

SystelD V Interface Definition

SysteDl V

Interface Definition

Issue 2

VoluDle III

--ATlaT

ISBN 0-932764-1O-X

Library of Congress Catalog Card No. 85-063224

Select Code No. 320-013

Copyright© 1986 AT&T. All Rights Reserved.

No part of this publication may be reproduce or transmitted in any form or by any
means-graphic, electronic, electrical, mechanical, or chemical, including photocopying,
recording in any medium, taping, by any computer or information storage and retrieval sys­
tems, etc., without prior permissions in writing from AT&T.

IMPORTANT NOTE TO USERS
While every effort has been made to ensure the accuracy of all information in this docu­
ment, AT&T assumes no liability to any party for any loss of damage caused by errors or
omissions or by statements of any kind in the System V Interface Definition, its updates,
supplements, or special editions, whether such errors are omissions or statements resulting
from negligence, accident, or any other cause. AT&T further assumes no liability arising
out of the application or use of any product or system described herein; nor any liability for
incidental or consequential damages arising from the use of this document. AT&T dis­
claims all warranties regarding the information contained herein, whether expressed, im­
plied or statutory, including implied warranties of merchantability or fitness for a particular
purpose.

AT&T makes no representation that the interconnection of products in the manner
described herein will not infringe on existing or future patent rights, nor do the descriptions
contained herein imply the granting or license to make, use or sell equipment constructed
in accordance with this description.

AT&T reserves the right to make changes without further notice to any products herein to
improve reliability, function, or design.

This document was set on an AUTOLOGIC, Inc. APS-5* phototypesetter driven by the
troff formatter operating on UNIXt System V on an AT&T 3B20 computer.

* UNIX is a registered trademark of AT&T.
t APS-5 is a trademark of AUTOLOGIC, Inc.

How to Order

To order copies of the System V Interface Definition by phone, you may call:

(800) 432-6600 (Inside U.S.A.)
(800) 255-1242 (Inside Canada)
(317) 352-8557 (Outside U.S.A. & Canada)

To order copies of the System V interface Definition by mail, write to:

AT&T Customer Information Center
Attn: Customer Service Representative
P.O. Box 19901
Indianapolis, IN 46219
U.s.A.

Be sure to include the address the books should be shipped to and a check or
money order made payable to AT&T.

Please identify the books you want to order by Select Code. Select Codes for the
System V Interface Definition are:

320-011
320-012
320-013
307-131

Volume I
Volume II
Volume III
Volumes I, II, and III

System V Interface Definition Page v

Part I

Chapter 1
Chapter 2

Part II

Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Appendix

Part III

Chapter 8
Chapter 9
Chapter 10
Chapter 11

Part IV

Chapter 12
Chapter 13
Chapter 14
Chapter 15

Indexes

Table of
Contents

Page

Preface ix

A General Introduction to the
System V Interface Definition

General Introduction 3
Future Directions 9

Base System Definition Addendum

Introduction 19
Definitions 25
Environment 35
OS Service Routines 41
General Library Routines 105
Changes From Issue 2 Volume 1 129

Terminal Interface Extension Definition

Introduction 135
Environment 139
Library Routines 167
Commands and Utilities 201

Network Services Extension Definition

Introduction 209
Open Systems Networking Interfaces 211
Streams I/O Interfaces 285
Shared Resource Environment 325

Volume III

General Index 363
Function Index 375

System V Interface Definition Page vii

Preface

The System V Interface Definition (SVID) specifies an operating system
environment that allows users to create applications software that is independent
of any particular computer hardware. The System V Interface Definition applies
to computers that range from personal computers to mainframes. Applications
that conform to this specification will allow users to take advantage of changes in
technology and to choose the computer that best meets their needs from among
many manufacturers while retaining a common computing environment.

The System V Interface Definition specifies the operating system components
available to both end-users and application-programs. The functionality of com­
ponents is defined, but the implementation is not. The System V Interface
Definition specifies the source-code interfaces of each operating system com­
ponent as well as the run-time behavior seen by an application-program or an
end-user. The emphasis is on defining a common computing environment for
application-programs and end-users; not on the internals of the operating system,
such as the scheduler or memory manager.

An application-program using only components defined in the System V Inter­
face Definition will be compatible with and portable to any computer that sup­
ports the System V Interface. While the source-code may have to be re-compiled
to move an application-program to a new computer system that supports the Sys­
tem V Interface, the presence and behavior of the operating system components
as defined by the System V Interface Definition would be assured.

The System V Interface Definition is organized into a Base System Definition
plus a series of Extension Definitions. The Base System Definition specifies the
components that all System V operating systems must provide. The Extensions
to the Base System are not required to be present in a System V operating sys­
tem, but when a component is present it must conform to the specified func­
tionality. The System V Interface Definition lets end-users and application­
developers identify the features and functions available to them on any System V
operating system.

System V Interface Definition Page ix

Part I

A General Introduction to the
System V Interface Definition

1.1 AUDIENCE AND PURPOSE

Chapter 1
General Introduction

The System V Interface Definition (SVID) is intended for use by anyone who
must understand the operating system components that are consistent across all
System V environments. As such, its primary audience is the application­
developer building C language application-programs whose source-code must be
portable from one System V environment to another. A system builder should
also view these volumes as a necessary condition for supporting a System V
environment that will host such applications.

This publication is intended to serve the following major purposes:

• To serve as a single reference source for the definition of the external inter­
faces to services that are provided by all System V environments. These ser­
vices are designated as the Base System. This includes source-code interfaces
and run-time behavior as seen by an application-program. It does not include
the details of how the operating system implements these functions.

• To define all additional services (such as networking and data management) at
an equivalent external interface level and to group these services into Exten­
sions to the Base System.

• To serve as a complete definition of System V external interfaces, so that
application source-code that conforms to these interfaces and is compiled in
an environment that conforms to these interfaces, will execute as defined in a
System V environment. It is assumed that source-code is recompiled for the
proper target hardware. The basic objective is to facilitate the writing of
application-program source-code that is directly portable across all System V
implementations. Facilities outside of the Base System would require that the
appropriate Extension be installed on the target environment.

General Introduction Page 3

1.2 STRUCTURE AND CONTENT

1.2.1 Partitioning into Base System and Extensions

The System V Interface Definition partitions System V components into a Base
System and Extensions to that Base System. This does not change the definition
of System V. It is instead a recognition that the entire functionality of System
V may be unnecessary in certain environments, especially on small hardware con­
figurations. It also recognizes that different computing environments require
some functions that others do not.

The Base System functionality has been structured to provide a minimal, stand­
alone run-time environment for application-programs originally written in a
high-level language, such as C. In this environment, the end-user is not expected
to interact directly with the traditional System V shell and commands. An
example of such a system would be a dedicated-use system. That is, a system
devoted to a single application, such as a vertically-integrated application package
for managing a legal office, To execute, many applications programs will require
only the components in the Base System. Other applications will need one or
more Extensions.

The Extensions to this Base System have been structured to provide a growth
path in natural functional increments that leads to a full System V configuration.
The division between Base and Extensions will allow system builders to create
machines tailored for different purposes and markets, in an orderly fashion.
Thus, a small business/professional computer system designed for novice single­
users might include only the Base System and the Basic Utilities Extension. A
system for advanced business/professional users might add to this the Advanced
Utilities Extension. A system designed for high-level language software develop­
ment would include the Base System, the Kernel Extension and the Basic Utili­
ties, Advanced Utilities, and Software Development Extensions. Although the
Extensions are not meant to specify the physical packaging of System V for a
particular product, it is expected that the Extensions will lead to a fairly con­
sistent packaging scheme.

This partitioning allows an application to be built using a basic set of com­
ponents that are consistent across all System V implementations. This basic set
is the Base System. Where necessary, an application developer can choose to use
components from an Extension and require the run-time environment to support
that Extension in addition to the Base System.

Facilities or side effects that are not explicitly stated in the SVID are not
guaranteed, and should not be used by applications that require portability.

Page 4 General Introduction

1.2.2 Conforming Systems

All conforming systems must support the source code interfaces and runtime
behavior of all of the components of the Base System. A system may conform to
none or some Extensions. All the components of an Extension must be present
for a system to meet the requirements of the Extension. This does not preclude
a system from including only a few components from some Extension, but the
system would not then be said to have the Extension. Some Extensions require
that other Extensions be present on a system, for example, the Advanced Utili­
ties Extension requires the Basic Utilities Extension.

This volume of the System V Interface Definition corresponds to functionality in
AT&T System V Release 1.0, System V Release 2.0, and System V Release 3.0.
An implementation of System V may conform to the System V Release 1.0 func­
tionality, the System V Release 2.0 functionality, or the System V Release 3.0
functionality. All System V Release 2.0 enhancements to System V Release 1.0
are identified as such in the SVID; all System V Release 3.0 enhancements to
System V Release 2.0 are identified as such in the SVID.

1.2.3 Organization of Technical Information

For ease of use, the SVID has been divided into several Volumes containing the
following Extensions:

Volume 1. Base System

Kernel Extension

Volume 2. Basic Utilities Extension

Advanced Utilities Extension

Software Development Extension

Administered System Extension

Terminal Interface Extension

Volume 3. Base System Addendum

Terminal Interface Extension

Network Services Extension

Additional Volumes will define any further Extensions to System V.

General Introduction Page 5

The SVID defines the source-code interface and the run-time behavior of the
components that make up the Base System and each Extension. Components
include, for example, operating system service routines, general library routines,
system data files, special device files, and end-user utilities (commands).

When referred to individually, components will be identified by a suffix of the
form (XX_ YYY) where XX identifies the Base System or the Extension that the
component is in and YYY identifies the type of the component. For example,
components defined in the Operating System Service Routines section of the
Base System will be identified by (SA_OS), components defined in General
Library Routines of the Base System will be identified by (SA_LIS), and com­
ponents defined in the Operating System Service Routines section of the Kernel
Extension will be identified by (KE_OS). Possible types are OS, LIS, CMD (com­
mands or utilities) and ENV (environment).

The definition of the Base System includes an overview followed by chapters
that provide detailed definitions of each component in the Base System. Simi­
larly, the definition of each Extension includes an overview followed by chapters
that provide detailed definitions of each component in the Extension.

Pages containing the detailed component definitions are labeled with the name of
the component being defined. Some utilities and routines are described with
other related utilities or routines, and therefore do not have detailed definition
pages of their own.

An alphabetical index is provided in each Volume listing all components defined
in that Volume. The index points to the detailed definition pages on which a
component is to be found; the header for these pages may not contain the name
of the component being sought. For example, in Volume I, the entry for the
function calloe points to the MALLOC(SA_OS) pages, because the function ealloe
is defined with the function malloe on pages labeled MALLOC(SA_OS).

Each component definition follows the same structure. The sections are listed
below; not all the following sections may be present in each description. If
present, however, they will be in the given order. Sections entitled EXAMPLE,
APPLICATION USAGE, and USAGE are not considered part of the formal definition
of a component .

• NAME - name of component

• SYNOPSIS - summary of source-code or user-level interface

• DESCRIPTION - interface and runtime behavior

Page 6 General Introduction

• RETURN VALUE - value returned by the function

• ERRORS - possible error conditions

• FILES - names of files used

• APPLICATION USAGE or USAGE - guidance on use

• EXAMPLE - example

• SEE ALSO - list of related components

• FUTURE DIRECTIONS - planned enhancements

• LEVEL - see MECHANISM FOR EVOLUTION below

In general, components that are utilities do not have a RETURN VALUE section.
Except as noted in the detailed definition for a particular utility, utilities return a
zero exit code for success, and non-zero for failure.

The component definitions are similar in format to AT&T System V manual
pages, but have been extended or modified as follows:

• All machine-specific or implementation-specific information has been
removed. All implementation-specific constants have been replaced by sym­
bolic names, which are defined in a separate section [see implementation­
specific constants in Volume I: Part II - Base System Definition:
Chapter 4 - Definitions]. When these symbolic names are used they
always appear in curly brackets, e.g., {PROC_MAX}. The symbolic names
correspond to those defined by the November 1985 draft of the IEEE PI003
Standard to be in a <limits.h> header file; however, in this document, they
are not meant to be read as symbolic constants defined in header files.

• A section entitled FUTURE DIRECTIONS has been added to selected component
definitions. This section indicates how a component will evolve. The infor­
mation ranges from specific changes in functionality to more general indica­
tions of proposed development.

• A section entitled APPLICATION USAGE or USAGE has been added to guide
application developers on the expected or recommended usage of certain com­
ponents. Detailed definitions of operating system services and library routines
have an APPLICATION USAGE paragraph while utilities have a USAGE para­
graph. While operating system services and library routines are only used by
programs, utilities may be used by programs, by end-users or by system
administrators. The USAGE paragraph indicates which of these three is
appropriate for a particular utility (this is not meant to be prescriptive, but
rather to give guidance). The following terms are used in the USAGE

General Introduction Page 7

paragraph: application-program, end-user, system-administrator, or general.
The term general indicates that the utility might be used by all three:
application-programs, end-users and system-administrators.

• A section entitled LEVEL defines each component's commitment level:

Level-l components will· remain in the SVID and can be modified only in
upwardly compatible ways. Any change in its definition will preserve the pre­
vious source-code interface and run-time behavior in order to ensure that the
component remains upwardly-compatible.

Level-2 components will remain unchanged for at least three years following
entry into level-2, after which time the component may be modified in a non­
upwardly compatible way or may be dropped from the SVID. Level-2 com­
ponents are labeled with the starting date of this three-year period.

1.3 MECHANISM FOR EVOLUTION

The SVID will be reissued as necessary to reflect developments in the System V
Interface. In conjunction with these updates, the following changes may be made
to the definitions:

• Level-l components may be moved to level-2. The date of their entry into
level-2 will be the date of the reissue of the SVID in which the change is
made.

• Level-1 components will not move from one Extension into another Extension.

• Components may move from existing Extensions into the Base System. Com­
ponents will not move from the Base System into an Extension.

• New Extensions may be introduced with completely new functionality.

1.4 C LANGUAGE DEFINITION

Source-code interfaces described in the SVID are for the C language.

The following three references define the C language for System V Release 1.0,
System V Release 2.0, and System V Release 3.0 respectively:

• UNIX™ System V Programming Guide, Issue 1, February 1982.

• UNIX™ System V Programming Guide, Issue 2, April 1984.

• UNIX™ System V Programmers' Guide, 1986.

Page 8 General Introduction

Chapter 2
Future Directions

2.1 OPERATING SYSTEM STANDARDS

The IEEE PI003 working group is currently pursuing a draft standard for a
portable operating system interface. The System V Interface Definition is con­
sistent with the trial-use standard (November 1985), with several minor excep­
tions. Full conformance to the IEEE standard will be strongly considered after
its formal approval.

2.2 C LANGUAGE STANDARDIZATION

AT&T is committed to support the standardization of the C language being pur­
sued by ANSI X3Jll, in which its representatives take a leading role. Full con­
formance to the ANSI standard will be strongly considered after formal approval.

2.3 FLOATING POINT STANDARDS

The IEEE P754 Standard for Binary Floating Point Arithmetic will be supported
by System V. The existing library routines that deal with floating point
numbers, and which are likely to change in order to support the IEEE P754
Standard, belong to the following classes:

• routines that do arithmetic operations;

• routines that do input/output;

• routines that manipulate floating point numbers.

However, these changes are hardware dependent and will appear only on the
machines whose underlying floating point data representation and exception han­
dling mechanisms are those specified by the IEEE P754 Standard.

2.4 GRAPHICS EXTENSION

This Extension will track current industry efforts to define standards for graph­
ics functions. One area under active consideration is the Graphical Kernel Sub­
system (GKS).

General Introduction Page 9

2.5 INTERNATIONALIZATION

Where necessary, modifications will be made, in an upwardly compatible way, to
existing System V components to support internationalization. In addition, new
components will be added to support features not currently available in System
V. These will include tools that will allow national supplements to be added to
an implementation of System V.

National supplements would be small packages that contained the necessary sup­
plementary information, such as messages, databases, documentation, and
device-drivers that, when installed, would allow an implementation of System V
to process different national languages and support hardware (i.e., terminals,
printers) and local conventions found in different countries. System builders
would be able to create national supplements using the tools provided in System
V.

More than one national supplement could be installed on a system at a time,
resulting in a system with multiple language capabilities; however, national sup­
plements are envisioned as self-contained, not requiring or depending on other
installed national supplements.

Facilities that System V will provide to support internationalization and the
development of national supplements are:

• Messages and text from the kernel, utilities, and application programs will be
separated to enable support for national languages.

• Local conventions, or environments, will be supported transparently, depend­
ing on the language selected by the user. Among the conventions to be sup­
ported are date and time formats, collating sequences, and numeric representa­
tions.

• Supplementary code-sets will be supported to allow use of multiple code-sets,
and consequently character symbols, in addition to the ASCII code-set.

• Sixteen-bit code-sets will be supported. This will allow languages of Far
Eastern countries (i.e., Japan, Republic of China, Korea, the People's Republic
of China, etc.) to be used.

• Language selection will be provided at the user-level to allow users of different
languages to use the same system at the same time in their respective
languages.

Message Handling.
In the future, System V will support a facility to produce messages and text in
national languages. In conjunction with the Error Handling Standards defined
in Volume I: Part II - Base System Definition: Chapter 7 - General

Page 10 General Introduction

Library Routines, messages and text from the kernel, utilities, and applications
would be stored separately. In addition, a set of administrative utilities would be
provided to allow the creation of new messages and strings, as well as modifica­
tion to existing ones.

Local Conventions.
Local conventions define the common forms and rules used to communicate
information. The aim of internationalization is to provide System V applications
and utilities with the capability to interact with the end-user according to these
local-conventions. At the same time, applications and utilities must be portable
and easily adapted to other conventions (i.e., they must be shielded from any par­
ticular set of conventions). Existing utilities and interfaces will be modified to
support both implicit and explicit invocation of these conventions, with the fol­
lowing areas targeted for support:

Collating Sequence: The capability to define one or more collating sequences for
a specific code-set will be provided. Utilities providing sorted output or requiring
sorted input will be modified to allow invocation of different collating sequences.
In addition, tools will be provided to support defining of specific collating
sequences.

Character Classification: The capability to define, on a language-by-Ianguage
basis, character classes will be provided. The CTYPE(BA-LlB) library will be
enhanced to provide character classification in local languages. Where possible,
this capability will be provided through the existing classification routines. In
addition, new routines will be provided to support new capabilities (i.e., returning
an indication of which code-set a particular character comes from).

Date and Time Format: The capability to enter and display date and time in the
local language and according to local formats will be provided. This applies to all
utilities or services that operate with date/time specifications.

Numeric Representation: The capability to define the rules for numeric editing
(such as decimal delimiter) will be provided.

Currency Representation: The capability to specify rules and formats for editing
local currency will be provided.

8th-bit Cleanup.
To support code-sets in addition to ASCII, all 8-bits of a byte will be used for
character encoding. For example, some existing routines or utilities reject char­
acters with octal values greater than 177. Future releases will eliminate this and
similar problems.

General Introduction Page 11

Code-Set and Character Support.
There are essentially two representations that make up the code-set:

the external code-set and the internal code-set.

The external code-set are those code-sets generated by input/output devices (i.e.,
terminals, printers, etc.). The most notable example is the seven-bit ASCII l

code-set produced by most terminals and printers connected to System V today.

The internal code-set isa transformation of the external code-set according to
the rules presented in this section, and is used to represent bytes throughout the
rest of System V. Normally, no part of System V, except a device-driver, will see
the external code-set; however, in many cases, the external and internal encod­
ings will be the same with only minor exceptions.

The device-driver has the sole responsibility of mapping an external
code-set to an internal code-set and vice-versa.

The following sections· describe a template for transforming externally coded
characters into internally coded characters, methods of designating a particular
code-set to be used, and methods of designating a particular language to be used.

A Code-Set Template is a template for transforming externally coded characters
into internally coded characters accessible by the System V operating system,
utilities, and applications. The internal coding method discussed here is based
on the ISO 2022-1982 standard for code extension techniques, which suggests
the following two techniques for shifting between code-sets:

• Single-shift

• Locking-shift

The single-shift is a single byte used to announce a temporary shift to another
code-set. The byte, or bytes, immediately following the single-shift code are
interpreted as part of a new code-set. Subsequent characters are interpreted as
belonging to the primary code-set.

1. ASCII, as it is used here, is defined as the seven-bit code-set used for information interchange in the
United States. It does not refer to the extended eight-bit ASCII code-set, sometimes known as
ASCII-S, or local derivatives of the seven-bit ASCII code-set used in parts of Europe.

Page 12 General Introduction

The ISO standard defines two single-shift characters:

1. SS2, or single-shift two, and

2. SS3, or single-shift three.

The SS2 character is represented by hexadecimal Se, while the SS3 character is
represented by hexadecimal Sf.

The locking-shift technique is used to temporarily shift-in and shift-out of code­
sets. It consists of a pair of character sequences that allow a new code-set to be
used for more than one character. While in the context of a locking-shift
sequence, all characters, with the exception of single-shifted characters, are
assumed to belong to the new code-set.

Because of the context sensitivity of the locking-shift sequence, this method is
not recommended for use in System V. Therefore, the use of the single-shift
sequence is recommended to reduce the context sensitivity to as little as possible.

In addition to using the single-shifts to distinguish characters, the eighth-bit will
also be used to distinguish between the primary code-set and characters in one of
the three supplementary code-sets. By using the combination of eighth-bit and
single-shift characters, the internal coding method specifies a template for allow­
ing four code-sets to coexist simultaneously: one primary code-set and three sup­
plementary code-sets, with the two of the latter denoted by a single-shift charac­
ter. The representations for these internal code-sets are shown below:

Code-Set Internal Representation
Set 0 (Primary code-set) OXXXXXXX

Set 1 (Supplementary code-set #1) 1Xxxxxxx
-or-

1XXXXXXX 1XXXXXXX

Set 2 (Supplementary code-set #2) SS2 1xxxxxxx
-or-

SS2 1XXXXXXX 1XXXXXXX

Set 3 (Supplementary code-set #3) SS3 1XXXXXXX
-or-

SS3 1XXXXXXX 1XXXXXXX

General Introduction Page 13

Designation of the exact value of the four code-sets is performed through a code­
set designation and is discussed in the following section.

A Code-Set Designation will be dynamic and accessible/modifiable at the operat­
ing system, utility and application levels to satisfy the specific needs for support­
ing multiple code-sets. It will also reside at the file level, so files with different
code-set designations can exist on the same machine. That is, one file may be
encoded with one set of code-sets while another file is encoded with another set
of code-sets.

Specifically, it is desirable for code-set designation to meet the following require­
ments:

1. Code-set designations should be supported at the file level. Each file
would contain its own set of code-set designation values.

2. At file creation time, all files would be designated with a system-wide
default value.

3. Code-set designations could be changed dynamically.

4. The code-set designation value should contain information about:

• The width of a character in the code-set,

• The specific code-set designated (e.g., DIS 8859/12
, JIS 62263

, etc.),

5. Code-set designation information should be transferrable with the file
contents across networks.

In addition to the code-set designation, a language-designation would offer the
ability to designate which of several languages should be used for producing sys­
tems messages and for establishing an overall profile of the user's environment.
One method under consideration for this type of designation is to use one or
more exported environment-variables. For example, a LANGUAGE variable would
be used to denote the language (e.g., French, German, Italian, Japanese, English,
etc.). This variable would also be used as an index to user profile information to
determine which local conventions to use. The variable could be assigned at ini­
tiation of the login session and could also be changed at any time. In this way,

2. DIS 8859/1 Latin Language no. 1 is the newly-adopted ISO standard code-set, supporting most of the
Western European characters. It is an 8-bit code-set that contains US ASCII as a subset.

3. JIS 6226 is a ISO standard code-set for supporting the Japanese language. It is a 16-bit code-set
that contains both hiragana and katakana alphabets, as well as about 7000 of the kanji ideograms.

Page 14 General Introduction

language-designation is performed at user-level and controls the language of all
system messages and text coming out of the operating system, utilities and appli­
cations, as well as particular national conventions.

Handling Non-standard Code-Sets. There are several code-sets in the world
that the code-set template described here cannot support. The problem centers
around the use of the eighth-bit to distinguish between characters in different
code-sets. Specifically, these code-sets are as follows:

• The shifted-JIS code-set used in Japan,

• The packed Hangul code-set used in Korea,

• The Big 5 code-set used in the Republic of China (Taiwan),

• The Chinese Code for Data Communications also used in the Republic of
China.

Present plans are to provide limited support for these code-sets. Limited support
means that files containing these code-sets could be stored on System V
machines. No other support is currently planned; this implies that the mechan­
ism for processing these files would have to be built into applications.

Character Support. In some applications it will be necessary to manipulate
the variable-width characters coming from the supplementary code-sets.
Although some application developers may choose to develop their own facilities
for supporting this, System V will provide a generic facility for manipulating
internally coded eight-bit bytes to a data type that can represent characters in a
consistent manner. Initially, a new data type will be defined in the C program­
ming language to support up to 16-bits of information. In addition, routines that
use this new data type will be provided to allow application-developers to perform
operations on them.

General Introduction Page 15

Part II

Base System Definition Addendum

Chapter 3
Introduction

The Base System Addendum updates the Base System Definition of
Issue 2, Volume 1 and serves to document new functionality introduced
to System V in System V Release 3.0. New functions not available in
earlier releases are identified by the symbols tt next to the function
name at the top of the component page. Functions that existed previ­
ously but that have some additional functionality or other change as of
Release 3.0 are documented with the changes marked by a vertical bar
(I) in the margin. These pages should be compared to their correspond­
ing pages in the System V Interface Definition (SVID) Issue 2, Volume
1. Most of these changes are due to Future Directions now being
included in the component definition. An appendix documents changes
to Issue 2, Volume 1 that are due to error correction of the earlier SVID
volume.

The Base System is intended to support a minimal run-time environment for
executable applications. The Base System defines a basic set of System V com­
ponents needed by applications-programs. This basic set would be supported by
any conforming system. It defines each component's source-code interface and
run-time behavior, but does not specify its implementation. Source-code inter­
faces described are for the C language. While only the run-time behavior of these
components is supported by the Base System, the source-code interfaces to these
components are defined because an objective of the SVID is to facilitate
application-program source-code portability across all System V implementations.
It is assumed that an application-program targeted to run on a system that pro­
vides only the Base System (a run-time environment) would be compiled on a
system supporting software development.

No end-user level utilities (commands) are defined in the Base System. Execut­
able application-programs designed for maximum portability are expected to use
library routines rather than System Vend-user level utilities. For example, an
application-program written in C would use the CHOWN(BA-OS) routine to
change the owner of a file rather than using the CHOWN(AU_CMD) user-level util­
ity. This does not say that an application-program running in a target environ­
ment that supports only the Base System cannot execute another program.
Using the SYSTEM(BA_OS) routine, an application can execute another program
or application.

Base System Definition Addendum Page 19

It should be noted that some Extensions may add features to components defined
in the Base System. These additional features that are supported in an extended
environment are described with the Extension in a section titled
EFFECTS(XX_ENV). See, for example, EFFECTS(KE_ENV) in Volume I: Part III
- Kernel Extension Definition: Chapter 10 - Environment.

Definitions for the Base System are given in the next chapter, Chapter 4 -
Definitions of SVID Issue 2, Volume 1. Because the Base System is a prere­
quisite for any Extension, these definitions also apply to the Extensions.
Chapter 5 - Environment describes the Base System Environment, includ­
ing error conditions, environmental variables, directory tree structure, data files
and special device files that must be present on a Base System. Chapter 6 -
OS Service Routines defines operating system service routines that provide
applications access to basic system resources (e.g., allocating dynamic storage)
and Chapter 7 - General Library Routines defines general purpose library
routines (e.g., string handling routines). The remainder of this introduction gives
an overview of the contents of Chapter 6 - OS Service Routines and
Chapter 7 - General Library Routines.

3.1 OPERATING SYSTEM SERVICE ROUTINES

Table 3-1 lists the basic set of routines that provide operating system services,
e.g., process control, to applications.

Page 20 Base System Definition Addendum

Table 3-1: Base System: OS Service Routines

abort ABORT(BA-OS) opendirtt DIRECTORY(BA-OS)
access ACCESS(BA-OS) pause PAUSE(BA-OS)
alarm ALARM(BA-OS) pc lose POPEN(BA-OS)
calloc MALLOC(BA-OS) pipe PIPE(BA_OS)
chdir CHDIR(BA-OS) popen POPEN(BA_OS)
chmod CHMOD(BA-OS) readdirtt DIRECTORY(BA-OS)
chown CHOWN(BA-OS) realloc MALLOC(BA-OS)
clearerr FERROR(BA-OS) rewind FSEEK(BA-OS)
closedirtt DIRECTORY(BA-OS) rewinddirtt DIRECTORY(BA-OS)
dup DUP(BA-OS) rmdirtt RMDIR(BA-OS)
dup2tt DUP2(BA-OS) setgid SETUID(BA-OS)
exit EXIT(BA-OS) setpgrp SETPGRP(BA_OS)
fclose FCLOSE(BA-OS) setuid SETUID(BA_OS)
fcntl FCNTL(BA-OS) sigholdtt SIGSET(BA-OS)
fdopen FOPEN(BA-OS) sigignorett SIGSET(BA-OS)
feof FERROR(BA-OS) sigrelsett SIGSET(BA-OS)
ferror FERROR(BA-OS) sigsettt SIGSET(BA-OS)
fflush FCLOSE(BA-OS) signal SIGNAL(BA-OS)
fileno FERROR(BA-OS) sleep SLEEP(BA-OS)
fopen FOPEN(BA-OS) stat ST AT(BA_OS)
fread FREAD(BA-OS) stime STIME(BA-OS)
free MALLOC(BA-OS) system SYSTEM(BA-OS)
freopen FOPEN(BA-OS) time TIME(BA-OS)
fseek FSEEK(BA-OS) times TIMES(BA_OS)
fstat STAT(BA-OS) ulimit ULlMIT(BA-OS)
ftell FSEEK(BA-OS) umask UMASK(BA_OS)
fwrite FREAD(BA-OS) uname UNAME(BA-OS)
getcwd GETCWD(BA-OS) unlink UNLlNK(BA_OS)
getegid GETUID(BA-OS) ustat USTAT(BA-OS)
geteuid GETUID(BA-OS) utime UTIME(BA-OS)
getgid GETUID(BA-OS) wait WAIT(BA_OS)
getpgrp GETPID(BA-OS)
getpid GETPID(BA-OS)
getppid GETPID(BA-OS)
getuid GETUID(BA-OS)
ioctl IOCTL(BA-OS)
kill KILL(BA_OS)
link LlNK(BA-OS)
lockf§ LOCKF(BA-OS)
mallinfot MALLOC(BA-OS)
malloc MALLOC(BA-OS)
malloptt MALLOC(BA-OS)
mkdirt MKDIR(BA_OS)
mknod MKNOD(BA-OS)

close CLOSE(BA-OS) fork FORK(BA_OS)
creat CREAT(BA_OS) lseek LSEEK(BA-OS)
execl EXEC(BA-OS) mount MOUNT(BA-OS)
execle EXEC(BA-OS) open OPEN(BA-OS)
execlp EXEC(BA-OS) read READ(BA-OS)
execv EXEC(BA-OS) umount UMOUNT(BA-OS)
execve EXEC(BA-OS) write WRITE(BA-OS)
execvp EXEC(BA-OS)

_exit EXIT(BA-OS) sync SYNC(BA-OS)

Base System Definition Addendum Page 21

The operating system service routines provide access to and control over system
resources such as memory, files, process execution. Some System V routines that
provide operating system services are not supported by the Base System. An
application-program that used any of these would require an extended environ­
ment. See, for example, Volume I: Part III - Kernel Extension Definition.

All the routines in Table 3-1, except those marked with t, tt. or §, are common
to System V Release 1.0, System V Release 2.0, and System V Release 3.0.
Those marked with t first appeared in System V Release 2.0. The function
lockf, marked with §, is a post System V Release 2.0 component. Those marked
with tt first appeared in System V Release 3.0.

Table 3-1 is shown as three sets of routines, which reflect recommended usage by
application -programs.

The first set of routines (from abort to wait) should fulfill the needs of most
application -programs.

The second set of routines (from close to write) should be used by application­
programs only when some special need requires it. For example, application­
programs, when possible, should use the routine system rather than the routines
fork and exec because it is easier to use and supplies more functionality. The
corresponding Standard Input/Output, stdio routines [see stdio-routines in
Chapter 4 - Definitions] should be used instead of the routines close, creat,
lseek, open, read, write (e.g., the stdio routine fopen should be used rather
than the routine open).

The third set of routines (_exit and sync), although they are defined as part of
the basic set of routines supported by any System V operating system, are not
expected to be used by application-programs. These routines are used by other
components of the Base System.

3.2 GENERAL LIBRARY ROUTINES

Table 3-2 lists the basic set of General Library Routines that are likely to be
used by application-programs.

Page 22 Base System Definition Addendum

Table 3-2: Base System: General Library Routines

abs ABS(B~LlB) jO BESSEL(BA_LlB)
acos TRIG(BA_LlB) jl BESSEL(B~LlB)

asin TRIG(B~LlB) jn BESSEL(BA_LlB)
atan2 TRIG(B~LlB) ldexp FREXP(BA_LlB)

atan TRIG(BA_LlB) 10glO EXP(B~LlB)

ceil FLOOR(B~LlB) log EXP(B~LlB)

cos TRIG(BA_LlB) matherr MATHERR(BA_LlB)
cosh SINH(BA_LlB) modf FREXP(B~LlB)

erf ERF(BA_LlB) pow EXP(B~LlB)

erfc ERF(B~LlB) sin TRIG(BA_LlB)
exp EXP(B~LlB) sinh SINH(BA_LlB)
fabs FLOOR(BA_LlB) sqrt EXP(B~LlB)

floor FLOOR(BA_LlB) tan TRIG(B~LlB)

fmod FLOOR(BA_LlB) tanh SINH(BA_LlB)
frexp FREXP(B~LlB) yO BESSEL(BA_LlB)
gamma GAMMA(B~LlB) yl BESSEL(BA_LlB)
hypot HYPOT(B~LlB) yn BESSEL(BA_LlB)

_to lower CONV(B~LlB) memccpy MEMORY(B~LlB)

_toupper CONV(BA_LlB) memchr MEMORY(BA_LlB)
advance REGEXP(BA_LlB) memcmp MEMORY(BA_LlB)
asctime CTIME(B~LlB) memcpy MEMORY(B~LlB)

atof STRTOD(B~LlB) memset MEMORY(B~LlB)

atoi STRTOL(B~LI B) setkey# CRYPT(B~LlB)

atol STRTOL(B~LlB) step REGEXP(BA_LlB)
compile REGEXP(BA_LlB) strcat STRING(BA_LlB)
crypt# CRYPT(B~LlB) strchr STRING(B~LlB)

ctime CTIME(B~LlB) strcmp STRING(B~LlB)

encrypt# CRYPT(B~LlB) strcpy STRING(BA_LlB)
gmtime CTIME(B~LlB) strcspn STRING(BA_LlB)
isalnum CTYPE(BA_LlB) strduptt STRING(BA_LlB)
isalpha CTYPE(B~LlB) strlen STRING(BA_LlB)
isascii CTYPE(B~LlB) strncat STRING(BA_LlB)
iscntrl CTYPE(B~LlB) strncmp STRING(B~LlB)

isdigit CTYPE(BA_LlB) strncpy STRING(B~LlB)

isgraph CTYPE(B~LlB) strpbrk STRING(B~LlB)

is lower CTYPE(BA_LlB) strrchr STRING(B~LlB)

isprint CTYPE(B~LlB) strspn STRING(B~LlB)

ispunct CTYPE(B~LlB) strtodt STRTOD(BA_LlB)
isspace CTYPE(B~LlB) strtok STRING(BA_LlB)
isupper CTYPE(BA_LlB) strtol STRTOL(BA_LI B)
isxdigit CTYPE(B~LlB) toascii CONV(BA_LlB)
local time CTIME(B~LlB) tolower CONV(BA_LlB)

toupper CONV(BA_LlB)
tzset CTIME(BA_LlB)

bsearch BSEARCH(B~LlB) fgets GETS(B~LlB)

clock CLOCK(BA_LlB) fprintf PRINTF(BA_LlB)
ctermid CTERMID(BA_LlB) fscanf SCANF(B~LlB)

drand48 DRAN D48(BA_LI B) fputc PUTC(BA_LlB)
erand48 DRAND48(BA_LlB) fputs PUTS(BA_LlB)
fgetc GETC(B~LlB) ftw FTW(BA_LlB)

Base System Definition Addendum Page 23

getc GETC(B~LlB) perror* PERROR(B~LlB)

getchar GETC(B~LlB) printf PRINTF(B~LlB)

getenv GETENV(BA_LlB) putc PUTC(BA_LlB)
getopt GETOPT(B~LlB) putchar PUTC(BA_LlB)
gets GETS(B~LlB) putenvt PUTENV(B~LlB)

getw GETC(B~LlB) puts PUTS(B~LlB)

gsignal* SSIGNAL(BA_LlB) putw PUTC(B~LlB)

hcreate HSEARCH(BA_LlB) qsort QSORT(B~LlB)

hdestroy HSEARCH(B~LlB) rand RAND(B~LlB)

hsearch HSEARCH(B~LlB) scanf SCANF(B~LlB)

isatty nYNAME(B~LlB) seed48 DRAND48(BA_LlB)
jrand48 DRAND48(B~LlB) setbuf SETBUF(BA_LlB)
Icong48 DRAND48(B~LlB) setjmp SET JMP(B~LlB)

lfindt LSEARCH(B~LlB) setvbuq SETBUF(B~LlB)

longjmp SET JMP(B~LlB) sprintf PRINTF(B~LlB)

Irand48 DRAND48(B~LlB) srand48 DRAND48(B~LlB)

lsearch LSEARCH(B~LlB) srand RAND(B~LlB)

mktemp MKTEMP(BA_LlB) sscanf SCAN F(BA_LI B)
mrand48 DRAND48(B~LlB) ssignal* SSIGNAL(B~LlB)

nrand48 DRAND48(B~LlB) swab SWAB(B~LlB)

tdelete TSEARCH(B~LlB)

tempnam TMPNAM(B~LlB)

tfindt TSEARCH(B~LlB)

tmpfile TMPFILE(B~LlB)

tmpnam TMPNAM(B~LlB)

tsearch TSEARCH(B~LlB)

ttyname nYNAME(B~LlB)

twalk TSEARCH(B~LlB)

ungetc UNGETC(B~LlB)

vfprintti VPRINTF(B~LlB)

vprintq VPRINTF(B~LlB)

vsprintq VPRINTF(B~LlB)

The general library routines perform a wide range of useful functions including:
mathematical functions shown in the first part of Table 3-2; string and character
handling routines shown in the second part of Table 3-2; I/O routines, search
routines, sorting routines and others shown in the third part of Table 3-2.

The run-time behavior of these routines, as defined in the SVID, must be sup­
ported by any System V operating system. The libraries themselves are not
required to be present on a system that consists only of the Base System. While
the Base System is required to support the execution of application-programs
that use these routines, the Software Development Extension [see Volume II:
Part V - Software Development Extension Definition] is required to
support the compilation of those application-programs.

Routines marked with t first appeared in System V Release 2.0. Routines
marked with tt first appeared in System V Release 3.0. All others are in Sys­
tem V Release 1.0, System V Release 2.0, and System V Release 3.0. Routines
marked with * are level-2, as defined in Chapter 1 - General Introduction.
Routines marked with # are optional and may not be present on all conforming
systems.

Page 24 Base System Definition Addendum

Base System Definition Addendum

Chapter 4
Definitions

Page 25

ASCII character set
Tables 4-1 and 4-2 are maps of the ASCII character set, giving octal and hexade­
cimal equivalents of each character. Although the ASCII code does not use the
eighth-bit in an octet, this bit should not be used for other purposes because
codes for other languages may need to use it (see section on INTERNATIONALI­
ZATION in Chapter 2 Future Directions).

Table 4-1: Octal map of ASCII character set.

000 nul 001 soh 002 stx 003 etx 004 eot 005 enq 006 ack 007 bel
010 bs 011 ht 012 nl 013 vt 014 np 015 cr 016 so 017 si
020 die 021 del 022 dc2 023 dc3 024 dc4 025 nak 026 syn 027 etb
030 can 031 em 032 sub 033 esc 034 fs 035 gs 036 rs 037 us
040 sp 041 ! 042 " 043 # 044 $ 045 % 046 & 047 '
050 (051) 052 * 053 + 054, 055 - 056. 057 /
0600 061 1 0622 0633 0644 0655 0666 0677
0708 071 9 072 : 073 ; 074 < 075 = 076 > 077 ?
100@ 101 A 102 B 103 C 104 D 105E 106 F 107 G
110H 111 I 112J 113K 114L 115M 116N 1170
120 P 121 Q 122 R 123 S 124 T 125 U 126 V 127 W
130 X 131 Y 132 Z 133 [134 \ 135] 136 137 _
140 ' 141 a 142 b 143 c 144 d 145 e 146 f 147 g
150 h 151 i 152 j 153 k 154 I 155 m 156 n 1570
160 p 161 q 162 r 163 s 164 t 165 u 166 v 167 w
170 x 171 y 172 z 173 { 174 I 175 } 176- 177 del

Table 4-2: Hexadecimal map of ASCII character set.

00 nul 01 soh 02 stx 03 etx 04 eot 05 enq 06 ack 07 bel
08 bs 09 ht Oa nl Ob vt Oc np Od cr Oe so Of si
10 die 11 del 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb
18 can 19 em 1a sub Ib esc Ie fs Id gs Ie rs Hus
20 sp 21 ! 22 " 23 # 24 $ 25 % 26 & 27 '
28 (29) 2a * 2b + 2c, 2d - 2e. 2f /
300 31 1 322 333 344 355 366 377
388 399 3a: 3b; 3c < 3d = 3e> 3f?
40@ 41 A 42 B 43 C 44 D 45 E 46 F 47 G
48 H 49 I 4a J 4b K 4c L 4dM 4e N 4fO
50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57W
58 X 59 Y 5a Z 5b [5c \ 5d] 5e 5f _
60 ' 61 a 62 b 63 c 64 d 65 e 66 f 67 g
68 h 69 i 6aj 6b k 6c I 6dm 6e n 6f 0
70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w
78 x 79 y 7a z 7b { 7c I 7d} 7e - 7f del

Page 26 Base System Definition Addendum

directory
Directories organize files into a hierarchical system of files where directories are
the nodes in the hierarchy. A directory is a file that catalogues the list of files,
including directories (sub-directories), that are directly beneath it in the hierar­
chy. Entries in a directory file are called links. A link associates a file identifier
with a file name. By convention, a directory contains at least two links, 0 (dot)
and 00 (dot-dot). The link called dot refers to the directory itself while dot-dot
refers to its parent-directory. The root-directory, which is the top-most node of
the hierarchy, has itself as its parent-directory. The path-name of the root direc­
tory is / and the parent-directory of the root-directory is /.

effective-user-ID and effective-group-ID
An active process has an effective-user-ID and an effective-group-ID that are used
to determine file access permissions (see below). The effective-user-ID and
effective-group-ID are equal to the process's real-user-ID and real-group-ID
respectively, unless the process or one of its ancestors evolved from a file that
had the set-user-ID bit or set-group-ID bit set [see EXEC(BA_OS)]. In addition,
they can be reset with the SETUID(BA_OS) and SETGID(BA_OS) routines, respec­
tively.

environmental variables
When a process begins, an array of strings called the environment is made avail­
able by the EXEC(BA-OS) routine [see also SYSTEM(BA_OS)]. By convention,
these strings have the form variable=value, for example,
PATH=:/bin:/usr/bin. These environmental variables provide a way to make
information about an end-user's environment available to programs [see
ENVVAR(BA_ENV)] .

file access permissions
Read, write, and execute/search permissions [see CHMOD(BA_OS)] on a file are
granted to a process if one or more of the following are true:

• The effective-user-ID of the process is super-user.

• The effective-user-ID of the process matches the user-ID of the owner of the
file and the appropriate access bit of the owner portion of the file mode is set.

• The effective-user-ID of the process does not match the user-ID of the owner
of the file and the effective-group-ID of the process matches the group of the
file and the appropriate access bit of the group portion of the file mode is set.

• The effective-user-ID of the process does not match the user-ID of the owner
of the file and the effective-group-ID of the process does not match the group­
ID of the file and the appropriate access bit of the other portion of the file
mode is set.

Base System Definition Addendum Page 27

Otherwise, the corresponding permissions are denied.

file-descriptor
A file-descriptor is a small integer used to identify a file for the purposes of doing
I/O. The value of a file-descriptor is from 0 to {OPEN_MAX}-l. An open file­
descriptor is obtained from a call to the CREAT(BA_OS), DUP(BA-OS),
FCNTL(BA_OS), OPEN(BA-OS), or PIPE(BA_OS) routine. A process may have no
more than {OPEN_MAX} file-descriptors open simultaneously.

A file-descriptor has associated with it information used in performing I/O on the
file: a file pointer that marks the current position within the file where I/O will
begin; file status and access modes (e.g., read, write, read/write) [see
OPEN(BA_OS)]; and close-on-exec flag [see FCNTL(BA-OS)]. Multiple file­
descriptors may identify the same file. The file-descriptor is used as an argument
by such routines as the REAO(BA_OS), WRITE(BA-OS), IOCTL(BA_OS), and
CLOSE(BA_OS) routines.

file-name
Strings consisting of 1 to {NAME_MAX} characters may be used to name an
ordinary file, a special file or a directory. {NAME~AX} must be at least 14.
These characters may be selected from the set of all character values excluding
the characters "null" and "slash" (f).

Note that it is generally unwise to use *, ?, !, [, or] as part of file-names because
of the special meaning attached to these characters for file-name expansion by
the command interpreter [see SYSTEM(BA_OS)]. Other characters to avoid are
the hyphen, blank, tab, <, >, backslash, single and double quotes, accent grave,
vertical bar, caret, curly braces, and parentheses. It is also advisable to avoid the
use of non-printing characters in file names.

implementation-specific constants
In detailed definitions of components, it is sometimes necessary to refer to con­
stants that are implementation-specific, but which are not necessarily expected to
be accessible to an application-program. Many of these constants describe
boundary-conditions and system-limits.

In the SVID, for readability, these constants are replaced with symbolic names.
These names always appear enclosed in curly brackets to distinguish them from
symbolic names of other implementation-specific constants that are accessible to
application-programs by header files. These names are not necessarily accessible
to an application-program through a header file, although they may be defined in
the documentation for a particular system.

Page 28 Base System Definition Addendum

In general, a portable application program should not refer to these constants in
its code. For example, an application-program would not be expected to test the
length of an argument list given to an EXEC(BS_OS) routine to determine if it
was greater than {ARG_MAX}. The following lists the implementation-specific
constants that may be used in System V component definitions:

Name Description
{ARG_MAX} max. length of argument to exec
{CHARj3IT} number of bits in a char
{ CHAR_MAX} max. integer value of a char
{ CHILD_MAX} max. number of processes per user-ID
{ CLK_ TCK} number of clock ticks per second
{FCHR_MAX} max. size of a file in bytes
{INT_MAX} max. decimal value of an int
{LINK_MAX} max. number of links to a single file
{LOCK_MAX} max. number of entries in system lock table
{LONGj3IT} number of bits in a long
{LONG_MAX} max. decimal value of a long
{MAXDOUBLE} max. decimal value of a double
{MAX_CHAR} max. size of character input buffer
{NAME_MAX} max. number of characters in a file-name
{OPEN_MAX} max. number of files a process can have open
{ PASS_MAX} max. number of significant characters in a password
{PATH_MAX} max. number of characters in a path-name
{PID_MAX} max. value for a process-ID
{PIPEj3UF} max. number bytes atomic in write to a pipe
{ PIPE_MAX} max. number of bytes written to a pipe in a write
{PROC_MAX} max. number of simultaneous processes, system wide
{SHRT_MAX} max. decimal value of a short
{STDj3LK} number of bytes in a physical I/O block
{SYS_NMLN} number of characters in string returned by uname
{SYS_OPEN} max. number of files open on system
{TMP _MAX} max. number of unique names generated by tmpnam
{UID_MAX} max. value for a user-ID or group-ID
{USI_MAX} max. decimal value of an unsigned
{WORDj3IT} number of bits in a word or int
{CHAR_MIN} min. integer value of a char
{INT_MIN} min. decimal value of an int
{LONG_MIN} min. decimal value of a long
{SHRT_MIN} min. decimal value of a short

Base System Definition Addendum Page 29

parent-proceSS-ID
The parent-process-ID of a process is the process-ID of its creator, for the life­
time of its creator [see EXIT(BA_OS)]. A new process is created by a currently
active-process [see FORK(BA_OS)].

path-name and path-prefix
In a C program, a path-name is a null-terminated character-string starting with
an optional slash (J), followed by zero or more directory-names separated by
slashes, optionally followed by a file-name. A null string is undefined and may
be considered an error.

More precisely, a path-name is a null-terminated character-string as follows:

<path_name>::=<file_name>!<path_prefix><file_narne>!I!.! ..
<path_prefix>: :=<rtprefix>!I<rtprefix>!empty
<rtprefix>: :=<dirnarne>I!<rtprefix><dirnarne>1

where <file_name> is a string of 1 to {NAME_MAX} significant characters
other than slash and null, and <dirname> is a string of 1 to {NAME_MAX} sig­
nificant characters (other than slash and null) that names a directory. The result
of names not produced by the grammar are undefined.

If a path-name begins with a slash, the path search begins at the root-directory.
Otherwise, the search begins from the current-working-directory.

A slash by itself names the root-directory. An attempt to create or delete the
path-name slash by itself is undefined and may be considered an error.

The meanings of . and .. are defined under directory.

process-group-ID
Each active-process is a member of a process-group. The process-group is
uniquely identified by a positive-integer, called the process-group-ID, which is the
process-ID of the group-leader (see below). This grouping permits the signaling
of related processes [see KILL(BA_OS)]. A process inherits the process-group-ID of
the process that created it [see FORK(BA_OS) and EXEC(BA_OS)].

process-group-Ieader
A process-group-Ieader is any process whose process-group-ID is the same as its
process-ID. Any process that is not a process-group-Ieader may detach itself from
its current process-group and become a new process-group-Ieader by calling the
SETPGRP(BA_OS) routine.

Page 30 Base System Definition Addendum

process-ID
Each active-process in the system is uniquely identified by a positive-integer
called a process-ID. The range of this ID is from 0 to {PID_MAX}. By conven­
tion, process-ID 0 and 1 are reserved for special system-processes.

real-user-ID and real-group-ID
Each user allowed on the system is identified by a positive-integer called a real­
user-ID. Each user is also a member of a group. The group is identified by a
positive-integer called the real-group-ID.

An active-process has a real-user-ID and real-group-ID that are set to the real­
user-ID and real-group-ID, respectively, of the user responsible for the creation of
the process. They can be reset with the SETUID(S~OS) and SETGID(SA_OS)
routines, respectively.

root-directory and current-working-directory
Each process has associated with it a concept of a root-directory and a current­
working-directory for the purpose of resolving path searches. The root-directory
of a process need not be the root-directory of the root file system [see
CHROOT(SA_OS)].

special-processes
All special-processes are system-processes (e.g., a system's process-scheduler). At
least process-IDs 0 and 1 are reserved for special-processes.

stdio-routines
A set of routines described as Standard I/O (stdio) routines constitute an effi­
cient, user-level I/O buffering scheme. The complete set of Standard I/O, stdio
routines is shown below [see also the definition of stdio-stream below]. Detailed
component definitions of each can be found in either Chapter 6, the system ser­
vice (SA_OS) routines or Chapter 7, the general library (SA_LIS) routines.

(SA_OS) clearerr, fclose, fdopen, feof, ferror, fileno, fflush, fopen, fread,
freopen, fseek, ftell, fwrite, popen, pclose, rewind.

(SA_LIS) ctermid, fgetc, fgets, fprintf; fputc, fputs, fscanf, getchar, gets,
getw, printf, putc, putchar, puts, putw, scanf, setbuf, setvbuf,
tempnam, tmpnam, ungetc, vprintf, vfprintf, vsprintf.

The Standard I/O routines and constants are declared in the <stdio.h> header
file and need no further declaration. The following functions are implemented as
macros and must not be redeclared: getc, getchar, putc, putchar, ferror,
feof, clearerr, and fileno. The macros getc and putc handle characters
quickly. The macros getchar and putchar, and the higher-level routines fgetc,
fgets, fprintf, fputc, fputs, fread, fscanf, fwrite, gets, getw, printf, puts,

Base System Definition Addendum Page 31

putw, and scanf all use or act as if they use getc and putc; they can be freely
intermixed.

The <stdio.h> header file also defines three symbolic constants used by the
stdio routines:

The defined constant NULL designates a nonexistent null pointer.

The integer constant EOF is returned upon end-of-file or error by most
integer functions that deal with streams (see the individual component
definitions for details).

The integer constant BUFSIZ specifies the size of the buffer required
by the SETBUF(BA_LlB) routine.

Any application-program that uses the stdio routines must include the
<stdio.h> header file.

stdio-stream
A file with associated stdio buffering is called a stream. A stream is a pointer to
a type FILE defined by the <stdio.h> header file. The FOPEN(BA_OS) routine
creates certain descriptive data for a stream and returns a pointer that identifies
the stream in all further transactions with other stdio routines.

Most stdio routines manipulate either a stream created by the function fop en or
one of three streams that are associated with three files that are expected to be
open in the Base System [see TERMIO(B~ENV)]. These three streams are
declared in the <stdio.h> header file:

stdin
stdout
stderr

the standard input file.
the standard output file.
the standard error file.

Output streams, with the exception of the standard error stream stderr, are by
default buffered if the output refers to a file and line-buffered if the output refers
to a terminal. The standard error output stream stderr is by default unbuffered.
When an output stream is unbuffered, information is queued for writing on the
destination file or terminal as soon as written; when it is buffered, many charac­
ters are saved up and written as a block. When it is line-buffered, each line of
output is queued for writing on the destination terminal as soon as the line is
completed (that is, as soon as a new-line character is written or terminal input is
requested). The SETBUF(BA_LlB) routines may be used to change the stream's
buffering strategy.

Page 32 Base System Definition Addendum

super-user
A process is recognized as a super-user process and is granted special privileges if
its effective-user-ID is O.

tty-group-ID
Each active-process can be a member of a terminal-group that shares a control
terminal [see DEVTTY(BA_ENV)] and is identified by a positive-integer called the
tty-group-ID. This grouping is used to terminate a group of related processes
upon termination of one of the processes in the group [see EXIT(BA_OS) and
SIGNAL(BA_OS)].

Base System Definition Addendum Page 33

Base System Definition Addendum

Chapter 5
Environment

Page 35

ERRNO(BA_ENV)

NAME

errors - error code and condition definitions
SYNOPSIS

#include <errno.h>

extern int errno;

DESCRIPTION
The numerical value represented by the symbolic name of an error condi­
tion is assigned to the external variable errno for errors that occur when
executing a system service routine or general library routine.

The component definitions given in Chapter 6 - OS Service Routines
and Chapter 7 - General Library Routines, list possible error condi­
tions for each routine and the meaning of the error in that context. The
order in which possible errors are listed is not significant and does not
imply precedence. The value of errno should be checked only after an
error has been indicated; that is, when the return value of the component
indicates an error, and the component definition specifies that errno will
be set. The errno value 0 is reserved; no error condition will be equal to
zero. An application that checks the value of errno must include the
<errno.h> header file.

Additional error conditions may be defined by Extensions to the Base Sys­
tem or by particular implementations.

The following list describes the general meaning of each error:

E2BIG

EACCES

EAGAIN

EBADF

Page 36

Argument list too long
An argument list longer than {ARG_MAX} bytes was
presented to a member of the EXEC(B~OS) family of rou­
tines.

Permission denied
An attempt was made to access a file in a way forbidden by
the protection system.

Resource temporarily unavailable, try again later
For example, the FORK(BA_OS) routine failed because the
system's process table is full.

Bad file number
Either a file-descriptor refers to no open file, or a read
(respectively, write) request was made to a file that is open
only for writing (respectively, reading).

Base System Definition Addendum

ERRNO(BA_ENV)

EBUSY Device or resource busy
An attempt was made to mount a device that was already
mounted or an attempt was made to dismount a device on
which there is an active file (open file, current directory,
mounted-on file, active text segment). It will also occur if an
attempt is made to enable accounting when it is already
enabled. The device or resource is currently unavailable.

ECHILD No child processes
The WAIT(BA_OS) routine was executed by a process that had
no existing or unwaited-for child processes.

EDEADLK Deadlock avoided

EDOM

EEXIST

EFAULT

EFBIG

EINTR

The request would have caused a deadlock; the situation was
detected and avoided.

Math argument
The argument of a function in the math package is out of the
domain of the function.

File exists
An existing file was mentioned in an inappropriate context
(e.g., a call to the LlNK(BA-OS) routine).

Bad address
The system encountered a hardware fault in attempting to
use an argument of a routine. For example, errno poten­
tially may be set to EF A UL T any time a routine that takes a
pointer argument is passed an invalid address, if the system
can detect the condition. Because systems will differ in their
ability to reliably detect a bad address, on some implementa­
tions passing a bad address to a routine will result in unde­
fined behavior.

File too large
The size of a file exceeded the maximum file size,
{FeHR-MAX} [see ULlMIT(BA-OS)].

Interrupted system service
An asynchronous signal (such as interrupt or quit), which the
user has elected to catch, occurred during a system service
routine. If execution is resumed after processing the signal,
it will appear as if the interrupted routine returned this error
condition.

Base System Definition Addendum Page 37

ERRNO(BA-ENV)

EINVAL Invalid argument
Some invalid argument (e.g., dismounting a non-mounted
device; mentioning an undefined signal in a call to the
SIGNAL(B~OS) or KILL(B~OS) routine). Also set by math
routines.

EIO I/O error
Some physical I/O error has occurred. This error may, in
some cases, occur on a call following the one to which it
actually applies.

EISDIR Is a directory
An attempt was made to write on a directory.

ELIBACC Reserved.

ELIBBAD Reserved.

ELIBEXEC Reserved.

ELIBMAX Reserved.

ELIBSCN Reserved.

EMFILE Too many open files in a process
No process may have more than {OPEN_MAX} file descrip­
tors open at a time.

EMLINK Too many links
An attempt to make more than the maximum number of
links, {LINK_MAX}, to a file.

ENFILE Too many open files in the system
The system file table is full (i.e., {SYS_OPEN} files are open,
and temporarily no more opens can be accepted).

ENODEV No such device
An attempt was made to apply an inappropriate operation to
a device (e.g., read a write-only device).

ENOENT No such file or directory
A file name is specified and the file should exist but doesn't,
or one of the directories in a path-name does not exist, or a
path-name is longer than {PATH_MAX} characters.

ENOEXEC Exec format error
A request is made to execute a file which, although it has the
appropriate permissions, does not start with a valid format.

Page 38 Base System Definition Addendum

ENOLCK

ERRNO(BA_ENV)

No locks available
There are no more locks available. The system lock table is
full.

ENOMEM Not enough space
During execution of an EXEC(BA_OS) routine, a program asks
for more space than the system is able to supply. This is not
a temporary condition; the maximum space size is a system
parameter. The error may also occur if the arrangement of
text, data, and stack segments requires too many segmenta­
tion registers, or if there is not enough swap space during
execution of the FORK(BA_OS) routine.

ENOSPC No space left on device
While writing an ordinary file or creating a directory entry,
there is no free space left on the device.

ENOTBLK Block device required
A non-block file was mentioned where a block device was
required (e.g., in a call to the MOUNT(BA_OS) routine).

ENOTDIR Not a directory
A non-directory was specified where a directory is required
(e.g. in a path-prefix or as an argument to the CHDIR(BA_OS)
routine).

ENOTTY Not a character device
A call was made to the IOCTL(BA_OS) routine specifying a file
that is not a special character device.

ENXIO No such device or address
I/O on a special file refers to a subdevice which does not
exist, or exists beyond the limits of the device. It may also
occur when, for example, a tape drive is not on-line or no
disk pack is loaded on a drive.

EPERM No permission match
Typically this error indicates an attempt to modify a file in
some way forbidden except to its owner or super-user. It is
also returned for attempts by ordinary users to do things
allowed only to the super-user.

EPIPE Broken pipe
A write on a pipe for which there is no process to read the
data. This condition normally generates a signal; the error is
returned if the signal is ignored.

Base System Definition Addendum Page 39

ERRNO(BA-ENV)

ERANGE Result too large
The value of a function in the math package is not represent­
able within machine precision.

EROFS Read-only file system
An attempt to modify a file or directory was made on a dev­
ice mounted read-only.

ESPIPE Illegal seek
A call to the LSEEK(BA_OS) routine was issued to a pipe.

ESRCH No such process
No process can be found corresponding to that specified by
pid in the KILL(BA_OS) or PTRACE(KE_OS) routine.

ETXTBSY Text file busy
An attempt was made to execute a pure-procedure program
that is currently open for writing. Also an attempt to open
for writing a pure-procedure program that is being executed.

EXDEV Cross-device link
A link to a file on another device was attempted.

APPLICATION USAGE
Because a few routines may not have an error return value, an application
may set errno to zero, call the routine, and then check errno again to see
if an error has occurred.

LEVEL
Level 1.

Page 40 Base System Definition Addendum

Base System Definition Addendum

Chapter 6
OS Service Routines

Page 41

ABORT(BA_OS)

NAME
abort - generate an abnormal process termination

SYNOPSIS

int abortO

DESCRIPTION
The function abort first closes all open files if possible, then causes the sig­
nal SIGABRT to be sent to the process. This invokes abnormal process ter­
mination routines, such as a core dump, which are implementation depen­
dent.

APPLICATION USAGE
The signal sent by abort, SIGABRT, should not be caught or ignored by
applications.

SEE ALSO
EXIT(BA_OS), SIGNAL(BA_OS), SIGSET(BA_OS).

LEVEL
Level 1.

Page 42 Base System Definition Addendum

NAME
access - determine accessibility of a file

SYNOPSIS

#include <unistd.h>

int access(path, amode)
char *path;
int amode;

DESCRIPTION

ACCESS(BA_OS)

The function access checks the named file for either accessibility according
to the bit-pattern contained in amode, or checks the named file for
existence. In either case, the function access uses the real-user-ID in place
of the effective-user-ID and the real-group-ID or equivalent in place of the
effective-group-ID.

The argument path points to a path-name naming the file.

The symbolic constants for the argument amode are defined by the
<unistd.h> header file and are as follows:
Name
R_OK
W_OK
LOK
F_OK

Description
test for read permission.
test for write permission.
test for execute (search) permission.
test for existence of file.

The argument amode is either the logical OR of one or more of the values
of the symbolic constants for R_OK, W _OK, and LOK or is the value of
the symbolic constant F _OK.

When checking for accessibility, the owner of a file has permission checked
with respect to the owner read, write, and execute mode bits. Members of
the file's group other than the owner have permissions checked with respect
to the group mode bits, and all others have permissions checked with
respect to the other mode bits.

RETURN VALUE

If the requested access is permitted, the function access will return 0; oth­
erwise, it will return -1 and errno will indicate the error.

Base System Definition Addendum Page 43

ACCESS(BA-OS)

ERRORS

Under the following conditions, the function access will fail and will set
errno to:

ENOTDIR if a component of the path-prefix is not a directory.

ENOENT if the named file does not exist.

ENOENT if the path-name is longer than {PATH_MAX} characters.

EACCES if a component of the path-prefix denies search permission, or
if the permission bits of the file mode do not permit the
requested access.

EROFS if write access is requested for a file on a read-only file system.

ETXTBSY if write access is requested for a pure procedure (shared text)
file that is being executed.

SEE ALSO
CHMOD(BA_OS), STAT(BA_OS).

FUTURE DIRECTIONS

EINV AL will be returned in errno if the argument amode is invalid.
LEVEL

Levell.

Page 44 Base System Definition Addendum

NAME
chmod - change mode of file

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>

int chmod (path, mode)
char *path;
int mode;

DESCRIPTION

CHMOO(BA_OS)

The function chmod sets the access permission portion of the named file's
mode according to the bit-pattern contained in the argument mode.

The argument path points to a path-name naming a file.

Symbolic constants defining the access permission bits are in the
<sys/stat.h> header file and should be used to construct the argument
mode. The value of the argument mode should be the logical OR of the
values of the desired permissions:

Name Description

Set user-ID on execution.

Set group-ID on execution.

Reserved.

Read by owner.

Write by owner.

Execute (search) by owner.

Read by group.

Write by group.

Execute (search) by group.

Read by others (i.e., anyone else).

Write by others.

Execute (search) by others.

Base System Definition Addendum Page 45

CHMOO(BA_OS)

Record locking enforced.

The effective-user-ID of the process must match the owner of the file or be
super-user to change the mode of a file.

If the effective-user-ID of the process is not super-user and the effective­
group-ID of the process does not match the group-ID of the file, the access
permission S_ISGID (set group-ID on execution) is cleared. This prevents
an ordinary user from making itself an effective member of a group to
which it does not belong. Similarly, the CHOWN(BA_OS) routine clears the
set-user-ID and set-group-ID bits when invoked by other than the super­
user.

For ordinary files, if the mode bit S_ENFMT (record locking enforced) is
set and the mode bit S_IXGRP (execute or search by group) is not set,
enforced record locking is enabled. This will affect future calls to
OPEN(BA_OS), CREAT(BA_OS), REAO(BA_OS) and WRITE(BA_OS) routines on
this file.

RETURN VALUE

If successful, the function chmod will return 0; otherwise, it will return -1,
the file mode will be unchanged and errno will indicate the error.

ERRORS
Under the following conditions, the function chmod will fail and will set
errno to:

ENOTDIR

ENOENT

ENOENT

EACCES

EPERM

EROFS
SEE ALSO

if a component of the path-prefix is not a directory.

if the named file does not exist.

if the path-name is longer than {PATH_MAX} characters.

if a component of the path-prefix denies search permission.

if the effective-user-ID does not match the owner of the file
and the effective-user-ID is not super-user.

if the named file resides on a read-only file system.

CHOWN(BA_OS), M KNOO(BA_OS).

LEVEL

Levell.

Page 46 Base System Definition Addendum

NAME
cre:J.t - create a new file or rewrite an existing one

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>

int creat(path, mode)
char *path;
int mode;

DESCRIPTION

CREAT(BA_OS)

The function creat creates a new ordinary file or prepares to rewrite an
existing file named by the path-name pointed to by path.

If the file exists, the length is truncated to 0, the mode and owner are
unchanged, and the file is open for writing [see O_WRONLY in
OPEN(BA_OS)]. If the file does not exist, the file's owner-ID is set to the
effective-user-ID of the process; the group-ID of the file is set to the
effective-group-ID of the process; and the access permission bits [see
CHMOD(BA_OS)] of the file mode are set to the value of the argument mode
modified as follows:

The cm-responding bits are ANDed with the complement of the
process' file mode creation mask [see UMASK(BA_OS)]. Thus, the
function creat clears each bit in the file mode whose correspond­
ing bit in the file mode creation mask is set.

If successful, the function creat will return the file-descriptor and the file
will be open for writing. A new file may be created with a mode that for­
bids writing. Even if the argument mode forbids writing, the function
creat opens the file for writing.

Symbolic constants defining the access permission bits are specified in the
<sys/stat.h> header file and should be used to construct mode [see
CHMOD(BA_OS)).

The call creat (path, mode) is equivalent to the following [see
OPEN(BA-OS)):

The file-pointer is set to the beginning of the file. The file-descriptor is set
to remain open across calls to the EXEC(BA_OS) routines [see
FCNTL(BA-OS)). No process may have more than {OPEN_MAX} files open
simultaneously.

Base System Definition Addendum Page 47

CREAT(BA_OS)

RETURN VALUE

If successful, the function ereat will return a non-negative integer, namely
the file-descriptor; otherwise, it will return -1 and errno will indicate the
error.

ERRORS
Under the following conditions, the function ere at will fail and will set
errno to:

ENOTDIR if a component of the path-prefix is not a directory.

ENOENT if a component of the path-name should exist but does not.

ENOENT if the path-name is longer than {PATH_MAX} characters.

EACCES if a component of the path-prefix denies search permission.

EACCES if the file does not exist and the directory in which the file is
to be created does not permit writing.

EACCES if the file exists and write permission is denied.

EROFS if the named file resides or would reside on a read-only file
system.

ETXTBSY if the file is a pure procedure (shared text) file that is being
executed.

EISDIR if the named file is an existing directory.

EMFILE if {OPEN_MAX} file-descriptors are currently open in the
calling -process.

ENOSPC if the directory to contain the file cannot be extended.

ENFILE if the system file table is full.

EAGAIN if the file exists with enforced record locking enabled and
there are record-locks on the file [see CHMOD(BA_OS)].

APPLICATION USAGE
Normally, applications should use the stdio routines to open, close, read,
and write files. In this case, the FOPEN(B~OS) stdio routine should be
used rather than the CREAT(BA_OS) routine.

SEE ALSO
CHMOD(BA_OS), CLOSE(BA_OS), DUP(BA_OS), FCNTL(BA_OS),
LSEEK(BA_OS), OPEN(BA_OS), READ(B~OS), UMASK(B~OS),
WRITE(BA_OS).

Page 48 Base System Definition Addendum

LEVEL
LevelL

Base System Definition Addendum

CREAT(BA_OS)

Page 49

DIRECTORY(BA-OS)tt

NAME
closedir, opendir, readdir, rewinddir - directory operations

SYNOPSIS

#include <sys/types.h>
#include <dirent.h>

int closedir (dirp)
DIR *dirp;

DIR *opendir(filename)
char *filename;

struct dirent *readdir (dirp)
DIR *dirp;

void rewinddir (dirp)
DIR *dirp;

DESCRIPTION

The function closedir closes the directory-descriptor indicated by the argu­
ment dirp and frees the DIR structure associated with the directory­
descriptor.

The function opendir opens the directory named by the argument
filename and returns a pointer to the DIR structure associated with the
directory.

The function readdir returns a pointer to a directory structure dirent
that contains the next non-empty directory entry in the directory specified
by the argument dirp. The structure dirent defined by the <dirent.h>
header file describes a directory entry. It includes the inode number
(Lino) and the filename (Lname), which is a null-terminated string of
at most {NAME_MAX} characters:

long d_ino;
char d_name[1];

1* inode number of entry * /
1* name of file * /

The function rewinddir(dirp) resets the position of the directory pointer
specified by the argument dirp to the beginning of the directory.

RETURN VALUE

The function opendir returns a NULL pointer if filename cannot be
accessed, or if filename is not a directory, or if enough memory to hold a
DIR structure or a buffer for the directory entries cannot be allocated and
errno indicates the error.

Page 50 Base System Definition Addendum

DIRECTORY(BA_OS)tt

If successful, the function readdir returns a valid pointer. Upon reaching
the end of the directory, the function readdir returns a NULL pointer.
Otherwise, the function readdir returns a NULL pointer and errno indi­
cates the error.

The function closedir returns 0 if successful; otherwise, it returns -1 and
errno indicates the error.

ERROR
Under the following conditions, the functions closedir, opendir, and
readdir will fail and will set errno to:

opendir:

ENOTDIR

EACCES

EACCES

EMFILE

ENOENT

readdir:

ENOENT

EBADF

closedir:

if a component of the path-prefix is not a directory.

if a component of the path-prefix denies search permission.

if read permission is denied for the specified directory.

if {OPEN_MAX} file- or directory-descriptors are currently
open in this process.

if the path-name is longer than {PATH_MAX} characters.

if the current directory-descriptor is not located at a valid
entry.

if dirp is not a valid open directory-descriptor.

EBADF if dirp is not a valid open directory-descriptor.
APPLICATION USAGE

The functions closedir, opendir, readdir, and rewinddir were added in
System V Release 3.0.

Base System Definition Addendum Page 51

DIRECTORY(BILOS)tt

EXAMPLE
The following sample code will search a directory for the entry name:

LEVEL
Levell.

Page 52

dirp = opendir(".");
while ((dp = readdir (dirp» = NULL)

if (strcmp(dp -> d_name, name) == 0) {
closedir(dirp);
return(FOUND);

closedir(dirp);
return(NOT_FOUND) ;

Base System Definition Addendum

NAME
dup2 - duplicate an open file-descriptor

SYNOPSIS

int dup2 (fildes, fildes2)
int fildes, fildes2;

DESCRIPTION

DUP2(BA_OS)tt

The function dup2 causes duplication of an open file-descriptor.

The argument fildes is an open file-descriptor [see file-descriptor III

Chapter 4 - Definitions].

The argument fildes2 is a non-negative integer less than {OPEN_MAX}.

The argument fildes2 is set to refer to the same file as the argument
fildes. If fildes2 already refers to an open file, this file-descriptor is first
closed.

RETURN VALUE
If successful, the function dup2 will return a non-negative integer, namely
the file-descriptor; otherwise, it will return -1 and errno will indicate the
error.

ERRORS
Under the following conditions, the function dup2 will fail and will set
errno to:

EBADF if fildes is not a valid open file-descriptor.

EBADF if fildes2 is negative or greater than or equal to {OPEN_MAX}.
APPLICATION USAGE

The function dup2 was added in System V Release 3.0.
SEE ALSO

CREAT{B~OS), CLOSE{B~OS), DUP{B~OS), EXEC{BA_OS), FCNTL{BA_OS),
LOCKF{B~OS), OPEN{B~OS), PIPE{BA_OS).

LEVEL

Level 1.

Base System Definition Addendum Page 53

EXEC(BA_OS)

NAME
execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS

int execl(path, argO, argl, ... argn, (char *)0)
char *path, *argO, *argl, ... *argn;

int execv(path, argv)
char *path, *argv[];

int execle(path, argO, argl, ... argn, (char *)0, envp)
char *path, *argO, *argl, ... *argn, *envp[];

intexecve(path,argv,envp)
char *path, *argv[], *envp[];

int execlp(file, argO, argl, ... argn, (char *)0)
char *file, *argO, *argl, ... *argn;

int execvp(file, argv)
char *file, *argv[];

DESCRIPTION
All forms of the function exec transform the calling-process into a new
process. The new process is constructed from an ordinary, executable file
called the new-process-file. This file consists of a header, a text segment,
and a data segment. There can be no return from a successful exec
because the calling-process image is overlaid by the new process image.

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count, argv is an array of character pointers
to the arguments themselves and envp is an array of character pointers to
null-terminated strings that constitute the environment for the new process.
The argument argc is conventionally at least one and the initial member of
the array argv points to a string containing the name of the file.

The argument path points to a path-name that identifies the new-process­
file. For execlp and execvp, the argument file points to the new­
process-file. The path-prefix for this file is obtained by a search of the

Page 54 Base System Definition Addendum

EXEC(BLOS)

directories passed as the environment line PATH= [see ENVVAR(BA_ENV)
and SYSTEM(BA_OS)].

The arguments argO, argl, ... argn are pointers to null-terminated char­
acter strings. These strings constitute the argument list available to the
new process. By convention, at least argO must be present and point to a
string that is the same as file or path (or its last component).

The argument argv is an array of character pointers to null-terminated
strings. These strings constitute the argument list available to the new pro­
cess. By convention, argv[O] must point to a string that is the same as
file or path (or its last component), and argv is terminated by a null
pointer.

The argument envp is an array of character pointers to null-terminated
strings. These strings constitute the environment for the new process, and
envp is terminated by a null-pointer. For execl and execv, a pointer to
the environment of the calling-process is made available in the global cell:

extern char **environ;

and it is used to pass the environment of the calling-process to the new
process.

The file-descriptors open in the calling-process remain open in the new pro­
cess, except for those whose close-an-exec flag is set [see FCNTL(BA_OS)].
For those file-descriptors that remain open, the file-pointer is unchanged.

Signals set to the default action (SIG-DFL) in the calling-process will be
set to the default action in the new process. Signals set to be ignored
(SIG-IGN) by the calling-process will be ignored by the new process. Sig­
nals set to be held (SIG-HOLD) by the calling-process will be held by the
new process. Signals set to be caught by the calling-process will be set to
the default action in the new process [see SIGNAL(BA_OS) and
SIGSET(BA_OS)].

If the set-user-ID-on-execution mode bit of the new-process-file is set, the
exec sets the effective-user-ID of the new process to the owner-ID of the
new-process-file [see CHMOD(BA-OS)]. Similarly, if the set-group-ID mode
bit of the new-process-file is set, the effective-group-ID of the new process
is set to the group-ID of the new-process-file. The real-user-ID and real­
group-ID of the new process remain the same as those of the calling-process.
The effective-user-ID and group-ID of the new process are saved for use by
the SETUID(BA_OS) routine.

Base System Definition Addendum Page 55

EXEC(B.LOS)

The new process also inherits at least the following attributes from the
calling-process:

process-ID
parent-process-ID
process-group-ID
tty-group-ID [see EXIT(BA_OS), SIGNAL(BA_OS)
and SIGSET(BA_OS)]
time left until an alarm clock signal [see ALARM(BA_OS)]
current-working-directory
root-directory
file mode creation mask [see UMASK(BA_OS)]
file size limit [see ULlMIT(B~OS)]
utime, stime, cutime, and cstime
[see TIMES(BA_OS)]
record-locks [see FCNTL(BA_OS) and LOCKF(BA_OS)]

RETURN VALUE
If the exec returns to the calling-process, an error has occurred; the exec
will return -1 and errno will indicate the error.

ERRORS
Under the following conditions, the exec will return to the calling-process
and will set errno to:

ENOENT if one or more components of the path-name of the new­
process-file do not exist.

ENOENT if the path-name is longer than {PATH_MAX} characters.

ENOTDIR if a component of the path-prefix of the new-process-file is
not a directory.

EACCES if a directory in the new-process-file's path-prefix denies
search permission, or if the new-process-file is not an ordi­
nary file [see MKNOD(BA_OS)], or if the new-process-file's
mode denies execution permission.

ENOEXEC if the exec is not an execlp or execvp, and the new­
process-file has the appropriate access permission but is not
a valid executable object.

ETXTBSY if the new-process-file is a pure procedure (shared text) file
that is currently open for writing by some process.

Page 56 Base System Definition Addendum

ENOMEM

E2BIG

EFAULT

ELIBACC

EXEC(BLOS)

if the new process image requires more memory than is
allowed by the hardware or system-imposed maximum.

if the number of bytes in the new process image's argument
list exceeds the system-imposed limit of {ARG_MAX} bytes.

if the new-process-file image is corrupted.

Reserved.

ELIBEXEC Reserved.
APPLICATION USAGE

Two interfaces for these functions are available. The list (I) versions:
execl, execle, and execlp are useful when a known file with known argu­
ments is being called. The arguments are the character-strings that are the
file-name and the arguments. The variable (v) versions: execv, execve,
and execvp are useful when the number of arguments is unknown in
advance. The arguments are a file-name and a vector of strings containing
the arguments.

If possible, applications should use the SYSTEM(BA-OS) routine, which is
easier to use and supplies more functions, rather than the FORK(BA_OS)
and EXEC(BA_OS) routines.

SEE ALSO
ALARM(BA_OS), EXIT(BA_OS), FORK(BA_OS), SIGNAL(BA_OS),
SIGSET(BA-OS), TIMES(BA-OS), ULlMIT(BA-OS), UMASK(BA-OS).

LEVEL
Levell.

Base System Definition Addendum Page 57

FCNTL(BA-OS)

NAME
fcntl - file control

SYNOPSIS

#include <fcntl.h>

int fcntl(fildes, cmd, arg)
int fildes, cmd;

DESCRIPTION
The function fcntl provides for control over open files.

The argument fildes is an open file-descriptor [see file-descriptor in
Chapter 4 - Definitions].

The data type and value of arg are specific to the type of command speci­
fied by cmd. The symbolic names for commands and file status flags are
defined by the <fcntl.h> header file.

The commands available are:

F_DUPFD Return a new file-descriptor as follows:

Lowest numbered available file-descriptor greater
than or equal to the argument argo

Same open file (or pipe) as the original file.

Same file-pointer as the original file (i.e., both file­
descriptors share one file-pointer).

Same access-mode (read, write, or read/write) [see
ACCESS(BA_OS)] .

Same file status flags [see OPEN(BA_OS)].

The close-on-exec flag associated with the new file­
descriptor is set to remain open across calls to the
EXEC(BA-OS) routines.

F_GETFD Get the close-on-exec flag associated with the file-descriptor
fildes. If the low-order bit is 0, the file will remain open
across calls to the EXEC(BA_OS) routines; otherwise, the file
will be closed upon execution of any EXEC(BA-OS) routines.

F_SETFD Set the close-on-exec flag associated with fildes to the low­
order bit of arg (0 or 1 as above).

Page 58 Base System Definition Addendum

FCNTL(BA_OS)

F_GETFL Get file status flags:
O_RDONLY, O_WRONLY, O-RDWR,
O_APPEND,O_SYNC
[see OPEN(B~OS)].

F _SETFL Set file status flags to argo Only the flags O_NDELA Y,
O-APPEND, and O_SYNC may be set with fentl.

The following commands are used for record-locking (see also APPLICATION
USAGE below). Locks may be placed on an entire file or segments of a file.

F_GETLK

F_SETLK

Get the first lock which blocks the lock description given by
the variable of type struet floek (see below) pointed to by
argo The information retrieved overwrites the information
passed to fentl in the structure f1oek. If no lock is found
that would prevent this lock from being created, then the
structure is passed back unchanged except for the lock type
which will be set to F_UNLCK.

NOTE: This command was added to fentl following System
V Release 1.0 and System V Release 2.0, and cannot be
expected to be available in those releases.

Set or clear a file segment lock according to the variable of
type struet f10ek (see below) pointed to by argo
F _SETLK is used to establish read (F -RDLCK) and write
(F _ WRLCK) locks, as well as remove either type of lock
(F_UNLCK). F-RDLCK, F_WRLCK, and F_UNLCK are
defined by the <fentl.h> header file. If a read or write
lock cannot be set, fentl will return immediately with an
error value of -1.

NOTE: This command was added to fentl following System
V Release 1.0 and System V Release 2.0, and cannot be
expected to be available in those releases.

F_SETLKW This command is the same as F_SETLK except that if a
read or write lock is blocked by other locks, the process will
sleep until the segment is free to be locked.

NOTE: This command was added to fentl following Sys­
tem V Release 1.0 and System V Release 2.0, and cannot be
expected to be available in those releases.

Base System Definition Addendum Page 59

FCNTL(BA_OS)

The structure flock defined by the <fcntl.h> header file describes a lock.
It describes the type (Ltype), starting offset (Lwhence), relative offset
(Lstart), size (LIen), and process-ID (Lpid):

short I _type; 1* F_RDLCK, F_WRLCK, F - UNLCK *1
short I _whence; 1* flag for starting offset *1
long I _start; 1* relative offset in bytes *1
long I_len; 1* if 0 then until EOF *1
short l_pid; 1* returned with F - GETLK *1

When a read-lock has been set on a segment of a file, other processes may
also set read-locks on that segment or a portion of it. A read-lock prevents
any other process from setting a write-lock on any portion of the protected
area. The file-descriptor on which a read-lock is being placed must have
been opened with read-access.

A write-lock prevents any other process from setting a read-lock or a write­
lock on any portion of the protected area. Only one write-lock and no
read-locks may exist for a given segment of a file at a given time. The file­
descriptor on which a write-lock is being placed must have been opened
with write-access.

The value of Lwhence is 0, 1, or 2 to indicate that the relative offset,
Lstart bytes, will be mea.sured from the start of the file, current position,
or end of the file, respectively. The value of LIen is the number of con­
secutive bytes to be locked. The process-ID Lpid field is only used with
F_GETLK to return the value for a blocking-lock.

Locks may start and extend beyond the current end of a file, but may not
be negative relative to the beginning of the file. A lock may be set to
always extend to the end of file by setting LIen to zero (0). If such a lock
also has Lstart set to zero (0), the whole file will be locked.

Changing or unlocking a segment from the middle of a larger locked seg­
ment leaves two smaller segments locked at each end of the originally
locked segment. Locking a segment that is already locked by the calling­
process causes the old lock type to be removed and the new lock type to
take effect. All locks associated with a file for a given process are removed
when a file-descriptor for that file is closed by that process or the process
holding that file-descriptor terminates. Locks are not inherited by a child­
process after executing the FORK(BA_OS) routine.

If an ordinary file has enforced record locking enabled, then record-locks on
the file will affect calls to CREAT(BA_OS), OPEN(BA_OS), READ(BA_OS), and
WRITE(BA_OS).

Page 60 Base System Definition Addendum

FCNTL(BA_OS)

RETURN VALUE
If successful, the function fentl will return a value greater than or equal to
zero that depends on emd as follows:

F _DUPFD a new file-descriptor.

F_GETFD a value of flag (only the low-order bit is defined).

F_SETFD a value other than -1.

F_GETFL a value of file flags.

F _SETFL a value other than -1.

F_GETLK a value other than -1.

F_SETLK a value other than -1.

F_SETLKW a value other than -1.

If unsuccessful, the function fentl will return -1 and errno will indicate
the error.

ERRORS
Under the following conditions, the function fentl will fail and will set
errno to:

EBADF

EBADF

EBADF

EMFILE

EINVAL

EINVAL

if fildes is not a valid open file-descriptor.

if emd is F _SETLK or F _SETLKW, the type of lock
(Ltype) is a read-lock (F_RDLCK), and fildes is not a
valid file-descriptor open for reading.

if emd is F _SETLK or F _SETLKW, the type of lock
(Ltype) is a write-lock (F_WRLCK), and fildes is not a
valid file-descriptor open for writing.

if emd is FjlUPFD and {OPEN_MAX} file-descriptors are
currently open in the calling-process.

if emd is F_DUPFD and arg is negative or greater than or
equal to {OPEN_MAX}.

if emd is F_GETLK, F_SETLK, or F_SETLKW and the
data arg points to is not valid.

Base System Definition Addendum Page 61

FCNTL(BA-OS)

EACCES

ENOLCK

if emd is F_SETLK, the type of lock (Ltype) is a read­
lock (F-RDLCK) or write-lock (F_WRLCK), and the seg­
ment of a file to be locked is already write-locked by
another process, or the type is a write-lock and the segment
of a file to be locked is already read-locked or write-locked
by another process.

if emd is F_SETLK or F_SETLKW, the type of lock is a
read-lock or write-lock, and {LOCLMAX} regions are
already locked in the system.

EDEADLK if emd is F _SETLKW and a deadlock condition was
detected.

APPLICATION USAGE
Because in the future the variable errno will be set to EAGAIN rather than
EACCES when a section of a file is already locked by another process, port­
able application programs should expect and test for either value, for exam­
ple:

flk->l_type = F_RDLCK;
if (fcntl(fd, F_SETLK, flk) == -1)

if «errno == EACCES) I I (errno == EAGAIN»
1*

* section locked by another process,
* check for either EAGAIN or EACCES
* due to different implementations
*1

else if ...
1*

* check for other errors
*1

The features of fent} that deal with record locking are an update that fol­
lowed System V Release 1.0 and System V Release 2.0.

SEE ALSO
CLOSE(BA_OS), EXEC(8~OS), OPEN(B~OS), LOCKF(B~OS), READ(BA_OS),
WRITE(8~OS).

FUTURE DIRECTIONS

The error condition which currently sets errno to EACCES will instead set
errno to EAGAIN [see also APPLICATION USAGE above].

LEVEL
Levell.

Page 62 Base System Definition Addendum

FORK(BA_OS)

NAME

fork - create a new process
SYNOPSIS

int fork()

DESCRIPTION
The function fork creates a new process. The new process (child-process)
is a copy of the calling-process (parent-process). This means the child­
process inherits the following attributes from the parent-process:

real-user-id, real-group-id, effective-user-id, effective-group-id
environment
close-on-exec flag [see EXEC(BA-OS)]
signal-handling settings (i.e., SIG_DFL, SIG-IGN,
SIG-HOLD, address)
set-user-ID mode bit
set-group-ID mode bit
process-group -ID
tty-group-ID [see EXIT(BA-OS), SIGNAL(BA_OS)
and SIGSET(BA_OS)]
current-working-directory
root-directory
file mode creation mask [see UMASK(BA_OS)]
file size limit [see ULlMIT(BA_OS)]

Additional attributes associated with an Extension to the Base System may
be inherited from the parent-process [see, for example, Part III - Kernel
Extension Definition].

The child-process differs from the parent-process as follows:

The child-process has a unique process-ID

The child-process has a different parent-process-ID (i.e., the
process-ID of the parent-process).

The child-process has its own copy of the parent's file-descriptors.
Each of the child-process' file-descriptors shares a common file­
pointer with the corresponding file-descriptor of the parent­
process.

The child-process' utime, stime, cutime, and cstime [see
TIMES(BA_OS)] are set to O. The time left until an alarm clock
signal is reset to O.

Base System Definition Addendum Page 63

FORK(BLOS)

Record-locks set by the parent-process are not inherited by the child­
process [see FCNTL(BA-OS) or LOCKF(BA_OS)].

RETURN VALUE
If successful, the function fork will return 0 to the child-process and will
return the process-ID of the child-process to the parent-process; otherwise,
it will return -1 to the parent-process, no child-process will be created, and
errno will indicate the error.

ERRORS
Under the following conditions, the function fork will fail and will set
errno to:

EAGAIN if the system-imposed limit on the total number of processes
under execution system-wide {PROC_MAX} or by a single user­
ID {CHILD_MAX} would be exceeded.

ENOMEM if the process requires more space than the system is able to
supply.

APPLICATION USAGE
The function fork creates a new process that is a copy of the calling­
process and both processes will run as system resources become available.
Because the goal is typically to create a new process that is different from
the parent-process (i.e., the goal is to start a new program running), often
the child-process immediately calls an EXEC(BA-OS) routine to transform
itself and start the new program.

If possible, applications should use the SYSTEM(BA_OS) routine, which is
easier to use and supplies more functions, rather than the FORK(BA_OS)
and EXEC(BA_OS) routines.

SEE ALSO
ALARM(BA_OS), EXEC(BA_OS), FCNTL(BA_OS), LOCKF(BA-OS),
SIGNAL(BA_OS), SIGSET(BA_OS), TIMES(BA_OS), ULlMIT(BA_OS),

UMASK(BA_OS), WAIT(BA-OS).

LEVEL
Levell.

Page 64 Base System Definition Addendum

NAME
fread, fwrite - buffered input/output

SYNOPSIS

#include <sys/types.h>
#include <stdio.h>

int fread(ptr, size, nitems, stream)
char *ptr;
size_t size;
int nitems;
FILE *stream;

int fwrite(ptr, size, nitems, stream)
char *ptr;
size_t size;
int nitems;
FILE *stream;

DESCRIPTION

FREAD(BA_OS)

The function fread reads into an array pointed to by ptr up to nitems
items of data from the named input stream, where an item of data is a
sequence of bytes (not necessarily terminated by a null byte) of length size.
The function fread stops appending bytes if an end-of-file or error condi­
tion is encountered while reading stream, or if nitems items have been
read. The function fread increments the data-pointer in stream to point
to the byte following the last byte read if there is one [see FSEEK(BA_OS)].
The function fread does not change the contents of stream.

The function fwrite appends to the named output stream at most nitems
items of data from the array pointed to by ptr. The function fwrite stops
appending when it has appended nitems items of data or if an error condi­
tion is encountered on stream. The function fwrite does not change the
contents of the array pointed to by ptr. The function fwrite increments
the data-pointer in stream by the number of bytes written.

RETURN VALUE
If successful, both the function fread and the function fwrite will return
the number of items read or written. If size or nitems is non-positive, no
characters will be read or written, and both fread and fwrite will return
o.

APPLICATION USAGE

The FERROR(BA_OS) or FEOF(BA-OS) routines must be used to distinguish
between an error condition and an end-of-file condition.

Base System Definition Addendum Page 65

FREAD(BA_OS)

SEE ALSO
FERROR(BA_OS), FOPEN(BA_OS), FSEEK(B~OS), GETC(BA_LlB),
GETS(BA_LlB), PRINTF(B~LlB), PUTC(BA_LlB), PUTS(BA_LlB), READ(BA_OS),
SCANF(BA_LlB). WRITE(BA_OS),

LEVEL
Levell.

Page 66 Base System Definition Addendum

NAME

fseek, rewind, ftell - reposition a file-pointer in a stream
SYNOPSIS

#include <stdio.h>
#include <unistd.h>

int fseek (stream, offset, whence)
FILE *stream;
long offset;
int whence;

void rewind(stream)
FILE *stream;

long ftell(stream)
FILE *stream;

DESCRIPTION

FSEEK(BA_OS)

The function fseek sets the position of the next input or output operation
on the stream. The new position is at the signed distance offset bytes
from the beginning, from the current position, or from the end of the file,
according to the value of whence, which is defined in the <unistd.h>
header file as follows:

Name

SEEILSET

SEEILCUR

SEEILEND

Description

set position equal to offset bytes.

set position to current location plus offset.

set position to EOF plus offset.

The call rewind(stream) is equivalent to the following:

fseek(stream,OL,SEEK_SET)

except that the function rewind returns no value.

The functions fseek and rewind undo any effects of the UNGETC(BA-LlB)
routine. After fseek or rewind, the next operation on a file opened for
update may be either input or output.

The function ftell returns the offset of the current byte relative to the
beginning of the file associated with the named stream. The offset is
always measured in bytes.

Base System Definition Addendum Page 67

FSEEK(BLOS)

RETURN VALUE
The function fseek will return non-zero for improper seeks; otherwise, the
function fseek will return zero. An improper seek is, for example, an
fseek on a file that has not been opened via the FOPEN(BA_OS) routine; on
a device incapable of seeking, such as a terminal; or on a stream opened via
the POPEN(BA_OS) routine.

SEE ALSO
FOPEN(BA_OS), POPEN(BA_OS), UNGETC(BA_LlB).

LEVEL
Levell.

Page 68 Base System Definition Addendum

NAME

lockf - record locking on files
SYNOPSIS

#include <unistd.h>

int lockf(fildes, function, size)
int fildes, function;
long size;

DESCRIPTION

LOCKF(BA_OS)

NOTE: The function lockf first became available following System V
Release 1.0 and System V Release 2.0.

The function lockf will allow sections of a file to be locked with advisory­
mode or enforcement-mode locks depending on the mode of the file [see
CHMOD(BA_OS)]. Calls to the function lockf from other processes which
attempt to lock the locked file section will either return an error value or be
put to sleep until the resource becomes unlocked. All the locks for a process
are removed when the process terminates [see FCNTL(BA-OS) for more
information about record-locking].

The argument fildes is an open file-descriptor. The file-descriptor must
have been opened with write-only permission (0_ WRONL Y) or with
read/write permission (O_RDWR) in order to establish a lock with this
function call [see OPEN(BA_OS)].

The argument function is a control value which specifies the action to be
taken. The permissible values for function are defined by the <unistd.h>
header file as follows:

#define F ULOCK 0 1* unlock locked sections *1 -
#define F LOCK 1 1* lock a section *1

1* for exclusive use *1
#define F TLOCK 2 1* test and lock a section *1

1* for exclusive use *1
#define F TEST 3 1* test section for locks *1

1* by other processes *1

F _TEST detects if a lock by another process is present on the specified sec­
tion; F _LOCK and F _ TLOCK both lock a section of a file if the section is
available; F_ULOCK removes locks from a section of the file. All other
values of function are reserved for future extensions and will result in an
error return if they are not implemented.

Base System Definition Addendum Page 69

LOCKF(BLOS)

The argument size is the number of contiguous bytes to be locked or
unlocked. The resource to be locked or unlocked starts at the current offset
in the file and extends forward for a positive size or backward for a nega­
tive size (the preceding bytes up to but not including the current offset). If
size is 0, the section from the current offset through the largest file offset
{FeHR_MAX} is locked (i.e., from the current offset through the present or
any future end-of-file). An area need not be allocated to the file in order to
be locked as such locks may exist past the end-of-file.

The sections locked with R-LOCK or F_TLOCK may, in whole or in part,
contain or be contained by a previously locked section for the same process.
When this occurs, or if adjacent locked sections would occur, the sections
are combined into a single locked section. If the request requires that a
new element be added to the table of active locks and this table is already
full, an error is returned, and the new section is not locked.

F _LOCK and F _ TLOCK requests differ only by the action taken if the
resource is not available. F-LOCK will cause the calling-process to sleep
until the resource is available. F_TLOCK will cause the function to return
a -1 and set errno to EACCES if the section is already locked by another
process.

F_ULOCK requests may release (wholly or in part) one or more locked sec­
tions controlled by the process. Locked sections will be unlocked starting
at the point of the file offset through size bytes or to the end of file if size
is O. When all of a locked section is not released (i.e., the beginning or end
of the area to be unlocked falls within a locked section), the remaining por­
tions of that section are still locked by the process. For example, releasing
a center portion of a locked section will leave the portions of the section
before and after it locked and requires an additional element in the table of
active locks. If this table is full, an EDEADLK error is returned in errno
and the requested section is not released.

A potential for deadlock occurs if a process controlling a locked resource is
put to sleep by accessing another process' locked resource. Thus calls to the
function lockf or the FCNTL(B~OS) routine scan for a deadlock prior to
sleeping on a locked resource. An error return is made if sleeping on the
locked resource would cause a deadlock.

Sleeping on a resource is interrupted with any signal. The ALARM(BA_OS)
routine may be used to provide a timeout facility in applications requiring
it.

RETURN VALUE
If successful, the function lockf will return 0; otherwise, it will return -1
and errno will indicate the error.

Page 70 Base System Definition Addendum

LOCKF(BA_OS)

ERRORS
The function lockf will fail and will set errno to:

EBADF

EBADF

EACCES

if fildes is not a valid open file-descriptor.

if function is F -LOCK or F _ TLOCK and fildes is not a
valid file-descriptor open for writing.

if function is F_TLOCK or F_TEST and the section is
already locked by another process.

EDEADLK if function is F-LOCK and a deadlock would occur; also if
function is F-LOCK, F_TLOCK, or F_ULOCK, and
{LOCK_MAX} regions are already locked in the system.

APPLICATION USAGE
Because in the future the variable errno will be set to EAGAIN rather than
EACCES when a section of a file is already locked by another process, port­
able application programs should expect and test for either value, for exam­
ple:

if (lockf(fd, F_TLOCK, siz) == -1)
if «errno == EAGAIN) I I (errno == EACCES»

1*
* section locked by another process
* check for either EAGAIN or EACCES
* due to different implementations
*1

else if ...
1*

* check for other errors
*1

Record-locking should not be used in combination with the FOPEN(BA_OS),
FREAD(BA_OS), FWRITE(BA_OS), etc., stdio routines. Instead, the more
primitive, non-buffered routines (e.g., the OPEN(BA_OS) routine) should be
used. Unexpected results may occur in processes that do buffering in the
user address space. The process may later read/write data which is/was
locked. The stdio routines are the most common source of unexpected
buffering.

SEE ALSO
CHMOD(BA-OS), CLOSE(BA_OS), CREAT(BA-OS), FCNTL(BA_OS),

OPEN(BA-OS), READ(BA-OS), WRITE(BA-OS).
FUTURE DIRECTIONS

The error condition which currently sets errno to EACCES will instead set
errno to EAGAIN [see also APPLICATION USAGE above].

Base System Definition Addendum Page 71

LOCKF(BA_OS)

LEVEL
Levell.

Page 72 Base System Definition Addendum

NAME
lseek - move read/write file-pointer

SYNOPSIS

#include <unistd.h>

long lseek(fildes, offset, whence)
int fildes;
long offset;
int whence;

DESCRIPTION

LSEEK(BA_OS)

The function lseek sets the file-pointer associated with fildes as specified
by the value of the argument whence. Symbolic constants for whence are
defined in the <unistd.h> header file:

Name

SEEILSET

SEEILCUR

SEEILEND

Description

set file-pointer equal to offset bytes.

set file-pointer to current location plus offset.

set file-pointer to EOF plus offset.

If successful, the function lseek returns the resulting pointer location, as
measured in bytes from the beginning of the file. The function lseek
modifies the file-pointer and does not affect the physical device.

The argument fildes is an open file-descriptor [see file-descriptor in
Chapter 4 - Definitions].

RETURN VALUE
If successful, the function lseek will return a file-pointer value; otherwise,
it will return -1, the file-pointer will remain unchanged and errno will
indicate the error.

ERRORS
Under the following conditions, the function lseek will fail and will set
errno to:

EBADF if fildes is not an open file-descriptor.

ESPIPE if fildes is associated with a pipe or FIFO.

EINV AL if whence is not SEEILSET, SEEILCUR, or SEEILEND.

The significance of the file-pointer associated with a device incapable of
seeking, such as a terminal, is undefined.

Base System Definition Addendum Page 73

LSEEK(BA-OS)

APPLICATION USAGE
Normally, applications should use the stdio routines to open, close, read,
write, and manipulate files. Thus, an application that had used the
FOPEN(B~OS) stdio routine to open a file would use the FSEEK(BA_OS)
stdio routine rather than the function lseek. The function lseek allows
the file-pointer to be set beyond the existing data in the file. If data are
later written at this point, subsequent reads in the gap between the previ­
ous end of data and the newly written data will return bytes of value 0
until data are written into the gap.

SEE ALSO
CREAT(BA_OS), DU P(BA_OS), FCNTL(BA_OS), OPEN(BA_OS).

LEVEL
Levell.

Page 74 Base System Definition Addendum

NAME
mkdir - make a directory

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>

int mkdir(path, mode)
char *path
int mode;

DESCRIPTION
The function mkdir creates a new directory.

MKDIR(BA_OS)tt

The argument path specifies the name of the new directory.

The argument mode specifies the initial mode of the new directory. The
protection bits of the argument mode are modified by the process' file
mode creation mask [see UMASK(BA-OS)]. The value of the argument
mode should be the logical OR of the values of the desired permissions:

Name Description

S_IREAD Read by owner.

S_IWRITE Write by owner.

S_IEXEC Execute (search) by owner.

S_IRGRP Read by group.

S-IWGRP Write by group.

S_IXGRP Execute (search) by group.

S-IROTH Read by others (i.e., anyone else).

S_IWOTH Write by others.

S_IXOTH Execute (search) by others.

The directory's owner ID is set to the process' effective-user-ID. The
directory's group ID is set to the process' effective-group-ID. The newly
created directory is empty, except for possible directory entries for "." (the
directory itself) and" .. " (the parent-directory) [see directory in Chapter 4
- Definitions].

RETURN VALUE
If successful, mkdir will return a value of 0; otherwise, a value of -1 is
returned, no directory is created, and errno will indicate the error.

Base System Definition Addendum Page 75

MKDIR(B.LOS)tt

ERRORS

Under the following conditions, the function mkdir will fail and will set
errno to:

ENOTDIR

ENOENT

ENOENT

EACCES

EEXIST

EROFS

EMLINK

EIO

if a component of the path-prefix is not a directory.

if a component of the path-prefix does not exist.

if the path-name is longer than {PATH_MAX} characters.

if a component of the path-prefix denies search permission,
or if write permission is denied on the parent directory of the
directory to be created.

if the named path-name exists.

if the directory to be created is located on a read-only file
system.

if the maximum number of links to the parent directory,
{LINK_MAX}, would be exceeded.

if a physical 1/0 error has occurred.

ENOSPC if there is no free space available on the device containing
the directory.

APPLICATION USAGE
The function mkdir was added in System V Release 3.0.

SEE ALSO
CHMOO(SA_OS), UMASK(SA_OS).

LEVEL
Levell.

Page 76 Base System Definition Addendum

MKNOD(BA_OS)

NAME
mknod - make a directory, a special or ordinary file, or a FIFO

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>

int mknod(path, mode, dey)
char *path;
int mode, dey;

DESCRIPTION
The function mknod creates a new file named by the path-name pointed to
by the argument path.

The mode of the new file is initialized from the argument mode. Symbolic
constants defining the value of the argument mode are in the
<sys/stat.h> header file and should be used to construct mode. The value
of the argument mode should be the logical OR of the values of the desired
permissions:

Name Description

S_IFMT file type; one of the following:

S_IFIFO FIFO-special

S_IFCHR character-special

S_IFDIR directory node

S_IFBLK block -special

S_IFREG ordinary -file

S_ISUID set user-ID on execution

S~SGID set group-ID on execution

S_ISVTX (reserved)

S_ENFMT record locking enforced

S_IRUSR read by owner

S_IWUSR write by owner

Base System Definition Addendum Page 77

MKNOD(BA-OS)

S_IXUSR execute (search) by owner

S_IRGRP read by group

S_IWGRP write by group

S_IXGRP execute (search) by group

S_IROTH read by others (i.e., anyone else)

S_IWOTH write by others

S_IXOTH execute (search) by others

The owner-ID of the file is set to the effective-user-ID of the process. The
group-ID of the file is set to the effective-group-ID of the process.

Values of mode other than those above are undefined and should not be
used. The owner, group, and other permission bits of mode are modified
by the process' file mode creation mask: the function mknod clears each
bit whose corresponding bit in the process' file mode creation mask is set
[see UMASK(BA_OS)].

If the argument mode indicates a block-special or character-special file, the
argument dey is a configuration-dependent specification of a character or
block I/O device. The value of dey is obtained from the st_rdev field of
the stat structure [see STAT(SA_OS)]. If mode does not indicate a block­
special or character-special device, dey is ignored.

The function mknod may be invoked only by the super-user for file types
other than FIFO-special.

RETURN VALUE
If successful, the function mknod will return 0; otherwise, it will return
-1, the new file will not be created, and errno will indicate the error.

ERRORS

Under the following conditions, the function mknod will fail and will set
errno to:

EPERM

ENOTDIR

ENOENT

ENOENT

Page 78

if the effective-user-ID of the process is not super-user and
the file type is not FIFO-special.

if a component of the path-prefix is not a directory.

if a component of the path-prefix does not exist.

if the path-name is longer than {PATH_MAX} characters.

Base System Definition Addendum

EACCES

EROFS

EEXIST

MKNOO(BA_OS)

if a component of the path-prefix denies search permission
and the effective-user-ID of the process is not super-user.

if the directory in which the file is to be created is located on
a read-only file system.

if the named file exists.

ENOSPC if the directory to contain the new file cannot be extended.
APPLICATION USAGE

Normally, applications should use the MKDIR(BA_OS) routine to make a
directory, since the function mknod may not establish directory entries for
" . " (the directory itself) and " .. " (the parent-directory) [see directory in
Chapter 4 - Definitions] and super-user privilege is not required.

SEE ALSO
CHMOD(BA_OS), EXEC(B~OS), STAT(B~OS), UMASK(B~OS).

LEVEL
Levell.

Base System Definition Addendum Page 79

NAME
open - open file for reading or writing

SYNOPSIS

#include <fcntI.h>

int open (path, oflag [, mode])
char *path;
int oflag, mode;

DESCRIPTION

The function open opens a file-descriptor for the named file.

The argument path points to a path-name naming a file.

The function open sets the file status flags according to the value of the
argument oflag. Symbolic names of flags are defined by the <fcntI.h>
header file. The values of oflag are constructed by ORing flags from the
following list (only one of the first three flags below may be used):

O_RDONL Y Open for reading only.

0_ WRONL Y Open for writing only.

O_RDWR Open for reading and writing.

O_NDELA Y This flag will affect subsequent reads and writes [see I
READ(BA_OS) and WRITE(BA_OS)].

Page 80

When opening a FIFO with O_RDONL Y or 0_ WRONL Y
set:

If O~DELA Y is set:

An open for reading-only will return without delay.
An open for writing-only will return an error if no
process currently has the file open for reading.

If O_NDELA Y is clear:

An open for reading-only will block until a process
opens the file for writing. An open for writing­
only will block until a process opens the file for
reading.

Base System Definition Addendum

When opening a file associated with a communication line:

If O_NDELA Y is set:

The open will return without waiting for carrier.

If O_NDELAY is clear:

The open will block until carrier is present.

O_APPEND If set, the file-pointer will be set to the end of the file prior
to each write.

O_SYNC If opening an ordinary file, this flag will affect subsequent
writes. Each write [see WRITE(BA_OS)] should wait for both
the file data and file status to be physically updated.

O_CREA T If the file does not exist, it is created, the owner-ID of the
file is set to the effective-user-ID of the process, the group­
ID of the file is set to the effective-group-ID of the process,
and the access permission bits [see CHMOO(BA_OS)] of the
file mode are set to the value of mode modified as follows
[see CREAT(BA-OS)]:

O_TRUNC

The corresponding bits are ANDed with the complement of
the process' file mode creation mask [see UMASK(BA_OS)].
Thus, the function open clears each bit in the file mode
whose corresponding bit in the file mode creation mask is
set.

Otherwise, if the file exists and O_EXCL is not set, this flag
has no effect.

If the file exists, its length is truncated to 0 and the mode,
owner, and group are unchanged.

If O_CREA T is set and the file exists, the function open
will fail.

The file pointer used to mark the current position within the file is set to
the beginning of the file.

The new file-descriptor is the lowest-numbered file-descriptor available and
is set to remain open across calls to the EXEC(BA-OS) routines [see
FCNTL(BA_OS)].

Base System Definition Addendum Page 81

OPEN(BA_OS)

RETURN VALUE
If successful, the function open will return an open file-descriptor; other­
wise, it will return -1 and errno will indicate the error.

ERRORS
Under the following conditions, the function open will fail and will set
errno to:

ENOTDIR

ENOENT

ENOENT

ENOENT

EACCES

EACCES

EACCES

EISDIR

EROFS

EMFILE

ENXIO

if a component of the path-prefix is not a directory.

if O_CREA T is not set and the named file does not exist.

if a component of the path-name should exist but does not.

if the path-name is longer than {PATH_MAX} characters.

if a component of the path-prefix denies search permission.

if O_CREA T is set, the file does not exist, and the directory
that would contain the file does not permit writing.

if the oflag permission is denied for the named file.

if the named file is a directory and the oflag permission is
write or read/write.

if the named file resides on a read -only file system and the
oflag permission is write or read/write.

if {OPEN_MAX} file-descriptors are currently open in this
process.

if the named file is a character-special or block -special file
and the device associated with this special file does not exist;
or if O~DELA Y is set, the named file is a FIFO,
0_ WRONL Y is set and no process has the file open for read­
ing.

ETXTBSY if the file is a pure procedure (shared text) file that is being
executed and oflag specifies write or read/write permission.

EEXIST if O_CREAT and O_EXCL are set, and the named file exists.

EINTR if a signal was caught during the open operation.

ENFILE if the system file table is full, {SYS_OPEN} files are open in
the system.

Page 82 Base System Definition Addendum

ENOSPC if the directory to contain the file cannot be extended, the
file does not exist, and O_CREA T is specified.

EAGAIN if the file exists with enforced record locking enabled, there
are record-locks on the file [see CHMOD(BA_OS)], and
O_TRUNC is specified.

APPLICATION USAGE
Normally, applications should use the stdio routines to open, close, read and
write files. Thus, applications should use the FOPEN(BA-OS) stdio routine
rather than using the OPEN(BA-OS) routine.

SEE ALSO
CLOSE(BA-OS), CREAT(BA-OS), DUP(BA_OS), FCNTL(BA_OS),
LSEEK(BA-OS), READ(BA-OS), WRITE(BA-OS).

LEVEL
LevelL

Base System Definition Addendum Page 83

NAME
read - read from file

SYNOPSIS

int read(fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION
The function read attempts to read nbyte bytes from the file associated
with fildes into the buffer pointed to by buf.

The argument fildes is an open file-descriptor [see file-descriptor in
Chapter 4 - Definitions].

On devices capable of seeking, the read starts at a position in the file given
by the file-pointer associated with fildes. Upon return from the function
read, the file-pointer is incremented by the number of bytes actually read.

Devices that are incapable of seeking, such as terminals, always read from
the current position. The value of a file-pointer associated with such a file
is undefined.

If successful, the function read will return the number of bytes read and
placed in the buffer; this number may be less than nbyte if the file is asso­
ciated with a communication line [see IOCTL(BA_OS) and TERMIO(BA_ENV)],

or if the number of bytes left in the file is less than nbyte bytes, or if the
file is a pipe or a special file. When an end-of-file has been reached, the
function read will return o.

When attempting to read from an ordinary file with enforced record locking
enabled [see CHMOO(BA_OS)], and all or part of the file to be read has a
write-lock owned by another process (i.e., a blocking write-lock):

Page 84

If O_NDELAY is set, the function read will return -1 and errno
will be set to EAGAIN.

If O_NDELA Y is clear, the function read will sleep until all block­
ing write-locks are removed, or the function read is terminated by
a signal.

Base System Definition Addendum

REAO(BA-OS)

When attempting to read from an empty pipe (or FIFO):

If the pipe is no longer open for writing, 0 will be returned indicat­
ing end-of-file. Otherwise,

if O--NDELAY is clear, the read will block until data is
written to the pipe or the pipe is no longer open for
writing.

if O--NDELAY is set, 0 will be returned.

When attempting to read a file associated with a character-special file that
has no data currently available:

If O_NDELA Y is clear, the read will block until data becomes
available.

If O_NDELA Y is set, 0 will be returned.

The function read reads data previously written to a file. If any portion of
an ordinary file prior to the end-of-file has not been written, the function
read returns bytes with value O. For example, the LSEEK(BA_OS) routine
allows the file-pointer to be set beyond the end of existing data in the file.
If data are later written at this point, subsequent reads in the gap between
the previous end of data and newly written data will return bytes with value
o until data are written into the gap.

RETURN VALUE
If successful, the function read will return a non-negative integer indicat­
ing the number of bytes actually read; otherwise, it will return -1 and
errno will indicate the error.

ERRORS
The function read will fail and will set errno to:

EBADF

EINTR

EIO

ENXIO

EAGAIN

if fildes is not a valid file-descriptor open for reading.

if a signal was caught during the read operation.

if a physical I/O error has occurred.

if the device associated with the file-descriptor is a block­
special or character-special file and. the value of the file­
pointer is out of range.

if enforced record locking was enabled, O_NDELA Y was set,
and there was a write-lock owned by another process.

Base System Definition Addendum Page 85

READ(BA-OS)

ENOLCK if {LOCILMAX} regions are already locked in the system.

EDEADLK if O~DELA Y is clear and a deadlock condition was
detected.

APPLICATION USAGE
Normally, applications should use the stdio routines to open, close, read and
write files. Thus, an application that used the FOPEN(B~OS) stdio routine
to open a file should use the FREAD(BA_OS) stdio routine rather than the
READ(B~OS) routine to read it.

When O~DELAY is set, portable application-programs should test for two
conditions to determine that no data is currently available, for example:

SEE ALSO

fildes = open(path, O_RDONLY I O_NDELAY);
ret = read(fildes, buf, nbyte);
if (ret == a II (ret == -1 && errno == EAGAIN»

1* Data not available now. *1

CREAT(B~OS), DUP(B~OS), FCNTL(B~OS), IOCTL(BA_OS), OPEN(BA_OS),
POPEN(BA_OS).

FUTURE DIRECTIONS
When no data are present at the time of the read, the function read on a
pipe, FIFO, or tty-line with the O~DELAY flag set will return -1, rather
than 0, and errno will be set to EAGAIN.

LEVEL

Levell.

Page 86 Base System Definition Addendum

RMDIR(BA_OS)tt

NAME
rmdir - remove a directory

SYNOPSIS

int rmdir(path)
char *path;

DESCRIPTION
The function rmdir removes a directory.

The argument path specifies the path-name of the directory to be removed.

The directory must be empty, that is, not have any directory entries other
than, possibly, "." (the directory itself) and" .. " (the parent-directory) [see
directory in Chapter 4 - Definitions].

RETURN VALUE
If successful, rmdir will return a value of 0; otherwise, a value of -1 is
returned, and errno will indicate the error.

ERRORS
Under the following conditions, the function rmdir will fail and will set
errno to:

EEXIST

ENOTDIR

ENOENT

ENOENT

EACCES

EBUSY

EROFS

if the directory to be removed contains directory entries
other than "." and " .. ".

if a component of the path-prefix is not a directory.

if the named directory does not exist.

if the path-name is longer than {PATH_MAX} characters.

if a component of the path-prefix denies search permission,
or if write permission is denied on the parent directory of the
directory to be removed.

if the directory to be removed is currently in use by the sys­
tem.

if the directory to be removed is located on a read-only file
system.

EIO if a physical I/O error has occurred.
APPLICATION USAGE

The function rmdir was added in System V Release 3.0.
SEE ALSO

MKDIR(BA_OS).

Base System Definition Addendum Page 87

RMDIR(BLOS)tt

LEVEL
Levell.

Page 88 Base System Definition Addendum

NAME
setuid, setgid - set user-ID and group-IDs

SYNOPSIS

int setuid(uid)
int uid;

int setgid(gid)
int gid;

DESCRIPTION
The function setuid is used to set the real-user-ID and effective-user-ID of
the calling-process.

If the effective-user-ID of the calling-process is super-user, the real-user-ID,
effective-user-ID, and the saved set-user-ID are set to uid.

If the effective-user-ID of the calling-process is not super-user, but its real­
user-ID is equal to uid, the effective-user-ID is set to uid.

If the effective-user-ID of the calling-process is not super-user, but the
saved set-user-ID from an EXEC(BA-OS) routine is equal to uid, the
effective-user-ID is set to uid.

The function setgid is used to set the real-group-ID and effective-group-ID
of the calling-process.

If the effective-user-ID of the calling-process is super-user, the real-group-ID
and effective-group-ID are set to gid.

If the effective-user-ID of the calling-process is not super-user, but its real­
group-ID is equal to gid, the effective-group-ID is set to gid.

If the effective-user-ID of the calling-process is not super-user, but the
saved set-group-ID from an EXEC(BA-OS) routine is equal to gid, the
effective-group-ID is set to gid.

RETURN VALUE
If successful, the function setuid will return 0; otherwise, it will return -1
and errno will indicate the error.

If successful, the function setgid will return 0; otherwise, it will return -1
and errno will indicate the error.

Base System Definition Addendum Page 89

SETUID(BA_OS)

ERRORS
The function setuid will fail and will set errno to:

EPERM if the real-user-ID of the calling-process is not equal to uid and
its effective-user-ID is not super-user.

EINV AL if uid is out of range.

The function setgid will fail and will set errno to:

EPERM if the real-group-ID of the calling-process is not equal to gid and
its effective-user-ID is not super-user.

EINV AL if gid is out of range.
SEE ALSO

EXEC(BA_OS), GETUID(BA_OS).

LEVEL
Levell.

Page 90 Base System Definition Addendum

NAME
signal - specify what to do upon receipt of a signal

SYNOPSIS

#include <signaI.h>

void (*signal(sig, fune» ()
int sig;
void (*fune) ();

DESCRIPTION

SIGNAL(BA_OS)

The function signal allows the calling-process to choose one of three ways
in which it is possible to handle the receipt of a specific signal.

The argument sig specifies the signal and the argument fune specifies the
choice. The argument sig can be assigned anyone of the following signals
except SIGKILL:

SIGHUP hangup

SIGINT interrupt

SIGQUIT quit*

SIGILL illegal instruction (not reset when caught)*

SIGTRAP trace trap (not reset when caught)*

SIGABRT abort*

SIGFPE floating point exception*

SIGKILL kill (cannot be caught or ignored)

SIGSYS bad argument to routine*

SIGPIPE write on a pipe with no one to read it

SIGALRM alarm clock

SIGTERM software termination signal

* The default action for these signals is an abnormal process termination. See SIGJ>FL.

Base System Definition Addendum Page 91

SIGNAL(BLOS)

SIGUSRI user-defined signal!

SIGUSR2 user-defined signal 2

For portability, application-programs should use or catch only the signals
listed above; other signals are hardware- and implementation-dependent
and may have very different meanings or results across systems. (For
example, the System V signals SIGEMT, SIGBUS, SIGSEGV, and SIGIOT
are implementation-dependent and are not listed above.) Specific imple­
mentations may have other implementation-dependent signals.

The argument fune is assigned one of three values: SIG-DFL, SIG-IGN, or
an address of a signal-catching function. The argument fune is declared as
type pointer to a function returning void. The following actions are
prescribed by these values:

SIG_DFL Terminate process upon receipt of a signal.

SIG-IGN

address

Page 92

Upon receipt of the signal sig, the receiving process is to be
terminated with all of the consequences outlined in
EXIT(BA_OS). In addition, if sig is one of the signals marked
with an asterisk above, implementation-dependent abnormal
process termination routines, such as a core dump, may be
invoked.

Ignore signal.

The signal sig is to be ignored.

NOTE: The signal SIGKILL cannot be ignored.

Catch signal.

Upon receipt of the signal sig, the receiving process is to exe­
cute the signal-catching function pointed to by fune. The sig­
nal number sig will be passed as the only argument to the
signal-catching function. Additional arguments may be passed
to the signal-catching function for hardware-generated signals.
Before entering the signal-catching function, the value of fune
for the caught signal will be set to SIG-DFL unless the signal
is SIGILL or SIGTRAP.

The function signal will not catch an invalid function argu­
ment, fune, and results are undefined when an attempt is
made to execute the function at the bad address.

Base System Definition Addendum

SIGNAL(BA_OS)

Upon return from the signal-catching function, the receiving
process will resume execution at the point at which it was
interrupted, except for implementation defined signals where
this may not be true.

When a signal to be caught occurs during a non-atomic opera­
tion such as a call to the READ(BA-OS), WRITE(BA_OS),
OPEN(BA-OS), or IOCTL(BA-OS) routine on a slow device (such
as a terminal); or occurs during a PAUSE(BA-OS) routine; or
occurs during a WAIT(BA-OS) routine that does not return
immediately, the signal-catching function will be executed and
then the interrupted routine may return a -1 to the calling­
process with errno set to EINTR.

NOTE: The signal SIGKILL cannot be caught.

A call to the function signal cancels a pending signal sig except for a
pending SIGKILL signal.

RETURN VALUE
If successful, the function signal will return the previous value of the argu­
ment fune for the specified signal sig; otherwise, it will return SIG_ERR
and errno will indicate the error.

ERRORS
The function signal will fail and will set errno to:

EINV AL if sig is an illegal signal number or SIGKILL.
APPLICATION USAGE

Signals may be sent by the system to an application-program (user-level
process) or signals may be sent by one user-level process to another using
the KILL(BA_OS) routine. An application-program can catch signals and
specify the action to be taken using the SIGNAL(BA-OS) routine. The sig­
nals that a portable application-program may send are: SIGKILL,
SIGTERM, SIGUSRl, and SIGUSR2.

For portability, application-programs should use only the symbolic names of
signals rather than their values and use only the set of signals defined here.
Specific implementations may have additional signals.

SEE ALSO
KILL(BA_OS), PAUSE(BA-OS), WAIT(BA_OS), SET JMP(BA-LlB).

Base System Definition Addendum Page 93

SIGNAL(BA_OS)

FUTURE DIRECTIONS

The end-user level utility KILL(BU_CMD) will be changed to use symbolic
signal names rather than numbers.

LEVEL
Levell.

Page 94 Base System Definition Addendum

NAME
sigset, sighold, sigrelse, sigignore - signal management

SYNOPSIS

#inelude <signal.h>

void (*sigset(sig, fune» ()
int sig;
void (*fune) ();

int sighold(sig)
int sig;

int sigrelse(sig)
int sig;

int sigignore(sig)
int sig;

DESCRIPTION

SIGSET(BA_OS)tt

The functions sigset, sighold, sigrelse, and sigignore enhance the signal
facility and provide signal management for application processes.

The argument sig specifies the signal and the argument fune specifies the
choice. The argument sig can be assigned anyone of the following signals
except SIGKILL:

SIGHUP hangup

SIGINT interrupt

SIGQUIT quit*

SIGILL illegal instruction (not reset when caught)*

SIGTRAP trace trap (not reset when caught)*

SIGABRT abort*

SIGFPE floating point exception*

* The default action for these signals is an abnormal process termination. See SIG-DFL.

Base System Definition Addendum Page 95

SIGSET(BA_OS)tt

SIGKILL kill (cannot be caught or ignored)

SIGSYS bad argument to routine*

SIGPIPE write on a pipe with no one to read it

SIGALRM alarm clock

SIGTERM software termination signal

SIGUSRI user-defined signal 1

SIGUSR2 user-defined signal 2

For portability, application-programs should use or catch only the signals
listed above; other signals are hardware- and implementation-dependent
and may have very different meanings or results across systems. (For
example, the System V signals SIGEMT, SIGBUS, SIGSEGV, and SIGIOT
are implementation-dependent and are not listed above.) Specific imple­
mentations may have other implementation-dependent signals.

The argument fune is assigned one of four values: SIG_DFL, SIG_IGN,
SIG_HOLD, or an address of a signal-catching function. The argument
fune is declared as type pointer to a function returning void. The follow­
ing actions are prescribed by these values:

SIG_DFL Terminate process upon receipt of a signal.

Upon receipt of the signal sig, the receiving process is to be
terminated with all of the consequences outlined in
EXIT(BA_OS). In addition, if sig is one of the signals marked
with an asterisk above, implementation-dependent abnormal
process termination routines, such as a core dump, may be
invoked.

Ignore signal.

Any pending signal sig is discarded. A pending signal is a sig­
nal that has occurred but for which no action has been taken.
The system signal action is set to ignore future occurrences of
this signal type.

SIG_HOLD Hold signal.

Page 96

The signal sig is to be held. Any pending signal of this type
remains held. Only one signal of each type is held.

Base System Definition Addendum

address

SIGSET(BA-OS)tt

Catch signal.

Upon receipt of the signal sig, the receiving process is to exe­
cute the signal-catching function pointed to by fune. Any
pending signal of this type is released. This address is
retained across calls to the other signal management functions,
sighold and sigrelse. The signal number sig will be passed
as the only argument to the signal-catching function. Before
entering the signal-catching function, the value of fune for
the caught signal will be set to SIG_HOLD. During normal
return from the signal-catching handler, the system signal
action is restored to fune and any held signal of this type is
released. If a non-local goto [see SET JMP(BA-LlB)] is taken,
the function sigrelse must be invoked to restore the system
signal action and to release any held signal of this type.

Upon return from the signal-catching function, the receiving
process will resume execution at the point at which it was
interrupted, except for implementation defined signals where
this may not be true.

When a signal to be caught occurs during a non-atomic opera­
tion such as a call to the READ(BA-OS), WRITE(BA-OS),
OPEN(BA-OS), or IOCTL(BA-OS) routine on a slow device (such
as a terminal); or occurs during a PAUSE(BA-OS) routine; or
occurs during a WAIT(BA-OS) routine that does not return
immediately, the signal-catching function will be executed and
then the interrupted routine may return a -1 to the calling­
process with errno set to EINTR.

The function sigset specifies the system signal action to be taken upon
receipt of the argument sig.

The function sighold and the function sigrelse establish critical regions of
code. A call to the function sighold is analogous to raising the priority
level and deferring or holding a signal until the priority is lowered by the
function sigrelse. The function sigrelse restores the system signal action
to the action that was previously specified by the function sigset.

The function sigignore sets the action for the argument sig to SIG-IGN.
RETURN VALUE

If successful, the function sigset will return the previous value of the sys­
tem signal action for the specified signal sig; otherwise, it will return
SIG_ERR and errno will indicate the error.

Base System Definition Addendum Page 97

SIGSET(B.LOS)tt

For the functions sighold, sigrelse, and sigignore a value of 0 will be
returned upon success. Otherwise, a value of -1 will be returned and
errno will indicate the error.

ERRORS
Under the following conditions, the functions sigset, sighold, sigrelse,
and sigignore will fail and will set errno to:

EINV AL if sig is an illegal signal number or SIGKILL or if the default
handling of sig cannot be changed.

APPLICATION USAGE
The functions sigset, sighold, sigrelse, and sigignore were added in
System V Release 3.0.

For portability, application-programs should use only the symbolic names of
signals rather than their values and use only the set of signals defined here.
Specific implementations may have additional signals.

The other signal management routine, SIGNAL(BA_OS), should not be used
in conjunction with these routines for a particular signal type.

SEE ALSO
KILL(B~OS), PAUSE(BA_OS), SIGNAL(B~OS), WAIT(BA_OS),
SET JMP(B~LlB).

LEVEL
Level 1.

Page 98 Base System Definition Addendum

NAME
time - get time

SYNOPSIS

#include <sys/types.h>

time_t time (tloc)
time_t *tloc;

DESCRIPTION

TIME(BA_OS)

The function time returns the value of time in seconds since 00:00:00
GMT, January 1, 1970.

As long as the argument tloc is not a null-pointer, the return value is also
stored in the location to which the argument tloc points.

The actions of the function time are undefined if the argument tloc points
to an invalid address.

RETURN VALUE
If successful, the function time will return the value of time; otherwise, it
will return -1.

SEE ALSO
STIME(BA-OS).

LEVEL
LevelL

Base System Definition Addendum Page 99

USTAT(BA-OS)

NAME
ustat - get file system statistics

SYNOPSIS

#include <sysjtypes.h>
#include <ustat.h>

int ustat(dev, buf)
dev_t dev;
struct ustat *buf;

DESCRIPTION
The function ustat returns information about a mounted file system.

The argument dev is a device number identifying a device containing a
mounted file-system. The value of dev is obtained from the field st_dev
of the structure stat [see STAT(BA_OS)].

The argument buf is a pointer to a ustat structure that includes the follow­
ing elements:

daddr t f_tfree; 1* total free blocks *1
ino - t f_tinode; 1* number of free i-nodes *1
char f_fname[6]; 1* file-system name or null *1
char f_fpack[6]; 1* file-system pack or null *1

The last two fields, f_fname and f_fpack may not have significant infor­
mation on all systems, and, in that case, will contain the null character.

RETURN VALUE
If successful, the function ustat will return 0; otherwise, it will return -1
and errno will indicate the error.

ERRORS
Under the following conditions, the function ustat will fail and will set
errno to:

EINV AL if dev is not the device number of a device containing a
mounted file-system.

SEE ALSO
STAT(BA_OS).

LEVEL
Levell.

Page 100 Base System Definition Addendum

NAME
write - write on a file

SYNOPSIS

int write(fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION

WRITE(BLOS)

The function write attempts to write nbyte bytes from the buffer pointed
to by the argument buf to the file associated with the argument fildes.

The argument fildes is an open file-descriptor [see file-descriptor in
Chapter 4 - Definitions].

On devices capable of seeking, the actual writing of data proceeds from the
position in the file indicated by the file-pointer associated with the argu­
ment fildes. Upon returning from the function write, the file-pointer is
incremented by the number of bytes actually written.

On devices incapable of seeking, such as a terminal, writing always takes
place starting at the current position. The value of a file-pointer associated
with such a device is undefined [see OPEN(BA-OS)].

If the O-APPEND flag of the file status flags is set, the file-pointer will be
set to the end of the file prior to each write operation.

For ordinary files, if the O_SYNC flag of the file status flags is set, the
write should not return until both the file data and file status have been
physically updated. For block special files, if O_SYNC is set, the write
should not return until the data has been physically updated. The way the
data reaches the physical media is implementation- and hardware­
dependent.

When attempting to write to an ordinary file with enforced record locking
enabled [see CHMOD(BA-OS)]. and all or part of the file to be written has a
read or write lock owned by another process (i.e., a blocking lock):

If O.-NDELA Y is set, the function write will return -1 and
errno will be set to EAGAIN.

If O.-NDELAY is clear, the function write will sleep until all
blocking locks are removed, or the function write is terminated by
a signal.

Base System Definition Addendum Page 101

If a write requests that more bytes be written than there is room for (e.g.,
beyond the user process' file size limit [see ULlMIT(BA_OS)] or the physical
end of a medium), only as many bytes as there is room for will be written.
For example, suppose there is space for 20 bytes more in a file before reach­
ing a limit. A write of 512-bytes will return 20-bytes. The next write of
a non-zero number of bytes will give a failure return (except as noted for
pipes and FIFOs below).

If a write to a pipe (or FIFO) of {PIPE~UF} bytes or less is requested
and less than nbytes bytes of free space is available in the pipe, one of the
following will occur:

If the O_NDELAY flag is clear, the process will block until at least
nbytes of space is available in the pipe and then the write will
take place, or

If the O_NDELA Y flag is set, the process will not block and the
function write will return O.

If a write to a pipe (or FIFO) of more than {PIPE~UF} bytes is
requested, one of the following will occur:

If the O_NDELAY flag is clear, the process will block if the pipe is
full. As space becomes available in the pipe, the data from the
write request will be written piecemeal - in multiple smaller
amounts until the request is fulfilled. Thus, data from a write
request of more than {PIPE~UF} bytes may be interleaved on
arbitrary byte boundaries with data written by other processes.

If the O_NDELA Y flag is set and the pipe is full, the process will
not block and the function write will return O.

If the O_NDELA Y flag is set and the pipe is not full, the process
will not block and as much data as will currently fit in the pipe
will be written, and the function write will return the number of
bytes written. In this case, only part of the data are written, but
what data are written will not be interleaved with data from other
processes.

In contrast to write requests of more than {PIPE~UF} bytes, data from a
write request of {PIPE~UF} bytes or less will never be interleaved in the
pipe with data from other processes.

Page 102 Base System Definition Addendum

WRITE(BA_OS)

RETURN VALUE
If successful, the function write will return the number of bytes actually
written; otherwise, it will return -1, the file-pointer will remain unchanged,
and errno will indicate the error.

ERRORS
Under the following conditions, the function write will fail and will set
errno to:

EBADF if fildes is not a valid file descriptor open for
writing.

EPIPE and SIGPIPE signal if an attempt is made to write to a pipe that
is not open for reading by any process.

EFBIG

EINTR

ENOSPC

EIO

ENXIO

EAGAIN

ENOLCK

EDEADLK

Base System Definition Addendum

if an attempt was made to write a file that
exceeds the process' file size limit or the
system's maximum file size [see
ULlMIT(BA_OS)].

if a signal was caught during the write
operation.

if there is no free space remaining on the dev­
ice containing the file.

if a physical I/O error has occurred.

if the device associated with the file­
descriptor is a block-special or character­
special file and the file-pointer value is out of
range.

if enforced record locking was enabled,
O_NDELA Y was set and there were record­
locks on the file.

if enforced record locking was enabled and
{LOCK-MAX} regions are already locked in
the system.

if enforced record locking was enabled,
O-.NDELAY was clear and a deadlock condi­
tion was detected.

Page 103

WRITE(BJLOS)

APPLICATION USAGE
Normally, applications should use the stdio routines to open, close, read and
write files. Thus, if an application had used the FOPEN(BA-OS) stdio rou­
tine to open a file, it would use the FWRITE(BA-OS) stdio routine rather
than the WRITE(BA-OS) routine to write it.

Because they are not atomic, write requests of nbytes greater than
{PIPE-BUF} bytes to a pipe (or FIFO) should only be used when just two
cooperating processes, one reader and one writer, are using a pipe.

When O~DELAY is set, portable application-programs should test for two
conditions to determine that no data is currently available, for example:

fildes = open(path, O_WRONLY I O_NDELAY);
ret = write(fildes, buf, nbyte);
if (ret == 0" (ret == -1 && errno == EAGAIN»

1* Data not available now. *1

Use of the O_SYNC flag should be used by applications that require extra
reliability at the cost of performance.

SEE ALSO
CREAT(BA-OS), DUP(BA_OS), LSEEK(BA-OS), OPEN(BA_OS), PIPE(BA_OS),
U LI M IT(BA-OS).

LEVEL
Levell.

Page 104 Base System Definition Addendum

Chapter 7
General Library Routines

Base System Definition Addendum Page 105

CLOCK(BA_LlB)

NAME
clock - report CPU time used

SYNOPSIS

long clock ()

DESCRIPTION
The function clock returns the amount of CPU time (in microseconds) used
since the first call to the function clock. The time reported is the sum of
the user and system times of the calling-process and its terminated child­
processes for which it has executed the WAIT(BA_OS), PCLOSE(BA_OS), or
SYSTEM(BA-OS) routine.

APPLICATION USAGE
The value returned by clock is defined in microseconds for compatibility
with systems that have CPU clocks with much higher resolution.

SEE ALSO
TIMES(BA_OS), WAIT(BA_OS), POPEN(BA_OS), SYSTEM(BA_OS).

LEVEL
Levell.

Page 106 Base System Definition Addendum

CTIME(BA_LIB)

NAME
ctime, localtime, gmtime, asctime, tzset - convert date and time to string

SYNOPSIS

#include <sys/types.h>
#include <time.h>

char *ctime (clock)
time_t *clock;

struct tm *localtime(clock)
time_t *clock;

struct tm *gmtime(clock)
time_t *clock;

char *asctime (tm)
struct tm *tm;

extern long timezone;

extern int daylight;

extern char *tzname[2];

void tzset ()

DESCRIPTION
The function ctime converts a value of type time_t, pointed to by clock,
representing the time in seconds since 00:00:00 GMT, January 1, 1970 [see
TIME(BA-OS)] and returns a pointer to a 26-character string in the follow­
ing form:

Sun Sep 16 01:03:52 1973

All the fields have constant width.

Base System Definition Addendum Page 107

CTIME(BA_LlB)

The functions local time and gmtime return pointers to the structure tm,
described below:

The function localtime corrects for the time-zone and possible
Daylight Saving Time.

The function gmtime converts directly to Greenwich Mean Time
(GMT), which is the time the system uses.

The function asctime converts a tm structure to a 26-character string, as
shown in the above example, and returns a pointer to the string. Declara­
tions of all the functions, the external variables and the tm structure are in
the <time.h> header file. The structure tm includes the following
members:

int tm _sec; /* number of seconds past */

/* the minute (0-59) */

int tm _min; /* number of minutes past */

/* the hour (0-59) */

int tm_hour; /* current hour (0-23) */

int tm_mday; /* day of month (1 - 31) */

int tm _mon; /* month of year (0-11) */

int tm _year; /* current year -1900 */

int tm_wday; /* day of week (Sunday=O) */

int tm_yday; /* day of year (0-365) */

int tm_isdst; /* daylight savings time flag */

The value of tllLisdst is non-zero if Daylight Saving Time is in effect.

The external long variable timezone contains the difference, in seconds,
between GMT and local standard time (in EST, timezone is 5*60*60);
the external variable daylight is non-zero only if the standard USA Day­
light Saving Time conversion should be applied. The program compensates
for the peculiarities of this conversion in 1974 and 1975; if necessary, a
table for these years can be extended.

If an environment variable named TZ is present, asctime uses the contents
of the variable to override the default time-zone. The value of TZ must be
a three-letter time-zone name, followed by an optional minus sign (for zones
east of Greenwich) and a series of digits representing the difference between
local time and Greenwich Mean Time in hours; this is followed by an
optional three-letter name for a daylight time-zone. For example, the set­
ting for New Jersey would be EST5EDT. The effects of setting TZ are thus

Page 108 Base System Definition Addendum

CTIME(BA-LIB)

to change the values of the external variables timezone and daylight. In
addition, the time-zone names contained in the external variable

char *tzname[2] = { "EST", "EDT" };

are set from the environment variable TZ. The function tzset sets these
external variables from TZ; the function tzset is called by asctime and
may also be called explicitly by the user.

APPLICATION USAGE
The return values point to static data whose content is overwritten by each
call.

SEE ALSO
TIME(BA_OS), GETENV(BA-lIB).

FUTURE DIRECTIONS
The number in TZ will be defined as an optional minus sign followed by
two hour-digits and two minute-digits, hhmm, to represent fractional
time-zones.

LEVEL
Levell.

Base System Definition Addendum Page 109

FLOOR(B.LLlB)

NAME
floor, ceil, fmod, fabs - floor, ceiling, remainder, absolute value functions

SYNOPSIS

#include <math.h>

double floor (x)
double x;

double ceil (x)
double x;

double fmod (x, y)
double x, y;

double fabs(x)
double x;

DESCRIPTION
The function floor returns the largest integer (as a double-precision
number) not greater than x.

The function ceil returns the smallest integer not less than x .

The function fmod returns the floating-point remainder of the division of
x by y, x if y is zero or if xjy would overflow. Otherwise the number is f
with the same sign as x, such that x=iy+f for some integer i, and

Ifl<IYI·
The function fabs returns the absolute value of x, i.e., 1 x I.

SEE ALSO
ABS(BA_LlB).

LEVEL
Levell.

Page 110 Base System Definition Addendum

GETOPT(BA_LIB)

NAME
getopt - get option letter from argument vector

SYNOPSIS

int getopt(argc, argv, optstring)
int argc;
char *argv[], *optstring;

extern char *optarg;
extern int optind, opterr;

DESCRIPTION
The function getopt is a command-line parser. It returns the next option
letter in argv that matches a letter in optstring.

The function getopt places in optind the argv index of the next argument
to be processed. The external variable optind is initialized to 1 before the
first call to the function getopt.

The argument optstring is a string of recognized option letters; if a letter
is followed by a colon, the option is expected to have an argument that
must be separated from it by white space.

The variable optarg is set to point to the start of the option argument on
return from getopt.

When all options have been processed (i.e., up to the first non-option argu­
ment), the function getopt returns EOF. The special option -- may be
used to delimit the end of the options; EOF will be returned and -- will be
skipped.

The following rules comprise the System V standard for command-line syn­
tax:

RULE 1:

RULE 2:

RULE 3:

RULE 4:

RULE 5:

RULE 6:

Command names must be between two and nine characters.

Command names must include lower-case letters and digits only.

Option names must be a single character in length.

All options must be delimited by the - character.

Options with no arguments may be grouped behind one delim­
iter.

The first option-argument following an option must be preceded
by white space.

Base System Definition Addendum Page 111

GETOPT(BA-LlB)

RULE 7: Option arguments cannot be optional.

RULE 8: Groups of option arguments following an option must be
separated by commas or separated by white space and quoted.

RULE 9: All options must precede operands on the command line.

RULE 10: The characters -- may be used to delimit the end of the
options.

RULE 11: The order of options relative to one another should not matter.

RULE 12: The order of operands may matter and position-related interpre­
tations should be determined on a command-specific basis.

RULE 13: The - character preceded and followed by white space should be
used only to mean standard input.

The function getopt is the command-line parser that will enforce the rules
of this command syntax standard.

RETURN VALUE
The function getopt prints an error message on stderr and returns a
question-mark (?) when it encounters an option letter not included in opt­
string. Setting opterr to a 0 will disable this error message.

Page 112 Base System Definition Addendum

GETOPT(BA_LlB)

EXAMPLE
The following code fragment shows how one might process the arguments
for a command that can take the mutually exclusive options a and band
the options f and 0, both of which require arguments:

main (argc, argv)
int argc;
char *argv);

int c;
int bflg, aflg, errflg;
char *ifile;
char *ofile;
extern char *optarg;
extern int optind;

while ((c = getopt(argc, argv, "abf:o:")) != EOF)
swi tch (c) {
case 'a': if (bflg)

errflg++;
else

case 'b'

case 'f' :

case '0' :

aflg++;
break;
if (aflg)

errflg++;
else

bproc ();
break;
ifile = optarg;
break;
ofile = optarg;
break;

case '?': errflg++;

if (errflg) {
fprintf(stderr, "usage:
exit (2) ;

for ; optind < argc; optind++)
if (access(argv[optind), 4))

LEVEL
Levell.

Base System Definition Addendum

. ");

Page 113

PRINTF(BA_LlB)

NAME
printf, fprintf, sprintf - print formatted output

SYNOPSIS

#include <stdiooh>

int printf(format [, arg] 000)
char *format;

int fprintf(stream, format [, arg] 000)
FILE *stream;
char *format;

int sprintf(s, format [, arg] 000)
char *s, *format;

DESCRIPTION
The function printf places output on the standard output stream stdout.

The function fprintf places output on the named output stream.

The function sprintf places output, followed by the null character (\0) in
consecutive bytes starting at *s. It is the user's responsibility to ensure
that enough storage is available. Each function returns the number of char­
acters transmitted (not including the \0 in the case of sprintf) or a nega­
tive value if an output error was encountered.

Each of these functions converts, formats and prints its args under control
of the format. The format is a character-string that contains three types
of objects defined below:

1. plain-characters that are simply copied to the output stream;

2. escape-sequences that represent non-graphic characters; and

3. conversion-specifications.

The following escape-sequences produce the associated action on display
devices capable of the action:

\b Backspace.
Moves the printing position to one character before the current
position, unless the current position is the start of a line.

\f Form Feed.

Page 114

Moves the printing position to the initial printing position of
the next logical page.

Base System Definition Addendum

PRINTF(BA_LlB)

\n New line.
Moves the printing position to the start of the next line.

\r Carriage return.
Moves the printing position to the start of the current line.

\ t Horizontal tab.
Moves the printing position to the next implementation-defined
horizontal tab position on the current line.

\ v Vertical tab.
Moves the printing position to the start of the next
implementation-defined vertical tab position.

Each conversion specification is introduced by the character %. After the
character %, the following appear in sequence:

Zero or more flags, which modify the meaning of the conversion
specification.

An optional string of decimal digits to specify a minimum field
width. If the converted value has fewer characters than the field
width, it will be padded on the left (or right, if the left-adjustment
flag (-), described below, has been given) to the field width.

A precision that gives the minimum number of digits to appear for
the d, i, 0, U, x, or X conversions (the field is padded with leading
zeros), the number of digits to appear after the decimal point for
the e, E and f conversions, the maximum number of significant
digits for the g and G conversion; or the maximum number of
characters to be printed from a string in s conversion. The preci­
sion takes the form of a period (.) followed by a decimal digit
string; a null digit string is treated as zero. Padding specified by
the precision overrides the padding specified by the field width.

An optional 1 (ell) to specify that a following d, i, 0, U, x or X
conversion character applies to a long integer argo An 1 before
any other conversion character is ignored.

A conversion character (see below) that indicates the type of
conversion to be applied.

A field width or precision may be indicated by an asterisk (*) instead of a
digit string. In this case, an integer arg supplies the field width or preci­
sion. The arg that is actually converted is not fetched until the conversion
letter is seen, so the args specifying field width or precision must appear
before the arg (if any) to be converted. If the precision argument is

Base System Definition Addendum Page 115

PRINTF(BJLLlB)

negative, it will be changed to zero.

The flag characters and their meanings are:

+

blank

The result of the conversion will be left-justified within the field.

The result of a signed conversion will always begin with a sign
(+ or -).

If the first character of a signed conversion is not a sign, a blank
will be prepended to the result. This means that if the blank
and + flags both appear, the blank flag will be ignored.

The value is to be converted to an alternate form. For c, d, i, s,
and u conversions, the flag has no effect. For 0 conversion, it
increases the precision to force the first digit of the result to be
a zero. For x or X conversion, a non-zero result will have Ox or
OX prepended to it. For e, E, f, g, and G conversions, the
result will always contain a decimal point, even if no digits fol­
low the point (normally, a decimal point appears in the result of
these conversions only if a digit follows it). For g and G
conversions, trailing zeroes will not be removed from the result
as they normally are.

Each conversion character results in fetching zero or more args. The
results are undefined if there are insufficient args for the format. If the
format is exhausted while args remain, the excess args are ignored.

The conversion characters and their meanings are:

d,i,o,u,x,X The integer arg is converted to signed decimal (d or i),
unsigned octal (0), unsigned decimal (u), or unsigned hexa­
decimal notation (x and X). The x conversion uses the
letters abcdef and the X conversion uses the letters
ABCDEF. The precision component of arg specifies the
minimum number of digits to appear. If the value being con­
verted can be represented in fewer digits than the specified
minimum, it will be expanded with leading zeroes. The
default precision is 1. The result of converting a zero va,lue
with a precision of 0 is a null string.

f

Page 116

The float or double arg is converted to decimal notation in
the style [-]ddd.ddd, where the number of digits after the
decimal point is equal to the precision specification. If the
preClSLOn is omitted from arg, six digits are output; if the
precision is explicitly 0, no decimal point appears.

Base System Definition Addendum

e,E

g,G

c

s

%

PRINTF(BA_L1B)

The float or double arg is converted to the style
[-]d.ddde ± dd, where there is one digit before the decimal
point and the number of digits after it is equal to the preci­
sion. When the precision is missing, six digits are produced;
if the precision is 0, no decimal point appears. The E
conversion character will produce a number with E instead of
e introducing the exponent.

The exponent always contains at least two digits. However,
if the value to be printed is greater than or equal to
1E+ 100, additional exponent digits will be printed as neces­
sary.

The float or double arg is printed in style f or e (or in style
E in the case of a G conversion character), with the precision
specifying the number of significant digits. The style used
depends on the value converted: style e will be used only if
the exponent resulting from the conversion is less than -4 or
greater than the precision. Trailing zeroes are removed from
the result. A decimal point appears only if it is followed by a
digit.

The character arg is printed.

The arg is taken to be a string (character pointer) and char­
acters from the string are printed until a null character (\0)
is encountered or the number of characters indicated by the
precision specification of arg is reached. If the precision is
omitted from arg, it is taken to be infinite, so all characters
up to the first null character are printed. A NULL value for
arg will yield undefined results.

Print a %; no argument is converted.

If the character after the % is not a valid conversion character, the results
of the conversion are undefined.

Base System Definition Addendum Page 117

PRINTF(BA_LlB)

In no case does a non-existent or small field width cause truncation of a
field; if the result of a conversion is wider than the field width, the field is
simply expanded to contain the conversion result. Characters generated by
printf and fprintf are printed as if the PUTC(BA_LlB) routine had been
called.

RETURN VALUE
The functions printf, fprintf, and sprintf return the number of charac­
ters transmitted, or return -1 if an error was encountered.

EXAMPLE
To print a date and time in the form Sunday, July 3, 10:02, where
weekday and month are pointers to null-terminated strings:

printf("%s, %s %i, %d:%.2d",
weekday, month, day, hour, min);

To print 7r to 5 decimal places:

printf("pi = %.5f", 4 * atan(1.0»;

SEE ALSO
PUTC(BA_LlB), SCANF(BA_LlB), FOPEN(BA_OS).

FUTURE DIRECTIONS
The function printf will make available character string representations for
00 and "not a number" (NaN: a symbolic entity encoded in floating point
format) to support the IEEE P754 standard.

LEVEL
Levell.

Page 118 Base System Definition Addendum

NAME
scanf, fscanf, sscanf - convert formatted input

SYNOPSIS

#include <stdio.h>

int scanf(format [, pointer] ...)
char *format;

int fscanf(stream, format [, pointer] ... »
FILE *stream;
char *format;

int sscanf(s, format [, pointer] ...)
char *s, *format;

DESCRIPTION

SCANF(BA_LlB)

The function scanf reads from the standard input stream stdin.

The function fscanf reads from the named input stream.

The function sscanf reads from the character string s.

Each function reads characters, interprets them according to a format, and
stores the results in its arguments. Each expects, as arguments, a control
string format described below and a set of pointer arguments indicating
where the converted input should be stored.

The control string usually contains conversion specifications, which are
used to direct interpretation of input sequences. The control string may
contain:

1. White-space characters (blanks, tabs, new-lines, or form-feeds)
which, except in two cases described below, cause input to be read
up to the next non-white-space character.

2. An ordinary character (not %), which must match the next charac­
ter of the input stream.

3. Conversion specifications, consisting of the character %, an
optional assignment suppressing the character *, a decimal digit
string that specifies an optional numerical maximum field width,
an optional letter 1 (ell) or h indicating the size of the receiving
variable, and a conversion code.

Base System Definition Addendum Page 119

SCAN F(BA_LI B)

A conversion specification directs the conversion of the next input field; the
result is placed in the variable pointed to by the corresponding argument
unless assignment suppression was indicated by the character *. The
suppression of assignment provides a way of describing an input field which
is to be skipped. An input field is defined as a string of non-space charac­
ters; it extends to the next inappropriate character or until the maximum
field width, if one is specified, is exhausted. For all descriptors except the
character [and the character c, white space leading an input field is
ignored.

The conversion code indicates the interpretation of the input field; the
corresponding pointer argument must usually be of a restricted type. For a
suppressed field, no pointer argument is given. The following conversion
codes are legal:

% a single % is expected in the input at this point; no assignment
is done.

d a decimal integer is expected; the corresponding argument should
be an integer pointer.

u an unsigned decimal integer is expected; the corresponding argu­
ment should be an unsigned integer pointer.

o an octal integer is expected; the corresponding argument should
be an integer pointer.

x a hexadecimal integer is expected; the corresponding argument
should be an integer pointer.

n

e,f,g

Page 120

an integer is expected; the corresponding argument should be an
integer pointer. The value of the next input item, interpreted
according to C conventions, will be stored; a leading 0 implies
octal, a leading Ox implies hexadecimal; otherwise, decimal is
assumed.

causes the total number of characters (including white space)
that have been scanned so far since the function call to be
stored; the corresponding argument should be an integer pointer.
No input is consumed.

a floating point number is expected; the next field is converted
accordingly and stored through the corresponding argument,
which should be a pointer to a float. The input format for
floating point numbers is an optionally signed string of digits,
possibly containing a decimal point; followed by an optional

Base System Definition Addendum

s

c

SCANF(BA-LlB)

exponent field consisting of an E or an e, followed by an option­
ally signed integer.

a character string is expected; the corresponding argument
should be a character pointer pointing to an array of characters
large enough to accept the string and a terminating \0, which
will be added automatically. The input field is terminated by a
white-space character.

a character is expected; the corresponding argument should be a
character pointer. The normal skip over white space is
suppressed in this case; to read the next non-space character, use
% Is. If a field width is given, the corresponding argument
should refer to a character array; the indicated number of char­
acters is read.

indicates string data and the normal skip over leading white
space is suppressed. The left bracket is followed by a set of
characters called the scanset and a right bracket; the input field
is the maximal sequence of input characters consisting entirely
of characters in the scanset. The circumflex (), when it
appears as the first character in the scanset, serves as a comple­
ment operator and redefines the scanset as the set of all charac­
ters not contained in the remainder of the scanset string.

There are some conventions used in the construction of the
scanset. A range of characters may be represented by the con­
struct first-last, thus [0123456789] may be expressed [0-9].
U sing this convention, first must be lexically less than or equal
to last, or else the dash will stand for itself. The character - will
also stand for itself whenever it is the first or the last character
in the scanset. To include the right square bracket as an ele­
ment of the scanset, it must appear as the first character (possi­
bly preceded by a circumflex) of the scanset and in this case it
will not be syntactically interpreted as the closing bracket. The
corresponding argument must point to a character array large
enough to hold the data field and the terminating \0, which will
be added automatically. At least one character must match for
this conversion to be considered successful.

If an invalid conversion character follows the %, the results of the opera­
tion may not be predictable.

Base System Definition Addendum Page 121

SCAN F(BA-LI B)

The conversion characters d, u, 0, x, and i may be preceded by I or h to
indicate that a pointer to long or to short rather than to int is in the
argument list. Similarly, the conversion characters e, f, and g may be pre­
ceded by I to indicate that a pointer to double rather than to float is in
the argument list. The I or h modifier is ignored for other conversion char­
acters.

The scanf conversion terminates at end of file, at the end of the control
string, or when an input character conflicts with the control string. In the
latter case, the offending character is left unread in the input stream.

RETURN VALUE
These routines return the number of successfully matched and assigned
input items; this number can be zero in the event of an early conflict
between an input character and the control string. If the input ends before
the first conflict or conversion, EOF is returned.

APPLICATION USAGE
Trailing white space (including a new-line) is left unread unless matched in
the control string.

The success of literal matches and suppressed assignments is not directly
determinable.

EXAMPLE
The call to the function scanf:

int i, n; float X; char name[50];
n = scanf("%d%f%s", &i, &x, name);

with the input line:

25 54.32E-1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and
name will contain thompson\O.

The call to the function scanf:

int i; float X; char name[50];
(void) scanf("%2d%f%*d %[0-9]", &i, &x, name);

with the input line:

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in
name. The next call to getchar [see GETC(BA_LlB)] will return a.

Page 122 Base System Definition Addendum

SCANF(BA_LlB)

SEE ALSO
GETC(BA_LlB), PRINTF(BA_LlB), STRTOO(BA_LlB), STRTOL(BA-LlB).

FUTURE DIRECTIONS
The function scanf will make available character string representations for
00 and "not a number" (NaN: a symbolic entity encoded in floating point
format) to support the IEEE P754 standard.

LEVEL
Levell.

Base System Definition Addendum Page 123

STRING(BA-LlB)

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strdup, strlen, strchr,
strrchr, strpbrk, strspn, strcspn, strtok - string operations

SYNOPSIS
#include <string.h>
#include <sys/types.h>

char *strcat(sl, s2)
char *sl, *s2;

char *strncat(sl, s2, n)
char *sl, *s2;
size_t n;

int strcmp(sl, s2)
char *sl, *s2;

int strncmp(sl, s2, n)
char *sl, *s2;
size_t n;

char *strcpy(sl, s2)
char *sl, *s2;

char *strncpy(sl, s2, n)
char *sl, *s2;
size_t n;

char *strdup(sl)
char *sl;

int strlen(s)
char *s;

char *strchr (s, c)
char *s;
int c;

char *strrchr(s, c)
char *s;
int c;

char *strpbrk(sl, s2)
char *sl, *s2;

int strspn(sl, s2)
char *sl, *s2;

int strcspn(sl, s2)
char *sl, *s2;

char *strtok(sl, s2)
char *sl, *s2;

Page 124 Base System Definition Addendum

STRING(BILLlB)

DESCRIPTION

The arguments sl, s2, and s point to strings (arrays of characters ter­
minated by a null character). The functions strcat, strncat, strcpy,
strncpy, and strtok all alter sl. These, functions do not check for over­
flow of the array pointed to by sl. The type size_t is defined in the
<sys/types.h> header file.

The function strcat appends a copy of string s2 to the end of string sl.

The function strncat appends at most n characters. Each returns a
pointer to the null-terminated result.

The function strcmp compares its arguments and returns an integer less
than, equal to, or greater than 0, according as sl is lexicographically less
than, equal to, or greater than s2.

The function strncmp makes the same comparison but looks at at most n
characters.

The function strcpy copies string s2 to sl, stopping after the null charac­
ter has been copied.

The function strncpy copies exactly n characters, truncating s2 or adding
null characters to sl if necessary. The result will not be null-terminated if
the length of s2 is n or more. Each function returns s1.

The function strdup returns a pointer to a new string, which is a duplicate
of the string pointed to by s1. Space for the new string is obtained using
MALLOC(BA-OS). A NULL pointer is returned if the new string cannot be
created.

The function strlen returns the number of characters in s, not including
the terminating null character.

The function strchr or the function strrchr returns a pointer to the first
(last) occurrence of character c in string s, or a NULL pointer if c does not
occur in the string. The null character terminating a string is considered to
be part of the string.

The function strpbrk returns a pointer to the first occurrence in string sl
of any character from string s2, or a NULL pointer if no character from s2
exists in s1.

The function strspn or the function strcspn returns the length of the ini­
tial segment of string sl which consists entirely of characters from (not
from) string s2.

Base System Definition Addendum Page 125

STRING(BA_LlB)

The function strtok considers the string sl to consist of a sequence of zero
or more text tokens separated by spans- of one or more characters from the
separator string s2. The first call (with pointer sl specified) returns a
pointer to the first character of the first token, and will have written a null
character into sl immediately following the returned token. The function
keeps track of its position in the string between separate calls, so that sub­
sequent calls (which must be made with the first argument a NULL
pointer) will work through the string sl immediately following tpat token.
In this way subsequent calls will work through the string sl, returning a
pointer to the first character of each subsequent token. A null character
will have been written into sl by strtok immediately following the token.
The separator string s2 may be different from call to call. When no token
remains in sl, a NULL pointer is returned.

APPLICATION USAGE
All these functions are declared by the <string.h> header file.

Both strcmp and strncmp use native character comparison. The sign of
the value returned when one of the characters has its high-order bit set is
implementation -dependent.

Character movement ~"3 performed differently in different implementations.
Thus overlapping moves may yield surprises.

SEE ALSO
MEMORY(BA_LlB).

FUTURE DIRECTIONS
The type of value returned by strlen will be declared as size_to

LEVEL
Levell.

Page 126 Base System Definition Addendum

Appendix
Changes From Issue 2 Volume 1

Appendix
Changes From Issue 2 Volume 1

This Appendix documents changes from Issue 2, Volume 1 of the Base System
Definition of the System V Interface Definition. Only changes that serve to clar­
ify information, provide additional information, or identify incorrect information
that appears in Issue 2, Volume 1 are documented. Changes that do not alter
meaning are not listed below.

The paragraphs below identify specific changes to detailed component defini­
tions:

1. BASE SYSTEM DIFFERENCES

Environment.

ERRORS(BA-ENV)

TERMIO(BA-ENV)

The errno ENOENT has the added meaning that a path­
name argument to a BA-OS function is longer than
{PATH_MAX} characters. This affects the functions
ACCESS(BA-OS), CHOIR(BA_OS), CHMOO(BA_OS),
CHOWN(BA_OS), CREAT(BA_OS), EXEC(BA_OS),
FOPEN(BA-OS), LlNK(BA_OS), MKNOO(BA_OS),
OPEN(BA-OS), STAT(BA-OS), UNLlNK(BA-OS), and
UTIME(BA-OS).

FUTURE DIRECTION: To conform with the IEEE
POSIX standard, when it is adopted as a full-use standard,
the value of errno indicating that a path-name argument
exceeds {P A TH_MAX} characters may be changed.
Currently, the POSIX trial-use draft specifies
ENAMETOOLONG for this condition.

Issue 2 incorrectly listed B38400 as a valid baud rate. This
baud rate should be deleted.

OS Service Routines.

CHMOO(BA_OS) Issue 2 identified the access permission bit 01000 as (exe­
cute or search by group) in the FUTURE DIRECTIONS sec­
tion; this should correctly refer to access permission bit
00010.

Base System Definition Addendum Page 129

FERROR(BA_OS) In Issue 2, the first paragraph under DESCRIPTION
should be changed to the following:

The function ferror determines if an I/O error
(e.g., EINTR, ENOSPC) has occurred when reading
from or writing to the file associated with the
named stream.

The last statement in the RETURN VALUE section should
state:

The function fopen or the function fdopen may
also fail if there are no free stdio streams and may
not set errno.

Issue 2 defined the default value for maxfast to be O.
This value should be defined as implementation dependent.

Issue 2 specified that the mode argument to the
OPEN(BA_OS) routine was required. This argument should
be defined to be optional, i.e., int open (path, oflag
[,mode]).

General Library Routines

REGEXP(BA_LlB)

SET JMP(BA_LlB)

Page 130

Issue 2 incorrectly specified the function names on the
NAME line. This line should state:

compile, step, advance - regular-expression com­
pile and match routines

In Issue 2, the last paragraph under APPLICATION
USAGE should be deleted.

The last sentence of the last paragraph in the DESCRIP­
TION section should be changed to the following:

All accessible variables of storage class static or
external have values as of the time the function
longjmp was called. The values of variables of
storage class automatic or register are indeter­
minate.

Base System Definition Addendum

TMPFILE(BA_LlB)

VPRINTF(BA_LlB)

Issue 2 incorrectly described the RETURN VALUE, which
should correctly read:

If the temporary file cannot be opened, a NULL
pointer is returned.

Issue 2 presented an incomplete statement in the EXAM­
PLE. The line

(void) fprintf(stderr, " ERR in %s:

should correctly read

(void) fprintf(stderr, " ERR in %s: "
va-arg (args, char *»;

The following section should appear under the APPLICA­
TION USAGE section.

Specification of a second argument to the va-arg macro
of type char, short, or float is non-portable, since argu­
ments seen by the called function are not char, short,
or float. The C compiler converts char and short
arguments to int and converts float arguments to dou­
ble before passing them to a function.

2. KERNEL EXTENSION DIFFERENCES

MSGOP(KE_OS)

PROFIL(KE_OS)

PTRACE(KE_OS)

7

Issue 2 incorrectly specified the function names on the
NAME line. This line should state:

msgsnd, msgrcv - message operations

Issue 2 incorrectly specified types for two of the arguments
to profil. The argument buff should be defined as short
*buff and the argument offset should be defined as void
(*offset)().

The description of the action to be taken when the value of
the argument request is 7 should read as follows:

This request causes the child to resume execution. The
data argument is taken as a signal number and the child's
execution continues at location addr as if it had incurred
that signal. Normally the signal number will be either 0 to
indicate that the signal that caused the stop should be

Base System Definition Addendum Page 131

SEMGET(KE_OS)

Page 132

ignored, or the value of the signal that caused the stop. If
addr is 1, then execution continues from where it stopped.

Upon successful completion, the value of data is returned
to the parent. This request will fail if data is not 0 or a
valid signal number, in which case a value of -11s returned
to the parent process and the parent's err no is set to EIO.

Issue 2 incorrectly included a paragraph in the DESCRIP­

TION section. The last paragraph, which states "The data
structure associated with each semaphor in the set is not
initialized. The function semet} with the command SET­
V AL or SETALL can be used to initialize each sema­
phore. ", should be removed.

Issue 2 incorrectly specified use of IPC_CREA T instead
of IPC~OWAIT. All instances of IPC_CREAT should
be replaced by IPC~OWAIT.

Issue 2 incorrectly specified the function names on the
NAME line. This line should state:

shmat, shmdt - shared-memory-operations

Base System Definition Addendum

Part III

Terminal Interface Extension Definition

8.1 OVERVIEW

Chapter 8
Introduction

The Terminal Interface Extension (TI) consists of the facilities provided by the
cursesjterminfo package to allow application programs to perform terminal­
handling functions in a way that is independent of the type of the terminal actu­
ally in use. Currently, the cursesjterminfo package supports asynchronous char­
acter terminals.

The System V Base, the Basic Utilities Extension, the Advanced Utilities Exten­
sion, and the Software Development Extension are prerequisites for the Terminal
Interface Extension.

The components of the Terminal Interface Extension are new in System V
Release 2.

8.2 DESCRIPTION

DATA FILES

/usr /lib/terminfo/? /*

UTILITIES

tic tput

Terminal Interface Extension Definition Page 135

LIBRARY ROUTINES

General Routines

addch has_ic nl standend
addstr has_il nocbreak standout
attroff idlok nodelay subpadtt
attron inch noecho sub win
attrset initscr nonl touchlinett
baudrate insch noraw touchwin
beep insertln overlay typeahead
box intrflush overwrite unctrl
cbreak keynamett pechochartt ungetch
clear keypad pnoutrefresh waddch
clearok killchar pre fresh waddstr
clrtobot leaveok printw wattroff
clrtoeol longname raw watt ron
copywintt move refresh wattrset
def_prog_mode mvaddch reset_prog_mode wclear
def-shelLmode mvaddstr reset-shelLmode wclrtobot
delay_output mvdelch resetterm ** wclrtoeol
delch mvgetch resetty wdelch
deleteln mvgetstr saveterm ** wdeleteln
delwin mvinch savetty wechochartt
doupdate mvinsch scanw werase
echo mvprintw scr_dumptt wgetch
echochartt mvscanw scr_inittt wgetstr
endwin mvwaddch scr _restorett winch
erase mvwaddstr scroll winsch
erasechar mvwdelch scrollok winsertln
fixterm ** mvwgetch set_term wmove
flash mvwgetstr setscrreg wnoutrefresh
flushinp mvwin slLcleartt wprintw
getbegyxtt mvwinch slLinittt wrefresh
getch mvwinsch slLlabeltt wscanw
getmaxyxtt mvwprintw slLnoutrefreshtt wsetscrreg
getstr mvwscanw slLrefreshtt wstandend
gettmode ** newpad slLrestorett wstandout
getyx new term slk-Settt
halfdelaytt newwin slLtouchtt

Page 136 Terminal Interface Extension Definition

mvcur
putp
setterm **

Terminfo Level Routines

setupterm
tigetflag
tigetnum

tigetstr
tparm
tputs

vidattr
vidputs

Termcap Compatibility Routines

tgetent **
tgetflag **

** Level 2: December 1, 1985.

8.3 DEFINITIONS

tgetnum ** tgoto **
tgetstr **

tputs

The following environment variables are used by the components of the TI
extension. See SH(BU_CMO) for information on the shell environment.

TERM
The environmental variable TERM usually contains a user's current terminal
type and can be set by the user.

TERMINFO
The environmental variable TERMINFO, if set, contains the place where local
terminal descriptions can be found. TERMINFO can be set by the user. If it is
set, any program using CURSES(TI_LlB) will check the TERMINFO location for a
terminal's description before checking /usr/lib/terminfo, the standard location
for terminal descriptions. See CURSES(TI_LlB) and TERMINFO(TLENV) for further
information.

LINES and COLUMNS
The environmental variables LINES and COLUMNS, if set, contain the number
of lines and number of columns, respectively, on a terminal screen and can be set
by the user. If defined, the values of these variables, LINES and COLUMNS, will
override the screen size values given in a terminal's terminfo [see
TERMINFO(TLENV)] description. See CURSES(TI_LlB) for further information.

Terminal Interface Extension Definition Page 137

8.4 TRADEMARKS

Tektronix is a registered trademark of Tektronix, Inc.
Tele Video is a registered trademark of Tele Video Systems, Inc.
VT100 is a trademark of Digital Equipment Corporation.
LSI is a trademark of Lear Siegler, Inc.
HP is a trademark of Hewlett-Packard Co.
Tektronix 4010 is a registered trademark of Tektronix, Inc.
Beehive is a trademark of Beehive International.
Ann Arbor is a trademark of Ann Arbor Terminals, Inc.
Teleray is a trademark of Research, Inc.
Micro-Term, ACT and MIME are trademarks of Micro-Term, Inc.
Concept is a trademark of Human Designed Systems, Inc.

Page 138 Terminal Interface Extension Definition

Terminal Interface Extension Definition

Chapter 9
Environment

Page 139

TERMINFO(TI_ENV)

NAME
terminfo - terminal capability database

SYNOPSIS

/usr /lib/terminfo/? /*
DESCRIPTION

The term info database describes terminals, by giving a set of capabilities
which they have, by describing how operations are performed, by describing
padding requirements, and by specifying initialization sequences. The ter­
minfo database is built by using the TIC(TI_CMD) compiler.

The terminfo source files consist of entries that contain a number of
comma -separated fields. White space after each comma is ignored. The
first entry for each terminal gives the names which are known for the ter­
minal, separated by vertical bar (:) characters. The first name given is the
most common abbreviation for the terminal; the last name given should be
a long name fully identifying the terminal; and all others are understood as
synonyms for the terminal name. All names but the last should be in
lowercase letters and contain no blanks; the last name may well contain
uppercase letters and blanks for readability.

Terminal names (except for the last, verbose entry) should be chosen using
the following conventions. The particular piece of hardware making up the
terminal should have a root name chosen, for example, "att4424". Modes
that the hardware can be in, or user preferences, should be indicated by
appending a hyphen and an indicator of the mode. The following suffixes
should be used where possible:

Suffix Meaning
-w Wide mode (more than 80 columns)
-am With automatic margins (usually default)
-nam Without automatic margins
-n Number of lines on the screen (e.g., -60)
-na No arrow keys (leave them in local)
-np Number of pages of memory (e.g., -8p)
-rv Reverse video

To avoid conflicts with the naming conventions used in describing the dif­
ferent modes of a terminal (e.g., -w), it is recommended that a terminal's
root name not contain hyphens. Further, it is good practice to make all ter­
minal names used in the terminfo database unique.

Page 140 Terminal Interface Extension Definition

TERMINFO(TI_ENV)

Capabilities

In the table below, "Variable" is the name by which the programmer (at
the terminfo level) accesses the capability. "Capname" is the short name
used in the text of the database, and is used by a person updating the data­
base. The "Termcap Code" is the two letter code that corresponds to the
old termcap capability name.

Capability names have no hard length limit, but an informal limit of 5
characters has been adopted to keep them short. Whenever possible, names
are chosen to be the same as or similar to the ANSI X3.64-1979 standard.
Semantics are also intended to match those of the specification.

All string capabilities listed below may have padding specified, with the
exception of those used for input. Input capabilities, listed under the
Strings section of the table below, are denoted by the string key_at the
beginning of their variable name. The following indicators may appear at
the end of the Description for a variable.

(G) indicates that the string is passed through tparm() with parms as
given (#i).

(*) indicates that padding may be based on the number of lines affected .

(# i) . d' t h ·th mIca es tel parameter.

Variable Cap- Term-
name cap

Booleans:
auto_left_margin bw bw
auto_right_margin am am
ceoLstandout_glitch xhp xs
dest_tabs_magic-smso xt xt
eat_newline_glitch xenl xn
erase_overstrike eo eo
generic_type gn gn
harcLcopy hc hc
harcLcursor chts HC
has_meta.-key km km
has_status_Iine hs hs
insert_nulLglitch in in
memory_above da da

Terminal Interface Extension Definition

Description
Code

cub 1 wraps from col 0 to last column
Terminal has automatic margins
Standout not erased by overwriting
Destructive tabs, magic smso char
Newline ignored after 80 cols
Can erase overstrikes with a blank
Generic line type (e.g., dialup, switch)
Hardcopy terminal
Cursor is hard to see
(Reserved)
Has extra "status line"
Insert mode distinguishes nulls
Display may be retained above screen

Page 141

TERMINFO(TI_ENV)

Variable Cap- Term- Description
name cap Code

memory_below db db Display may be retained below screen
move_insert_mode mir mi Safe to move while in insert mode
move_standout_mode msgr ms Safe to move in standout modes
needs_xon_xoff nxon nx Padding won't work, xon/xoff required
(Reserved) xsb xb
no_paLchar npc NP . Pad character doesn't exist.
non_rev _rmcup nrrmc NR smcup does not reverse rmcup.
over_strike os os Terminal overstrikes
prtr_silent mc5i 5i Printer won't echo on screen.
status~ine_esc_ok eslok es Escape can be used on the status line
tilde_glitch hz hz Cannot print tildes
transparent_underline ul ul Underline character overstrikes
xon_xoff xon xo Terminal uses xon/xoff handshaking

Numbers:
columns cols co Number of columns in a line
in it_tabs it it Tabs initially every # spaces
labeLheight Ih Ih N umber of rows in each label
labeLwidth lw lw Number of co Is in each label
lines lines Ii Number of lines on screen or page
lines_of_memory 1m 1m Lines of memory if > lines, O=varies
magic_cookie_glitch xmc sg Number of blank chars left by smso or rmso
nUIlL.labels nlab Nl Number of labels on screen (start at 1)
padding_bauLrate pb pb Lowest baud where padding is needed
virtuaLterminal vt vt (Reserved)
widtLstatus_line wsl ws Number of columns in status line

Strings:
acs_chars acsc ac Graphic charset pairs aAbBcC - default=vtlOO
bacLtab cbt bt Back tab
bell bel bl Audible signal (bell)
carriage_return cr cr Carriage return (*)
change_scrolLregion csr cs Change to lines #1 through #2 (G)
char_padding rmp rP Like ip but when in replace mode
clear_alLtabs tbc ct Clear all tab stops
clear_margins mgc MC Clear left and right soft margins
clear_screen clear cl Clear screen and home cursor (*)
clr_bol ell cb Clear to beginning of line, inclusive
clr_eol el ce Clear to end of line
clr_eos ed cd Clear to end of display (*)
column_address hpa ch Horizontal position absolute (G)
commanLcharacter cmdch CC (Reserved)
cursor_address cup cm Cursor motion to row #1 col #2 (G)

Page 142 Terminal Interface Extension Definition

TERMINFO(TI_ENV)

Variable Cap- Term- Description
name cap Code

cursor_down cud! do Down one line
cursor_home home ho Home cursor (if no cup)
cursor_invisible civis vi Make cursor invisible
cursor_left cub! Ie Move cursor left one space
cursor _meIIL-address mrcup eM Memory relative cursor addressing
cursor_normal cnorm ve Make cursor appear normal (undo vs/vi)
cursor_right cufl nd Non-destructive space (cursor right)
cursor_to_ll 11 11 Last line, first column (if no cup)
cursor_up cuu! up Upline (cursor up)
cursor_visible cvvis vs Make cursor very visible
delete_character dch! dc Delete character (*)
delete_line dll dl Delete line (*)
dis_status_Iine dsl ds Disable status line
down_halLline hd hd Half-line down (forward 1/2 linefeed)
ena-acs enacs eA Enable alternate char set
enter_alt_charset_mode smacs as Start alternate character set
enter_aIIL-mode smam SA Turn on automatic margins
enter_blink-mode blink mb Turn on blinking
enter_bolLmode bold md Turn on bold (extra bright) mode
enter_ca-mode smcup ti String to begin programs that use cup
enter_delete_mode smdc dm Delete mode (enter)
enter_diIIL-mode dim mh Turn on half-bright mode
enter_insert_mode smir im Insert mode (enter)
enter_protecteLmode prot mp Turn on protected mode
enter_reverse_mode rev mr Turn on reverse video mode
enter_secure_mode invis mk Turn on blank mode (chars invisible)
enter_standout_mode smso so Begin standout mode
enter_under line_mode smul us Start underscore mode
enter_xon_mode smxon SX Turn on xon/xoff handshaking
erase_chars ech ec Erase #! characters (G)
exit_alt_charset_mode rmacs ae End alternate character set
exiLaIIL-mode rmam RA Turn off automatic margins
exit_attribute_mode sgrO me Turn off all attributes
exiLca-mode rmcup te String to end programs that use cup
exit_delete_mode rmdc ed End delete mode
exit_insert_mode rmir ei End insert mode
exit_standout_mode rmso se End standout mode
exit_underline_mode rmul ue End underscore mode
exit_xon_mode rmxon RX Turn off xon/xoff handshaking
flash-screen flash vb Visible bell (may not move cursor)
forIIL-feed ff ff Hardcopy terminal page eject (*)
froIIL-status_Iine fsl fs Return from status line

Terminal Interface Extension Definition Page 143

TERMINFO(TI_ENV)

Variable Cap- Term- Description
name cap Code

init_lstring isl il Terminal initialization string
init_2string is2 is Terminal initialization string
init_3string is3 i3 Terminal initialization string
init_file if if Name of file containing is
init_prog iprog iP Path name of program for init
insert_character ichl ic Insert character
insert_line ill al Add new blank line (*)
insert_padding ip ip Insert pad after character inserted(*)
key_a 1 kal Kl KEY-Al, Upper left of keypad
key_a3 ka3 K3 KEY-A3, Upper right of keypad
key_b2 kb2 K2 KEY -132, Center of keypad
key_c1 kc1 K4 KEY_Cl, Lower left of keypad
key_c3 kc3 K5 KEY _C3, Lower right of keypad
key_backspace kbs kb KEY -13ACKSP ACE, Sent by backspace key
key_beg kbeg @l KEY-13EG, Beg(inning) key
key_btab kcbt kB KEY -13TAB, Back tab key
key_cancel kcan @2 KEY _CANCEL, Cancel key
key_catab ktbc ka KEY_CATAB, Sent by clear-all-tabs key
key_clear kclr kC KEY _CLEAR, Sent by clear screen or erase key
key_close kclo @3 KEY _CLOSE, Close key
key_command kcmd @4 KEY_COMMAND, Cmd (command) key
key_copy kcpy @5 KEY_COPY, Copy key
key_create kcrt @6 KEY _CREATE, Create key
key_ctab kctab kt KEY_CTAB, Sent by clear-tab key
key_dc kdchl kD KEY ~C, Sent by delete character key
key_dl kdll kL KEY~L, Sent by delete line key
key_down kcudl kd KEY-.DOWN, Sent by terminal down arrow key
key_eic krmir kM KEY ~IC, Sent by rmir or smir in insert mode
key_end kend @7 KEY~ND, End key
key_enter kent @8 KEY ~NTER, Enter/send
key_eol kel kE KEY~OL, Sent by clear-to-end-of-line key
key_eos ked kS KEY~OS, Sent by clear-to-end-of-screen key
key_exit kext @9 KEY ~XIT, Sent by exit key
key_fO kfO kO KEYJ(O), Sent by function key fO
key_fl kfl kl KEYJ(1), Sent by function key f1
key_f2 kf2 k2 KEYJ(2), Sent by function key f2
key_f3 kf3 k3 KEYJ(3), Sent by function key f3
key_f4 kf4 k4 KEYJ(4), Sent by function key f4
key_f5 kf5 k5 KEYJ(5), Sent by function key f5
key_f6 kf6 k6 KEYJ(6), Sent by function key f6
key_f7 kf7 k7 KEYJ(7), Sent by function key f7
key_f8 kf8 k8 KEY.J'(8), Sent by function key f8

Page 144 Terminal Interface Extension Definition

TERMINFO(TI_ENV)

Variable Cap- Term- Description
name cap Code

key_ill kill k9 KEYJ(9), Sent by function key f9
key_flO kflO ka KEYJ(10), Sent by function key flO
key_fll kfll Fl KEYJ(ll), Sent by function key fll.
key_fl2 kf12 F2 KEYJ(12), Sent by function key fl2.
key_f13 kf13 F3 KEYJ(13), Sent by function key fl3.
key_f14 kf14 F4 KEYJ(14), Sent by function key fl4.
key_f15 kf15 F5 KEYJ(15), Sent by function key fl5.
key_fl6 kf16 F6 KEYJ(16), Sent by function key fl6.
key_f17 kf17 F7 KEYJ(17), Sent by function key fl7.
key_f18 kf18 F8 KEYJ(18), Sent by function key fl8.
key_f19 kf19 F9 KEYJ(19), Sent by function key fl9.
key_f20 kf20 FA KEY J(20), Sent by function key f20.
key_f21 kf21 FB KEYJ(21), Sent by function key f2l.
key_f22 kf22 Fe KEY J(22), Sent by function key f22.
key_f23 kf23 FD KEY J(23), Sent by function key f23.
key_f24 kf24 FE KEY J(24), Sent by function key f24.
key_f25 kf25 FF KEY J(25), Sent by function key f25.
key_f26 kf26 FG KEYJ(26), Sent by function key f26.
key_f27 kf27 FH KEYJ(27), Sent by function key f27.
key_f28 kf28 FI KEY J(28), Sent by function key f28.
key_f29 kf29 FJ KEY J(29), Sent by function key f29.
keyJ30 kf30 FK KEY J(30), Sent by function key f30.
key_f31 kf31 FL KEYJ(31), Sent by function key f3l.
key_f32 kf32 FM KEY J(32), Sent by function key f32.
key __ f33 kf33 FN KEYJ(33), Sent by function key f33.
key_f34 kf34 FO KEY J(34), Sent by function key f34.
key_f35 kf35 FP KEY J(35), Sent by function key f35.
key_f36 kf36 FQ KEY J(36), Sent by function key f36.
key_f37 kf37 FR KEYJ(37), Sent by function key f37.
key_f38 kf38 FS KEY J(38), Sent by function key f38.
key_f39 kf39 FT KEYJ(39), Sent by function key f39.
key_f40 kf40 FU KEYJ(40), Sent by function key f40.
keyJ41 kf41 FV KEYJ(41), Sent by function key f4l.
key_f42 kf42 FW KEYJ(42), Sent by function key f42.
key_f43 kf43 FX KEYJ(43), Sent by function key f43.
key_f44 kf44 FY KEYJ(44), Sent by function key f44.
key_f45 kf45 FZ KEYJ(45), Sent by function key f45.
key_f46 kf46 Fa KEYJ(46), Sent by function key f46.
key_f47 kf47 Fb KEYJ(47), Sent by function key f47.
keyJ48 kf48 Fc KEYJ(48), Sent by function key f48.
key_f49 kf49 Fd KEYJ(49), Sent by function key f49.
key_f50 kf50 Fe KEYJ(50), Sent by function key f50.

Terminal Interface Extension Definition Page 145

TERMINFO(TI_ENV)

Variable Cap- Term- Description
name cap Code

key_f51 kf51 Ff KEYJ(51), Sent by function key f51.
key_f52 kf52 Fg KEYJ(52), Sent by function key f52.
key_f53 kf53 Fh KEYJ(53), Sent by function key f53.
key_f54 kf54 Fi KEY J(54), Sent by function key f54.
key_f55 kf55 Fj KEYJ(55), Sent by function key f55.
key_f56 kf56 Fk KEY J(56), Sent by function key f56.
key_f57 kf57 FI KEYJ(57), Sent by function key f57.
key_f58 kf58 Fm KEYJ(58), Sent by function key f58.
key_f59 kf59 Fn KEYJ(59), Sent by function key f59.
key_f60 kf60 Fo KEYJ(60), Sent by function key f60.
key_f61 kf61 Fp KEY J(61), Sent by function key f61.
key_f62 kf62 Fq KEYJ(62), Sent by function key f62.
key_f63 kf63 Fr KEYJ(63), Sent by function key f63.
key_find kfnd @O KEYJIND, Sent by find key
key_help khlp %1 KEY_HELP, Sent by help key
key_home khome kh KEY _HOME, Sent by home key
key_ic kich1 kI KEY_IC, Sent by ins char/enter ins mode key
key_il kill kA KEY_IL, Sent by insert line
key~eft kcub1 kl KEY _LEFT, Sent by terminal left arrow key
key_II kll kH KEY _LL, Sent by home-down key
key_mark kmrk %2 KEY _MARK, Sent by mark key
key _message kmsg %3 KEY ~ESSAGE, Sent by message key
key_move kmov %4 KEY _MOVE, Sent by move key
key_next knxt %5 KEY_NEXT, Sent by next object key
key_npage knp kN KEY_NPAGE, Sent by next-page key
key_open kopn %6 KEY_OPEN, Sent by open key
key_options kopt %7 KEY _OPTIONS, Sent by options key
key_ppage kpp kP KEY_PPAGE, Sent by previous-page key
key_previous kprv %8 KEY _PREVIOUS, Sent by previous object key
key_print kprt %9 KEY_PRINT, Sent by print or copy
key_redo krdo %0 KEY_REDO, Sent by redo key
key_reference kref &1 KEY_REFERENCE, Sent by ref(erence) key
key_refresh krfr &2 KEY _REFRESH, Sent by refresh key
key_replace krpl &3 KEY _REPLACE, Sent by replace key
key_restart krst &4 KEY_RESTART, Sent by restart key
key_resume kres &5 KEY _RESUME, Sent by resume key
key_right kcufl kr KEY_RIGHT, Sent by terminal right arrow key
key_save ksav &6 KEY_SA VE, Sent by save key
key_sbeg kBEG &9 KEY _SBEG, Sent by shifted beginning key
key_scancel kCAN &0 KEY_SCANCEL, Sent by shifted cancel key
key _scommand kCMD *1 KEY_SCOMMAND, Sent by shifted command key
key_scopy kCPY *2 KEY_SCOPY, Sent by shifted copy key

Page 146 Terminal Interface Extension Definition

TERMINFO(TI_ENV)

Variable Cap- Term- Description
name cap Code

key_screate kCRT *3 KEY _SCREATE, Sent by shifted create key
key_sdc kDC *4 KEY_SDC, Sent by shifted delete char key
key_sdl kDL *5 KEY_SDL, Sent by shifted delete line key
key_select kslt *6 KEY_SELECT, Sent by select key
key_send kEND *7 KEY _SEND, Sent by shifted end key
key_seol kEOL *8 KEY_SEOL, Sent by shifted clear line key
key_sexit kEXT *9 KEY _SEX IT , Sent by shifted exit key
key_sf kind kF KEY_SF, Sent by scroll-forward/down key
key_sfind kFND *0 KEY_SFIND, Sent by shifted find key
key_shelp kHLP #1 KEY_SHELP, Sent by shifted help key
key_shome kHOM #2 KEY_SHOME, Sent by shifted home key
key_sic kIC #3 KEY_SIC, Sent by shifted input key
key_sIe ft kLFT #4 KEY_SLEFT, Sent by shifted left arrow key
key_smessage kMSG %a KEY_SMESSAGE, Sent by shifted message key
key_smove kMOV %b KEY_SMOVE, Sent by shifted move key
key_snext kNXT %c KEY _SNEXT, Sent by shifted next key
key _soptions kOPT %d KEY_SOPTIONS, Sent by shifted options key
key _sprevious kPRV %e KEY_SPREVIOUS, Sent by shifted prev key
key_sprint kPRT %f KEY_SPRINT, Sent by shifted print key
key_sr kri kR KEY_SR, Sent by scroll-backward/up key
key_sredo kRDO %g KEY_SREDO, Sent by shifted redo key
key_sreplace kRPL %h KEY _SREPLACE, Sent by shifted replace key
key_sright kRIT %i KEY_SRIGHT, Sent by shifted right arrow
key_srsume kRES %j KEY _SRSUME, Sent by shifted resume key
key_ssave kSAV !1 KEY _SSA VE, Sent by shifted save key
key_ssuspend kSPD !2 KEY_SSUSPEND, Sent by shifted suspend key
key_stab khts kT KEY_STAB, Sent by set-tab key
key_sundo kUND !3 KEY_SUNDO, Sent by shifted undo key
key_suspend kspd &7 KEY_SUSPEND, Sent by suspend key
key_undo kund &8 KEY _UNDO, Sent by undo key
key_up kcuu1 ku KEY_UP, Sent by terminal up arrow key
keypacLlocal rmkx ke Out of "keypad transmit" mode
keypacLxmit smkx ks Put terminal in "keypad transmit" mode
lab_fO lfO 10 Labels on function key fO if not fO
lab_fl Ifl 11 Labels on function key fl if not fl
lab_f2 If2 12 Labels on function key f2 if not f2
lab_f3 If3 13 Labels on function key f3 if not f3
lab_f4 If4 14 Labels on function key f4 if not f4
lab_f5 If5 15 Labels on function key f5 if not f5
lab_f6 If6 16 Labels on function key f6 if not f6
lab_f7 If7 17 Labels on function key f7 if not f7
lab_f8 If8 18 Labels on function key f8 if not f8

Terminal Interface Extension Definition Page 147

TERMINFO(TI_ENV)

Variable Cap- Term- Description
name cap Code

lab_f9 If9 19 Labels on function key f9 if not f9
lab_flO IflO la Labels on function key flO if not flO
labeLoff rmln LF Turn off soft labels
labeLon smln LO Turn on soft labels
met~off rmm mo (Reserved)
met~on smm mm (Reserved)
newline nel nw Newline (like cr followed by If)
pa<Lchar pad pc Pad character (rather than null)
parIlL-dch dch DC Delete #1 chars (G*)
parIlL-delete_line dl DL Delete #1 lines (G*)
parIlL-down_cursor cud DO Move cursor down #1 lines (G*)
parIlL-ich ich IC Insert #1 blank chars (G*)
parIlL-index indn SF Scroll forward #1 lines (G)
parIlL-insert_line il AL Add #1 new blank lines (G*)
parIlL-Ieft_cursor cub LE Move cursor left #1 spaces (G)
parIlL-right_cursor cuf RI Move cursor right #1 spaces (G*)
parIlL-rindex rin SR Scroll backward #1 lines (G)
parIlL-up_cursor cuu UP Move cursor up #1 lines (G*)
pkey~ey pfkey pk Prog funct key #1 to type string #2
pkey_Iocal pfloc pI Prog funct key #1 to execute string #2
pkey_xmit pfx px Prog funct key #1 to xmit string #2
plab_norm pIn pn Prog label #1 to show string #2
print_screen mcO ps Print contents of the screen
prtr_non mc5p pO Turn on the printer for #1 bytes.
prtr_off mc4 pf Turn off the printer
prtr_on mc5 po Turn on the printer
repeat_char rep rp Repeat char #1 #2 times (G*)
req_for_input rfi RF Send next input char (for pseudo-terminals)
reset_l string rsl rl Reset terminal completely to sane modes
reset_2string rs2 r2 Reset terminal completely to sane modes
reset_3string rs3 r3 Reset terminal completely to sane modes
reset_file rf rf Name of file containing reset string
restore_cursor rc rc Restore cursor to position of last sc
row_address vpa cv Vertical position absolute (G)
save_cursor sc sc Save cursor position
scrolLforward ind sf Scroll text up
scrolLreverse ri sr Scroll text down
set_attributes sgr sa Define the video attributes #1-#9 (G)
set_left_margin smgl ML Set soft left margin
set_right_margin smgr MR Set soft right margin
set_tab hts st Set a tab in all rows, current column
set_window wind wi Current window: lines #1-#2 co Is #3-#4

Page 148 Terminal Interface Extension Definition

TERMINFO(TI_ENV)

Variable Cap- Term- Description
name cap Code

tab ht ta Tab to next 8 space hardware tab stop
to_status_line tsl ts Go to status line, column #1
underline_char uc uc Underscore one char and move past it
up_halLline hu hu Half-line up (reverse 1/2 line feed)
xoff_character xoffc XF X-off character
xon_character xonc XN X -on character

A Sample Entry

The following entry, which describes the Concept-IOO terminal, is among
the more complex entries in the terminfo file.

concept100 1 c1001 concept 1 c1041 c100-4p 1 concept 100,

am, db, eo, in, mir, u1, xen1,

co1s#80, 1ines#24, pb#9600, vt#8,

be1=AG, b1ank=\EH, b1ink=\EC, c1ear=AL$<2*>,

cnorm=\Ew, cr=AM$<9>, cub1=AH, cud1=AJ,

cuf1=\E=, cup=\Ea%p1%' '%+%c%p2%' '%+%c,

cuu1=\E;, cvvis=\EW, dch1=\E AA$<16*>, dim=\EE,

d11=\E AB$<3*>, ed=\EAC$<16*>, e1=\E AU$<16>,

f1ash=\Ek$<20>\EK, ht=\t$<8>, i11=\E AR$<3*>,

ind=AJ, .ind=AJ$<9>, ip=$<16*>,

is2=\EU\Ef\E7\ES\E8\E1\ENH\EK\E\0\Eo&\0\Eo\47\E,

kbs=Ah, kcub1=\E>, kcud1=\E<, kcuf1=\E=, kcuu1=\E;,

kf1=\ES, kf2=\E6, kf3=\E7, khome=\E?,

prot=\EI, rep=\Er%p1%c%p2%' '%+%c$<.2*>,

rev=\ED, rmcup=\Ev\s\s\s\s$<6>\Ep\r\n,

rmir=\E\O, rmkx=\Ex, rmso=\Ed\Ee, rmu1=\Eg,

rmu1=\Eg, sgrO=\EN\O, smcup=\EU\Ev\s\s8p\Ep\r,

smir=\EAP, smkx=\EX, smso=\EE\ED, smu1=\EG,

Entries may continue onto multiple lines by placing white space at the
beginning of each line except the first. Lines beginning with "#" are taken
as comment lines. Capabilities in term info are of three types: boolean
capabilities which indicate that the terminal has some particular feature,
numeric capabilities giving the size of the terminal or the size of particular
features, and string capabilities which give a sequence that can be used to
perform particular terminal operations.

Terminal Interface Extension Definition Page 149

TERMINFO(TI_ENV)

Types of Capabilities

All capabilities have names. For instance, the fact that the Concept has
automatic margins (i.e., an automatic return and line feed when the end of a
line is reached) is indicated by the capability am. Hence the description of
the Concept includes am. Numeric capabilities are followed by the charac­
ter '#' and then the value. Thus cols, which indicates the number of
columns the terminal has, gives the value '80' for the Concept.

Finally, string-valued capabilities, such as el (clear to end of line sequence)
are given by the two- to five-character capname, an '=', and then a string
ending at the next following ','. A delay in milliseconds may appear any­
where in such a capability, enclosed in $< .. > brackets, as in el=\EK$<3>,
and padding characters are supplied by tputs() [see CURSES(TLLlB)] to
provide this delay. The delay can be either a number, e.g., '20', or a number
followed by an '*', i.e., '3*'. A '*' indicates that the padding required is pro­
portional to the number of lines affected by the operation, and the amount
given is the per-affected-unit padding required. (In the case of insert char­
acter, the factor is still the number of lines affected. This is always one
unless the terminal has in and the software uses it.) When a '*' is specified,
it is sometimes useful to give a delay of the form '3.5' to specify a delay per
unit to tenths of milliseconds. (Only one decimal place is allowed.) If the
terminal has xon defined, the padding information is advisory and will only
be used for cost estimates or when the terminal is in raw mode.

A number of escape sequences are provided in the string-valued capabilities
for easy encoding of characters there. Both \E and \e map to an ESCAPE
character, A x maps to a control-x for any appropriate x, and the sequences
\n, \1, \r, \t, \b, \f, and \s give a newline, line feed, return, tab, backspace,
formfeed, and space. Other escapes include \A for caret(), \ \ for backslash
(\), \, for comma (,); \: for colon (:), and \0 for null. Finally, characters
may be given as three octal digits after a backslash (e.g., \123).

Sometimes individual capabilities must be commented out. To do this, put
a period before the capability name. For example, see the second ind in the
example above. Note that capabilities are defined in a left-to-right order
and therefore, a prior definition will override a later definition.

Basic Capabilities

The number of columns on each line for the terminal is given by the cols
numeric capability. If the terminal is a CRT, then the number of lines on
the screen is given by the lines capability. If the terminal wraps around to
the beginning of the next line when it reaches the right margin, then it
should have the am capability. If the terminal can clear its screen, leaving

Page 150 Terminal Interface Extension Definition

TERMINFO(TI_ENV)

the cursor in the home position, then this is given by the clear capability.
If the terminal overstrikes (rather than clearing a position when a character
is struck over) then it should have the os capability. If the terminal is a
printing terminal, with no soft copy unit, give it both he and os. (os
applies to storage scope terminals, such as Tektronix 4010 series, as well as
hardcopy and APL terminals.) If there is a code to move the cursor to the
left edge of the current row, give this as cr. (Normally this will be carriage
return, control M.) If there is a code to produce an audible signal (bell,
beep, etc.) give this as bel. If the terminal uses the xon-xoff flow-control
protocol, like most terminals, specify xon.

If there is a code to move the cursor one position to the left (such as back­
space) that capability should be given as cub!. Similarly, codes to move to
the right, up, and down should be given as cufl, cuul, and cud!. These
local cursor motions should not alter the text they pass over; for example,
you would not normally use 'cufl=\s' because the space would erase the
character moved over.

A very important point here is that the local cursor motions encoded in ter­
minto are undefined at the left and top edges of a CRT terminal. Programs
should never attempt to backspace around the left edge, unless bw is given,
and never attempt to go up locally off the top. In order to scroll text up, a
program will go to the bottom left corner of the screen and send the ind
(index) string.

To scroll text down, a program goes to the top left corner of the screen and
sends the ri (reverse index) string. The strings ind and ri are undefined
when not on their respective corners of the screen.

Parameterized versions of the scrolling sequences are indn and rin which
have the same semantics as ind and ri except that they take one parameter,
and scroll that many lines. They are also undefined except at the appropri­
ate edge of the screen.

The am capability tells whether the cursor sticks at the right edge of the
screen when text is output, but this does not necessarily apply to a cufl
from the last column. The only local motion which is defined from the left
edge is if bw is given, then a cubl from the left edge will move to the right
edge of the previous row. If bw is not given, the effect is undefined. This
is useful for drawing a box around the edge of the screen, for example. If
the terminal has switch selectable automatic margins, the terminfo file usu­
ally assumes that this is on; i.e., am. If the terminal has a command which
moves to the first column of the next line, that command can be given as
nel (newline). It does not matter if the command clears the remainder of

Terminal Interface Extension Definition Page 151

TERMINFO(TI_ENV)

the current line, so if the terminal has no cr and If it may still be possible
to craft a working nel out of one or both of them.

These capabilities suffice to describe hardcopy and glass-tty terminals.
Thus the AT&T model 33 is described as

33 I tty33 I tty I model 33 teletype,
bel=AG, eols#72, er=AM, cud1=AJ, he,
ind=AJ, as,

while the Lear Siegler ADM-3 is described as

adm3 I lsi adm3,
am, bel=AG, elear=AZ, cols#80, cr=AM,
cub1=AH, cud1=AJ, ind=AJ, lines#24,

Parameterized Strings

Cursor addressing and other strings requiring parameters in the terminal are
described by a parameterized string capability. For example, to address the
cursor, the cup capability is given, using two parameters: the row and
column to address to. (Rows and columns are numbered from zero and
refer to the physical screen visible to the user, not to any unseen memory.)
If the terminal has memory relative cursor addressing, that can be indicated
by mrcup.

The parameter mechanism uses a stack and special % codes to manipulate
it in the manner of a Reverse Polish Notation calculator. Typically a
sequence will push one of the parameters onto the stack and then print it in
some format. Often more complex operations are necessary. Binary opera­
tions are in postfix form with the operands in the usual order. That is, to
get x-5 one would use lI%gx%{5}%-lI.

The % encodings have the following meanings:

%%
% [[:]flags] [width[.precision]] [doxXs]

%d

outputs '%'
as in printf{BA_LlB),
flags are [-+#] and space

print popO as a decimal
number

Page 152 Terminal Interface Extension Definition

%3d

%03d
%s

%c
%p[1-9]
%P[a-z]
%g[a-z]

%'c'
%{nn}
%1
%+ %- %* %/ %m

%&%1%

%= %> %<

%A%O
%! %-

%i

Terminal Interface Extension Definition

TERMINFO(TI_ENV)

print popO in a field at least
3 spaces wide

use leading zeros to fill
print popO as a character
string

print POPO gives %c
h ·th pus 1, parm

set variable [a-z] to popO
get variable [a -z] and push
it

push char constant c
push decimal constant nn
push strlen(popO)
arithmetic (%m is mod):
push(popO op popO)

bit operations:
push(popO op popO)

logical operations:
push(popO op popO)

logical operations: and, or
unary operations:
push(op popO)

add 1 to first parm, if one
parm present, or first two
parms, if more than one parm
present (for ANSI terminals)

Page 153

TERMINFO(TI_ENV)

%? expr %t thenpart %e elsepart %; if-then-else, %e elsepart is
optional; else-irs are possible:
%? c

i
%t b

i
%e c

2
%t b

2
%e c

3
%t b

3
%e c 4

%t b
4

%e b
5
%;

ci are conditions, bi are
bodies.

If the "-" flag is used with "%[doxXs]", then a colon (:) must be placed
between the "%" and the "-" to differentiate the flag from the binary "%-"
operator, .e.g "%:-16.16s".

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12,
needs to be sent \E&a12c03Y padded for 6 milliseconds. Note that the
order of the rows and columns is inverted here, and that the row and
column are printed as two digits. Thus its cup capability is
cup=\E&a%p2%02dc%p1 %02dY$<6>.

The Micro-Term ACT-IV needs the current row and column sent preceded
by a ~T, with the row and column simply encoded in binary,
cup= ~T%p1 %c%p2%c. Terminals which use %c need to be able to back­
space the cursor (cubl), and to move the cursor up one line on the screen
(cuul). This is necessary because it is not always safe to transmit \n, ~D,
and \r, as the system may change or discard them. (The library routines
dealing with terminfo set tty modes so that tabs are never expanded, so \ t
is safe to send. This turns out to be essential for the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a
blank character, thus cup=\E=%p1 %,\s'%+%c%p2%,\s'%+%c. After
sending '\E=', this pushes the first parameter, pushes the ASCII value for a
space (32), adds them (pushing the sum on the stack in place of the two
previous values) and outputs that value as a character. Then the same is
done for the second parameter. More complex arithmetic is possible using
the stack.

Cursor Motions

If the terminal has a fast way to home the cursor (to very upper left corner
of screen) then this can be given as home; similarly a fast way of getting to
the lower left-hand corner can be given as 11; this may involve going up with
cuul from the home position, but a program should never do this itself
(unless 11 does) because it can make no assumption about the effect of mov­
ing up from the home position. Note that the home position is the same as
addressing to (0,0): to the top left corner of the screen, not of memory.

Page 154 Terminal Interface Extension Definition

TERMINFO(TI_ENV)

(Thus, the \EH sequence on Hewlett-Packard terminals cannot be used for
home without losing some of the other features of the terminal.)

If the terminal has row or column absolute cursor addressing, these can be
given as single parameter capabilities hpa (horizontal position absolute) and
vpa (vertical position absolute). Sometimes these are shorter than the
more general two parameter sequence (as with the HP2645) and can be used
in preference to cup. If there are parameterized local motions (e.g., move n
spaces to the right), these can be given as cud, cub, cuf, and cuu with a
single parameter indicating how many spaces to move. These are primarily
useful if the terminal does not have cup, such as the Tektronix 4025.

Area Clears

If the terminal can clear from the current position to the end of the line,
leaving the cursor where it is, this should be given as el. If the terminal can
clear from the beginning of the line to the current position inclusive, leaving
the cursor where it is, this should be given as ell. If the terminal can clear
from the current position to the end of the display, then this should be
given as ed. The ed capability is only defined from the first column of a
line. (Thus, it can be simulated by a request to delete a large number of
lines, if a true ed is not available.)

Insert/Delete Line

If the terminal can open a new blank line before the line where the cursor
is, this should be given as ill; this is done only from the first position of a
line. The cursor must then appear on the newly blank line. If the terminal
can delete the line which the cursor is on, then this should be given as dll;
this is done only from the first position on the line to be deleted. Versions
of ill and dll, which take a single parameter and insert or delete that
many lines, can be given as il and dl.

If the terminal has a settable destructive scrolling region (like the VT100),
the command to set this can be described with the csr capability, which
takes two parameters: the top and bottom lines of the scrolling region. The
cursor position is undefined after using this command. It is possible to get
the effect of insert or delete line using this command - the sc and rc (save
and restore cursor) commands are also useful. Inserting lines at the top or
bottom of the screen can also be done using ri or ind on many terminals
without a true insert/delete line, and is often faster even on terminals with
those features.

To determine whether a terminal has destructive scrolling regions or non­
destructive scrolling regions, create a scrolling region in the middle of the
screen, place data on the bottom line of the scrolling region, move the

Terminal Interface Extension Definition Page 155

TERMINFO(TI_ENV)

cursor to the top line of the scrolling region, and do a reverse index ri fol­
lowed by a delete line dll or index indo If the data that was originally on
the bottom line of the scrolling region was restored into the scrolling region
by the dll or ind, then the terminal has non -destructive scrolling regions.
Otherwise, it has destructive scrolling regions. Do not specify csr if the ter­
minal has non-destructive scrolling regions, unless ind, ri, indn, rin, dl,
and dll all simulate destructive scrolling.

If the terminal has the ability to define a window as part of memory, which
all commands affect, it should be given as the parameterized string wind.
The four parameters are the starting and ending lines in memory and the
starting and ending columns in memory, in that order.

If the terminal can retain display memory above, then the da capability
should be given; if display memory can be retained below, then db should be
given. These indicate that deleting a line or scrolling a full screen may
bring non-blank lines up from below or that scrolling back with ri may
bring down non-blank lines.

Insert/Delete Character

There are two basic kinds of intelligent terminals with respect to
insert/delete character which can be described using terminfo. The most
common insert/delete character operations affect only the characters on the
current line and shift characters off the end of the line rigidly. Other termi­
nals, such as the Concept 100 and the Perkin Elmer Owl, make a distinction
between typed and untyped blanks on the screen, shifting upon an insert or
delete only to an untyped blank on the screen which is either eliminated or
expanded to two untyped blanks. You can determine the kind of terminal
you have by clearing the screen and then typing text separated by cursor
motions. Type "abc def" using local cursor motions (not spaces) between
the "abc" and the "def". Then position the cursor before the "abc" and put
the terminal in insert mode. If typing characters causes the rest of the line
to shift rigidly and characters to fall off the end, then your terminal does
not distinguish between blanks and untyped positions. If the "abc" shifts
over to the "def" which then move together around the end of the current
line and onto the next as you insert, you have the second type of terminal,
and should give the capability in, which stands for insert null. While these
are two logically separate attributes (one line vs. multiline insert mode and
special treatment of untyped spaces), we have seen no terminals whose
insert mode cannot be described with the single attribute.

The terminfo database can describe both terminals which have an insert
mode and terminals which send a simple sequence to open a blank position
on the current line. Give as smir the sequence. to get into insert mode.

Page 156 Terminal Interface Extension Definition

TERMINFO(TI_ENV)

Give as rmir the sequence to leave insert mode. Now give as iehl any
sequence needed to be sent just before sending the character to be inserted.
Most terminals with a true insert mode will not give iehl; terminals which
send a sequence to open a screen position should give it here. (If your ter­
minal has both, insert mode is usually preferable to iehl. Do not give both
unless the terminal actually requires both to be used in combination.) If
post insert padding is needed, give this as a number of milliseconds in ip (a
string option). Any other sequence which may need to be sent after an
insert of a single character may also be given in ip. If your terminal needs
both to be placed into an 'insert mode' and a special code to precede each
inserted character, then both smir/rmir and iehl can be given, and both
will be used. The ieh capability, with one parameter, n, will repeat the
effects of ieh 1 n times.

If padding is necessary between characters typed while not in insert mode,
give this as a number of milliseconds padding in rmp.

It is occasionally necessary to move around while in insert mode to delete
characters on the same line (e.g., if there is a tab after the insertion posi­
tion). If your terminal allows motion while in insert mode you can give the
capability mir to speed up inserting in this case. Omitting mir will affect
only speed. Some terminals (notably Datamedia's) must not have mir
because of the way their insert mode works.

Finally, you can specify dchl to delete a single character, deh with one
parameter, n, to delete n characters and delete mode by giving smdc and
rmdc to enter and exit delete mode (any mode the terminal needs to be
placed in for dehl to work).

A command to erase n characters (equivalent to outputting n blanks
without moving the cursor) can be given as ech with one parameter.

Highlighting, Underlining, and Visible Bells

If your terminal has one or more kinds of display attributes, these can be
represented in a number of different ways. You should choose one display
form as standout mode, representing a good, high contrast, easy-on-the-eyes
format for highlighting error messages and other attention getters. (If you
have a choice, reverse video plus half-bright is good, or reverse video alone;
however, different users have different preferences on different terminals.)
The sequences to enter and exit standout mode are given as smso and
rmso, respectively. If the code to change into or out of standout mode
leaves one or even two blank spaces on the screen, as the TeleVideo 912 and
Teleray 1061 do, then xme should be given to tell how many spaces are left.

Terminal Interface Extension Definition Page 157

TERMINFO(TI_ENV)

Codes to begin underlining and end underlining can be given as smul and
rmul, respectively. If the terminal has a code to underline the current
character and move the cursor one space to the right, such as the Micro­
Term MIME, this can be given as uc.

Other capabilities to enter various highlighting modes include blink (blink­
ing) , bold (bold or extra bright), dim (dim or half-bright), invis (blanking
or invisible text), prot (protected), rev (reverse video), sgrO (turn off all
attribute modes), smacs (enter alternate character set mode), and rmacs
(exit alternate character set mode). Turning on any of these modes singly
mayor may not turn off other modes. If a command is necessary before
alternate character set mode is entered, give the sequence in enacs (enable
alternate-character-set mode).

If there is a sequence to set arbitrary combinations of modes, this should be
given as sgr (set attributes), taking nine parameters. Each parameter is
either 0 or non-zero, as the corresponding attribute is on or off. The nine
parameters are, in order: standout, underline, reverse, blink, dim, bold,
blank, protect, and alternate character set. Not all modes need be supported
by sgr, only those for which corresponding separate attribute commands
exist.

Terminals with the "magic cookie" glitch (xmc) deposit special "cookies"
when they receive mode-setting sequences, which affect the display algo­
rithm rather than having extra bits for each character. Some terminals,
such as the Hewlett-Packard 2621, automatically leave standout mode when
they move to a new line or the cursor is addressed. Programs using stan­
dout mode should exit standout mode before moving the cursor or sending a
newline, unless the msgr capability, asserting that it is safe to move in
standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly
(a bell replacement) then this can be given as flash; it must not move the
cursor. A good flash can be done by changing the screen into reverse video,
pad 200 ms, then return the screen to normal video.

If the cursor needs to be made more visible than normal when it is not on
the bottom line (to make, for example, a non-blinking underline into an
easier to find block or blinking underline) give this sequence as cvvis. The
boolean chts should also be given. If there is a way to make the cursor
completely invisible, give that as civis. The capability cnorm should be
given, which undoes the effects of both of these modes.

Page 158 Terminal Interface Extension Definition

TERMINFO(TI_ENV)

If the terminal needs to be in a special mode when running a program that
uses these capabilities, the codes to enter and exit this mode can be given as
smcup and rmcup. This arises, for example, from terminals like the Con­
cept with more than one page of memory. If the terminal has only
memory-relative cursor addressing and not screen-relative cursor addressing,
a one screen-sized window must be fixed into the terminal for cursor
addressing to work properly. This is also used for the Tektronix 4025,
where smcup sets the command character to be the one used by termin/a.
If the smcup sequence will not restore the screen after an rmcup sequence
is output (to the state prior to outputting rmcup), specify nrrmc.

If your terminal correctly generates underlined characters by using the
underline character (with no special codes needed) even though it does not
overstrike, then you should give the capability ul. For terminals where a
character overstriking another displays both characters (typically a hard­
copy terminal), give the capability os. If overstrikes are erasable with a
blank, then this should be indicated by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the keys are
pressed, this information can be given. Note that it is not possible to handle
terminals where the keypad only works in local (this applies, for example, to
the unshifted Hewlett-Packard 2621 keys). If the keypad can be set to
transmit or not transmit, give these codes as smkx and rmkx. Otherwise,
the keypad is assumed to always transmit.

The codes sent by the left arrow, right arrow, up arrow, down arrow, and
home keys can be given as kcubl, kcufl, kcuul, kcudl, and khome,
respectively. If there are function keys such as fO, fl, ... , f63, the codes they
send can be given as kfO, kfl, ... , kf63. If the first 11 keys have labels
other than the default fo through flO, the labels can be given as lfO, If 1 ,
... , IflO. The codes transmitted by certain other special keys can be given:
kll (home down), kbs (backspace), ktbc (clear all tabs), kctab (clear the
tab stop in this column), kclr (clear screen or erase key), kdchl (delete
character), kdll (delete line), krmir (exit insert mode), kel (clear to end of
line), ked (clear to end of screen), kichl (insert character or enter insert
mode), kill (insert line), knp (next page), kpp (previous page), kind
(scroll forward/down), kri (scroll backward/up), khts (set a tab stop in this
column). In addition, if the keypad has a 3-by-3 array of keys including the
four arrow keys, the other five keys can be given as kal, ka3, kb2, kcl,
and kc3. These keys are useful when the effects of a 3-by-3 directional pad
are needed. Additional keys are defined above in the capabilities list.

Terminal Interface Extension Definition Page 159

TERMINFO(TI_ENV)

Strings to program function keys can be given as pfkey, pfloc, and pfx.
A string to program soft-screen labels can be given as pIn. Each of these
strings takes two parameters: the function key number to program (from 0
to 10) and the string to program it with. Function key numbers out of this
range may program undefined keys in a terminal-dependent manner. The
difference between the capabilities is that pfkey causes pressing the given
key to be the same as the user typing the given string; pfloc causes the
string to be executed by the terminal in local; and pfx causes the string to
be transmitted to the computer. The capabilities nIah, Iw, and Ih define
how many soft labels there are and their width and height. If there are
commands to turn the labels on and off, give them in smIn and rmIn;
smIn is normally output after one or more pIn sequences to make sure that
the change becomes visible.

Tabs and Initialization

If the terminal has hardware tabs, the command to advance to the next tab
stop can be given as ht (usually control I). A "backtab" command which
moves leftward to the next tab stop can be given as cht. By convention, if
the terminal modes indicate that tabs are being expanded by the computer
rather than being sent to the terminal, programs should not use ht or cht
even if they are present, since the user may not have the tab stops properly
set. If the terminal has hardware tabs which are initially set every n spaces
when the terminal is powered up, the numeric parameter it is given, show­
ing the number of spaces the tabs are set to. This is normally used by tput
init [see TPUT(TLCMD)] to determine whether to set the mode for hardware
tab expansion, and whether to set the tab stops. If the terminal has tab
stops that can be saved in nonvolatile memory, the term info description can
assume that they are properly set. If there are commands to set and clear
tab stops, they can be given as the (clear all tab stops) and hts (set a tab
stop in the current column of every row).

Other capabilities include isl, is2, and is3, initialization strings for the
terminal, iprog, the pathname of a program to be run to initialize the ter­
minal, and if, the name of a file containing long initialization strings.
These strings are expected to set the terminal into modes consistent with
the rest of the terminfo description. They must be sent to the terminal
each time the user logs in and be output in the following order: run the
program iprog, output isl; is2; set the margins using mgc, smgI and
smgr; set tabs using the and hts; print the file if; and finally output is3.
This can be done using the init argument of the TPUT(TI_CMD) command.

Most initialization is done with is2. Special terminal modes can be set up
without duplicating strings by putting the common sequences in is2 and
special cases in isl and is3. A pair of sequences that does a harder reset

Page 160 Terminal Interface Extension Definition

TERMINFO(TI_ENV)

from a totally unknown state can be analogously given as rsl, rs2, rf, and
rs3, analogous to is* and if. (The method using files, if and rf, is not
recommended; the recommended method is to use the initialization and
reset strings.) These strings should be output when the terminal gets into
an unreasonable state by using the reset argument to the TPUT(TI_CMD)
command. Commands are normally placed in rs* and rf only if they pro­
duce annoying effects on the screen and are not necessary when logging in.
For example, the command to set a terminal into 80-column mode would
normally be part of is2, but on some terminals it causes an annoying glitch
of the screen and is not normally needed since the terminal is usually
already in 80-column mode. Therefore, the command is usually placed in
rsl, not is2, for those terminals.

If a more complex sequence is needed to set the tabs than can be described
by using tbc and hts, the sequence can be placed in is2 or if.

If there are commands to set and clear margins, they can be given as mgc
(clear all margins), smgl (set left margin), and smgr (set right margin).

Delays

Certain capabilities control padding in the tty driver. These are primarily
needed by hardcopy terminals, and are used by tput init to set tty modes
appropriately. Delays embedded in the capabilities cr, ind, cubl, ff, and
tab can be used to set the appropriate delay bits in the tty driver. If pb
(padding baud rate) is given, these values can be ignored at baud rates
below the value of pb.

Status Line

If the terminal has an extra "status line" that is not normally used by
software, this fact can be indicated. If the status line is viewed as an extra
line below the bottom line, into which one can cursor address normally
(such as the Heathkit h19's 25th line, or the 24th line of a VT100 which is
set to a 23-line scrolling region), the capability hs should be given. Special
strings to go to the beginning of the status line and to return from the
status line can be given as tsl and fsl. (fsl must leave the cursor position
in the same place it was before tsl. If necessary, the sc and rc strings can
be included in tsl and fsl to get this effect.) The parameter tsl takes one
parameter, which is the column number of the status line the cursor is to be
moved to. If escape sequences and other special commands, such as tab
and el, work while in the status line, the flag eslok can .be given. A string
which turns off the status line (or otherwise erases its contents) should be
given as dsl. If the terminal has commands to save and restore the position
of the cursor, give them as sc and rc. The status line is normally assumed

Terminal Interface Extension Definition Page 161

TERMINFO(TI_ENV)

to be the same width as the rest of the screen, e.g., cols. If the status line
is a different width (possibly because the terminal does not allow an entire
line to be loaded) the width, in columns, can be indicated with the numeric
parameter wsl.

Line Graphics

If the terminal has a line drawing alternate character set, the mapping of
glyph to character would be given in acsc. The definition of this string is
based on the alternate character set used in the DEC VT100 terminal,
extended slightly with some characters from the AT&T 441Ov1 terminal.

glyph name vt100+
character

arrow pointing right +
arrow pointing left
arrow pointing down
solid square block 0
lantern symbol I
arrow pointing up
diamond
checker board (stipple) a
degree symbol f
plus/minus g
board of squares h
lower right corner j
upper right corner k
upper left corner I
lower left corner m
plus n
scan line 1 0

horizontal line q
scan line 9 s
left tee (~) t
right tee (~) u
bottom tee (1-) v
top tee (t) w
vertical line x
bullet

Page 162 Terminal Interface Extension Definition

TERMINFO(TI_ENV)

The best way to describe a new terminal's line graphics set is to add a third
column to the above table with the characters for the new terminal that
produce the appropriate glyph when the terminal is in the alternate charac­
ter set mode. For example,

glyph name vt100+ new tty
char char

upper left corner I R
lower left corner m F
upper right corner k T
lower right corner G
horizontal line q
vertical line x

Now, write down the characters left to right, as in "acsc=IRmFkTjGq\,x.".

Miscellaneous

If the terminal requires other than a null (zero) character as a pad, then this
can be given as pad. Only the first character of the pad string is used. If
the terminal does not have a pad character, specify npc.

If the terminal can move up or down half a line, this can be indicated with
hu (half-line up) and hd (half-line down). This is primarily useful for
superscripts and subscripts on hardcopy terminals. If a hardcopy terminal
can eject to the next page (form feed), give this as ff (usually control L).

If there is a command to repeat a given character a given number of times
(to save time transmitting a large number of identical characters) this can
be indicated with the parameterized string rep. The first parameter is the
character to be repeated and the second is the number of times to repeat it.
Thus, tparm(repeat_char, 'x', 10) is the same as 'xxxxxxxxxx'.

If the terminal has a settable command character, such as the Tektronix
4025, this can be indicated with cmdch. A prototype command character
is chosen which is used in all capabilities. This character is given in the
cmdch capability to identify it.

Terminal descriptions that do not represent a specific kind of known termi­
nal, such as switch, dialup, patch, and network, should include the gn
(generic) capability so that programs can complain that they do not know
how to talk to the terminal. A line-turn -around sequence to be transmitted
before doing reads should be specified in rfi.

Terminal Interface Extension Definition Page 163

TERMINFO(TI_ENV)

If the terminal uses xon/xoff handshaking for flow control, give xon. Pad­
ding information should still be included so that routines can make better
decisions about costs, but actual pad characters will not be transmitted.
Sequences to turn on and off xon/xoff handshaking may be given in smxon
and rmxon. If the characters used for handshaking are not AS and AQ, they
may be specified with xone and xoffe.

If the terminal has more lines of memory than will fit on the screen at once,
the number of lines of memory can be indicated with 1m. A value of lm#O
indicates that the number of lines is not fixed, but that there is still more
memory than fits on the screen.

Media copy strings which control an auxiliary printer connected to the ter­
minal can be given as meO: print the contents of the screen, me4: turn off
the printer, and me5: turn on the printer. When the printer is on, all text
sent to the terminal will be sent to the printer. It is undefined whether the
text is also displayed on the terminal screen when the printer is on. A vari­
ation me5p takes one parameter, and leaves the printer on for as many
characters as the value of the parameter, then turns the printer off. The
parameter should not exceed 255. If the text is not displayed on the termi­
nal screen when the printer is on, specify me5i (silent printer). All text,
including me4, is transparently passed to the printer while an me5p is in
effect.

Special Cases

The working model used by term info fits most terminals reasonably well.
However, some terminals do not completely match that model, requiring
special support by terminfo. These are not meant to be construed as defi­
ciencies in the terminals; they are just differences between the working
model and the actual hardware.

Terminals which can not display tilde characters, such as certain Hazeltine
terminals, should indicate hz.

Terminals which ignore a line feed immediately after an am wrap, such as
the Concept 100, should indicate xenl. Those terminals whose cursor
remains on the right-most column until another character has been received,
rather than wrapping immediately upon receiving the right-most character,
such as the VT100, should also indicate xenl.

If el is required to get rid of standout (instead of writing normal text on top
of it), xhp should be given.

Page 164 Terminal Interface Extension Definition

TERMINFO(TI_ENV)

Those Teleray terminals whose tabs turn all characters moved over to
blanks, should indicate xt (destructive tabs). This capability is also taken
to mean that it is not possible to position the cursor on top of a "magic
cookie"; therefore, to erase standout mode it is instead necessary to use
delete and insert line.

The Beehive Superbee terminals, which do not transmit the escape or con­
trol C characters, should specify xsb, indicating that the f1 key is to be
used for escape and f2 for control C.

Similar Terminals

If there are two very similar terminals, one can be defined as being just like
the other with certain exceptions. The string capability use can be given
with the name of the similar terminal. The capabilities given before use
override those in the terminal type invoked by use. A capability can be
cancelled by placing xx@ to the left of the capability definition, where xx
is the capability. For example, the entry

att4424-2
group ii,

IAT&T 4424 in display function

rev@, sgr@, smul@, use=att4424,

defines an AT&T 4424 terminal that does not have the rev, sgr, and smul
capabilities, and hence cannot do highlighting. This is useful for different
modes for a terminal, or for different user preferences. More than one use
capability may be given.

FILES

/usr/lib/terminfo/?/* Compiled terminal description database
SEE ALSO

CURSES(TI_LlB), PRINTF(BA_LlB), TIC(TI_CMD).

USAGE
Administrator and Application Program.

The most effective way to prepare a terminal description is by imitating the
description of a similar terminal in terminfo and to build up a description
gradually, using partial descriptions with VI(AU_CMD) to check that they are
correct. To easily test a new terminal description the environment variable
TERMiNFO can be set to the pathname of a directory containing the com­
piled description, and programs will look there rather than in
/usr/lib/terminfo. To get the padding for insert line right, a severe test is
to comment out xon, edit a copy of a large file at 9600 baud with
VI(AU_CMD), delete 16 or so lines from the middle of the screen, then hit
the 'u' key several times quickly. If the terminal messes up, more padding
is usually needed. A similar test can be used for insert character.

Terminal Interface Extension Definition Page 165

TERMINFO(TI_ENV)

LEVEL
Levell.

Page 166 Terminal Interface Extension Definition

Terminal Interface Extension Definition

Chapter 10
Library Routines

Page 167

CURSES(TI_LlB)

NAME
curses - CRT screen handling and optimization package

SYNOPSIS
#include <curses.h>

DESCRIPTION

The curses library routines give the user a terminal-independent method of
updating screens with reasonable optimization. A program using these rou­
tines must be compiled with the -lcurses option of cc.

In order to initialize the routines, the routine initscr() or newterm()
must be called before any of the other routines that deal with windows and
screens are used. The routine endwin() must be called before exiting. To
get character-at-a-time input without echoing (most interactive, screen
oriented-programs want this), the following sequence should be used:

ini tscr(), cbreak(), noecho();
Most programs would additionally use the sequence:

nonl(), intrflush(stdscr, FALSE);
keypad(stdscr, TRUE).

Before a curses program is run, a terminal's tabs stops should be set and its
initialization strings, if defined, must be output. This can be done by exe­
cuting the tput init command after the shell environment variable TERM
has been exported. See TERMINFO(TLENV) for further details.

The curses library permits manipulation of data structures called windows
which can be thought of as two-dimensional arrays of characters represent­
ing all or part of a CRT screen. A default window called stdscr is supplied,
which is the size of the terminal screen. Others may be created with
newwinO. Windows are referred to by variables declared as "WINDOW
*" . These data structures are manipulated with routines described below,
among which the most basic are move() and addch(). (More general ver­
sions of these routines are included with names beginning with w, allowing
one to specify a window. The routines not beginning with w affect
stdscr.) Then refreshO is called, telling the routines to make the user's
CRT screen look like stdscr. The characters in a window are actually of
type chtype, so that other information about the character may also be
stored with each character.

Special windows called pads may also be manipulated. These are windows
which are not constrained to the size of the screen and whose contents need
not be completely displayed. See the description of newpad() under
"Window and Pad Manipulation" for more information.

Page 168 Terminal Interface Extension Definition

CURSES(TLLlB)

In addition to drawing characters on the screen, video attributes may be
included which cause the characters to show up in such modes as under­
lined or in reverse video on terminals that support such display enhance­
ments. Line drawing characters may be specifed to be output. On input,
curses is also able to translate arrow and function keys that transmit escape
sequences into single values. The video attributes, line drawing characters,
and input values use names, defined in <curses.h>, such as A-REVERSE,
ACS-HLINE, and KEY-LEFT.

The environment variables LINES and COLUMNS may also be set to over­
ride terminfo's idea of how large a screen is. These may be used in an
AT&T 5620 layer, for example, where the size of a screen is changeable.

If the environment variable TERMINFO is defined, any program using
curses will check for a local terminal definition before checking in the stan­
dard place. For example, if TERM is set to "att4424", then the compiled
terminal definition is found in /usr/lib/terminfo/a/att4424. (The "a" is
copied from the first letter of "att4424" to avoid creation of huge direc­
tories.) However, if TERMINFO is set to $HOME/myterms, curses will
first check $HOME/myterms/a/att4424, and if that fails, will then check
/usr/lib/terminfo/a/att4424. This is useful for developing experimental
definitions or when write permission in /usr/lib/terminfo is not available.

The integer variables LINES and COLS are defined in <curses.h> and will
be filled in by initscr() with the size of the screen. The constants TRUE
and FALSE have the values 1 and 0, respectively.

The curses routines also define the WINDOW * variable curscr which is
used for certain low-level operations like clearing and redrawing a garbaged
screen. The curscr can be used in only a few routines. If the window
argument to clearok() is curscr, the next call to wrefresh() with any
window will cause the screen to be cleared and repainted from scratch. If
the window argument to wrefresh() is curscr, the screen is immediately
cleared and repainted from scratch. This is how most programs would
implement a "repaint-screen" function. More information on using curscr
is provided where its use is appropriate.

Routines

Many of the following routines have two or more versions. The routines
prefixed with w require a window argument. The routines prefixed with p
require a pad argument. Those without a prefix generally use stdscr.

The routines prefixed with mv require an x and y coordinate to move to
before performing the appropriate action. The mv routines imply a call to
move before the call to the other routine. The coordinate y always refers

Terminal Interface Extension Definition Page 169

CURSES(TI_LlB)

to the row (of the window), and x always refers to the column. The upper
left corner is always (0,0), not (1,1).

The routines prefixed with mvw take both a window argument and x and
y coordinates. The window argument is always specified before the coordi­
nates.

In each case, win is the window affected and pad is the pad affected; win
and pad are always of type WINDOW. Option setting routines require a
boolean flag bf with the value TRUE or FALSE; bf is always of type bool.
The variables ch and attrs below are always of type chtype. The types
WINDOW, booI, and chtype are defined in <curses.h>. All other argu­
ments are integers.

See the RETURN VALUE paragraph near the end of the TI_LIB section for
information on the values returned by the routines described below.

Overall Screen Manipulation

WINDOW *initscr()
The first routine called should almost always be initscrO. (The
exceptions are sILinit(), filter(), and ripofflineO.) This will
determine the terminal type and initialize all curses data structures.
initscr() also arranges that the first call to refresh() will clear the
screen. If errors occur, initscr() will write an appropriate error mes­
sage to standard error and exit; otherwise, a pointer to stdscr() is
returned. If the program wants an indication of error conditions,
newtermO should be used instead of initscr() - initscr() should
only be called once per application.

endwin()
A program should always call endwin() before exiting or escaping
from curses mode temporarily. This routine will restore tty modes,
move the cursor to the lower left corner of the screen and reset the
terminal into the proper non-visual mode. To resume after a tem­
porary escape, call refresh() or doupdate().

SCREEN *newterm(type, outfd, infd)
char *type;
FILE *outfd, *infd;

Page 170

A program which outputs to more than one terminal should use
newterm() for each terminal instead of initscr(). A program which
wants an indication of error conditions, so that it may continue to
run in a line-oriented mode if the terminal cannot support a screen­
oriented program, would also use this routine. The routine

Terminal Interface Extension Definition

CURSES(TI_LlB)

newterm() should be called once for each terminal. It returns a vari­
able of type SCREEN * which should be saved as a reference to that
terminal. The arguments are the type of the terminal to be used in
place of TERM, a file pointer for output to the terminal, and another
file pointer for input from the terminal. The program must. also call
endwin() for each terminal being used before exiting from curses. If
newterm() is called more than once for the same terminal, the first
terminal referred to must be the last one for which endwin() is
called.

SCREEN *set_term(new)
SCREEN *new;

This routine is used to switch between different terminals. The
screen reference new becomes the new current terminal. The previ­
ous terminal is returned by the routine. This is the only routine
which manipulates SCREEN pointers; all other routines affect only
the current terminal.

Window and Pad Manipulation

refresh()

wrefresh(win)
WINDOW *win;

These routines (or prefresh(), pnoutrefresh(), wnoutrefresh(),
or doupdate(» must be called to get any output on the terminal, as
other routines merely manipulate data structures. The routine
wrefresh() copies the named window to the physical terminal
screen, taking into account what is already there in order to do optim­
izations. The refresh() routine is the same, using stdscr as a
default screen. Unless leaveok() has been enabled, the physical cur­
sor of the terminal is left at the location of the window's cursor.

NOTE: refresh is a macro.

wnoutrefresh(win)
WINDOW *win;

doupdate()
These two routines allow multiple updates with more efficiency than
wrefresh() alone. In addition to all of the window structures, curses
keeps two data structures representing the terminal screen: a physi­
cal screen, describing what is actually on the screen, and a virtual
screen, describing what the programmer wants to have on the screen.

The routine wrefresh() works by first calling wnoutrefresh(),
which copies the named window to the virtual screen, and then calling

Terminal Interface Extension Definition Page 171

CURSES(TI_LlB)

doupdate(), which compares the virtual screen to the physical screen
and does the actual update. If the programmer wishes to output
several windows at once, a series of calls to wrefresh() will result in
alternating calls to wnoutrefresh() and doupdate(), causing several
bursts of output to the screen. By first calling wnoutrefresh() for
each window, it is then possible to call doupdate() once, resulting in
only one burst of output, with probably fewer total characters
transmitted and certainly less CPU time used.

WINDOW *newwin(nlines, ncols, begiIL-Y, begin_x)
int nlines, ncols, begin_y, begiIL-x;

Create and return a pointer to a new window with the given number
of lines, nlines, and columns, ncols. The upper left corner of the
window is at line begin_y, column begiIL-x. If either nlines or
ncols is zero, they will be defaulted to LINES - begin_y and COLS
- begiIL-x. A new full-screen window is created by calling
newwin(O,O,O,O).

mvwin(win, y, x)
WINDOW *win;
int y, x;

Move the window so that the upper left corner will be at position (x,
y). If the move would cause the window to be off the screen, it is an
error and the window is not moved. Moving subwindows is allowed,
but should be avoided.

WINDOW *subwin(orig, nlines, ncols, begin_y, begin_x)
WINDOW *orig;
int nlines, ncols, begiIL-Y, begin-x;

Create and return a pointer to a new window with the given number
of lines, nlines, and columns, ncols. The window is at position
(begiIL-Y, begin,-x) on the screen. (This position is relative to the
screen, and not to the window orig.) The window is made in the
middle of the window orig, so that changes made to one window will
affect both windows. The subwindow shares memory with the win­
dow orig. When using this routine, it will be necessary to call
touchwin() or touchline() on orig before calling wrefresh() on
the subwindow.

delwin(win)
WINDOW *win;

Page 172

Deletes the named window, freeing up all memory associated with it.
Subwindows must be deleted before the main window.

Terminal Interface Extension Definition

CURSES(TI_LlB)

WINDOW *newpad(nlines, neols)
int nlines, neols;

Create and return a pointer to a new pad data structure with the
given number of lines, nlines, and columns, neols. A pad is like a
window, except that it is not restricted by the screen size, and is not
necessarily associated with a particular part of the screen. Pads can
be used when a large window is needed, and only a part of the window
will be on the screen at one time. Automatic refreshes of pads (e.g.,
from scrolling or echoing of input) do not occur. It is not legal to call
wrefresh() with a pad as an argument; the routines prefresh() or
pnoutrefresh() should be called instead. Note that these routines
require additional parameters to specify the part of the pad to be
displayed and the location on the screen to be used for display.

WINDOW *subpad(orig, nlines, neols, begin_y, begiIL-x)
WINDOW *orig;
int nlines, neols, begiIL-Y, begiIL-x;

Create and return a pointer to a subwindow within a pad with the
given number of lines, nlines, and columns, neols. Unlike subwin(),
which uses screen coordinates, the window is at position (begilLx,
begin_y) on the pad. The window is made in the middle of the win­
dow orig, so that changes made to one window will affect both win­
dows. When using this routine, often it will be necessary to call
touehwin() or touehline() on orig before calling prefresh().

prefresh(pad, pminrow, pmineol, sminrow, smineol, smaxrow,
smaxeol)
WINDOW *pad;
int pminrow, pmineol, sminrow, smineol, smaxrow, smaxeol;

pnoutrefresh(pad, pminrow, pmineol, sminrow, smineol, smaxrow,
smaxeol)
WINDOW *pad;
int pminrow, pmineol, sminrow, smineol, smaxrow, smaxeol;

These routines are analogous to wrefresh() and wnoutrefresh()
except that pads, instead of windows, are involved. The additional
parameters are needed to indicate what part of the pad and screen are
involved. pminrow and pmineol specify the upper left corner, in the
pad, of the rectangle to be displayed. sminrow, smineol, smaxrow,
and smaxeol specify the edges, on the screen, of the rectangle to be
displayed in. The lower right corner in the pad of the rectangle to be

Terminal Interface Extension Definition Page 173

CURSES(TI_LlB)

displayed is calculated from the screen coordinates, since the rectan­
gles must be the same size. Both rectangles must be entirely con­
tained within their respective structures. Negative values of pmin­
row, pmincol, sminrow, or smincol are treated as if they were
zero.

Output

These routines are used to "draw" text on windows.

addch(ch)
chtype ch;

waddch(win, ch)
WINDOW *win;
chtype ch;

mvaddch(y, x, ch)
int y, x;
chtype ch;

mvwaddch(win, y, x, ch)
WINDOW *win;
int y, x;
chtype ch;

Page 174

The character ch is put into the window at the current cursor posi­
tion of the window and the position of the window cursor is advanced.
Its function is similar to that of putchar. At the right margin, an
automatic newline is performed. At the bottom of the scrolling
region, if scrollok() is enabled, the scrolling region will be scrolled up
one line.

If ch is a tab, newline, or backspace, the cursor will be moved
appropriately within the window. A newline also does a clrtoeol()
before moving. Tabs are considered to be at every eighth column. If
ch is another control character, it will be drawn in the ~X notation.
Calling winch() after adding a control character will not return the
control character, but instead will return the representation of the
control character.

Video attributes can be combined with a character by or-ing them
into the parameter. This will result in these attributes also being set.
(The intent here is that text, including attributes, can be copied from
one place to another using inch() and addch().) See standout()
below.

NOTE: addch, mvaddch, and mvwaddch are macros.

Terminal Interface Extension Definition

echochar(ch)
chtype ch;

wechochar(win, ch)
WINDOW *win;
chtype ch;

pechochar(pad, ch)
WINDOW *pad;
chtype ch;

CURSES(TI_LlB)

These routines are functionally equivalent to a call to addch(ch) fol­
lowed by a call to refresh(), a call to waddch(win, ch) followed by
a call to wrefresh(win), or a call to waddch(pad, ch) followed by a
call to prefresh(pad). The knowledge that only a single character is
being output is taken into consideration and, for non-control charac­
ters, a considerable performance gain can be seen by using these rou­
tines instead of their equivalents. In the case of pechochar(), the
last location of the pad on the screen is reused for the arguments to
prefresh().

NOTE: echochar() is a macro.

addstr(str)
char *str;

waddstr(win, str)
WINDOW *win;
char *str;

mvaddstr(y, x, str)
int y, X;
char *str;

mvwaddstr(win, y, X, str)
WINDOW *win;
int y, x;
char *str;

These routines write all the characters of the null terminated charac­
ter string str on the given window. It is equivalent to calling
waddch() once for each character in the string.

NOTE: addstr, mvaddstr, and mvwaddstr are macros.

Terminal Interface Extension Definition Page 175

CURSES(TI_LlB)

attroff(attrs)
int attrs;

wattroff(win, attrs)
WINDOW *win;
int attrs;

attron(attrs)
int attrs;

wattron(win, attrs)
WINDOW *win;
int attrs;

attrset(attrs)
int attrs;

wattrset(win, attrs)
WINDOW *win;
int attrs;

standend()

wstandend(win)
WINDOW *win;

standout()

wstandout(win)
WINDOW *win;

These routines manipulate the current attributes of the named win­
dow. These attributes can be any combination of A_STANDOUT,
A_REVERSE, A_BOLD, A_DIM, A_BLINK, A_UNDERLINE, and
A_AL TCHARSET. These constants are defined in <curses.h> and
can be combined with the C I (or) operator.

Page 176

The current attributes of a window are applied to all characters that
are written into the window with waddch(). Attributes are a pro­
perty of the character, and move with the character through any scrol­
ling and insert/delete line/character operations. To the extent possi­
ble on the particular terminal, they will be displayed as the graphic
rendition of characters put on the screen.

The routine attrset(attrs) sets the current attributes of the given
window to attrs. attroff(attrs) turns off the named attributes
without turning on or off any other attributes. attron(attrs) turns
on the named attributes without affecting any others. standout() is
the same as attron(A_STANDOUT). standendO is the same as
attrset(O), that is, it turns off all attributes.

NOTE: attroff, attron, attrset, standend and standout are mac­
ros.

Terminal Interface Extension Definition

beep()

flash()

CURSES(TI_LlB)

These routines are used to signal the terminal user. beep() will
sound the audible alarm on the terminal, if possible, and if not, will
flash the screen (visible bell), if that is possible. flash() will flash the
screen, and if that is not possible, will sound the audible signal. If
neither signal is possible, nothing will happen. Nearly all terminals
have an audible signal (bell or beep), but only some can flash the
screen.

box (win , vert, hor)
WINDOW *win;
chtype vert, hor;

A box is drawn around the edge of the window. vert and hor are the
characters the box is to be drawn with. If vert and hor are 0, then
appropriate default characters, ACS_ VLINE and ACS_HLINE, will be
used.

erase()

werase(win)
WINDOW *win;

These routines copy blanks to every position in the window.

NOTE: erase is a macro.

clear()

wclear(win)
WINDOW *win;

These routines are like erase() and werase(), but they also call
clearok(), arranging that the screen will be cleared completely on the
next call to wrefresh() for that window and repainted from scratch.

NOTE: clear is a macro.

clrtobot()

wclrtobot(win)
WINDOW *win;

All lines below the cursor in this window are erased. Also, the current
line to the right of the cursor, inclusive, is erased.

NOTE: clrtobot is a macro.

Terminal Interface Extension Definition Page 177

CURSES(TI_LlB)

clrtoeol()

wclrtoeol (win)
WINDOW *win;

The current line to the right of the cursor, inclusive, is erased.

NOTE: clrtoeol is a macro.

delay _output(ms)
int ms;

Insert ms millisecond pause in output. It is not recommended that
this routine be used extensively since padding characters are used
rather than a CPU pause.

delch()

wdelch(win)
WINDOW *win;

mvdelch(y, x)
int y, x;

mvwdelch(win, y, x)
WINDOW *win;
int y, x;

The character under the cursor in the window is deleted. All charac­
ters to the right on the same line are moved to the left one position
and the last character on the line is filled with a blank. The cursor
position does not change (after moving to y, x, if specified). (This
does not imply use of the hardware delete character feature.)

NOTE: delch, mvdelch, and mvwdelch are macros.

deleteln()

wdeleteln(win)
WINDOW *win;

Page 178

The line under the cursor in the window is deleted. All lines below
the current line are moved up one line. The bottom line of the win­
dow is cleared. The cursor position does not change. (This does not
imply use of the hardware delete line feature.)

NOTE: deleteln is a macro.

Terminal Interface Extension Definition

getyx(win, y, x)
WINDOW *win;
int y, x;

CURSES(TI_LlB)

The cursor position of the window is placed in the two integer vari­
ables y and x. This is implemented as a macro, so no' & is necessary
before the variables.

NOTE: getyx is a macro.

getbegyx(win, y, x)
WINDOW *win;
int y, x;

getmaxyx(win, y, x)
WINDOW *win;
int y, x;

Like getyx(), these routines store the current beginning coordinates
and size of the specified window.

NOTE: getbegyx and getmaxyx are macros.

insch(ch)
chtype ch;

winsch(win, ch)
WINDOW *win;
chtype ch;

mvinsch(y, x, ch)
int y, x;
chtype ch;

mvwinsch(win, y, x, ch)
WINDOW *win;
int y, x;
chtype ch;

The character ch is inserted before the character under the cursor.
All characters to the right are moved one space to the right, possibly
losing the rightmost character on the line. The cursor position does
not change (after moving to y, x, if specified). (This does not imply
use of the hardware insert character feature.)

NOTE: insch, mvinsch, and mvwinsch are macros.

Terminal Interface Extension Definition Page 179

CURSES(TI_LlB)

insertln()

winsertln(win)
WINDOW *win;

A blank line is inserted above the current line and the bottom line is
lost. (This does not imply use of the hardware insert line feature.)

NOTE: insertln is a macro.

move(y, x)

wmove(win, y, x)
WINDOW *win;
int y, x;

The cursor associated with the window is moved to line y and column
x. This does not move the physical cursor of the terminal until
refresh() is called. The position specified is relative to the upper left
corner of the window, which is (0,0).

NOTE: move is a macro.

overlay(srcwin, dstwin)
WINDOW *srcwin, *dstwin;

overwrite(srcwin, dstwin)
WINDOW *srcwin, *dstwin;

These routines overlay srcwin on top of dstwin. Scrwin and
dstwin are not required to be the same size; only text where the two
windows overlap is copied. The difference is that overlay() is non­
destructive (blanks are not copied) while overwrite() is destructive.

copywin(srcwin, dstwin, sminrow, smincol, dminrow, dmincol,
dmaxrow, dmaxcol, overlay)
WINDOW *srcwin, *dstwin;
int sminrow, smincol, dminrow, dmincol, dmaxrow, dmaxcol,
overlay;

Page 180

This routine provides a finer grain of control over the overlay() and
overwrite() routines. Like in the prefresh() routine, a rectangle is
specified in the destination window, (dminrow, dmincol) and
(dmaxrow, dmaxcol), and the upper-left-corner coordinates of the
source window, (sminrow, smincol). If the argument overlay is
true, then copying is non-destructive, as in overlay().

Terminal Interface Extension Definition

printw(fmt [, arg] ...)
char *fmt;

wprintw(win, fmt [, arg] ...)
WINDOW *win;
char *fmt;

mvprintw(y, x, fmt [, arg] ...)
int y, X;
char *fmt;

mvwprintw(win, y, X, fmt [, arg] ...)
WINDOW *win;
int y, x;
char *fmt;

CURSES(TI_LlB)

These routines are analogous to printf [see PRINTF(SA_LlS)]. The
string which would be output by printf is instead output using
waddstr() on the given window.

scroll(win)
WINDOW *win;

The window is scrolled up one line. This involves moving the lines in
the window data structure. As an optimization, if the window's scrol­
ling region is the entire screen, the physical screen will be scrolled at
the same time.

touchwin(win)
WINDOW *win;

touchline(win, start, count)
WINDOW *win;
int start, count;

Throwaway all optimization information about which parts of the
window have been touched, by pretending that the entire window has
been drawn on. This is sometimes necessary when using overlapping
windows, since a change to one window will affect the other window,
but the records of which lines have been changed in the other window
will not reflect the change. touchline() only pretends that count
lines have been changed, beginning with line start.

Terminal Interface Extension Definition Page 181

CURSES(TI_LlB)

Input

The following routines are used to obtain input from windows.

getch()

wgetch(win)
WINDOW *win;

mvgetch(y, x)
int y, x;

mvwgetch(win, y, x)
WINDOW *win;
int y, x;

Page 182

A character is read from the terminal associated with the window. In
nodelay mode, if there is no input waiting, the value ERR is returned.
In delay mode, the program will hang until the system passes text
through to the program. Depending on the setting of cbreak(), this
will be after one character (CBREAK mode), or after the first newline
(NOCBREAK mode). In HALF-DELAY mode, the program will hang
until a character is typed or the specified timeout has been reached.
Unless noecho() has been set, the character will also be echoed into
the designated window. No refresh() will occur .tween the move()
and the getch() done within the routines mvgetch() and
mvwgetch().

When using getch(), wgetch(), mvgetch(), or mvwgetch(), do not
set both NOCBREAK mode (nocbreakO) and ECHO mode (echoO) at
the same time. Depending on the state of the tty driver when each
character is typed, the program may produce undesirable results.

If keypad() is TRUE, and a function key is pressed, the token for
that function key will be returned instead of the raw characters. Pos­
sible function keys are defined in <curses.h> with integers beginning
with 0401, whose names begin with KEY_. If a character is received
that could be the beginning of a function key (such as escape), curses
will set a timer. If the remainder of the sequence does not come in
within the designated time, the character will be passed through, oth­
erwise the function key value will be returned. For this reason, on
many terminals, there will be a delay after a user presses the escape
key before the escape is returned to the program. (U se by a program­
mer of the escape key for a single character function is discouraged.)
Since tokens returned by these routines are outside of the ASCII
range, they are not printable.

NOTE: getch, mvgetch, and mvwgetch are macros.

Terminal Interface Extension Definition

CURSES(TI_LlB)

getstr(str)
char *str;

wgetstr(win, str)
WINDOW *win;
char *str;

rnvgetstr(y, x, str)
int y, X;
char *str;

rnvwgetstr(win, y, X, str)
WINDOW *win;
int y, x;
char *str;

A series of calls to getch() is made, until a newline and carriage
return is received. The resulting value is placed in the area pointed at
by the character pointer str. The user's erase and kill characters are
interpreted.

NOTE: getstr, rnvgetstr, and mvwgetstr are macros.

flushinp()
Throws away any typeahead that has been typed by the user and has
not yet been read by the program.

ungetch(ch)
chtype ch;

Place ch back onto the input queue to be returned by the next call to
wgetch().

chtype inch()

chtype winch(win)
WINDOW *win;

chtype mvinch(y, x)
int y, x;

chtype mvwinch(win, y, x)
WINDOW *win;
int y, x;

The character, of type chtype, at the current position in the named
window is returned. If any attributes are set for that position, their
values will be OR'ed into the value returned. The predefined con­
stants A-CHARTEXT and LA TTRIBUTES, defined in <curses.h>,
can be used with the & (logical and) operator to extract the character
or attributes alone.

NOTE: inch, winch, mvinch, and mvwinch are macros.

Terminal Interface Extension Definition Page 183

CURSES(TI_LlB)

scanw(fmt [, arg] ...)
char *fmt;

wscanw(win, fmt [, arg] ...)
WINDOW *win;
char *fmt;

mvscanw(y, x, fmt [, arg] ...)
int y, X;
char *fmt;

mvwscanw(win, y, X, fmt [, arg] ...)
WINDOW *win;
int y, x;
char *fmt;

These routines correspond to scanf [see SCANF(BA_LlB)]. The
wgetstr() is called on the window, and the resulting line is used as
input for the scan. Fields which do not map to a variable in the fmt
field are lost. Users may interrogate the return value from these rou­
tines to determine the number of fields which were mapped in the
call.

Output Options Setting

These routines set options within curses that deal with output. All options
are initially FALSE, unless otherwise stated. It is not necessary to turn
these options off before calling endwin().

clearok(win, bf)
WINDOW *win;
boo I bf;

If enabled (bf is TRUE,) the next call to wrefresh() with this win­
dow will clear the screen completely and redraw the entire screen from
scratch. This is useful when the contents of the screen are uncertain,
or in some cases for a more pleasing visual effect.

idlok(win, bf)
WINDOW *win;
bool bf;

Page 184

If enabled (bf is TRUE), curses will consider using the hardware
insert/delete line feature of terminals so equipped. If disabled (bf is
FALSE), curses will very seldom use this feature. (The insert/delete
character feature is always considered.) This option should be
enabled only if the application needs insert/delete line, for example,
for a screen editor. It is disabled by default because insert/delete line
tends to be visually annoying when used in applications where it isn't

Terminal Interface Extension Definition

CURSES(TI_LlB)

really needed. If insert/delete line cannot be used, curses will redraw
the changed portions of all lines.

leaveok(win, bf)
WINDOW *win;
boo 1 bf;

Normally, the hardware cursor is left at the location of the window
cursor being refreshed. This option allows the cursor to be left wher­
ever the update happens to leave it. It is useful for applications where
the cursor is not used, since it reduces the need for cursor motions. If
possible, the cursor is made invisible when this option is enabled.

setscrreg(top, bot)
int top, bot;

wsetscrreg(win, top, bot)
WINDOW *win;
int top, bot;

These routines allow the user to set a software scrolling region in a
window. top and bot are the line numbers of the top and bottom
margin of the scrolling region. (Line 0 is the top line of the window.)
If this option and scrollok() are enabled, an attempt to move off the
bottom margin line will cause all lines in the scrolling region to scroll
up one line. Only the text of the window is scrolled. (Note that this
has nothing to do with use of a physical scrolling region capability in
the terminal, like that in the VT100. If idlok() is enabled and the
terminal has either a scrolling region or insert/delete line capability,
they will probably be used by the output routines.)

scrollok(win, bf)
WINDOW *win;
boo I bf;

This option controls what happens when the cursor of a window is
moved off the edge of the window or scrolling region, either from a
newline on the bottom line, or typing the last character of the last
line. If disabled, (bf is FALSE), the cursor is left on the bottom line.
If enabled, (bf is TRUE), wrefreshO is called on the window, and
then the physical terminal and window are scrolled up one line. [Note
that in order to get the physical scrolling effect on the terminal, is is
also necessary to call idlokO.]

Terminal Interface Extension Definition Page 185

CURSES(TI_LlB)

nlO

nonl()
These routines control whether newline is translated into carriage
return and line feed on output, and whether return is translated into
newline on input. Initially, the translations do occur. By disabling
these translations using nonl(), curses is able to make better use of
the linefeed capability, resulting in faster cursor motion.

NOTE: nl is a macro.

Input Options Setting

cbreak()

nocbreak()
These two routines put the terminal into and out of CBREAK mode,
respectively. In this mode, characters typed by the user are immedi­
ately available to the program and erase/kill character-processing is
not performed. When out of this mode, the tty driver will buffer
characters typed until a newline or carriage return is typed. Interrupt
and flow control characters are unaffected by this mode. Initially the
terminal mayor may not be in CBREAK mode, as it is inherited;
therefore, a program should call cbreak() or nocbreak() explicitly.
Most interactive programs using curses will set this mode.

Note that cbreak() overrides raw(). See getch() under "Input"
for a discussion of how these routines interact with echo() and noe­
choO.

def_prog_mode()

def-sheILmode()

saveterm()

Page 186

Save the current terminal modes as the "program" (in curses) or
" shell" (not in curses) state for use by the reset_prog_mode() and
reset-sheILmode() routines. This is done automatically by
initscr().

NOTE: The saveterm() routine is being replaced by
def_prog_mode(), which provides the same functionality.
Saveterm() is included here for compatibility and is supported at
level 2.

Terminal Interface Extension Definition

echo()

noecho()

CURSES(TI_LlB)

These routines control whether characters typed by the user are
echoed by getch() as they are typed. Echoing by the tty driver is
always disabled, but initally getch() is in ECHO mode, so characters
typed are echoed. Initially, characters typed are echoed. Authors of
most interactive programs prefer to do their own echoing in a con­
trolled area of the screen, or not to echo at all, so they disable echoing
by calling noecho(). See getch() under "Input" for a discussion of
how these routines interact with cbreak() and nocbreak().

halfdelay(tenths)
int tenths;

HALF-DELAY mode is similar to CBREAK mode in that characters
typed by the user are immediately available to the program. However,
after blocking for tenths tenths of seconds, ERR will be returned if
nothing has been typed. tenths must be a number between 1 and
255. Use nocbreakO to leave HALF-DELAY mode.

intrflush(win, bf)
WINDOW *win;
bool bf;

If this option is enabled (bf is TRUE), when an interrupt key is
pressed on the keyboard (interrupt, break, quit) all output in the tty
driver queue will be flushed, giving the effect of faster response to the
interrupt, but causing curses to have the wrong idea of what is on the
screen. Disabling (bf is FALSE), the option prevents the flush. The
default for the option is inherited from the tty driver settings. The
window argument is ignored.

keypad(win, bf)
WINDOW *win;
bool bf;

This option enables the keypad of the user's terminal. If enabled (bf
is TRUE), the user can press a function key (such as an arrow key)
and wgetch() will return a single value representing the function key,
as in KEYJ.EFT. (See FUNCTION KEYS below.) If disabled (bf is
FALSE), curses will not treat function keys specially and the program
would have to interpret the escape sequences itself. If the keypad in
the terminal can be turned on (made to transmit) and off (made to
work locally), turning on this option will cause the terminal keypad to
be turned on when wgetch() is called. The default value for keypad
is false.

Terminal Interface Extension Definition Page 187

CURSES(TI_LlB)

nodelay(win, bf)
WINDOW *win;
bool bf;

This option causes getch() to be a non-blocking call. If no input is
ready, getch() will return ERR. If disabled (bf is FALSE), getch()
will hang until a key is pressed.

raw()

noraw()
The terminal is placed into or out of RAW mode. RAW mode is simi­
lar to CBREAK mode, in that characters typed are immediately passed
through to the user program. The differences are that in RAW mode,
the interrupt, quit, suspend and flow control characters are passed
through uninterpreted, instead of generating a signal. The behavior of
the BREAK key depends on other bits in the tty driver that are not
set by curses.

reset_prog_mode()

reset-sheILmode()

fixterm()

resetterm()
Restore the terminal to "program" (in curses) or "shell" (out of
curses) state. These are done automatically by endwin() and doup­
date() after an endwin(), so they would normally not be called
before.

NOTE: The fixterm() routine is being replaced by
reset_prog_mode() and the resetterm() routine is being replaced
by reset-sheILmode(). fixterm() and resetterm() are included
here for compatibility and are supported at level 2.

resetty()

savetty()
These routines save and restore the state of the terminal modes.
savetty() saves the current state in a buffer and resetty() restores
the state to what it was at the last call to savetty().

typeahead(fd)
int fd;

Page 188

Curses does "line-breakout optimization" by looking for typeahead
periodically while updating the screen. If input is found, and it is
coming from a tty, the current update will be postponed until
refresh() or doupdate() is called again. This allows faster response
to commands typed in advance. Normally, the input FILE pointer

Terminal Interface Extension Definition

CURSES(TI_LlB)

passed to newterm(), or stdin in the case that initscr() was used,
will be used to do this typeahead checking. The typeahead() routine
specifies that the file descriptor fd is to be used to check for typea­
head instead. If fd is -1, then no typeahead checking will be done.

Environment Queries

baudrate()
Returns the output speed of the terminal. The number returned is in
bits per second, for example 9600, and is an integer.

ehar erasechar()
The user's current erase character is returned.

has_ic()
True if the terminal has insert- and delete-character capabilities.

has-il()
True if the terminal has insert- and delete-line capabilities, or can
simulate them using scrolling regions. This might be used to check to
see if it would be appropriate to turn on physical scrolling using
scrollok().

char killchar()
The user's current line kill character is returned.

char *longname()
This routine returns a pointer to a static area containing a verbose
description of the current terminal. The maximum length of a ver­
bose description is 128 characters. It is defined only after the call to
initscr() or newterm(). The area is overwritten by each call to
newtermO and is not restored by set_term 0 , so the value should
be saved between calls to newterm() if longname() is going to be
used with multiple terminals.

Soft Labels

Curses will manipulate the set of soft function-key labels that exist on
many terminals. For those terminals that do not have soft labels, curses
will take over the bottom line of stdscr, reducing the size of stdscr and the
variable LINES. Curses standardizes on 8 labels of up to 8 characters each.

sILinit(fmt)
int fmt;

In order to use soft labels, this routine is to be called before initscr()
or newterm() is called. If initscr() winds up using a line from

Terminal Interface Extension Definition Page 189

CURSES(TI_LlB)

stdscr to emulate the soft labels, then fmt determines how the labels
are arranged on the screen. Setting fmt to 0 indicates that the labels
are to be arranged in a 3-2-3 arrangement; 1 asks for a 4-4 arrange­
ment.

int sILset(labnum, label, fmt)
int labnum;
char *label;
int fmt;

labnum is the label number, from 1 to 8. label is the string to be
put on the label, up to 8 characters in length. A NULL string or a
NULL pointer will put up a blank label. fmt is one of 0, 1 or 2, to
indicate whether the label is to be left-justified, centered, or right­
justified within the label.

slLrefresh()

slLnoutrefresh()
These routines correspond to the routines wrefresh() and
wnoutrefresh(). Most applications would use sILnoutrefresh()
because a wrefresh() will most likely soon follow.

char *sILlabel(labnum)
int labnum;

The current label for label number labnum, with leading and trailing
blanks stripped, is returned.

sILclear()
The soft labels are cleared from the screen.

slLrestore()
The soft labels are restored to the screen after a slLclear().

sILtouch()
All of the soft labels are forced to be output the next time a
sILnoutrefresh() is performed.

Terminfo Level Routines

These low level routines must be called by programs that need to deal
directly with the terminfo database to handle certain terminal capabilities,
such as programming function keys. For all other functionality, curses rou­
tines are more suitable and their use is recommended.

Initially, setupterm() should be called. [Note that setupterm() is
automatically called by initscr() and newterm().] This will define the set
of terminal-dependent variables defined in TERMINFO(TI_ENV). The

Page 190 Terminal Interface Extension Definition

CURSES(TI_LlB)

terminfo variables lines and columns are initialized by setupterm() as
follows. If the environment variables LINES and COLUMNS exist, their
values are used. If the above environment variables do not exist and the
program is running in a window, the current window size is used. Other­
wise, the values for lines and columns specified in the terminfo database
are used.

The header files <curses.h> and <term.h> should be included to get the
definitions for these strings, numbers, and flags. Parameterized strings
should be passed through tparm() to instantiate them. All term info
strings [including the output of tparmO] should be printed with tputsO
or putp(). Before exiting, reset-sheILmode() should be called to restore
the tty modes. Programs which use cursor addressing should output
enter_c~mode upon startup and should output exit_c~mode before
exiting. (Programs desiring shell escapes should call reset-sheILmode()
and output exit_c~mode before the shell is called and should output
enter_c~mode and call reset_prog_mode() after returning from the
shell.)

setupterm(term, fildes, errret)
char *term;
int fildes;
int *errret;

setterm(term)
char *term;

Read in the terminfo database, initializing the terminfo structures, but
do not set up the output virtualization structures used by curses. The
terminal type is the character string term; if term is null, the
environment variable TERM will be used. All output is to file descrip­
tor fildes. If errret is not NULL, then setupterm() will return OK
or ERR and store a status value in the integer pointed to by errret.
A status of 1 in err ret is normal, 0 means that the terminal could
not be found, and -1 means that the terminfo database could not be
found. If err ret is NULL, setupterm() will print an error message
upon finding an error and exit. Thus, the simplest call is setupterm
«char *) 0, 1, (int *) 0), which uses all the defaults.

NOTE: The setterm() routine is being replaced by setupterm().
The call setupterm(term, 1, (int *) 0) provides the same functional­
ity as setterm(term). setterm() is included here for compatibility
and is supported at level 2.

Terminal Interface Extension Definition Page 191

CURSES(TI_LlB)

ehar *tparm(str, pI, p2, ... , p9)
ehar *str;
intpI,p2,p3,p4,p5,p6,p7,p8,p9;

Instantiate the string str with parms pi. A pointer is returned to the
result of str with the parameters applied.

tputs(str, affent, pute)
ehar *str;
int affent;
int (*pute)();

Apply padding information to the string str and output it. str must
be a terminfo string variable or the return value from tparm(),
tgetstr(), or tgoto(). affent is the number of lines affected, or 1 if
not applicable. pute() is a putehar like routine to which the charac­
ters are passed, one at a time.

putp(str)
ehar *str;

A routine that calls tputs(str, 1, putehar).

vidputs(attrs, pute)
int attrs;
int (*pute)();

Output the string to put the terminal in the video attribute mode
attrs, which is any combination of the attributes listed below. The
characters are passed to the putehar like routine pute.

vidattr(attrs)
int attrs;

Like vidputs(), except that it outputs through putchar.

mveur(oldrow, oldeol, newrow, neweol)
int oldrow, oldeol, new row , neweol;

Low level cursor motion.

The following routines return the value of the capability corresponding to
the terminfo eapname passed to them, such as xenl.

The eapname for each capability is given in the table column entitled eap­
name code in the capabilities section of the terminfo(TI_ENV).

tigetflag(eapname)
ehar *capname;

The value -1 is returned if eapname is not a boolean capability.

Page 192 Terminal Interface Extension Definition

tigetnum(capname)
char *capname;

CURSES(TI_LlB)

The value -2 is returned if capname is not a numeric capability.

tigetstr(cap name)
char *capname;

The value (char *) -1 is returned if capname is not a string capabil­
ity.

char *boolnames, *boolcodes, *boolfnames

char *numnames, *numcodes, *numfnames

char *strnames, *strcodes, *strfnames
These null-terminated arrays contain the capnames, the termcap
codes, and the full C names, for each of the term info variables.

Termcap Compatibility Routines

These routines were included as a conversion aid for programs that use the
termcap library. Their parameters are the same and the routines are emu­
lated using the terminfo database.

tgetent(bp, name)
char *bp, *name;

Look up termcap entry for name. The emulation ignores the buffer
pointer bp.

tgetflag(id)
char id[2];

Get the boolean entry for ide

tgetnum(id)
char id[2];

Get numeric entry for ide

char *tgetstr(id, area)
char id[2];
char **area;

Return the string entry for ide tputs() should be used to output the
returned string.

Terminal Interface Extension Definition Page 193

CURSES(TI_LlB)

char *tgoto(cap, col, row)
char *cap;
int col, row;

Instantiate the parameters into the given capability. The output from
this routine is to be passed to tputs().

tputs(str ,affcnt,putc)
char *str;
int affcnt;
int (*putc)();

[See tputs{) under Terminfo Level Routines above.]

Miscellaneous

char *unctrl(c)
chtype c;

This macro expands to a character string which is a printable
representation of the character c. Control characters are displayed in
the ~X notation. Printing characters are displayed as is.

NOTE: unctrl is a macro, which is defined in <unctrl.h>.

char *keyname(c)
int c;

A character string corresponding to the key c is returned.

gettmode()
No-op.

NOTE: gettmode{) is included here for compatibility and is sup­
ported at level 2.

int scr_dump(filename)
char *filename;

The current contents of the virtual screen are written to the file
filename.

int scr_restore(filename)
char *filename;

The virtual screen is set to the contents of filename, which must
have been written using scr_dump{). The next call to doupdate{)
will restore the screen to what it looked like in the dump file.

int scr_init(filename)
char *filename;

Page 194

The contents of filename are read in and used to initialize the
curses data structures about what the terminal currently has on its

Terminal Interface Extension Definition

CURSES(TI_LlB)

screen. If the data is determined to be valid, curses will base its next
update of the screen on this information rather than clearing the
screen and starting from scratch. scr _init() would be used after
initscr() or a system [see SYSTEM(BA_LlB)] call to share the screen
with another process, which has done a scr_dump() after its
endwin() call. The data will be declared invalid if the time-stamp of
the tty is old or the term info capability rmcup exists.

Attributes

The following video attributes, defined in <curses.h>, can be passed to
the routines attron(), attroff(), and attrset(), or OR'ed with the charac­
ters passed to addchO.

A-STANDOUT
A-UNDERLINE
A-REVERSE
A-BLINK
A-DIM
A-BOLD
A-ALTCHARSET
A-CHARTEXT
A-A TTRIBUTES

Function Keys

Terminal's best highlighting mode
Underlining
Reverse video
Blinking
Half bright
Extra bright or bold
Alternate character set
Bit-mask to extract a character
Bit-mask to extract attributes

The following function keys, defined in <curses.h>, might be returned by
getch() if keypad() has been enabled. Note that not all of these may be
supported on a particular terminal if the terminal does not transmit a
unique code when the key is pressed or the definition for the key is not
present in the terminfo database.

Terminal Interface Extension Definition Page 195

CURSES(TI_LlB)

Octal
Name Value Key name

KEY-BREAK 0401 Break key
KEY-DOWN 0402 The four arrow

keys ...
KEY_UP 0403
KEY-LEFT 0404
KEY-RIGHT 0405
KEYJlOME 0406 Home key

(upward+left arrow)
KEY-BACKSPACE 0407 Backspace
KEY_FO 0410 Function keys; space

for 64 keys is
reserved.

KEYJ'(n) (KEYJO+(n»
KEY-DL 0510 Delete line
KEY-IL 0511 Insert line
KEY-DC 0512 Delete character
KEY-IC 0513 Insert char or enter

insert mode
KEY_EIC 0514 Exit insert char mode
KEY_CLEAR 0515 Clear screen
KEY_EOS 0516 Clear to end of screen
KEY_EOL 0517 Clear to end of line
KEY_SF 0520 Scroll 1 line forward
KEY_SR 0521 Scroll 1 line backward

(reverse)
KEY_NPAGE 0522 Next page
KEYJPAGE 0523 Previous page
KEY_STAB 0524 Set tab
KEY_CTAB 0525 Clear tab
KEY_CATAB 0526 Clear all tabs
KEY_ENTER 0527 Enter or send
KEY_SRESET 0530 Soft (partial) reset
KEY-RESET 0531 Reset or hard reset
KEYJRINT 0532 Print or copy

Page 196 Terminal Interface Extension Definition

CURSES(TI_LlB)

Octal
Name Value Key name

KEY_LL 0533 Home down or
bottom (lower left)
Keypad is arranged
like this:

Al up A3
left B2 right
Cl down C3

KEY_AI 0534 Upper left of keypad
KEY-A3 0535 Upper right of keypad
KEY_B2 0536 Center of keypad
KEY_CI 0537 Lower left of keypad
KEY_C3 0540 Lower right of keypad
KEY_BTAB 0541 Back tab key
KEY_BEG 0542 Beg(inning) key
KEY_CANCEL 0543 Cancel key
KEY_CLOSE 0544 Close key
KEY_COMMAND 0545 Cmd (command) key
KEY_COPY 0546 Copy key
KEY_CREATE 0547 Create key
KEY_END 0550 End key
KEY_EXIT 0551 Exit key
KEYJIND 0552 Find key
KEY-HELP 0553 Help key
KEY-MARK 0554 Mark key
KEY_MESSAGE 0555 Message key
KEY_MOVE 0556 Move key
KEY~EXT 0557 Next object key
KEY_OPEN 0560 Open key
KEY _OPTIONS 0561 Options key
KEYJREVIOUS 0562 Previous object key
KEY_REDO 0563 Redo key
KEY-REFERENCE 0564 Ref(erence) key
KEY-REFRESH 0565 Refresh key
KEY-REPLACE 0566 Replace key
KEY-RESTART 0567 Restart key
KEY_RESUME 0570 Resume key

Terminal Interface Extension Definition Page 197

CURSES(TI_LlB)

Octal
Name Value Key name

KEY_SAVE 0571 Save key
KEY_SBEG 0572 Shifted beginning key
KEY_SCANCEL 0573 Shifted cancel key
KEY _SCOMMAND 0574 Shifted command key
KEY_SCOPY 0575 Shifted copy key
KEY_SCREATE 0576 Shifted create key
KEY_SDC 0577 Shifted delete char key
KEY_SDL 0600 Shifted delete line key
KEY_SELECT 0601 Select key
KEY_SEND 0602 Shifted end key
KEY_SEOL 0603 Shifted clear line key
KEY_SEXIT 0604 Shifted exit key
KEY_SFIND 0605 Shifted find key
KEY_SHELP 0606 Shifted help key
KEY_SHOME 0607 Shifted home key
KEY_SIC 0610 Shifted input key
KEY_SLEFT 0611 Shifted left arrow key
KEY _SMESSAGE 0612 Shifted message key
KEY_SMOVE 0613 Shifted move key
KEY_SNEXT 0614 Shifted next key
KEY _SOPTIONS 0615 Shifted options key
KEY _SPREVIOUS 0616 Shifted prev key
KEY_SPRINT 0617 Shifted print key
KEY_SREDO 0620 Shifted redo key
KEY_SREPLACE 0621 Shifted replace key
KEY_SRIGHT 0622 Shifted right arrow
KEY_SRSUME 0623 Shifted resume key
KEY_SSAVE 0624 Shifted save key
KEY _SSUSPEND 0625 Shifted suspend key
KEY_SUNDO 0626 Shifted undo key
KEY _SUSPEND 0627 Suspend key
KEY_UNDO 0630 Undo key

Page 198 Terminal Interface Extension Definition

CURSES(TLLlB)

LINE GRAPHICS

The following variables may be used to add line-drawing characters to the
screen with waddch(). When defined for the terminal, the variable will
have the A_AL TCHARSET bit turned on. Otherwise, the default character
listed below will be stored in the variable. The names were chosen to be
consistent with the "VT100" nomenclature.

Name Default Glyph Description

ACS_ULCORNER + upper left corner
ACS-LLCORNER + lower left corner
ACS_URCORNER + upper right corner
ACS_LRCORNER + lower right corner
ACS-RTEE + right tee (-I)
ACS-LTEE + left tee (~)
ACS-BTEE + bottom tee (..1)
ACS_TTEE + top tee (t)
ACS-HLINE horizontal line
ACS_YLINE vertical line
ACS-PLUS + plus
ACS_Sl scan line 1
ACS_S9 scan line 9
ACS_DIAMOND + diamond
ACS_CKBOARD checker board (stipple)
ACS-DEGREE degree symbol
ACS-PLMINUS # plus/minus
ACS_BULLET 0 bullet
ACS-LARROW < arrow pointing left
ACS_RARROW > arrow pointing right
ACS-DARROW v arrow pointing down
ACS_UARROW arrow pointing up
ACS-BOARD # board of squares
ACS-LANTERN # lantern symbol
ACS-BLOCK # solid square block

RETURN VALUE

All routines return the integer ERR upon failure and an integer value other
than ERR upon successful completion. Unless otherwise noted in the
preceding routine descriptions.

Terminal Interface Extension Definition Page 199

CURSES(TI_LIB)

All macros return the value of the w version, except setsrreg,(),
wsetscrreg(), getyx(), getbegyx(), getmaxyx(). The return values of
setsrreg(), wsetscrreg(), getyx(), getbegyx(), and getmaxyx() are
undefined (i.e., these should not be used as the right-hand side of assign­
ment statements).

Routines that return pointers always return (type *) NULL on error.

SEE ALSO
TERMINFO(TLENV).

USAGE

Application Program.

The header file <curses.h> automatically includes the header files
<stdio.h> and <unctrl.h>.

LEVEL
Level 1: All routines except fixterm(), gettmode(), resetterm(), saveterm(),
setterm(), and the termcap compatibility routines tgetent(), tgetflag(), tget­
num(), tgetstrO, and tgotoO.

Level 2: December 1, 1985 for fixtermO, gettmode() , resetterm() ,
saveterm(), setterm(), and the termcap compatibility routines tgetent(),
tgetflag(), tgetnum(), tgetstr(), and tgoto().

Page 200 Terminal Interface Extension Definition

Chapter 11
Commands and Utilities

Terminal Interface Extension Definition Page 201

NAME
tic - terminfo compiler

SYNOPSIS
tic [-v[n]] [-c] file

DESCRIPTION

FILES

The command tic translates a terminfo file from the source format into the
compiled format. The results are placed in the directory
/usr/lib/terminfo. The compiled format is necessary for use with the
library routines described in CURSES(TI_LlB). The argument file contains
one or more terminfo terminal descriptions in source format [see
TERMINFO(TLENV)].

The option -v (verbose) causes tic to output trace information showing its
progress. The optional integer n is a number from 1 to 10, inclusive, indi­
cating the desired level of detail of information. If n is omitted, the default
level is 1. If n is specified and greater than 1, the level of detail is
increased.

The option -c only checks file for errors.

The command tic compiles all terminfo descriptions in the given file. Each
description in the file describes the capabilities of a particular terminal.
When a use=entry_name field is discovered in the terminal entry currently
being compiled, tic duplicates the capabilities in entry_name for the
current entry, with the exception of those capabilities that are explicitly
referenced in the current entry.

If the environment variable TERMINFO is set, the compiled results are
placed there instead of /usr/lib/terminfo.

Total compiled entries cannot exceed 4096 bytes. The name field cannot
exceed 128 bytes.

/usr /lib/terminfo/? /* Compiled terminal description database

SEE ALSO
CURSES(TI_LlB), TERMINFO(TI_ENV).

Page 202 Terminal Interface Extension Definition

USAGE

Administrator.

When an entry, e.g., entry_name_I, contains a use=entry_name-'2 field,
any cancelled capabilities in entry_name-'2 must also appear in
entry_name_I before use= for these capabilities to be cancelled in
entry_name_I.

LEVEL
Levell.

Terminal Interface Extension Definition Page 203

TPUT(TI_CMO)

NAME
tput - initialize a terminal or query the terminfo database

SYNOPSIS
tput [-Ttype] capname [parms ...]

tput [-Ttype] init

tput [-Ttype] longname

tput [-Ttype] reset
DESCRIPTION

The command tput uses the terminfo database to make the values of
terminal-dependent capabilities and information available to the shell [see
SH(8U_CMD)], to initialize or reset the terminal, or return the long name of
the requested terminal type. The command tput outputs a string if the
attribute is of type string, or an integer if the attribute is of type integer. If
the attribute is of type boolean, tput simply sets the exit code (0 for TRUE
if the terminal has the capability, 1 for FALSE if it does not), and produces
no output.

-Ttype indicates the type of terminal. Normally this option is
unnecessary, as the default is taken from the environment
variable TERM. If -Tis specified, then the shell variables
LINES and COLUMNS and the layer size will not be refer­
enced.

capname indicates the attribute from the terminfo database. [See
TERMINFO(TI_ENV)] .

parms

init

Page 204

If the attribute is a string that takes parameters, the argu­
ments parms will be instantiated into the string. An all
numeric argument will be passed to the attribute as a number.

If the term info database is present and an entry for the user's
terminal exists, then the following will occur: (1) if present,
the terminal's initialization strings will be output (isl, is2,
is3, if, iprog) (2) any delays (e.g., newline) specified in the
entry will be set in the tty driver (3) tabs expansion will be
turned on or off according to the specification in the entry,
and (4) if tabs are not expanded, standard tabs will be set
(every 8 spaces). If an entry does not contain the information
needed for any of the four above activities, that activity will
silently be skipped.

Terminal Interface Extension Definition

TPUT(TI_CMD)

longnarne If the terminfo database is present and an entry for the user's
terminal exists, then the long name of the terminal will be
output. The long name is the last name in the first line of the
terminal's description in the terminfo database.

reset reset behaves identically like in it with the following excep­
tion. Instead of outputting initialization strings, the
terminal's reset strings will be output if present (rsl, rs2,
rs3, rf). If the reset strings are not present, but initialization
strings are, the initialization strings will be output.

EXAMPLES

tput clear
Echo clear-screen sequence for the current terminal.

tput co Is
Print the number of columns for the current terminal.

tput -T450 cols
Print the number of columns for the 450 terminal.

bold= 'tput srnso'
offbold= 'tput rrnso'

Set the shell variables " bold" to begin standout mode sequence and
" offbold" to end standout mode sequence for the current terminal.
This might be followed by a prompt, e.g.:
echo "$ {bold} N arne: $ { offbold} \ c "

tput he
Set exit code to indicate if the current terminal is a hardcopy termi­
nal.

tput cup 23 4
Print the sequence to move the cursor to row 23, column 4.

tput longnarne
Print the long name from the terminfo database for the type of termi­
nal specified in the environmental variable TERM.

tput init
Initialize the terminal according to the type of terminal in the
environmental variable TERM. This command should be included in
everyone's .profile after the environmental variable TERM has been
exported.

Terminal Interface Extension Definition Page 205

TPUT(TI_CMD)

tput -T5620 reset
Reset an AT&T 5620 terminal, overriding the type of terminal in the
environmental variable TERM.

tput cup 0 0
Send the sequence to move the cursor to row 0, column 0 (the upper
left corner of the screen, usually known as the "home" cursor posi­
tion).

FILES

/usr /lib/terminfo/? /*

RETURN VALUE

Compiled terminal description database
terminfo(TI~NV) .

If capname is of type boolean, a value of 0 is returned for TRUE and 1 for
FALSE.

If capname is of type string, a value of 0 is returned; if the capname is
defined for this terminal type (the value of cap name is returned on stan­
dard output); a value of 1 is returned if capname is not defined for this
terminal type (a null value is returned on standard output).

If capname is of type integer, a value of 0 is returned if capname is
defined for this terminal type.

The following error codes are returned:

2 usage error

3 unknown terminal type or no terminfo database

4 unknown terminfo capability capname
(i.e., terminfo does not support a capability named capname).

SEE ALSO
STTY(BU_CMD), TERMINFO(TLENV).

USAGE

Application Program.

tput init or tput reset may clear the user's screen.
LEVEL

Levell.

Page 206 Terminal Interface Extension Definition

Part IV

Network Services Extension Definition

12.1 INTRODUCTION

Chapter 12
I ntrod uction

The NETWORK SERVICES EXTENSION provides advanced standard interfaces to
support networking applications. It is divided into three functional areas: OPEN
SYSTEMS NETWORKING INTERFACES, STREAMS I/O INTERFACES, and the
SHARED RESOURCE ENVIRONMENT. Consistent with the definition of Con­
forming Systems (see section 1.2.2), a conforming system must support all com­
ponents defined for each of these three functional areas.

The OPEN SYSTEMS NETWORKING INTERFACES section describes functions
that provide a protocol independent application interface to networking services
based on the service definitions of the OSI (Open Systems Interconnection)
Reference Model. Application developers access the functions that provide ser­
vices at a particular level and need not care about the protocol implementation
that is providing those services. The functions defined at this time provide the
services of the OSI Transport Layer. These services provide end-to-end data
transmission using the services of an underlying network. Applications written
using the transport interface are independent of the underlying protocols. By
providing media and protocol independence, the interface enables networking
applications to have the flexibility to run in various protocol environments.

The STREAMS I/O INTERFACES section describes the interfaces that enable a
user to directly access protocol modules that are implemented in the kernel using
the streams fra~ework. Streams provides a uniform mechanism for implement­
ing network services in the kernel by defining standard interfaces for device
drivers and protocol modules.

The SHARED RESOURCE ENVIRONMENT section describes new capabilities for
sharing and administering resources among interconnected machines. These new
capabilities are collectively known as Remote File Sharing. Using Remote File
Sharing, files that physically reside on a remote machine can be accessed as if
they were on the local machine; the capabilities described here provide the inter­
face for accessing and managing Remote File Sharing. New utilities provide tpe
basic functionality, while additional functionality is added to the Base System,
the BASIC UTILITIES EXTENSION, and the ADMINISTERED SYSTEM EXTEN­
SION.

Network Services Extension Definition Page 209

The components of the NETWORK SERVICES EXTENSION are new in System V
Release 3. The NETWORK SERVICES EXTENSION is dependent upon the Base
System as defined for System V Release 3.

Page 210 Network Services Extension Definition

Chapter 13
Open Systems Networking Interfaces

13.1 INTRODUCTION

The OPEN SYSTEMS NETWORKING INTERFACES section of the NETWORK
SERVICES EXTENSION describes functions that provide a protocol independent
application interface to networking services based on the service definitions of
the OSI (Open Systems Interconnection) Reference Model. Application develop­
ers access the functions that provide services at a particular level and need not
care about the protocol implementation that is providing those services.

The functions defined at this time provide the services of the OSI Transport
Layer. These services provide end-to-end data transmission using the services of
an underlying network. Applications written using the transport interface are
independent of the underlying protocols. By providing media and protocol
independence, the interface enables networking applications to have the flexibil­
ity to run in various protocol environments.

This section of the extension is dependent upon the Base System.

13.2 FUTURE DIRECTIONS

As interfaces to other layers of the OSI Reference Model become defined for Sys­
tem V, the functions providing services of these layers will be included in the
OPEN SYSTEMS NETWORKING INTERFACES library.

13.3 DESCRIPTION

LIBRARY ROUTINES
t_accept t_error
t_alloc t_free
t_bind t_getinfo
t_c1ose t_getstate
t_connect t-.listen

t-.look t_rcvdis
t_open t_rcvrel
t_optmgmt t_rcvudata
t_rcv t_rcvuderr
t_rcvconnect t-snd

HEADER FILES
tiuser.h

Network Services Extension Definition

L.snddis
L.sndrel
L.sndudata
t-sync
t_unbind

Page 211

ERROR CONDITIONS

EPROTO Protocol Error

13.4 DEFINITIONS

Transport user

The user-level application or protocol that is accessing the services of the tran­
sport interface.

Active transport user

The transport user that initiates a connection.

Passive transport user

The transport user that listens for an incoming connect indication.

Transport provider

The transport protocol that provides the services of the transport interface.

Transport endpoint

The communication path, which is identified by a file descriptor, between a tran­
sport user and a specific transport provider.

Protocol address

The address, also known as the Transport Service Access Point (TSAP) address,
that identifies the transport user. This interface places no structure or semantics
on an address.

Connection mode

A circuit-oriented mode of transfer in which data is passed from one user to
another over an established connection in a reliable, sequenced fashion.

Connectionless mode

A mode of transfer in which data is passed from one user to another in self­
contained units with no logical relationship required among multiple units.

Synchronous execution

The mode of execution in which transport service functions wait for specific
asynchronous events to occur before returning control to the user.

Page 212 Network Services Extension Definition

Asynchronous execution

The mode of execution in which transport service functions do not wait for
specific asynchronous events to occur before returning control to the user, but
instead return immediately if the event is not pending.

TSDU

The Transport Service Data Unit, which is the user data transmitted over a
transport connection and whose identity is preserved from one end of a transport
connection to the other (i.e., a message).

ETSDU

The Expedited Transport Service Data Unit, which is the expedited data
transmitted over a transport connection and whose identity is preserved from one
end of a transport connection to the other (i.e., an expedited message).

netbuf structure

The netbuf structure is used by many of the library functions and is defined by
the <tiuser .h> header file. This structure includes the following members:

unsigned int maxlen;
unsigned int len;
char *buf;

1* max buffer length *1
1* length of data in buffer *1
1* pointer to data buffer *1

13.5 EFFECTS ON THE BASE SYSTEM

Components in the Base System may return a new value for errno as listed
below. An application that checks the value of errno must include the header
file <errno.h>.

The following symbolic name defines an additional error return condition:

Name
EPROTO

Description
Protocol Error

13.6 EFFECTS ON THE SOFTWARE DEVELOPMENT EXTENSION

In a software development environment, a program file.c that accesses any func­
tion defined in this part of the extension must be compiled in one of the follow­
ing ways:

cc file.c -InsLs

or

cc file.c -Insl

Network Services Extension Definition Page 213

13.7 TRANSPORT SERVICE INTERFACE

The Open Systems Networking Interfaces provide the services of strategic levels
of the Open Systems Interconnection (OSI) Reference Model [1]. The services
currently defined in this library conform to those services specified in the ISO
Transport Service Definition document [2] for both connection-mode and
connectionless-mode transport services. Functions to support services of other
layers of the OSI Reference Model will be added to this library as deemed neces­
sary.

13.7.1 Overview

A set of functions has been defined to provide a transport service interface for
user processes and to be independent of any specific transport protocol. This
transport service enables two user processes to transfer data between them over a
communications channel.

In order to properly use the library functions that are defined, certain rules must
be followed. This overview is intended to describe the relationship among the
functions and show how a developer would write an application using these nmc­
tions. State tables are included to show the allowable sequences of function calls
given a particular state and event.

The remainder of this interface description refers to the concept of a transport
endpoint. This endpoint specifies a communications path between a transport
user and a specific transport provider, and is identified by a local file descriptor
(fd). In other words, a transport endpoint is manifested as an open device spe­
cial file. A transport provider is defined to be the transport protocol that pro­
vides the services of the transport layer. All requests to the transport provider
must pass through a transport endpoint. The file descriptor fd is returned by
the function T _OPEN(NS_LlB) and is used as an argument to subsequent func­
tions to identify the transport endpoint.

Page 214 Network Services Extension Definition

Modes of Service
The transport service interface supports two modes of service: connection mode
and connectionless mode. A single transport endpoint may not support both
modes of service simultaneously.

The connection-mode transport service is circuit-oriented and enables data to be
transferred over an established connection in a reliable, sequenced manner. This
service enables the negotiation of the parameters and options that govern the
transfer of data. It provides an identification mechanism that avoids the over­
head of address transmission and resolution during the data transfer phase. It
also provides a context in which successive units of data, transferred between
peer users, are logically related. This service is attractive to applications that
require relatively long-lived, datastream-oriented interactions.

In contrast, the connectionless-mode transport service is message-oriented and
supports data transfer in self-contained units with no logical relationship
required among multiple units. These units are also known as datagrams. This
service requires only a preexisting association between the peer users involved,
which determines the characteristics of the data to be transmitted. No dynamic
negotiation of parameters and options is supported by this service. All the infor­
mation required to deliver a unit of data (e.g., destination address) is presented
to the transport provider, together with the data to be transmitted, in a single
service access which need not relate to any other service access. Also, each unit
of data transmitted is entirely self-contained, and can be independently routed by
the transport provider. This service is attractive to applications that involve
short-term request/response interactions, exhibit a high level of redundancy, are
dynamically reconfigurable, or do not require guaranteed, in-sequence delivery of
data.

Error Handling
Two levels of error are defined for the transport interface. The first is the
library error level. Each library function has one or more error returns. Failures
are indicated by a return value of -1. An external integer, t_errno, holds the
specific error number when such a failure occurs. This value is set when errors
occur but is not cleared on successful library calls, so it should be tested only
after an error has been indicated. A diagnostic function, T _ERROR(NS_LlB), is
provided for printing out information on the current transport error. The state
of the transport provider may change if a transport error occurs.

The second level of error is the operating system service routine level. A special
library level error number has been defined called TSYSERR which is generated
by each library function when an operating system service routine fails or some
general error occurs. When a function sets t_errno to TSYSERR, the specific
system error may be accessed through the external variable errno.

Network Services Extension Definition Page 215

A new system error, EPROTO, has been defined to support System V networking.
This error is generated by the transport provider when a protocol error has
occurred. If the error is severe, it may cause the file descriptor and transport
endpoint to be unusable. To continue in this case, all users of the file must close
it. Then the file may be re-opened and initialized.

Synchronous and Asynchronous Execution Modes
The transport service interface is inherently asynchronous; various events may
occur independent of the actions of a transport user. For example, a user may be
sending data over a transport connection when an asynchronous disconnect indi­
cation arrives. The user must somehow be informed that the connection has
been broken.

The transport service interface supports two execution modes for handling asyn­
chronous events: synchronous mode and asynchronous mode. In the synchro­
nous mode of operation, the transport functions wait for specific events before
returning control to the user. While waiting, the user cannot perform other
tasks. For example, a function that attempts to receive data in synchronous
mode will wait until data arrives before returning control to the user. This is the
default mode of execution. It is useful for user processes that want to wait for
events to occur, or for user processes that have no other useful work to perform.

The asynchronous mode of operation, on the other hand, provides a mechanism
for notifying a user of some event without forcing the user to wait for that event.
The handling of networking events in an asynchronous manner is seen as a desir­
able capability of the transport interface. This would enable users to perform
useful work while waiting for a particular event. For example, a function that
attempts to receive data in asynchronous mode will return control to the user
immediately if no data is available. The user may then periodically poll for
incoming data until it arrives. The asynchronous mode is intended for those
applications that expect long delays between events and have other tasks that
they can perform in the meantime.

The two execution modes are not provided through separate interfaces or dif­
ferent functions. Instead, functions that process incoming events have two
modes of operation: synchronous and asynchronous. The desired mode is speci­
fied through the O_NDELAY flag, which may be set when the transport provider
is initially opened, or before any specific function or group of functions is exe­
cuted using the FCNTL(BA_OS) operating system service routine. The effect of
this flag is completely specified in the description of each function.

Page 216 Network Services Extension Definition

Eight asynchronous events are defined in the transport service interface to cover
both connection-mode and connectionless-mode service. They are represented as
separate bits in a bitmask using the following defined symbolic names:

T _LISTEN This event occurs when a connect request from a remote user
is received by a transport provider (connection-mode service
only).

T _CONNECT This event occurs when a connect confirmation is received by
a transport provider (connection-mode service only).

T_DATA This event occurs when normal data is received by a tran­
sport provider.

T_EXDATA This event occurs when expedited data is received by a tran­
sport provider (connection-mode service only).

T ~ISCONNECT This event occurs when a disconnect indication is received
by a transport provider (connection-mode service only).

T _ORDREL This event occurs when an orderly release indication is
received by a transport provider (connection-mode service
with orderly release only).

T _ERROR This event occurs when a fatal error is generated by the tran­
sport provider, thus making the transport endpoint inaccessi­
ble.

T._UDERR This event occurs when an error is found in a previously sent
data unit (connectionless-mode service only).

A process that issues functions in synchronous mode must still be able to recog­
nize certain asynchronous events immediately and act on them if necessary.
This is handled through a special transport error TLOOK which is returned by a
function when an asynchronous event occurs. The T _LOOK(NS_LlB) function is
then invoked to identify the specific event that has occurred when this error is
returned.

Asynchronous processing is accomplished through polling. The polling capability
enables processes to do useful work and periodically poll for one of the above
asynchronous events. This facility is provided by setting O_NDELA Y for the
appropriate function(s) and by using the T_LOOK(NS_LlB) function to do the pol­
ling.

Network Services Extension Definition Page 217

13.7.2 Overview of the Connection-mode Service

The connection-mode transport service consists of four phases of communication:
initialization/de-initialization, connection establishment, data transfer, and con­
nection release. A state machine is described in the section Transport Service
Interface Sequence of Functions and Figure 13-8 that defines the legal sequence
in which functions from each phase may be issued.

Initialization/De-initialization Phase
Before a user can attempt to establish a transport connection, the environment
of the user must be initialized. Specifically, the user must create a local com­
munication path to the transport provider (i.e., create the transport endpoint),
obtain necessary protocol-specific information, and activate the transport end­
point. A transport endpoint is viewed as active when the transport provider may
accept or request connections associated with the endpoint.

After a connection has been released, the transport user must de-initialize the
associated transport endpoint, thereby freeing the resource for future use.

The functions that support initialization/de-initialization tasks are described
below. All such functions provide local management functions; no information is
sent over the network.

T _OPEN(NS_LlB) This function creates a transport endpoint and returns
protocol-specific information associated with that end­
point. It also returns a file descriptor that serves as the
local identifier of the endpoint.

T _BINO(NS_LlB) This function associates a protocol address with a given
transport endpoint, thereby activating the endpoint. It
also directs the transport provider to begin accepting
connect indications if so desired.

T _OPTMGMT(NS_LlB) This function enables the user to get or negotiate proto­
col options with the transport provider.

T_UNBINO(NS_LlB) This function disables a transport endpoint such that no
further request destined for the given endpoint will be
accepted by the transport provider.

T _CLOSE(NS_LlB) This function informs the transport provider that the
user is finished with the transport endpoint, and frees
any local resources associated with that endpoint.

The following functions are also local management functions, but can be issued
during any phase of communication.

Page 218 Network Services Extension Definition

T _GETINFO(NS_LlB) This function returns protocol-specific information asso­
ciated with the specified transport endpoint.

T _GETSTATE(NS_LlB) This function returns the current state of the transport
endpoint.

T _SYNC(NS_LlB) This function synchronizes the data structures managed
by the transport library with the transport provider.

T _ALLOC(NS_LlB) This function allocates storage for the specified library
data structure.

This function frees storage for a library data structure
that was allocated by T _ALLOC(NS_LlB).

This function prints out a message describing the last
error encountered during a call to a transport library
function.

T _LOOK(NS_LlB) This function returns the current event associated with
the given transport endpoint.

Connection Establishment Phase
This phase enables two transport users to establish a transport connection
between them. In the connection establishment scenario, one user is considered
active and initiates the conversation, while the second user is passive and waits
for a transport user to request a connection.

The active user requests a connection and then receives a response from the
called user. The passive user waits for connect indications (i.e., indications of a
connect request) and then either accepts or rejects the request. The functions
that support these operations are:

This function requests a connection to the transport
user at a specified destination, and waits for the
remote user's response. This function may be exe­
cuted in either synchronous or asynchronous mode.
In synchronous mode, the function waits for the
remote user's response before returning control to the
local user. In asynchronous mode, the function ini­
tiates connection establishment but returns control to
the local user before a response arrives.

T _RCVCONNECT(NS_LlB) This function enables an active transport user to
determine the status of a previously sent connect
request. If the request was accepted, the connection
establishment phase will be complete on return from

Network Services Extension Definition Page 219

Data Transfer Phase

this function. This function is used in conjunction
with T _CONNECT(NS_LlB) to establish a connection
in an asynchronous manner.

This function enables the passive transport user to
receive connect indications from other transport
users.

This function is issued by the passive user to accept
a particular connect request after an indication has
been received.

Once a transport connection has been established between two users, data may
be transferred back and forth over the connection. Two functions have been
defined to support data transfer in connection mode as follows:

This function enables transport users to send either normal
or expedited data over a transport connection.

T _RCV(NS_LlB) This function enables transport users to receive either nor-
mal or expedited data on a transport connection.

Connection Release Phase
Two forms of connection release are supported in the connection-mode transport
interface: abortive and orderly. An abortive release may be invoked from either
the connection establishment phase or the data transfer phase. When in the con­
nection establishment phase, a transport user may use the abortive release to
reject a connect request. In the data transfer phase, either user may abort a con­
nection at any time. The abortive release is not negotiated by the transport
users and it takes effect immediately on request. The user on the other side of
the connection is notified when a connection is aborted. The transport provider
may also initiate an abortive release, in which case both users are informed that
the connection no longer exists. There is no guarantee of delivery of user data
once an abortive release has been initiated.

The orderly release capability is an optional feature of the connection-mode ser­
vice. If supported by the underlying transport provider, orderly release may be
invoked from the data transfer phase to enable two users to gracefully release a
connection. The procedure for orderly release prevents the loss of data that may
occur during an abortive release.

Page 220 Network Services Extension Definition

The functions that support connection release are:

T _SNDDIS(NS_LlB) This function can be issued by either transport user to ini­
tiate the abortive release of a transport connection. It may
also be used to reject a connect request during the connec­
tion establishment phase.

T _RCVDIS(NS_LlB) This function identifies the reason for the abortive release
of a connection, where the connection is released by the
transport provider or another transport user.

T _SNDREL(NS_LlB) (Optional). This function can be issued by either transport
user to initiate an orderly release. The connection remains
intact until both users issue this function and
T _RCVREL(NS_LlB).

T _RCVREL(NS_LlB) (Optional). This function is issued when a user is notified
of an orderly release request, as a means of informing the
transport provider that the user is aware of the remote
user's actions.

13.7.3 Overview of the Connection less-mode Service

The connectionless-mode transport service consists of two phases of communica­
tion: initialization/de-initialization and data transfer. A brief description of
each phase and its associated functions is presented below. A state machine is
described in the section Transport Service Interface Sequence of Functions and
Figure 13-7 that defines the legal sequence in which functions from each phase
may be issued.

Initialization/De-initialization Phase
Before a user can attempt to transfer data in connectionless mode, the environ­
ment of the user must be initialized. Specifically, the user must create a local
communication path to the transport provider (i.e., create the transport end­
point), obtain necessary protocol-specific information, and activate the transport
endpoint. A transport connection endpoint is viewed as active when a transport
user may send or receive data units through that endpoint.

When a transport user no longer wishes to send or receive data units through a
given transport endpoint, they must de-initialize the endpoint, thereby freeing
the resource for future use.

The functions that support the initialization/de-initialization tasks are the same
functions used in the connection-mode service.

Network Services Extension Definition Page 221

Data Transfer Phase
Once a transport endpoint has been activated, a user is free to send and receive
data units through that endpoint in connectionless mode as follows:

T_SNDUDATA

T_RCVUDATA

T_RCVUDERR

This function enables transport users to send a self­
contained data unit to the user at the specified protocol
address.

This function enables transport users to receive data
units from other users.

This function enables transport users to retrieve error
information associated with a previously sent data unit.

13.7.4 Transport Service Interface Sequence of Functions

Figures 13-2 through 13-8 are included to describe the possible states of the tran­
sport provider as seen by the transport user, describe the incoming and outgoing
events that may occur on any connection, and identify the allowable sequence of
function calls. Given a current state and event, the transition to the next state is
shown as well as any actions that must be taken by the transport user.

The allowable sequence of functions is described in Figures 13-6, 13-7, and 13-8.
The support functions, T_GETSTATE(NS_LlB), T_GETINFO(NS_LlB),
T _ALLOC(NS_LlB), T _FREE(NS_LlB), T _LOOK(NS_LlB), and T _SYNC(NS_LlB) are
excluded from the state tables because they do not affect the state of the inter­
face. Each of these functions may be issued from any state except the uninitial­
ized state. Similarly, the T _ERROR(NS_LlB) function has been excluded from the
state table because it does not affect the state of the interface.

The following are rules regarding the maintenance of the state of the interface.

• It is the responsibility of the transport provider to keep record of the state of
the interface as seen by the transport user.

• The transport provider must never process a function that places the interface
out of state.

• If the user issues a function out of sequence, the transport provider should
indicate this where possible through an error return on that function. The
state should not change. In this case, if any data is passed with the function
when not in the T J)ATAXFER state, that data will not be accepted or for­
warded by the transport provider.

• The uninitialized state (T _UNINIT) of a transport endpoint is the initial state,
and the endpoint must be initialized and bound before the transport provider
may view it as active.

Page 222 Network Services Extension Definition

• The uninitialized state is also the final state, and the transport endpoint must
be viewed as unused by the transport provider. The T _CLOSE(NS_LlB) func­
tion will close the transport provider and free the transport library resources
for another endpoint.

• According to the state table in Figure 13-6, T _CLOSE(NS_LlB) should only be
issued from the T_UNBND state. If it is issued from any other state and no
other user has that endpoint open, the action will be abortive, the transport
endpoint will be successfully closed, and the library resources will be freed for
another endpoint. When T _CLOSE(NS_LlB) is issued, the transport provider
must ensure that the address associated with the specified transport endpoint
has been unbound from that endpoint. Also, the provider should send
appropriate disconnects if T _CLOSE(NS_LlB) is not issued from the unbound
state.

The following rules apply only to the connection-mode transport service:

• The transport connection release phase can be initiated at any time during the
connection establishment phase or data transfer phase.

• The only time the state of a transport service interface of a transport endpoint
may be transferred to another transport endpoint is when the
T _ACCEPT(NS_LlB) function specifies such action. The following rules then
apply to the cooperating transport endpoints:

- The endpoint that is to accept the current state of the interface must
be bound to an appropriate protocol address and must be in the
T_IDLE state.

- The user transferring the current state of an endpoint must have
correct permissions for the use of the protocol address bound to the
accepting transport endpoint.

- The endpoint that transfers the state of the transport interface is
placed into the T_IDLE state by the transport provider after the com­
pletion of the transfer if there are no more outstanding connect indica­
tions.

13.7.5 Guidelines for Writing Protocol-Independent Software

A primary goal of the user-level transport interface is that it be independent of
any particular transport protocol. More importantly, the interface was designed
to enable users to write programs that had no knowledge of the particular tran­
sport protocol to which they would interface. This will enable networking appli­
cations to be run in different protocol environments without change.

Network Services Extension Definition Page 223

The user-level transport interface will support protocol-independence for applica­
tions if the following guidelines are followed:

1. In the connection-mode service, the concept of a transport service data
unit (TSDU) may not be supported by all transport providers. The user
should make no assumptions about the preservation of logical data boun­
daries across a connection.

2. The protocol-specific service limits returned on the T _OPEN(NS_LlB) and
T _GETINFO(NS_LlB) functions must not be exceeded. It is the responsi­
bility of the user to access these limits and then adhere to the limits
throughout the communication process.

3. The user program should not look at or change options that are specific
to the underlying protocol. The T _OPTMGMT(NS_LlB) function enables a
user to access default protocol options from the transport provider,
which may then be blindly passed as an argument on the appropriate
connect establishment function. Optionally, the user can choose not to
pass options as an argument on connect establishment functions.

4. Protocol-specific addressing issues should be hidden from the user pro­
gram. The user program should not specify any protocol address on the
T _BIND(NS_LlB) function, but instead should allow T _BIND(NS_LlB) to
assign an address to the user. In this way, details concerning protocol­
specific addressing are hidden from the user.

Similarly, the user must have some way of accessing destination
addresses in an invisible manner, such as through a name server. How­
ever, the details for doing so are outside the scope of this interface
specification.

5. The reason codes associated with T _RCVDIS(NS_LlB) are protocol­
dependent. The user should not interpret this information if protocol­
independence is a concern.

6. The error codes associated with T _RCVUDERR(NS_LlB) are protocol­
dependent. The user should not interpret this information if protocol­
independence is a concern.

7. The names of devices should not be hard-coded into programs. While
software may be written for a particular class of service (e.g.,
connectionless-mode service), it should not be written to depend on any
attribute of the underlying protocol.

Page 224 Network Services Extension Definition

8. The optional orderly release facility of the connection-mode service [i.e.,
T _SNDREL(NS_LlB) and T _RCVREL(NS_LlB)] should not be used by pro­
grams targeted for multiple protocol environments. This facility is not
supported by all connection-based transport protocols. In particular, its
use will prevent programs from successfully communicating with ISO
open systems.

13.7.6 Example

The following example (Figure 13-1) shows the allowable sequence of functions of
an active user and passive user communicating using a connection-mode tran­
sport service. This example is not meant to show all the functions that must be
called but rather to highlight the important functions that request a particular
service. Blank lines are used to indicate that a function would be issued by one
user prior to the issuance of a related function by the remote user. For example,
the active user issues T _CONNECT(NS_LlB) to request a connection and the pas­
sive user would receive an indication of the connect request [via the return from
T _LlSTEN(NS_LlB)] and then would issue the T _ACCEPT(NS_LlB).

The state diagram that follows shows the flow of the events through the various
states. The active user is represented by a solid line and the passive user is
represented by a dashed line. This example shows a successful connection being
established and terminated using connection-mode transport service without ord­
erly release. For a detailed description of all possible states and events, see Fig­
ure 13-8.

Network Services Extension Definition Page 225

Active User Passive User

t_open t_open
t_bind t_bind

t_listen
t_connect

t_accept
t_rcvconnect
t-snd

Lrcv
t-snddis

t_rcvdis
t_unbind t_unbind
t_close t_close

KEY:

Active User

Passive User:

..".. I ~nn'd
~DATAX~

w-ov U LEnd

Figure 13-1: Example of a Sequence of Transport Functions

Page 226 Network Services Extension Definition

Transport Interface States

The following table (Figure 13-2) describes all possible states of the transport
provider as seen by the transport user. The service type may be connection­
mode, connection-mode with orderly release, or connectionless-mode.

State Description Service Type

T_UNINIT uninitialized - initial T_COTS
and final state of interface T_CLTS

T_COTS_ORD

T_UNBND unbound T_COTS
T_COTS_ORD
T_CLTS

T_IDLE no connection established T_COTS
T_COTS_ORD
T_CLTS

T_OUTCON outgoing connection pending T_COTS
for active user T_COTS_ORD

T_INCON incoming connection pending T_COTS
for passive user T_COTS_ORD

T~ATAXFER data transfer T_COTS
T_COTS_ORD

T_OUTREL outgoing orderly release T_COTS_ORD
(waiting for orderly release indication)

T_INREL incoming orderly release T_COTS_ORD
(waiting to send orderly release request)

Figure 13-2: Transport Interface States

Network Services Extension Definition Page 227

Outgoing Events

The following outgoing events correspond to the successful return of the specified
user-level transport functions, where these functions send a request or response
to the transport provider.

In Figure 13-3, some events (e.g., acceptX) are distinguished by the context in
which they occur. The context is based on the values of the following:

ocnt count of outstanding connect indications

fd file descriptor of the current transport endpoint

resfd file descriptor of the transport endpoint where a connection
will be accepted

Page 228 Network Services Extension Definition

Event Description Service Type

opened successful return of t_open T_COTS,T_COTS_ORD,T_CLTS

bind successful return of t_bind T_COTS,T_COTS_ORD,T_CLTS

optmgmt successful return of t_optmgmt T_COTS,T_COTS_ORD,T_CLTS

unbind successful return of t_unbind T_COTS,T_COTS_ORD,T._CLTS

closed successful return of t_close T_COTS,T_COTS_ORD,T_CLTS

connectl successful return of t_connect T_COTS,T_COTS_ORD
in synchronous mode

connect2 TNODATA error on t_connect T_COTS,T_COTS_ORD
in asynchronous mode, or TLOOK
error due to a disconnect indication
arriving on the transport endpoint.

accept 1 successful return of t_accept T_COTS,T_COTS_ORD
with ocnt == 1, fd == resfd

accept2 successful return of t_accept T_COTS,T_COTS_ORD
with ocnt == 1, fd != resfd

accept3 successful return of t_accept T_COTS,T_COTS_ORD
with ocnt > 1

snd successful return of t-snd T_COTS,T_COTS_ORD

snddis1 successful return of t-snddis T_COTS,T_COTS_ORD
with ocnt <= 1

snddis2 successful return of t-snddis T_COTS,T_COTS_ORD
with ocnt > 1

sndrel successful return of t-sndrel T_COTS_ORD

sndudata successful return of t-sndudata T_CLTS

Figure 13-3: Transport Interface Outgoing Events

Network Services Extension Definitjon Page 229

Incoming Events

The following incoming events correspond to the successful return of the speci­
fied user-level transport functions, where these functions retrieve data or event
information from the transport provider. The only incoming event not associ­
ated directly with the return of a function on a given transport endpoint is
pass_conn, which occurs when a user transfers a connection to another tran­
sport endpoint. This event occurs on the endpoint that is being passed the con­
nection, despite the fact that no function is issued on that endpoint.
Pass_conn is included in the state tables to describe what happens when a user
accepts a connection on another transport endpoint.

In Figure 13-4, the rcvdis events are distinguished by the context in which they
occur. The context is based on the value of ocnt, which is the count of out­
standing connect indications on the current transport endpoint.

Incoming
Event Description Service Type

listen successful return of t_listen T_COTS
T_COTS_ORD

rcvconnect successful return of t_rcvconnect T_COTS
T_COTS_ORD

rcv successful return of t_rcv T_COTS
T_COTS_ORD

rcvdisl successful return of t_rcvdis T_COTS
T_COTS_ORD

with ocnt <= 0

rcvdis2 successful return of t_rcvdis T_COTS
T_COTS_ORD

with ocnt == 1

rcvdis3 successful return of t_rcvdis T_COTS
T_COTS_ORD

with ocnt > 1

rcvrel successful return of t_rcvrel T_COTS_ORD

rcvudata successful return of Lrcvudata T_CLTS

rcvuderr successful return of t_rcvuderr T_CLTS

pass_conn receive a passed connection T_COTS
T_COTS_ORD

Figure 13-4: Transport Interface Incoming Events

Page 230 Network Services Extension Definition

Transport User Actions

Some state transitions are accompanied by a list of actions the transport user
must take. These actions are represented by the notation [n], where n is the
number of the specific action as described in Figure 13-5.

[1] Set the count of outstanding connect indications to zero.

[2] Increment the count of outstanding connect indications.

[3] Decrement the count of outstanding connect indications.

[4] Pass a connection to another transport endpoint as indicated
in T _ACCEPT(NS_LlB).

Figure 13-5: Transport Interface User Actions

Network Services Extension Definition Page 231

State Tables

Figures 13-6 and 13-7 describe the possible next states, given the current state
and event. The state is that of the transport provider as seen by the transport
user.

The contents of each box represent the next state given the current state
(column) and the current incoming or outgoing event (row). An empty box
represents a state/event combination that is invalid. Along with the next state,
each box may include an action list (as specified in Figure 13-5). The transport
user must take the specific actions in the order specified in the state table.

A separate table is shown for initialization/ de-initialization, data transfer in con­
nectionless mode, and connection/release/data-transfer in connection mode.

Page 232 Network Services Extension Definition

~ T_UNINIT T_UNBND T-IDLE
event

opened T_UNBND

bind T-IDLE [IJ

optmgmt T-IDLE

unbind T_UNBND

closed T_UNINIT

Figure 13-6: Initialization/De-initialization State Table

~ event
T-IDLE

sndudata T-IDLE

rcvudata T-IDLE

rcvuderr T-IDLE

Figure 13-7: Data-Transfer State Table for Connectionless-mode Ser­
vice

Network Services Extension Definition Page 233

~ T~DLE T_OUTCON T~NCON T-I>ATAXFER T_OUTREL T_INREL
event

connectl T-I>ATAXFER

connect2 T_OUTCON

rcvconnect T-I>ATAXFER

listen T~NCON [2) T~NCON [2)

acceptl T-I>ATAXFER [3

accept2 T~DLE [3)[4)

accept3 T~NCON [3)[4)

snd T-I>ATAXFER T_INREL

rcv T-I>ATAXFER T_OUTREL

snddisl T~DLE T~DLE [3) T~DLE T_IDLE T_IDLE

snddis2 T_INCON [3)

rcvdisl T~DLE T~DLE T_IDLE T_IDLE

rcvdis2 T~DLE [3)

rcvdis3 T~NCON [3)

sndrel T_OUTREL T_IDLE

rcvrel T_INREL T_IDLE

pass_conn T-I>ATAXFER

Figure 13-8: Connection/ReleasefData-Transfer
Connection-mode Service

State Table for

Page 234 Network Services Extension Definition

REFERENCES

1. CCITT Recommendation X.200 - "Reference Model of Open Systems
Interconnection for CCITT Applications", 1984.

2. ISO IS 8072 - "Information Processing Systems - Open Systems Inter­
connection - Transport Service Definition", 1984.

Network Services Extension Definition Page 235

NAME
t_accept - accept a connect request

SYNOPSIS

#include <tiuser .h>

int t_accept(fd, resfd, call)
int fd;
int resfd;
struct t_call *call;

DESCRIPTION

T JCCEPT(NS_LlB)

This function is issued by a transport user to accept a connect request. Fd
identifies the local transport endpoint where the connect indication arrived,
resfd specifies the local transport endpoint where the connection is to be
established, and call contains information required by the transport provid­
er to complete the connection. Call points to a t_call structure which con­
tains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

In call, addr is the address of the caller, opt indicates any protocol-specific
parameters associated with the connection, udata points to any user data
to be returned to the caller, and sequence is the value returned by
T _LlSTEN(NS_LlB) that uniquely associates the response with a previously
received connect indication.

A transport user may accept a connection on either the same, or on a dif­
ferent, local transport endpoint than the one on which the connect indica­
tion arrived. If the same endpoint is specified (i.e., resfd=fd), the connec­
tion can be accepted unless the following condition is true: The user has
received other indications on that endpoint but has not responded to them
[with t_accept or T_SNDDIS(NS_LlB)). For this condition, t_accept will
fail and set t_errno to TBADF.

If a different transport endpoint is specified (resfd!=fd), the endpoint
must be bound to a protocol address and must be in the T_IDLE state [see
T_GETSTATE(NS_LlB)) before the t_accept is issued.

For both types of endpoints, t_accept will fail and set t_errno to TLOOK
if there are indications (e.g., a connect or disconnect) waiting to be received
on that endpoint.

Network Services Extension Definition Page 237

T JCCEPT(NS_LlB)

The values of parameters specified by opt and the syntax of those values
are protocol specific. The udata argument enables the called transport user
to send user data to the caller and the amount of user data must not exceed
the limits supported by the transport provider as returned in the connect
field of the info argument of T_OPEN(NS_LlB) or T_GETINFO(NS_LlB). If
the len field of udata is zero, no data will be sent to the caller.

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] The file descriptor fd or resfd does not refer to a
transport endpoint, or the user is illegally accepting
a connection on the same transport endpoint on
which the connect indication arrived.

[TOUTST ATE] The function was issued in the wrong sequence on
the transport endpoint referenced by fd, or the
transport endpoint referred to by resfd is not in
the appropriate state.

[T ACCES] The user does not have permission to accept a con­
nection on the responding transport endpoint or
use the specified options.

[TBADOPT] The specified options were in an incorrect format
or contained illegal information.

[TBADDATA] The amount of user data specified was not within
the bounds allowed by the transport provider.

[TBADSEQ] An invalid sequence number was specified.

[TLOOK] An asynchronous event has occurred on the tran­
sport endpoint referenced by fd and requires
immediate attention.

[TNOTSUPPORT] This function is not supported by the underlying
transport provider.

[TSYSERR] A system error has occurred during execution of
this function.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned, and t_errno is set to indicate the error.

SEE ALSO
T _CONNECT(NS_LlB), T _GETSTATE(NS_LlB), T _LlSTEN(NS_LlB),
T _OPEN(NS_LlB), T _RCVCONNECT(NS_LlB).

Page 238 Network Services Extension Definition

NAME
t_alloc - allocate a library structure

SYNOPSIS
#include <tiuser .h>

char *t_alloc(fd, struct_type, fields)
int fd;
int struct_type;
int fields;

DESCRIPTION
The t_alloc function dynamically allocates memory for the various tran­
sport function argument structures as specified below. This function will
allocate memory for the specified structure, and will also allocate memory
for buffers referenced by the structure.

The structure to allocate is specified by struct_type, and must be one of
the following:

T BIND struct t bind - -

T CALL struct t call -

T - OPTMGMT struct t_optmgmt

T DIS struct t discon -

T UNITDATA struct t unitdata - -

T UDERROR struct t uderr - -

T INFO struct t info - -
where each of these structures may subsequently be used as an argument to
one or more transport functions.

Each of the above structures, except T-INFO, contains at least one field of
type "struct netbuf". For each field of this type, the user may specify
that the buffer for that field should be allocated as well. The length of the
buffer allocated will be based on the size information returned in the info
argument of T _OPEN(NS_LlB) or T _GETINFO(NS_LlB). The relevant
fields of the info argument are described in the following list. The fields
argument specifies which buffers to allocate, where the argument is the
bitwise-OR of any of the following:

T_ADDR The addr field of the t_bind, t_call, t_unitdata, or
t_uderr structures (size obtained from info_addr).

Network Services Extension Definition Page 239

T -ALLOC(NS_LlB)

T_OPT The opt field of the t_optmgmt, t_call, t_unitdata, or
t_uderr structures (size obtained from info_options).

T_UDATA The udata field of the t_call, t_discon, or t_unitdata
structures (for T_CALL, size is the maximum value of
info_connect and info_discon; for T_DIS, size is the value
of info_discon; for T_VNITDATA, size is the value of
info_tsdu) ..

T _ALL All relevant fields of the given structure.

For each field specified in fields, t_alloc will allocate memory for the
buffer associated with the field, and initialize the len field to zero and the
buf pointer and maxlen field accordingly. Because the length of the buffer
allocated will be based on the same size information that is returned to the
user on T_OPEN(NS_LlB) and T_GETINFO(NS_LlB), fd must refer to the
transport endpoint through which the newly allocated structure will be
passed. In this way the appropriate size information can be accessed. If
the size value associated with any specified field is -1 or -2 [see
T_OPEN(NS_LlB) or T_GETINFO(NS_LlB)], t_alloc will be unable to deter­
mine the size of the buffer to allocate and will fail, setting t_errno to
TSYSERR and errno to EINV AL. For any field not specified in fields,
buf will be set to NULL and maxlen will be set to zero.

Use of t_alloc to allocate structures will help ensure the compatibility of
user programs with future releases of the transport interface functions.

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

[TSYSERR] A system error has occurred during execution of this func­
tion.

RETURN VALUE
On successful completion, t_alloc returns a pointer to the newly allocated
structure. On failure, NULL is returned.

SEE ALSO
T _FREE(NS_LlB), T _GETINFO(NS_LlB), T _OPEN(NS_LlB).

Page 240 Network Services Extension Definition

NAME
t_bind - bind an address to a transport endpoint

SYNOPSIS

#include <tiuser .h>

int t_bind(fd, req, ret)
int fd;
struct t_bind *req;
struct t_bind *ret;

DESCRIPTION
This function associates a protocol address with the transport endpoint
specified by fd and activates that transport endpoint. In connection mode,
the transport provider may begin accepting or requesting connections on
the transport endpoint. In connectionless mode, the transport user may
send or receive data units through the transport endpoint.

The req and ret arguments point to a t_bind structure containing the fol­
lowing members:

struct netbuf addr;
unsigned qlen;

The addr field of the t_bind structure specifies a protocol address and the
qlen field is used to indicate the maximum number of outstanding connect
indications.

Req is used to request that an address, represented by the netbuf struc­
ture, be bound to the given transport endpoint. Len specifies the number
of bytes in the address and buf points to the address buffer. Maxlen has
no meaning for the req argument. On return, ret contains the address
that the transport provider actually bound to the transport endpoint; this
may be different from the address specified by the user in req. In ret, the
user specifies maxlen which is the maximum size of the address buffer and
buf which points to the buffer where the address is to be placed. On
return, len specifies the number of bytes in the bound address and buf
points to the bound address. If maxlen is not large enough to hold the
returned address, an error will result.

If the requested address is not available, or if no address is specified in req
(the len field of addr in req is zero) the transport provider will assign an
appropriate address to be bound, and will return that address in the addr

Network Services Extension Definition Page 241

field of ret. The user can compare the addresses in req and ret to deter­
mine whether the transport provider bound the transport endpoint to a dif­
ferent address than that requested.

Req may be NULL if the user does not wish to specify an address to be
bound. Here, the value of qlen is assumed to be zero, and the transport
provider must assign an address to the transport endpoint. Similarly, ret
may be NULL if the user does not care what address was bound by the pro­
vider and is not interested in the negotiated value of qlen. It is valid to set
req and ret to NULL for the same call, in which case the provider chooses
the address to bind to the transport endpoint and does not return that
information to the user.

The qlen field has meaning only when initializing a connection-mode ser­
vice. It specifies the number of outstanding connect indications the tran­
sport provider should support for the given transport endpoint. An out­
standing connect indication is one that has been passed to the transport
user by the transport provider. A value of qlen greater than zero is only
meaningful when issued by a passive transport user that expects other users
to call it. The value of qlen will be negotiated by the transport provider
and may be changed if the transport provider cannot support the specified
number of outstanding connect indications. On return, the qlen field in
ret will contain the negotiated value.

This function allows more than one transport endpoint to be bound to the
same protocol address (however, the transport provider must support this
capability also), but it is not allowable to bind more than one protocol
address to the same transport endpoint. If a user binds more than one
transport endpoint to the same protocol address, only one endpoint can be
used to listen for connect indications associated with that protocol address.
In other words, only one t_bind for a given protocol address may specify a
value of qlen greater than zero. In this way, the transport provider can
identify which transport endpoint should be notified of an incoming con­
nect indication. If a user attempts to bind a protocol address to a second
transport endpoint with a value of qlen greater than zero, the transport
provider will assign another address to be bound to that endpoint. If a user
accepts a connection on the transport endpoint that is being used as the
listening endpoint, the bound protocol address will be found to be busy for
the duration of that connection. No other transport endpoints may be
bound for listening while that initial listening endpoint is in the data
transfer phase. This will prevent more than one transport endpoint bound
to the same protocol address from accepting connect indications.

Page 242 Network Services Extension Definition

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a tran­
sport endpoint.

[TOUTSTATE] The function was issued in the wrong sequence.

[TBADADDR] The specified protocol address was in an incorrect for­
mat or contained illegal information.

[TNOADDR] The transport provider could not allocate an address.

[T ACCES] The user does not have permission to use the specified
address.

[TBUFOVFLW] The number of bytes allowed for an incoming argu­
ment is not sufficient to store the value of that argu­
ment. The provider's state will change to T_IDLE and
the information to be returned in ret will be dis­
carded.

[TSYSERR] A system error has occurred during execution of this
function.

RETURN VALUE
T_bind returns 0 on success and -1 on failure, and t_errno is set to indi­
cate the error.

SEE ALSO
T _ALLOC(NS_LlB), T _OPEN(NS_LlB), T _OPTMGMT(NS_LlB),
T _UNBIND(NS_LlB).

Network Services Extension Definition Page 243

NAME
t_close - close a transport endpoint

SYNOPSIS
#include <tiuser .h>

int t_close(fd)
int fd;

DESCRIPTION
The t_close function informs the transport provider that the user is fin­
ished with the transport endpoint specified by fd, and frees any local
library resources associated with the endpoint. In addition, t_clOE;;~' ,:.lDs{:;s
the file associated with the transport endpoint.

T_close should be called from the T_UNBND state [see
T_GETSTATE(NS_LlB)]. However, this function does not check state infor··
mation, so it may be called from any state to close a transport endpoint. If
this occurs, the local library resources associated with the endpoint will be
freed automatically. In addition, CLOSE(BA_OS) will be issued for that file
descriptor; the close will be abortive if no other process has that file open,
and will break any transport connection that may be associated with that
endpoint.

ERRORS
On failure, t_errno is set to the following:

[TBADF]

RETURN VALUE

The specified file descriptor does not refer to a transport
endpoint.

T_close returns 0 on success and -Ion failure, and t_errno is set to indi­
cate the error.

SEE ALSO
T _G ETSTATE(NS_LI B), T _OPEN(NS_LlB), T _UNBIND(NS_LlS).

Page 244 Network Services Extension Definition

NAME

t_connect - establish a connection with another transport user
SYNOPSIS

#include <tiuser .h>

int t_connect(fd, sndcall, rcvcall)
int fd;
struct t_call *sndcall;
struct t_call *rcvcall;

DESCRIPTION
This function enables a transport user to request a connection to the speci­
fied destination transport user. Fd identifies the local transport endpoint
where communication will be established, while sndcall and rcvcall point
to a t_call structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

Sndcall specifies information needed by the transport provider to establish
a connection and rcvcall specifies information that is associated with the
newly established connection.

In sndcall, addr specifies the protocol address of the destination transport
user, opt presents any protocol-specific information that might be needed
by the transport provider, udata points to optional user data that may be
passed to the destination transport user during connection establishment,
and sequence has no meaning for this function.

On return in rcvcall, addr returns the protocol address associated with
the responding transport endpoint, opt presents any protocol-specific infor­
mation associated with the connection, udata points to optional user data
that may be returned by the destination transport user during connection
establishment, and sequence has no meaning for this function.

The opt argument implies no structure on the options that may be passed
to the transport provider. The transport provider is free to specify the
structure of any options passed to it. These options are specific to the
underlying protocol of the transport provider. The user may choose not to
negotiate protocol options by setting the len field of opt to zero. In this
case, the provider may use default options.

Network Services Extension Definition Page 245

The udata argument enables the caller to pass user data to the destination
transport user and receive user data from the destination user during con­
nection establishment. However, the amount of user data must not exceed
the limits supported by the transport provider as returned in the connect
field of the info argument of T_OPEN(NS_LlB) or T_GETINFO(NS_LlB). If
the len of udata is zero in sndcall, no data will be sent to the destination
transport user.

On return, the addr, opt, and udata fields of rcvcall will be updated to
reflect values associated with the connection. Thus, the maxlen field of
each argument must be set before issuing this function to indicate the max­
imum size of the buffer for each. However, rcvcall may be NULL, in
which case no information is given to the user on return from t_connect.

By default, t_connect executes in synchronous mode, and will wait for the
destination user's response before returning control to the local user. A
successful return (i.e., return value of zero) indicates that the requested con­
nection has been established. However, if O_NDELAY is set [via
T _OPEN(NS_LlB) or FCNTL(BA_OS)], t_connect executes in asynchronous
mode. In this case, the call will not wait for the remote user's response, but
will return control immediately to the local user and return -1 with
t_errno set to TNODATA to indicate that the connection has not yet been
established. In this way, the function simply initiates the connection estab­
lishment procedure by sending a connect request to the destination tran­
sport user. The T _RCVCONNECT(NS_LlB) function is used in conjunction
with t_connect to determine the status of the requested connection.

ERRORS

On failure, t_errno is set to one of the following:

[TBADF]

[TOUTST ATE]

[TNODATA]

[TBADADDR]

[TBADOPT]

Page 246

The specified file descriptor does not refer to a
transport endpoint.

The function was issued in the wrong sequence.

O~DELA Y was set, so the function successfully
initiated the connection establishment procedure,
but did not wait for a response from the remote
user.

The specified protocol address was in an incorrect
format or contained illegal information.

The specified protocol options were in an incorrect
format or contained illegal information.

Network Services Extension Definition

[TBADDAT A] The amount of user data specified was not within
the bounds allowed by the transport provider.

[TACCES] The user does not have permission to use the speci­
fied address or options.

[TBUFOVFL W] The number of bytes allocated for an incoming
argument is not sufficient to store the value of that
argument. If executed in synchronous mode, the
provider's state, as seen by the user, changes to
TJ)ATAXFER, and the connect indication infor­
mation to be returned in rcvcall is discarded.

[TLOOK] An asynchronous event has occurred on this tran­
sport endpoint and requires immediate attention.

[TNOTSUPPORT] This function is not supported by the underlying
transport provider.

[TSYSERR] A system error has occurred during execution of
this function.

RETURN VALUE
T _connect returns 0 on success and -Ion failure, and t_errno is set to
indicate the error.

SEE ALSO
T _ACCEPT(NS_LlB), T _ALLOC(NS_LlB), T _GETINFO(NS_LlB),
T _LlSTEN(NS_LlB), T _OPEN(NS_LlB), T _OPTMGMT(NS_LlB),
T _RCVCONNECT(NS_LlB).

Network Services Extension Definition Page 247

NAME

t_error - produce error message
SYNOPSIS

#include <tiuser .h>

void t_error(errmsg)
char *errmsg;
extern int t_errno;
extern char *t_err list[];
extern int t_nerr;

DESCRIPTION

The t_error function produces a message on the standard error output
which describes the last error encountered during a call to a transport func­
tion. The argument string errmsg is a user-supplied error message that
gives context to the error.

T _error prints the user-supplied error message followed by a colon and a
standard error message for the current error defined in t_errno. If
t_errno is TSYSERR, t_error will also print a standard error message for
the current value contained in errno [see INTRO(BA_OS)].

To simplify variant formatting of messages, the array of message strings
t_errlist is provided; t_errno can be used as an index in this table to get
the message string without the newline. T_nerr is the largest message
number provided for in the t_errlist table.

T_errno is only set when an error occurs and is not cleared on successful
calls.

EXAMPLE
If a T _CONNECT(NS_LlB) function fails on transport endpoint fd2 because
a bad address was given, the following call might follow the failure:

t_error("t_connect failed on fd2");

The diagnostic message to be printed would look like:

t connect failed on fd2: Incorrect transport
address format

where "Incorrect transport address format" identifies the specific
error that occurred, and "t_connect failed on fd2" tells the user which
function failed on which transport endpoint.

Page 248 Network Services Extension Definition

NAME
t_free - free a library structure

SYNOPSIS
#include <tiuser .h>

int t_free(ptr, struct_type)
char *ptr;
int struct_type;

DESCRIPTION
The t_free function frees memory previously allocated by
T _ALLOC(NS_LlB). This function will free memory for the specified struc­
ture, and will also free memory for buffers referenced by the structure.

Ptr points to one of the seven structure types described for
T _ALLOC(NS_LlB), and struct_type identifies the type of that structure
which must be one of the following:

T BIND struct t bind - -

T CALL struct t call

T - OPTMGMT struct t_optmgmt

T DIS struct t discon - -

T UNITDATA struct t unitdata - -
T UDERROR struct t uderr - -

T INFO struct t info -

where each of these structures is used as an argument to one or more tran­
sport functions.

T _free will check the addr, opt, and udata fields of the given structure
(as appropriate) and free the buffers pointed to by the buf field of the net­
buf structure. If buf is NULL, t_free will not attempt to free memory.
After all buffers are freed, t_free will free the memory associated with the
structure pointed to by ptr.

Undefined results will occur if ptr or any of the buf pointers points to a
block of memory that was not previously allocated by T _ALLOC(NS_LlB).

Network Services Extension Definition Page 249

ERRORS
On failure, t_errno is set to the following:

[TSYSERR] A system error has occurred during execution of this func­
tion.

RETURN VALUE

T_free returns 0 on success and -1 on failure, and t_errno is set to indi­
cate the error.

SEE ALSO
T _ALLOC(NS_LlB).

Page 250 Network Services Extension Definition

NAME
t_getinfo - get protocol-specific service information

SYNOPSIS
#include <tiuser .h>

int t_getinfo(fd, info)
int fd;
struct t_info *info;

DESCRIPTION
This function returns the current characteristics of the underlying transport
protocol associated with file descriptor fd. The info structure is used to
return the same information returned by T _OPEN(NS_LlB). This function
enables a transport user to access this information during any phase of
communication.

This argument points to a t_info structure which contains the following
members:

long addr; /* max size of the transport protocol */

/* address */

long options; /* max number of bytes of */

/* protocol-specific options */

long tsdu; /* max size of a transport service data */

/* unit (TSDU) */

long etsdu; /* max size of an expedited transport */

/* service data unit (ETSDU) */

long connect; /* max amount of data allowed on */

/* connection establishment functions */

long discon; /* max amount of data allowed on */

/* t snddis and t rcvdis functions */ - -
long servtype; /* service type supported by the */

/* transport provider */

The values of the fields have the following meanings:

addr

options

A value greater than or equal to zero indicates the max­
imum size of a transport protocol address; a value of -1
specifies that there is no limit on the address size; and a
value of -2 specifies that the transport provider does not
provide user access to transport protocol addresses.

A value greater than or equal to zero indicates the max­
imum number of bytes of protocol-specific options sup­
ported by the provider; a value of -1 specifies that there is
no limit on the option size; and a value of -2 specifies that

Network Services Extension Definition Page 251

tsdu

etsdu

connect

discon

servtype

the transport provider does not support user-settable
options.

A value greater than zero specifies the maximum size of a
transport service data unit (TSDU); a value of zero specifies
that the transport provider does not support the concept of
TSDU, although it does support the sending of a data stream
with no logical boundaries preserved across a connection; a
value of -1 specifies that there is no limit on the size of a
TSDU; and a value of -2 specifies that the transfer of nor­
mal data is not supported by the transport provider.

A value greater than zero specifies the maximum size of an
expedited transport service data unit (ETSDU); a value of
zero specifies that the transport provider does not support
the concept of ETSDU, although it does support the sending
of an expedited data stream with no logical boundaries
preserved across a connection; a value of -1 specifies that
there is no limit on the size of an ETSDU; and a value of -2
specifies that the transfer of expedited data is not supported
by the transport provider.

A value greater than or equal to zero specifies the maximum
amount of data that may be associated with connection
establishment functions; a value of -1 specifies that there is
no limit on the amount of data sent during connection
establishment; and a value of -2 specifies that the transport
provider does not allow data to be sent with connection
establishment functions.

A value greater than or equal to zero specifies the maximum
amount of data that may be associated with the
T _SNDDIS(NS_LlB) and T _RCVDIS(NS_LlB) functions; a value
of -1 specifies that there is no limit on the amount of data
sent with these abortive release functions; and a value of -2
specifies that the transport provider does not allow data to
be sent with the abortive release functions.

This field specifies the service type supported by the tran­
sport provider, as described below.

If a transport user is concerned with protocol independence, the above sizes
may be accessed to determine how large the buffers must be to hold each
piece of information. Alternatively, the T_ALLOC(NS_LlB) function may be
used to allocate these buffers. An error will result if a transport user

Page 252 Network Services Extension Definition

exceeds the allowed data size on any function. The value of each field may
change as a result of option negotiation, and T _GETINFO(NS_LlB) enables a
user to retrieve the current characteristics of the underlying transport pro­
tocol.

The servtype field of info specifies one of the following values on return:

The transport provider supports a connection-mode service
but does not support the optional orderly release facility.

T_COTS_ORD The transport provider supports a connection-mode service

ERRORS

with the optional orderly release facility.

The transport provider supports a connectionlecs-mode
service. For this service type, T _OPEN(NS_LlB) will return
- 2 for etsdu, connect, and discon.

On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

[TSYSERR] A system error has occurred during execution of this func­
tion.

RETURN VALUE
T _getinfo returns 0 on success and -1 on failure, and t_errno is set to
indicate the error.

SEE ALSO
T _OPEN(NS_LlB).

Network Services Extension Definition Page 253

NAME
t_getstate - get the current state

SYNOPSIS
#include <tiuser .h>

int t_getstate(fd)
int fd;

DESCRIPTION
The t_getstate function returns the current state of the provider associ­
ated with the transport endpoint specified by fd.

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a
transport endpoint.

[TSTATECHNG] The transport provider is undergoing a state
change or t_getstate was called after an exec,
t-sync sequence.

[TSYSERR]

RETURN VALUE

A system error has occurred during execution of
this function.

T _getstate returns the current state on successful completion and -Ion
failure and t_errno is set to indicate the error. The current state is one of
the following:

T_UNBND unbound

idle

T_OUTCON outgoing connection pending

incoming connection pending

T_DATAXFER data transfer

T_INREL

outgoing orderly release (waiting for an orderly release
indication)

incoming orderly release (waiting to send an orderly release
request)

If the provider is undergoing a state transition when t_getstate is called,
the function will fail.

SEE ALSO
T _OPEN(NS_LlB).

Page 254 Network Services Extension Definition

NAME
t_Iisten - listen for a connect request

SYNOPSIS

#include <tiuser .h>

int t_listen(fd, call)
int fd;
struct t_call *call;

DESCRIPTION
This function listens for a connect request from a calling transport user.
Fd identifies the local transport endpoint where connect indications arrive,
and on return, call contains information describing the connect indication.
Call points to a t_call structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

In call, addr returns the protocol address of the calling transport user, opt
returns protocol-specific parameters associated with the connect request,
udata returns any user data sent by the caller on the connect request, and
sequence is a number that uniquely identifies the returned connect indica­
tion. The value of sequence enables the user to listen for multiple connect
indications before responding to any of them.

Since this function returns values for the addr, opt, and udata fields of
call, the maxlen field of each must be set before issuing the t_listen to
indicate the maximum size of the buffer for each.

By default, t-listen executes in synchronous mode and waits for a connect
indication to arrive before returning to the user. However, if O~DELAY
is set [via T _OPEN(NS_LlB) or FCNTL(BA_OS)], t_listen executes asynchro­
nously, reducing to a poll for existing connect indications. If none are
available, it returns -1 and sets Lerrno to TNODAT A.

ERRORS
On failure, Lerrno is set to one of the following:

[TBADF]

[TBUFOVFLW]

The specified file descriptor does not refer to a
transport endpoint.

The number of bytes allocated for an incoming
argument is not sufficient to store the value of that
argument. The provider's state, as seen by the

Network Services Extension Definition Page 255

user, changes to T_INCON, and the connect indica­
tion information to be returned in call is dis­
carded.

[TNODAT A] O_NDELA Y was set, but no connect indications
had been queued.

[TLOOK] An asynchronous event has occurred on this tran­
sport endpoint and requires immediate attention.

[TNOTSUPPORT] This function is not supported by the underlying
transport provider.

[TSYSERR]

CAVEATS

A system error has occurred during execution of
this function.

If a user issues t_listen in synchronous mode on a transport endpoint that
was not bound for listening [i.e., qlen was zero on T _BIND(NS_LlB)], the
call will wait forever because no connect indications will arrive on that end­
point.

RETURN VALUE
T _listen returns 0 on success and -Ion failure, and t_errno is set to
indicate the error.

SEE ALSO
T _ACCEPT(NS_LlB), T _ALLOC(NS_LlB), T _BIND(NS_LlB),
T _CONNECT(NS_LlB), T _OPEN(NS_LlB), T _RCVCONNECT(NS_LlB).

Page 256 Network Services Extension Definition

NAME
t_Iook - look at the current event on a transport endpoint

SYNOPSIS

#include <tiuser .h>

int t_Iook(fd)
int fd;

DESCRIPTION
This function returns the current event on the transport endpoint specified
by fd. This function enables a transport provider to notify a transport user
of an asynchronous event when the user is issuing functions in synchronous
mode. Certain events require immediate notification of the user and are
indicated by a specific error, TLOOK, on the current or next function to be
executed.

This function also enables a transport user to poll a transport endpoint
periodically for asynchronous events.

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

[TSYSERR] A system error has occurred during execution of this func­
tion.

RETURN VALUE
Upon success, t_Iook returns a value that indicates which of the allowable
events has occurred, or returns zero if no event exists. One of the following
events is returned:

T _LISTEN connection indication received

T_CONNECT connect confirmation received

T_DATA normal data received

T_EXDATA expedited data received

T _DISCONNECT disconnect received

T_ERROR fatal error indication

T_UDERR datagram error indication

T_ORDREL orderly release indication

Network Services Extension Definition Page 257

On failure, -1 is returned, and t_errno is set to indicate the error.
SEE ALSO

T _OPEN(NS_LlB).

Page 258 Network Services Extension Definition

NAME
t_open - establish a transport endpoint

SYNOPSIS
#include <tiuser .h>
#include <fcntl.h>

int t_open(path, oflag, info)
char *path;
int oflag;
struct t_info *info;

DESCRIPTION
T _open must be called as the first step in the initialization of a transport
endpoint. This function establishes a transport endpoint by opening a
UNIX system file that identifies a particular transport provider (i.e., tran­
sport protocol) and returning a file descriptor that identifies that endpoint.
For example, opening the file /dev/iso_cots identifies an OSI connection­
oriented transport layer protocol as the transport provider.

Path points to the path name of the file to open, and oflag identifies any
open flags [as in OPEN(BA_OS)]. Oflag may be constructed from
O_NDELAY or-ed with either O_RDONLY, O_WRONLY, or O_RDWR.
These flags are defined by the header file <fcntl.h>. T_open returns a
file descriptor that will be used by all subsequent functions to identify the
particular local transport endpoint.

This function also returns various default characteristics of the underlying
transport protocol by setting fields in the t_info structure. This argument
points to a t_info which contains the following members:

long addr; 1* max size of the transport protocol *1
1* address *1

long options; 1* max number of bytes of *1
1* protocol-specific options *1

long tsdu; 1* max size of a transport service data *1
1* unit (TSDU) *1

long etsdu; 1* max size of an expedited transport *1
1* service data unit (ETSDU) *1

long connect; 1* max amount of data allowed on *1
1* connection establishment functions *1

long discon; 1* max amount of data allowed on *1
1* t snddis and t rcvdis functions *1 -

long servtype; 1* service type supported by the *1
1* transport provider *1

Network Services Extension Definition Page 259

The values of the fields have the following meanings:

addr

options

tsdu

etsdu

connect

discon

Page 260

A value greater than or equal to zero indicates the max­
imum size of a transport protocol address; a value of -1
specifies that there is no limit on the address size; and a
value of -2 specifies that the transport provider does not
provide user access to transport protocol addresses.

A value greater than or equal to zero indicates the max­
imum number of bytes of protocol-specific options sup­
ported by the provider; a value of -1 specifies that there is
no limit on the option size; and a value of -2 specifies that
the transport provider does not support user-settable
options.

A value greater than zero specifies the maximum size of a
transport service data unit (TSDU); a value of zero specifies
that the transport provider does not support the concept of
TSDU, although it does support the sending of a data stream
with no logical boundaries preserved across a connection; a
value of -1 specifies that there is no limit on the size of a
TSDU; and a value of -2 specifies that the transfer of nor­
mal data is not supported by the transport provider.

A value greater than zero specifies the maximum size of an
expedited transport service data unit (ETSDU); a value of
zero specifies that the transport provider does not support
the concept of ETSDU, although it does support the sending
of an expedited data stream with no logical boundaries
preserved across a connection; a value of -1 specifies that
there is no limit on the size of an ETSDU; and a value of -2
specifies that the transfer of expedited data is not supported
by the transport provider.

A value greater than or equal to zero specifies the maximum
amount of data that may be associated with connection
establishment functions; a value of -1 specifies that there is
no limit on the amount of data sent during connection
establishment; and a value of -2 specifies that the transport
provider does not allow data to be sent with connection
establishment functions.

A value greater than or equal to zero specifies the maximum
amount of data that may be associated with the
T _SNDDIS(NS_LlB) and T _RCVDIS(NS_LlB) functions; a value

Network Services Extension Definition

servtype

of -1 specifies that there is no limit on the amount of data
sent with these abortive release functions; and a value of -2
specifies that the transport provider does not allow data to
be sent with the abortive release functions.

This field specifies the service type supported by the tran­
sport provider, as described below.

If a transport user is concerned with protocol independence, the above sizes
may be accessed to determine how large the buffers must be to hold each
piece of information. Alternatively, the T _ALLOC(NS_LlB) function may be
used to allocate these buffers. An error will result if a transport user
exceeds the allowed data size on any function.

The servtype field of info specifies one of the following values on return:

The transport provider supports a connection-mode ser­
vice but does not support the optional orderly release
facility.

The transport provider supports a connection-mode ser­
vice with the optional orderly release facility.

The transport provider supports a connectionless-mode
service. For this service type, t_open will return -2 for
etsdu, connect, and discon.

A single transport endpoint may support only one of the above services at
one time.

If info is set to NULL by the transport user, no protocol information is
returned by t_open.

ERRORS
On failure, t_errno is set to the following:

[TSYSERR]

RETURN VALUE

A system error has occurred during execution of this
function.

T _open returns a valid file descriptor on success and -Ion failure, and
t_errno is set to indicate the error.

SEE ALSO
OPEN(BA_OS).

Network Services Extension Definition Page 261

NAME
t_optmgmt - manage options for a transport endpoint

SYNOPSIS
#include <tiuser .h>

int t_optmgmt(fd, req, ret)
int fd;
struct t_optmgmt *req;
struct t_optmgmt *ret;

DESCRIPTION
The t_optmgmt function enables a transport user to retrieve, verify, or
negotiate protocol options with the transport provider. Fd identifies a
bound transport endpoint.

The req and ret arguments point to a t_optmgmt structure containing
the following members:

struct netbuf opt;
long flags;

The opt field identifies protocol options and the flags field is used to
specify the action to take with those options.

The options are represented by a netbuf structure in a manner similar to
the address in T_BIND(NS_LlB). Req is used to request a specific action of
the provider and to send options to the provider. Len specifies the number
of bytes in the options, buf points to the options buffer, and maxlen has
no meaning for the req argument. The transport provider may return
options and flag values to the user through ret. For ret, maxlen specifies
the maximum size of the options buffer and buf points to the buffer where
the options are to be placed. On return, len specifies the number of bytes
of options returned. Maxlen has no meaning for the req argument, but
must be set in the ret argument to specify the maximum number of bytes
the options buffer can hold. The actual structure and content of the
options is imposed by the transport provider.

The flags field of req must specify one of the following actions:

T _NEGOTIA TE This action enables the user to negotiate the values of
the options specified in req with the transport pro­
vider. The provider will evaluate the requested options
and negotiate the values, returning the negotiated
values through ret.

Page 262 Network Services Extension'Definition

This action enables the user to verify whether the
options specified in req are supported by the transport
provider. On return, the flags field of ret will have
either T_SUCCESS or TJAILURE set to indicate to
the user whether the options are supported. These flags
are only meaningful for the T _CHECK request.

This action enables a user to retrieve the default
options supported by the transport provider into the
opt field of ret. In req, the len field of opt must be
zero and the buf field may be NULL.

If issued as part of the connectionless-mode service, t_optrngrnt may block
due to flow control constraints. The function will not complete until the
transport provider has processed all previously sent data units.

ERRORS
On failure, t_errno is set to one of the following:

[TBADF]

[TOUTSTATE]

[TACCES]

[TBADOPT]

[TBADFLAG]

[TBUFOVFLW]

[TSYSERR]

RETURN VALUE

The specified file descriptor does not refer to a tran­
sport endpoint.

The function was issued in the wrong sequence.

The user does not have permission to negotiate the
specified options.

The specified protocol options were in an incorrect
format or contained illegal information.

An invalid flag was specified.

The number of bytes allowed for an incoming argu­
ment is not sufficient to store the value of that argu­
ment. The information to be returned in ret will be
discarded.

A system error has occurred during execution of this
function.

T_optrngrnt returns 0 on success and -Ion failure, and t_errno is set to
indicate the error.

SEE ALSO
T _ALLOC(NS_LlB), T _GETINFO(NS_LlB), T _OPEN(NS_LlB).

Network Services Extension Definition Page 263

NAME
t_rcv - receive data or expedited data sent over a connection

SYNOPSIS
int t_rcv(fd, buf, nbytes, flags)
int fd;
char *buf;
unsigned nbytes;
int *flags;

DESCRIPTION
This function receives either normal or expedited data. Fd identifies the
local transport endpoint through which data will arrive, buf points to a
receive buffer where user data will be placed, and nbytes specifies the size
of the receive buffer. Flags may be set on return from t_rcv and specifies
optional flags as described below.

By default, t_rcv operates in synchronous mode and will wait for data to
arrive if none is currently available. However, if O_NDELA Y is set [via
T _OPEN(NS_LlB) or FCNTL(BA_OS)], t_rcv will execute in asynchronous
mode and will fail if no data is available. (See TNODATA below.)

On return from the call, if T _MORE is set in flags this indicates that there
is more data and the current transport service data unit (TSDU) or
expedited transport service data unit (ETSDU) must be received in multiple
t_rcv calls. Each t_rcv with the T _MORE flag set indicates that another
t_rcv must follow immediately to get more data for the current TSDU.
The end of the TSDU is identified by the return of a t_rcv call with the
T_MORE flag not set. If the transport provider does not support the con­
cept of a TSDU as indicated in the info argument on return from
T _OPEN(NS_LlB) or T _GETINFO(NS_LlB), the T_MORE flag is not meaning­
ful and should be ignored.

On return, the data returned is expedited data if T_EXPEDITED is set in
flags. If the number of bytes of expedited data exceeds nbytes, t_rcv will
set T_EXPEDITED and T-MORE on return from the initial call. Subse­
quent calls to retrieve the remaining ETSDU will have T_EXPEDITED set
on return. The end of the ETSDU is identified by the return of a t_rcv
call with the T _MORE flag not set.

If expedited data arrives after part of a TSDU has been retrieved, receipt of
the remainder of the TSDU will be suspended until the ETSDU has been
processed. Only after the full ETSDU has been retrieved (T_MORE not set)
will the remainder of the TSDU be available to the user.

Page 264 Network Services Extension Definition

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a
transport endpoint.

[TNODATA] O_NDELAY was set, but no data is currently
available from the transport provider.

[TLOOK] An asynchronous event has occurred on this tran­
sport endpoint and requires immediate attention.

[TNOTSUPPORT] This function is not supported by the underlying
transport provider.

[TSYSERR] A system error has occurred during execution of
this function.

RETURN VALUE
On successful completion, t_rcv returns the number of bytes received; it
returns -Ion failure, and t_errno is set to indicate the error.

SEE ALSO
T _OPEN(NS_LlB), T _SND(NS_LlB).

Network Services Extension Definition Page 265

NAME
t_rcvconnect - receive the confirmation from a connect request

SYNOPSIS
#include <tiuser .h>

int t_rcvconnect(fd, call)
int fd;
struct t_call *call;

DESCRIPTION
This function enables a calling transport user to determine the status of a
previously sent connect request and is used in conjunction with
T _CONNECT(NS_LlB) to establish a connection in asynchronous mode. The
connection will be established on successful completion of this function.

Fd identifies the local transport endpoint where communication will be
established, and call contains information associated with the newly esta­
blished connection. Call points to a t_call structure which contains the
following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

In call, addr returns the protocol address associated with the responding
transport endpoint, opt presents any protocol-specific information associ­
ated with the connection, udata points to optional user data that may be
returned by the destination transport user during connection establishment,
and sequence has no meaning for this function.

The maxlen field of each argument must be set before issuing this function
to indicate the maximum size of the buffer for each. However, call may be
NULL, in which case no information is given to the user on return from
t_rcvconnect. By default, t_rcvconnect executes in synchronous mode
and waits for the connection to be established before returning. On return,
the addr, opt, and udata fields reflect values associated with the connec­
tion.

If O_NDELAY is set [via T_OPEN(NS_LlB) or FCNTL(B~OS)],

t_rcvconnect executes in asynchronous mode, and reduces to a poll for
existing connect confirmations. If none are available, t_rcvconnect fails
and returns immediately without waiting for the connection to be esta­
blished. (See TNODATA below.) T_rcvconnect must be re-issued at a

Page 266 Network Services Extension Definition

T _RCVCONNECT(NS_LlB)

later time to complete the connection establishment phase and retrieve the
information returned in call.

ERRORS

On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a
transport endpoint.

[TBUFOVFL W] The number of bytes allocated for an incoming
argument is not sufficient to store the value of that
argument and the connect information to be
returned in call will be discarded. The provider's
state, as seen by the user, will be changed to
DATAXFER.

[TNODATA] O~DELAY was set, but a connect confirmation
has not yet arrived.

[TLOOK] An asynchronous event has occurred on this tran­
sport connection and requires immediate attention.

[TNOTSUPPORT] This function is not supported by the underlying
transport provider.

[TSYSERR] A system error has occurred during execution of
this function.

RETURN VALUE
T _rcvconnect returns 0 on success and -Ion failure, and t_errno is set
to indicate the error.

SEE ALSO
T _ACCEPT(NS_LlB), T _ALLOC(NS_LlB), T _BINO(NS_LlB),
T _CONNECT(NS_LlB), T _LlSTEN(NS_LlB), T _OPEN(NS_LlB).

Network Services Extension Definition Page 267

NAME
t_rcvdis - retrieve information from disconnect

SYNOPSIS
#include <tiuser .h>

t_rcvdis(fd, discon)
int fd;
struct t_discon *discon;

DESCRIPTION
This function is used to identify the cause of a disconnect, and to retrieve
any user data sent with the disconnect. Fd identifies the local transport
endpoint where the connection existed, and discon points to a t_discon
structure containing the following members:

struct netbuf udata;
int reason;
int sequence;

Reason specifies the reason for the disconnect through a protocol­
dependent reason code, udata identifies any user data that was sent with
the disconnect, and sequence may identify an outstanding connect indica­
tion with which the disconnect is associated. Sequence is only meaningful
when t_rcvdis is issued by a passive transport user who has executed one
or more T _LlSTEN(NS_LlB) functions and is processing the resulting connect
indications. If a disconnect indication occurs, sequence can be used to
identify which of the outstanding connect indications is associated with the
disconnect.

If a user does not care if there is incoming data and does not need to know
the value of reason or sequence, discon may be NULL and any user data
associated with the disconnect will be discarded. However, if a user has
retrieved more than one outstanding connect indication [via
T _LlSTEN(NS_LlB)] and discon is NULL, the user will be unable to identify
with which connect indication the disconnect is associated.

ERRORS
On failure, t_errno is set to one of the following:

[TBADF]

[TNODIS]

Page 268

The specified file descriptor does not refer to a
transport endpoint.

No disconnect indication currently exists on the
specified transport endpoint.

Network Services Extension Definition

T _RCVDIS(NS_LIB)

[TBUFOVFL W] The number of bytes allocated for incoming data is
not sufficient to store the data. The provider's
state, as seen by the user, will change to T_IDLE,
and the disconnect indication information to be
returned in discon will be discarded.

[TNOTSUPPORT] This function is not supported by the underlying
transport provider.

[TSYSERR] A system error has occurred during execution of
this function.

RETURN VALUE
T_rcvdis returns 0 on success and -Ion failure, and t_errno is set to
indicate the error.

SEE ALSO
T _ALLOC(NS_L1B), T _CONNECT(NS_L1B), T _L1STEN(NS_L1B),

T _OPEN(NS_L1B), T _SNDDIS(NS_L1B).

Network Services Extension Definition Page 269

NAME
t_rcvrel - acknowledge receipt of an orderly release indication

SYNOPSIS

#include <tiuser .h>

t_rcvrel(fd)
int fd;

DESCRIPTION
This function is used to acknowledge receipt of an orderly release indica­
tion. Fd identifies the local transport endpoint where the connection
exists. After receipt of this indication, the user may not attempt to receive
more data because such an attempt will block forever. However, the user
may continue to send data over the connection if T _SNDREL(NS_LlB) has
not been issued by the user.

This function is an optional service of the transport provider, and is only
supported if the transport provider returned service type T _COTS_ORD on
T _OPEN(NS_LlB) or T _GETINFO(NS_LlB).

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a
transport endpoint.

[TNOREL] No orderly release indication currently exists on
the specified transport endpoint.

[TLOOK] An asynchronous event has occurred on this tran­
sport endpoint and requires immediate attention.

[TNOTSUPPORT] This function is not supported by the underlying
transport provider.

[TSYSERR] A system error has occurred during execution of
this function.

RETURN VALUE
T _rcvrel returns 0 on success and -1 on failure with t_errno set to indi­
cate the error.

SEE ALSO
T _OPEN(NS_LlB), T _SNDREL(NS_LlB).

Page 270 Network Services Extension Definition

NAME
t_rcvudata - receive a data unit

SYNOPSIS
#include <tiuser .h>

int t_rcvudata(fd, unitdata, flags)
int fd;
struct t_unitdata *unitdata;
int *flags;

DESCRIPTION

This function is used in connectionless mode to receive a data unit from
another transport user. Fd identifies the local transport endpoint through
which data will be received, unitdata holds information, associated with the
received data unit, and flags is set on return to indicate that the complete
data unit was not received. Unitdata points to a t_unitdata structure
containing the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

The maxlen field of addr, opt, and udata must be set before issuing this
function to indicate the maximum size of the buffer for each.

On return from this call, addr specifies the protocol address of the sending
user, opt identifies protocol-specific options that were associated with this
data unit, and udata specifies the user data that was received.

By default, t_rcvudata operates in synchronous mode and will wait for a
data unit to arrive if none is currently available. However, if O_NDELAY
is set [via T_OPEN(NS_LlB) or FCNTL(BA_OS)], t_rcvudata will execute in
asynchronous mode and will fail if no data units are available.

If the buffer defined in the udata field of unitdata is not large enough to
hold the current data unit, the buffer will be filled and T -MORE will be set
in flags on return to indicate that another t_rcvudata should be issued to
retrieve the rest of the data unit. Subsequent t_rcvudata call(s) will
return zero for the length of the address and options until the full data unit
has been received.

Network Services Extension Definition Page 271

ERRORS
On failure, t_errno is set to one of the following:

[TBADF]

[TNODATA]

The specified file descriptor does not refer to a
transport endpoint.

O_NDELA Y was set, but no data units are
currently available from the transport provider.

[TBUFOVFL W] The number of bytes allocated for the incoming
protocol address or options is not sufficient to store
the information. The unit data information to be
returned in unitdata will be discarded.

[TLOOK] An asynchronous event has occurred on this tran­
sport endpoint and requires immediate attention.

[TNOTSUPPORT] This function is not supported by the underlying
transport provider.

[TSYSERR] A system error has occurred during execution of
this function.

RETURN VALUE
T _rcvudata returns 0 on successful completion and -1 on failure, and
t_errno is set to indicate the error.

SEE ALSO
T _ALLOC(NS_LlB), T _RCVUDERR(NS_LlB), T _SNDUDATA(NS_LlB).

Page 272 Network Services Extension Definition

NAME
t_rcvuderr - receive a unit data error indication

SYNOPSIS
#include <tiuser .h>

int t_rcvuderr(fd, uderr)
int fd;
struct t_uderr *uderr;

DESCRIPTION

This function is used in connectionless mode to receive information con­
cerning an error on a previously sent data unit, and should only be issued
following a unit data error indication. It informs the transport user that a
data unit with a specific destination address and protocol options produced
an error. Fd identifies the local transport endpoint through which the
error report will be received, and uderr points to a t_uderr structure con­
taining the following members:

struct netbuf addr;
struct netbuf opt;
long error;

The maxlen field of addr and opt must be set before issuing this function
to indicate the maximum size of the buffer for each.

On return from this call, the addr structure specifies the destination proto­
col address of the erroneous data unit, the opt structure identifies
protocol-specific options that were associated with the data unit, and error
specifies a protocol-dependent error code.

If the user does not care to identify the data unit that produced an error,
uderr may be set to NULL, and t_rcvuderr will simply clear the error
indication without reporting any information to the user.

ERRORS
On failure, t_errno is set to one of the following:

[TBADF]

[TNOUDERR]

[TBUFOVFL W]

The specified file descriptor does not refer to a
transport endpoint.

No unit data error indication currently exists on
the specified transport endpoint.

The number of bytes allocated for the incoming
protocol address or options is not sufficient to store
the information. The unit data error information
to be returned in uderr will be discarded.

Network Services Extension Definition Page 273

[TNOTSDPPORT] This function is not supported by the underlying
transport provider.

[TSYSERR] A system error has occurred during execution of
this function.

RETURN VALUE
T_rcvuderr returns 0 on successful completion and -1 on failure, and
t_errno is set to indicate the error.

SEE ALSO
T _RCVUDATA(NS_LlB), T _SNDUDATA(NS_LlB).

Page 274 Network Services Extension Definition

NAME
t_snd - send data or expedited data over a connection

SYNOPSIS

#include <tiuser .h>

int t-snd(fd, buf, nbytes, flags)
int fd;
char *buf;
unsigned nbytes;
int flags;

DESCRIPTION

This function is used to send either normal or expedited data. Fd identi­
fies the local transport endpoint over which data should be sent, buf points
to the user data, nbytes specifies the number of bytes of user data to be
sent, and flags specifies any optional flags described below.

By default, t-snd operates in synchronous mode and may wait if flow con­
trol restrictions prevent the data from being accepted by the local transport
provider at the time the call is made. However, if O_NDELA Y is set [via
T _OPEN(NS_L1B) or FCNTL(BA-OS)], t-snd will execute in asynchronous
mode, and will fail immediately if there are flow control restrictions.

On successful completion, t-snd returns the number of bytes accepted by
the transport provider. Normally this will equal the number of bytes speci­
fied in nbytes. However, if O_NDELA Y is set, it is possible that only part
of the data will actually be accepted by the transport provider. In this case,
t-snd will set T_MORE for the data that was sent (see below) and will
return a value that is less than the value of nbytes. If nbytes is zero, no
data will be passed to the provider, and t-snd will return zero.

If T_EXPEDITED is set in flags, the data will be sent as expedited data
and will be subject to the interpretations of the transport provider.

If T_MORE is set in flags, or as described above, this indicates to the
transport provider that the transport service data unit (TSDU) (or expedited
transport service data unit - ETSDU) is being sent through multiple t-snd
calls. Each t-snd with the T_MORE flag set indicates that another t-snd
will follow with more data for the current TSDU. The end of the TSDU (or
ETSDU) is identified by a t-snd call with the T~ORE flag not set. Use
of T_MORE enables a user to break up large logical data units without los­
ing the boundaries of those units at the other end of the connection. The
flag implies nothing about how the data is packaged for transfer below the
transport interface. If the transport provider does not support the concept
of a TSDU as indicated in the info argument on return from

Network Services Extension Definition Page 275

T _OPEN(NS_LlB) or T _GETINFO(NS_LlB), the T_MORE flag is not meaning­
ful and should be ignored.

The size of each TSDU or ETSDU must not exceed the limits of the tran­
sport provider as returned in the TSDU or ETSDU fields of the info argu­
ment of T _OPEN(NS_LlB) or T _GETINFO(NS_LlB). Failure to comply will
result in protocol error EPROTO. (See TSYSERR below.)

If t-Bnd is issued from the T _IDLE state, the provider may silently discard
the data. If t-Bnd is issued from any state other than T ~AT AXFER,
T_INREL, or T_IDLE, the provider will generate an EPROTO error.

ERRORS
On failure, t_errno is set to one of the following:

[TBADF]

[TFLOW]

[TNOTSUPPORT]

[TSYSERR]

RETURN VALUE

The specified file descriptor does not refer to a
transport endpoint.

O_NDELAY was set, but the flow control mechan­
ism prevented the transport provider from accept­
ing data at this time.

This function is not supported by the underlying
transport provider.

A system error has occurred during execution of
this function. An EPROTO error may not cause
t-Bnd to fail until a subsequent access of the tran­
sport endpoint.

On successful completion, t-Bnd returns the number of bytes accepted by
the transport provider; it returns -1 on failure, and t_errno is set to indi­
cate the error.

SEE ALSO
T _OPEN(NS_LlB), T _RCV(NS_LlB).

Page 276 Network Services Extension Definition

NAME
t_snddis - send user-initiated disconnect request

SYNOPSIS
#include <tiuser .h>

int t-snddis(fd, call)
int fd;
struct t_call *call;

DESCRIPTION

This function is used to initiate an abortive release on an already esta­
blished connection or to reject a connect request. Fd identifies the local
transport endpoint of the connection, and call specifies information associ­
ated with the abortive release. Call points to a t_call structure which con­
tains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

The values in call have different semantics, depending on the context of
the call to t-snddis. When rejecting a connect request, call must be non­
NULL and contain a valid value of sequence to uniquely identify the
rejected connect indication to the transport provider. The addr and opt
fields of call are ignored. In all other cases, call need only be used when
data is being sent with the disconnect request. The addr, opt, and
sequence fields of the t_call structure are ignored. If the user does not
wish to send data to the remote user, the value of call may be NULL.

Udata specifies the user data to be sent to the remote user. The amount of
user data must not exceed the limits supported by the transport provider as
returned in the discon field of the info argument of T _OPEN(NS_LlB) or
T _GETINFO(NS_LlB). If the len field of udata is zero, no data will be sent
to the remote user.

ERRORS
On failure, t_errno is set to one of the following:

[TBADF]

[TOUTSTATE]

The specified file descriptor does not refer to a
transport endpoint.

The function was issued in the wrong sequence.
The transport provider's outgoing queue may be
flushed, so data may be lost.

Network Services Extension Definition Page 277

[TBADDAT A] The amount of user data specified was not within
the bounds allowed by the transport provider. The
transport provider's outgoing queue will be flushed,
so data may be lost.

[TBADSEQ] An invalid sequence number was specified, or a
NULL call structure was specified when rejecting a
connect request. The transport provider's outgoing
queue will be flushed, so data may be lost.

[TLOOK] An asynchronous event has occurred on this tran­
sport endpoint and requires immediate attention.

[TNOTSUPPORT] This function is not supported by the underlying
transport provider.

[TSYSERR] A system error has occurred during execution of
this function.

RETURN VALUE
T -Bnddis returns 0 on success and -1 on failure, and t_errno is set to
indicate the error.

SEE ALSO
T _CONNECT(NS_LlB), T _GETINFO(NS_LlB), T _LlSTEN(NS_LlB),
T _OPEN(NS_LlB).

Page 278 Network Services Extension Definition

NAME

t_sndrel - initiate an orderly release
SYNOPSIS

#include <tiuser .h>

int t-sndrel(fd)
int fd;

DESCRIPTION

This function is used to initiate an orderly release of a transport connection
and indicates to the transport provider that the transport user has no more
data to send. Fd identifies the local transport endpoint where the connec­
tion exists. After issuing t-sndrel, the user may not send any more data
over the connection. However, a user may continue to receive data if an
orderly release indication has been received.

This function is an optional service of the transport provider and is only
supported if the transport provider returned service type T_COTS_ORD on
T _OPEN(NS_LlB) or T _GETINFO(NS_LlB).

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a
transport endpoint.

[TFLOW] O_NDELA Y was set, but the flow control mechan­
ism prevented the transport provider from accept­
ing the function at this time.

[TNOTSUPPORT] This function is not supported by the underlying
transport provider.

[TSYSERR]

RETURN VALUE

A system error has occurred during execution of
this function.

T -sndrel returns 0 on success and -Ion failure, and Lerrno is set to
indicate the error.

SEE ALSO
T _OPEN(NS_LlB), T _RCVREL(NS_LI B).

Network Services Extension Definition Page 279

NAME
t_sndudata - send a data unit

SYNOPSIS

#include <tiuser .h>

int t_sndudata(fd, unitdata)
int fd;
struct t_unitdata *unitdata;

DESCRIPTION
This function is used in connectionless mode to send a data unit to another
transport user. Fd identifies the local transport endpoint through which
data will be sent, and unitdata points to a t_unitdata structure contain­
ing the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

In unitdata, addr specifies the protocol address of the destination user,
opt identifies protocol-specific options that the user wants associated with
this request, and udata specifies the user data to be sent. The user may
choose not to specify what protocol options are associated with the transfer
by setting the len field of opt to zero. In this case, the provider may use
default options.

If the len field of udata is zero, no data unit will be passed to the tran­
sport provider; t-sndudata will not send zero-length data units.

By default, t-sndudata operates in synchronous mode and may wait if
flow control restrictions prevent the data from being accepted by the local
transport provider at the time the call is made. However, if O_NDELA Y is
set [via T _OPEN(NS_lIB) or FCNTL(BA_OS)], t-sndudata will execute in
asynchronous mode and will fail under such conditions.

If t-sndudata is issued from an invalid state, or if the amount of data
specified in udata exceeds the TSDU size as returned in the tsdu field of
the info argument of T _OPEN(NS_lIB) or T _GETINFO(NS_lIB), the provider
will generate an EPROTO protocol error. (See TSYSERR below.) If
t-sndudata is issued before the destination user has activated its transport
endpoint [see T _BIND(NS_L1B)], the data unit may be discarded.

Page 280 Network Services Extension Defi~ition

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a
transport endpoint.

[TFLOW] O_NDELA Y was set, but the flow control mechan­
ism prevented the transport provider from accept­
ing data at this time.

[TNOTSUPPORT] This function is not supported by the underlying
transport provider.

[TSYSERR] A system error has occurred during execution of
this function. An EPROTO error may not cause
t-sndudata to fail until a subsequent access of the
transport endpoint.

RETURN VALUE
T -sndudata returns 0 on successful completion and -1 on failure;
t_errno is set to indicate the error.

SEE ALSO
T _ALLOC(NS_LlB), T _RCVUDATA(NS_LlB), T _RCVUDERR(NS_LlB).

Network Services Extension Definition Page 281

NAME
t_sync - synchronize transport library

SYNOPSIS
#include <tiuser .h>

int t-sync(fd)
int fd;

DESCRIPTION
For the transport endpoint specified by fd, t-sync synchronizes the data
structures managed by the transport library with information from the
underlying transport provider. In doing so, it can convert a raw file
descriptor [obtained via OPEN(B~OS), DUP(BA_OS), or as a result of a
FORK(BA_OS) and EXEC(B~OS)] to an initialized transport endpoint,
assuming that file descriptor referenced a transport provider. This function
also allows two cooperating processes to synchronize their interaction with
a transport provider.

For example, if a process forks a new process and issues an exec, the new
process must issue a t-sync to build the private library data structure
associated with a transport endpoint and to synchronize the data structure
with the relevant provider information.

It is important to remember that the transport provider treats all users of a
transport endpoint as a single user. If multiple processes are using the
same endpoint, they should coordinate their activities so as not to violate
the state of the provider. T-sync returns the current state of the provider
to the user, thereby enabling the user to verify the state before taking
further action. This coordination is only valid among cooperating
processes; it is possible that a process or an incoming event could change
the provider's state after a t-sync is issued.

If the provider is undergoing a state transition when t-sync is called, the
function will fail.

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a tran­
sport endpoint.

[TSTATECHNG] The transport provider is undergoing a state change.

[TSYSERR]

Page 282

A system error has occurred during execution of this
function.

Network Services Extension Definition

RETURN VALUE
T -sync returns the state of the transport provider on successful comple­
tion and -Ion failure; t_errno is set to indicate the error. The state
returned is one of the following:

T_OUTCON

T_DATAXFER

T_OUTREL

SEE ALSO

unbound

idle

outgoing connection pending

incoming connection pending

data transfer

outgoing orderly release (waiting for an orderly release
indication)

incoming orderly release (waiting for an orderly release
request)

DUP(BA_OS), EXEC(BA-OS), FORK(BA_OS), OPEN(BA-OS).

Network Services Extension Definition Page 283

NAME
t_unbind - disable a transport endpoint

SYNOPSIS

#include <tiuser .h>

int t_unbind(fd)
int fd;

DESCRIPTION
The t_unbind function disables the transport endpoint spe~ified by fd
which was previously bound by T _BIND(NS_LlB). On completion of this
call, no further data or events destined for this transport endpoint will be
accepted by the transport provider.

ERRORS
On failure, t_errno is set to one of the following:

[TBADF]

[TOUTST ATE]

[TLOOK]

[TSYSERR]

RETURN VALUE

The specified file descriptor does not refer to a tran­
sport endpoint.

The function was issued in the wrong sequence.

An asynchronous event has occurred on this transport
endpoint.

A system error has occurred during execution of this
function.

T _unbind returns 0 on success and -1 on failure, and t_errno is set to
indicate the error.

SEE ALSO
T _BIND(NS_LlB).

Page 284 Network Services Extension Definition

Chapter 14
Streams I/O Interfaces

14.1 INTRODUCTION

The STREAMS I/O INTERFACES section of the NETWORK SERVICES EXTEN­
SION describes the interfaces that enable a user to directly access protocol
modules that are implemented in the kernel using the STREAMS framework.
STREAMS provides a uniform mechanism for implementing network services in
the kernel by defining standard interfaces for device drivers and protocol
modules.

This extension is dependent on the Base System.

14.2 DESCRIPTION

OPERATING SYSTEM SERVICE ROUTINES
getmsg poll

HEADER FILES
poll.h stropts.h

putmsg

ERROR CONDITIONS
EBADMSG Trying to read unreadable message
ENOSR Out of stream resources
ENOSTR Device not a stream
EPROTO Protocol error occurred
ETIME Timer expired

14.3 DEFINITIONS
Stream

A stream is a full-duplex connection between a user process and an open device
or pseudo-device. The stream itself exists entirely within the kernel and provides
a general character I/O interface for user processes. It optionally includes one or
more intermediate processing modules that are interposed between the user­
process end of the stream and the device driver (or pseudo-device driver) end of
the stream.

Network Services Extension Definition Page 285

Module and Driver

A STREAMS component may be a module or a driver that conforms to the rules
specified for STREAMS. A STREAMS device driver or pseudo-device driver is
always "opened" and may be "linked" if it is a multiplexing driver. A
STREAMS module is any other type of software module such as a line discipline
or protocol module and is always "pushed" onto the stream.

Stream Head and Stream End

The stream head is the beginning of the stream and is at the kernel/user boun­
dary. This is also known as the upstream end of the stream.

The stream end is the driver end of the stream and is also known as the down­
stream end of the stream.

Data generated as a result of a system call and destined for the driver end of the
stream moves downstream; and data moving from the driver end of the stream
toward the stream head is moving upstream. Also, an intermediate Module A is
said to be upstream from Module B when it is interposed between Module Band
the stream head (upstream) end of the stream, and downstream from Module B
when it is between Module B and the driver end of the stream.

Queue

Each STREAMS module contains two queues, one for messages moving in each
direction. A queue structure is defined for STREAMS and is important to the
module implementer.

STREAMS Messages

STREAMS I/O is based on messages. Message types are classified according to
their queueing priority and may be non-priority messages or priority messages.
Non-priority messages are always placed at the end of the queue following all
other messages in the queue. Priority messages are always placed at the head of
a queue but after any other priority messages already in the queue. Priority mes­
sages are used to send control and data information outside the normal flow con­
trol constraints. A user may access STREAMS messages that contain a data part,
control part, or both. The data part is that information which is sent out over
the network and the control information is used by the local STREAMS modules.
The other types of messages are used between modules and are not accessible to
users.

Page 286 Network Services Extension Definition

strbuf Structure

The strbuf structure is used to contain data or control information and is used
by the getmsg, putmsg, and ioctl operating system service routines. This
structure is defined by the header file stropts.h and includes the following
members:

int maxlen;
int len;
char *buf;

1* maximum buffer length *1
1* length of data *1
1* ptr to data buffer *1

14.4 EFFECTS ON THE BASE SYSTEM

Components in the Base System may return a new value for errno as listed
below. An application that checks the value of errno must include the header
file <errno.h>.

The following symbolic names define additional error return conditions:

Name
EBADMSG
ENOSR
ENOSTR
EPROTO
ETIME

Description
Trying to read unreadable message
Out of stream resources
Device not a stream
Protocol error
Timer expired

These errors may be returned by the operating system service routines open,
close, read, write, ioctl, getmsg, putmsg, and poll only when accessing
STREAMS devices and as described in the detailed definitions of the components
that follow the detailed overview.

A new signal has been defined by the header file <signal.h>. This signal is
used to support asynchronous processing of events on STREAMS devices.

The following symbolic name defines the additional signal:

Name
SIGPOLL

Description
Signals STREAMS events

Network Services Extension Definition Page 287

14.5 OVERVIEW

STREAMS is a general, flexible facility for development of UNIX system commun­
ication services. It supports development ranging from complete networking pro­
tocol suites to individual device drivers by defining standard interfaces for char­
acter input/output within the kernel. The standard interfaces and associated
tools enable modular, portable development and easy integration of high perfor­
mance network services and their components. STREAMS provides a broad
framework that does not impose any specific network architecture. It imple­
ments a user interface consistent and compatible with the character I/O mechan­
ism that is also available in the UNIX system.

The power of STREAMS resides in its modularity. The design reflects the layer­
ing characteristics of contemporary networking architectures such as Open Sys­
tems Interconnection (OSI), Systems Network Architecture (SNA), Transmission
Control Protocol/Internet Protocol (TCP/IP), and Xerox* Network Systems
(XNS). For these protocol suites, developers have traditionally faced problems
arising from lack of relevant standard interfaces in the UNIX system. STREAMS
defines standard mechanisms for implementing protocols in " modules" . Each
module represents a set of processing functions and communicates with other
modules via a standard interface. From user level, kernel resident modules can
be dynamically selected and interconnected to implement any rational processing
sequence. Modularity allows these advantages:

• User level programs can be independent of underlying protocols and physical
communication media .

• Network architectures and higher level protocols can be independent of under­
lying protocols, drivers, and physical communication media. This enables cus­
tomers to retain their investment in application software as they migrate to
different networking environments.

* Xerox is a registered trademark of Xerox Corporation.

Page 288 Network Services Extension Definition

• Higher level services can be created by selecting and connecting lower level
services and protocols .

• Protocol module portability is enhanced by well defined structure and interface
standards.

Implementing networking facilities and communication components under
STREAMS allows efficient, open ended products.

"STREAMS" refers to the mechanism consisting of operating system service rou­
tines, kernel resources and kernel utility routines. A stream, as illustrated in Fig­
ure 14-1, is a full duplex processing and data transfer path in the kernel that is
created through an application of the STREAMS mechanism.

System calls User Space

Stream mechanism Kernel Space

: Ii'

I :MOdUle: I
I I

~ I

8
I I

I t DriVe~ I
Figure 14-1: Basic Stream

A stream implements a connection between a driver in kernel space and a process
in user space. It provides a general character input/output (I/O) interface for
user processes. STREAMS I/O is based on messages. Messages flow in both
directions in a stream. Each module represents processing functions to be

Network Services Extension Definition Page 289

performed on the contents of messages flowing into the module on the stream.
Each module is self-contained and functionally isolated from any other com­
ponent in the stream except its two neighboring components. A module com­
municates with its neighbors by passing messages. The module receives the mes­
sage, inspects the type, and processes it or just passes it on. A module can func­
tion, for example as, a communication protocol, line discipline, or data filter.

There are many message types used by STREAMS modules and these are classi­
fied according to queueing priority. Non-priority messages are always placed at
the end of the queue following all other messages in the queue. Priority messages
are always placed at the head of a queue but after any other priority messages
already in the queue. Priority messages are used to send control and data infor­
mation outside the normal flow control constraints. However, to prevent conges­
tion and resource waste due to lack of flow control with this message type, only
one priority message may be placed in the stream head read queue at a time. A
user may access STREAMS messages that contain a data portion, control portion,
or both. The data portion is that information which is sent out over the network
and the control information is used by the local STREAMS modules. The other
types of messages are used between modules and not accessible to users. Mes­
sages containing only a data portion are accessible via putmsg, getmsg, read,
and write routines. Messages containing a control portion with or without a
data portion are accessible via calls to putmsg and getmsg.

The interface between a user process and STREAMS is compatible with the exist­
ing character I/O facilities, and both are available in the UNIX system.

14.6 ACCESSING STREAMS

User access to STREAMS is provided through a set of operating system service
routines. These include the traditional open, close, read, write, and ioetl
operating system service routines as well as the new routines putmsg, getmsg,
and poll.

14.6.1 Setting Up a Stream

Like conventional drivers, the STREAMS-based driver occupies a node in the file
system and may be "opened" and "closed". When a STREAMS-based device is
opened, a stream is automatically set up. As shown in Figure 14-2, this "open"
sets up a stream with an internal module called the "stream head" closest to the
user and the device driver downstream from the stream head.

Page 290 Network Services Extension Definition

User

Kernel

driver

Figure 14-2: Setting Up a Stream

The stream then consists of the stream head and a driver. To add other modules
to the stream, the user calls the ioctl operating system service routine to
"PUSH" a module.
The syntax for this ioctl command is

ioctl (fd, I_PUSH, "name")

where fd is the file descriptor of the open stream, I-PUSH is the command, and
" name" is the name of the module to be pushed. The number of modules that
may be pushed onto a stream is a configurable quantity. A new module is always
pushed just below the stream head so the order of "pushes" is important. After
the module is pushed, the stream looks as shown in Figure 14-3.

Network Services Extension Definition Page 291

Before PUSH After PUSH

User User

Kernel Kernel

Figure 14-3: Before and After a Module is Pushed

\

The user may "POP" modules off a stream using the ioctl command

ioctl (fd, I_POP, 0)

This routine removes the module most recently added to the stream designated
by the file descriptor fd; this is always the intermediate module closest to the
stream head. At the user level, drivers are operationally distinct from other
modules; drivers are explicitly opened by device path name, while modules are
"pushed" onto the stream by module name. Device path names are ordinary
UNIX system file names, but pushable modules' names are internal to the system
and are not opened or closed.

14.6.2 Sending and Receiving STREAMS Messages

In order to send and receive STREAMS messages that contain control informa­
tion, the new routines getmsg and putmsg must be used. These differ from
read and write in that the traditional routines can access non-priority
STREAMS messages containing only data, while getmsg and putmsg can access
priority and non-priority messages containing a control portion, data portion, or
both.

Page 292 Network Services Extension Definition

The control portion is used to carry interface information between modules and
drivers.

As an example, the transport functions of the OPEN SYSTEMS NETWORKING
INTERFACES use putmsg to send service requests (e.g., to establish a connec­
tion), with or without data, to the underlying STREAMS-based transport proto­
col. Getmsg is used by the transport functions to receive information back.

14.6.3 Polling STREAMS

The poll routine provides users with a mechanism for multiplexing input/output
over a set of file descriptors that reference open STREAMS. It identifies those
STREAMS on which a user can send or receive messages or on which certain
events have occurred. The syntax for poll is as follows:

int poll (pollfds, nfds, timeout)

where nfds specifies the number of file descriptors to be examined, timeout
specifies the number of msec that poll should wait for an event to occur, and
pollfds is an array of pollfd structures where each structure contains the follow­
ing members:

int fd;
short events;
short revents;

1* file descriptor *1
1* requested events *1
1* returned events *1

These structures specify the file descriptors to be examined and the events of
interest for each file descriptor. Fd specifies an open file descriptor and events
and revents are bitmasks constructed by or-ing any combination of the event
specific to the poll operating system service routine.

For each element of the array pointed to by fds, poll examines the given file
descriptor for the event(s) specified in events. The number of file descriptors to
be examined is specified by nfds.

The results of the poll query are stored in the revents field in the pollfd struc­
ture. Bits are set in the revents bitmask to indicate which of the requested
events are true. If none are true, none of the specified bits is set in revents
when the poll call returns.

If none of the defined events have occurred on any selected file descriptor, poll
waits at least timeout msec for an event to occur on any of the selected file
descriptors. If the value of timeout is 0, poll returns immediately, effectively
polling the file descriptors. If the value of timeout is -1, poll blocks until a
requested event occurs or until the call is interrupted.

Network Services Extension Definition Page 293

14. 7 MULTIPLEXING IN STREAMS

Until now, STREAMS has been described as linear connections of modules, where
each invocation of a module is connected to at most a single upstream module
and a single downstream module. While this configuration is suitable for many
applications, others require the ability to multiplex STREAMS in a variety of con­
figurations. Typical examples are internetworking protocols, which might route
data over several subnetworks, or terminal window facilities.

STREAMS provides the capability to dynamically build, maintain, and dismantle
multiplexing configurations. Two types of multiplexing are supported by
STREAMS. The first type allows user processes to connect multiple STREAMS to
a single driver from above. This configuration can be established by opening
multiple minor devices of the same driver, and does not require any special
STREAMS facilities. The second multiplexing type allows user processes to con­
nect multiple STREAMS below a pseudo-driver. This configuration must contain
a multiplexing pseudo-driver recognized by STREAMS as having special charac­
teristics. A special set of ioctl commands is used to establish this multiplexing
configuration. STREAMS allows a user to build complex, multi-level configura­
tions by cascading multiplexing STREAMS below one another.

14.7.1 Setting Up a Multiplexer

A multiplexing driver is a pseudo-device, and is treated like any other software
driver. It owns a node in the UNIX system file system, and is opened just like
any other STREAMS device driver. The open call establishes a single stream
"above" the multiplexer, and the process that opened the multiplexer is returned
a file descriptor that can be used to access the stream that was opened. The file
descriptor fdO in Figure 14-4 is an example of this.

N ext, one of the drivers that is to exist "below" the multiplexer is opened. Once
again, this is a driver, and is opened like any other UNIX system device. An
open operating system service routine is used to open the driver, a stream is
established between the driver and a stream head, and the process that issued the
open call is returned a file descriptor that can be used to access the stream con­
nected to the driver (e.g., fdl in Figure 14-4).

If the eventual multiplexing configuration is to have intermediate protocol or
line-discipline modules in the stream between the driver just opened and the mul­
tiplexer (e.g., between the MUX driver and Driver1 in the "After" section of Fig­
ure 14-4), these modules should be added at this time to the stream just opened,
using the IJUSH ioctl command. The "push" operation must be done before
the driver is attached below the multiplexer because, once connected, ioetl com­
mands cannot be issued to the bottom driver in the normal way.

Page 294 Network Services Extension Definition

The driver that was just opened is then connected below the multiplexing driver
that was opened first. This is done using the I_LINK command of the ioctl
operating system service routine; the complete sequence is given here:

fdO = open("/dev/Muxdriver", of lag) ;
fd1 = open("/dev/driver1", of lag) ;
mux_id = ioctl(fdO, I_LINK, fd1);

Here, the argument fdO is the file descriptor for the stream connected to the
multiplexing driver, and fdl is the file descriptor for the stream connected to
another driver. It should be noted that the placement of the first argument
(fdO) and the third argument (fdl) is important; the first argument must be the
file descriptor of the stream connected to the multiplexing driver. (See Figure
14-4.) The value mux_id is returned by the operating system service routine; it
is used by the multiplexing module to identify the stream just connected.

Figure 14-4 shows two drivers and a multiplexing driver before and after the two
drivers have been linked below the multiplexer.

Network Services Extension Definition Page 295

BEFORE:

I fd1 I

AFTER:

: fd1
...........

l fdO J
,~

MUX
Driver

fdO

f 1
MUX

Driver

user

I fd2 I kernel

user

: fd2 kernel

Figure 14-4: A Multiplexing Configuration Before and After 2 I_LINK
ioctls

Page 296 Network Services Extension Definition

Other device drivers are opened and linked below the multiplexing driver in the
same way, as in the example shown in Figure 14-4:

/* open another driver */

fd2 = open("/dev/driver2", of lag) ;
/* link it below the MUX */
mux_id2 = ioctl(fdO, I_LINK, fd2);

The number of STREAMS that can be "linked" to a multiplexer depends on the
particular multiplexer, and it is the responsibility of the multiplexer to keep track
of the STREAMS linked to it. However, only one LLINK operation is allowed
for each "lower" stream; a single stream cannot be linked below two multiplexers
simultaneously.

The order in which the STREAMS in the multiplexing configuration are opened is
unimportant. It is only necessary that the two STREAMS referenced as argu­
ments to the I~INK ioctl are both open when the ioctl LLINK command is
issued. Once the configuration is established, the file descriptors that point to
the " bottom " device drivers (e.g., fdl and fd2 in Figure 14-4) can be closed
without affecting the way the multiplexer works; these closes will not cause the
drivers to be unlinked from the multiplexer. Closing these file descriptors is
necessary sometimes when building large multiplexers, so that many devices can
be linked together without exceeding the UNIX system limit on the number of
simultaneously-open files per process. If these file descriptors (fdl and fd2 in
Figure 14-4) are not closed, the multiplexer will work as expected, but all subse­
quent read, write, poll, putmsg, and getmsg UNIX operating system service
routines issued to fdl and fd2 will fail.

Network Services Extension Definition Page 297

fdO

.

Driver
o

fd1 fd2

Multiplexer

Driver

fd3
user

kernel

Figure 14-5: Three STREAMS Converging on One Device Driver

Building a multiplexer that connects several STREAMS to a single driver, as in
Figure 14-5, is similar, except that only one driver is linked below the multi­
plexer. Additional STREAMS above the multiplexer would be established by issu­
ing repeated open operating system service routines to the multiplexer on
" related" minor devices. Again, the way the multiplexer handles these repeated
opens is multiplexer-dependent, as is the number of STREAMS that a particular
multiplexer will successfully handle.

More complex multiplexing configurations can also be created. It is possible to
combine the examples of Figures 14-4 and 14-5 to create a configuration with
many STREAMS above and many drivers linked below the multiplexer.
STREAMS imposes no restrictions on the number of multiplexing drivers that
may be included in a multiplexing configuration or on the number of multiplexers
that data can pass through when moving from one end of the stream to the
other.

Page 298 Network Services Extension Definition

14.7.2 Dismantling a Multiplexer

Multiplexing configurations are taken apart using the ioetl I_UNLINK com­
mand. Each of the bottom drivers linked below the multiplexing driver (e.g.,
Driver1 and Driver2 in Figure 14-4) can be individually disconnected:

ioctl(fdO, I_UNLINK, mux_id);

Here, fdO is the file descriptor pointing to a stream connected to the multiplex­
ing driver, and mux-id is the identifier that was returned by the ioctl LLINK
command when one of the bottom drivers was linked to the multiplexing driver.
Each bottom driver can be disconnected individually in this way, or a special
mux_id value of -1 will disconnect all bottom modules from the multiplexer
simultaneously. This unlinking occurs automatically on the "last" close of the
top stream through which the lower STREAMS were linked under the multiplexer
driver; all these bottom STREAMS are then unlinked.

14.7.3 Multiplexed Data Routing

Processes use the normal UNIX system read, write, getmsg, and putmsg
operating system service routines to read data from and write data to an upper
stream connected to the multiplexer. When these data are routed through a mul­
tiplexer, the multiplexer must use its own criteria to route the data moving in
both directions. For example, a protocol multiplexer might use protocol address
information found in a protocol header to determine over which subnetwork a
given packet should be routed. It is the multiplexing driver's responsibility to
define its routing criteria.

One option available to the multiplexer is to use the "mux id" value to deter­
mine which stream to route data to. The driver has access to this value, and the
LLINK ioetl command returns this value to the user. The driver can therefore
specify that the "mux id" value accompany the data routed through it.

Network Services Extension Definition Page 299

STREAMS(NS_DEV)

NAME
streams - STREAMS interface

DESCRIPTION

STREAMS provides a uniform mechanism for implementing networking ser­
vices and other I/O in the kernel. The STREAMS interface provides direct
access to protocol modules that are implemented in the kernel. A user pro­
cess accesses STREAMS using the standard operating system service rou­
tines described below as well as the new routines PUTMSG(NS_OS),
GETMSG(NS_OS), and POLL(NS_OS). A stream is a full-duplex connection
between a user process and an open device or pseudo-device. The stream
itself exists entirely within the kernel and provides a general character I/O
interface for user processes. It optionally includes one or more intermediate
processing modules that are interposed between the user-process end of the
stream and the device driver (or pseudo-device driver) end of the stream.

STREAMS I/O is based on messages. Messages flow in both directions in a
stream. A given module may not understand and process every message in
the stream, but every module in the stream handles every message. Each
module accepts messages from one of its neighbor modules in the stream,
and passes them to the other neighbor. A line discipline module may
transform the data. Data flow through the intermediate modules is sym­
metrical, with all modules handling, and optionally processing, all messages.

The interface between the stream and the rest of the operating system is
provided by a set of routines at the stream head (upstream) end of the
stream. User-process WRITE(B~OS), PUTMSG(NS_OS), and IOCTL(BA_OS)
calls become messages that are sent down the stream, and the READ(BA_OS)
and GETMSG(NS_OS) calls accept data from the stream and pass it to a user
process. Data intended for the device at the downstream end of the stream
is packaged into messages and sent downstream, while data and signals
from the device are composed into messages by the device driver and sent
upstream to the stream head.

When a device is opened, the system creates a stream that contains two
modules: the stream head module and the stream end (driver) module.
Other modules are added to the stream using the IOCTL(BA_OS) routine.
New modules are "pushed" onto the stream one at a time in last-in, first­
out (LIFO) style, as though the stream was a push-down stack.

There are many message types used by STREAMS modules and these are
classified according to queueing priority. Non-priority messages are always
placed at the end of the queue following all other messages in the queue.
Priority messages are always placed at the head of a queue but after any

Page 300 Network Services Extension Definition

STREAMS(NS_DEV)

other priority messages already in the queue. Priority messages are used to
send control and data information outside the normal flow control con­
straints. A user may access STREAMS messages that contain a data part,
control part, or both. The data part is that information which is sent out
over the network and the control information is used by the local STREAMS
modules. The other types of messages are used between modules and not
accessible to users. Messages containing only a data part are accessible via
putmsg, getmsg, read, and write routines. Messages containing a con­
trol part with or without a data part are accessible via calls to putmsg and
getmsg.

Accessing STREAMS Devices

A user process accesses STREAMS devices using the standard routines
OPEN(BA_OS), CLOSE(BA_OS), READ(BA_OS), WRITE(BA_OS), and
IOCTL(BA_OS) routines as well as the new routines PUTMSG(NS_OS),
GETMSG(NS_OS), and POLL(NS_OS). Refer to the detailed component
definitions for open, close, read, write, and ioctl for general properties
and errors.

Open calls [see OPEN(BA_OS)] have the format

int open (path, of lag)
char *path;
int of lag;

When opening a STREAMS file, oflag may be constructed from
O_NDELA Y or-ed with either O_RDONL Y, 0_ WRONL Y, or O_RDWR.
These values are defined by <fcntl.h> so the line

#include <fcntl.h>

must be included in the user program. Other flag values are not applicable
to STREAMS devices and have no effect on them. The value of
O_NDELA Y affects the operation of STREAMS drivers and certain system
calls [see READ(BA_OS), GETMSG(NS_OS), PUTMSG(NS_OS), and
WRITE(BA_OS)]. For drivers, the implementation of O_NDELAY is device­
specific. Each STREAMS device driver may treat this option differently.
Certain flag values can be set following open as described in
FCNTL(BA_OS). On success, open returns a file descriptor that corresponds
to the opened stream. On failure, open returns -1 and sets errno to one
of the following:

[EINTR] A signal was caught during the open.

Network Services Extension Definition Page 301

STREAMS(NS_DEV)

[ENXIO]

[ENOSR]

[EIO]

A module or driver open routine failed.

Unable to allocate a stream.

A hangup or error occurred during the open.

Close [see CLOSE(BA_OS)] is used to close a device and calls have the for­
mat

int close (fildes)
int fildes;

If a STREAMS file is closed and the calling process had previously registered
to receive a SIGPOLL signal [see SIGNAL(BA_OS) and SIGSET(BA_OS)] for
events associated with that file, the calling process will be unregistered for
events associated with the file. The last close for a stream causes the
stream associated with fildes to be dismantled. If O~DELA Y is not set
and there have been no signals posted for the stream, close waits up to 15
seconds (for each module and driver) for any output to drain before dis­
mantling the stream. If the O_NDELA Y flag is set or if there are any
pending signals, close does not wait for output to drain, and dismantles the
stream immediately. Close returns 0 on success. On failure, close returns
-1 and sets errno to one of the following values:

[EBADF]

[EINTR]

Fildes is not a valid open file descriptor.

A signal was caught during the close.

The read routine [see REAO(BA_OS)] attempts to read nbyte bytes of data
from the file associated with fildes into the buffer pointed to by buf.
Read calls have the format

int read (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

Read can operate in three different modes: "byte-stream" mode,
"message-nondiscard" mode, and "message-discard" mode. The default
read mode is byte-stream mode. This can be changed using the I_SRDOPT
ioctl request, and can be tested with the I_GRDOPT ioctl. In byte-stream
mode, read will retrieve data from the stream until it has retrieved nbyte
bytes, or until there is no more data to be retrieved. Byte-stream mode
ignores message boundaries. In message-nondiscard mode, read retrieves
data until it has read nbyte bytes, or until it reaches a message boundary.
If the read does not retrieve all the data in a message, the remaining data
is replaced on the stream, and can be retrieved by the next read (or

Page 302 Network Services Extension Definition

STREAMS(NS_DEV)

getmsg) call. Message-discard mode also retrieves data until it has
retrieved nbyte bytes, or it reaches a message boundary. However, unread
data remaining in a message after the read returns is discarded, and is not
available for a subsequent read (or getmsg) call.

When attempting to read a file associated with a stream that has no data
currently available:

If O_NDELAY is set, the read will return a -1 and set errno to
EAGAIN.

If O_NDELA Y is clear, the read will block until data becomes avail­
able.

The read call's handling of zero-byte messages is determined by the current
read mode setting. In byte-stream mode, read accepts data until it has
read nbyte bytes, or until there is no more data to read, or until a zero­
byte message block is encountered. Read then returns the number of bytes
read, and places the zero-byte message back on the stream to be retrieved
by the next read or getmsg. In the two other modes, a zero-byte message
returns a value of 0 and the message is removed from the stream. When a
zero-byte message is read as the first message on a stream, a value of 0 is
returned regardless of the read mode.

A read from a STREAMS file can only process messages with data and
without control information. The read will fail if a message containing
control information is encountered at the stream head.

Read returns the number of bytes read when it succeeds. On failure, read
returns -1 and sets errno to one of the following:

[EBADF] Fildes is not a valid open file descriptor.

[EF A UL T] Buf points outside the allocated address space.

[EBADMSG] Message waiting to be read is not a data message.

[EAGAIN] No message waiting to be read, and O_NDELA Y flag set.

[EINVAL] Attempted to read from a stream linked to a multiplexer.

[EINTR] A signal was caught during the read.

Read will also fail if an error message is received at the stream head. In
this case, errno is set to the value returned in the error message. If a

Network Services Extension Definition Page 303

STREAMS(NS_DEV)

hangup occurs on the stream being read, read will continue to operate nor­
mally until the stream head read queue is empty. Thereafter, it will return
O.

The write routine [see WRITE(BA_OS)] attempts to write nbyte bytes from
the buffer buf to the device associated with the file descriptor fildes.
Write calls have the format

int write(fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

The operation of write is determined by the values of the minimum and
maximum nbyte range (" packet size") accepted by the stream. These
values are contained in the topmost stream module. Unless the user
pushes the topmost module, these values cannot be set or tested from user
level. If nbyte falls within the packet size range, nbyte bytes will be writ­
ten. If nbyte does not fall within the range and the minimum packet size
value is zero, write will break the buffer into maximum packet size seg­
ments prior to sending the data downstream (the last segment may contain
less than the maximum packet size). If nbyte does not fall within the
range and the minimum value is non-zero, write will fail with errno set to
ERANGE. Writing a zero-length buffer (nbyte is zero) sends zero bytes
with zero returned.

If O_NDELAY is not set and the stream cannot accept data (the stream
write queue is full due to internal flow control conditions), write will block
until data can be accepted. If O_NDELA: Y is set and the stream cannot
accept data, write will return -1 and set errno to EAGAIN. If
O_NDELAY is set and part of the buffer has been written when a condi­
tion in which the stream cannot accept additional data occurs, write will
terminate and return the number of bytes written. Upon successful comple­
tion, the number of bytes actually written is returned.

On failure, write returns -1 and sets errno to one of the following values:

[EBADF] Fildes is not a valid open file descriptor.

[EF A UL T] Buf points outside the allocated address space.

[ERANGE] Attempt to write to a stream with nbyte outside specified
minimum and maximum write range, and the minimum value
is non-zero.

Page 304 Network Services Extension Definition

STREAMS(NS_DEV)

[EAGAIN] Attempt to write to a stream that cannot accept data with
the O_NDELA Y flag set.

[EINVAL] Attempt to read from a stream linked to a multiplexer.

[EINTR] A signal was caught during the write.

[ENXIO] A hangup occurred on the stream being written to.

Write can also fail if an error message has been received at the stream
head. In this case, errno is set to the value included in the error message.

loctl calls [see IOCTL(BA_OS)] are used to perform control functions with
the device associated with the file descriptor fildes. The arguments com­
mand and arg are passed to the file designated by fildes and are inter­
preted by the stream head. Certain combinations of these arguments may
be passed to a module or driver in the stream.

fildes is an open file descriptor that refers to a stream. command deter­
mines the control function to be performed as described below. arg
represents additional information that is needed by this command. The
type of arg depends upon the command, but it is generally an integer or a
pointer to a command-specific data structure.

Since these STREAMS commands are a subset of ioctl, they are subject to
the errors described there. In addition to those errors, the call will fail with
errno set to EINV AL, without processing a control function, if the stream
referenced by fildes is linked below a multiplexer, or if command is not a
valid value for a stream.

Also, as described in ioctl, STREAMS modules and drivers can detect
errors. In this case, the module or driver sends an error message to the
stream head containing an error value. This causes subsequent system
calls to fail with errno set to this value. loctl calls have the format

int ioctl(fildes, command, arg)
int fildes;
int command;
int arg;

The ioctl commands applicable to STREAMS and their arguments are
described below. Unless specified, the return value from ioctl is 0 upon
success and -1 upon failure with err no set as indicated. Errno will be set
to EINV AL for any of the following ioctl calls if the stream is linked below
a multiplexer.

Network Services Extension Definition Page 305

STREAMS(NS_DEV)

To use ioetl, the line

#include <stropts.h>

must be included in the user program.

The following ioetl commands, with error values indicated, are applicable
to all STREAMS files:

J-PUSH

I-POP

Pushes the module whose name is pointed to by arg onto
the top of the current stream, just below the stream
head. It then calls the open routine of the newly-pushed
module. On failure, errno is set to one of the following
values:

[EINV AL] Invalid module iIame.

[EF A UL T] Arg points outside the allocated address
space.

[ENXIO]

[ENXIO]

Open routine of new module failed.

Hangup received on fildes.

Removes the module just below the stream head of the
stream pointed to by fildes. Arg should be 0 in an
I-POP request. On failure, errno is set to one of the fol­
lowing values:

[EINV AL] No module present in the stream.

[ENXIO] Hangup received on fildes.

Retrieves the name of the module just below the stream
head of the stream pointed to by fildes, and places it in
a character string pointed to by argo The buffer pointed
to by arg should be at least FMNAMESZ+ 1 bytes long
where FMNAMESZ is defined by "#inelude
<sys/conf.h>". On failure, errno is set to one of the fol­
lowing values:

[EF A UL T] Arg points outside the allocated address
space.

[EINVAL] No module present in stream.

Page 306 Network Services Extension Definition

STREAMS(NS_DEV)

This request flushes all input and/or output queues,
depending on the value of argo Legal arg values are:

FLUSHR Flush read queues.

FLUSHW Flush write queues.

FLUSHRW Flush read and write queues.

On failure, errno is set to one of the following values:

[EINV AL] Invalid arg value.

[EAGAIN] Unable to allocate buffers for flush message.

[ENXIO] Hangup received on fildes.

Informs the stream head that the user wishes the kernel
to issue the SIGPOLL signal [see SIGNAL{BA_OS) and
SIGSET{BA_OS)] when a particular event has occurred on
the stream associated with fildes. LSETSIG supports an
asynchronous processing capability in STREAMS. The
value of arg is a bitmask that specifies the events for
which the user should be signaled. It is the bitwise-OR of
any combination of the following constants:

S_INPUT A non-priority message has arrived on a
stream head read queue, and no other mes­
sages existed on that queue before this mes­
sage was placed there. This is set even if
the message is of zero length.

S_HIPRI A priority message is present on a stream
head read queue. This is set even if the
message is of zero length.

S_OUTPUT The write queue just below the stream
head is no longer full. This notifies the
user that there is room on the queue for
sending (or writing) data downstream.

S_MSG A STREAMS signal message that contains
the SIGPOLL signal has reached the front of
the stream head read queue.

A user process may choose to handle asynchronously only
priority messages by setting the arg bitmask to the value
S_HIPRI.

Network Services Extension Definition Page 307

STREAMS(NS_DEV)

Processes that wish to receive SIGPOLL signals must
explicitly register to receive them using LSETSIG. If
several processes register to receive this signal for the same
event on the same stream, each process will be signaled
when the event occurs.

If the value of arg is zero, the calling process will be unre­
gistered and will not receive further SIGPOLL signals. On
failure, errno is set to one of the following values:

[EINV AL] Arg value is invalid or arg is zero and pro­
cess is not registered to receive the SIG­
POLL signal.

[EAGAIN] Allocation of a data structure to store the
signal request failed.

Returns the events for which the calling process is
currently registered to be sent a SIGPOLL signal. The
events are returned as a bitmask pointed to by arg, where
the events are those specified in the description of
I_SETSIG above. On failure, errno is set to one of the
following values:

[EINVAL] Process not registered to receive the SIG­
POLL signal.

[EFAULT] Arg points outside the allocated address
space.

This request compares the names of all modules currently
present in the stream to the name pointed to by arg, and
returns 1 if the named module is present in the stream. It
returns 0 if the named module is not present. On failure,
errno is set to one of the following values:

[EFAULT] Arg points outside the allocated address
space.

[EINV AL] Arg does not contain a valid module name.

Page 308 Network Services Extension Definition

STREAMS(NS_DEV)

This request allows a user to retrieve the information in
the first message on the stream head read queue without
taking the message off the queue. Arg points to a
strpeek structure which contains the following members:

struct strbuf
struct strbuf
long

ctlbuf;
databuf;
flags;

where strbuf is a structure that contains the following
members:

int maxlen;
int len;
char *buf;

The maxlen field in the ctlbuf and databuf strbuf struc­
tures [see GETMSG(NS_OS)] must be set to the number of
bytes of control information and/or data information, respec­
tively, to retrieve. If the user sets flags to RS_HIPRI,
IJEEK will only look for a priority message on the stream
head read queue.

IJEEK returns 1 if a message was retrieved, and returns 0
if no message was found on the stream head read queue, or
if the RSJIIPRI flag was set in flags and a priority message
was not present on the stream head read queue. It does not
wait for a message to arrive. On return, ctlbuf specifies
information in the control buffer, databuf specifies informa­
tion in the data buffer, and flags contains the value 0 or
RSJIIPRI. On failure, errno is set to the following value:

[EF A UL T] Arg points or the buffer area specified in
ctlbuf or databuf is outside the allocated
address space.

Network Services Extension Definition Page 309

STREAMS(NS_DEV)

I_SRDOPT Sets the read mode using the value of the argument argo
Legal arg values are:

RNORM

RMSGD

RMSGN

Byte-stream mode, the default.

Message-discard mode.

Message-nondiscard mode.

Read modes are described in READ(BA_OS). On failure,
errno is set to the following value:

[EINVAL] Arg is not one of the above legal values.

I_GRDOPT Returns the current read mode setting in an int pointed to
by the argument argo Read modes are described in
READ(BA_OS). On failure, errno is set to the following
value:

[EFAULT] Arg points outside the allocated address space.

Counts the number of data bytes in data blocks in the first
message on the stream head read queue and places this
value in the location pointed to by argo The return value for
the command is, the number of messages on the stream
head read queue. For example, if zero is returned in arg,
but the ioctl return value is greater than zero, this indicates
that a zero-length message is next on the queue. On failure,
errno is set to the following value:

[EF A UL T] Arg points outside the allocated address space.

I_FDINSERT Creates a message from user specified buffer(s), adds infor­
mation about another stream, and sends the message down­
stream. The message contains a control part and an optional
data part. The data and control parts to be sent are dis­
tinguished by placement in separate buffers, as described
below.

Page 310 Network Services Extension Definition

STREAMS(NS_DEV)

Arg points to a strfdinsert structure which contains the
following members:

struct strbuf ctlbuf;
struct strbuf databuf;
long flags;
int fildes;
int offset;

The len field in the ctlbuf strbuf structure [see
PUTMSG(NS_OS)] must be set to the size of a pointer plus
the number of bytes of control information to be sent with
the message. Fd specifies the file descriptor of the other
stream and offset, which must be word-aligned, specifies
the number of bytes beyond the beginning of the control
buffer where LFDINSERT will store a pointer to the fd
stream's driver read queue structure. The len field in the
databuf strbuf structure must be set to the number of bytes
of data information to be sent with the message or zero if no
data part is to be sent.

Flags specifies the type of message to be created. A non­
priority message is created if flags is set to 0, and a priority
message is created if flags is set to RS_HIPRI. For non­
priority messages, IJDINSERT will block if the stream
write queue is full due to internal flow control conditions.
For priority messages, IJDINSERT does not block on this
condition. For non-priority messages, IJDINSERT does
not block when the write queue is full and O_NDELA Y is
set. Instead, it fails and sets errno to EAGAIN.

I_FDINSERT also blocks, unless prevented by lack of inter­
nal resources, waiting for the availability of message blocks in
the stream, regardless of priority or whether O_NDELA Y
has been specified. No partial message is sent. On failure,
errno is set to one of the following values:

[EAGAIN] A non-priority message was specified, the
O~DELAY flag is set, and the stream write
queue is full due to internal flo~ control condi­
tions.

Network Services Extension Definition Page 311

STREAMS(NS_DEV)

Page 312

[EAGAIN] Buffers could not be allocated for the message
that was to be created.

[EF A UL T] Arg points, or the buffer area specified in
etlbuf or databuf is, outside the allocated
address space.

[EINV AL] One of the following: fd in the strfdinsert
structure is not a valid, open stream file
descriptor; the size of a pointer plus offset is
greater than the len field for the buffer speci­
fied through etlptr; offset does not specify a
properly-aligned location in the data buffer; an
undefined value is stored in flags.

[ENXIO] Hangup received on fildes.

[ERANGE] The len field for the buffer specified through
databuf does not fall within the range speci­
fied by the maximum and minimum packet
sizes of the topmost stream module or the len
field for the buffer specified through databuf
is larger than the maximum configured size of
the data part of a message; or the len field for
the buffer specified through eUbuf is larger
than the maximum configured size of the con­
trol part of a message.

Constructs an internal STREAMS ioeU message from the
data pointed to by arg, and sends that message downstream.

This mechanism is provided to send user ioetl requests to
downstream modules and drivers. It allows information to be
sent with the ioetl, and will return to the user any informa­
tion sent upstream by the downstream recipient. I_STR
blocks until the system responds with either a positive or
negative acknowledgment message, or until the request
"times out" after some period of time. If the request times
out, it fails with errno set to ETIME.

At most, one I_STR can be active on a stream. Further
I_STR calls will block until the active I_STR completes at
the stream head. The default timeout interval for these
requests is 15 seconds. The O~DELAY [see OPEN(BA_OS)]

flag has no effect on this call.

Network Services Extension Definition

STREAMS(NS_DEV)

To send requests downstream, arg must point to a strioctl
structure which contains the following members:

int ic_cmd; 1* downstream command *1
int ic_timout;l* ACK/NAK timeout *1
int ic_len; 1* length of data arg *1
char *ic _dp; 1* ptr to data arg *1

Ic_cmd is the internal ioctl command intended for a down­
stream module or driver and ic_timout is the number of
seconds (-1 = infinite, ° = use default, >0 = as specified) an
I_STR request will wait for acknowledgment before timing
out. Ic--'1en is the number of bytes in the data argument,
and ic_dp is a pointer to the data argument. The ic_Ien
field has two uses: on input, it contains the length of the
data argument passed in, and on return from the command,
it contains the number of bytes being returned to the user
(the buffer pointed to by ic_dp should be large enough to
contain the maximum amount of data that any module or the
driver in the stream can return).

The stream head will convert the information pointed to by
the strioctl structure to an internal ioctl command message
and send it downstream. On failure, errno is set to one of
the following values:

[EAGAIN] Unable to allocate buffers for the ioctl mes­
sage.

[EF A UL T] Arg points or the buffer area specified by
ic_dp and ic_Ien (separately for data sent
and data returned) is, outside the allocated
address space.

[EINVAL] Ic_Ien is less than 0, or ic_Ien is larger than
the maximum configured size of the data part
of a message, or ic_timout is less than -1.

[ENXIO] Hangup received on fildes.

[ETIME] A downstream ioctl timed out before ack­
nowledgment was received.

An I_STR can also fail while waiting for an acknowledge­
ment if a message indicating an error or a hangup is received
at the stream head. In addition, an error code can be

Network Services Extension Definition Page 313

STREAMS(NS_DEV)

returned in the positive or negative acknowledgement mes­
sage, in the event the ioctl command sent downstream fails.
For these cases, LSTR will fail with err no set to the value
in the message.

The following two commands are used for connecting and disconnecting
multiplexed STREAMS configurations.

Page 314

Connects two STREAMS, where fildes is the file descriptor
of the stream connected to the multiplexing driver, and arg
is the file descriptor of the stream connected to another
driver. The stream designated by arg gets connected below
the multiplexing driver. I_LINK requires the multiplexing
driver to send an acknowledgement message to the stream
head regarding the linking operation. This call returns a
multiplexer ID number (an identifier used to disconnect the
multiplexer, see LUNLINK) on success, and a -Ion failure.
On failure, errno is set to one of the following values:

[ENXIO] Hangup received on fildes.

[ETIME] Time out before acknowledgement message was
received at stream head.

[EAGAIN] Unable to allocate STREAMS storage to per­
form the I_LINK.

[EBADF] Arg is not a valid, open file descriptor.

[EINV AL] Fildes stream does not support multiplexing.

[EINVAL] Arg is not a stream or is already linked
under a multiplexer.

[EINVAL] The specified link operation would cause a
" cycle" in the resulting configuration; that is,
if a given stream head is linked into a multi­
plexing configuration in more than one place.

An LLINK can also fail while waiting for the multiplexing
driver to acknowledge the link request, if a message indicat­
ing an error or a hangup is received at the stream head of
fildes. In addition, an error code can be returned in the
positive or negative acknowledgment message. For these
cases, I-LINK will fail with errno set to the value in the
message.

Network Services Extension Definition

STREAMS(NS_DEV)

I_UNLINK Disconnects the two STREAMS specified by fildes and argo
Fildes is the file descriptor of the stream connected to the
multiplexing driver. Arg is the multiplexer ID number that
was returned by the ioctl I_LINK command when a stream
was linked below the multiplexing driver. If arg is -1, then
all STREAMS which were linked to fildes are disconnected.
As in I_LINK, this command requires the multiplexing driver
to acknowledge the unlink. On failure, errno is set to one of
the following values:

RETURN VALUE

[ENXIO] Hangup received on fildes.

[ETIME] Time out before acknowledgment message was
received at stream head.

[EAGAIN] Unable to allocate buffers for the acknowledg­
ment message.

[EINV AL] Invalid multiplexer ID number.

An I_UNLINK can also fail while waiting for the multiplex­
ing driver to acknowledge the link request, if a message indi­
cating an error or a hangup is received at the stream head
of fildes. In aCldition, an error code can be returned in the
positive or negative acknowledgment message. For these
cases, I_UNLINK will fail with errno set to the value in the
message.

Unless specified otherwise above, the return value from ioctl is 0 upon suc­
cess and -1 upon failure with errno set as indicated.

SEE ALSO
CLOSE(BA-OS), FCNTL(BA_OS), IOCTL(BA_OS), OPEN{BA_OS), READ{BA_OS),
GETMSG{NS_OS), POLL(NS_OS), PUTMSG{NS_OS), SIGNAL(BA_OS),
SIGSET{BA_OS), WRITE{BA-OS).

LEVEL
Levell.

Network Services Extension Definition Page 315

GETMSG(NS_OS)

NAME

getmsg - receive next message off a stream

SYNOPSIS

#include <stropts.h>

int getmsg(fd, ctlptr, dataptr, flags)
int fd;
struct strbuf *ctlptr;
struct strbuf *dataptr;
int *flags;

DESCRIPTION

Getmsg retrieves the contents of a message located at the stream head
read queue from a STREAMS file, and places the contents into user speci­
fied buffer(s). The message must contain either a data part, a control part
or both. The data and control parts of the message are placed into separate
buffers, as described below. The semantics of each part is defined by the
STREAMS module that generated the message.

Fd specifies a file descriptor referencing an open stream. Ctlptr and
dataptr each point to a strbuf structure which contains the following
members:

int maxlen;
int len;
char *buf;

1* maximum buffer length *1
1* length of data *1
1* ptr to buffer *1

where buf points to a buffer in which the data or control information is to
be placed, and maxlen indicates the maximum number of bytes this buffer
can hold. On return, len contains the number of bytes of data or control
information actually received; or is 0 if there is a zero-length control or data
part; or is -1 if no data or control information is present in the message.
Flags may be set to the values 0 or RS_HIPRI and is used as described
below.

Ctlptr is used to hold the control part of the message, and dataptr is used
to hold the data part of the message. If ctlptr (or dataptr) is NULL or the
maxlen field is -1, the control (or data) part of the message is not pro­
cessed and is left on the stream head read queue, and len is set to -1. If
the maxlen field is set to 0 and there is a zero-length control (or data)
part, that zero-length part is removed from the read queue and len is set to
O. If the maxlen field is set to 0 and there are more than zero bytes of
control (or data) information, that information is left on the read queue
and len is set to O. If the maxlen field in ctlptr (or dataptr) is less than

Page 316 Network Services Extension Definition

GETMSG(NS_OS)

the control (or data) part of the message, maxlen bytes are retrieved. In
this case, the remainder of the message is left on the stream head read
queue and a non-zero return value is provided, as described below under
RETURN VALUE. If information is retrieved from a priority message,
flags is set to RS_HIPRI on return.

By default, getmsg processes the first priority or non-priority message
available on the stream head read queue. However, a user may choose to
retrieve only priority messages by setting flags to RS-HIPRI. In this case,
getmsg will only process the next message if it is a priority message.

If O_NDELA Y has not been set, getmsg blocks until a message of the
type(s) specified by flags (priority or either) is available on the stream
head read queue. If O_NDELAY has been set and a message of the speci­
fied type(s) is not present on the read queue, getmsg fails and sets errno
to EAGAIN.

If a hangup occurs on the stream from which messages are to be retrieved,
getmsg will continue to operate normally, as described above, until the
stream head read queue is empty. Thereafter, it will return 0 in the len
fields of ctlptr and dataptr.

ERRORS

Getmsg fails if one or more of the following are true:

[EAGAIN]

[EBADF]

The O_NDELA Y flag is set, and no messages are available.

Fd is not a valid file descriptor open for reading.

[EBADMSG] Queued message to be read is not valid for getmsg.

[EFAULT]

[EINTR]

[EINVAL]

[ENOSTR]

Ctlptr, dataptr, or flags points to a location outside the
allocated address space.

A signal was caught during the getmsg system call.

An illegal value was specified in flags, or the stream
referenced by fd is linked under a multiplexer.

A stream is not associated with fd.

Getmsg can also fail if a STREAMS error message had been received at the
stream head before the call to getmsg. The error returned is the value
contained in the STREAMS error message.

RETURN VALUE
Upon successful completion, a non-negative value is returned. A value of 0
indicates that a full message was read successfully. A return value of

Network Services Extension Definition Page 317

GETMSG(NS_OS)

MORECTL indicates that more control information is waiting for retrieval.
A return value of MOREDA T A indicates that more data is waiting for
retrieval. A return value of MORECTLIMOREDAT A indicates that both
types of information remain. Subsequent getmsg calls will retrieve the
remainder of the message.

SEE ALSO
READ(BA_OS), POLL(NS_OS), PUTMSG(NS_OS), STREAMS(NS_DEV),
WRITE(BA_OS)

LEVEL
Levell.

Page 318 Network Services Extension Definition

POLL(NS_OS)

NAME
poll - STREAMS input/output multiplexing

SYNOPSIS

#include <stropts.h>
#include <poll.h>

int poll(fds, nfds, timeout)
struct pollfd fds[];
unsigned long nfds;
int timeout;

DESCRIPTION
Poll provides users with a mechanism for multiplexing input/output over a
set of file descriptors that reference open STREAMS. Poll identifies those
STREAMS on which a user can send or receive messages, or on which cer­
tain events have occurred. A user can receive messages using READ(BA_OS)
and GETMSG(NS_OS) and send messages using WRITE(BA_OS) and
PUTMSG(NS_OS).

Fds specifies the file descriptors to be examined and the events of interest
for each file descriptor. It is a pointer to an array with one element for
each open file descriptor of interest. The array's elements are pollfd struc­
tures which contain the following members:

int fd; /* file descriptor */

short events; /* requested events */
short revents; /* returned events */

where fd specifies an open file descriptor and events and revents are bit­
masks constructed by or-ing any combination of the following event flags:

POLLIN

POLLPRI

POLLOUT

A non-priority message is present on the stream head read
queue. This flag is set even if the message is of zero
length. In revents, this flag is mutually exclusive with
POLLPRI.

A priority message is present in the stream head read
queue. This flag is set even if the message is of zero
length. In revents, this flag is mutually exclusive with
POLLIN.

The first downstream write queue in the stream is not
full. Priority messages can be sent [see PUTMSG(NS_OS)]
at any time.

Network Services Extension Definition Page 319

POLLERR

POLLHUP

POLLNVAL

An error message has arrived at the stream head. This
flag is only valid in the revents bitmask; it is not used in
the events field.

A hangup has occurred on the stream. This event and
POLLOUT are mutually exclusive; a stream can never be
writable if a hangup has occurred. However, this event
and POLLIN or POLLPRI are not mutually exclusive.
This flag is only valid in the revents bitmask; it is not
used in the events field.

The specified fd value does not belong to an open stream.
This flag is only valid in the revents field; it is not used
in the events field.

For each element of the array pointed to by fds, poll examines the given
file descriptor for the event(s) specified in events. The number of file
descriptors to be examined is specified by nfds. If nfds exceeds NOFILES,
which is the system limit of open files, poll will fail.

If the value of fd is less than zero, events is ignored and revents is set to
zero in that entry on return from poll.

The results of the poll query are stored in the revents field in the pollfd
structure. Bits are set in the revents bitmask to indicate which of the
requested events are true. If none are true, none of the specified bits is set
in revents when the poll call returns. The event flags POLLHUP, POLL­
ERR, and POLLNV AL are always set in revents if the conditions they
indicate are true; this occurs even when these flags were not present in
events.

If none of the defined events have occurred on any selected file descriptor,
poll waits at least timeout msec for an event to occur on any of the
selected file descriptors. On a computer where millisecond timing accuracy
is not available, timeout is rounded up to the nearest legal value available
on that system. If the value of timeout is 0, poll returns immediately. If
the value of timeout is -1, poll blocks until a requested event occurs or
until the call is interrupted. Poll is not affected by the O_NDELA Y flag.

ERRORS

Poll fails if one or more of the following are true:

[EAGAIN] Allocation of internal data structures failed but request
should be attempted again.

Page 320 Network Services Extension Definition

POLLeNS_OS)

[EF A UL T] Some argument points outside the allocated address space.

[EINTR] A signal was caught during the poll system call.

[EINVAL] The argument nfds is less than zero, or nfds is greater than
NOFILES.

RETURN VALUE
Upon successful completion, a non-negative value is returned. A positive
value indicates the total number of file descriptors that has been selected
(i.e., file descriptors for which the revents field is non-zero). A value of 0
indicates that the call timed out and no file descriptors have been selected.
Upon failure, a value of -1 is returned and err no is set to indicate the
error.

SEE ALSO
READ(BA_OS), GETMSG(NS_OS), PUTMSG(NS_OS), STREAMS(NS_DEV),
WRITE(BA_OS).

LEVEL
Levell.

Network Services Extension Definition Page 321

PUTMSG(NS_OS)

NAME
putmsg - send a message on a stream

SYNOPSIS

#include <stropts.h>

int putmsg (fd, ctlptr, dataptr, flags)
int fd;
struct strbuf *ctlptr;
struct strbuf *dataptr;
int flags;

DESCRIPTION
Putmsg creates a message from user-specified buffer(s) and sends the mes­
sage to a STREAMS file. The message may contain either a data part, a
control part or both. The data and control parts to be sent are dis­
tinguished by placement in separate buffers, as described below. The
semantics of each part is defined by the STREAMS module that receives the
message.

Fd specifies a file descriptor referencing an open stream. Ctlptr and
dataptr each point to a strbuf structure which contains the following
members:

int maxlen;
int len;
char *buf;

1* not used *1
1* length of data
1* ptr to buffer

*1
*1

Ctlptr points to the structure describing the control part, if any, to be
included in the message. The buf field in the strbuf structure points to
the buffer where the control information resides, and the len field indicates
the number of bytes to be sent. The maxlen field is not used in putmsg
[see GETMSG(NS_OS)]. In a similar manner, dataptr specifies the data, if
any, to be included in the message. Flags may be set to the values ° or
RS_HIPRI and is used as described below.

To send the data part of a message, dataptr must be non-NULL and the
len field of dataptr must have a value of ° or greater. To send the control
part of a message, the corresponding values must be set for ctlptr. No data
(control) part will be sent if either dataptr (ctlptr) is NULL or the len
field of dataptr (ctlptr) is set to -1.

If a control part is specified, and flags is set to RS_HIPRI, a priority mes­
sage is sent. If flags is set to 0, a non-priority message is sent. If no con­
trol part is specified, and flags is set to RS_HIPRI, putmsg fails and sets

Page 322 Network Services Extension Definition

PUTMSG{NS_OS)

errno to EINV AL. If no control part and no data part are specified, and
flags is set to 0, no message is sent, and ° is returned.

For non-priority messages, putmsg will block if the stream write queue is
full due to internal flow control conditions. For priority messages, putmsg
does not block on this condition. For non-priority messages, putmsg does
not block when the write queue is full and O_NDELA Y is set. Instead, it
fails and sets errno to EAGAIN.

Putmsg also blocks, unless prevented by lack of internal resources, waiting
for the availability of message blocks in the stream, regardless of priority
or whether O_NDELA Y has been specified. No partial message is sent.

ERRORS
Putmsg fails if one or more of the following are true:

[EAGAIN] A non-priority message was specified, the O_NDELAY flag is
set, and the stream write queue is full due to internal flow
control conditions.

[EAGAIN] Buffers could not be allocated for the message that was to be
created.

[EBADF] Fd is not a valid file descriptor open for writing.

[EFAULT] Ctlptr or dataptr points outside the allocated address space.

[EINTR] A signal was caught during the putmsg system call.

[EINVAL] An undefined value was specified in flags, or flags is set to
RS_HIPRI and no control part was supplied.

[EINVAL] The stream referenced by fd is linked below a multiplexer.

[ENOSTR] A stream is not associated with fd.

[ENXIO] A hangup condition was generated downstream for the speci­
fied stream.

[ERANGE] The size of the data part of the message does not fall within
the range specified by the maximum and minimum packet
sizes of the topmost stream module. This value is also
returned if the control part of the message is larger than the
maximum configured size of the control part of a message, or
if the data part of a message is larger than the maximum
configured size of the data part of a message.

Network Services Extension Definition Page 323

PUTMSG(NS_OS)

A putmsg also fails if a STREAMS error message had been processed by the
stream head before the call to putmsg. The error returned is the value
contained in the STREAMS error message.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

SEE ALSO
READ(BA_OS), GETMSG(NS_OS), POLL(NS_OS), STREAMS(NS_DEV),
WRITE(BA_OS).

LEVEL
Levell.

Page 324 Network Services Extension Definition

Chapter 15
Shared Resource Environment

15.1 INTRODUCTION

The SHARED RESOURCE ENVIRONMENT section of the NETWORK SERVICES
EXTENSION describes a set of capabilities for sharing and administering
resources among interconnected machines, that are collectively called Remote File
Sharing. Using Remote File Sharing, files that physically reside on a remote
machine can be accessed as if they were on the local machine; the capabilities
described here provide the interface for accessing and managing Remote File
Sharing. New utilities provide the basic functionality, while additional func­
tionality is added to the BASE, the BASIC UTILITIES EXTENSION, and the
ADMINISTERED SYSTEM EXTENSION.

This extension is dependent on the Base System and on the MOUNT(AS_CMD)
and UMOUNT(AS_CMD) utilities in the ADMINISTERED SYSTEM EXTENSION.

15.2 DESCRIPTION

adv
dname
fumount
fusage

UTILITIES

idload rfstart
nsquery rfstop
rfadmin rmnstat
rfpasswd unadv

ERROR CONDITIONS

ECOMM
EMULTIHOP
ENOLINK
EREMOTE

Communications error
Multihop not allowed
The link has been severed
The object is remote

Network Services Extension Definition Page 325

15.3 DEFINITIONS

Advertise

Make a directory available as a remotely sharable resource.

Client

A host that has mounted sharable resources from another host (the server).

Domain

An administrative structure for managing the names of a set of hosts and the
names of their sharable resources.

Domain Name Server

A host that has the responsibility for maintaining the name space for one or
more domains. For each domain, one host is designated the primary domain
name server, and some number of other hosts are designated secondary domain
name servers. The host exercising the domain name server responsibility at any
given time is the acting domain name server. A host need not be a member of a
domain for which it is a name server.

Host

A computer running the Remote File Sharing facility. A host may be a client, a
server, or both. A host may be a member of only one domain.

Implementation-specific Constants

In addition to the values listed under Implementation-specific constants in
Volume I: Part II - Base System Definition: Chapter 4 - Definitions,
several values are defined here.

{NS_RECOVER}

Page 326

Maximum number of minutes before domain name
service recovery.

Maximum number of characters in a resource
description.

Network Services Extension Definition

Multihop Access

Multihop access refers to the following structure of "indirect" access to a remote
resource. Suppose host A advertises a resource that has mounted within it a
resource from host B. If any other host mounts the resource from host A and
uses it to access a file on the resource from host B, then that access is termed
multihop access.

Server

A host that has one or more advertised resources.

Sharable Resource

A sharable resource is one that is advertised by a server and thus is available to
authorized clients.

15.4 ERROR CODES

In addition to the error codes defined as part of the SOFTWARE DEVELOPMENT
EXTENSION, new error codes have been added to the header file errno.h.

<errno.h>

Defines the following symbolic names for the indicated error return conditions:

Name
ECOMM
EMULTIHOP
ENOLINK
EREMOTE

Description
Communications error
Multihop not allowed
The link has been severed
The object is remote

The ECOMM error condition occurs on any operating system service routine
that references a remote resource (through a file descriptor or path name), when­
ever there is a communications error while trying to send the request for that
service routine to the server machine. The EMUL TIHOP error condition may
occur on any operating system service routine that has a path name as one of its
arguments, and indicates that resolution of that path name involves multihop
access to a remote resource, when multihop access is not supported by the under­
lying implementation. Whether multi hop access is supported is implementation­
specific, but if it is not supported, then the EMUL TIHOP error condition must
be returned on any attempted multihop access. The ENOLINK error condition
occurs on any operating system service routine that references a remote file,
when the communications link to the server for that resource has been lost; any
file descriptor associated with this remote file should not be used for further I/O.

Network Services Extension Definition Page 327

The EREMOTE error condition occurs on the MOUNT(BA_OS) operating system
service routine when the requested mount point resides on a remote resource.

15.5 EFFECTS ON THE BASE SYSTEM

Header Files

Under the Shared Resource Environment, components in the Base System may
return a new value for errno, as listed above. In addition, some operating sys­
tem service routines may return the errno value of EINTR when accessing a
remote resource.
The operating system service routines that do not return this value of errno
except under the Shared Resource Environment are:

access creat mknod
chdir dup stat
chmod exec unlink
chown fcntl ustat
close link uti me

An application that checks the value of errno must include the header file
<errno.h>.

15.6 EFFECTS ON OTHER EXTENSIONS

Some of the utilities in other Extensions are affected by the additional services
in the Network Services Extension. The effects are listed below for each utility
within each affected Extension.

15.6.1 Effects on the BASIC UTILITIES EXTENSION

Df(BU __ CMD) is updated to provide free block and free inode information on
remote resources mounted locally in addition to local resources. The new syntax
is:

df [-1] [-t] [file_system: resource] ...

When used with no arguments, df(BU_CMD) previously reported on all
mounted file systems; now df(BU_CMD) will report on both mounted file systems
and mounted remote resources. If the -I option is used, df will report only on
the local file systems.

If the mounted remote resource is a file system, the free space data are reported
for the remote file system. If the mounted remote resource is not a file system,
free space data for the parent file system are reported; when df(BU_CMD) reports

Page 328 Network Services Extension Definition

on more than one resource from a specific file system, the second and subsequent
entries in the report will be flagged by an asterisk.

Find(BU_CMD)

Find(8U_CMO) is updated to be able to distinguish local and remote files. A new
primary is defined, -local, which is true if the file physically resides on the local
system.

15.6.2 Effects on the ADMINISTERED SYSTEM EXTENSION

Mount(AS_CMD)

When the Network Services Extension is present, a -d option is available with
the MOUNT(AS_CMO) utility. This option is used to locally mount remote
resources that have been advertised by a server. The complete syntax is:

mount [[-d] [-r] special directory]

When used with no options, MOUNT(AS_CMO) will report on both local file sys­
tems and remote resources that have been mounted.

When the -d option is used, special must be a valid resource name of the form
resource or domain. resource. For users and applications processes, the effect of a
remote mount is the same as a local mount: an additional file system has been
mounted into the local file tree. Once a remote resource has been mounted, all
operating system service routines will operate on the remote files as they do on
local files, except that it is implementation-specific whether the following operat­
ing system service routines will accept a remote file:

acct(KE_OS) poll(NS_OS)
getmsg(NS_OS) putmsg(NS_OS)

Future Direction

The four operating system service routines listed above will be extended in the
future to operate with remote files.

Errors

If the -d option is used and (1) Remote File Sharing is not running on this host,
(2) the mount point directory is itself advertised as a resource, (3) the mount
point directory is already a mount point, (4) the -r is not specified and the
resource was advertised as read-only, (5) the resource is not currently advertised,

Network Services Extension Definition Page 329

(6) the resource is already mounted, or (7) the client is not authorized to access
the resource, an error message will be sent to standard error.

Umount(AS_CMD)

When the Network Services Extension is present, an additional option, -d, is
available with UMOUNT(AS_CMD) for un mounting remote resources mounted
locally. The complete syntax is:

umount [-d] special

If the -d option is used, special must be a valid resource name of the form
resource or domain. resource.

Errors

Additional error conditions can arise on servers when they attempt to unmount
local resources that are currently advertised or remotely mounted. If (1) the
resource has not been unadvertised or (2) the resource is still currently mounted
on a remote machine, an error message will be sent to standard error.

Fuser(AS_CMD)

There are no changes to the syntax for FUSER(AS_CMD), but remote resources
mounted locally can now be specified on the command line by giving the resource
name as an argument. Although a local file can still be used as an argument, the
command will issue a warning if a remote file is specified.

Sar(AS_CMD)

When the Network Services Extension is present, the options -S and -D are
available with SAR(AS_CMD). If neither of these options are specified on the
command line, the output of SAR(AS_CMD) will not change. The complete syntax
is:

sar [-ubdycwaqvmprADS] [-0 file] t [n]
sar [-ubdycwaqvmprADS] [-s time] [-e time] [-i sec] [-f file]

The - D option is used in combination with either the -u or -c option. If the
-D is used and neither -u nor -c is specified, -u is assumed.

Page 330 Network Services Extension Definition

The command sar -u reports time spent in user mode, in system mode, idle with
some process waiting for block I/O, and otherwise idle. If the -D option is also
specified, system time is reported for time servicing remote requests and all other
system time. The command sar -c reports activity data on system calls. If the
- D option is also specified, the data are reported for three categories: system
calls resulting in outgoing remote activity, system calls resulting from incoming
remote activity, and strictly local system calls.

The -8 option is used to obtain reports on server processes and request queue
status. Every request from a remote host to access your resources is conveyed by
a request message that is handled by a server process. When there are too many
messages for the servers to handle, the messages are placed on a request queue.
Messages leave the queue and are processed when servers are available. The data
reported by the -8 option are the following: average number of server processes
on the system (serv/lo-hi), % of time request messages are on the request queue
(request %busy), average number of request messages waiting for service when
the request queue is occupied (request avg 19th), % of time there are idle
servers (server %avail), and average number of idle servers when idle ones exist
(server avg avail).

8al(A8_CMD)

The new -8 and -D options described for SAR(AS_CMD) are also available for
sa2; the interfaces to sal and sadc are unchanged. The complete syntax for
sa2 is:

/usr/lib/sa/sa2 [-ubdycwaqvmprAD8] [-s time] [-e time] [-i sec]

15.7 CONFORMING SYSTEM CHARACTERISTICS

This section delineates characteristics that all systems must possess in order to
conform to the Shared Resource Environment. From an application perspective,
these are characteristics of the overall Shared Resource Environment, and do not
reside in anyone component. Thus, all conforming systems will have the follow­
ing characteristics, in addition to the individual component interfaces presented
in the SHARED RESOURCE ENVIRONMENT section of the NETWORK SERVICES
EXTENSION, in order to ensure portability of source code from single-machine
environments to a network of machines sharing resources.

Network Services Extension Definition Page 331

15.7.1 Network Compatibility

There are implementation-specific criteria for what underlying network(s) can be
used to support the Remote File Sharing capabilities described in the SHARED
RESOURCE ENVIRONMENT section of the NETWORK SERVICES EXTENSION,
but if two machines can each use a given network to support Remote File Shar­
ing with some other machines, then they will be able to jointly engage Remote
File Sharing with each other (using that network).

15.7.2 Operation Across Heterogeneous Processors

Some application-level operations may depend on characteristics of the underly­
ing processor. For example, when an application writes a floating-point number
into a file, it is typically stored in a format specific to that processor, which may
differ in size or byte-ordering from the representation of the same number on a
different processor. Similar considerations apply to the representation of more
elaborate structured data items, which may also differ across processors in their
alignment characteristics. Because the identification and interpretation of such
complex data items is solely under the control of the application process, and is
not known to the operating system, the operating system cannot automatically
perform the translations required for the proper interpretation of those data
items when they are shared among processors of different types.

However, for any set of machines that are able to engage in Remote File Sharing
with one another, applications on those machines will be able to share named
pipes (FIFO's) and any files that are regarded purely as a sequence of bytes (such
as ASCII files) without concern for the underlying processor characteristics.
Furthermore, by agreeing on a standard external data representation format,
applications may manipulate arbitrarily complex data items as a pure sequence of
bytes, and thus share those data items across dissimilar processors.

15.7.3 Reliability Against a Single Point of Failure

If a machine that conforms to the SHARED RESOURCE ENVIRONMENT section
of the NETWORK SERVICES EXTENSION turns off its Remote File Sharing facil­
ity, it must not cause domain name service to be halted completely; service may
be interrupted, however, for up to {NS_RECOVER} minutes. Within this time
interval, domain name service must be resumed, even if the departing machine
has not resumed Remote File Sharing. During the outage interval, new
MOUNT(AS_CMD) requests do not have to be honored, but previously mounted
resources must continue to work as before, unless they physically reside on the
machine that stopped its Remote File Sharing facility. Information maintained
by the domain name service (such as the list of currently advertised resources)
must be retained across the outage.

Page 332 Network Services Extension Definition

15.8 FILE SHARING

The Remote File Sharing facility of the Shared Resource Environment provides
access to files from a remote machine as though they were on the machine you
are logged into. Remote files are named using the same conventions as for local
files, and all operations on remote files work the same as they do on local files.

This section presents an overview of the functionality and administrative
features of Remote File Sharing. It is included as background for understanding
this part of the Network Services Extension of the System V Interface Defini­
tion.

Every machine participating in Remote File Sharing is able to make selected
parts of its file tree available for sharing, by advertising them. Correspondingly,
each machine is able to augment its own file tree with the advertised files from
other machines. This augmentation is performed by means of a remote mount,
which is a direct extension of the standard mount operation. This section
describes the advertise, unadvertise, and remote mount concepts.

15.8.1 Advertise

The right to allow file sharing belongs to the administrator of the machine where
the file resides. To allow sharing, an administrator advertises a directory using
the adv command. Once advertised, the directory and all files in the subtree
below it, including named pipes and special devices, are available for sharing by
any authorized machine. (How a machine becomes "authorized" is discussed
later.)

15.8.2 Unadvertise

The administrator can unadvertise a directory at any time after it has been
advertised by using the unadv command. Unadvertising a directory has no
effect on existing mounts of the directory, but future mount requests will fail.

Network Services Extension Definition Page 333

15.8.3 Remote Mount

The Shared Resource Environment extends the MOUNT(AS_CMD) operation to
include a remote mount. After a machine has advertised a resource, another
machine may remotely mount that resource in its own file tree.

fsl file system usr filesystem

Figure 15-1: A System V File System

Figure 15-1 shows part of a typical file tree. To advertise the subtree under Jfsl,
you type

adv DATA /fs1

This makes the Jfsl subtree available for sharing, and specifies that other
machines will use the name DATA to refer to it when they mount it. The name
DAT A can be almost any name that would work as a file name as long as it does
not contain a period ("."). The period has a special meaning that will be dis­
cussed later.

Another machine gains access to the advertised subtree by mounting the remote
subtree on a local directory. An administrator mounts the remote Jfsl subtree
advertised above on the local Jfsl directory by typing

mount -d DATA /fs1

The -d option tells the mount command that the resource being mounted is
remote.

Page 334 Network Services Extension Definition

The machine that owns a file is called the server machine, while the machine
that uses the file is called the client machine.

Client Machine I
I
I
I
I
I
I
I

Server Machine

.••..•. .1

Figure 15-2: Remote Mount

I
I
I
I
I
I

: fs 1 file system usr file system

Figure 15-2 shows the two machines' file systems after the remote mount. The
dotted line connecting the directories means that when a user on the client refers
to the subtree under Ifsl, the file referenced is the one on the server subtree
under Ifsl. For example, a user on the client machine who uses the file name
Ifsl/src/uts refers to the file by that name on the server machine.

There is no need for the structures of client and server file trees to match in any
way, or for advertised subtrees to be mounted at the same level on the client as
they occupy on the server. If the client had done the remote mount onto its /usr
directory, then its references to files under /usr would be to the server subtree
under /fsl.

A client cannot get to parts of the server file tree that are not under the adver­
tised directory. For example, if a user on a client machine uses "cd .. " to move
up from the top directory in a remotely mounted subtree, the user always ends up
back in the client file tree.

Network Services Extension Definition Page 335

15.9 ADMINISTRATIVE FEATURES

This section describes the resource naming and security features of Remote File
Sharing.

15.9.1 Resource Naming

Resource naming is modeled after the proposed ARPA domain naming conven­
tion[l], which has a hierarchically structured name space. A domain in this
usage is a name space that may encompass a group of machines and a set of
resources advertised by that group of machines.

Resource names are made up of two components separated by a period (.). For
example, isl.payroll might represent a resource called payroll in domain isl, and
isl.acctp might represent the machine acctp within that same domain. Whether a
name specifies a resource or a machine is determined by context; there is no syn­
tactic distinction. If a name is unqualified (i.e., contains no periods), the associ­
ated domain may (in some cases) be inferred from the context.

A domain's name space is maintained by a domain name server, which insures
uniqueness of names within the domain and provides a central place for storing
information about the machines and advertised resources in the domain. The
ADV(NS_CMD), UNADV(NS_CMD), MOUNT(AS_CMD), UMOUNT(AS_CMD), and
NSQUERY(NS_CMD) commands use the domain name server as a data base for
information about advertised resources, such as their names and the servers that
own them. The Network Services Extension of the System V Interface Defini­
tion defines the interface to this name service through new administrative utili­
ties.

As described above, each resource is assigned a symbolic name when it is adver­
tised, and the resource is subsequently identified (say, within a MOUNT(AS_CMD)
command issued on a client) using just the domain name and that symbolic
name. Because of this symbolic naming of resources, administrators of other
machines need not know the actual position of the resource within the server's
file tree, nor even what server within the domain is offering the resource. This
location independence simplifies references to resources, and allows for the tran­
sparent migration of resources among the machines within a domain (for exam­
ple, for balancing the load among a set of server machines).

15.9.2 Future Directions

In the future, the domain name space will be extended to include subdomains.
By allowing a domain to include subdomains, a tree-structured naming hierarchy
can be built, to ease adminstration of large numbers of resources.

Page 336 Network Services Extension Definition

15.9.3 Security Features

There are three features that provide a more secure environment for sharing files:
client authentication, client authorization, and user and group id mapping. Most
administrators want to be sure that access to files is provided only to those
clients that are known and, to at least some degree, trusted. In addition, they
normally want to have control over the user and group ids that remote users have
on their machines.

Client Authentication
This feature associates a password with a client machine so that the identity of
the prospective client can be checked before a mount request is serviced. Entry
and update of passwords is discussed in the sections on the RFADMIN(NS_CMD),
RFSTART(NS_CMD), and RFPASSWD(NS_CMD) commands.

Client Authorization
The Remote File Sharing facility provides a way for an administrator to selec­
tively advertise directories through the ADV(NS_CMD) command. For example, if
you want to advertise /usr/private, but only want to authorize machines machl
and mach2 to mount that directory, you would issue the command:

adv PRIVATE lusr/private mach1 mach2

Without a list of machines, the ADV(NS_CMD) command puts no restriction on
availability.

An administrator may also choose to advertise a directory read-only by using the
-r option. Here, a remote mount will only succeed if the mount command also
includes the -r option.

User and Group Id Mapping
Whenever a user accesses a remote file, that user's permissions must be checked
as part of the normal processing of the request (for example, an 11 open to write 11

is only valid if the user making the request has write permissions on the file).
When accessing a file across two machines, there is no guarantee that the user
and group ids on the local machine have the same meaning on the other
machine.

Some systems handle this problem by reqUIrmg the same numeric ids across
machines Jnd expecting the administrators to make sure that the /ete/passwd
and fete/group files are identical across all machines (at least the entries for all
users that access remote files). This approach is very straightforward from the
perspective of administrative simplicity, but it is not always feasible, especially in
large or already established environments.

Network Services Extension Definition Page 337

Remote File Sharing provides a range of id mapping options through the
IDLOAD(NS_CMD) command. Id mapping is done by a server machine on all
incoming requests, as well as in reporting file ownership ids in response to a
request from a client machine (for example, ST A T(BA-OS) and FST AT(BA_OS). A
client machine maps ids in order to determine the effective user or group id to
use in executing a program that is stored on a server and is "set user id" or "set
group id".

On each machine, mapping can be set globally, for all remote machines, or on a
per-machine basis. All mapping is based on one of two default cases:

id This case maps all incoming ids to id, which means that remote
users will have the permissions associated with id in accessing a
server's files. This mapping is the default if no other mapping is
specified.

transparent This is a null mapping; remote user and group ids are used locally
without change.

These base mappings are augmented by two additional capabilities:

exclude

map

This capability excludes selected ids from the default mapping by
mapping them to an otherwise-unused id. This capability could be
used together with the transparent mapping capability to handle a
network where the /ete/passwd and fete/group files were identi­
cal, but the administrators did not want to allow certain permis­
sions (for example, root) from remote machines.

This capability provides arbitrary mapping between remote and
local ids that have different names or different numeric values. It
could be used with the transparent mapping to handle exceptions to
"nearly" identical /ete/passwd files.

15.9.4 References

[1] Su, Z. S., and J. Postel, The Domain Naming Convention for Internet
User Applications" , RFC-819, Network Information Center, SRI Interna­
tional, August, 1982.

Page 338 Network Services Extension Definition

NAME
adv - advertise a directory for remote access

SYNOPSIS
adv [-r] [-d description] resource pathname [client ...]
adv -m resource -d description [client ...]
adv -m resource [-d description] client ...
adv

DESCRIPTION

The adv command is used to make a resource from one computer available
for use on other computers. The machine that advertises the resource is
called the server, while computers that mount and use the resource are
clients. A resource is composed of a directory and everything under that
directory (including subdirectories); the directory must be within a file sys­
tem that is mounted locally.

There are three ways adv is used: (1) to advertise the directory pathname
under the name resource so it is available to each client; (2) to modify
client and description fields for currently advertised resources; or (3) to
print a list of all locally-advertised resources.

The following options are available:

-r

-d description

resource

Restricts access to the resource to a read -only
basis. The default is read-write access. If the
resource is on a read-only file system, it must
be advertised read-only, while resources with
local read-write access may be advertised
either read-only or read-write.

Provides brief textual information about the
advertised resource. The description is a sin­
gle argument surrounded by double quotes (II)
and has a maximum length of
{RDESC_MAX} characters; a description
longer than {RDESC_MAX} characters will
be truncated and result in a warning message.

This is the symbolic name used by the server
and all authorized clients to identify the
resource. The resource name can be up to a
maximum of {NAME_MAX} characters long
and must be different from every other
resource name in the domain; a resource name

Network Services Extension Definition Page 339

pathname

client

-m resource

longer than {NAME_MAX} characters will be
truncated and result in a warning message. All
characters must be printable ASCII characters
but must not include periods (.), slashes (f), or
white space.

This is the absolute path name of the adver­
tised resource on the local host. The path­
name cannot be the mount point of a remote
resource and it can only be advertised under
one resource name.

This specifies client machines that are author­
ized to remotely mount the resource. If no
client is named, all machines that can connect
to the server are authorized to access the
resource. client is of the form nodename,
domain.nodename, domain., or an alias that
represents a list of client names. A domain
name must be followed by a period (.) to dis­
tinguish it from a host name. The aliases are
defined in /ete/host.alias; the syntax of this
file matches the alias capability in
MAILX(AU_CMD).

This option modifies information for a
resource that has already been advertised. The
resource is identified by a resource name.
Only the client list and the description field
can be modified with this option.

When used with no options, adv displays all local resources that have been
advertised; this includes the resource name, the path name, the description,
the read-write status, and the list of authorized clients. The resource field
has a fixed length of {NAME_MAX} characters; all others are of variable
length. Fields are separated by two spaces and double quotes (,,) surround
the description.

This command may be used without options by any user; otherwise, it is
restricted to the super-user.

The host must be running Remote File Sharing before adv can be used to
advertise or modify a.resource entry.

Page 340 Network Services Extension Definition

ERRORS

FILES

If there is at least one syntactically valid entry in the client list, and the
command is otherwise valid, a warning will be issued for each invalid entry
and the command will return a zero exit status.

If (1) the resource name is not unique within the server's set of advertised
resources and the -m option is not used, (2) the resource name is not
unique within the host's domain, (3) resource is not a directory, (4) the
resource is not on a file system mounted locally, (5) there is at least one
client specified but none are syntactically valid, (6) the -m option is used
but neither a description nor a client list is provided, or (7) the resource
name contains a period (.) or a slash (f), an error message will be sent to
standard error.

jete/host. alias

USAGE
Administrator, End-User.

SEE ALSO
MOUNT(NS_CMD), RFSTART(NS_CMD), UNADV(NS_CMD)

LEVEL
Levell

Network Services Extension Definition Page 341

NAME
dname - print or set the domain name of the host

SYNOPSIS
dname [-D domain] [-d]

DESCRIPTION
Without options, or when used with the -d option, dname prints the name
of the domain. When used with the - D option, dname changes the
domain name of the host to domain.

The domain name must be from 1 to {NAME_MAX} characters, consist­
ing of any combination of letters (upper and lower case), digits, hyphens (-),
and underscores (_). If domain is not a valid domain name, the previous
name is retained.

The domain name cannot be changed while Remote File Sharing is run­
ning.

Any user can execute this command without options or with the -d option,
but only the super-user can use the -D option to set the domain name.

ERRORS
When dname is used without options and (1) the domain name is not set
or (2) the domain name cannot be accessed, an error message will be sent to
standard error.

When the -D option is used and (1) the user is not the super-user, (2)
Remote File Sharing is running, or (3) the new domain name is not syntac­
tically valid, an error message will be sent to standard error.

USAGE
Administrator, End-User.

SEE ALSO
NSQUERY(NS_CMD), RFSTART(NS_CMD)

LEVEL
Levell

Page 342 Network Services Extension Definition

FUMOUNT(NS_CMD)

NAME
fumount - forced unmount of an advertised resource

SYNOPSIS
fumount [-w sec] resource

DESCRIPTION
The fumount command unadvertises the specified resource, triggers a
remote warning to clients that have the resource mounted, and disables
remote access to the resource. The -w sec causes a delay of sec seconds
prior to the execution of the disconnect.

When fumount sends its warning to remote clients, as well as when it
actually disables remote access to a resource, it triggers the execution of an
administrative shell script on the remote system(s). This shell script can be
modified by the administrator of each machine, in order to customize the
actions taken in response to such fumount operations. The location and
default actions of this shell script are implementation-dependent.

The fumount command issues a warning message if the resource is
remotely mounted but is not advertised.

This command is restricted to the super-user.

ERRORS

If resource (1) does not physically reside on the local machine, (2) is an
invalid resource name, (3) is not currently advertised and is not remotely
mounted, or if (4) the command is not run with super-user privileges, an
error message will be sent to standard error.

USAGE
Administrator.

SEE ALSO
ADV(NS_CMD), MOUNT(AS_CMD), UMOUNT(AS_CMD), UNADV(NS_CMD)

LEVEL
Levell.

Network Services Extension Definition Page 343

FUSAGE(NS_CMD)

NAME
fusage - disk access pro filer

SYNOPSIS
fusage mount_point I advertised_resource I blk_special_dev] 000

DESCRIPTION
When used with no options, fusage reports block i/o transfers, in kilo­
bytes, to and from all locally mounted file systems and advertised resources
on a per client basis. The count data are cumulative since the time of the
mount. When used with an option, fusage reports on the named file sys­
tem, advertised resource, or block special device.

The report includes one section for each file system and advertised resource
and has one entry for each machine that has the directory mounted,
ordered by decreasing usage. Sections are ordered by device name; adver­
tised resources that are not complete file systems will immediately follow
the sections for the file systems they are in.

USAGE
Administrator, End-User.

SEE ALSO
ADV(NS_CMD), MOUNT(AS_CMD)

LEVEL
Levell.

Page 344 Network Services Extension Definition

IDLOAD(NS_CMD)

NAME
idload - user and group ID mapping

SYNOPSIS
idload [-n] [-g g_rules] [-u u_rules] [directory]

DESCRIPTION
The idload command is used to build translation tables for user and group
ids. These tables are used to translate between the user and group id of a
user on a client machine and the ids on a server machine. When a server is
responding to a request from a user on a client, the server uses its tables to
decide what permissions to give the client user. A server also uses its tables
in reporting file ownership ids for its own files, translating them into the
corresponding ids for the client. A client uses its tables only when execut­
ing a set-uid or set-gid program that is stored on a server; it uses its trans­
lation tables to decide what effective user or group id to give the program
when it executes on the client.

The idload command produces the user and group translation tables
according to the rules set down in the u_rules and g_rules files. If the
rules files are empty, or if idload has never been run, remote user and
group ids are mapped to the value {UID_MAX}+1. [An id of
{UID_MAX} + 1 is just like a regular user or group id, except that no local
user can be assigned this id.]

Ids are always mapped within the system by their numeric value, but the
rules files given to idload can use both names and numeric ids to describe
the mapping. If any local users or groups are specified by name in the rules
files, idload uses the local /ete/passwd and fete/group files to translate
those names into numeric ids. If any remote users or groups are specified
by name, instead of by numeric id, idload must be able to access copies of
the /ete/passwd and fete/group files from the corresponding remote hosts.
idload looks for the remote password and group files under the names
directory/domain/host/passwd and directory/domain/host/group, respec­
tively, where directory is taken from the command line, and domain and
host specify the desired host (domain.host). If directory is not specified,
the default value of /usr/nserve/auth.info is used.

The following options can be used with idload:

-n No change will be made to the translation tables
currently in effect. Instead, idload will interpret the
input files, and will print a description of the results on
standard output.

Network Services Extension Definition Page 345

IDLOAD(NS_CMD)

The u_rules file contains the rules for user id transla­
tion. (" If the -u option is omitted, the default rules file
/usr/nserve/authinfo/uid.rules is used.")

The g_rules file contains the rules for group id transla­
tion. (" If the -g option is omitted, the default rules file
/usr/nserve/authinfo/gid.rules is used.")

This command is restricted to the super-user.

A host need not be running Remote File Sharing in order to run idload;
the new mapping will take effect when the host next starts Remote File
Sharing. If the host is running Remote File Sharing when idload is run
successfully, the new mapping takes effect immediately.

RULES FILES
The u_rules and g_rules files are built according to the same syntax rules.
The following text describes the mapping of user ids and· user names in a
u_rules file; the method for mapping group ids in a g_rules file is directly
parallel. Note that the group id mapping is completely independent of the
user id mapping.

The rules file has two types of sections, both optional: global and host.
There can be only one global section, but there can be as many host sec­
tions as needed.

The global section describes the default conditions for translation of user
ids from any machines that are not explicitly referenced in a host section.
If the global section is missing, the default action is to map all remote user
ids from unspecified hosts to the value {UID_MAX}+1.

A host section is used for each host or group of hosts that is to be mapped
differently from the global definitions. The first line of a host section
names the host(s) that are described by that section. If multiple hosts are
described in a single host section, and any users (or groups) are specified
by name, idload will read the passwd (or group) file only for the first
host named and will use that information for all hosts in the section. A
host can only be described once within anyone rules file.

The overall format of a rules file is described below. Each of the instruc­
tions listed within the global and host sections is optional, but, if used,
must appear in the order shown. Following this overall format is an expla­
nation of each of the individual instruction types.

Page 346 Network Services Extension Definition

IDLOAD(NS_CMD)

global
default local I transparent
exclude remote_id-remote_id I remote_id ...
map remote_id:locall remote_id ...

comment text
host domain.host ...
default local I transparent
exclude remote_id-remote_id I remote_id I remote_name ...
map remote:locall remote
map all

Any line beginning with a '#' is regarded as a comment, and is otherwise
ignored by idload.

The line

default local I transparent

defines the mode of mapping for remote users that are not specifically
mapped in other instructions. local can be replaced by a local user name or
id to map all remote users into a particular local name or id number. The
default value cannot be root; thus, local can be neither 0 nor root. tran­
sparent means that each remote user id will have the same numeric value
locally unless it appears in the exclude or map instruction. If the default
line is omitted, all remote ids that are not explicitly mapped with the map
instruction are mapped to the value {UID_MAX} + l.

The line

exclude remote_id-remote_id I remote_id I remote_name ...

defines remote numeric id(s} and remote names that should be excluded
from the default mapping, and that will instead be mapped to the value of
{UID_MAX}+ 1. Each item in the list to be excluded can be a range of
numeric ids, a single numeric id, or a single name (although a remote_name
cannot be used in a global section). This instruction may be repeated as
many times as needed.

Network Services Extension Definition Page 347

IDLOAD(NS_CMD)

The lines

map remote:locall remote

map all

define the local user ids and names that remote user ids and names will be
mapped into. The first form of the map instruction is used to map indi­
vidual ids; this instruction may be repeated as many times as needed. In
this instruction, remote may be either the login name or the numeric id of a
remote user; similarly, local may be either the login name or numeric id of a
local user. (However, remote names cannot be used in a global section.)
An id pair remote:local says to map the id for that remote user into the id
for the local user. If remote and local are identical within a pair, the :local
part may be omitted. In the second form of the map instruction, the literal
entry all says to map each of the user names in the remote system's
passwd file (or group file, for group names) into the id for the same name
on the local host. (map all cannot appear in a global section.)

ERRORS

FILES

On successful completion, idload will modify the user and group mapping
currently in effect and will return a zero exit status. If idload fails for
either type of mapping (user or group), it will return a non-zero exit status
without modifying the current mapping of that type.

If any id is mapped more than once within a single host or global section,
a warning will be issued, all mappings for that id but the first will be
ignored, and idload will continue processing.

If (1) a rules file cannot be found or opened, (2) there are syntax errors in
the rules file(s), (3) there are semantic errors in the rules file(s), (4) remote
user or group names are used, but the requisite host information could not
be found, or (5) the command is not run with super-user privileges, an error
message will be sent to standard error.

/ete/passwd
fete/group
/usr/nserve/auth.info/domain/host/passwd
/usr/nserve/auth.info/domain/host/group
/usr/nserve/auth.info/uid.rules
/usr/nserve/auth.info/gid.rules

Page 348 Network Services Extension Definition

USAGE
Administrator.

IDLOAD(NS_CMD)

If remote users and groups are mapped by name, the requisite passwd and
group files can be gathered on just one host (such as the primary domain
name server), advertised as a resource, and then accessed from other hosts
by being remotely mounted under directory.

EXAMPLE

The following is an example of a "-rules file.

global
default transparent
exclude 0-100

host music. sonata
~xclude fred mary
map all

This sample file is composed of a global section and one host section, for
the host sonata in domain music. For all hosts other than music.sonata,
the user ids will be mapped transparently, that is, to the identical numerical
value on the local host. Excluded from this transparent mapping are ids
between ° and 100, which will instead be mapped to {UID_MAX}+ 1.

For host music. sonata, each user id will be mapped to the one with the
same login name on the local host, with the exception of remote users fred
and mary, which will be mapped to {UID_MAX}+1. Those remote user
ids that have no matching login name in the local /etc/passwd file will also
be mapped to {UID_MAX}+1.

SEE ALSO
MOUNT(NS_CMD)

LEVEL
Levell.

Network Services Extension Definition Page 349

NSQUERY (NS_CMD)

NAME
nsquery - query name server information

SYNOPSIS
nsquery [- h] [name]

DESCRIPTION

The nsquery command provides information about resources available
from both the local domain and from other domains. When used with no
options, nsquery identifies all resources that have been advertised in the
local domain. The -h option causes header information to be omitted from
the display. A report on selected resources can be obtained by specifying a
name, where name is one of the following:

node name

domain.

domain. node name

The report will include only those resources avail­
able from the host nodename.

The report will include only those resources avail­
able from domain.

The report will include only those resources avail­
able from the host domain.nodename.

When name does not include a period (.), it will be interpreted as a
nodename within the local domain. If the name ends with a period (.), it
will be interpreted as a domain name.

The information contained in the report on each resource includes its
advertised name (resource), its read/write permISSIons, the server
(domain.nodename) that advertised the resource, and a brief textual
description of the resource.

FUTURE DIRECTION
In the future, the nsquery command will be changed so that if the resource
was advertised with a restricted client list that does not include this host,
the read/write permissions are listed as inaccessible.

ERRORS

If no entries are found when nsquery is executed, a zero exit status is
returned.

If (1) the domain name server cannot be contacted, or (2) name is not
known to the domain name server, an error message will be sent to stan­
dard error.

Page 350 Network Services Extension Definition

NSQUERY (NS_CMD)

USAGE
Administrator, End -User.

SEE ALSO
ADV(NS_CMD), UNADV(NS_CMD)

LEVEL
Levell

Network Services Extension Definition Page 351

RFADMIN(NS_CMD)

NAME
rfadmin - domain administration

SYNOPSIS
rfadmin
rfadmin -a hostname
rfadmin -r hostname
rfadmin -p

DESCRIPTION
The rfadmin command is used to add and remove hosts and their associ­
ated authentication information from the domain membership list(s) main­
tained on a primary domain name server. It is also used to transfer domain
name server responsibilities from one host to another. Used with no
options, rfadmin prints the name of the current domain name server for
the local domain, in the form domain.nodename.

The rfadmin command can only be used to modify the domain member­
ship lists on the primary domain name server (-a and -r options). Any
host acting as the domain name server can use the -p option to pass the
domain name server responsibility to another machine. Finally, any host
running Remote File Sharing can use rfadmin with no options to print the
name of the current domain name server. In all cases, the user must have
root permissions to use the command.

-a hostname

-r hostname

-p

Page 352

Used to add a host to a domain that is served by
this domain name server. hostname must be of the
form domain.nodename. It creates an entry for
hostname in the domain/passwd file and prompts
for an initial authentication password; the password
prompting process conforms to that of
PASSWD(AU_CMD}. The domain/passwd file has a
format similar to /etc/passwd; it consists of name
and encrypted password fields separated by a colon
(:).

Used to remove a host from its domain by removing
it from the domain/passwd file. Hostname must be
of the form domain. nodename.

Used to pass the domain name server responsibili­
ties to another host. The host that will assume the
domain name server responsibility is the first· one
available from a previously-specified list; the list
contains the primary name server as the first choice,

Network Services Extension Definition

RFADMIN(NS_CMD)

and some number of other hosts that function as
secondary name servers. The means by which a
domain administrator specifies this list is
implementation -specific.

ERRORS

FILES

When used with the -a option, if (1) hostname is not unique in the domain
or (2) the password prompting process fails, an error message will be sent to
standard error.

When used with the -r option, if (1) hostname does not exist in the
domain or (2) hostname is defined as a domain name server, an error mes­
sage will be sent to standard error.

If there are no alternative domain name servers defined for domain when
the -p option is used, an error message will be sent to standard error.

If the command is run without super-user privileges, an error message will
be sent to standard error.

/usr /nserve/auth.info/domain/passwd

USAGE
Administrator.

SEE ALSO
PASSWD(AU_CMD), RFPASSWD(NS_CMD), RFSTART(NS_CMD)

LEVEL
Levell.

Network Services Extension Definition Page 353

RFPASSWD(NS_CMD)

NAME
rfpasswd - change host authentication password

SYNOPSIS
rfpasswd

DESCRIPTION
rfpasswd updates the authentication password for a host; processing of the
new password follows the same criteria as PASSWD(AU_CMD). The updated
password is registered at the domain name server (in
/usr/nserve/auth.info/domainjpasswd) and replaces the password stored
at the local host.

This command is restricted to the super-user.

ERRORS

FILES

If (1) Remote File Sharing is not currently active on this host, (2) the old
password entered from this command does not match the existing password
for this host, (3) the two new passwords entered from this command do not
match, (4) the new password does not satisfy the security criteria in
PASSWD(AU_CMD), (5) the domain name server does not know about this
host, or (6) the command is not run with super-user privileges, an error
message will be sent to standard error.

/usr /nserve/domain/passwd

USAGE
Administrator.

SEE ALSO
PASSWD(AU_CMD), RFSTART(NS_CMD)

LEVEL
Levell.

Page 354 Network Services Extension Definition

RFSTART (NS_CMD)

NAME
rfstart - start Remote File Sharing

SYNOPSIS
rfstart [-v] [-p host_addr]

DESCRIPTION

The rfstart command starts Remote File Sharing on a host and defines an
authentication level for incoming mount requests. rfstart supports two
levels of host authentication. When executed, rfstart always sends a pass­
word for this host to the domain name server to authenticate this host's
identity. A second level of verification is controlled by an administrator via
the -v option.

-v Specifies that every client that requests to mount a
resource from this host must be verified against the
domainjpasswd file; any host for which there is no
entry in domainjpasswd, or that does not provide the
correct password, will not be allowed to mount
resources from this host. If -v is not specified, hosts
named in domainjpasswd will still be verified, but
mount requests from other hosts will be granted
without verification. {In the above, domain is the
domain of the client machine.}

Specifies the network address of the domain name
server; the syntax for host_addr is implementation
specific. How the system determines the domain name
server when the -p option is not used is implementa­
tion specific (but see below).

If the host password has not been set, rfstart will prompt for a password;
the password prompting process conforms to that of LOGIN(AU_CMD). The
password entered must match that previously entered on the domain name
server for this host with RFADMIN(NS_CMD). If the password entered
matches that on the domain name server, it will be set as the local host
password. If it does not match, the password will remain unset on the local
host, so that rfstart will again prompt for the password on its next invoca­
tion.

Network Services Extension Definition Page 355

RFSTART(NS_CMD)

When rfstart is executed successfully on a host other than the domain
name server, the host will receive from the domain name server the host
names and addresses of the primary and secondary name servers for the
local domain. The location and format of this information is
implementation-dependent, but it will be used by subsequent invocations of
rfstart in the absence of the -p option.

This command is restricted to the super-user.

ERRORS

FILES

If (1) Remote File Sharing is already running, (2) there is no communica­
tions network, (3) the domain name for this host has not been set, (4) the
domain name server cannot be found, (5) the domain name server does not
recognize this host, (6) the command is run without super-user privileges,
an error message will be sent to standard error.

If rfstart is used without the -p option and the local host has no other
listing of name servers for its domain, an error message will be sent to stan­
dard error.

JusrJnserve/auth.info/domainJpasswd

USAGE
Administrator.

After the first use, rfstart will probably be used in the system startup
scripts. It is expected that rfstart will be used with other initialization
routines each time a machine is booted so that remote resources are
mounted along with local resources, and are thus always available to users.

SEE ALSO
DNAME(NS_CMD), RFADMIN(NS_CMD), RFPASSWD(NS_CMD),

RFSTOP(NS_CMD)

LEVEL
Levell.

Page 356 Network Services Extension Definition

NAME
rfstop - stop Remote File Sharing

SYNOPSIS
rfstop

DESCRIPTION

RFSTOP (NS_CMD)

The rfstop command stops the Remote File Sharing facility on a host until
another RFSTART(NS_CMD) is executed.

Executing rfstop on a machine will in no way disrupt the sharing of
resources among other machines engaged in Remote File Sharing. Execut­
ing rfstop on a machine that is not the domain name server will not halt
or interrupt domain name service to other hosts in the domain. When exe­
cuted on the acting domain name server, the domain name server responsi­
bility is moved to another name server as though RFADMIN(NS_CMD) had
been executed with the -p option. Executing rfstop on the domain name
server does not halt domain name service to other hosts in the domain if at
least one host has been previously configured as a secondary name server
for the domain, and one of those hosts is currently accessible through
Remote File Sharing.

This command is restricted to the super-user.

ERRORS
If (1) there are resources currently advertised by this host, (2) resources
from this machine are still remotely mounted by other hosts, (3) there are
still remotely mounted resources in the local file system tree, (4)
RFSTART(NS_CMD) has not previously been executed, or (5) the com­
mand is not run with super-user privileges, an error message will be sent to
standard error.

USAGE
Administrator.

SEE ALSO
ADV(NS_CMD), FUMOUNT(NS_CMD), MOUNT(AS_CMD), RFADMIN(NS_CMD),
RFST ART(NS_CMD), RMNTSTAT(NS_CMD), UNADV(NS_CMD)

LEVEL
LevelL

Network Services Extension Definition Page 357

RMNTSTAT(NS_CMO)

NAME
rmntstat - display mounted resource information

SYNOPSIS
rmntstat [-h] [resource]

DESCRIPTION
When used with no options, rmntstat displays a list of all local resources
that are remotely mounted, the local path name, and the corresponding
clients. rmntstat returns the remote mount data regardless of whether a
resource is currently advertised; this ensures that resources that have been
unadvertised but are still remotely mounted are included in the report.
When a resource is specified, rmntstat displays the remote mount infor­
mation only for that resource. The -h option causes header information to
be omitted from the display.

ERRORS

If no resources are remotely mounted, rmntstat will return a zero exit
status.

If resource (1) does not physically reside on the local machine or (2) is an
invalid resource name, an error message will be sent to standard error.

USAGE
Administrator, End-User.

SEE ALSO
FUMOUNT(NS_CMD), MOUNT(AS_CMD)

LEVEL
Levell.

Page 358 Network Services Extension Definition

UNADV(NS_CMO)

NAME
unadv - unadvertise a resource

SYNOPSIS
unadv resource

DESCRIPTION
The unadv command unadvertises resource, which is the advertised sym­
bolic name of a local directory, by removing it from the advertised informa­
tion on the domain name server. Unadvertising a resource prevents subse­
quent remote mounts of that resource. It does not affect continued access
through existing remote or local mounts.

An administrator at a server can unadvertise only those resources that phy­
sically reside on the local machine. A domain administrator, however, can
unadvertise any resource in the domain by running the command from the
acting domain name server and specifying the resource name as
domain. resource.

This command is restricted to the super-user.

ERRORS

If resource is not found in the advertised information, an error message will
be sent to standard error.

USAGE
Administrator.

If a host crashes while it has resources advertised, the domain name server
may continue to list those resources as being available even though they are
not available. It is only to correct this situation that a domain administra­
tor should unadvertise another host's resources.

SEE ALSO
ADV(NS_CMD), FUMOUNT(NS_CMD), NSQUERY(NS_CMD)

LEVEL
Levell

Network Services Extension Definition Page 359

Indexes

/bin 27
/etc/group 337-338, 345, 348-349
/etc/passwd 337-338, 345, 348-349,

352
/usr/bin 27
/usr/lib/terminfo 137, 140, 165, 169, 202

A

abnormal process termination routines -
42, 92, 96

absolute value 110
access mode 27, 28, 43, 45-47, 58, 81
access permission bits 27, 43, 45-48, 81,

129
access pure procedure 44
accounting 37
active-process 27, 30-31, 33
address space 71, 303-304, 306,

308-310,312-313,317,321,323
Advanced Utilities Extension 4-5, 135
advertise 326-327, 329-330, 332-337,

339-341, 343-344, 349-350,
357-359

advertised directory 329, 333-335, 337,
339, 344, 349, 359

advertised resources 327, 329-330, 332,
334, 336, 339-341, 343-344,
349-350, 357-359

advisory-mode 69
alarm clock 56, 63, 91, 96
ANSI 9, 141, 153
ANSI X3J11 9
application-level operations 332
argument, invalid (see EINV AL)

ASCII 10-12, 14, 154, 182, 332, 340
ASCII character set 26
asynchronous events 212-213,

216-217, 238, 247, 256-257, 265,
267, 270, 272, 278, 284, 287

asynchronous execution 213, 216
audience 3

System V Interface Definition

General Index
B

backspace 114, 144, 150-151, 154, 159,
174, 196

Base System 3-8, 11, 19-20, 22, 24, 32,
36, 63, 129, 135, 209, 211, 213, 285,
287, 325-326, 328

Base System Addendum 19-131
Base System V 4, 19, 22, 24, 129, 135,

209
Basic Utilities Extension 4-5, 135
baud rate 129, 161
Big 5 code-set 15
binary floating point arithmetic 9
block special 101, 344
blocking lock 59, 101
blocking write-lock 84
BU 94, 137, 204, 206, 328-329
BUFSIZ 32

c

C language 3-4, 8, 9, 15, 19, 30, 54
Changes from Issue 2, Volume 1 129-

132
change group 338
character conversion 115-122
character special device 39, 77
character-special file 78, 82, 85, 103
child-process 29, 37, 60, 63-64, 106
chtype 168, 170, 177, 183,
client 326-327, 330, 335-341,

343-345, 350, 355, 358
client authorization 327, 330, 337,

339-340
client list 340-341, 350
client machine 335, 337-339, 345, 355
clock ticks 29
clock, report cpu time used 106
close-on-exec flag 28, 55, 58, 63
CMD 6, 19, 94, 137, 140, 160-161, 165,

204, 206, 325, 328-332, 334,
336-338, 340-344, 349, 351-359

Page 363

code-set designation 14
code-set internal 12-13
code-set JIS 6226 14
code-set template 12-13, 15
COLUMNS 137, 169, 191,204
command syntax standard 112
command-line parser 111-112
command-line syntax 111-112
communication line 81,84,290
communications error 327
communications network 288-289, 356
Compatibility Routines 137, 193
conforming systems 3, 5, 19, 24, 214, 331
connect indication 212, 218-220, 223,

225, 228, 230-231, 237-238,
241-242, 247, 255-256, 268, 277

connect request 217, 219-221, 225, 237,
246, 255, 266, 277-278

connection establishment 212, 215,
218-221, 223, 225, 227, 237,
245-246, 251-252, 259-260,
266-267, 277

connection release 218, 220-221, 223,
225, 277, 279

connection-mode service 214-215
217-218, 220-221, 223-225, 227:
242, 253, 261

connectionless-mode service 214-215
217,221,224,227,261,263 '

control characters, terminal 165, 186
control modes, terminal 186
convert a string 108, 115-116, 119
convert formatted input 119
convert time 107-108
core dump 42, 92, 96
cpu time used 106, 172
create a new process 30,63-64
crt screen 150, 168
curses library 168, 202
curses/terminfo package 135
cursor motion 151, 154-156, 185-186,

192

Page 364

o

data part 102, 264, 275, 286, 301, 304,
310-313,316-317,322-323

data segment 39,54,304
data transfer 212, 214-215 218,

220-223, 232, 242, 252, 2~4, 260,
275, 280, 283, 289

data unit 212-213, 215, 221-222, 224,
241, 251-252, 259-260, 263-264,
271-273, 275, 280

Daylight Saving Time 108
deadlock 37, 62, 70-71, 86, 103
decimal conversion 115-117, 119
default action 55, 91, 95, 263, 343, 346
default mapping 338, 347
device 6, 12, 20, 37-40, 68, 73, 76, 78,

82, 84-85, 93, 97, 100-101, 103,
114, 209, 214, 224, 285-288, 290,
292, 294, 297 -298, 300-302
304-305, 333, 344 '

device block special 39, 77, 101, 344
device character special 77, 39
device number identifying 100
device-driver 10, 12
DEVTTY 33
directory create 39, 48, 75-76, 79,

82-83
directory defined 30, 50
directory entries 27, 50, 75, 79, 87
directory root 27
directory search permission 56
directory tree structure 20
directory writing 38-39, 48, 76, 82, 87
disconnect 216-217, 223, 228, 237, 257,

268-269, 277, 299, 314-315, 343
domain 326, 329-330, 332, 336,

338-342, 345, 347-350, 352-357
359 '

domain membership lists 352
domain name 326, 329-330, 332, 336,

339-342, 347, 349-350, 352-357
359 '

domain name server 326, 336, 349-350,
352-357, 359

System V Interface Definition

domain name service 326, 332, 357
domain name space 326, 336
duplicate file-descriptor 53

E

E2BIG 36,57
EACCES 36, 44, 46, 48, 51, 56, 62,

70--71, 76, 79, 82, 87
EAGAIN 36, 48, 62, 64, 71, 83--86, 101,

103--104, 303--305, 307--308,
311--313,315,317,320,323

EBADF 36, 51, 53, 61, 71, 73, 85, 103,
302--304, 314, 317

EBUSY 37,87
ECHILD 37
ECHO 182, 187
ECOMM 327
EDEADLK 37,62, 70--71, 86, 103
EDOM 37
EEXIST 37,76,79,82,87
EFAULT 37, 57, 303--304, 306,

308--310,312--313,317,321
EFBIG 37, 103
effective group ID 27, 46, 89, 345
effective user ID 27, 46, 89, 338, 345
EFFECTS 20,213,287,328
effects, administered system extension -

329
effects, base system 213, 287, 328
effects, basic utilities extension 328
effects, other extensions 328
effects, software development

extension 213
EINTR 37, 82, 85, 93, 97, 103, 130,

301--303,305,317,321,328
EINVAL 38, 44, 61, 73, 90, 93, 98, 100,

303, 305--308, 310, 312--315, 317,
321, 323, 240

EIO 38, 76, 85, 87, 103, 132, 302
EISDIR 38,48,82
ELIBACC 38, 57
ELIBBAD 38
ELIBEXEC 38,57
ELIBMAX 38

System V Interface Definition

ELIBSCN 38
EMFILE 38,48,51,61,82
,EMLINK 38, 76
EMULTIHOP 327
ENAMETOOLONG 129
encryped password 352
end-of-file 32, 65, 70, 84--85
ENFILE 38, 48, 82
enforced record locking 46, 48, 60, 77, 83,

85, 101, 103
ENODEV 38
ENOENT 38, 44, 46, 48, 51, 56, 76, 78,

82, 87, 129
ENOEXEC 38, 56
ENOLCK 39, 62, 86, 103
ENOLINK 327
ENOMEM 39,57,64
ENOSPC 39, 48, 76, 79, 83, 103, 130
ENOTBLK 39
ENOTDIR 39, 44, 46, 48, 51, 56, 76, 78,

82, 87
ENOTTY 39
environmental variables 20, 27, 108, 137,

205--206
ENXIO 39, 82, 85, 103, 302, 305--307,

312--315
EOF 32,60,67,73, 111, 113, 122
EPERM 39, 46, 78, 90
EPIPE 39, 103
ERANGE 40, 304, 312
erase character 151, 157, 159, 165, 183,

189
EREMOTE 328
EROFS 40, 44, 46, 48, 76, 79, 82, 87
ERR 93,97, 131, 182, 187--188, 191, 199
ermo header file 36,213, 287, 327--328
error conditions 7, 20, 36--37, 39, 62, 65,

71,170,213,287,327--328,330
error handling 10, 215, 217
Error Handling Standards 10
error message standard 248, 330,

341--343, 348, 350, 353--354,
356--359

error messages 112, 157, 170, 191, 219,
248, 303, 305, 313--315, 317, 320,
324, 330, 341--343, 348, 350,
353--354, 356--359

Page 365

error, last error encountered 219, 248
escape character 150, 165, 169, 182
escape sequences 150, 161, 169, 187
ESPIPE 40, 73
ESRCH 40
ETSDU 213, 252, 260, 264, 275-276
ETXTBSY 40, 44, 48, 56, 82
event 47, 116, 122, 155, 157, 159-160,

212-214, 216-217, 219, 222, 225,
228, 230, 232, 238, 247, 256-257,
265, 267, 270, 272, 278, 282, 284, 287,
293, 302, 307-308, 314, 319-320,
332, 336, 359

EXDEV 40
executable file 19, 54
execute mode 43, 46, 216, 219, 246-247,

255, 257, 264, 266, 271, 275, 280
execute permission 38, 43, 129
execute/search permission 27
execution 22, 24, 37, 39, 45-46, 56, 58,

64, 77, 93, 97, 131-132, 212-213,
216, 238, 240, 243, 247, 250,
253-254, 256-257, 261, 263, 265,
267, 269-270, 272, 274, 276,
278-279, 281-282, 284, 343

execution process 22, 37, 64, 97, 216
exit status 341, 348, 350, 358
exiting a process 21-22, 33, 42, 56, 93,

97
expedited message 213
external variable 36, 108-109, 111, 130,

215

F

FCHR_MAX 29,37,70
FIFO 73, 77, 80, 82, 85-86, 102, 104
fildes 53, 58, 61, 69, 71, 73, 84-86, 101,

103-104, 191, 302, 304-307,
311-315

file access 22, 27-28, 36, 43-44, 47,
209, 213, 294, 325, 327, 333, 337

file access permissions 27, 44, 47, 337
file block special 32, 39, 77
file change mode 45-46

Page 366

file change owner 19,46
file character special 28, 39
file close 28, 74, 83, 42, 48, 53, 58, 60,

104, 216, 244, 290, 292, 297, 302
file close-on-exec flag 28, 55, 58, 63
file create new 47, 77-78
file descriptor 28, 36, 38, 47-48, 53, 55,

58, 60-61, 63, 69, 71, 73, 80-82,
84-85, 101, 103, 189, 191, 212, 214,
216, 218, 228, 238, 240, 243-244,
246, 251, 253-255, 257, 259, 261,
263, 265, 267-268, 270, 272-273,
276-277, 279, 281-282, 284,
291-295, 297, 299, 301-305,
311-312,314-317,319-323,327

file descriptor open 28, 36, 38, 47-48,
53, 58, 60-61, 69, 71, 73, 80, 82,
84-85, 101, 103, 214, 244, 251, 259,
261, 282, 291, 293-294, 301-305,
312,314,316-317,319,322-323

file device 6, 20, 37, 39-40, 68, 73, 78,
82, 84, 86, 101-103, 214, 287, 290,
292, 294, 297, 304, 333, 344

file directory 20, 27-28, 30, 31, 37-40,
48, 50, 77, 79, 82-83, 333, 335, 344

file end of 60, 67, 70, 81, 85, 101-102,
122

file execute 38, 43-44, 48, 54, 60, 82,
345

file fifo special 77
file flags 58-59, 61, 80-81, 101, 259,

329
file group 27, 43, 46-47, 78, 81, 337,

345-346, 348-349
file link 27, 29, 37-38, 40, 297
file locks 46, 48, 59-60, 62, 69-71, 83,

101
file maximum size 37, 103
file mode 27-28, 43-47, 56, 63, 69, 75,

77-78,81, 161
file mode creation mask 47, 56, 63, 75,

78, 81
file name 7, 28-30, 38, 27-28, 30, 50,

54, 57, 58, 80, 160, 202, 259,
291-292, 327, 330, 334-335, 342,
344-345, 348-349

System V Interface Definition

file open a 29, 36-38, 47, 56, 60, 67, 74,
80-82, 86, 103-104, 131, 259, 261,
282, 290-291, 293-294, 301-305,
312, 314, 316-317, 319, 322-323,
337, 348

file ordinary 28, 39, 46-47, 54, 56, 60,
77, 81, 84-85, 101,292

file owner 19, 27, 39, 43, 46-47, 78, 81
file permissions 27, 38, 43-45, 47-48,

82, 337
file pipe 58, 84, 332-333
file pointer 28, 32, 55, 81, 131, 171, 189,

311-312,319
file pure procedure shared text file 44, 48,

56,82
file read-only 40, 44, 46, 48, 79, 82, 339
file reading 7, 28, 36, 43, 46, 48, 59, 74,

80, 83-86, 101, 130, 297, 303, 311,
316-317

file remove 59-60, 69, 352
file rewrite 47
file set status flags 59, 80, 101
file size limit 56, 63, 102-103
file status 28, 58-59, 80-81, 101
file status flags 58-59, 80, 101
file stream 32, 65, 67, 114, 119, 130, 287,

290-291, 293-295, 299, 301-303,
305-306, 311-312, 314-316, 319,
322

file system 6, 15, 20, 22, 27-29, 31-32,
36, 38, 40, 44, 46, 48, 76, 79, 82, 87,
100, 103, 259, 287, 290, 292-294,
297, 320, 328-329, 335, 339, 341,
344, 348, 357

file system mount 100, 328-329, 335,
339, 341, 344, 357

file system read-only 40, 44, 46, 48, 82,
339

file table 38, 48, 82, 345
file truncate 47, 81
file update 329
file writing 28, 36, 39, 43-44, 46-48,

56, 59, 74, 80-83, 86, 101-104, 130,
297, 323, 332, 337

file-name expansion 28

System V Interface Definition

flags 28, 55, 58-61, 63, 80-81, 86,
101-102, 104, 108, 115-116, 137,
152, 154, 161, 170, 191, 216, 259,
262-264, 271, 275-276, 301-303,
305, 309, 311-312, 316-317,
319-320, 322-323, 329

floating point 9, 91, 95, 110, 116-118,
120-121, 123, 322

floating point standards 9, 118, 123
flow control 164, 186, 188, 263, 275-276,

279-281, 286, 290, 301, 304, 311, 323
fractional time-zones 109
function keys 144-148, 159-160, 182,

187, 190, 195
functions 3-4, 6-7, 9, 19, 22, 24,

31-32, 37, 40, 42-48, 50-51,
53-54, 57-58, 61, 63-65, 67-71,
73-82, 84-87, 89-93, 95-103,
106-112, 114, 118-120, 122-123,
125-126, 129-132, 135, 144-148,
159-160, 165, 169, 174, 182, 187,
190, 195, 209, 211-225, 228, 230,
237-257, 259-282, 284, 288, 290,
293, 305, 353

G

GKS 9
global definitions 346
goto, non-local 97
Graphical Kernel Subsystem 9
Greenwich Mean Time 108
group 3,9,27,29-31,33,43,45-47,55,

75, 77-78, 81, 89, 111-112, 129,
165, 216, 336-338, 345-346,
348-349

group id 27, 29-31, 33, 45-47, 55, 75,
77-78, 81, 89, 337-338, 345-346,
348

group id effective 46, 345
group id mapping 337-338, 345-346
group mapping 337-338, 345-346,

348-349

Page 367

H

header files 7, 28, 31-32, 36, 43, 45, 47,
50, 54, 58-60, 67, 69, 73, 77, 80, 108,
125-126, 191, 200, 211, 213, 259,
287, 327-328

hexadecimal conversion 116
hexadecimal equivalents 26
hierarchical file system 27
HOME 169, 196
host names 326, 340-342, 346-349,

352-357, 359
host password 345, 354-355

id mapping options 338
IEEE P1003 working group 9
IEEE P754 9, 118, 123
implementation-specific constants 7,

28-29,326
input 11, 29, 32, 65, 67, 112, 119-122,

141, 147-148, 168-169, 171, 173,
182-184, 186-189, 198, 307, 313,
345

input control 119, 122, 186
input modes 182
input queue 183, 307
input/output 9, 12, 22, 65, 288-289, 293,

319
intelligent terminals 156
internal code-set 12-13
internationalization 26, 10-11
interpreter 28
interrupt signal 37, 70, 91, 93, 95, 97,

186-188, 293, 320, 332, 357
interrupt characters 186
invalid argument (see EINV AL)

J

JIS 6226 code-set 14

Page 368

K

KE 6,20,40, 131-132, 329
Kernel Extension 4-6, 20, 22, 63
kill, end-user level utility 94

L

LANGUAGE variable 14
level-1 definition 8
level-2 components 8
line-buffered 32
line-discipline 294
LINES 137, 169, 172, 189, 191, 204
links file 27, 29, 37-38, 40, 297
links maximum number 38, 76
local conventions, internationalization -

11
local domain 347,350,352, 354, 356
lock read 59, 61, 101
lock write 59, 61, 101
locked segment 59-60, 62
login 14, 348-349, 355

M

mask, file creation 47, 56, 63, 75, 78, 81
math routines 38
MAXDOUBLE 29
message blocks 303,310-312,317,323
message queue 286, 290, 300-301, 307,

309-311,316-317, 319, 323, 331
message-discard 302-303, 310
message-nondiscard 302, 310
minimal run-time environment 19
mode 27-28, 43-47, 55-56, 63, 69, 75,

77-78, 80-81, 130, 136, 140-144,
146-148, 150, 152, 154, 156-161,
163-165, 169-170, 182, 186-188,
191-192, 195-196, 205, 209,
211-217, 219-222, 228, 232, 235,
241, 246-247, 255-257, 264, 266,
271, 273, 275, 280, 302-303, 310,
331, 336, 347

mode creation mask 47, 56,63, 75, 78, 81

System V Interface Definition

mode permission bits 43-44 47 78
modem connection 212, 215, 219-220,

232,241,246,266
mount point 329,340,344
mount point directory 329
mount request 328,332-333, 337,355
mounted file-system 100
multiplexing driver 286, 294-295,

297-299, 314-315
multiplexing, streams 286, 294-295,

297-298, 314-315, 319

N

name server 224, 326, 335-336, 339,
341, 349-350, 352-357, 359

name space 326, 336, 340
NaN 118,123
national languages 10, 15
national supplements 10
native character comparison 126
netbuf structure 213, 239
Network Services Extension 5, 214, 288,

328-330, 333
networking applications 209, 211, 223,

288, 338
new process image 54, 57
new-line character 32
new-process-file 54-57
NOCBREAK 182
nodelay 182, 188
node name 340, 350, 352
non-blocking call 39, 188
non-local goto 97
non-standard code-sets 15
NULL 32, 50-52, 117, 125-126, 131,

190-191, 200, 240, 242, 246, 249,
261, 263, 266, 268, 273, 277-278,
316, 322

null character 28, 30, 100, 114, 117,
125-126, 148, 150, 156, 163, 175, 191

null file 30, 55, 131
null pointer 32, 50-51, 55, 99, 117,

125-126, 131, 190, 200
numeric id 193,337-338,345,347-348

System V Interface Definition

o

open file-descriptor 28, 36, 47-48, 53,
55, 58, 60-61, 69, 71, 73, 80, 82,
84-85, 101

open files 29, 32, 36-38, 42, 47-48, 51,
53, 56, 58, 60, 67, 74, 80-82, 86,
103-104, 131, 214, 244, 251, 259,
261, 282, 290-294, 301-305, 312,
314, 316--317, 319--320, 322-323,
337, 348

open stream 32, 68, 209, 285--286,
289-294, 297, 300--301, 305--306,
312, 316, 319--320, 322

Open Systems Networking Interfaces 214
operating system services 6--7 20 22

215-216, 287, 289--291, 293~295:
297--300, 327--329

orderly release capability 220
ordinary file 28, 39, 46--47, 54, 56, 60,

77, 81, 84--85, 101, 292
OSI, Open Systems Interconnection

reference model 209, 211, 214
outstanding connect indications 223 228

230-231, 242, 268 "
owner 19, 27, 39, 43, 45--47, 55, 75,

77--78,81
owner, change 19, 46

p

pad 144, 158--159, 163--164, 168--171,
173,175

padding 115, 140--142, 144, 150, 154,
157,161,164-165, 178, 192

parameterized string 152, 156, 163, 191
parent-process 30, 56, 63--64
partitioning, System V 4
P ASSWD 352--354
passwd, password file 352, 354--355
PATH 27, 29, 38, 44, 46, 48, 51, 55--56,

76, 78, 82, 87, 129
path name 27,29--30,38,43--48,51,54,

56, 75--78, 80, 82, 87, 129, 259, 292,
327,340,358

Page 369

path prefix 30
path search 30-31
pending signals 93,96-97,302
permission bits, owner group other 43,

78
permissions execute 38, 43, 129
permissions read 27, 43, 51
permissions search 43-44, 46, 48, 51, 56,

76, 79, 82, 87, 129
permissions set 45-47
permissions write 43, 48, 76, 82, 87, 27,

169, 337
pipe 21, 28-29, 39-40, 53, 58, 73,

84-86,91,96, 102-104, 332-333
pipe open 28,58,85, 103
pipeline 21, 28-29 39-40 53 58 73

84-86,91,96, i02-104: 332-333 '
pollfd structure 293, 319-320
polling streams 293, 318-319, 324
portability 4, 19, 92-93, 96, 98, 289, 331
primary code-set 12-13
primary domain name server 349,

352-353
print formatted output 114
priority message 286, 290, 292, 300-301,

307,309,311,317,319,322-323
process 10, 15, 22, 27-31, 33, 36-40,

42, 46-47, 51, 54-57, 59-60
62-64, 69-71, 75, 78-82, 84-85:
91-93, 95-97, 101-104, 111, 113,
132, 195, 214, 216-217, 222, 224,
235, 244, 263-264, 268, 282, 285,
287-290, 294, 297, 299-303, 305,
307-308, 316-317, 324, 329,
331-332, 337, 348, 352-355

process child 37, 64
process create a new 30, 63-64
process exit 33, 92, 96
process image, new 54, 57
process locks 59-60, 62, 69-71, 101
process space 64, 71, 102, 289
process suspend 264
process table 36
process termination 33, 42, 91-92,

95-96

Page 370

process transformed into new process 54
process-group 30, 56, 63
process-group-Ieader 30
processes, special 31, 33
profiling 14, 131, 205
program development 15, 213
program execution 39
protocol independence 209, 211, 252, 261
pure procedure shared text file 44 48 56

82 ' , ,

pure procedure, access 44
put character 156, 176, 186, 190, 192

a

queueing priority 286, 290, 300-301,
307,309,317,319

R

read permission 27, 43, 51
read-locks 60-62
read-only file system 40 44 46, 48, 82,

339 ' ,

reading file 7, 28, 36, 43, 46, 48, 59, 74,
80, 83-86, 101, 130, 297, 303, 311,
316-317

reading file open for 36, 80, 317
real-group-id 63
real-user-id 63
receipt 91-92, 96-97, 264, 270
record locking 46, 48, 56, 59, 60, 62, 64,

69, 71, 77, 83-85, 101, 103
record-locks 48, 56, 59-60, 64, 69, 71,

83, 103
regular-expression matching 130
remote file 209, 325-330, 332-333,

335-338, 340, 342, 345-346,
348-349, 352, 354-357

Remote File Sharing 209, 326, 328, 329,
332-333, 336-338, 340, 342, 346,
352, 354-357

remote file system 328-329, 335, 348
remote mount 328-330, 332-335, 337,

340, 343, 356, 358-359

System V Interface Definition

remote resource 325, 327-332, 334, 340,
34:3, :356-359

remote user 217, 219, 221, 225, 246, 277,
329, 331, 335, 337-338, 345-349,
356

remote user ids 337-338, 345-349
request queue status 331
resource 20, 22, 36-37, 64, 69-70, 209,

218, 221, 223, 244, 285, 287,
289-290, 311, 323, 325-332, 334,
336, 339-341, 343-344, 349-350,
355-359

resource name 326-327, 329-330, 336,
339-341, 343-344, 349-350,
358-359

resource naming 336, 340, 355
root 27,31, 140,338,347,352
root-directory 27, 30-31, 56, 63
run-time behavior of System V

components 19
run-time environment 4, 19

s

scanset 121
scrolling region 142, 155-156, 161, 174,

181, 185, 189
search path 30-31
search permission 43-44 46 48 51 56

7~ 79,82, 8~ 129 ' , , , ,

search routines 24
search sorted table 24
secondary name servers 353, 356-357
security features 336-337
semaphore 132
server 3, 19, 121, 129, 218, 224,

326-327, 329-331, 335-336,
338-341, 345, 349-350 352-357,
359 '

server processes 331, 355
set file status flags 59, 80, 101
set system time 37
set-user id 27, 46, 63
sharable resource 326-327
shared resource 209, 325, 328, 331-332,

357

System V Interface Definition

shared resource environment 209, 325,
328,331-332

sharing files 44, 48, 56, 58, 82, 209,
325-326, 329, 332-334, 336-338,
340, 342, 346, 352, 354-357

shell 4, 136-137, 168, 186, 188, 191,
204-205, 343

SIGABRT 42,91,95
SIGALRM 91,96
SIGFPE 91, 95
SIGHUP 91, 95
SIGILL 91-92,95
SIGINT 91, 95
SIGKILL 91-93,95-96,98
signal abort 42
signal alarm 56, 63
signal default action 55, 91, 95
signal handling 91
signal ignore 39, 55,92, 96, 132
signal interrupt 37, 70
signal kill 30, 30, 93-94, 98
signal number, illegal 93, 98
signal quit 37, 188
signal receipt 91-92, 96-97
signal sending 93
signal-catching function 92-93, 96-97
SIGPIPE 91, 96, 103
SIGQUIT 91, 95
SIGSYS 91, 96
SIGTERM 91, 93, 96
SIGTRAP 91-92,95
SIGUSRI 92-93, 96
SIGUSR2 92-93, 96
size limit 56, 63, 102-103, 251-252,

260, 276
Software Development Extension 5, 24,

135
software signal 91, 96
source-code interface 3, 6, 8, 19
special device files 6, 20, 39, 82, 214, 333
special file 6, 20, 28, 39, 77, 82, 84, 101,

161, 214, 333-334
SS2 character 13
SS3 character 13
standard error 10, 32, 170, 248, 330,

341-343, 348, 350, 353-354,
356-359

Page 371

standard error, stream stderr 32
Standard I/O routines 31
standard input 32, 112, 119
Standard Input/Output 22
standard output 32, 114, 189, 206, 248,

345
standardization 9
state transition 222, 231, 254, 282
status flags 58-59, 161, 80, 101
stderr 32, 112-113, 131
stdin 32, 119, 189
stdio 22, 31-32, 48, 65, 67, 71, 74, 83,

86, 104, 114, 119, 130, 200
stdio header file 31-32, 200
stdio routines 22, 31-32, 48, 71, 74, 83,

86, 104
stdio stream 32, 130
stdio stream open 32
stdout 32, 114
stream head 286, 290-292, 294, 300,

303, 305-307, 309-310, 312-317,
319-320, 324

streams I/O interfaces for networking -
209

streams messages 286, 289-290, 292,
300-303, 305, 307, 309-317,
319-320, 322-324

streams modules 209, 285-286,
288-292, 294-295, 299-302,
304-306, 308, 312-313, 316,
322-323

string operations 124
subdomains 336
super-user 27,33, 39, 46, 78-79, 89-90,

340, 342-343, 346, 348, 353-354,
356-357, 359

suspend a process 264
synchronous execution 212, 216
System V implementations 3-4, 19, 92
System V Interface Definition 3-5, 9,

129, 214, 288, 333
System V Interface Definition,

partitions 4
System V Programmers' Guide 8
System V Programming Guide 8

Page 372

System V Release 1.0 5, 8, 19, 22, 24, 59,
62, 69

System V Release 2.0 5, 8, 19, 22, 24, 59,
62, 69, 135

System V Release 3.0 5, 8, 19, 22, 24, 51,
53, 76, 87, 98, 209

T

target environment 3, 19, 225
temporary files 131
TERM 137, 168-169, 171, 191,

204-206
TERM, environment variable 168, 204
termcap codes 141, 193
termcap database 141, 193
terminal descriptions 137, 160, 163, 165,

189, 202, 205-206
terminal device 12,84, 93, 97, 101
terminal functions 182
terminal input 32, 171
Terminal Interface Extension 5, 135
terminal names 140, 165, 202, 204-205
terminal tabs 160, 165, 168
terminal type 135, 137, 149, 156, 165,

170-171,191,204-206
terminal-handling functions 135
terminate a process 33, 55, 60, 69, 92, 96
terminated child-process 60, 106
terminfo database 140, 156, 190-191,

193, 195, 204-206
time, current 108
time, get time 99, 165
time zone 107-109
time zone variable 108-109
transformed into new process 54
translate characters 169
transport connection 212-213,

215-216, 218-225, 228, 230-231,
237-238, 241-242, 244-246, 252,
260, 266-268, 270, 275, 277, 279, 293

transport endpoint 212, 214-219,
221-223, 228, 230-231, 237-238,
240-248, 253-257, 259, 261-268,
270-273, 275-282, 284

System V Interface Definition

transport service data unit 213, 215, 224,
251--252, 259--260, 264, 275

tree structure 20, 335
truncate 47, 81, 125, 339--340
TSAP 212
TSDU 213, 224, 252, 260, 264, 275--276,

280
TZ 108--109

u

unadvertise 330, 333, 343, 358--359
unistd header file 43, 67, 69, 73
unitdata 239--240, 249, 271, 280
unmount 330,343
unmounting remote resources 330
unwaited-for child processes 37
update 8, 19, 62, 67, 81, 101, 141, 168,

171--172, 185, 188, 195, 246,
328--329, 337, 354

update a file 329
user id, effective 46, 338, 345
user id, set 31, 45, 77, 89, 338
user limits 64, 102, 224, 238, 246, 251,

260, 277
utilities 4--7, 10--12, 15, 19, 135, 209,

325, 328, 336

v

valid executable object 56

w

white space 111--112, 119, 121,
120--122, 140, 149, 340

windows 149, 156, 159, 168--185,
187--188, 191,294

write permission 27, 43, 48, 76, 82, 87,
169, 337

write-lock 60--62, 84--85
writing, file open for 36, 47, 56, 80, 103,

323, 337

System V Interface Definition Page 373

A

abort 21, 22, 42
access 21, 43-44, 58, 129
addch 136, 168, 174, 175, 195
addstr 136, 175
adv 333, 334, 336, 337, 339, 340, 343,

344, 351, 357, 359
asctime 23, 107-109
attroff 136, 176, 195
attron 136, 176, 195
attrset 136, 176, 195

baudrate 136, 189
beep 136, 177
box 136, 177

B

c

cbreak 136, 168, 182, 186, 187
ceil 23, 110
chdir 21, 39, 129
chmod 21, 27, 44-48, 55, 69, 71, 76, 79,

81, 83, 84, 101, 129
chown 19,21,46,129
clear 136, 177
clearok 136, 169, 177, 184
clock 23, 106
closedir 21, 50-52
clrtobot 136, 177
clrtoeol 136, 174, 178
copywin 136, 180
creat 21, 22, 28, 46-49, 53, 60, 71, 74,

81, 83, 86, 104, 129
ctime 23, 107-109
curses 135, 137, 150, 165, 168-200, 202

o

deLprog_mode 136, 186
deLshelLmode 136, 186

System V Interface Definition

Function Index
delay_output 136, 178
delch 136, 178
deleteln 136, 178
delwin 136, 172
dname 342,356
doupdate 136,170-172,188,194
dup2 21,53

E

echo 136, 182, 18~ 187
echO'char 136, 175
endwin 136, 168, 170, 171, 184, 188, 195
erase 136, 177
erasechar 136, 189
exec 53, 62, 64, 79, 90, 129, 283
execl 21, 54-57
execle 21, 54-57
execlp 21, 54-57
execv 21, 54-57
execve 21, 54-57
execvp 21, 54-57

F

fabs 23, 110
fcntl 21, 28, 47, 48, 53, 55, 56, 58-62,

64, 69-71, 74, 81, 83, 86, 216, 246,
255, 264, 266, 271, 275, 280, 301, 315

ferror 130
fixterm 136, 188, 200
flash 136, 177
floor 23, 110
flushinp 136, 183
fmod 23, 110
fopen 66, 68, 118, 129, 130
fork 21, 22, 30, 36, 39, 57, 60, 63, 64, 282,

283
fprintf 23, 31, 114-118
fread 21, 31, 65-66, 71, 86
fscanf 23, 31, 119
fseek 21, 31, 65-68, 74

Page 375

ftell 21, 31,67
fumount 343, 357-359
fusage 344
fwrite 21, 31, 65-66, 71, 104

G

getbegyx 136, 179, 200
getch 136, 182, 183, 186-188, 195
getmaxyx 136, 179, 200
getmsg 285, 287, 290, 292, 297, 299-301,

303, 309, 315-319, 321, 322, 324
getopt 24, 111-113
getstr 136, 183
gettmode 136, 194, 200
getyx 136, 179, 200
gmtime 23, 107

halfdelay 136, 187
has_ic 136, 189
has_il 136, 189

H

idload 338, 345-349
idlok 136, 184
inch 136, 174, 183
initscr 136, 168-170, 186, 189, 190, 195
insch 136, 179
insertln 136, 180
intrflush 136, 168, 187

K

key name 136, 194
keypad 136, 168, 182, 187, 195
killchar 136, 189

L

leaveok 136, 171, 185
link 129
localtime 23, 107
lockf 21,22,53,56,62,64,69-72

Page 376

longname 136, 189
lseek 21, 22, 40, 48, 73, 74, 83, 85, 104

M

malloc 130
mkdir 21, 75, 76, 79, 87
mknod 21, 46, 56, 77-79, 129
move 136, 168, 169, 180, 182
msgop 131
mvaddch 136,174
mvaddstr 136, 175
mvcur 137, 192
mvdelch 136, 178
mvgetch 136, 182
mvgetstr 136, 183
mvinch 136, 183
mvinsch 136, 179
mvprintw 136, 181
mvscanw 136, 184
mvwaddch 136, 174
mvwaddstr 136, 175
mvwdelch 136, 178
mvwgetch 136, 182
mvwgetstr 136, 183
mvwin 136, 172
mvwinch 136, 183
mvwinsch 136, 179
mvwprintw 136, 181
mvwscanw 136, 184

N

newpad 136, 168, 173
newterm 136, 168, 170, 171, 189, 190
newwin 136, 168, 172
nl 136, 186
nocbreak 136, 182, 186
nodelay 136, 188
noecho 136, 168, 182, 186, 187
nonl 136,
noraw 136,
nsquery 336, 342, 350, 359

System V Interface Definition

o

open 21, 22, 28, 46-48, 53, 58-60, 62,
69, 71, 74, 80-83, 86, 93, 97, 101,
104, 129, 130, 259, 261, 282, 283, 287,
290, 294, 298, 301, 302, 312, 315

opendir 21, 50-52
overlay 136,
overwrite 136,

pechochar 136,
pnoutrefresh 136,
poll 285,

p

prefresh 136, 171, 173, 175, 180
printf 23, 24, 31, 66, 114-118, 123, 165,

181
printw 136, 181
profil 131
ptrace 131
putmsg 285, 287, 290, 292, 293, 297,

299-301, 311, 315, 318, 319, 321
putp 137, 191, 192

R

raw 136, 186, 188
read 21, 22, 28, 46, 48, 60, 62, 66, 71, 80,

83-86, 93, 97, 287, 290, 292, 297,
299-304,310,315,318,319,321,324

readdir 21,50-52
refresh 136, 168, 170, 171, 175, 180, 182,

188
regexp 130
reset_prog_mode 136, 186, 188, 191
reset_shelLmode 136, 186, 188, 191
resetterm 136, 188, 200
resetty 136, 188
rewind 21, 31, 67
rewinddir 21,50-52
rfadmin 337,352,355-357
rfpasswd 337, 353, 354, 356
rfstart 337, 341, 342, 353-357
rfstop 356-357

System V Interface Definition

rmdir 21,87
rmntstat 357-358

s

saveterm 136, 186, 200
savetty 136, 188
scanf 23, 24, 31, 32, 66, 118, 119-123,

184
scanw 136, 184
scr_dump 136, 194, 195
scr_init 136, 194, 195
scroll 136, 181
scrollok 136, 174, 185, 189
scr_restore 136, 194
semget 132
semop 132
setgid 21, 27, 31, 89, 90
setjmp 93, 98, 130
setscrreg 136, 185,200
set_term 136, 171, 189
setterm 137, 191, 200
setuid 21, 27, 31, 55, 89, 90
setupterm 137, 190-191
shmop 132
sighold 21,95-98
sigignore 21, 95-98
signal 21, 33, 38, 42, 55-57, 63, 64,

91-93, 98, 302, 307, 315
sigrelse 21, 95-98
sigset 21, 42, 55-57, 63, 64, 95, 97, 98,

302, 307, 315
slLclear 136, 190
slLinit 136, 170, 189
slLlabel 136, 190
slLnoutrefresh 136, 190
slLrefresh 136, 190
slLrestore 136, 190
slLset 136, 190
slLtouch 136, 190
sprintf 24, 114-118
sscanf 24, 119
standend 136, 176
standout 136, 174, 176
stat 44, 79, 100, 129

Page 377

strcat 23, 124-126
strchr 23, 124-126
strcmp 23, 124-126
strcpy 23, 124-126
strcspn 23, 124-126
strdup 23, 124-126
streams 300-315, 318, 321, 324
strlen 23, 124-126
strncat 23, 124-126
strncmp 23, 124-126
strncpy 23, 124-126
strpbrk 23, 124, 124-126
strrchr 23, 124, 124-126
strspn 23, 124, 124-126
strtok 23, 124-126
subpad 136, 173
subwin 136, 172, 173

T

t_accept 211, 220, 223, 225, 231, 237,
247, 256, 267

t_alloc 211, 219, 222, 239, 240, 243, 247,
249, 250, 252, 256, 261, 263, 267, 269,
272,281

t_bind 211, 218, 224, 239, 241, 242, 256,
262, 267, 280, 284

t_close 211, 218, 223, 244
t_connect 211, 219, 220, 225, 238, 245,

246, 248, 256, 266, 267, 269, 278
terminfo 135, 137, 140-166, 168, 190,

192, 200, 202, 206
termio 129
t_error 211, 215, 219, 222, 248,
t_free 211, 219, 222, 240, 249
tgetent 137, 193, 200
tgetflag 137, 193, 200
t_getinfo 211, 219, 222, 224, 238-240,

246, 247, 251-253, 263, 264, 270,
276-280

tgetnum 137, 193, 200
t_getstate 211, 219, 222, 237, 238, 244,

254
tgetstr 137, 192, 193, 200
tgoto 137, 192, 194, 200

Page 378

tic 135, 140, 165, 202
tigetflag 137, 192
tigetnum 137, 193
tigetstr 137, 193
time 21, 99, 107, 109
t_Iisten 211, 220, 225, 237, 238, 247,

255-256, 267-269, 278
t_Iook 211, 217, 219, 222, 257
tmpfile 131
t_open 211, 214, 218, 224, 238-240,

243, 244, 246, 247, 251, 253-256,
258, 259-261, 263-267, 269-271,
275, 276, 278, 279

t_optmgmt 211, 218, 224, 239, 240, 243,
247, 262, 263

touchline 136, 172, 173, 181
touchwin 136, 172, 173, 181
tparm 137, 191, 192
tput 135, 160, 161, 168, 204-206
tputs 137, 191, 192, 194
t_rcv 211, 220, 264, 265, 276
t_rcvconnect 211, 219, 238, 246, 247,

256, 266
t_rcvdis 211, 221, 224, 252, 260, 268
t_rcvrel 211, 221, 225, 270, 279
t_rcvudata 211, 222, 271, 274, 281
t_rcvuderr 211, 222, 224, 272, 273, 281
t_snd 211, 220, 265, 275
t_snddis 211, 221, 237, 252, 260, 269,

277
Lsndrel 211, 221, 225, 270, 279
t_sndudata 211, 222, 272, 274, 280, 281
t_sync 211, 219, 222, 282
t_unbind 211, 218, 243, 244, 284
typeahead 136, 188, 189
tzset 23, 107, 109

u

unadv 333, 336, 341, 343, 351, 357, 359
unctrl 136, 194
ungetch 136, 183
unlink 129
ustat 21, 100
uti me 129

System V Interface Definition

vidattr 137, 192
vidputs 137, 192
vprintf 131

v

w

waddch 136, 174--176, 199
waddstr 136, 175, 181
wattroff 136, 176
wattron 136, 176
wattrset 136, 176
wclear 136, 177
wclrtobot 136, 177
wclrtoeol 136, 178
wdelch 136, 178
wdeleteln 136, 178
wechochar 136,175
we rase 136, 177
wgetch 136, 182, 183, 187
wgetstr 136, 183, 184
winch 136, 174, 183
winsch 136, 179
winsertln 136, 180
wmove 136, 180
wnoutrefresh 136,171--173,190
wprintw 136, 181
wrefresh 136, 169, 171--173, 175, 177,

184, 185, 190
write 21, 22, 28, 46, 48, 60, 62, 66, 71, 80,

81, 83, 93, 97, 101--104, 287, 290,
292, 297, 299--301, 304, 305, 315,
318, 319, 321, 324

wscanw 136, 184
wsetscrreg 136, 185, 200
wstandend 136, 176
wstandout 136, 176

System V Interface Definition Page 379

