ATsTl

386 UNIX® System V
Release 3.1

Programmer’s Reference Manual

©1987 AT&T
All Rights Reserved
Printed in USA

NOTICE

The information in this document is subject to change without notice. AT&T
assumes no responsibility for any errors that may appear in this document.

DEC is a trademark of Digital Equipment Corporation.
DIABLO is a registered trademark of Xerox Corporation.
DOCUMENTER’S WORKBENCH is a trademark of AT&T.

HP is a trademark of Hewlett-Packard Co.

PDP is a trademark of Digital Equipment Corporation.
TEKTRONIX is a registered trademark of Tektronix, Inc.
TELETYPE, UNIX, and WE are registered trademarks of AT&T.
VAX is a trademark of Digital Equipment Corporation.
VERSATEC is a registered trademark of Versatec, Inc.

AT&T Products and Services

To order documents from the Customer Information Center:

® Within the continental United States, call 1-800-432-6600

@ Outside the continental United States, call 1-317-352-8556

® Send mail orders to:

AT&T Customer Information Center
Customer Service Representative
P.O. Box 19901

Indianapolis, Indiana 46219

To sign up for UNIX system or AT&T computer courses:

® Within the continental United States, call 1-800-221-1647

@ Outside the continental United States, call 1-609-639-4458

To contact marketing representatives about AT&T computer hardware
products and UNIX software products:

@ Within the continental United States, call 1-800-372-2447

@ Outside the continental United States, call collect 1-215-266-2973 or
1-215-266-2975

iii

To find out about UNIX system source licenses:

@ Within the continental United States, except North Carolina, call 1-
800-828-UNIX

@ In North Carolina and outside the continental United States, call
1-919-279-3666

o Or write to:

Software Licensing
Guilford Center

P.O. Box 25000
Greensboro, NC 27420

Introduction

uol}onpou|

Introduction

This manual describes the programming features of the UNIX system. For
more information on UNIX System V, see the available documentation listed in
the UNIX System V Documentation Roadmap.

Not all commands, features, and facilities described in this manual are
available in every UNIX system. Some of the features require additional utili-
ties which may not exist on your system.

This manual is divided into five sections, some containing subsections.

1. Commands
2. System Calls
3. Subroutines:
3C. C Programming Language Libraries
3S. Standard I/O Library Routines
3M. Mathematical Library Routines
3N. Networking Support Utilities
3X. Specialized Libraries
4. File Formats
5. Miscellaneous Facilities.

Section 1 (Commands) describes commands that support C and other pro-
gramming languages.

Section 2 (System Calls) describes the services provided by the UNIX sys-
tem kernel, including the C language interface.

Section 3 (Subroutines) describes available subroutines. Their binary ver-
sions reside in various system libraries in the directories /lib and /usr/lib.
See intro(3) for descriptions of these libraries and the files in which they are
stored.

Section 4 (File Formats) documents the structure of particular kinds of
files; for example, the format of the output of the link editor is given in
a.out(4). Excluded are files used by only one command (for example, the
assembler’s intermediate files). In general, the C language structures
corresponding to these formats can be found in the directories /usr/include
and /usr/include/sys.

Section 5 (Miscellaneous Facilities) contains a variety of things. Included
are descriptions of character sets, macro packages, etc.

INTRODUCTION 1

Introduction

References with numbers other than those above mean that the utility is
contained in the appropriate section of another manual. References with (1) or
(1IM) following the command mean that the utility is contained in this manual
or the User’s/System Administrator’s Reference Manual. Those followed by (7)
or (8) are contained in the User’s/System Administrator’s Reference Manual.

Each section consists of a number of independent entries of a page or so.
Entries within each section are alphabetized, with the exception of the intro-
ductory entry that begins each section (also Section 3 is in alphabetical order
by suffixes). Some entries may describe several routines, commands, etc. In
such cases, the entry appears only once, alphabetized under its “primary”
name, the name that appears at the upper corners of each manual page.

All entries are based on a common format, not all of whose parts always

appear:

B The NAME part gives the name(s) of the entry and briefly states its pur-
pose.

B The SYNOPSIS part summarizes the use of the program being
described. A few conventions are used, particularly in Section 2 (Sys-
tem Calls):

[m]

a

Boldface strings are literals and are to be typed just as they appear.

Italic strings usually represent substitutable argument prototypes
and program names found elsewhere in the manual.

Square brackets [] around an argument prototype indicate that the
argument is optional. When an argument prototype is given as
“name’”’ or “file,” it usually refers to a file name.

Ellipses ... are used to show that the previous argument prototype
may be repeated.

A final convention is used by the commands themselves. An argu-
ment beginning with a minus - or plus + is often taken to be some
sort of flag argument, even if it appears in a position where a file
name could appear. Therefore, it is unwise to have files whose
names begin with - or +.

B The DESCRIPTION part describes the utility.

B The EXAMPLE(S) part gives example(s) of usage, where appropriate.

2 PROGRAMMER'S REFERENCE MANUAL

Introduction

The FILES part gives the file names that are built into the program.
The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic messages that may be
produced. Messages that are intended to be self-explanatory are not
listed.

The NOTES part gives generally “helpful hints”” about the use of the
utility.

The WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and deficiencies.

The CAVEATS part gives details of the implementation that might
affect usage.

A "Table of Contents" and a "Permuted Index" derived from that table
precede section 1. The "Permuted Index" is a list of keywords, given in the
second of three columns, together with the context in which each keyword is
found. Keywords are either topical keywords or the names of manual entries.
Entries are identified with their section numbers shown in parentheses. This
is important because there is considerable duplication of names among the
sections, arising principally from components that exist only to exercise a par-
ticular system call. The right column lists the name of the manual page on
which each keyword may be found. The left column contains useful informa-
tion about the keyword.

INTRODUCTION 3

Table of Contents

S1U31U0) JO 3|qel

TABLE OF CONTENTS

1. Commands

intro(1) introduction to programming commands
admin(1)0 0000 create and administer SCCS files
ar(l) 0L archive and library maintainer for portable archives
- 1) common assembler
cb(1) . .o e e e e e e e C program beautifier
< (0 C compiler
ccoff(1) . v v v v s e e e e e e e e e e e e e e e e e e . convert a COFF file
cde(1) . . v oo s e e e e e change the delta commentary of an SCCS delta
cdlow(l) o s generate C flowgraph
chkshlib(1) oo o 00 oo compare shared libraries tool
comb(l) . . v v h i e e e e e e e e e e e e combine SCCS deltas
conv(l) v i e e e e e e e e e e e common object file converter
convert(l)o ... convert archive files to common formats
coproc(1V)o oo s e communicate to a process
cpp(l) - v o e e e the C language preprocessor
eprs(l) oo oo compress a common object file
escope(1)o oo oo oo e interactively examine a C program
crace(1) L o L e e e e e e e e e e C program debugger
exref(1) . . o .00 o000 oo oo generate C program cross-reference
delta(1) o v v make a delta (change) to an SCCS file
dis(1) . . ¢ v e e e e e e e e e e e e object code disassembler
dump(1). 00000 dump selected parts of an object file
echo(IV)« ..o o i v i i n e put string on virtual output
gence(l)o o oo create a front-end to the cc command
get(l) . . . o o oo e get a version of an SCCS file
getfrm(1V) o000 returns the current frame number
getitems(1V) returns a list of the currently marked menu items
i286emul(l) L L e e e e e s e e e e e e e e e emulate 80286
indicator(1V) display application specific alarms and/or the

infoomp(IM)00 compare or print out terminfo descriptions
install(IM) . v v v v v v s e e e e e e e e e install commands
e 1 link editor for common object files
lex(1) . . v v v o oo s generate programs for simple lexical tasks
1) a C program checker
list(1) produce C source listing from a common object file
lorder(1) find ordering relation for an object library
lprof(1) display line-by-line execution count profile data
ma(1) . . . o e e e e e e e e e e e e e e e e e e e macro processor
make(l) maintain, update, and regenerate groups of programs
mes(l)o manipulate the object file comment section
message(l1V) puts its arguments on message line
mkshlib(1) v v h v create a shared library
nm(1) 0000000 e e print name list of common object file
pathconv(lV) search Interpreter criteria for filename
Prof(l) . . v v o v e e e e e e e e e e e e e ‘display profile data
Prs(l) -« o 0 e e e e e e e e e e e e e e e e e print an SCCS file
readfileIV)o reads file and gets longest line
regemp(l) 0 o000 o e regular expression compile
regex(1V) match patterns against a string, or lines of a file

-1-

Table of Contents

reinit(1V)00 0o s e e e e e e runs an initialization file
reset(1V) . . . oo o0 o oo o e e reset a field to its default values
rmdel(1) 000 Lo oL remove a delta from an SCCS file
run(lV) . oL s e s s e e e e e e e e e e run an executable
sact(l)o oo 0oL print current SCCS file editing activity
scesdiff(l)00 0oL compare two versions of an SCCS file
sdb(1) e e e e e e e e e e symbolic debugger
set(1V) set and unset environment variables in core or in files
setcolor(1V) . . . o . v o oL i e e e e e e e redefine or create a color
shell(IV) . . . o v v v v v v v v b e e e e e run a command using shell
size(1) print section sizes in bytes of common object files
strip(1) . . . strip symbol and line number information from a common object file
He(IM) o v v o s e e e e e e e e e e e e e e e e e terminfo compiler
tsort(1) o e e e e e e e e e e e e e e e e e topological sort
unget(1) e undo a previous get of an SCCS file
val(l) & v v v v e e e e e e e e e e e e e e e e e e e validate SCCS file
ve(l) o v o e version control
what(1) « .« . ¢ v v o oo e s s e s e e e e e e e e e identify SCCS files
yacc(l) e e e e e yet another compiler-compiler

intro2)00 0000 introduction to system calls and error numbers
access(2) v v v v v e e e e e e e e e e e e e e determine accessibility of a file
acct(2) oo e e e enable or disable process accounting
alarm(2) e e e e e e e e e . . set a process alarm clock
brk(2)0 000 change data segment space allocation
chdir(2) oo 0oL oo change working directory
chmod(2). . . . v v v o e e s e e e e change mode of file
chown(2) 0000 change owner and group of a file
chroot(2) oL o oo e change root directory
cdose(2) L e close a file descriptor
creat(2) o000 o0l create a new file or rewrite an existing one
dup(2) oo e duplicate an open file descriptor
== /) execute a file
T) terminate process
fontl(2) « . L o e file control
fork(2)o o e e e create a new process
getdents(2) . . . read directory entries and put in a file system independent format
getmsg(2) oo oo e get next message off a stream
getpid(2) get process, process group, and parent process IDs
getuid(2) get real user, effective user, real group, and effective group IDs
Ioctl(2) .« o o e control device
kill2) o000 oo send a signal to a process or a group of processes
Hnk(2) & v v v o e link to a file
Iseek(2) . .« v v v i e e e e e e e e e e e e move read /write file pointer
mkdir(2) . . L L L e e e e e e e e e e e e e e e e e make a directory
mknod(2) make a directory, or a special or ordinary file, or a FIFO
mount(2) e e e e e e e e e e e e e e . . . mount a file system
msgetl(2) 0oL o oo e s message control operations
msgget(2) e e e e e e e e e e e e e e e e e get message queue
MSEOP(2) « v v v v e e e e e e e e e e e e e e e e . . message operations
nice(2) e e e e e e e e e change priority of a process

Table of Contents

open(2) . . . v i e e e e e e e e e e e e e e open for reading or writing
pause(2) i o e e e e e e e e e e suspend process until signal
pipe(2)o o e e e create an interprocess channel
plock(2) o000 lock process, text, or data in memory
poll(2)o e STREAMS input/output multiplexing
profil(2)o execution time profile
ptrace(2) e e e e e e e e e e e e e e e e process trace
putmsg(2)o oo e e e e send a message on a stream
(=Y Vo [7 read from file
rdir(2) . . L L s s e e s s e e e e e e e e e e e e e e remove a directory
semctl(2) L0000 s . . semaphore control operations
semget(2) e e e e e e e e e e e e e get set of semaphores
SEMOP(2) « v v v e e e e e e e e e e e e e e e e e e semaphore operations
setpgrp(2) o o e e e e e e e e e e e e e e e e set process group ID
setuid(2) o e s e e e e e e e e e e e e e e set user and group IDs
shmetl(2) o000 o000 shared memory control operations
shmget(2) get shared memory segment identifier
shmop(2) 0. shared memory operations
signal(2) o000 o specify what to do upon receipt of a signal
sigset(2) o e e e e e e e e e e e e e e e e signal management
stat(2)00 oo e s e e e e e e e e e get file status
statfs(2) L o e e e e e e e e e e e e e get file system information
1 4= (72 . . .settime
SYNC(2) « v v i e e e e e e e e e e e e e e e e e e e update super block
sysfs(2) o e e get file system type information
sysi86(2)o o e machine-specific functions
HME(2) « v v v e get time
times(2)o get process and child process times
uadmin(2) e e e e e e e e e e e e e administrative control
ulimit(2) s e e s e e e e e e e e e e get and set user limits
umask(2) L0000 o000 e oo set and get file creation mask
umount(2) v v v e e e e e e e e e e e e e e unmount a file system
uname(2) 0o e e e e e e e get name of current UNIX system
unlink(2) Lo oo e remove directory entry
ustat(2) L e e e e e e e e e e e e e get file system statistics
utime(2) 000w e e e set file access and modification times
wait(2) e e e e wait for child process to stop or terminate
WIHEE(2) & v v v v e e e e e e e e e e e e e e e e e e e write on a file

3. Subroutines

intro3) 0000 e e introduction to functions and libraries
a64l3C) convert between long integer and base-64 ASCII string
abort(3C)o generate an abort fault
abs(B3C)o e e e e e e e e e e e e e e e return integer absolute value
assert(3X) e e e e e e e e e verify program assertion
besselBM) ¢ . L L L e e e e e e e e e Bessel functions
bsearch(3C) v v v i e e e e e binary search a sorted table
cdock(B3C) L oL report CPU time used
ayptBC) . . . L generate hashing encryption
ayptBX) . ..o oo oo oo password and file encryption functions
ctermid(3S)o 00 o oL generate file name for terminal -
ctime(3C) e e e e e e e convert date and time to string

Table of Contents

cype(3C) e e e e e e e e e e e e e e character handling
curses(3X) terminal screen handling and optimization package
cuserid(3S) oo oL get character login name of the user
dial(3C) establish an out-going terminal line connection
directory(3C)o oo e directory operations
drand48(3C) generate uniformly distributed pseudo-random numbers
dup2(3C)o oo oo .+« . duplicate an open file descriptor
ecvt(3C)o o oo convert floating-point number to string
end(BC) . . . L e e e e e e e e e e e e e e e e last locations in program
effBM) error function and complementary error function
expBM)o exponential, logarithm, power, square root functions
fclose(3S) . . v v h e e e e e e e e e e e e e e e e close or flush a stream
ferror(3S)o oo e stream status inquiries
fieldBX) . . . v v e e e e e e e e e e e e FIELD library routines
fieldtype(3X) o000 FIELDTYPE library routines
floorGM) floor, ceiling, remainder, absolute value functions
fopen(3S) oo e e e e open a stream
formBX) . . . L L e e e e e e e e e e e e e e e FORM library routines
fpgetround(3C) L IEEE floating point environment control
fread(3S) oo e binary input/output
frexp(3C)o o oo manipulate parts of floating-point numbers
fseek(3S)o oo o oL reposition a file pointer in a stream
407 (T) walk a file tree
gamma(3M)o 00000 el e L log gamma function
gete3S)o Lo oo e get character or word from a stream
getewd(3C)o get path name of current working directory
getenv(3C) o0 oo e e e e return value for environment name
cgetgrent(3C) . . L. L oL Lo oo e e e e e e e e get group file entry
getlogin(8C) . . . L w ol e e e e e e e e e e e e e e get login name
getopt3C)o 0oL get option letter from argument vector
getpass(B3C) e e e e e e e e e e e e e read a password
getpw(3C) oo e e e e e get name from UID
getpwent(3C)o 00000 o e n e get password file entry
gets(3S) o e e e e get a string from a stream
getut3C) Lo e e access utmp file entry
hsearch3C) v v v v v manage hash search tables
hypotBM) oo oo oo e Euclidean distance function
isnan(3C) 0o e e . test for floating point NaN (Not-A-Number)
tem(3X) . . v v e e e e e e e e e e e e e e e e e e CRT item routines
IBtol3C) convert between 3-byte integers and long integers
ldahread(3X) read the archive header of a member of an archive file
Idclose(3X) . « v v v v v v e e e e e e e e close a common object file
ldfhread(3X) read the file header of a common object file

ldgetname(3X) . . retrieve symbol name for common object file symbol table entry
ldiread(3X) manipulate line number entries of a common object file function
Idlseek(3X) seek to line number entries of a section of a common object file

ldohseek(3X) seek to the optional file header of a common object file
Idopen(3X) open a common object file for reading
ldrseek(3X) seek to relocation entries of a section of a common object file
ldshread(3X) . . .read an indexed/named section header of a common object file
ldsseek(3X) seek to an indexed/named section of a common object file
ldtbindex(3X) . . compute the index of a symbol table entry of a common object file
ldtbread(3X) read an indexed symbol table entry of a common object file

-4 -

Table of Contents

ldtbseek(3X) seek to the symbol table of a common object file
libwindows(3X) windowing terminal function library
Iockf(BC) . & & v v v e e e e e e e e e e e e e e record locking on files
logname(3X) 00000l e . return login name of user
Isearch(3C) oo oo e e linear search and update
malloc(3C) oo e e main memory allocator
malloc3X) oo oo o e e e fast main memory allocator
matherrBM) Lo e e e e error-handling function
memory(3C)ot i e e e e e e e e e e e memory operations
menu(3X) . . .« . vt v e e e e e e e e e e e e e e e CRT menu routines
mktemp(3C)00 o 0o s make a unique file name
monitor3C)o oo o e prepare execution profile
nlistBC) ¢ . oo e e e e s e get entries from name list
nlsgetcallBN) get client’s data passed via the listener
nlsproviderBN) get name of transport provider
nlsrequest(3N) format and send listener service request message
panel(3X) Lo oo s PANEL library routines
perror(3C) . . . L. Lo e e e e e e e e e e e system error messages
plot3X) o o graphics interface subroutines
popen(3S)o e initiate pipe to/from a process
printf(3S)o oo print formatted output
putc3S)o oo s e s e e put character or word on a stream
putenv(3C)o 0oL change or add value to environment
putpwent(3C)o e e write password file entry
puts3S)o e put a string on a stream
gsort(B3C) e e e e e e e e e e e e e e e e e quicker sort
rand(3C)o oo simple random-number generator
regemp(3X) oo o . compile and execute regular expression
scanf(3S) L o o e e e e e e e e e e convert formatted input
setbuf(35) oo o oo oo assign buffering to a stream
setimp(3C) . . . L L . o e e e e e e e e e e e e non-local goto
sinhBM) o 0o s hyperbolic functions
sleepB3C) oo e e e suspend execution for interval
sputl3X) access long integer data in a machine-independent fashion
ssignal(3C) oL Lo e e e e e e e software signals
stdio3S)o .o standard buffered input/output package
stdipec3C) standard interprocess communication package
string(3C) . . . L L L o e e e e e e e e e e e e string operations
strtod3C) L0000 convert string to double-precision number
strtol(3C) Lo e e e e convert string to integer
swab(3C) o e e e e e e e e e e e e e e swap bytes
system(3S) L.l L o e e e e issue a shell command
tam(3C) . . L L s e s e e e e e e e e e e e e TAM transition libraries
tmpfile3S) oo oo create a temporary file
tmpnam@3S) 00000 oL, create a name for a temporary file
trigBM) L Lo s trigonometric functions
tsearch3C) o000 manage binary search trees
ttyname(3C) Lo e e e e e e e find name of a terminal
ttyslot3C)o .. find the slot in the utmp file of the current user
tacceptBN) Lo oo oo oo s e e e e e accept a connect request
tallocBN) . . & v v v o e e e e e e e e e e e allocate a library structure
tbindBN) bind an address to a transport endpoint
tcloseBN) e e e e e e e e e e close a transport endpoint

Table of Contents

t_connect(3N) establish a connection with another transport user
terror(BN) Lo oo e e e e produce error message
tfreeBN) . . . ¢ L e e e e e e e e e e free a library structure
tgetinfoBN) get protocol-specific service information
tgetstateBN)00 000l get the current state
tlisten(BN) v v v v vt e e e e e e listen for a connect request
tdook(BN). look at the current event on a transport endpoint
topenBN)00 oo establish a transport endpoint
toptmgmt(3N) manage options for a transport endpoint
trev3N) receive data or expedited data sent over a connection
t_rcvconnect(3N) receive the confirmation from a connect request
trevdisBN)o 0o e e e retrieve information from disconnect
trevrelBN) acknowledge receipt of an orderly release indication
trcvudata(BN) o . L e e e e e e e e e e receive a data unit
trecvuderrBN) receive a unit data error indication
tsndBN) send data or expedited data over a connection
tsnddisBN)o send user-initiated disconnect request
tsndrel(BN) ¢ v i i i e e e e e e e e e initiate an orderly release
tsndudataBN)0 L e e e e e e e e e e send a data unit
tsyncBN) Lo e synchronize transport library
tunbindB3N) 00000, disable a transport endpoint
ungetc(3S)o e e e . push character back into input stream
vprintf(3S) print formatted output of a varargs argument list

4. File Formats

intro(4) . . . o e e e e e e e e e e e e e e e introduction to file formats
aout(4) oo v e e e e e e common assembler and link editor output
acct(4) . . o . e e e e e e e e e e e e e per-process accounting file format
ar(4) . . e common archive file format
cftime(4) . .« .« « o oo e e e e e e e e e e language specific strings
checklist(4) list of file systems processed by fsck and ncheck
Core(d) v v v e e e e e e e e e e e e e e e e e e e format of core image file
oy o2 T format of cpio archive
dir(4) . . o o e e e e e e e e e e e e e e e e e e e format of directories
dirent(4) file system independent directory entry
filehdr(4) ¢ . . 0 oo file header for common object files
£5(4) v v e format of system volume
fspec(4) o 0 o e e e e e e e e e e format specification in text files
fstab(4) . . .« ¢ v e file-system-table
gettydefs(4), speed and terminal settings used by getty
gps(4) oo graphical primitive string, format of graphical files
BoUP(4) « ¢ v e group file
inittab(4)o 0o oo s oo script for the init process
inode(4) . . v v vt e e e e e e e e e e e e e e e e e e format of an i-node
11 1T N issue identification file
Idfen(4) « & . v v 0 v v v e e e e e e common object file access routines
limits(4) file header for implementation-specific constants
linenum(4) line number entries in a common object file
loginlog(4) . . « . « v v v v v e e e e e log of failed login attempts
mdevice(4) . v v v v v vt e e e e e e e e e e e e e e e e e e e file format
MESYS(4) & v v o e file format
mnttab(4) e e e e e e e e e e e e e e e mounted file system table

Table of Contents

mune(4) . . . v v v v e file format
passwd(4) o e e e e e e e e e e e e e e e e e password file
Plot(4)o e graphics interface
pnch(4)o e e e file format for card images
profile(4)o setting up an environment at login time
reloc(4) oo relocation information for a common object file
rfmaster(4) 000 .. Remote File Sharing name server master file
scesfile(4) o & v v v b e e e e e e e e e e e e e e e e e e format of SCCS file
scnhdr(4) 00000 d 0 e . section header for a common object file
scrdump(4)00 0 e e e e format of curses screen image file
sdevice(4) « « v vt v e file format
SISYS(4) « v v v e file format
Stune(4) . v v e file format
syms(4)o e e e e e common object file symbol table format
term(4) v e e e e e e e e e e e e e e e format of compiled term file
terminfo(4)o o000 o e e terminal capability data base
timezone(4) . . . « « ¢ o v e e e e e set default system time zone
unistd(4) o 0 0l e e e e e e e file header for symbolic constants
utmp(4) « « . . v e e e e e e e e e e e e e utmp and wtmp entry formats

5. Miscellaneous Facilities

INtro(5) « « « v v v e e e e e e e e e e e e e e e introduction to miscellany
ascii(t) . . . v i e e e e e e e e e e e e e e map of ASCII character set
environ(5) h v vl e e e e e e e e e e e e e user environment
6 o1 () file control options
jagent(5) o000 o host control of windowing terminal
layers(5) protocol used between host and windowing terminal under
math(5) ¢ ¢ v v o e e e e e e math functions and constants
prof(5)o e e e profile within a function
regexp(5) . .« oo oo regular expression compile and match routines
stat(5) . . . o e e e e e e e e e e e data returned by stat system call
term(B) e e e e e e e conventional names for terminals
types(5) o oo oo e primitive system data types
values(5) « .« . v v i v e e e e e e e e e e e e e machine-dependent values
varargs(5) v e e e e e e e e e e e e e handle variable argument list
xtproto(5) multiplexed channels protocol used by xt(7) driver

Permuted Index

Xapuj pajnwiad

PERMUTED INDEX

13tol, 1tol3: convert between
i286emul: emulate

long integer and base-64/
abort: generate an

fault.

value.

abs: return integer

/floor, ceiling, remainder,
t_accept:

utime: set file

accessibility of a file.

sputl, sgetl:

Idfen: common object file
/setutent, endutent, utmpname:
access: determine

enable or disable process
acct: per-process

process accounting.

file format.

orderly release/ t_rcvrel:
trig: sin, cos, tan, asin,
current SCCS file editing
putenv: change or

endpoint. t_bind: bind an
SCCS files.

admin: create and

uadmin:

alarm: set a process

clock.

/display application specific
t_alloc:

change data segment space
realloc, calloc: main memory
mallinfo: fast main memory
/application specific alarms
link editor output.

and/or the/ indicator: display
maintainer for portable/
format.

for portable archives. ar:
cpio: format of cpio

ar: common

header of a member of an
formats. convert: convert

an archive/ ldahread: read the
maintainer for portable
varargs: handle variable
formatted output of a varargs
getopt: get option letter from
message: puts its

and/ /gmtime, asctime, cftime,
ascii: map of

set.

long integer and base-64

ctime, localtime, gmtime,

trig: sin, cos, tan,

3-byte integers and long/ 13tol(3C)
80286. i286emul(1)
a64l, 164a: convert between a64](3C)
abort fault. abort(3C)
abort: generate anabort abort(3C)
abs: return integer absolute abs(3C)
absolutevalue. abs(3C)
absolute value functions.« . . . floor(3M)
accept a connect request. t_accept(3N)
access and modification times.« . utime(2)
access: determine e e e e e access(2)
access long integer data in a/ . . sputl(3X)
access routines. 0440w 1dfen(4)
access utmp fileentry. getut(3C)
accessibility of afile. access(2)
accounting. acct: acct(2)
accounting file format. acct(4)

acct: enable or disable acct(2)

acct: per-process accounting acct(4)
acknowledge receiptof an t_rcvrel(3N)
acos, atan, atan2:/ trig(3M)
activity. sact: print oL sact(1)

add value to environment. putenv(3C)
address to a transport t_bind(3N)
admin: create and administer admin(1)
administer SCCS files. admin(1)
administrative control. uadmin(2)
alarmclock. Lo alarm(2)
alarm: set a process alarm alarm(2)
alarms and/or the "working"/ . . . indicator(1V)
allocate a library structure. t_alloc(3N)
allocation. brk, sbrk: brk(2)
allocator. malloc, free, malloc(3C)
allocator. /calloc, mallopt, malloc(3X)
and/or the "working”/« . indicator(1V)
a.out: common assemblerand a.out(4)
application specific alarms indicator(1V)
ar: archive and library ar(1)

ar: common archive file ar(4)

archive and library maintaineroar(l)
archive. cpio(4)
archive file format. ar(4)
archive file. /the archive 1dahread(3X)
archive files to common convert(l)
archive header of a memberof ldahread(3X)
archives. /archive and library . . ar(l)
argument list., .« . . . varargs(5)
argument list. /print vprintf(3S)
argument vector. getopt(3C)
arguments on message line. e e e e . message(1V)
as: common assembler. as(1)
ascftime, tzset: convert date ctime(3C)
ASCII characterset. ascii(5)
ascii: map of ASCII character ascii(5)
ASCII string. /convert between a641(3C)
asctime, cftime, ascftime,/ ctime(3C)
asin, acos, atan, atan2:/ e e e trig(3M)

-1-

Permuted Index

output. a.out: common
as: common

assertion.

assert: verify program
setbuf, setvbuf:

/sin, cos, tan, asin, acos,
cos, tan, asin, acos, atan,
double-precision/ strtod,
integer. strtol, atol,
integer. strtol,

log of failed login

ungetc: push character
terminal capability data
between long integer and
cb: C program

0,1, jn, y0, y1, yn:

yn: Bessel functions.
fread, fwrite:

bsearch:

tfind, tdelete, twalk: manage
endpoint. t_bind:

sync: update super

space allocation.

sorted table.

stdio: standard

setbuf, setvbuf: assign
size: print section sizes in
swab: swap

cc:

cflow: generate

cpp: the

cb:

lint: a

cxref: generate
interactively examine a
ctrace:

object file. list: produce
data returned by stat system
malloc, free, realloc,
fast/ malloc, free, realloc,
intro: introduction to system
terminfo: terminal

pnch: file format for

create a front-end to the

commentary of an SCCS delta.
ceiling, remainder,/ floor,
/ceil, fmod, fabs: floor,

/localtime, gmtime, asctime,
strings.

delta: make a delta

pipée: create an interprocess
xt(7)/ xtproto: multiplexed
stream. ungetc: push
—toupper, setchrclass:

user. cuserid: get

assembler and link editor a.out(4)
assembler. as(1)
assert: verify program assert(3X)
assertion. assert(3X)
assign buffering to a stream. setbuf(3S)
atan, atan2: trigonometric/ trig(3M)
atan2: trigonometric/ /sin, trig(3M)
atof: convert stringto strtod(3C)
atoi: convert stringto strtol(3C)
atol, atoi: convert stringto strtol(3C)
attempts. /usr/adm/loginlog: loginlog(4)
back into input stream. ungetc(3S)
base. terminfo: terminfo(4)
base-64 ASCII string. /convert a641(3C)
beautifier. o000 0L cb(1)
Bessel functions. bessel: bessel(3M)
bessel: j0, j1,jn, y0,y1, bessel(3M)
binary input/output. fread(3S)
binary search a sorted table. bsearch(3C)
binary search trees. tsearch, tsearch(3C)
bind an address to a transport t_bind(3N)
block. o0 sync(2)
brk, sbrk: change data segment brk(2)
bsearch: binary searcha bsearch(3C)
buffered input/output package. stdio(3S)
buffering to a stream. setbuf(3S)
bytes of common object files. size(1)
bytes. 000 swab(3C)
Ccompiler. ce(1)
Cflowgraph. cflow(1)

C language preprocessor. cpp(1)

C program beautifier. cb(1)

C program checker. lint(1)

C program cross-reference. cxref(1)

C program. cscope:« . 4 .40 0. . cscope(1)
C program debugger. ctrace(1)

C source listing from a common list(1)

call. stat: 0L stat(5)
calloc: main memory allocator. malloc(3C)
calloc, mallopt, mallinfo: malloc(3X)
calls and error numbers. intro(2)
capability data base. terminfo(4)
cardimages. pnch(4)

cb: C program beautifier. cb(1)
cc:Ccompiler. cc(1)
cccommand. gencc: gence(1)
ccoff: convert a COFF file. ccoff(1)
cdc: change thedelta cde(1)

ceil, fmod, fabs: floor, floor(3M)
ceiling, remainder, absolute/ floor(3M)
cflow: generate C flowgraph. cflow(1)
cftime, ascftime, tzset:/ ctime(3C)
cftime: language specific cftime(4)
(change) to an SCCSfile. delta(1)
channel. pipe(2)
channels protocol used by xtproto(5)
character back into input ungetc(3S)
character hand /_tolower, ctype(3C)
character login name of the cuserid(3S)

-2

/getchar, fgetc, getw: get
/putchar, fputc, putw: put
ascii: map of ASCII

directory.

lint: a C program

systems processed by fsck and/
times: get process and
terminate. wait: wait for
libraries tool.

of a file.

status/ ferror, feof,
listener. nlsgetcall: get
alarm: set a process alarm

Idclose, ldaclose:

close:

t_close:

descriptor.

fclose, fflush:

telldir, seekdir, rewinddir,
coproc: cocreate, cosend,
coreceive, codestroy:/ coproc:
dis: object

/cosend, cocheck, coreceive,
ccoff: convert a

setcolor: redefine or create a

comb:

create a front-end to the cc
system: issue a shell

shell: run a

install: install

introduction to programming
manipulate the object file
cdc: change the delta

ar:

editor output. a.out:

as:

convert archive files to
routines. ldfen:

conv:

cprs: compress a

Idopen, Idaopen: open a
/line number entries of a
Idclose, ldaclose: close a
read the file header of a
entries of a section of a

the optional file header of a
/entries of a section of a
/section header of a

an indexed /named section of a
of a symbol table entry of a
symbol table entry of a

seek to the symbol table of a
line number entries in a

C source listing from a

nm: print name list of

character or word from a/ . .
character or word on a stream.
character set.
chdir: change working
checker.
checklist: list of file
child process times.
child process to stop or

chkshlib: compare shared
chmod: change mode of file.

chown: change owner and group

chroot: change root directory.
clearerr, fileno: stream
client’s data passed via the .
clock.
clock: report CPU time used.

close a common object file. .
close a file descriptor.
close a transport endpoint. .
close: close a file
close or flush a stream.
closedir: directory/ /readdir,

cocheck, coreceive, codestroy:/
cocreate, cosend, cocheck,
code disassembler.
codestroy: communicate to a/
COFF file.
color.
comb: combine SCCS deltas.
combine SCCS deltas.
command. gencc:
command.
command using shell.
commands.
commands. intro:
comment section. mcs:
commentary of an SCCS delta.
common archive file format. .
common assembler and link .
common assembler.
common formats. convert: .
common object file access
common object file converter.
common object file.
common object file for/
common object file function.
common object file.
common object file.
common object file.
common object file.
common object file.
common object file.
common object file.
common object file.
common object file.
common object file.
common object file.
common object file.
common object file.

1dfhread:
/number
/seek to
/seek to
/the index
/indexed
ldtbseek:
linenum:
/produce

-3-

Permuted Index
........ getc(3S)
putc(3S)
ascii(5)
chdir(2)
lint(1)
checklist(4)
times(2)
wait(2)
chkshlib(1)
chmod(2)
chown(2)
chroot(2)
ferror(3S)
nlsgetcall(3N)
alarm(2)
clock(3C)
1dclose(3X)
close(2)
t_close(3N)
close(2)
fclose(3S)
directory(3C)
coproc(1V)
coproc(1V)
dis(1)
coproc(1V)
ccoff(1)
setcolor(1V)
comb(1)
comb(1)
gencc(1)
system(3S)
shell(1V)
install(1M)

intro(1)

as(1)
convert(1)
1dfen(4)
conv(1)
cprs(1)
Idopen(3X)
ldlread(3X)
1dclose(3X)
ldfhread(3X)
Idiseek(3X)
Idohseek(3X)
ldrseek(3X)
ldshread(3X)
Idsseek(3X)
Idtbindex(3X)
1dtbread(3X)
1dtbseek(3X)
linenum(4)
list(1)

nm(1)

Permuted Index

relocation information for a
scnhdr: section header for a
line number information from a
/retrieve symbol name for
table format. syms:

filehdr: file header for

1d: link editor for

section sizes in bytes of
/cocheck, coreceive, codestroy:
/ftok: standard interprocess
descriptions. infocmp:
chkshlib:

SCCS file. scesdiff:
expression. regcmp, regex:
regexp: regular expression
regemp: regular expression
term: format of

cc: C

tic: terminfo

yacc: yet another

erf, erfc: error function and
cprs:

table entry of a/ Idtbindex:
t_rcvconnect: receive the
t_accept: accept a

t_listen: listen for a

the confirmation from a

an out-going terminal line
or expedited data sent over a
data or expedited data over a
t_connect: establish a

for implementation-specific
math: math functions and
file header for symbolic
ioctl:

fentl: file

floating point environment
jagent: host

msgctl: message

semctl: semaphore

shmctl: shared memory
fentl: file

uadmin: administrative

vc: version

converter.

terminals. term:

ccoff:

common formats. convert:
integers and/ 13tol, ltol3:
and base-64 ASCII/ aé4l, 164a:
to common formats.
/cftime, ascftime, tzset:

to string. ecvt, fcvt, gevt:
scanf, fscanf, sscanf:

strtod, atof:

strtol, atol, atoi:

conv: common object file
cocheck, coreceive,/

file.

common object file. reloc: reloc(4)
common object file. 0. L. scnhdr(4)
common object file. /and strip(1)
common object file symbol/ ldgetname(3X)
common object file symbol syms(4)
common object files. filehdr(4)
common object files. 1d(1)
common object files. /print size(1)
communicate to a process. coproc(1V)
communication package. stdipc(3C)
compare or print out terminfo infocmp(1M)
compare shared libraries tool. chkshlib(1)
compare two versionsofan scesdiff(1)
compile and execute regular regemp(3X)
compile and match routines. regexp(5)
compile. o o000 regemp(1)
compiled term file. L. term(4)
compiler.o cc(1)
compiler. oL o 0L tic(1M)
compiler-compiler. o0 L. yace(1)
complementary error function. erf(3M)
compress a common object file. cprs(1)
compute the index of a symbol Idtbindex(3X)
confirmation from a connect/ t_rcvconnect(3N)
connect request. t_accept(3N)
connect request.44 t_listen(3N)
connect request. /receive t_rcvconnect(3N)
connection. dial: establish dial(3C)
connection. /receivedata t_rcv(3N)
connection. t_snd:send t_snd(3N)
connection with another/ t_connect(3N)
constants. /fileheader limits(4)
constants.0 00w e e .. math(5)
constants. unistd: unistd(4)
control device. ioctl(2)
control. u o u e e e e e e fentl(2)
control. /fpsetsticky: IEEE fpgetround(3C)
control of windowing terminal. jagent(5)
control operations. msgctl(2)
control operations. semctl(2)
control operations. shmctl(2)
controloptions. fentl(5)
control. v v e e e e e e e e e uadmin(2)
control. o e e e e e e ve(1)

conv: common object file conv(1)
conventional namesfor term(5)
converta COFFfile. ccoff(1)
convert archive filesto convert(1)
convert between 3-byte 13tol(3C)
convert between long integer a641(3C)
convert: convert archive files convert(1)
convert date and timeto/ ctime(3C)
convert floating-point number ecvt(3C)
convert formatted input. scanf(3S)
convert stringto/ strtod(3C)
convert string to integer. strtol(3C)
CONVEItEI. « v v v v v v v o v o o o o o o o conv(1)
coproc: cocreate, cosend, coproc(1V)
core: format of core image core(4)

-4 -

core: format of

unset environment variables in
cocreate, cosend, cocheck,
atan2:/ trig: sin,

codestroy:/ coproc: cocreate,
functions. sinh,

display line-by-line execution
cpio: format of

preprocessor.

file.

clock: report

rewrite an existing one.
setcolor: redefine or
command. gencc:

file. tmpnam, tempnam:
an existing one. creat:
fork:

mkshlib:

tmpfile:

channel. pipe:

files. admin:

umask: set and get file
pathconv: search Interpreter
cxref: generate C program
item:

menu:

encryption functions.
generate hashing encryption.
a C program.

for terminal.

asctime, cftime, ascftime,/

islower, isupper, isalpha,/
endpoint. t_look: look at the
getfrm: returns the

activity. sact: print
t_getstate: get the

uname: get name of

slot in the utmp file of the
getcwd: get path name of
/returns a list of the
scr—dump: format of
handling and optimization/
name of the user.
cross-reference.

terminfo: terminal capability
t_rcvuderr: receive a unit
/sgetl: access long integer
plock: lock process, text, or
execution count profile
connection. t_snd: send
over a/ t_rcv: receive
t_snd: send data or expedited
nlsgetcall: get client’s

prof: display profile

call. stat:

brk, sbrk: change

/receive data or expedited

Permuted Index

core image file. core(4)
core or in files. /setand set(lV)
coreceive, codestroy:/ coproc: coproc(1V)
cos, tan, asin, acos, atan, trig(3M)
cosend, cocheck, coreceive, coproc(1V)
cosh, tanh: hyperbolic sinh(3M)
count profile data. lprof: Iprof(1)
cpioarchive. cpio(4)
cpio: format of cpio archive. cpio(4)
cpp: theClanguage cpp(l)
cprs: compress a common object cprs(1)
CPU timeused. v v v v o . clock3C)
creat: create a new fileor creat(2)
createacolor. setcolor(1V)
create a front-end tothecc gence(1)
create a name for a temporary tmpnam(3S)
create a new file or rewrite creat(2)
create a new process.o .. fork(2)
create a shared library. mkshlib(l)
create a temporary file. tmpfile(3S)
create an interprocess pipe(2)
create and administer SCCS admin(1)
creationmask. umask(2)
criteria for filename. pathconv(lV)
cross-reference.0 0. cxref(1)
CRT item routines. item(3X)
CRT menu routines. menu(3X)
crypt: password and file cypt3X)
crypt, setkey, encrypt: L L. . crypt(3C)
cscope: interactively examine cscope(1)
ctermid: generate filename ctermid(3S)
ctime, localtime, gmtime, ctime(3C)
ctrace: C program debugger. ctrace(1)
ctype: isdigit, isxdigit, ctype(3C)
current event on a transport t_10ook(3N)
current frame number. getfrm(1V)
current SCCS file editing sact(l)
currentstate. t_getstate(3N)
current UNIX system. uname(2)
current user. /findthe ttyslot(3C)
current working directory. getcwd(3C)
currently marked menu items. getitems(1V)
curses screen image file. scr—dump(4)
curses: terminal screen curses(3X)
cuserid: get character login cuserid(3S)
cxref: generate C program cxref(l)
database. terminfo(4)

data error indication.

. t_rcvuderr(3N)

data in a machine-independent/ sputl(3X)
datainmemory. plock(2)
data. /display line-by-line lprof(l)
data or expedited data overa t_snd(3N)
data or expedited datasent trcv(3N)
data over a connection. t_snd(3N)

data passed via the listener.

. nlsgetcall(3N)

data. e e e e e e e e e e e e e . prof(1)
data returned by stat system stat(5)
data segment space allocation. brk(2)
data sent over a connection. trcv(3N)

-5-

Permuted Index

types: primitive system
t_rcvudata: receive a
t_sndudata: send a
/ascftime, tzset: convert
ctrace: C program

sdb: symbolic

timezone: set

reset: reset a field to its
delta commentary of an SCCS
file. delta: make a

delta. cdc: change the
rmdel: remove a

to an SCCS file.

comb: combine SCCS
compare or print out terminfo
close: close a file

dup: duplicate an open file
dup2: duplicate an open file
file. access:

ioctl: control

terminal line connection.

dir: format of

chdir: change working

chroot: change root

file system/ getdents: read
file system independent
unlink: remove

path name of current working
mkdir: make a

telldir, seekdir, rewinddir, /
/seekdir, rewinddir, closedir:
ordinary file,/ mknod: make a
rmdir: remove a

independent directory entry.

t_unbind:

acct: enable or

dis: object code

t_snddis: send user-initiated
retrieve information from
alarms and/or the/ indicator:
count profile data. Iprof:
prof:

: hypot: Euclidean

/lcong48: generate uniformly
/atof: convert string to
nrand48, mrand48, jrand48,/
protocol used by xt(7)

an object file.

object file. dump:

descriptor.

descriptor.

descriptor. dup:

descriptor. dup2:

output.

floating-point number to/
program. end, etext,

sact: print current SCCS file

datatypes. types(5)
dataunit. 000000 t_rcvudata(3N)
dataunit. 000000 t_sndudata(3N)
date and time to string. ctime(3C)
debugger.o ctrace(1)
debugger. sdb(1)
default system time zone. timezone(4)
default values. reset(1V)
delta. cdc: changethe cde(1)

delta (change) toan SCCS delta(1)
delta commentary of anSCCS cdc(1)

delta from an SCCS file. rmdel(1)
delta: make a delta (change) delta(1)
deltas.00 comb(1)
descriptions. infocmp: L L. L L. infocmp(1M)
descriptor. L0000 close(2)
descriptor.o dup(2)
descriptor. oo dup2(3C)
determine accessibility ofa access(2)
device. 0o 0o ioctl(2)

dial: establish an out-going dial(3C)

dir: format of directories. dir(4)
directories. L. 00000 L dir(4)
directory. o000 chdir(2)
directory. L0000 chroot(2)
directory entries and putina getdents(2)
directory entry. dirent: dirent(4)
directory entry.00 unlink(2)
directory. getcwd:get getewd(3C)
directory. 00000 mkdir(2)
directory: opendir, readdir, directory(3C)
directory operations. directory(3C)
directory, or a specialor mknod(2)
directory.00 000 rmdir(2)
dirent: file system dirent(4)

dis: object code disassembler. dis(1)
disable a transport endpoint. t_unbind(3N)
disable process accounting. acct(2)
disassembler. oL dis(1)
disconnect request. t_snddis(3N)
disconnect. t_revdis: 000 t_rcvdis(3N)
display application specific indicator(1V)
display line-by-line execution Iprof(1)
display profiledata. prof(1)
distance function. L. hypot(3M)
distributed pseudo-random/ drand48(3C)
double-precision number. strtod(3C)
drand48, erand48, Irand48, drand48(3C)
driver. /multiplexed channels xtproto(5)
dump: dump selected partsof dump(1)
dump selected partsofan dump(1)
dup: duplicate an open file dup(2)
dup2: duplicate an open file dup2(3C)
duplicate an open file dup(2)
duplicate anopen file dup2(3C)
echo: put string on virtual echo(1V)
ecvt, fevt, gevt: convert . . . L L L L L L L ecvt(3C)
edata: last locationsin end(3C)
editing activity. o000 o sact(1)

-6 -

files. 1d: link

common assembler and link
/user, real group, and

and/ /getegid: get real user,
i286emul:

accounting. acct:

encryption. crypt, setkey,
encrypt: generate hashing
crypt: password and file
locations in program.
/getgrgid, getgrnam, setgrent,
bind an address to a transport
t_close: close a transport
current event on a transport
t_open: establish a transport
manage options for a transport
t_unbind: disable a transport
/getpwuid, getpwnam, setpwent,
utmp/ /pututline, setutent,
getdents: read directory

nlist: get

file. linenum: line number
file/ /manipulate line number
/ldnlseek: seek to line number
/ldnrseek: seek to relocation
systern independent directory
utmp, wtmp: utmp and wtmp
fgetgrent: get group file
fgetpwent: get password file
utmpname: access utmp file
object file symbol table

/the index of a symbol table
/read an indexed symbol table
putpwent: write password file
unlink: remove directory

profile: setting up an

/IEEE floating point

environ: user

getenv: return value for
putenv: change or add value to
or/ set, unset: set and unset
mrand48, jrand48,/ drand48,
complementary error function.
complementary error/ erf,
system error/ perror,
complementary/ erf, erfc:
function and complementary
receive a unit data

t_error: produce

sys_errlist, sys_nerr: system
to system calls and

matherr:

another transport/ t_connect:
endpoint. t_open:

terminal line/ dial:

in program. end,

hypot:

t_look: look at the current

Permuted Index

editor for common object 1d(1)

editor output. a.out: L. a.out(4)
effectivegroupIDs. getuid(2)
effective user, real group, getuid(2)
emulate 80286. i286emul(1)
enable or disable process acct(2)
encrypt: generate hashing crypt(3C)
encryption. crypt, setkey, crypt(3C)
encryption functions. crypt(3X)
end, etext, edata:last end(3C)
endgrent, fgetgrent: get group/ getgrent(3C)
endpoint. t_bind: L0 t_bind(3N)
endpoint. t_close(3N)
endpoint. t look: look atthe t_look(3N)
endpoint.00 t_open(3N)
endpoint. t_optmgmt: t_optmgmt(3N)
endpoint.o t_unbind(3N)
endpwent, fgetpwent: get/ getpwent(3C)
endutent, utmpname: access getut(3C)
entries and putinafile/ getdents(2)
entries from namelist. nlist(3C)
entries in a common object linenum(4)
entries of a common object IdIread(3X)
entries of a sectionofa/ 1dIseek(3X)
entries of a sectionofa/ I1drseek(3X)
entry. dirent: file dirent(4)
entry formats. utmp(4)
entry. /setgrent, endgrent, getgrent(3C)
entry. /setpwent, endpwent, getpwent(3C)
entry. /setutent,endutent, getut(3C)
entry. /symbol name for common Idgetname(3X)
entry of a common object file. Idtbindex(3X)
entry of a common object file. 1dtbread(3X)
entry.o o e e putpwent(3C)
ENtIY. v v v e h e e e e e e e e e e unlink(2)
environ: user environment. environ(5)
environment at login time. profile(4)
environment control. fpgetround(3C)
environment. environ(5)
environmentname.4 getenv(3C)
environment.00 ... putenv(3C)
environment variables incore set(1V)
erand48, Irand48, nrand48, drand48(3C)
erf, erfc: error functionand erf(3M)

erfc: error functionand L. L. erf(3M)
errno, sys_errlist, sys_nerr: perror(3C)
error functionand L. erf(3M)

error function. Jerfc:error erf(3M)

error indication. t_rcvuderr: t_rcvuderr(3N)
€ITOr MESSAZE. '+ « = « + + o o o o o o o o » t_error(3N)
eITOr messages. /ermo, . . « « « « . . . 4 . perror(3C)
error numbers. /introduction intro(2)
error-handling function. matherr(3M)
establish a connection with t_connect(3N)
establish a transport t_open(3N)
establish an out-going dial(3C)
etext, edata: last locations end(3C)
Euclidean distance function. hypot(3M)
event on a transport endpoint. . . . » t_1ook(3N)

-7-

Permuted Index

cscope: interactively

execve, execlp, execvp:/
execlp, execvp: execute/ exec:
execvp:/ exec: execl, execv,
/execl, execv, execle, execve,
run: run an

execve, execlp, execvp:
regcmp, regex: compile and
Iprof: display line-by-line
sleep: suspend

monitor: prepare

profil:

execvp: execute/ exec: execl,
exec: execl, execv, execle,
/execv, execle, execve, execlp,
a new file or rewrite an
process.

exit,

exponential, logarithm, /
t_snd: send data or

t_rcv: receive data or

exp, log, log10, pow, sqrt:
routines. regexp: regular
regcmp: regular

compile and execute regular
remainder,/ floor, ceil, fmod,
/usr/adm/loginlog: log of
data in a machine-independent
/calloc, mallopt, mallinfo:
abort: generate an abort

a stream.

floating-point number/ ecvt,
fopen, freopen,

status inquiries. ferror,

fileno: stream status/

stream. fclose,

word from a/ getc, getchar,
/getgrnam, setgrent, endgrent,
/getpwnam, setpwent, endpwent,
stream. gets,

routines.

fieldtype:

special or ordinary file, or a
times. utime: set

Idfen: common object
determine accessibility of a
readfile, longline: reads

ccoff: convert a COFF

chmod: change mode of
change owner and group of a
mcs: manipulate the object
fentl:

fentl:

conv: common object

core: format of core image
cprs: compress a common object
umask: set and get

examine a C program. cscope(1)
exec: execl, execv, execle, exec(2)
execl, execv, execle, execve, exec(2)
execle, execve, execlp, L. exec(2)
execlp, execvp: executea/ exec(2)
executable.o run(1V)
execute a file. /execle, exec(2)
execute regular expression. regemp(3X)
execution count profile data. Iprof(1)
execution forinterval. sleep(3C)
execution profile. monitor(3C)
execution time profile. profil(2)
execv, execle, execve, execlp, exec(2)
execve, execlp, execvp:/ exec(2)
execvp: executea file. L. exec(2)
existing one. creat: create creat(2)
exit, _exit: terminate L L0 L. exit(2)
_exit: terminate process. exit(2)

exp, log, logl0, pow, sqrt: exp(3M)
expedited dataovera/ t_snd(3N)
expedited data sentovera/ t_rcv(3N)
exponential, logarithm, power,/ exp(3M)
expression compile and match regexp(5)
expression compile. regemp(1)
expression. regcmp, regex: regcmp(3X)
fabs: floor, ceiling, floor(3M)
failed login attempts. loginlog(4)
fashion. /access long integer sputl(3X)
fast main memory allocator. malloc(3X)
fault.o abort(3C)
fclose, fflush: closeor flush fclose(3S)
fentl: filecontrol. Lo oL oL oL L. fentl(2)
fentl: file control options. L L. fentl(5)
fevt, gevti convert . . L L L oL 0L L L ecvt(3C)
fdopen: open a stream. fopen(3S)
feof, clearerr, fileno: stream ferror(3S)
ferror, feof, clearerr, ferror(3S)
fflush: close or flusha fclose(3S)
fgetc, getw: get characteror getc(3S)
fgetgrent: get group file/ getgrent(3C)
fgetpwent: get password file/ getpwent(3C)
fgets: get a string froma gets(35)
fieldtype: FIELDTYPE library fieldtype(3X)
FIELDTYPE library routines. fieldtype(3X)
FIFO. /make a directory,ora mknod(2)
file access and modification utime(2)
file access routines. 1dfen(4)
file. access: access(2)
file and gets longest line. readfile(1V)
file. o e e ccoff(1)
file. . . . o s chmod(2)
file. chown: chown(2)
file comment section. mcs(1)
filecontrol. fentl(2)

file control options. fentl(5)

file converter. conv(1)
file. « . . . o s core(4)

file. « . . oo o cprs(1)

file creation mask. umask(2)

-8 -

a delta (change) to an SCCS
close: close a

dup: duplicate an open

dup2: duplicate an open
selected parts of an object
sact: print current SCCS
crypt: password and
endgrent, fgetgrent: get group
fgetpwent: get password
utmpname: access utmp
putpwent: write password
execlp, execvp: execute a
Idaopen: open a common object
acct: per-process accounting
ar: common archive

pnch:

mdevice:

mfsys:

mtune:

sdevice:

sfsys:

stune:

intro: introduction to

entries of a common object
get: get a version of an SCCS
group: group

files. filehdr:

limits:

constants. unistd:

file. ldfhread: read the
Idohseek: seek to the optional
issue: issue identification

of a member of an archive
close a common object

file header of a common object
a section of a common object
file header of a common object
a section of a common object
header of a common object
section of a common object
table entry of a common object
table entry of a common object
table of a common object
entries in a common object
link: link to a

listing from a common object
ctermid: generate

mktemp: make a unique
name list of common object
/find the slot in the utmp

or a special or ordinary

one. creat: create a new
passwd: password

/rewind, ftell: reposition a
Iseek: move read/write

prs: print an SCCS

read: read from

a string, or lines of a

reinit: runs an initialization

Permuted Index

file. deltarmake delta(1)

file descriptor.o L. close(2)

file descriptor.o ... dup(2)

file descriptor. dup2(3C)
file. dump:dump oL dump(1)

file editing activity. 0. sact(1)

file encryption functions. crypt(3X)
file entry. /setgrent, getgrent(3C)
file entry. /endpwent, getpwent(3C)
file entry. /endutent, getut(3C)
fileentry. putpwent(3C)
file. /execv, execle, execve, exec(2)

file for reading. ldopen, Idopen(3X)
file format. 0L acct(4)
fileformat.o L. ar(4)

file format for card images. pnch(4)

file format. 0000 mdevice(4)
file format. 0L mfsys(4)

file format. mtune(4)
file format. 0L sdevice(4)
file format.00 sfsys(4)

file format. stune(4)

file formats. 0L L. intro(4)

file function. /line number IdIread(3X)
file. e get(1)

file. « . . .o o o group(4)

file header for common object filehdr(4)
file header for/ limits(4)

file header for symbolic unistd(4)

file header of a common object Idfhread(3X)
file header of a common object/ Idohseek(3X)
file. 0 e issue(4)

file. /read the archive header 1dahread(3X)
file. ldclose, ldaclose: 1dclose(3X)
file. ldfhread: readthe 1dfhread(3X)
file.'/line number entriesof 1dlseek(3X)
file. /seek to the optional ldohseek(3X)
file. /relocation entriesof Idrseek(3X)
file. /indexed/named section Idshread(3X)
file. /to an indexed/named Idsseek(3X)
file. /theindex of asymbol 1dtbindex(3X)
file. /read an indexed symbol 1dtbread(3X)
file. /seek to thesymbol 1dtbseek(3X)
file. linenum: line number linenum(4)
file. 00 oo link(2)

file. list: produce C source list(1)

file name for terminal. ctermid(3S)
filename. mktemp(3C)
file. nm:print L. L. nm(1)

file of the currentuser. ttyslot(3C)
file, or a FIFO. /a directory, mknod(2)
file or rewrite an existing creat(2)

file.0 e passwd(4)
file pointer in a stream. fseek(3S)
file pointer. Iseek(2)

file. .« . .. L s prs(1)
1 read(2)

file. /match patterns against regex(1V)
file. e e reinit(1V)

Permuted Index

for a common object

Sharing name server master
remove a delta from an SCCS
two versions of an SCCS
sccsfile: format of SCCS
header for a common object
format of curses screen image
master file. rfmaster: Remote
stat, fstat: get

from a common object
/symbol name for corimon object
syms: common object
volume. fs:

directory entry. dirent:
directory entries and put in a
statfs, fstatfs: get

mount: mount a

ustat: get

mnttab: mounted

sysfs: get

umount: unmount a

and/ checklist: list of

term: format of compiled term
tmpfile: create a temporary
create a name for a temporary
ftw: walk a

undo a previous get of an SCCS
val: validate SCCS

write: write on a

common object files.
Interpreter criteria for

ferror, feof, clearerr,

create and administer SCCS
file header for common object
format specification in text
string, format of graphical
link editor for common object
lockf: record locking on
variables in core or in

in bytes of common object
convert: convert archive
what: identify SCCS

fstab:

ttyname, isatty:

object library. lorder:

of the current user. ttyslot:
/fpgetsticky, fpsetsticky: IEEE
isnand, isnanf: test for

ecvt, fcvt, gevt: convert
/modf: manipulate parts of
floor, ceiling, remainder,/
floor, ceil, fmod, fabs:

cflow: generate C

fclose, fflush: close or
remainder,/ floor, ceil,
stream.

form:

file. /relocation information reloc(4)

file. rfmaster: Remote File rfmaster(4)
file. rmdel: 000 rmdel(1)
file. sccsdiff: compare L. scesdiff(1)
L scesfile(4)
file. scnhdr: section 0L scnhdr(4)
file. scr_dump: 0L scr—dump(4)
File Sharing name server rfmaster(4)
filestatus. stat(2)

file. /line number information strip(1)

file symbol tableentry. ldgetname(3X)
file symbol table format. syms(4)

file system: format of system fs(4)

file system independent dirent(4)
file system independent/ /read getdents(2)
file system information. statfs(2)
filesystem. mount(2)
file system statistics. ustat(2)

file system table. mnttab(4)
file system type information. sysfs(2)
filesystem. umount(2)
file systems processed by fsck checklist(4)
file. « o 0 s term(4)

file. oo e tmpfile(3S)
file. tmpnam, tempnam: tmpnam(3S)
filetree. . . .« .« v . v oo oo ftw(3C)

file. unget: unget(1)
file.0 e oo val(1)

file. « . .o e e e e e e write(2)
filehdr: file header for filehdr(4)
filename. pathconv: search pathconv(1V)
fileno: stream status/ ferror(3S)
files. admin:00 admin(1)
files. filehdr: 0oL filehdr(4)
files. fspec: oo fspec(4)
files. /graphical primitive gps(4)

files. Id: o 1d(1)

files. o0 lockf(3C)
files. /and unset environment set(1V)
files. /print sectionsizes size(1)

files to common formats. convert(1)
files. 000 o L what(1)
file-system-table. fstab(4)
find name of a terminal. ttyname(3C)
find ordering relation foran lorder(1)
find the slotin theutmp file ttyslot(3C)
floating point environment/ fpgetround(3C)
floating point NaN/ isnan: isnan(3C)
floating-point number to/ ecvt(3C)
floating-point numbers. frexp(3C)
floor, ceil, fmod, fabs: floor(3M)
floor, ceiling, remainder,/ floor(3M)
flowgraph.00 cflow(1)
flushastream. fclose(3S)
fmod, fabs: floor, ceiling, floor(3M)
fopen, freopen, fdopen: opena fopen(3S)
fork: create a new process. fork(2)
form: FORM library routines. form(3X)
FORM library routines. form(3X)

-10 -

per-process accounting file
service request/ nisrequest:
ar: common archive file
pnch: file

in a file system independent
mdevice: file

mfsys: file

mtune: file

inode:

term:

core:

cpio:

file. scr_dump:

dir:

/graphical primitive string,
scesfile:

fs: file system:

sdevice: file

sfsys: file

files. fspec:

stune: file

object file symbol table
archive files to common
intro: introduction to file
wtmp: utmp and wtmp entry
scanf, fscanf, sscanf: convert
/vfprintf, vsprintf: print
fprintf, sprintf: print
fpgetround, fpsetround,
fpgetmask, fpsetmask,/
/fpgetmask, fpsetmask,
formatted output. printf,
/fpsetround, fpgetmask,
fpsetmask,/ fpgetround,
point/ /fpsetmask, fpgetsticky,
word on a/ putc, putchar,
stream. puts,

getfrm: returns the current
input/output.

t_free:

memory allocator. malloc,
mallopt, mallinfo:/ malloc,
stream. fopen,

parts of floating-point/

list: produce C source listing
/and line number information
/receive the confirmation
getw: get character or word
gets, fgets: get a string
rmdel: remove a delta
getopt: get option letter
t_rcvdis: retrieve information
read: read

nlist: get entries

getpw: get name *

gencc: create a

system volume.

formatted input. scanf,

of file systems processed by

Permuted Index

format. acct: o000 acct(4)

format and send listener nlsrequest(3N)
format.00 e e ar(4)

format for card images. pnch(4)
format. ,/entriesandput getdents(2)
format.00 0L mdevice(4)
format. o000 oo mfsys(4)
format.00 0o e mtune(4)
formatof ani-node. inode(4)
format of compiled term file. term(4)

format of core image file. core(4)

format of cpio archive. cpio(4)

format of curses screen image scr—dump(4)
format of directories. dir(4)

format of graphical files. gps(4)

format of SCCSfile. scesfile(4)
format of system volume. fs(4)

format.00 0o sdevice(4)
format. sfsys(4)

format specification in text fspec(4)
format.00 e stune(4)
format. syms: common syms(4)
formats. convert: convert convert(1)
formats.00 e intro(4)
formats. utmp, L. 0. L utmp(4)
formatted input. scanf(3S)
formatted output of a varargs/ vprintf(3S)
formatted output. printf, printf(3S)
fpgetmask, fpsetmask,/ fpgetround(3C)
fpgetround, fpsetround, fpgetround(3C)
fpgetsticky, fpsetsticky: [EEE/ fpgetround(3C)
fprintf, sprintf: print printf(3S)
fpsetmask, fpgetsticky,/ fpgetround(3C)
fpsetround, fpgetmask, fpgetround(3C)
fpsetsticky: IEEE floating fpgetround(3C)
fputc, putw: put characteror putc(3S)

fputs: put astringona puts(3S)
framenumber.00 getfrm(1V)
fread, fwrite: binary fread(3S)

free a library structure. t_free(3N)
free, realloc, calloc: main malloc(3C)
free, realloc, calloc, malloc(3X)
freopen, fdopen:opena fopen(35)
frexp, Idexp, modf: manipulate frexp(3C)

from a common object file. list(1)

from a common object file. strip(1)

from a connect request. t_rcvconnect(3N)
from a stream. /fgetc, getc(3S)
fromastream. 00, gets(3S)
froman SCCSfile. rmdel(1)

from argument vector. getopt(3C)
from disconnect. t_rcvdis(3N)
fromfilee. 000000 read(2)
fromnamelist. . < nlist(3C)
fromUID. getpw(3C)
front-end to the cc command. gencc(1)

fs: file system: formatof fs(4)

fscanf, sscanf: convert scanf(3S)

fsck and ncheck. /list checklist(4)

-11 -

Permuted Index

reposition a file pointer in/
text files.

stat,

information. statfs,

pointer in a/ fseek, rewind,
communication/ stdipc:

error/ erf, erfc: error

and complementary error
gamma: log gamma

hypot: Euclidean distance

of a common object file
libwindows: windowing terminal
matherr: error-handling

prof: profile within a

math: math

intro: introduction to

j0,:j1, jn, y0, y1, yn: Bessel
password and file encryption
logarithm, power, square root
remainder, absolute value
sinh, cosh, tanh: hyperbolic
sysi86: machine-specific

atan, atan2: trigonometric
fread,

gamma: log

number to string. ecvt, fcvt,
the cc command.

abort:

cflow:

cross-reference. cxref:
terminal. ctermid:

crypt, setkey, encrypt:
lexical tasks. lex:
/srand48, seed48, lcong48:
srand: simple random-number
gets, fgets:

get:

ulimit:

the user. cuserid:

getc, getchar, fgetc, getw:
the listener. nlsgetcall:
nlist:

umask: set and

stat, fstat:

statfs, fstatfs:

ustat:

information. sysfs:

file.

/setgrent, endgrent, fgetgrent:
getlogin:

msgget:

getpw:

system. uname:

provider. nlsprovider:
getmsg:

unget: undo a previous

fseek, rewind, ftell: fseek(3S)
fspec: format specificationin fspec(4)
fstab: file-system-table. fstab(4)
fstat: get filestatus. stat(2)
fstatfs: get file system statfs(2)
ftell: reposition afile fseek(3S)
ftok: standard interprocess stdipc(3C)
ftw: walk a filetree. L. ftw(3C)
function and complementary erf(3M)
function. /error function erf(3M)
function.o e e gamma(3M)
function.00 hypot(3M)
function. /line number entries 1dlread(3X)
function library. 0L libwindows(3X)
function. oo o .. matherr(3M)
function.o prof(5)
functions and constants. math(5)
functions and libraries. intro(3)
functions. bessel: bessel(3M)
functions. crypt: L. L crypt(3X)
functions. /sqrt: exponential, exp(3M)
functions. /floor, ceiling, floor(3M)
functions. 00wl . sinh(3M)
functions.o oL sysi86(2)
functions. /tan, asin, acos, trig(3M)
fwrite: binary input/output. fread(3S)
gamma function. gamma(3M)
gamma: log gamma function. gamma(3M)
gevt: convert floating-point L L. ecvt(3C)
gencc: create a front-endto gencc(1)
generate an abort fault. abort(3C)
generate C flowgraph. cflow(1)
generate C program cxref(1)
generate file namefor ctermid(3S)
generate hashing encryption. crypt(3C)
generate programs for simple lex(1)
generate uniformly distributed/ drand48(3C)
generator. rand, rand(3C)
get a string from a stream. gets(3S)

get a version of an SCCS file. get(1)

get and set user limits. L. ulimit(2)

get character login nameof cuserid(3S)
get character or word froma/ getc(3S)

get client’s data passed via nlsgetcall(3N)
get entries from name list. nlist(3C)

get file creation mask. umask(2)
getfilestatus. stat(2)

get file system information. statfs(2)

get file system statistics. ustat(2)

get file systemtype sysfs(2)

get: get a version of an SCCS get(1)
getgroup fileentry. getgrent(3C)
getloginname. getlogin(3C)
get messagequeue. msgget(2)
getname from UID. getpw(3C)
getname of current UNIX uname(2)
get name of transport nisprovider(3N)
get next message off a stream. getmsg(2)
getof an SCCSfile. unget(1)

-12 -

argument vector. getopt:
/setpwent, endpwent, fgetpwent:
working directory. getcwd:
times. times:

and/ getpid, getpgrp, getppid:
information. t_getinfo:
/geteuid, getgid, getegid:
semget:

identifier. shmget:

t_getstate:

time:

get character or word from a/
character or word from/ getc,
current working directory.
entries and put in a file/
getuid, geteuid, getgid,
environment name.

real user, effective/ getuid,
frame number.

user,/ getuid, geteuid,
setgrent, endgrent,/
endgrent,/ getgrent,

getgrent, getgrgid,

the currently marked menu/

stream.
argument vector.

process group, and/ getpid,
process, process group, and/
group, and/ getpid, getpgrp,

setpwent, endpwent,/
getpwent, getpwuid,
endpwent,/ getpwent,

a stream.

longline: reads file and

and terminal settings used by
settings used by getty.
getegid: get real user,/
getutline, pututline, /
pututline, setutent,/ getut:
setutent,/ getut: getutent,
getut: getutent, getutid,
from a/ getc, getchar, fgetc,
ascftime,/ ctime, localtime,
setjmp, longjmp: non-local
string, format of graphical/
primitive string, format of
format of graphical/ gps:
plot:

subroutines. plot:

/user, effective user, real
/getppid: get process, process
endgrent, fgetgrent: get

group:

setpgrp: set process
real group, and effective

Permuted Index

get option letter from getopt(3C)
get password fileentry. getpwent(3C)
get path name of current getcwd(3C)
get process and child process times(2)

get process, process group, getpid(2)

get protocol-specific service t_getinfo(3N)
get real user, effective user,/ getuid(2)

get set of semaphores. semget(2)
get shared memory segment shmget(2)
get the currentstate. t_getstate(3N)
gettime. o000 time(2)

getc, getchar, fgetc, getw: getc(3S)
getchar, fgetc, getw:get getc(3S)
getcwd: get path nameof getcwd(3C)
getdents: read directory getdents(2)
getegid: getreal user,/ getuid(2)
getenv: return value for getenv(3C)
geteuid, getgid, getegid: get getuid(2)
getfrm: returns the current getfrm(1V)
getgid, getegid: getreal getuid(2)
getgrent, getgrgid, getgrnam, getgrent(3C)
getgrgid, getgrnam, setgrent, getgrent(3C)
getgrnam, setgrent, endgrent,/ getgrent(3C)
getitems: returns a listof getitems(1V)
getlogin: get login name. getlogin(3C)
getmsg: get next message offa getmsg(2)
getopt: get option letter from getopt(3C)
getpass: read a password. getpass(3C)
getpgrp, getppid: get process, getpid(2)
getpid, getpgrp, getppid: get getpid(2)
getppid: get process, process getpid(2)
getpw: get name from UID. getpw(3C)
getpwent, getpwuid, getpwnam, getpwent(3C)
getpwnam, setpwent, endpwent,/ getpwent(3C)
getpwuid, getpwnam, setpwent, getpwent(3C)
gets, fgets: get a string from gets(3S)

gets longest line. readfile, readfile(1V)
getty. gettydefs:speed gettydefs(4)
gettydefs: speed and terminal gettydefs(4)
getuid, geteuid, getgid, getuid(2)
getut: getutent, getutid, getut(3C)
getutent, getutid, getutline, getut(3C)
getutid, getutline, pututline, getut(3C)
getutline, pututline,/ getut(3C)
getw: get characterorword getc(3S)
gmtime, asctime, cftime, ctime(3C)
gOtO.o Lo setjmp(3C)
gps: graphical primitive gps(4)
graphical files. /graphical gps(4)
graphical primitive string, gps(4)
graphics interface. plot(4)
graphics interface plot(3X)
group, and effective group/ getuid(2)
group, and parent process IDs. getpid(2)
group file entry. /setgrent, getgrent(3C)
groupfile. L. group(4)
group: group file. group(4)
groupID. 0oL setpgrp(2)
group IDs. /effectiveuser, getuid(2)

-13 -

Permuted Index

setuid, setgid: set user and
chown: change owner and
a signal to a process or a
update, and regenerate
ssignal,

varargs:

curses: terminal screen
hcreate, hdestroy: manage
setkey, encrypt: generate
search tables. hsearch,
tables. hsearch, hcreate,
file. scnhdr: section

files. filehdr: file

limits: file

unistd: file

file. ldfhread: read the file
/seek to the optional file
/read an indexed /named section
Idahread: read the archive
layers: protocol used between
terminal. jagent:

manage hash search tables.
sinh, cosh, tanh:

function.

setpgrp: set process group
issue: issue

get shared memory segment
what:

group, and parent process
group, and effective group
setgid: set user and group
/fpgetsticky, fpsetsticky:
core: format of core

format of curses screen

pnch: file format for card
limits: file header for

dirent: file system

and put in a file system

of a/ ldtbindex: compute the
a common/ ldtbread: read an
Idshread, ldnshread: read an
1dsseek, ldnsseek: seek to an
receipt of an orderly release
receive a unit data error
specific alarms and/or the/
alarms and/or the "working"
terminfo descriptions.
inittab: script for the

reinit: runs an

t_sndrel:

process. popen, pclose:
process.

inode: format of an
sscanf: convert formatted
push character back into
fread, fwrite: binary
poll: STREAMS

groupIDs.o setuid(2)
groupofafile. chown(2)
group of processes. /send kill(2)
groups of programs. /maintain, make(1)
gsignal: software signals. ssignal(3C)
handle variable argument list. varargs(5)
handling and optimization/ curses(3X)
hash search tables. hsearch, hsearch(3C)
hashing encryption. crypt, crypt(3C)
hcreate, hdestroy: manage hash hsearch(3C)
hdestroy: manage hash search hsearch(3C)
header for a common object scnhdr(4)
header for common object filehdr(4)
headerfor/ limits(4)
header for symbolic constants. unistd(4)
header of a common object Idfhread(3X)
header of a common object/ Idohseek(3X)
header of a common object/ Idshread(3X)
header of a memberofan/ Idahread(3X)
host and windowing terminal/ layers(5)
host control of windowing jagent(5)
hsearch, hcreate, hdestroy: hsearch(3C)
hyperbolic functions. sinh(3M)
hypot: Euclidean distance hypot(3M)
i286emul: emulate 80286. i286emul(1)
ID. s setpgrp(2)
identification file. oL ... issue(4)
identifier. shmget: shmget(2)
identify SCCSfiles. what(1)

IDs. /get process, process « . . getpid(2)
IDs. /effective user,real getuid(2)
IDs. setuid, setuid(2)
IEEE floating point/ fpgetround(3C)
imagefile. core(4) ;
image file. scr—dump: scr_dump(4)
images. 0oL pnch(4)
implementation-specific/ limits(4)
independent directory entry. dirent(4)
independent format. /entries getdents(2)
index of a symbol tableentry Idtbindex(3X)
indexed symbol table entryof Idtbread(3X)
indexed/named section header/ ldshread(3X)
indexed/named sectionofa/ Idsseek(3X)
indication. /acknowledge t_rcvrel(3N)
indication. t_rcvuderr: t_rcvuderr(3N)
indicator: display application indicator(1V)
indicator. /specific indicator(1V)
infocmp: compare or printout infocmp(1M)
init process.o L 0oL inittab(4)
initialization file. reinit(1V)
initiate an orderly release. t_sndrel(3N)
initiate pipe to/froma popen(3S)
inittab: script for theinit inittab(4)
inode: format of ani-node. inode(4)
imode. o 0000 inode(4)
input. scanf, fscanf, scanf(3S)
input stream. ungetc: ungetc(3S)
input/output.00 L. fread(35)
input/output multiplexing. poll(2)

- 14 -

stdio: standard buffered
fileno: stream status
install:

abs: return

/164a: convert between long
sputl, sgetl: access long

atol, atoi: convert string to
/1tol3: convert between 3-byte
3-byte integers and long
program. cscope:

plot: graphics

plot: graphics

filename. pathconv: search
pipe: create an

stdipc: ftok: standard

sleep: suspend execution for
formats.

functions and libraries.
miscellany.

programming commands.
calls and error numbers.

intro:
intro:
intro:
intro:
intro:

libraries.

commands.
and error numbers.

/islower, isupper, isalpha,
/isxdigit, islower, isupper,
/ispunct, isprint, isgraph,
terminal. ttyname,
/isalpha, isalnum, isspace,
isupper, isalpha,/ ctype:
/isentrl, ispunct, isprint,
ctype: isdigit, isxdigit,

for floating point NaN/
floating point NaN/ isnan:
point NaN/ isnan: isnand,
/isspace, iscntrl, ispunct,
/isalnum, isspace, iscntrl,
/isupper, isalpha, isalnum,
system:

issue:

file.

/isdigit, isxdigit, islower,
isalpha,/ ctype: isdigit,

item: CRT

of the currently marked menu
functions. bessel:

functions. bessel: j0,
windowing terminal.
functions. bessel: j0, j1,
/Irand48, nrand48, mrand48,
process or a group of /
3-byte integers and long/
integer and base-64/ a64l,
cpp: the C

Permuted Index

input/output package. stdio(3S)
inquiries. /feof, clearerr, ferror(3S)
install commands. install(1M)
install: install commands. install(1M)
integer absolute value. abs(3C)
integer ahd base-64 ASCII/ a641(3C)
integer dataina/ sputl(3X)
integer. strtol, strtol(3C)
integers and long integers. 13tol(3C)
integers. /convert between 13tol(3C)
interactively examinea C cscope(1)
interface.00 plot(4)
interface subroutines. plot(3X)
Interpreter criteriafor pathconv(1V)
interprocess channel. pipe(2)
interprocess communication/ stdipc(3C)
interval.o sleep(3C)
intro: introduction to file intro(4)
intro: introductionto intro(3)
intro: introductionto intro(5)
intro: introductionto intro(1)
intro: introduction to system intro(2)
introduction to file formats. intro(4)
introduction to functionsand intro(3)
introduction to miscellany. intro(5)
introduction to programming intro(1)
introduction to systemcalls intro(2)
ioctl: control device. ioctl(2)
isalnum, isspace, isentrl,/ L L L L. ctype(3C)
isalpha, isalnum, isspace,/ ctype(3C)
isascii, tolower, toupper,/ ctype(3C)
isatty: find nameofa ttyname(3C)
isentrl, ispunct, isprint,/ ctype(3C)
isdigit, isxdigit, islower, ctype(3C)
isgraph, isascii, tolower,/ ctype(3C)
islower, isupper, isalpha,/ ctype(3C)
isnan: isnand, isnanf: test isnan(3C)
isnand, isnanf: testfor isnan(3C)
isnanf: test for floating isnan(3C)
isprint, isgraph, isascii,/ ctype(3C)
ispunct, isprint, isgraph,/ ctype(3C)
isspace, iscntrl, ispunct,/ L. ctype(3C)
issue a shell command. system(3S)
issue identification file. issue(4)
issue: issue identification issue(4)
isupper, isalpha, isalnum,/ ctype(3C)
isxdigit, islower, isupper, ctype(3C)
item: CRT item routines. item(3X)
item routines. 000 item(3X)
items. /returnsalist getitems(1V)
j0,j1, jn, yO, y1, yn: Bessel bessel(3M)
jl,jn, y0, yl, yn: Bessel bessel(3M)
jagent: host control of jagent(5)
jn, y0, y1, yn: Bessel bessel(3M)
jrand48, srand48, seed48,/ drand48(3C)
kill: send asignaltoa kill(2)
13tol, ltol3: convert between 13tol(3C)
164a: convert betweenlong a641(3C)
language preprocessor. cpp(1)

- 15 -

Permuted Index

host and windowing terminal /
/jrand48, srand48, seed48,

object file. 1dclose,

header of a member of an/
file for reading. ldopen,
common object file.

of floating-point/ frexp,
access routines.

of a common object file.
name for common object file/
line number entries/ ldlread,
number/ ldlread, 1dlinit,
manipulate line number/
line number entries of a/
entries of a section/ ldlseek,
entries of a section/ ldrseek,
indexed/named/ ldshread,
indexed/named/ ldsseek,
file header of a common/
object file for reading.
relocation entries of a/
indexed /named section header/
indexed /named section of a/
of a symbol table entry of a/
symbol table entry of a/
table of a common object/
getopt: get option

simple lexical tasks.

generate programs for simple
update. Isearch,
introduction to functions and
tam: TAM transition
chkshlib: compare shared
windowing terminal function
relation for an object
portable/ ar: archive and
mkshlib: create a shared

fieldtype: FIELDTYPE

panel: PANEL
t_alloc: allocate a

t_sync: synchronize transport
function library.
implementation-specific/
ulimit: get and set user

an out-going terminal

puts its arguments on 1

common object file. linenum:
/1dlinit, 1dlitem: manipulate
1dlseek, ldnlseek: seek to
strip: strip symbol and

reads file and gets longest

profile data. Iprof: display

cftime: language specific strings. cftime(4)
layers: protocol used between layers(5)
lcong48: generate uniformly/ drand48(3C)
object files. 1d: link editor for common 1d(1)
Idaclose: close a common ldclose(3X)
Idahread: read the archive ldahread(3X)
Idaopen: open a common object ldopen(3X)
ldclose, ldaclose: closea Idclose(3X)
Idexp, modf: manipulate parts frexp(3C)
ldfcn: common object file L L. 1dfen(4)
ldfhread: read the file header 1dfhread(3X)
Idgetname: retrieve symbol ldgetname(3X)
Idlinit, ldlitem: manipulate IdIread(3X)
Idlitem: manipulate line 1dIread(3X)
Idlread, 1dlinit, 1dlitem: 1dlread(3X)
Idiseek, ldnlseek: seekto 1dlseek(3X)
ldnlseek: seek to line number Idlseek(3X)
ldnrseek: seek to relocation I1drseek(3X)
ldnshread: readan ldshread(3X)
ldnsseek: seektoan Idsseek(3X)
Idohseek: seek to the optional 1dohseek(3X)
Idopen, 1daopen: open a common Idopen(3X)
Idrseek, ldnrseek: seekto Idrseek(3X)
ldshread, ldnshread: readan 1dshread(3X)
Idsseek, ldnsseek: seektoan Idsseek(3X)
Idtbindex: compute the index 1dtbindex(3X)
Idtbread: read anindexed 1dtbread(3X)
Idtbseek: seek to the symbol 1dtbseek(3X)
letter from argument vector. getopt(3C)
lex: generate programs for lex(1)
lexical tasks. lex: lex(1)
Ifind: linear searchand Isearch(3C)
libraries. intro:00 ... intro(3)
libraries. 00 tam(3C)
libraries tool.0 oL chkshlib(1)
library. libwindows: libwindows(3X)
library. /find ordering lorder(1)
library maintainer for ar(1)
library. 00000 mkshlib(1)
field: FIELD library routines. field(3X)
library routines. fieldtype(3X)
form: FORM library routines. form(3X)
library routines. panel(3X)
library structure. L. t_alloc(3N)
t_free: free a library structure. t_free(3N)
library.o 0oL t_sync(3N)
libwindows: windowing terminal libwindows(3X)
limits: file header for limits(4)
limits. 00000l ulimit(2)
line connection. /establish dial(3C)
ge line. o O . . e e e e e e e e e e message(1V)
line number entriesina linenum(4)
line number entriesofa/ 1dlread(3X)
line number entriesofa/ Idlseek(3X)
line number information froma/ strip(1)
line. readfile, longline: readfile(1V)
Isearch, Ifind: linear search and update. Isearch(3C)
line-by-line executioncount Iprof(1)
linenum: line number entries linenum(4)

in a common object file.

- 16 -

patterns against a string, or
files. 1d:
a.out: common assembler and

link:

nlist: get entries from name
nm: print name

by fsck and/ checklist:
menu,/ getitems: returns a
from a common object file.
handle variable argument
output of a varargs argument
t_listen:

client’s data passed via the
nlsrequest: format and send
file. list: produce C source
cftime, ascftime,/ ctime,
end, etext, edata: last
memory. plock:

files.

lockf: record

gamma:

exponential, logarithm,/ exp,
/usr/adm /loginlog:
logarithm, power,/ exp, log,
/log10, pow, sqrt: exponential,
/log of failed

getlogin: get

cuserid: get character
logname: return

setting up an environment at
user.

a64l, 164a: convert between
sputl, sgetl: access

between 3-byte integers and
longline: reads file and gets
setjmp,

longest line. readfile,

for an object library.
execution count profile data.
jrand48,/ drand48, erand48,
and update.

pointer.

integers and long/ 13tol,

values:

/access long integer data in a
sysi86:

m4:

mallog, free, realloc, calloc:
/mallopt, mallinfo: fast
regenerate groups of/ make:
ar: archive and library

SCCS file. delta:

mkdir:

or ordinary file, or a/ mknod:
mktemp:

regenerate groups of /

Permuted Index

lines of a file. regex:match regex(1V)
link editor for common object 1d(1)

link editor output. L. a.out(4)
link: link toafile. link(2)
linktoafile. link(2)

lint: a C program checker. lint(1)

list. « . .o o oo nlist(3C)

list of common object file. nm(1)

list of file systems processed checklist(4)
list of the currently marked getitems(1V)
list: produce C source listing list(1)

list. varargs: 0. ... varargs(5)
list. /print formatted vprintf(3S)
listen for a connect request. t_listen(3N)
listener. nlsgetcall: get nlsgetcall(3N)
listener service request/ nlsrequest(3N)
listing from a common object list(1)
localtime, gmtime, asctime, ctime(3C)
locations in program. end(3C)
lock process, text, ordatain plock(2)
lockf: record lockingon lockf(3C)
locking on files. lockf(3C)
log gamma function. gamma(3M)
log, logl0, pow, sqrt: exp(3M)

log of failed login attempts. loginlog(4)
log10, pow, sqrt: exponential, exp(3M)
logarithm, power, square root/ exp(3M)
login attempts. Lo loginlog(4)
loginname. getlogin(3C)
login name of theuser. cuserid(3S)
login name of user. logname(3X)
login time. profile: profile(4)
logname: return login name of logname(3X)
long integer and base-64 ASCII/ a641(3C)
long integer dataina/ sputl(3X)
long integers. /ltol3: convert 13tol(3C)
longest line. readfile, readfile(1V)
longjmp: non-local goto. setjmp(3C)
longline: reads fileand gets readfile(1V)
lorder: find ordering relation lorder(1)
lprof: display line-by-line Iprof(1)
Irand48, nrand48, mrand48, drand48(3C)
Isearch, Ifind: linear search Isearch(3C)
Iseek: move read/write file Iseek(2)
ltol3: convert between 3-byte 13tol(3C)
m4: Macro Processor. . . « « « « « o + « .+ . m4(1)
machine-dependent values. values(5)
machine-independent fashion. sputl(3X)
machine-specific functions. sysi86(2)
MACrO PrOCESSOL. « « « o & o o o o o + o 4 » m4(1)

main memory allocator. malloc(3C)
main memory allocator. malloc(3X)
maintain, update, and make(1)
maintainer for portable/ ar(1)

make a delta (change)toan delta(1)
make a directory. L. mkdir(2)
make a directory, or aspecial mknod(2)
make a unique filename. mktemp(3C)
make: maintain, update, and make(1)

-17 -

Permuted Index

/realloc, calloc, mallopt,
main memory allocator.
mallopt, mallinfo: fast main/
malloc, free, realloc, calloc,
/tfind, tdelete, twalk:
hsearch, hcreate, hdestroy:
endpoint. t_optmgmt:
sigignore, sigpause: signal
of/ ldlread, Idlinit, 1dlitem:
frexp, 1dexp, modf:
comment section. mcs:
ascii:

a list of the currently

set and get file creation
File Sharing name server
string, or lines of a/ regex:
regular expression compile and
math:

constants.

function.

file comment section.

memcpy, memset:/ memory:
memset:/ memory: memccpy,
memory: memccpy, memchr,
/memccpy, memchr, memcmp,
free, realloc, calloc: main
mallopt, mallinfo: fast main
shmctl: shared

memcmp, memcpy, memset: /
memcmp, memcpy, memset:
shmop: shmat, shmdt: shared
lock process, text, or data in
shmget: get shared

/memchr, memcmp, memcpy,

a list of the currently marked
menu: CRT

msgctl:

message: puts its arguments on
send listener service request
getmsg: get next

putmsg: send a

msgop: msgsnd, msgrcv:
message line.

msgget: get

t_error: produce error
sys_nerr: system error
special or ordinary file, or/
library.

name.

table.

chmod: change
floating-point/ frexp, ldexp,
utime: set file access and
profile.

mount:

mallinfo: fast main memory/

malloc, free, realloc, calloc: .
mallog, free, realloc, calloc, .
mallopt, mallinfo: fast main/

manage binary search trees. .
manage hash search tables. .
manage options for a transport
management. /sigrelse, . . .
manipulate line number entries
manipulate parts of/
manipulate the object file . .
map of ASCII character set. .
marked menu items. /returns
mask. umask:
master file. rfmaster: Remote

match patterns against a
match routines. regexp:
math functions and constants.
math: math functions and
matherr: error-handling . . .
mcs: manipulate the object .
mdevice: file format.
memccpy, memchr, memcmp,
memchr, memcmp, memcpy,

memcmp, memcpy, memset: memory,/

memcpy, memset: memory/ .
memory allocator. malloc, .
memory allocator. /calloc, .
memory control operations. .
memory: memccpy, memchr,
memory operations. /memchr,
memory operations.
memory. plock:
memory segment identifier. .
memset: memory operations.
menu: CRT menu routines. .
menu items. getitems: returns
menu routines.
message control operations. .
message line.
message. /format and
message off a stream.
message on a stream.
message operations.
message: puts its arguments on
message queue.
message.
messages. /errno, sys_errlist,
mfsys: file format.
mkdir: make a directory.
mknod: make a directory, or a
mkshlib: create a shared . .
mktemp: make a unique file .
mnttab: mounted file system
mode of file.
modf: manipulate parts of
modification times.
monitor: prepare execution .
mount a file system.

18 -

malloc(3X)
malloc(3C)
malloc(3X)
mailoc(3X)
tsearch(3C)
hsearch(3C)
t_optmgmt(3N)
sigset(2)
Idiread(3X)
frexp(3C)
mcs(1)
ascii(5)
getitems(1V)
umask(2)
rfmaster(4)
regex(1V)
regexp(5)
math(5)
math(5)
matherr(3M)
mes(1)
mdevice(4)
memory(3C)
memory(3C)
. memory(3C)
memory(3C)
malloc(3C)
malloc(3X)
shmctl(2)
memory(3C)
memory(3C)
shmop(2)
plock(2)
shmget(2)
memory(3C)
menu(3X)
getitems(1V)
menu(3X)
msgctl(2)
message(1V)
nlsrequest(3N)
getmsg(2)
putmsg(2)
msgop(2)
message(1V)
msgget(2)
t_error(3N)
perror(3C)
mfsys(4)
mkdir(2)
mknod(2)
mbkshlib(1)
mktemp(3C)
mnttab(4)
chmod(2)
frexp(3C)
utime(2)
monitor(3C)
mount(2)

mnttab:

Iseek:

/erand48, Irand48, nrand48,
operations.

operations.
msgop: msgsnd,
operations. msgop:

used by xt(7)/ xtproto:

poll: STREAMS input/output
test for floating point

systems processed by fsck and
process.

list.

passed via the listener.
transport provider.

listener service request/

object file.

~ setjmp, longjmp:

test for floating point NaN
drand48, erand48, Irand48,

dis:

Idfen: common

mcs: manipulate the

conv: common

cprs: compress a common
dump selected parts of an
Idopen, Idaopen: open a common
number entries of a common
Idaclose: close a common

the file header of a common

of a section of a common

file header of a common

of a section of a common
section header of a common
section of a common

symbol table entry of a common
symbol table entry of a common
the symbol table of a common
number entries in a common

C source listing from a common
nm: print name list of common
information for a common
section header for a common
information from a common
entry. /symbol name for common
format. syms: common

file header for common

1d: link editor for common

sizes in bytes of common

find ordering relation for an
reading. ldopen, ldaopen:
fopen, freopen, fdopen:

dup: duplicate an

dup2: duplicate an

open:

writing.

Permuted Index

mount: mount a file system. mount(2)
mounted file system table. mnttab(4)
move read/write file pointer. Iseek(2)
mrand48) jrand48, srand48,/ drand48(3C)
msgctl: message control L. L L msgctl(2)
msgget: get message queue. msgget(2)
msgop: msgsnd, msgrcv: message msgop(2)
msgrcv: message operations. msgop(2)
msgsnd, msgrcv: message msgop(2)
mtune: file format. L0 L mtune(4)
multiplexed channels protocol xtproto(5)
multiplexing. 0L 0 0L L. poll(2)

NaN (Not-A-Number). /isnanf: isnan(3C)
ncheck. /listoffile checklist(4)
nice: change priority ofa nice(2)

nlist: get entries from name nlist(3C)
nisgetcall: get client'sdata nlsgetcall(3N)
nlsprovider: get nameof nlsprovider(3N)
nlsrequest: formatandsend nlsrequest(3N)
nm: print name list of common nm(1)
non-local goto. L. L setjmp(3C)
(Not-A-Number). /isnanf: isnan(3C)
nrand48, mrand48, jrand48,/ drand48(3C)
object code disassembler. dis(1)

object file access routines. 1dfen(4)
object file comment section. mcs(1)
object file converter. conv(1)
objectfile. cprs(1)
object file. dump: oL dump(1)
object file for reading. Idopen(3X)
object file function. /line IdIread(3X)
object file. Idclose, 1dclose(3X)
object file. ldfhread:read ldfhread(3X)
object file. /number entries Idlseek(3X)
object file. /to the optional ldohseek(3X)
object file. /entries ldrseek(3X)
object file. /indexed/named Idshread(3X)
object file. /indexed/named ldsseek(3X)
object file. /theindexofa Idtbindex(3X)
object file. /read anindexed 1dtbread(3X)
object file. /seekto Idtbseek(3X)
object file. linenum: line linenum(4)
object file. list: produce list(1)
objectfile. nm(1)

object file. /relocation reloc(4)
object file. secnhdr: L senhdr(4)
object file. /and line number strip(1)
object file symbol table ldgetname(3X)
object file symbol table syms(4)
object files. filehdr: filehdr(4)
object files. 1d(1)

object files. /printsection size(1)
object library. lorder: lorder(1)
open a common object file for Idopen(3X)
openastream.o . fopen(3S)
open file descriptor. dup(2)

open file descriptor. L. dup2(3C)
open for reading or writing. open(2)
open: open for readingor open(2)

- 19 -

Permuted Index

seekdir,/ directory:

rewinddir, closedir: directory
memcmp, memcpy, memset: memory
msgctl: message control

msgop: msgsnd, msgrcv: message
semctl: semaphore control
semop: semaphore

shmctl: shared memory control
shmat, shmdt: shared memory
strespn, strtok: string

terminal screen handling and
vector. getopt: get

common/ ldohseek: seek to the
fentl: file control

endpoint. t_optmgmt: manage
object library. lorder: find
/acknowledge receipt of an
t_sndrel: initiate an

/a directory, or a special or
dial: establish an

assembler and link editor

echo: put string on virtual
/vsprintf: print formatted
sprintf: print formatted

chown: change

handling and optimization
standard buffered input/output
interprocess communication
panel:

process, process group, and
nlsgetcall: get client’s data

- functions. crypt:
/endpwent, fgetpwent: get
putpwent: write

passwd:

getpass: read a

directory. getcwd: get
criteria for filename.

lines of a file. regex: match
signal.

a process. popen,

format. acct:

sys_nerr: system error/
channel.

popen, pclose: initiate
data in memory.

subroutines.

images.

ftell: reposition a file

Iseek: move read/write file
multiplexing.

to/from a process.

and library maintainer for
logarithm,/ exp, log, log10,
/sqrt: exponential, logarithm,
monitor:

opendir, readdir, telldir, directory(3C)
operations. /telldir, seekdir, directory(3C)
operations. /memccpy, memchr, memory(3C)
operations.00 msgctl(2)
operations. msgop(2)
operations. semctl(2)
operations. o0 0. semop(2)
operations. shmctl(2)
operations. shmop: shmop(2)
operations. /strpbrk, strspn, string(3C)
optimization package. curses: curses(3X)
option letter from argument getopt(3C)
optional file headerofa 1dohseek(3X)
options.o e fentl(5)
options for a transport t_optmgmt(3N)
ordering relationforan lorder(1)
orderly release indication. t_rcvrel(3N)
orderly release. t_sndrel(3N)
ordinary file, ora FIFO. mknod(2)
out-going terminal line/ dial(3C)
output. a.out: common a.out(4)
OUtput. + v v v v v e e e e e e e e echo(1V)
output of a varargs argument/ vprintf(3S)
output. printf, fprintf, printf(3S)
owner and group of afile. chown(2)
package. /terminal screen curses(3X)
package. stdio: stdio(3S)
package. /ftok:standard stdipc(3C)
PANEL library routines. panel(3X)
panel: PANEL library routines. panel(3X)
parent process IDs. /get getpid(2)
passed via the listener. nlsgetcall(3N)
passwd: password file. passwd(4)
password and file encryption crypt(3X)
password fileentry. getpwent(3C)
password fileentry. putpwent(3C)
password file. passwd(4)
password.ol getpass(3C)
path name of current working getcwd(3C)
pathconv: search Interpreter pathconv(1V)
patterns against a string, or regex(1V)
pause: suspend process until pause(2)
pclose: initiate pipe to/from popen(3S)
per-process accounting file acct(4)
perror, errno, sys_errlist, perror(3C)
pipe: create an interprocess pipe(2)

pipe to/from a process. popen(3S)
plock: lock process, text,or plock(2)
plot: graphics interface. plot(4)

plot: graphics interface plot(3X)
pnch: file format forcard pnch(4)
pointer in a stream. /rewind, fseek(3S)
pointer. Iseek(2)

poll: STREAMS input/output poll(2)
popen, pclose: initiate pipe popen(3S)
portable archives. /archive ar(1)

pow, sqrt: exponential, exp(3M)
power, square root functions. exp(3M)
prepare execution profile. monitor(3C)

- 20 -

cpp: the C language

unget: undo a

graphical/ gps: graphical
types:

prs:

editing activity. sact:
vprintf, viprintf, vsprintf:
printf, fprintf, sprintf:

object file. nm:

infocmp: compare or

of common object files. size:
print formatted output.
nice: change

acct: enable or disable
alarm: set a

times. times: get

codestroy: communicate to a
exit, _exit: terminate

fork: create a new

/getpgrp, getppid: get process,
setpgrp: set

process group, and parent
inittab: script for the init
nice: change priority of a
kill: send a signal to a
initiate pipe to/from a
getpid, getpgrp, getppid: get
memory. plock: lock

times: get process and child
wait: wait for child

ptrace:

pause: suspend

/list of file systems

to a process or a group of
m4: macro

a common object file. list:
t_error:

function.

profile.

line-by-line execution count
prof: display

monitor: prepare execution
profil: execution time
environment at login time.
prof:

intro: introduction to
windowing terminal/ layers:
xtproto: multiplexed channels
information. t_getinfo: get
get name of transport

/generate uniformly distributed

stream. ungetc:

put character or word on a/
character or word on a/ putc,
environment.

stream.

Permuted Index

PIeprocessor. .« . . v v 4 4 a4 oo e e o4 .. cpp(1)
previous get of an SCCS file. unget(1)
primitive string, formatof gps(4)
primitive system data types. types(5)
printan SCCSfile. prs(1)

print current SCCSfile sact(1)
print formatted outputofa/ vprintf(3S)
print formatted output. printf(3S)
print name list of common nm(1)

print out terminfo/ L. infocmp(1M)
print section sizes in bytes size(1)
printf, fprintf, sprintf: printf(3S)
priority of a process. nice(2)
process accounting. 0 acct(2)
process alarm clock. alarm(2)
process and child process times(2)
process. /cocheck, coreceive, coproc(1V)
PrOCess. . o ¢ v ot vt e e e e e exit(2)
PrOCESS. « v v v v v v e e e e e e e e e fork(2)
process group, and parent/ getpid(2)
processgroup ID.o setpgrp(2)
process IDs. /get process, getpid(2)
PrOCeSS. v v v v v v v e e e e e e e e e inittab(4)
Process. o e et 0 e e e e e .. nice(2)
processoragroup of/ kill(2)
process. popen, pclose: popen(3S)
process, process group, and/ getpid(2)
process, text, ordatain plock(2)
process times. times(2)
process to stop or terminate. wait(2)
process trace. 4 4404 e 0. . ptrace(2)
process until signal. pause(2)
processed by fsck and ncheck. checklist(4)
processes. /send asignal kill(2)
PrOCESSOr. v & ¢ v v o v o o 4 o 0 o o 0 s m4(1)
produce C source listing from list(1)
produce error message. t_error(3N)
prof: display profile data. prof(1)
prof: profile withina prof(5)
profil: execution time profil(2)
profile data. lprof: display Iprof(1)
profiledata. prof(1)
profile. Lo monitor(3C)
profile.00 profil(2)
profile: settingupan profile(4)
profile within a function. prof(5)
programming commands. intro(1)
protocol used between hostand layers(5)
protocol used by xt(7) driver. xtproto(5)
protocol-specific service t_getinfo(3N)
provider. nlsprovider: nlsprovider(3N)
prs: print an SCCS file. prs(1)
pseudo-random numbers. drand48(3C)
ptrace: process trace. ptrace(2)
push character back into input ungetc(3S)
putc, putchar, fputc, putw: L. putc(3S)
putchar, fputc, putw:put L L. putce(3S)
putenv: change or add valueto putenv(3C)
putmsg: send a messageona putmsg(2)

-21 -

Permuted Index

entry.

stream.

line. message:

/getutent, getutid, getutline,
a/ putc, putchar, fputc,

msgget: get message

gsort:

random-number generator.
rand, srand: simple

getpass:

entry of a common/ ldtbread:
header/ ldshread, ldnshread:
in a file system/ getdents:
read:

member of an/ ldahread:
common object file. Idfhread:
directory: opendir,

and gets longest line.

open a common object file for
open: open for

line. readfile, longline:
Iseek: move

allocator. malloc, free,
mallinfo: fast/ malloc, free,
specify what to do upon
t_rcvrel: acknowledge
t_rcvudata:

indication. t_rcvuderr:
sent over a/ t_rcv:

a connect/ t_rcvconnect:
lockf:

setcolor:

execute regular expression.
compile.

make: maintain, update, and
regular expression. regcmp,
a string, or lines of a file.
compile and match routines.
match routines. regexp:
regcmp:

regex: compile and execute
file.

lorder: find ordering
/receipt of an orderly
t_sndrel: initiate an orderly
for a common object file.
Idrseek, ldnrseek: seek to
common object file. reloc:
/fmod, fabs: floor, ceiling,
server master file. rfmaster:
file. rmdel:

rmdir:

unlink:

clock:

stream. fseek, rewind, ftell:
and send listener service
t_accept: accept a connect

putpwent: write password file putpwent(3C)
puts, fputs: put astringona puts(3S)
puts its arguments on message message(1V)
pututline, setutent, endutent,/ getut(3C)
putw: put character orwordon putc(3S)
gsort: quicker sort. gsort(3C)
QUEUE. + & vt e e e e e e e e e e e msgget(2)
quicker sort.00 gsort(3C)
rand, srand: simple L. rand(3C)
random-number generator. rand(3C)
readapassword. getpass(3C)
read an indexed symbol table Idtbread(3X)
read an indexed/named section Idshread(3X)
read directory entriesand put getdents(2)
read fromfile.00 read(2)

read: read from file. read(2)

read the archive headerofa Idahread(3X)
read the file headerofa Idfhread(3X)
readdir, telldir, seekdir,/ directory(3C)
readfile, longline: reads file readfile(1V)
reading. ldopen, Idaopen: Idopen(3X)
reading or writing. open(2)
reads file and gets longest readfile(1V)
read/write file pointer. Iseek(2)
realloc, calloc: main memory malloc(3C)
realloc, calloc, mallopt, malloc(3X)
receipt of a signal. signal: signal(2)
receipt of an orderly release/ t_rcvrel(3N)
receiveadataunit. L. t_rcvudata(3N)
receive a unitdataerror t_rcvuderr(3N)
receive data or expedited data t_rcv(3N)
receive the confirmation from t_rcvconnect(3N)
record locking on files. lockf(3C)
redefine or createacolor. setcolor(1V)
regcmp, regex: compileand regemp(3X)
regcmp: regular expression regcmp(1)
regenerate groups of programs. make(1)
regex: compile and execute regemp(3X)
regex: match patterns against regex(1V)
regexp: regular expression regexp(5)
regular expression compileand regexp(5)
regular expression compile. regemp(1)
regular expression. regemp, regemp(3X)
reinit: runs an initialization reinit(1V)
relation for an object/ lorder(1)
release indication. t_rcvrel(3N)
release. o000 t_sndrel(3N)
reloc: relocation information reloc(4)
relocation entriesofa/ 1drseek(3X)
relocation information fora reloc(4)
remainder, absolute value/ floor(3M)
Remote File Sharingname rfmaster(4)
remove a delta fromanSCCS rmdel(1)
remove a directory. rmdir(2)
remove directory entry. unlink(2)
report CPU timeused. clock(3C)
reposition a file pointerina fseek(3S)
request message. /format nlsrequest(3N)
request. e w e e e e e e e t_accept(3N)

-22 -

t_listen: listen for a connect
confirmation from a connect
send user-initiated disconnect
values. reset:

default values.

disconnect. t_rcvdis:
common object file/ ldgetname:
abs:

logname:

name. getenv:

stat: data

currently marked/ getitems:
number. getfrm:

file pointer in a/ fseek,
/readdir, telldir, seekdir,
creat: create a new file or
name server master file.
SCCS file.

chroot: change

logarithm, power, square
field: FIELD library
fieldtype: FIELDTYPE library
form: FORM library

item: CRT item

common object file access
menu: CRT menu

panel: PANEL library
expression compile and match
shell:

run:

reinit:

editing activity.

space allocation. brk,
formatted input.

the delta commentary of an
comb: combine

make a delta (change) to an
sact: print current

get: get a version of an

prs: print an

rmdel: remove a delta from an
compare two versions of an
scesfile: format of

undo a previous get of an
val: validate

admin: create and administer
what: identify

of an SCCS file.

common object file.

screen image file.
optimization/ curses: terminal
scr_dump: format of curses
inittab:

bsearch: binary

Permuted Index

request. e e e e e e e e . t_listen(3N)
request. /receivethe t_rcvconnect(3N)
request. t_snddis: t_snddis(3N)
reset a field toitsdefault reset(1V)
reset: reset a field toits reset(1V)
retrieve information from t_rcvdis(3N)
retrieve symbol name for ldgetname(3X)
return integer absolute value. abs(3C)
return login name of user. logname(3X)
return value for environment getenv(3C)
returned by stat systemcall. stat(5)
returns a listofthe getitems(1V)
returns the current frame getfrm(1V)
rewind, ftell: repositiona fseek(3S)
rewinddir, closedir: directory/ directory(3C)
rewrite an existingone. creat(2)
rfmaster: Remote File Sharing rfmaster(4)
rmdel: remove a delta froman rmdel(1)
rmdir: remove a directory. rmdir(2)
root directory. chroot(2)
root functions. /exponential, exp(3M)
routines. e e e e e e e e field(3X)
routines. Lo L. fieldtype(3X)
routines. v v v w e e e e e e form(3X)
routines. 000 item(3X)
routines. Idfen: Lo 1dfen(4)
routines. 0000w 0. menu(3X)
routines. panel(3X)
routines. regexp:regular regexp(5)
run a command using shell. shell(1V)
run an executable. run(1V)

run: run an executable. run(1V)
runs an initialization file. reinit(1V)
sact: print current SCCS file sact(1)

sbrk: change data segment brk(2)

scanf, fscanf, sscanf: convert scanf(3S)
SCCS delta. cdc: change cde(1)
SCCSdeltas. . « « v v v v v v v v v v comb(1)
SCCS file. delta: oo delta(1)
SCCS file editing activity. sact(1)
SCCSfile. . . v v v v v v v v v v e get(1)
SCCSfile. v v v v v i prs(1)
SCCSfile.« v o o o oo rmdel(1)
SCCS file. scesdiff: Lo . Lo L scesdiff(1)
SCCSfile. . . v v v v v v v v v v scesfile(4)
SCCS file. unget: unget(1)
SCCSfile. . . v v v v v v v v i i e val(1)
SCCSfiles. v o v v v admin(1)
SCCSfiles. v v v v v v v i v o what(1)
scesdiff: compare two versions scesdiff(1)
sccsfile: format of SCCS file. sccsfile(4)
scnhdr: section header fora scnhdr(4)
scr—dump: format of curses scr—dump(4)
screen handlingand curses(3X)
screen imagefile. scr_dump(4)
script for the init process. inittab(4)
sdb: symbolic debugger. sdb(1)
sdevice: file format. L. sdevice(4)
search asorted table. bsearch(3C)

-23-

Permuted Index

Isearch, lfind: linear

for filename. pathconv:
hcreate, hdestroy: manage hash
tdelete, twalk: manage binary
object file. scnhdr:

object/ /read an indexed/named
the object file comment

/to line number entries of a
/to relocation entries of a
/seek to an indexed /named
common object/ size: print
/mrand48, jrand48, srand48,
section of / ldsseek, ldnsseek:
a section/ ldlseek, ldnlseek:

a section/ ldrseek, ldnrseek:
header of a common/ ldohseek:
common object file. 1dtbseek:
/opendir, readdir, telldir,
shmget: get shared memory
brk, sbrk: change data

file. dump: dump

semctl:

semop:

semget: get set of

operations.

t_sndudata:

putmsg:

a group of processes. kill:
over a connection. t_snd:
nlsrequest: format and

request. t_snddis:

/receive data or expedited data
Remote File Sharing name
environment variables in core/
buffering to a stream.

/toascci, _tolower, __toupper,
color.

IDs. setuid,

getgrent, getgrgid, getgrnam,
goto.

hashing encryption. crypt,

getpwent, getpwuid, getpwnam,
login time. profile:

gettydefs: speed and terminal
group IDs.

/getutid, getutline, pututline,
stream. setbuf,

data in a/ sputl,
chkshlib: compare
mkshlib: create a
operations. shmctl:
shmop: shmat, shmdt:
identifier. shmget: get
file. rfmaster: Remote File
system: issue a

search and update. Isearch(3C)
search Interpreter criteria pathconv(1V)
search tables. hsearch, hsearch(3C)
search trees. tsearch, tfind, tsearch(3C)
section header foracommon scnhdr(4)
section header of a common ldshread(3X)
section. mcs: manipulate mcs(1)
section of a common object/ Idlseek(3X)
section of a common object/ Idrseek(3X)
section of a common object/ ldsseek(3X)
section sizesin bytesof size(1)
seed48, lcong48: generate/ drand48(3C)
seek to an indexed/named ldsseek(3X)
seek to line number entriesof ldIseek(3X)
seek to relocation entriesof ldrseek(3X)
seek to the optional file 1dohseek(3X)
seek to the symbol tableofa 1dtbseek(3X)
seekdir, rewinddir, closedir:/ directory(3C)
segment identifier. shmget(2)
segment space allocation. brk(2)
selected parts of an object dump(1)
semaphore control operations. semctl(2)
semaphore operations. semop(2)
semaphores. semget(2)
semctl: semaphore control semctl(2)
semget: get set of semaphores. semget(2)
semop: semaphore operations. semop(2)
sendadataunit. 0.0 L. t_sndudata(3N)
send a message on a stream. putmsg(2)
send a signal to a processor kill(2)

send data or expedited data t_snd(3N)
send listener service request/ nisrequest(3N)
send user-initiated disconnect t_snddis(3N)
sent over a connection. t_rcv(3N)
server master file. rfmaster: rfmaster(4)
set, unset: setand unset set(1V)
setbuf, setvbuf: assign setbuf(3S)
setchrclass: character hand ctype(3C)
setcolor: redefine or createa setcolor(1V)
setgid: setuserand group setuid(2)
setgrent, endgrent, fgetgrent:/ getgrent(3C)
setjmp, longjmp: non-local setjmp(3C)
setkey, encrypt: generate crypt(3C)
setpgrp: set process group ID. setpgrp(2)
setpwent, endpwent, fgetpwent:/ getpwent(3C)
setting up an environmentat profile(4)
settings used by getty. gettydefs(4)
setuid, setgid: setuserand setuid(2)
setutent, endutent, utmpname:/ getut(3C)
setvbuf: assign bufferingtoa setbuf(3S)
sfsys: file format. sfsys(4)
sgetl: access long integer sputl(3X)
shared libraries tool. e e chkshlib(1)
shared library. mkshlib(1)
shared memory control shmctl(2)
shared memory operations. shmop(2)
shared memory segment shmget(2)
Sharing name server master rfmaster(4)
shell command. system(3S)

-24 -

shell.

shell: run a command using
operations. shmop:
operations.

operations. shmop: shmat,
segment identifier.

memory operations.
sigpause: signal/ sigset,
sigset, sighold, sigrelse,
sigrelse, sigignore, sigpause:
pause: suspend process until
what to do upon receipt of a
upon receipt of a signal.

of processes. kill: send a
ssignal, gsignal: software
/sighold, sigrelse, sigignore,
signal/ sigset, sighold,
sigignore, sigpause: signal/
lex: generate programs for
generator. rand, srand:

atan, atan2:/ trig:

functions.

bytes of common object files.
object/ size: print section
interval.

current/ ttyslot: find the
ssignal, gsignal:

gsort: quicker

tsort: topological

bsearch: binary search a
object file. list: produce C
brk, sbrk: change data segment
indicator: display application
cftime: language

fspec: format

receipt of a signal. signal:
used by getty. gettydefs:
output. printf, fprintf,
integer data in a/

power,/ exp, log, log10, pow,
exponential, logarithm, power,
generator. rand,

/nrand48, mrand48, jrand48,
input. scanf, fscanf,

signals.

package. stdio:
communication/ stdipc: ftok:
system call.

stat: data returned by

system information.

ustat: get file system

feof, clearerr, fileno: stream
stat, fstat: get file
input/output package.
interprocess communication/

wait for child process to
strcmp, strnemp,/ string:

Permuted Index

shell: run a command using shell(1V)
shell. o Lo o e n shell(1V)
shmat, shmdt: shared memory shmop(2)
shmctl: shared memory control shmctl(2)
shmdt: shared memory shmop(2)
shmget: get shared memory shmget(2)
shmop: shmat, shmdt: shared shmop(2)
sighold, sigrelse, sigignore, sigset(2)
sigignore, sigpause: signal/ sigset(2)
signal management. /sighold, sigset(2)
signal.o oL pause(2)
signal. signal: specify signal(2)
signal: specify whattodo signal(2)
signal to a processoragroup kill(2)
signals. ssignal(3C)
sigpause: signal management. sigset(2)
sigrelse, sigignore, sigpause: sigset(2)
sigset, sighold, sigrelse, sigset(2)
simple lexical tasks. L. lex(1)
simple random-number rand(3C)
sin, cos, tan, asin, acos, trig(3M)
sinh, cosh, tanh: hyperbolic sinh(3M)
size: print section sizesin size(1)
sizes in bytes of common size(1)
sleep: suspend execution for sleep(3C)
slot in the utmp fileof the ttyslot(3C)
software signals. L. ssignal(3C)
SOFt. v v v e e e e e e e e e e e e e e gsort(3C)
SOFt. v v v e e e e e e e e e e e e e e tsort(1)
sortedtable. bsearch(3C)
source listing from a common list(1)
space allocation. brk(2)
specific alarms and/or the/ indicator(1V)
specificstrings. cftime(4)
specification in text files. fspec(4)
specify whattodoupon signal(2)
speed and terminal settings gettydefs(4)
sprintf: print formatted printf(3S)
sputl, sgetl: accesslong sputl(3X)
sqrt: exponential, logarithm, exp(3M)
square root functions. /sqrt: exp(3M)
srand: simple random-number rand(3C)
srand48, seed48, lcong48:/ drand48(3C)
sscanf: convert formatted scanf(3S)
ssignal, gsignal: software ssignal(3C)
standard buffered input/output stdio(3S)
standard interprocess stdipc(3C)
stat: data returned by stat stat(5)

stat, fstat: get filestatus. stat(2)

stat systemcall.o L stat(5)
statfs, fstatfs: get file statfs(2)
statistics.00 0000 ustat(2)
status inquiries. ferror, ferror(3S)
status. L. Lo oo stat(2)
stdio: standard buffered stdio(3S)
stdipc: ftok: standard L. L L stdipc(3C)
stime: set time. stime(2)
stop or terminate. wait: wait(2)
strcat, strdup, strncat, L. string(3C)

-25 -

Permuted Index

/strcpy, strnepy, strlen,
/strcat, strdup, strncat,
/strncat, stremp, strnemp,
/strrchr, strpbrk, strspn,
strnemp,/ string: streat,
fflush: close or flush a

fopen, freopen, fdopen: open a
reposition a file pointer in a
get character or word from a
getmsg: get next message off a
fgets: get a string from a

put character or word on a
putmsg: send a message on a
puts, fputs: put a string on a
setvbuf: assign buffering to a
/feof, clearerr, fileno:

push character back into input
multiplexing. poll:

long integer and base-64 ASCII
convert date and time to
floating-point number to
gps: graphical primitive

gets, fgets: get a

puts, fputs: put a

echo: put

strspn, strespn, strtok:
/match patterns against a
strncat, stremp, strncmp, /
number. strtod, atof: convert
strtol, atol, atoi: convert
cftime: language specifie
number information from a/
information from a/ strip:
/strnemp, strepy, strnepy,
string: strcat, strdup,
/strdup, strncat, strcmp,
/stremp, strnemp, strepy,
/strlen, strchr, strrchr,
/strnepy, strlen, strchr,
/strchr, strrchr, strpbrk,

to double-precision number.
/strpbrk, strspn, strespn,
string to integer.

t_alloc: allocate a library
t_free: free a library

plot: graphics interface
sync: update

interval. sleep:

pause:

swab:

information from/ strip: strip
file/ ldgetname: retrieve

name for common object file
object/ /compute the index of a
Idtbread: read an indexed

syms: common object file
object/ ldtbseek: seek to the

strchr, strrchr, strpbrk,/ . . 0 L L 00 oL L string(3C)
stremp, strnemp, strepy,/ 0 0 .. string(3C)
strepy, strnepy, strlen,/ L L L string(3C)
strespn, strtok: string/ L. L L L. string(3C)
strdup, strncat, stremp, L. L. string(3C)
stream. fclose, fclose(3S)
stream. 00 fopen(3S)
stream. fseek, rewind, ftell: fseek(3S)
stream. /getchar, fgetc, getw: getc(3S)
stream. 000 getmsg(2)
stream. gets, gets(3S)
stream. /putchar, fputc, putw: putc(3S)
stream. e e e e e e putmsg(2)
stream.ol e e e e e puts(3S)
stream. setbuf, setbuf(3S)
stream status inquiries. ferror(3S)
stream. ungetc: 0. .. ungetc(3S)
STREAMS input/output poll(2)
string. /164a: convert between a641(3C)
string. /ascftime, tzset: ctime(3C)
string. /fcvt, gevt: convert . . L L L L L L. ecvt(3C)
string, format of graphical/ gps(4)
string from a stream. gets(3S)
stringonastream. puts(3S)
string on virtual output. echo(1V)
string operations. /strpbrk, string(3C)
string, or linesof afile. regex(1V)
string: strcat, strdup, string(3C)
string to double-precision strtod(3C)
string to integer. 0oL strtol(3C)
strings. 00 e e e cftime(4)
strip: strip symbol and line strip(1)
strip symbol and line number strip(1)
strlen, strchr, strrchr,/ . . . L L o oL L L string(3C)
strncat, stremp, strnemp,/ . . L . . L . L L string(3C)
strnemp, strepy, strnepy,/ 00 L. string(3C)
strncpy, strlen, strchr,/ . . . L. L oL L L. string(3C)
strpbrk, strspn, strespn,/ oL L L string(3C)
strrchr, strpbrk, strspn,/ oL L L. string(3C)
strspn, strespn, strtok:/ oo L L L. string(3C)
strtod, atof: convert string strtod(3C)
strtok: string operations. string(3C)
strtol, atol, atoi: convert strtol(3C)
structure.00 00w t_alloc(3N)
structure. 0w v e e e e t_free(3N)
stune: file format.00 stune(4)
subroutines. 00w w0 . plot(3X)
super block. sync(2)
suspend executionfor sleep(3C)
suspend process until signal. pause(2)
swab: swap bytes. swab(3C)
swapbytes. swab(3C)
symbol and line number strip(1)
symbol name for common object ldgetname(3X)
symbol table entry. /symbol Idgetname(3X)
symbol table entry of a common 1dtbindex(3X)
symbol table entry of a common/ 1dtbread(3X)
symbol table format. syms(4)
symbol table of acommon 1dtbseek(3X)

- 26 -

unistd: file header for
sdb:
symbol table format.

t_sync:

error/ perror, errno,
information.

functions.

perror, errno, sys_errlist,
binary search a sorted

for common object file symbol
/compute the index of a symbol
file. /read an indexed symbol
common object file symbol
mnttab: mounted file system
Idtbseek: seek to the symbol
hdestroy: manage hash search
request.

structure.

tam:

trigonometric/ trig: sin, cos,
sinh, cosh,

programs for simple lexical
transport endpoint.

endpoint.

connection with another/
search trees. tsearch, tfind,
directory: opendir, readdir,
temporary file. tmpnam,
tmpfile: create a

tempnam: create a name for a
terminals.

term: format of compiled

file.

terminfo:

generate file name for
libwindows: windowing

host control of windowing
dial: establish an out-going
optimization package. curses:
getty. gettydefs: speed and
isatty: find name of a
between host and windowing
term: conventional names for
exit, _exit:

for child process to stop or
tic:

infocmp: compare or print out
data base.

message.

isnan: isnand, isnanf:

fspec: format specification in
plock: lock process,

binary search trees. tsearch,
structure.

protocol-specific service/
state.

Permuted Index

symbolic constants. L. unistd(4)
symbolic debugger. sdb(l)

syms: common object file syms(4)
sync: update super block. sync(2)
synchronize transport library. t_sync(3N)
sys_errlist, sys_nerr: system perror(3C)
sysfs: get file system type sysfs(2)
sysi86: machine-specific sysi86(2)
sys_nerr: system error/ perror(3C)
table. bsearch: bsearch(3C)
table entry. /symbolname ldgetname(3X)
table entry of a common object/ Idtbindex(3X)

table entry of a common object

. 1dtbread(3X)

table format. syms: syms(4)
table.o 0000 mnttab(4)
table of a common object file. e e e e 1dtbseek(3X)
tables. hsearch, hcreate, hsearch(3C)
t_accept: accept a connect t_accept(3N)
t_alloc: allocate a library t_alloc(3N)
tam: TAM transition libraries. tam(3C)
TAM transition libraries. tam(3C)
tan, asin, acos, atan, atan2: trig(3M)
tanh: hyperbolic functions. sinh(3M)
tasks. lex: generate lex(1)
t_bind: bind an addresstoa t_bind(3N)
t_close: close a transport t_close(3N)
t_connect: establisha t_connect(3N)
tdelete, twalk: manage binary tsearch(3C)
telldir, seekdir, rewinddir,/ directory(3C)
tempnam: create a name fora tmpnam(3S)
temporary file. tmpfile@3S)
temporary file. tmpnam, tmpnam(3S)
term: conventional names for . . term(5)

term file. e e e e term(4)
term: format of compiled term term(4)
terminal capability data base. e e e terminfo(4)
terminal. ctermid: ctermid(3S)
terminal function library. libwindows(3X)
terminal. jagent: jagent(5)
terminal line connection. dial(3C)
terminal screen handlingand curses(3X)
terminal settingsused by gettydefs(4)
terminal. ttyname, ttyname(3C)
terminal under. /protocol used layers(5)
terminals. 000000 term(5)
terminate process. exit(2)
terminate. wait: wait wait(2)
terminfo compiler. tic(1M)
terminfo descriptions. infocmp(1M)
terminfo: terminal capability terminfo(4)
t_error: produce error t_error(3N)
test for floating point NaN/ isnan(3C)
textfiles. 0 L fspec(4)
text, or data in memory. plock(2)

tfind, tdelete, twalk: manage .

t_free: free a library

t_getinfo: get .
t_getstate: get the current . .
tic: terminfo compiler. .

-27 -

. tsearch(3C)
. t_free(3N)

t_getinfo(3N)

. t_getstate(3N)

tic(1M)

Permuted Index

profil: execution

up an environment at login
stime: set

time: get

tzset: convert date and
clock: report CPU

timezone: set default system
process times.

get process and child process
file access and modification
time zone.

request.

event on a transport/

file.

for a temporary file.

/isascii, tolower, toupper,
‘popen, pclose: initiate pipe
tolower, toupper, toascci,
/isprint, isgraph, isascii,
compare shared libraries
endpoint.

tsort:

a transport endpoint.
/toupper, toascci, —tolower,
/isgraph, isascii, tolower,
ptrace: process

tam: TAM

t_bind: bind an address to a
t_close: close a

look at the current event on a
t_open: establish a
/manage options for a
t_unbind: disable a

t_sync: synchronize
nlsprovider: get name of

a connection with another
expedited data sent over a/
confirmation from a connect/
from disconnect.

of an orderly release/

unit.

data error indication.

ftw: walk a file

twalk: manage binary search
acos, atan, atan2:/

tan, asin, acos, atan, atan2:
twalk: manage binary search/
data over a connection.
disconnect request.

release.

library.

a terminal.

utmp file of the current/
endpoint.

tsearch, tfind, tdelete,
sysfs: get file system

time:gettime. time(2)

time profile, profil(2)

time. profile: setting profile(4)

time.00 c o e e stime(2)

time. 0000 oo oo time(2)

time to string. /ascftime, ctime(3C)
timeused. clock(3C)
timezone. v v v v v v v e e timezone(4)
times: get processand child times(2)

times. times: L0000 L. times(2)

times. utime:set utime(2)
timezone: set default system timezone(4)
t_listen: listen for a connect t_listen(3N)
t_look: look at the current t_look(3N)
tmpfile: create a temporary tmpfile(3S)
tmpnam, tempnam: create a name tmpnam(3S)
toascci, _tolower, _toupper,/ ctype(3C)
to/from a process. popen(3S)
_tolower, _toupper,/ /isascii, ctype(3C)
tolower, toupper, toascci,/ ctype(3C)

tool. chkshlib: chkshlib(1)
t_open: establish a transport t_open(3N)
topological sort. tsort(1)
t_optmgmt: manage options for t_optmgmt(3N)
—toupper, setchrclass:/ ctype(3C)
toupper, toascci, _tolower,/ ctype(3C)
trace. . . . v v hu e e e e e e e e e e ptrace(2)
transition libraries. 000 tam(3C)
transport endpoint. t_bind(3N)
transport endpoint. L. t_close(3N)
transport endpoint. t look: t_look(3N)
transport endpoint. L. t_open(3N)
transport endpoint. t_optmgmt(3N)
transport endpoint. t_unbind(3N)
transport library. L. t_sync(3N)
transport provider. nlsprovider(3N)
transport user. /establish t_connect(3N)
t_rcv: receivedataor trcv(3N)
t_rcvconnect: receivethe t_rcvconnect(3N)
t_rcvdis: retrieve information t_rcvdis(3N)
t_rcvrel: acknowledge receipt t_rcvrel(3N)
t_rcvudata: receiveadata t_rcvudata(3N)
t_rcvuderr: receiveaunit t_rcvuderr(3N)
tree. o . v h o e e e e e e e e e ftw(3C)

trees. /tfind, tdelete, tsearch(3C)
trig: sin, cos, tan, asin, trig(3M)
trigonometric functions. /cos, trig(3M)
tsearch, tfind, tdelete, tsearch(3C)
t_snd: send data or expedited t_snd(3N)
t_snddis: send user-initiated t_snddis(3N)
t_sndrel: initiate an orderly t—sndrel(3N)
t_sndudata: send a data unit. t_sndudata(3N)
tsort: topological sort. tsort(1)

t_sync: synchronize transport t_sync(3N)
ttyname, isatty: find nameof ttyname(3C)
ttyslot: find theslotinthe ttyslot(3C)
t_unbind: disable a transport t—unbind(3N)
twalk: manage binary search/ tsearch(3C)
type information. oL sysfs(2)

- 28 -

types.

types: primitive system data
to/ /asctime, cftime, ascftime,
control.

getpw: get name from

limits.

creation mask.

UNIX system.

file. unget:

an SCCS file.

into input stream.

/seed48, lcong48: generate
mktemp: make a

symbolic constants.
t_rcvuderr: receive a
t_rcvudata: receive a data
t_sndudata: send a data
entry.

umount:

core or/ set, unset: set and
environment variables in/ set,
of programs. make: maintain,
Ifind: linear search and

sync:

setuid, setgid: set

character login name of the
/getgid, getegid: get real
environ:

ulimit: get and set

logname: return login name of
/get real user, effective

with another transport

the utmp file of the current
request. t_snddis: send

shell: run a command

failed login attempts.
statistics.

modification times.

utmp, wtmp:

endutent, utmpname: access
ttyslot: find the slot in the
entry formats.

/pututline, setutent, endutent,

val:

abs: return integer absolute
getenv: return

ceiling, remainder, absolute
putenv: change or add
values.

reset a field to its default
values: machine-dependent
/print formatted output of a
argument list.

varargs: handle

/set and unset environment

option letter from argument

types: primitive system data .
types.
tzset: convert date and time .
uadmin: administrative
uD. .
ulimit: get and set user
umask: set and get file
umount: unmount a file system.

uname: get name of current . .

undo a previous get of an SCCS
unget: undo a previous get of
ungetc: push character back .
uniformly distributed/
unique file name.
unistd: file header for
unit data error indication. . .
unit.
unit.
unlink: remove directory
unmount a file system.
unset environment variables in
unset: set and unset
update, and regenerate groups
update. lsearch,
update super block.
user and group IDs.
user. cuserid: get
user, effective user, real/ . .
user environment.
user limits.
user.
user, real group, and/
user. /establish a connection
user. /find the slot in
user-initiated disconnect . .
using shell.
/usr/adm/loginlog: log of .
ustat: get file system
utime: set file access and
utmp and wtmp entry formats.
utmp file entry. /setutent, .
utmp file of the current user.
utmp, wtmp: utmp and wtmp
utmpname: access utmp file/
val: validate SCCS file.

validate SCCS file.

value.
value for environment name.
value functions. /fabs: floor,
value to environment.
values: machine-dependent .
values. reset:
values.
varargs argument list.

varargs: handle variable .
variable argument list.
variables in core or in files. .
ve: version control. .
vector. getopt: get . .

-29 -

Permuted Index

types(5)
types(5)
ctime(3C)
uadmin(2)
getpw(3C)

. ulimit(2)

umask(2)

. umount(2)

uname(2)
unget(1)
unget(1)

. ungetc(3S)

drand48(3C)
mktemp(3C)
unistd(4)
t_rcvuderr(3N)
t_rcvudata(3N)
t_sndudata(3N)
unlink(2)
umount(2)
set(1V)

set(1V)
make(1)
Isearch(3C)
sync(2)
setuid(2)
cuserid(3S)

. getuid(2)
. environ(5)

ulimit(2)
logname(3X)
getuid(2)
t_connect(3N)
ttyslot(3C)
t_snddis(3N)
shell(1V)
loginlog(4)
ustat(2)
utime(2)
utmp(4)
getut(3C)
ttyslot(3C)
utmp(4)
getut(3C)
val(1)

val(1)
abs(3C)
getenv(3C)
floor(3M)
putenv(3C)
values(5)

. reset(1V)

values(5)
vprintf(3S)
varargs(5)
varargs(5)
set(1V)
ve(l)
getopt(3C)

Permuted Index

assert:

ve:

get: geta

scesdiff: compare two
formatted output of/ vprintf,
get client’s data passed
echo: put string on

file system: format of system
print formatted output of a/
output of/ vprintf, vfprintf,
or terminate. wait:

to stop or terminate.

ftw:

signal. signal: specify

library. libwindows:

jagent: host control of

/protocol used between host and
chdir: change

get path name of current
/specific alarms and/or the
write:

putpwent:

open: open for reading or
utmp, wtmp: utmp and
formats. utmp,

channels protocol used by
protocol used by xt(7)/
bessel: j0, j1, jn,

bessel: j0, j1, jn, yO0,
compiler-compiler.
bessel: j0, j1, jn, y0, y1,
set default system time

verify program assertion. assert(3X)
versioncontrol. 0oL .. ve(l)
version of an SCCSfile. get(1)
versions of an SCCS file. scesdiff(1)
viprintf, vsprintf: print vprintf(3S)
via the listener. nlsgetcall: nlsgetcall(3N)
virtualoutput.o L L echo(1V)
volume..fs:0 o0 fs(4)

vprintf, vfprintf, vsprintf: vprintf(3S)
vsprintf: print formatted vprintf(3S)
wait for child process tostop wait(2)

wait: wait for child process wait(2)

walk a filetree. 000 ftw(3C)
what: identify SCCS files. what(1)
what to do upon receiptofa signal(2)
windowing terminal function libwindows(3X)
windowing terminal. jagent(5)
windowing terminal under. layers(5)
working directory. chdir(2)
working directory. getewd: getewd(3C)
"working" indicator. indicator(1V)
writeonafile. 000 write(2)
write password fileentry. putpwent(3C)
write: writeonafile. L. write(2)
writing. 000000 open(2)
wtmp entry formats. utmp(4)
wtmp: utmp and wtmp entry utmp(4)
xt(7) driver. /multiplexed xtproto(5)
xtproto: multiplexed channels xtproto(5)
y0, y1, yn: Bessel functions. bessel(3M)
y1, yn: Bessel functions. bessel(3M)
yacc: yetanother yace(1)

yn: Bessel functions. bessel(3M)
zZone. timezone: timezone(4)

-30 -

INTRO(1) INTRO(1)

NAME
intro — introduction to programming commands

DESCRIPTION
This section describes, in alphabetical order, commands available for your
computer. The top of each page indicates the utilities package to which the
command belongs. The packages are:

Base System

C Software Development Set

Graphics Programming Utilites NOTE: The Base System com-
mands (1V) are Form and Menu Language Interpreter (FMLI). They
are delivered with the Base System but are typically used by pro-
grammers. See the Programmer’s Guide for more information.

COMMAND SYNTAX
Unless otherwise noted, the commands described accept options and other
arguments according to the following syntax:

name [option(s)] [cmdarg(s)] where:
name is the name of an executable file

option is - noargletter(s) or
- argletter<>optarg

where:

noargletter is a single letter representing an option without an
option-argument

argletter is a single letter representing an option requiring an
option-argument

<> is optional white space

optarg is an option-argument (character string) satisfying the
preceding argletter.

cmdarg is a path name (or other command argument) not beginning with
“~", or =" by itself indicating the standard input.

Throughout the manual pages there are references to TMPDIR, BINDIR,
INCDIR, LIBDIR, and LLIBDIR. These represent directory names whose
value is specified on each manual page as necessary. For example, TMPDIR
might refer to /tmp or /usr/tmp. These are not environment variables and
cannot be set. [There is also an environment variable called TMPDIR
which can be set. See tmpnam(3S).]

SEE ALSO
exit(2), wait(2), getopt(3C). getopts(1) in the User’s/System Administrator’s
Reference Manual. Programmer’s Guide.

DIAGNOSTICS
Upon termination, each command returns two bytes of status, one supplied
by the system and giving the cause for termination, and (in the case of
“normal” termination) one supplied by the program [see wait(2) and
exit(2)]. The former byte is 0 for normal termination; the latter is cus-
tomarily 0 for successful execution and non-zero to indicate troubles such as

-1-

INTRO(1) INTRO(1)

erroneous parameters, or bad or inaccessible data. It is called variously
“exit code”, “exit status’”’, or “return code”, and is described only where
special conventions are involved.

WARNINGS
Some commands produce unexpected results when processing files contain-
ing null characters. These commands often treat text input lines as strings
and therefore become confused upon encountering a null character (the
string terminator) within a line.

ADMIN(1) (C Software Development Set) ADMIN(1)

NAME
admin - create and administer SCCS files

SYNOPSIS
admin [-n] [-i[name]] [-rrel] [-t{name]] [-fflag[flag-val]] [-dflag[flag-val]]
[-alogin] [-elogin] [-m[murlist]] [-y[comment]] [-h] [-Z] files

DESCRIPTION

The admin command is used to create new SCCS files and change parame-
ters of existing ones. Arguments to admin, which may appear in any order,
consist of keyletter arguments, which begin with -, and named files (note
that SCCS file names must begin with the characters s.). If a named file
does not exist, it is created, and its parameters are initialized according to
the specified keyletter arguments. Parameters not initialized by a keyletter
argument are assigned a default value. If a named file does exist, parame-
ters corresponding to specified keyletter arguments are changed, and other
parameters are left as is.

If a directory is named, admin behaves as though each file in the directory
were specified as a named file, except that non-SCCS files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of the
standard input is taken to be the name of an SCCS file to be processed.
Again, non-SCCS files and unreadable files are silently ignored.

The keyletter arguments are as follows. Each is explained as though only
one named file is to be processed since the effects of the arguments apply
independently to each named file.

-n This keyletter indicates that a new SCCS file is to be
created.
-i[name] The name of a file from which the text for a new SCCS

file is to be taken. The text constitutes the first delta
of the file (see -r keyletter for delta numbering
scheme). If the i keyletter is used, but the file name
is omitted, the text is obtained by reading the stan-
dard input until an end-of-file is encountered. If this
keyletter is omitted, then the SCCS file is created
empty. Only one SCCS file may be created by an
admin command on which the i keyletter is supplied.
Using a single admin to create two or more SCCS files
requires that they be created empty (no -i keyletter).
Note that the -i keyletter implies the ~n keyletter.

-rrel The release into which the initial delta is inserted.
This keyletter may be used only if the -i keyletter is
also used. If the -r keyletter is not used, the initial
delta is inserted into release 1. The level of the initial
delta is always 1 (by default initial deltas are named
1.1).

-t[name] The name of a file from which descriptive text for the
SCCS file is to be taken. If the -t keyletter is used

-1-

ADMIN(1)

~-fflag

cceil

ffloor

dsip

i[str]

1ist

<list>

(C Software Development Set) ADMIN(1)

and admin is creating a new SCCS file (the -n and/or
-i keyletters also used), the descriptive text file name
must also be supplied. In the case of existing SCCS
files: (1) a -t keyletter without a file name causes
removal of descriptive text (if any) currently in the
SCCS file, and (2) a -t keyletter with a file name
causes text (if any) in the named file to replace the
descriptive text (if any) currently in the SCCS file.

This keyletter specifies a flag, and, possibly, a value
for the flag, to be placed in the SCCS file. Several f
keyletters may be supplied on a single admin com-
mand line. The allowable flags and their values are:

Allows use of the -b keyletter on a get(1) command
to create branch deltas.

The highest release (i.e., ““ceiling’’), a number greater
than 0 but less than or equal to 9999, which may be
retrieved by a get(l) command for editing. The
default value for an unspecified ¢ flag is 9999.

The lowest release (i.e., ““floor”), a number greater
than 0 but less than 9999, which may be retrieved by
a get(1) command for editing. The default value for
an unspecified f flag is 1.

The default delta number (SIDs+1) to be used by a get(1)
command.

Causes the "No id keywords (ge6)" message issued
by get(1) or delta(1l) to be treated as a fatal error. In
the absence of this flag, the message is only a warn-
ing. The message is issued if no SCCS identification
keywords [see get(1)] are found in the text retrieved or
stored in the SCCS file. If a value is supplied, the
keywords must exactly match the given string, how-
ever the string must contain a keyword, and no
embedded newlines.

Allows concurrent get(1) commands for editing on the
same SID of an SCCS file. This allows multiple con-
current updates to the same version of the SCCS file.

A list of releases to which deltas can no longer be
made (get -e against one of these “locked” releases
fails). The list has the following syntax:

1= <range> | <list> , <range>
<range>":= |a

The character a in the list is equivalent to specifying
all releases for the named SCCS file.

ADMIN(1)

qtext

mmod

ttype

vpgm

-dflag

List

-alogin

-elogin

(C Software Development Set) ADMIN(1)

Causes delta(1) to create a “null” delta in each of
those releases (if any) being skipped when a delta is
made in a new release (e.g., in making delta 5.1 after
delta 2.7, releases 3 and 4 are skipped). These null
deltas serve as “anchor points” so that branch deltas
may later be created from them. The absence of this
flag causes skipped releases to be non-existent in the
SCCS file, preventing branch deltas from being created
from them in the future.

User-definable text substituted for all occurrences of
the %Q% keyword in SCCS file text retrieved by
get(1).

Module name of the SCCS file substituted for all
occurrences of the %M% keyword in SCCS file text
retrieved by get(1). If the m flag is not specified, the
value assigned is the name of the SCCS file with the
leading s. removed.

Type of module in the SCCS file substituted for all
occurrences of %Y% keyword in SCCS file text
retrieved by get(1).

Causes delta(1) to prompt for Modification Request
(MR) numbers as the reason for creating a delta. The
optional value specifies the name of an MR number
validity checking program [see delta(1)]. (If this flag
is set when creating an SCCS file, the m keyletter
must also be used even if its value is null.)

Causes removal (deletion) of the specified flag from
an SCCS file. The -d keyletter may be specified only
when processing existing SCCS files. Several -d
keyletters may be supplied on a single admin com-
mand. See the -f keyletter for allowable flag names.

A list of releases to be “unlocked”. See the -f
keyletter for a description of the 1 flag and the syntax
of a list.

A login name, or numerical UNIX system group ID, to
be added to the list of users which may make deltas
(changes) to the SCCS file. A group ID is equivalent
to specifying all login names common to that group
ID. Several a keyletters may be used on a single
admin command line. As many logins, or numerical
group IDs, as desired may be on the list simultane-
ously. If the list of users is empty, then anyone may
add deltas. If login or group ID is preceded by a !
they are to be denied permission to make deltas.

A login name, or numerical group ID, to be erased
from the list of users allowed to make deltas

-3-

ADMIN(1) (C Software Development Set) ADMIN(1)

(changes) to the SCCS file. Specifying a group ID is
equivalent to specifying all login names common to
that group ID. Several e keyletters may be used on a
single admin command line.

-m[mrlist] The list of Modification Requests (MR) numbers is
inserted into the SCCS file as the reason for creating
the initial delta in a manner identical to delta(1). The
v flag must be set and the MR numbers are validated
if the v flag has a value (the name of an MR number
validation program). Diagnostics will occur if the v
flag is not set or MR validation fails.

-y[comment] The comment text is inserted into the SCCS file as a
comment for the initial delta in a manner identical to
that of delta(1). Omission of the -y keyletter results
in a default comment line being inserted in the form:

date and time created YY /MM /DD HH:MM:SS by login

The -y keyletter is valid only if the -i and/or -n
keyletters are specified (i.e., a new SCCS file is being
created).

-h Causes admin to check the structure of the SCCS file
[see sccsfile(5)], and to compare a newly computed
check-sum (the sum of all the characters in the SCCS
file except those in the first line) with the check-sum
that is stored in the first line of the SCCS file.
Appropriate error diagnostics are produced.

This keyletter inhibits writing on the file, so that it
nullifies the effect of any other keyletters supplied,
and is, therefore, only meaningful when processing
existing files.

~Z The SCCS file check-sum is recomputed and stored in
the first line of the SCCS file (see -h, above).

Note that use of this keyletter on a truly corrupted
file may prevent future detection of the corruption.

The last component of all SCCS file names must be of the form s.file-
name. New SCCS files are given mode 444 [see chmod(1)]. Write per-
mission in the pertinent directory is, of course, required to create a file.
All writing done by admin is to a temporary x-file, called x.file-name,
[see get(1)], created with mode 444 if the admin command is creating a
new SCCS file, or with the same mode as the SCCS file if it exists.
After successful execution of admin, the SCCS file is removed (if it
exists), and the x-file is renamed with the name of the SCCS file. This
ensures that changes are made to the SCCS file only if no errors
occurred.

It is recommended that directories containing SCCS files be mode 755
and that SCCS files themselves be mode 444. The mode of the

-4 -

ADMIN(1)

FILES
g-file

p-file
g-file
x-file
z-file
d-file

(C Software Development Set) ADMIN(1)

directories allows only the owner to modify SCCS files contained in
the directories. The mode of the SCCS files prevents any modification
at all except by SCCS commands.

If it should be necessary to patch an SCCS file for any reason, the
mode may be changed to 644 by the owner allowing use of ed(1).
Care must be taken! The edited file should always be processed by an
admin -h to check for corruption followed by an admin -z to gen-
erate a proper check-sum. Another admin -h is recommended to
ensure the SCCS file is valid.

The admin command also makes use of a transient lock file (called
z.file-name), which is used to prevent simultaneous updates to the
SCCS file by different users. See get(1) for further information.

Existed before the execution of delta; removed after com-
pletion of delta.

Existed before the execution of delta; may exist after com-
pletion of delta.

Created during the execution of delta; removed after com-
pletion of delta.

Created during the execution of delta; renamed to SCCS file
after completion of delta.

Created during the execution of delta; removed during the
execution of delta.

Created during the execution of delta; removed after com-
pletion of delta.

/usr/bin/bdiff Program to compute differences between the “gotten” file

SEE ALSO

and the g-file.

delta(1), get(1), prs(1), what(1), sccsfile(4).
ed(1), help(1) in the User’s/System Administrator’s Reference Manual.

DIAGNOSTICS
Use help (1) for explanations.

AR(1) (Directory and File Management Utilities) AR(1)

NAME
ar — archive and library maintainer for portable archives

SYNOPSIS
ar key [keyarg] [posname] afile [name] ...

DESCRIPTION

The ar command maintains groups of files combined into a single archive
file. Its main use is to create and update library files as used by the link
editor. It can be used, though, for any similar purpose. The magic string
and the file headers used by ar consist of printable ASCII characters. If an
archive is composed of printable files, the entire archive is printable.
Archives of text files created by ar are portable between implementations of
System V.

When ar creates an archive, it creates headers in a format that is portable
across all machines. The portable archive format and structure is described
in detail in ar(4). The archive symbol table [described in ar(4)] is used by
the link editor [Id(1)] to effect multiple passes over libraries of object files in
an efficient manner. An archive symbol table is only created and main-
tained by ar when there is at least one object file in the archive. The
archive symbol table is in a specially named file which is always the first
file in the archive. This file is never mentioned nor is it accessible to the
, user. Whenever the ar(1) command is used to create or update the contents
J of such an archive, the symbol table is rebuilt. The s option, described in
the following text, will force the symbol table to be rebuilt.

Unlike command options, the command key is a required part of ar’s com-
mand line. The key (which may begin with a -) is formed with one of the
following letters: drqtpmx. Arguments to the key, alternatively, are made
with one of more of the following set: vuaibcls. Posname is an archive
member name used as a reference point in positioning other files in the
archive. Afile is the archive file. The names are constituent files in the
archive file. The meanings of the key characters are as follows:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character
u is used with r, then only those files with dates of modification
later than the archive files are replaced. If an optional positioning
character from the set abi is used, then the posname argument must
be present and specifies that new files are to be placed after (a) or
before (b or i) posname. Otherwise new files are placed at the end.

q Quickly append the named files to the end of the archive file.
Optional positioning characters are invalid. The command does not
check whether the added members are already in the archive. This
option is useful to avoid quadratic behavior when creating a large
archive piece-by-piece. Unchecked, the file may grow exponentially
up to the second degree.

t Print a table of contents of the archive file. If no names are given,
all files in the archive are tabled. If names are given, only those
files are tabled.

AR(1) (Directory and File Management Utilities) AR(1)

P Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning
character is present, then the posname argument must be present
and, as in r, specifies where the files are to be moved.

X Extract the named files. If no names are given, all files in the
archive are extracted. In neither case does x alter the archive file.

The meanings of the key arguments are as follows:

v Give a verbose file-by-file description of the making of a new
archive file from the old archive and the constituent files. When
used with t, give a long listing of all information about the files.
When used with x, precede each file with a name.

c Suppress the message that is produced by default when 4file is
created.

1 Place temporary files in the local (current working) directory rather
than in the default temporary directory, TMPDIR.

s Force the regeneration of the archive symbol table even if ar(1) is
not invoked with a command which will modify the archive con-
tents. This command is useful to restore the archive symbol table
after the strip(1) command has been used on the archive.

FILES

$TMPDIR /* temporary files

$TMPDIR is usually /usr/tmp but can be redefined by setting the environ-

ment variable TMPDIR [see tempnam() in tmpnam(3S)].

SEE ALSO
1d(1), lorder(1), strip(1), tsort(1), tmpnam(3S), a.out(4), ar(4).
NOTES

If the same file is mentioned twice in an argument list, it may be put in the
archive twice.

AS(1) (C Software Development Set) AS(1)

NAME
~ as — common assembler
SYNOPSIS
as [options] file name
DESCRIPTION
The 4s command assembles the named file. The following flags may be
specified in any order:
-o objfile Put the output of the assembly in ob]lee By default, the out-

put file name is formed by removing the .s suffix, if there is
one, from the input file name and appending a .0 suffix.

-n Turn off long/short address optimization. By default address
optimization takes place.

-m Run the m4 macro processor on the input to the assembler.

-R Remove (unlink) the input file after assembly is completed.

~dl Do not produce line number information in the object file.

-V Write the version number of the assembler being run on the

standard error output.

~Y [md],dir Find the m4 preprocessor (m) and/or the file of predefined
macros (d) in directory dir instead of in the customary place.

FILES ,
TMPDIR /* temporary files
TMPDIR is usually /usr/tmp but can be redefined by setting the environ-
ment variable TMPDIR [see tempnam() in tmpnam(3S)].

SEE ALSO
cc(1), 1d(1), m4(1), nm(1), strip(1), tmpnam(3S), a.out(4).

WARNING
If the -m (m4 macro processor invocation) option is used, keywords for m4
[see m4(1)] cannot be used as symbols (variables, functions, labels) in the
input file since m4 cannot determine which are assembler symbols and
which are real m4 macros.

BUGS
The .align assembler directive may not work in the .text section when
optimization is performed.

CAVEATS

Arithmetic expressions may only have one forward referenced symbol per
expression.

NOTES |
Wherever possible, the assembler should be accessed through a compilation
system interface program [such as cc(1)].

CB(1) (C Software Development Set) CB(1)
NAME
cb - C program beautifier
SYNOPSIS
cb[-s][-j][-lleng][file ...]
DESCRIPTION
The cb comand reads C programs either from its arguments or from the
standard input, and writes them on the standard output with spacing and
indentation that display the structure of the code. Under default options, cb
preserves all user new-lines.
The cb command accepts the following options.
-s Canonicalizes the code to the style of Kernighan and Ritchie in
The C Programming Language.
-j Causes split lines to be put back together.
-1 leng Causes cb to split lines that are longer than leng.
SEE ALSO
cc(1).
Kernighan, B. W., and Ritchie, D. M., The C Programming Language,
Prentice-Hall, 1978.
BUGS

Punctuation that is hidden in preprocessor statements will cause indentation
errors.

CC(1) (C Software Development Set) CC(1)

NAME
cc — C compiler

SYNOPSIS
cc [options] files

DESCRIPTION
The cc command is the interface to the C Compilation System. The compi-
lation tools consist of a preprocessor, compiler, optimizer, assembler, and
link editor. The cc command processes the supplied options and then exe-
cutes the various tools with the proper arguments. The cc command accepts
several types of files as arguments.

Files whose names end with .c are taken to be C source programs and may
be preprocessed, compiled, optimized, assembled and link edited. The com-
pilation process may be stopped after the completion of any pass if the
appropriate options are supplied. If the compilation process runs through
the assembler, then an object program is produced and is left in the file
whose name is that of the source with .0 substituted for .c. However, the .0
file is normally deleted if a single C program is compiled and then immedi-
ately link edited. In the same way, files whose names end in .s are taken to
be assembly source programs and may be assembled and link edited; and
files whose names end in .i are taken to be preprocessed C source programs
and may be compiled, optimized, assembled, and link edited. Files whose
names do not end in .c, .8, or .i are handed to the link editor.

Since the cc command usually creates files in the current directory during
the compilation process, it is necessary to run the cc command in a directory
in which a file can be created.

The following options are interpreted by cc:

-C Suppress the link editing phase of the compilation and do not
remove any produced object files.

-ds Do not generate symbol attribute information for the symbolic
debugger.

-dl Do not generate symbolic debugging line number information. This
and the above flag may be used in conjunction as -dsl (-dsl is the
default unless the -g flag is given).

-8 Cause the compiler to generate additional information needed for
the use of sdb(1).
-0 outfile

Produce an output object file by the name outfile. The name of the
default file is a.out. This is a link editor option.

-p Arrange for the compiler to produce code that counts the number of
times each routine is called; also, if link editing takes place, profiled
versions of libc.a and libm.a (with ~Im option) are linked and
monitor(3C) is automatically called. A mon.out file will then be
produced at normal termination of execution of the object program.
An execution profile can then be generated by use of prof(1).

-1-

cc)

(C Software Development Set) CC(1)

-qp Arrange for profiled code to be produced where the p argument
produces identical results to the -p option [allows profiling with
prof(1)].

-E Run only ¢pp(1) on the named C programs, and send the result to
the standard output.

-H Print out on stderr the path name of each file included during the
current compilation.

-0 Do compilation phase optimization. This option will not have any
effect on .s files.

-P Run only cpp(1) on the named C programs and leave the result in
corresponding files suffixed .i. This option is passed to cpp(1).

-S Compile and do not assemble the named C programs, and leave the
assembler-language output in corresponding files suffixed .s.

-V Print the version of the compiler, optimizer, assembler and/or link
editor that is invoked.

-Wc,argl|,arg2...]
Hand off the argument(s] argi to pass ¢ where c is one of [p02al]
indicating the preprocessor, compiler, optimizer, assembler, or link
editor, respectively. For example: -Wa,~m passes -m to the assem-
bler.

-Y [p02alSILU],dirname
Specify a new path name, dirname, for the locations of the tools and
directories designated in the first argument. [p02alSILU] represents:

P preprocessor

compiler

optimizer

assembler

link editor

directory containing the start-up routines

default include directory searched by cpp(1)

first default library directory searched by ld(1)
second default library directory searched by 1d(1)

cHE=wn—=p NS

If the location of a tool is being specified, then the new path name
for the tool will be dirname/tool. If more than one -Y option is
applied to any one tool or directory, then the last occurrence holds.

The cc command also recognizes —-C, -D, -I, and -U and passes these
options and their arguments directly to the preprocessor without using the
-W option. Similarly, the cc command recognizes -a, -1, -m, -1, -s, —t, -u,
-x, -z, -L, -M, and -V and passes these options and their arguments
directly to the loader. See the manual pages for cpp(l) and ld(1) for
descriptions.

Other arguments are taken to be C compatible object programs, typically
produced by an earlier cc run, or perhaps libraries of C compatible routines
and are passed directly to the link editor. These programs, together with
the results of any compilations specified, are link edited (in the order given)

2.

CC(1) (C Software Development Set) CC(1)
to produce an executable program with name a.out unless the -0 option of
the link editor is used. .
If the cc command is put in a file prefixcc the prefix will be parsed off the
command and used to call the tools, i.e., prefixtool. For example, OLDcc
will call OLDcpp, OLDcomp, OLDoptim, OLDas, and OLDId and will link
OLDcrtl.o. Therefore, one MUST be careful when moving the cc command
around. The prefix will apply to the preprocessor, compiler, optimizer,
assembler, link editor, and the start-up routines.
The C language standard was extended to allow arbitrary length variable
names. The option pair “~-Wp,-T -WO0,-XT" will cause cc to truncate arbi-
trary length variable names.

FILES
file.c C source file
file.i preprocessed C source file
file.o object file
file.s assembly language file
a.out link edited output
LIBDIR /#*crtl.o start-up routine
LIBDIR /crtn.o start-up routine
TMPDIR /* temporary files
LIBDIR /cpp preprocessor, cpp(1)
LIBDIR/comp compiler
LIBDIR /optim optimizer
BINDIR /as assembler, as(1)
BINDIR/1d link editor, Id(1)
LIBDIR /libc.a standard C library
LIBDIR/libc_s.a standard C shared library
LIBDIR is usually /lib.
BINDIR is usually /bin.
TMPDIR is usually /usr/tmp but can be redefined by setting the environ-
ment variable TMPDIR [see tempnam() in tmpnam(3S)].

SEE ALSO
as(1), 1d(1), cpp(1), gencc(1M), lint(1), prof(1), sdb(1), tmpnam(3S).
Kernighan, B. W., and Ritchie, D. M., The C Programming Language,
Prentice-Hall, 1978.

DIAGNOSTICS
The diagnostics produced by the C compiler are sometimes cryptic.

NOTES

By default, the return value from a compiled C program is completely ran-
dom. The only two guaranteed ways to return a specific value is to expli-
citly call exit(2) or to leave the function main() with a ““return expression;”
construct.

CCOFF(1) (C Software Development Set) CCOFFE(1)

NAME

ccoff — convert a COFF file
SYNOPSIS

ccoff [-1] [-v] file ...
DESCRIPTION

The ccoff command converts a COFF file by byte-swapping all multi-byte
integers in the file. Thus, if the COFF file has been built by a cross com-
piler running on a big-endian development machine (Motorola 68000, etc.),
ccoff will convert the file to a format suitable for running on the target
(80386) machine. The ccoff command will convert relocated executables,
non-relocated objects, and archives (libraries). The -r flag performs the
reverse conversion, so that a file that has already been run through ccoff can
be restored to its original state; or a file that has been built on a target
machine can be manipulated on the development machine. The -v flag
causes ccoff to operate verbosely.

SEE ALSO
convert(1)

CDC(1) (C Software Development Set) CDC(1)
P

NAME
cdc - change the delta commentary of an SCCS delta

SYNOPSIS
cdc -rSID [-m[mrlist]] [-y[comment]] files

DESCRIPTION
The cdc command changes the delta commentary, for the SID (SCCS IDentif-
ication string) specified by the -r keyletter, of each named SCCS file.

Delta commentary is defined to be the Modification Request (MR) and com-
ment information normally specified via the delta(l) command (-m and -y
keyletters).

If a directory is named, cdc behaves as though each file in the directory
were specified as a named file, except that non-SCCS files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read (see WARNINGS)
and each line of the standard input is taken to be the name of an SCCS file
to be processed.

Arguments to cdc, which may appear in any order, consist of keyletter argu-
ments and file names.

All the described keyletter arguments apply independently to each named

file:
-1SID Used to specify the SCCS IDentification (SID) string of a
delta for which the delta commentary is to be changed.
-mmrlist If the SCCS file has the v flag set [see admin(1)] then a

list of MR numbers to be added and/or deleted in the
delta commentary of the SID specified by the -r keyletter
may be supplied. A null MR list has no effect.

MR entries are added to the list of MRs in the same
manner as that of delta(l). In order to delete an MR, pre-
cede the MR number with the character ! (see EXAM-
PLES). If the MR to be deleted is currently in the list of
MRs, it is removed and changed into a “comment’ line.
A list of all deleted MRs is placed in the comment section
of the delta commentary and preceded by a comment line
stating that they were deleted.

If -m is not used and the standard input is a terminal,
the prompt MRs? is issued on the standard output before
the standard input is read; if the standard input is not a
terminal, no prompt is issued. The MRs? prompt always
precedes the comments? prompt (see -y keyletter).

CDC(1) (C Software Development Set) CDC(1)

MRs in a list are separated by blanks and/or tab charac-
ters. An unescaped new-line character terminates the MR
list.

Note that if the v flag has a value [see admin(1)], it is
taken to be the name of a program (or shell procedure)
which validates the correctness of the MR numbers. If a
non-zero exit status is returned from the MR number vali-
dation program, cdc terminates and the delta commentary
remains unchanged.

-y[comment] Arbitrary text used to replace the comment(s) already

existing for the delta specified by the -r keyletter. The
previous comments are kept and preceded by a comment
line stating that they were changed. A null comment has
no effect.
If -y is not specified and the standard input is a terminal,
the prompt comments? is issued on the standard output
before the standard input is read; if the standard input is
not a terminal, no prompt is issued. An unescaped new-
line character terminates the comment text.

Simply stated, the rules are:
(1) If you made the delta, you can change its delta commentary.
or
(2) If you own the file and directory, you can modify the delta commen-
tary.
EXAMPLES
cdc -r1.6 -m"bl78-12345 !bl77-54321 bl79-00001" —ytrouble s.file

adds bl78-12345 and bl79-00001 to the MR list, removes bl77-54321 from
the MR list, and adds the comment trouble to delta 1.6 of s.file.

cde -rl.6 s.file
MRs? 'bl77-54321 bl78-12345 bl79-00001
comments? trouble

does the same thing.

WARNINGS
If SCCS file names are supplied to the cdc command via the standard input
(- on the command line), then the ~m and -y keyletters must also be used.

FILES
x-file [see delta(1)]
z-file [see delta(1)]

SEE ALSO
admin(1), delta(1), get(1), prs(1), sccsfile(4).
help(1) in the User’s/System Administrator’s Reference Manual.

DIAGNOSTICS
Use help(1) for explanations.

CFLOW(1) (C Software Development Set) CFLOW(1)

NAME

cflow — generate C flowgraph
SYNOPSIS

cflow [-r] [-ix] [-i—] [~dnum] files
DESCRIPTION

The cflow command analyzes a collection of C, yacc, lex, assembler, and
object files and attempts to build a graph charting the external references.
Files suffixed with .y, .1, and .c are yacced, lexed, and C-preprocessed as
appropriate. The results of the preprocessed files, and files suffixed with .i,
are then run through the first pass of lint(1). Files suffixed with .s are
assembled. Assembled files, and files suffixed with .0, have information
extracted from their symbol tables. The results are collected and turned into
a graph of external references which is displayed upon the standard output.

Each line of output begins with a reference number, followed by a suitable
number of tabs indicating the level, then the name of the global symbol fol-
lowed by a colon and its definition. Normally only function names that do
not begin with an underscore are listed (see the -i options below). For
information extracted from C source, the definition consists of an abstract
type declaration (e.g., char *), and, delimited by angle brackets, the name of
the source file and the line number where the definition was found. Defini-
tions extracted from object files indicate the file name and location counter
under which the symbol appeared (e.g., text). Leading underscores in C-
style external names are deleted.

Once a definition of a name has been printed, subsequent references to that
name contain only the reference number of the line where the definition
may be found. For undefined references, only <> is printed.

As an example, given the following in file.c:

int i;
main()
£();
g0
£();
}
£0
{

i=h();

CFLOW(1) (C Software Development Set) CFLOW(1)

the command
cflow —ix file.c
produces the output
main: int(), <file.c 4>
f: int(), <file.c 11>

h: <>
i: int, <file.c 1>

G WO N =

g <>

When the nesting level becomes too deep, the output of cflow can be piped
to pr(1), using the -e option, to compress the tab expansion to something
less than every eight spaces.

In addition to the -D, -I, and -U options [which are interpreted just as they
are by cc(1) and cpp(1)], the following options are interpreted by cflow:

-r Reverse the “caller:callee” relationship producing an inverted listing
showing the callers of each function. The listing is also sorted in
lexicographical order by callee.

-ix Include external and static data symbols. The default is to include
only functions in the flowgraph.

-i Include names that begin with an underscore. The default is to
exclude these functions (and data if —ix is used).

-dnum The num decimal integer indicates the depth at which the flow-
graph is cut off. By default this is a very large number. Attempts
to set the cutoff depth to a nonpositive integer will be ignored.

DIAGNOSTICS

Complains about bad options. Complains about multiple definitions and
only believes the first. Other messages may come from the various pro-
grams used (e.g., the C-preprocessor).

SEE ALSO

BUGS

as(1), cc(1), cpp(1), lex(1), lint(1), nm(1), yacc(1).
pr(1) in the User’s/System Administrator’s Reference Manual.

Files produced by lex(1) and yacc(l) cause the reordering of line number
declarations which can confuse cflow. To get proper results, feed cflow the
yacc or lex input.

CHKSHLIB(1) CHKSHLIB(1)

NAME

chkshlib — compare shared libraries tool
SYNOPSIS

chkshlib [-b] [-i] [-n] [-V] filel [file2 file3 ...]
DESCRIPTION

chkshlib checks for compatibility between files. Input files can be combina-
tions of host shared libraries, non-stripped target shared libraries, and non-
stripped executable files. ‘A file is compatible with another file if every
library symbol in it that should be matched is matched in the second (i.e.,
the symbol exists and has the same address in both files). The pathname for
the target shared library in both files must be identical (unless the -i option
is set.)

It is possible for filel to be compatible with file2 without the reverse also
being true.

If one incompatibility is found it is reported to stdout and processing stops
(unless the -v option is set.)

The options to chkshlib are:
-v Cause verbose reporting of all incompatibilities to stdout.

-b If there are symbols found in filel that are not in the bounds of file2
report warning messages to stderr.

.

-i Turn off the restriction that the pathnames for the target shared
library need to be identical for two files to be compatible.

-n Indicate that there are exactly two input files, which are target
shared libraries, where the first references symbols in the second
("includes" the second).

The output of chkshlib depends upon the input. If the first input file is an
executable file and the other input files, if any, are target shared libraries,
the output states whether or not the executable file can execute using each
target shared library. If there are no target shared libraries supplied,
chkshlib performs the compatibility check against the target shared libraries
specified in the .lib section of the executable file.

If the first input file is an executable file and the other input file(s) is a host
shared library, the output states whether or not the executable file could
have been produced using each host.

If one input file is a host shared library and the other input file, if any, is a
target shared library the output states whether or not the host shared library
could produce executable files that will run with the target shared library. If
no target shared library is supplied, then chkshlib performs the compatibility
check against the target specified in the .lib section of the library definition
file found in the host.

If both input files are target shared libraries or both input files are host
shared libraries, the output states whether or not the first file could replace
the second and vice versa.

CHKSHLIB(1) CHKSHLIB(1)

If both input files are target libraries and the -n option is set, the output
states if the first file references symbols in the second file ("includes" the
second).

Compatibility of all other combinations of host shared libraries, target
shared libraries, and executable files has no useful meaning and these other
combinations of files are not accepted as valid input to chkshlib.

SEE ALSO

mkshlib(1).

"Shared Libraries" chapter in the UNIX System V Programmer’s Guide.
DIAGNOSTICS

Exit status is 0 if no incompatibilities are found, 1 if an incompatibility is
found, and 2 if a processing error occurs.

CAVEAT
chkshlib requires that you use the -i option whenever you use the -n option.

Standard binaries distributed with the UNIX system are stripped and
chkshlib cannot be used with them.

COMB(1) (C Software Development Set) COMB(1)

NAME

comb - combine SCCS deltas
SYNOPSIS

comb files
DESCRIPTION

The comb command generates a shell procedure [see sh(1)] which, when
run, will reconstruct the given SCCS files. The reconstructed files will,
hopefully, be smaller than the original files. The arguments may be speci-
fied in any order, but all keyletter arguments apply to all named SCCS files.
If a directory is named, comb behaves as though each file in the directory
were specified as a named file, except that non-SCCS files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of the
input is taken to be the name of an SCCS file to be processed; non-SCCS
files and unreadable files are silently ignored. The generated shell pro-
cedure is written on the standard output.

The keyletter arguments are as follows. Each is explained as though only
one named file is to be processed, but the effects of any keyletter argument
apply independently to each named file.

-0 For each get -e generated, this argument causes the recon-
structed file to be accessed at the release of the delta to be
created, otherwise the reconstructed file would be accessed
at the most recent ancestor. Use of the -0 keyletter may
decrease the size of the reconstructed SCCS file. It may
also alter the shape of the delta tree of the original file.

~pSID The SCCS IDentification string (SID) of the oldest delta to
be preserved. All older deltas are discarded in the recon-
structed file.

-s This argument causes comb to generate a shell procedure
which, when run, will produce a report giving, for each file:
the file name, size (in blocks) after combining, original size
(also in blocks), and percentage change computed by:

100 * (original — combined) / original
It is recommended that before any SCCS files are actually
combined, one should use this option to determine exactly
how much space is saved by the combining process.

If no keyletter arguments are specified, comb will preserve only leaf deltas
and the minimal number of ancestors needed to preserve the tree.

FILES
s.COMB The name of the reconstructed SCCS file.
comb????? Temporary.

SEE ALSO

admin(1), delta(1), get(1), prs(1), sccsfile(4).
help(1), sh(1) in the User’s/System Administrator’s Reference Manual.

COMB(1) (C Software Development Set) COMB(1)

DIAGNOSTICS
Use help(1) for explanations.

BUGS
The comb command may rearrange the shape of the tree of deltas. It may
not save any space; in fact, it is possible for the reconstructed file to actually
be larger than the original.

CONV(1) (C Software Development Set) CONV(1)

NAME

conv — common object file converter
SYNOPSIS

conv [-a] [-o0] [-p] -t target [- | files]
DESCRIPTION

The conv command converts object files in the common object file format
from their current byte ordering to the byte ordering of the target machine.
The converted file is written to file.v. The conv command can be used on
either the source (sending) or target (receiving) machine.

Command line options are:

- Indicates that the names of files should be read from the
standard input.

-a If the input file is an archive, produce the output file in the
UNIX System V Release 2.0 portable archive format.

-0 If the input file is an archive, produce the output file in the old
(pre- UNIX System V) archive format.

-p If the input file is an archive, produce the output file in the
UNIX System V Release 1.0 random access archive format.

-t target Convert the object file to the byte ordering of the machine
(target) to which the object file is being shipped. This may be
another host or a target machine. Legal values for target are:
pdp, vax, ibm, x86, b16, n3b, mc68, and m32.

The conv command is meant to ease the problems created by a multi-host
cross-compilation development environment. The conv command is best
used within a procedure for shipping object files from one machine to
another.

The conv command will recognize and produce archive files in three for-
mats: the pre- UNIX System V format, the UNIX System V Release 1.0 ran-
dom access format, and the UNIX System V Release 2.0 portable ASCII for-
mat. By default, conv will create the output archive file in the same format
as the input file. To produce an output file in a different format than the
input file, use the -a, -0, or -p option. If the output archive format is the
same as the input format, the archive symbol table will be converted, other-
wise the symbol table will be stripped from the archive. The ar(1) com-
mand with its -t and -s options must be used on the target machine to
recreate the archive symbol table.

EXAMPLE
To ship object files from a VAX computer sytem to a 3B2 computer, execute
the following commands:

conv -t m32 *.out

uucp *.out.v my3b2!”/rje/

CONV(1) (C Software Development Set) CONV(1)

DIAGNOSTICS
The diagnostics are self-explanatory. Fatal diagnostics on the command
lines cause termination. Fatal diagnostics on an input file cause the pro-
gram to continue to the next input file.

CAVEATS
The conv command will not convert archives from one format to another if
both the source and target machines have the same byte ordering. The
UNIX system tool convert(1) should be used for this purpose.

SEE ALSO
ar(1), convert(1), ar(4), a.out(4).

CONVERT(1) (C Software Development Set) CONVERT(1)

NAME

convert — convert archive files to common formats
SYNOPSIS

convert infile outfile
DESCRIPTION

The convert command transforms input infile to output outfile. Infile must
be a UNIX System V Release 1.0 archive file and outfile will be the
equivalent UNIX System V Release 2.0 archive file. All other types of input
to the convert command will be passed unmodified from the input file to the
output file (along with appropriate warning messages).

Infile must be different from outfile.

FILES
TMPDIR /conv* temporary files

TMPDIR is usually /usr/tmp but can be redefined by setting the environ-
ment variable TMPDIR [see tempnam() in tmpnam(3S)].

SEE ALSO
ar(1), tmpnam(3S), a.out(4), ar(4)

COPROC(1V) (Base System) COPROC(1V)

NAME
coproc: cocreate, cosend, cocheck, coreceive, codestroy — communicate to a
process
SYNOPSIS
cocreate [-r rpath | [-w wpath] [-i id] [-R refname]
[-s send_string | [-e expect_string] command
cosend [-n] id string ...
cocheck id
coreceive id
codestroy [-R rfname] id
DESCRIPTION

The cocreate command initializes communication to a process using named
pipes. This means that the process will expect strings on its input and send
information on its output.

The cosend command works two ways. With the -n option, cosend does not
wait for a response. The process should use the supplied routine vsig to
signal that it wishes to send. This causes a reread to occur in the current
frame.

The cocheck command should be called from a reread descriptor. The
default value of one of the fields in the form should include the coreceive.

Without the -n option, the send and expect strings are used to tell when
input and output are completed on the pipe. In other words, the Interpreter
during a cosend will output all the strings given as arguments followed by
the send string, to say that it is through giving information. Then it will
read all the output from the process until it sees the expect string. By
default, the Interpreter will send no send string and expect no expect string
(it will expect only one line of output). Read the warning below if you use
cosend without the -n option.

The codestroy command should usually be given the -R option, since you
may have more than one process with the same name, and you do not want
to kill the wrong one. It keeps track of the number of refnames you have
assigned, and when the last one is killed, kills the process (id) for you.

The id is used to refer to the process. If none is specified, the name of the
process is used.

Refname is a "local" name for a process. This is useful when multiple
objects reference the same process (i.e., when multiple objects perform a
cocreate on the same process). Thus, when a codestroy operation is per-
formed you will usually want to destroy only the local reference to the pro-
cess rather than the entire pipe.

The -r path argument tells cocreate what file to use to read information
from. The -w path argument tells cocreate what file to use to write informa-
tion to. These files are usually used for processes that naturally write to a
certain pipe or for having one process talk to many different Interpreters. If
-r path and -w path are not specified, paths will be picked in SHOME /tmp.

-1-

COPROC(1V) (Base System) COPROC(1V)

Command should be a program followed by its arguments.

Here is some advice for writing these programs. If this program is to be
written in "C", make sure to flush output after writing to the pipe (a good
way to check this is to run "cat | prog ! cat" from shell). As of this writing,
awk(1) and sed(1) can not be used because they do not flush after lines of
output. Shell scripts are well-mannered, but slow. "C" is recommended.
If possible, use the default send string, read path and write path. In most
cases, the expect string will have to be specified (Note: the expect string
need only be the initial part of the line, and there must be a new-line at the
end of the output). Id’s are usually used when the same process is used
with different options and different meanings.

Codestroy will usually work best in "close=" lines in menus and forms.
The "close=" is guaranteed to be evaluated when a window is closed.

EXAMPLE

init='cocreate BIGPROCESS initialize'
close='codestroy BIGPROCESS quit'

.

name='cosend BIGPROCESS field1'
or

reread='cocheck BIGPROCESS' (add this 1line)
name='cosend —n BIGPROCESS field1'

name="Receive field"
inactive=TRUE
value='coreceive BIGPROCESS'

WARNING
A coprocess that does not answer will cause a blocking Interpreter (cosend
without -n) to permanently hang.

SEE ALSO
awk(1), cat(1), sed(1).

CPP(1) (C Software Development Set) CPP(1)
P

NAME

cpp - the C language preprocessor
SYNOPSIS

LIBDIR /cpp [option ...][ifile [ofile]]
DESCRIPTION

The C language preprocessor, cpp, is invoked as the first pass of any C
compilation by the cc(1) command. Thus cpp’s output is designed to be in
a form acceptable as input to the next pass of the C compiler. As the C
language evolves, cpp and the rest of the C compilation package will be
modified to follow these changes. Therefore, the use of cpp other than
through the cc(1) command is not suggested, since the functionality of cpp
may someday be moved elsewhere. See m4(1) for a general macro proces-
sor.

The cpp command optionally accepts two file names as arguments. Ifile
and ofile are respectively the input and output for the preprocessor. They
default to standard input and standard output if not supplied.

The following options to cpp are recognized:

-P Preprocess the input without producing the line control information
used by the next pass of the C compiler.

-C By default, cpp strips C-style comments. If the -C option is speci-
fied, all comments (except those found on cpp directive lines) are
passed along.

-Uname
Remove any initial definition of name, where name is a reserved
symbol that is predefined by the particular preprocessor. Following
is the current list of these possibly reserved symbols. On the 80386,
unix and i386 are defined.

operating system: unix, dmert, gcos, ibm, os, tss

hardware: i286, i386, interdata, pdp11, u370, u3b,
u3b5, udb2, u3db15, udb20d, vax

UNIX system variant: RES, RT

lint(1): lint

-Dname

-Dname=def
Define name with value def as if by a #define. If no =def is given,
name is defined with value 1. The -D option has lower precedence
than the -U option. That is, if the same name is used in both a -U
option and a -D option, the name will be undefined regardless of
the order of the options.

-T The -T option forces cpp to use only the first eight characters to
distinguish preprocessor symbols and is included for backward com-
patibility.

-Idir Change the algorithm for searching for #include files whose names
do not begin with / to look in dir before looking in the directories
on the standard list. Thus, #include files whose names are

-1-

CPP(1)

(C Software Development Set) CPP(1)

enclosed in " " will be searched for first in the directory of the file
with the #include line, then in directories named in -I options, and
last in directories on a standard list. For #include files whose
names are enclosed in <>, the directory of the file with the
#include line is not searched.

-Ydir Use directory dir in place of the standard list of directories when
searching for #include files.

-H Print, one per line on standard error, the path names of included
files.

Two special names are understood by cpp. The name __LINE__ is
defined as the current line number (as a decimal integer) as known by cpp,
and —_FILE__ is defined as the current file name (as a C string) as known
by cpp. They can be used anywhere (including in macros) just as any other
defined name.

All cpp directive lines start with # in column 1. Any number of blanks and
tabs is allowed between the # and the directive. The directives are:

#define name token-string
Replace subsequent instances of name with token-string.

#define name(arg, ..., arg) token-string

Notice that there can be no space between name and the (. Replace
subsequent instances of name followed by a (, a list of comma-
separated sets of tokens, and a) followed with token-string. Each
occurrence of an arg is replaced by the corresponding set of tokens
in the comma-separated list. When a macro with arguments is
expanded, the arguments are placed into the expanded token-string
unchanged. After the entire token-string has been expanded, cpp
re-starts its scan for names to expand at the beginning of the newly
created token-string.

#undef name
Cause the definition of name (if any) to be forgotten from now on.
No additional tokens are permitted on the directive line after name.

#ident "string"
Put string into the .comment section of an object file.

#include "filename"

#include <filename>
Include at this point the contents of filename (which will then be
run through cpp). When the <filename> notation is used, filename
is only searched for in the standard places. See the -I and -Y
options above for more detail. No additional tokens are permitted
on the directive line after the final " or >.

#line integer-constant " filename"
Causes cpp to generate line control information for the next pass of
the C compiler. Integer-constant is the line number of the next line
and filename is the file from which it comes. If "filename" is not
given, the current file name is unchanged. No additional tokens are
permitted on the directive line after the optional filename.

-2

CPP(1)

(C Software Development Set) CPP(1)

#endif
Ends a section of lines begun by a test directive (#if, #ifdef, or
#ifndef). Each test directive must have a matching #endif. No
additional tokens are permitted on the directive line.

#ifdef name
The lines following will appear in the output if and only if name has
been the subject of a previous #define without being the subject of
an intervening #undef. No additional tokens are permitted on the
directive line after name.

#ifndef name
The lines following will appear in the output if and only if name has
not been the subject of a previous #define. No additional tokens
are permitted on the directive line after name.

#if constant-expression

Lines following will appear in the output if and only if the
constant-expression evaluates to non-zero. All binary non-
assignment C operators, the ?: operator, the unary -, !, and ~ opera-
tors are all legal in constant-expression. The precedence of the
operators is the same as defined by the C language. There is also a
unary operator defined, which can be used in constant-expression in
these two forms: defined (name) or defined name. This allows
the utility of #ifdef and #ifndef in a #if directive. Only these
operators, integer constants, and names which are known by cpp
should be used in constant-expression. In particular, the sizeof
operator is not available.

To test whether either of two symbols, foo and fum, are defined, use
#if defined(foo) # defined(fum)

#elif constant-expression

An arbitrary number of #elif directives is allowed between a #if,
#ifdef, or #ifndef directive and a #else or #endif directive. The
lines following the #elif directive will appear in the output if and
only if the preceding test directive evaluates to zero, all intervening
#elif directives evaluate to zero, and the constant-expression evalu-
ates to non-zero. If constant-expression evaluates to non-zero, all
succeeding #elif and #else directives will be ignored. Any
constant-expression allowed in a #if directive is allowed in a #elif
directive.

#else The lines following will appear in the output if and only if the
preceding test directive evaluates to zero, and all intervening #elif
directives evaluate to zero. No additional tokens are permitted on
the directive line.

The test directives and the possible #else directives can be nested.

CPP(1) (C Software Development Set) CPP(1)

FILES
INCDIR standard directory list for #include files, usually
/usr/include
LIBDIR usually /lib
SEE ALSO
cc(1), lint(1), m4(1).
DIAGNOSTICS

The error messages produced by cpp are intended to be self-explanatory.
The line number and file name where the error occurred are printed along
with the diagnostic.

NOTES
The unsupported -W option enables the #class directive. If it encounters a
#class directive, cpp will exit with code 27 after finishing all other process-
ing. This option provides support for “C with classes”.

Because the standard directory for included files may be different in dif-
ferent environments, this form of #include directive:

#include <file.h>
should be used, rather than one with an absolute path, like:
#include "/usr/include/file.h"

The cpp command warns about the use of the absolute path name.

CPRS(1) (C Software Development Set) CPRS(1)

NAME
cprs — compress a common object file

SYNOPSIS
cprs [-p] filel file2

DESCRIPTION
The cprs command reduces the size of a common object file, filel, by
removing duplicate structure and union descriptors. The reduced file, file2,
is produced as output.

The sole option to cprs is:

-p Print statistical messages including: total number of tags, total dupli-
cate tags, and total reduction of filel.

SEE ALSO
strip(1), a.out(4), syms(4).

CSCOPE(1) (C Software Development Set) CSCOPE(1)

NAME

cscope - interactively examine a C program
SYNOPSIS

cscope [-f reffile] [~i namefile] [[-I incdir]] [-d] [files]
DESCRIPTION

cscope is an interactive screen-oriented tool that helps programmers browse
through C source code. By default, cscope examines the C, yacc, and lex
source files in the current directory and builds a symbol cross-reference. It
then uses this table to find references to symbols (including C preprocessor
symbols), function declarations, and function calls. cscope builds the symbol
cross-reference the first time it is used on the source files for the program
being browsed. On a subsequent invocation, cscope rebuilds the cross-
reference only if a source file has changed or the list of source files is dif-
ferent. When the cross-reference is rebuilt, the data for the unchanged files
are copied from the old cross-reference, which makes rebuilding much faster
than the initial build. The following options can appear in any combina-
tion:

-f reffile
Use reffile as the cross-reference file name instead of the default
cscope.out.

-i namefile
Get the list of files (file names separated by spaces, tabs, or new-
lines) to browse from namefile. If this option is specified, cscope
ignores any files appearing on the command line.

-1 incdir

Look in incdir (before looking in INCDIR, the standard place for
header files that is normally /usr/include) for any #include files
whose names do not begin with / and that are not specified on the
command line or in namefile above. (The #include files may be
specified with either double quotes or angle brackets.) The incdir
directory is searched in addition to the current directory (which is
searched first) and the standard list (which is searched last). If more
than one occurrence of -I appears, the directories are searched m
the order they appear on the command line.

-d Do not update the cross-reference.

Requesting the Initial Search
After the cross-reference is ready cscope will display this menu:

List references to this C symbol:

Edit this function or #define:

List functions called by this function:

List functions calling this function:

List lines containing this text strlng

Change this text string:
Press the TAB key repeatedly to move to the desired input field, type the
text to search for, and then press the RETURN key.

CSCOPE(1)

(C Software Development Set) CSCOPE(1)

Issuing Subsequent Requests
If the search is successful, any of these single-character commands can be

used:
1-9
SPACE
+

>

TAB
RETURN
m

P
“r
1

1

d

Edit the file referenced by the given line number.

Display next lines.

Display next lines.

Display previous lines.

Edit all lines.

Append the displayed list of lines to a file. At any time these
single-character commands can also be used:

Move to next input field.

Move to next input field.

Move to next input field.

Move to previous input field.

Search with the last text typed.

Rebuild the cross-reference.

Start an interactive shell (type "d to return to cscope).

Redraw the screen.

Display this list of commands.

Exit cscope. Note: If the first character of the text to be
searched for matches one of the above commands, escape it by
typing a \ (backslash) first.

Substituting New Text for Old Text
After the text to be changed has been typed, cscope will prompt for the new
text, and then it will display the lines containing the old text. Select the
lines to be changed with these single-character commands:

1-9

*
SPACE

CAPE

.Ql_‘,._gn‘,” o4

Mark or unmark the line to be changed.

Mark or unmark all displayed lines to be changed.
Display next lines.

Display next lines.

Display previous lines.

Mark all lines to be changed.

Change the marked lines and exit.

Exit without changing the marked lines.

Start an interactive shell (type d to return to cscope).
Redraw the screen.

Display this list of commands.

ENVIRONMENT VARIABLES

EDITOR
HOME
SHELL
TERM
VIEWER

VPATH

Preferred editor, which defaults to vi(1).

Home directory, which is automatically set at login.

Preferred shell, which defaults to sh(1).

Terminal type, which must be a screen terminal.

Preferred file display program [such as pg(1)], which overrides
EDITOR (see above).

An ordered list of directory names, separated by colons. It can
be used by cscope to search for both source and header files, but
the two types of files have different orders of search. If VPATH
is set, cscope searches for source files in the directories specified;
if it is not set, cscope searches only in the current directory.

2.

CSCOPE(1)

FILES
cscope.out

ncscope.out

INCDIR

WARNINGS

(C Software Development Set) CSCOPE(1)

cscope searches for header files in the following order: (1) if
VPATH is set, in directories specified in VPATH and if VPATH is
not set, in the current directory; (2) in directories specified by
the -I option (if they exist); and (3) in the standard location for
header files (normally /usr/include).

Symbol cross-reference file, which is put in the home direc-
tory if it cannot be created in the current directory.
Temporary file containing new cross-reference before it
replaces the old cross-reference.

Standard directory for #include files (usually is
/usr/include).

cscope recognizes function definitions of the form:
fname blank (args) white arg_decs white {

where:
fname
blank
args
white
arg_decs

is the function name,

is zero or more spaces or tabs, not including newlines,
is any string that does not contain a " or a newline,
is zero or more spaces, tabs, or newlines, and

are zero or more argument declarations. arg_decs may include
comments and white space. It is not necessary for a function
declaration to start at the beginning of a line. The return type
may precede the function name; cscope will still recognize the
declaration. Function definitions that deviate from this form
will not be recognized by cscope.

CTRACE(1) (C Software Development Set) CTRACE(1)

NAME

ctrace — C program debugger
SYNOPSIS

ctrace [options] [file]
DESCRIPTION

The ctrace command allows you to follow the execution of a C program,
statement-by-statement. The effect is similar to executing a shell procedure
with the -x option. The ctrace command reads the C program in file (or
from standard input if you do not specify file), inserts statements to print
the text of each executable statement and the values of all variables refer-
enced or modified, and writes the modified program to the standard output.
You must put the output of ctrace into a temporary file because the cc(1)
command does not allow the use of a pipe. You then compile and execute
this file.

As each statement in the program executes it will be listed at the terminal,
followed by the name and value of any variables referenced or modified in
the statement, followed by any output from the statement. Loops in the
trace output are detected and tracing is stopped until the loop is exited or a
different sequence of statements within the loop is executed. A warning
message is printed every 1000 times through the loop to help you detect
infinite loops. The trace output goes to the standard output so you can put
it into a file for examination with an editor or the bfs(1) or tail(1) com-
mands.

The options commonly used are:

-f functions ~ Trace only these functions.
-v functions Trace all but these functions.

You may want to add to the default formats for printing variables. Long
and pointer variables are always printed as signed integers. Pointers to
character arrays are also printed as strings if appropriate. Char, short, and
int variables are also printed as signed integers and, if appropriate, as char-
acters. Double variables are printed as floating point numbers in scientific
notation. You can request that variables be printed in additional formats, if
appropriate, with these options:

-0 Octal

-X Hexadecimal
-u Unsigned

-e Floating point

These options are used only in special circumstances:

-1n Check n consecutively executed statements for looping trace output,
instead of the default of 20. Use 0 to get all the trace output from
loops.

-s Suppress redundant trace output from simple assignment statements
and string copy function calls. This option can hide a bug caused
by use of the = operator in place of the == operator.

~tn Trace n variables per statement instead of the default of 10 (the
maximum number is 20). The Diagnostics section explains when to

-1-

CTRACE(1)

-P

(C Software Development Set) CTRACE(1)

use this option.
Run the C preprocessor on the input before tracing it. You can also
use the -D, -1, and -U cpp(1) options.

These options are used to tailor the run-time trace package when the traced
program will run in a non-UNIX System environment:

-b

Use only basic functions in the trace code, that is, those in
ctype(3C), printf(3S), and string(3C). These are usually available
even in cross-compilers for microprocessors. In particular, this
option is needed when the traced program runs under an operating
system that does not have signal(2), fflush(3S), longjmp(3C), or
setjmp (3C). '

-p string

—l‘f

EXAMPLE

Change the trace print function from the default of “printf(". For
example, ‘fprintf(stderr,” would send the trace to the standard error
output.

Use file f in place of the runtime.c trace function package. This lets
you change the entire print function, instead of just the name and
leading arguments (see the -p option).

If the file Ic.c contains this C program:

1 #include <stdio.h>

2 main() /* count lines in input */
3 {
4 int ¢, nl;
5
6 nl =0;
7 while ((c = getchar()) !'= EOF)
8 if (c ="\n")
9 ++nl;
10 printf(" %d\n", nl);
11 }
and you enter these commands and test data:
cc le.c
a.out
1
(cntl-d)

the program will be compiled and executed. The output of the program will
be the number 2, which is not correct because there is only one line in the
test data. The error in this program is common, but subtle. If you invoke
ctrace with these commands:

ctrace lc.c >temp.c
cc temp.c
a.out

the output will be:

2 main()
6 nl = 0;
/* nl==20 */

CTRACE(1) (C Software Development Set) CTRACE(1)

7 while ((c¢ = getchar()) != EOF)
The program is now waiting for input. If you enter the same test data as
before, the output will be:
/*c==49 or 1" x/

8 if (c = "\n)
/*c==10o0r \n’ */
9 ++nl;
/xnl==1x/

7 while ((c = getchar()) = EOF)
/*¥c==10or \n' */

8 if (c = "\n")
/* c == 10 or "\n’ */
9 ++nl;
/¥nl ==2x/

7 while ((c = getchar()) '= EOF)
If you now enter an end-of-file character (cntl-d) the final output will be:

*c == -1%
10 printf(" %d\n", nl);
/xnl == 2%/2
return

Note that the program output printed at the end of the trace line for the nl
variable. Also note the return comment added by ctrace at the end of the
trace output. This shows the implicit return at the terminating brace in the
function.

The trace output shows that variable c is assigned the value ‘1’ in line 7, but
in line 8 it has the value "\n’. Once your attention is drawn to this if state-
ment, you will probably realize that you used the assignment operator (=)
in place of the equality operator (==). You can easily miss this error during
code reading.

EXECUTION-TIME TRACE CONTROL
The default operation for ctrace is to trace the entire program file, unless
you use the -f or -v options to trace specific functions. This does not give
you statement-by-statement control of the tracing, nor does it let you turn
the tracing off and on when executing the traced program.

You can do both of these by adding ctroff() and ctron() function calls to
your program to turn the tracing off and on, respectively, at execution time.
Thus, you can code arbitrarily complex criteria for trace control with if state-
ments, and you can even conditionally include this code because ctrace
defines the CTRACE preprocessor variable. For example:

#ifdef CTRACE
if (c == "V && i > 1000)
ctron();
#endif

CTRACE(1) (C Software Development Set) CTRACE(1)

You can also call these functions from sdb(1) if you compile with the -g
option. For example, to trace all but lines 7 to 10 in the main function,
enter:

sdb a.out
main:7b ctroff()
main:11b ctron()
r

You can also turn the trace off and on by setting static variable tr_ct_ to 0
and 1, respectively. This is useful if you are using a debugger that cannot
call these functions directly.

DIAGNOSTICS
This section contains diagnostic messages from both ctrace and cc(1), since
the traced code often gets some cc warning messages. You can get cc error
messages in some rare cases, all of which can be avoided.

ctrace Diagnostics
warning: some variables are not traced in this statement
Only 10 variables are traced in a statement to prevent the C com-
piler "out of tree space; simplify expression" error. Use the -t
option to increase this number.

warning: statement too long to trace
This statement is over 400 characters long. Make sure that you are
using tabs to indent your code, not spaces.

cannot handle preprocessor code, use —P option
This is usually caused by #ifdef/#endif preprocessor statements in
the middle of a C statement, or by a semicolon at the end of a
#define preprocessor statement.

if ... else if” sequence too long
Split the sequence by removing an else from the middle.

possible syntax error, try -P option
Use the -P option to preprocess the ctrace input, along with any
appropriate -D, -I, and -U preprocessor options. If you still get the
error message, check the Warnings section below.

Cc Diagnostics
warning: illegal combination of pointer and integer
warning: statement not reached
warning: sizeof returns 0
Ignore these messages.

compiler takes size of function
See the ctrace "possible syntax error" message above.

yacc stack overflow
See the ctrace "'if ... else if’ sequence too long" message above.

CTRACE(1) (C Software Development Set) CTRACE(1)

out of tree space; simplify expression
Use the -t option to reduce the number of traced variables per state-
ment from the default of 10. Ignore the "ctrace: too many variables
to trace" warnings you will now get.

redeclaration of signal
Either correct this declaration of signal(2), or remove it and #include
<signal.h>.

SEE ALSO

signal(2), ctype(3C), fclose(3S), printf(3S), setjmp(3C), string(3C).
bfs(1), tail(1) in the User’s /System Administrator’s Reference Manual.

WARNINGS

BUGS

FILES

You will get a ctrace syntax error if you omit the semicolon at the end of
the last element declaration in a structure or union, just before the right
brace (}). This is optional in some C compilers. Defining a function with
the same name as a system function may cause a syntax error if the number
of arguments is changed. Just use a different name.

The ctrace command assumes that BADMAG is a preprocessor macro, and
that EOF and NULL are #defined constants. Declaring any of these to be
variables, e.g., "int EOF;", will cause a syntax error.

The ctrace command does not know about the components of aggregates
like structures, unions, and arrays. It cannot choose a format to print all the
components of an aggregate when an assignment is made to the entire
aggregate. ctrace may choose to print the address of an aggregate or use the
wrong format (e.g., 3.149050e-311 for a structure with two integer
members) when printing the value of an aggregate.

Pointer values are always treated as pointers to character strings.

The loop trace output elimination is done separately for each file of a multi-
file program. This can result in functions called from a loop still being
traced, or the elimination of trace output from one function in a file until
another in the same file is called.

/usr/lib/ctrace /runtime.c run-time trace package

CXREF(1) (C Software Development Set) CXREF(1)

NAME

cxref — generate C program cross-reference
SYNOPSIS

cxref [options] files
DESCRIPTION

The cxref command analyzes a collection of C files and attempts to build a
cross-reference table. The cxref command uses a special version of cpp to
include #define’d information in its symbol table. It produces a listing on
standard output of all symbols (auto, static, and global) in each file
separately, or, with the -c option, in combination. Each symbol contains an
asterisk (*) before the declaring reference.

In addition to the -D, -1, and -U options [which are interpreted just as they
are by cc(1) and cpp(1)], the following options are interpreted by cxref:

-c Print a combined cross-reference of all input files.

-w<num>
Width option which formats output no wider than <num>
(decimal) columns. This option will default to 80 if <num> is not
specified or is less than 51.

-o file Direct output to file.

-s Operate silently; do not print input file names.
-t Format listing for 80-column width.
FILES
LLIBDIR usually /usr/lib
LLIBDIR/xcpp special version of the C preprocessor.
SEE ALSO
cc(1), cpp(1).
DIAGNOSTICS
Error messages are unusually cryptic, but usually mean that you cannot
compile these files.
BUGS

The cxref command considers a formal argument in a #define macro defini-
tion to be a declaration of that symbol. For example, a program that
#includes ctype.h, will contain many declarations of the variable c.

DELTA(1) (C Software Development Set) DELTA(1)

NAME

delta — make a delta (change) to an SCCS file
SYNOPSIS

delta [-rSID] [-s] [-n] [-glist] [-m[murlist]] [~y[comment]] [-p] files
DESCRIPTION

The delta command is used to permanently introduce into the named SCCS
file changes that were made to the file retrieved by get(1) (called the g-file,
or generated file).

The delta command makes a delta to each named SCCS file. If a directory is
named, delta behaves as though each file in the directory were specified as
a named file, except that non-SCCS files (last component of the path name
does not begin with s.) and unreadable files are silently ignored. If a name
of - is given, the standard input is read (see WARNINGS); each line of the
standard input is taken to be the name of an SCCS file to be processed.

The delta command may issue prompts on the standard output depending
upon certain keyletters specified and flags [see admin(1l)] that may be
present in the SCCS file (see -m and -y keyletters below).

Keyletter arguments apply independently to each named file.

-rSID Uniquely identifies which delta is to be made to the
SCCS file. The use of this keyletter is necessary only
if two or more outstanding gets for editing (get -e) on
the same SCCS file were done by the same person
(login name). The SID value specified with the -r
keyletter can be either the SID specified on the get
command line or the SID to be made as reported by
the get command [see get(1)]. A diagnostic results if
the specified SID is ambiguous, or, if necessary and
omitted on the command line.

-s Suppresses the issue, on the standard output, of the
created delta’s SID, as well as the number of lines
inserted, deleted, and unchanged in the SCCS file.

-n Specifies retention of the edited g-file (normally
removed at completion of delta processing).

-glist a list [see get(1) for the definition of list] of deltas
which are to be ignored when the file is accessed at
the change level (SID) created by this delta.

-m[mrlist] If the SCCS file has the v flag set [see admin(1)] then a
Modification Request (MR) number must be supplied
as the reason for creating the new delta.

If -m is not used and the standard input is a terminal,
the prompt MRs? is issued on the standard output
before the standard input is read; if the standard input
is not a terminal, no prompt is issued. The MRs?
prompt always precedes the comments? prompt (see
-y keyletter).

-1 -

DELTA(1)

(C Software Development Set) DELTA(1)

MRs in a list are separated by blanks and/or tab char-
acters. An unescaped new-line character terminates
the MR list.

Note that if the v flag has a value [see admin(1)], it is
taken to be the name of a program (or shell pro-
cedure) which will validate the correctness of the MR
numbers. If a non-zero exit status is returned from
the MR number validation program, delta terminates.
(It is assumed that the MR numbers were not all
valid.)

~y[comment] Arbitrary text used to describe the reason for making

-P
FILES
g-file
p-file
q-file
x-file
z-file
d-file

/usr/bin /bdiff

WARNINGS

the delta. A null string is considered a valid comment.

If -y is not specified and the standard input is a ter-
minal, the prompt comments? is issued on the stand-
ard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued.
An unescaped new-line character terminates the com-
ment text.

Causes delta to print (on the standard output) the
SCCS file differences before and after the delta is
applied in a diff(1) format.

Existed before the execution of delta; removed after com-
pletion of delta.

Existed before the execution of delta; may exist after com-
pletion of delta.

Created during the execution of delta; removed after com-
pletion of delta.

Created during the execution of delta; renamed to SCCS file
after completion of delta.

Created during the execution of delta; removed during the
execution of delta.

Created during the execution of delta; removed after com-
pletion of delta.

Program to compute differences between the “’gotten” file
and the g-file.

Lines beginning with an SOH ASCII character (binary 001) cannot be placed
in the SCCS file unless the SOH is escaped. This character has special mean-
ing to SCCS [see sccsfile(4)] and will cause an error.

A get of many SCCS files, followed by a delta of those files, should be
avoided when the get generates a large amount of data. Instead, multiple
get/delta sequences should be used.

If the standard input (-) is specified on the delta command line, the -m (if
necessary) and -y keyletters must also be present. Omission of these
keyletters causes an error to occur.

-

DELTA(1) (C Software Development Set) DELTA(1)

Comments are limited to text strings of at most 512 characters.
SEE ALSO
admin(1), cde(1), get(1), prs(1), rmdel(1), sccsfile(4).
bdiff(1), help(1) in the User’s/System Administrator’s Reference Manual.

DIAGNOSTICS
Use help(1) for explanations.

DIS(1) (C Software Development Set) DIS(1)

NAME
dis — object code disassembler

SYNOPSIS
dis [-o0] [-V] [-L] [-s] [-d sec] [-da sec] [-F function] [~t sec] [-] string]
file ...

DESCRIPTION
The dis command produces an assembly language listing of file, which may
be an object file or an archive of object files. The listing includes assembly
statements and an octal or hexadecimal representation of the binary that
produced those statements.

The following options are interpreted by the disassembler and may be speci-
fied in any order.

-0 Print numbers in octal. The default is hexadecimal.

-V Print, on standard error, the version number of the disassem-
bler being executed.

-L Look up source labels in the symbol table for subsequent
printing. This option works only if the file was compiled with
additional debugging information [e.g., the -g option of cc(1)].

-s Perform symbolic disassembly, i.e., specify source symbol
names for operands where possible. Symbolic disassembly out-
put will appear on the line following the instruction. For maxi-
mal symbolic disassembly to be performed, the file must be
compiled with additional debugging information [e.g., the -g
option of cc(1)]. Symbol names will be printed using C syn-
tax.

-d sec Disassemble the named section as data, printing the offset of
the data from the beginning of the section.

-da sec Disassemble the named section as data, printing the actual
address of the data.

-F function Disassemble only the named function in each object file speci-
fied on the command line. The -F option may be specified
multiple times on the command line.

-t sec Disassemble the named section as text.

-1 string Disassemble the library file specified by string. For example,
one would issue the command dis -1 x -1 z to disassemble
libx.a and libz.a. All libraries are assumed to be in LIBDIR.

If the -d, -da or -t options are specified, only those named sections from
each user-supplied file name will be disassembled. Otherwise, all sections
containing text will be disassembled.

On output, a number enclosed in brackets at the beginning of a line, such as
[5] represents that the break-pointable line number starts with the following
instruction. These line numbers will be printed only if the file was com-
piled with additional debugging information [e.g., the -g option of cc(1)].
An expression such as <40> in the operand field or in the symbolic

-1-

DIS(1) (C Software Development Set) DIS(1)

disassembly, following a relative displacement for control transfer instruc-
tions, is the computed address within the section to which control will be
transferred. A function name will appear in the first column, followed by

0.
FILES

LIBDIR usually /lib.
SEE ALSO

as(1), cc(1), 1d(1), a.out(4).
DIAGNOSTICS

The self-explanatory diagnostics indicate errors in the command line or
problems encountered with the specified files.

DUMP(1)

NAME

(C Software Development Set) DUMP(1)

dump — dump selected parts of an object file

SYNOPSIS

dump [options] files

DESCRIPTION

The dump command dumps selected parts of each of its object file argu-

ments.

This command will accept both object files and archives of object files. It
processes each file argument according to one or more of the following

options:

-a

Dump the archive header of each member of each archive file
argument.

Dump the global symbols in the symbol table of an archive.
Dump each file header.

Dump each optional header.

Dump section headers.

Dump section contents.

Dump relocation information.

Dump line number information.

Dump symbol table entries.

Dump line number entries for the named function.

Dump the string table.

Interpret and print the contents of the .lib sections.

The following modifiers are used in conjunction with the options listed
above to modify their capabilities.

-d number

+d number

-N name

-p
-t index

+t index

-u

Dump the section number, number, or the range of sections
starting at number and ending at the number specified by +d.

Dump sections in the range either beginning with first section
or beginning with section specified by -d.

Dump information pertaining only to the named entity. This
modifier applies to -h, -s, -1, -1, and -t.

Suppress printing of the headers.

Dump only the indexed symbol table entry. The -t used in
conjunction with +t, specifies a range of symbol table entries.

Dump the symbol table entries in the range ending with the
indexed entry. The range begins at the first symbol table entry
or at the entry specified by the -t option.

Underline the name of the file for emphasis.

DUMP(1) (C Software Development Set) DUMP(1)

~-v Dump information in symbolic representation rather than
numeric (e.g., C_STATIC instead of 0X02). This modifier can be
used with all the above options except ~s and -o options of
dump.

~z name,number
Dump line number entry or range of line numbers starting at
number for the named function.

+z number Dump line numbers starting at either function name or number
specified by -z, up to number specified by +z.

Blanks separating an option and its modifier are optional. The comma

separating the name from the number modifying the -z option may be

replaced by a blank.

The dump command attempts to format the information it dumps in a
meaningful way, printing certain information in character, hex, octal, or
decimal representation as appropriate.

SEE ALSO
a.out(4), ar(4).

ECHO(1V) (Base System) ECHO(1V)

NAME
echo - put string on virtual output

SYNOPSIS
echo [string | . . .

DESCRIPTION
If no argument is given, echo looks to stdin for input. Echo directs each
string it is passed to stdout. It is often used in conditional execution or for
passing a string to annother command.

EXAMPLES
Validate Field 1 as integer:
valid='echo "$F1" | regex '[0-9]*"'"
Write information to LOGFILE when a form is done:
done="'set "he110=goodbye" || echo "User $LOGNAME
has changed his environment > /tmp/LOGFILE"
SEE ALSO
echo(1).

GENCC(1) (C Software Development Set) GENCC(1)

NAME
gencc — create a front-end to the cc command

SYNOPSIS
gencc

DESCRIPTION

The gencc command is an interactive command designed to aid in the crea-
tion of a front-end to the cc command. Since hard-coded path names have
been eliminated from the C Compilation System (CCS), it is possible to
move pieces of the CCS to new locations without recompiling the CCS.
The new locations of moved pieces can be specified through the -Y option
to the cc command. However, it is inconvenient to supply the proper -Y
options with every invocation of the cc command. Further, if a system
administrator moves pieces of the CCS, such movement should be invisible
to users.

The front-end to the cc command which gencc generates is a one-line shell
script which calls the cc command with the proper -Y options specified.
The front-end to the cc command will also pass all user supplied options to
the cc command.

The gencc command prompts for the location of each tool and directory
which can be respecified by a -Y option to the cc command. If no location
is specified, it assumes that that piece of the CCS has not been relocated.
After all the locations have been prompted for, gencc will create the front-
end to the cc command.

The gencc command creates the front-end to the cc command in the current
working directory and gives the file the same name as the cc command.
Thus, gencc can not be run in the same directory containing the actual cc
command. Further, if a system administrator has redistributed the CCS, the
actual cc command should be placed somewhere which is not typically in a
user’s PATH (e.g., /lib). This will prevent users from accidentally invoking
the cc command without using the front-end.

CAVEATS ‘
The gencc command does not produce any warnings if a tool or directory
does not exist at the specified location. Also, gencc does not actually move
any files to new locations.

FILES

./cc front-end to cc
SEE ALSO

ce(1).

GET(1) (C Software Development Set) GET(1)

NAME
get — get a version of an SCCS file

SYNOPSIS
get [-rSID] [-ccutoff] [-ilist] [-xlist] [-wstring] [-aseq-no.] [-k] [-e] [-1[p]
[-p] [-m] [-n] [-s] [-b] [-g] [-1] file ...

DESCRIPTION
The get command generates an ASCII text file from each named SCCS file
according to the specifications given by its keyletter arguments, which begin
with -. The arguments may be specified in any order, but all keyletter
arguments apply to all named SCCS files. If a directory is named, get
behaves as though each file in the directory were specified as a named file,
except that non-SCCS files (last component of the path name does not begin
with s.) and unreadable files are silently ignored. If a name of - is given,
the standard input is read; each line of the standard input is taken to be the
name of an SCCS file to be processed. Again, non-SCCS files and unread-
able files are silently ignored.

The generated text is normally written into a file called the g-file whose
name is derived from the SCCS file name by simply removing the leading s.;
(see also FILES, below).

Each of the keyletter arguments is explained below as though only one
SCCS file is to be processed, but the effects of any keyletter argument
applies independently to each named file.

-1SID The SCCS IDentification string (SID) of the version (delta) of
an SCCS file to be retrieved. Table 1 below shows, for the
most useful cases, what version of an SCCS file is retrieved
[as well as the SID of the version to be eventually created
by delta(1) if the -e keyletter is also used], as a function of
the SID specified.

~ccutoff Cutoff date-time, in the form:

YY[MM[DD[HH[MM]SS]][]]

No changes (deltas) to the SCCS file which were created
after the specified cutoff date-time are included in the gen-
erated ASCII text file. Units omitted from the date-time
default to their maximum possible values; that is, -¢7502 is
equivalent to -¢750228235959. Any number of non-numeric
characters may separate the various 2-digit pieces of the
cutoff date-time. This feature allows one to specify a cutoff
date in the form: "-c77/2/2 9:22:25". Note that this
implies that one may use the %E% and %U% identification
keywords (see below) for nested gets.

get "-c%E% %U%" s.file

GET(1)

~ilist

-xlist

-e

-k

-1fp]

P

(C Software Development Set) GET(1)

A list of deltas to be included (forced to be applied) in the
creation of the generated file. The list has the following
syntax:

<list> 1= <range> | <list> , <range>
<range> ::= SID | SID - SID

SID, the SCCS Identification of a delta, may be in any form
shown in the “SID Specified” column of Table 1.

A list of deltas to be excluded in the creation of the gen-
erated file. See the -i keyletter for the list format.

Indicates that the get is for the purpose of editing or mak-
ing a change (delta) to the SCCS file via a subsequent use of
delta(1). The -e keyletter used in a get for a particular ver-
sion (SID) of the SCCS file prevents further gets for editing
on the same SID until delta is executed or the j (joint edit)
flag is set in the SCCS file [see admin(1)]. Concurrent use of
get —e for different SIDs is always allowed.

If the g-file generated by get with an -e keyletter is
accidentally ruined in the process of editing it, it may be
regenerated by re-executing the get command with the -k
keyletter in place of the -e keyletter.

SCCS file protection specified via the ceiling, floor, and
authorized user list stored in the SCCS file [see admin(1)] are
enforced when the -e keyletter is used.

Used with the -e keyletter to indicate that the new delta
should have an SID in a new branch as shown in Table 1.
This keyletter is ignored if the b flag is not present in the
file [see admin(1)] or if the retrieved delta is not a leaf delta.
(A leaf delta is one that has no successors on the SCCS file
tree.)

Note: A branch delta may always be created from a non-
leaf delta. Partial SIDs are interpreted as shown in the “SID
Retrieved” column of Table 1.

Suppresses replacement of identification keywords (see
below) in the retrieved text by their value. The -k keyletter
is implied by the -e keyletter.

Causes a delta summary to be written into an I-file. If -lp
is used, then an I-file is not created; the delta summary is
written on the standard output instead. See FILES for the
format of the I-file.

Causes the text retrieved from the SCCS file to be written
on the standard output. No g-file is created. All output
which normally goes to the standard output goes to file
descriptor 2 instead, unless the -s keyletter is used, in
which case it disappears.

GET(1)

-S

-m

-n

-8

-t
-w string

-aseq-no.

(C Software Development Set) GET(1)

Suppresses all output normally written on the standard out-
put. However, fatal error messages (which always go to file
descriptor 2) remain unaffected.

Causes each text line retrieved from the SCCS file to be pre-
ceded by the SID of the delta that inserted the text line in
the SCCS file. The format is: SID, followed by a horizontal
tab, followed by the text line.

Causes each generated text line to be preceded with the
%M% identification keyword value (see below). The for-
mat is: %M% value, followed by a horizontal tab, followed
by the text line. When both the -m and -n keyletters are
used, the format is: %M% value, followed by a horizontal
tab, followed by the -m keyletter generated format.

Suppresses the actual retrieval of text from the SCCS file. It
is primarily used to generate an I-file, or to verify the
existence of a particular SID.

Used to access the most recently created delta in a given
release (e.g., -11), or release and level (e.g., -r1.2).

Substitute string for all occurrences of %W% when getting
the file.

The delta sequence number of the SCCS file delta (version)
to be retrieved [see sccsfile(5)]. This keyletter is used by the
comb(1) command; it is not a generally useful keyletter. If
both the -r and -a keyletters are specified, only the -a
keyletter is used. Care should be taken when using the -a
keyletter in conjunction with the -e keyletter, as the SID of
the delta to be created may not be what one expects. The
-t keyletter can be used with the -a and -e keyletters to
control the naming of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with the SID
being accessed and with the number of lines retrieved from the SCCS file.

If the —e keyletter is used, the SID of the delta to be made appears after the
SID accessed and before the number of lines generated. If there is more
than one named file or if a directory or standard input is named, each file
name is printed (preceded by a new-line) before it is processed. If the -i
keyletter is used, included deltas are listed following the notation
“Included”’; if the -x keyletter is used, excluded deltas are listed following
the notation “Excluded”.

GET(1) (C Software Development Set) GET(1)
TABLE 1. Determination of SCCS Identification String
SID* -b Keyletter Other SID SID of Delta
Specified Usedt Conditions Retrieved to be Created
nonet no R defaults to mR mR.mL mR.(mL+1)
nonet yes R defaults to mR mR.mL mR.mL.(mB+1).1
R no R > mR mR.mL R. 1k
R no R = mR mR.mL mR.(mL+1)
R ves R > mR mR.mL mR.mL.(mB+1).1
R yes R = mR mR.mL mR.mL.(mB+1).1
R < mR and ok
R - R does not exist hR.mL hR.mL.(mB+1).1
Trunk succ.#
R - in release > R R.mL R.mL.(mB+1).1
and R exists
R.L no No trunk succ. R.L R.(L+1)
R.L yes No trunk succ. R.L R.L.(mB+1).1
' Trunk succ.
R.L - in release > R R.L R.L.(mB+1).1
R.L.B no No branch succ. R.L.B.mS R.L.B.(mS+1)
R.L.B yes No branch succ. R.L.B.mS R.L.(mB+1).1
R.L.B.S no No branch succ. R.L.B.S R.L.B.(5+1)
R.L.B.S yes No branch succ. ~ R.L.B.S R.L.(mB+1).1
R.L.B.S - Branch succ. R.L.B.S R.L.(mB+1).1
* “R”, “L”, “B”, and “S” are the ’“release”’, “level”, ““branch”’, and
“sequence” components of the SID, respectively; “m” means ‘“max-
imum”. Thus, for example, “R.mL” means “the maximum level
number within release R”; “R.L.(mB+1).1” means “the first sequence
number on the new branch (i.e., maximum branch number plus one) of
level L within release R”. Note that if the SID specified is of the form
“R.L”, “RL.B”, or “R.L.B.S”, each of the specified components nrust
exist.
** “hR” is the highest existing release that is lower than the specified,
nonexistent, release R.
*** This is used to force creation of the first delta in a new release.
Successor.
t The -b keyletter is effective only if the b flag [see admin (1)] is present
in the file. An entry of - means “irrelevant”.
1 This case applies if the d (default SID) flag is not present in the file. If

the d flag is present in the file, then the SID obtained from the d flag is
interpreted as if it had been specified on the command line. Thus, one
of the other cases in this table applies.

GET(1) (C Software Development Set) GET(1)

IDENTIFICATION KEYWORDS
Identifying information is inserted into the text retrieved from the SCCS file
by replacing identification keywords with their value wherever they occur.
The following keywords may be used in the text stored in an SCCS file:

Keyword Value

%M% Module name: either the value of the m flag in the file [see
admin(1)], or if absent, the name of the SCCS file with the lead-
ing s. removed.

%I% SCCS identification (SID) (%R%.%L%.%B%.%S%) of the
retrieved text. '

%R % Release.

%L% Level.

%B% Branch.

%S% Sequence.

%D % Current date (YY/MM/DD).

%H% Current date (MM/DD/YY).

%T% Current time (HH:MM:SS).

%E% Date newest applied delta was created (YY/MM/DD).

%G% Date newest applied delta was created (MM/DD/YY).

%U% Time newest applied delta was created (HH:MM:SS).

%Y % Module type: value of the t flag in the SCCS file [see admin(1)].
%F % SCCS file name.

%P% Fully qualified SCCS file name.

%Q% The value of the q flag in the file [see admin(1)].

%C% Current line number. This keyword is intended for identifying

messages output by the program such as “this should not have
happened” type errors. It is not intended to be used on every
line to provide sequence numbers.

%Z% The 4-character string @(#) recognizable by what(1).

%W% A shorthand notation for constructing what(1) strings for UNIX

system program files. = %W% = %Z%%M%<horizontal-
tab>%I%
%A% Another shorthand notation for constructing what(1) strings for

non-UNIX system program files.

%A% = %Z%%Y% %M% %I%%Z%
Several auxiliary files may be created by get. These files are known generi-
cally as the g-file, I-file, p-file, and z-file. The letter before the hyphen is
called the tag. An auxiliary file name is formed from the SCCS file name:
the last component of all SCCS file names must be of the form s.module-
name, the auxiliary files are named by replacing the leading s with the tag.
The g-file is an exception to this scheme: the g-file is named by removing
the s. prefix. For example, s.xyz.c, the auxiliary file names would be xyz.c,
L.xyz.c, p.xyz.c, and z.xyz.c, respectively.

The g-file, which contains the generated text, is created in the current direc-
tory (unless the -p keyletter is used). A g-file is created in all cases,
whether or not any lines of text were generated by the get.

GET(1)

(C Software Development Set) GET(1)

It is owned by the real user. If the -k keyletter is used or implied, its mode
is 644; otherwise its mode is 444. Only the real user need have write per-
mission in the current directory.

The I-file contains a table showing which deltas were applied in generating
the retrieved text. The I-file is created in the current directory if the -1
keyletter is used; its mode is 444 and it is owned by the real user. Only the
real user need have write permission in the current directory.

Lines in the [-file have the following format:

a. A blank character if the delta was applied;
* otherwise.
b. A blank character if the delta was applied or was not

applied and ignored;
* if the delta was not applied and was not ignored.
c. A code indicating a “special” reason why the delta was or
was not applied:
“I”: Included.
“X": Excluded.
“C”: Cut off (by a -c keyletter).
Blank.
SCCS identification (SID).
Tab character.
Date and time (in the form YY/MM/DD HH:MM:SS) of crea-
tion.
Blank.
Login name of person who created delta.

mr @ e a

The comments and MR data follow on subsequent lines, indented
one horizontal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with a -e
keyletter along to delta. Its contents are also used to prevent a subsequent
execution of get with a -e keyletter for the same SID until delta is executed
or the joint edit flag, j, [see admin(1)] is set in the SCCS file. The p-file is
created in the directory containing the SCCS file and the effective user must
have write permission in that directory. Its mode is 644 and it is owned by
the effective user. The format of the p-file is: the gotten SID, followed by a
blank, followed by the SID that the new delta will have when it is made,
followed by a blank, followed by the login name of the real user, followed
by a blank, followed by the date-time the get was executed, followed by a
blank and the -i keyletter argument if it was present, followed by a blank
and the -x keyletter argument if it was present, followed by a new-line.
There can be an arbitrary number of lines in the p-file at any time; no two
lines can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its
contents are the binary (2 bytes) process ID of the command (i.e., get) that
created it. The z-file is created in the directory containing the SCCS file for
the duration of get. The same protection restrictions as those for the p-file
apply for the z-file. The z-file is created mode 444.

-6 -

GET(1)

FILES

g-file
p-file
q-file
x-file
z-file
d-file
/usr/bin/bdiff

SEE ALSO
admin(1), delta(1), prs(1), what(1).
help(1) in the User’s /System Administrator’s Reference Manual.

DIAGNOSTICS
Use help(1) for explanations.

BUGS

(C Software Development Set) GET(1)

Existed before the execution of delta, removed after com-
pletion of delta.

Existed before the execution of delta; may exist after com-
pletion of delta.

Created during the execution of delta; removed after com-
pletion of delta.

Created during the execution of delta; renamed to SCCS file
after completion of delta.

Created during the execunon of delta; removed during the
execution of delta.

Created during the execution of delta; removed after com-
pletion of delta.

Program to compute differences between the “‘gotten” file
and the g-file.

If the effective user has write permission (either explicitly or implicitly) in
the directory containing the SCCS files, but the real user does not, then only
one file may be named when the -e keyletter is used.

GETFRM(1V) (Base System) GETFRM(1V)

NAME
getfrm — returns the current frame number

SYNOPSIS
getfrm

DESCRIPTION
The getfrm command takes no arguments. It returns the current frame
number.

EXAMPLE
invalidmsg="You are in frame #'getfrm'"

GETITEMS(1V) (Base System) GETITEMS(1V)

NAME
getitems — returns a list of the currently marked menu items.
SYNOPSIS
getitems [delimiter_string]
DESCRIPTION
The getitems command takes a delimiter string as its only argument. It
returns a list of the names (or lininfo, if it is defined) of the currently
marked menu items, delimited by the argument string. If no argument is
given, the default delimiter is NEWLINE.
EXAMPLE
This code defines a menu:
Menu="Example"
multiselect=TRUE
name="Item 1"
action='message "You selected item 1"'
name="Item 2"
lininfo="This is item 2"
action='message "You selected item 2"'
name="Item 3"
action='message "You selected item 3"'

If all three items are selected, and the command getitems "*" is issued, the
following string is returned:

"Ttem 1*¥This is item 2*Item 3"

Note that if linifo is defined, its value is substitited for the name.

1286 EMUL(1) (C Software Development Set) 1286EMUL(1)

NAME

i286emul - emulate 80286

SYNOPSIS

i286emul [arg ...] prog286

DESCRIPTION

FILES

BUGS

1286emul is an emulator that allows programs from UNIX System V Release
2 or Release 3 on the Intel 80286 to run on UNIX System V Release 3 on
the Intel 80386.

The UNIX system recognizes an attempt to exec(2) a 286 program, and
automatically exec’s the 286 emulator with the 286 program name as an
additional argument. It is not necessary to specify the i286emul emulator
on the command line. The 286 programs can be invoked using the same
command format as on the 286 UNIX System V.

1286emul reads the 286 program’s text and data into memory and maps
them through the LDT [via sysi86(2)] as 286 text and data segments. It also
sets callgate 89 in the GDT (which is used by 286 programs for system
calls) to point to a routine in i286emul. 1286emul starts the 286 program by
jumping to its entry point.

When the 286 program attempts to do a system call, i286emul takes control.
It does any conversions needed between the 286 system call and the
equivalent 386 system call, and performs the 386 system call. The results
are converted to the form the 286 program expects, and the 286 program is
resumed. :

The following are some of the differences between a program running on a
286 and a 286 program using i286emul on a 386:

A 286 program under i286emul always has 64k in the stack segment
if it is a large-model process, or 64k in the data segment if it is a
small-model process.

System calls and signal handling use more space on the stack under
i286emul than it does on a 286.

Attempts to unlink or write on the 286 program will fail on the 286
with ETXTBSY. Under i286emul, they will not fail.

Ptrace(2) is not supported under i286emul.
The 286 program must be readable for the emulator to read it.

/bin/i286emul
The emulator must have this name and be in /bin if it is to be
automatically invoked when exec(2) is used on a 286 program.

The signal mechanism under the emulator is the System V release 2 signal
mechanism rather than the System V release 3 mechanism.

INDICATOR(1V) (Base System) INDICATOR(1V)

NAME
indicator - display application specific alarms and/or the "working" indica-
tor

SYNOPSIS
indicator [-c column | [-1 length] [=0] [-w] [=b [n]] [string]

DESCRIPTION
The ~-c option dictates what column of the banner line to start the indicator
string on. Num is an integer from 0 to 79. If the —c option is not used, the
default is 0.
The -1 option limits the length of the indicator. If the string is longer than

num, it will be truncated. Num is an integer from 1 to 80. If -1 is not used,
the default is the entire string.

The -0 option causes indicator to "tee" its output to stdout.
The -w option turns on the "working" indicator.

The -b option rings the terminal bell n times, where n is an integer from 1
to 10. The default value is 1. If the terminal has no bell, the screen is
flashed instead, if possible.

If the Indicator command is being used solely for the bell or working indica-
tor control, remember to give it a null string argument unless input is being
piped to it. The string should always be the last argument given. The indi-
cator is not automatically cleared.

EXAMPLES
When the value entered in the field is wrong, ring the bell three times and
put up an indicator saying WRONG in column 1.

invalidmsg='indicator —b 3 —c 1 "WRONG"'
To clear the indicator after telling the user to try again:

invalidmsg='indicator —b 3 —c 1 "WRONG";indicator
-c 1" "teTry againl!"

INFOCMP(1M)

NAME

(Graphics Programming Utilities) INFOCMP(1M)

infocmp — compare or print out terminfo descriptions

SYNOPSIS

infocmp [-d] [-c] [-n] [-1] [-L] [-C] [-1] [-u] [-s diiilic] [-v] [-V] [-1] [-w
width] [-A directory] [-B directory] [termname ...]

DESCRIPTION

infocmp can be used to compare a binary terminfo(4) entry with other ter-
minfo entries, rewrite a terminfo(4) description to take advantage of the
use= terminfo field, or print out a terminfo(4) description from the binary
file [term(4)] in a variety of formats. In all cases, the boolean fields will be
printed first, followed by the numeric fields, followed by the string fields.

Default Options
If no options are specified and zero or one termnames are specified, the -I
option will be assumed. If more than one termname is specified, the -d
option will be assumed.

Comparison Options [-d] [-c] [-n]
infocmp compares the terminfo(4) description of the first terminal termname
with each of the descriptions given by the entries for the other terminal’s
termnames. If a capability is defined for only one of the terminals, the value
returned will depend on the type of the capability: F for boolean variables,
-1 for integer variables, and NULL for string variables.

-d

-C

-n

produce a list of each capability that is different. In this manner, if
one has two entries for the same terminal or similar terminals,
using infocmp will show what is different between the two entries.
This is sometimes necessary when more than one person produces
an entry for the same terminal and one wants to see what is dif-
ferent between the two.

produce a list of each capability that is common between the two
entries. Capabilities that are not set are ignored. This option can
be used as a quick check to see if the -u option is worth using.

produce a list of each capability that is in neither entry. If no term-
names are given, the environment variable TERM will be used for
both of the termnames. This can be used as a quick check to see if
anything was left out of the description.

Source Listing Options [-I] [-L] [-C] [-1]
The -I, -L, and -C options will produce a source listing for each terminal

named.
-1

-L

-C

-r

use the terminfo(4) names

use the long C variable name listed in <term.h>

use the termcap names

when using -C, put out all capabilities in termcap form

If no termnames are given, the environment variable TERM will be used for
the terminal name.

INFOCMP(1M) (Graphics Programming Utilities) INFOCMP(1M)

The source produced by the -C option may be used directly as a termcap
entry, but not all of the parameterized strings may be changed to the
termcap format. infocmp will attempt to convert most of the parameterized
information, but that which it doesn’t will be plainly marked in the output
and commented out. These should be edited by hand.

All padding information for strings will be collected together and placed at
the beginning of the string where termcap expects it. Mandatory padding
(padding information with a trailing ’/) will become optional.

All termcap variables no longer supported by terminfo(4), but which are
derivable from other terminfo(4) variables, will be output. Not all ter-
minfo(4) capabilities will be translated; only those variables which were part
of termcap will normally be output. Specifying the -r option will take off
this restriction, allowing all capabilities to be output in termcap form.

Note that because padding is collected to the beginning of the capability,
not all capabilities are output, mandatory padding is not supported, and
termcap strings were not as flexible, it is not always possible to convert a
terminfo(4) string capability into an equivalent termcap format. Not all of
these strings will be able to be converted. A subsequent conversion of the
termcap file back into terminfo(4) format will not necessarily reproduce the
original terminfo(4) source.

Some common terminfo parameter sequences, their termcap equivalents, and
some terminal types which commonly have such sequences, are:

Terminfo Termcap Representative Terminals
%p1%c %. adm

%p1%d %d hp, ANSI standard, vt100
%p1%’x"%+%c %+x concept

%i %i ANSI standard, vt100
%p1%2% X %>%t%pl1%’y' %+%; Y%>xy concept

%p?2 is printed before %p1 Y%r hp

Use= Option [-u]

-u produce a terminfo(4) source description of the first terminal term-
name which is relative to the sum of the descriptions given by the
entries for the other terminals termnames. It does this by analyzing
the differences between the first termname and the other termnames
and producing a description with use= fields for the other termi-
nals. In this manner, it is possible to retrofit generic terminfo
entries into a terminal’s description. Or, if two similar terminals
exist, but were coded at different times or by different people so
that each description is a full description, using infocmp will show
what can be done to change one description to be relative to the
other.

A capability will get printed with an at-sign (@) if it no longer exists in the
first termname, but one of the other termname entries contains a value for it.
A capability’s value gets printed if the value in the first termname is not
found in any. of the other termname entries, or if the first of the other

2.

INFOCMP(1M) (Graphics Programming Utilities) INFOCMP(1M)

termname entries that has this capability gives a different value for the capa-
bility than that in the first termname.

The order of the other termname entries is significant. Since the terminfo
compiler tic(1IM) does a left-to-right scan of the capabilities, specifying two
use= entries that contain differing entries for the same capabilities will pro-
duce different results depending on the order that the entries are given in.
infocmp will flag any such inconsistencies between the other termname
entries as they are found.

Alternatively, specifying a capability after a use= entry that contains that
capability will cause the second specification to be ignored. Using infocmp
to recreate a description can be a useful check to make sure that everything
was specified correctly in the original source description.

Another error that does not cause incorrect compiled files, but will slow
down the compilation time, is specifying extra use= fields that are superflu-
ous. infocmp will flag any other termname use= fields that were not

needed.

Other Options [-s dliilic] [-v] [-V] [-1] [-w width]

-s sort the fields within each type according to the argument below:

d leave fields in the order that they are stored in the terminfo
database.

i sort by terminfo name.

1 sort by the long C variable name.

c sort by the termcap name.

If no -s option is given, the fields printed out will be sorted alpha-

betically by the terminfo name within each type, except in the case

of the -C or the -L options, which cause the sorting to be done by

the termcap name or the long C variable name, respectively.

-v print out tracing information on standard error as the program
runs.

-V print out the version of the program in use on standard error and
exit.

-1 cause the fields to printed out one to a line. Otherwise, the fields
will be printed several to a line to a maximum width of 60 charac-
ters.

-w change the output to width characters.

Changing Databases [-A directory] [-B directory]
The location of the compiled terminfo(4) database is taken from the environ-
ment variable TERMINFO. If the variable is not defined, or the terminal is
not found in that location, the system terminfo(4) database, usually in
Jusr/lib/terminfo, will be used. The options ~A and -B may be used to
override this location. The -A option will set TERMINFO for the first term-
name and the -B option will set TERMINFO for the other termnames. With
this, it is possible to compare descriptions for a terminal with the same
name located in two different databases. This is useful for comparing

-3-

INFOCMP(1M) (Graphics Programming Utilities) INFOCMP(1M)

descriptions for the same terminal created by different people. Otherwise
the terminals would have to be named differently in the terminfo(4) data-
base for a comparison to be made. '

FILES
/usr/lib/terminfo/?/* compiled terminal description database

DIAGNOSTICS
malloc is out of space!
There was not enough memory available to process all the
terminal descriptions requested. Run infocmp several
times, each time including a subset of the desired term-
names.

use= order dependency found:
A value specified in one relative terminal specification was
different from that in another relative terminal specifica-
tion.

‘use=term’ did not add anything to the description.
A relative terminal name did not contribute anything to
the final description.

must have at least two terminal names for a comparison to be done.
The -u, -d and -c options require at least two terminal
names.

SEE ALSO
tic(1M), curses(3X), term(4), terminfo(4).
captoinfo(1M) in the User’s /System Administrator’s Reference Manual.
Chapter 10 of the Programmer’s Guide.

NOTE
The termcap database (from earlier releases of UNIX System V) may not be
supplied in future releases.

INSTALL(1M) (C Software Development Set) INSTALL(1M)

NAME
install — install commands

SYNOPSIS
/etc/install [-c dira] [-f dirb] [-i] [-n dirc] [-m mode] [-u user] [-g
group] [-o0] [-s] file [dirx ...]

DESCRIPTION
The install command is most commonly used in “‘makefiles” [see make(1)]
to install a file (updated target file) in a specific place within a file system.
Each file is installed by copying it into the appropriate directory, thereby
retaining the mode and owner of the original command. The program
prints messages telling the user exactly what files it is replacing or creating
and where they are going.

If no options or directories (dirx ...) are given, install will search a set of
default directories (/bin, /usr/bin, /etc, /lib, and /usr/lib, in that order)
for a file with the same name as file. When the first occurrence is found,
install issues a message saying that it is overwriting that file with file, and
proceeds to do so. If the file is not found, the program states this and exits
without further action.

If one or more directories (dirx ...) are specified after file, those directories
will be searched before the directories specified in the default list.

The meanings of the options are:

-c dira Installs a new command (file) in the directory speci-
fied by dira, only if it is not found. If it is found,
install issues a message saying that the file already
exists, and exits without overwriting it. May be used
alone or with the -s option.

-f dirb Forces file to be installed in given directory, whether
or not one already exists. If the file being installed
does not already exist, the mode and owner of the
new file will be set to 755 and bin, respectively. If
the file already exists, the mode and owner will be
that of the already existing file. May be used alone or
with the -o or -s options.

-i Ignores default directory list, searching only through
the given directories (dirx ...). May be used alone or
with any other options except -¢ and -f.

-n dirc If file is not found in any of the searched directories,
it is put in the directory specified in dirc. The mode
and owner of the new file will be set to 755 and bin,
respectively. May be used alone or with any other
options except -c and -f.

-m mode The mode of the new file is set to mode. Only avail-
able to the superuser.

-u user The owner of the new file is set to user. Only avail-
able to the superuser.

-1-

INSTALL(1M) (C Software Development Set) INSTALL(1M)

-g group The group id of the new file is set to group. Only
available to the superuser.

-0 If file is found, this option saves the “found” file by
copying it to OLDfile in the directory in which it was
found. This option is useful when installing a fre-
quently used file such as /bin/sh or /etc/getty, where
the existing file cannot be removed. May be used
alone or with any other options except ~c.

-s Suppresses printing of messages other than error mes-
sages. May be used alone or with any other options.

SEE ALSO
make(1).

LD(1) (C Software Development Set) LD(1)

NAME
1d - link editor for common object files

SYNOPSIS .
1d [options] file name

DESCRIPTION
The ld command combines several object files into one, performs relocation,
resolves external symbols, and supports symbol table information for sym-
bolic debugging. In the simplest case, the names of several object programs
are given, and Id combines the objects, producing an object module that can
either be executed or, if the -r option is specified, used as input for a subse-
quent Id run. The output of Id is left in a.out. By default this file is execut-
able if no errors occurred during the load. If any input file, filename, is not
an object file, Id assumes it is either an archive library or a text file contain-
ing link editor directives. [See Link Editor Directives in the UNIX System V
Programmer’s Guide for a discussion of input directives.]

If any argument is a library, it is searched exactly once at the point it is
encountered in the argument list. The library may be either a relocatable
archive library or a shared library. [See Shared Libraries in the UNIX System
V Programmer’s Guide for a discussion of shared libraries.] Only those rou-
tines defining an unresolved external reference are loaded. The library
(archive) symbol table [see ar(4)] is searched sequentially with as many
passes as are necessary to resolve external references which can be satisfied
by library members. Thus, the ordering of library members is functionally
unimportant, unless there exist multiple library members defining the same
external symbol.

The following options are recognized by Id:

-e epsym
Set the default entry point address for the output file to be that of
the symbol epsym.

-f fill Set the default fill pattern for “holes” within an output section as
well as initialized bss sections. The argument fill is a two-byte con-
stant.

-Ix Search a library libx.a, where x is up to nine characters. A library is
searched when its name is encountered, so the placement of a -1 is
significant. By default, libraries are located in LIBDIR or LLIBDIR.

-m Produce a map or listing of the input/output sections on the stand-
ard output.
-0 outfile

Produce an output object file by the name outfile. The name of the
default object file is a.out.

-r Retain relocation entries in the output object file. Relocation entries
must be saved if the output file is to become an input file in a sub-
sequent Id run. The link editor will not complain about unresolved
references, and the output file will not be executable.

LD(1)

FILES

(C Software Development Set) LD(1)

-a Create an absolute file. This is the default if the -r option is not
used. Used with the -r option, -a allocates memory for common
symbols.

-S Strip line number entries and symbol table information from the
output object file.

-t Turn off the warning about multiply-defined symbols that are not
the same size.

-u symname
Enter symname as an undefined symbol in the symbol table. This is
useful for loading entirely from a library, since initially the symbol
table is empty and an unresolved reference is needed to force the
loading of the first routine. The placement of this option on the Id
line is significant; it must be placed before the library which will
define the symbol.

-X Do not preserve local symbols in the output symbol table; enter
external and static symbols only. This option saves some space in
the output file.

-z Do not bind anything to address zero. This option will allow run-
time detection of null pointers.

-L dir Change the algorithm of searching for libx.a to look in dir before
looking in LIBDIR and LLIBDIR. This option is effective only if it
precedes the -1 option on the command line.

-M Output a message for each multiply-defined external definition.

-N Put the text section at the beginning of the text segment rather than
after all header information, and put the data section immediately
following text in the core image.

-V Output a message giving information about the version of Id being
used.

-VS num
Use num as a decimal version stamp identifying the a.out file that is
produced. The version stamp is stored in the optional header.

-Y[LU],dir
Change the default directory used for finding libraries. If L is speci-
fied the first default directory which Id searches, LIBDIR, is replaced
by dir. If U is specified and Id has been built with a second default
directory, LLIBDIR, then that directory is replaced by dir. If Id was
built with only one default directory and U is specified a warning is
printed and the option is ignored.

LIBDIR/libx.a libraries

LLIBDIR/libx.a libraries

a.out output file

LIBDIR usually /lib

LLIBDIR usually /usr/lib

-2-

LD(1) (C Software Development Set) LD(1)

SEE ALSO
as(1), cc(1), mkshlib(1), exit(2), end(3C), a.out(4), ar(4).
Link Editor Directives and Shared Libraries in the UNIX System V Programmer’s
Guide.

CAVEATS
Through its options and input directives, the common link editor gives users
great flexibility; however, those who use the input directives must assume
some added responsibilities. Input directives and options should insure the
following properties for programs:

- C defines a zero pointer as null. A pointer to which zero has been
assigned must not point to any object. To satisfy this, users must not
place any object at virtual address zero in the program’s address space.

- When the link editor is called through cc(1), a startup routine is linked
with the user’s program. This routine calls exit() [see exit(2)] after
execution of the main program. If the user calls the link editor
directly, then the user must insure that the program always calls
exit() rather than falling through the end of the entry routine.

The symbols etext, edata, and end [see end(3C)] are reserved and are defined
by the link editor. It is incorrect for a user program to redefine them.

If the link editor does not recognize an input file as an object file or an
archive file, it will assume that it contains link editor directives and will
attempt to parse it. This will occasionally produce an error message com-
plaining about "syntax errors".

Arithmetic expressions may only have one forward referenced symbol per
expression.

LEX(1) (C Software Development Set) LEX(1)

NAME
lex — generate programs for simple lexical tasks

SYNOPSIS
lex [-rctvn | [file | ...

DESCRIPTION
The lex command generates programs to be used in simple lexical analysis
of text.

The input files (standard input default) contain strings and expressions to be
searched for, and C text to be executed when strings are found.

A file lex.yy.c is generated which, when loaded with the library, copies the
input to the output except when a string specified in the file is found; then
the corresponding program text is executed. The actual string matched is
left in yytext, an external character array. Matching is done in order of the
strings in the file. The strings may contain square brackets to indicate char-
acter classes, as in [abx-z] to indicate a, b, x, y, and z; and the operators *,
+, and ? mean respectively any non-negative number of, any positive
number of, and either zero or one occurrence of, the previous character or
character class. The character . is the class of all ASCII characters except
new-line. Parentheses for grouping and vertical bar for alternation are also
supported. The notation r{d,e} in a rule indicates between d and e
instances of regular expression r. It has higher precedence than i, but lower
than *, ?, +, and concatenation. Thus [a-zZA-Z]+ matches a string of
letters. The character at the beginning of an expression permits a success-
ful match only immediately after a new-line, and the character $ at the end
of an expression requires a trailing new-line. The character / in an expres-
sion indicates trailing context; only the part of the expression up to the slash
is returned in yytext, but the remainder of the expression must follow in the
input stream. An operator character may be used as an ordinary symbol if
it is within " symbols or preceded by \.

Three subroutines defined as macros are expected: input() to read a charac-
ter; unput(c) to replace a character read; and output(c) to place an output
character. They are defined in terms of the standard streams, but you can
override them. The program generated is named yylex(), and the library
contains a main() which calls it. The action REJECT on the right side of the
rule causes this match to be rejected and the next suitable match executed;
the function yymore() accumulates additional characters into the same
yytext; and the function yyless(p) pushes back the portion of the string
matched beginning at p, which should be between yytext and
yytext+yyleng. The macros input and output use files yyin and yyout to
read from and write to, defaulted to stdin and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text and is
copied; if it precedes %%, it is copied into the external definition area of the
lex.yy.c file. All rules should follow a %%, as in YACC. Lines preceding
%% which begin with a non-blank character define the string on the left to
be the remainder of the line; it can be called out later by surrounding it with
{}. Note that curly brackets do not imply parentheses; only string substitu-
tion is done.

LEX(1) (C Software Development Set) LEX(1)

EXAMPLE
D [0-9]
% %
if printf("IF statement\n");

[a-z]+ printf("tag, value %s\n",yytext);
0{D}+ printf("octal number %s\n",yytext);
{D}+ printf("decimal number %s\n" yytext);
"++" printf("unary op\n");

ntn printf("binary op\n");

" /xn skipcommnts();
% %
skipcommnts()
for (;;)
{

while (input() !='+')

if (input() '="/")
unput(yytext[yyleng-1]);
else
return;

}
}

The external names generated by lex all begin with the prefix yy or YY.

The flags must appear before any files. The flag -r indicates RATFOR
actions, -c indicates C actions and is the default, -t causes the lex.yy.c pro-
gram to be written instead to standard output, -v provides a one-line sum-
mary of statistics, -n will not print out the -v summary. Multiple files are
treated as a single file. If no files are specified, standard input is used.

Certain table sizes for the resulting finite state machine can be set in the
definitions section:

%p n number of positions is n (default 2500)

%n n number of states is n (500)

%e n number of parse tree nodes is n (1000)

%a n number of transitions is n (2000)

%k n number of packed character classes is n (1000)
%o n size of output array is n (3000)

The use of one or more of the above automatically implies the -v option,
unless the -n option is used.

SEE ALSO
yacc(1).

Chapter 5 in the UNIX System V Programmer’s Guide.

BUGS
The -r option is not yet fully operational.

-2-

LINT(1) (C Software Development Set) LINT(1)

NAME

lint — a C program checker
SYNOPSIS

lint [option] ... file ...
DESCRIPTION

The lint command attempts to detect features of the C program files that are
likely to be bugs, non-portable, or wasteful. It also checks type usage more
strictly than the compilers. Among the things that are currently detected
are unreachable statements, loops not entered at the top, automatic vari-
ables declared and not used, and logical expressions whose value is con-
stant. Moreover, the usage of functions is checked to find functions that
return values in some places and not in others, functions called with vary-
ing numbers or types of arguments, and functions whose values are not
used or whose values are used but none returned.

Arguments whose names end with .c are taken to be C source files. Argu-
ments whose names end with .In are taken to be the result of an earlier
invocation of lint with either the -c¢ or the -0 option used. The .In files are
analogous to .0 (object) files that are produced by the cc(1) command when
given a .c file as input. Files with other suffixes are warned about and
ignored.

The lint command will take all the .c, .In, and lib-lx.In (specified by -lx)
files and process them in their command line order. By default, lint
appends the standard C lint library (llib-lc.In) to the end of the list of files.
However, if the -p option is used, the portable C lint library (llib-port.In) is
appended instead. When the -c option is not used, the second pass of lint
checks this list of files for mutual compatibility. When the -c option is
used, the .In and the llib-lx.In files are ignored.

Any number of lint options may be used, in any order, intermixed with
file-name arguments. The following options are used to suppress certain
kinds of complaints:

-a Suppress complaints about assignments of long values to variables
that are not long.

-b Suppress complaints about break statements that cannot be reached.
(Programs produced by lex or yacc will often result in many such
complaints.)

-h Do not apply heuristic tests that attempt to intuit bugs, improve
style, and reduce waste.

-u Suppress complaints about functions and external variables used
and not defined, or defined and not used. (This option is suitable
for running lint on a subset of files of a larger program.)

-v Suppress complaints about unused arguments in functions.
-X Do not report variables referred to by external declarations but
never used.

LINT(1)

(C Software Development Set) LINT(1)

The following arguments alter lint’s behavior:

-lx

-n

-pP

-0 lib

Include additional lint library llib-lx.In. For example, you can
include a lint version of the math library llib-lm.In by inserting -lm
on the command line. This argument does not suppress the default
use of llib-lc.In. These lint libraries must be in the assumed direc-
tory. This option can be used to reference local lint libraries and is
useful in the development of multifile projects.

Do not check compatibility against either the standard or the port-
able lint library.

Attempt to check portability to other dialects (IBM and GCOS) of C.
Along with stricter checking, this option causes all non-external
names to be truncated to eight characters and all external names to
be truncated to six characters and one case.

Cause lint to produce a .In file for every .c file on the command
line. These .In files are the product of lint’s first pass only, and are
not checked for inter-function compatibility.

Cause lint to create a lint library with the name 1lib-l/ib.In. The -c
option nullifies any use of the -0 option. The lint library produced
is the input that is given to lint’s second pass. The -0 option sim-
ply causes this file to be saved in the named lint library. To pro-
duce a llib-liib.In without extraneous messages, use of the -x
option is suggested. The -v option is useful if the source file(s) for
the lint library are just external interfaces (for example, the way the
file llib-lc is written). These option settings are also available
through the use of “lint comments” (see below).

The -D, -U, and -I options of cpp(1) and the -g and -O options of cc(1) are
also recognized as separate arguments. The -g and ~O options are ignored,
but, by recognizing these options, lint’s behavior is closer to that of the
cc(1) command. Other options are warned about and ignored. The prepro-
cessor symbol “lint” is defined to allow certain questionable code to be
altered or removed for lint. Therefore, the symbol “lint” should be thought
of as a reserved word for all code that is planned to be checked by lint.

Certain conventional comments in the C source will change the behavior of

lint:

/*NOTREACHED*/
at appropriate points stops comments about unreachable
code. [This comment is typically placed just after calls to
functions like exit(2)].

/*VARARGSn*/
suppresses the usual checking for variable numbers of argu-
ments in the following function declaration. The data types
of the first n arguments are checked; a missing # is taken to
be 0.

/*ARGSUSED*/
turns on the -v option for the next function.

-2 -

LINT(1) (C Software Development Set) LINT(1)

/*LINTLIBRARY*/
at the beginning of a file shuts off complaints about unused
functions and function arguments in this file. This is
equivalent to using the -v and -x options.

The lint command produces its first output on a per-source-file basis. Com-
plaints regarding included files are collected and printed after all source files
have been processed. Finally, if the -c option is not used, information gath-
ered from all input files is collected and checked for consistency. At this
point, if it is not clear whether a complaint stems from a given source file or
from one of its included files, the source file name will be printed followed
by a question mark.

The behavior of the —~c and the -0 options allows for incremental use of lint
on a set of C source files. Generally, one invokes lint once for each source
file with the -c option. Each of these invocations produces a .In file for
each .c file, and prints all messages that are about just that source file.
After all the source files have been separately run through lint, it is invoked
once more (without the ~c option), listing all the .In files with the needed
-lx options. This will print all the interfile inconsistencies. This scheme
works well with make(1); it allows make to be used to lint only the source
files that have been modified since the last time the set of source files were

linted.
FILES
LLIBDIR the directory where the lint libraries specified by the
~lx option must exist, usually /usr/lib
LLIBDIR /lint{12] first and second passes
LLIBDIR/1lib-1c.In declarations for C Library functions (binary format;
source is in LLIBDIR/llib-Ic)
LLIBDIR/llib-port.In declarations for portable functions (binary format;
source is in LLIBDIR /llib-port)
LLIBDIR/llib-lm.In declarations for Math Library functions (binary for-
mat; source is in LLIBDIR/1lib-Im)
TMPDIR /#lint* temporaries
TMPDIR usually /usr/tmp but can be redefined by setting the
' environment variable TMPDIR [see tempnam() in
tmpnam(3S)).
SEE ALSO
cc(1), cpp(1), make(1).
BUGS

exit(2), setjmp(3C), and other functions that do not return are not under-
stood; this causes various lies.

LIST(1) (C Software Development Set) LIST(1)

NAME

list — produce C source listing from a common object file
SYNOPSIS

list [-V] [-h] [-F function] source-file . . . [object-file]
DESCRIPTION

The list command produces a C source listing with line number information
attached. If multiple C source files were used to create the object file, list
will accept multiple file names. The object file is taken to be the last non-C
source file argument. If no object file is specified, the default object file,
a.out, will be used.

Line numbers will be printed for each line marked as breakpoint inserted by
the compiler (generally, each executable C statement that begins a new line
of source). Line numbering begins anew for each function. Line number 1
is always the line containing the left curly brace ({) that begins the function
body. Line numbers will also be supplied for inner block redeclarations of
local variables so that they can be distinguished by the symbolic debugger.

The following options are interpreted by list and may be given in any order:

-V Print, on standard error, the version number of the list com-
mand executing.

-h Suppress heading output.

~Ffunction List only the named function. The -F option may be specified
multiple times on the command line.

SEE ALSO
as(1), cc(1), 1d(1).

CAVEATS
Object files given to list must have been compiled with the -g option of

cc(1).

Since list does not use the C preprocessor, it may be unable to recognize
function definitions whose syntax has been distorted by the use of C
preprocessor macro substitutions.

DIAGNOSTICS

The list command will produce the error message “list: name: cannot open”
if name cannot be read. If the source file names do not end in .c, the mes-
sage is “list: name: invalid C source name”. An invalid object file will
cause the message “list: name: bad magic” to be produced. If some or all of
the symbolic debugging information is missing, one of the following mes-
sages will be printed: “list: name: symbols have been stripped, cannot
proceed”, “list: name: cannot read line numbers”, and “list: name: not in
symbol table”. The following messages are produced when list has become
confused by #ifdef’s in the source file: “list: name: cannot find function in
symbol table”, “list: name: out of sync: too many }”, and “list: name: unex-
pected end-of-file”. The error message “list: name: missing or inappropriate
line numbers” means that either symbol debugging information is missing,
or list has been confused by C preprocessor statements.

LORDER(1) (C Software Development Set) LORDER(1)

NAME

lorder — find ordering relation for an object library

SYNOPSIS

lorder file ...

DESCRIPTION

The input is one or more object or library archive files [see ar(1)]. The
standard output is a list of pairs of object file or archive member names,
meaning that the first file of the pair refers to external identifiers defined in
the second. The output may be processed by tsort(1) to find an ordering of
a library suitable for one-pass access by ld(1). Note that the link editor
ld(1) is capable of multiple passes over an archive in the portable archive
format [see ar(4)] and does not require that lorder(1) be used when building
an archive. The usage of the lorder(1) command may, however, allow for a
slightly more efficient access of the archive during the link edit process.

The following example builds a new library from existing .o files.

ar —cr library ‘lorder *.0 | tsort'

FILES
TMPDIR /*symref temporary files
TMPDIR /*symdef temporary files
TMPDIR is usually /usr/tmp but can be redefined by setting the environ-
ment variable TMPDIR [see tempnam() in tmpnam(3S)].
SEE ALSO
ar(1), 1d(1), tsort(1), ar(4).
CAVEAT

The lorder command will accept as input any object or archive file, regard-
less of its suffix, provided there is more than one input file. If there is but a
single input file, its suffix must be .0.

LPROF(1) (C Software Development Set) LPROF(1)

NAME

Iprof — display line-by-line execution count profile data

SYNOPSIS

Iprof [-p] [-s] [-x] [[-] incdir]] [[-r srcfile]] [-c cntfile] [-o prog]
Iprof —m filel.cnt file2.cnt [[filen.cnt]] [-T] -d destfile.cnt

DESCRIPTION

Iprof is a tool for dynamic analysis; that is, the analysis of a program at run
time. Specifically, Iprof identifies the most frequently executed parts of
source code and parts of code that are never executed. Iprof interprets a
profile file (prog.cnt by default) produced by the profiled program prog
(a.out by default) that has been compiled with the -ql option of cc (1). This
cc command option arranges for code to be inserted to record run-time
behavior and for data to be written to a file at the end of execution. By
default, Iprof prints a listing of source files (the names of which are stored in
the symbol table of the executable file), each line preceded by its line
number (in the file) and the number of times it was executed. The follow-
ing options may appear singly or be combined in any order:

-p Print listing, each line preceded by the line number and the number
of times it was executed (default). This option can be used together
with the -s option to print both the source listing and summary
information.

-s Print summary information of percentage of lines of code executed
per function.

-X Instead of printing the execution count numbers for each line, print
each line preceded by its line number and a [U] if the line was not
executed. If the line was executed, print only the line number.

-1 incdir
Look for source or header files in the directory incdir in addition to
the current directory and the standard place for #include files (usu-
ally /usr/include). You can specify more than one directory with
-I on one command line.

-r srcfile
Instead of printing all source files, print only those files named in -r
options (to be used with the -p option only). You can specify mul-
tiple files with -r on one command line.

-c cntfile
Use the file cntfile instead of prog.cnt as the input profile file.

-0 prog Use the name of the program prog instead of the name used when
creating the profile file. Because the program name stored in the
profile file contains the relative path, this option is necessary if the
executable file or profile file has been moved.

LPROF(1) (C Software Development Set) LPROF(1)

Merging Data Files
Iprof can also be used to merge data files. The -m option must be accom-
panied with the -d option:

-m filel.cnt file2.cnt [filen.cnt] -d destfile.cnt
Merge the data files filel.cnt through filen.cnt by summing the exe-
cution counts per line, so that data from several runs can be accu-
mulated. The result is written to destfile.cnt. The data files must
contain profiling data for the same prog (see the -T option below).

-T Time stamp override. Normally, the time stamps of the executable
files being profiled are checked, and data files will not be merged if
the time stamps do not match. If -T is specified, this check is
skipped.

Controlling the Run Time Profiling Environment
The environment variable PROFOPTS provides run time control over profil-
ing. When a profiled program is about to terminate, it examines the value
of PROFOPTS to determine how the profiling data is to be handled. The
environment variable PROFOPTS is a comma-separated list of options inter-
preted by the program being profiled. If PROFOPTS is not defined in the
environment, then the default action is taken: the profiling data is saved in
a file (with the default name, prog.cnt) in the current directory. If PRO-
FOPTS is set to the null string, no profiling data is saved. The following are
the available options:
msg~[y!n]
If msg=y is specified, a message stating that profile data is being
saved is printed to stderr. If msg=n is specified, print only profiling
error messages. The default is msg=y.

merge=[y!n]
If merge=n is specified, do not merge data files after successive
runs. The data file is overwritten after each execution. If merge=y
is specified, the data will be merged. The merge will fail if the pro-
gram has been recompiled; the data file will be left in TMPDIR. The
default is merge=n.

pid=[yin]
If pid=y is specified, the name of the data file will include the pro-
cess ID of the profiled program. This allows the creation of dif-
ferent data files for programs calling fork(2). If pid=n is specified,
the default name is used. The default is pid=n.

dir=dirname
Place the data file in the directory dirname if this option is specified.
Otherwise, the data file is created in the directory that is current at
the end of execution.

file=filename
Use filename as the name of the data file in dir created by the pro-
filed program if this option is specified. Otherwise, the default
name is used.

LPROF(1) (C Software Development Set) LPROF(1)

FILES
prog.cnt for profile data
TMPDIR /*temporary files TMPDIR is usually /usr/tmp, but can be rede-
fined by setting the environment variable TMPDIR [see tempnam() in
tmpnam(3S)]. :

SEE ALSO
cc(1), prof(1), fork(2), tmpnam(3S).

WARNINGS

For the -m option, if destfile.cnt exists, its previous contents are destroyed.
Optimizing functions may result in the loss of some line number informa-
tion and may result in code motions, both of which may make Iprof infor-
mation unreliable. Different parts of one line of a source file may be exe-
cuted different numbers of times (e.g., the for loop below); the count
corresponds to the first part of the line. For example, in the following for
loop

1 [8] for (j = 05 j < 55 j++)

5 [9] sub(3j);
line 8 consists of three parts. The line count listed, however, is for the ini-
tialization part, i.e., j = 0. Iprof incorrectly handles the statement immedi-
ately following a for loop containing a single if statement. In the following
example, line 8 is executed only once.

1 [5] for (i = 0; i < 3; i++)
3 [6] if (i > 3)
0 [7] x = 1i;

3 [8] i = 03
This problem can be solved by adding curly braces, as follows:
1 [5] for (i = 0; i < 35 i++) {

3 [6] if (i > 3)
0 [7] x = i
3 [8] }

1 [9] i = 0;

Iprof then handles the statement following the for loop correctly. Iprof does
not provide execution information about case statements containing only a
break statement, or about return statements without a value.

1 [4] switch (i) {

case O0:
break;
default:
0 [8] i = 0;
}
1 [11] if (i != 0)
return;

M4(1)

NAME

(C Software Development Set) M4(1)

m4 — macro processor

SYNOPSIS

m4 [options] [files }

DESCRIPTION

The m4 command is a macro processor intended as a front end for Ratfor,
C, and other languages. Each of the argument files is processed in order; if
there are no files, or if a file name is -, the standard input is read. The pro-
cessed text is written on the standard output.

The options and their effects are as follows:

-e Operate interactively. Interrupts are ignored and the output is
unbuffered.
-s Enable line sync output for the C preprocessor (#line ...)

-Bint Change the size of the push-back and argument collection buffers
from the default of 4,096.

-Hint Change the size of the symbol table hash array from the default of
199. The size should be prime.

-Sint Change the size of the call stack from the default of 100 slots.
Macros take three slots, and non-macro arguments take one.

-Tint Change the size of the token buffer from the default of 512 bytes.

To be effective, these flags must appear before any file names and before
any -D or -U flags:
-Dname[=val]

Defines name to val or to null in val’s absence.

-Uname
Undefines name.

Macro calls have the form:
name(argl,arg2, ..., argn)

The (must immediately follow the name of the macro. If the name of a
defined macro is not followed by a (, it is deemed to be a call of that macro
with no arguments. Potential macro names consist of alphabetic letters,
digits, and underscore —, where the first character is not a digit.

Leading unquoted blanks, tabs, and new-lines are ignored while collecting
arguments. Left and right single quotes are used to quote strings. The
value of a quoted string is the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching
for a matching right parenthesis. If fewer arguments are supplied than are
in the macro definition, the trailing arguments are taken to be null. Macro
evaluation proceeds normally during the collection of the arguments, and
any commas or right parentheses which happen to turn up within the value
of a nested call are as effective as those in the original input text. After
argument collection, the value of the macro is pushed back onto the input
stream and rescanned.

M4(1)

(C Software Development Set) M4(1)

The m4 command makes available the following built-in macros. They may
be redefined, but once this is done, the original meaning is lost. Their
values are null unless otherwise stated.

define

undefine
defn

pushdef
popdef

ifdef

shift

changequote

changecom

divert

undivert

the second argument is installed as the value of the macro
whose name is the first argument. Each occurrence of $n in
the replacement text, where n is a digit, is replaced by the n-
th argument. Argument 0 is the name of the macro; missing
arguments are replaced by the null string; $# is replaced by
the number of arguments; $* is replaced by a list of all the
arguments separated by commas; $@ is like $*, but each
argument is quoted (with the current quotes).

removes the definition of the macro named in its argument.

returns the quoted definition of its argument(s). It is useful
for renaming macros, especially built-ins.

like define, but saves any previous definition.

removes current definition of its argument(s), exposing the
previous one, if any.

if the first argument is defined, the value is the second argu-
ment, otherwise the third. If there is no third argument, the
value is null. The word unix is predefined on UNIX system
versions of m4.

returns all but its first argument. The other arguments are
quoted and pushed back with commas in between. The quot-
ing nullifies the effect of the extra scan that will subsequently
be performed.

change quote symbols to the first and second arguments. The
symbols may be up to five characters long. Changequote
without arguments restores the original values (i.e., *’).

change left and right comment markers from the default #
and new-line. With no arguments, the comment mechanism
is effectively disabled. With one argument, the left marker
becomes the argument and the right marker becomes new-
line. With two arguments, both markers are affected. Com-
ment markers may be up to five characters long.

m4 maintains 10 output streams, numbered 0-9. The final
output is the concatenation of the streams in numerical order;
initially stream 0 is the current stream. The divert macro
changes the current output stream to its (digit-string) argu-
ment. Output diverted to a stream other than 0 through 9 is
discarded.

causes immediate output of text from diversions named as

.arguments, or all diversions if no argument. Text may be

undiverted into another diversion. Undiverting discards the
diverted text.

M4(1)

divnum
dnl

ifelse

incr

decr
eval

len
index

substr

translit
include
sinclude
sysemd

sysval
maketemp

m4exit

(C Software Development Set) M4(1)

returns the value of the current output stream.

reads and discards characters up to and including the next
new-line.

has three or more arguments. If the first argument is the
same string as the second, then the value is the third argu-
ment. If not, and if there are more than four arguments, the
process is repeated with arguments 4, 5, 6, and 7. Otherwise,
the value is either the fourth string, or, if it is not present,
null.

returns the value of its argument incremented by 1. The
value of the argument is calculated by interpreting an initial
digit-string as a decimal number.

returns the value of its argument decremented by 1.

evaluates its argument as an arithmetic expression, using 32-
bit arithmetic. Operators include +, -, #, /, %, (exponentia-
tion), bitwise &, |, , and ~; relationals; parentheses. Octal
and hex numbers may be specified as in C. The second argu-
ment specifies the radix for the result; the default is 10. The
third argument may be used to specify the minimum number
of digits in the result.

returns the number of characters in its argument.

returns the position in its first argument where the second
argument begins (zero origin), or -1 if the second argument
does not occur.

returns a substring of its first argument. The second argu-
ment is a zero origin number selecting the first character; the
third argument indicates the length of the substring. A miss-
ing third argument is taken to be large enough to extend to
the end of the first string.

transliterates the characters in its first argument from the set
given by the second argument to the set given by the third.
No abbreviations are permitted.

returns the contents of the file named in the argument.

is identical to include, except that it says nothing if the file is
inaccessible.

executes the UNIX system command given in the first argu-
ment. No value is returned.

is the return code from the last call to syscmd.

fills in a string of XXXXX in its argument with the current pro-
cess ID.

causes immediate exit from m4. Argument 1, if given, is the
exit code; the default is 0.

M4(1)

médwrap

errprint
dumpdef

traceon

traceoff

SEE ALSO
cc(1), cpp(1).

(C Software Development Set) M4(1)

argument 1 will be pushed back at final EOF; example:
m4wrap(‘cleanup()’)

prints its argument on the diagnostic output file.

prints current names and definitions, for the named items, or
for all if no arguments are given.

with no arguments, turns on tracing for all macros (including
built-ins). Otherwise, turns on tracing for named macros.

turns off trace globally and for any macros specified. Macros
specifically traced by traceon can be untraced only by specific
calls to traceoff.

MAKE(1)

NAME

(C Software Development Set) MAKE(1)

make — maintain, update, and regenerate groups of programs

SYNOPSIS

make [-f makefile] [-p] [-i] [-K] [-s] [-1] [-n] [-b] [-e] [-u] [-t] [-q]

[names]
DESCRIPTION

make allows the programmer to maintain, update, and regenerate groups of
computer programs. The following is a brief description of all options and
some special names:

—f makefile
P

-i

-k
-s
-r
-n

-b
-e

-t

-q

.DEFAULT

.PRECIOUS

SILENT
IGNORE

Description file name. makefile is assumed to be the name of a
description file.

Print out the complete set of macro definitions and target
descriptions.

Ignore error codes returned by invoked commands. This mode
is entered if the fake target name .IGNORE appears in the
description file.

Abandon work on the current entry if it fails, but continue on
other branches that do not depend on that entry.

Silent mode. Do not print command lines before executing.
This mode is also entered if the fake target name .SILENT
appears in the description file.

Do not use the built-in rules.

No execute mode. Print commands, but do not execute them.
Even lines beginning with an @ are printed.

Compeatibility mode for old makefiles.
Environment variables override assignments within makefiles.

Touch the target files (causing them to be up-to-date) rather
than issue the usual commands.

Question. The make command returns a zero or non-zero
status code depending on whether the target file is or is not
up-to-date.

If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the name
.DEFAULT are used if it exists.

Dependents of this target will not be removed when quit or
interrupt are hit.

Same effect as the -s option.
Same effect as the -i option.

make executes commands in makefile to update one or more target names.
Name is typically a program. If no -f option is present, makefile, Makefile,
and the Source Code Control System (SCCS) files s.makefile, and
s.Makefile are tried in order. If makefile is -, the standard input is taken.

-1-

MAKE(1) (C Software Development Set) MAKE(1)

More than one -f makefile argument pair may appear.

make updates a target only if its dependents are newer than the target. All
prerequisite files of a target are added recursively to the list of targets.
Missing files are deemed to be out-of-date.

makefile contains a sequence of entries that specify dependencies. The first
line of an entry is a blank-separated, non-null list of targets, then a :, then a
(possibly null) list of prerequisite files or dependencies. Text following a ;
and all following lines that begin with a tab are shell commands to be exe-
cuted to update the target. The first non-empty line that does not begin
with a tab or # begins a new dependency or macro definition. Shell com-
mands may be continued across lines with the <backslash><new-line>
sequence. Everything printed by make (except the initial tab) is passed
directly to the shell as is. Thus,

echo a\
b

will produce
ab
exactly the same as the shell would.
Sharp (#) and new-line surround comments.

The following makefile says that pgm depends on two files a.0 and b.o, and
that they in turn depend on their corresponding source files (a.c and b.c)
and a common file incL.h:

pgm: a.o b.o

cc a.0 b.o -0 pgm
a.o: incL.h a.c

cc —c a.c
b.o: incl.h b.c

cc —¢ b.c

Command lines are executed one at a time, each by its own shell. The
SHELL environment variable can be used to specify which shell make should
use to execute commands. The default is /bin/sh. The first one or two
characters in a command can be the following: -, @, -@, or @-. If @ is
present, printing of the command is suppressed. If - is present, make
ignores an error. A line is printed when it is executed unless the -s option
is present, or the entry .SILENT: is in makefile, or unless the initial character
sequence contains a @. The -n option specifies printing without execution;
however, if the command line has the string $(MAKE) in it, the line is
always executed (see discussion of the MAKEFLAGS macro under Environ-
ment). The -t (touch) option updates the modified date of a file without
executing any commands.

Commands returning non-zero status normally terminate make. If the -i
option is present, or the entry IGNORE: appears in makefile, or the initial
character sequence of the command contains -, the error is ignored. If the
-k option is present, work is abandoned on the current entry, but continues
on other branches that do not depend on that entry.

-0

MAKE(1) (C Software Development Set) MAKE(1)

The -b option allows old makefiles (those written for the old version of
make) to run without errors.

Interrupt and quit cause the target to be deleted unless the target is a depen-
dent of the special name .PRECIOUS.

Environment

The environment is read by make. All variables are assumed to be macro
definitions and processed as such. The environment variables are processed
before any makefile and after the internal rules; thus, macro assignments in
a makefile override environment variables. The -e option causes the
environment to override the macro assignments in a makefile. Suffixes and
their associated rules in the makefile will override any identical suffixes in
the built-in rules.

The MAKEFLAGS environment variable is processed by make as containing
any legal input option (except -f and -p) defined for the command line.
Further, upon invocation, make “invents” the variable if it is not in the
environment, puts the current options into it, and passes it on to invocations
of commands. Thus, MAKEFLAGS always contains the current input
options. This proves very useful for “super-makes”. In fact, as noted
above, when the -n option is used, the command $(MAKE) is executed any-
way; hence, one can perform a make -n recursively on a whole software
system to see what would have been executed. This is because the -n is
put in MAKEFLAGS and passed to further invocations of $(MAKE). This is
one way of debugging all of the makefiles for a software project without
actually doing anything.
Include Files

If the string include appears as the first seven letters of a line in a makefile,
and is followed by a blank or a tab, the rest of the line is assumed to be a
filename and will be read by the current invocation, after substituting for
any macros.

Macros

Entries of the form stringl = string2 are macro definitions. String2 is
defined as all characters up to a comment character or an unescaped new-
line. Subsequent appearances of $(stringl[:substl1=[subst2]]) are replaced by
string2. The parentheses are optional if a single character macro name is
used and there is no substitute sequence. The optional :substl=subst2 is a
substitute sequence. If it is specified, all non-overlapping occurrences of
substl in the named macro are replaced by subst2. Strings (for the purposes
of this type of substitution) are delimited by blanks, tabs, new-line charac-
ters, and beginnings of lines. An example of the use of the substitute
sequence is shown under Libraries.

Internal Macros
There are five internally maintained macros that are useful for writing rules
for building targets.

$* The macro $* stands for the filename part of the current dependent
with the suffix deleted. It is evaluated only for inference rules.

MAKE(1) (C Software Development Set) MAKE(1)

$@ The $@ macro stands for the full target name of the current target. It
is evaluated only for explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the .DEFAULT
rule. It is the module that is out-of-date with respect to the target (i.e.,
the “manufactured” dependent file name). Thus, in the .c.o rule, the
$<
macro would evaluate to the .c file. An example for making optimized
.0 files from .c files is:

.c.o:
cc —¢ -0 $+.c

or:

.C.0:

cc —¢ -0 $<
$? The $? macro is evaluated when explicit rules from the makefile are
evaluated. It is the list of prerequisites that are out-of-date with
respect to the target; essentially, those modules which must be rebuilt.

$% The $% macro is only evaluated when the target is an archive libra
y & ry
member of the form lib(file.0). In this case, $@ evaluates to lib and
$% evaluates to the library member, file.o.

Four of the five macros can have alternative forms. When an upper case D
or F is appended to any of the four macros, the meaning is changed to
“directory part” for D and ‘“file part” for F. Thus, $(@D) refers to the
directory part of the string $@. If there is no directory part, ./ is generated.
The only macro excluded from this alternative form is $?.

Suffixes
Certain names (for instance, those ending with .0) have inferable prere-
quisites such as .c, .s, etc. If no update commands for such a file appear in
makefile, and if an inferable prerequisite exists, that prerequisite is compiled
to make the target. In this case, make has inference rules which allow
building files from other files by examining the suffixes and determining an
appropriate inference rule to use. The current default inference rules are:

.c .c” f f .sh sh”

.co .ca .c..o .c.c .c"a

fo fa flo ff fa

h"h s0 s”.0 s"s s".a .sh™sh

Jo lc I"o Il I'c

.y.o .yc.y.0.y.y .y.c
The internal rules for make are contained in the source file rules.c for the
make program. These rules can be locally modified. To print out the rules
compiled into the make on any machine in a form suitable for recompila-
tion, the following command is used:

make -fp - 2>/dev/null </dev/null

A tilde in the above rules refers to an SCCS file [see sccsfile(4)]. Thus, the
rule .c".0 would transform an SCCS C source file into an object file (.0).
Because the s. of the SCCS files is a prefix, it is incompatible with make’s

-4 -

MAKE(1) (C Software Development Set) MAKE(1)

suffix point of view. Hence, the tilde is a way of changing any file refer-
ence into an SCCS file reference.

A rule with only one suffix (i.e., .c:) is the definition of how to build x from
x.c. In effect, the other suffix is null. This is useful for building targets
from only one source file (e.g., shell procedures, simple C programs).

Additional suffixes are given as the dependency list for .SUFFIXES. Order is
significant; the first possible name for which both a file and a rule exist is
inferred as a prerequisite. The default list is:

SUFFIXES: .0 .c .c" .y .y~ 1 .1" s .s” sh .sh™ .h .h™ f f

Here again, the above command for printing the internal rules will display
the list of suffixes implemented on the current machine. Multiple suffix lists
accumulate; .SUFFIXES: with no dependencies clears the list of suffixes.

Inference Rules
The first example can be done more briefly.

pgm: a.o b.o
cc a.0 b.o -o pgm
a.0 b.o: inclL.h

This is because make has a set of internal rules for building files. The user
may add rules to this list by simply putting them in the makefile.

Certain macros are used by the default inference rules to permit the inclu-
sion of optional matter in any resulting commands. For example, CFLAGS,
LFLAGS, and YFLAGS are used for compiler options to cc(1), lex(1), and
yacc(1), respectively. Again, the previous method for examining the current
rules is recommended.

The inference of prerequisites can be controlled. The rule to create a file
with suffix .0 from a file with suffix .c is specified as an entry with .c.o: as
the target and no dependents. Shell commands associated with the target
define the rule for making a .o file from a .c file. Any target that has no
slashes in it and starts with a dot is identified as a rule and not a true target.

Libraries
If a target or dependency name contains parentheses, it is assumed to be an
archive library, the string within parentheses referring to a member within
the library. Thus lib(file.o) and $(LIB)(file.0) both refer to an archive library
that contains file.o. (This assumes the LIB macro has been previously
defined.) The expression $(LIB)(filel.o file2.0) is not legal. Rules pertaining
to archive libraries have the form .XX.a where the XX is the suffix from
which the archive member is to be made. An unfortunate byproduct of the
current implementation requires the XX to be different from the suffix of the
archive member. Thus, one cannot have lib(file.o) depend upon file.o
explicitly. The most common use of the archive interface follows. Here, we
assume the source files are all C type source:
lib: lib(filel.0) lib(file2.0) lib(file3.0)
@echo lib is now up-to-date

.c.a:
$(CC) -c $(CFLAGS) $<

_5-

MAKE(1) (C Software Development Set) MAKE(1)

$(AR) $(ARFLAGS) $@ $*.0

rm —f $*.0
In fact, the .c.a rule listed above is built into make and is unnecessary in this
example. A more interesting, but more limited example of an archive
library maintenance construction follows:

lib: lib(filel.0) lib(file2.0) lib(file3.0)
$(CC) —c $(CFLAGS) $(?:.0=.c)
$(AR) $(ARFLAGS) lib $?
rm $? @echo lib is now up-to-date
ca;

Here the substitution mode of the macro expansions is used. The $? list is
defined to be the set of object filenames (inside lib) whose C source files
are out-of-date. The substitution mode translates the .0 to .c. (Unfor-
tunately, one cannot as yet transform to .c”; however, this may become pos-
sible in the future.) Note also, the disabling of the .c.a: rule, which would
have created each object file, one by one. This particular construct speeds
up archive library maintenance considerably. This type of construct
becomes very cumbersome if the archive library contains a mix of assembly
programs and C programs.

FILES
[Mm]akefile and s.[Mm]Jakefile
/bin/sh

SEE ALSO

cc(1), lex(1), yace(1), printf(3S), sccsfile(4).
cd(1), sh(1) in the User’s /System Administrator’s Reference Manual.

NOTES
Some commands return non-zero status inappropriately; use -i to overcome
the difficulty.

BUGS
Filenames with the characters = : @ will not work. Commands that are
directly executed by the shell, notably cd(1), are ineffectual across new-lines
in make. The syntax (lib(filel.o file2.0 file3.0) is illegal. You cannot build
lib(file.o) from file.o. The macro $(a:.0=.c”) does not work. Named pipes
are not handled well.

MCS(1) (C Software Development Set) MCS(1)

NAME
mcs — manipulate the object file comment section

SYNOPSIS
mcs [options] object-file ...

DESCRIPTION
The mcs command manipulates the comment section, normally the “.com-
ment” section, in an object file. It is used to add to, delete, print, and
compress the contents of the comment section in a UNIX system object file.
The mcs command must be given one or more of the options described
below. It takes each of the options given and applies them in order to the
object-files.
If the object file is an archive, the file is treated as a set of individual object
files. For example, if the -a option is specified, the string is appended to
the comment section of each archive element.

‘

The following options are available.

-a string
Append string to the comment section of the object-files. If string
contains embedded blanks, it must be enclosed in quotation marks.

- Compress the contents of the comment section. All duplicate
entries are removed. The ordering of the remaining entries is not
disturbed.

-d Delete the contents of the comment section from the object file.

The object file comment section header is removed also.

-n name
Specify the name of the section to access. By default, mcs deals
with the section named .comment. This option can be used to
specify another section.

-p Print the contents of the comment section on the standard output.
If more than one name is specified, each entry printed is tagged by
the name of the file from which it was extracted, using the format
“filename:string.”

EXAMPLES
mcs -p file # Print file’s comment section.
mcs -a string file # Append string to file’s comment section
FILES
TMPDIR /mcs* temporary files
TMPDIR /* temporary files

TMPDIR is usually /usr/tmp but can be redefined by setting the environ-
ment variable TMPDIR [see tempnam() in tmpnam(3S)].

SEE ALSO
cpp(1), a.out(4).

MCS(1) (C Software Development Set) MCS(1)

NOTES
The mcs command cannot add new sections or delete existing sections to
executable objects with magic number 0413 [see a.out(4))].

MESSAGE(1V) (Base System) MESSAGE(1V)

NAME

message — puts its arguments on message line
SYNOPSIS

message [t][-p][-0o][-b[n]][-w]][string]
DESCRIPTION

The message comand puts its string arguments out onto the message line. If
there is no string, the stdin input to message will be used. If the -t flag is
set, the message is output in temporary form (and will be removed after the
next keypress). This is the default argument. If the -p flag is set, the mes-
sage is output in permanent form. This argument is used for prompts, it
will stay up until the next message is put up. The -o flag forces message to
"tee" its message to stdout. The -w flag turns on the "working" indicator.
The ~b[num], where num is an integer from 1 to 10, rings the terminal bell n
times. The default value is 1. If the terminal has no bell, the screen is
flashed instead, if possible.

If the message command is being used solely for the bell or working indica-
tor control, remember to give it a null string argument unless input is being
piped to it. The string should always be the last argument.

EXAMPLES
When the value entered in the field is wrong, ring the bell 3 times and then
put up the invalid field message "Try again!"

invalidmsg='message —b3 ""'Try again!
Put out a message to tell the user what is being done:

done='set "hello=goodbye"' 'message hello has
been set in your environment'

MKSHLIB(1) (C Software Development Set) MKSHLIB(1)

NAME

mkshlib - create a shared library
SYNOPSIS

mkshlib -s specfil -t target [-h host] [-n] [-L dir ...] [-q]
DESCRIPTION

mkshlib builds both the host and target shared libraries. A shared library is
similar in function to a normal, non-shared library, except that programs
that link with a shared library will share the library code during execution,
whereas programs that link with a non-shared library will get their own
copy of each library routine used.

The host shared library is an archive that is used to link-edit user programs
with the shared library [see ar(4)]. A host shared library can be treated
exactly like a non-shared library and should be included on cc(1) command
lines in the usual way [see cc(1)]. Further, all operations that can be per-
formed on an archive can also be performed on the host shared library.

The target shared library is an executable module that is bound into the
user’s address space during execution of a program using the shared library.
The target shared library contains the code for all the routines in the library
and must be fully resolved. The target will be brought into memory during
execution of a program using the shared library, and subsequent processes
that use the shared library will share the copy of code already in memory.
The text of the target is always shared, but each process will get its own
copy of the data.

The user interface to mkshlib consists of command line options and a shared
library specification file. The shared library specification file describes the
contents of the shared library. The mkshlib command invokes other tools
such as the archiver, ar(1), the assembler, as(1), and the link editor, ld(1).
Tools are invoked through the use of execvp [see exec(2)], which searches
directories in the user's PATH. Also, prefixes to mkshlib are passed in the
same manner as prefixes to the cc(1) command, and invoked tools are given
the prefix, where appropriate. For example, i386mkshlib will invoke i3861d.

The following command line options are recognized by mkshlib:

-s specfil Specifies the shared library specification file, specfil. This file
contains the information necessary to build a shared library. Its
contents include the branch table specifications for the target,
the path name in which the target should be installed, the start
addresses of text and data for the target, the initialization
specifications for the host, and the list of object files to be
included in the shared library (see details below).

-t target Specifies the output filename of the target shared library being
created. It is assumed that this file will be installed on the tar-
get machine at the location given in the specification file (see
the #target directive below). If the -n option is used, then a
new target shared library will not be generated.

~h host Specifies the output filename of the host shared library being
created. If this option is not given, then the host shared

-1 -

MKSHLIB(1)

-n

-L dir ...

-q

(C Software Development Set) MKSHLIB(1)

library will not be produced.

Do not generate a new target shared library. This option is
useful when producing only a new host shared library. The -t
option must still be supplied since a version of the target
shared library is needed to build the host shared library.

Change the algorithm of searching for the host shared libraries
specified with the #objects noload directive to look in dir
before looking in the default directories. The -L option can be
specified multiple times on the command line in which case
the directories given with the -L options are searched in the
order given on the command line before the default directories.

Quiet warning messages. This option is useful when warning
messages are expected but not desired.

The shared library specification file contains all the information necessary to
build both the host and target shared libraries. The contents and format of
the specification file are given by the directives listed below. All directives
that can be followed by multi-line specifications are valid until the next
directive or the end of the file.

#address sectname address

Specifies the start address, address, of section sectname for the
target. This directive typically is used to specify the start
addresses of the .text and .data sections. One #address per
section name is valid. A #address directive must be given
exactly once for the .text section and once for the .data sec-
tion. See the table in the section "The Building Process” in
the "Shared Libraries" chapter of the UNIX System V
Programmer’s Guide for standard addresses.

#target pathname

#branch

Specifies the absolute path name, pathname, at which the tar-
get shared library will be installed on the target machine. The
operating system uses this pathname to locate the shared
library when executing a.out files that use this shared library.
This directive must be specified exactly once per specification
file.

Specifies the start of the branch table specifications. The lines
following this directive are taken to be branch table specifica-
tion lines.

Branch table specification lines have the following format:
funcname <white space> position

where funcname is the name of the symbol given a branch

table entry and position specifies the position of funcname’s

branch table entry. position may be a single integer or a range
of integers of the form positionl-position2. Each position must

-2-

MKSHLIB(1)

#objects

(C Software Development Set) MKSHLIB(1)

be greater than or equal to one, the same position can not be
specified more than once, and every position, from one to the
highest given position must be accounted for.

If a symbol is given more than one branch table entry by asso-
ciating a range of positions with the symbol or by specifying
the same symbol on more than one branch table specification
line, then the symbol is defined to have the address of the
highest associated branch table entry. All other branch table
entries for the symbol can be thought of as "empty" slots and
can be replaced by new entries in future versions of the shared
library. Only functions should be given branch table entries,
and those functions must be external symbols.

This directive must be specified exactly once per shared library
specification file.

The lines following this directive are taken to be the list of
input object files in the order they are to be loaded into the
target. The list simply consists of each path name followed by
a newline character. This list is also used to determine the
input object files for the host shared library, but the order for
the host is given by running the list through lorder(1) and
tsort(1).

This directive must be specified exactly once per shared library
specification file.

#objects noload

The #objects noload is followed by a list of host shared
libraries. These libraries are searched in the order listed to
resolve undefined symbols from the library being built. Dur-
ing the search it is considered an error if a non-shared version
of a symbol is found before a shared version of the symbol.

Each name given is assumed to be a pathname to a host or an
argument of the form -1Xwhere libX.a is the name of a file in
LIBDIR or LLIBDIR. This behavior is identical to that of Id ,
and the -L option can be used on the command line to specify
other directories in which to locate these archives.

Note that if a host shared library is specified using #objects
noload, any cc command that links to the shared library being
built will need to specify that host also.

#hide linker [*]

This directive changes symbols that are normally external into
static symbols, local to the library being created. A regular
expression may be given [sh(1), find(1)], in which case all
external symbols matching the regular expression are hidden;
the #export directive (see below) can be used to counter this
effect for specified symbols.

MKSHLIB(1)

FILES

(C Software Development Set) MKSHLIB(1)

The optional "*" is equivalent to the directive
#hide linker
*

and causes all external symbols to be made into static sym-
bols.

All symbols specified in #init and #branch directives are
assumed to be external symbols, and cannot be changed into
static symbols using the #hide directive.

#export linker [*]

#init object

Symbols given in the #export directive are external symbols
(global among files) that, because of a regular expression in a
#hide directive, would otherwise have been made static. For
example,
#hide linker *
#export linker
one
two
causes all symbols except one, two, and those used in #branch
and #init entries to be tagged as static .

Specifies that the object file, object, requires initialization code.
The lines following this directive are taken to be initialization
specification lines.

Initialization specification lines have the following format:

ptr <white space> import
ptr is a pointer to the associated imported symbol, import, and
must be defined in the current specified object file, object. The

initialization code generated for each such line is of the form:

ptr = &import;

All initializations for a particular object file must be given once
and multiple specifications of the same object file are not
allowed.

#ident string

##

TEMPDIR /*

Specifies a string, string, to be included in the .comment sec-
tion of the target shared library.

Specifies a comment. All information on the line beginning
with ## is ignored.

temporary files

TEMPDIR is usually /usr/tmp but can be redefined by setting the environ-
ment variable TMPDIR [see tempnam() in tmpnam(3S)].

-4 -

MKSHLIB(1) (C Software Development Set) MKSHLIB(1)

LIBDIR usually /lib
LLIBDIR usually /usr/lib
SEE ALSO

ar(1), as(1), cc(1), chkshlib(1), 1d(1), lorder(1), tsort(1), a.out(4), ar(4).
"Shared Libraries" chapter in the UNIX System V Programmer’s Guide.

CAVEATS
The -n option cannot be used with the #objects noload directive.

If mkshlib is asked to create a host library and a host of that name already
exists, mkshlib will update the host using ar -ru. This means that you
should always remove the host before rebuilding whenever an object file
previously included in the library is removed or renamed.

If the address specified with the #address directive is outside user space,
the library build may look successful, but if you try to use it, it might not
work.

NM(1)

NAME

(C Software Development Set) NM(1)

nm - print name list of common object file

SYNOPSIS

nm [-oxhvnefurpVT] file name ...

DESCRIPTION

The nm command displays the symbol table of each common object file,
filename. Filename may be a relocatable or absolute common object file; or
it may be an archive of relocatable or absolute common object files. For
each symbol, the following information will be printed:

Name
Value

Class
Type

Size

Line

Section

The name of the symbol.

Its value expressed as an offset or an address depending on its
storage class.

Its storage class.

Its type and derived type. If the symbol is an instance of a struc-
ture or of a union, then the structure or union tag will be given
following the type (e.g., struct-tag). If the symbol is an array,
then the array dimensions will be given following the type (e.g.,
char[n][m]). Note that the object file must have been compiled
with the -g option of the cc(1) command for this information to
appear.

Its size in bytes, if available. Note that the object file must have
been compiled with the -g option of the cc(1) command for this
information to appear.

The source line number at which it is defined, if available. Note
that the object file must have been compiled with the -g option of
the cc(1) command for this information to appear.

For storage classes static and external, the object file section con-
taining the symbol (e.g., text, data, or bss).

The output of nm may be controlled using the following options:

-0
-X

-h
-v
-n
-e
-f

-u

-r

Print the value and size of a symbol in octal instead of decimal.

Print the value and size of a symbol in hexadecimal instead of
decimal.

Do not display the output header data.
Sort external symbols by value before they are printed.
Sort external symbols by name before they are printed.
Print only external and static symbols.

Produce full output. Print redundant symbols (.text, .data, .lib,
and .bss), normally suppressed.

Print undefined symbols only.
Prepend the name of the object file or archive to each output line.

NM(1)

FILES

BUGS

(C Software Development Set) NM(1)

-p Produce easily parsable, terse output. Each symbol name is pre-
ceded by its value (blanks if undefined) and one of the letters U
(undefined), A (absolute), T (text segment symbol), D (data seg-
ment symbol), S (user-defined segment symbol), R (register sym-
bol), F (file symbol), or C (common symbol). If the symbol is
local (non-external), the type letter is in lower case.

-V Print the version of the nm command executing on the standard
error output.

-T By default, nm prints the entire name of the symbols listed. Since
object files can have symbols names with an arbitrary number of
characters, a name that is longer than the width of the column set
aside for names will overflow its column, forcing every column
after the name to be misaligned. The -T option causes nm to
truncate every name which would otherwise overflow its column
and place an asterisk as the last character in the displayed name
to mark it as truncated.

Options may be used in any order, either singly or in combination, and may
appear anywhere in the command line. Therefore, both nm name -e -v
and nm -ve name print the static and external symbols in name, with exter-
nal symbols sorted by value.

TMPDIR /* temporary files

TMPDIR is usually /usr/tmp but can be redefined by setting the environ-
ment variable TMPDIR [see tempnam() in tmpnam(3S)].

When all the symbols are printed, they must be printed in the order they
appear in the symbol table in order to preserve scoping information. There-
fore, the -v and -n options should be used only in conjunction with the -e
option.

SEE ALSO

as(1), cc(1), 1d(1), tmpnam(3S), a.out(4), ar(4).

DIAGNOSTICS

“nm: name: cannot open”’
if name cannot be read.

“nm: name: bad magic”
if name is not a common object file.

“nm: name: no symbols”
if the symbols have been stripped from name.

PATHCONV(1V) (Base System) PATHCONV(1V)

NAME

pathconv - search Interpreter criteria for filename
SYNOPSIS

pathconv [-v pathname | [-f | [-t]
DESCRIPTION

The pathconv command is used to get a pathname converted into a form
that looks like the way the Interpreter prints its pathnames. For example, if
a path is too long for a title, pathconv will shorten it by pulling out parts of
the path. The pathname to convert follows the -v option; if this is not
there then stdin is used. The -t option implies that pathconv should expand
based on the same criteria that the Interpreter uses for titles. The -f option
means use the full path (this is the default).

Pathconv also will check the pathalias file to find the meaning of the path.

EXAMPLES
Here is a menu that is titled using pathconv:

Menu='pathconv —t —v $ARG1'

This will result in the same thing:
Menu='echo $ARG1 | pathconv —t'

SEE ALSO
echo(1V).

PROF(1) (Extended Software Generation Utilities) PROF(1)

NAME
prof — display profile data

SYNOPSIS
prof [-tcan] [-ox] [-g] [-Z] [-h] [-s] [-m mdata] [prog]

DESCRIPTION
The prof command interprets a profile file produced by the monitor(3C)
function. The symbol table in the object file prog (a.out by default) is read
and correlated with a profile file (mon.out by default). For each external
text symbol the percentage of time spent executing between the address of
that symbol and the address of the next is printed, together with the
number of times that function was called and the average number of mil-
liseconds per call.

The mutually exclusive options t, ¢, a, and n determine the type of sorting
of the output lines:

-t Sort by decreasing percentage of total time (default).
- Sort by decreasing number of calls.

-a Sort by increasing symbol address.

-n Sort lexically by symbol name.

The mutually exclusive options 0 and x specify the printing of the address
of each symbol monitored:

-0 Print each symbol address (in octal) along with the symbol name.
-X Print each symbol address (in hexadecimal) along with the symbol
name.

The following options may be used in any combination:
-g Include non-global symbols (static functions).

-z Include all symbols in the profile range [see monitor(3C)], even if
associated with zero number of calls and zero time.

-h Suppress the heading normally printed on the report. (This is use-
ful if the report is to be processed further.)

-s Print a summary of several of the monitoring parameters and statis-
tics on the standard error output.

-m mdata ,
Use file mdata instead of mon.out as the input profile file.

A program creates a profile file if it has been loaded with the -p option of
cc(1). This option to the cc command arranges for calls to monitor(3C) at
the beginning and end of execution. It is the call to monitor at the end of
execution that causes a profile file to be written. The number of calls to a
function is tallied if the -p option was used when the file containing the
function was compiled.

The name of the file created by a profiled program is controlled by the
environment variable PROFDIR. If PROFDIR does not exist, “mon.out” is
produced in the directory that is current when the program terminates. If

-1-

PROF(1) (Extended Software Generation Ultilities) PROF(1)

PROFDIR = string, “‘string/pid.progname” is produced, where progname-con-
sists of argv[0] with any path prefix removed, and pid is the program’s pro-
cess id. If PROFDIR is the null string, no profiling output is produced.

A single function may be split into subfunctions for profiling by means of
the MARK macro [see prof(5)].

FILES
mon.out for profile
a.out for namelist

SEE ALSO
cc(1), exit(2), profil(2), monitor(3C), prof(5).

WARNING
The times reported in successive identical runs may show variances of 20%
or more, because of varying cache-hit ratios due to sharing of the cache
with other processes. Even if a program seems to be the only one using the
machine, hidden background or asynchronous processes may blur the data.
In rare cases, the clock ticks initiating recording of the program counter may
“beat” with loops in a program, grossly distorting measurements.

Call counts are always recorded precisely.

The times for static functions are attributed to the preceding external text
symbol if the -g option is not used. However, the call counts for the
preceding function are still correct, i.e., the static function call counts are not
added in with the call counts of the external function.

CAVEATS
Only programs that call exit(2) or return from main will cause a profile file
to be produced, unless a final call to monitor is explicitly coded.

The use of the -p option to cc(1) to invoke profiling imposes a limit of 600
functions that may have call counters established during program execution.
For more counters you must call monitor(3C) directly. If this limit is
exceeded, other data will be overwritten and the mon.out file will be cor-
rupted. The number of call counters used will be reported automatically by
the prof command whenever the number exceeds 5/6 of the maximum.

PRS(1) (C Software Development Set) PRS(1)

NAME
prs — print an SCCS file

SYNOPSIS
prs [-d[dataspec]] [-r[SID]] [-e] [-]] [~c[date-time]] [-a] files

DESCRIPTION
The prs command prints, on the standard output, parts or all of an SCCS file
[see sccsfile(4)] in a user-supplied format. If a directory is named, prs
behaves as though each file in the directory were specified as a named file,
except that non-SCCS files (last component of the path name does not begin
with s.), and unreadable files are silently ignored. If a name of - is given,
the standard input is read; each line of the standard input is taken to be the
name of an SCCS file or directory to be processed; non-SCCS files and
unreadable files are silently ignored.

Arguments to prs, which may appear in any order, consist of keyletter argu-
ments and file names.

All the described keyletter arguments apply independently to each named
file:
~d[dataspec] Used to specify the output data specification. The
dataspec is a string consisting of SCCS file data key-
words (see DATA KEYWORDS) interspersed with
optional user-supplied text.

-1[SID] Used to specify the SCCS IDentification (SID) string of
a delta for which information is desired. If no SID is
specified, the SID of the most recently created delta is
assumed.

-e Requests information for all deltas created earlier than
and including the delta designated via the -r keyletter
or the date given by the -c option.

-1 Requests information for all deltas created later than
and including the delta designated via the -r keyletter
or the date given by the -c¢ option.

-c[date-time] = The cutoff date-time -c[cutoff] is in the form:
YY[MM[DD[HHMM][SS]]]]]

Units omitted from the date-time default to their max-
imum possible values; that is, -¢7502 is equivalent to
-c750228235959. Any number of non-numeric charac-
ters may separate the various 2-digit pieces of the cut-
off date in the form: "-c77/2/2 9:22:25".

-a Requests printing of information for both removed,
ie., delta type = R, [see rmdel(1)] and existing, i.e.,
delta type = D, deltas. If the ~a keyletter is not speci-
fied, information for existing deltas only is provided.

PRS(1)

(C Software Development Set) PRS(1)

DATA KEYWORDS

Keyword
:Dt:
:DL:

Data keywords specify which parts of an SCCS file are to be retrieved and
output. All parts of an SCCS file [see sccsfile(4)] have an associated data
keyword. There is no limit on the number of times a data keyword may
appear in a dataspec.

The information printed by prs consists of: (1) the user-supplied text; and
(2) appropriate values (extracted from the SCCS file) substituted for the
recognized data keywords in the order of appearance in the dataspec. The
format of a data keyword value is either Simple (S), in which keyword sub-
stitution is direct, or Multiline (M), in which keyword substitution is fol-
lowed by a carriage return.

User-supplied text is any text other than recognized data keywords.
A tab is specified by \t and carriage return/new-line is specified by \n.
The default data keywords are:

":Dt:\t:DL:\nMRs:\n:MR:COMMENTS:\n:C: "

TABLE 1. SCCS Files Data Keywords

Data Item File Section Value Format
Delta information Delta Table See below* S
Delta line statistics " :Li:/:Ld:/:Lu: S
Lines inserted by Delta " nnnnn S
Lines deleted by Delta " nnnnn S
Lines unchanged by Delta " nnnnn S
Delta type " D7or'R S
SCCS ID string (SID) " :R:.:L:.:B:.:S: S
Release number " nnnn S
Level number " nnnn S
Branch number " nnnn S
Sequence number " nnnn S
Date Delta created " :Dy:/:Dm:/:Dd: S
Year Delta created " nn S
Month Delta created " nn S
Day Delta created " nn S
Time Delta created " :The:Tm::Ts: S
Hour Delta created " nn S
Minutes Delta created " nn S
Seconds Delta created " nn S
Programmer who created Delta " logname S
Delta sequence number " nnnn S
Predecessor Delta seq-no. " nnnn S
Seq-no. of deltas incl,, excl., ignored " :Dn:/:Dx:/:Dg: S
Deltas included (seq #) " :DS:™:DS:... S
Deltas excluded (seq #) " :DS::DS:... S
Deltas ignored (seq #) " :DS:™:DS:... S
MR numbers for delta " text M
Comments for delta " text M
User names User Names text M
Flag list Flags text M
Module type flag " text S
MR validation flag " yes~or'no S

PRS(1) (C Software Development Set) PRS(1)

TABLE 1. SCCS Files Data Keywords (continued)

Keyword Data Item File Section Value Format
:MP: MR validation pgm name " text S
:KF: Keyword error/warning flag " yes~or'no S
KV: Keyword validation string " text S
:BF: Branch flag " yes“or"no S

HE Joint edit flag " yes“or no S
:LK: Locked releases " R:... S
:Q: User-defined keyword " text S
M: Module name " text S
:FB: Floor boundary " R: S
:CB: Ceiling boundary " :R: S
:Ds: Default SID " HE S
:ND: Null delta flag " yes“or no S
:FD: File descriptive text Comments text M
:BD: Body Body text M
:GB: Gotten body " text M
‘W: A form of what(1) string N/A Z:M:\tI: S
:Ax A form of what(1) string N/A :ZzY":MI:Z: S
:Z: what(1) string delimiter N/A @#) S
:F: SCCS file name N/A text S
PN: SCCS file path name N/A text S
* :Dt"=":DT:":L.":D:":T:":P:":DS:":DP:
EXAMPLES

prs —d " Users and/or user IDs for :F: are:\n:UN:" s.file
may produce on the standard output:

Users and/or user IDs for s.file are:

Xyz

131

abc

prs —d"Newest delta for pgm :M:: :I: Created :D: By :P:" -r s.file
may produce on the standard output:

Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas
As a special case:

prs s.file
may produce on the standard output:

D 1.1 77/12/1 00:00:00 cas 1 000000,/00000/00000
MRs:

bl78-12345

bl79-54321

COMMENTS:

this is the comment line for s.file initial delta

for each delta table entry of the “D” type. The only keyletter argument
allowed to be used with the special case is the -a keyletter.

PRS(1) (C Software Development Set) PRS(1)

FILES

SEE ALSO
admin(1), delta(1), get(1), sccsfile(4).
help(1) in the User’s/System Administrator’s Reference Manual.

DIAGNOSTICS
Use help(1) for explanations.

READFILE(1V) (Base System) READFILE(1V)

NAME
readfile, longline - reads file and gets longest line

SYNOPSIS
readfile file

longline [file]

DESCRIPTION
The readfile command reads the file named in its argument. No translation
of new-lines is done. It keeps track of the longest line it reads and if there

is a subsequent call to longline, that length is returned. Longline can be
given an argument, though, and calculate its longest line.

EXAMPLES
Here is a typical use of readfile and longline in a text object:

text="'readfile myfile'™"
columns='longline'

DIAGNOSTICS
If the file does not exist, readfile will return FALSE (i.e., the expression will
have an error return).

SEE ALSO
cat(1).

REGCMP(1) (C Software Development Set) REGCMP(1)

NAME

regcmp — regular expression compile
SYNOPSIS

regemp [- | files
DESCRIPTION

The regcmp command performs a function similar to regemp(3X) and, in
most cases, precludes the need for calling regcmp(3X) from C programs.
This saves on both execution time and program size. The command regcmp
compiles the regular expressions in file and places the output in file.i. If the
- option is used, the output will be placed in file.c. The format of entries in
file is a name (C variable) followed by one or more blanks followed by a
regular expression enclosed in double quotes. The output of regcmp is C
source code. Compiled regular expressions are represented as extern char
vectors. File.i files may thus be included in C programs, or file.c files may
be compiled and later loaded. In the C program which uses the regcmp out-
put, regex(abc,line) will apply the regular expression named abc to line.
Diagnostics are self-explanatory.

EXAMPLES
name "([A-Za-z][A-Za-z0-9__]*)$0"

telno "\({0,1}([2-9][01][1-9])$0\){0,1} **
"([2-9])[0-9]{2})$1[-]{0,1} "
"([0-9]{4})82"

In the C program that uses the regcmp output,
regex(telno, line, area, exch, rest)
will apply the regular expression named telno to line.

SEE ALSO
regcmp(3X).

REGEX(1V) (Base System) REGEX(1V)

NAME
regex — match patterns against a string, or lines of a file
SYNOPSIS
regex [-e | [-1 | [pattern template] ... pattern [template |
regex [-e] -v "string" [pattern template | ... pattern [template]
regex [-e | -ffilename [pattern template | ... pattern [template]
DESCRIPTION

The regex command takes a string (from stdin, or supplied with the -v
option) and a list of pattern/template pairs, and runs regex(3X) on the
string vs. each of the patterns until there is a match. When a match occurs,
it writes the corresponding template to stdout and returns TRUE. The last
(or only) pattern does not need a template. If no match is found, regex
returns FALSE.

The -e option tells the function to evaluate the corresponding template and
write the result result to stdout.

Using the -f option, allows the function take its input from a file rather than
from its argument list. The -f option implies the -1 option.

The -1 option causes the string to be interpreted line by line, with each
matched line’s template being output with newlines in between. This
allows regex to be used as a simple filter.

The patterns are regular expressions of the form described in regex(3X). In
most cases the pattern should be enclosed in single quotes to turn off spe-
cial meanings of characters.

The template may contain the strings $m0 through $m9, which will be
expanded to the part of the pattern enclosed in (...)$0 through (...)$9
constructs (see examples below). Note that if you use this feature, you must
be sure to enclose the template in single quotes so that the Interpreter
doesn’t expand the $m0 through $m9 variables at parse time. This feature
gives regex much of the power of cut(1), paste(1), and grep(1), and some of
the capabilities of sed(1). If there is no template, the default is
"$mOSmM1$m2$m3$m4$m5$m6$Sm7$m8$mo". Note that only the final
pattern may lack a template.

EXAMPLES
To "cut" the 4th through 9th letters out of a string:

regex —v "my string is nice" 'A.{3}(.{5})%$0' '$mO’
In a form, for validating input as an integer:
valid='regex —v "$F" '[0—9]*'""

In a form, to translate an environment variable which contains one of the
numbers 1, 2, 3, 4, 5 to the letters a, b, ¢, d, e:

value='regex —v "$VAR1" 1 a 2 b 3 c¢c 4 4 5 e '.*'
'Bad value''

Note the use of the pattern . * to mean "anything else".

REGEX(1V) (Base System) REGEX(1V)

In a virtual menu, to read /etc/passwd and make a list of all the login ids
on the system:

'regex —f/etc/passwd '$([~:])%$0:"'
name=$m0
action='message $m0 is a user'''

DIAGNOSTICS
If none of the patterns match, regex returns FALSE, otherwise TRUE. Note
that TRUE is returned when the -1 or -f options are used if at least one line
of the input matched any pattern.

WARNING
Patterns and templates must often be enclosed in single quotes to turn off
the special meanings of characters. Especially if you use the $m0 through
$m9 variables in the template, since the Interpreter will expand the vari-
ables (usually to " ") before regex even sees them.

SEE ALSO

cut(1), grep(1), paste(1), sed(1).

regemp(3) in the Programmer’s Reference Manual.
BUGS

The regular expressions accepted by regcmp differ slightly from other utili-
ties (i.e., sed, grep, awk, ed, etc.).

REINIT(1V) (Base System) REINIT(1V)

NAME
reinit — runs an initialization file

SYNOPSIS
reinit filename

DESCRIPTION
The reinit command takes an initialization filename as its only argument.
The Interpreter will parse and execute this file, and then continue running
the current application. The reinit command is typically used to change the
defaults set by the initialization file that was named when fmli was
invoked.

NOTE

The reinit command does not re-display the introductory object or change
the SLK layout.

RESET(1V) (Base System) RESET(1V)
Yy

NAME ‘
reset — reset a field to its default values

SYNOPSIS
reset

DESCRIPTION
The reset command resets a field in a form to its default value; i.e., the
value displayed when the form was first opened.

RMDEL(1) (C Software Development Set) RMDEL(1)

NAME

rmdel - remove a delta from an SCCS file

SYNOPSIS

rmdel -rSID files

DESCRIPTION

The rmdel command removes the delta specified by the SID from each
named SCCS file. The delta to be removed must be the newest (most
recent) delta in its branch in the delta chain of each named SCCS file. In
addition, the specified must not be that of a version being edited for the
purpose of making a delta (i. e., if a p-file [see get(1)] exists for the named
SCCS file, the specified must not appear in any entry of the p-file).

The -r option is used for specifying the SID (SCCS IDentification) level of
the delta to be removed.

If a directory is named, rmdel behaves as though each file in the directory
were specified as a named file, except that non-SCCS files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of the
standard input is taken to be the name of an SCCS file to be processed;
non-SCCS files and unreadable files are silently ignored.

Simply stated, the rules are:
(1) if you make a delta you can remove it.
or

(2) if you own the file and directory you can remove a delta.

FILES

x.file [see delta(1)]

z.file [see delta(1)]
SEE ALSO

delta(1), get(1), prs(1), sccsfile(4).

help(1) in the User’s/System Administrator’s Reference Manual.
DIAGNOSTICS ¢

Use help(1) for explanations.

RUN(1V) (Base System) RUN(1V)

NAME

run - run an executable
SYNOPSIS

run [-s] [-e] [-n] [-t title] program
DESCRIPTION

The run command runs a program, using the PATH variable to find it. The
-s option means "silent", implying that the screen will not have to be
repainted when this is done. The -e option means to prompt the user
before returning to the Interpreter only if there is an error condition (by
default the user is always prompted). The -n means never prompt the user
(useful for programs like vi which the user must do some specific action to
exit in the first place). The -t option is the name this process will have in
the pop-up menu generated by the frm-list command. This option implies
the ability to suspend the UNIX system process and return to the FMLI
application.

EXAMPLE
Here is a menu that uses run:

menu=Edit special System files

name=Password file
action='run —e vi /etc/passwd'

name=Group file
action='run —e vi /etc/group'

name=Systems file
action='run —e vi /usr/lib/uucp/Systems’'

SACT(1)

NAME

(C Software Development Set) SACT(1)

sact — print current SCCS file editing activity

SYNOPSIS
sact files

DESCRIPTION

The sact command informs the user of any impending deltas to a named
SCCs file. This situation occurs when get(1) with the -e option has been
previously executed without a subsequent execution of delta(1). If a direc-
tory is named on the command line, sact behaves as though each file in the
directory were specified as a named file, except that non-SCCS files and
unreadable files are silently ignored. If a name of - is given, the standard
input is read with each line being taken as the name of an SCCS file to be

processed.

The output for each named file consists of five fields separated by spaces.

Field 1

Field 2
Field 3

Field 4
Field 5
SEE ALSO

specifies the SID of a delta that currently exists in the
SCCS file to which changes will be made to make the
new delta.

specifies the SID for the new delta to be created.

contains the logname of the user who will make the delta
(i.e., executed a get for editing).

contains the date that get —e was executed.
contains the time that get -e was executed.

delta(1), get(1), unget(1).

DIAGNOSTICS

Use help(1) for explanations.

SCCSDIFF(1) (C Software Development Set) SCCSDIFF(1)

NAME

scesdiff — compare two versions of an SCCS file
SYNOPSIS

scesdiff -rSID1 -rSID2 [-p] [-sn] files
DESCRIPTION

The scesdiff command compares two versions of an SCCS file and generates
the differences between the two versions. Any number of SCCS files may
be specified, but arguments apply to all files.

-1SID? SID1 and SID2 specify the deltas of an SCCS file that are
to be compared. Versions are passed to bdiff(1) in the
. order given.

-p pipe output for each file through pr(1).
-sn n is the file segment size that bdiff will pass to diff(1).
This is useful when diff fails due to a high system load.
FILES
/tmp/get????? Temporary files
SEE ALSO
get(1).
bdiff(1), help(1), pr(1) in the User’s/System Administrator’s Reference Manual.
DIAGNOSTICS
“file: No differences” If the two versions are the same.

Use help(1) for explanations.

SDB(1) (C Software Development Set) SDB(1)

NAME
sdb - symbolic debugger

SYNOPSIS
sdb [-w] [-W] [obijfil [corfil [directory-list]]]

DESCRIPTION
The sdb command calls a symbolic debugger that can be used with C pro-
grams. It may be used to examine their object files and core files and to
provide a controlled environment for their execution.

Objfil is an executable program file which has been compiled with the -g
(debug) option. If it has not been compiled with the -g option, the sym-
bolic capabilities of sdb will be limited, but the file can still be examined and
the program debugged. The default for objfil is a.out. Corfil is assumed to
be a core image file produced after executing objfil; the default for corfil is
core. The core file need not be present. A - in place of corfil will force sdb
to ignore any core image file. The colon-separated list of directories
(directory-list) is used to locate the source files used to build objfil.

It is useful to know that at any time there is a current line and current file.
If corfil exists, then they are initially set to the line and file containing the
source statement at which the process terminated. Otherwise, they are set
to the first line in main(). The current line and file may be changed with
the source file examination commands.

By default, warnings are provided if the source files used in producing objfil
cannot be found, or are newer than objfil. This checking feature and the
accompanying warnings may be disabled by the use of the -W flag.

Names of variables are written just as they are in C. sdb does not truncate
names. Variables local to a procedure may be accessed using the form
procedure:variable. If no procedure name is given, the procedure containing
the current line is used by default.

It is also possible to refer to structure members as variable.member, pointers
to structure members as variable->member, and array elements as
variable[number]. Pointers may be dereferenced by using the form
pointer[0]. Combinations of these forms may also be used. A number may
be used in place of a structure variable name, in which case the number is
viewed as the address of the structure, and the template used for the struc-
ture is that of the last structure referenced by sdb. An unqualified structure
variable may also be used with various commands. Generally, sdb will
interpret a structure as a set of variables. Thus, sdb will display the values
of all the elements of a structure when it is requested to display a structure.
An exception to this interpretation occurs when displaying variable
addresses. An entire structure does have an address, and it is this value sdb
displays, not the addresses of individual elements.

Elements of a multidimensional array may be referenced as wvariable
[number][number]..., or as variable [number,number,...]. In place of number,
the form number;number may be used to indicate a range of values, * may
be used to indicate all legitimate values for that subscript, or subscripts may
be omitted entirely if they are the last subscripts and the full range of values

-1-

SDB(1)

(C Software Development Set) SDB(1)

is desired. As with structures, sdb displays all the values of an array or of
the section of an array if trailing subscripts are omitted. It displays only the
address of the array itself or of the section specified by the user if subscripts
are omitted.

A particular instance of a variable on the stack may be referenced by using
the form procedure:variable,number. All the variations mentioned in naming
variables may be used. Number is the occurrence of the specified procedure
on the stack, counting the top, or most current, as the first. If no procedure
is specified, the procedure currently executing is used by default.

It is also possible to specify a variable by its address. All forms of integer
constants which are valid in C may be used, so that addresses may be input
in decimal, octal, or hexadecimal.

Line numbers in the source program are referred to as file-name:number or
procedure:number. In either case the number is relative to the beginning of
the file. If no procedure or file name is given, the current file is used by
default. If no number is given, the first line of the named procedure or file
is used.

While a process is running under sdb, all addresses refer to the executing
program; otherwise they refer to objfil or corfil. An initial argument of -w
permits overwriting locations in objfil.

Addresses

The address in a file associated with a written address is determined by a
mapping associated with that file. Each mapping is represented by two tri-
ples (b1, el, f1) and (b2, €2, f2) and the file address corresponding to a writ-
ten address is calculated as follows:

bl<address<el

then

file address=address+f1-b1
otherwise

b2<address <e2
then
file address=address+f2-b2

otherwise, the requested address is not legal. In some cases (e.g., for pro-
grams with separated I and D space) the two segments for a file may over-
lap.

The initial setting of both mappings is suitable for normal a.out and core
files. If either file is not of the kind expected then, for that file, b1 is set to
0, el is set to the maximum file size, and fI is set to 0; in this way the
whole file can be examined with no address translation.

In order for sdb to be used on large files, all appropriate values are kept as
signed 32-bit integers.

Commands

The commands for examining data in the program are:
t Print a stack trace of the terminated or halted program.

-2-

SDB(1) (C Software Development Set) SDB(1)

T Print the top line of the stack trace.

variable fclm

Print the value of variable according to length | and format m. A
numeric count ¢ indicates that a region of memory, beginning at the
address implied by variable, is to be displayed. The length specifiers
are:

b one byte

h two bytes (half word)

1 four bytes (long word)

Legal values for m are:

character

decimal

decimal, unsigned

octal

hexadecimal

32-bit single precision floating point

64-bit double precision floating point

Assume variable is a string pointer and print characters

starting at the address pointed to by the variable.

Print characters starting at the variable’s address. This

format may not be used with register variables.

p pointer to procedure

disassemble machine-language instruction with

addresses printed numerically and symbolically.

I disassemble = machine-language instruction with
addresses just printed numerically.

wge "o aAn

Y]

L0

Length specifiers are only effective with the ¢, d, u, 0, and x formats.
Any of the specifiers, c, I, and m, may be omitted. If all are omitted,
sdb chooses a length and a format suitable for the variable’s type as
declared in the program. If m is specified, then this format is used for
displaying the variable. A length specifier determines the output
length of the value to be displayed, sometimes resulting in truncation.
A count specifier ¢ tells sdb to display that many units of memory,
beginning at the address of variable. The number of bytes in one such
unit of memory is determined by the length specifier I, or if no length
is given, by the size associated with the variable. If a count specifier is
used for the s or a command, then that many characters are printed.
Otherwise successive characters are printed until either a null byte is
reached or 128 characters are printed. The last variable may be
redisplayed with the command ./.

The sh(1) metacharacters * and ? may be used within procedure and
variable names, providing a limited form of pattern matching. If no
procedure name is given, variables local to the current procedure and
global variables are matched; if a procedure name is specified, then
only variables local to that procedure are matched. To match only
global variables, the form :pattern is used.

SDB(1)

(C Software Development Set) SDB(1)

linenumber?lm

variable:2lm
Print the value at the address from a.out or I space given by
linenumber or variable (procedure name), according to the format Im.
The default format is ‘i". '

variable=Im

linenumber=Im

number=Im
Print the address of variable or linenumber, or the value of number, in
the format specified by Im. If no format is given, then Ix is used. The
last variant of this command provides a convenient way to convert
between decimal, octal, and hexadecimal.

variabletvalue

Set varigble to the given value. The value may be a number, a charac-
ter constant, or a variable. The value must be well defined; expres-
sions which produce more than one value, such as structures, are not
allowed. Character constants are denoted ’‘character. Numbers are
viewed as integers unless a decimal point or exponent is used. In this
case, they are treated as having the type double. Registers are viewed
as integers. The wariable may be an expression which indicates more
than one variable, such as an array or structure name. If the address
of a variable is given, it is regarded as the address of a variable of type
int. C conventions are used in any type conversions necessary to per-
form the indicated assignment.

X Print the machine registers and the current machine-language instruc-
tion.

X Print the current machine-language instruction.
The commands for examining source files are:

e procedure

e file-name

e directory/

e directory file-name
The first two forms set the current file to the file containing procedure
or to file-name. The current line is set to the first line in the named
procedure or file. Source files are assumed to be in directory. The
default is the current working directory. The latter two forms change
the value of directory. If no procedure, file name, or directory is given,
the current procedure name and file name are reported.

SDB(1)

(C Software Development Set) SDB(1)

[regular expression /
Search forward from the current line for a line containing a string
matching regular expression as in ed(1). The trailing / may be deleted.

?regular expression?
Search backward from the current line for a line containing a string
matching regular expression as in ed(1). The trailing ? may be deleted.

p Print the current line.

z Print the current line followed by the next 9 lines. Set the current line
to the last line printed.

w Window. Print the 10 lines around the current line.

number
Set the current line to the given line number. Print the new current
line.

count+
Advance the current line by count lines. Print the new current line.

count-
Retreat the current line by count lines. Print the new current line.

The commands for controlling the execution of the source program are:

count r args

count R
Run the program with the given arguments. The r command with no
arguments reuses the previous arguments to the program while the R
command runs the program with no arguments. An argument begin-
ning with < or > causes redirection for the standard input or output,
respectively. If count is given, it specifies the number of breakpoints
to be ignored.

linenumber ¢ count

linenumber C count
Continue after a breakpoint or interrupt. If count is given, the pro-
gram will stop when count breakpoints have been encountered. The
signal which caused the program to stop is reactivated with the C
command and ignored with the ¢ command. If a line number is speci-
fied, then a temporary breakpoint is placed at the line and execution is
continued. The breakpoint is deleted when the command finishes.

linenumber g count
Continue after a breakpoint with execution resumed at the given line.
If count is given, it specifies the number of breakpoints to be ignored.

s count

S count
Single-step the program through count lines. If no count is given, then
the program is run for one line. S is equivalent to s except it steps
through procedure calls.

SDB(1)

(C Software Development Set) SDB(1)

I Single-step by one machine-language instruction. The signal which
caused the program to stop is reactivated with the I command and
ignored with the i command.

variable$m count

address:m count
Single-step (as with s) until the specified location is modified with a
new value. If count is omitted, it is effectively infinity. Variable must
be accessible from the current procedure. Since this command is done
by software, it can be very slow.

level v
Toggle verbose mode, for use when single-stepping with S, s, or m. If
level is omitted, then just the current source file and/or subroutine
name is printed when either changes. If level is 1 or greater, each C
source line is printed before it is executed; if level is 2 or greater, each
assembler statement is also printed. A v turns verbose mode off if it is
on for any level.

k Kill the program being debugged.

procedure(argl,arg?,...)

procedure(argl,arg2,...)/m
Execute the named procedure with the given arguments. Arguments
can be integer, character, or string constants or names of variables
accessible from the current procedure. The second form causes the
value returned by the procedure to be printed according to format m.
If no format is given, it defaults to d. This facility is only available if
the program was loaded with the —g option.

linenumber b commands

Set a breakpoint at the given line. If a procedure name without a line
number is given (e.g., “proc:”’), a breakpoint is placed at the first line
in the procedure even if it was not compiled with the -g option. If no
linenumber is given, a breakpoint is placed at the current line. If no
commands are given, execution stops just before the breakpoint and
control is returned to sdb. Otherwise the commands are executed
when the breakpoint is encountered and execution continues. Multi-
ple commands are specified by separating them with semicolons. If k
is used as a command to execute at a breakpoint, control returns to
sdb, instead of continuing execution.

B Print a list of the currently active breakpoints.

linenumber d
Delete a breakpoint at the given line. If no linenumber is given, then
the breakpoints are deleted interactively. Each breakpoint location is
printed and a line is read from the standard input. If the line begins
with a y or d, then the breakpoint is deleted.

D Delete all breakpoints.

P

Print the last executed line.

-6 -

SDB(1)

(C Software Development Set) SDB(1)

linenumber a
Announce. If linenumber is of the form proc:number, the command
effectively does a linenumber b 1. If linenumber is of the form proc:,
the command effectively does a proc: b T.

Miscellaneous commands:

fcommand
The command is interpreted by sh(1).

new-line
If the previous command printed a source line, then advance the
current line by one line and print the new current line. If the previous
command displayed a memory location, then display the next memory
location.

end-of-file character
Scroll. Print the next 10 lines of instructions, source or data depend-
ing on which was printed last. The end-of-file character is usually
control-D.

< filename
Read commands from filename until the end of file is reached, and
then continue to accept commands from standard input. When sdb is
told to display a variable by a command in such a file, the variable
name is displayed along with the value. This command may not be
nested; < may not appear as a command in a file.

M Print the address maps.

M[?/][Mb e f
Record new values for the address map. The arguments ? and /
specify the text and data maps, respectively. The first segment (b1, el,
f1) is changed unless * is specified; in which case, the second segment
(b2, e2, f2) of the mapping is changed. If fewer than three values are
given, the remaining map parameters are left unchanged.

" string
Print the given string. The C escape sequences of the form \character
are recognized, where character is a nonnumeric character.

q Exit the debugger.

The following commands also exist and are intended only for debugging the
debugger:

V Print the version number.
Q Print a list of procedures and files being debugged.
Y Toggle debug output.

FILES
a.out
core
SEE ALSO

cc(1), a.out(4), core(4), syms(4).
sh(1) in the User’s/System Administrator’s Reference Manual.

-7-

SDB(1) (C Software Development Set) SDB(1)

WARNINGS
When sdb prints the value of an external variable for which there is no
debugging information, a warning is printed before the value. The size is
assumed to be int (integer).

Data which are stored in text sections are indistinguishable from functions.

Line number information in optimized functions is unreliable, and some
information may be missing.

BUGS
If a procedure is called when the program is not stopped at a breakpoint
(such as when a core image is being debugged), all variables are initialized
before the procedure is started. This makes it impossible to use a procedure
which formats data from a core image.

SET(1V)

NAME

(Base System) SET(1V)

set, unset — set and unset environment variables in core or in files

SYNOPSIS

set [-1][-f file] [-e] var=val ...
unset [-1] [-f file] var ...

DESCRIPTION

The set command can be used to set variables in the environment or
environment-like files. The unset command removes these variables. There
are two built-in environments; a local one, and the UNIX system environ-
ment which passes variables between processes. These environments are
accessed by the -1 and -e options, respectively. When expanding variables,
the Interpreter checks the local environment first, and then the UNIX sys-
tem environment. If you use a different file name with the -f option, you
must include that file name when you are expanding variables [e.g.,
${(filename)VARIABLE}).

EXAMPLE

Storing a selection made in a menu:

.

name=Selection 2
action='set —1 SELECTION=2'close

.

WARNING

At least one option must be used with the set command. UNIX system
environment variables (those set using the -e option) can only be set for the
current fmli process and the processes it calls. When using the -f option,
unless the file name is unique to the process, other users of the Interpreter
on the same machine will be able to expand these variables. The -1 option
is recommended for temporary storage while the default is recommended
for permanent storage.

SEE ALSO

env(1), sh(l).

SETCOLOR(1V) (Base System) SETCOLOR(1V)

NAME

setcolor — redefine or create a color
SYNOPSIS

setcolor color red_level green_level blue_level
DESCRIPTION

Setcolor takes four arguments; a string naming the color, and three integers
defining the intensity of the red, green, and blue components of the color,
respectively. If you are redefining an existing color, you must use its
current name (default colors are: black, blue, green, cyan, red, magenta, yel-
low, and white). Intensities must be in the range of 0 to 1000. The func-
tion returns the color’s name string.

EXAMPLE
setcolor blue 100 24 300

SHELL(1V) (Base System) SHELL(1V)

NAME
shell — run a command using shell

SYNOPSIS
shell command [command] ...

DESCRIPTION
The shell command takes each of its arguments and puts them together
separated by a space and passes this command to your shell ($SHELL if set,
otherwise /bin/sh).

EXAMPLES
Since the Interpreter does not support background processing it could be
used for this:

'shell 'build prog &''.
The shell’s built-in test can be useful. This will test to see if field2 of a form
is a file.

valid='shell test —f $F2'

WARNING
The arguments will be concatenated using spaces, which may or may not do
what is expected. The variables set in local environments will not be
expanded by the shell because “local’” means local to the current process.

SEE ALSO
sh(1), test(1).

SIZE(1) (C Software Development Set) SIZE(1)

NAME

size — print section sizes in bytes of common object files
SYNOPSIS

size [-n] [~f] [-0] [-x] [-V] files
DESCRIPTION

The size command produces section size information in bytes for each
loaded section in the common object files. The size of the text, data, and
bss (uninitialized data) sections is printed, as well as the sum of the sizes of
these sections. If an archive file is input to the size command, the informa-
tion for all archive members is displayed.

The -n option includes NOLOAD sections in the size.

The -f option produces full output, that is, it prints the size of every loaded
section, followed by the section name in parentheses.

Numbers will be printed in decimal unless either the -o or the -x option is
used, in which case they will be printed in octal or in hexadecimal, respec-
tively.)

The -V flag will supply the version information on the size command.

SEE ALSO
as(1), cc(1), 1d(1), a.out(4), ar(4).

CAVEAT
Since the size of bss sections is not known until link-edit time, the size com-
mand will not give the true total size of pre-linked objects.

DIAGNOSTICS
size: name: cannot open
if name cannot be read.

size: name: bad magic
if name is not an appropriate common object file.

STRIP(1) (C Software Development Set) STRIP(1)

NAME

strip - strip symbol and line number information from a common object file

SYNOPSIS

strip [-1] [-x] [-b] [-1] [-V] filename ...

DESCRIPTION

The strip command strips the symbol table and line number information
from common object files, including archives. Once this has been done, no
symbolic debugging access will be available for that file; therefore, this com-
mand is normally run only on production modules that have been debugged
and tested.

The amount of information stripped from the symbol table can be controlled
by using any of the following options:

-1 Strip line number information only; do not strip any symbol table
information.

-X Do not strip static or external symbol information.

-b Same as the -x option, but also do not strip scoping information
(e.g., beginning and end of block delimiters).

-r Do not strip static or external symbol information, or relocation
information.

-V Print the version of the strip command executing on the standard

error output.

If there are any relocation entries in the object file and any symbol table
information is to be stripped, strip will complain and terminate without
stripping filename unless the -r option is used.

If the strip command is executed on a common archive file [see ar(4)] the
archive symbol table will be removed. The archive symbol table must be
restored by executing the ar(1l) command with the s option before the
archive can be link-edited by the Id(1) command. strip will produce
appropriate warning messages when this situation arises.

The strip command is used to reduce the file storage overhead taken by the
object file.

FILES
TMPDIR /strp* temporary files
TMPDIR is usually /usr/tmp but can be redefined by setting the environ-
ment variable TMPDIR [see tempnam() in tmpnam(3S)].

SEE ALSO

ar(1), as(1), cc(1), 1d(1), tmpnam(3S), a.out(4), ar(4).

STRIP(1) (C Software Development Set) STRIP(1)

DIAGNOSTICS
strip: name: cannot open if name cannot be read.

strip: name: bad magic if name is not an appropriate common object
file.

strip: name: relocation entries present; cannot strip
if name contains relocation entries and the -r
flag is not used, the symbol table information
cannot be stripped.

TIC(1M) (Graphics Programming Utilities) TIC(1M)

NAME
tic — terminfo compiler

SYNOPSIS
tic [-v[n]] [-¢] file

DESCRIPTION ‘
tic translates a terminfo(4) file from the source format into the compiled for-
mat. The results are placed in the directory /usr/lib/terminfo. The com-

piled format is necessary for use with the library routines described in
curses(3X).

-vn (verbose) output to standard error trace information showing tic’s
progress. The optional integer n is a number from 1 to 10,
inclusive, indicating the desired level of detail of information. If n
is omitted, the default level is 1. If n is specified and greater than
1, the level of detail is increased.

- only check file for errors. Errors in use= links are not detected.

file contains one or more terminfo(4) terminal descriptions in source
format [see terminfo(4)]. Each description in the file describes the
capabilities of a particular terminal. When a use=entry-name field
is discovered in a terminal entry currently being compiled, tic reads
in the binary from /usr/lib/terminfo to complete the entry. (Entries
created from file will be used first. If the environment variable
TERMINFO is set, that directory is searched instead of
Jusr/lib/terminfo.) tic duplicates the capabilities in entry-name for
the current entry, with the exception of those capabilities that
explicitly are defined in the current entry.

If the environment variable TERMINFO is set, the compiled results are
placed there instead of /usr/lib/terminfo.

FILES
/usr/lib/terminfo/?/* compiled terminal description data base

SEE ALSO
curses(3X), term(4), terminfo(4).

Chapter 10 in the Programmer’s Guide.

WARNING
Total compiled entries cannot exceed 4096 bytes. The name field cannot
exceed 128 bytes.

Terminal names exceeding 14 characters will be truncated to 14 characters
and a warning message will be printed.

When the -c option is used, duplicate terminal names will not be diagnosed;
however, when -c is not used, they will be.

BUGS
To allow existing executables from the previous release of the UNIX System
to continue to run with the compiled terminfo entries created by the new
terminfo compiler, cancelled capabilities will not be marked as cancelled
within the terminfo binary unless the entry name has a ‘+’ within it. (Such

-1 -

TIC(1M) (Graphics Programming Utilities) TIC(1M)

terminal names are only used for inclusion within other entries via a use=
entry. Such names would not be used for real terminal names.)

For example:
4415+nl, kf1@, k2@,

4415+base, kf1=\EOc, kf2=\EOd, ...

4415-nli4415 terminal without keys,
use=4415+nl, use=4415+base,

The above example works as expected; the definitions for the keys do not
show up in the 4415-nl entry. However, if the entry 4415+nl did not have
a plus sign within its name, the cancellations would not be marked within
the compiled file and the definitions for the function keys would not be
cancelled within 4415-nl.

DIAGNOSTICS
Most diagnostic messages produced by tic during the compilation of the
source file are preceded with the approximate line number and the name of
the terminal currently being worked on.

mkdir ... returned bad status
The named directory could not be created.

File does not start with terminal names in column one
The first thing seen in the file, after comments, must be the list of
terminal names.

Token after a Iseek(2) not NAMES
Somehow the file being compiled changed during the compilation.

Not enough memory for use_list element
or
Out of memory
Not enough free memory was available (malloc(3C) failed).

Can't open ...
The named file could not be created.

Error in writing ...
The named file could not be written to.

Can't link ... to ...
A link failed.

Error in re-reading compiled file ...
The compiled file could not be read back in.

Premature EOF
The current entry ended prematurely.

Backspaced off beginning of line
This error indicates something wrong happened within tic.

Unknown Capability - "..."
The named invalid capability was found within the file.

2

TIC(1M) (Graphics Programming Ultilities) TIC(1M)

Wrong type used for capability "..."
For example, a string capability was given a numeric value.

Unknown token type
Tokens must be followed by ‘@’ to cancel, *,” for booleans, ‘#’ for
numbers, or ‘=" for strings.

"...": bad term name
or

Line ...: lllegal terminal name - "..."

Termmal names must start with a letter or digit
The given name was invalid. Names must not contain white space
or slashes, and must begin with a letter or digit.

"...": terminal name too long.
An extremely long terminal name was found.

» ..": terminal name too short.
A one-letter name was found.

"..." filename too long, truncating to "..."
The given name was truncated to 14 characters due to UNIX file
name length limitations.

"..." defined in more than one entry. Entry being used is "...".
An entry was found more than once.

Terminal name "..." synonym for itself
A name was listed twice in the list of synonyms.

At least one synonym should begin with a letter.
At least one of the names of the terminal should begin with a
letter.

Illegal character - "..."
The given invalid character was found in the input file.

Newline in middle of terminal name
The trailing comma was probably left off of the list of names.

Missing comma
A comma was missing.

Missing numeric value
The number was missing after a numeric capability.

NULL string value
The proper way to say that a string capability does not exist is to
cancel it.

Very long string found. Missing comma?
self-explanatory

Unknown option. Usage is:
An invalid option was entered.

Too many file names. Usage is:
self-explanatory

TIC(1M)

(Graphics Programming Utilities) TIC(1M)

"..." non-existant or permission denied
The given directory could not be written into.

"..." is not a directory
self-explanatory

v...": Permission denied
access denied.

"...": Not a directory
tic wanted to use the given name as a directory, but it already

exists as a file

SYSTEM ERROR! Fork failed!!!
A fork(2) failed.
Error in following up use-links. Either there is a loop in the links or they
reference non-existant terminals. The following is a list of the entries
involved:
A terminfo(4) entry with a use=name capability either referenced a
non-existant terminal called name or name somehow referred back to
the given entry.

TSORT(1) (C Software Development Set) TSORT(1)

NAME
tsort — topological sort

SYNOPSIS
tsort [file]

DESCRIPTION
The tsort command produces on the standard output a totally ordered list of
items consistent with a partial ordering of items mentioned in the input file.
If no file is specified, the standard input is understood.
The input consists of pairs of items (nonempty strings) separated by blanks.
Pairs of different items indicate ordering. Pairs of identical items indicate
presence, but not ordering.

SEE ALSO
lorder(1).

DIAGNOSTICS

Odd data: there is an odd number of fields in the input file.

UNGET(1) (C Software Development Set) UNGET(1)

NAME

unget — undo a previous get of an SCCS file
SYNOPSIS

unget [-rSID] [-s] [-n] files
DESCRIPTION

The unget command undoes the effect of a get -e done prior to creating the
intended new delta. If a directory is named, unget behaves as though each
file in the directory were specified as a named file, except that non-SCCS
files and unreadable files are silently ignored. If a name of - is given, the
standard input is read with each line being taken as the name of an SCCS
file to be processed.

Keyletter arguments apply independently to each named file.

-rSID Uniquely identifies which delta is no longer intended.
(This would have been specified by get as the “new
delta”). The use of this keyletter is necessary only if two
or more outstanding gets for editing on the same SCCS
file were done by the same person (login name). A diag-
nostic results if the specified SID is ambiguous, or if it is
necessary and omitted on the command line.

-s Suppresses the printout, on the standard output, of the
intended delta’s SID.
-n Causes the retention of the gotten file which would nor-

mally be removed from the current directory.
SEE ALSO
delta(1), get(1), sact(1).
help(1) in the User’s/System Administrator’s Reference Manual.

DIAGNOSTICS
Use help(1) for explanations.

VAL(1) (C Software Development Set) VAL(1)
NAME

val - validate SCCS file
SYNOPSIS

val -

val [-s] [-rSID] [-mname] [-ytype] files

DESCRIPTION

The val command determines if the specified file is an SCCS file meeting the
characteristics specified by the optional argument list. Arguments to val
may appear in any order. The arguments consist of keyletter arguments,
which begin with a -, and named files.

The val command has a special argument, -, which causes reading of the
standard input until an end-of-file condition is detected. Each line read is
independently processed as if it were a command line argument list.

The val command generates diagnostic messages on the standard output for
each command line and file processed, and also returns a single 8-bit code
upon exit as described below.

The keyletter arguments are defined as follows. The effects of any keyletter
argument apply independently to each named file on the command line.

-s The presence of this argument silences the diagnostic message
normally generated on the standard output for any error that is
detected while processing each named file on a given com-
mand line.

-1SID The argument value SID (SCCS IDentification String) is an
SCCS delta number. A check is made to determine if the SID
is ambiguous (e. g., rl is ambiguous because it physically does
not exist but implies 1.1, 1.2, etc., which may exist) or invalid
(e. g., r1.0 or r1.1.0 are invalid because neither case can exist
as a valid delta number). If the SID is valid and not ambigu-
ous, a check is made to determine if it actually exists.

-mname The argument value name is compared with the SCCS %M%
keyword in file.
-ytype The argument value type is compared with the SCCS %Y%
keyword in file.
The 8-bit code returned by val is a disjunction of the possible errors, i. e.,
can be interpreted as a bit string where (moving from left to right) set bits
are interpreted as follows:
bit 0 = missing file argument;
bit 1 = unknown or duplicate keyletter argument;
bit 2 = corrupted SCCS file;
bit 3 = cannot open file or file not SCCS;
bit 4 = SID is invalid or ambiguous;
bit 5 = SID does not exist;
bit 6 = %Y%, -y mismatch;
bit 7 = %M%, -m mismatch;

VAL(1) (C Software Development Set) VAL(1)

Note that val can process two or more files on a given command line and in
turn can process multiple command lines (when reading the standard input).
In these cases an aggregate code is returned — a logical OR of the codes gen-
erated for each command line and file processed.

SEE ALSO
admin(1), delta(1), get(1), prs(1).
help(1) in the User’s/System Administrator’s Reference Manual.

DIAGNOSTICS
Use help(1) for explanations.

BUGS
The val command can process up to 50 files on a single command line.
Any number above 50 will produce a core dump.

VC(1) (C Software Development Set) VvC(1)
P

NAME

vc — version control
SYNOPSIS

ve [-a] [-t] [-cchar] [-s] [keyword=value ... keyword=value]
DESCRIPTION

The vc command copies lines from the standard input to the standard out-
put under control of its arguments and control statements encountered in the
standard input. In the process of performing the copy operation, user
declared keywords may be replaced by their string value when they appear
in plain text and/or control statements.

The copying of lines from the standard input to the standard output is con-
ditional, based on tests (in control statements) of keyword values specified
in control statements or as vc command arguments.

A control statement is a single line beginning with a control character,
except as modified by the -t keyletter (see below). The default control char-
acter is colon (:), except as modified by the -c keyletter (see below). Input
lines beginning with a backslash (\) followed by a control character are not
control lines and are copied to the standard output with the backslash
removed. Lines beginning with a backslash followed by a non-control char-
acter are copied in their entirety.

A keyword is composed of 9 or less alphanumerics; the first must be alpha-
betic. A value is any ASCII string that can be created with ed(1); a numeric
value is an unsigned string of digits. Keyword values may not contain
blanks or tabs.

Replacement of keywords by values is done whenever a keyword sur-
rounded by control characters is encountered on a version control statement.
The -a keyletter (see below) forces replacement of keywords in all lines of
text. An uninterpreted control character may be included in a value by
preceding it with \. If a literal \ is desired, then it too must be preceded by

\.
Keyletter Arguments

-a Forces replacement of keywords surrounded by control charac-
ters with their assigned value in all text lines and not just in
vc statements.

-t All characters from the beginning of a line up to and including
the first tab character are ignored for the purpose of detecting
a control statement. If one is found, all characters up to and
including the tab are discarded.

-cchar Specifies a control character to be used in place of :.

-s Silences warning messages (not error) that are normally
printed on the diagnostic output.

Version Control Statements

:dcl keyword], ..., keyword]
Used to declare keywords. All keywords must be declared.

o1-

VC(1) (C Software Development Set) VvC(1)

:asg keyword=value
Used to assign values to keywords. An asg statement overrides the
assignment for the corresponding keyword on the vc command line
and all previous asg’s for that keyword. Keywords declared, but not
assigned values have null values.
:if condition

:end

Used to skip lines of the standard input. If the condition is true, all
lines between the if statement and the matching end statement are
copied to the standard output. If the condition is false, all intervening
lines are discarded, including control statements. Note that interven-
ing if statements and matching end statements are recognized solely
for the purpose of maintaining the proper if-end matching.

The syntax of a condition is:

<cond> u=["not"] <or>

<or> 1= <and> | <and> "I" <or>

<and> u= <exp> | <exp> "&" <and>

<exp> u= "(" <or> ")" | <value> <op> <value>
<0p> n= n=n|nl=n|nen|nsn

<value> 1= <arbitrary ASCII string> | <numeric string>

The available operators and their meanings are:

equal
not equal
and
or
greater than
less than
used for logical groupings
t may only occur immediately after the if, and
when present, inverts the value of the
entire condition

BTAV TR I

The > and < operate only on unsigned integer values (e.g., : 012 > 12
is false). All other operators take strings as arguments (e.g., : 012 !=
12 is true). The precedence of the operators (from highest to lowest)
is:

=l=>< all of equal precedence

&

[
Parentheses may be used to alter the order of precedence.
Values must be separated from operators or parentheses by at least
one blank or tab.

VC(1) (C Software Development Set) VC(1)

stext
Used for keyword replacement on lines that are copied to the standard
output. The two leading control characters are removed, and key-
words surrounded by control characters in text are replaced by their
value before the line is copied to the output file. This action is
independent of the -a keyletter.

:on
:off
Turn on or off keyword replacement on all lines.

:ctl char
Change the control character to char.

:msg message
Prints the given message on the diagnostic output.
:err message
Prints the given message followed by:
ERROR: err statement on line ... (915)

on the diagnostic output. vc halts execution and returns an exit code
of 1.

SEE ALSO
ed(1), help(1) in the User’s/System Administrator’s Reference Manual.

DIAGNOSTICS

Use help(1) for explanations.
EXIT CODES

0 — normal

1 - any error

WHAT(1) (C Software Development Set) WHAT(1)

NAME

what - identify SCCS files
SYNOPSIS

what [-s] files
DESCRIPTION

The what command searches the given files for all occurrences of the pat-
tern that get(1) substitutes for %Z% (this is @(#) at this printing) and prints
out what follows until the first *, >, new-line, \, or null character. For
example, if the C program in file f.c contains

char ident[] = " @(#)identification information ";
and f.c is compiled to yield f.0 and a.out, then the command

what f.c f.o a.out

will print
f.c: identification information
f.o: identification information

a.out: identification information

The what command is intended to be used in conjunction with the com-
mand get(1), which automatically inserts identifying information, but it can
also be used where the information is inserted manually. Only one option
exists:

-S Quit after finding the first occurrence of pattern in each file.

SEE ALSO
get(1).
help(1) in the User’s/System Administrator’s Reference Manual.

DIAGNOSTICS
Exit status is 0 if any matches are found, otherwise 1. Use help(1) for expla-
nations.

BUGS
It is possible that an unintended occurrence of the pattern @(#) could be
found just by chance, but this causes no harm in nearly all cases.

YACC(1) (C Software Development Set) YACC(1)

NAME

yacc — yet another compiler-compiler

SYNOPSIS

yacc [-vdlt | grammar

DESCRIPTION

FILES

The yacc command converts a context-free grammar into a set of tables for a
simple automaton which executes an LR(1) parsing algorithm. The grammar
may be ambiguous; specified precedence rules are used to break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a
program yyparse. This program must be loaded with the lexical analyzer
program, yylex, as well as main and yyerror, an error-handling routine.
These routines must be supplied by the user; lex(1) is useful for creating lex-
ical analyzers usable by yacc.

If the -v flag is given, the file y.output is prepared, which contains a
description of the parsing tables and a report on conflicts generated by
ambiguities in the grammar.

If the ~d flag is used, the file y.tab.h is generated with the #define state-
ments that associate the yacc-assigned “token codes” with the user-declared
“token names”. This allows source files other than y.tab.c to access the
token codes.

If the -1 flag is given, the code produced in y.tab.c will not contain any
#line constructs. This should only be used after the grammar and the asso-
ciated actions are fully debugged.

Runtime debugging code is always generated in y.tab.c under conditional
compilation control. By default, this code is not included when y.tab.c is
compiled. However, when yacc’s -t option is used, this debugging code
will be compiled by default. Independent of whether the -t option was
used, the runtime debugging code is under the control of YYDEBUG, a
preprocessor symbol. If YYDEBUG has a non-zero value, then the debug-
ging code is included. If its value is zero, then the code will not be
included. The size and execution time of a program produced without the
runtime debugging code will be smaller and slightly faster.

y.output

y.tab.c

y.tab.h defines for token names
yacc.tmp,

yacc.debug, yacc.acts temporary files

/usr/lib /yaccpar parser prototype for C programs

SEE ALSO

lex(1).
Chapter 6 in the Programmer’s Guide.

YACC(1) (C Software Development Set) YACC(1)

DIAGNOSTICS
The number of reduce-reduce and shift-reduce conflicts is reported on the
standard error output; a more detailed report is found in the y.output file.
Similarly, if some rules are not reachable from the start symbol, this is also
reported.

CAVEAT _
Because file names are fixed, at most one yacc process can be active in a
given directory at a given time.

INTRO(2) (C Software Development Set) INTRO(2)

NAME
intro — introduction to system calls and error numbers

SYNOPSIS
#include <errno.h>

DESCRIPTION
This section describes all of the system calls. Most of these calls have one
or more error returns. An error condition is indicated by an otherwise
impossible returned value. This is almost always —1 or the NULL pointer;
the individual descriptions specify the details. An error number is also
made available in the external variable errno. Errno is not cleared on suc-
cessful calls, so it should be tested only after an error has been indicated.

Each system call description attempts to list all possible error numbers. The
following is a complete list of the error numbers and their names as defined
in <errno.h>.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in some
way forbidden except to its owner or super-user. It is also returned
for attempts by ordinary users to do things allowed only to the
super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should
exist but doesn’t, or when one of the directories in a path name
does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified by pid in
kill(2) or ptrace(2).

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user
has elected to catch, occurred during a system call. If execution is
resumed after processing the signal, it will appear as if the inter-
rupted system call returned this error condition.

5 EIO I/O error
Some physical I/O error has occurred. This error may in some
cases occur on a call following the one to which it actually applies.

6 ENXIO No such device or address
I/0 on a special file refers to a subdevice which does not exist, or
beyond the limits of the device. It may also occur when, for exam-
ple, a tape drive is not on-line or no disk pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 5,120 bytes is presented to a member
of the exec(2) family.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the
appropriate permissions, does not start with a valid magic number
[see a.out(4)).

INTRO(2)

(C Software Development Set) INTRO(2)

9 EBADF Bad file number

10

11

12

13

14

15

16

17

18

19

Either a file descriptor refers to no open file, or a read(2) [respec-
tively, write(2)] request is made to a file which is open only for
writing (respectively, reading).

ECHILD No child processes
A wait was executed by a process that had no existing or unwaited-
for child processes.

EAGAIN No more processes
A fork failed because the system’s process table is full or the user is
not allowed to create any more processes. Or a system call failed
because of insufficient memory or swap space.

ENOMEM Not enough space

During an exec(2), brk(2), or sbrk(2), a program asks for more space
than the system is able to supply. This may not be a temporary
condition; the maximum space size is a system parameter. The
error may also occur if the arrangement of text, data, and stack seg-
ments requires too many segmentation registers, or if there is not
enough swap space during a fork(2). If this error occurs on a
resource associated with Remote File Sharing (RFS), it indicates a
memory depletion wich may be temporary, dependent on system
activity at the time the call was invoked.

EACCES Permission denied
An attempt was made to access a file in a way forbidden by the
protection system.

EFAULT Bad address
The system encountered a hardware fault in attempting to use an
argument of a system call.

ENOTBLK Block device required
A non-block file was mentioned where a block device was required,
e.g., in mount(2).

EBUSY Device or resource busy
An attempt was made to mount a device that was already mounted
or an attempt was made to dismount a device on which there is an
active file (open file, current directory, mounted-on file, active text
segment). It will also occur if an attempt is made to enable account-
ing when it is already enabled. The device or resource is currently
unavailable.

EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g.,
link(2).

EXDEV Cross-device link
A link to a file on another device was attempted.

ENODEV No such device
An attempt was made to apply an inappropriate system call to a
device; e.g., read a write-only device.

-2-

INTRO(2)

20

21

22

23

24

25

26

27

28

29

30

31

32

(C Software Development Set) INTRO(2)

ENOTDIR Not a directory
A non-directory was specified where a directory is required, for
example in a path prefix or as an argument to chdir(2).

EISDIR Is a directory
An attempt was made to write on a directory.

EINVAL Invalid argument
Some invalid argument (e.g., dismounting a non-mounted device;
mentioning an undefined signal in signal(2) or kill(2); reading or
writing a file for which Iseek(2) has generated a negative pointer).
Also set by the math functions described in the (3M) entries of this
manual.

ENFILE File table overflow
The system file table is full, and temporarily no more opens can be
accepted.

EMFILE Too many open files
No process may have more than NOFILES (default 20) descriptors
open at a time.

ENOTTY Not a character device (or) Not a typewriter
An attempt was made to ioctl(2) a file that is not a special character
device.

ETXTBSY Text file busy
An attempt was made to execute a pure-procedure program that is
currently open for writing. Also an attempt to open for writing or
to remove a pure-procedure program that is being executed.

EFBIG File too large
The size of a file exceeded the maximum file size or ULIMIT [see
ulimit(2)].

ENOSPC No space left on device
During a write(2) to an ordinary file, there is no free space left on
the device. In fcntl(2), the setting or removing of record locks on a
file cannot be accomplished because there are no more record
entries left on the system.

ESPIPE Illegal seek
An Iseek(2) was issued to a pipe.

EROFS Read-only file system
An attempt to modify a file or directory was made on a device
mounted read-only.

EMLINK Too many links
An attempt to make more than the maximum number of links
(1000) to a file.

EPIPE Broken pipe
A write on a pipe for which there is no process to read the data.
This condition normally generates a signal; the error is returned if
the signal is ignored.

INTRO(2)

33

34

35

36

(C Software Development Set) INTRO(2)

EDOM Math argument
The argument of a function in the math package (3M) is out of the
domain of the function.

ERANGE Result too large
The value of a function in the math package (3M) is not represent-
able within machine precision.

ENOMSG No message of desired type
An attempt was made to receive a message of a type that does not
exist on the specified message queue [see msgop(2)].

EIDRM Identifier removed
This error is returned to processes that resume execution due to the
removal of an identifier from the file system’s name space [see
msgctl(2), semctl(2), and shmctl(2))].

37-44 Reserved numbers

45

46

60

62

63

64

65

EDEADLK Deadlock
A deadlock situation was detected and avoided. This error pertains
to file and record locking.

ENOLCK No lock
In fcntl(2) the setting or removing of record locks on a file cannot be
accomplished because there are no more record entries left on the
system.

ENOSTR Not a stream
A putmsg(2) or getmsg(2) system call was attempted on a file
descriptor that is not a STREAMS device.

ETIME Stream ioctl timeout
The timer set for a STREAMS ioctl(2) call has expired. The cause of
this error is device specific and could indicate either a hardware or
software failure, or perhaps a timeout value that is too short for the
specific operation. The status of the ioctl(2) operation is indeter-
minate.

ENOSR No stream resources
During a STREAMS open(2), either no STREAMS queues or no
STREAMS head data structures were available.

ENONET Machine is not on the network
This error is Remote File Sharing (RFS)-specific. It occurs when
users try to advertise, unadvertise, mount, or unmount remote
resources while the machine has not done the proper start-up to
connect to the network.

ENOPKG No package
This error occurs when users attempt to use a system call from a
package which has not been installed.

INTRO(2)

66

67

68

69

70

71

74

77

83

84

85

(C Software Development Set) INTRO(2)

EREMOTE Resource is remote
This error is RFS-specific. It occurs when users try to advertise a
resource which is not on the local machine, or try to
mount/unmount a device (or path name) that is on a remote
machine.

ENOLINK Virtual circuit is gone
This error is RFS-specific. It occurs when the link (virtual circuit)
connecting to a remote machine is gone.

EADV Advertise error
This error is RFS-specific. It occurs when users try to advertise a
resource which has been advertised already, or try to stop the RFS
while there are resources still advertised, or try to force unmount a
resource when it is still advertised.

ESRMNT Srmount error
This error is RFS-specific. It occurs when users try to stop RFS while
there are resources still mounted by remote machines.

ECOMM Communication error
This error is RFS-specific. It occurs when trying to send messages to
remote machines but no virtual circuit can be found.

EPROTO Protocol error
Some protocol error occurred. This error is device-specific, but is
generally not related to a hardware failure.

EMULTIHOP Multihop attempted
This error is RFS-specific. It occurs when users try to access remote
resources which are not directly accessible.

EBADMSG Bad message
During a read(2), getmsg(2), or ioctl(2) L RECVFD system call to a
STREAMS device, something has come to the head of the queue that
can’t be processed. That something depends on the system call:
read(2)—control information or a passed file descriptor.
getmsg(2)—passed file descriptor.
ioctl(2)—control or data information.

ELIBACC Cannot access a needed shared library
Trying to exec(2) an a.out that requires a shared library (to be linked
in) and the shared library doesn’t exist or the user doesn’t have per-
mission to use it.

ELIBMAX Accessing a corrupted shared library
Trying to exec(2) an a.out that requires a shared library (to be linked
in) and exec(2) could not load the shared library. The shared library
is probably corrupted.

ELIBSCN .lib section in 4.0ut corrupted
Trying to exec(2) an a.out that requires a shared library (to be linked
in) and there was erroneous data in the .lib section of the a.out. The
ib section tells exec(2) what shared libraries are needed. The a.out
is probably corrupted.

INTRO(2) (C Software Development Set) INTRO(2)
P

—

86 ELIBMAX Attempting to link in more shared libraries than system limit
Trying to exec(2) an a.out that requires more shared libraries (to be
linked in) than is allowed on the current configuration of the sys-
tem. See the System Administrator’s Guide.

87 ELIBEXEC Cannot exec a shared library directly
Trying to exec(2) a shared library directly. This is not allowed.

DEFINITIONS

Process ID. Each active process in the system is uniquely identified by a
positive integer called a process ID. The range of this ID is from 1 to
30,000. By convention, process-ID 0 and 1 are reserved for special system
processes.

Parent Process ID. A new process is created by a currently active process
[see fork(2)]. The parent process ID of a process is the process ID of its crea-
tor. ’

Process Group ID. Each active process is a member of a process group that
is identified by a positive integer called the process group ID. This ID is the
process ID of the group leader. This grouping permits the signaling of
related processes [see kill(2)].

Process Group Leader. A process group leader is any process whose pro-
cess group ID is the same as its process ID. Any process that is not a pro-
cess group leader may detach itself from its current process group and
become a new process group leader by calling the setpgrp(2).

Tty Group ID. Each active process can be a member of a terminal group
that is identified by a positive integer called the tty group ID. This grouping
is used to terminate a group of related processes upon termination of one of
the processes in the group [see exit(2) and signal(2)].

Real User ID and Real Group ID. Each user allowed on the system is iden-
tified by a positive integer (0 to 65535) called a real user ID.

Each user is also a member of a group. The group is identified by a positive
integer called the real group ID.

An active process has a real user ID and real group ID that are set to the real
user ID and real group ID, respectively, of the user responsible for the crea-
tion of the process.

Effective User ID and Effective Group ID. An active process has an effec-
tive user ID and an effective group ID that are used to determine file access
permissions (see below) The effective user ID and effective group ID are
equal to the process’s real user ID and real group ID respectively, unless the
process or one of its ancestors evolved from a file that had the set-user-ID
bit or set-group ID bit set [see exec(2)].

-6-

INTRO(2) (C Software Development Set) INTRO(2)

Super-user. A process is recognized as a super-user process and is granted
special privileges, such as immunity from file permissions, if its effective
user ID is 0.

Special Processes. The processes with a process ID of 0 and a process ID of
1 are special processes and are referred to as proc0 and procl.

Proc0 is the scheduler. Procl is the initialization process (init). Procl is the
ancestor of every other process in the system and is used to control the pro-
cess structure.

File Descriptor. A file descriptor is a small integer used to do 1/O on a file.
The value of a file descriptor is from 0 to (NOFILES - 1). A process may
have no more than NOFILES file descriptors open simultaneously. A file
descriptor is returned by system calls such as open(2), or pipe(2). The file
descriptor is used as an argument by calls such as read(2), write(2), ioctl(2),
and close(2).

File Name. Names consisting of 1 to 14 characters may be used to name
an ordinary file, special file or directory.

These characters may be selected from the set of all character values exclud-
ing \0 (null) and the ASCII code for / (slash).

Note that it is generally unwise to use *, ?, [, or] as part of file names
because of the special meaning attached to these characters by the shell [see
sh(1)]. Other characters to avoid are the hypen, blank, tab, <, >,
blackslash, single and double quotes, accent grave, vertical bar, caret, curly
braces, and parentheses. Although permitted, the use of unprintable charac-
ters in file names should be avoided.

Path Name and Path Prefix. A path name is a null-terminated character
string starting with an optional slash (/), followed by zero or more directory
names separated by slashes, optionally followed by a file name.

If a path name begins with a slash, the path search begins at the root direc-
tory. Otherwise, the search begins from the current working directory.

A slash by itself names the root directory. An attempt to create or delete
the path-name slash by itself is undefined and may be considered an error.
The meaning of . and .. are defined under directory.

Unless specifically stated otherwise, the null path name is treated as if it
named a non-existent file.

Directory. Directories organize files into a hierarchical system of files
where directories are the nodes in the hierarchy. A directory is a file that
catalogues the list of files, including directories (sub-directories), that are
directly beneath it in the hierarchy. Directory entries are called links. By
convention, a directory contains at least two links, . and .., referred to as dot

-7-

INTRO(2) (C Software Development Set) INTRO(2)

and dot-dot respectively. Dot refers to the directory itself and dot-dot refers
to its parent directory. The root-directory, which is the top-most node of
the hierarchy, has itself as its parent-directory. The path-name of the root-
directory is / and the parent directory of the root-directory is /.

Root Directory and Current Working Directory. Each process has associ-
ated with it a concept of a root directory and a current working directory for
the purpose of resolving path name searches. The root directory of a pro-
cess need not be the root directory of the root file system.

File Access Permissions. Read, write, and execute/search permissions on a
file are granted to a process if one or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches the user ID of the
owner of the file; and the appropriate access bit of the “owner” por-
tion (0700) of the file mode is set.

The effective user ID of the process does not match the user ID of
the owner of the file; and the effective group ID of the