TVANVIN SAFNINVIOO0Ud XINN

jeloqge jieg

Salo

UNIX™ TIME-SHARING SYSTEM

NIX?

VOLUME 1

rogrammers
manual

REVISED AND EXPANDED VERSION

@ Bell Laboratories

UNIX®™ TIME-SHARING SYSTEM:

UNIX PROGRAMMER’S MANUAL

UNIX® TIME-SHARING SYSTEM:

UNIX PROGRAMMER’S MANUAL

Revised and Expanded Version

Bell Telephone Laboratories, Incorporated
Murray Hill, New Jersey

HOLT, RINEHART AND WINSTON

New York Chicago San Francisco Philadelphia
Montreal Toronto London Sydney Tokyo
Mexico City Rio de Janeiro Madrid

Copyright © 1983, 1979, Bell Telephone Laboratories, Incorporated.

All rights reserved.
Address correspondence to:
383 Madison Avenue, New York, NY 10017

Library of Congress Cataloging in Publication Data

Bell Telephone Laboratories, inc.
UNIX time-sharing system.

Includes index.
1. UNIX (Computer system) 1. Title.
QA76.8.U65B44 1982 001.64'404 82-15498

ISBN 0-03-0b1742-1

Printed in the United States of America
Published simultaneously in Canada
3456 014 9876543

CBS COLLEGE PUBLISHING
Holt, Rinehart and Winston
The Dryden Press

Saunders College Publishing

CONTENTS

Preface vii
Introduction ix
Section 1| Commands 1
Section 2 System Calls 183
Section 3 Subroutines 241
Section 4 Special Files 303
Section 5 File Formats and Conventions 325
Section 6 Games | 351
Section 7 Macro Packages and Language Conventions 369
Section 8 Maintenance 383
Section 9 Quick UNIX Reference 395
Index 413

PREFACE

This new form of the Seventh Edition manual attests to the gratifying popularity of the UNIX
Operating System. Delivered with no support and with an amateurishly published manual, this elegant
and productive system has nevertheless earned worldwide respect, sometimes bordering on adulation.

Thousands of users today work from faint reproductions of reproductions of the original manual,
whose ragged pages dangle and slide out of beat-up ring binders. The new form remedies the physical
difficulties, while preserving the familiar style and content. Dozens of errors have been corrected, an
index keyed to page numbers has been constructed, and a quick reference section has been
incorporated.

Volume | is intended as reference material. In the interest of brevity it contains few examples, and in the
interest of quick retrieval in continual use is ordered by UNIX terminology, not by functional
progression as a primer might be. General tutorial information and more detailed descriptions of major
programming languages and utility programs, such as C, FORTRAN, or the troff typesetting nackage,
will be found in Volume 2, forthcoming from Holt in this new form.

vii

INTRODUCTION TO VOLUME 1

This volume gives descriptions of the publicly available features of the UNIXt system. It does not
attempt to provide perspective or tutorial information upon the UNIX operating system, its facilities,
or its implementation. Various documents on those topics are contained in Volume 2. In particular,
for an overview see ‘The UNIX Time-Sharing System’ by Ritchie and Thompson; for a tutorial see
‘UNIX for Beginners’ by Kernighan.

Within the area it surveys, this volume attempts to be timely, complete and concise. Where the
latter two objectives conflict, the obvious is often left unsaid in favor of brevity. It is intended that
each program be described as it is, not as it should be. Inevitably, this means that various sections
will soon be out of date.

The volume is divided into nine sections:

Commands

System calls

Subroutines

Special files

File formats and conventions

Games

Macro packages and language conventions
Maintenance

Quick UNIX Reference

VPN np LN~

Commands are programs intended to be invoked directly by the user, in contradistinction to subrou-
tines, which are intended to be called by the user’s programs. Commands generally reside in direc-
tory /bin (for binary programs). Some programs also reside in /usr/bin, to save space in /bin. These
directories are searched automatically by the command interpreter.

System calls are entries into the UNIX supervisor. Every system call has one or more C language
interfaces described in section 2. The underlying assembly language interface, coded with opcode
sys, a synonym for trap, is given as well.

An assortment of subroutines is available; they are described in section 3. The primary libraries in
which they are kept are described in intro(3). The functions are described in terms of C, but most
will work with Fortran as well.

The special files section 4 discusses the characteristics of each system ‘file’ that actually refers to an
I/0 device. The names in this section refer to the DEC device names for the hardware, instead of
the names of the special files themselves.

The file formats and conventions section 5 documents the structure of particular kinds of files; for
example, the form of the output of the loader and assembler is given. Excluded are files used by
only one command, for example the assembler’s intermediate files.

Games have been relegated to section 6 to keep them from contaminating the more staid informa-
tion of section 1.

Section 7 is a miscellaneous collection of information necessary to writing in various specialized
languages: character codes, macro packages for typesetting, etc.

The maintenance section 8 discusses procedures not intended for use by the ordinary user. These
procedures often involve use of commands of section 1, where an attempt has been made to single

t UNIX is a Trademark of Bell Laboratories.
154

out peculiarly maintenance-flavored commands by marking them 1M.

Each section consists of a number of independent entries of a page or so each. The name of the
entry is in the upper corners of its pages, together with the section number, and sometimes a letter
characteristic of a subcategory, e.g. graphics is 1G, and the math library is 3M. Entries within each
section are alphabetized. The page numbers of each entry start at 1; it is infeasible to number con-
secutively the pages of a document like this that is republished in many variant forms.

All entries are based on a common format, not all of whose subsections will always appear.

The name subsection lists the exact names of the commands and subroutines covered under
the entry and gives a very short description of their purpose.

The synopsis summarizes the use of the program being described. A few conventions are
used, particularly in the Commands subsection:

Boldface words are considered literals, and are typed just as they appear.

Square brackets [] around an argument indicate that the argument is optional. When
an argument is given as ‘name’, it always refers to a file name.

Ellipses °..." are used to show that the previous argument-prototype may be repeated.

A final convention is used by the commands themselves. An argument beginning with a
minus sign ‘=’ is often taken to mean some sort of option-specifying argument even if it
appears in a position where a file name could appear. Therefore, it is unwise to have
files whose names begin with ‘=,

The description subsection discusses in detail the subject at hand.
The files subsection gives the names of files which are built into the program.
A see also subsection gives pointers to related information.

A diagnostics subsection discusses the diagnostic indications which may be produced. Mes-
sages which are intended to be self-explanatory are not listed.

The bugs subsection gives known bugs and sometimes deficiencies. Occasionally also the sug-
gested fix is described.

In section 2 an assembler subsection carries the assembly language system interface.

At the beginning of the volume is a table of contents, organized by section and alphabetically within
each section.

HOW TO GET STARTED

This section sketches the basic information you need to get started on UNIX: how to log in and log
out, how to communicate through your terminal, and how to run a program. See ‘UNIX for
Beginners’ in Volume 2 for a more complete introduction to the system.

Logging in. You must call UNIX from an appropriate terminal. UNIX terminals are typified by
the TTY 43, the GE Terminet 300, the DASI 300S and 450, and most video terminals such as the
Datamedia 5120 or HP 2640. You must also have a valid user name, which may be obtained,
together with the telephone number, from the system administrators. The same telephone number
serves terminals operating at all the standard speeds. After a data connection is established, the
login procedure depends on what kind of terminal you are using.

300-baud terminals: Such terminals include the GE Terminet 300 and most display terminals run
with popular modems. These terminals generally have a speed switch which should be set at ‘300’
(or ‘30’ for 30 characters per second) and a half/full duplex switch which should be set at full-
duplex. (This switch will often have to be changed since many other systems require half-duplex).
When a connection is established, the system types ‘login:’; you type your user name, followed by
the ‘return’ key. If you have a password, the system asks for it and turns off the printer on the ter-
minal so the password will not appear. After you have logged in, the ‘return’, ‘new line’, or
‘linefeed’ keys will give exactly the same results.

1200- and 150-baud terminals: 1If there is a half/full duplex switch, set it at full-duplex. When

X

you have established a data connection, the system types out a few garbage characters (the ‘login:’
message at the wrong speed). Depress the ‘break’ (or ‘interrupt’) key; this is a speed-independent
signal to UNIX that a different speed terminal is in use. The system then will type ‘login:,” this time
at another speed. Continue depressing the break key until ‘login:’ appears in clear, then respond
with your user name. From the TTY 37 terminal, and any other which has the ‘newline’ function
(combined carriage return and linefeed), terminate each line you type with the ‘new line’ key, other-
wise use the ‘return’ key.

Hard-wired terminals. Hard-wired terminals usually begin at the right speed, up to 9600 baud;
otherwise the preceding instructions apply.

For all these terminals, it is important that you type your name in lower-case if possible; if you type
upper-case letters, UNIX will assume that your terminal cannot generate lower-case letters and will
translate all subsequent upper-case letters to lower case.

The evidence that you have successfully logged in is that the Shell program will type a ‘$’ to you.
(The Shell is described below under ‘How to run a program.’)

For more information, consult szty (1), which tells how to adjust terminal behavior, getzy(8), which
discusses the login sequence in more detail, and ¢ty @), which discusses terminal 1/0.

Logging out. There are three ways to log out:
You can simply hang up the phone.

You can log out by typing an end-of-file indication (EOT character, control-d) to the Shell.
The Shell will terminate and the ‘login: ’ message will appear again.

You can also log in directly as another user by giving a login(1) command.

How to communicate through your terminal. When you type characters, a gnome deep in the sys-
tem gathers your characters and saves them in a secret place. The characters will not be given to a
program until you type a return (or newline), as described above in Logging in.

UNIX terminal I/0 is full-duplex. It has full read-ahead, which means that you can type at any
time, even while a program is typing at you. Of course, if you type during output, the printed out-
put will have the input characters interspersed. However, whatever you type will be saved up and
interpreted in correct sequence. There is a limit to the amount of read-ahead, but it is generous and
not likely to be exceeded unless the system is in trouble. When the read-ahead limit is exceeded,
the system throws away all the saved characters.

The character ‘@’ in typed input kills all the preceding characters in the line, so typing mistakes can
be repaired on a single line. Also, the character ‘#’ erases the last character typed. Successive uses
of ‘# erase characters back to, but not beyond, the beginning of the line. ‘@’ and ‘# can be
transmitted to a program by preceding them with ‘\’. (So, to erase ‘\’, you need two ‘#’s). These
conventions can be changed by the stty(1) command.

The ‘break’ or ‘interrupt’ key causes an interrupt signal, as does the The ASCII ‘delete’ (or ‘rubout’)
character, which is not passed to programs. This signal generally causes whatever program you are
running to terminate. It is typically used to stop a long printout that you don’t want. However,
programs can arrange either to ignore this signal altogether, or to be notified when it happens
(instead of being terminated). The editor, for example, catches interrupts and stops what it is
doing, instead of terminating, so that an interrupt can be used to halt an editor printout without los-
ing the file being edited.

The quit signal is generated by typing the ASCII FS character. (FS appears many places on dif-
ferent terminals, most commonly as control-\ or control-|.) It not only causes a running program to
terminate but also generates a file with the core image of the terminated process. Quit is useful for
debugging.

Besides adapting to the speed of the terminal, UNIX tries to be intelligent about whether you have a
terminal with the newline function or whether it must be simulated with carriage-return and line-
feed. In the latter case, all input carriage returns are turned to newline characters (the standard
line delimiter) and both a carriage return and a line feed are echoed to the terminal. If you get into
the wrong mode, the stzy (1) command will rescue you.

Xi

Tab characters are used freely in UNIX source programs. If your terminal does not have the tab
function, you can arrange to have them turned into spaces during output, and echoed as spaces dur-
‘ing input. The system assumes that tabs are set every eight columns. Again, the stty(1) command
will set or reset this mode. Also, the command tabs (1) will set the tab stops automatically on many
terminals.

How to run a program; the Shell. When you have successfully logged in, a program called the
Shell is listening to your terminal. The Shell reads typed-in lines, splits them up into a command
name and arguments, and executes the command. A command is simply an executable program.
The Shell looks first in your current directory (see below) for a program with the given name, and if
none is there, then in a system directory. There is nothing special about system-provided commands
except that they are kept in a directory where the Shell can find them.

The command name is always the first word on an input line; it and its arguments are separated
from one another by spaces.

When a program terminates, the Shell will ordinarily regain control and type a ‘$’ at you to indicate
that it is ready for another command.

The Shell has many other capabilities, which are described in detail in section sk (1).

The current directory. UNIX has a file system arranged in a hierarchy of directories. When the
system administrator gave you a user name, he also created a directory for you (ordinarily with the
same name as your user name). When you log in, any file name you type is by default in this direc-
tory. Since you are the owner of this directory, you have full permission to read, write, alter, or des-
troy its contents. Permissions to have your will with other directories and files will have been
granted or denied to you by their owners. As a matter of observed fact, few UNIX users protect
their files from destruction, let alone perusal, by other users.

To change the current directory (but not the set of permissions you were endowed with at login) use
cd(1).

Path names. To refer to files not in the current directory, you must use a path name. Full path
names begin with ‘/’, the name of the root directory of the whole file system. After the slash comes
the name of each directory containing the next sub-directory (followed by a /’) until finally the file
name is reached. For example, /usr/lem/filex refers to the file filex in the directory lem; lem is
itself a subdirectory of wusr; usr springs directly from the root directory.

If your current directory has subdirectories, the path names of files therein begin with the name of
the subdirectory with no prefixed /’.

A path name may be used anywhere a file name is required.

Important commands which modify the contents of files are-cp(1), mv(1), and rm(1), which respec-
tively copy, move (i.e. rename) and remove files. To find out the status of files or directories, use
Is(1). See mkdir(1) for making directories and rmdir (in rm(1)) for destroying them.

For a fuller discussion of the file system, see ‘The UNIX Time-Sharing System,” by Ken Thompson
and Dennis Ritchie. It may also be useful to glance through section 2 of this manual, which
discusses system calls, even if you don’t intend to deal with the system at that level.

Writing a program. To enter the text of a source program into a UNIX file, use the editor ed(1).
The three principal languages in UNIX are provided by the C compiler cc(1), the Fortran compiler
S77(1), and the assembler as(1). After the program text has been entered through the editor and
written on a file, you can give the file to the appropriate language processor as an argument. The
output of the language processor will be left on a file in the current directory named ‘a.out’. (If the
output is precious, use mv to move it to a less exposed name soon.) If you wrote in assembly
language, you will probably need to load the program with library subroutines; see /d(1). The other
two language processors call the loader automatically.

When you have finally gone through this entire process without provoking any diagnostics, the
resulting program can be run by giving its name to the Shell in response to the ‘8’ prompt.
Your programs can receive arguments from the command line just as system programs do, see
exec(2).

Xii

Text processing. Almost all text is entered through the editor ed(1). The commands most often
used to write text on a terminal are: cat, pr, roff and nroff, all in section 1.

The cat command simply dumps ASCII text on the terminal, with no processing at all. The pr com-
mand paginates the text, supplies headings, and has a facility for multi-column output. Nroff is an
elaborate text formatting program. Used naked, it requires careful forethought, but for ordinary
documents it has been tamed; see ms(7). Roff is a simpler text formatting program, and requires
somewhat less forethought.

Troff prepares documents for a Graphics Systems phototypesetter; it is very similar to nroff, and
often works from exactly the same source text. It was used to produce this manual.

Status inquiries. Various commands exist to provide you with useful information. Who(1) prints a
list of users presently logged in. Date(1) prints the current time and date. Ls(1) will list the files
in your directory or give summary information about particular files.

Surprises. Certain commands provide inter-user communication. Even if you do not plan to use
them, it would be well to learn something about them, because someone else may aim them at you.

To communicate with another user currently logged in, write(1) is used; mail(1) will leave a mes-
sage whose presence will be announced to another user when he next logs in. The write-ups in the
manual also suggest how to respond to the two commands if you are a target.

When you log in, a message-of-the-day may greet you before the first ‘$’.

CONVERTING FROM THE 6TH EDITION

There follows a catalogue of significant, mostly incompatible, changes that will affect old users con-
verting to the 7th edition. No attempt is made to list all new facilities, or even all minor, but easily
spotted changes, just the bare essentials without which it will be almost impossible to do anything.

Addressing files. Byte addresses in files are now long (32-bit) integers. Accordingly seek has been
replaced by Iseek(2). Every program that contains a seek must be modified. Stat and fstat(2)
have been affected similarly, since file lengths are now 32- rather than 24-bit quantities.

Assembly language. System entry points are no longer built in symbols. Their values must be
obtained from /usrfincludelsys.s, see intro(2). All system calls modify r0. This means that
sequences like

mov file,r0
sys Iseek,0,0,2
sys write,buf,n

will no longer work. (In fact, Iseek now modifies r1 as well, so be doubly cautious.)

The sleep(2) entry point is gone; see the more general facility, alarm, plus pause.

Few library functions have assembly language entry points any more. You will have to simulate the
C calling sequence.

Stty and gtty. These system calls have been extensively altered, see ioct/(2) and rzy (4).

Archive files. The format of files produced by ar(1) has been altered. To convert to the new style,
use arcv(1).

C language, lint. The official syntax for initialization requires an equal sign = before an initial-
izer, and brackets { } around compound initial values; arrays and structures are now initialized
honestly. Two-address operators, such as =+ and = -, are now written += and -= to avoid ambi-
guities, although the old style is still accepted. You will also certainly want to learn about

long integers

type definitions

casts (for type conversion)

unions (for more honest storage sharing)

#include <filename> (which searches in standard places)

Xiii

The program lint (1) checks for obsolete syntax and does strong type checking of C programs, singly
or in groups that are expected to be loaded together. It is indispensable for conversion work.

Fortran. The old fc is replaced by f77, a true compiler for Fortran 77, compatible with C. There
are substantial changes in the language; see ‘A Portable Fortran 77 Compiler’ in Volume 2.

Stream editor. The program sed(1) is adapted to massive, repetitive editing jobs of the sort
encountered in converting to the new system. It is well worth learning.

Standard I/0. The old fopen, getc, putc complex and the old —Ip package are both dead, and even
getchar has changed. All have been replaced by the clean, highly efficient, stdio(3) package. The
first things to know are that getchar(3) returns the integer EOF (— 1), which is not a possible byte
value, on end of file, that 518-byte buffers are out, and that there is a defined FILE data type.

Make. The program make(1) handles the recompilation and loading of software in an orderly way
from a ‘makefile’ recipe given for each piece of software. It remakes only as much as the modifica-
tion dates of the input files show is necessary. The makefiles will guide you in building your new
system.

Shell, chdir. F. L. Bauer once said Algol 68 is the Everest that must be climbed by every com-
puter scientist because it is there. So it is with the shell for UNIX users. Everything beyond simple
command invocation from a terminal is different. Even chdir is now spelled cd. You will want to
study sh (1) long and hard.

Debugging. Adb(1) is a far more capable replacement for the debugger db. The first-time user
should be especially careful about distinguishing / and ? in adb commands, and watching to make
sure that the x whose value he asked for is the real x, and not just some absolute location equal to
the stack offset of some automatic x. You can always use the ‘true’ name, _x, to pin down a C
external variable.

Dsw. This little-known, but indispensable facility has been taken over by rm —ri.

Boot procedures. Needless to say, these are all different. See section 8 of this volume, and ‘Set-
ting up UNIX’ in Volume 2.

Xiv

UNIX® TIME-SHARING SYSTEM:

UNIX PROGRAMMER’S MANUAL

Section 1

COMMANDS

INTRO(1) UNIX Programmer’s Manual INTRO(1)

NAME
intro — introduction to commands
DESCRIPTION
This section describes publicly accessible commands in alphabetic order. Certain distinctions of
purpose are made in the headings:
(1) Commands of general utility.
(1C) Commands for communication with other systems.
(1G) Commands used primarily for graphics and computer-aided design.
(IM) Commands used primarily for system maintenance.

The word ‘local’ at the foot of a page means that the command is not intended for general dis-
tribution.

SEE ALSO
DIAGNOSTICS
Section (6) for computer games.

How to get started, in the Introduction.

DIAGNOSTICS

Upon termination each command returns two bytes of status, one supplied by the system giving
the cause for termination, and (in the case of ‘normal’ termination) one supplied by the pro-
gram, see wait and exit(2). The former byte is 0 for normal termination, the latter is cus-
tomarily O for successful execution, nonzero to indicate troubles such as erroneous parameters,
bad or inaccessible data, or other inability to cope with the task at hand. It is called variously
‘exit code’, ‘exit status’ or ‘return code’, and is described only where special conventions are
involved.

7th Edition 3

AC(1IM) UNIX Programmer’s Manual AC(IM)

NAME
ac — login accounting

SYNOPSIS
ac [—w wtmp] [—p] [—d] [people] ...

DESCRIPTION
Ac produces a printout giving connect time for each user who has logged in during the life of
the current wemp file. A total is also produced. —w is used to specify an alternate wemp file.
—p prints individual totals; without this option, only totals are printed. —d causes a printout
for each midnight to midnight period. Any people will limit the printout to only the specified
login names. If no wemp file is given, fusr/fadm/wimp is used.

The accounting file /usr/fadm/wtmp is maintained by init and login. Neither of these programs
creates the file, so if it does not exist no connect-time accounting is done. To start accounting,
it should be created with length 0. On the other hand if the file is left undisturbed it will grow
without bound, so periodically any information desired should be collected and the file trun-
cated.

FILES
Jusr/adm/wtmp

SEE ALSO
init(8), login(1), utmp(5).

7th Edition 4

ADB(1) UNIX Programmer’s Manual ADB(1)

NAME

adb — debugger
SYNOPSIS

adb [—w] [objfil [corfil]]
DESCRIPTION

Adb is a general purpose debugging program. It may be used to examine files and to provide a
controlled environment for the execution of UNIX programs.

Objfil is normally an executable program file, preferably containing a symbol table; if not then
the symbolic features of adb cannot be used although the file can still be examined. The
default for objfil is a.out. Corfil is assumed to be a core image file produced after executing
objfil; the default for corfil is core.

Requests to adb are read from the standard input and responses are to the standard output. If
the —w flag is present then both objfil and corfil are created if necessary and opened for reading
and writing so that files can be modified using adb. Adb ignores QUIT; INTERRUPT causes
return to the next adb command.

In general requests to adb are of the form
[address] [, count] [command] [;]

If address is present then dot is set to address. Initially dot is set to 0. For most commands
count specifies how many times the command will be executed. The default count is 1. Address
and count are expressions.

The interpretation of an address depends on the context it is used in. If a subprocess is being
debugged then addresses are interpreted in the usual way in the address space of the subpro-
cess. For further details of address mapping see ADDRESSES.

EXPRESSIONS
. The value of dot.
+ The value of dot incremented by the current increment.

-~

The value of dot decremented by the current increment.
" The last address typed.

integer An octal number if integer begins with a 0; a hexadecimal number if preceded by #;
otherwise a decimal number.

integer .fraction
A 32 bit floating point number.

“cccc” The ASCII value of up to 4 characters. \ may be used to escape a .

< name
The value of name, which is either a variable name or a register name. Adb maintains a
number of variables (see VARIABLES) named by. single letters or digits. If name is a
register name then the value of the register is obtained from the system header in
corfil. The register names are r0 ... rS sp pc ps.

symbol A symbol is a sequence of upper or lower case letters, underscores or digits, not starting
with a digit. The value of the symbol is taken from the symbol table in objfil. An ini-
tial _ or ~ will be prepended to symbol if needed.

_ symbol
In C, the ‘true name’ of an external symbol begins with _. It may be necessary to utter
this name to disinguish it from internal or hidden variables of a program.

7th Edition 5

ADB(1) UNIX Programmer’s Manual " ADB(1)

routine .name
The address of the variable name in the specified C routine. Both routine and name are
symbols. If name is omitted the value is the address of the most recently activated C
stack frame corresponding to routine.

(exp) The value of the expression exp.

Maonadic operators

sexp The contents of the location addressed by exp in corfil.
@exp The contents of the location addressed by exp in objfil.
—exp Integer negation.

~exp Bitwise complement.

Dyadic operators are left associative and are less binding than monadic operators.
el +e2 Integer addition.

el —e2 Integer subtraction.

el*e2 Integer multiplication.

el %e2 Integer division.

el &e2 Bitwise conjunction.

elle2 Bitwise disjunction.

el #e2 EI rounded up to the next multiple of e2.

COMMANDS
Most commands consist of a verb followed by a modifier or list of modifiers. The following

verbs are available. (The commands ‘?” and ‘/° may be followed by ‘*’; see ADDRESSES for
further details.)

U Locations starting at address in objfil are printed according to the format f.
If Locations starting at address in corfil are printed according to the format f.

=f The value of address itself is printed in the styles indicated by the format f. (For i for-
mat ‘?’ is printed for the parts of the instruction that reference subsequent words.)

A format consists of one or more characters that specify a style of printing. Each format charac-
ter may be preceded by a decimal integer that is a repeat count for the format character. While
stepping through a format dot is incremented temporarily by the amount given for each format
letter. If no format is given then the last format is used. The format letters available are as

follows.
o 2 Print 2 bytes in octal. All octal numbers output by adb are preceded by 0.
O 4 Print 4 bytes in octal.
q 2 Printin signed octal.
Q 4 Print long signed octal.
d 2 Printin decimal.
D 4 Print long decimal.
X 2 Print 2 bytes in hexadecimal.
X 4 Print 4 bytes in hexadecimal.
u 2 Print as an unsigned decimal number.
U 4 Print long unsigned decimal.
~f 4 Print the 32 bit value as a floating point number.
F 8 Print double floating point.
b 1 Print the addressed byte in octal.

7th Edition 6

ADB(1) UNIX Programmer’s Manual ADB(1)

c 1 Print the addressed character.

C Print the addressed character using the following escape convention. Character
values 000 to 040 are printed as @ followed by the corresponding character in
the range 0100 to 0140. The character @ is printed as @@.

s n Print the addressed characters until a zero character is reached.

S n Print a string using the @ escape convention. n is the length of the string
including its zero terminator.

Y 4 Print 4 bytes in date format (see ctime(3)).

i n Print as PDP11 instructions. n is the number of bytes occupied by the instruc-

tion. This style of printing causes variables 1 and 2 to be set to the offset parts
of the source and destination respectively.

Print the value of dof in symbolic form. Symbols are checked to ensure that
they have an appropriate type as indicated below.

local or global data symbol
local or global text symbol
local or global absolute symbol

®
o

“ -~ S~

Print the addressed value in symbolic form using the same rules for symbol
lookup as a.
When preceded by an integer tabs to the next appropriate tab stop. For exam-
ple, 8t moves to the next 8-space tab stop.
Print a space.
Print a newline.
0 Print the enclosed string.
Dot is decremented by the current increment. Nothing is printed.
Dot is incremented by 1. Nothing is printed.
Dot is decremented by 1. Nothing is printed.

=
[\

y am o= -
3O O (=]

I +

newline
If the previous command temporarily incremented dot, make the increment permanent.
Repeat the previous command with a count of 1.

[2/11 value mask
Words starting at dot are masked with mask and compared with value until a match is
found. If L is used then the match is for 4 bytes at a time instead of 2. If no match is
found then dot is unchanged; otherwise dot is set to the matched location. If mask is
omitted then —1 is used.

[?/]w value ...
Write the 2-byte value into the addressed location. If the command is W, write 4 bytes.
Odd addresses are not allowed when writing to the subprocess address space.

[?2/1m b1 el f1[2/]
New values for (b1, el, f1) are recorded. If less than three expressions are given then
the remaining map parameters are left unchanged. If the ‘?’ or ¢/’ is followed by ‘»’
then the second segment (b2,e2,f2) of the mapping is changed. If the list is ter-
minated by ‘?’ or ¢/’ then the file (0bjfil or corfil respectively) is used for subsequent
requests. (So that, for example, ‘/m?’ will cause ‘/’ to refer to objfil.)

>name Dot is assigned to the variable or register named.
! A shell is called to read the rest of the line following ‘!’.

$modifier
Miscellaneous commands. The available modifiers are:

<f Read commands from the file fand return.

7th Edition 7

ADB(1)

ge<2acngeo

:modifier
Manage a subprocess. Available modifiers are:

VARIABLES

bc

cs

Ss

k

UNIX Programmer’s Manual ADB(1)

Send output to the file f, which is created if it does not exist.

Print the general registers and the instruction addressed by pc. Dot is set to pe.

Print the floating registers in single or double length. If the floating point
status of ps is set to double (0200 bit) then double length is used anyway.

Print all breakpoints and their associated counts and commands.

ALGOL 68 stack backtrace. If address is given then it is taken to be the
address of the current frame (instead of rd). If count is given then only the
first count frames are printed.

C stack backtrace. If address is given then it is taken as the address of the
current frame (instead of r5). If C is used then the names and (16 bit) values
of all automatic and static variables are printed for each active function. If
count is given then only the first count frames are printed.

The names and values of external variables are printed.

Set the page width for output to address (default 80).

Set the limit for symbol matches to address (default 255).

All integers input are regarded as octal.

Reset integer input as described in EXPRESSIONS.

Exit from adb.

Print all non zero variables in octal.

Print the address map.

Set breakpoint at address. The breakpoint is executed count—1 times before
causing a stop. Each time the breakpoint is encountered the command c is exe-
cuted. If this command sets dot to zero then the breakpoint causes a stop.

Delete breakpoint at address.

Run objfil as a subprocess. If address is given explicitly then the program is
entered at this point; otherwise the program is entered at its standard entry
point. count specifies how many breakpoints are to be ignored before stopping.
Arguments to the subprocess may be supplied on the same line as the com-
mand. An argument starting with < or > causes the standard input or output
to be established for the command. All signals are turned on on entry to the
subprocess.

The subprocess is continued with signal s ¢ s, see signal(2). If address is given
then the subprocess is continued at this address. If no signal is specified then
the signal that caused the subprocess to stop is sent. Breakpoint skipping is the
same as forr.

As for ¢ except that the subprocess is single stepped count times. If there is no
current subprocess then objfil is run as a subprocess as for r. In this case no
signal can be sent; the remainder of the line is treated as arguments to the sub-
process.

The current subprocess, if any, is terminated.

Adb provides a number of variables. Named variables are set initially by adb but are not used
subsequently. Numbered variables are reserved for communication as follows.

0
1
2

7th Edition

The last value printed.
The last offset part of an instruction source.
The previous value of variable 1.

ADB(1) UNIX Programmer’s Manual ADB(1)

On entry the following are set from the system header in the corfil. If corfil does not appear to
be a core file then these values are set from objfil.

b The base address of the data segment.
d The data segment size.
e The entry point.
m The ‘magic’ number (0405, 0407, 0410 or 0411).
s The stack segment size.
t The text segment size.
ADDRESSES

The address in a file associated with a written address is determined by a mapping associated
with that file. Each mapping is represented by two triples (b1, el, f1) and (b2, e2, f2) and the
file address corresponding to a written address is calculated as follows.

bl <address <el => file address=address+f1 —bl, otherwise,
b2<address<e2 => file address=address+f2—b2,

otherwise, the requested address is not legal. In some cases (e.g. for programs with separated I
and D space) the two segments for a file may overlap. If a ? or / is followed by an * then only
the second triple is used.

The initial setting of both mappings is suitable for normal a.out and core files. If either file is
not of the kind expected then, for that file, b1 is set to 0, el is set to the maximum file size and
f1 is set to 0; in this way the whole file can be examined with no address translation.

So that adb may be used on large files all appropriate values are kept as signed 32 bit integers.

FILES
/dev/mem
/dev/swap
a.out
core

SEE ALSO
ptrace(2), a.out(5), core(5)

DIAGNOSTICS
‘Adb’ when there is no current command or format. Comments about inaccessible files, syntax
errors, abnormal termination of commands, etc. Exit status is 0, unless last command failed or
returned nonzero status.

BUGS
A breakpoint set at the entry point is not effective on initial entry to the program.
When single stepping, system calls do not count as an executed instruction.
Local variables whose names are the same as an external variable may foul up the accessing of
the external.

7th Edition 9

AR(1)

NAME

UNIX Programmer’s Manual AR (1)

ar — archive and library maintainer

SYNOPSIS

ar key [posname] afile name ...

DESCRIPTION

Ar maintains groups of files combined into a single archive file. Its main use is to create and
update library files as used by the loader. It can be used, though, for any similar purpose.

‘Key is one character from the set drqtpmx, optionally concatenated with one or more of
vuaibcl. Afile is the archive file. The names are constituent files in the archive file. The mean-
ings of the key characters are:

td

r

FILES

Delete the named files from the archive file.

Replace the named files in the archive file. If the optional character u is used with r,
then only those files with modified dates later than the archive files are replaced. If an
optional positioning character from the set abi is used, then the posname argument
must be present and specifies that new files are to be placed after (a) or before (b or i)
posname. Otherwise new files are placed at the end.

Quickly append the named files to the end of the archive file. Optional positioning
characters are invalid. The command does not check whether the added members are
already in the archive. Useful only to avoid quadratic behavior when creating a large
archive piece-by-piece.

Print a table of contents of the archive file. If no names are given, all files in the
archive are tabled. If names are given, only those files are tabled.

Print the named files in the archive.

Move the named files to the end of the archive. If a positioning character is present,
then the posname argument must be present and, as in r, specifies where the files are to
be moved.

Extract the named files. If no names are given, all files in the archive are extracted. In
neither case does x alter the archive file.

Verbose. Under the verbose option, ar gives a file-by-file description of the making of

a new archive file from the old archive and the constituent files. When used with t, it

gives a long listing of all information about the files. When used with p, it precedes
each file with a name.

Create. Normally ar will create afile when it needs to. The create option suppresses
the normal message that is produced when afile is created.

Local. Normally ar places its temporary files in the directory /tmp. This option causes
them to be placed in the local directory.

tmp/v* temporaries
p

SEE ALSO

1d(1), ar(5), lorder(1)

BUGS

If the same file is mentioned twice in an argument list, it may be put in the archive twice.

7th Edition

10

ARCV (1M) UNIX Programmer’s Manual ARCV (1M)

NAME
arcv — convert archives to new format
SYNOPSIS
arcv file ...
DESCRIPTION
Arcv converts archive files (see ar(1), ar(5)) from 6th edition to 7th edition format. The
conversion is done in place, and the command refuses to alter a file not in old archive format.

Old archives are marked with a magic number of 0177555 at the start; new archives have
0177545.

FILES
/tmp/v*, temporary copy

SEE ALSO
ar(1), ar(5)

7th Edition PDP11 11

AS(1) UNIX Programmer’s Manual AS(1)

NAME

as — assembler
SYNOPSIS

as [— 1 [—o objfile] file ...
DESCRIPTION

As assembles the concatenation of the named files. If the optional first argument — is used, all
undefined symbols in the assembly are treated as global.

The output of the assembly is left on the file objfile; if that is omitted, a.out is used. It is exe-
cutable if no errors occurred during the assembly, and if there were no unresolved external

references.
FILES
/lib/as2 pass 2 of the assembler
/tmp/atm[1-3]?temporary
a.out object
SEE ALSO

1d(1), nm(1), adb(1), a.out(5)
UNIX Assembler Manual by D. M. Ritchie

DIAGNOSTICS
When an input file cannot be read, its name followed by a question mark is typed and assembly
ceases. When syntactic or semantic errors occur, a single-character diagnostic is typed out
together with the line number and the file name in which it occurred. Errors in pass 1 cause
cancellation of pass 2. The possible errors are:

Parentheses error

Parentheses error

String not terminated properly
Indirection used illegally

Error in address

Branch instruction is odd or too remote
Error in expression

Error in local (‘f” or ‘b’) type symbol
Garbage (unknown) character

End of file inside an if

Multiply defined symbol as label

Word quantity assembled at odd address
‘.’ different in pass 1 and 2

Relocation error

Undefined symbol

Syntax error

x:ﬂvas-n-‘oeu #Ah—-v

BUGS
Syntax errors can cause incorrect line numbers in following diagnostics.

7th Edition 12

AT(1) UNIX Programmer’s Manual AT (1)

NAME
at — execute commands at a later time

SYNOPSIS
at time [day] [file]

DESCRIPTION
At squirrels away a copy of the named file (standard input default) to be used as input to sh(1)
at a specified later time. A c¢d(1) command to the current directory is inserted at the begin-
ning, followed by assignments to all environment variables. When the script is run, it uses the
user and group ID of the creator of the copy file.

The time is 1 to 4 digits, with an optional following ‘A’, ‘P’, ‘N’ or ‘M’ for AM, PM, noon or
midnight. One and two digit numbers are taken to be hours, three and four digits to be hours
and minutes. If no letters follow the digits, a 24 hour clock time is understood.

The optional day is either (1) a month name followed by a day number, or (2) a day of the
week; if the word ‘week’ follows invocation is moved seven days further off. Names of months
and days may be recognizably truncated. Examples of legitimate commands are

at 8am jan 24
at 1530 fr week

At programs are executed by periodic execution of the command jusr/flib/atrun from cron(8).
The granularity of at depends upon how often atrun is executed.

Standard output or error output is lost unless redirected.
FILES
/usr/spool/at/yy.ddd.hhhh.uu
activity to be performed at hour hhhh of year day ddd of year yy. uu is a unique number.
/usr/spool/at/lasttimedone contains hhhh for last hour of activity.
/usr/spool/at/past directory of activities now in progress

/usr/lib/atrun program that executes activities that are due
pwd(1)
SEE ALSO
calendar(1), cron(8)
DIAGNOSTICS
Complains about various syntax errors and times out of range.

BUGS

Due to the granularity of the execution of fusr/lib/atrun, there may be bugs in scheduling things
almost exactly 24 hours into the future.

7th Edition 13

AWK (1) UNIX Programmer’s Manual AWK (1)

NAME

awk — pattern scanning and processing language

SYNOPSIS

awk [—Fc] [prog] [file] ...

DESCRIPTION

Awk scans each input file for lines that match any of a set of patterns specified in prog. With
each pattern in prog there can be an associated action that will be performed when a line of a
file matches the pattern. The set of patterns may appear literally as prog, or in a file specified as
—f file.

Files are read in order; if there are no files, the standard input is read. The file name ‘—’
means the standard input. Each line is matched against the pattern portion of every pattern-
action statement; the associated action is performed for each matched pattern.

An input line is made up of fields separated by white space. (This default can be changed by
using FS, vide infra.) The fields are denoted $1, $2, ... ; $0 refers to the entire line.

A pattern-action statement has the form
pattern { action }
A missing { action } means print the line; a missing pattern always matches.
An action is a sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement]

while (conditional) statement

for (expression ; conditional ; expression) statement
break

continue

{ [statement] ... }

variable = expression

print [expression-list] [>expression]

printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, newlines or right braces. An empty expression-list
stands for the whole line. Expressions take on string or numeric values as appropriate, and are
built using the operators +, —, *, /, %, and concatenation (indicated by a blank). The C
operators ++, ——, +=, —=,*=_/=_and %= are also available in expressions. Variables
may be scalars, array elements (denoted x[i]) or fields. Variables are initialized to the null
string. Array subscripts may be any string, not necessarily numeric; this allows for a form of

associative memory. String constants are quoted "...".

The print statement prints its arguments on the standard output (or on a file if > file is present),
separated by the current output field separator, and terminated by the output record separator.
The printf statement formats its expression list according to the format (see printf(3)).

The built-in function length returns the length of its argument taken as a string, or of the whole
line if no argument. There are also built-in functions exp, log, sqrt, and int. The last truncates
its argument to an integer. substr(s, m, n) returns the n-character substring of s that begins at
position m. The function sprintf(fimt, expr, expr, ...) formats the expressions according to the
printf(3) format given by fimt and returns the resulting string.

Patterns are arbitrary Boolean combinations (!, Il, &&, and parentheses) of regular expressions
and relational expressions. Regular expressions must be surrounded by slashes and are as in
egrep. lsolated regular expressions in a pattern apply to the entire line. Regular expressions
may also occur in relational expressions.

7th Edition 14

AWK (1) UNIX Programmer’s Manual AWK (1)

A pattern may consist of two patterns separated by a comma; in this case, the action is per-
formed for all lines between an occurrence of the first pattern and the next occurrence of the
second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is either ™ (for contains)
or !” (for does not contain). A conditional is an arithmetic expression, a relational expression,
or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before the first input line
is read and after the last. BEGIN must be the first pattern, END the last.

A single character ¢ may be used to separate the fields by starting the program with
BEGIN { FS = "¢" }
or by using the —Fc option.
Other variable names with special meanings include NF, the number of fields in the current
record; NR, the ordinal number of the current record; FILENAME, the name of the current

input file; OFS, the output field separator (default blank); ORS, the output record separator
(default newline); and OFMT, the output format for numbers (default "%.6g").

EXAMPLES
Print lines longer than 72 characters:

length > 72
Print first two fields in opposite order:
{ print $2, $1 }
Add up first column, print sum and average:
{s+=81}
END { print "sum is", s, " average is", s/NR }
Print fields in reverse order:
{ for (i = NF;i > 0; ——i) print $i }
Print all lines between start/stop pairs:

/start/, /stop/

Print all lines whose first field is different from previous one:
$1 != prev { print; prev = $1 }
SEE ALSO
lex(1), sed(1)
A. V. Aho, B. W. Kernighan, P. J. Weinberger, Awk — a pattern scanning and processing
language

BUGS
There are no explicit conversions between numbers and strings. To force an expression to be
treated as a number add O to it; to force it to be treated as a string concatenate "" to it.

7th Edition 15

BAS(1) UNIX Programmer’s Manual BAS(1)

NAME
bas — basic

SYNOPSIS
bas [file]

DESCRIPTION

Bas is a dialect of Basic. If a file argument is provided, the file is used for input before the ter-
minal is read. Bas accepts lines of the form:

statement
integer statement

Integer numbered statements (known as internal statements) are stored for later execution.
They are stored in sorted ascending order. Non-numbered statements are immediately exe-
cuted. The result of an immediate expression statement (that does not have ‘=" as its highest
operator) is printed. Interrupts suspend computation.

Statements have the following syntax:

expression

The expression is executed for its side effects (assignment or function call) or for printing
as described above.

comment
This statement is ignored. It is used to interject commentary in a program.

done
Return to system level.

dump
The name and current value of every variable is printed.

edit
The UNIX editor, ed, is invoked with the file argument. After the editor exits, this file is
recompiled.

for name = expression expression statement

for name = expression expression

next
The for statement repetitively executes a statement (first form) or a group of statements
(second form) under control of a named variable. The variable takes on the value of the
first expression, then is incremented by one on each loop, not to exceed the value of the
second expression.

goto expression
The expression is evaluated, truncated to an integer and execution goes to the
corresponding integer numbered statment. If executed from immediate mode, the inter-
nal statements are compiled first.

if expression statement

if expression

[else

fi
The statement (first form) or group of statements (second form) is executed if the
expression evaluates to non-zero. In the second form, an optional else allows for a group
of statements to be executed when the first group is not.

list [expression [expression]]
is used to print out the stored internal statements. If no arguments are given, all internal
statements are printed. If one argument is given, only that internal statement is listed. If

7th Edition 16

BAS(1) UNIX Programmer’s Manual BAS(1)

two arguments are given, all internal statements inclusively between the arguments are
printed.

print list
The list of expressions and strings are concatenated and printed. (A string is delimited by
" characters.)

prompt list
Prompt is the same as print except that no newline character is printed.

return [expression]
The expression is evaluated and the result is passed back as the value of a function call.
If no expression is given, zero is returned.

run
The internal statements are compiled. The symbol table is re-initialized. The random
number generator is reset. Control is passed to the lowest numbered internal statement.

save [expression [expression]]
Save is like list except that the output is written on the file argument. If no argument is
given on the command, b.out is used.

Expressions have the following syntax:

name
A name is used to specify a variable. Names are composed of a letter followed by letters
and digits. The first four characters of a name are significant.

number
A number is used to represent a constant value. A number is written in Fortran style,
and contains digits, an optional decimal point, and possibly a scale factor consisting of an
e followed by a possibly signed exponent.

(expression)
Parentheses are used to alter normal order of evaluation.

_ expression
The result is the negation of the expression.

expression operator expression
Common functions of two arguments are abbreviated by the two arguments separated by
an operator denoting the function. A complete list of operators is given below.

expression ([expression [, expression] ...])
Functions of an arbitrary number of arguments can be called by an expression followed by
the arguments in parentheses separated by commas. The expression evaluates to the line
number of the entry of the function in the internally stored statements. This causes the
internal statements to be compiled. If the expression evaluates negative, a builtin func-
tion is called. The list of builtin functions appears below.

name [expression [, expression] ...]
Each expression is truncated to an integer and used as a specifier for the name. The
result is syntactically identical to a name. a[1,2] is the same as a[1][2]. The truncated
expressions are restricted to values between 0 and 32767.

The following is the list of operators:

= = is the assignment operator. The left operand must be a name or an array element.
The result is the right operand. Assignment binds right to left,

& | & (logical and) has result zero if either of its arguments are zero. It has result one if
both its arguments are non-zero. | (logical or) has result zero if both of its arguments

7th Edition 17

BAS(1) UNIX Programmer’s Manual BAS(1)

are zero. It has result one if either of its arguments are non-zero.

< <= > >= == <>
The relational operators (< less than, <= less than or equal, > greater than, >=
greater than or equal, == equal to, <> not equal to) return one if their arguments

are in the specified relation. They return zero otherwise. Relational operators at the
same level extend as follows: a>b>c is the same as a>b&b>c.

+ — Add and subtract.

*/ Multiply and divide.

. Exponentiation.

The following is a list of builtin functions:

arg(i) is the value of the i -th actual parameter on the current level of function call.
exp(x) is the exponential function of x.

log(x) is the natural logarithm of x.

sqr(x) is the square root of x.

sin(x) is the sine of x (radians).

cos(x) is the cosine of x (radians).

atn(x) is the arctangent of x. Its value is between —# /2 and = /2.

rnd() is a uniformly distributed random number between zero and one.

expr()
is the only form of program input. A line is read from the input and evaluated as an
expression. The resultant value is returned.

abs(x) is the absolute value of x.
int(x) returns x truncated (towards 0) to an integer.

FILES
/tmp/btm? temporary
b.out save file
/bin/ed for edit
DIAGNOSTICS

BUGS

Syntax errors cause the incorrect line to be typed with an underscore where the parse failed.
All other diagnostics are self explanatory.

Has been known to give core images.
Catches interrupts even when they are turned off.

7th Edition 18

BASENAME (1) UNIX Programmer’s Manual BASENAME((1)

NAME

basename — strip filename affixes
SYNOPSIS

basename string [suffix]
DESCRIPTION

Basename deletes any prefix ending in ‘/° and the suffix, if present in string, from string, and
prints the result on the standard output. It is normally used inside substitution marks in
shell procedures.

This shell procedure invoked with the argument fusr/src/cmd/cat.c compiles the named file and
moves the output to cat in the current directory:

cc §1
mv a.out basename $1 .c

SEE ALSO
sh(1)

7th Edition 19

BC(1) UNIX Programmer’s Manual BC(1)

NAME

bc — arbitrary-precision arithmetic language
SYNOPSIS

be [—c] [—-111file..]
DESCRIPTION

Bc is an interactive processor for a language which resembles C but provides unlimited preci-
sion arithmetic. It takes input from any files given, then reads the standard input. The —1
argument stands for the name of an arbitrary precision math library. The syntax for bc pro-
grams is as follows; L means letter a-z, E means expression, S means statement.

Comments
are enclosed in /* and */.

Names
simple variables: L
array elements: L [E]
The words ‘ibase’, ‘obase’, and ‘scale’

Other operands
arbitrarily long numbers with optional sign and decimal point.

(E)
sqrt (E)
length (E) number of significant decimal digits
scale (E) number of digits right of decimal point
L(E,..,E)
Operators
+ — * / % " (% is remainder; " is power)
++ —— (prefix and postfix; apply to names)
== <= >= 1= < >
= = =— =% =/ =% ="
Statements
E
{S;..;S}
if(E)S
while (E) S

for (E;E;E)S

null statement

break

quit

Function definitions

define L (L,..., L) {
autoL, ..., L
S;...S
return (E)

}

Functions in —1 math library
s(x) sine
c(x) cosine
e(x) exponential
1(x) log
a(x) arctangent
j(n,x) Bessel function

7th Edition 20

BC(1) UNIX Programmer’s Manual BC(1)

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is an assign-
ment. Either semicolons or newlines may separate statements. Assignment to scale influences
the number of digits to be retained on arithmetic operations in the manner of dc(1). Assign-
ments to ibase or obase set the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable simultaneously. All
variables are global to the program. ‘Auto’ variables are pushed down during function calls.
When using arrays as function arguments or defining them as automatic variables empty square
brackets must follow the array name.

For example

scale = 20
define e(x){
autoa, b, c,1i,s

a=1
b=1
s=1
for(i=1; 1==1; i+ +){
a = a*x
b = b*
c=a/b
if(c == 0) return(s)
s = s+c

}

defines a function to compute an approximate value of the exponential function and
for(i=1; i<=10; i+ +) e(i)

prints approximate values of the exponential function of the first ten integers.

Bc is actually a preprocessor for dc(1), which it invokes automatically, unless the —¢ (compile
only) option is present. In this case the dc input is sent to the standard output instead.

FILES
/usr/lib/lib.b mathematical library
dc(1) desk calculator proper

SEE ALSO

de(1)

L. L. Cherry and R. Morris, BC — An arbitrary precision desk-calculator language
BUGS

No &&, 11, or ! operators.

For statement must have all three E’s.
Quit is interpreted when read, not when executed.

7th Edition 21

CAL (1) UNIX Programmer’s Manual CAL(1)

NAME
cal — print calendar

SYNOPSIS
cal [month] year

DESCRIPTION
Cal prints a calendar for the specified year. If a month is also specified, a calendar just for that
month is printed. Year can be between 1 and 9999. The month is a number between 1 and 12.
The calendar produced is that for England and her colonies.

Try September 1752.

BUGS
The year is always considered to start in January even though this is historically naive.
Beware that ‘cal 78’ refers to the early Christian era, not the 20th century.

7th Edition 22

CALENDAR (1) UNIX Programmer’s Manual CALENDAR(1)

NAME

calendar — reminder service
SYNOPSIS

calendar [—]
DESCRIPTION

Calendar consults the file ‘calendar’ in the current directory and prints out lines that contain
today’s or tomorrow’s date anywhere in the line. Most reasonable month-day dates such as
‘Dec. 7,” ‘december 7,” ‘12/7,’ etc., are recognized, but not ‘7 December’ or ‘7/12°. On week-
ends ‘tomorrow’ extends through Monday.

When an argument is present, calendar does its job for every user who has a file ‘calendar’ in
his login directory and sends him any positive results by mail(1). Normally this is done daily in
the wee hours under control of cron(8).

FILES
calendar
Jusr/lib/calendar to figure out today’s and tomorrow’s dates
/etc/passwd
/tmp/cal*
egrep, sed, mail subprocesses
SEE ALSO
at(1), cron(8), mail(1)

BUGS
Your calendar must be public information for you to get reminder service.
Calendar’s extended idea of ‘tomorrow’ doesn’t account for holidays.

7th Edition 23

CAT(1) UNIX Programmer’s Manual CAT (1)

NAME
cat — catenate and print

SYNOPSIS
cat [—u] file ...

DESCRIPTION
Cat reads each file in sequence and writes it on the standard output. Thus

cat file
prints the file and
cat filel file2 >file3

concatenates the first two files and places the result on the third.

b

If no file is given, or if the argument ‘—’ is encountered, cat reads from the standard input.
Output is buffered in 512-byte blocks unless the standard output is a terminal or the —u option
is present.

SEE ALSO
pr(1), cp(1)

BUGS
Beware of ‘cat a b >a’ and ‘cat a b >b’, which destroy input files before reading them.

7th Edition 24

CB(1) UNIX Programmer’s Manual CB(1)

NAME

cb — C program beautifier
SYNOPSIS

cb
DESCRIPTION

Cb places a copy of the C program from the standard input on the standard output with spacing
and indentation that displays the structure of the program.

BUGS

7th Edition 25

CC(1)

NAME

UNIX Programmer’s Manual CC(1)

cc, pcc — C compiler

SYNOPSIS

cc [option] ... file ...
pec [option] ... file ...

DESCRIPTION

Cc is the UNIX C compiler. It accepts several types of arguments:

Arguments whose names end with ‘.c’ are taken to be C source programs; they are compiled,
and each object program is left on the file whose name is that of the source with ‘.0’ substituted
for ‘.c’. The ‘.0’ file is normally deleted, however, if a single C program is compiled and
loaded all at one go.

In the same way, arguments whose names end with ‘.s’ are taken to be assembly source pro-
grams and are assembled, producing a ‘.0’ file.

The following options are interpreted by cc. See ld(1) for load-time options.

—c Suppress the loading phase of the compilation, and force an object file to be produced
even if only one program is compiled.

—-p Arrange for the compiler to produce code which counts the number of times each rou-
tine is called; also, if loading takes place, replace the standard startup routine by one
which automatically calls monitor(3) at the start and arranges to write out a mon.out file
at normal termination of execution of the object program. An execution profile can
then be generated by use of prof(1).

—f In systems without hardware floating-point, use a version of the C compiler which
handles floating-point constants and loads the object program with the floating-point
interpreter. Do not use if the hardware is present.

-0 Invoke an object-code optimizer.

-S Compile the named C programs, and leave the assembler-language output on
corresponding files suffixed ‘.s’.

-P Run only the macro preprocessor and place the result for each ‘.c’ file in a correspond-
ing “.i’ file and has no ‘#’ lines in it.

—-E Run only the macro preprocessor and send the result to the standard output. The out-
put is intended for compiler debugging; it is unacceptable as input to cc.

—o output
Name the final output file output. If this option is used the file ‘a.out’ will be left
undisturbed.

— Dname =def

—Dname

Define the name to the preprocessor, as if by ‘#define’. If no definition is given, the
name is defined as 1.

—Uname
Remove any initial definition of name.

—Idir ‘#include’ files whose names do not begin with ‘/’ are always sought first in the direc-
tory of the file argument, then in directories named in —1I options, then in directories
on a standard list.

—Bstring
Find substitute compiler passes in the files named string with the suffixes cpp, c0, cl
and c2. If string is empty, use a standard backup version.

7th Edition PDP11 26

CC(1) UNIX Programmer’s Manual CC(1)

—t[p012]
Find only the designated compiler passes in the files whose names are constructed by a
—B option. In the absence of a —B option, the string is taken to be ‘/usr/c/’.

Other arguments are taken to be either loader option arguments, or C-compatible object pro-
grams, typically produced by an earlier cc run, or perhaps libraries of C-compatible routines.
These programs, together with the results of any compilations specified, are loaded (in the
order given) to produce an executable program with name a.out.

The major purpose of the ‘portable C compiler’, pcc, is to serve as a model on which to base
other compilers. Pcc does not support options —f, —E, —B, and —t. It provides, in addition
to the language of cc, unsigned char type data and initialized bit fields.

FILES
file.c input file
file.o object file
a.out loaded output
/tmp/ctm? temporaries for cc
/lib/cpp preprocessor
/lib/c[01] compiler for cc
Jusr/c/oc[012] backup compiler for cc
/Jusr/c/ocpp backup preprocessor
/lib/fc[01] floating-point compiler
/lib/c2 optional optimizer
/lib/crt0.0 runtime startoff
/lib/mcert0.0 startoff for profiling
/lib/fert0.0 startoff for floating-point interpretation
/lib/libc.a standard library, see intro(3)
Jusr/include standard directory for ‘#include’ files
/tmp/pc* temporaries for pcc
Jusr/lib/ccom compiler for pcc
SEE ALSO

B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978
D. M. Ritchie, C Reference Manual '
monitor(3), prof(1), adb(1), 1d(1)

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self-explanatory. Occasional messages
may be produced by the assembler or loader. Of these, the most mystifying are from the
assembler, as(1), in particular ‘m’, which means a multiply-defined external symbol (function
or data).

BUGS
Pcc is little tried on the PDP11; specialized code generated for that machine has not been well
shaken down. The —O optimizer was designed to work with cc; its use with pcc is suspect.

7th Edition 27

CD(1) UNIX Programmer’s Manual CD(1)

NAME

cd — change working directory
SYNOPSIS

cd directory

DESCRIPTION
Directory becomes the new working directory. The process must have execute (search) permis-
sion in directory.

Because a new process is created to execute each command, cd would be ineffective if it were
written as a normal command. It is therefore recognized and executed by the Shell.

SEE ALSO
sh(1), pwd(1), chdir(2)

7th Edition 28

CHMOD (1) UNIX Programmer’s Manual CHMOD (1)

NAME

chmod — change mode
SYNOPSIS

chmod mode file ...
DESCRIPTION

The mode of each named file is changed according to mode, which may be absolute or symbolic.
An absolute mode is an octal number constructed from the OR of the following modes:

4000 set user ID on execution

2000 set group ID on execution

1000 sticky bit, see chmod(2)

0400 read by owner

0200 write by owner

0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:
[who) op permission [op permission] ...

The who part is a combination of the letters u (for user’s permissions), g (group) and o (other).
The letter a stands for ugo. If who is omitted, the default is a but the setting of the file creation
mask (see umask(2)) is taken into account.

Op can be + to add permission to the file’s mode, — to take away permission and = to assign
permission absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (write), x (execute), s (set owner or
group id) and t (save text — sticky). Letters u, g or o indicate that permission is to be taken
from the current mode. Omitting permission is only useful with = to take away all permissions.

The first example denies write permission to others, the second makes a file executable:

chmod o—w file
chmod +x file

Multiple symbolic modes separated by commas may be given. Operations are performed in the
order specified. The letter s is only useful with u or g.

Only the owner of a file (or the super-user) may change its mode.

SEE ALSO
Is(1), chmod(2), chown (1), stat(2), umask(2)

7th Edition 29

CHOWN (1) UNIX Programmer’s Manual CHOWN(1)

NAME
chown, chgrp — change owner or group

SYNOPSIS
chown owner file ...

chgrp group file ..

DESCRIPTION
Chown changes the owner of the files to owner. The owner may be either a decimal UID or a
login name found in the password file.
Chgrp changes the group-ID of the files to group. The group may be either a decimal GID or a
group name found in the group-ID file.
Only the super-user can change owner or group, in order to simplify as yet unimplemented
accounting procedures.

FILES
/etc/passwd
/etc/group
SEE ALSO
chown(2), passwd(5), group(5)

7th Edition 30

CLRI(1M) UNIX Programmer’s Manual CLRI(1IM)

NAME
clri — clear i-node

SYNOPSIS
clri filesystem i-number ...

DESCRIPTION
Clri writes zeros on the i-nodes with the decimal i-numbers on the filesystem. After clri, any
blocks in the affected file will show up as ‘missing’ in an icheck(1) of the filesystem.

Read and write permission is required on the specified file system device. The i-node becomes
allocatable.

The primary purpose of this routine is to remove a file which for some reason appears in no
directory. If it is used to zap an i-node which does appear in a directory, care should be taken
to track down the entry and remove it. Otherwise, when the i-node is reallocated to some new
file, the old entry will still point to that file. At that point removing the old entry will destroy
the new file. The new entry will again point to an unallocated i-node, so the whole cycle is
likely to be repeated again and again.

SEE ALSO
icheck(1)

BUGS
If the file is open, clri is likely to be ineffective.

7th Edition 31

CMP (1) UNIX Programmer’s Manual CMP(1)

NAME

cmp — compare two files
SYNOPSIS

cmp [—1] [—s] filel file2
DESCRIPTION

The two files are compared. (If filel is ‘—’, the standard input is used.) Under default options,
cmp makes no comment if the files are the same; if they differ, it announces the byte and line

number at which the difference occurred. If one file is an initial subsequence of the other, that
fact is noted.

Options:
—1 Print the byte number (decimal) and the differing bytes (octal) for each difference.
—s Print nothing for differing files; return codes only.
SEE ALSO
diff(1), comm(1)
DIAGNOSTICS

Exit code O is returned for identical files, 1 for different files, and 2 for an inaccessible or miss-
ing argument.

7th Edition 32

COL(1) UNIX Programmer’s Manual COL(1)

NAME

col — filter reverse line feeds

SYNOPSIS

col [—bfx]

DESCRIPTION

Col reads the standard input and writes the standard output. It performs the line overlays
implied by reverse line feeds (ESC-7 in ASCII) and by forward and reverse half line feeds
(ESC-9 and ESC-8). Col is particularly useful for filtering multicolumn output made with the
‘.rt’ command of nroff and output resulting from use of the tb/(1) preprocessor.

Although col accepts half line motions in its input, it normally does not emit them on output.
Instead, text that would appear between lines is moved to the next lower full line boundary.
This treatment can be suppressed by the —f (fine) option; in this case the output from col may
contain forward half line feeds (ESC-9), but will still never contain either kind of reverse line
motion.

If the —b option is given, col assumes that the output device in use is not capable of backspac-
ing. In this case, if several characters are to appear in the same place, only the last one read
will be taken.

The control characters SO (ASCII code 017), and SI (016) are assumed to start and end text in
an alternate character set. The character set (primary or alternate) associated with each printing
character read is remembered; on output, SO and SI characters are generated where necessary
to maintain the correct treatment of each character.

Col normally converts white space to tabs to shorten printing time. If the —x option is given,
this conversion is suppressed.

All control characters are removed from the input except space, backspace, tab, return, new-
line, ESC (033) followed by one of 789, SI, SO, and VT (013). This last character is an alter-
nate form of full reverse line feed, for compatibility with some other hardware conventions.
All other non-printing characters are ignored.

SEE ALSO

BUGS

troff(1), tbl(1), greek(1)

Can’t back up more than 128 lines.
No more than 800 characters, including backspaces, on a line.

7th Edition 33

COMM(1) UNIX Programmer’s Manual COMM(1)

NAME

comm — select or reject lines common to two sorted files
SYNOPSIS

comm [— [123]] filel file2
DESCRIPTION

Comm reads filel and file2, which should be ordered in ASCII collating sequence, and produces
a three column output: lines only in filel, lines only in file2; and lines in both files. The
filename ‘—’ means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm —12 prints only
the lines common to the two files; comm —23 prints only lines in the first file but not in the
second; comm —123 is a no-op.

SEE ALSO
cmp(1), diff(1), uniq(1)

7th Edition 34

CP(1) UNIX Programmer’s Manual CP(1)

NAME

cp — copy
SYNOPSIS

cp filel file2

cp file ... directory

DESCRIPTION
Filel is copied onto file2. The mode and owner of file2 are preserved if it already existed; the
mode of the source file is used otherwise.

In the second form, one or more files are copied into the directory with their original file-names.
Cp refuses to copy a file onto itself.

SEE ALSO
cat(1), pr(1), mv(1)

7th Edition 35

CRYPT (1) UNIX Programmer’s Manual CRYPT (1)

NAME

crypt — encode/decode

SYNOPSIS

crypt [password]

DESCRIPTION

FILES

Crypt reads from the standard input and writes on the standard output. The password is a key
that selects a particular transformation. If no password is given, crypt demands a key from the
terminal and turns off printing while the key is being typed in. Crypt encrypts and decrypts with
the same key:

crypt key <clear >cypher
crypt key <cypher | pr

will print the clear.
Files encrypted by crypt are compatible with those treated by the editor ed in encryption mode.

The security of encrypted files depends on three factors: the fundamental method must be hard
to solve; direct search of the key space must be infeasible; ‘sneak paths’ by which keys or clear-
text can become visible must be minimized.

Crypt implements a one-rotor machine designed along the lines of the German Enigma, but
with a 256-element rotor. Methods of attack on such machines are known, but not widely;
moreover the amount of work required is likely to be large.

The transformation of a key into the internal settings of the machine is deliberately designed to
be expensive, i.e. to take a substantial fraction of a second to compute. However, if keys are
restricted to (say) three lower-case letters, then encrypted files can be read by expending only a
substantial fraction of five minutes of machine time.

Since the key is an argument to the crypt command, it is potentially visible to users executing
ps(1) or a derivative. To minimize this possibility, crypt takes care to destroy any record of the
key immediately upon entry. No doubt the choice of keys and key security are the most
vulnerable aspect of crypt.

/dev/tty for typed key

SEE ALSO

BUGS

ed(1), makekey(8)

There is no warranty of merchantability nor any warranty of fitness for a particular purpose nor
any other warranty, either express or implied, as to the accuracy of the enclosed materials or as
to their suitability for any particular purpose. Accordingly, Bell Telephone Laboratories
assumes no responsibility for their use by the recipient. Further, Bell Laboratories assumes no
obligation to furnish any assistance of any kind whatsoever, or to furnish any additional infor-
mation or documentation.

7th Edition 36

CU(1C) UNIX Programmer’s Manual CU(1C)

NAME

cu — call UNIX
SYNOPSIS

cutelno [—t] [—s speed] [—a acu] [—1 line]
DESCRIPTION

Cu calls up another UNIX system, a terminal, or possibly a non-UNIX system. It manages an
interactive conversation with possible transfers of text files. Telno is the telephone number,
with minus signs at appropriate places for delays. The —t flag is used to dial out to a terminal.
Speed gives the transmission speed (110, 134, 150, 300, 1200); 300 is the default value.

The —a and —1 values may be used to specify pathnames for the ACU and communications
line devices. They can be used to override the following built-in choices:

—a /dev/cua0 —1 /dev/cul0

After making the connection, cu runs as two processes: the send process reads the standard
input and passes most of it to the remote system; the receive process reads from the remote sys-
tem and passes most data to the standard output. Lines beginning with ‘~’ have special mean-
ings.

The send process interprets the following:

~

terminate the conversation.

"EOT terminate the conversation

“<file send the contents of file to the remote system, as though typed at the ter-
minal.

o invoke an interactive shell on the local system.

“lcmd ... run the command on the local system (via sh —c).

“$cmd ... run the command locally and send its output to the remote system.

“%take from [to] copy file ‘from’ (on the remote system) to file ‘to’ on the local system. If
‘to’ is omitted, the ‘from’ name is used both places.

“%put from [to] copy file ‘from’ (on local system) to file ‘to’ on remote system. If ‘to’ is
omitted, the ‘from’ name is used both places.

~a ’

send the line *7...".
The receive process handles output diversions of the following form:

“>[>][:Ifile

zero or more lines to be written to file

>

In any case, output is diverted.(or appended, if ‘>>" used) to the file. If ‘.’ is used, the diver-
sion is silent, i.e., it is written only to the file. If ‘:’ is omitted, output is written both to the file
and to the standard output. The trailing ‘">’ terminates the diversion.

The use of “%put requires stty and cat on the remote side. It also requires that the current
erase and kill characters on the remote system be identical to the current ones on the local sys-
tem. Backslashes are inserted at appropriate places.

The use of “%take requires the existence of echo and tee on the remote system. Also, stty tabs
mode is required on the remote system if tabs are to be copied without expansion.
FILES
/dev/cua0
/dev/cul0
/dev/null

7th Edition 37

CU(1C) UNIX Programmer’s Manual

SEE ALSO
dn(4), tty(4)

DIAGNOSTICS
Exit code is zero for normal exit, nonzero (various values) otherwise.

BUGS
The syntax is unique.

7th Edition

CU(1C)

38

DATE(1) UNIX Programmer’s Manual DATE(1)

NAME

date — print and set the date
SYNOPSIS

date [yymmddhhmm [.ss]]
DESCRIPTION

If no argument is given, the current date and time are printed. If an argument is given, the
current date is set. yy is the last two digits of the year; the first »um is the month number; dd is
the day number in the month; hh is the hour number (24 hour system); the second mm is the
minute number; .ss is optional and is the seconds. For example:

date 10080045
sets the date to Oct 8, 12:45 AM. The year, month and day may be omitted, the current values

being the defaults. The system operates in GMT. Date takes care of the conversion to and
from local standard and daylight time.

FILES

Jusr/adm/wtmp to record time-setting
SEE ALSO

utmp(5)

DIAGNOSTICS

‘No permission’ if you aren’t the super-user and you try to change the date; ‘bad conversion’ if
the date set is syntactically incorrect.

7th Edition 39

DC(1)

NAME

UNIX Programmer’s Manual DC(1)

dc — desk calculator

SYNOPSIS

de [file]

DESCRIPTION
Dc is an arbitrary precision arithmetic package. Ordinarily it operates on decimal integers, but
one may specify an input base, output base, and a number of fractional digits to be maintained.
The overall structure of dc is a stacking (reverse Polish) calculator. If an argument is given,
input is taken from that file until its end, then from the standard input. The following con-
structions are recognized:

number

SX

X

X

The value of the number is pushed on the stack. A number is an unbroken string of the
digits 0-9. It may be preceded by an underscore _ to input a negative number. Numbers
may contain decimal points.

[*% "

The top two values on the stack are added (+), subtracted (—), multiplied (*), divided
(/), remaindered (%), or exponentiated (*). The two entries are popped off the stack;

the result is pushed on the stack in their place. Any fractional part of an exponent is
ignored.

The top of the stack is popped and stored into a register named x, where x may be any
character. If the s is capitalized, x is treated as a stack and the value is pushed on it.

The value in register x is pushed on the stack. The register x is not altered. All registers
start with zero value. If the 1 is capitalized, register x is treated as a stack and its top
value is popped onto the main stack.

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains unchanged. P interprets
the top of the stack as an ascii string, removes it, and prints it.

All values on the stack and in registers are printed.

exits the program. If executing a string, the recursion level is popped by two. If q is
capitalized, the top value on the stack is popped and the string execution level is popped
by that value.

treats the top element of the stack as a character string and executes it as a string of dc
commands.

replaces the number on the top of the stack with its scale factor.

[...] puts the bracketed ascii string onto the top of the stack.
<x >x =x

7th Edition

The top two elements of the stack are popped and compared. Register x is executed if
they obey the stated relation.

replaces the top element on the stack by its square root. Any existing fractional part of
the argument is taken into account, but otherwise the scale factor is ignored.

interprets the rest of the line as a UNIX command.
All values on the stack are popped.

The top value on the stack is popped and used as the number radix for further input. I
pushes the input base on the top of the stack.

40

DC(1)

z
z
?

. e
9 o

UNIX Programmer’s Manual DC(1)

The top value on the stack is popped and used as the number radix for further output.

pushes the output base on the top of the stack.

the top of the stack is popped, and that value is used as a non-negative scale factor: the
appropriate number of places are printed on output, and maintained during multiplica-
tion, division, and exponentiation. The interaction of scale factor, input base, and out-
put base will be reasonable if all are changed together.

The stack level is pushed onto the stack.
replaces the number on the top of the stack with its length.
A line of input is taken from the input source (usually the terminal) and executed.

are used by bc for array operations.

An example which prints the first ten values of n! is

SEE ALSO

[lal1 +dsa*plal0>y]sy
Osal
lyx

bc(1), which is a preprocessor for dc providing infix notation and a C-like syntax which imple-
ments functions and reasonable control structures for programs.

DIAGNOSTICS
‘x is unimplemented’ where x is an octal number.
‘stack empty’ for not enough elements on the stack to do what was asked.
‘Out of space’ when the free list is exhausted (too many digits).
‘Out of headers’ for too many numbers being kept around.
‘Out of pushdown’ for too many items on the stack.
‘Nesting Depth’ for too many levels of nested execution.

7th Edition

41

DCHECK (1M) UNIX Programmer’s Manual DCHECK (1M)

NAME

dcheck — file system directory consistency check

SYNOPSIS

dcheck [—i numbers] [filesystem]

DESCRIPTION

FILES

Dcheck reads the directories in a file system and compares the link-count in each i-node with
the number of directory entries by which it is referenced. If the file system is not specified, a
set of default file systems is checked.

The —i flag is followed by a list of i-numbers; when one of those i-numbers turns up in a
directory, the number, the i-number of the directory, and the name of the entry are reported.

The program is fastest if the raw version of the special file is used, since the i-list is read in
large chunks.

Default file systems vary with installation.

SEE ALSO

icheck(1), filsys(5), clri(1), ncheck(1)

DIAGNOSTICS

BUGS

When a file turns up for which the link-count and the number of directory entries disagree, the
relevant facts are reported. Allocated files which have O link-count and no entries are also
listed. The only dangerous situation occurs when there are more entries than links; if entries
are removed, so the link-count drops to 0, the remaining entries point to thin air. They should
be removed. When there are more links than entries, or there is an allocated file with neither
links nor entries, some disk space may be lost but the situation will not degenerate.

Since dcheck is inherently two-pass in nature, extraneous diagnostics may be produced if applied
to active file systems.

7th Edition _ 42

DD (1) UNIX Programmer’s Manual DD (1)

NAME
dd — convert and copy a file

SYNOPSIS
dd [option=value] ...

DESCRIPTION
Dd copies the specified input file to the specified output with possible conversions. The stan-
dard input and output are used by default. The input and output block size may be specified to
take advantage of raw physical 1/0.

option values

if= input file name; standard input is default

of= output file name; standard output is default

ibs=n input block size n bytes (default 512)

obs=n output block size (default 512)

bs=n set both input and output block size, superseding ibs and obs; also, if no
conversion is specified, it is particularly efficient since no copy need be done

cbs=n conversion buffer size

skip=n skip n input records before starting copy

files=n copy # files from (tape) input

seek=n seek n records from beginning of output file before copying

count=n copy only n input records

conv=1ascii convert EBCDIC to ASCII
ebcdic convert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC
Icase map alphabetics to lower case
ucase map alphabetics to upper case
swab swap every pair of bytes
noerror do not stop processing on an error
sync pad every input record to ibs
..y ... several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may end with k, b or w to
specify multiplication by 1024, 512, or 2 respectively; a pair of numbers may be separated by x
to indicate a product.

Cbs is used only if ascii or ebedic conversion is specified. In the former case cbs characters are
placed into the conversion buffer, converted to ASCII, and trailing blanks trimmed and new-
line added before sending the line to the output. In the latter case ASCII characters are read
into the conversion buffer, converted to EBCDIC, and blanks added to make up an output
record of size cbs.

After completion, dd reports the number of whole and partial input and output blocks.

For example, to read an EBCDIC tape blocked ten 80-byte EBCDIC card images per record into
the ASCII file x:

dd if=/dev/rmt0 of=x ibs=800 cbs=80 conv=ascii,lcase

Note the use of raw magtape. Dd is especially suited to I/O on the raw physical devices because
it allows reading and writing in arbitrary record sizes.

To skip over a file before copying from magnetic tape do
(dd of=/dev/null; dd of=x) </dev/rmt0

SEE ALSO
cp(1), tr(1)

7th Edition 43

DD (1) UNIX Programmer’s Manual DD (1)

DIAGNOSTICS
f+p records in(out): numbers of full and partial records read(written)

BUGS
The ASCII/EBCDIC conversion tables are taken from the 256 character standard in the CACM
Nov, 1968. The ‘ibm’ conversion, while less blessed as a standard, corresponds better to cer-
tain IBM print train conventions. There is no universal solution.

Newlines are inserted only on conversion to ASCII; padding is done only on conversion to
EBCDIC. These should be separate options.

7th Edition ‘ 44

DEROFF (1) UNIX Programmer’s Manual DEROFF (1)

NAME

deroff — remove nroff, troff, tbl and eqn constructs
SYNOPSIS

deroff [—w] file ...
DESCRIPTION

Deroff reads each file in sequence and removes all nroff and troff command lines, backslash con-
structions, macro definitions, egn constructs (between ‘. EQ’ and ‘. EN’ lines or between delim-
iters), and table descriptions and writes the remainder on the standard output. Deroff follows
chains of included files (‘.so’ and ‘.nx’ commands); if a file has already been included, a ‘.50’ is

ignored and a ‘.nx’ terminates execution. If no input file is given, deroff reads from the stan-
dard input file.

If the —w flag is given, the output is a word list, one ‘word’ (string of letters, digits, and apos-
trophes, beginning with a letter; apostrophes are removed) per line, and all other characters
ignored. Otherwise, the output follows the original, with the deletions mentioned above.

SEE ALSO
troff(1), eqn(1), tbl(1)
BUGS

Deroff is not a complete troff interpreter, so it can be confused by subtle constructs. Most
errors result in too much rather than too little output.

7th Edition 1 45

DF(1IM) UNIX:Programmer’s Manual DF(1M)

NAME
df — disk free

SYNOPSIS
df [filesystem] ...

DESCRIPTION
Df prints out the number of free blocks available on the filesystems. If no file system is
specified, the free space on all of the normally mounted file systems is printed.

FILES
Default file systems vary with installation.

SEE ALSO
icheck(1)

7th Edition 46

DIFF (1) UNIX Programmer’s Manual DIFF (1)

NAME
diff — differential file comparator

SYNOPSIS
diff [—efbh] filel file2

DESCRIPTION
Diff tells what lines must be changed in two files to bring them into agreement. If filel (file2)
is ‘=’, the standard input is used. If filel (file2) is a directory, then a file in that directory
whose file-name is the same as the file-name of file2 (filel) is used. The normal output con-
tains lines of these forms:

nl a n3,n4
nl,n2d n3
nl,n2 c n3,n4

These lines resemble ed commands to convert filel into file2. The numbers after the letters
pertain to file2. In fact, by exchanging ‘a’ for ‘d’ and reading backward one may ascertain
equally how to convert file2 into filel. As in ed, identical pairs where nl = n2 or n3 = n4 are
abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file flagged by ‘<’,
then all the lines that are affected in the second file flagged by ‘>’.

The —b option causes trailing blanks (spaces and tabs) to be ignored and other strings of
blanks to compare equal.

The —e option produces a script of @, ¢ and d commands for the editor ed, which will recreate
file2 from fileI. The —f option produces a similar script, not useful with ed, in the opposite
order. In connection with —e, the following shell program may help maintain multiple versions
of a file. Only an ancestral file ($1) and a chain of version-to-version ed scripts ($2,$3,...)
made by diff need be on hand. A ‘latest version’ appears on the standard output.
(shift; cat $*; echo '1,8p’) | ed — $1
Except in rare circumstances, diff finds a smallest sufficient set of file differences.
Option —h does a fast, half-hearted job. It works only when changed stretches are short and

well separated, but does work on files of unlimited length. Options —e and —f are unavailable
with —h.

FILES

Jusr/lib/diffh for —h
SEE ALSO
cmp(1), comm(1), ed(1)
DIAGNOSTICS
Exit status is 0 for no differences, 1 for some, 2 for trouble.

BUGS
Editing scripts produced under the —e or —f option are naive about creating lines consisting of
a single ‘.’

7th Edition 47

DIFF3 (1) UNIX Programmer’s Manual DIFF3 (1)

NAME

diff3 — 3-way differential file comparison

SYNOPSIS

diff3 [—ex3] filel file2 file3

DESCRIPTION

FILES

Diff3 compares three versions of a file, and publishes disagreeing ranges of text flagged with
these codes:

all three files differ

====] filel is different
====) file2 is different
====3 file3 is different

The type of change suffered in converting a given range of a given file to some other is indi-
cated in one of these ways:

finl a Text is to be appended after line number n! in file f, where f = 1, 2, or 3.

finl ,n2e¢ Text is to be changed in the range line nl to line n2. If nl = n2, the range
may be abbreviated to nl.

The original contents of the range follows immediately after a ¢ indication. When the contents
of two files are identical, the contents of the lower-numbered file is suppressed.

Under the —e option, diff3 publishes a script for the editor ed that will incorporate into filel all
changes between file2 and file3, i.e. the changes that normally would be flagged ==== and
====3, Option —x (—3) produces a script to incorporate only changes flagged ====
(====3). The following command will apply the resulting script to ‘filel’.

(cat script; echo '1,8p) | ed — filel

Jusr/lib/diff3

SEE ALSO

BUGS

diff(1)

Text lines that consist of a single .’ will defeat —e.
Files longer than 64K bytes won’t work.

7th Edition 48

DU(1) UNIX Programmer’s Manual DU(1)

NAME

du — summarize disk usage
SYNOPSIS

du[—s][—a] [name ...]
DESCRIPTION

Du gives the number of blocks contained in all files and (recursively) directories within each
specified directory or file name. If name is missing, ‘.’ is used.

The optional argument —s causes only the grand total to be given. The optional argument —a
causes an entry to be generated for each file. Absence of either causes an entry to be generated
for each directory only.

A file which has two links to it is only counted once.

BUGS
Non-directories given as arguments (not under —a option) are not listed.
If there are too many distinct linked files, du counts the excess files multiply.

7th Edition 49

DUMP(1M) UNIX Programmer’s Manual DUMP (1M)

NAME

dump — incremental file system dump
SYNOPSIS

dump [key [argument ...] filesystem]
DESCRIPTION

Dump copies to magnetic tape all files changed after a certain date in the filesystem. The key
specifies the date and other options about the dump. Key consists of characters from the set
0123456789fusd.

f Place the dump on the next argument file instead of the tape.

u If the dump completes successfully, write the date of the beginning of the dump on file
‘/etc/ddate’. This file records a separate date for each filesystem and each dump level.

0—9 This number is the ‘dump level’. All files modified since the last date stored in the file
‘/etc/ddate’ for the same filesystem at lesser levels will be dumped. If no date is deter-
mined by the level, the beginning of time is assumed; thus the option 0 causes the entire
filesystem to be dumped.

s The size of the dump tape is specified in feet. The number of feet is taken from the next
argument. When the specified size is reached, the dump will wait for reels to be changed.
The default size is 2300 feet.

d The density of the tape, expressed in BPI, is taken from the next argument. This is used
in calculating the amount of tape used per write. The default is 1600.

If no arguments are given, the key is assumed to be 9u and a default file system is dumped to
the default tape.

Now a short suggestion on how perform dumps. Start with a full level 0 dump
dump Ou

Next, periodic level 9 dumps should be made on an exponential progression of tapes. (Some-
times called Tower of Hanoi — 1213121 4... tape 1 used every other time, tape 2 used
every fourth, tape 3 used every eighth, etc.)

dump %u

When the level 9 incremental approaches a full tape (about 78000 blocks at 1600 BPI blocked
20), a level 1 dump should be made.

dump lu

After this, the exponential series should progress as uninterrupted. These level 9 dumps are
based on the level 1 dump which is based on the level 0 full dump. This progression of levels
of dump can be carried as far as desired.

FILES
default filesystem and tape vary with installation.
/etc/ddate: record dump dates of filesystem/level.

SEE ALSO
restor(1), dump(5), dumpdir(1)

DIAGNOSTICS
If the dump requires more than one tape, it will ask you to change tapes. Reply with a new-
line when this has been done.

7th Edition 50

DUMP (1M) UNIX Programmer’s Manual DUMP (1M)

BUGS
Sizes are based on 1600 BPI blocked tape. The raw magtape device has to be used to approach
these densities. Read errors on the filesystem are ignored. Write errors on the magtape are
usually fatal.

7th Edition 51

DUMPDIR (1M) UNIX Programmer’s Manual DUMPDIR (1M)

NAME

dumpdir — print the names of files on a dump tape
SYNOPSIS

dumpdir [f filename]
DESCRIPTION

Dumpdir is used to read magtapes dumped with the dump command and list the names and
inode numbers of all the files and directories on the tape.

The f option causes filename as the name of the tape instead of the default.

FILES
default tape unit varies with installation
rst*

SEE ALSO
dump(1), restor(1)

DIAGNOSTICS
If the dump extends over more than one tape, it may ask you to change tapes. Reply with a
new-line when the next tape has been mounted.

BUGS
There is redundant information on the tape that could be used in case of tape reading problems.
Unfortunately, dumpdir doesn’t use it.

7th Edition 52

ECHO(1) UNIX Programmer’s Manual ECHO(1)

NAME

echo — echo arguments
SYNOPSIS

echo [—n] [arg] ..
DESCRIPTION

Echo writes its arguments separated by blanks and terminated by a newline on the standard out-
put. If the flag —n is used, no newline is added to the output.

Echo is useful for producing diagnostics in shell programs and for writing constant data on
pipes. To send diagnostics to the standard error file, do ‘echo ... 1>&2’. delim $$

7th Edition 53

ED(1)

NAME

UNIX Programmer’s Manual ED(1)

ed — text editor

SYNOPSIS

ed[—][—x][name]

DESCRIPTION

Ed is the standard text editor.

If a name argument is given, ed simulates an e command (see below) on the named file; that is
to say, the file is read into ed’s buffer so that it can be edited. If —x is present, an x command
is simulated first to handle an encrypted file. The optional — suppresses the printing of charac-
ter counts by e, r, and w commands.

Ed operates on a copy of any file it is editing; changes made in the copy have no effect on the
file until a w (write) command is given. The copy of the text being edited resides in a tem-
porary file called the buffer.

Commands to ed have a simple and regular structure: zero or more addresses followed by a sin-
gle character command, possibly followed by parameters to the command. These addresses
specify one or more lines in the buffer. Missing addresses are supplied by default.

In general, only one command may appear on a line. Certain commands allow the addition of

text to the buffer. While ed is accepting text, it is said to be in input mode. In this mode, no

commands are recognized; all input is merely collected. Input mode is left by typing a period
. alone at the beginning of a line.

Ed supports a limited form of regular expression notation. A regular expression specifies a set of
strings of characters. A member of this set of strings is said to be matched by the regular
expression. In the following specification for regular expressions the word ‘character’ means
any character but newline.

1. Any character except a special character matches itself. Special characters are the regu-
lar expression delimiter plus \[. and sometimes ~*8$.

2. A . matches any character.
A\ followed by any character except a digit or () matches that character.

4. A nonempty string s bracketed [s] (or ["s]) matches any character in (or not in) s. In
s, \ has no special meaning, and] may only appear as the first letter. A substring a—b,
with a and b in ascending ASCII order, stands for the inclusive range of ASCII charac-
ters.

5. A regular expression of form 1-4 followed by * matches a sequence of O or more
matches of the regular expression.

A regular expression, x, of form 1-8, bracketed \(x\) matches what x matches.

A\ followed by a digit n matches a copy of the string that the bracketed regular expres-
sion beginning with the nth \(matched.

8. A regular expression of form 1-8, x, followed by a regular expression of form 1-7, y
matches a match for x followed by a match for y, with the x match being as long as pos-
sible while still permitting a y match.

9. A regular expression of form 1-8 preceded by (or followed by $), is constrained to
matches that begin at the left (or end at the right) end of a line.

10. A regular expression of form 1-9 picks out the longest among the leftmost matches in a
line.

11. An empty regular expression stands for a copy of the last regular expression encoun-
tered.

7th Edition 54

ED(1) UNIX Programmer’s Manual ED (1)

Regular expressions are used in addresses to specify lines and in one command (see s below)
to specify a portion of a line which is to be replaced. If it is desired to use one of the regular
expression metacharacters as an ordinary character, that character may be preceded by ‘\’. This
also applies to the character bounding the regular expression (often ‘/’) and to ‘\’ itself.

To understand addressing in ed it is necessary to know that at any time there is a current line.
Generally speaking, the current line is the last line affected by a command; however, the exact
effect on the current line is discussed under the description of the command. Addresses are
constructed as follows.

1. The character ‘.” addresses the current line.

2 The character ‘$’ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4 “x’ addresses the line marked with the name x, which must be a lower-case letter.

Lines are marked with the k command described below.

S. A regular expression enclosed in slashes ‘/’ addresses the line found by searching for-
ward from the current line and stopping at the first line containing a string that matches
the regular expression. If necessary the search wraps around to the beginning of the
buffer.

6. A regular expression enclosed in queries ‘?’ addresses the line found by searching back-
ward from the current line and stopping at the first line containing a string that matches
the regular expression. If necessary the search wraps around to the end of the buffer.

[

7. An address followed by a plus sign ‘+’ (or a minus sign ‘—’) owed by a decimal
number specifies that address plus (or minus) the indicated number of lines. The plus
sign may be omitted.

8. If an address begins with ‘+’ or ‘—" the addition or subtraction is taken with respect to
the current line; e.g. ‘—35’ is understood to mean ‘.—5’.
9. If an address ends with ‘+’ (or ‘=), then 1 is added (or subtracted). As a conse-

quence of this rule and rule 8, the address ‘—’ refers to the line before the current line.

Moreover, trailing ‘+’ and ‘—’ characters have cumulative effect, so ‘——" refers to
the current line less 2.
10. To maintain compatibility with earlier versions of the editor, the character ¢~ in

addresses is equivalent to ‘—’.

Commands may require zero, one, or two addresses. Commands which require no addresses
regard the presence of an address as an error. Commands which accept one or two addresses
assume default addresses when insufficient are given. If more addresses are given than such a
command requires, the last one or two (depending on what is accepted) are used.

b

Addresses are separated from each other typically by a comma ‘,". They may also be separated
by a semicolon ‘;’. In this case the current line ‘.’ is set to the previous address before the
next address is interpreted. This feature can be used to determine the starting line for forward
and backward searches (‘/’, ‘?’). The second address of any two-address sequence must

correspond to a line following the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown in parentheses. The
parentheses are not part of the address, but are used to show that the given addresses are the
default.

As mentioned, it is generally illegal for more than one command to appear on a line. However,
most commands may be suffixed by ‘p’ or by ‘I’, in which case the current line is either printed
or listed respectively in the way discussed below.

7th Edition 55

ED(1) UNIX Programmer’s Manual ED(1)

(.)a

<text>
The append command reads the given text and appends it after the addressed line. ‘.’ is
left on the last line input, if there were any, otherwise at the addressed line. Address ‘0’
is legal for this command; text is placed at the beginning of the buffer.

(.,.)c
<text>

The change command deletes the addressed lines, then accepts input text which replaces

these lines. ‘.’ is left at the last line input; if there were none, it is left at the line preced-
ing the deleted lines.

(.,.)d
The delete command deletes the addressed lines from the buffer. The line originally after
the last line deleted becomes the current line; if the lines deleted were originally at the
end, the new last line becomes the current line.

e filename
The edit command causes the entire contents of the buffer to be deleted, and then the
named file to be read in. ‘.’ is set to the last line of the buffer. The number of characters
read is typed. ‘filename’ is remembered for possible use as a default file name in a subse-
quent r or w command. If ‘filename’ is missing, the remembered name is used.

E filename
This command is the same as e, except that no diagnostic results even when no w has
been given since the last buffer alteration.

f filename
The filename command prints the currently remembered file name. If ‘filename’ is given,
the currently remembered file name is changed to ‘filename’.

(1,$) g/regular expression/command list

In the global command, the first step is to mark every line which matches the given regu-
lar expression. Then for every such line, the given command list is executed with °.’ ini-
tially set to that line. A single command or the first of multiple commands appears on the
same line with the global command. All lines of a multi-line list except the last line must
be ended with ‘\’. A4, i, and ¢ commands and associated input are permitted; the .’ ter-
minating input mode may be omitted if it would be on the last line of the command list.
The commands g and v are not permitted in the command list.

(.)i
<text>

This command inserts the given text before the addressed line. ‘.’ is left at the last line
input, or, if there were none, at the line before the addressed line. This command differs
from the a command only in the placement of the text.

(.s . +Dj
This command joins the addressed lines into a single line; intermediate newlines simply

¢ 9

disappear. ‘.’ is left at the resulting line.

(.)kx
The mark command marks the addressed line with name x, which must be a lower-case

7th Edition 56

ED(1) UNIX Programmer’s Manual ED(1)

letter. The address form “x’ then addresses this line.

(.,)1
The list command prints the addressed lines in an unambiguous way: non-graphic charac-
ters are printed in two-digit octal, and long lines are folded. The / command may be
placed on the same line after any non-i/o command.

(., .)ma
The move command repositions the addressed lines after the line addressed by a. The
last of the moved lines becomes the current line.

G.,)p
The print command prints the addressed lines. ‘.’ is left at the last line printed. The p
command may be placed on the same line after any non-i/o command.

(...)P

This command is a synonym for p.
q The quit command causes ed to exit. No automatic write of a file is done.

Q This command is the same as g, except that no diagnostic results even when no w has
been given since the last buffer alteration.

($) r filename
The read command reads in the given file after the addressed line. If no file name is
given, the remembered file name, if any, is used (see e and f commands). The file name
is remembered if there was no remembered file name already. Address ‘0’ is legal for
and causes the file to be read at the beginning of the buffer. If the read is successful, the
number of characters read is typed. ‘.’ is left at the last line read in from the file.

(., .)s/regular expression/replacement/ or,

(., .)s/regular expression/replacement/g
The substitute command searches each addressed line for an occurrence of the specified
regular expression. On each line in which a match is found, all matched strings are
replaced by the replacement specified, if the global replacement indicator ‘g’ appears after
the command. If the global indicator does not appear, only the first occurrence of the
matched string is replaced. It is an error for the substitution to fail on all addressed lines.
Any character other than space or new-line may be used instead of ‘/’ to delimit the regu-
lar expression and the replacement. ‘.’ is left at the last line substituted.

An ampersand ‘&’ appearing in the replacement is replaced by the string matching the
regular expression. The special meaning of ‘&’ in this context may be suppressed by
preceding it by ‘\’. ' The characters ‘\n’ where n is a digit, are replaced by the text
matched by the n-th regular subexpression enclosed between “\(’ and ‘\)’. When nested,
parenthesized subexpressions are present, n is determined by counting occurrences of “\(’
starting from the left.

Lines may be split by substituting new-line characters into them. The new-line in the
replacement string must be escaped by preceding it by ‘\’.
\

(.,.)ta
This command acts just like the m command, except that a copy of the addressed lines is
placed after address a (which may be 0). ‘.’ is left on the last line of the copy.

(.,.)u
The undo command restores the preceding contents of the current line, which must be
the last line in which a substitution was made.

(1, $) v/regular expression/command list
This command is the same as the global command g except that the command list is exe-
cuted with “.’ initially set to every line except those matching the regular expression.

7th Edition 57

ED(1) UNIX Programmer’s Manual ED(1)

(1, $) w filename
The write command writes the addressed lines onto the given file. If the file does not
exist, it is created mode 666 (readable and writable by everyone). The file name is
remembered if there was no remembered file name already. If no file name is given, the
remembered file name, if any, is used (see e and fcommands). ‘.’ is unchanged. If the
command is successful, the number of characters written is printed.

(1,$)W filename
This command is the same as w, except that the addressed lines are appended to the file.
X A key string is demanded from the standard input. Later r, ¢ and w commands will

encrypt and decrypt the text with this key by the algorithm of crypr(1). An explicitly
empty key turns off encryption.

$) =
The line number of the addressed line is typed. ‘.’ is unchanged by this command.
!<shell command>
The remainder of the line after the ‘!’ is sent to sh(1) to be interpreted as a command.
‘.’ is unchanged.
(.+1) <newline>
An address alone on a line causes the addressed line to be printed. A blank line alone is
equivalent to ‘.+1p’; it is useful for stepping through text.
If an interrupt signal (ASCII DEL) is sent, ed prints a ‘?’ and returns to its command level.

Some size limitations: 512 characters per line, 256 characters per global command list, 127 char-
acters per file name, and 128K characters in the temporary file. The limit on the number of
lines depends on the amount of core: each line takes 1 word.

When reading a file, ed discards ASCII NUL characters and all characters afier the last newline.
It refuses to read files containing non-ASCII characters.
FILES
/tmp/e*
ed.hup: work is saved here if terminal hangs up

SEE ALSO
B. W. Kernighan, 4 Tutorial Introduction to the ED Text Editor
B. W. Kernighan, Advanced editing on UNIX

sed(1), crypt(1)
DIAGNOSTICS
‘Iname’ for inaccessible file; ‘?° for errors in commands; ‘?TMP’ for temporary file overflow.

To protect against throwing away valuable work, a g or e command is considered to be in error,
unless a w has occurred since the last buffer change. A second g or e will be obeyed regardless.

BUGS
A ! command cannot be subject to a g command.

7th Edition 58

XSEND, XGET, ENROLL(1) UNIX Programmer’s Manual XSEND, XGET, ENROLL (1)

NAME
xsend, xget, enroll — secret mail

SYNOPSIS
xsend person

xget
enroll

DESCRIPTION
These commands implement a secure communication channel,; it is like mail(1), but no one can
read the messages except the intended recipient. The method embodies a public-key cryptosys-
tem using knapsacks.

To receive messages, use enroll; it asks you for a password that you must subsequently quote in
order to receive secret mail.

To receive secret mail, use xget. It asks for your password, then gives you the messages.

To send secret mail, use xsend in the same manner as the ordinary mail command. (However,
it will accept only one target). A message announcing the receipt of secret mail is also sent by
ordinary mail.

FILES

/usr/spool/secretmail/* key: keys /usr/spool/secretmail/*.[0-9]: messages
SEE ALSO

mail (1)

BUGS

It should be integrated with ordinary mail. The announcement of secret mail makes traffic
analysis possible.

7th Edition 59

EQN (1) UNIX Programmer’s Manual EQN (1)

NAME
eqn, neqn, checkeq — typeset mathematics

SYNOPSIS
eqn [—dxy] [—pn][—sn][—fn] [—Tdest] [file] ..
checkeq [file] ...

DESCRIPTION

Eqn is a troff(1) preprocessor for typesetting mathematics on a phototypesetter, negn on termi-
nals. Usage is almost always

eqn file ... | troff
neqn file ... | nroff

If no files are specified, these programs read from the standard input. Egqn prepares output for
the typesetter named in the —T option (Mergenthaler Linotron 202 default, see troff(1)).

A line beginning with ‘. EQ’ marks the start of an equation; the end of an equation is marked
by a line beginning with ‘. EN’. Neither of these lines is altered, so they may be defined in
macro packages to get centering, numbering, etc. It is also possible to set two characters as
‘delimiters’; subsequent text between delimiters is also treated as egn input. Delimiters may be
set to characters x and y with the command-line argument —dxy or (more commonly) with
‘delim xy’ between .EQ and .EN. The left and right delimiters may be identical. Delimiters are
turned off by ‘delim off’. All text that is neither between delimiters nor between .EQ and .EN
is passed through untouched.

The program checkeq reports missing or unbalanced delimiters and .EQ/.EN pairs.

Tokens within eqn are separated by spaces, tabs, newlines, braces, double quotes, tildes or
circumflexes. Braces {} are used for grouping; generally speaking, anywhere a single character
like x could appear, a complicated construction enclosed in braces may be used instead. Tilde ~
represents a full space in the output, circumflex ~ half as much, and tab represents an ordinary
troff tab character.

Subscripts and superscripts are produced with the keywords sub and sup. Thus x sub i makes x;,
a sub i sup 2 produces a;%, and e sup {x sup 2 + y sup 2} gives ex ™’
Fractions are made with over: a over b yields 70)-.

. 1
sqrt makes square roots: / over sqrt {ax sup 2 +bx+c} results in \/————__—;_——— .

ax*bx+c
n
The keywords from and to introduce lower and upper limits on arbitrary things: lim X)x; is
n— 0
made with lim from {n—> inf} sum from 0 to n x sub i.

Left and right brackets, braces, etc., of the right height are made with left and right: left [x sup
2

2 + y sup 2 over alpha right] ~="1 produces [xz-l—-L = 1. The right clause is optional. Legal
24

characters after left and right are braces, brackets, bars, ¢ and f for ceiling and floor, and "" for
nothing at all (useful for a right-side-only bracket).

Vertical piles of things are made with pile, Ipile, cpile, and rpile: pile {a above b above c} pro-

a
duces b. There can be an arbitrary number of elements in a pile. lpile left-justifies, pile and
c

cpile center, with different vertical spacing, and rpile right justifies.

Matrices are made with matrix: matrix { Icol { x sub i above y sub 2 } ccol { 1 above 2 } } pro-
X 1
duces Yy 2 In addition, there is rcol for a right-justified column.

7th Edition 60

EQN (1) UNIX Programmer’s Manual EQN(1)

Diacritical marks are made with dot, dotdot, hat, tilde, bar, vec, dyad, and under: x dotr = f{t)
bar is x=f (t), y dotdot bar =" n under is y = n, and x vec ="y dyadis X = .
Sizes and font can be changed with size n or size *n, roman, italic, bold, and font n. Size and

fonts can be changed globally in a document by gsize n and gfont n, or by the command-line
arguments —sn and —fn.

Normally subscripts and superscripts are reduced by 3 point sizes from the previous size; this
may be changed by the command-line argument —pn.

Successive display arguments can be lined up. Place mark before the desired lineup point in
the first equation; place lineup at the place that is to line up vertically in subsequent equations.

Shorthands may be defined or existing keywords redefined with define: define thing % replace-
ment % defines a new token called thing which will be replaced by replacement whenever it
appears thereafter. The % may be any character that does not occur in replacement.

Keywords like sum (3)) int (f) inf (c0) and shorthands like >= (=) —> (—), and !'= (#)
are recognized. Greek letters are spelled out in the desired case, as in alpha or GAMMA.
Mathematical words like sin, cos, log are made Roman automatically. Troff(1) four-character
escapes like \(bs (@) can be used anywhere. Strings enclosed in double quotes "..." are passed
through untouched; this permits keywords to be entered as text, and can be used to communi-
cate with troff when all else fails.

SEE ALSO
troff(1), tbl(1), ms(7), eqnchar(7)
B. W. Kernighan and L. L. Cherry, Typesetting Mathematics—User’s Guide
J. F. Ossanna, NROFF/TROFF User’s Manual

BUGS
To embolden digits, parens, etc., it is necessary to quote them, as in ‘bold "12.3".

7th Edition 61

EXPR (1) UNIX Programmer’s Manual EXPR (1)

NAME

expr — evaluate arguments as an expression

SYNOPSIS

expr arg ...

DESCRIPTION

The arguments are taken as an expression. After evaluation, the result is written on the stan-
dard output. Each token of the expression is a separate argument.

The operators and keywords are listed below. The list is in order of increasing precedence, with
equal precedence operators grouped.

expr | expr
yields the first expr if it is neither null nor ‘0’, otherwise yields the second expr.

expr & expr
yields the first expr if neither expr is null or ‘0’, otherwise yields ‘0’.

expr relop expr
where relop is one of < <= = != >= > yields ‘1’ if the indicated comparison is
true, ‘0’ if false. The comparison is numeric if both expr are integers, otherwise lexico-
graphic.
expr + expr
expr - expr
addition or subtraction of the arguments.
expr * expr
expr [expr
expr % expr
multiplication, division, or remainder of the arguments.

expr : expr
The matching operator compares the string first argument with the regular expression
second argument; regular expression syntax is the same as that of ed(1). The \(...\)
pattern symbols can be used to select a portion of the first argument. Otherwise, the
matching operator yields the number of characters matched (‘0’ on failure).

(expr)
parentheses for grouping.

Examples:
To add 1 to the Shell variable a:
a="expr$a + 1

To find the filename part (least significant part) of the pathname stored in variable a, which
may or may not contain ‘/’:

expr $a: *A(*) T $a
Note the quoted Shell metacharacters.

SEE ALSO

ed(1), sh(1), test(1)

DIAGNOSTICS

Expr returns the following exit codes:

0 if the expression is neither null nor ‘0’,
1 if the expression is null or ‘0’,
2 for invalid expressions.

7th Edition 62

F717(1) UNIX Programmer’s Manual F77(1)

NAME

f77 — Fortran 77 compiler
SYNOPSIS

77 [option] ... file ...
DESCRIPTION

F77 is the UNIX Fortran 77 compiler. It accepts several types of arguments:

Arguments whose names end with “.f* are taken to be Fortran 77 source programs; they are
compiled, and each object program is left on the file in the current directory whose name is that
of the source with ‘.0’ substituted for ’.f".

Arguments whose names end with “.r’ or ‘.e’ are taken to be Ratfor or EFL source programs,
respectively; these are first transformed by the appropriate preprocessor, then compiled by f77.

In the same way, arguments whose names end with ‘.c’ or ‘s’ are taken to be C or assembly
source programs and are compiled or assembled, producing a ‘.o’ file.

The following options have the same meaning as in cc(1). See ld(1) for load-time options.
—c Suppress loading and produce ‘.o’ files for each source file.

—p Prepare object files for profiling, see prof(1).

-0 Invoke an object-code optimizer.

-S Compile the named programs, and leave the assembler-language output on correspond-
ing files suffixed ‘.s’. (No ‘.0’ is created.).

—f Use a floating point interpreter (for PDP11’s that lack 11/70-style floating point).

—o output
Name the final output file output instead of ‘a.out’.

The following options are peculiar to f77.

—onetrip
Compile DO loops that are performed at least once if reached. (Fortran 77 DO loops
are not performed at all if the upper limit is smaller than the lower limit.)

—u Make the default type of a variable ‘undefined’ rather than using the default Fortran
rules.

-C Compile code to check that subscripts are within declared array bounds.

—w Suppress all warning messages. If the option is ‘—w66’, only Fortran 66 compatibility
warnings are suppressed.

—F Apply EFL and Ratfor preprocessor to relevant files, put the result in the file with the
suffix changed to “.f°, but do not compile.

—m Apply the M4 preprocessor to each .r’ or ‘.¢’ file before transforming it with the Ratfor
or EFL preprocessor.

—Ex Use the string x as an EFL option in processing ‘.e’ files.
—Rx Use the string x as a Ratfor option in processing ‘.r’ files.

Other arguments are taken to be either loader option arguments, or F77-compatible object pro-
grams, typically produced by an earlier run, or perhaps libraries of F77-compatible routines.
These programs, together with the results of any compilations specified, are loaded (in the
order given) to produce an executable program with name ‘a.out’.

FILES
file.[fresc] input file
file.o object file

7th Edition 63

F77(1)

UNIX Programmer’s Manual

a.out loaded output
/Jusr/lib/f77pass1compiler

/lib/cl pass 2

/lib/c2 optional optimizer

/usr/lib/libF77.a intrinsic function library
Jusr/lib/libl77.a Fortran I/O library
/lib/libc.a C library, see section 3

SEE ALSO

S. I. Feldman, P. J. Weinberger, A Portable Fortran 77 Compiler

prof(1), cc(1), 1d(1)

DIAGNOSTICS
The diagnostics produced by f77 itself are intended to be self-explanatory. Occasional messages

BUGS

may be produced by the loader.

F17(1)

The Fortran 66 subset of the language has been exercised extensively; the newer features have

not.

7th Edition

FACTOR (1) UNIX Programmer’s Manual FACTOR (1)

NAME
factor, primes — factor a number, generate large primes

SYNOPSIS
factor [number]
primes

DESCRIPTION
When factor is invoked without an argument, it waits for a number to be typed in. If you type
in a positive number less than 26 (about 7.2X10'®) it will factor the number and print its prime
factors; each one is printed the proper number of times. Then it waits for another number. It
exits if it encounters a zero or any non-numeric character.

If factor is invoked with an argument, it factors the number as above and then exits.

Maximum time to factor is proportional to \/n and occurs when n is prime or the square of a
prime. It takes 1 minute to factor a prime near 10'* on a PDP11.

When primes is invoked, it waits for a number to be typed in. If you type in a positive number
less than 2% it will print all primes greater than or equal to this number.

DIAGNOSTICS
‘Ouch.’ for input out of range or for garbage input.

7th Edition 65

FILE(1) UNIX Programmer’s Manual FILE(1)

NAME
file — determine file type

SYNOPSIS
file file ...

DESCRIPTION
File performs a series of tests on each argument in an attempt to classify it. If an argument
appears to be ascii, file examines the first 512 bytes and tries to guess its language.

BUGS
It often makes mistakes. In particular it often suggests that command files are C programs.

7th Edition 66

FIND (1) UNIX Programmer’s Manual FIND (1)

NAME
find — find files

SYNOPSIS
find pathname-list expression

DESCRIPTION
Find recursively descends the directory hierarchy for each pathname in the pathname-list (i.e.,
one or more pathnames) seeking files that match a boolean expression written in the primaries
given below. In the descriptions, the argument n is used as a decimal integer where +n means
more than n, —n means less than #n and n means exactly n.

—name filename
True if the filename argument matches the current file name. Normal Shell argu-
ment syntax may be used if escaped (watch out for *[’, *?> and ‘*’).

—perm onum
True if the file permission flags exactly match the octal number onum (see
chmod(1)). If onum is prefixed by a minus sign, more flag bits (017777, see stat(2))
become significant and the flags are compared: (flags&onum)= =onum.

—type ¢ True if the type of the file is ¢, where c is b, ¢, d or f for block special file, character
special file, directory or plain file.

—links n True if the file has n links.

—user uname
True if the file belongs to the user uname (login name or numeric user ID).

—group gname
True if the file belongs to group gname (group name or numeric group ID).

—size n True if the file is 7 blocks long (512 bytes per block).
—inum n True if the file has inode number n.
—atime n True if the file has been accessed in n days.

—mtime n
True if the file has been modified in n days.

—exec command
True if the executed command returns a zero value as exit status. The end of the
command must be punctuated by an escaped semicolon. A command argument ‘{}’
is replaced by the current pathname.

—ok command
Like —exec except that the generated command is written on the standard output,
then the standard input is read and the command executed only upon response y.

—print Always true; causes the current pathname to be printed.

—newer file
True if the current file has been modified more recently than the argument file.

The primaries may be combined using the following operators (in order of decreasing pre-
cedence):

1) A parenthesized group of primaries and operators (parentheses are special to the Shell and
must be escaped).

2) The negation of a primary (‘!’ is the unary not operator).

3) Concatenation of primaries (the and operation is implied by the juxtaposition of two pri-
maries).

7th Edition 67

FIND (1) UNIX Programmer’s Manual FIND (1)

4) Alternation of primaries (‘—o’ is the or operator).

EXAMPLE
To remove all files named ‘a.out’ or ‘*.0’ that have not been accessed for a week:

find / \(—name a.out —0 —name ’*.0’ \) —atime +7 —exec rm {} \;

FILES
/etc/passwd
/etc/group

SEE ALSO
sh(1), test(1), filsys(5)

BUGS
The syntax is painful.

7th Edition 68

GRAPH (1G) UNIX Programmer’s Manual GRAPH(1G)

NAME

graph — draw a graph
SYNOPSIS

graph [option] ...
DESCRIPTION

Graph with no options takes pairs of numbers from the standard input as abscissas and ordi-
nates of a graph. Successive points are connected by straight lines. The graph is encoded on
the standard output for display by the plot(1) filters.

If the coordinates of a point are followed by a nonnumeric string, that string is printed as a
label beginning on the point. Labels may be surrounded with quotes "...", in which case they
may be empty or contain blanks and numbers; labels never contain newlines.

The following options are recognized, each as a separate argument.

—a Supply abscissas automatically (they are missing from the input); spacing is given by
the next argument (default 1). A second optional argument is the starting point for
automatic abscissas (default 0 or lower limit given by —x).

—b Break (disconnect) the graph after each label in the input.

—c Character string given by next argument is default label for each point.

—g Next argument is grid style, 0 no grid, 1 frame with ticks, 2 full grid (default).
-1 Next argument is label for graph.

—m Next argument is mode (style) of connecting lines: 0 disconnected, 1 connected
(default). Some devices give distinguishable line styles for other small integers.

—s Save screen, don’t erase before plotting.

—x[1]
If 1 is present, x axis is logarithmic. Next 1 (or 2) arguments are lower (and upper) x
limits. Third argument, if present, is grid spacing on x axis. Normally these quantities
are determined automatically.

—-yl1]
Similarly for y.

—h Next argument is fraction of space for height.

—w Similarly for width.

-r Next argument is fraction of space to move right before plotting.

—u Similarly to move up before plotting.

—t Transpose horizontal and vertical axes. (Option —x now applies to the vertical axis.)
A legend indicating grid range is produced with a grid unless the —s option is present.

If a specified lower limit exceeds the upper limit, the axis is reversed.

SEE ALSO
spline(1), plot(1)
BUGS
Graph stores all points internally and drops those for which there isn’t room.

Segments that run out of bounds are dropped, not windowed.
Logarithmic axes may not be reversed.

7th Edition 69

GREP (1) UNIX Programmer’s Manual

NAME
grep, egrep, fgrep — search a file for a pattern
SYNOPSIS
grep [option] ... expression [file] ...
egrep [option] ... [expression] [file] ...

fgrep [option] ... [strings] [file]
DESCRIPTION

GREP(1)

Commands of the grep family search the input files (standard input default) for lines matching a
pattern. Normally, each line found is copied to the standard output; unless the —h flag is used,
the file n<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>