your computer's domain name and net­
work specification has been defined using dname(1M).]

-v Specifies that verification of all clients is required in response to
initial incoming mount requests; any host not in the file
/usr/nserve/auth.info/domain/passwd for the domain they
belong to will not be allowed to mount resources from your host.
If -v is not specified, hosts named in domain/passwd will be veri­
fied, and other hosts will be allowed to connect without verifica­
tion.

-p primary_addr
Indicates the primary domain name server for your domain.
primary_addr must be the network address of the primary name
server for your domain. If the -p option is not specified, the
address of the domain name server is taken from the rfmaster file.
[See rfmaster(4) for a description of the valid address syntax.]

If the host password has not been set, rfstart will prompt for a password;
the password prompting process must match the password entered for your
machine at the .primary domain name server [see rfadmin(1M)]. If you
remove the loc.passwd file or change domains, you will also have to
reenter the password.

Also, when rfstart is run on a domain name server, entries in the rfmas­
ter(4) file are syntactically validated.

This command is restricted to the super-user.

ERRORS
If syntax errors are found in validating the rfmaster(4) file, a warning
describing each error will be sent to standard error.

If (1) the shared resource environment is already running, (2) there is no
communications network, (3) the domain name server cannot be found, (4)
the domain name server does not recognize the machine, or (5) the com­
mand is run without super-user privileges, an error message will be sent to
standard error.

Remote file sharing will not start if the host password in
/usr/nserve/loc.passwd is corrupted. If you suspect this has happened,
remove the file and run rfstart again to reenter your password.

- 1 -

RFSTART(lM) (Remote File Sharing Utilities) RFSTART(lM)

FILES

NOTE: r£Start will NOT fail if your host password does not match the
password on the domain name server. You will simply receive a warning
message. However, if you try to mount a resource from the primary or any
other host that validates your password, the mount will fail if your pass­
word does not match the one that host has listed for your machine.

jusr jnserve jrfmaster
jusr jnservejloc. passwd

SEE ALSO
adv(lM), dname(lM), mount(lM), rfadmin(lM), rfstop(lM), unadv(lM).
rfmaster(4) in the Programmer's Reference Manual.

- 2 -

RFUADMIN(lM) (Remote File Sharing Utilities) RFUADMIN(lM)

NAME
rfuadmin - Remote File Sharing notification shell script

SYNOPSIS
rfuadmin message remote_resource [seconds]

DESCRIPTION
The rfuadmin administrative shell script responds to unexpected Remote
File Sharing events, such as broken network connections and forced
unmounts, picked up by the rfudaemon process. This command is not
intended to be run directly from the shell.

The response to messages received by rfudaemon can be tailored to suit the
particular system by editing the rfuadmin script. The following paragraphs
describe the arguments passed to rfuadmin and the responses.

disconnect remote_resource
A link to a remote resource has been cut. rfudaemon executes
rfuadmin, passing it the message disconnect and the name of the
disconnected resource. rfuadmin sends this message to all termi­
nals using-wall(1):

Remote_resource has been disconnected from the system.

Then it executes fuser(lM) to kill all processes using the resource,
unmounts the resource [umount(lM)] to clean up the kernel, and
starts rmount to try to remount the resource.

fumount remote_resource
A remote server machine has forced an unmount of a resource a
local machine has mounted. The processing is similar to process­
ing for a disconnect.

fuwarn remote_resource seconds
This message notifies rfuadmin that a resource is about to be
unmounted. rfudaemon sends this script the fuwarn message, the
resource name, and the number of seconds in which the forced
unmount will occur. rfuadmin sends this message to all terminals:

Remote_resource is being removed from the system in # seconds.

SEE ALSO

BUGS

fumount(lM), rmount(lM), rfstart(lM), rfudaemon(lM), wall(l).

The console must be on when Remote File Sharing is running. If it's not,
rfuadmin will hang when it tries to write to the console (wall) and
recovery from disconected resources will not complete.

- 1 -

RFUDAEMON(lM) (Remote File Sharing Utilities) RFUDAEMON(lM)

NAME
rfudaemon - Remote File Sharing daemon process

SYNOPSIS
rfudaemon

DESCRIPTION
The rfudaemon command is started automatically by rfstart(lM) and runs
as a daemon process as long as Remote File Sharing is active. Its function is
to listen for unexpected events, such as broken network connections and
forced unmounts, and to execute appropriate administrative procedures.

When such an event occurs, rfudaemon executes the administrative shell
script rfuadmin, with arguments that identify the event. This command is
not intended to be run from the shell. Here are the events:

DISCONNECT
A link to a remote resource has been cut. rfudaemon executes
rfuadmin with two arguments: disconnect and the name of the
disconnected resource.

FUMOUNT
A remote server machine has forced an unmount of a resource a
local machine has mounted. rfudaemon executes rfuadmin with
two arguments: fumount and the name of the disconnected
resource.

GETUMSG
A remote user-level program has sent a message to the local rfu­
daemon. Currently the only message sent is fuwarn, which notifies
rfuadmin that a resource is about to be unmounted. It sends
rfuadmin the fuwarn, the resource name, and the number of
seconds in which the forced unmount will occur.

LASTUMSG

SEE ALSO

The local machine wants to stop the rfudaemon [rfstop(lM)J. This
causes rfudaemon to exit.

rfstart(lM), rfuadmin(lM).

- 1 -

RM(l) (Base System) RM(l)

NAME
rm, rmdir - remove files or directories

SYNOPSIS
rm [-f] [-i] file ...

rm -r [-f] [-i] dirname ... [file ...]

rmdir [-p] [-s] dirname .. .

DESCRIPTION
The rm command removes the entries for one or more files from a directory.
If an entry was the last link to the file, the file is destroyed. If a directory is
writable and has the sticky bit set, files within that directory can only be
removed if one or more of the following is true (see unlink(2»:

the user owns the file the user owns the directory the file is writable
to the user the user is the super-user

If a file has no write permission and the standard input is a terminal, the
full set of permissions (in octal) for the file are printed followed by a ques­
tion mark. This is a prompt for confirmation. If the answer begins with y
(for yes), the file is deleted; otherwise the file remains.

Note that if the standard input is not a terminal, the command will operate
as if the -£ option is in effect.

When the parent directory has the sticky bit set and is writable, rmdir
removes the named directories, which must be empty, if any of the follow­
ing is true:

the parent directory is owned by the user the target directory is
owned by the user the target directory is writable to the user the
user is the super-user

Three options apply to rm:

-£ This option causes the removal of all files (whether write-protected or
not) in a directory without prompting the user. In a write-protected
directory, however, files are never removed (whatever their permis­
sions are), but no messages are displayed. If the removal of a write­
protected directory was attempted, this option cannot suppress an
error message.

-r This option causes the recursive removal of any directories and sub­
directories in the argument list. The directory will be emptied of files
and removed. Note that the user is normally prompted for removal of
any write-protected files which the directory contains. The write­
protected files are removed without prompting, however, if the -£
option is used, or if the standard input is not a terminal and the -i
option is not used.

If the removal of a non-empty, write-protected directory was
attempted, the command will always fail (even if the -£ option is
used), resulting in an error message.

- 1 -

RM(l) (Base System) RM(l)

-i With this option, confirmation of removal of any write-protected file
occurs interactively. It overrides the -f option and remains in effect
even if the standard input is not a terminal.

Two options apply to rmdir:

-p This option allows users to remove the directory dirname and its
parent directories which become empty. A message is printed on stan­
dard output as to whether the whole path is removed or part of the
path remains for some reason.

-8 This option is used to suppress the message printed on standard error
when -p is in effect.

DIAGNOSTICS
All messages are generally self-explanatory.
It is forbidden to remove the files ". II and " .. II in order to avoid the conse­
quences of inadvertently doing something like the following:

rm -r.*

Both rm and rmdir return exit codes of 0 if all the specified directories are
removed successfully. Otherwise, they return a non-zero exit code.

SEE ALSO
unlink(2}, rmdir(2} in the Programmer's Reference Manual.

- 2 -

RMNTSTAT(lM) (Remote File Sharing Utilities) RMNTSTAT(lM)

NAME
rmntstat - display mounted resource information

SYNOPSIS
rmntstat [-h] [resource]

DESCRIPTION
When used with no options, rmntstat displays a list of all local Remote File
Sharing resources that are remotely mounted, the local path name, and the
corresponding clients. rmntstat returns the remote mount data regardless of
whether a resource is currently advertised; this ensures that resources that
have been unadvertised but are still remotely mounted are included in the
report. When a resource is specified, rmntstat displays the remote mount
information only for that resource. The -h option causes header informa­
tion to be omitted from the display.

EXIT STATUS
If no local resources are remotely mounted, rmntstat will return a successful
exit status.

ERRORS
If resource (1) does not physically reside on the local machine or (2) is an
invalid resource name, an error message will be sent to standard error.

SEE ALSO
mount(lM), fumount(lM), unadv(lM).

- 1 -

RMOUNT(lM) (Remote File Sharing Utilities)

NAME
rmount - retry remote resource mounts

SYNOPSIS
/etc/rmount -d[r 1 special directory

DESCRIPTION

RMOUNT(lM)

The rmount command is an administrative shell script that tries to mount
remote resource special on directory. If the remote mount is unsuccessful,
rmount will wait 60 seconds and try to mount the resource again. This will
repeat forever. The RETRIES=O value in the shell script can be changed to
limit the number of times the shell script will try to mount a remote
resource. The wait time (TIME=60) can also be changed.

See mount(lM) for a description of the options.

FILES
/etc/mnttab mount table

SEE ALSO
fumount(lM),
setmnt(lM).

fuser(lM), mount(lM), rfstart(lM),

mnttab(4) in the Programmer's Reference Manual.

- 1 -

rfuadmin(lM),

RMOUNTALL(lM) (Remote File Sharing Utilities) RMOUNTALL(lM)

NAME
rmountall, rumountall - mount, unmount Remote File Sharing resources

SYNOPSIS
/etc/rmountall [-] " file-system-table " [...]
/etc/rumountall [-k]

DESCRIPTION
The rmountall command is a Remote File Sharing command used to mount
remote resources according to a file-system-table. (jetc/fstab is the recom­
mended file-system-table.) The special file name "-" reads from the stan­
dard input.

The rumountall command causes all mounted remote resources to be
unmounted. The -k option sends a SIGKILL signal, via fuser(lM), to
processes that have files open.

These commands may be executed only by the super-user.

The file-system-table format is as follows:

column 1 block special file name of file system

column 2 mount-point directory

column 3 -r if to be mounted read-only; -d if remote resource

column 4 file system type (not use with Remote File Sharing)

column 5+ ignored

White space separates columns. Lines beginning with "#" are comments.
Empty lines are ignored.

SEE ALSO
fuser(lM), mount(lM), rfstart(lM),
signal(2) in the Programmer's Reference Manual.

DIAGNOSTICS
No messages are printed if the remote resources are mounted successfully.

Error and warning messages come from mount(lM).

- 1 -

RUNACCT(lM) RUNACCT(lM)

NAME
runacct - run daily accounting

SYNOPSIS
jusrjlibjacctjrunacct [mmdd [state]]

DESCRIPTION
runacct is the main daily accounting shell procedure. It is normally iri.itiated
via cron(lM). runacct processes connect, fee, disk, and process accounting
files. It also prepares summary files for prdaily or billing purposes. runacct
is distributed only to source

runacct takes care not to damage active accounting files or summary files in
the event of errors. It records its progress by writing descriptive diagnostic
messages into active. When an error is detected, a message is written to
jdevjconsole, mail [see mail(l)] is sent to root and adm, and runacct ter­
minates. runacct uses a series of lock files to protect against re-invocation.
The files lock and lock! are used to prevent simultaneous invocation, and
lastdate is used to prevent more than one invocation per day.

runacct breaks its processing into separate, restartable states using statefile
to remember the last state completed. It accomplishes this by writing the
state name into statefile. runacct then looks in statefile to see what it has
done and to determine what to process next. States are executed in the fol­
lowing order:

SETUP

WTMPFIX

CONNECTl

CONNECT2

PROCESS

Move active accounting files into working files.

Verify integrity of wtmp file, correcting date changes
if necessary.

Produce connect session records in ctmp.h format.

Convert ctmp.h records into tacct.h format.

Convert process accounting records into tacct.h for­
mat.

MERGE Merge the connect and process accounting records.

FEES Convert output of chargefee into tacct.h format and
merge with connect and process accounting records.

DISK Merge disk accounting records with connect, process,
and fee accounting records.

MERGETACCT

CMS

USEREXIT

CLEANUP

Merge the daily total accounting records in daytacct
with the summary total accounting records in
jusr j admjacctjsumjtacct.

Produce command summaries.

Any installation-dependent accounting programs can
be included here.

Cleanup temporary files and exit.

To restart runacct after a failure, first check the active file for diagnostics,
then fix up any corrupted data files such as pacct or wtmp. The lock files

- 1 -

RUNACCT(lM) RUNACCT(lM)

and lastdate file must be removed before runacct can be restarted. The
argument mmdd is necessary if runacct is being restarted, and specifies the
month and day for which runacct will rerun the accounting. Entry point for
processing is based on the contents of statefile; to override this, include the
desired state on the command line to designate where processing should
begin.

EXAMPLES

FILES

To start run acct.
nohup runacct 2> /usr/adm/acct/nite/fd2Iog &

To restart runacct.
nohup runacct 0601 2» /usr/adm/acct/nite/fd2Iog &

To restart runacct at a specific state.
nohup runacct 0601 MERGE 2» /usr/adm/acct/nite/fd2Iog &

/etc/wtmp
/usr / adm/pacct*
/usr/src/cmd/acct/tacct.h
/usr/src/cmd/acct/ctmp.h
/usr/adm/acct/nite/active
/usr/adm/acct/nite/daytacct
/usr/adm/acct/nite/lock
/usr/adm/acct/nite/lock1
/usr/adm/acct/nite/lastdate
/usr/adm/acct/nite/statefile
/usr / adm/ acct/nite /ptacct* .mmdd

SEE ALSO

BUGS

acct(lM), acctcms(lM), acctcom(1), acctcon(1M), acctmerg(1M), acctprc(1M),
acctsh(1M), cron(lM), fwtmp(lM), mail(1).
acct(2), acct(4), utmp(4) in the Programmer's Reference Manual.

Normally it is not a good idea to restart runacct in the SETUP state. Run
SETUP manually and restart via:

runacet mmdd WTMPFIX

If runacct failed in the PROCESS state, remove the last ptacet file because it
will not be complete.

- 2 -

SAG(lG) (Base System) SAG(lG)

NAME
sag - system activity graph

SYNOPSIS
sag [options]

DESCRIPTION
The sag command graphically displays the system activity data stored in a
binary data file by a previous sar(l) run. Any of the sar data items may be
plotted singly, or in combination; as cross plots, or versus time. Simple
arithmetic combinations of data may be specified. The sag command
invokes sar and finds the desired data by string-matching the data column
header (run sar to see what is available). These options are passed through
to sar:
-s time Select data later than time in the form hh[:mm]. Default is 08:00.

-e time Select data up to time. Default is 18:00.

-i sec Select data at intervals as close as possible to sec seconds.

-£ file Use file as the data source for sar. Default is the current daily
data file /usr/adm/sa/sadd.

Other options:
-T term Produce output suitable for terminal term. See tplot(lG) for

known terminals. Default for term is $TERM.

-x spec x axis specification with spec in the form:
"name[op name] ... [lo hi]"

-y spec y axis specification with spec in the same form as above.

Name is either a string that will match a column header in the sar report,
with an optional device name in square brackets, e.g., r+w/s[dsk-1], or an
integer value. Op is + - * or / surrounded by blanks. Up to five names
may be specified. Parentheses are not recognized. Contrary to custom,

+ and - have precedence over * and /. Evaluation is left to right.
Thus A / A + B * 100 is evaluated (A/(A+B»*100, and
A + B / C + D is (A+B)/(C+D). Lo and hi are optional numeric scale
limits. If unspecified, they are deduced from the data.

A single spec is permitted for the x axis. If unspecified, time is used. Up to
5 spec's separated by ; may be given for -yo Enclose the -x and -y argu­
ments in " " if blanks or \ <CR> are included. The -y default is:

-y "%usr 0 100; %usr + %sys 0 100; %usr + %sys + %wio 0 100"

EXAMPLES
To see today's CPU utilization:

sag

To see activity over 15 minutes of all disk drives:
TS=date +%H:%M
sar -0 tempfile 60 15
TE=date +%H:%M
sag -f tempfile -s $TS -e $TE -y "r+w/s[dsk]"

- 1 -

SAG(lG)

FILES
/usr/adrn/sa/sadd

SEE ALSO
sar(l), tplot(l G)

(Base System) SAG(lG)

daily data file for day dd.

- 2 -

SAR(l) (Base System) SAR(l)

NAME
sar - system activity reporter

SYNOPSIS
sar [-ubdycwaqvmprOSAC 1 [-0 file 1 t [n 1
sar [-ubdycwaqvmprOSAC 1 [-s time 1 [-e time 1 [-i sec 1 [-f file 1

DESCRIPTION
sar, in the first instance, samples cumulative activity counters in the operat­
ing system at n intervals of t seconds, where t should be 5 or greater. If the
-0 option is specified, it saves the samples in file in binary format. The
default value of n is 1. In the second instance, with no sampling interval
specified, sar extracts data from a previously recorded file, either the one
specified by the -f option or, by default, the standard system activity daily
data file /usr/adm/sa/sadd for the current day dd. The starting and end­
ing times of the report can be bounded via the -s and -e time arguments of
the form hh[:mm[:ssll. The -i option selects records at sec second intervals.
Otherwise, all intervals found in the data file are reported.

In either case, subsets of data to be printed are specified by option:

-u Report CPU utilization (the default):
%usr, %sys, %wio, %idle - portion of time running in user mode,
running in system mode, idle with some process waiting for block I/O,
and otherwise idle. When used with -0, %sys is split into percent of
time servicing requests from remote machines (%sys remote) and all
other system time (%sys local).

-b Report buffer activity:
bread/s, bwrit/s - transfers per second of data between system buffers
and disk or other block devices;
lread/s, lwrit/s - accesses of system buffers;
%rcache, %wcache - cache hit ratios, i. e., (I-bread/lread) as a per­
centage;
pread/s, pwrit/s - transfers via raw (physical) device mechanism.
When used with -0, buffer caching is reported for locally-mounted
remote resources.

-d Report activity for each block device, e. g., disk or tape drive. When
data is displayed, the device specification dsk- is generally used to
represent a disk drive. The device specification used to represent a
tape drive is machine dependent. The activity data reported is:
%busy, avque - portion of time device was busy servicing a transfer
request, average number of requests outstanding during that time;
r+w Is, blks/s - number of data transfers from or to device, number of
byt~s transferred in 5I2-byte units;
avwait, avserv - average time in ms. that transfer requests wait idly on
queue, and average time to be serviced (which for disks includes seek,
rotational latency and data transfer times).

-y Report TTY device activity:
rawch/s, canch/s, outch/s - input character rate, input character rate
processed by canon, output character rate;

- 1 -

SAR(l) (Base System) SAR(l)

rcvin/s, xmtin/s, mdmin/s - receive, transmit and modem interrupt
rates.

-c Report system calls:
scall/s - system calls of all types;
sread/s, swrit/s, fork/s, exec/s - specific system calls;
rchar/s, wchar/s - characters transferred by read and write system
calls. When used with -0, the system calls are split into incoming,
outgoing, and strictly local calls.

-w Report system swapping and switching activity:
swpin/s, swpot/s, bswin/s, bswot/s - number of transfers and
number of 512-byte units transferred for swapins and swapouts
(including initial loading of some programs);
pswch/s - process switches.

-a Report use of file access system routines:
iget/s, namei/s, dirblk/s.

-q Report average queue length while occupied, and % of time occupied:
runq-sz, %runocc - run queue of processes in memory and runnable;
swpq-sz, %swpocc - swap queue of processes swapped out but ready
to run.

-v Report status of process, i-node, file tables:
text-sz, proc-sz, inod-sz, file-sz, lock-sz - entries/size for each table,
evaluated once at sampling point;
ov - overflows that occur between sampling points for each table.

-m Report message and semaphore activities:
msg/s, sema/s - primitives per second.

-p Report paging activities:
vflt/s - address translation page faults (valid page not in memory);
pflt/s - page faults from protection errors (illegal access to page) or
"copy-on-writes" ;
pgfil/s - vflt/s satisfied by page-in from file system;
rclm/s - valid pages reclaimed for free list.

-r Report unused memory pages and disk blocks:
freemem - average pages available to user processes;
freeswap - disk blocks available for process swapping.

-0 Report Remote File Sharing activity:
When used in combination with -u, -b or -c, it causes sar to produce
the remote file sharing version of the corresponding report. -Ou is
assumed when only -0 is specified.

-5 Report server and request queue status:
Average number of Remote File Sharing servers on the system
(serv flo-hi), % of time receive descriptors are on the request queue
(request %busy), average number of receive descriptors waiting for
service when queue is occupied (request avg 19th), % of time there are
idle servers (server %avail), average number of idle servers when idle
ones exist (server avg avail).

- 2 -

SAR(l) (Base System) SAR(l)

-A Report all data. Equivalent to -udqbwcayvmprSnc.

-C Report Remote File Sharing buffer caching overhead:
snd-inv Is - number of invalidation messages per second sent by your
machine as a server.
snd-msg/s - total outgoing RFS messages sent per second.
rcv-inv Is - number of invalidation messages received from the remote
server.
rcv-msg/s - total number of incoming RFS messages received per
second.
dis-bread/s - number of buffer reads that would be eligible for caching
if caching were not turned off. (Indicates the penalty of running
uncached.)
blk-inv Is - number of buffers removed from the client cache.

EXAMPLES

FILES

To see today's CPU activity so far:

sar

To watch CPU activity evolve for 10 minutes and save data:

sar -0 temp 60 10

To later review disk and tape activity from that period:

sar -d -£ temp

lusr/adm/sa/sadd daily data file, where dd are digits representing the
day of the month.

SEE ALSO
sag(lG), sar(lM).

- 3 -

SAR(lM) (Base System) SAR(lM)

NAME
sar: sal, sa2, sadc - system activity report package

SYNOPSIS
/usr/lib/sa/sadc [t n] [ofile]

/usr/lib/sa/sal [t n]

/usr/lib/sa/sa2 [-ubdycwaqvmprDSAC] [-s time] [-e time] [-i sec]

DESCRIPTION
System activity data can be accessed at the special request of a user [see
sar(l)] and automatically on a routine basis as described here. The
operating system contains a number of counters that are incremented as
various system actions occur. These include counters for CPU utilization,
buffer usage, disk and tape IjO activity, TTY device activity, switching and
system-call activity, file-access, queue activity, inter-process
communications, paging and Remote File Sharing.

sadc and shell procedures, sal and sa2, are used to sample, save, and
process this data.

sadc, the data collector, samples system data n times, with an interval of t
seconds between samples and writes in binary format to ofile or to standard
output. If t and n are omitted, a special record is written. This facility is
used at system boot time, when booting to a multiuser state, to mark the
time at which the counters restart from zero. For example, the
/etc/init.d/perf file writes the restart mark to the daily data by the
command entry:

su sys -c "/usr/lib/sa/sadc /usr/adm/sa/sadate +%d"

The shell script sal, a variant of sadc, is used to collect and store data in
binary file /usr/adm/sa/sadd where dd is the current day. The arguments
t and n cause records to be written n times at an interval of t seconds, or
once if omitted. The entries in /usr/spool/cron/crontabs/sys [see
cron(IM)]:

o * * * 0-6 /usr/lib/sa/sal
20,40 8-17 * * 1-5 /usr/lib/sa/sa1

will produce records every 20 minutes during working hours and hourly
otherwise.

The shell script sa2, a variant of sar(I), writes a daily report in file
/usr/adm/sa/sardd. The options are explained in sar(l). The
/usr/spool/cron/crontabs/sys entry:

5 18 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 1200 -A

will report important activities hourly during the working day.

- 1 -

SAR(lM) (Base System) SAR(lM)

FILES

The structure of the binary daily data file is:

struct sa {
struct sysinfo si; 1* see lusr/include/sys/sysinfo.h *1
struct minfo mi; 1* defined in sys/sysinfo.h *1
struck dinfo di; 1* RFS info defined in sys/sysinfo.h *1
int minserve, maxserve; 1* RFS server low and high water marks *1
int szinode; 1* current size of inode table *1
int szfile; 1* current size of file table *1
int szproc; 1* current size of proc table *1
int szlckf; 1* current size of file record header table *1
int szlckr; 1* current size of file record lock table *1
int mszinode; 1* size of inode table *1
int mszfile; 1* size of file table *1
int mszproc; 1* size of proc table *1
int mszlckf; 1* maximum size of file record header table *1
int mszlckr; 1* maximum size of file record lock table *1
long inodeovf; 1* cumulative overflows of inode table *1
long fileovf; 1* cumulative overflows of file table *1
long procovf; 1* cumulative overflows of proc table *1
time_t ts; 1* time stamp, seconds *1
long devio[NDEVS][4]; 1* device unit information *1

#define 10_OPS 0 1* cumulative 110 requests *1
#define 10_BCNT 1 1* cumulative blocks transferred *1
#define 10-ACT 2 1* cumulative drive busy time in ticks *1
#define 10-RESP 3 1* cumulative 110 resp time in ticks *1
};

lusr/adm/sa/sadd
lusr/adm/sa/sardd
Itmp/sa.adrfl

daily data file
daily report file
address file

SEE ALSO
cron(lM), sag(lG), sar(l), timex(l).

- 2 -

SDIFF(l) (Editing Package) SDIFF(l)

NAME
sdiff - side-by-side difference program

SYNOPSIS
8diff [options ...] file 1 file2

DESCRIPTION
The sdiff command uses the output of diff(l) to produce a side-by-side list­
ing of two files indicating those lines that are different. Each line of the two
files is printed with a blank gutter between them if the lines are identical, a
< in the gutter if the line only exists in fiIel, a > in the gutter if the line
only exists in fiIe2, and a I for lines that are different.

For example:

x
a
b
c
d

The following options exist:

<
<

y
a

d
> c

-w n Use the next argument, n, as the width of the output line. The
default line length is 130 characters.

-1 Only print the left side of any lines that are identical.

-8 Do not print identical lines.

-0 output Use the next argument, output, as the name of a third file that
is created as a user-controlled merging of fiIel and file2. Identi­
cal lines of fiIel and file2 are copied to output. Sets of differ­
ences, as produced by diff(l), are printed, where a set of differ­
ences share a common gutter character. After printing each set
of differences, sdiff prompts the user with a % and waits for one
of the following user-typed commands:

1 append the left column to the output file

r append the right column to the output file

8 tum on silent mode; do not print identical lines

v tum off silent mode

e 1 call the editor with the left column

e r call the editor with the right column

e b call the editor with the concatenation of left
and right

e call the editor with a zero length file

q exit from the program

On exit from the editor, the resulting file is concatenated on the
end of the output file.

- 1 -

SDIFF(l) (Editing Package) SDIFF(l)

SEE ALSO
diff(l), ed(l).

- 2 -

SED(l) (Base System) SED(l)

NAME
sed - stream editor

SYNOPSIS
sed [-n] [-e script] [-f sfile] [files]

DESCRIPTION
sed copies the named files (standard input default) to the standard output,
edited according to a script of commands. The -f option causes the script to
be taken from file stile; these options accumulate. If there is just one -e
option and no -f options, the flag -e may be omitted. The -n option
suppresses the default output. A script consists of editing commands, one
per line, of the following form:

[address [, address]] function [arguments]

In normal operation, sed cyclically copies a line of input into a pattern space
(unless there is something left after a D command), applies in sequence all
commands whose addresses select that pattern space, and at the end of the
script copies the pattern space to the standard output (except under -n) and
deletes the pattern space.

Some of the commands use a hold space to save all or part of the pattern
space for subsequent retrieval.

An address is either a decimal number that counts input lines cumulatively
across files, a $ that addresses the last line of input, or a context address,
i.e., a/regular expression/ in the style of ed(l) modified thus:

In a context address, the construction \?regular expression? (where ?
is any character) is identical to /regular expression/. Note
that in the context address \xabc\xdefx, the second x
stands for itself, so that the regular expression is abcxdef.

The escape sequence \n matches a new-line embedded in the pattern
space.

A period. matches any character except the terminal new-line of the
pattern space.

A command line with no addresses selects every pattern space.
A command line with one address selects each pattern space that

matches the address.
A command line with two addresses selects the inclusive range from

the first pattern space that matches the first address through
the next pattern space that matches the second. (If the
second address is a number less than or equal to the line
number first selected, only one line is selected.) Thereafter
the process is repeated, looking again for the first address.

Editing commands can be applied only to non-selected pattern spaces by
use of the negation function I (below).

In the following list of functions the maximum number of permissible
addresses for each function is indicated in parentheses.

The text argument consists of one or more lines, all but the last of which
end with \ to hide the new-line. Backslashes in text are treated like
backslashes in the replacement string of an s command, and may be used to

- 1 -

SED(l) (Base System) SED(l)

protect initial blanks and tabs against the stripping that is done on every
script line. The rfile or wtile argument must terminate the command line
and must be preceded by exactly one blank. Each wtile is created before
processing begins. There can be at most 10 distinct wtile arguments.

(l)a\
text

(2) b label

(2)c\
text

(2) d
(2)D

(2)g

(2)G
(2)b

(2)8
(l)i\
text
(2)1

(2)n

(2)N

(2)p
(2)P

Append. Place text on the output before reading the next input
line.
Branch to the : command bearing the label. If label is empty,
branch to the end of the script.

Change. Delete the pattern space. With 0 or 1 address or at the
end of a 2-address range, place text on the output. Start the next
cycle.
Delete the pattern space. Start the next cycle.
Delete the initial segment of the pattern space through the first
new-line. Start the next cycle.
Replace the contents of the pattern space by the contents of the
hold space.
Append the contents of the hold space to the pattern space.
Replace the contents of the hold space by the contents of the
pattern space.
Append the contents of the pattern space to the hold space.

Insert. Place text on the standard output.
List the pattern space on the standard output in an unambiguous
form. Non-printable characters are displayed in octal notation
and long lines are folded.
Copy the pattern space to the standard output. Replace the pat­
tern space with the next line of input.
Append the next line of input to the pattern space with an
embedded new-line. (The current line number changes.)
Print. Copy the pattern space to the standard output.
Copy the initial segment of the pattern space through the first
new-line to the standard output.

(1) q Quit. Branch to the end of the script. Do not start a new cycle.
(1) r rfile Read the contents of rfile. Place them on the output before read-

ing the next input line.
(2) s/regular expression /replacement /flags

Substitute the replacement string for instances of the regular
expression in the pattern space. Any character may be used
instead of /. For a fuller description see ed(l). Flags is zero or
more of:
n n = 1 - 512. Substitute for just the n-th occurrence

of the regular expression.
g Global. Substitute for all nonoverlapping instances of

the regular expression rather than just the first one.
p Print the pattern space if a replacement was made.

- 2 -

SEO(l)

w wfile

(Base System) SEO(l)

Write. Append the pattern space to wfile if a replace­
ment was made.

(2) t label Test. Branch to the: command bearing the label if any substitu­
tions have been made since the most recent reading of an input
line or execution of a t. If label is empty, branch to the end of
the script.

(2)w wfile
Write. Append the pattern space to wfile.

(2) x Exchange the contents of the pattern and hold spaces.
(2) y / stringl / string2 /

Transform. Replace all occurrences of characters in stringl with
the corresponding character in string2. The lengths of stringl
and string2 must be equal.

(2)! function
Don't. Apply the function (or group, if function is {) only to
lines not selected by the addressees).

(0): label This command does nothing; it bears a label for band t com­

(1) =
(2) {

(0)
(0)#

mands to branch to.
Place the current line number on the standard output as a line.
Execute the following commands through a matching } only
when the pattern space is selected.
An empty command is ignored.
If a # appears as the first character on the first line of a script
file, then that entire line is treated as a comment, with one
exception. If the character after the # is an 'n', then the default
output will be suppressed. The rest of the line after #n is also
ignored. A script file must contain at least one non-comment
line.

SEE ALSO
awk(1), ed(1), grep(1).

- 3 -

SETMNT(lM) (Base System) SETMNT(lM)

NAME
setmnt - establish mount table

SYNOPSIS
jetcjsetmnt

DESCRIPTION

FILES

The setmnt command creates the jetcjmnttab table, which is needed for
both the mount(lM) and umount commands. The setmnt command reads
standard input and creates a mnttab entry for each line. Input lines have
the format:

filesys node

where filesys is the name of the file system's special file (e.g.,
jdev jdskjlsl) and node is the root name of that file system. Thus filesys
and node become the first two strings in the mount table entry.

jetcjmnttab

SEE ALSO
mount(lM).

BUGS
Problems may occur if filesys or node are longer than 32 characters.
The setmnt command silently enforces an upper limit on the maximum
number of mnttab entries.

- 1 -

SH(l) (Base System) SH(l)

NAME
sh, rsh - shell, the standard/restricted command programming language

SYNOPSIS
sh [-acefhiknrstuvx] [args]
rsh [-acefhiknrstuvx] [args]

DESCRIPTION
sh is a command programming language that executes commands read from
a terminal or a file. rsh is a restricted version of the standard command
interpreter sh; it is used to set up login names and execution environments
whose capabilities are more controlled than those of the standard shell. See
"Invocation" below for the meaning of arguments to the shell.

Definitions
A blank is a tab or a space. A name is a sequence of letters, digits, or
underscores beginning with a letter or underscore. A parameter is a name, a
digit, or any of the characters *, @' #, ?, -, $, and !.

Commands
A simple-command is a sequence of non-blank words separated by blanks.
The first word specifies the name of the command to be executed. Except
as specified below, the remaining words are passed as arguments to the
invoked command. The command name is passed as argument 0 [see
exec(2)]. The value of a simple-command is its exit status if it terminates nor­
mally, or (octal) 200+status if it terminates abnormally [see signal(2) for a
list of status values].

A pipeline is a sequence of one or more commands separated by I. The
standard output of each command but the last is connected by a pipe(2) to
the standard input of the next command. Each command is run as a
separate process; the shell waits for the last command to terminate. The
exit status of a pipeline is the exit status of the last command.

A list is a sequence of one or more pipelines separated by i, &, &&, or 1 I,
and optionally terminated by i or &. Of these four symbols, i and & have
equal precedence, which is lower than that of && and 1 I. The symbols &&
and 1 1 also have equal precedence. A semicolon (i) causes sequential exe­
cution of the preceding pipeline; an ampersand (&) causes asynchronous
execution of the preceding pipeline (i.e., the shell does not wait for that
pipeline to finish). The symbol && (1 I) causes the list following it to be
executed only if the preceding pipeline returns a zero (non-zero) exit status.
An arbitrary number of new-lines may appear in a list, instead of semi­
colons, to delimit commands.

A command is either a simple-command or one of the following. Unless oth­
erwise stated, the value returned by a command is that of the last simple­
command executed in the command.

for name [in word ...] do list done
Each time a for command is executed, name is set to the next word
taken from the in word list. If in word ... is omitted, then the for
command executes the do list once for each positional parameter

- 1 -

SH(l) (Base System) SH(l)

that is set (see Parameter Substitution below). Execution ends when
there are no more words in the list.

case word in [pattern [I pattern 1 .. ·) list ;; 1 ... esac
A case command executes the list associated with the first pattern
that matches word. The form of the patterns is the same as that
used for file-name generation (see "File Name Generation") except
that a slash, a leading dot, or a dot immediately following a slash
need not be matched explicitly.

if list then list [elif list then list 1 ... [else list 1 fi
The list following if is executed and, if it returns a zero exit status,
the list following the first then is executed. Otherwise, the list fol­
lowing elif is executed and, if its value is zero, the list following the
next then is executed. Failing that, the else list is executed. If no
else list or then list is executed, then the if command returns a zero
exit status.

while list do list done

(list)

{list; }

A while command repeatedly executes the while list and, if the
exit status of the last command in the list is zero, executes the do
list; otherwise the loop terminates. If no commands in the do list
are executed, then the while command returns a zero exit status;
until may be used in place of while to negate the loop termination
test.

Execute list in a sub-shell.

list is executed in the current (that is, parent) shell.

name () {list;}
Define a function which is referenced by name. The body of the
function is the list of commands between { and }. Execution of
functions is described below (see Execution).

The following words are only recognized as the first word of a command
and when not quoted:

if then else elif fi case esac for while until do done { }

Comments
A word beginning with # causes that word and all the following characters
up to a new-line to be ignored.

Command Substitution
The shell reads commands from the string between two grave accents (")
and the standard output from these commands may be used as all or part of
a word. Trailing new-lines from the standard output are removed.

No interpretation is done on the string before the string is read, except to
remove backslashes (\) used to escape other characters. Backslashes may be
used to escape a grave accent (') or another backslash (\) and are removed
before the command string is read. Escaping grave accents allows nested
command substitution. If the command substitution lies within a pair of

- 2 -

SH(l) (Base System) SH(l)

double quotes (" ••• ' ... ' ... "), a backslash used to escape a double quote
(\ ") will be removed; otherwise, it will be left intact.

If a backslash is used to escape a new-line character (\new-line), both the
backslash and the new-line are removed (see the later section on II Quot­
ing "). In addition, backslashes used to escape dollar signs (\$) are
removed. Since no interpretation is done on the command string before it is
read, inserting a backslash to escape a dollar sign has no effect. Backslashes
that precede characters other than \, " ", new-line, and $ are left intact
when the command string is read.

Parameter Substitution
The character $ is used to introduce substitutable parameters. There are two
types of parameters, positional and keyword. If parameter is a digit, it is a
positional parameter. Positional parameters may be assigned values by set.
Keyword parameters (also known as variables) may be assigned values by
writing:

name=value [name=value] ...
Pattern-matching is not performed on value. There cannot be a function
and a variable with the same name.

${parameter}
The value, if any, of the parameter is substituted. The braces are
required only when parameter is followed by a letter, digit, or
underscore that is not to be interpreted as part of its name. If
parameter is * or @' all the positional parameters, starting with $1,
are substituted (separated by spaces). Parameter $0 is set from argu­
ment zero when the shell is invoked.

$ {parameter:-word }
If parameter is set and is non-null, substitute its value; otherwise
substitute word.

${parameter:=word}
If parameter is not set or is null, set it to word; the value of the
parameter is substituted. Positional parameters may not be assigned
to in this way.

$ {parameter:?word }
If parameter is set and is non-null, substitute its value; otherwise,
print word and exit from the shell. If word is omitted, the message
"parameter null or not set" is printed.

${parameter:+word}
If parameter is set and is non-null, substitute word; otherwise substi­
tute nothing.

In the above, word is not evaluated unless it is to be used as the substituted
string, so that, in the following example, pwd is executed only if d is not set
or is null:

echo ${d:-'pwd'}

If the colon (:) is omitted from the above expressions, the shell only checks
whether parameter is set or not.

- 3 -

SH(l) (Base System) SH(l)

The following parameters are automatically set by the shell:
The number of positional parameters in decimal.

Flags supplied to the shell on invocation or by the set com­
mand.

? The decimal value returned by the last synchronously exe­
cuted command.

$ The process number of this shell.
The process number of the last background command
invoked.

The following parameters are used by the shell:
HOME The default argument (home directory) for the cd command.
PATH The search path for commands (see Execution below). The

user may not change PATH if executing under rsh.
CDPATH

The search path for the cd command.
MAIL If this parameter is set to the name of a mail file and the

MAILP A TH parameter is not set, the shell informs the user
of the arrival of mail in the specified file.

MAILCHECK,
This parameter specifies how often (in seconds) the shell
will check for the arrival of mail in the files specified by the
MAILPATH or MAIL parameters. The default value is 600
seconds (10 minutes). If set to 0, the shell will check before
each prompt.

MAILPATH
A colon (:) separated list of file names. If this parameter is
set, the shell informs the user of the arrival of mail in any
of the specified files. Each file name can be followed by %
and a message that will be printed when the modification
time changes. The default message is you have mail.

PSt Primary prompt string, by default "$ ".
PS2 Secondary prompt string, by default "> ".
IFS Internal field separators, normally space, tab, and new-line.
SHACCT

If this parameter is set to the name of a file writable by the
user, the shell will write an accounting record in the file for
each shell procedure executed.

SHELL When the shell is invoked, it scans the environment (see
"Environment" below) for this name. If it is found and 'rsh'
is the file name part of its value, the shell becomes a res­
tricted shell.

The shell gives default values to PATH, PSI, PS2, MAIL CHECK, and IFS.
HOME and MAIL are set by login(l).

- 4 -

SH(l) (Base System) SH(l)

Blank Interpretation
After parameter and command substitution, the results of substitution are
scanned for internal field separator characters (those found in IFS) and split
into distinct arguments where such characters are found. Explicit null argu­
ments (" " or ") are retained. Implicit null arguments (those resulting from
parameters that have no values) are removed.

Input/Output
A command's input and output may be redirected using a special notation
interpreted by the shell. The following may appear anywhere in a simp/e­
command or may precede or follow a command and are not passed on as
arguments to the invoked command. Note that parameter and command
substitution occurs before word or digit is used.

<word Use file word as standard input (file descriptor 0).
>word Use file word as standard output (file descriptor 1). If the

file does not exist it is created; otherwise, it is truncated to
zero length.

»word Use file word as standard output. If the file exists, output is
appended to it (by first seeking to the end-of-file); otherwise,
the file is created.

«[-]word

<&:digit

After parameter and command substitution is done on word,
the shell input is read up to the first line that literally
matches the resulting word, or to an end-of-file. If, how­
ever, - is appended to «:
(1) leading tabs are stripped from word before the shell

input is read (but after parameter and command substi­
tution is done on word),

(2) leading tabs are stripped from the shell input as it is
read and before each line is compared with word, and

(3) shell input is read up to the first line that literally
matches the resulting word, or to an end-of-file.

If any character of word is quoted (see "Quoting," later), no
additional processing is done to the shell input. If no char­
acters of word are quoted:
(1) parameter and command substitution occurs,
(2) (escaped) \new-line is ignored, and
(3) \ must be used to quote the characters \, $, and '.
The resulting document becomes the standard input.
Use the file associated with file descriptor digit as standard
input; similarly for the standard output using >&digit.
The standard input is closed; similarly for the standard out­
put using >&-.

If any of the above is preceded by a digit, the file descriptor which will be
associated with the file is that specified by the digit (instead of the default 0
or 1).

- 5 -

SH(l) (Base System) SH(l)

For example:

... 2>&1

associates file descriptor 2 with the file currently associated with file
descriptor 1.

The order in which redirections are specified is significant. The shell evalu­
ates redirections left-to-right. For example:

... l>xxx 2>&1

first associates file descriptor 1 with file xxx. It associates file descriptor 2
with the file associated with file descriptor 1 (Le., xxx). If the order of
redirections were reversed, file descriptor 2 would be associated with the
terminal (assuming file descriptor 1 had been) and file descriptor 1 would be
associated with file xxx.

Using the terminology introduced on the first page, under "Commands," if
a command is composed of several simple commands, redirection will be
evaluated for the entire command before it is evaluated for each simple com­
mand. That is, the shell evaluates redirection for the entire list, then each
pipeline within the list, then each command within each pipeline, then each
list within each command.

If a command is followed by &, the default standard input for the command
is the empty file /dev /null. Otherwise, the environment for the execution
of a command contains the file descriptors of the invoking shell as modified
by input/output specifications.

Redirection of output is not allowed in the restricted shell.

File Name Generation
Before a command is executed, each command word is scanned for the char­
acters *, ?, and [. If one of these characters appears, the word is regarded
as a pattern. The word is replaced with alphabetically sorted file names that
match the pattern. If no file name is found that matches the pattern, the
word is left unchanged. The character . at the start of a file name or
immediately follOwing a /, as well as the character / itself, must be matched
explicitly.

Quoting

* Matches any string, including the null string.
7 Matches any single character.
[...] Matches anyone of the enclosed characters. A pair of char­

acters separated by - matches any character lexically
between the pair, inclusive. If the first character following
the opening "[" is a ""\" ", any character not enclosed is
matched.

The following characters have a special meaning to the shell and cause ter­
mination of a word unless quoted:

; & () I . < > new-line space tab

A character may be quoted (Le., made to stand for itself) by preceding it
with a backslash (\) or inserting it between a pair of quote marks (" or

- 6 -

SH(l) (Base System) SH(l)

II "). During processing, the shell may quote certain characters to prevent
them from taking on a special meaning. Backslashes used to quote a single
character are removed from the word before the command is executed. The
pair \new-line is removed from a word before command and parameter
substitution.

All characters enclosed between a pair of single quote marks e'), except a
single quote, are quoted by the shell. Backslash has no special meaning
inside a pair of single quotes. A single quote may be quoted inside a pair of
double quote marks (for example, II' ").

Inside a pair of double quote marks (" "), parameter and command substitu­
tion occurs and the shell quotes the results to avoid blank interpretation and
file name generation. If $* is within a pair of double quotes, the positional
parameters are substituted and quoted, separated by quoted spaces (" $1 $2
... "); however, if $@ is within a pair of double quotes, the positional
parameters are substituted and quoted, separated by unquoted spaces (" $1 II
II $2 II •••). \ quotes the characters \, " ", and $. The pair \new-line is
removed before parameter and command substitution. If a backslash pre­
cedes characters other than \, " ", $, and new-line, then the backslash itself
is quoted by the shell.

Prompting
When used interactively, the shell prompts with the value of PSI before
reading a command. If at any time a new-line is typed and further input is
needed to complete a command, the secondary prompt (Le., the value of
PS2) is issued.

Environment
The environment [see environ(5)] is a list of name-value pairs that is passed
to an executed program in the same way as a normal argument list. The
shell interacts with the environment in several ways. On invocation, the
shell scans the environment and creates a parameter for each name found,
giving it the corresponding value. If the user modifies the value of any of
these parameters or creates new parameters, none of these affects the
environment unless the export command is used to bind the shell's parame­
ter to the environment (see also set -a). A parameter may be removed from
the environment with the unset command. The environment seen by any
executed command is thus composed of any unmodified name-value pairs
originally inherited by the shell, minus any pairs removed by unset, plus
any modifications or additions, all of which must be noted in export com­
mands.

The environment for any simple-command may be augmented by prefixing it
with one or more assignments to parameters. Thus:

TERM=450 cmd and
(export TERM; TERM=450; cmd)

are equivalent (as far as the execution of cmd is concerned).

If the -k flag is set, all keyword arguments are placed in the environment,
even if they occur after the command name.

- 7 -

SH(l) (Base System)

The following first prints a=b c and c:

echo a=b c
set -k
echo a=b c

SH(l)

Signals
The INTERRUPT and QUIT signals for an invoked command are ignored if
the command is followed by &; otherwise signals have the values inherited
by the shell from its parent, with the exception of signal 11 (but see also the
trap command below).

Execution
Each time a command is executed, the above substitutions are carried out.
If the command name matches one of the Special Commands listed below, it
is executed in the shell process. If the command name does not match a
Special Command, but matches the name of a defined function, the function
is executed in the shell process (note how this differs from the execution of
shell procedures). The positional parameters $1, $2, are set to the argu­
ments of the function. If the command name matches neither a Special
Command nor the name of a defined function, a new process is created and
an attempt is made to execute the command via exec(2).

The shell parameter PATH defines the search path for the directory contain­
ing the command. Alternative directory names are separated by a colon (:).
The default path is :jbin:jusrjbin (specifying the current directory, jbin,
and jusrjbin, in that order). Note that the current directory is specified by
a null path name, which can appear immediately after the equal sign,
between two colon delimiters anywhere in the path list, or at the end of the
path list. If the command name contains a j, the search path is not used;
such commands will not be executed by the restricted shell. Otherwise,
each directory in the path is searched for an executable file. If the file has
execute permission but is not an a.out file, it is assumed to be a file contain­
ing shell commands. A sub-shell is spawned to read it. A parenthesized
command is also executed in a sub-shell.

The location in the search path where a command was found is remem­
bered by the shell (to help avoid unnecessary execs later). If the command
was found in a relative directory, its location must be re-determined when­
ever the current directory changes. The shell forgets all remembered loca­
tions whenever the PATH variable is changed or the hash -r command is
executed (see below).

Special Commands
Input/output redirection is now permitted for these commands. File
descriptor 1 is the default output location.

No effect; the command does nothing. A zero exit code is returned .
. file Read and execute commands from file and return. The search path

specified by PATH is used to find the directory containing file.
break [n 1

Exit from the enclosing for or while loop, if any. If n is specified,
break n levels.

- 8 -

SH(l) (Base System) SH(l)

continue [n)
Resume the next iteration of the enclosing for or while loop. If n is
specified, resume at the n-th enclosing loop.

cd [arg)
Change the current directory to arg. The shell parameter HOME is
the default arg. The shell parameter CDP ATH defines the search
path for the directory containing arg. Alternative directory names
are separated by a colon (:). The default path is <null> (specifying
the current directory). Note that the current directory is specified by
a null path name, which can appear immediately after the equal
sign or between the colon delimiters anywhere else in the path list.
If arg begins with a / the search path is not used. Otherwise, each
directory in the path is searched for arg. The cd command may not
be executed by rsh.

echo [arg ...)
Echo arguments. See echo(l) for usage and description.

eval [arg ...)
The arguments are read as input to the shell and the resulting
command(s) executed.

exec [arg ...)
The command specified by the arguments is executed in place of
this shell without creating a new process. Input/output arguments
may appear and, if no other arguments are given, cause the shell
input/output to be modified.

exit [n)
Causes a shell to exit with the exit status specified by n. If n is
omitted, the exit status is that of the last command executed (an
end-of-file will also cause the shell to exit.)

export [name ...)

getopts

The given names are marked for automatic export to the environ­
ment of subsequently-executed commands. If no arguments are
given, variable names that have been marked for export during the
current shell's execution are listed. (Variable names exported from a
parent shell are listed only if they have been exported again during
the current shell's execution.) Function names are not exported.

Use in shell scripts to support command syntax standards [see
intro(I»); it parses positional parameters and checks for legal
options. See getopts (1) for usage and description.

hash [-r) [name ...)
For each name, the location in the search path of the command
specified by name is determined and remembered by the shell. The
-r option causes the shell to forget all remembered locations. If no
arguments are given, information about remembered commands is
presented. Hits is the number of times a command has been
invoked by the shell process. Cost is a measure of the work
required to locate a command in the search path. If a command is
found in a "relative" directory in the search path, after changing to

- 9 -

SH(l) (Base System) SH(l)

that directory, the stored location of that command is recalculated.
Commands for which this will be done are indicated by an asterisk
(*) adjacent to the hits information. Cost will be incremented when
the recalculation is done.

newgrp [arg . ..]
Equivalent to exec newgrp arg See newgrp(lM) for usage and
description.

pwd Print the current working directory. See pWd(l) for usage and
description.

read [name ...]
One line is read from the standard input and, using the internal
field separator, IFS (normally space or tab), to delimit word boun­
daries, the first word is assigned to the first name, the second word
to the second name, etc., with leftover words assigned to the last
name. Lines can be continued using \new-line. Characters other
than new-line can be quoted by preceding them with a backslash.
These backslashes are removed before words are assigned to names,
and no interpretation is done on the character that follows the
backslash. The return code is 0 unless an end-of-file is encountered.

readonly [name ...]
The given names are marked readonly and the values of the these
names may not be changed by subsequent assignment. If no argu­
ments are given, a list of all readonly names is printed.

return [n]
Causes a function to exit with the return value specified by n. If n
is omitted, the return status is that of the last command executed.

set [--aefhkntuvx [arg ...]]
-a Mark variables which are modified or created for export.
-e Exit immediately if a command exits with a non-zero exit

status.
-f Disable file name generation
-h Locate and remember function commands as functions are

defined (function commands are normally located when the
function is executed).

-k All keyword arguments are placed in the environment for a
command, not just those that precede the command name.

-n Read commands but do not execute them.
-t Exit after reading and executing one command.
-u Treat unset variables as an error when substituting.
-v Print shell input lines as they are read.
-x Print commands and their arguments as they are executed.

Do not change any of the flags; useful in setting $1 to -.
Using + rather than - causes these flags to be turned off. These
flags can also be used upon invocation of the shell. The current set
of flags may be found in $-. The remaining arguments are

- 10 -

SH(l) (Base System) SH(l)

positional parameters and are assigned, in order, to $1, $2, If
no arguments are given, the values of all names are printed.

shift[n]

test

times

The positional parameters from $n+1 ... are renamed $1 If n
is not given, it is assumed to be 1.

Evaluate conditional expressions. See test(l) for usage and descrip­
tion.

Print the accumulated user and system times for processes run from
the shell.

trap [arg] [n] ...
The command arg is to be read and executed when the shell
receives signal(s) n. (Note that arg is scanned once when the trap is
set and once when the trap is taken.) Trap commands are executed
in order of signal number. Any attempt to set a trap on a signal
that was ignored on entry to the current shell is ineffective. An
attempt to trap on signal 11 (memory fault) produces an error. If
arg is absent, all trap(s) n are reset to their original values. If arg is
the null string, this signal is ignored by the shell and by the com­
mands it invokes. If n is 0, the command arg is exe<:uted on exit
from the shell. The trap command with no arguments prints a list
of commands associated with each signal number.

type [name ...]
For each name, indicate how it would be interpreted if used as a
command name.

ulimit [n]
Impose a size limit of n blocks on files written by the shell and its
child processes (files of any size may be read). If n is omitted, the
current limit is printed. You may lower your own ulimit, but only a
super-user [see su(IM)] can raise a ulimit.

umask [nnn]
The user file-creation mask is set to nnn [see umask(I)]. If nnn is
omitted, the current value of the mask is printed.

unset [name ...]
For each name, remove the corresponding variable or function.
The variables PATH, PSt, PS2, MAIL CHECK, and IFS cannot be
unset.

wait [n]
Wait for your background process whose process id is n and report
its termination status. If n is omitted, all your shell's currently
active background processes are waited for and the return code will
be zero.

Invocation
If the shell is invoked through exee(2) and the first character of argument
zero is -, commands are initially read from jetejprofile and from
$HOMEj.profile, if such files exist. Thereafter, commands are read as

- 11 -

SH(l) (Base System) SH(l)

described below, which is also the case when the shell is invoked as
/bin/sh. The flags below are interpreted by the shell on invocation only.
Note that unless the -c or -s flag is specified, the first argument is assumed
to be the name of a file containing commands, and the remaining arguments
are passed as positional parameters to that command file:

-c string If the -c flag is present, commands are read from string.

-s If the -s flag is present or if no arguments remain, commands are
read from the standard input. Any remaining arguments specify
the positional parameters. Shell output (except for Special Com­
mands) is written to file descriptor 2.

-i If the -i flag is present or if the shell input and output are
attached to a terminal, this shell is interactive. In this case TER­
MINATE is ignored (so that kill 0 does not kill an interactive
shell) and INTERRUPT is caught and ignored (so that wait is
interruptible). In all cases, QUIT is ignored by the shell.

-r If the -r flag is present, the shell is a restricted shell.

The remaining flags and arguments are described under the set command
above.

rsh Only
rsh is used to set up login names and execution environments whose capa­
bilities are more controlled than those of the standard shell. The actions of
rsh are identical to those of sh, except that the following are disallowed:

changing directory [see cd(l)],
setting the value of SPATH,
specifying path or command names containing /,
redirecting output (> and > >).

The restrictions above are enforced after .profile is interpreted.

A restricted shell can be invoked in one of the following ways: (1) rsh is
the file name part of the last entry in the /etc/passwd file [see passwd(4)];
(2) the environment variable SHELL exists and rsh is the file name part of its
value; (3) the shell is invoked and rsh is the file name part of argument 0;
(4) the shell is invoked with the -r option.

When a command to be executed is found to be a shell procedure, rsh
invokes sh to execute it. Thus, it is possible to provide to the end-user shell
procedures that have access to the full power of the standard shell, while
imposing a limited menu of commands; this scheme assumes that the end­
user does not have write and execute permissions in the same directory.

The net effect of these rules is that the writer of the .profile [see profile(4)]
has complete control over user actions by performing guaranteed setup
actions and leaving the user in an appropriate directory (probably not the
login directory).

The system administrator often sets up a directory of commands (i.e.,
jusrjrbin) that can be safely invoked by a restricted shell. Some systems
also provide a restricted editor, red.

- 12 -

SH(l) (Base System) SH(l)

EXIT STATUS

FILES

Errors detected by the shell, such as syntax errors, cause the shell to return
a non-zero exit status. If the shell is being used non-interactively execution
of the shell file is abandoned. Otherwise, the shell returns the exit status of
the last command executed (see also the exit command above).

/etc/profile
$HOME/ .profile
/tmp/sh*
/dev/null

SEE ALSO
cd(l), echo(l), env(l), getopts(l), intro(l), login(l), newgrp(lM), pwd(l),
test(l), umask(l), wait(l).
dup(2), exec(2), fork(2), pipe(2), profile(4), signal(2), ulimit(2) in the
Programmer's Reference Manual.

CAVEATS

BUGS

Words used for file names in input/output redirection are not interpreted
for file name generation (see "File Name Generation," above). For example,
cat filet >a* will create a file named a*.

Because commands in pipelines are run as separate processes, variables set
in a pipeline have no effect on the parent shell.

If you get the error message cannot fork, too many processes, try using the
wait(l) command to clean up your background processes. If this doesn't
help, the system process table is probably full or you have too many active
foreground processes. (There is a limit to the number of process ids associ­
ated with your lOgin, and to the number the system can keep track of.)

If a command is executed, and a command with the same name is installed
in a directory in the search path before the directory where the original
command was found, the shell will continue to exec the original command.
Use the hash command to correct this situation.

If you move the current directory or one above it, pwd may not give the
correct response. Use the cd command with a full path name to correct this
situation.

Not all the processes of a 3- or more-stage pipeline are children of the shell,
and thus cannot be waited for.

For wait n, if n is not an active process id, all your shell's currently active
background processes are waited for and the return code will be zero.

- 13 -

SHL(I) (Base System) SHL(I)

NAME
shl - shell layer manager

SYNOPSIS
shl

DESCRIPTION
The shl command allows a user to interact with more than one shell from a
single terminal. The user controls these shells, known as layers, using the
commands described below.

The current layer is the layer which can receive input from the keyboard.
Other layers attempting to read from the keyboard are blocked. Output
from multiple layers is multiplexed onto the terminal. To have the output
of a layer blocked when it is not current, the stty option loblk may be set
within the layer.

The stty character swtch (set to ·Z if NUL) is used to switch control to shl
from a layer. shl has its own prompt, »>, to help distinguish it from a
layer.

A layer is a shell which has been bound to a virtual tty device
(fdevjsxt???). The virtual device can be manipulated like a real tty device
using stty (1) and ioctl (2). Each layer has its own process group id.

Definitions
A name is a sequence of characters delimited by a blank, tab, or new-line.
Only the first eight characters are significant. The names (1) through (7)
cannot be used when creating a layer. They are used by shl when no name
is supplied. They may be abbreviated to just the digit.

Commands
The following commands may be issued from the shl prompt level. Any
unique prefix is accepted.

create [name]
Create a layer called name and make it the current layer. If no
argument is given, a layer will be created with a name of the form
(#) where # is the last digit of the virtual device bound to the layer.
The shell prompt variable PSI is set to the name of the layer fol­
lowed by a space. A maximum of seven layers can be created.

block name [name ...]
For each name, block the output of the corresponding layer when it
is not the current layer. This is equivalent to setting the stty option
-loblk within the layer.

delete name [name ...]
For each name, delete the corresponding layer. All processes in the
process group of the layer are sent the SIGHUP signal [see sig­
nal(2)].

help (or?)
Print the syntax of the shl commands.

- 1 -

SHL(l)

FILES

(Base System) SHL(l)

layers [-I] [name ...]
For each name, list the layer name and its process group. The-I
option produces a ps(l)-like listing. If no arguments are given,
information is presented for all existing layers.

resume [name]
Make the layer referenced by name the current layer. If no argu­
ment is given, the last existing current layer will be resumed.

toggle Resume the layer that was current before the last current layer.
unblock name [name ...]

For each name, do not block the output of the corresponding layer
when it is not the current layer. This is equivalent to setting the
stty option -Ioblk within the layer.

quit Exit shl. All layers are sent the SIGHUP signal.
name Make the layer referenced by name the current layer.

jdevjsxt???
$SHELL

Virtual tty devices
Variable containing path name of the shell to use
(default is jbinjsh).

SEE ALSO
sh(l), stty(l), sxt(7).
ioctl(2), signal(2) in the Programmer's Reference Manual.

- 2 -

SHUTDOWN(lM) (Base System) SHUTDOWN(lM)

NAME
shutdown - shut down system, change system state

SYNOPSIS
fete/shutdown [-y 1 [-ggrace_period [-iiniLstate 1

DESCRIPTION
This command is executed by the super-user to change the state of the
machine. By default, it brings the system to a state where only the console
has access to the UNIX system. This command can be executed from the
console only. This state is traditionally called "single-user".

The command sends a warning message and a final message before it starts
actual shutdown activities. By default, the command asks for confirmation
before it starts shutting down daemons and killing processes. The options
are used as follows:

-y pre-answers the confirmation question so the command can be run
without user intervention. A default of 60 seconds is allowed
between the warning message and the final message. Another 60
seconds is allowed between the final message and the confirmation.

-ggrace_period
allows the super-user to change the number of seconds from the
6O-second default.

-iiniLstate
specifies the state that init(lM) is to be put in following the warn­
ings, if any. By default, system state "s" is used (the same as states
"1" and "S").

Other recommended system state definitions are:

state 0
Shut the machine down so it is safe to remove the power. Have the
machine remove power if it can. The /etc/rcO procedure is called to
do this work.

state 1, s, S
Bring the machine to the state traditionally called single-user. The
/ete/rcO procedure is called to do this work. (Though sand 1 are
both used to go to single user state, s only kills processes spawned by
init and does not unmount file systems. State 1 unmounts everything
except root and kills all user processes, except those that relate to the
console.)

state 6

SEE ALSO

Stop the UNIX system and reboot to the state defined by the initdefault
entry in /ete/inittab.

init(1M), rcO(1M), rc2(lM).
inittab(4) in the Programmer's Reference Manual.

- 1 -

SLEEP(l) (Base System)

NAME
sleep - suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION

SLEEP(l)

The sleep command suspends execution for time seconds. It is used to exe­
cute a command after a certain amount of time, as in:

(sleep 105; command)&

or to execute a command every so often, as in:

while true
do

done

SEE ALSO

command
sleep 37

alarm(2), sleep(3C) in the Programmer's Reference Manual.

- 1 -

SORT(l) (Base System) SORT(l)

NAME
sort - sort and/or merge files

SYNOPSIS
sort [-emu] [-ooutput] [-ykmem] [-zrecsz] [-dfiMnr] [-htx]
[+posl [-pos2]] [files]

DESCRIPTION
sort sorts lines of all the named files together and writes the result on the
standard output. The standard input is read if - is used as a file name or no
input files are named.

Comparisons are based on one or more sort keys extracted from each line of
input. By default, there is one sort key, the entire input line, and ordering
is lexicographic by bytes in machine-collating sequence.

The following options alter the default behavior:

-e Check that the input file is sorted according to the ordering rules; give
no output unless the file is out of sort.

-m Merge only, the input files are already sorted.

-u Unique: suppress all but one in each set of lines having equal keys.

-ooutput
The argument given is the name of an output file to use instead of the
standard output. This file may be the same as one of the inputs.
There may be optional blanks between -0 and output.

-ykmem
The amount of main memory used by the sort has a large impact on
its performance. Sorting a small file in a large amount of memory is a
waste. If this option is omitted, sort begins using a system default
memory size, and continues to use more space as needed. If this
option is presented with a value, kmem, sort will start using that
number of kilobytes of memory, unless the administrative minimum or
maximum is violated, in which case the corresponding extremum will
be used. Thus, -yO is guaranteed to start with minimum memory. By
convention, -y (with no argument) starts with maximum memory.

-zrecsz
The size of the longest line read is recorded in the sort phase so
buffers can be allocated during the merge phase. If the sort phase is
omitted via the -c or -m options, a popular system default size will be
used. Lines longer than the buffer size will cause sort to terminate
abnormally. Supplying the actual number of bytes in the longest line
to be merged (or some larger value) will prevent abnormal termina­
tion.

The following options override the default ordering rules.

-d "Dictionary" order: only letters, digits, and blanks (spaces and tabs)
are significant in comparisons.

-f Fold lower-case letters into upper case.

- 1 -

SORT(l) (Base System) SORT(l)

-i Ignore non-printable characters.

-M Compare as months. The first three non-blank characters of the field
are folded to upper case and compared. For example, in English the
sorting order is "JAN" < "FEB" < ... < "DEC". Invalid fields com­
pare low to "JAN". The -M option implies the -b option (see the fol­
lowing text).

-n An initial numeric string, consisting of optional blanks, optional minus
sign, and zero or more digits with optional decimal point, is sorted by
arithmetic value. The -n option implies the -b option (see the follow­
ing text). Note that the -b option is only effective when restricted sort
key specifications are in effect.

-r Reverse the sense of comparisons.

When ordering options appear before restricted sort key specifications, the
requested ordering rules are applied globally to all sort keys. When
attached to a specific sort key (described in the following text), the specified
ordering options override all global ordering options for that key.

The notation +posl -pos2 restricts a sort key to one beginning at posl and
ending just before pos2. The characters at position posl and just before pos2
are included in the sort key (provided that pos2 does not precede posl). A
missing -pos2 means the end of the line.

Specifying posl and pos2 involves the notion of a field, a minimal sequence
of characters followed by a field separator or a new-line. By default, the
first blank (space or tab) of a sequence of blanks acts as the field separator.
All blanks in a sequence of blanks are considered to be part of the next
field; for example, all blanks at the beginning of a line are considered to be
part of the first field. The treatment of field separators can be altered using
the options:

-b Ignore leading blanks when determining the starting and ending posi­
tions of a restricted sort key. If the -b option is specified before the
first +posl argument, it will be applied to all +posl arguments. Other­
wise, the b flag may be attached independently to each +posl or -pos2
argument (see below).

-tx Use x as the field separator character; x is not considered to be part of
a field (although it may be included in a sort key). Each occurrence of
x is significant (for example, xx delimits an empty field).

Posl and pos2 each have the form m.n optionally followed by one or more
of the flags bdfinr. A starting position specified by +m.n is interpreted to
mean the n+1st character in the m+1st field. A missing .n means .0, indi­
cating the first character of the m+ 1st field. If the b flag is in effect, n is
counted from the first non-blank in the m+1st field; +m.Ob refers to the
first non-blank character in the m+1st field.

A last position specified by -m.n is interpreted to mean the nth character
(including separators) after the last character of the m-th field. A missing .n
means .0, indicating the last character of the mth field. If the b flag is in
effect, n is counted from the last leading blank in the m + 1 st field; -m.1 b
refers to the first non-blank in the m+1st field.

- 2 -

SORT(l) (Base System) SORT(l)

When there are multiple sort keys, later keys are compared only after all
earlier keys compare equal. Unes that otherwise compare equal are ordered
with all bytes significant.

EXAMPLES

FILES

Sort the contents of infile with the second field as the sort key:

sort + I -2 infile

Sort, in reverse order, the contents of infilel and infile2, placing the output
in outfile and using the first character of the second field as the sort key:

sort -r -0 outfile +1.0 -1.2 infilel infile2

Sort, in reverse order, the contents of infilel and infile2 using the first non­
blank character of the second field as the sort key:

sort -r +1.0b -1.lb infilel infile2

Print the password file [passwd(4)] sorted by the numeric user ID (the third
colon-separated field):

sort -t: +2n -3 /etc/passwd

Print the lines of the already sorted file infile, suppressing all but the first
occurrence of lines having the same third field (the options -urn with just
one input file make the choice of a unique representative from a set of equal
lines predictable):

sort -urn +2 -3 infile

/usr/tmp/stm???

SEE ALSO
comm(l), join(l), uniq(l).

WARNINGS
Comments and exits with non-zero status for various trouble conditions (for
example, when input lines are too long), and for disorder discovered under
the -c option. When the last line of an input file is missing, a new-line
character, sort appends one, prints a warning message, and continues.

sort does not guarantee preservation of relative line ordering on equal keys.

- 3 -

SPELL(l) (Editing Package) SPELL(l)

NAME
spell, hashmake, spellin, hashcheck - find spelling errors

SYNOPSIS
spell [-v] [-b] [-x] [-1] [+locaUile] [files]

/usr /lib /spell/hashmake

/usr/lib/spell/spellin n

/usr /lib /spell/hashcheck spelling-Jist

DESCRIPTION
The spell command collects words from the named files and looks them up
in a spelling list. Words that neither occur among nor are derivable (by
applying certain inflections, prefixes, and/or suffixes) from words in the
spelling list are printed on the standard output. If no files are named, words
are collected from the standard input.

The spell command ignores most troff(l), tbl(l), and eqn(l) constructions.

Under the -v option, all words not literally in the spelling list are printed,
and plausible derivations from the words in the spelling list are indicated.

Under the -b option, British spelling is checked. Besides preferring centre,
colour, programme, speciality, travelled, etc., this option insists upon -ise in
words like standardise.

Under the -x option, every plausible stem is printed with = for each word.

By default, spell [like deroff(l)] follows chains of included files [.so and .nx
troff(l) requests], unless the names of such included files begin with
/usr/lib. Under the -1 option, spell will follow the chains of all included
files.

Under the +locaLfile option, words found in locaLfile are removed from
spell's output. LocaLfile is the name of a user-provided file that contains a
sorted list of words, one per line. With this option, the user can specify a
set of words that are correct spellings (in addition to spell's own spelling
list) for each job.

The spelling list is based on many sources, and while more haphazard than
an ordinary dictionary, is also more effective with respect to proper names
and popular technical words. Coverage of the specialized vocabularies of
biology, medicine, and chemistry is light.

Pertinent aUxiliary files may be specified by name arguments, indicated
below with their default settings (see FILES). Copies of all output are accu­
mulated in the history file. The stop list filters out misspellings (e.g.,
thier=thy-y+ier) that would otherwise pass.

Three routines help maintain and check the hash lists used by spell:

hashmake Reads a list of words from the standard input and writes the

spellin

corresponding nine-digit hash code on the standard output.

Reads n hash codes from the standard input and writes a
compressed spelling list on the standard output.

- 1 -

SPELL(l) (Editing Package) SPELL(l)

FILES

hashcheck Reads a compressed spelling_list and recreates the nine-digit
hash codes for all the words in it; it writes these codes on the
standard output.

D_SPELL=/usr/lib/spell/hlist[ab]

S-SPELL= /usr /lib /spell/hstop
lLSPELL=/usr/lib/spell/spellhist
/usr /lib / spell/ spellprog

hashed spelling lists, American & Brit­
ish
hashed stop list
history file
program

SEE ALSO

BUGS

deroff(l), sed(1), sort(1), tee(l).

The spelling list's coverage is uneven; new installations will probably wish
to monitor the output for several months to gather local additions; typically,
these are kept in a separate local file that is added to the hashed
spelling_list via spellin.

- 2 -

SPLINE(lG) (Base System) SPLINE(lG)

NAME
spline - interpolate smooth curve

SYNOPSIS
spline [options 1

DESCRIPTION
The spline command takes pairs of numbers from the standard input as
abscissas and ordinates of a function. It produces a similar set, which is
approximately equally spaced and includes the input set, on the standard
output. The cubic spline output has two continuous derivatives, and suffi­
ciently many points to look smooth when plotted, for example by
graph (lG).

The following options are recognized, each as a separate argument:

-a Supply abscissas automatically (they are missing from the input);
spacing is given by the next argument, or is assumed to be 1 if next
argument is not a number.

-k The constant k used in the boundary value computation:
Yo = ky'l, Y~ = ky~-l

is set by the next argument (default k = 0).

-n Space output points so that approximately n intervals occur
between the lower and upper x limits (default n = 100).

-p Make output periodic, Le., match derivatives at ends. First and last
input values should normally agree.

-x Next 1 (or 2) arguments are lower (and upper) x limits. Normally,
these limits are calculated from the data. Automatic abscissas start
at lower limit (default 0).

SEE ALSO
graph(lG).

DIAGNOSTICS

BUGS

When data is not strictly monotone in x, spline reproduces the input
without interpolating extra points.

A limit of 1,000 input points is enforced silently.

- 1 -

SPLIT(l) (Editing Package) SPLIT(l)

NAME
split - split a file into pieces

SYNOPSIS
split [-n 1 [file [name 1 1

DESCRIPTION
The split command reads tile and writes it in n-line pieces (default 1000
lines) onto a set of output files. The name of the first output file is name
with aa appended, and so on lexicographically, up to zz (a maximum of 676
files). Name cannot be longer than 12 characters. If no output name is
given, x is default.

If no input file is given, or if - is given in its stead, then the standard input
file is used.

SEE ALSO
bfs(I), csplit(I).

- 1 -

STRACE(lM) (Networking Support Utilities) STRACE(lM)

NAME
strace - print STREAMS trace messages

SYNOPSIS
strace [mid sid level] ...

DESCRIPTION
The strace command without arguments writes all STREAMS event trace
messages from all drivers and modules to its standard output. These mes­
sages are obtained from the STREAMS log driver [log(7)]. If arguments are
provided they must be in triplets of the form mid, sid, level, where mid is a
STREAMS module id number, sid is a sub-id number, and level is a tracing
priority level. Each triplet indicates that tracing messages are to be received
from the given module/driver, sub-id (usually indicating minor device), and
priority level equal to or less than the given level. The token all may be
used for any member to indicate no restriction for that attribute.

The format of each trace message output is:

<seq> <time> <ticks> <level> <flags> <mid> <sid> <text>

<seq>

<time>

<ticks>

<level>

<flags>

<mid>

<sid>

<text>

trace sequence number

time of message in hh:mm:ss

time of message in machine ticks since boot

tracing priority level

E : message is also in the error log
F : indicates a fatal error
N : mail was sent to the system administrator

module id number of source

sub-id number of source

formatted text of the trace message

Once initiated, strace will continue to execute until terminated by the user.

EXAMPLES
Output all trace messages from the module or driver whose module id is 41:

strace 41 all all

Output those trace messages from driver/module id 41 with sub-ids 0, 1, or
2:

strace 41 0 1 41 1 1 41 2 0

Messages from sub-ids 0 and 1 must have a tracing level less than or equal
to 1. Those from sub-id 2 must have a tracing level of O.

CAVEATS
Due to performance considerations, only one strace process is permitted to
open the STREAMS log driver at a time. The log driver has a list of the tri­
plets specified in the command invocation, and compares each potential
trace message against this list to decide if it should be formatted and sent
up to the strace process. Hence, long lists of triplets will have a greater
impact on overall STREAMS performance. Running strace will have the most

- 1 -

STRACE(lM) (Networking Support Utilities) STRACE(lM)

impact on the timing of the modules and drivers generating the trace mes­
sages that are sent to the strace process. If trace messages are generated fas­
ter than the strace process can handle them, then some of the messages will
be lost. This last case can be determined by examining the sequence
numbers on the trace messages output.

SEE ALSO
log(7).
STREAMS Programmer's Guide.

- 2 -

STRCLEAN(lM) (Networking Support Utilities) STRCLEAN(lM)

NAME
strclean - STREAMS error logger cleanup program

SYNOPSIS
strc1ean [-d logdir) [-a age)

DESCRIPTION
The strclean command is used to clean up the STREAMS error logger direc­
tory on a regular basis [for example, by using cron(lM»). By default, all files
with names matching error.* in /usr/adm/streams that have not been
modified in the last 3 days are removed. A directory other than
/usr/adm/streams can be specified using the -d option. The maximum
age in days for a log file can be changed using the -a option.

EXAMPLE

NOTES

FILES

strc1ean -d /usr/adm/streams -a 3

has the same result as running strclean with no arguments.

The strclean command is typically run from cron(lM) on a daily or weekly
basis.

/usr/adm/streams/error.*

SEE ALSO
cron(lM), strerr(lM).
STREAMS Programmer's Guide.

- 1 -

STRERR(lM) (Networking Support Utilities) STRERR(lM)

NAME
strerr - STREAMS error logger daemon

SYNOPSIS
strerr

DESCRIPTION
The strerr routine receives error log messages from the STREAMS log driver
[log(7)] and appends them to a log file. The error log files produced reside
in the directory /usr/adm/streams, and are named error.mm-dd, where mm
is the month and dd is the day of the messages contained in each log file.

The format of an error log message is:

<seq> <time> <ticks> <flags> <mid> <sid> <text>

<seq> error sequence number

<time> time of message in hh:mm:ss

<ticks> time of message in machine ticks since boot priority level

<flags> T : the message was also sent to a tracing process
F: indicates a fatal error
N : send mail to the system administrator

<mid> module id number of source

<sid> sub-id number of source

<text> formatted text of the error message

Messages that appear in the error log are intended to report exceptional
conditions that require the attention of the system administrator. Those
messages which indicate the total failure of a STREAMS driver or module
should have the F flag set. Those messages requiring the immediate atten­
tion of the administrator will have the N flag set, which causes the error
logger to send the message to the system administrator via mail(l). The
priority level usually has no meaning in the error log but will have meaning
if the message is also sent to a tracer process.

Once initiated, strerr will continue to execute until terminated by the user.
Commonly, strerr would be executed asynchronously.

CAVEATS

FILES

Only one strerr process at a time is permitted to open the STREAMS log
driver.

If a module or driver is generating a large number of error messages, run­
ning the error logger will cause a degradation in STREAMS performance. If a
large burst of messages are generated in a short time, the log driver may not
be able to deliver some of the messages. This situation is indicated by gaps
in the sequence numbering of the messages in the log files.

/usr/adm/streams/error.mm-dd

SEE ALSO
log(7).
STREAMS Programmer's Guide.

- 1 -

STTY(l) (Base System) STTY(l)

NAME
stty - set the options for a terminal

SYNOPSIS
stty [-a] [-g] [options]

DESCRIPTION
The stty command sets certain terrninalljO options for the device that is the
current standard input; without arguments, it reports the settings of certain
options.

In this report, if a character is preceded by a caret n, then the value of that
option is the corresponding CTRL character (e.g., " h" is CTRL-h ; in this
case, recall that CTRL-h is the same as the "back-space" key.) The
sequence "-,,, means that an option has a null value. For example, nor­
mally stty -a will report that the value of swteh is "-'''; however, if shl (1)
or layers (1) has been invoked, stty -a will have the value ,,-z".

-a reports all of the option settings;

-g reports current settings in a form that can be used as an argument
to another stty command.

Options in the last group are implemented using options in the previous
groups. Note that many combinations of options make no sense, but no
sanity checking is performed. The options are selected from the following:

Control Modes
parenb (-parenb) enable (disable) parity generation and detection.
parodd (-parodd) select odd (even) parity.
es5 es6 es7 es8 select character size [see termio(7)].
o hang up phone line immediately.
110300600120018002400 4800 9600 19200 38400

hupcl (-hupcl)

hup (-hup)
estopb (-estopb)
eread (-ere ad)
cloeal (-cloeal)
loblk (-loblk)

Input Modes
ignbrk (-ignbrk)
brkint (-brkint)
ignpar (-ignpar)
parmrk (-parmrk)
inpek (-inpek)
istrip (-istrip)
inler (-inler)

Set terminal baud rate to the number given, if possi­
ble. (All speeds are not supported by all hardware
interfaces.)
hang up (do not hang up) Dataphone data set connec­
tion on last close.
same as hupcl (-hupcl).
use two (one) stop bits per character.
enable (disable) the receiver.
n assume a line without (with) modem control.
block (do not block) output from a non-current layer.

ignore (do not ignore) break on input.
signal (do not signal) INTR on break.
ignore (do not ignore) parity errors.
mark (do not mark) parity errors [see termio(7)].
enable (disable) input parity checking.
strip (do not strip) input characters to seven bits.
map (do not map) NL to CR on input.

- 1 -

STTY(l)

igner (-igner)
iernl (-iernl)
iude (-iude)

ixon (-ixon)

ixany (-ixany)
ixoff (-ixoff)

Output Modes
opost (-opost)

oleue (-oleue)

onler (-onler)
oeml (-ocrnl)
onoer (-onocr)
onlret (-onlret)

ofi11 (-ofi11)
of del (-of del)
crO erl cr2 er3
nlO nIl
tabO tabl tab2 tab3
bsO bsl
ffO ffl
vW vtl

Local Modes
isig (-isig)

ieanon (-icanon)

xease (-xease)

echo (-echo)
eehoe (-eehoe)

eehok (-eehok)
lfkc (-lfke)
eehonl (-echonl)
noflsh (-noflsh)

(Base System)

ignore (do not ignore) CR on input.
map (do not map) CR to NL on input.

STTY(l)

map (do not map) uppercase alphabetics to lowercase
on input.
enable (disable) START/STOP output control. Output
is stopped by sending an ASCII DC3 and started by
sending an ASCII DCl.
allow any character (only DCI) to restart output.
request that the system send (not send) START/STOP
characters when the input queue is nearly empty/full.

post-process output (do not post-process output;
ignore all other output modes).
map (do not map) lowercase alphabetics to upper case
on output.
map (do not map) NL to CR-NL on output.
map (do not map) CR to NL on output.
do not (do) output CRs at column zero.
on the terminal NL performs (does not perform) the
CR function.
use fill characters (use timing) for delays.
fIll characters are DELs (NULs).
select style of delay for carriage returns [see termio(7)].
select style of delay for line-feeds [see termio(7)].
select style of delay for horizontal tabs [see termio(7)].
select style of delay for backspaces [see termio(7)].
select style of delay for form-feeds [see termio(7)].
select style of delay for vertical tabs [see termio(7)].

enable (disable) the checking of characters against the
special control characters INTR, QUIT, and SWTCH.
enable (disable) canonical input (ERASE and KILL pro­
cessing).
canonical (unprocessed) uppercase/lowercase presen­
tation.
echo back (do not echo back) every character typed.
echo (do not echo) ERASE character as a backspace­
space-backspace string. Note: this mode will erase
the ERASEed character on many CRT terminals; how­
ever, it does not keep track of column position and, as
a result, may be confUSing on escaped characters,
tabs, and backspaces.
echo (do not echo) NL after KILL character.
the same as eehok (-eehok); obsolete.
echo (do not echo) NL.
disable (enable) flush after INTR, QUIT, or SWTCH.

- 2 -

STTY(l)

stwrap (-stwrap)

stflush (-stflush)

stappl (-stappl)

Control Assignments
control-character c

line i

Combination Modes

(Base System) STTY(l)

disable (enable) truncation of lines longer than 79
characters on a synchronous line.
enable (disable) flush on a synchronous line after
every write(2).
use application mode (use line mode) on a synchro­
nous line.

set control-character to c, where control-character is
erase, kill, intr, quit, swteh, eof, eol, dab, min, or
time [dab is used with -stappl; min and time are
used with -ieanon; see termio(7»). If c is preceded by
an (escaped from the shell) caret 0, then the value
used is the co!responding CTRL character (e.g., ": d" is
a CTRL-d); "1" is interpreted as DEL and " -" is
interpreted as undefined.
set line discipline to i (0 < i < 127).

evenp or parity enable parenb and es7.
oddp enable parenb, es7, and parodd.
-parity, -evenp, or -oddp

raw (-raw or cooked)

nl (-nl)

lease (-lease)
LCASE (-LCASE)
tabs (-tabs or tab3)
ek

sane
term

SEE ALSO
tabs(I), termio(7).

disable parenb, and set es8.

enable (disable) raw input and output (no ERASE,
KILL, INTR, QUIT, SWTCH, EDT, or output post pro­
cessing).
unset (set) icrnl, onlcr. In addition -nl unsets inler,
igner, oernl, and onlret.
set (unset) xcase, iuclc, and oleuc.
same as lease (-lease).
preserve (expand to spaces) tabs when printing.
reset ERASE and KILL characters back to normal # and
@.
resets all modes to some reasonable values.
set all modes suitable for the terminal type term,
where term is one of tty33, tty37, vt05, tn300, ti700,
or tek.

ioctl(2) in the Programmer's Reference Manual.

- 3 -

SU(lM) (Base System) SU(lM)

NAME
su - become super-user or another user

SYNOPSIS
su [-] [name [arg ...]] -e -r

DESCRIPTION
The su command allows one to become another user without logging off.
The default user name is root (Le., super-user).

To use su, the appropriate password must be supplied (unless one is already
root). If the password is correct, su will execute a new shell with the real
and effective user ID set to that of the specified user. The new shell will be
the optional program named in the shell field of the specified user's pass­
word file entry [see passwd(4)], or /bin/sh if none is specified [see sh(l)].
To restore normal user ID privileges, type an EOF (cntrl-d) to the new shell.

Any additional arguments given on the command line are passed to the
program invoked as the shell. When using programs like sh(l), an arg of
the form -e string executes string via the shell and an arg of -r will give the
user a restricted shell.

The following statements are true only if the optional program named in the
shell field of the specified user's password file entry is like sh(l). If the first
argument to su is a -, the environment will be changed to what would be
expected if the user actually logged in as the specified user. This is done by
invoking the program used as the shell with an argO value whose first char­
acter is -, thus causing first the system's profile (jete/profile) and then the
specified user's profile (.profile in the new HOME directory) to be executed.
Otherwise, the environment is passed along with the possible exception of
SPATH, which is set to /bin:/ete:/usr/bin for root. Note that if the
optional program used as the shell is /bin/sh, the user's .profile can check
argO for -sh or -su to determine if it was invoked by login(l) or su(lM),
respectively. If the user's program is other than /bin/sh, then .profile is
invoked with an argO of -program by both login(l) and su(lM).

All attempts to become another user using su are logged in the log file
/usr/adm/sulog.

EXAMPLES

FILES

To become user bin while retaining your previously exported environment,
execute:

/bin/su bin

To become user bin but change the environment to what would be
expected if bin had originally logged in, execute:

/bin/su - bin

To execute command with the temporary environment and permissions of
user bin, type:

/bin/su - bin -c II command args II

/etc/passwd system's password file

- 1 -

SU(lM)

fete/profile
$HOME/.profile
/usr/adm/sulog

SEE ALSO
env(l), login(l), sh(l).

(Base System)

system'S profile
user's profile
log file

SU(lM)

passwd(4), profile(4), environ(5) in the Programmer's Reference Manual.

- 2 -

SUM(l) (Editing Package) SUM(l)

NAME
sum - print checksum and block count of a file

SYNOPSIS
sum [-r 1 file

DESCRIPTION
The sum command calculates and prints a 16-bit checksum for the named
file, and also prints the number of blocks in the file. It is typically used to
look for bad spots, or to validate a file communicated over some transmis­
sion line. The option -r causes an alternate algorithm to be used in com­
puting the checksum.

SEE ALSO
wc(l).

DIAGNOSTICS
"Read error" is indistinguishable from end of file on most devices; check the
block count.

- 1 -

SWAP(lM) SWAP(lM)

NAME
swap - swap administrative interface

SYNOPSIS
fete/swap -a swapdev swaplow swaplen
fete/swap -d swapdev swaplow
fete/swap -1

DESCRIPTION
The swap command provides a method of adding, deleting, and monitoring
the system swap areas used by the memory manager. The following
options are recognized:

-a Add the specified swap area. swapdev is the name of the block special
device, e.g., /dev/dsk/lsO. swaplow is the offset in 512-byte blocks
into the device where the swap area should begin. swaplen is the
length of the swap area in 512-byte blocks. This option can only be
used by the super-user. Swap areas are normally added by the system
start-up routine /ete/re when going into multiuser mode.

-d Delete the specified swap area. swapdev is the name of a block special
device, e.g., /dev/dsk/lsO. swaplow is the offset in 512-byte blocks
into the device where the swap area should begin. This option can
only be used by the super-user.

-1 List the status of all the swap areas. The output has four columns:

WARNINGS

DEV The swapdev special file for the swap area if one can be found
in the /dev/dsk or /dev directories, and its major/minor dev­
ice number in decimal.

LOW The swaplow value for the area in 512-byte blocks.

LEN The swaplen value for the area in 512-byte blocks.

FREE The number of free 512-byte blocks in the area ..

No check is done to see if a swap area being added overlaps with an exist­
ing swap area or file system.

- 1 -

SYNC(lM) (Base System) SYNC(lM)

NAME
sync - update the super block

SYNOPSIS
sync

DESCRIPTION

NOTE

The sync command executes the sync system primitive. If the system is to
be stopped, sync must be called to insure file system integrity. It will flush
all previously unwritten system buffers out to disk, thus assuring that all file
modifications up to that point will be saved. See sync(2) for details.

If you have done a write to a file on a remote machine in a Remote File
Sharing environment, you cannot use sync to force buffers to be written out
to disk on the remote machine. sync will only write local buffers to local
disks.

SEE ALSO
sync(2) in the Programmer's Reference Manual.

- 1 -

SYSDEF(lM) (Base System) SYSDEF(lM)

NAME
sysdef - output system definition

SYNOPSIS
/elc/sysdef [systellLllamelist [master.d]]

DESCRIPTION

FILES

The sysdef command outputs the current system definition in tabular form.
It lists all hardware devices, their local bus addresses, and unit count, as
well as pseudo devices, system devices, loadable modules and the values of
all tunable parameters. It generates the output by analyzing the named
operating system file (system_name list) and extracting the configuration
information from the name list itself.

/unix default operating system file (where the system namelist
is)

/etc/master.d/* default directory containing master files

SEE ALSO
master(4), nlist(3C) in the Programmer's Reference Manual.

DIAGNOSTICS
internal name list overflow

if the master table contains more than an internally specified
number of entries for use by nlist(3C).

- 1 -

TABS(l) (Base System) TABS(l)

NAME
tabs - set tabs on a terminal

SYNOPSIS
tabs [tabspec] [-Ttype] [+mn]

DESCRIPTION
The tabs command sets the tab stops on the user's terminal according to the
tab specification tabspec, after clearing any previous settings. The user's ter­
minal must have remotely-settable hardware tabs.

tabspec Four types of tab specification are accepted for tabspec. They are
described below: canned (-code), repetitive (-n), arbitrary
(nl,n2, ...), and file (--file). If no tabspec is given, the default value
is -8, i.e., UNIX system "standard" tabs. The lowest column
number is 1. Note that for tabs, column 1 always refers to the left­
most column on a terminal, even one whose column markers begin
at 0, e.g., the DASI 300, DASI 300s, and DASI 450.

-code Use one of the codes listed below to select a canned set of tabs.
The legal codes and their meanings are as follows:
-a 1,10,16,36,72

Assembler, IBM 5/370, first format
-a2 1,10,16,40,72

Assembler, IBM 5/370, second format
-c 1,8,12,16,20,55

COBOL, normal format
-c2 1,6,10,14,49

COBOL compact format (columns 1-6 omitted). Using this
code, the fIrst typed character corresponds to card column
7, one space gets you to column 8, and a tab reaches
column 12. Files using this tab setup should include a for­
mat specification as follows [see fspec(4)]:

<:t-c2 m6 s66 d:>
-c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67

COBOL compact format (columns 1-6 omitted), with more
tabs than -c2. This is the recommended format for COBOL.
The appropriate format specification is [see fspec(4)]:

<:t-c3 m6 s66 d:>
-f 1,7,11,15,19,23

FORTRAN
-p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61

PLjI
-s 1,10,55

SNOBOL
-u 1,12,20,44

UNIVAC 1100 Assembler

- 1 -

TABS(l) (Base System) TABS(l)

-n A repetitive specification requests tabs at columns 1 +n, 1 +2*n, etc.
Of particular importance is the value 8: this represents the UNIX
system "standard" tab setting, and is the most likely tab setting to
be found at a terminal. Another special case is the value 0, imply­
ing no tabs at all.

nl,n2, ... The arbitrary format permits the user to type any chosen set of
numbers, separated by commas, in ascending order. Up to 40
numbers are allowed. If any number (except the first one) is pre­
ceded by a plus sign, it is taken as an increment to be added to the
previous value. Thus, the formats 1,10,20,30, and 1,10,+10,+10 are
considered identical.

--file If the name of a file is given, tabs reads the first line of the file,
searching for a format specification [see fspec(4)]. If it finds one
there, it sets the tab stops according to it, otherwise it sets them as
-8. This type of specification may be used to make sure that a
tabbed file is printed with correct tab settings, and would be used
with the pr(1) command:

tabs -- file; pr file

Any of the following also may be used; if a given flag occurs more than
once, the last value given takes effect:

-Ttype tabs usually needs to know the type of terminal in order to set tabs
and always needs to know the type to set margins. type is a name
listed in term (5). If no - T flag is supplied, tabs uses the value of
the environment variable TERM. If TERM is not defined in the
environment [see environ(5)], tabs tries a sequence that will work
for many terminals.

+mn The margin argument may be used for some terminals. It causes
all tabs to be moved over n columns by making column n+l the
left margin. If +m is given without a value of n, the value
assumed is 10. For a TermiNet, the first value in the tab list should
be 1, or the margin will move even further to the right. The nor­
mal (leftmost) margin on most terminals is obtained by +mO. The
margin for most terminals is reset only when the +m flag is given
explicitly.

Tab and margin setting is performed via the standard output.

EXAMPLES
tabs -a example using -code (canned specification) to set tabs to the

settings required by the IBM assembler: columns 1, 10, 16,
36,72.

tabs -8

tabs 1,8,36

example of using -n (repetitive specification), where n is 8,
causes tabs to be set every eighth position:
1+(1*8),1+(2*8), ... which evaluate to columns 9,17, ...

example of using nl,n2, ... (arbitrary specification) to set tabs
at columns 1, 8, and 36.

- 2 -

TABS(l) (Base System) TABS(l)

tabs --$HOME/fspec.1ist/att4425
example of using --file (file specification) to indicate that tabs
should be set according to the first line of
$HOME/fspec./ist/att4425 [see fspec(4)].

DIAGNOSTICS
illegal tabs
illegal increment

unknown tab code
can't open
file indirection

when arbitrary tabs are ordered incorrectly
when a zero or missing increment is found in an arbi­
trary specification
when a canned code cannot be found
if --file option used, and file can't be opened
if --file option used and the specification in that file
points to yet another file. Indirection of this form is not
permitted

SEE ALSO

NOTE

newform(l), pr(l), tput(l).
fspec(4), terminfo(4), environ(5), term(5) in the Programmer's Reference
Manual.

There is no consistency among different terminals regarding ways of clear­
ing tabs and setting the left margin.

tabs clears only 20 tabs (on terminals requiring a long sequence), but is wil­
ling to set 64.

WARNING
The tabspec used with the tabs command is different from the one used with
the newform(l) command. For example, tabs -8 sets every eighth position;
whereas newform -i-8 indicates that tabs are set every eighth position.

·3 -

TAIL(l) (Editing Package) TAIL(1)

NAME
tail - deliver the last part of a file

SYNOPSIS
tail [± [number][lbc[f]]] [file]

DESCRIPTION
The tail command copies the named file to the standard output beginning at
a designated place. If no file is named, the standard input is used.

Copying begins at distance +number from the beginning, or -number from
the end of the input (if number is null, the value 10 is assumed). Number is
counted in units of lines, blocks, or characters, according to the appended
option I, b, or c. When no units are specified, counting is by lines.

With the -f ("follow") option, if the input file is not a pipe, the program
will not terminate after the line of the input file has been copied, but will
enter an endless loop, wherein it sleeps for a second and then attempts to
read and copy further records from the input file. Thus it may be used to
monitor the growth of a file that is being written by some other process.
For example, the command:

tail -f fred

will print the last ten lines of the file fred, followed by any lines that are
appended to fred between the time tail is initiated and killed. As another
example, the command:

tail -15cf fred

will print the last 15 characters of the file fred, followed by any lines that
are appended to fred between the time tail is initiated and killed.

SEE ALSO
dd(lM).

BUGS
Tails relative to the end of the file are stored in a buffer, and thus are lim­
ited in length. Various kinds of anomalous behavior may happen with
character special files.

WARNING
The tail command will only tail the last 4096 bytes of a file regardless of its
line count.

- 1 -

TAPECNTL(l) TAPECNTL(l)

NAME
tapecntl - tape control for QIC-24jQIC-02 tape device

SYNOPSIS
tapecntl [-etrw] [-p arg]

DESCRIPTION

FILES

NOTES

Tapecntl will send the optioned commands to the tape device driver sub­
device jdev jrmt/cOsO for all commands except "position," which will use
sub-device /dev/rmt/cOsOn using the ioctl command function. Sub-device
/dev /rmt/cOsO provides a rewind on close capability, while
/dev /rmt/cOsOn allows for closing of the device without rewind. Error
messages will be written to standard error.

-e erase tape
-t retension tape
-r reset tape device
-w rewind tape
-p[n] position tape to "end of file" mark - n

Erasing the tape causes the erase bar to be activated while moving the tape
from end to end, causing all data tracks to be erased in a single pass over
the tape. Retensioning the tape causes the tape to be moved from end to
end, thereby repacking the tape with the proper tension across its length.
Reset of the tape device initializes the tape controller registers and positions
the tape at the beginning of the tape mark (BOT). Rewinding the tape will
move the tape to the BOT. Positioning the tape command requires an
integer argument. Positioning the tape will move the tape forward relative
to its current position to the end of the specified file mark. The positioning
option used with an argument of zero will be ignored. Illegal or out-of­
range value arguments to the positioning command will leave the tape posi­
tioned at the end of the last valid file mark. Options may be used individu­
ally or strung together with selected options being executed sequentially
from left to right in the command line.

jusrjlibjtapejtapecntl
jdev jrmtjcOsOn
jdev jrmtjcOsO

Exit codes and their meanings are as follows:

exit (1) device function could not initiate properly due to miscon­
nected cables or poorly inserted tape cartridge.

exit (2) device function failed to complete properly due to unrecov­
erable error condition, either in the command setup or due
to mechanical failure.

exit (3) device function failed due to the cartridge being write pro­
tected or to the lack of written data on the tape.

exit (4) device /dev/rmtjcOsOn or /dev/rmt/cOsO failed to open
properly due to already being opened or claimed by
another process.

- 1 -

TAR(l) (Cartridge Tape Utilities) TAR(l)

NAME
tar - tape file archiver

SYNOPSIS
fete/tar -e[vwf] device block files
fete/tar -rf(vw] output-file block files
fete/tar -t[vf] device
fete/tar -uf[vw] output-file block files
fete/tar -x[lmovwf] device files ...

DESCRIPTION
The tar command saves and restores files on magnetic tape. Its actions are
controlled by the key argument. The key is a string of characters containing
one function letter (c, r, t, u, or x) and possibly followed by one or more
function modifiers (v, w, and f). Other arguments to the command are files
(or directory names) specifying which files are to be dumped or restored. In
all cases, appearance of a directory name refers to the files and (recursively)
subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

r Replace. The named files are written on the end of the archive.
The e function implies this function. This option applies only to
files and will not work with tape.

x Extract. The named files are extracted from the tape. If a named
file matches a directory whose contents had been written onto the
tape, this directory is (recursively) extracted. Use the file or
directory's relative path when appropriate, or tar will not find a
match. The owner, modification time, and mode are restored (if
possible). If no files argument is given, the entire content of the
tape is extracted. Note that if several files with the same name are
on the tape, the last one overwrites all earlier ones.

t Table. The names and other information for the specified files are
listed each time that they occur on the tape. The listing is similar
to the format produced by the Is -I command. If no files argument
is given, all the names on the tape are listed.

u Update. The named files are added to the archive if they are not
already there, or have been modified since last written on that
tape. This key implies the r key. This option applies only to files
and will not work with tape.

e Create a new tape; writing begins at the beginning of the tape,
instead of after the last file. This key implies the r key.

The characters below may be used in addition to the letter that selects the
desired function. Use them in the order shown in the synopsis. Note: the
only applicable device information for your computer is as follows:

/dev/rmt/cOsO
/dev/rmt/cOsOnr
/dev /rmt/cOsOr
/dev /rmt/cOsOn

v Verbose. Normally, tar does its work silently. The v (verbose)
option causes it to type the name of each file it treats, preceded by

- 1 -

TAR(l)

FILES

(Cartridge Tape Utilities) TAR(l)

the function letter. With the t function, v gives more information
about the tape entries than just the name.

w What. This causes tar to print the action to be taken, followed by
the name of the file, and then wait for the user's confirmation. If a
word beginning with y is given, the action is performed. Any other
input means "no". This is not valid with the t key.

f File. This causes tar to use the device argument as the name of the
archive instead of /dev /rmt/cOsO. If the name of the file is -, tar
writes to the standard output or reads from the standard input,
whichever is appropriate. Thus, tar can be used as the head or tail
of a pipeline. tar can also be used to move hierarchies with the
command:

cd fromdir; tar cf - • I (cd todir; tar xf -)

I Link. This tells tar to complain if it cannot resolve all of the links
to the files being dumped. If I is not specified, no error messages
are printed.

m Modify. This tells tar not to restore the modification times. The
modification time of the file will be the time of extraction.

o Ownership. This causes extracted files to take on the user and
group identifier of the user running the program, rather than those
on tape. This is only valid with the x key.

/dev/rmt/*

SEE ALSO
cpio(1), Is(1).

DIAGNOSTICS

BUGS

Complaints about bad key characters and tape read/write errors.

Complaints if enough memory is not available to hold the link tables.

There is no way to ask for the n -th occurrence of a file.

Tape errors are handled ungracefully.

The u option can be slow.

The b option should not be used with archives that are going to be updated.
The current magnetic tape driver cannot backspace raw magnetic tape. If
the archive is on a disk file, the b option should not be used at all, because
updating an archive stored on disk can destroy it.

The current limit on file name length is 100 characters.

tar doesn't copy empty directories or special files.

TEE(l)

NAME
tee - pipe fitting

SYNOPSIS
tee [-i 1 [-a 1 [file 1

DESCRIPTION

(Base System) TEE(l)

The tee command transcribes the standard input to the standard output and
makes copies in the files. The

-i ignore interrupts;

-a causes the output to be appended to the files rather than overwrit-
ing them.

- 1 -

TEST(l) (Base System) TEST(l)

NAME
test - condition evaluation command

SYNOPSIS
test expr
[expr]

DESCRIPTION
The test command evaluates the expression expr and, if its value is true, sets
a zero (true) exit status; otherwise, a non-zero (false) exit status is set; test
also sets a non-zero exit status if there are no arguments. When permis­
sions are tested, the effective user ID of the process is used.

All operators, flags, and brackets (brackets used as shown in the second
SYNOPSIS line) must be separate arguments to the test command; normally
these items are separated by spaces.

The following primitives are used to construct expr:

-r file true if file exists and is readable.

-w file

-x file

-f file

-d file

-c file

-b file

-p file

-u file

-g file

-k file

-8 file

-t [fildes]

-z sl

-n sl

s1 = s2

s1 != s2

sl

nl -eq n2

true if file exists and is writable.

true if file exists and is executable.

true if file exists and is a regular file.

true if file exists and is a directory.

true if file exists and is a character special file.

true if file exists and is a block special file.

true if file exists and is a named pipe (fifo).

true if file exists and its set-user-ID bit is set.

true if file exists and its set-group-ID bit is set.

true if file exists and its sticky bit is set.

true if file exists and has a size greater than zero.

true if the open file whose file descriptor number is fildes (1 by
default) is associated with a terminal device.

true if the length of string sl is zero.

true if the length of the string sl is non-zero.

true if strings s1 and s2 are identical.

true if strings s1 and s2 are not identical.

true if sl is not the null string.

true if the integers nl and n2 are algebraically equal. Any of
the comparisons -ne, -gt, -ge, -It, and -Ie may be used in
place of -eq.

- 1 -

TEST(l) (Base System) TEST(l)

These primaries may be combined with the following operators:

1 unary negation operator.

-a

-0

(expr)

binary and operator.

binary or operator (-a has higher precedence than -0).

parentheses for grouping. Notice also that parentheses are
meaningful to the shell and, therefore, must be quoted.

SEE ALSO
find(l), sh(l).

WARNING /
If you test a file you own (the -r, -W, or -x tests), but the permission tested
does not have the owner bit set, a non-zero (false) exit status will be
returned even though the file may have the group or other bit set for that
permission. The correct exit status will be set if you are super-user.

The = and 1= operators have a higher precedence than the -r through -n
operators, and = and 1= always expect arguments; therefore, = and != can­
not be used with the -r through -n operators.

If more than one argument follows the -r through -n operators, only the
first argument is examined; the others are ignored, unless a -a or a -0 is the
second argument.

- 2 -

TIC(lM) (Remote Terminal Package) TIC(lM)

NAME
tic - terminfo compiler

SYNOPSIS
tic [-v[n]] [-c] file

DESCRIPTION

FILES

The tic command translates a terminfo(4) file from the source format into the
compiled format. The results are placed in the directory jusrjlib/terminfo.
The compiled format is necessary for use with the library routines described
in curses(3X).

-vn (verbose) output to standard error trace information showing tic's
progress. The optional integer n is a number from 1 to 10,
inclusive, indicating the desired level of detail of information. If n
is omitted, the default level is 1. If n is specified and greater than
1, the level of detail is increased.

-c only check file for errors. Errors in use= links are not detected.

file contains one or more terminfo(4) terminal descriptions in source
format [see terminfo(4)]. Each description in the file describes the
capabilities of a particular terminal. When a use=entry-name field
is discovered in a terminal entry currently being compiled, tic reads
in the binary from jusr /lib jterminfo to complete the entry. (Entries
created from file will be used first. If the environment variable
TERMINFO is set, that directory is searched instead of
/usrjlib/terminfo.) tic duplicates the capabilities in entry-name for
the current entry, with the exception of those capabilities that
explicitly are defined in the current entry.

If the environment variable TERMINFO is set, the compiled results are
placed there instead of j usr / lib / terminfo.

jusrjlib/terminfo/?/* compiled terminal description data base

SEE ALSO
curses(3X), term(4), terminfo(4) in the Programmer's Reference Manual.
Chapter 10 in the Programmer's Guide.

WARNINGS
Total compiled entries cannot exceed 4096 bytes. The name field cannot
exceed 128 bytes.

Terminal names exceeding 14 characters will be truncated to 14 characters
and a warning message will be printed.

When the -c option is used, duplicate terminal names will not be diagnosed;
however, when -c is not used, they will be.

- 1 -

TIC(lM) (Remote Terminal Package) TIC(lM)

BUGS
To allow existing executables from the previous release of the UNIX system
to continue to run with the compiled terminfo entries created by the new
terminfo compiler, cancelled capabilities will not be marked as cancelled
within the terminfo binary unless the entry name has a '+' within it. (Such
terminal names are only used for inclusion within other entries via a use=
entry. Such names would not be used for real terminal names.)

For example:

4415+nl, kf1@, kf2@,

4415+base, kf1=\EOc, kf2=\EOd,

4415-n1l4415 terminal without keys,
use=4415+nl, use=4415+base,

The above example works as expected; the definitions for the keys do not
show up in the 4415-nl entry. However, if the entry 4415+nl did not have
a plus sign within its name, the cancellations would not be marked within
the compiled file and the definitions for the function keys would not be
cancelled within 4415-nl.

DIAGNOSTICS
Most diagnostic messages produced by tic during the compilation of the
source file are preceded with the approximate line number and the name of
the terminal currently being worked on.

mkdir ... returned bad status
The named directory could not be created.

File does not start with terminal names in column one
The first thing seen in the file, after comments, must be the list of
terminal names.

Token after a lseek(2) not NAMES
Somehow the file being compiled changed during the compilation.

Not enough memory for use-list element
or

Out of memory
Not enough free memory was available [malloc(3C) failed].

Can't open ...
The named file could not be created.

Error in writing ...
The named file could not be written to.

Can't link ... to ...
A link failed.

Error in re-reading compiled file ...
The compiled file could not be read back in.

Premature EOF
The current entry ended prematurely.

- 2 -

TIC(lM) (Remote Terminal Package) TIC(lM)

Backspaced off beginning of line
This error indicates something wrong happened within tic.

Unknown Capability _ " ... n

The named invalid capability was found within the file.

Wrong type used for capability " ... "
For example, a string capability was given a numeric value.

Unknown token type
Tokens must be followed by '@' to cancel, ',' for Booleans, '#' for
numbers, or '=' for strings.

" ... ": bad term name
or

Line ... : Illegal terminal name - " ... "
Terminal names must start with a letter or digit

The given name was invalid. Names must not contain white space
or slashes, and must begin with a letter or digit.

" ... ": terminal name too long.
An extremely long terminal name was found.

" ... ": terminal name too short.
A one-letter name was found.

" ... " filename too long, truncating to " ... "
The given name was truncated to 14 characters due to UNIX system
file name length limitations.

" ... " defined in more than one entry. Entry being used is "
An entry was found more than once.

Terminal name" ... " synonym for itself
A name was listed twice in the list of synonyms.

At least one synonym should begin with a letter.
At least one of the names of the terminal should begin with a
letter.

Illegal character - " ... "
The given invalid character was found in the input file.

New-line in middle of terminal name
The trailing comma was probably left off of the list of names.

Missing comma
A comma was missing.

Missing numeric value
The number was missing after a numeric capability.

NULL string value
The proper way to say that a string capability does not exist is to
cancel it.

Very long string found. Missing comma?
self-explanatory

- 3 -

TIC(lM) (Remote Terminal Package)

Unknown option. Usage is:
An invalid option was entered.

Too many file names. Usage is:
self-explanatory

" ... " nonexistent or permission denied
The given directory could not be written into.

" ... " is not a directory
self-explanatory

" ... ": Permission denied
access denied.

" ... ": Not a directory

TIC(lM)

tic wanted to use the given name as a directory, but it already
exists as a file

SYSTEM ERROR!! Fork failed!!!
A fork(2) failed.

Error in following up use-links. Either there is a loop in the links or they
reference nonexistent terminals. The following is a list of the entries
involved:

A terminfo(4) entry with a use=name capability either referenced a
nonexistent terminal called name or name somehow referred back to
the given entry.

- 4 -

TIME(l)

NAME
time - time a command

SYNOPSIS
time command

DESCRIPTION

(Base System) TIME(l)

The command is executed; after it is complete, time prints the elapsed time
during the command, the time spent in the system, and the time spent in
execution of the command. Times are reported in seconds.

The times are printed on standard error.

SEE ALSO
times(2) in the Programmer's Reference Manual.

- 1 -

TIMEX(l) (Base System) TIMEX(l)

NAME
timex - time a command; report process data and system activity

SYNOPSIS
timex [options] command

DESCRIPTION
The given command is executed; the elapsed time, user time and system
time spent in execution are reported in seconds. Optionally, process
accounting data for the command and all its children can be listed or sum­
marized, and total system activity during the execution interval can be
reported.

The output of timex is written on standard error.

Options are:

-p List process accounting records for command and all its children.
Suboptions f, h, k, m, r, and t modify the data items reported. The
options are as follows:

-f Print the fork/exec flag and system exit status
columns in the output.

-h Instead of mean memory size, show the fraction of
total available CPU time consumed by the process
during its execution. This "hog factor" is computed
as:

(total CPU time)/(elapsed time).

-k Instead of memory size, show total kcore-minutes.

-m Show mean core size (the default).

-r Show CPU factor (user time/(system-time + user-
time).

-t Show separate system and user CPU times. The
number of blocks read or written and the number of
characters transferred are always reported.

-0 Report the total number of blocks read or written and total characters
transferred by command and all its children.

-s Report total system activity (not just that due to command) that
occurred during the execution interval of command. All the data
items listed in sar(l) are reported.

SEE ALSO
sar(l).

WARNING
Process records associated with command are selected from the accounting
file /usr/adm/pacct by inference, since process genealogy is not available.
Background processes having the same user-id, terminal-id, and the execu­
tion time window will be spuriously included.

- 1 -

TIMEX(l) (Base System) TIMEX(l)

EXAMPLES
A simple example:

timex -ops sleep 60

A terminal session of arbitrary complexity can be measured by timing a
sub-shell:

timex -opskmt sh

session commands
EOT

- 2 -

TOUCH(l) (Editing Package) TOUCH(l)

NAME
touch - update access and modification times of a file

SYNOPSIS
touch [-amc] [mmddhhmm[yy]] files

DESCRIPTION
The touch command causes the access and modification times of each argu­
ment to be updated. The file name is created if it does not exist. If no time
is specified [see date(l)] the current time is used. The -a and -m options
cause touch to update only the access or modification times, respectively
(default is -am). The -c option silently prevents touch from creating the file
if it did not previously exist.

The return code from touch is the number of files for which the times could
not be successfully modified (including files that did not exist and were not
created).

SEE ALSO
date(l).
utime(2) in the Programmer's Reference Manual.

- 1 -

TPLOT(lG) (Base System) TPLOT(lG)

NAME
tplot - graphics filters

SYNOPSIS
tplot [- Tterminal [-e raster]]

DESCRIPTION

FILES

These commands read plotting instructions [see plot(4)] from the standard
input and in general produce, on the standard output, plotting instructions
suitable for a particular terminal. If no terminal is specified, the environ­
ment parameter $TERM [see environ(5)] is used. Known terminals are:

300 DASI 300.
300S DASI 300s.
450 DASI 450.
4014 Tektronix 4014.
ver VERSATEC D1200A. This version of plot places a scan-converted

image in /usr/tmp/raster$$ and sends the result directly to the
plotter device, rather than to the standard output. The -e option
causes a previously scan-converted file raster to be sent to the
plotter.

jusrjlibjt300
jusr jlib jt300s
jusrjlibjt450
jusrjlibjt4014
jusrjlibjvplot
jusr jtmp jraster$$

SEE ALSO
plot(3X), plot(4), term(5) in the Programmer's Reference Manual.

- 1 -

TPUT(l) (Remote Terminal Package) TPUT(l)

NAME
tput - initialize a terminal or query terminfo data base

SYNOPSIS
tput [-TtypeJ capname [parms ... J

tput [-Ttype] init

tput [-Ttype] reset

tput [-Ttype] longname

DESCRIPTION
The tput command uses the terminfo(4) data base to make the values of
terminal-dependent capabilities and information available to the shell [see
sh(1)], to initialize or reset the terminal, or return the long name of the
requested terminal type. tput outputs a string if the attribute (capability
name) is of type string, or an integer if the attribute is of type integer. If the
attribute is of type Boolean, tput simply sets the exit code (0 for TRUE if the
terminal has the capability, 1 for FALSE if it does not), and produces no out­
put. Before using a value returned on standard output, the user should test
the exit code [$?, see sh(1)] to be sure it is O. (See EXIT CODES and DIAG­
NOSTICS below.) For a complete list of capabilities and the capname associ­
ated with each, see terminfo(4).

-Ttype indicates the type of terminal. Normally this option is unneces­
sary, because the default is taken from the environment variable
TERM. If -Tis specified, then the shell variables LINES and
COLUMNS and the layer size [see /ayers(1)] will not be refer­
enced.

capname

parms

init

reset

indicates the a.ttribute from the terminfo(4) data base.

If the attribute is a string that takes parameters, the arguments
parms will be instantiated into the string. An all numeric argu-
ment will be passed to the attribute as a number.

If the terminfo(4) data base is present and an entry for the user's
terminal exists (see - Ttype, above), the following will occur: (1)
if present, the terminal's initialization strings will be output (isl,
is2, is3, if, iprog), (2) any delays (e.g., new-line) specified in
the entry will be set in the tty driver, (3) tabs expansion will be
turned on or off according to the specification in the entry, and
(4) if tabs are not expanded, standard tabs will be set (every 8
spaces). If an entry does not contain the information needed
for any of the four above activities, that activity will silently be
skipped.

Instead of putting out initialization strings, the terminal's reset
strings will be output if present (rsl, rs2, rs3, rf). If the reset
strings are not present, but initialization strings are, the initiali­
zation strings will be output. Otherwise, reset acts identically
to init.

- 1 -

TPUT(l) (Remote Terminal Package) TPUT(l)

longname If the terminfo(4) data base is present and an entry for the user's
tenninal exists (see - Ttype above), then the long name of the
tenninal will be put out. The long name is the last name in the
first line of the terminal's description in the terminfo(4) data
base [see term(5)].

EXAMPLES

FILES

tput init Initialize the terminal according to the type of terminal
in the environmental variable TERM. This command
should be included in everyone's .profile after the
environmental variable TERM has been exported, as
illustrated on the profile(4) manual page.

tput -T5620 reset Reset an AT&T 5620 tenninal, overriding the type of
terminal in the environmental variable TERM.

tput cup 0 0

tput clear

tput cols

tput -T450 cols

Send the sequence to move the cursor to row 0, column
o (the upper left comer of the screen, usually known as
the "home" cursor position).

Echo the clear-screen sequence for the current terminal.

Print the number of columns for the current terminal.

Print the number of columns for the 450 terminal.

bold='tput smso'

offbold='tput rmso'

tput hc

tput cup 23 4

tput longname

Set the shell variables bold, to begin stand-out mode
sequence, and offbold, to end stand-out mode sequence,
for the current tenninal. This might be followed by a
prompt:
echo "${bold}Please type in your name:
$ {offbold}\c"

Set exit code to indicate if the current terminal is a hard­
copy tenninal.

Send the sequence to move the cursor to row 23,
column 4.

Print the long name from the terminfo(4) data base for
the type of terminal specified in the environmental vari­
able TERM.

jusr jlib jtenninfo j? j*
jusrjincludejcurses.h
jusrjincludejterm.h
jusr jlib jtabsetj*

compiled terminal description data base
curses(3X) header file
terminfo(4) header file
tab settings for some terminals, in a format
appropriate to be output to the tenninal (escape
sequences that set margins and tabs); for more
information, see the "Tabs and Initialization"
section of terminfo(4)

- 2 -

TPUT(l) (Remote Terminal Package)

SEE ALSO
stty (1), tabs (1).
profile(4), terminfo(4) in the Programmer's Reference Manual.
Chapter 10 of the Programmer's Guide.

EXIT CODES

TPUT(l)

If capname is of type Boolean, a value of 0 is set for TRUE and 1 for FALSE.

If capname is of type string, a value of 0 is set if the capname is defined for
this terminal type (the value of capname is returned on standard output); a
value of 1 is set if capname is not defined for this terminal type (a null value
is returned on standard output).

If capname is of type integer, a value of 0 is always set, whether or not cap­
name is defined for this terminal type. To determine if capname is defined
for this terminal type, the user must test the value of standard output. A
value of -1 means that capname is not defined for this terminal type.
Any other exit code indicates an error; see DIAGNOSTICS, below.

DIAGNOSTICS
tput prints the following error messages and sets the corresponding exit
codes.

exit
code error message

o -1 (capname is a numeric variable that is not specified in the
terminfo(4) data base for this terminal type, e.g.,
tput -T4S0 lines and tput -T2621 xmc)

1 no error message is printed, see EXIT CODES, above.
2 usage error
3 unknown terminal type or no terminfo(4) data base
4 unknown terminfo(4) capability capname

- 3 -

TR(l) (Editing Package) TR(l)

NAME
tr - translate characters

SYNOPSIS
tr [-cds] [string 1 [string2]]

DESCRIPTION
The tr command copies the standard input to the standard output with sub­
stitution or deletion of selected characters. Input characters found in stringl
are mapped into the corresponding characters of string2. Any combination
of the options -cds may be used:

-c Complements the set of characters in stringl with respect to the
universe of characters whose ASCII codes are 001 through 377
octal.

-d Deletes all input characters in stringl.

-s Squeezes all strings of repeated output characters that are in string2
to single characters.

The following abbreviation conventions may be used to introduce ranges of
characters or repeated characters into the strings:

[a-z] Stands for the string of characters whose ASCII codes run from
character a to character z, inclusive.

[a*n] Stands for n repetitions of a. If the first digit of n is 0, n is con­
sidered octal; otherwise, n is taken to be decimal. A zero or miss­
ing n is taken to be huge; this facility is useful for padding string2.

The escape character \ may be used as in the shell to remove special mean­
ing from any character in a string. In addition, \ followed by 1, 2, or 3
octal digits stands for the character whose ASCII code is given by those
digits.

EXAMPLE
The following example creates a . list of all the words in filel one per line in
file2, where a word is taken to be a maximal string of alphabetics. The
strings are quoted to protect the special characters from interpretation by the
shell; 012 is the ASCII code for new-line.

tr -cs "[A-Z][a-z]" "[\012*]" <file1 >file2

SEE ALSO

BUGS

ed(l), sh(l).
ascii(5) in the Programmer's Reference Manual.

Will not handle ASCII NUL in string1 or string2; always deletes NUL from
input.

- 1 -

TRUE(l) (Sase System)

NAME
true, false - provide truth values

SYNOPSIS
true

false

DESCRIPTION

TRUE(l)

true does nothing, successfully. False does nothing, unsuccessfully. They
are typically used in input to sh(l) such as:

SEE ALSO
sh(l).

DIAGNOSTICS

while true
do

command
done

true has exit status zero, false nonzero.

- 1 -

TTY(l) (Base System) TTY(l)

NAME
tty - get the name of the terminal

SYNOPSIS
tty [-1] [-8]

DESCRIPTION
The tty command prints the path name of the user's terminal.

-1 prints the synchronous line number to which the user's terminal is
connected, if it is on an active synchronous line.

-8 inhibits printing of the terminal path name, allowing one to test just
the exit code.

DIAGNOSTICS

EXIT CODES
2 if invalid options were specified,
o if standard input is a terminal,
1 otherwise.

"not on an active synchronous line" if the standard input is not a synchro­
nous terminal and -1 is specified.

"not a tty" if the standard input is not a terminal and -8 is not specified.

- 1 -

UUTRY(lM) (Base System) UUTRY(lM)

NAME
Uutry - try to contact remote system with debugging on

SYNOPSIS
/usr/lib/uucp/Uutry [-x debug-level 1 [-r] system_name

DESCRIPTION

FILES

Uutry is a shell that is used to invoke uucico to call a remote site. Debug­
ging is turned on (default is level 5); -x will override that value. The-r
overrides the retry time in /usr/spool/uucp/.status. The debugging output
is put in file /tmp/system_name. A tail -£ of the output is executed. A
<DELETE> or <BREAK> will give control back to the terminal while the
uucico continues to run, putting its output in /tmp/system_name.

/usr /lib juucp jSystems
j usr jlib / uucp /Permissions
j usr jlib j uucp jDevices
jusr jlib juucp jMaxuuxqts
jusrjlibjuucpjMaxuuscheds
jusrjspooljuucpj*
jusr j spool jlocks /LCK*
/usrjspooljuucppublicj*
/tmp/systeIlLIlame

SEE ALSO
uucico(lM), uucp(lC), uux(lC).

- 1 -

UADMIN(lM) (Base System) UADMIN(lM)

NAME
uadmin - administrative control

SYNOPSIS
/etc/uadmin cmd fen

DESCRIPTION
The uadmin command provides control for basic administrative functions.
This command is tightly coupled to the System Administration procedures
and is not intended for general use. It may be invoked only by the super­
user.

The arguments cmd (command) and fcn (function) are converted to integers
and passed to the uadmin system call.

SEE ALSO
uadmin(2) in the Programmer's Reference Manual.

- 1 -

UMASK(l) (Base System) UMASK(l)

NAME
umask - set file-creation mode mask

SYNOPSIS
umask [000]

DESCRIPTION
The user file-creation mode mask is set to 000. The three octal digits refer
to read/write/execute permissions for owner, group, and others, respectively
[see chmod(2) and umask(2)]. The value of each specified digit is subtracted
from the corresponding "digit" specified by the system for the creation of a
file [see creat(2)]. For example,umask 022 removes group and others write
permission (files normally created with mode 777 become mode 755; files
created with mode 666 become mode 644).

If 000 is omitted, the current value of the mask is printed.

The umask command is recognized and executed by the shell.

The umask command can be included in the user's .profile [see profile(4)]
and invoked at login to automatically set the user's permissions on files or
directories created.

SEE ALSO
chmod(l), sh(l).
chmod(2), creat(2), umask(2), profile(4) in the Programmer's Reference
Manual.

- 1 -

UNADV(lM) (Remote File Sharing Utilities) UNADV(lM)

NAME
unadv - unadvertise a Remote File Sharing resource

SYNOPSIS
unadv resource

DESCRIPTION
The unadv command unadvertises a Remote File Sharing resource, which is
the advertised symbolic name of a local directory, by removing it from the
advertised information on the domain name server. unadv prevents subse­
quent remote mounts of that resource. It does not affect continued access
through existing remote or local mounts.

An administrator at a server can unadvertise only those resources that phy­
sically reside on the local machine. A domain administrator can unadvertise
any resource in the domain from the primary name server by specifying
resource name as domain. resource. (A domain administrator should only
unadvertise another host's resources to clean up the domain advertise table
when that host goes down. Unadvertising another host's resource changes
the domain advertise table, but not the host advertise table.)

This command is restricted to the super-user.

ERRORS
If resource is not found in the advertised information, an error message will
be sent to standard error.

SEE ALSO
adv(lM), fumount(lM), nsquery(lM).

- 1 -

UNAME(l) (Base System) UNAME(l)

NAME
uname - print name of current UNIX system

SYNOPSIS
uname [-8nrvma]
uname [-S system name]

DESCRIPTION
The uname command prints the current system name of the UNIX system on
the standard output file. It is mainly useful to determine which system one
is using. The options cause selected information returned by uname(2) to be
printed:

-8 print the system name (default).

-n print the nodename (the nodename is the name by which the sys-
tem is known to a communications network).

-r print the operating system release.

-v print the operating system version.

-m print the machine hardware name.

-a print all the above information.

On your computer, the system name and the nodename may be changed by
specifying a system name argument to the -S option. The system name
argument is restricted to 8 characters. Only the super-user is allowed this
capability.

SEE ALSO
uname(2) in the Programmer's Reference Manual.

- 1 -

UNIQ(l) (Editing Package) UNIQ(l)

NAME
uniq - report repeated lines in a file

SYNOPSIS
uniq [-udc [+n 1 [-n 1 1 [input [output 1 1

DESCRIPTION
The uniq command reads the input file comparing adjacent lines. In the
normal case, the second and succeeding copies of repeated lines are
removed; the remainder is written on the output file. Input and output
should always be different. Note that repeated lines must be adjacent in
order to be found; see sort(l). If the -u flag is used, just the lines that are
not repeated in the original file are output. The -d option specifies that one
copy of just the repeated lines is to be written. The normal mode output is
the union of the -u and -d mode outputs.

The -c option supersedes -u and -d and generates an output report in
default style but with each line preceded by a count of the number of times
it occurred.

The n arguments specify skipping an initial portion of each line in the com­
parison:

-n The first n fields together with any blanks before each are ignored.
A field is defined as a string of non-space, non-tab characters
separated by tabs and spaces from its neighbors.

+n The first n characters are ignored. Fields are skipped before char­
acters.

SEE ALSO
comm(l), sort(l).

- 1 -

UNITS(l) (Base System) UNITS(l)

NAME
units - conversion program

SYNOPSIS
units

DESCRIPTION

FILES

The units command converts quantities expressed in various standard scales
to their equivalents in other scales. It works interactively in this fashion:

You have: inch
You want: em

'" 2.540000e+OO
I 3.937008e-Ol

A quantity is specified as a multiplicative combination of units optionally
preceded by a numeric multiplier. Powers are indicated by suffixed positive
integers, division by the usual sign:

You have: 15 lbs force/in2
You want: atm

'" l.02068ge+OO
I 9.79729ge-Ol

The units command does only multiplicative scale changes; thus it can con­
vert Kelvin to Rankine, but not Celsius to Fahrenheit. Most familiar units,
abbreviations, and metric prefixes are recognized, together with a generous
leavening of exotica and a few constants of nature including:

pi ratio of circumference to diameter,
c speed of light,
e charge on an electron,
g acceleration of gravity,
force same as g,
mole Avogadro's number,
water pressure head per unit height of water,
au astronomical unit.

Pound is not recognized as a unit of mass; lb is. Compound names are run
together, (e.g., light year). British units that differ from their u.s. counter­
parts are prefixed thus: brgallon. For a complete list of units, type:

cat lusr llib lunittab

jusr llib lunittab

- 1 -

UUCHECK(lM) (Base System) UUCHECK(lM)

NAME
uucheck - check the uucp directories and permissions file

SYNOPSIS
/usr/lib/uucp/uucheck [-v] [-x debu~evel]

DESCRIPTION

FILES

The uucheck command checks for the presence of the uucp system required
files and directories. Within the uucp makefile, it is executed before the ins­
tallation takes place. It also checks for some obvious errors in the Permis­
sions file (jusr/lib/uucp/Permissions). When executed with the -v
option, it gives a detailed explanation of how the uucp programs will inter­
pret the Permissions file. The -x option is used for debugging. debug­
option is a single digit in the range 1-9; the higher the value, the greater the
detail.

Note that uucheck can only be used by the super-user or uucp.

jusr jlib juucp jSystems
jusr jlib juucp jPermissions
jusr jlib juucp jDevices
jusr jlib juucp jMaxuuscheds
jusr jlib juucp jMaxuuxqts
jusrjspooljuucp/*
jusr j spooljlocks jLCK*
jusrjspooljuucppublic/*

SEE ALSO

BUGS

uucico(1M), uucp(1C), uusched(1M), uustat(1C), uux(1C).

The program does not check filejdirectory modes or some errors in the Per­
missions file such as duplicate login or machine name.

- 1 -

UUCICO(lM) (Base System) UUCICO(lM)

NAME
uucico - file transport program for the uucp system

SYNOPSIS
jusrjlihjuucpjuucico [-r role-11umber 1 [-x debug-level 1
[-i interface 1 [-d spooLdirectory 1 -s systern-11ame

DESCRIPTION

FILES

The uucico command is the file transport program for uucp work file
transfers. Role numbers for the -r are the digit 1 for master mode or 0 for
slave mode (default). The -r option should be specified as the digit 1 for
master mode when uucico is started by a program or CTon. Uux and uucp
both queue jobs that will be transferred by uucico. It is normally started by
the scheduler, uusched , but can be started manually; this is done for debug­
ging. For example, the shell Uutry starts uucico with debugging turned on.
A single digit must be used for the -x option with higher numbers for more
debugging.

The -i option defines the interface used with uucico. This interface only
affects slave mode. Known interfaces are UNIX (default), TLI (basic Tran­
sport Layer Interface), and TLIS (Transport Layer Interface with Streams
modules, readjwrite).

jusr jlib juucp jSystems
jusr jlib juucp jPermissions
jusr jlib juucp jDevices
jusr jlib juucp jDevconfig
jusr jlib juucp jSysfiles
jusrjlibjuucpjMaxuuxqts
jusr jlib juucp jMaxuuscheds
jusrjspooljuucpj*
j usr j spool jlocks jLCK*
jusrjspooljuucppublicj*

SEE ALSO
cron(lM), Uutry(lM), uucp(lC), uusched(lM), uustat(lC), uux(lC).

- 1 -

UUCLEANUP(lM) (Base System) UUCLEANUP(lM)

NAME
uucleanup - uucp spool directory clean-up

SYNOPSIS
/usr/lib/uucp/uucleanup [-Ctime 1 [-Wtime 1 [-Xtime 1 [-mstring 1
[-otime 1 [-ssystem 1

DESCRIPTION
The uucleanup command will scan the spool directories for old files and
take appropriate action to remove them in a useful way:

Inform the requestor of send/receive requests for systems that cannot be
reached.

Return mail, which cannot be delivered, to the sender.

Delete or execute mews for mews type files (depending on where the news
originated--Iocally or remotely).

Remove all other files.

In addition, there is provision to warn users of requests that have been
waiting for a given number of days (default 1). Note that uucleanup will
process as if all option times were specified to the default values unless time
is specifically set.

The following options are available.

-Ctime Any C. files greater or equal to time days old will be removed
with appropriate information to the requestor. (default 7 days)

-Dtime Any D. files greater or equal to time days old will be removed.
An attempt will be made to deliver mail messages and execute
mews when appropriate. (default 7 days)

-Wtime Any C. files equal to time days old will cause a mail message to
be sent to the requestor warning about the delay in contacting
the remote. The message includes the JOBID, and in the case of
mail, the mail message. The administrator may include a mes­
sage line telling whom to call to check the problem (-m option).
(default 1 day)

-Xtime Any X. files greater or equal to time days old will be removed.
The D. files are probably not present (if they were, the X. could
get executed). But if there are D. files, they will be taken care of
by D. processing. (default 2 days)

-mstring This line will be included in the warning message generated by
the -W option.

-otime Other files whose age is more than time days will be deleted.
(default 2 days) The default line is "See your local administrator
to locate the problem. "

-ssystem Execute for system spool directory only.

- 1 -

UUCLEANUP(lM) (Base System) UUCLEANUP(lM)

FILES

-xdebug_ZeveZ
The -x debug level is a single digit between 0 and 9; higher
numbers give more detailed debugging information. (If uucleanup
was compiled with -DSMALL, no debugging output will be avail­
able.)

This program is typically started by the shell uudemon.cleanup, which
should be started by cron(lM}.

jusrjlibjuucp directory with commands used by uucleanup inter­
nally

jusrjspoolfuucp spool directory

SEE ALSO
cron(lM}, uucp(lC), uux(lC).

- 2 -

UUCP(lC) (Base System) UUCP(lC)

NAME
uucp, uulog, uuname - UNIX system to UNIX system copy

SYNOPSIS
uucp [options) source-files destination-file
uulog [options) -ssystem
uulog [options) system
uulog [options) -fsystem
uuname [-I) [-c)

DESCRIPTION
uucp

The uucp command copies files named by the source-file arguments to the
destination-file argument. A file name may be a path name on your
machine, or may have the form:

system-name!path-name

where system-name is taken from a list of system names that uucp knows
about. The system-name may also be a list of names such as

system-name!system-name! ... !system-name!path-name

in which case an attempt is made to send the file via the specified route to
the destination. See WARNINGS and BUGS below for restrictions. Care
should be taken to ensure that intermediate nodes in the route are willing to
forward information (see WARNINGS below for restrictions).

The following shell metacharacters are disallowed in system-name:

;&1 "<>' "?*[](){}$#,-

Path names may be one of:

(1) a full path name;

(2) a path name preceded by -user where user is a login name on
the specified system and is replaced by that user's login direc­
tory;

(3) a path name preceded by - j destination where destination is
appended to jusrjspooljuucppublic. (NOTE: This destina­
tion will be treated as a file name unless more than one file is
being transferred by this request or the destination is already a
directory. To ensure that it is a directory, follow the destina­
tion with a 'j'. For example -jdanj as the destination will
make the directory jusrjspooljuucppublicjdan if it does not
exist and put the requested file(s) in that directory.)

(4) anything else is prefixed by the current directory.

If the result is an erroneous path name for the remote system the copy will
fail. If the destination-file is a directory, the last part of the source-file name
is used.

The uucp command preserves execute permissions across the transmission
and gives 0666 read and write permissions [see chmod(2)).

- 1 -

UUCP(lC) (Base System) UUCP(lC)

The following options are interpreted by uuep:

-c Do not copy local file to the spool directory for transfer to the
remote machine (default).

-C Force the copy of local files to the spool directory for transfer.

-d Make all necessary directories for the file copy (default).

-I Do not make intermediate directories for the file copy.

-ggrade Grade is a single letter/number; lower ASCII sequence characters
will cause the job to be transmitted earlier during a particular
conversation.

-j Output the job identification ASCII string on the standard output.
This job identification can be used by uustat to obtain the status
or terminate a job.

-m Send mail to the requester when the copy is completed.

-nuser Notify user on the remote system that a file was sent.

-r Do not start the file transfer, just queue the job.

-sfile Report status of the transfer to file. Note that the file must be a
full path name.

-xdebug_level

uulog

Produce debugging output on standard output. The debug_level
is a number between 0 and 9; higher numbers give more detailed
information. (Debugging will not be available if uucp was com­
piled with -DSMALL.)

The uulog command queries a log file of uuep or uuxqt transactions in a file

/usr /spool/uucp / .Log/uucico / system,
or

/usr /spool/uucp /.Log/uuxqt/system.

The options cause uulog to print logging information:

-ssys Print information about file transfer work involving system sys.

-Isystem Does a "tail -I" of the file transfer log for system. (You must hit
BREAK to exit this function.) Other options used in conjunction
with the above:

-x Look in the uuxqt log file for the given system.

-number Indicates that a "tail n command of number lines should be exe-
cuted.

uuname
The Ituname command lists the names of systems known to uuep. The-c
option returns the names of systems known to cu. (The two lists are the
same, unless your machine is using different Systems files for eu and uuep.
See the Sysfiles file.) The -I option returns the local system name.

- 2 -

UUCP(lC) (Base System) UUCP(lC)

FILES
jusrjspooljuucp
jusr j spooljuucppublicj*

jusrjlibjuucpj*

spool directories
public directory for receiving and
sending (fusrjspoolfuucppublic)
other data and program files

SEE ALSO
mail(l), uustat(lC), uux(lC), uuxqt(lM).
chmod(2) in the Programmer's Reference Manual.

WARNINGS

BUGS

The domain of remotely accessible files can (and for obvious security rea­
sons, usually should) be severely restricted. You will very likely not be able
to fetch files by path name; ask a responsible person on the remote system
to send them to you. For the same reasons you will probably not be able to
send files to arbitrary path names. As distributed, the remotely accessible
files are those whose names begin fusrfspoolfuucppublic (equivalent to
-f)·
All files received by uucp will be owned by uucp.
The -m option will only work sending files or receivmg a single file.
Receiving multiple files specified by special shell characters ? * [...] will
not activate the -m option.

The forwarding of files through other systems may not be compatible with
the previous version of uucp. If forwarding is used, all systems in the route
must have the same version of uucp.

Protected files and files that are in protected directories that are owned by
the requester can be sent by uucp. However, if the requestor is root, and
the directory is not searchable by "other" or the file is not readable by
"other", the request will fail.

- 3 -

UUGETTY(lM) (Base System) UUGETTY(lM)

NAME
uugetty - set terminal type, modes, speed, and line discipline

SYNOPSIS
fusrflibfuucpfuugetty [-h 1 [-t timeout 1 [-r 1 line
[speed [type [linedisc 1 1 1
fusrflibfuucpfuugetty -c file

DESCRIPTION

FILES

The uugetty command is identical to getty(lM) but changes have been made
to support using the line for uucico, cu, and ct; that is, the line can be used
in both directions. The uugetty will allow users to log in, but if the line is
free, uucico, cu, or ct can use it for dialing out. The implementation
depends on the fact that uucico, cu, and ct create lock files when devices are
used. When the "openO" returns (or the first character is read when -r
option is used), the status of the lock file indicates whether the line is being
used by uucico, cu, ct, or someone trying to log in. Note that in the -r case,
several <carriage-return> characters may be required before the log in mes­
sage is output. The human users will be able to handle this slight incon­
venience. Uucico trying to login will have to be told by using the following
login script:

"" \r\d\r\d\r\d\r in:--in: ...

where the ... is whatever would normally be used for the login sequence.

An entry for im intelligent modem or direct line that has a uugetty on each
end must use the -r option. (This causes uugetty to wait to read a character
before it puts out the login message, thus preventing two uugettys from
looping.) If there is a uugetty on one end of a direct line, there must be a
uugetty on the other end as well. Here is an fetcfinittab entry using
uugetty on an intelligent modem or direct line:

30:2:respawn:/usr/lib/uucp/uugetty -r -t 60 tty12 1200

/ etc / gettydefs
/etc/issue

SEE ALSO

BUGS

ct(lC), cu(lC), getty(lM), init(lM), 10gin(1), uucico(lM), tty(7).
ioctl(2), gettydefs(4), inittab(4) in the Programmer's Reference Manual.

Ct will not work when uugetty is used with an intelligent modem such as
Penril or Ventel.

- 1 -

UUSCHED(lM) (Base System) UUSCHED(lM)

NAME
uusched - the scheduler for the uucp file transport program

SYNOPSIS
jusrjlibjuucpjuusched [-x debug-level] [-u debug-level]

DESCRIPTION

FILES

The uusched command is the uucp file transport scheduler. It is usually
started by the daemon uudemon.hour that is started by cron(lM) from an
entry in jusrjspooljcronjcrontab:

39 * * * * jbinjsu uucp -c "jusrjlibjuucpjuudemon.hour > jdev jnull"

The two options are for debugging purposes only; -x debug_level will out­
put debugging messages from uusched and -u debug_level will be passed as
-x debug_level to uucico. The debug_level is a number between 0 and 9;
higher numbers give more detailed information.

jusr jlib juucp jSystems
jusr jlib juucp jPermissions
jusr jlib juucp jDevices
jusr j spooljuucp!",
jusr j spooljlocks jLCK*
jusrjspooljuucppublic!",

SEE ALSO
cron(lM), uucico(lM), uucp(lC), uustat(lC), uux(lC).

- 1 -

UUSTAT(lC) (Base System) UUSTAT(lC)

NAME
uustat - uucp status inquiry and job control

SYNOPSIS
uustat [-a]
uustat [-m]
uustat [-p]
uustat [-q]
uustat [-kjobid]
uustat [-rjobid]
uustat [-ssystem] [-uuser]

DESCRIPTION
The uustat command will display the status of, or cancel, previously speci­
fied uucp commands, or provide general status on uucp connections to other
systems. Only one of the following options can be specified with uustat per
command execution:

-a Output all jobs in queue.
-m Report the status of accessibility of all machines.
-p Execute a "ps -fIp" for all the process-ids that are in the lock

files.
-q List the jobs queued for each machine. If a status file exists for

the machine, its date, time and status information are reported.
In addition, if a number appears in 0 next to the number of C or
X files, it is the age in days of the oldest C./X. file for that sys­
tem. The Retry field represents the number of hours until the
next possible call. The Count is the number of failure attempts.
NOTE: for systems with a moderate number of outstanding jobs,
this could take 30 seconds or more of real-time to execute. As
an example of the output produced by the -q option:

eagle
mh3bs3

3C
2C

04/07-11:07
07/07-10:42

NO DEVICES AVAILABLE
SUCCESSFUL

The above output tells how many command files are waiting for each sys­
tem. Each command file may have zero or more files to be sent (zero
means to call the system and see if work is to be done). The date and time
refer to the previous interaction with the system followed by the status of
the interaction.
-kjobid Kill the uucp request whose job identification is jobid. The killed

uucp request must belong to the person issuing the uustat com­
mand unless one is the super-user.

-rjobid Rejuvenate jobid. The files associated with jobid are touched so
that their modification time is set to the current time. This
prevents the cleanup daemon from deleting the job until the jobs
modification time reaches the limit imposed by the deamon.

- 1 -

UUSTAT(lC) (Base System) UUSTAT(lC)

FILES

Either or both of the following options can be specified with uustat:

-ssys Report the status of all uucp requests for remote system sys.
-uuser Report the status of all uucp requests issued by user.

Output for both the -s and -u options has the following format:

eaglenOOOO 4/07-11:01:03
eagleN1bd7 4/07-11:07
eagleC1bd8 4/07-11:07

4/07-11:07

(POLL)
5eagledan522 /usr/dan/ A
5eagledan59 D.3b2a12ce4924
5eagledanrmail mike

With the above two options, the first field is the jobid of the job. This is fol­
lowed by the date/time. The next field is either an '5' or 'R' depending on
whether the job is to send or request a file. This is followed by the user-id
of the user who queued the job. The next field contains the size of the file,
or in the case of a remote execution (rmail - the command used for remote
mail), the name of the command. When the size appears in this field, the
file name is also given. This can either be the name given by the user or an
internal name (e.g., D.3b2ake4924) that is created for data files associated
with remote executions (rmail in this example).
When no options are given, uustat outputs the status of all uucp requests
issued by the current user.

/usr/spooljuucpj* spool directories
SEE ALSO

uucp(lC).

- 2 -

UUTO(lC) (Base System) UUTO(lC)

NAME
uuto, uupick - public UNIX system to UNIX system file copy

SYNOPSIS
uuto [options] source-files destination
uupick [-s system]

DESCRIPTION
The uuto command sends source-files to destination. uuto uses the uucp(lC)
facility to send files, while it allows the local system to control the file
access. A source-file name is a path name on your machine. Destination
has the form:

system!user

where system is taken from a list of system names that uucp knows about
(see uuname). User is the login name of someone on the specified system.

Two options are available:

-p Copy the source file into the spool directory before transmission.
-m Send mail to the sender when the copy is complete.

The files (or sub-trees if directories are specified) are sent to PUBDIR on sys­
tem, where PUBDIR is a public directory defined in the uucp source. By
default this directory is /usr/spooljuucppublic. Specifically the files are
sent to

PUBDIR/receive / user / mysystem / files.

The destined recipient is notified by mail(l) of the arrival of files.

The uupick command accepts or rejects the files transmitted to the user.
Specifically, uupick searches PUBDIR for files destined for the user. For each
entry (file or directory) found, the following message is printed on the stan­
dard output:

from system: [file file-name] [dir dirname] ?

The uupick command then reads a line from the standard input to deter­
mine the disposition of the file:

<new-line>

d

m [dir]

a [dir]

p

q
EOT (control-d)

!command

Go on to next entry.

Delete the entry.

Move the entry to named directory dir. If dir is not speci­
fied as a complete path name (in which $HOME is legiti­
mate), a destination relative to the current directory is
assumed. If no destination is given, the default is the
current directory.

Same as m except moving all the files sent from system.

Print the content of the file.

Stop.

Same as q.

Escape to the shell to do command.

- 1 -

UUTO(lC) (Base System) UUTO(lC)

FILES

* Print a command summary.

The uupick command invoked with the -ssystem option will only search the
PUBDIR for files sent from system.

PUBDIR jusrjspooljuucppublic public directory

SEE ALSO
mail(l), uudeanup(IM), uucp(IC), uustat(IC), uux(IC).

WARNINGS
In order to send files that begin with a dot (e.g., .profile) the files must by
qualified with a dot. For example: .profile, .prof*, .profil? are correct;
whereas *prof*, ?profile are incorrect.

- 2 -

UUX(lC) (Base System) UUX(lC)

NAME
uux - UNIX system to UNIX system command execution

SYNOPSIS
uux [options] command-string

DESCRIPTION
The uux command will gather zero or more files from various systems, exe­
cute a command on a specified system and then send standard output to a
file on a specified system.

NOTE: For security reasons, most installations limit the list of commands
executable on behalf of an incoming request from uux, permiting only the
receipt of mail [see mail (1)]. (Remote execution permissions are defined in
/usr /lib /uucp /Permissions.)

The command-string is made up of one or more arguments that look like a
shell command line, except that the command and file names may be pre­
fixed by system-name!. A null system-name is interpreted as the local sys­
tem.

File names may be one of

(1) a full path name;

(2) a path name preceded by -xxx where xxx is a login name on
the specified system and is replaced by that user's login direc­
tory;

(3) anything else is prefixed by the current directory.

As an example, the command

uux " !diff usg!jusr/dan/file1 pwba!ja4/dan/file2 >
r /dan/file.diff"

will get the filel and fUe2 files from the "usg" and "pwba" machines, exe­
cute a diff(l) command and put the results in fUe.diff in the local
PUBDIR/dan/ directory.

Any special shell characters such as <>; I should be quoted either by quot­
ing the entire command-string, or quoting the special characters as individual
arguments.

The uux command will attempt to get all files to the execution system. For
files that are output files, the file name must be escaped using parentheses.
For example, the command

uux a!cut -fl b!jusr/file \(c!/usr/file\)

gets /usr/file from system "b" and sends it to system "a", performs a cut
command on that file, and sends the result of the cut command to system
"en.

The uux command will notify you if the requested command on the remote
system was disallowed. This notification can be turned off. by the -n
option. The response comes by remote mail from the remote machine.

- 1 -

UUX(lC) (Base System) UUX(lC)

FILES

The following options are interpreted by uux:

The standard input to uux is made the standard input to the
command-string.

-aname Use name as the user identification replacing the initiator user-id.
(Notification will be returned to the user.)

-b Return whatever standard input was provided to the uux com­
mand if the exit status is non-zero.

-c Do not copy local file to the spool directory for transfer to the
remote machine (default).

-C Force the copy of local files to the spool directory for transfer.

-ggrade Grade is a single letterJnumber; lower ASCII sequence characters
will cause the job to be transmitted earlier during a particular
conversation.

-j Output the jobid ASCII string on the standard output, which is
the job identification. This job identification can be used by uus­
tat to obtain the status or terminate a job.

-n Do not notify the user if the command fails.

-p Same as -: The standard input to uux is made the standard
input to the command-string.

-r Do not start the file transfer, just queue the job.

-sfile Report status of the transfer in file.

-xdebug_Ievel
Produce debugging output on the standard output. The
debug_level is a number between 0 and 9; higher numbers give
more detailed information.

-z Send success notification to the user.

JusrJlibJuucpJspool spool directories
JusrJlib JuucP JPermissions

remote execution permissions
JusrJlibJuucpJ* other data and programs

SEE ALSO
cut(l), mail(l), uucp(lC), uustat(lC).

WARNINGS
Only the first command of a shell pipeline may have a system-name!. All
other commands are executed on the system of the first command.
The use of the shell metacharacter * will probably not do what you want it
to do. The shell tokens « and» are not implemented.

The execution of commands on remote systems takes place in an execution
directory known to the uucp system. All files required for the execution will
be put into this directory unless they already reside on that machine.

- 2 -

UUX(lC) (Base System) UUX(lC)

BUGS

Therefore, the simple file name (without path or machine reference) must be
unique within the uux request. The following command will NOT work:

uux "a!diff b!jusrjdanjxyz c!jusrjdanjxyz > !xyz.diff"

but the command

uux "a!diff a!jusrjdanjxyz c!jusrjdanjxyz > !xyz.diff"

will work (if diff is a permitted command).

Protected files and files that are in protected directories that are owned by
the requester can be sent in commands using uux. However, if the reques­
ter is root, and the directory is not searchable by "other", the request will
fail.

- 3 -

UUXQT(lM) (Base System) UUXQT(lM)

NAME
uuxqt - execute remote command requests

SYNOPSIS
jusrjlibjuucpjuuxqt [-s system] [-x debug.-Jevel]

DESCRIPTION

FILES

The uuxqt command executes remote job requests from remote systems gen­
erated by the use of the uux command. (Mail uses uux for remote mail
requests.) uuxqt searches the spool directories looking for X. files. For each
X. file, uuxqt checks to see if all the required data files are available and
accessible, and file commands are permitted for the requesting system. The
Permissions file is used to validate file accessibility and command execution
permission.

There are two environment variables that are set before the uuxqt command
is executed:
UU~ACHINE is the machine that sent the job (the previous one).
UU_USER is the user that sent the job.
These can be used in writing commands that remote systems can execute to
provide information, auditing, or restrictions.

The -x debug-Ievel is a single digit between 0 and 9. Higher numbers give
more detailed debugging information.

/usr /lib /uucp /Permissions
/usr /lib /uucp /Maxuuxqts
/usr/spool/uucp/,"
/usr / spool/locks /LCK*

SEE ALSO
mail(l), uucico(lM). uucp(lC), uustat(lC), uux(lC).

- 1 -

VI(l) (Editing Package) VI(l)

NAME
vi, view, vedit - screen-oriented (visual) display editor based on ex

SYNOPSIS
vi [-t tag] [-r file] [-L] [-wn] [-R] [-x] [-C] [-c command] file ...
view [-t tag] [-r file] [-L] [-wn] [-R] [-x] [-C] [-c command] file .. .
vedit [-t tag] [-r file] [-L] [-wn] [-R] [-x] [-C] [-c command] file .. .

DESCRIPTION
vi (visual) is a display-oriented text editor based on an underlying line edi­
tor ex(l). It is possible to use the command mode of ex from within vi and
vice-versa. The visual commands are described on this manual page; how
to set options (like automatically numbering lines and automatically starting
a new output line when you type carriage return) and all ex(l) line editor
commands are described on the ex(l) manual page.

When using vi, changes you make to the file are reflected in what you see
on your terminal screen. The position of the cursor on the screen indicates
the position within the file.

Invocation Options
The following invocation options
men ted options are discussed in
manual page):

are interpreted by vi (previously docu­
the NOTES section at the end of this

-t tag Edit the file containing the tag and position the editor at its
definition.

-r file Edit file after an editor or system crash. (Recovers the ver­
sion of file that was in the buffer when the crash occurred.)

-L List the name of all files saved as the result of an editor or
system crash.

-wn Set the default window size to n. This is useful when using
the editor over a slow-speed line.

-R Read-only mode; the read-only flag is set, preventing
accidental overwriting of the file.

-x Encryption option; when used, vi simulates the X command
of ex(l) and prompts the user for a key. This key is used to
encrypt and decrypt text using the algorithm of crypt(l).
The X command makes an educated guess to determine
whether text read in is encrypted or not. The temporary
buffer file is encrypted also, using a transformed version of
the key typed in for the -x option. [See crypt(l)]. Also, see
the WARNING section at the end of this manual page.

-C Encryption option; same as the -x option, except that vi
simulates the C command of ex(l). The C command is like
the X command of ex(l), except that all text read in is
assumed to have been encrypted.

-c command Begin editing by executing the specified editor command
(usually a search or positioning command).

- 1 -

VI(I) (Editing Package) VI(l)

The file argument indicates one or more files to be edited.

The view invocation is the same as vi except that the read-only flag is set.

The vedit invocation is intended for beginners. It is the same as vi except
that the report flag is set to 1, the showmode and novice flags are set, and
magic is turned off. These defaults make it easier to learn how to use vi.

vi Modes
Command Normal and initial mode. Other modes return to command

mode upon completion. ESC (escape) is used to cancel a
partial command.

Input

Last line

COMMAND SUMMARY

Entered by setting any of the following options; a A i I 0

o c C s 5 R. Arbitrary text may then be entered. Input
mode is normally terminated with ESC character, or, abnor­
mally, with an interrupt.

Reading input for : / ? or !; terminate by typing a carriage
return; an interrupt cancels termination.

In the descriptions,
escape key.

CR stands for carriage return and ESC stands for the

Sample commands
-~t---+
hjkl
itextESC
cwnewESC
easESC

x
dw
dd
3dd
u
ZZ
:q!CR
ftexJCR
U D

:cmdCR

arrow keys move the cursor
same as arrow keys
insert text
change word to new
pluralize word (end of word; append s;

escape from input state)
delete a character
delete a word
delete a line
delete 3 lines
undo previous change
exit vi, saving changes
quit, discarding changes
search for text
scroll up or down
any ex or ed command

Counts before vi commands
Numbers may be typed as a prefix
preted in one of these ways.
line/column number

to some commands. They are inter-

scroll amount
repeat effect most of the rest

Interrupting, canceling
ESC end insert or incomplete cmd
DEL (delete or rubout) interrupts

- 2 -

VI(l) (Editing Package) VI(l)

File manipulation
ZZ if file modified, write and exit; otherwise, exit
:wCR write back changes
:w! CR forced write, if permission originally not valid
:qCR quit
:q! CR quit, discard changes
:e nameCR edit file name
:e ! CR reedit, discard changes
:e + nameCR edit, starting at end
:e +nCR edit starting at line n
:e #CR edit alternate file
:e! #CR edit alternate file, discard changes
:w nameCR write file name
:w I nameCR overwrite file name
:shCR run shell, then return
:! cmdCR run cmd, then return
:nCR edit next file in arglist
:n argsCR specify new arglist
A G show current file and line
:ta tagCR position cursor to tag

In general, any ex or ed command (such as substitute or global) may be
typed, preceded by a colon and followed by a carriage return.

Positioning within file
AF forward screen
AD backward screen
AD scroll down half screen
AU scroll up half screen
nG go to the beginning of the specified line

/pat
?pat
n
N
/pat/+n
?pat?-n
]]
[[
(
)
{
}
%

(end default), where n is a line number
next line matching pat
previous line matching pat
repeat last / or ? command
reverse last / or ? command
n-th line after pat
n-th line before pat
next section/function
previous section/function
beginning of sentence
end of sentence
beginning of paragraph
end of paragraph
find matching () { or }

Adjusting the screen
AL clear and redraw window
AR clear and redraw window if AL is -+ key
zCR redraw screen with current line at top of window
z-CR redraw screen with current line at bottom of window
z .CR redraw screen with current line at center of window
/pat/z-CR move pat line to bottom of window

- 3 -

VI(l) (Editing Package)

zn .CR use n-line window
-E scroll window down 1 line
-Y scroll window up 1 line

Marking and returning
" move cursor to previous context

move cursor to first non-white space in line
mx mark current position with the ASCII lower-case letter x
'x move cursor to mark x
'x move cursor to first non-white space in line marked by x

Line positioning
H top line on screen
L last line on screen
M middle line on screen
+ next line, at first non-white

previous line, at first non-white
CR return, same as +
~ or j next line, same column
t or k previous line, same column

Character positioning
- first non white-space character
o beginning of line
$ end of line
h or - forward
1 or +- backward
-H same as +- (backspace)
space same as - (space bar)
fx find next x
Fx find previous x
tx move to character prior to next x
Tx move to character following previous x

,
nl
%

repeat last f F t or T
repeat inverse of last f F t or T
move to column n
find matching ({) or }

Words, sentences, paragraphs
w forward a word
b back a word
e end of word
)
}
(
{
W
B
E

to next sentence
to next paragraph
back a sentence
back a paragraph
forward a blank-delimited word
back a blank-delimited word
end of a blank-delimited word

- 4 -

VI(l)

VI(l) (Editing Package)

Corrections during insert
"U erase last character (backspace)
"W erase last word
erase your erase character, same as "U (backspace)
kill your kill character, erase this line of input
\ quotes your erase and kill characters
ESC ends insertion, back to command mode
DEL interrupt, terminates insert mode
"D backtab one character; reset left margin

of autoindent
""D caret () followed by control-d (D);

backtab to beginning of line;
do not reset left margin of auto indent

O"D backtab to beginning of line;
reset left margin of autoindent

"V quote non-printable character

Insert and replace
a
A
i
I
o
o
rx
RtextESC

Operators

append after cursor
append at end of line
insert before cursor
insert before first non-blank
open line below
open above
replace single char with x
replace characters

VI(l)

Operators are followed by a cursor motion, and affect all text that would
have been moved over. For example, since w moves over a word, dw
deletes the word that would be moved over. Double the operator, e.g., dd
to affect whole lines.
d delete
c change
y yank lines to buffer
< left shift
> right shift
! filter through command

Miscellaneous Operations
C change rest of line (c:$)
D delete rest of line (d$)
s substitute chars (d)
S substitute lines (c:c:)
J join lines
x delete characters (dl)
X delete characters before cursor (dh)
Y yank lines (yy)

• Ii -

VIet) (Editing Package) VIet)

Yank and Put
Put inserts the text most recently deleted or yanked; however, if a buffer is
named (using the ASCII lower-case letters a - z), the text in that buffer is put
instead.

3yy
3yl
P
p
"xp
"xy
"xd

yank 3 lines
yank 3 characters
put back text after cursor
put back text before cursor
put from buffer x
yank to buffer x
delete into buffer x

Undo, Redo, Retrieve
u undo last change
U restore current line

repeat last change
" d P retrieve d'th last delete

AUTHOR

FILES

NOTES

vi and ex were developed by The University of California, Berkeley Califor­
nia, Computer Science Division, Department of Electrical Engineering and
Computer Science.

jtmp default directory where temporary work files are
placed; it can be changed using the directory
option (see the ex(l) set command)

jusr jlib jterminfo j? j* compiled terminal description data base
jusr jlib j .COREtermj? j* subset of compiled terminal description data base

Two options, although they continue to be supported, have been replaced in
the documentation by options that follow the Command Syntax Standard
[see intro(l)]. A -r option that is not followed with an option-argument has
been replaced by -L and +command has been replaced by -c command.

SEE ALSO
ed(l), edit(l), ex(l).
User's Guide.
Editing Guide.
cursesjterminfo chapter of the Programmer's Guide.

WARNINGS
The encryption options are provided with the Security Administration Utili­
ties package, which is available only in the United States.

Tampering with entries in jusrjlibJ.COREtermj?j* or jusrjlibjterminfoj?j*
(for example, changing or removing an entry) can affect programs such as
vi(l) that expect the entry to be present and correct. In particular, removing
the "dumb" terminal may cause unexpected problems.

- 6-

VI(l)

BUGS

(Editing Package) VI(l)

Software tabs using AT work only immediately after the autoindent.

Left and right shifts on intelligent terminals do not make use of insert and
delete character operations in the terminal.

- 7 -

VOLCOPY(lM) (Base System) VOLCOPY(lM)

NAME
vo1copy - make literal copy of file system

SYNOPSIS
/etc/vo1copy [options] fsname srcdevice volnamel destdevice volname2

DESCRIPTION

FILES

The volcopy command makes a literal copy of the file system using a block­
size matched to the device. Options are:

-a invoke a verification sequence requiring a positive operator
response instead of the standard 10-second delay before the
copy is made

-s (default) invoke the DEL if wrong verification sequence.

The program requests length and density information if it is not given on
the command line or is not recorded on an input tape label. If the file sys­
tem is too large to fit on one reel, volcopy will prompt for additional reels.
Labels of all reels are checked. Tapes may be mounted alternately on two
or more drives. If volcopy is interrupted, it will ask if the user wants to quit
or wants a shell. In the latter case, the user can perform other operations
(e.g., labelit) and return to volcopy by exiting the new shell.

The fsname argument represents the mounted name (e.g., root, ul, etc.) of
the filsystem being copied.

The srcdevice or destdevice should be the physical disk section or tape (e.g.:
/dev /dsk/Osl etc.).

The volname is the physical volume name (e.g.: pk3, WI22, etc.) and
should match the external label sticker. Such label names are limited to six
or fewer characters. Volname may be - to use the existing volume name.

Srcdevice and volnamel are the device and volume from which the copy of
the file system is being extracted. Destdevice and volname2 are the target
device and volume.

Fsname and volname are recorded in the last 12 characters of the super block
(char fsname[6], volname[6];).

/etc/log/filesave.log a record of file systems/volumes copied

SEE ALSO
labelit(IM), sh(I).
fs(4) in the Programmer's Reference Manual.

- 1 -

WAIT(l) (Base System) WAIT(l)

NAME
wait - await completion of process

SYNOPSIS
wait [n]

DESCRIPTION
Wait for your background process whose process id is n and report its ter­
mination status. If n is omitted, all your shell's currently active background
processes are waited for and the return code will be zero.

The shell itself executes wait, without creating a new process.

SEE ALSO
sh(l).

CAVEAT

BUGS

If you get the error message cannot fork, too many processes, try using the
wait(1) command to clean up your background processes. If this doesn't
help, the system process table is probably full or you have too many active
foreground processes. (There is a limit to the number of process ids associ­
ated with your login, and to the number the system can keep track of.)

Not all the processes of a 3- or more-stage pipeline are children of the shell,
and thus cannot be waited for.

H n is not an active process id, all your shell's currently active background
processes are waited for and the return code will be zero.

- 1 -

WALL(l)

NAME
wall - write to all users

SYNOPSIS
fete/wall

DESCRIPTION

(Base System) WALL(l)

The wall command reads its standard input until an end-of-file. It then
sends this message to all currently logged-in users preceded by:

FILES

Broadcast Message from '"

It is used to warn all users, typically prior to shutting down the system.

The sender must be super-user to override any protections the users may
have invoked [see mesg(l)].

/dev /tty.

SEE ALSO
mesg(l), write(l).

DIAGNOSTICS
"Cannot send to ... " when the open on a user's tty file fails.

- 1 -

WC(l) (Base System) WC(l)

NAME
wc - word count

SYNOPSIS
we [-Iwe] [names]

DESCRIPTION
The we command counts lines, words, and characters in the named files, or
in the standard input if no names appear. It also keeps a total count for all
named files. A word is a maximal string of characters delimited by spaces,
tabs, or new-lines.

The options I, w, and e may be used in any combination to specify that a
subset of lines, words, and characters are to be reported. The default is
-Iwe.

When names are specified on the command line, they will be printed along
with the counts.

- 1 -

WHO(l) (Base System) WHO(l)

NAME
who - who is on the system

SYNOPSIS
who [-uTlHqpdbrtas] [file]

who am i

who am I

DESCRIPTION
The who command can list the user's name, terminal line, login time,
elapsed time since activity occurred on the line, and the process-ID of the
command interpreter (shell) for each current UNIX system user. It examines
the /ete/utmp file at login time to obtain its information. If file is given,
that file [which must be in utmp(4) format] is examined. Usually, file will be
/ete/wtmp, which contains a history of all the logins since the file was last
created.

The who command with the am i or am I option identifies the invoking
user.

The general format for output is:

name [state] line time [idle] [pid] [comment] [exit]

The name, line, and time information is produced by all options except -q;
the state information is produced only by -T; the idle and pid information is
produced only by -u and -1; and the comment and exit information is pro­
duced only by -a. The information produced for -p, -d, and -r is explained
during the discussion of each option, below.

With options, who can list logins, logoffs, reboots, and changes to the sys­
tem dock, as well as other processes spawned by the init process. These
options are:

-u This option lists only those users who are currently logged in. The
name is the user's login name. The line is the name of the line as
found in the directory /dev. The time is the time that the user
logged in. The idle column contains the number of hours and
minutes since activity last occurred on that particular line. A dot (.)
indicates that the terminal has seen activity in the last minute and is
therefore "current". If more than twenty-four hours have elapsed or
the line has not been used since boot time, the entry is marked old.
This field is useful when trying to determine whether a person is
working at the terminal or not. The pid is the process-ID of the
user's shell. The comment is the comment field associated with this
line as found in /ete/inittab [see inittab[4]]. This can contain infor­
mation about where the terminal is located, the telephone number of
the dataset, type of terminal if hard-wired, etc.

- T This option is the same as the -s option, except that the state of the
terminal line is printed. The state describes whether someone else
can write to that terminal. A + appears if the terminal is writable by
anyone; a - appears if it is not. root can write to all lines having a +
or a - in the state field. If a bad line is encountered, a 7 is printed.

- 1 -

WHO(l) (Base System) WHO(l)

FILES

-1 This option lists only those lines on which the system is waiting for
someone to login. The name field is LOGIN in such cases. Other
fields are the same as for user entries except that the state field does
not exist.

-H This option will print column headings above the regular output.

-q This is a quick who, displaying only the names and the number of
users currently logged on. When this option is used, all other options
are ignored.

-p This option lists any other process which is currently active and has
been previously spawned by init. The name field is the name of the
program executed by init as found in /etc/inittab. The state, line,
and idle fields have no meaning. The comment field shows the id
field of the line from /etc/inittab that spawned this process. See
inittab(4).

-d This option displays all processes that have expired and not been
respawned by in it. The exit field appears for dead processes and
contains the termination and exit values [as returned by wait(2)] of
the dead process. This can be useful in determining why a process
terminated.

-b This option indicates the time and date of the last reboot

-r This option indicates the current run-level of the init process. In
addition, it produces the process termination status, process id, and
process exit status [see utmp(4)] under the idle, pid, and comment
headings, respectively.

-t This option indicates the last change to the system clock [via the
date(l) command] by root. See su(lM).

-a This option processes /etc/utmp or the named file with all options
turned on.

-s This option is the default and lists only the name, line, and time
fields.

Note to the super-user: after a shutdown to the Single-user state, who
returns a prompt; the reason is that since /etc/utmp is updated at login
time and there is no login in single-user state, who cannot report accurately
on this state. who am i, however, returns the correct information.

/etc/utmp
/etc/wtmp
/etc/inittab

SEE ALSO
date(l), init(lM), login(l), mesg(l), su(lM).
wait(2), inittab(4), utmp(4) in the Programmer's Reference Manual.

- 2 -

WHODO(lM) (Base System) WHODO(lM)

NAME
whodo - who is doing what

SYNOPSIS
jetcjwhodo

DESCRIPTION
The whodo command produces formatted and dated output from informa­
tion in the jetcjutmp and jetcjps-data files.

The display is headed by the date, time, and machine name. For each user
logged in, device name, user-id and login time is shown, followed by a list
of active processes associated with the user-id. The list includes the device
name, process-id, cpu minutes and seconds used, and process name.

EXAMPLE
The command:

whodo

produces a display like this:

FILES
jetcjpasswd
j etcjps_data
jetcjutmp

SEE ALSO
ps(l), who(l).

Tue Mar 12 15:48:03 1985
bailey

tty09 mcn 8:51
tty09 28158 0:29 sh

tty52 bdr 15:23
tty52 21688 0:05 sh
tty52 22788 0:01 whodo
tty52 22017 0:03 vi
tty52 22549 0:01 sh

xt162 lee 10:20
tty08 6748 0:01 layers
xt162 6751 0:01 sh
xt163 6761 0:05 sh
tty08 6536 0:05 sh

- 1 -

WRITE(l) (Base System) WRITE(l)

NAME
write - write to another user

SYNOPSIS
write user [line]

DESCRIPTION

FILES

The write command copies lines from your terminal to that of another user.
When first called, it sends the message:

Message from yourname (tty??) [date] •••

to the person you want to talk to. When it has successfully completed the
connection, it also sends two bells to your own terminal to indicate that
what you are typing is being sent.

The recipient of the message should write back at this point. Communica­
tion continues until an end of file is read from the terminal, an interrupt is
sent, or the recipient has executed "mesg n". At that point write writes
EDT on the other terminal and exits.

If you want to write to a user who is logged in more than once, the line
argument may be used to indicate which line or terminal to send to (e.g.,
ttyOO); otherwise, the first writable instance of the user found in jetcjutmp
is assumed and the following message posted:

user is logged on more than one place.
You are connected to "terminal".
Other locations are:
terminal

Permission to write may be denied or granted by use of the mesg(1) com­
mand. Writing to others is normally allowed by default. Certain com­
mands, such as pr(l) disallow messages in order to prevent interference
with their output. However, if the user has super-user permissions, mes­
sages can be forced onto a write-inhibited terminal.

If the character ! is found at the beginning of a line, write calls the shell to
execute the rest of the line as a command.

The following protocol is suggested for using write: when you first write to
another user, wait for them to write back before starting to send. Each per­
son should end a message with a distinctive signal [Le., (0) for "over"] so
that the other person knows when to reply. The signal (00) (for "over and
out") is suggested when conversation is to be terminated.

jetcjutmp
/bin/sh

to find user
to execute!

SEE ALSO
mail(l), mesg(l), pr(l), sh(l), who(1).

- 1 -

WRITE(l) (Base System) WRITE(l)

DIAGNOSTICS
"user is not logged on" if the person you are trying to write to is not logged

on.

"Permission denied" if the person you are trying to write to denies that per­
mission (with mesg).

"Warning: cannot respond, set mesg _y" if your terminal is set to mesg nand
the recipient cannot respond to you.

"Can no longer write to user" if the recipient has denied permission (mesg n)
after you had started writing.

- 2 -

WTINIT(lM) (Base System) WTINIT(lM)

NAME
wtinit - object downloader for the 5620 DMD terminal

SYNOPSIS
jusrjlihjlayersysjwtinit [-d] [-p] file

DESCRIPTION
The wtinit utility downloads the named file for execution in the AT&T
TELETYPE 5620 DMD terminal connected to its standard output. file must
be a DMD object file. wtinit performs all necessary bootstrap and protocol
procedures.

There are two options.

-d Prints out the sizes of the text, data, and bss portions of the down-
loaded file on standard error. .

-p Prints the down-loading protocol statistics and a trace on standard
error.

The environment variable JPATH is the analog of the shell's PATH variable
to define a set of directories in which to search for file.

lf the environment variable DMDLOAD has the value hex, wtinit will use a
hexadecimal download protocol that uses only printable characters.

Terminal Feature Packages for specific versions of AT&T windowing termi­
nals will include terminal-specific versions of wtinit under those installation
sub-directories. jusr jlib jlayersysjwtinit is used for layers(l) initialization
only when no Terminal Feature Package is in use.

EXIT STATUS
Returns 0 upon successful completion, 1 otherwise.

WARNING
Standard error should be redirected when using the -d or -p options.

SEE ALSO
layers(l).

- 1 -

XARGS(l) (Base System) XARGS(l)

NAME
xargs - construct argument list(s) and execute command

SYNOPSIS
xargs [flags 1 [command [initial-arguments 1 1

DESCRIPTION
The xargs command combines the fixed initial-arguments with arguments
read from standard input to execute the specified command one or more
times. The number of arguments read for each command invocation and the
manner in which they are combined are determined by the flags specified.

command, which may be a shell file, is searched for, using one's SPATH. If
command is omitted, /bin/echo is used.

Arguments read in from standard input are defined to be contiguous strings
of characters delimited by one or more blanks, tabs, or new-lines; empty
lines are always discarded. Blanks and tabs may be embedded as part of an
argument if escaped or quoted. Characters enclosed in quotes (single or
double) are taken literally, and the delimiting quotes are removed. Outside
of quoted strings a backslash (\) will escape the next character.

Each argument list is constructed starting with the initial-arguments, fol­
lowed by some number of arguments read from standard input (Exception:
see -i flag). Flags -i, -1, and -n determine how arguments are selected for
each command invocation. When none of these flags are coded, the initial­
arguments are followed by arguments read continuously from standard input
until an internal buffer is full, and then command is executed with the accu­
mulated args. This process is repeated until there are no more args. When
there are flag conflicts (e.g., -1 vs. -n), the last flag has precedence. Flag
values are:

-lnumber

-ireplstr

command is executed for each non-empty number lines
of arguments from standard input. The last invoca­
tion of command will be with fewer lines of arguments
if fewer than number remain. A line is considered to
end with the first new-line unless the last character of
the line is a blank or a tab; a trailing blank/tab sig­
nals continuation through the next non-empty line. If
number is omitted, 1 is assumed. Option -x is forced.

Insert mode: command is executed for each line from
standard input, taking the entire line as a Single arg,
inserting it in initial-arguments for each occurrence of
replstr. A maximum of 5 arguments in initial­
arguments may each contain one or more instances of
replstr. Blanks and tabs at the beginning of each line
are thrown away. Constructed arguments may not
grow larger than 255 characters, and option -x is also
forced. {} is assumed for replstr if not specified.

- 1 -

XARGS(l)

-nnumber

-t

-p

-x

-ssize

-eeofstr

(Base System) XARGS(l)

Execute command using as many standard input argu­
ments as possible, up to number arguments maximum.
Fewer arguments will be used if their total size is
greater than size characters, and for the last invoca­
tion if there are fewer than number arguments remain­
ing. If option -x is also coded, each number argu­
ments must fit in the size limitation, else xargs ter­
minates execution.

Trace mode: The command and each constructed argu­
ment list are echoed to file descriptor 2 just prior to
their execution.

Prompt mode: The user is asked whether to execute
command each invocation. Trace mode (-t) is turned
on to print the command instance to be executed, fol­
lowed by a 7 ... prompt. A reply of y (optionally fol­
lowed by anything) will execute the command; any­
thing else, including just a carriage return, skips that
particular invocation of command.

Causes xargs to terminate if any argument list would
be greater than size characters; -x is forced by the
options -i and -1. When neither of the options -i, -1,
or -n are coded, the total length of all arguments
must be within the size limit.

The maximum total size of each argument list is set to
size characters; size must be a positive integer less
than or equal to 470. If -s is not coded, 470 is taken
as the default. Note that the character count for size
includes one extra character for each argument and
the count of characters in the command name.

eofstr is taken as the logical end-of-file string. Under­
bar (_) is assumed for the logical EOF string if -e is
not coded. The value -e with no eofstr coded turns
off the logical EOF string capability (underbar is taken
literally). xargs reads standard input until either end­
of-file or the logical EOF string is encountered.

The xargs command will terminate if either it receives a return code of -1
from, or if it cannot execute, command. When command is a shell program,
it should explicitly exit [see sh(l)] with an appropriate value to avoid
aCcidentally returning with -1.

- 2 -

XARGS(l) (Base System) XARGS(l)

EXAMPLES
The following example will move all files from directory $1 to directory $2,
and echo each move command just before doing it:

Is $1 I xargs -i -t mv $1/{} $2/{}

The following example will combine the output of the parenthesized com­
mands onto one line, which is then echoed to the end of file log:

(logname; date; echo $0 $*) I xargs »log

The user is asked which files in the current directory are to be archived and
archives them into arch (1.) one at a time, or (2.) many at a time.

1. Is I xargs -p -I ar r arch
2. Is I xargs -p -I I xargs ar r arch

The following will execute diff(l) with successive pairs of arguments origi­
nally typed as shell arguments:

SEE ALSO
sh(l).

echo $* I xargs -n2 diff

- 3 -

XTD(lM) (Base System) XTD(lM)

NAME
xtd - extract and print xt driver link structure

SYNOPSIS
xtd [-f] [-n ... J

DESCRIPTION
The xtd command is a debugging tool for the xt(7) driver. It performs an
XTIOCDAT A ioctl(2) call on its standard input file to extract the Link data
structure for the attached group of channels. This call will fail if data
extraction has not been configured in the driver or the standard input is not
attached to an xt(7) channel. The data are printed one item per line on the
standard output. The output should probably be formatted via pr -3.

The optional flags affect output as follows:

-n n is a number in the range 0 to 7. Channel n is included in the
list of channels to be printed. The default prints all channels,
whereas the occurrence of one or more channel numbers implies
a subset.

-f Causes a "formfeed" character to be put out at the end of the
output, for the benefit of page-display programs.

EXIT STATUS
Returns 0 upon successful completion; 1 otherwise.

SEE ALSO
xts(lM), xtt(lM), ioctl(2), xtproto(5) in the Programmer's Reference Manual.
pr(l), xt(7).

- 1 -

XTS(lM) (Base System) XTS(lM)

NAME
xts - extract and print xt driver statistics

SYNOPSIS
xts [-f)

DESCRIPTION
The xts command is a debugging tool for the xt(7) driver. It performs an
XTIOCSTATS ioctl(2) call on its standard input file to extract the accumu­
lated statistics for the attached group of channels. This call will fail if statis­
tics have not been configured in the driver, or the standard input is not
attached to an xt(7) channel. The statistics are printed one item per line on
the standard output.

-f Causes a "formfeed" character to be put out at the end of the out­
put, for the benefit of page-display programs.

EXIT STATUS
Returns 0 upon successful completion; 1 otherwise.

SEE ALSO
xt(7).
xtd(lM), xtt(lM), ioctl(2), xtproto(5) in the Programmer's Reference Manual .

• 1 •

XTT(lM) (Base System) XTT(lM)

NAME
xtt - extract and print xt driver packet traces

SYNOPSIS
xii [-f] [-0]

DESCRIPTION
The xU command is a debugging tool for the xt(7) driver. It performs an
XTIOCTRACE ioctl(2) call on its standard input file to turn on tracing and
extract the circular packet trace buffer for the attached group of channels.
This call will fail if tracing has not been configured in the driver, or the
standard input is not attached to an xt(7) channel. The packets are printed
on the standard output.

The optional flags are:

-f Causes a "formfeed" character to be put out at the end of the out­
put, for the benefit of page-display programs.

-0 Turns off further driver tracing.

EXIT STATUS

NOTE

Returns 0 upon successful completion; 1 otherwise.

If driver tracing has not been turned on for the terminal session by invoking
layers(l) with the -t option, xU will not generate any output the first time it
is executed.

SEE ALSO
xtd(lM), xts(lM), ioctl(2), layers(5) in the Programmer's Reference Manual.
layers(l), xt(7).

- 1 -

INTRO(7) INTRO(7)

NAME
intro - introduction to special files

DESCRIPTION
This section describes various special files that refer to specific hardware
peripherals and UNIX system device drivers. STREAMS [see intro(2)] software
drivers, modules, and the STREAMS-generic set of ioctl(2) system calls are
also described.

For hardware-related files, the names of the entries are generally derived
from names for the hardware, as opposed to the names of the special files
themselves. Characteristics of both the hardware device and the
corresponding UNIX system device driver are discussed where applicable.

Disk device file names are in the following format:

/dev/{r}dsk/#s#

where r indicates a raw interface to the disk, the first # indicates the drive
number, and the second # indicates the section number of the partitioned
device.

SEE ALSO
Disk/Tape Management in the Operations/System Administration Guide.

- 1 -

ASY(7) ASY(7)

NAME
asy - asynchronous serial port

DESCRIPTION

FILES

The asy driver supports both the system board serial port and an additional
serial adapter simultaneously. Up to two serial ports are supported. If an
adapter for a port is not installed, an attempt to open it will fail. The port
can be programmed for speed (50-19200 baud), character length, and par­
ity. Output speed is always the same as input speed. The port behaves as
described in termio(7).

The asynchronous port is a character-at-a-time device for both input and
output. This characteristic both limits the bandwidth which can be achieved
over a line, and increases the interrupt loading on the central processor. In
particular, file transfer programs such as uucp(l) may not function well at
speeds over 4800 baud.

The baud rates of the serial adapter programmable baud-rate generator do
not correspond exactly with system baud rates. In particular, setting BO will
cause a disconnect, setting EXTA will set 19200 baud, and setting EXTB will
set 38400 baud. It is not possible to directly set 2000, 3600, or 7200 baud.

fdev ftty·

SEE ALSO
signal(2~, termio(7).

- 1 -

CLONE(7) (Networking Support Utilities) CLDNE(7)

NAME
clone - open any minor device on a STREAMS driver

DESCRIPTION
clone is a STREAMS software driver that finds and opens an unused minor
device on another STREAMS driver. The minor device passed to clone dur­
ing the open is interpreted as the major device number of another STREAMS
driver for which an unused minor device is to be obtained. Each such open
results in a separate stream to a previously unused minor device.

The clone driver consists solely of an open function. This open function
performs all of the necessary work so that subsequent system calls [includ­
ing close(2)] require no further involvement of clone.

clone will generate an ENXIO error, without opening the device, if the
minor device number provided does not correspond to a valid major device,
or if the driver indicated is not a STREAMS driver.

CAVEATS
Multiple opens of the same minor device cannot be done through the clone
interface. Executing stat(2) on the file system node for a cloned device
yields a different result from executing [stat(2) using a file descriptor
obtained from opening the node.

SEE ALSO
log(7).
STREAMS Programmer's Guide.

- 1 -

CONSOLE(7) CONSOLE(7)

NAME
console - console interface

DESCRIPTION

FILES

The console provides the operator interface to the computer.

The file jdevjconsole is the system console, and refers to an asynchronous
serial data line originating from the system board. This special file imple­
ments the features described in termio(7).

The file j dev j contty refers to a second asynchronous serial data line ori­
ginating from the system board. This special file implements the features
described in termio(7).

j dev j console
jdev jcontty

SEE ALSO
termio(7).

- 1 -

CRAM(7) CRAM(7)

NAME
cram 7 - CMOS RAM interface

DESCRIPTION
The cram driver provides an interface to the 64 bytes of battery backed-up
RAM. This memory contains information such as diagnostics and confi­
guration information.

loctl Calls

FILES

CMOSREAD
This call is used to read the contents of one of the CMOS RAM
locations. The argument to the ioctl is the address of a buffer of
two unsigned characters, the first of which is the address to be read.
The ioctl will fill in the second byte with the data. An address less
than 0 or greater than 63 will result in an error, with errna set to
ENXIO.

CMOSWRITE
This call is used to write a value into one of the CMOS RAM loca­
tions. The argument to the ioctl is the address of a buffer of two
unsigned characters, the first of which is the address and the second
of which is the value to write at that address. An address less than
o or greater than 63 will result in an error, with errna set to ENXIO.
Note that only the superuser may open the CMOS RAM device for
writing, and that the CMOSWRITE ioctl will fail for any other than
the superuser.

jdevjcram

- 1 -

DISK(7) DISK(7)

NAME
disk - random access bulk storage medium

DESCRIPTION
The secondary storage devices used by the system are fixed disks and
diskettes. Disks are high-speed rotating magnetic media, which are treated
as a collection of concentric rings, known as tracks. There are several
platters (whose number is represented by n) in the fixed disk providing up
to two surfaces per platter (or a total of up to 2n surfaces); each set of up to
2n parallel tracks on these surfaces is considered as a group, known as a
cylinder. Each track is divided into several sectors. A sector is usually the
smallest unit which can be transferred to or from the disk. However, the
drivers allow read or write operations of any size to or from any location on
the disk, except for raw disks.

Logical Disks
It is often useful to partition fixed physical disks into smaller sections, each
of which can hold a separate file system. The disk device driver can there­
fore divide a physical disk into smaller logical disks or partitions. Each of
these logical sub-disks behaves as if it were a distinct disk. A typical divi­
sion of a disk into logical sub-disks might be as follows:

jdev jdskjOsO represents the entire disk on drive 0
jdev jdskjOsl represents the first partition on drive 0
jdev jdskJOs2 represents the second partition on drive 0
jdev jdskjlsO represents the entire disk on drive 1
jdev jdskjlsl represents the first partition on drive 1
jdev jdskjls2 represents the second partition on drive 1

and similarly for the raw (character) logical disks, jdev jrdskjOsO,
jdev jrdskjOsl, etc.

In fact, more complex arrangements are often created. It is often desirable
to have logical disks of different sizes, which are suited to different uses.
Similarly, it is often desirable to have several alternative ways of partition­
ing a single disk. Refer to install(8) and mkpart(lM) for the details of parti­
tioning of a disk. The philosophy behind partitioning is described in the
section on creating file systems in the "Operations Handbook" section of
the System Manager's Guide.

SEE ALSO
fd(7), hd(7), intro(7), mkpart(lM), fdisk(lM).

- 1 -

DISPLAY(7) DISPLAY(7)

NAME
display - system console display

DESCRIPTION
The system console (and user's terminal) is composed of two separate
pieces: the keyboard [see keyboard(7)] and the display. Because of their
complexity, and because there are two possible display interfaces (the
monochrome and color/graphics adapters), they are discussed in separate
manual entries.

The display normally consists of 25 lines of 80 columns each; 40-column
lines are also supported by the color/graphics adapter. Writing characters
to the console (fdev jconsole) has an effect which depends on the charac­
ters. All characters written to jdev jconsole are first processed by the ter­
minal interface [see termio(7)]. For example, mapping new-line characters to
carriage return plus new-line, and expanding tabs to spaces, will be done
before the following processing:

x Where x is not one of the following, displays x.

BEL Generates a bell (audible tone, no modulation).

CR Places the cursor at column 1 of the current line.

LF, VT Places the cursor at the same column of the next line (scrolls if the
the current line is line 25).

FF Clears the screen and places the cursor at line 1, column 1.

BS Depends on the previous character: if a _ (underscore), see below;
otherwise, if the cursor is not at column 1, it is moved to the left
one position on the same line. If the cursor is at column 1 but not
line 1, it is moved to column 79 of the previous line. Finally, if the
cursor is at column 1, line 1, it is not moved.

_BSx Sets the underscore attribute for the character x to be displayed.
The underscore attribute for the color/graphics adapter is a red
background with a white foreground.

ESCx Where x is any of the 256 possible codes (except for c and [),
displays that value uninterpreted. This is useful for utilizing the
full set of graphics available on the display. Note again that the
characters are processed through the terminal interface prior to this
escape sequence. Therefore, to get some of the possible 256 charac­
ters it is necessary that the character not be postprocessed. The
easiest way to accomplish this is to turn off OPOST in the c_oflag
field [see termio(7)]; however, this may have other side effects.

The display can be controlled by means of ANSI X3.64 escape sequences,
which are specific sequences of characters, preceded by the ASCII character
ESC. The escape sequences, which work on either the monochrome or
color/graphics adapter, are the following:

ESCc Clears the screen and places the cursor at line 1, column 1.

ESC[x @ Insert character-inserts n characters at the current cursor
position.

- 1 -

DISPLAY(7)

ESC[n A

ESC[n B

ESC[n C

ESC[n D

ESC[n E

ESC[n F

ESC[n G

DISPLAY(7)

Cursor up-moves the cursor up n lines (default: n=l).

Cursor down-moves the cursor down n lines (default: n=l).

Cursor right-moves the cursor right n columns (default:
n=l).

Cursor left-moves the cursor left n columns (default: n=l).

Cursor next line-moves the cursor to column 1 of the next
line, then down n-llines (default: n=l).

Cursor previous line-moves the cursor to column 1 of the
current line, then up n lines (default: n=l).

Cursor horizontal position-moves the cursor to column n of
the current line (default: n=l).

ESC[n ; m H Position cursor-moves the cursor to column m of line n
(default: n=l, m=l).

ESC[n J Erase window-erases from the current cursor position to the
end of the window if n=O, from the beginning of the win­
dow to the current cursor position if n=l, and the entire win­
dow if n=2 (default: n=O).

ESC[n K Erase line-erases from the current cursor position to the end
of the line if n=O, from the beginning of the line to the
current cursor position if n=l, and the entire line if n=2
(default: n=O).

ESC[n L Inserts n lines at the current cursor position (default: n=l).

ESC[n M Deletes n lines starting at the current cursor position (default:
n=l).

ESC[n P Deletes n characters from a line starting at the current cursor
position (default: n=l).

ESC[n S Scroll up-scrolls the characters in the current window up n
lines. The bottom n lines are cleared to blanks (default:
n=l).

ESC[n T Scroll down-scrolls the characters in the current window
down n lines. The top n lines are cleared to blanks (default:
n=l).

ESC[n X Erase character-erases n character positions starting at the
current cursor position (default: n=l).

ESC[Ps ; Ps; m
Character attributes-each Ps is one of the following charac­
ters; multiple characters are separated by semicolons. These
parameters apply to successive characters being displayed, in
an additive manner (e.g., both bold and underscoring can be
selected). Only the parameters through 7 apply to the mono­
chrome adapter; all parameters apply to the color/graphics
adapter. (Default: Ps=O).

- 2 -

DISPLAY(7)

loctl Calls

DI5PLAY(7)

Ps Meaning
0 all attributes off (normal display)

(white foreground with black background)
1 bold intensity
4 underscore on

(white foreground with red background on color)
5 blink on
7 reverse video
30 black (gray) foreground
31 read (light red) foreground
32 green (light green) foreground
33 brown (yellow) foreground
34 blue (light blue) foreground
35 magenta (light magenta) foreground
36 cyan (light cyan) foreground
37 white (bright white) foreground
40 black (gray) background
41 read (light red) background
42 green (light green) background
43 brown (yellow) background
44 blue (light blue) background
45 magenta (light magenta) background
46 cyan (light cyan) background
47 white (bright white) background

Note that for character attributes 30-37, the color selected for
foreground will depend on whether the bold intensity attri­
bute (1) is currently on. If not, the first color listed will
result; otherwise the second color listed will result.

Similarly, for character attributes 40-47, the color selected for
background will depend on whether the blink attribute (5) is
currently on. The color selected for background also depends
on whether blinking is enabled in color mode byte or no
blinking is selected (see the MODE_BLINK and
MODE_BGI6 bits in the color mode byte defined below.) If
the blink attribute is not on, then the first color listed will
result. If the blink attribute is on, and blinking is enabled,
then the first color listed will result and it will blink. If the
blink attribute is on, and no blinking is enabled, then the
second color listed will result.

The following ioctls may be used with either the monochrome or
color/graphics adapter.

KDGMODE
This call is used to get the current adapter mode. The argument to
the ioctl is the address of one of the following structures, as defined
in <sys/kd.h>, which will be filled in by the call:

- 3 -

DISPLAY(7)

struct adtmode {
unchar aIlLcapability;
unchar aIlLcolmode;
unchar aIlLcolsel;

/* Values for aIlLcapability * /
#define MCAP _UNK
#define MCAP _MONO
#define MCAP _COLOR
#define MCAP _COLOR40

/* Values for aIlLcolmode * /
#define MODE_TYPE

#define MODE_40
#define MODE_80
#define MODE_GRAPH
#define MODE_GRLRES
#define MODE_GRMRES
#define MODE_GRHRES
#define MODE_BLINK

#define MODE_BG16

#define MODE_CO
#define MODE_BW

DISPLAY(7)

/* type of adapter'" /
/* color mode register * /
/* color select register '" /

Oxff /* unknown * /
Ox03 /'" monochrome adapter *1
Ox02 /* color adapter, 80x25 * /
Ox01 /* color adapter, 40x25 * /

Ox07 /* mask for alpha/graphic:
modes "'/

OxOO /* 40x25 alphanumeric * /
Ox01 /* 80x25 alphanumeric * /
Ox04 /* graphics modes'" /
Ox04 /* 160x100 graphics * /
Ox05 /* 320x200 graphics * /
Ox06 /* 640x200 graphics * /
OxOO /* 8 background colors,

blink * /
Ox08 /* 16 background colors,

no blink */
OxOO /* enable color '" /
OxlO /* disable color'" /

The capability byte is determined when the system is started,
depending on the presence of either the monochrome or
color/graphics adapter. Only one adapter at a time is supported.

On the monochrome adapter, the aIlLcolmode will always contain
the value MODE-80, since this is the only option. For the
color/graphics adapter, the other values shown above will be com­
bined to give the state of the color adapter mode register. Note that
the bits defined do not match the hardware mode register, but that
all combinations described in your hardware techical manual are
supported. These modes also affect the adapter's 6845 CRT con­
troller.

The aIlLcolsel contains the value present in the color select register
(for the color adapter), or 0 for the monochrome adapter. The bits
in this field match the hardware color select register.

KDSCRCTRL
This call is used to turn the display off and on. A non-zero argu­
ment to the ioctl will turn the display on; a zero argument will turn
it off.

The following ioctl is only valid for the color adapter.

- 4 -

DISPLAY(7) DISPLAY(7)

KDSMODE
This call is used to set the adapter mode. The argument to the ioctl
is the address of a struct adtmode, as defined above, containing the
new values of aIIL-colmode and aIIL-colsel. The value in
aIIL-capability is ignored. When the mode type (bits 0, 1, and 2) is
changed with this call, the color screen is erased and the cursor
returned to the home position. If the mode type is not changed, the
screen is not cleared.

Note that if one changes to high-resolution graphics mode and has
no border color selected (which is the default), nothing will appear
on the display. This is because the coIse! register selects border
color in alphanumeric modes and low-resolution graphics, but
selects the foreground color in high-resolution graphics. Thus, all
dots will print in black (the color selected) on a black background.
Because of this, one should change the border color in the color
select register to be something other than black when changing to
high-resolution graphics mode.

Color Graphics Support

FILES

Although it is possible to write character sequences which set arbitrary bits
on the screen in any of the three graphics modes, this mode of operation is
not currently supported.

/ dev / console

SEE ALSO
stty(I), ioctl(2), keyboard(7), termio(7).

WARNINGS
It is currently not possible to access the 6845 start address registers. Thus,
it is impossible to determine the beginning of the color monitor's screen
memory.

The alternate/background color bit (bit 4) of the color select register does
not appear to affect background colors in alphanumeric modes.

The low-resolution graphics mode appears to be 80 across by 100 down.

- 5 -

FD(7) FO(7)

NAME
fd - diskette (floppy disk)

DESCRIPTION
The diskette driver provides access to diskettes as both block and character
devices. Diskettes must be formatted before their use [see /ormat(1)j. Both
512-byte and 1024-byte sectors with MFM encoding are supported. The
driver controls up to two diskette drives with one hard disk drive, or one
diskette drive with two hard disk drives. The minor device number speci­
fies both the drive number and the format of the diskette.

Diskette device file names (which correspond to a specific major and minor
device) are in the following format:

jdev j {r}dskjf#{ dq}#{ d} {t}

where r indicates a raw (character) interface to the disk, f# is the drive
number, d or q indicates double or quad density (512 or 1024 byte sectors),
indicates the number of sectors per track, d indicates double-sided, and t
indicates the entire disk (absence of this letter indicates that the first track of
the diskette cannot be accessed).

In order to minimize errors when using diskettes, the driver attempts to
assure that the diskette is installed when needed, and that the operations
requested have been completed before the device close is completed. In
particular, the drive is checked for the presence of a diskette each time a
read/write request is made to the drive. If this is not true (either the
diskette is not physically present or the door is open), the driver retries the
request continually, at five-second intervals. The message:

FD(n): diskette not present - please insert

appears after each attempt (the n represents the drive number). The INTR
and QUIT signals are honored in this case, so that the process accessing the
diskette drive in question will receive these signals (unless, of course, the
process itself is ignoring them). In particular, if the diskette is removed
prematurely, or not inserted soon enough, no data is lost, provided the
correct diskette is inserted in the drive when the message to do so is
displayed.

loctl Calls
V_GETPARMS

This call is used to get information about the current drive confi­
guration. The argument to the ioctl is the address of one of the fol­
lowing structures, defined in <sys/vtoc.h>, which will be filled in
by the ioctl:

struct disLparms {
char dp_type;
unchar dp--heads;
ushort dp_cyls;
unchar dp-sectors;
ushort dp-secsiz;

ushort dp_ptag;

- 1 -

/* Disk type (see below) '" /
/* Number of heads'" /
/'" Number of cylinders" /
/* Number of sectors/track'" /
/* Number of bytes/sector'" /

/* for this partition: .. /
/* Partition tag (not used) '" /

FO(7)

FILES

ushort
ushort
ushort

/* Disk types * j

dp_pflag;
dp_pstartsec;
dp_pnumsec;

FO(7)

/* Partition flag (not used) ... j
/* Starting sector number .. j
/* Number of sectors .. j

#define DPT_WINI 1 /* Winchester disk * j
#define DPT_FLOPPY 2 /* Floppy * j
#define DPT_OTHER 3 /* Other type of disk * j
#define DPT-NOTDISK 0 /* Not a disk device" j

For the floppy driver, the disk type will always be DPTJLOPPY.
The unused fields in the disk-parms structure are only applicable to
hard disks; however, returning the same structure from both the
hard disk driver and the diskette driver allows programs to be writ­
ten that can understand either one.

VJORMAT
This call is used to format tracks on a diskette. The argument
passed to the ioctl is the address of one of the following structures,
defined in <sysjvtoc.h>, containing the starting track, number of
tracks, and interleave factor:

union iO--<lrg {
struct {

ushort starLtrk;
ushort nUllL.trks;

ushort intlv;
} ilL-fmt;

/* first track * j
/* number of tracks
to format * j
j* interleave factor * j

Formatting will start at the given track and will continue so that the
given number of tracks are formatted, using the given interleave fac­
tor.

Note that the file descriptor must refer to the character (raw) special
device for the desired drive, and the file must have been opened in
exclusive mode (Le. O-EXCL).

jdev jdskjfOd9d, jdev jrdskjfOd9d, .. .
jdev jdskjfOd9dt, jdev jrdskjfOd9dt, .. .
jdev jdskjfOq15d, jdev jrdskjfOq15d, .. .
jdev jdskjfOq15dt, jdev jrdskjfOqlSdt, .. .

SEE ALSO
format(1), mkpart(lM), ioctl(2), hd(7).

DIAGNOSTICS
The driver will retry failed transfers up to ten times. If the request still has
not succeeded, the driver will display an appropriate message. Errors from
the diskette controller, other than the above, are displayed as follows:

- 2 -

FD(7)

FD drv n, blk b: drive error message
FD controller controller error message

FD(7)

The first message occurs on an error after a transfer has begun, where n is
the drive the error occurred on, and b is the block number that is being read
or written. The drive error message is one of the messages appearing in the
following list:

"Missing data address mark"
The diskette may not be formatted properly.

"Cylinder marked bad"
The accessed cylinder has been marked bad by the formatter.

"Seek error (wrong cylinder)"
The drive positioned itself at the wrong cylinder when attempting to
set up for the requested transfer.

"Uncorrectable data read error"
A CRe error was detected when attempting to read the requested
block from the drive.

"Sector marked bad"
The accessed sector has been marked bad by the formatter.

"Missing header address mark"
The diskette may not be formatted properly.

"Write protected"
A write was attempted to a diskette that is currently write-protected.

"Sector not found"
The diskette may not be formatted properly.

"Data overrun"
The system could not keep up with the requested transfer of data.
(Should not occur.)

"Header read error"
The diskette may not be formatted properly.

"Illegal sector specified"
The driver is confused about the format of the diskette that has
been inserted. (Should not occur.)

The second message occurs when there is a controller error during the setup
for, or actual transfer of a block. The controller error message is one of the
messages appearing in the following list:

"command timeout"
The controller failed to complete the requested command in a rea­
sonable length of time.

"status timeout"

"busy"

The controller failed to return its status after a command was com­
pleted.

During an attempt to access the controller, a timeout occurred.

- 3 -

HD(7) HD(7)

NAME
hd - hard (fixed) disk

DESCRIPTION
The hard disk driver supports an IBM disk controller. It can handle up to
two hard disk drives with one diskette drive, or one hard disk drive with
two diskette drives. The drive characteristics are read from the CMOS RAM
at boot time; these characteristics are defined during system setup by using
the setup program on the AT Diagnostics diskette. The driver determines
the layout of the disk dynamically, as described below. It provides block
and character (raw) access to the individual partitions of the disk, as well as
the entire physical disk.

The minor device number of the device being accessed determines how the
drive is treated: the low-order 4 bits determine the partition (0-15), and
the fifth bit determines the drive number (0 or 1). Partition 0 represents the
entire UNIX partition (as defined by the [disk table). Other partitions are
defined by information in the volume table of contents (VTOC). When
accessing partition 0, other partition boundaries are ignored, and no bad
block mapping occurs. Thus, the user must take care when using the disk
in this way.

The full fixed disk is partitioned at two levels: first, sections of the disk to
be used by different operating systems are described by the [disk table con­
tained in the first block of the disk. Second, the UNIX system sections of
the disk are further partitioned according to information contained in the
VTOC, which may be located in any block. [The VTOC is currently in the
first block on the second track of the disk; see mkpart(IM).] The VTOC also
contains information about the non-UNIX system partitions described in the
[disk table. When the disk device is opened, the VTOC is read by the driver
and is used to fill out its tables of logical disks, assigned by minor device
number. The driver does not use the [disk table; however, this table is used
by mkpart(IM) and by the bootstrap (see below).

Each partition in the [disk table is specified as to its type (e.g., DOS, UNIX
system, or other). A partition (file system) is usable by the UNIX system
only if its type is correct (e.g., a DOS partition is not usable by the UNIX
system, except as a raw, non-file system device.)

On each drive, sector 0 contains the first-stage bootstrap and the [disk table.
Sector 17 (the first sector on the second track) contains the VTOC, and sec­
tor 18 contains the bad block map. The remaining tracks in the first
cylinder contain the alternate sectors [although this may be changed
through the fete/partitions file; see mkpart(IM)]. Thus, the first actual
usable partition of the disk starts on the second cylinder.

The [disk table indicates which of the partitions is the 'active', or bootable,
partition. When the machine is booted, the first-stage boot code looks in
the [disk table for the active partition and jumps to sector 0 of that partition
to find the second-stage bootstrap. If the second-stage bootstrap is over one
sector in length, it is the responsibility of the second-stage bootstrap to
understand this. Note that both the first cylinder (containing the [disk table,
first-stage bootstrap, VTOC, and alternate sectors) and the first track of the

- 1 -

HO(7) HO(7)

active partition (containing the second-stage bootstrap) can only be accessed
using partition 0, since these tracks are normally not considered part of any
other partition in the VTOC.

Bad sectors are mapped out by the driver as follows: The bad block map is
read by the driver when the drive is first opened. The map is an array of
pairs of numbers, representing a bad sector and its assigned alternate, each
entry being an absolute sector number, starting with 0 for the first sector of
the disk. There is a software-imposed limit of 62 bad sectors per drive.

Before each I/O operation, the driver looks through the map to determine if
any sector in the requested transfer is bad. If there is a bad sector within
the request, all the I/O up to the bad sector is done, then the bad sector is
remapped, and finally the I/O following the bad sector is done.

Note that this scheme requires running mkpart(lM) before bringing up the
system from the hard disk for the first time. The mkpart program will
attempt to optionally write and then read every sector on the disk, looking
for sectors where this operation fails. All bad sectors will be placed in alter­
nates map, which is built by mkpart and installed on the disk at the same
time that the VTOC is installed. If this verification pass is not done, how­
ever, the system will still work. Since the driver will notice that the table is
empty, it will not attempt to map bad sectors.

In the event that a disk develops bad blocks once the system is running,
mkpart may run (with the -A option) to add the new bad blocks to the map.
However, the user may have to restore the file system from the last full
dump, depending on where the bad block occurred.

loctl Calls
V_CONFIG

This call is used by mkpart to reconfigure the drive, so that the drive
configuration matches the parameters specified in the
jete/partitions file. This is useful because the disk type read from
the CMOS RAM is limited to one of 23 types defined in a table in
the system BIOS. If the disk installed on the system does not
exactly match one of the table entries, the machine is set up using
the closest table entry, and mkpart will tell the driver the true disk
parameters (as defined by the jete/partitions file) by using the
V _CONFIG ioctl. The argument to the ioctl is the address of one of
the following structures, defined in <sys/vtoe.h>, containing the
new configuration parameters:

union iO-<lrg {
struct {

} ia_cd;

ushort
unchar
unchar
ushort

ncyl;
nhead;
nsec;
secsiz;

/* number of cylinders" /
/* heads/cylinder .. /
/* sectors/track * /
/* bytes/sector .. /

Note that it is not possible to change the sector size on the hard
disk, and that an attempt to do so will result in the ioctl failing,

- 2 -

HO(7) HO(7)

with errna set to EINV AL.

V-REMOUNT
This call is used to force the driver to re-read the VTOC on the next
open of the drive. It will fail if any partition other than partition 0
is currently open, since changing the partition table information is
potentially disastrous for a process using the partition. This is used
by mkpart when it changes the VTOC, so that the driver will update
its internal tables.

V-ADDBAD
This call is used to tell the driver about a bad sector. If the new
bad sector is an assigned alternate, the ioctl fails with errna set to
EINV AL; if it is an unassigned alternate it is removed from the
alternates map; if neither of these is true, it is assigned an alternate
and added to the map. The argument to the ioctl is the address of
one of the following structures, defined in <sysjvtoc.h>, with the
first two fields filled in; the third field is filled in by the ioctl and
returned to the user:

union io_arg {
struct {

ushort flags;
daddr_t bad-sector;
daddr_t new-sector;

/* currently not used" j
/* bad sector number .. j
/* RETURNED alternate

assigned" /
} ia-abs;

V_GETPARMS
This call is used to get information about the current drive confi­
guration. The argument to the ioctl is the address of one of the fol­
lowing structures, defined in <sys/vtoc.h>, which will be filled in
by the ioctl:

struct disLparms {
char dp_type;
unchar dp-Iteads;
ushort dp_cyls;
unchar dp_sectors;
ushort dp-secsiz;
ushort dp_ptag;
ushort dp_pflag;
daddr_t dp_pstartsec;

/* Disk types * /
#define DPT_WINI 1
#define DPT_FLOPPY 2
#define DPT_OTHER 3
#define DPT-N"OTDISK 0

- 3 -

/* Disk type (see below) .. /
/* Number of heads" /
/* Number of cylinders" /
/* Number of sectors/track" /
/* Number of bytes/sector" /
/* Partition tag" /
/* Partition flag * /
/* Starting absolute sector

number */
/ .. Number of sectors * /

/* Winchester disk .. /
/* Floppy */
/* Other type of disk .. /
/* Not a disk device * /

HD(7)

/* bootable partition" j
/* root filesystem .. j
/* swap filesystem .. j
/* usr filesystem .. j
/* entire disk" j
j* alternate sectors * j

HD(7)

j'" Partition tag'" j
#define V_BOOT
#define V --ROOT
#define V_SWAP
#define V _USR
#define V_BACKUP
#define V--ALTS
#define V_OTHER

1
2
3
4
5
6
7 /* non-UNIX system partition" j

/* Partition flag" j
#define V _UNMNT OxOO 1 /* unmountable partition" j
#define V --RONLY OxOlO /* read only partition" j
#define V_OPEN OxlOO /* partition open" j
#define V_V ALIO Ox200 /* partition valid to use '" j

For the hard disk driver, the disk type will always be OPT_WINI.
Since the structure returned by V _GETP ARMS is the same for both
the diskette and hard disk drivers, programs may be written to
understand either one.

V_FORMAT
This call is used to format tracks on a disk. The argument passed to
the ioctl is the address of one of the following structures, defined in
<sysjvtoe.h>, containing the starting track, number of tracks, and
interleave factor:

union io_arg {
struct {

ushort starLtrk;
ushort nUIIL-trks;

ushort intlv;
} ia_fmt;

/* first track" j
/* number of tracks

to format" j
/* interleave factor" j

Note that the file descriptor argument to the ioctl must refer to the
character (raw) special device for the desired drive, and the file must
have been opened in exclusive mode (i.e., O-EXCL).

Partitions
The [disk table allows partitions to be assigned at cylinder boundaries; how­
ever, the VTOC will allow partitions to start on track boundaries. This is
used in the bootable UNIX system partition to make the first track (contain­
ing the bootstrap code) not be an actual part of the partition. The [disk table
allows at most four partitions on a fixed disk, but the VTOC allows the
UNIX system portion to be divided into at most 16 partitions. Each parti­
tion is identified by a minor device number; the mapping from partition to
minor device number is made at the time the disk is first accessed, and is
determined by the fete/partitions file. This mapping will remain the same
until the jete/partitions file is changed and the mkpart program rerun.

- 4 -

HO(7)

FILES

HO(7)

Attempts to open file systems for which there are no partitions will fail
(non-existent device). Likewise, attempts to mount [see mount(8)] partitions
that do not contain UNIX file systems will fail.

jdev jdskjOsO, .. .
j dev jrdskjOsO, .. .

SEE ALSO
fdisk(lM), mkpart(lM), ioctl(2), fs(4), fd(7).

DIAGNOSTICS
The driver will retry failed transfers up to ten times depending on the error
type. Certain errors are not retried. The driver will display an appropriate
message upon encountering an error during the transfer. Error types that
are retried are indicated in the table below. Errors from the fixed disk con­
troller are displayed as follows:

HD error: drive n, cyl c, head h, sector s: drive error message
HD controller: controller error message

The first message occurs on an error after a transfer has begun, where n is
the drive the error occurred on, c is the cylinder, h is the head, and s is the
sector being read or written. The drive error message is one of the messages
appearing in the following list:

"Track ° not found"
The disk may not be formatted properly.

"Uncorrectable data read error"
The controller detected a CRC error when attempting to read the
requested block.

"Data address mark not found"
The disk may not be formatted properly.

"Sector not found"
The disk may not be formatted properly.

"Command aborted"
The controller did not complete execution of a command.

"Bad track flag detected"
The block requested has been marked bad, but does not appear in
the bad block map.

The second message occurs when there is a controller error during the setup
for, or actual transfer of a block. The controller error message is one of the
messages appearing in the following list:

"command aborted"
The controller failed to complete the requested command.

"write fault"
The controller detected some error on the hard disk drive.

"stays busy"
During an attempt to access the controller, a timeout occurred.

- 5 -

HD(7) HD(7)

There is one additional message which indicates a controller-corrected error
occurred:

NOTE: Soft read error corrected by ECC algorithm: unit n, sector s

where n is the drive the error occurred on, and s is the sector being read.
This warning indicates that the controller's error-correction algorithm suc­
cessfully recovered from an error. This may be a symptom of a sector going
bad. If this message appears several times for the same sector, that sector
should probably be marked bad.

WARNINGS
The VTOC and alternate sector mapping scheme requires that no bad sec­
tors occur in cylinder O. The mkpart program will issue a fatal error mes­
sage when it attempts to configure a drive where there are bad sectors in
the first cylinder. Also, since the second-stage bootstrap must be installed
on the first track of the bootable partition, this track must also contain no
bad sectors.

- 6 -

KEYBOARD(7) KEYBOARD(7)

NAME
keyboard - system console keyboard

DESCRIPTION
The system console (and user's terminal) is composed of two separate
pieces: the keyboard and the display [see disp/ay(7)]. Because of their com­
plexity they are discussed in separate manual entries.

The actual code sequence delivered to the terminal input routine [see ter­
mio(7)] is defined by a set of internal tables in the driver. These tables can
be modified by software (see the discussion of ioctl calls below.) In addi­
tion, the driver can be instructed not to do translations, delivering the key­
board up/down scan codes directly.

There are four translation tables: normal keys, shifted keys, alt keys, and
shifted alt keys. Each table contains 128 16-bit entries, with an entry being
made up of flags in the high-order 8 bits and the character code in the low­
order 8 bits. The values that can be set in the flag byte, as defined in
<sys/kd.h>, are as follows:

/* Flag bits .. /
#define NUMLCK
#define CAPLCK
#define CTLKEY

/* Key types .. /
#define NORMKEY
#define SHIFTKEY
#define BREAKKEY
#define SS2PFX
#define SS3PFX
#define CSIPFX
#define NOKEY

Ox8000 /* key is affected by num lock .. /
Ox4000 /* key is affected by caps lock" /
Ox2000 /* key is affected by control key .. /

OxOOOO /* key is a normal key .. /
Ox0100 /* key is a shift key" /
Ox0200 /* key is a break key" /
Ox0300 /* prefix key with <ESC> N .. /
Ox0400 /* prefix key with <ESC> 0 .. /
OxOSOO /* prefix key with <ESC> [.. /
OxOfOO /* key sends nothing .. /

The tables are indexed by the keyboard scan code received. The table that
is used is determined by the state of the following special keys:

AL T This key essentially chooses an alternate keyboard. If it is not
depressed, the normal and shifted tables are used; if it is depressed,
the alt and shifted alt tables are used.

SHIFT Depending on the ALT key, this key shifts into either the shifted
table or the shifted alt table. The default shifted table is set up such
that SHIFT will generate the ASCII uppercase characters.

The character code found in the table may be further modified by the fol­
lowing keys:

CTRL Produces the appropriate ASCII control character if the CTLKEY bit
is set in the flag byte. The control character is produced by mask­
ing off all but the low-order 5 bits of the character code in the table.
If the CTLKEY bit is not set, the normal character (the code in the
table) is generated. In the default tables, the CTRL key only modi­
fies keys in the normal and shifted tables; it has no effect in the alt
or shifted alt tables.

- 1 -

KEYBOARD(7) KEYBOARD(7)

CAPS LOCK
This is a toggle; it controls whether keys that have the CAPLCK bit
set in their flag byte go to the normal or the shifted table. If the
CAPLCK bit is not set, the normal character is generated regardless
of the state of the CAPS LOCK. The SHIFT key inverts whatever
state is indicated by the CAPS LOCK. Thus, if CAPS LOCK is off,
SHIFT produces uppercase characters; if CAPS LOCK is on, SHIFT
produces lowercase characters. In the default tables, the only keys
affected by CAPS LOCK are the alphabetic keys.

NUM LOCK
This is a toggle; it controls whether keys that have the NUMLCK
bit set in their flag byte go to the normal or the shifted table. If the
NUMLCK bit is not set, the normal character is generated regardless
of the state of the NUM LOCK. The SHIFT key inverts whatever
state is indicated by the NUM LOCK. In the default tables, the only
keys affected by NUM LOCK are the keypad keys. Note that CAPS
LOCK and NUM LOCK do exactly the same thing; the only differ­
ence is the set of keys affected.

SCROLL LOCK
This key is marked as a BREAKKEY in its flag byte in both the
shifted and shifted alt tables. This causes it to send BREAK to the
terminal handler.

The remaining values for the key type are discussed below:

SHIFTKEY
This is used to mark the left and right SHIFT keys, the CTRL key,
the AL T key, the CAPS LOCK, and the NUM LOCK in the transla­
tion tables. User programs will normally not be concerned with this
flag.

SS2PFX, SS3PFX, CSIPFX

NOKEY

These are used to generate codes for the function keys and for the
AL T keys. If one of these flags is specified in the translation table,
the driver will prefix the character code in the table with <ESC>N,
<ESC>O, or <ESC>[respectively, where <ESC> represents the
ASCII escape character (lb hex).

This is used to mark entries that should not generate any character
code. Keystroke combinations that index table entries marked with
this flag generate nothing.

The following tables describe the codes generated by the default tables for
all the keys. Keycodes are the values delivered at the keyboard interface
when the corresponding key is struck (the down scan code). Note that
when the key is released, the same code is delivered, but with the high­
order bit set. Thus, codes Ol-7f are down codes, and 81-ff are up codes.
The generated codes are the codes delivered to the terminal driver after
translation. All numbers are in hexadecimal.

- 2 -

KEYBOARD(7) KEYBOARD(7)

Shiftin5(Kells Function
Ctr! Id CTRL
Left Shift 2a SHIFT
Right Shift 36 SHIFT
Alt 38 ALT
Caps Lock 3a CAPS LOCK
Num Lock 45 NUM LOCK

SPECIAL
KEYS

Keyboard Generated Codes

Key Code Normal SHIFT CTRL ALT SHIFT
ALT

BACKSPACE Oe 08 bs 08 bs 08 bs 08 bs 08 bs
TAB Of 09 ht Id gs 09 ht 09 ht Id gs
RETURN lc Od cr Od cr Od cr Od cr Od cr
SPACE 39 20 sp 20 sp 00 nul 20 sp 20 sp
ESC 01 Ib esc Ib esc Ib esc Ib esc Ib esc

- 3 -

KEYBOARD(7) KEYBOARD(7)

ALPHABETIC
KEYS

Kevboard Generated Codes

Key Code Normal SHIFT CTRL ALT SHIFT
ALT

a Ie 61 a 41 A 01 soh Ib4e61 Ib4e41
b 30 62 b 42 B 02 stx Ib4e62 Ib4e42
c 2e 63 c 43 C 03 etx Ib4e63 Ib4e43
d 20 64 d 44 D 04 eot Ib4e64 Ib4e44
e 12 65 e 45 E 05 enq Ib4e65 Ib4e45
f 21 66 f 46 F 06 ack Ib4e66 Ib4e46
g 22 67 g 47 G 07 bel Ib4e67 Ib4e47
h 23 68 h 48 H 08 bs Ib4e68 Ib4e48
i 17 69 i 49 I 09 ht Ib4e69 Ib4e49
j 24 6a j 4a J Oa If Ib4e6a Ib4e4a
k 25 6b k 4b K Ob vt Ib4e6b Ib4e4b
I 26 6c I 4c L Oc ff Ib4e6c Ib4e4c
m 32 6dm 4dM Od cr Ib4e6d Ib4e4d
n 31 6e n 4e N Oe so Ib4e6e Ib4e4e
0 18 6f 0 4f 0 Of si Ib4e6f Ib4e4f
p 19 70 P 50 P 10 die Ib4e70 Ib4e50
q 10 71 q 51 Q 11 del Ib4e71 Ib4e51
r 13 72r 52 R 12 dc2 Ib4e72 Ib4e52
s If 73 s 53 S 13 dc3 Ib4e73 Ib4e53
t 14 74 t 54 T 14 dc4 Ib4e74 Ib4e54
u 16 75 u 55 U 15 nak Ib4e75 Ib4e55
v 2f 76 v 56 V 16 syn Ib4e76 Ib4e56
w 11 77w 57W 17 etb Ib4e77 Ib4e57
x 2d 78 x 58 X 18 can Ib4e78 Ib4e58
y 15 79 Y 59 Y 19 em Ib4e79 Ib4e59
z 2c 7a z Sa Z la sub Ib4e7a Ib4e5a

- 4 -

KEYBOARD(7) KEYBOARD(7)

NUMERIC
AND

PUNCTUATION
Keyboard Generated Codes

Key Code Normal SHIFT CTRL ALT SHIFT
ALT

1 02 31 1 21 ! 31 1 Ib4e31 Ib4e21
2 03 322 40@ 00 nul Ib4e32 Ib4e40
3 04 333 23 # 333 Ib4e33 Ib4e23
4 05 344 24 $ 344 Ib4e34 Ib4e24
5 06 355 25 % 355 Ib4e35 Ib4e25
6 07 366 5e Ie rs Ib4e36 Ib4e5e
7 08 377 26 & 377 Ib4e37 Ib4e26
8 09 388 2a * 388 Ib4e38 Ib4e2a
9 Oa 399 28 (399 Ib4e39 Ib4e28
0 Ob 300 29) 300 Ib4e30 Ib4e29
- Oc 2d - Sf _ If us Ib4e2d Ib4e5f
= Od 3d = 2b + 3d = Ib4e3d Ib4e2b
[la 5b [7b { Ib esc Ib4e5b Ib4e7b
1 Ib 5d 1 7d} Id gs Ib4e5d Ib4e7d
; 27 3b; 3a: 3b; Ib4e3b Ib4e3a ,

28 27 ' 22 " 27 ' Ib4e27 Ib4e22 ,
29 60 ' 7e * Ie rs Ib4e60 Ib4e7e

\ 2b 5c \ 7c I Ie fs Ib4e5c Ib4e7c
, 33 2c, 3c < 2c, Ib4e2c Ib4e3c

34 2e. 3e> 2e. Ib4e2e Ib4e3e
/ 35 2f/ 3f? If us Ib4e2f Ib4e3f

- 5 -

KEYBOARD(7) I<EYBOARD(7)

KEYPAD
Keyboard Generated Codes

Key Code Normal SHIFT CTRL ALT SHIFT
ALT

'" 37 2a ". 2a '" 2a '" Ib4e2a Ib4e2a
scroll 46 Ib5b4d 00 break Ib5b4d Ib5b4d 00 break
home 47 Ib5b48 377 Ib5b48 Ib5b48 Ib4e37
up arrow 48 Ib5b41 388 Ib5b4l Ib5b41 Ib4e38
page up 49 Ib5b56 399 Ib5b56 Ib5b56 Ib4e39
minus 4a Ib5b53 2d - Ib5b53 Ib5b53 Ib4e2d
left arrow 4b Ib5b44 344 Ib5b44 Ib5b44 Ib4e34
5 4c Ib5b47 355 Ib5b47 Ib5b47 Ib4e35
right arrow 4d Ib5b43 366 Ib5b43 Ib5b43 Ib4e36
plus 4e Ib5b54 2b + Ib5b54 Ib5b54 Ib4e2b
end 4f Ib5b59 31 1 Ib5b59 Ib5b59 Ib4e31
down arrow 50 Ib5b42 322 Ib5b42 Ib5b42 Ib4e32
page down 51 Ib5b55 333 Ib5b55 Ib5b55 Ib4e33
insert 52 Ib5b40 300 Ib5b40 Ib5b40 Ib4e30
del 53 7f 2e. 7f 7f Ib4e2e
sys req 54 Ib5b4c Ib5b4d Ib5b4c Ib5b4c Ib5b4d

FUNCTION
KEYS

Keyboard Generated Codes

Key Code Normal SHIFT CTRL ALT SHIFT
ALT

Fl 3b Ib4f50 Ib4f70 Ib4f50 Ib4f50 Ib4f70
F2 3c Ib4f5 1 Ib4f71 Ib4f51 Ib4f51 Ib4f71
F3 3d Ib4f52 Ib4f72 Ib4f52 Ib4f52 Ib4f72
F4 3e Ib4f53 Ib4f73 Ib4f53 Ib4f53 Ib4f73
F5 3f Ib4f54 Ib4f74 Ib4f54 Ib4f54 Ib4f74
F6 40 Ib4f55 Ib4f75 Ib4f55 Ib4f55 Ib4f75
F7 41 Ib4f56 Ib4f76 Ib4f56 Ib4f56 Ib4f76
F8 42 Ib4f57 Ib4f77 Ib4f57 Ib4f57 Ib4f77
F9 43 Ib4f58 Ib4f78 Ib4f58 Ib4f58 Ib4f78
FlO 44 Ib4f59 Ib4f79 Ib4f59 Ib4f59 Ib4f79

Scan codes 55 through 7f are reserved and do not correspond to any keys
on the keyboard.

- 6 -

KEYBOARD(7) KEYBOARD(7)

loctl Calls

FILES

KDGKBMODE
This call is used to get the current keyboard mode. It returns one of
the following numbers, as defined in <sysjkd.h>:

#define LRA W OxOO f'" send up j down scan codes * j
#define K-XLATE OxOl j* translate to ascii * /

KDSKBMODE
This call is used to set the keyboard mode. The argument to the
ioctl is either K-RAW or K-XLATE. By using raw mode, the pro­
gram can see the raw up/down scan codes from the keyboard. In
translate mode, the translation tables are used to generate the
appropriate character code.

KDGKBENT
This call is used to read one of the entries in the translation tables.
The argument to the ioctl is the address of one of the following
structures, defined in <sysjkd.h>, with the first two fields filled in:

struct kbentry {

}

unchar
unchar
ushort

kb_table;
kb.-index;
kb_value;

f'" Table selectors .. /
#define K-NORMT AB
#define LSHIFTTAB
#define K-AL TT AB
#define K-AL TSHIFTT AB

f'" which table to use'" j
f'" which entry in table * /
f'" value to get/set" /

OxOO
OxOl
Ox02
Ox03

f'" normal table .. /
f'" shifted table .. /
/* alt table * /
f'" shifted alt table" /

The ioctl will get the indicated entry from the indicated table and
return it in the third field.

KDSKBENT
This call is used to set an entry in one of the translation tables. It
uses the same structure as the KDGKBENT ioctl, but with the third
field filled in with the value that should be placed in the translation
table. This can be used to partially or completely remap the key­
board.

/ dev / console

SEE ALSO
ioctl(2), display(7), termio(7).

- 7 -

LOG(7) (Networking Support Utilities) LOG(7)

NAME
log - interface to STREAMS error logging and event tracing

DESCRIPTION
log is a STREAMS software device driver that provides an interface for the
STREAMS error logging and event tracing processes [strerr(IM), straee(IM)].
log presents two separate interfaces: a function call interface in the kernel
through which STREAMS drivers and modules submit log messages; and a
subset of ioetl(2) system calls and STREAMS messages for interaction with a
user level error logger, a trace logger, or processes that need to submit their
own log messages.

Kernel Interface
log messages are generated within the kernel by calls to the function strlog:

strlog(mid, sid, level, flags, fmt, argI, ...)
short mid, sid;
char level;
ushort flags;
char "fmt;
unsigned argI;

Required definitions are contained in <sys/strlog.h> and <sys/log.h>.
mid is the STREAMS module id number for the module or driver submitting
the log message. sid is an internal sub-id number usually used to identify a
particular minor device of a driver. level is a tracing level that allows for
selective screening out of low priority messages from the tracer. [lags are
any combination of SLERROR (the message is for the error logger),
SLTRACE (the message is for the tracer), SLFATAL (advisory notification of
a fatal error), and SLNOTIFY (request that a copy of the message be mailed
to the system administrator). fmt is a printf(3S) style format string, except
that %s, %e, %E, %g, and %G conversion specifications are not handled.
Up to NLOGARGS (currently 3) numeric or character arguments can be pro­
vided.

User Interface
log is opened via the clone interface, /dev/log. Each open of /dev/log
obtains a separate stream to log. In order to receive log messages, a process
must first notify log whether it is an error logger or trace logger via a
STREAMS LSTR ioetl call (see below). For the error logger, the LSTR ioetl
has an ic-cmd field of LERRLOG, with no accompanying data. For the
trace logger, the ioetl has an ic-cmd field of LTRCLOG, and must be accom­
panied by a data buffer containing an array of one or more struct trace.-ids
elements. Each trace.-ids structure specifies an mid, sid, and level from
which message will be accepted. strlog will accept messages whose mid and
sid exactly match those in the trace.-ids structure, and whose level is less
than or equal to the level given in the trace.-ids structure. A value of -1 in
any of the fields of the trace.-ids structure i~dicates that any value is
accepted for that field.

At most one trace logger and one error logger can be active at a time. Once
the logger process has identified itself via the ioetl call, log will begin

- 1 -

LOG(7) (Networking Support Utilities) LOG(7)

sending up messages subject to the restrictions noted above. These mes­
sages are obtained via the getmsg(2) system call. The control part of this
message contains a log-ctl structure, which specifies the mid, sid, level,
flags, time in ticks since boot that the message was submitted, the
corresponding time in seconds since Jan. 1, 1970, and a sequence number.
The time in seconds since 1970 is provided so that the date and time of the
message can be easily computed, and the time in ticks since boot is pro­
vided so that the relative timing of log messages can be determined.

Different sequence numbers are maintained for the error and trace logging
streams, and are provided so that gaps in the sequence of messages can be
determined (during times of high message traffic, some messages may not
be delivered by the logger to avoid hogging system resources). The data
part of the message contains the unexpanded text of the format string (null
terminated), followed by NLOGARGS words for the arguments to the format
string, aligned on the first word boundary following the format string.

A process may also send a message of the same structure to log, even if it is
not an error or trace logger. The only fields of the log_ctl structure in the
control part of the message that are accepted are the level and flags fields;
all other fields are filled in by log before being forwarded to the appropriate
logger. The data portion must contain a null terminated format string, and
any arguments (up to NLOGARGS) must be packed one word each, on the
next word boundary following the end of the format string.

Attempting to issue an LTRCLOG or LERRLOG when a logging process of
the given type already exists will result in the error ENXIO being returned.
Similarly, ENXIO is returned for LTRCLOG ioetls without any trace~ds
structures, or for any unrecognized LSTR ioetl calls. Incorrectly formatted
log messages sent to the driver by a user process are silently ignored (no
error results).

EXAMPLES
Example of LERRLOG notification.

struct strioctl ioc;

ioc.ic_cmd = LERRLOG;
ioc.ic_timout = 0;
ioc.ic-.l.en = 0;
ioc.ic-dp = NULL;

ioctl(log, LSTR, &ioc);

Example of LTRCLOG notification.

struct trace~ds tid[2];

tid[O].tLmid = 2;
tid[O].tLsid = 0;
tid[O].tUevel = 1;

- 2 -

/'" default timeout (15 secs.) * /

LOG(7)

FILES

(Networking Support Utilities)

tid[1].tLmid = 1002;
tid[1].tLsid = -1;
tid[1].tLlevel = -1;

/* any sub-id will be allowed'" /
/* any level will be allowed'" /

ioc.ic-cmd = LTRCLOG;
ioc.ic_timout = 0;
ioc.iuen = 2 ... sizeof(struct trace-ids);
ioc.ic-dp = (char *)tid;

ioctl(log, LSTR, &ioc);

Example of submitting a log message (no arguments).

struct strbuf ctl, dat;
struct log-ctl1c;

LOG(7)

char *message = "Don't forget to pick up some milk on the way home'

ctl.len = ctl.maxlen = sizeof(1c);
ctl.buf = (char *)&1c;

dat.len = dat.maxlen = strlen(message);
dat.buf = message;

lc.level = 0;
1c.flags = SLERRORISLNOTIFY;

putmsg(log, &ctl' &dat, 0);

/dev flog, <sys/log.h>, <sys/strlog.h>

SEE ALSO
strace(1M), strerr(1M), done(7).
intro(2), getmsg(2), putmsg(2) in the Programmer's Reference Manual.
STREAMS Programmer's Guide.

- 3 -

LP(7) LP(7)

NAME
lp - parallel printer interface

DESCRIPTION

FILES

The lp driver supports both the primary (monochrome) and secondary
parallel printer adapters simultaneously. Up to two printers are supported.
If an adapter for a printer is not installed, an attempt to open it will fail.
The close waits until all output is completed before returning to the user.
The lp driver allows only one process at a time to write to the adapter. If it
is already busy, an open for writing will return an error. However, the
driver allows multiple opens to occur if they are read-only.
The parallel printer adapters are character devices. The minor device
number corresponds to the primary or secondary parallel printer adapter.
Thus, minor device 0 corresponds to the primary parallel printer adapter,
while minor device 1 corresponds to the secondary adapter.

/dev/lp"

- 1 -

MEM(7) MEM(7)

NAME
mem, kmem - core memory

DESCRIPTION

FILES

The file jdevjmem is a special file that is an image of the core memory of
the computeL It may be used, for example, to examine, and even to patch
the system.

Byte addresses in jdevjmem are interpreted as memory addresses. Refer­
ences to nonexistent locations cause errors to be returned.

Examining and patching device registers is likely to lead to unexpected
results when read-only or write-only bits are present.

The file jdevjkmem is the same as jdevjmem except that kernel virtual
memory rather than physical memory is accessed.

The per-process data for the current process begins at Ox80880000.

I/O is not memory mapped, and the per-process data begins at virtual
address OxEOOOOOOO.

jdevjmem
jdevjkmem

WARNING
Some of j dev jkmem cannot be read because of write-only addresses or une­
quipped memory addresses.

- 1 -

NULL(7)

NAME
null - the null file

DESCRIPTION
Data written on the null special file, jdevjnull, is discarded.

Reads from a null special file always return 0 bytes.

FILES
jdevjnull

- 1 -

NULL(7)

PRF(7) PRF(7)

NAME
prf - operating system profiler

DESCRIPTION

FILES

The special file j dev jprf provides access to activity information in the
operating system. Writing the file loads the measurement facility with text
addresses to be monitored. Reading the file returns these addresses and a
set of counters indicative of activity between adjacent text addresses.

The recording mechanism is driven by the system clock and samples the
program counter at line frequency. Samples that catch the operating system
are matched against the stored text addresses and increment corresponding
counters for later processing.

The file j dev jprf is a pseudo-device with no associated hardware.

jdevjprf

SEE ALSO
profiler(lM).

- 1 -

QT(7) QT(7)

NAME
qt - QIC cartridge magnetic tape streamer interface

SYNOPSIS
qt

DESCRIPTION
The format for tape files is described below:

/ dev /rmt/ cOsOn no rewind on close, no retension on open
/dev /rmt/cOsO rewind on close, no retension on open
/dev /rmt/cOsOnr no rewind on close, retension on open
/dev /rmt/cOsOr rewind on close, retension on open

These files refer to the Wangtek PC-36 Controller and the QIC-24/QIC-02
basic cartridge tape streamer. Only raw character interface files are pro­
vided. When opened for reading or writing, the tape is assumed to be posi­
tioned as desired. If the file was retension-on-open, the tape is retensioned
before any i/o is performed. When a T_RWD, T-RETENSION, T_LOAD,
or T_UNLOAD ioctl is requested after a write, a double end-of-file (double
tape mark) is written before the ioctl is executed. When a rewind-on-close
file is closed, a double end-of-file (double tape mark) is written if the file
was opened for writing and data was written. When a rewind-on-close file
is closed, the tape is rewound. If the file is no-rewind-on-close and was
opened for writing and data was written, only one EOF is written, and the
tape is positioned after the EOF just written. If the file was no-rewind and
the file was opened for read-only, the tape is positioned after the EOF fol­
lowing the data just read. The EOF is returned as a zero-length read. By
judiciously choOSing qt files, it is possible to read and write multifile tapes.

A standard tape consists of several 512-byte records terminated by an EOF.
To the extent possible, the system treats the tape like any other file. As in
other raw devices, seeks are ignored. An EOF is returned as a zero-length
read, with the tape positioned after the EOF, so that the next read will
return the next record.

Only one process is permitted to have any of the tape files open at a given
time, to the extent it is enforceable. Writing after reading is permitted, but
reading after writing without an intervening rewind is not. If O_NDELA Y
is clear, opening a retension-on-open file will block until the retension is
complete. If O_NDELAY is set, open will return without delay. Opening a
file with O-.APPEND set is an error (EINV AL).

The following ioctl's are supported:

T_RETENSION retension the tape
T_RWD rewind the tape to BOT
T_LOAD rewind the tape to BOT
T_UNLOAD rewind the tape to BOT
T_ERASE erase the tape and leave it at BOT
T_WRFILEM write an EOF (tape mark)
T-RST reset the tape device
T _SFF skip forward arg files

- 1 -

QT(7)

FILES
/dev /rmt/cOsOn
/dev /rmt/cOsO
/ dev /rmt/ cOsOnr
/dev /rmt/cOsOr

SEE ALSO
intro(7).

QT(7)

skip forward arg blocks
read the device status registers into the buffer
pointed to by argo

- 2 -

RTC(7) RTC(7)

NAME
rtc - real time clock interface

DESCRIPTION
The rtc driver supports the real time clock chip, allowing it to be set with
the correct local time, and allowing the time to be read from the chip.

loctl Calls

FILES

RTCRTIME
This call is used to read the local time from the real time clock chip.
The argument to the ioctl is the address of a buffer of unsigned
characters is defined is <sysfrtc.h». The ioctl will fill in the buffer
with the contents of the chip registers. Currently, is 14, and the
meanings of the byte registers are as follows:

Reldster Contents
0 Seconds
1 Second alarm
2 Minutes
3 Minute alarm
4 Hours
5 Hour alarm
6 Day of week
7 Date of month
8 Month
9 Year
A Status register A
B Status register B
C Status register C
D Status register D

For further information on the functions of these registers, see your
hardware technical reference manual.

RTCSTIME
This call is used to set the time into the real time clock chip. The
argument to the ioctl is the address of a buffer of unsigned charac­
ters is defined is <sysfrtc.h>.) These bytes should be the desired
chip register contents. Currently, is 10, representing registers 0-9
as shown above. Note that only the superuser may open the real
time clock device for writing, and that the ioetl will fail for any
other than the superuser.

fdevfrtc

- 1 -

STREAMIO(7) STREAMIO(7)

NAME
streamio - STREAMS ioctl commands

SYNOPSIS
#inc1ude <stropts.h>
int ioctl (fildes, command, arg)
int fildes, command;

DESCRIPTION
STREAMS [see intro(2)] ioctl commands are a subset of ioctl(2) system calls
which perform a variety of control functions on streams. The arguments
command and arg are passed to the file designated by fildes and are inter­
preted by the stream head. Certain combinations of these arguments may be
passed to a module or driver in the stream.

fildes is an open file descriptor that refers to a stream. command determines
the control function to be performed as described below. arg represents
additional information that is needed by this command. The type of arg
depends upon the command, but it is generally an integer or a pointer to a
command-specific data structure.

Since these STREAMS commands are a subset of ioctl, they are subject to the
errors described there. In addition to those errors, the call will fail with
errno set to EINVAL, without processing a control function, if the stream
referenced by fildes is linked below a multiplexer, or if command is not a
valid value for a stream.

Also, as described in ioctl, STREAMS modules and drivers can detect errors.
In this case, the module or driver sends an error message to the stream head
containing an error value. This causes subsequent system calls to fail with
errno set to this value.

COMMAND FUNCTIONS
The following ioctl commands, with error values indicated, are applicable to
all STREAMS files:

LPUSH

LPOP

Pushes the module whose name is pointed to by arg onto the
top of the current stream, just below the stream head. It then
calls the open routine of the newly-pushed module. On
failure, errno is set to one of the following values:

[EINVAL]

[EFAULT]

[ENXIO]

[ENXIO]

Invalid module name.

arg points outside the allocated address space.

Open routine of new module failed.

Hangup received on fildes.

Removes the module just below the stream head of the stream
pointed to by fildes. arg should be 0 in an LPOP request. On
failure, errno is set to one of the following values:

[EINVAL] No module present in the stream.

[ENXIO] Hangup received on fildes.

- 1 -

STREAMIO(7)

LLOOK

LFLUSH

LSETSIG

STREAMIO(7)

Retrieves the name of the module just below the stream head
of the stream pointed to by fildes, and places it in a null ter­
minated character string pointed at by argo The buffer
pointed to by arg should be at least FMNAMESZ+ 1 bytes long.
An [#include <sys/conf. h>] declaration is
required. On failure, errna is set to one of the following
values:

[EFAULTj arg points outside the allocated address space.

[EINVAL] No module present in stream.

This request flushes all input and/or output queues, depend­
ing on the value of argo Legal arg values are:

FLUSHR Flush read queues.

FLUSHW

FLUSHRW

Flush write queues.

Flush read and write queues.

On failure, errna is set to one of the following values:

[ENOSRj Unable to allocate buffers for flush message
due to insufficient STREAMS memory resources.

[EINVAL] Invalid arg value.

[ENXIOj Hangup received on fildes.

Informs the stream head that the user wishes the kernel to
issue the SIGPOLL signal [see signal(2) and sigset(2)] when a
particular event has occurred on the stream associated with
fildes. LSETSIG supports an asynchronous processing capabil­
ity in STREAMS. The value of arg is a bitmask that specifies
the events for which the user should be signaled. It is the
bitwise-OR of any combination of the following constants:

S.JNPUT A non-priority message has arrived on a stream
head read queue, and no other messages existed
on that queue before this message was placed
there. This is set even if the message is of zero
length.

S-HIPRI A priority message is present on the stream
head read queue. This is set even if the mes­
sage is of zero length.

S_OUTPUT The write queue just below the stream head is
no longer full. This notifies the user that there
is room on the queue for sending (or writing)
data downstream.

S-MSG A STREAMS signal message that contains the
SIGPOLL signal has reached the front of the
stream head read queue.

A user process may choose to be signaled only of priority
messages by setting the arg bitmask to the value S_HIPRI.

- 2 -

STREAMIO(7)

LGETSIG

LFIND

LPEEK

STREAMIO(7)

Processes that wish to receive SIGPOLL signals must explicitly
register to receive them using LSETSIG. If several processes
register to receive this signal for the same event on the same
Stream, each process will be signaled when the event occurs.

If the value of arg is zero, the calling process will be unre­
gistered and will not receive further SIGPOLL signals. On
failure, errna is set to one of the following values:

[EINV ALJ arg value is invalid or arg is zero and process is
not registered to receive the SIGPOLL signal.

[EAGAIN] Allocation of a data structure to store the signal
request failed.

Returns the events for which the calling process is currently
registered to be sent a SIGPOLL signal. The events are
returned as a bitmask pointed to by arg, where the events are
those specified in the description of LSETSIG above. On
failure, errna is set to one of the following values:

[EINV ALJ Process not registered to receive the SIGPOLL
signal.

[EFAULT] arg points outside the allocated address space.

Compares the names of all modules currently present in the
stream to the name pointed to by arg, and returns 1 if the
named module is present in the stream. It returns 0 if the
named module is not present. On failure, errna is set to one
of the following values:

[EFAULT] arg points outside the allocated address space.

[EINVALJ arg does not contain a valid module name.

Allows a user to retrieve the information in the first message
on the stream head read queue without taking the message off
the queue. arg points to a strpeek structure which contains
the following members:

struct strbuf
struct strbuf
long

ctlbuf;
databuf;
flags;

The maxlen field in the ctlbuf and databuf strbuf structures [see
getmsg(2)] must be set to the number of bytes of control infor­
mation and/or data information, respectively, to retrieve. If
the user sets flags to RS_HIPRI, LPEEK will only look for a
priority message on the stream head read queue.

LPEEK returns 1 if a message was retrieved, and returns 0 if
no message was found on the stream head read queue, or if
the RS-HIPRI flag was set in flags and a priority message was
not present on the stream head read queue. It does not wait
for a message to arrive. On return, ctlbuf specifies informa­
tion in the control buffer, databuf specifies information in the

- 3 -

STREAMIO(7)

LSRDOPT

STREAMIO(7)

data buffer, and flags contains the value 0 or RS_HIPRI. On
failure, errno is set to the following value:

[EFAULT) arg points, or the buffer area specified in etlbuf
or databuf is, outside the allocated address
space.

[EBADMSG] Queued message to be read is not valid for
LPEEK

Sets the read mode using the value of the argument argo
Legal arg values are:

RNORM Byte-stream mode, the default.

RMSGD Message-discard mode.

RMSGN Message-nondiscard mode.

Read modes are described in read(2). On failure, errno is set
to the following value:

[EINV ALJ arg is not one of the above legal values.

LGRDOPT Returns the current read mode setting in an int pointed to by
the argument argo Read modes are described in read(2). On
failure, errno is set to the following value:

[EFAULT] arg points outside the allocated address space.

LNREAD Counts the number of data bytes in data blocks in the first
message on the stream head read queue, and places this value
in the location painted to by argo The return value for the
command is the number of messages on the stream head read
queue. For example, if zero is returned in arg, but the ioetl
return value is greater than zero, this indicates that a zero­
length message is next on the queue. On failure, errno is set
to the following value:

[EFAULT) arg points outside the allocated address space.

LFDINSERT Creates a message from user specified buffer(s), adds informa­
tion about another stream and sends the message down­
stream. The message contains a control part and an optional
data part. The data and control parts to be sent are dis­
tinguished by placement in separate buffers, as described
below.

arg points to a strfdinsert structure which contains the follow­
ing members:

struct strbuf
struct strbuf
long
int
int

ctlbuf;
databuf;
flags;
fildes;
offset;

The len field in the etlbuf strbuf structure [see putmsg(2)] must
be set to the size of a pointer plus the number of bytes of

- 4 -

STREAMIO(7) STREAMIO(7)

control information to be sent with the message. fildes in the
strfdinsert structure specifies the file descriptor of the other
stream. offset, which must be word-aligned, specifies the
number of bytes beyond the beginning of the control buffer
where LFDINSERT will store a pointer. This pointer will be
the address of the read queue structure of the driver for the
stream corresponding to fildes in the strfdinsert structure. The
len field in the databuf strbuf structure must be set to the
number of bytes of data information to be sent with the mes­
sage or zero if no data part is to be sent.

flags specifies the type of message to be created. A non­
priority message is created if flags is set to 0, and a priority
message is created if flags is set to RSJiIPRI. For non-priority
messages, LFDINSERT will block if the stream write queue is
full due to internal flow control conditions. For priority mes­
sages, LFDINSERT does not block on this condition. For
non-priority messages, LFDINSERT does not block when the
write queue is full and O-NDELA Y is set. Instead, it fails and
sets erma to EAGAIN.

LFDINSERT also blocks, unless prevented by lack of internal
resources, waiting for the availability of message blocks in the
stream, regardless of priority or whether O-NDELA Y has been
specified. No partial message is sent. On failure, erma is set
to one of the following values:

[EAGAIN] A non-priority message was specified, the
O-NDELA Y flag is set, and the stream write
queue is full due to internal flow control condi­
tions.

[ENOSR]

[EFAULT]

[EINVAL]

[ENXIO]

[ERANGE]

Buffers could not be allocated for the message
that was to be created due to insufficient
STREAMS memory resources.

arg points, or the buffer area specified in etlbuf
or databuf is, outside the allocated address
space.

One of the following: fildes in the strfdinsert
structure is not a valid, open stream file
descriptor; the size of a pointer plus offset is
greater than the len field for the buffer speci­
fied through etlptr; offset does not specify a
properly aligned location in the data buffer; an
undefined value is stored in flags.

Hangup received on fildes of the ioetl call or
fildes in the strfdinsert structure.

The len field for the buffer specified through
databuf does not fall within the range specified
by the maximum and minimum packet sizes of

- 5 -

STREAMIO(7)

LSTR

STREAMIO(7)

the topmost stream module, or the len field for
the buffer specified through databuf is larger
than the maximum configured size of the data
part of a message, or the len field for the buffer
specified through etlbuf is larger than the max­
imum configured size of the control part of a
message.

LFDINSERT can also fail if an error message was received by
the stream head of the stream corresponding to fildes in the
strfdinsert structure. In this case, errno will be set to the value
in the message.

Constructs an internal STREAMS ioctl message from the data
pointed to by arg and sends that message downstream.

This mechanism is provided to send user ioetl requests to
downstream modules and drivers. It allows information to be
sent with the ioetl and will return to the user any information
sent upstream by the downstream recipient. LSTR blocks
until the system responds with either a positive or negative
acknowledgment message or until the request "times out"
after some period of time. If the request times out, it fails
with errno set to ETIME.

At most, one LSTR can be active on a stream. Further I_STR
calls will block until the active LSTR completes at the stream
head. The default timeout interval for these requests is 15
seconds. The O_NDELAY [see open(2)] flag has no effect on
this call.

To send requests downstream, arg must Joint to a strioetl
structure which contains the following members:

int ic_cmd; /* downstream command *j
int ic_timout; /* ACK/NAK timeout *j
int ic_len; /* length of data arg .. j
char * ic_dp; /* ptr to data arg * j

ie_emd is the internal ioctl command intended for a down­
stream module or driver; and ie_tim out is the number of
seconds (-1 = infinite, 0 = use default, >0 = as specified) an
LSTR request will wait for acknowledgment before timing
out. ie_len is the number of bytes in the data argument and
ie-tip is a pointer to the data argument. The ieJen field has
two uses: on input, it contains the length of the data argu­
ment passed in, and on return from the command, it contains
the number of bytes being returned to the user (the buffer
pointed to by ie_dp should be large enough to contain the
maximum amount of data that any module or the driver in
the stream can return).

The stream head will convert the information pointed to by
the strioetl structure to an internal ioctl command message

- 6 -

STREAMIO(7)

LSENDFD

LRECVFD

STREAMIO(7)

and send it downstream. On failure, errno is set to one of the
following values:

[ENOSR]

[EFAULT]

[EINVAL]

[ENXIO]

Unable to allocate buffers for the ioetl message
due to insufficient STREAMS memory resources.

arg points, or the buffer area specified by ie_dp
and ie_len (separately for data sent and data
returned) is, outside the allocated address
space.

ie_len is less than 0 or ie_len is larger than the
maximum configured size of the data part of a
message or ie_timout is less than -l.

Hangup received on tildes.
[ETIME] A downstream ioetl timed out before ack-

nowledgment was received.

An LSTR can also fail while waiting for an acknowledgment
if a message indicating an error or a hangup is received at the
stream head. In addition, an error code can be returned in the
positive or negative acknowledgment message, in the event
the ioctl command sent downstream fails. For these cases,
LSTR will fail with errno set to the value in the message.

Requests the stream associated with tildes to send a message,
containing a file pointer, to the stream head at the other end
of a stream pipe. The file pointer corresponds to arg, which
must be an integer file descriptor.

LSENDFD converts arg into the corresponding system file
pointer. It allocates a message block and inserts the file
pointer in the block. The user id and group id associated
with the sending process are also inserted. This message is
placed directly on the read queue [see intro(2)] of the stream
head at the other end of the stream pipe to which it is con­
nected. On failure, errno is set to one of the following values:

[EAGAIN] The sending stream is unable to allocate a mes-

[EAGAIN]

[EBADF]

[EINVAL]

[ENXIO]

sage block to contain the file pointer.

The read queue of the receiving stream head is
full and cannot accept the message sent by
LSENDFD.

arg is not a valid, open file descriptor.

tildes is not connected to a stream pipe.

Hangup received on tildes.
Retrieves the file descriptor associated with the message sent
by an LSENDFD ioctl over a stream pipe. arg is a pointer to a
data buffer large enough to hold an strrecvtd data structure
containing the following members:

- 7 -

STREAMIO(7)

int fd;
unsigned short uid;
unsigned short gid;
char fill[8];

STREAMIO(7)

td is an integer file descriptor. uid and gid are the user id and
group id, respectively, of the sending stream.

If O-NDELA Y is not set [see open(2»), LRECVFD will block
until a message is present at the stream head. If O_NDELA Y is
set, LRECVFD will fail with ermo set to EAGAIN if no message
is present at the stream head.

If the message at the stream head is a message sent by an
LSENDFD, a new user file descriptor is allocated for the file
pointer contained in the message. The new file descriptor is
placed in the td field of the strrecvtd structure. The structure
is copied into the user data buffer pointed to by argo On
failure, ermo is set to one of the following values:

[EAGAINj A message was not present at the stream head
read queue, and the O-NDELA Y flag is set.

[EBADMSGj The message at the stream head read queue was
not a message containing a passed file descrip­
tor.

[EFAULTj arg points outside the allocated address space.

[EMFILEj NOFILES file descriptors are currently open.

[ENXIOj Hangup received on tildes.

The following two commands are used for connecting and disconnecting
multiplexed STREAMS configurations.

LLINK Connects two streams, where tildes is the file descriptor of the
stream connected to the multiplexing driver, and arg is the file
descriptor of the stream connected to another driver. The
stream designated by arg gets connected below the multiplex­
ing driver. LLINK requires the multiplexing driver to send an
acknowledgment message to the stream head regarding the
linking operation. This call returns a multiplexer ID number
(an identifier used to disconnect the multiplexer, see
LUNLINK) on success, and a -1 on failure. On failure, ermo
is set to one of the following values:

[ENXIOj Hangup received on tildes.

[ETIMEj

[EAGAINj

[ENOSRj

Time out before acknowledgment message was
received at stream head.

Temporarily unable to allocate storage to per­
form the LLINK.

Unable to allocate storage to perform the
LLINK due to insufficient STREAMS memory
resources.

- 8 -

STREAMIO(7)

LUNLINK

SEE ALSO

[EBADF]

[EINVAL]

[EINVAL]

[EINVAL]

STREAMIO(7)

arg is not a valid, open file descriptor.

fildes stream does not support multiplexing.

arg is not a stream, or is already linked under a
multiplexer.

The specified link operation would cause a
"cycle" in the resulting configuration; that is,
if a given stream head is linked into a multi­
plexing configuration in more than one place.

An LLINK can also fail while waiting for the multiplexing
driver to acknowledge the link request, if a message indicat­
ing an error or a hangup is received at the stream head of
fildes. In addition, an error code can be returned in the posi­
tive or negative acknowledgment message. For these cases,
LLINK will fail with errno set to the value in the message.

Disconnects the two streams specified by fildes and argo fildes
is the file descriptor of the stream connected to the multiplex­
ing driver. fildes must correspond to the stream on which the
ioetl LLINK command was issued to link the stream below the
multiplexing driver. arg is the multiplexer ID number that
was returned by the LLINK. If arg is -1, then all Streams
which were linked to fildes are disconnected. As in LLINK,
this command requires the multiplexing driver to ack­
nowledge the unlink. On failure, errno is set to one of the
following values:

[ENXIO] Hangup received on fildes.

[ETIME]

[ENOSR]

Time out before acknowledgment message was
received at stream head.

Unable to allocate storage to perform the
LUNLINK due to insufficient STREAMS memory
resources.

[EINVAL] arg is an invalid multiplexer ID number or
fildes is not the stream on which the LLINK
that returned arg was performed.

An LUNLINK can also fail while waiting for the multiplexing
driver to acknowledge the link request, if a message indicat­
ing an error or a hangup is received at the stream head of
fildes. In addition, an error code can be returned in the posi­
tive or negative acknowledgment message. For these cases,
LUNLINK will fail with errno set to the value in the message.

close(2), fcntl(2), intro(2), ioctl(2), open(2), read(2), getmsg(2), poll(2),
putmsg(2), signal(2), sigset(2), write(2) in the Programmer's Reference
Manual.
STREAMS Programmer's Guide.
STREAMS Primer.

- 9 -

STREAMIO(7) STREAMIO(7)

DIAGNOSTICS
Unless specified otherwise above, the return value from iactl is 0 upon suc­
cess and -1 upon failure with errna set as indicated.

- 10 -

SXT(7) SXT(7)

NAME
sxt - pseudo-device driver

DESCRIPTION
The special file J dev J sxt is a pseudo-device driver that interposes a discip­
line between the standard tty line disciplines and a real device driver. The
standard disciplines manipulate virtual tty structures (channels) declared by
the JdevJsxt driver. JDevJsxt acts as a discipline manipulating a real tty
structure declared by a real device driver. The J dev J sxt driver is currently
only used by the shl (1) command.

Virtual ttys are named by inodes in the subdirectory /dev /sxt and are allo­
cated in groups of up to eight. To allocate a group, a program should
exclusively open a file with a name of the form /dev/sxt/??O (channel 0)
and then execute a SXTIOCLINK ioctl call to initiate the multiplexing.

Only one channel, the controlling channel, can receive input from the key­
board at a time; others attempting to read will be blocked.

There are two groups of ioctl(2) commands supported by sxt. The first
group contains the standard ioctl commands described in termio(7), with the
addition of the following:

TIOCEXCL Set exclusive use mode: no further opens are permitted
until the file has been closed.

TIOCNXCL Reset exclusive use mode: further opens are once
again permitted.

The second group are commands to sxt itself. Some of these may only be
executed on channel O.

SXTIOCLINK

SXTIOCSWTCH

Allocate a channel group and multiplex the virtual
ttys onto the real tty. The argument is the number of
channels to allocate. This command may only be
executed on channel O. Possible errors include:

EINVAL The argument is out of range.

ENOTTY The command was not issued from a real
tty.

ENXIO

EBUSY

linesw is not configured with sxt:

An SXTIOCLINK command has already
been issued for this real tty.

ENOMEM There is no system memory available for
allocating the virtual tty structures.

EBADF Channel 0 was not opened before this call.

Set the controlling channel. Possible errors include:

EINVAL An invalid channel number was given.

EPERM The command was not executed from
channelO.

- 1 -

SXT(7)

SXTIOCWF

SXTIOCUBLK

SXTIOCSTAT

SXTIOCTRACE

SXTIOCNOTRACE

FILES
jdev jsxtj??[O-7]

SXT(7)

Cause a channel to wait until it is the controlling
channel. This command will return the error, EIN­
VAL, if an invalid channel number is given.

Tum off the loblk control flag in the virtual tty of the
indicated channel. The error EINV AL will be returned
if an invalid number or channel 0 is given.

Get the status (blocked on input or output) of each
channel and store in the sxtblock structure referenced
by the argument. The error EFAULT will be returned
if the structure cannot be written.

Enable tracing. Tracing information is written to the
console. This command has no effect if tracing is not
configured.

Disable tracing. This command has no effect if trac­
ing is not configured.

Virtual tty devices

SEE ALSO
shl(l), stty(l), terrnio(7).
ioctl(2), open(2) in the Programmer's Reference Manual.

- 2 -

TERMIO(7) TERMIO(7)

NAME
termio - general terminal interface

DESCRIPTION
All of the asynchronous communications ports use the same general inter­
face, no matter what hardware is involved. The remainder of this section
discusses the common features of this interface.

When a terminal file is opened, it normally causes the process to wait until
a connection is established. In practice, users' programs seldom open termi­
nal files; they are opened by getty and become a user's standard input, out­
put, and error files. The very first terminal file opened by the process group
leader of a terminal file not already associated with a process group
becomes the control terminal for that process group. The control terminal
plays a special role in handling quit and interrupt signals, as discussed
below. The control terminal is inherited by a child process during a fork(2).
A process can break this association by changing its process group using
setpgrp(2).

A terminal associated with one of these files ordinarily operates in full­
duplex mode. Characters may be typed at any time, even while output is
occurring, and are only lost when the system's character input buffers
become completely full, which is rare, or when the user has accumulated
the maximum allowed number of input characters that have not yet been
read by some program. Currently, this limit is 256 characters. When the
input limit is reached, the buffer is flushed and all the saved characters are
thrown away without notice.

Normally, terminal input is processed in units of lines. A line is delimited
by a new-line (ASCII LF) character, an end-of-file (ASCII EDT) character, or
an end-of-line character. This means that a program attempting to read will
be suspended until an entire line has been typed. Also, no matter how
many characters are requested in the read call, at most one line will be
returned. It is not, however, necessary to read a whole line at once; any
number of characters may be requested in a read, even one, without losing
information.

During input, erase and kill processing is normally done. By default, the
character # erases the last character typed, except that it will not erase
beyond the beginning of the line. By default, the character @ kills (deletes)
the entire input line, and optionally outputs a new-line character. Both
these characters operate on a key-stroke basis, independently of any back­
spacing or tabbing that may have been done. Both the erase and kill char­
acters may be entered literally by preceding them with the escape character
(\). In this case the escape character is not read. The erase and kill charac­
ters may be changed.

- 1 -

TERMIO(7) TERMIO(7)

Certain characters have special functions on input. These functions and
their default character values are summarized as follows:

INTR (Rubout or ASCII DEL) generates an interrupt signal which is sent
to all processes with the associated control terminal. Normally,
each such process is forced to terminate, but arrangements may be
made either to ignore the signal or to receive a trap to an agreed­
upon location; see signal (2).

QUIT (Control-lor ASCII FS) generates a quit signal. Its treatment is
identical to the interrupt signal except that, unless a receiving pro­
cess has made other arrangements, it will not only be terminated
but a core image file (called core) will be created in the current
working directory.

SWTCH (Control-z or ASCII SUB) is used by the job control facility, shZ, to
change the current layer to the control layer.

ERASE (#) erases the preceding character. It will not erase beyond the
start of a line, as delimited by a NL, EOF, or EOL character.

KILL (@) deletes the entire line, as delimited by a NL, EOF, or EOL char­
acter.

EOF (Control-d or ASCII EOT) may be used to generate an end-of-file
from a terminal. When received, all the characters waiting to be
read are immediately passed to the program, without waiting for a
new-line, and the EOF is discarded. Thus, if there are no charac­
ters waiting, which is to say the EOF occurred at the beginning of a
line, zero characters will be passed back, which is the standard
end-of-file indication.

NL (ASCII LF) is the normal line delimiter. It cannot be changed or
escaped.

EOL (ASCII NUL) is an additional line delimiter, like NL. It is not nor­
mally used.

EOL2 is another additional line delimiter.

STOP (Control-s or ASCII DC3) can be used to temporarily suspend out­
put. It is useful with CRT terminals to prevent output from disap­
pearing before it can be read. While output is suspended, STOP
characters are ignored and not read.

START (Control-q or ASCII DCI) is used to resume output which has been
suspended by a STOP character. While output is not suspended,
START characters are ignored and not read. The start/stop charac­
ters can not be changed or escaped.

The character values for INTR, QUIT, SWTCH, ERASE, KILL, EOF, and EOL
may be changed to suit individual tastes. The ERASE, KILL, and EOF charac­
ters may be escaped by a preceding \ character, in which case no special
function is done.

When the carrier signal from the data-set drops, a hang-up signal is sent to
all processes that have this terminal as the control terminal. Unless other

- 2 -

TERMIO(7) TERMIO(7)

arrangements have been made, this signal causes the processes to terminate.
If the hang-up signal is ignored, any subsequent read returns with an end­
of-file indication. Thus, programs that read a terminal and test for end-of­
file can terminate appropriately when hung up on.

When one or more characters are written, they are transmitted to the termi­
nal as soon as previously-written characters have finished typing. Input
characters are echoed by putting them in the output queue as they arrive. If
a process produces characters more rapidly than they can be typed, it will
be suspended when its output queue exceeds some limit. When the queue
has drained down to some threshold, the program is resumed.

Several ioctl(2) system calls apply to terminal files. The primary calls use
the following structure, defined in <termio.h>:

#define NCC 8
struct termio {

unsigned
unsigned
unsigned
unsigned
char

short
short
short
short

unsigned char
};

C-iflag;
c-oflag;
c_cflag;
c-Iflag;
c-line;
c-cc[NCC];

/* input modes * /
/* output modes * /
/* control modes * /
/* local modes * /
/* line discipline * /
/* control chars * /

The special control characters are defined by the array c_cc. The relative
positions and initial values for each function are as follows:

o VINTR DEL
1 VQUIT FS
2 VERASE #
3 VKILL @
4 VEOF EOT
5 VEOL NUL
6 reserved
7 SWTCH

The c_iflag field describes the basic terminal input control:

IGNBRK 0000001 Ignore break condition.
BRKINT 0000002 Signal interrupt on break.
IGNP AR 0000004 Ignore characters with parity errors.
PARMRK 0000010 Mark parity errors.
INPCK 0000020 Enable input parity check.
ISTRIP 0000040 Strip character.
INLeR 0000100 Map NL to CR on input.
IGNCR 0000200 Ignore CR.
ICRNL 0000400 Map CR to NL on input.
IUCLC 0001000 Map uppercase to lowercase on input.
IXON 0002000 Enable start/stop output control.
IXANY 0004000 Enable any character to restart output.
IXOFF 0010000 Enable start/stop input control.

- 3 -

TERMIO(7) TERMIO(7)

If IGNBRK is set, the break condition (a character-framing error with data all
zeros) is ignored, that is, not put on the input queue and therefore not read
by any process. Otherwise if BRKINT is set, the break condition will gen­
erate an interrupt signal and flush both the input and output queues. If
IGNP AR is set, characters with other framing and parity errors are ignored.

If P ARMRK is set, a character with a framing or parity error which is not
ignored is read as the three-character sequence: 0377, 0, X, where X is the
data of the character received in error. To avoid ambiguity in this case, if
ISTRIP is not set, a valid character of 0377 is read as 0377, 0377. If PARMRK
is not set, a framing or parity error which is not ignored is read as the char­
acter NUL (0).

If INPCK is set, input parity checking is enabled. If INPCK is not set, input
parity checking is disabled. This allows output parity generation without
input parity errors.

If ISTRIP is set, valid input characters are first stripped to 7-bits, otherwise
all 8-bits are processed.

If INLCR is set, a received NL character is translated into a CR character. If
IGNCR is set, a received CR character is ignored (not read). Otherwise if
ICRNL is set, a received CR character is translated into a NL character.

If IUCLC is set, a received uppercase alphabetic character is translated into
the corresponding lowercase character.

If IXON is set, start/stop output control is enabled. A received STOP charac­
ter will suspend output and a received START character will restart output.
All start/stop characters are ignored and not read. If IXANY is set, any
input character will restart output which has been suspended.

If IXOFF is set, the system will transmit START/STOP characters when the
input queue is nearly empty/full.

The initial input control value is all-bits-clear.

The c_oflag field specifies the system treatment of output:

OPOST
OLCUC
ONLCR
OCRNL
ONOCR
ONLRET
OFILL
OFDEL
NLDLY
NLO
NLl
CRDLY
CRO
CRI
CR2
CR3
TABDLY

0000001
0000002
0000004
0000010
0000020
0000040
0000100
0000200
0000400
0
0000400
0003000
0
0001000
0002000
0003000
0014000

Postprocess output.
Map lower case to upper on output.
Map NL to CR-NL on output.
Map CR to NL on output.
No CR output at column O.
NL performs CR function.
Use fill characters for delay.
Fill is DEL, else NUL.
Select new-line delays:

Select carriage-return delays:

Select horizontal-tab delays:

- 4 -

TERMIO(7) TERMIO(7)

TABO 0
TAB! 0004000
TAB2 0010000
TAB3 0014000 Expand tabs to spaces.
BSDLY 0020000 Select backspace delays:
BSO 0
BS! 0020000
VTDLY 0040000 Select vertical-tab delays:
VTO 0
VTl 0040000
FFDLY 0100000 Select form-feed delays:
FFO 0
FF! 0100000

If OPOST is set, output characters are post-processed as indicated by the
remaining flags; otherwise, characters are transmitted without change.

If OLCUC is set, a lowercase alphabetic character is transmitted as the
corresponding uppercase character. This function is often used in conjunc­
tion with IUCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL character pair.
If OCRNL is set, the CR character is transmitted as the NL character. If
ONOCR is set, no CR character is transmitted when at column 0 (first posi­
tion). If ONLRET is set, the NL character is assumed to do the carriage­
return function; the column pointer will be set to 0 and the delays specified
for CR will be used. Otherwise the NL character is assumed to do just the
line-feed function; the column pointer will remain unchanged. The column
pointer is also set to 0 if the CR character is actually transmitted.

The delay bits specify how long transmission stops to allow for mechanical
or other movement when certain characters are sent to the terminal. In all
cases a value of 0 indicates no delay. If OFILL is set, fill characters will be
transmitted for delay instead of a timed delay. This is useful for high baud
rate terminals which need only a minimal delay. If OFDEL is set, the fill
character is DEL, otherwise NUL.

If a form-feed or vertical-tab delay is specified, it lasts for about 2 seconds.

New-line delay lasts about 0.10 seconds. If ONLRET is set, the carriage­
return delays are used instead of the new-line delays. If OFILL is set, two
fill characters will be transmitted.

Carriage-return delay type 1 is dependent on the current column position,
type 2 is about 0.10 seconds, and type 3 is about 0.15 seconds. If OFILL is
set, delay type 1 transmits two fill characters, and type 2, four fill charac­
ters.

Horizontal-tab delay type 1 is dependent on the current column position.
Type 2 is about 0.10 seconds. Type 3 specifies that tabs are to be expanded
into spaces. If OFILL is set, two fill characters will be transmitted for any
delay.

Backspace delay lasts about 0.05 seconds. If OFILL is set, one fill character
will be transmitted.

- 5 -

TERMIO(7) TERMIO(7)

The actual delays depend on line speed and system load.

The initial output control value is all-bits-clear.

The c_cflag field describes the hardware control of the terminal:

CBAUD 0000017 Baud rate:
BO 0 Hang up
B50 0000001 50 baud
B75 0000002 75 baud
B110 0000003 110 baud
B134 0000004 134 baud
&150 0000005 150 baud
B200 0000006 200 baud
B300 0000007 300 baud
B600 0000010 600 baud
B1200 0000011 1200 baud
B1800 0000012 1800 baud
B2400 0000013 2400 baud
B4800 0000014 4800 baud
B9600 0000015 9600 baud
B19200 0000016 19200 baud
EXTA 0000016 External A
B38400 0000017 38400 baud
EXTB 0000017 External B
CSIZE 0000060 Character size:
CS5 0 5 bits
CS6 0000020 6 bits
CS7 0000040 7 bits
CS8 0000060 8 bits
CSTOPB 0000100 Send two stop bits, else one.
CREAD 0000200 Enable receiver.
PARENB 0000400 Parity enable.
PARODD 0001000 Odd parity, else even.
HUPCL 0002000 Hang up on last close.
CLOCAL 0004000 Local line, else dial-up.
RCVIEN 0010000
XMTlEN 0020000
LOBLK 0040000 Block layer output.

The CBAUD bits specify the baud rate. The zero baud rate, BO, is used to
hang up the connection. If BO is specified, the data-terminal-ready signal
will not be asserted. Normally, this will disconnect the line. For any partic­
ular hardware, impossible speed changes are ignored.

The CSIZE bits specify the character size in bits for both transmission and
reception. This size does not include the parity bit, if any. If CSTOPB is set,
two stop bits are used, otherwise one stop bit. For example, at 110 baud,
two stops bits are required.

If P ARENB is set, parity generation and detection is enabled and a parity bit
is added to each character. If parity is enabled, the PARODD flag specifies
odd parity if set; otherwise, even parity is used.

- 6 -

TERMIO(7) TERMIO(7)

If CREAD is set, the receiver is enabled; otherwise, no characters will be
received.

If HUPCL is set, the line will be disconnected when the last process with the
line open closes it or terminates. That is, the data-terminal-ready signal will
not be asserted.

If CLOCAL is set, the line is assumed to be a local, direct connection with no
modem control. Otherwise, modem control is assumed.

If LOBLK is set, the output of a job control layer will be blocked when it is
not the current layer. Otherwise the output generated by that layer will be
multiplexed onto the current layer.

The initial hardware control value after open is 8300, CSB, CREAD, HUPCL.

The c_lflag field of the argument structure is used by the line discipline to
control terminal functions. The basic line discipline (0) provides the follow­
ing:

ISIG
ICANON
XCASE
ECHO
ECHOE
ECHOK
ECHONL
NOFLSH

0000001 Enable signals.
0000002 Canonical input (erase and kill processing).
0000004 Canonical upper jlower presentation.
0000010 Enable echo.
0000020 Echo erase character as BS-SP-BS.
0000040 Echo NL after kill character.
0000100 Echo NL.
0000200 Disable flush after interrupt or quit.

If ISIG is set, each input character is checked against the special control
characters INTR, SWTCH, and QUIT. If an input character matches one of
these control characters, the function associated with that character is per­
formed. If ISIG is not set, no checking is done. Thus these special input
functions are possible only if ISIG is set. These functions may be disabled
individually by changing the value of the control character to an unlikely or
impossible value (e.g., 0377).

If ICANON is set, canonical processing is enabled. This enables the erase
and kill edit functions, and the assembly of input characters into lines del­
imited by NL, EOF, and EOL. If ICANON is not set, read requests are satis­
fied directly from the input queue. A read will not be satisfied until at least
MIN characters have been received or the timeout value TIME has expired
between characters. This allows fast bursts of input to be read efficiently
while still allowing single character input. The MIN and TIME values are
stored in the position for the EOF and EOL characters, respectively. The
time value represents tenths of seconds.

- 7 -

TERMIO(7) TERMIO(7)

If XCASE is set, and if ICANON is set, an uppercase letter is accepted on
input by preceding it with a \ character, and is output preceded by a \ char~
acter. In this mode, the following escape sequences are generated on output
and accepted on input:

for: use:
\'

J \1
\"

{ \(
} \)
\ \\

For example, A is input as \a, \n as \ \n, and \N as \ \ \n.

If ECHO is set, characters are echoed as received.

When ICANON is set, the following echo functions are possible. If ECHO
and ECHOE are set, the erase character is echoed as ASCII BS SP BS, which
will clear the last character from a CRT screen. If ECHOE is set and ECHO is
not set, the erase character is echoed as ASCII SP BS. If ECHOK is set, the NL
character will be echoed after the kill character to emphasize that the line
will be deleted. Note that an escape character preceding the erase or kill
character removes any special function. If ECHONL is set, the NL character
will be echoed even if ECHO is not set. This is useful for terminals set to
local echo (so-called half duplex). Unless escaped, the EOF character is not
echoed. Because EOT is the default EOF character, this prevents terminals
that respond to EOT from hanging up.

If NOFLSH is set, the normal flush of the input and output queues associated
with the quit, switch, and interrupt characters will not be done.

The initial line-discipline control value is all bits clear.

The primary ioctl(2) system calls have the form:

ioctl (fildes, command, arg)
struct termio *arg;

The commands using this form are:

TCGETA Get the parameters associated with the terminal and
store in the termio structure referenced by argo

TCSET A Set the parameters associated with the terminal from
the structure referenced by argo The change is immedi­
ate.

TCSETAW Wait for the output to drain before setting the new
parameters. This form should be used when changing
parameters that will affect output.

TCSETAF Wait for the output to drain, then flush the input
queue and set the new parameters.

- 8 -

TERMIO(7) TERMIO(7)

FILES

Additional ioctl(2) calls have the form:

ioctl (fildes, command, arg)
int arg;

The commands using this form are:

TCSBRK Wait for the output to drain. If arg is 0, then send a
break (zero bits for 0.25 seconds).

TCXONC Start/stop control. If arg is 0, suspend output; if 1,
restart suspended output.

TCFLSH If arg is 0, flush the input queue; if 1, flush the output
queue; if 2, flush both the input and output queues.

/dev/tty*

SEE ALSO
stty(l).
fork(2), ioctl(2), setpgrp(2), signal(2) in the Programmer's Reference Manual.

- 9 -

TIMOD(7) (Networking Support Utilities) TIMOD(7)

NAME
timod - Transport Interface cooperating STREAMS module

DESCRIPTION
timod is a STREAMS module for use with the Transport Interface (TI) func­
tions of the Network Services library. The timod module converts a set of
ioetl(2) calls into STREAMS messages that may be consumed by a transport
protocol provider which supports the Transport Interface. This allows a
user to initiate certain TI functions as atomic operations.

The timod module must be pushed (see Streams Primer) onto only a stream
terminated by a transport protocol provider which supports the Tl.

All STREAMS messages, with the exception of the message types generated
from the ioet! commands described below, will be transparently passed to
the neighboring STREAMS module or driver. The messages generated from
the following ioet! commands are recognized and processed by the timod
module. The format of the ioet! call is:

#include <sysjstropts.h>

struct strioctl strioctl;

strioctl.ie-cmd = emd;
strioctl.ic_timeout = INFTIM;
strioctl.ic-Ien = size;
strioctl.ic_dp = (char *)but

ioctl(fildes, LSTR, &strioctl);

where, on issuance, size is the size of the appropriate TI message to be sent
to the transport provider and on return, size is the size of the appropriate TI
message from the transport provider in response to the issued TI message.
but is a pointer to a buffer large enough to hold the contents of the
appropriate TI messages. The TI message types are defined in
<sysjtihdr.h>. The possible values for the emd field are:

TLBIND

TLUNBIND

TLGETINFO

Bind an address to the underlying transport protocol pro­
vider. The message issued to the TLBIND ioet! is
equivalent to the TI message type T_BIND-REQ and the
message returned by the successful completion of the ioetl
is equivalent to the TI message type T_BIND-ACK.

Unbind an address from the underlying transport protocol
provider. The message issued to the TLUNBIND ioet! is
equivalent to the TI message type T_UNBIND_REQ and the
message returned by the successful completion of the ioetl
is equivalent to the TI message type T_OICACK.

Get the TI protocol specific information from the transport
protocol provider. The message issued to the TLGETINFO
ioet! is equivalent to the TI message type T_INFO_REQ and

- 1 -

TIMOD(7) (Networking Support Utilities) TIMOD(7)

FILES

the message returned by the successful completion of the
ioetl is equivalent to the TI message type T-INFO-ACK.

TLOPTMGMT Get, set, or negotiate protocol specific options with the
transport protocol provider. The message issued to the
TLOPTMGMT ioctl is equivalent to the TI message type
T_OPTMGMT-REQ, and the message returned by the suc­
cessful completion of the ioetl is equivalent to the TI mes­
sage type T_OPTMGMT-ACK.

<sysjtimod.h>
<sys j tiuser .h>
<sysjtihdr.h>
<sysjerrno.h>

SEE ALSO
tirdwr(7).
STREAMS Primer.
STREAMS Programmer's Guide.
Network Programmer's Guide.

DIAGNOSTICS
If the ioetl system call returns with a value greater than 0, the lower 8 bits
of the return value will be one of the TI error codes as defined in
<sysjtiuser.h>. If the TI error is of type TSYSERR, then the next 8 bits of the
return value will contain an error as defined in <sysjerrno.h> [see intro(2)].

- 2 -

TIRDWR(7) (Networking Support Utilities) TIRDWR(7)

NAME
tirdwr - Transport Interface read/write interface STREAMS module

DESCRIPTION
tirdwr is a STREAMS module that provides an alternate interface to a tran­
sport provider which supports the Transport Interface (TI) functions of the
Network Services library (see Section 3N). This alternate interface allows a
user to communicate with the transport protocol provider using the read(2)
and write(2) system calls. The putmsg(2) and getmsg(2) system calls may
also be used. However, putmsg and getmsg can only transfer data messages
between user and stream.

The tirdwr module must only be pushed [see LPUSH in streamio(7)] onto a
stream terminated by a transport protocol provider which supports the TI.
After the tirdwr module has been pushed onto a stream, none of the Tran­
sport Interface functions can be used. Subsequent calls to TI functions will
cause an error on the stream. Once the error is detected, subsequent system
calls on the stream will return an error with errno set to EPROTO.

The following are the actions taken by the tirdwr module when pushed on
the stream, popped [see LPOP in streamio(7)] off the stream, or when data
passes through it.

push - When the module is pushed onto a stream, it will check any
existing data destined for the user to ensure that only regular
data messages are present. It will ignore any messages on the
stream that relate to process management, such as messages that
generate signals to the user processes associated with the stream.
If any other messages are present, the LPUSH will return an
error with errno set to EPROTO.

write -

read -

The module will take the following actions on data that ori­
ginated from a write system call:

- All messages with the exception of messages that contain
control portions (see the putmsg and getmsg system calls) will
be transparently passed onto the module's downstream
neighbor.

- Any zero length data messages will be freed by the module
and they will not be passed onto the module's downstream
neighbor.

- Any messages with control portions will generate an error,
and any further system calls associated with the stream will
fail with errno set to EPROTO.

The module will take the following actions on data that ori­
ginated from the transport protocol provider:

- All messages with the exception of those that contain control
portions (see the putmsg and getmsg system calls) will be tran­
sparently passed onto the module's upstream neighbor.

- The action taken on messages with control portions will be as
follows:

- 1 -

TIRDWR(7)

pop -

SEE ALSO

(Networking Support Utilities) TIRDWR(7)

+ Messages that represent expedited data will generate an
error. All further system calls associated with the stream
will fail with ermo set to EPROTO.

+ Any data messages with control portions will have the
control portions removed from the message prior to
passing the message on to the upstream neighbor.

+ Messages that represent an orderly release indication
from the transport provider will generate a zero length
data message, indicating the end of file, which will be
sent to the reader of the stream. The orderly release
message itself will be freed by the module.

+ Messages that represent an abortive disconnect indica­
tion from the transport provider will cause all further
write and putmsg system calls to fail with ermo set to
ENXIO. All further read and getmsg system calls will
return zero length data (indicating end of file) once all
previous data has been read.

+ With the exception of the above rules, all other mes­
sages with control portions will generate an error and
all further system calls associated with the stream will
fail with ermo set to EPROTO.

- Any zero length data messages will be freed by the module
and they will not be passed onto the module's upstream
neighbor.

When the module is popped off the stream or the stream is
closed, the module will take the following action:

- If an orderly release indication has been previously received,
then an orderly release request will be sent to the remote side
of the transport connection.

streamio(7), timod(7).
intro(2), getrnsg(2), putmsg(2), read(2), write(2), intro(3) in the Programmer's
Reference Manual.
STREAMS Primer.
STREAMS Programmer's Guide.
Network Programmer's Guide.

- 2 -

TP4(7) TP4(7)

NAME
tp4 - Intel ISO TC4 compatible TLI network device driver

DESCRIPTION
The files /dev/tp4-?? provide an interface between applications which use
the Transport Library Interface as specified in the Network Programmer's
Guide and the Intel SXM552/552A networking board running iNA961
Release 2.0 firmware. The Intel board provides ISO compatible networking
services for layers 1-4 including Transport Class 4 service. The tp4 devices
map this service to the Transport Library Interface.

The tp4 devices accept network addresses in three formats: SubnetId,
AreaId, and Release 1 Compatibility. These addressing formats are dis­
cussed in the iNA960/iNA961 Programmer's Reference Manual, Chapter
5.5. The addresses take the following forms for the tp4 devices:

SubnetId

AreaId

struct {
unsigned char
unsigned char
unsigned short
unsigned char
unsigned char
unsigned char
unsigned short
}

struct {

neLaddr-Ien;
neLafi;
neLsubnetno;
neLsubnetaddr[7];
neLnsap~d;
tsap-Ien;
tsap;

unsigned char neLaddr-Ien;
unsigned char neLafi;
unsigned char neLareaid[5];
unsigned char neLsubnetno;
unsigned char neLsubnetaddr[7];
unsigned char neLnsap~d;
unsigned char tsap-Ien;
unsigned short tsap;
}

Compatibility
struct {
unsigned char neLaddr-Ien;
unsigned char neLsubnetno[4];
unsigned char neLsubnetaddr[6];
unsigned short neLnsap~d;
unsigned char tsap-Ien;
unsigned short tsap;
}

/* either Oxa or Oxb .. /
/* always Ox49 .. /
/* dest. subnet id '" /
/* dest. host id, Oxfe .. /
/* optional - dest. nsap .. /
/* always Ox2 .. /
/* dest. tsap .. /

/* either Oxe or Oxf "'/ ...
/* always Ox49 '" /
/* dest. area id .. /
/* dest. subnet id "/
/* dest. host id, Oxfe .. /
/* optional - dest. nsap "/
/'" always Ox2 '" /
/" dest. tsap '" /

/* always Oxc '" /
/* always Ox1 .. /
/* dest. host id .. /
/* always Ox1 .. /
/* always Ox2 .. /
/* dest. tsap .. /

The minor device 0 is reserved for administrative operations. Any writes to
this device will be taken as download requests for the board. Some ioctls
can only be done to this device (see below).

- 1 -

TP4(7)

FILES

BUGS

TP4(7)

The device jdevjiso-tp4 is provided for use by most applications. This
name refers to the clone device entry for tp4 and will open any available
minor device number. See the Streams Programmer's Guide for more infor­
mation on clone opens.

The following ioctl(2) system calls are available:

Statistics
command = 1, arg must be a pointer to an array of integers
Returns the parameters specified in the i552-stat array defined in
sysjiSS2user.h.

Reset
command = 3, arg = ignored
Resets the board attached to the fildes; fildes must be the result of
opening minor device number O.

jdevjiso-tp4, jdevjtp4-??

This release of the iNA961 software is incompatible with previous releases.
The compatibility mode addressing allows application software compatibility
only.

There is no simple way to determine the board's hardware IEEE802 address
other than at machine boot.

Lbind(3N) will return addresses only in the SubnetId format.

SEE ALSO
STREAMS Programmer's Guide.

Network Programmer's Guide.

Intel iNA960jiNA961 Programmer's Reference Manual.

- 2 -

TTY(7) TTY(7)

NAME
tty - controlling terminal interface

DESCRIPTION

FILES

The file jdevjtty is, in each process, a synonym for the control terminal
associated with the process group of that process, if any. It is useful for
programs or shell sequences that wish to be sure of writing messages on the
terminal no matter how output has been redirected. It can also be used for
programs that demand the name of a file for output, when typed output is
desired and it is tiresome to find out what terminal is currently in use.

jdev jtty
jdev jtty*

SEE ALSO
console(7).

- 1 -

XT(7) (Base System) XT(7)

NAME
xt - multiplexed tty driver for AT&T windowing terminals

DESCRIPTION
The xt driver provides virtual tty(7) circuits multiplexed onto real tty(7) lines.
It interposes its own channel multiplexing protocol as a line discipline
between the real device driver and the standard tty(7) line disciplines.

Virtual tty(7) circuits are named by character-special files of the form
jdevjxt??? File names end in three digits, where the first two represent the
channel group and the last represents the virtual tty(7) number (0-7) of the
channel group. Allocation of a new channel group is done dynamically by
attempting to open a name ending in 0 with the O_EXCL flag set. After a
successful open, the tty(7) file onto which the channels are to be multi­
plexed should be passed to xt via the XTIOCLINK ioetl (2) request. After­
wards, all the channels in the group will behave as normal tty(7) files, with
data passed in packets via the real tty(7) line.

The xt driver implements the protocol described in xtproto(5) and in
layers (5). Packets are formatted as described in xtproto(5), while the con­
tents of packets conform to the description in layers(5).

There are three groups of ioet/(2) requests recognized by xt. The first group
contains all the normal tty ioetl(2) requests described in termio(7), with the
addition of the following:

TIOCEXCL Set exclusive use mode; no further opens are permitted
until the file has been closed.

TIOCNXCL Reset exclusive use mode; further opens are once again
permitted.

The second group of ioet/(2) requests concerns control of the windowing
terminal, and is described in the header file <sysjjioctl.h>. The requests
are as follows:

JTYPE, JMPX Both return the value JMPX . These are used to identify a
terminal device as an xt channel.

JBOOT, JTERM Both generate an appropriate command packet to the
windowing terminal affecting the layer associated with
the file descriptor argument to ioetl(2). They may return
the error code EIO if the system c/ist is empty.

JTIMO, JTIMOM JTIMO specifies the timeouts in seconds, and JTIMOM in
milliseconds. Invalid except on channel O. They may
return the error code EIO if the system c/ist is empty.

JWINSIZE Requires the address of a jwinsize structure as an argu­
ment. The window sizes of the layer associated with the
file descriptor argument to ioetl (2) are copied to the
structure.

JZOMBOOT Generate a command packet to the windowing terminal
to enter download mode on the channel associated with
the file descriptor argument to ioetl(2), like JBOOT; but
when the download is finished, make the layer a zombie

- 1 -

XT(7)

JAGENT

(Base System) XT(7)

(ready for debugging). It may return the error code EIO
if the system dist is empty.

Send the supplied data as a command packet to invoke a
windowing terminal agent routine, and return the
terminal's response to the calling process. Invalid except
on the file descriptor for channel O. See jagent(5). It
may return the error code EIO if the system dist is
empty.

The third group of ioctl(2) requests concerns the configuration of xt, and is
described in the header file <sys/xt.h>. The requests are as follows:

XTIOCTYPE Returns the value XTIOCTYPE.

XTIOCLINK Requires an argument that is a structure, xtioclm, contain­
ing a file descriptor for the file to be multiplexed and the
maximum number of channels allowed. Invalid except
on channel O. This request may return one of the follow­
ing errors:

EINVAL nchans has an illegal value.

ENOTTY fd does not describe a real tty(7) device.

ENXIO

EBUSY

linesw is not configured with xt.

An XTIOCLINK request has already been
issued for the channel group.

ENOMEM There is no system memory available for allo­
cating to the tty(7) structures.

EIO The JTIMOM packet described above could
not be delivered.

HXTIOCLINK Like XTIOCLINK, but specifies that ENCODING MODE be
used.

XTIOCTRACE Requires the address of a Tbuf structure as an argument.
The structure is filled with the contents of the driver
trace buffer. Tracing is enabled. This request is invalid if
tracing is not configured.

XTIOCNOTRACE Tracing is disabled. This request is invalid if tracing is
not configured.

XTIOCSTATS Requires an argument that is the address of an array of
size S.-NSTATS, of type Stats_t. The array is filled with
the contents of the driver statistics array. This request is
invalid if statistics are not configured.

XTIOCDATA Requires the address of a maximum-sized Link structure
as an argument. The structure is filled with the contents
of the driver Link data. This request is invalid if data
extraction is not configured.

- 2 -

XT(7)

FILES
jdev jxtj??[O-7]
j usr jinclude j sys jjioctl.h
jusrjincludejsysjxtproto.h
jusrjincludejsysjxt.h

(Base System)

multiplexed special files
packet command types
channel multiplexing protocol definitions
driver specific definitions

XT(7)

SEE ALSO
layers(l), termio(7), tty(7).

ioctl(2), open(2), libwindows(3X), jagent(5), layers(5) in the Programmer's
Reference Manual.

- 3 -

INTRO(8) INTRO(8)

NAME
intro - introduction to system maintenance procedures

DESCRIPTION
This section outlines certain procedures that will be of interest to those
charged with the task of system maintenance. Included are discussions of
such topics as boot procedures, recovery from crashes, file backups, etc.

SEE ALSO
Operations/System Administration Guide.

- 1 -

SYSDUMP(8) SYSDUMP(8)

NAME
sysdump - boot option to dump system memory image to floppy disk(s)

SYNOPSIS
sysdump

DESCRIPTION

FILES

The sysdump command dumps the system memory image to one or more
floppy disks depending on the size of memory and user request. This
memory image can later be analyzed by crash(lM). sysdump is invoked as a
boot option.

When booted, sysdump begins an interactive procedure that prompts the
user to insert the floppies to be loaded. The user has the option of quitting
the session any time. This allows only the portion of the system image
needed to be dumped.

The output of sysdump provides one input to crash(l). The other input is the
text file that was used to boot this system image. This is needed to provide
symbolic reference to the system dump. The text file must be manually
saved after the machine has been booted. If /unix was booted then this
should be dumped to floppy to accompany the system dump.

jdev jrdsk/fOd9dt-Normal density (360 kbytes) floppy device
jdev jrdiskjfOq15dt-High density (1.2 Mbytes) floppy device
/dev jrmtO-Cartridge device
junix -- the text file typically used to boot the machine
All of these devices may not be provided for every machine.

SEE ALSO
crash(lM).

DIAGNOSTICS
If a floppy diskette is inserted out of sequence, a message is printed. The
user is allowed to insert a new diskette and continue the session.

WARNINGS
It is critical to provide access to the text file used to boot the machine. This
file must be saved.

The diskettes should be labeled clearly so they can be loaded in the proper
sequence.

The sysdump(8) command is part of the kernel debugger. It does not work
without linking the kernel debugger to the UNIX system kernel.

- 1 -

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

