

©1987 AT&T
All Rights Reserved
Printed in USA

NOTICE
The information in this document is subject to change without notice. AT&T
assumes no responsibility for any errors that may appear in this document.

UNIX is a registered trademark of AT&T.

AT& T Products and Services
To order documents from the Customer Information Center:

• Within the continental United States, call 1-800-432-6600

• Outside the continental United States, call 1-317-352-8556

• Send mail orders to:

AT&T Customer Information Center
Customer Service Representative
P.O. Box 19901
Indianapolis, Indiana 46219

To sign up for UNIX system or AT&T computer courses:

• Within the continental United States, call 1-800-221-1647

• Outside the continental United States, call 1-609-639-4458

To contact marketing representatives about AT&T computer hardware pro­
ducts and UNIX software products:

• Within the continental United States, call 1-800-372-2447

• Outside the continental United States, call collect 1-215-266-2973 or
1-215-266-2975

iii

iv

To find out about UNIX system source licenses:

• Within the continental United States, except North Carolina, call 1-800-
828-UNIX

• In North Carolina and outside the continental United States, call
1-919-279-3666

• Or write to:

Software Licensing
Guilford Center
P.O. Box 25000
Greensboro, NC 27420

CONTENTS

Introduction
Overview
Conventions Used in This Document

Contents of the Release

Software Overview
CSDS

The C Programming Language Development Tools
Advanced Programming Tools and Utilities

Graphics Programming Utilities

Software Features
ctype(3C)
ctime(3C)
cftime(4)
Dynamic Tables
Referencing A Shared Library From Within A Shared Library
The #hide and #export Directives
Checking Shared Library Versions with chkshlib(l)
Proposed Standard for C

Installation Notes
Space Dependencies
Version Control

Software Notes

Compatibility
The Compiler and cc
cpp
Changes in C Library Functions
Environment Variables
The mkshlib Command

Future Directions

Documentation

Documentation Updates

TABLE OF CONTENTS

1
1
2

3

8
8
8

10
15

16
16
16
17
17
17
18
18
18

20
20
20

21

23
23
24
24
25
25

26

27

28

386 UNIX SYSTEM V RELEASE 3.1
SOFTWARE DEVELOPMENT SET

RELEASE NOTES

Introduction

Overview
These Release Notes contain information about the Software Development

Set (SDS) package. The SDS package is useful to programmers who:

• Want to develop C language programs

• Do extensive programming in the C language

• Want to enhance the efficiency of a C program written in a UNIX sys­
tem environment

• Need tools to do advanced programming and symbolic debugging

• Want to work with shared libraries

• Work in an environment where it is necessary to track and maintain
versions of files and programs

• Want to optimize and streamline developmeflt of interactive, character­
oriented, C application programs.

The 386 Software Development Set runs on a computer running 386 UNIX
System V Release 3.1.

RELEASE NOTES 1

Introduction -------------------------

The SDS software package is made up of two parts as follows:

• C Software Development Set (CSDS)

• Graphics Programming Utilities (GPU).

Conventions Used in This Document
In these Release Notes, certain typesetting conventions are followed when

command names, command line format, files, and directory names are
described. There are also conventions for displays of terminal input and out­
put.

• You must type words that are in bold font exactly as they appear.
Also, commands, filenames, and directory names appear in bold.

• Words in italics are variables; you substitute the appropriate values.
These values may be filenames or they may be data values.

• CRT or terminal output and examples of source code are presented in
constant-width font.

• In output and source code examples, a backslash (\) at the end of a line
indicates that the line wraps around without a break.

• A command name followed by a number, tor example, pro£(l), refers
you to that command's manual page, where the number refers to the
section of the manual. These manual pages appear in the UNIX System
V Programmer's Reference Manual unless otherwise noted.

2 UNIX SYSTEM V RELEASE 3.1

Contents of the Release

The Software Development Set (SDS) comes in one set of five diskettes
(four diskettes for CSDS and one diskette for GPU), the contents of which are
displayed in the following table.

Table 1: SDS Utilities

Directory Files

/bin ar cprs lorder
as dis make
cc dump mkshlib

(CSDS) chkshlib gencc nm
conv ld size
convert list strip

/etc install

(CSDS)

/lib basicblk crtn.o mcrtO.o
cm4defs libc.a mcrtl.o
comp libc_s.a optim

(CSDS) cpp libld.a pcrtl.o
crtO.o libm.a pcrtO.o
crtl.o libPW.a

/usr / add-on/include chartam.h pbf.h temp.h
form.h print.h track.h

(GPU)
kcodes.h subcurses.h wind.h
menu.h tam.h
message.h tamwin.h

/usr/add-on/include/sys font.h mouse.h window.h
(GPU) iohw.h signal.h

RELEASE NOTES 3

Contents of the Release ---------------------

Table 1: SDS Utilities (Continued)

Directory Files

jusrjbin admin delta saet
cb get sccsdiff
cdc lex sdb
cflow' lint tsort
comb lprof unget

(eSDS) cscope m4 val
etc prof vc
etcr prs what
efrace regcmp yacc
cxref- , rmdel

jusrjbin captoinfo infocmp tic
(GPU) tput

4 UNIX SYSTEM V RELEASE 3.1

--ContentsoftheRelease

Table 1: SDS Utilities (Continued)

Directory Files

jusrjinclude a.out.h malloc.h signal.h
aouthdr.h math.h stand.h
ar.h memory.h stdio.h
assert.h mnttab.h storclass.h
core.h mon.h string.h
ctype.h nan.h stropts.h
dial.h nlist.h strselect.h
dirent.h nsaddr.h syms.h
errno.h nserve.h sys.s

(CSDS)
fatal.h poll.h termio.h
fcntl.h prof.h time.h
filehdr.h pwd.h tp_defs.h
ftw.h regexp.h ttysrv.h
grp.h reloc.h unistd.h
ieeefp.h rje.h ustat.h
ldfcn.h scnhdr.h utmp.h
limits.h search.h values.h
linenum.h setjmp.h varargs.h
macros.h sgtty.h

jusrjinclude curses.h menu.h tiuser.h

(GPU)
eti.h panel.h unctrl.h
form.h term.h

RELEASE NOTES 5

Contents of the Release ---------------------

Table 1: SDS Utilities (Continued)

Directory Files

JusrJlib basicblk lintI llib-port
dag lint2 llib-port.1n
flip llib-Ie lpfx
libl.a llib-1c.ln nmf

(CSDS) libg.a llib-Im xepp
libmalloe.a llib-Im.ln xpass
libprof.a llib-Imalloe.l yaeepar
liby.a

JusrJlib liberypt.a llib-1curses llib-Imenu.ln
libform.a llib-Ieurses.a llib-Ipanel
libmenu.a llib-Ieurses.ln llib-Ipanel.ln

(GPU)
libpanel.a llib-lform llib-ltam
libtam.a llib-lform.ln llib-ltam.ln
libtermeap.a llib-Imenu tamhelp
libtermlib.a

JusrJlibJctraee runtime.e
(CSDS)

Jusr Jlib Jhelp ad co prs
bd de re

(CSDS)
eb default un
em ge ut
emds he ve

6 UNIX SYSTEM V RELEASE 3.1

--------------------- Contents of the Release

Table 1: SDS Utilities (Continued)

Directory Files

jusr jlib jlex neform nrform
(CSDS)

jusr jlib jlibp libc.a libm.a libmalloc.a
(CSDS)

jusr jlib jtabset 3101 std vt100
(GPU) beehive teleray xeroxl720

jusrjoptions csoftw.name
(CSDS)

jusrjoptions graphi.name terminf.name
(GPU)

jusrjsrcjlibjetijdemo formO.c form2.c menu1.c
(GPU) form1.c menuO.c

RELEASE NOTES 7

Software Overview

The SDS package has two major parts: the C software development set
(CSDS) and the graphics programming utilities (CPU). CSDS can be used for
developing, debugging, and improving the efficiency of C language programs.
CPU is a set of libraries that promotes fast development of screen manage­
ment applications. These two parts of the SDS package are discussed in the
following subsections.

CSDS
CSDS is a collection of tools and utilities that aid you in:

• Developing C language programs

• Advanced programming, symbolic debugging, and improving C
language program efficiency.

• Keeping a history of source code files by recording changes made to
these files along with comments on each version.

The C Programming Language Development Tools
The main C programming language development tool is the compiler, and

is called by the command cc. The other programming development tools dis­
cussed in this section are the C preprocessor, optimizer, assembler, link editor,
tools for manipulating object files, and libraries.

C Compiler
The C compiler supports the C language as specified in The C Program­

ming Language. The significant extensions to the language include the follow­
ing:

• Arbitrary length names for variables and function names

• Structure assignments and arguments

• Functions returning structure values

• Enumerated data types

• Multiple external variable declarations

• Assembly language escapes from C

8 UNIX SYSTEM V RELEASE 3.1

----------------------- Software Overview

• Insertion of arbitrary strings into object modules (useful for version con­
trol)

• Floating point support in conformance with the Standard for Binary
Floating-Point Arithmetic, ANSI/IEEE Std 754-1985

• Data type void

• Additional preprocessor directives.

ccCommand
The cc command, the major command of CSDS, calls the C compiler. The

cc command also controls the other phases of compilation, and, unless pro­
grammers use options to specify otherwise, cc automatically calls the C
preprocessor, assembler, and link editor phases. The command options have
many uses, such as suppressing the assembler or link editor or invoking the
optimizer. The cc command also passes some options to these other pro­
grams.

The cc command accepts files containing C source code as input. The
result of the compilation process is an executable module named a.out that
reflects the contents of the source files and any referenced library routines.
The cc command also accepts source files that contain assembly language code
as input and passes these files directly to the assembler.

C Preprocessor
The C preprocessor [cpp(l)] is automatically called whenever the cc com­

mand is given C source input. The preprocessor performs file inclusion and
macro substitution.

Optimizer
The optimizer, an optional component in the compilation process,

improves the efficiency of compiler-generated assembly language code. The
optimizer reduces the space requirements and speeds the execution time of the
resulting object code.

Assembler and Assembly Language
The assembler [as(l)] is available for developing applications that require

close interaction with hardware, such as those needed to handle input/output
devices and interrupts. The assembler converts assembly language code into a
relocatable object module composed of machine code and symbolic informa­
tion. This component provides assembly language programmers access to
predefined macros using the UNIX Operating System m4 macro processor.

RELEASE NOTES 9

Software Overview -----------------------

Link Editor
The link editor [ld(l)] combines relocatable object modules and libraries to

produce either an absolute, executable load module or a relocatable object file
for use in further link edits. Executable load modules are in the Common
Object File Format (COFF). The link editor performs relocation, resolves
external references, and incorporates symbolic debugging information into its
output file. It searches libraries to resolve all external references and only
loads library routines that define an unresolved external reference.

Tools for Manipulating Object Files
CSDS provides a variety of commands used to read and manipulate object

files. Here is a list of some utilities with brief descriptions of their use:

ar

cprs

dis

dump

lorder

nm

size

strip

Libraries

Groups files into a single, portable archive file commonly used
as a library

Compresses object files by removing duplicate structure and
union symbolic information

Disassembles object files to allow assembly level debugging

Prints selected parts of the named object files

Generates an ordered listing of object files for efficient library
link editing

Prints the symbolic information in an object file

Reports the number of bytes of text, initialized data, and unini­
tialized data (and their sum) included in an object module

Reduces file storage overhead by removing symbolic information
from an object file.

CSDS comes with libraries for object files, access to system calls,
input/output, string manipulation, mathematical functions, and memory allo­
cation.

Advanced Programming Tools and Utilities
The CSDS package contains an extensive set of tools useful for advanced

application programming, debugging, improving the efficiency of your pro­
grams, and aiding you in keeping track of the different versions of your pro­
grams.

10 UNIX SYSTEM V RELEASE 3.1

----------------------- Software Overview

Programming and Debugging Utilities
The programming utilities are specialized utilities helpful in the design

and development of application programs and systems. The following list
gives a short description of the major programming utilities.

cxref is a C cross-reference listing generator

ctrace is a statement-by-statement execution trace facility

cflow produces a graph of program dependencies

lint detects faulty and non-portable code

cb is a C code beautifier

regcmp compiles regular expressions

mkshlib(l) makes a shared library. Shared libraries are a feature of
UNIX System V Release 3.0, and beyond, that allow several
a.out files to simultaneously use the same object code.

chkshlib(l) checks a shared library

sdb(l) a symbolic debugger used to examine C language executable
files and core files and to provide a controlled environment
for their execution. When testing C language programs sym­
bolically, breakpoints can be set at executable lines of the
source code. These breakpoints force the program to pause
at the specified point so that an inspection can be made of
the current state of the program.

make(l)

lex(l)

yacc(l)

a tool that helps you build and maintain up-to-date versions
of programs. make simplifies the job of keeping track of
which files depend on other files, recently modified files,
files that need recompiling after changes, and the sequence
of operations needed to make a new version of a program.

a tool that generates programs to be used in simple lexical
analysis of text. The lex tool reads a file containing specifi­
cations of strings to be matched and associated C code.
Whenever the lexical analyzer produced by lex matches a
specified string in its input, it executes the associated C code.

a tool (Yet Another Compiler-Compiler) that accepts both an
LALR(l) grammar specification and associated C code frag­
ments that represent actions to be taken when a found

RELEASE NOTES 11

Software Overview -----------------------

grammar rule is reduced, and then produces a parser.

All of these utilities are described in the UNIX System V Programmer's
Guide and the UNIX System V Programmer's Reference Manual.

Productivity Utilities
The CSDS package has three utilities that can help an experienced pro­

grammer enhance the efficiency of a C program written in a UNIX Operating
System environment. These utilities are a browser called cscope and two pro­
filers, lprof and prof.

A browser is an interactive program that helps you examine source files
by searching for functions, function calls, macros, and variables that you
specify. When it finds them, the browser puts you into an editor at the speci­
fied location. Thus, instead of thumbing through a stack of printouts to learn
code or locate a bug, you can specify a function or text string and let the
browser find it. Then you have the option of examining that portion of code
or editing it. Whether you want to familiarize yourself with a program or edit
a source file, a browser can help you accomplish your task without your read­
ing the code line by line.

The browser in CSDS, designed for use with C code, is called cscope.
Programmers responsible for writing programs or maintaining existing pro­
grams will be able to edit their source code more efficiently with cscope. It is
especially helpful for a programmer working on someone else's code.

A profiler is a tool that performs dynamic analysis or analysis of a pro­
gram at run time; it accomplishes this in two phases. First, the profiler collects
data about the code while a program is being executed. Then it displays this
data in a readily accessible format. The profiler lprof provides line-by-line
frequency profiling, reporting how many times each line of source code is exe­
cuted. To obtain a more representative sample of program performance, you
can run a program profiled with lprof more than once and then merge the
data from the multiple runs. This information can be useful in every stage of
software development: designing, prototyping, coding, testing, debugging,
and maintenance.

The profiler lprof can also be used to determine which lines of source
code are executed and how much of the code is exercised. These types of out­
put can be obtained by using the -x option and the -s option, respectively.
These options are convenient for programmers who are interested only in exe­
cution coverage and who do not need the additional information that lprof
normally provides. For example, if you are developing a test suite and want

12 UNIX SYSTEM V RELEASE 3.1

----------------------- Software Overview

to find out how much code is actually tested by your test suite, run lprof with
either the -x or -s option, depending on the level of detail you want.

Another eSDS profiler you may find useful is prof. The prof profiler
reports the amount of time spent in various parts of a program during execu­
tion. The use of prof is not required for using lprof, but by using these pro­
filers together you can increase the efficiency of lprof. The prof profiler
allows you to identify the most time-consuming parts of a program. By run­
ning lprof on only those parts of code, you can avoid generating uninforma­
tive output while targeting sections of code that need pruning. It is therefore
recommended that you use prof and lprof together.

To use these utilities, you must know how to use eSDS in the UNIX sys­
tem environment. These utilities do not modify code for you; they enable you
to find parts of code that deserve further work on your part. For programmers
who have not compiled e code or used eSDS before, the basics are covered in
the UNIX System V Programmer's Guide.

Source Code Control Utilities
A subset of the eSDS utilities, sometimes called the source code control

system (SeeS), is specifically designed for source code control. These utilities
can be used to record all enhancements and changes to files, along with com­
ments on each version, thus maintaining a history of the changes made. The
major sees functions include:

• Retrieving any recorded version of a file with comments

• Storing a new version of a file

• Comparing two versions of an sees file.

sees takes custody of a file, and, when changes are made, identifies and
stores them in the file with the original source code and/or documentation.
As other changes are made, they too are identified and retained in the file.
Each separate set of changes is called a delta. History data can be stored with
each version: why the changes were made, who made them, when they were
made, etc.

Retrieval of the original or any set of changes is possible. Any version of
the file as it develops can be reconstructed for inspection or additional modifi­
cation.

RELEASE NOTES 13

Software Overview -----------------------

Here is a list of sces commands.

get

unget

delta

admin

prs

sad

help

rmdel

Retrieves versions of SCCS files.

Undoes the effect of a get -e prior to the file being delta'd.

Applies deltas (changes) to SCCS files and creates new ver­
sions.

Initializes SCCS files, manipulates their descriptive text, and
controls delta creation rights.

Prints portions of an SCCS file in user specified format.

Prints information about files that are currently out for edit.

Gives explanations of error messages.

Removes a delta from an SCCS file. Allows removal of del­
tas created by mistake.

cdc Changes the commentary associated with a delta.

what Searches any UNIX Operating System file(s) for all
occurrences of a special pattern and prints out what follows
that pattern. Useful in finding identifying information
inserted by the get command.

sccsdiff Shows differences between any two versions of an SCCS
file.

comb Combines consecutive deltas into one to reduce the size of
an sces file.

val Validates an SCCS file.

vc Is a filter that may be used for version control.

For instructions on how to use SCCS and detailed descriptions of SCCS com­
mands, see the "Source Code Control System" Chapter in the UNIX System V
Programmer's Guide.

14 UNIX SYSTEM V RELEASE 3.1

----------------------- Software Overview

Graphics Programming Utilities
GPU is a set of libraries that promote fast development of screen manage­

ment applications. The GPU libraries are a software tool that enable you to
incorporate screen management and data entry capabilities into your pro­
grams. GPU contains the following libraries:

• Curses/Terminfo Low Level Function Library: This library consists of
routines for writing character oriented screen management applications
independent of the terminal type. Basic routines are provided for writ­
ing to a screen, reading from a screen and building windows.
Advanced features are used to change screen attributes, draw line
graphics and work with more than one terminal. A major new feature
is the incorporation of color. You can specify both the background
color for each character and the color of the character itself.

• High-Level Function Libraries: The high level function libraries are built
on top of curses. They consist of functions that create, manipulate, and
display panels, forms, and menus.

- Panels: A panel is a rectangular area containing a curses window
that may be displayed in whole or in part on the terminal. Panels
provide a depth relationship between curses windows. Panels
which are logically below other panels are properly obscured.

- Forms: A form is a mUlti-page display that contains a set of fields.
These fields may be used for data entry, labels, or messages. You
can customize the look and behavior of a form or field. The rich
set of form commands includes the following: inter-field and intra­
field navigation, field editing, data entry, and validation.

- Menus: A menu is a display presenting a collection of items. The
end-user can select one or more items and this information is avail­
able to the application. You can customize the look and behavior
of a menu. Menu commands are provided for item navigation,
menu scrolling, and item matching.

• Terminal Acces Method (TAM) Transition Library: The TAM Transition
Library enables character mode applications developed for the UNIX
PC using TAM to run on other processor/terminal configurations. The
library maps TAM calls to curses routines.

RELEASE NOTES 15

Software Features

The CSDS package supports character classification and conversion and
international date and time formats. The ctype(3C), ctime(3C) and cftime(4)
routines have been modified as described in the following subsections. Also,
the dynamic tables of the CSDS components comp (compiler) and as (assem­
bler) are described. Other CSDS features discussed in the following subsec­
tions include referencing a shared library from within a shared library, the
#hide and #export directives, checking shared library versions with
chkshlib(l), and a proposed C language standard.

ctype(3C)
The classification of characters (what constitutes alphabetic, printable,

upper or lower case) varies from language tg language. The ctype(3C) library
routines that are used to classify character-coded integer values have been
enhanced to recognize other code sets or classifications. Among these is the
routine setchrclass(3C), which is a new routine used to initialize the character
classification and conversion table. It is invoked at program startup and can
be invoked directly from users' programs. This means the character set
specific table can change dynamically.

ctime(3C)
The ctime(3C) routines allow the user to manipulate date and time for­

mats. Several new library functions (cftime, ascftime, and an enhanced tzset)
have been added to ctime(3C). These routines support the following features:

• The ability to specify fractional time zones

• The ability to specify start and end dates and times of alternate time
zones

• The ability to specify time and date formats with new format field
descriptors

• The ability to specify native language translations of month and week­
day names.

16 UNIX SYSTEM V RELEASE 3.1

----------------------- Software Features

cftime(4)
The cftime(4) manual page describes how to create language specific files.

These files contain detailed information such as full and abbreviated month
names, full and abbreviated weekday names, and default local time and date
formats.

For more information on how to use these features, see ctime(3C),
ctype(3C), cftime(4), and environ(5) in the UNIX System V Programmer's
Reference Manual.

Dynamic Tables
Though the C language tends to encourage small functions and source

files, some existing applications contained very large source files that failed to
compile under previous issues of CSDS because of the fixed size of some

. tables in the compilation system. In this issue, the tables in the compiler
(flib/comp) and the assembler (fbin/as) are allocated dynamically.

In the compiler, successful compilation is no longer constrained by the
number of symbols, the number of cases in a switch, the number of arguments
to a function, etc., except as limited by the amount of memory on your
machine. Similarly, the assembler's constraint on the number of symbols has
been removed.

Referencing A Shared Library From Within A
Shared Library

At times you might need to allow one shared library to directly reference
routines in another shared library. One way to do this is with imported sym­
bols. Another way is to reference routines in one shared library from another
shared library; use the keyword nolo ad, with the #objects directive in the
shared library specification file. When the #objects nolo ad directive is used,
the mkshlib command will search the libraries listed for unresolved refer­
ences. You will want to use this feature only when you cannot import sym­
bols explicitly.

RELEASE NOTES 17

Software Features -----------------------

The #hide and #export Directives
Two directives, #hide and #export, can be used in the library specifica­

tion file to control the visibility of external symbols.

Checking Shared Library Versions with
chkshlib(1)

The chkshlib(l) command allows you to compare versions of shared
libraries to see if they are compatible. This command accepts various combi­
nations of executable files, target shared libraries, and host shared libraries as
input and tells you if the library versions are compatible, or if the specified
executable could have been built by or can run with the specified host or tar­
get shared library.

For more information about shared libraries, see the chapter on shared
libraries in the UNIX System V Programmer's Guide. The UNIX System V
Programmer's Reference Manual contains more information about chkshlib(l)
and mkshlib(l).

Proposed Standard for C
As these Release Notes were published, no official standard for the C pro­

gramming language existed. The language accepted by AT&T C compilers fol­
lows the definition given in The C Programming Language by B. Kernighan and
D. Ritchie (Prentice-Hall, 1978). The CSDS package also supports the follow­
ing extensions .

• Flexnames

This extension allows variable and function name tokens to be distinct
to at least the first 100 characters (rather than the first 8 characters).

• Structure assignments and return values

This extension allows variables of the same structure type to be
assigned to one another. The return value of functions can also be a
structure.

18 UNIX SYSTEM V RELEASE 3.1

------------------------ Software Features

• Enumeration types

• Multiple external variable declarations

This extension makes it possible to have the declaration

int i;

in multiple source files. All these multiple references resolve to the
same address at link edit time.

Currently the X3/J11 task force of the American National Standards Insti­
tute (ANSI) is defining a standard for the C language (Draft Proposed Ameri­
can National Standard for Information Systems - Programming Language C,
October 1986). The standard proposed by ANSI will allow most current legal
C programs to be compiled without any changes. Nevertheless, to ease the
possible transition process to the standard, the AT&T C compiler included
with CSDS warns about the use of some constructs that may not be legal in
the future or may cause portability problems. The following are examples of
such constructs.

• Declarations, such as,

int i;
static int i;

produce the warning message

warning: i previously declared extern, becomes static.

• Structure definitions missing semicolons, such as
struct x {

int i
}

produce the warning message

warning: syntax requires; at end of struct/union decl

RELEASE NOTES 19

Installation Notes

The following text describes the space dependencies and version control as
relates to the installation of the 50S package. For complete installation pro­
cedures, see the Operations/System Administration Guide.

Space Dependencies
The 50S package is installed using the installpkg(l) command. The

installpkg(l) command checks to determine that sufficient free space is avail­
able in the root and jusr file systems. You need approximately 7,600 blocks
(512-bite blocks) of memory to install the 50S package.

Version Control
The C software development set portion of the 50S package uses a per

file method of version control. If the file being installed already exists on the
system and has a release number greater than the file belonging to the pack­
age being installed, the existing file will not be overwritten. Files without
valid release information are assumed to be older than those belonging to the
package being installed.

20 UNIX SYSTEM V RELEASE 3.1

Software Notes

This section offers some tips on using the SOS package and some software
workarounds that enhance the usability of the package.

1. Functions of type float or double need to be declared in scope whether
or not their return values are being used.

2. Elements of type char will be sign extended. For zero extension,
unsigned char must be used.

3. If you are compiling your programs with the -g option enabled so that
you can do debugging, it is advisable NOT to use the -0 option as
well. In some cases, the two options invoked jointly will produce
multiply defined labels. In addition, you should not use -0 when
compiling -ql because this in turn turns .on the -g flag.

4. The default response to the invalid operation, divide by zero, and
overflow exceptions is to take a trap. This behavior may be altered by
using the fpsetmask(3) function.

5. When an Intel 80287 coprocessor is installed, use of denormalized
floating point numbers results in a core dump. The problem is that the
80287 chip does not normalize a denormal number when it is loaded
and produces an invalid operation exception when a denormal number
is stored to memory. If such problems are encountered, one work­
around is to enable the denormalized operand exception and provide a
signal handler which normalizes a denormal number. This signal
handler must also recognize any other enabled traps (signals).

6. Without an Intel 80287 or 80387 coprocessor installed, the floating
. point emulator incorrectly returns 0 rather than NaN for any operation
on NaN.

7. The IEEE 754 standard for floating point (IEEE Standard for binary
Floating-Point Arithmetic, ANSI/IEEE Std. 754-1985) allows several
different methods for detecting overflow. As a result, you should not
rely on a particular implementation to signal overflow for a particular
operation.

RELEASE NOTES 21

SofhuareNotes--

8. Floating point comparisons where one operand is a NaN always result
in an invalid operation exception. This is because the Intel 80287
lacks an instruction to make this comparison without getting the
exception.

9. dis(l) and sdb(l) do not recognize the Intel 80387 specific instructions.

10. pipe(2) - The documentation states that the maximum number of
bytes in a pipe (PIPE~AX) is defined to be 5120 bytes. The system
sets PIPE_MAX to 10240.

11. ioct1(2) - The V -ADDBAD command (notifies the device drivers of
bad sectors) in ioctl(2) updates only the table currently in memory and
does not update the table on the hard disk. Therefore, all the changes
made using ioctl(2) with V _ADD BAD will be lost when the system is
rebooted. Also, if an assigned alternate sector goes bad, there is no
way to recover.

12. ioctl(2) - The V_GETPARMS command in ioctl(2) returns the
incorrct number of sectors for a 360KB device. The number of sectors
reported is 1440; however, the correct value is 720.

22 UNIX SYSTEM V RELEASE 3.1

Compatibility

This section describes the changes made in this issue of the SDS package
that may have an effect on the compatibility of your programs.

The Compiler and cc
The following compatibility notes concern changes made to the CSDS cc

command or the compiler, comp, in this issue of the SDS. These notes apply
only if you are porting C programs compiled on an AT&T compilation system
(release number less than 4.1) for a different machine.

• The -B and -t options have been removed from the cc command. Pre­
vious releases printed a warning message that these options would
disappear.

• The handling of aggregate initialization has been changed to conform to
the definition given by Kernighan and Ritchie. Initialization where all
braces are specified or where only the outermost braces are specified
continues to work as before.

• cc and comp can no longer take the address of a label.

The following illegal C code will no longer compile:

f {){
int i;

lab:
i = (int) &lab;

}

• Bad structure code, such as the following, is disallowed:

taking the address of the return value of
a function which returns a structure:

pst = &(stcall{»;

using a function return value as an L-value:

stcall{) = *pst;

taking the address of a structure assignment:

pst = &(st1=st2);

RELEASE NOTES 23

Compatibility -------------------------

cpp
The following change was made to cpp in this issue of the SDS .

• A missing or invalid macro name in ifdef, ifndef, undef, or
define is now a fatal error.

For example:

#ifdef 202
#undef
#undef 1abc

Changes in C Library Functions
The following list describes changes made to functions in the C library in

this issue of the SDS.

ctime(3C) An a.out compiled with previous versions of the ctime func­
tions when used with some new legal TZ values will give
unexpected results.

ctime(3C) ctime now defaults to GMT if TZ is not set.

In previous releases it defaulted to EST.

fgets(3S) A call to £gets on a write-only file returns NULL. In earlier
releases, fgets always returned the address of the buffer passed
to it.

fread(3S), fwrite(3S)

The fread and fwrite functions return zero when size is zero
or huge.

In an earlier release, these two functions always returned
nitems. size and count are multiplied to give the number of
bytes to be transferred. If the result is larger than the remain­
ing bytes of the file or is not representable within the precision
of an integer, fewer items will be read than requested and the
number of items actually read will be returned.

24 UNIX SYSTEM V RELEASE 3.1

------------------------- Compatibility

scanf(3S) Calls to scanf now return EOF on end-of-file. In an earlier
release, scanf erroneously returned zero.

Environment Variables
The variables CFTIME, CHRCLASS, and LANGUAGE are environment

variables in CSDS. Setting them may cause C library functions to change
their behavior. Also, the TZ environment variable may be interpreted dif­
ferently. The following table lists the library functions affected by these vari­
ables.

Function Environment Variables

dime
isalnum
isalpha
iscntrl
isdigit
isgraph
islower
isprint
ispund
isupper
localtime
tolower
toupper

The mkshlib Command

TZ
CHRCLASS
CHRCLASS
CHRCLASS
CHRCLASS
CHRCLASS
CHRCLASS
CHRCLASS
CHRCLASS
CHRCLASS

TZ
CHRCLASS
CHRCLASS

Uninitialized external variables (common symbols) are illegal in a shared
library. Previously the use of common symbols was discouraged by both the
documentation and a mkshlib warning message. This warning message is
now a fatal error.

RELEASE NOTES 25

Future Directions

This section describes areas of the SDS product that are likely to change in
future releases.

1. It is likely that some of the functions defined in libPW will be
removed in a future release of this product. If you have any code that
relies on libPW, AT&T recommends that you reimplement it using
existing functions in the standard C library or that you retain copies of
the libPW functions that you need.

2. The list(l) command will be removed in a future release of this pro­
duct.

3. AT&T expects, in a future releases of the SDS, to support the ANSI
Standard for the C language once the standard is accepted. That stan­
dard introduces the keywords const, signed, and volatile. Program­
mers should therefore avoid using these words as identifiers in pro­
grams.

4. A major feature of the graphics programming utilities (GPU) is the
ability to turn on and off any of several video attributes, such as bold,
dim, blinking, underlining, reverse video, and others. Future enhance­
ments of GPU will include additional video attributes that enable your
programs to use the color capabilities of a wide range of terminals.

5. In keeping with AT&T's ongoing internationalization of the UNIX
Operating System, future users will be able to use GPU with key­
boards using foreign language character sets, such as Kanga.

26 UNIX SYSTEM V RELEASE 3.1

Documentation

Essential documentation is provided with the SDS software package when
purchased. Additional sets of the Software Development documentation (of
which these Release Notes are a part) are available and can be ordered. Con­
tact your AT&T Sales Representative/authorized dealer or see the Documenta­
tion Roadmap for more details. The Documentation Roadmap can be ordered
separately by using the 9-digit number 999-300-427.

RELEASE NOTES 27

Documentation Updates

The following pages represent last minute changes made to the
Programmer's Reference Manual (UNIX System V Release 3.1, Version 1). These
change pages should be inserted into the Programmer's Reference Manual per
the instructions found on the following page.

28 UNIX SYSTEM V RELEASE 3.1

UNIX SYSTEM V RELEASE 3.1
VERSION 1

PROGRAMMER'S REFERENCE MANUAL
UPDATE TO ISS. 1

This update involves the following actions:

l. ACTION: Replace INTRO(l) page IjINTRO(l) page 2 with the new
page.

2. ACTION: Replace CC(l) page 2jCC(1) page 3 with the new page.

3. ACTION: Replace CHKSHLIB(l) page 2jCOMB(1) page 1 with the
new page.

4. ACTION: Replace COMB(1) page 2jCONV(1) page 1 with the new
page.

S. ACTION: Replace CPRS(l) page IjCSCOPE(l) page 1 with the new
page.

6. ACTION: Replace CSCOPE(l) page 2jCSCOPE(1) page 3 with the
new page.

7. ACTION: Replace LPROF(l) page IjLPROF(l) page 2 with the new
page.

8. ACTION: Replace LPROF(l) page 3jM4(1) page 1 with the new
page.

9. ACTION: Replace MKSHLIB(l) page IjMKSHLIB(l) page 2 with the
new page.

10. ACTION: Replace MKSHLIB(l) page 3jMKSHLIB(1) page 4.with the
new page.

Page 1

11. ACTION: Replace LOGINLOG(4) page I/MDEVICE(4) page 1 with
the new page.

12. ACTION: Replace MDEVICE(4) page 2/MDEVICE(4) page 3 with the
new page.

13. ACTION: Replace MTUNE(4) page I/PASSWD(4) page 1 with the
new page.

14. ACTION: Replace STUNE(4) page I/SYMS(4) page 1 with the new
page.

Page 2

INTRO(l) INTRO(l)

NAME
intro - introduction to programming commands

DESCRIPTION
This section describes, in alphabetical order, commands available for your
computer. The top of each page indicates the utilities package to which the
command belongs. The packages are:

Base System
C Software Development Set
Graphics Programming Utilities

NOTE: The Base System commands (IV) are Form and Menu Language
Interpreter (FMU). They are delivered with the Base System but are typi­
cally used by programmers. See the Programmer's Guide for more informa­
tion.

COMMAND SYNTAX
Unless otherwise noted, the commands described accept options and other
arguments according to the following syntax:

name [option(s)] [cmdarg(s)]

where:

name

option

is the name of an executable file

is - noargletter(s) or
- argletter<>optarg

where:

noargletter is a single letter representing an option without an
option-argument

argletter is a single letter representing an option requiring an
option-argument

<> is optional white space

optarg is an option-argument (character string) satisfying the
preceding argletter.

cmdarg is a path name (or other command argument) not beginning with
"-", or "-" by itself indicating the standard input.

Throughout the manual pages there are references to TMPDIR, BINDIR,
INCDIR, LIBDIR, and LLIBDIR. These represent directory names whose
value is specified on each manual page as necessary. For example, TMPDIR
might refer to jtmp or jusrjtmp. These are not environment variables and
cannot be set. [There is also an environment variable called TMPDIR
which can be set. See tmpnam(3S).]

SEE ALSO
exit(2), wait(2), getopt(3C).

getopts(l) in the User'sjSystem Administrator's Reference Manual.

Programmer's Guide.

- 1 -

INTRO(l) INTRO(l)

DIAGNOSTICS
Upon termination, each command returns two bytes of status, one supplied
by the system and giving the cause for termination, and (in the case of
"normal" termination) one supplied by the program [see wait(2) and
exit(2)]. The former byte is 0 for normal termination; the latter is cus­
tomarily 0 for successful execution and non-zero to indicate troubles such as
erroneous parameters, or bad or inaccessible data. It is called variously
"exit code", "exit status", or "return code", and is described only where
special conventions are involved.

WARNINGS
Some commands produce unexpected results when processing files contain­
ing null characters. These commands often treat text input lines as strings
and therefore become confused upon encountering a null character (the
string terminator) within a line.

- 2 -

CC(l) (C Software Development Set) CC(l)

-qp Arrange for profiled code to be produced where the p argument
produces identical results to the -p option [allows profiling with
prof(l»).

-ql Arrange for code to be produced which will collect line-by-line
statement coverage of the program [allows profiling with /prof(l»).
This option must be used when compiling a C source file, and when
link editing multiple source files.

-E Run only cpp(l) on the named C programs, and send the result to
the standard output.

-H Print out on stderr the path name of each file included during the
current compilation.

-0 Do compilation phase optimization. This option will not have any
effect on .8 files.

-p Run only cpp(l) on the named C programs and leave the result in
corresponding files suffixed.i. This option is passed to cpp(l).

-5 Compile and do not assemble the named C programs, and leave the
assembler-language output in corresponding files suffixed .8.

-V Print the version of the compiler, optimizer, assembler and/or link
editor that is invoked.

-Wc,argl[,arg2 ...]
Hand off the argument[s] a'rgi to pass c where c is one of [p02al)
indicating the preprocessor, compiler, optimizer, assembler, or link
editor, respectively. For example: -Wa,-m passes -m to the assem­
bler.

- Y [p02aI5ILU],dirname
Specify a new path name, dirname, for the locations of the tools and
directories designated in the first argument. [p02aI5ILU] represents:

p preprocessor
o compiler
2 optimizer
a assembler
1 link editor
5 directory containing the start-up routines
1 default include directory searched by cpp(l)
L first default library directory searched by /d(l)
U second default library directory searched by /d(l)

If the location of a tool is being specified, then the new path name
for the tool will be dirname/too/. If more than one -Y option is
applied to anyone tool or directory, then the last occurrence holds.

The cc command also recognizes -C, -D, -I, and -U and passes these
options and their arguments directly to the preprocessor without using the
-W option. Similarly, the cc command recognizes -a, -I, -m, -r, -8, -t, -U,

-x, -Z, -L, -M, and -V and passes these options and their arguments
directly to the loader. See the manual pages for cpp(l) and /d(l) for
descriptions.

- 2 -

CC(l)

FILES

(C Software Development Set) CC(l)

Other arguments are taken to be C compatible object programs, typically
produced by an earlier cc run, or perhaps libraries of C compatible routines
and are passed directly to the link editor. These programs, together with
the results of any compilations specified, are link edited (in the order given)
to produce an executable program with name a.out unless the -0 option of
the link editor is used.

If the cc command is put in a file prefixcc the prefix will be parsed off the
command and used to call the tools, i.e., prefixtool. For example, OLDcc
will call OLDcpp, OLDcomp, OLDoptim, OLDas, and OLDld and will link
OLDcrtl.o. Therefore, one MUST be careful when moving the cc command
around. The prefix will apply to the preprocessor, compiler, optimizer,
assembler, link editor, and the start-up routines.

The C language standard was extended to allow arbitrary length variable
names. The option pair "-Wp,-T -WO,-XT" will cause cc to truncate arbi­
trary length variable names.

file.c
file.i
file. 0

file.s
a.out
LIBDIRj*crtl.o
LIBDIRj crtn.O
TMPDIRj*
LIBDIRjcpp
LIBDIRjcomp
LIBDIRjoptim
BINDIRjas
BINDIRjld
LIBDIRjlibc.a
LIBDIRjlibC---1l.a

LIBDIR is usually jlib.
BINDIR is usually jbin.

C source file
preprocessed C source file
object file
assembly language file
link edited output
start-up routine
start-up routine
temporary files
preprocessor, cpp(l)
compiler
optimizer
assembler, as(l)
link editor, /d(l)
standard C library
standard C shared library

TMPDIR is usually jusrjtmp but can be redefined by setting the environ­
ment variable TMPDIR [see tempnam() in tmpnam(3S)].

SEE ALSO
as(I), ld(I), cpp(I), gencc(lM), lint(l), prof(l), sdb(l), tmpnam(3S).

Kernighan, B. W., and Ritchie, D. M., The C Programming Language,
Prentice-Hall, 1978.

DIAGNOSTICS

NOTES

The diagnostics produced by the C compiler are sometimes cryptic.

By default, the return value from a compiled C program is completely ran­
dom. The only two guaranteed ways to return a specific value is to expli­
citly call exit(2) or to leave the function main() with a "return expression;"
construct.

- 3 -

CHKSHLIB(l) CHKSHLIB(l)

If both input files are target libraries and the -n option is set, the output
states if the first file references symbols in the second file (" includes" the
second).

Compatibility of all other combinations of host shared libraries, target
shared libraries, and executable files has no useful meaning and these other
combinations of files are not accepted as valid input to chkshlib.

SEE ALSO
mkshlib(l).
"Shared Libraries" chapter in the UNIX System V Programmer's Guide.

DIAGNOSTICS
Exit status is 0 if no incompatibilities are found, 1 if an incompatibility is
found, and 2 if a processing error occurs.

CAVEAT
chkshlib requires that you use the -i option whenever you use the -n option.

Standard binaries distributed with the UNIX system are stripped and
chkshlib cannot be used with them.

- 2 -

eOMB(l) (e Software Development Set) eOMB(l}

NAME
comb - combine sees deltas

SYNOPSIS
comb [-0] [~s] [-pSID] [-clist] files

DESCRIPTION

FILES

The comb command generates a shell procedure [see sh(1)] which, when
run, will reconstruct the given sees files. The reconstructed files will,
hopefully, be smaller than the original files. The arguments may be speci­
fied in any order, but all key letter arguments apply to all named sees files.
If a directory is named, comb behaves as though each file in the directory
were specified as a named file, except that non-sees files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of the
input is taken to be the name of an sees file to be processed; non-sees
files and unreadable files are silently ignored. The generated shell pro­
cedure is written on the standard output.

The keyletter arguments are as follows. Each is explained as though only
one nam~d file is to be processed, but the effects of any key letter argument
apply independently to each named file.

-0 For each get -e generated, this argument causes the recon­
structed file to be accessed at the release of the delta to be
created, otherwise the reconstructed file would be accessed at the
most recent ancestor. Use of the -0 keyletter may decrease the
size of the reconstructed sees file. It may also alter the shape of
the delta tree of the original file.

-s This argument causes comb to generate a shell procedure which,
when run, will produce a report giving, for each file: the file
name, size (in blocks) after combining, original size (also in
blocks), and percentage change computed by:

-pSID

100 * (original - combined) / original

It is recommended that before any sees files are actually com­
bined, one should use this option to determine exactly how
much space is saved by the combining process.

The sees IDentification string (SID) of the oldest delta to be
preserved. All older deltas are discarded in the reconstructed
file.

-clist A list [see get(l) for the syntax of the list] of deltas to be
preserved. All other deltas are discarded.

If no keyletter arguments are specified, comb will preserve only leaf deltas
and the minimal number of ancestors needed to preserve the tree.

s.eOMB
comb?????

The name of the reconstructed sees file.
Temporary.

- 1 -

COMB(l) (C Software Development Set) COMB(l)

SEE ALSO
admin(l), delta(l), get(l), prs(l), sccsfile(4).

help(l), sh(l) in the User'sjSystem Administrator's Reference Manual.

DIAGNOSTICS
Use he/p(1) for explanations.

BUGS
The comb command may rearrange the shape of the tree of deltas. It may
not save any space; in fact, it is possible for the reconstructed file to actually
be larger than the original.

- 2 -

CONV(l) (C Software Development Set) CONV(l)

NAME
conv - common object file converter

SYNOPSIS
cony [-a] [-0] [-p] -t target [- : files]

DESCRIPTION
The conv command converts object files in the common object file format
from their current byte ordering to the byte ordering of the target machine.
The converted file is written to file.v. The conv command can be used on
either the source (sending) or target (receiving) machine.

Command line options are:

Indicates that the names of files should be read from the
standard input.

-a If the input file is an archive, produce the output file in the
UNIX System V Release 2.0 portable archive format.

-0

-p

-t target

If the input file is an archive, produce the output file in the old
(pre- UNIX System V) archive format.

If the input file is an archive, produce the output file in the
UNIX System V Release 1.0 random access archive format.

Convert the object file to the byte ordering of the machine
(target) to which the object file is being shipped. This may be
another host or a target machine. Legal values for target are:
pdp, vax, ibm, x86, b16, n3b, mc68, and m32.

The conv command is meant to ease the problems created by a multi-host
cross-compilation development environment. The conv command is best
used within a procedure for shipping object files from one machine to
another.

The conv command will recognize and produce archive files in three for­
mats: the pre- UNIX System V format, the UNIX System V Release 1.0 ran­
dom access format, and the UNIX System V Release 2.0 portable ASCII for­
mat. By default, conv will create the output archive file in the same format
as the input file. To produce an output file in a different format than the
input file, use the -a, -0, or -p option. If the output archive format is the
same as the input format, the archive symbol table will be converted, other­
wise the symbol table will be stripped from the archive. The ar(l) com­
mand with its -t and -8 options must be used on the target machine to
recreate the archive symbol table.

EXAMPLE
To ship object files from a VAX computer sytem to a 3B2 computer, execute
the following commands:

conv -t m32 *.out

uucp *.out.v my3b2r jrjej

- 1 -

CPRS(l) (C Software Development Set) CPRS(l)

NAME
cprs - compress a common object file

SYNOPSIS
cprs [-p) filel file2

DESCRIPTION
The cprs command reduces the size of a common object file, filel, by
removing duplicate structure and union descriptors. The reduced file, file2,
is produced as output.

The sale option to cprs is:

-p Print statistical messages including: total number of tags, total dupli­
cate tags, and total reduction of filel.

SEE ALSO
strip(l), a.out(4), syms(4).

- 1 -

CSCOPE(l) (C Software Development Set) CSCOPE(l)

NAME
cscope - interactively examine a C program

SYNOPSIS
cscope [-f ref file 1 [-i namefile 1 [[-I incdir II [-d 1 [files 1

DESCRIPTION
cscope is an interactive screen-oriented tool that helps programmers browse
through C source code.

By default, cscope examines the C, yacc, and lex source files in the current
directory and builds a symbol cross-reference. It then uses this table to find
references to symbols (including C preprocessor symbols), function declara­
tions, and function calls.

cscope builds the symbol cross-reference the first time it is used on the
source files for the program being browsed. On a subsequent invocation,
cscope rebuilds the cross-reference only if a source file has changed or the
list of source files is different. When the cross-reference is rebuilt, the data
for the unchanged files are copied from the old cross-reference, which
makes rebuilding much faster than the initial build.

The following options can appear in any combination:

-f reffile
Use reffile as the cross-reference file name instead of the default
cscope.out.

-i namefile
Get the list of files (file names separated by spaces, tabs, or new­
lines) to browse from namefile. If this option is specified, cscope
ignores any files appearing on the command line.

-I incdir
Look in incdir (before looking in INCDIR, the standard place for
header files that is normally jusrjinc1ude) for any #inc1ude files
whose names do not begin with j and that are not specified on the
command line or in namefile above. (The #inc1ude files may be
specified with either double quotes or angle brackets.) The incdir
directory is searched in addition to the current directory (which is
searched first) and the standard list (which is searched last). If more
than one occurrence of -I appears, the directories are searched in
the order they appear on the command line.

-d Do not update the cross-reference.

Requesting the Initial Search
After the cross-reference is ready escope will display this menu:

List references to this C symbol:
Edit this function or #define:
List functions called by this function:
List functions calling this function:
List lines containing this text string:
Change this text string:

- 1 -

CSCOPE(l) (C Software Development Set) CSCOPE(l)

Press the TAB key repeatedly to move to the desired input field, type the
text to search for, and then press the RETURN key.

Issuing Subsequent Requests
If the search is successful, any of these single-character commands can be
used:

1-9
SPACE
+

e
>

Edit the file referenced by the given line number.
Display next lines.
Display next lines.
Display previous lines.
Edit all lines.
Append the displayed list of lines to a file.

At any time these single-character commands can also be used:

TAB Move to next input field.
RETURN Move to next input field.
m Move to next input field.
p Move to previous input field.

Search with the last text typed.
r Rebuild the cross-reference.

! Start an interactive shell (type -d to return to eseope).
-1 Redraw the screen.
? Display this list of commands.
-d Exit eseope.

Note: If the first character of the text to be searched for matches one of the
above commands, escape it by typing a \ (backslash) first.

Substituting New Text for Old Text
After the text to be changed has been typed, escope will prompt for the new
text, and then it will display the lines containing the old text. Select the
lines to be changed with these single-character commands:

1-9 Mark or unmark the line to be changed.
* Mark or unmark all displayed lines to be changed.
SPACE Display next lines.
+ Display next lines.

Display previous lines.
a Mark all lines to be changed.
-d Change the marked lines and exit.
ESCAPE Exit without changing the marked lines.

Start an interactive shell (type -d to return to eseope).
-L Redraw the screen.
? Display this list of commands.

ENVIRONMENT VARIABLES
EDITOR Preferred editor, which defaults to vi(l).
HOME Home directory, which is automatically set at login.
SHELL Preferred shell, which defaults to sh(l).
TERM Terminal type, which must be a screen terminal.
VIEWER Preferred file display program [such as pg(l)], which overrides

EDITOR (see above).

- 2 -

CSCOPE(l) (C Software Development Set) CSCOPE(l)

VPATH

FILES
cscope.out

ncscope.out

INCDIR

An ordered list of directory names, separated by colons. It can
be used by escape to search for both source and header files, but
the two types of files have different orders of search. If VPA TH
is set, escape searches for source files in the directories specified;
if it is not set, escape searches only in the current directory.
escape searches for header files in the following order: (1) if
VP A TH is set, in directories specified in VP A TH and if VP A TH is
not set, in the current directory; (2) in directories specified by
the -I option (if they exist); and (3) in the standard location for
header files (normally jusrjinclude).

Symbol cross-reference file, which is put in the home direc­
tory if it cannot be created in the current directory.
Temporary file containing new cross-reference before it
replaces the old cross-reference.
Standard directory for #include files (usually is
jusrjinclude).

WARNINGS
escape recognizes function definitions of the form:

where:

[name

blank

args

[name blank (args) white arg_dees white {

is the function name,

is zero or more spaces or tabs, not including newlines,

is any string that does not contain a " or a newline,

white is zero or more spaces, tabs, or new lines, and

arg_dees are zero or more argument declarations. arg_dees may include
comments and white space.

It is not necessary for a function declaration to start at the beginning of a
line. The return type may precede the function name; escape will still recog­
nize the declaration. Function definitions that deviate from this form will
not be recognized by escape.

- 3 -

LPROF(l) (C Software Development Set) LPROF(l)

NAME
lprof - display line-by-line execution count profile data

SYNOPSIS
lprof [-p] [-s] [-x] [[-I incdir II [[-r srcfile II [-c cntfile] [-0 prog]
Iprof -m file1.cnt file2.cnt [[filen.cnt II [-T] -d destfile.cnt

DESCRIPTION
Iprof is a tool for dynamic analysis; that is, the analysis of a program at run
time. Specifically, Iprof identifies the most frequently executed parts of
source code and parts of code that are never executed.

Iprof interprets a profile file (prog.cnt by default) produced by the profiled
program prog (a.out by default) that has been compiled with the -qi option
of cc(l). This cc command option arranges for code to be inserted to record
run-time behavior and for data to be written to a file at the end of execu­
tion.

By default, Iprof prints a listing of source files (the names of which are
stored in the symbol table of the executable file), each line preceded by its
line number (in the file) and the number of times it was executed.

The following options may appear singly or be combined in any order:

-p Print listing, each line preceded by the line number and the number
of times it was executed (default). This option can be used together
with the -s option to print both the source listing and summary
information.

-s Print summary information of percentage of lines of code executed
per function.

-x Instead of printing the execution count numbers for each line, print
each line preceded by its line number and a [U] if the line was not
executed. If the line was executed, print only the line number.

-I incdir
Look for source or header files in the directory incdir in addition to
the current directory and the standard place for #include files (usu­
ally jusrjinclude). You can specify more than one directory with
-Ion one command line.

-r srefile
Instead of printing all source files, print only those files named in -r
options (to be used with the -p option only). You can specify mul­
tiple files with -r on one command line.

-c cntfile
Use the file cntfile instead of prog.cnt as the input profile file.

-0 prog Use the name of the program prog instead of the name used when
creating the profile file. Because the program name stored in the
profile file contains the relative path, this option is necessary if the
executable file or profile file has been moved.

- 1 -

LPROF(l) (C Software Development Set) LPROF(l)

Merging Data Files
lprof can also be used to merge data files. The -m option must be accom­
panied with the -d option:

-m filel.cnt file2.cnt [filen.cnt] -d destfile.cnt
Merge the data files filet.cnt through filen.cnt by summing the exe­
cution counts per line, so that data from several runs can be accu­
mulated. The result is written to destfile.cnt. The data files must
contain profiling data for the same prog (see the -T option below).

- T Time stamp override. Normally, the time stamps of the executable
files being profiled are checked, and data files will not be merged if
the time stamps do not match. If -Tis specified, this check is
skipped.

Controlling the Run Time Profiling Environment
The environment variable PROF OPTS provides run time control over profil­
ing. When a profiled program is about to terminate, it examines the value
of PROFOPTS to determine how the profiling data is to be handled.

The environment variable PROFOPTS is a comma-separated list of options
interpreted by the program being profiled. If PROFOPTS is not defined in
the environment, then the default action is taken: the profiling data is
saved in a file (with the default name, prog.cnt) in the current directory. If
PROFOPTS is set to the null string, no profiling data is saved. The follow­
ing are the available options:

msg=[yln]
If msg=y is specified, a message stating that profile data is being
saved is printed to stderr. If msg=n is specified, print only profiling
error messages. The default is msg=y.

merge=[yl nJ
If merge=n is specified, do not merge data files after successive
runs. The data file is overwritten after each execution. If merge=y
is specified, the data will be merged. The merge will fail if the pro­
gram has been recompiled; the data file will be left in TMPDIR. The
default is merge=n.

pid=[ylnJ
If pid=y is specified, the name of the data file will include the pro­
cess ID of the profiled program. This allows the creation of dif­
ferent data files for programs calling fork(2). If pid=n is specified,
the default name is used. The default is pid=n.

dir=dirname
Place the data file in the directory dirname if this option is speci­
fied. Otherwise, the data file is created in the directory that is
current at the end of execution.

file=filename
Use filename as the name of the data file in dir created by the pro­
filed program if this option is specified. Otherwise, the default
name is used.

- 2 -

LPROF(l) (C Software Development Set) LPROF(l)

FILES
prog.cnt
TMPDIR/*

for profile data
temporary files

TMPDIR is usually /usr/tmp, but can be redefined by setting the environ­
ment variable TMPDIR [see tempnam() in tmpnam(3S)].

SEE ALSO
cc(l), prof(l), fork(2), tmpnam(3S).

WARNINGS
For the -m option, if destfile.ent exists, its previous contents are destroyed.

Optimizing functions may result in the loss of some line number informa­
tion and may result in code motions, both of which may make [prof infor­
mation unreliable.

Different parts of one line of a source file may be executed different
numbers of times (e.g., the for loop below); the count corresponds to the
first part of the line. For example, in the following for loop

1 [8] for (j = 0; j < 5; j++)
5 [9] sub(j);

line 8 consists of three parts. The line count listed, however, is for the ini­
tialization part, Le., j = o.
[prof incorrectly handles the statement immediately following a for loop
containing a single if statement. In the following example, line 8 is exe­
cuted only once.

[5] for (i = o· i < 3· i++) , ,
3 [6] if (i > 3)
0 [7] x = i· ,
3 [8] i = O· ,

This problem can be solved by adding curly braces, as follows:

1 [5] for (i = 0; i < 3; i++) {
3 [6] if (i > 3)
o [7] x = i;
3 [8]
1 [9] i O· ,

[prof then handles the statement following the for loop correctly.

[prof does not provide execution information about case statements contain­
ing only a break statement, or about return statements without a value.

1 [4] switch (i) {

o [8]

case 0:
break;

default:
i = 0;

[11] if (i != 0)
return;

- 3 -

M4(1) (C Software Development Set) M4(1)

NAME
m4 - macro processor

SYNOPSIS
m4 [options] [files]

DESCRIPTION
The m4 command is a macro processor intended as a front end for Ratfor,
C, and other languages. Each of the argument files is processed in order; if
there are no files, or if a file name is -, the standard input is read. The pro­
cessed text is written on the standard output.

The options and their effects are as follows:

-e Operate interactively. Interrupts are ignored and the output is
unbuffered.

-s Enable line sync output for the C preprocessor (#line ...)

-Hint Change the size of the push-back and argument collection buffers
from the default of 4,096.

-Hint Change the size of the symbol table hash array from the default of
199. The size should be prime.

-Sint Change the size of the call stack from the default of 100 slots.
Macros take three slots, and non-macro arguments take one.

-Tint Change the size of the token buffer from the default of 512 bytes.

To be effective, these flags must appear before any file names and before
any -D or -U flags:

-Dname[=val]
Defines name to valor to null in val's absence.

-Una me
Undefines name.

Macro calls have the form:

name(arg1,arg2, ... , argn)

The (must immediately follow the name of the macro. If the name of a
defined macro is not followed by a (, it is deemed to be a call of that macro
with no arguments. Potential macro names consist of alphabetic letters,
digits, and underscore _, where the first character is not a digit.

Leading unquoted blanks, tabs, and new-lines are ignored while collecting
arguments. Left and right single quotes are used to quote strings. The
value of a quoted string is the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching
for a matching right parenthesis. If fewer arguments are supplied than are
in the macro definition, the trailing arguments are taken to be null. Macro
evaluation proceeds normally during the collection of the arguments, and
any commas or right parentheses which happen to turn up within the value
of a nested call are as effective as those in the original input text. After
argument collection, the value of the macro is pushed back onto the input
stream and rescanned.

- 1 -

MKSHLIB(l) (C Software Development Set) MKSHLIB(l)

NAME
mkshlib - create a shared library

SYNOPSIS
mk8hlib -8 specfil -t target [-h host] [-n] [-L dir ...] [-q]

DESCRIPTION
mkshlib builds both the host and target shared libraries. A shared library is
similar in function to a normal, non-shared library, except that programs
that link with a shared library will share the library code during execution,
whereas programs that link with a non-shared library will get their own
copy of each library routine used.

The host shared library is an archive that is used to link-edit user programs
with the shared library [see ar(4)]. A host shared library can be treated
exactly like a non-shared library and should be included on cc(l) command
lines in the usual way [see cc(l)]. Further, all operations that can be per­
formed on an archive can also be performed on the host shared library.

The target shared library is an executable module that is bound into the
user's address space during execution of a program using the shared library.
The target shared library contains the code for all the routines in the library
and must be fully resolved. The target will be brought into memory during
execution of a program using the shared library, and subsequent processes
that use the shared library will share the copy of code already in memory.
The text of the target is always shared, but each process will get its own
copy of the data.

The user interface to mkshlib consists of command line options and a shared
library specification file. The shared library specification file describes the
contents of the shared library.

The mkshlib command invokes other tools such as the archiver, ar(l), the
assembler, as(l), and the link editor, Id(l). Tools are invoked through the
use of execvp [see exec(2)], which searches directories in the user's PATH.
Also, prefixes to mkshlib are passed in the same manner as prefixes to the
cc(1) command, and invoked tools are given the prefix, where appropriate.
For example, i386mkshlib will invoke i3861d.

The following command line options are recognized by mkshlib:

-8 specfil Specifies the shared library specification file, specfil. This file
contains the information necessary' to build a shared library.
Its contents include the branch table specifications for the tar­
get, the path name in which the target should be installed, the
start addresses of text and data for the target, the initialization
specifications for the host, and the list of object files to be
included in the shared library (see details below).

-t target Specifies the output filename of the target shared library being
created. It is assumed that this file will be installed on the tar­
get machine at the location given in the specification file (see
the #target directive below). If the -n option is used, then a
new target shared library will not be generated.

- 1 -

MKSHLIB(l)

-h host

-n

-L dir ...

-q

(C Software Development Set) MKSHLIB(l)

Specifies the output filename of the host shared library being
created. If this option is not given, then the host shared
library will not be produced.

Do not generate a new target shared library. This option is
useful when producing only a new host shared library. The-t
option must still be supplied since a version of the target
shared library is needed to build the host shared library.

Change the algorithm of searching for the host shared libraries
specified with the #objects nolo ad directive to look in dir
before looking in the default directories. The -L option can be
specified multiple times on the command line in which case
the directories given with the -L options are searched in the
order given on the command line before the default directories.

Quiet warning messages. This option is useful when warning
messages are expected but not desired.

The shared library specification file contains all the information necessary to
build both the host and target shared libraries. The contents and format of
the specification file are given by the directives listed below.

All directives that can be followed by multi-line specifications are valid until
the next directive or the end of the file.

#address sectname address
Specifies the start address, address, of section sectname for the
target. This directive typically is used to specify the start
addresses of the .text and .data sections. One #address per
section name is valid. A #address directive must be given
exactly once for the .text section and once for the .data sec­
tion. See the table in the section "The Building Process" in
the "Shared Libraries" chapter of the UNIX System V
Programmer's Guide for standard addresses.

#target pathname

#branch

Specifies the absolute path name, pathname, at which the tar­
get shared library will be installed on the target machine. The
operating system uses this pathname to locate the shared
library when executing a.out files that use this shared library.
This directive must be specified exactly once per specification
file.

Specifies the start of the branch table specifications. The lines
following this directive are taken to be branch table specifica­
tion lines.

Branch table specification lines have the following format:

funcname <white space> position

where funcname is the name of the symbol given a branch
table entry and position specifies the position of funcname's
branch table entry. position may be a single integer or a range

- 2 -

MKSHLIB(l)

#objects

(C Software Development Set) MKSHLIB(l)

of integers of the form positionl-position2. Each position must
be greater than or equal to one, the same position can not be
specified more than once, and every position, from one to the
highest given position must be accounted for.

If a symbol is given more than one branch table entry by asso­
ciating a range of positions with the symbol or by specifying
the same symbol on more than one branch table specification
line, then the symbol is defined to have the address of the
highest associated branch table entry. All other branch table
entries for the symbol can be thought of as II empty II slots and
can be replaced by new entries in future versions of the shared
library. Only functions should be given branch table entries,
and those functions must be external symbols.

This directive must be specified exactly once per shared library
specification file.

The lines following this directive are taken to be the list of
input object files in the order they are to be loaded into the
target. The list simply consists of each path name followed by
a newline character. This list is also used to determine the
input object files for the host shared library, but the order for
the host is given by running the list through lorder(l) and
tsort(l).

This directive must be specified exactly once per shared library
specification file.

#objects noload
The #objects nolo ad is followed by a list of host shared
libraries. These libraries are searched in the order listed to
resolve undefined symbols from the library being built. Dur­
ing the search it is considered an error if a non-shared version
of a symbol is found before a shared version of the symbol.

Each name given is assumed to be a pathname to a host or an
argument of the form -IXwhere libX.a is the name of a file in
LIBDIR or LLIBDIR. This behavior is identical to that of ld ,
and the -L option can be used on the command line to specify
other directories in which to locate these archives.

Note that if a host shared library is specified using #objects
noload, any cc command that links to the shared library being
built will need to specify that host also.

#hide linker [*)
This directive changes symbols that are normally external into
static symbols, local to the library being created. A regular
expression may be given [sh(l), find(l»), in which case all
external symbols matching the regular expression are hidden;
the #export directive (see below) can be used to counter this
effect for specified symbols.

- 3 -

MKSHLIB(l) (C Software Development Set) MKSHLIB(l)

FILES

The optional " .. " is equivalent to the directive

#hide linker ..
and causes all external symbols to be made into static sym­
bols.

All symbols specified in #init and #branch directives are
assumed to be external symbols, and cannot be changed into
static symbols using the #hide directive.

#export linker [*]

#init object

#ident string

TEMPDIR/*

Symbols given in the #export directive are external symbols
(global among files) that, because of a regular expression in a
#hide directive, would otherwise have been made static. For
example,

#hide linker ..
#export linker

one
two

causes all symbols except one, two, and those used in #branch
and #init entries to be tagged as static.

Specifies that the object file, object, requires initialization code.
The lines following this directive are taken to be initialization
specification lines.

Initialization specification lines have the following format:

ptr <white space> import

ptr is a pointer to the associated imported symbol, import, and
must be defined in the current specified object file, object. The
initialization code generated for each such line is of the form:

ptr = &import;

All initializations for a particular object file must be given once
and multiple specifications of the same object file are not
allowed.

Specifies a string, string, to be included in the .comment sec­
tion of the target shared library.

Specifies a comment. All information on the line beginning
with ## is ignored.

temporary files

TEMPDIR is usually /usr/tmp but can be redefined by setting the environ­
ment variable TMPDIR [see tempnamO in tmpnam(3S)].

- 4 -

LOGINLOG(4) (C Software Development Set) LOGINLOG(4)

NAME
jusrjadmjloginlog - log of failed login attempts

DESCRIPTION

FILES

After five unsuccessful login attempts, all the attempts are logged in the
loginlog file. This file contains one record for each failed attempt. Each
record contains the following information:

login name
tty specification
time

This is an ASCII file. Each field within each entry is separated from the next
by a colon. Each entry is separated from the next by a new-line.

By default, loginlog does not exist, so no logging is done. To enable log­
ging, the log file must be created with read and write permission for owner
only. Owner must be root and group must be sys.

jusr j admjloginlog

SEE ALSO
login(l), passwd(l), passwd(lM) in the User'sjSystem Administrator's Refer­
ence Manual.

- 1 -

MDEVICE(4) MDEVICE(4)

NAME
mdevice - file format.

SYNOPSIS
mdevice

DESCRIPTION
The mdevice file is included in the directory / etc / cant / cf.d. It includes a
one-line description of each device driver and configurable software module
in the system to be built [except for file system types, see mtsys(4)]. Each
line in mdevice represents the Master file component from a Driver Software
Package (DSP) either delivered with the base system or installed later via
idinstall.

Each line contains several whitespace-separated fields; they are described
below. Each field must be supplied with a value or a '-' (dash).

1. Device name: This field is the internal name of the device or module,
and may be up to 8 characters long. The first character of the name
must be an alphabetic character; the others may be letters, digits, or
underscores.

2. Function list: This field is a string of characters that identify driver
functions that are present. Using one of the characters below requires
the driver to have an entry point (function) of the type indicated. If
no functions in the following list are supplied, the field should contain
a dash.

o - open routine

c - close routine

r - read routine

w - write routine

i - ioctl routine

s - startup routine

x - exit routine

f - fork routine

e - exec routine

I - init routine

Note that if the device is a 'block' type device (see field 3. below), a
strategy routine and a print routine are required by default.

3. Characteristics at driver: This field contains a set of characters that
indicate the characteristics of the driver. If none of the characters
below apply, the field should contain a dash. The legal characters for
this field are:

i-The device driver is installable.

c - The device is a 'character' device.

- 1 -

MDEVIC~(4)

b - The device is a 'block' device.

t - The device is a tty.

o - This device may have only one sdevice entry.

MDEVICE(4)

r - This device is required in all configurations of the Kernel.
This option is intended for drivers delivered with the base
system only. Device nodes (special files in the jdev direc­
tory), once made for this device, are never removed. See
idmknod.

S - This device driver is a STREAMS module.

H - This device driver controls hardware. This option distin­
guishes drivers that support hardware from those that are
entirely software (pseudo-devices).

G - This device does not use an interrupt though an interrupt is
specified in the sdevice entry. This is used when you wish to
associate a device to a specific device group.

o - This option indicates that the IDA range of this device may
overlap that of another device.

4. Handler prefix: This field contains the character string prepended to all
the externally-known handler routines associated with this driver. The
string may be up to 4 characters long.

5. Block Major number: This field should be set to zero in a DSP Master
file. If the device is a 'block' type device, a value will be assigned by
idinstall during installation.

6. Character Major number: This field should be set to zero in a DSP
Master file. If the device is a 'character' type device (or 'STREAMS'
type), a value will be assigned by idinstall during installation.

7. Minimum units: This field is an integer specifying the minimum
number of these devices that can be specified in the sdevice file.

8. Maximum units: This field specifies the maximum number of these
devices that may be specified in the sdevice file. It contains an integer.

9. DMA channel: This field contains an integer that specifies the DMA
channel to be used by this device. If the device does not use DMA,
place a '-1' in this field.

SPECIFYING STREAMS DEVICES AND MODULES
STREAMS modules and drivers are treated in a slightly different way from
other drivers in all UNIX systems, and their configuration reflects this differ­
ence. To specify a STREAMS device driver, its mdevice entry should con­
tain both an'S' and a 'c' in the characteristics field (see 3. above). This indi­
cates that it is a STREAMS driver and that it requires an entry in the UNIX
kernel's cdevsw table, where STREAMS drivers are normally configured into
the system.

A STREAMS module that is not a device driver, such as a line discipline
module, requires an'S' in the characteristics field of its mdevice file entry,
but should not include a 'c', as a device driver does.

- 2 -

MDEVICE(4) MDEVICE(4)

SEE ALSO
mfsys(4), sdevice(4).

idinstall(lm) in the User'sjSystem Administrator's Reference Manual.

- 3 -

MTUNE(4) MTUNE(4)

NAME
mtune - file format.

SYNOPSIS
mtune

DESCRIPTION
The mtune file contains information about all the system tunable parame­
ters. Each tunable parameter is specified by a single line in the file, and
each line contains the following whitespace-separated set of fields:

1. parameter name: A character string no more than 20 characters long.
It is used to construct the preprocessor n#define's n that pass the value
to the system when it is built.

2. default value: This is the default value of the tunable parameter. If
the value is not specified in the stune file, this value will be used when
the system is built.

3. minimum value: This is the minimum allowable value for the tunable
parameter. If the parameter is set in the stune file, the configuration
tools will verify that the new value is equal to or greater than this
value.

4. maximum value: This is the maximum allowable value for the tunable
parameter. If the parameter is set in the stune file, the configuration
tools will check that the new value is equal to or less than this value.

The file mtune normally resides in /etc/conf/cf.d. However, a user or an
add-on package should never directly edit the mtune file to change the set­
ting of a system tunable parameter. Instead the idtune command should be
used to modify or append the tunable parameter to the stune file.

In order for the new values to become effective the UNIX system kernel
must be rebuilt and the system must then be rebooted.

SEE ALSO
stune(4).

idbuild(1m), idtune(1m) in the User's/System Administrator's Reference
Manual.

- 1 -

PASSWD(4) PASSWD(4)

NAME
passwd - password file

DESCRIPTION

FILES

passwd contains for each user the following information:

login name
dummy password
numerical user ID
numerical group ID
GCOS job number, box number, optional GCOS user ID
initial working directory
program to use as shell

This is an ASCII file. Each field within each user's entry is separated from
the next by a colon. The GCOS field is used only when communicating
with that system, and in other installations can contain any desired informa­
tion. Each user is separated from the next by a new-line. If the shell field
is null, the default shell is used.

This file has user login information, and has general read permission. It can
therefore be used, for example, to map numerical user IDs to names.

The dummy password field consists of the character x. This field remains
only for compatibility reasons.

jetcjpasswd
jetcjshadow

SEE ALSO
getpwent(3C), group(4).

passwd(l), passwd(lM), login(l) in the User'sjSystem Administrator's Refer­
ence Manual.

- 1 -

STUNE(4) STUNE(4)

NAME
stune - file format.

SYNOPSIS
stune

DESCRIPTION
The stune file contains local system settings for tunable parameters. The
parameter settings in this file replace the default values specified in the
mtune file, if the new values are within the legal range for the parameter
specified in mtune. The file contains one line for each parameter to be reset.
Each line contains two whitespace-separated fields:

1. parameter name: This is the name of the tunable parameter used in the
mtune file.

2. value: This field contains the new va'tue for the tunable parameter.

The file stune normally resides in jetcjconfjcf.d. However, a user or an
add-on package should never directly edit the stune file. Instead, the idtune
command should be used.

In order for the new values to become effective the UNIX kernel must be
rebuilt and the system must then be rebooted.

SEE ALSO
mtune(4).

idbuild(lm), idtune(lm) in the User'sjSystem Administrator's Reference
Manual.

- 1 -

SYMS(4) SYMS(4)

NAME
syms - common object file symbol table format

SYNOPSIS
#include <syms.h>

DESCRIPTION
Common object files contain information to support symbolic software test­
ing [see sdb(l)]. Line number entries, linenum(4), and extensive symbolic
information permit testing at the C source level. Every object file's symbol
table is organized as shown below.

File name 1.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 1.

File name 2.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 2.

Defined global symbols.
Undefined global symbols.

The entry for a symbol is a fixed-length structure. The members of the
structure hold the name (null padded), its value, and other information.
The C structure is given below.

#define SYMNMLEN 8
#define FILNMLEN 14
#define DIMNUM 4

struct syment
{

union /* all ways to get symbol name * /
{

char
struct

_n-flame[SYMNMLEN]; /* symbol name * /

{
long
long

} _n_n;
char

} -fl;
long

_I1-zeroes;
_n_offset;

*-fl_nptr[2];

I1-value;

- 1 -

/* == OL when in string table * /
/* location of name in table * /

/* allows overlaying */

/* value of symbol * /

