
A
COMMENTARY
ON THE
UNIX
OPERATING
SYSTEM

JOHN LIONS

The University of New South Wales

A
COMMENTARY
ON THE
UNIX
OPERATING
SYSTEM
Th is booklet has been produced for students at the University
of New South Wales taking courses 6.6028 and 6.657G.

It is intended as a companion to, and commentary on, the
booklet UNIX Operating System Source Code, Level Six.

The UNIX Software System was written by K. Thompson and
D. Ritchie of Bell Telephone Laboratories, Murray Hill, NJ. It
has been made available to the University of New South Wales
under a licence from the Western Electric Company.

THIS INFORMATION IS PROPRIETARY AND IS TEE PROP~

ERTY OF BELL LABORATORIES, INC. IT IS TO BE USEl
BY AUTHORIZED BELL LABS EMPLOYEES ONLY •. ITS RE­
PRODUCTION OR DISCLOSURE TO UNAUTHORIZED PERSON~

EITHER CRALLY OR IN WRITING, IS PROHIBITED.

J. LIONS DEPT. OF COMPUTER SCIENCE
THE UNIVERSITY OF NEW SOUTH WALES

CONTENTS

Preface

1. Introduction

The UNIX Operating System
Utilities
Other Documentation
UNIX Programmer's Manual
UNIX Documents
UNIX Operating System Source Code
Source Code Sections
Source Code Files
Use of these notes
A Note on Programming Standards

2. Fundamentals

The Processor
Processor Status Word
General Registers
Instruction Set
Addressing Modes
Unix Assembler
Memory Management
Segmentation Registers.
Page Description Register
Memory Allocation
Status Registers
Initial Conditions
Special Device Registers

1-1
1-1
1-1
1-2
1-2
1-2
1-3
1-3
1-3
1-3

2-1
2-1
2-1
2-2
2-3
2-4
2-4
2-4
2-5
2-5
2-5
2-5
2-5

3. Reading ·C n Programs

Some Selected Examples
Example 1
Example 2
Example 3
Example 4
Example 5
Example 6
Example 7
Example 8
Example 9
Example 10
Example 11
Example 12
Example 13
Example 14
Example 15
Example 16
Example 17

4. An Overview

Variable Allocation
Global Variables
The 'c' Preprocessor
Section One
The First Group of '.h' Files
Assembly Language Files
Other Files in Section One
Section Two
Section Three
Section Four
Section Five

5. Two Files

The File 'malloc.c'
Rules for List Maintenance
ma110c (2528)
mfree (2556)
In conclusion .••
The File 'prf.c'
printf (2340)
printn (2369)
putchar (2386)
panic (2419)
prdev (2433)
deverror (2447)
Included Files

3-1
3-1
3-1
3-2
3-3
3-3
3-4
3-4
3-4
3-5
3-5
3-5
3-6
3-6
3-6
3-6
3-7
3-7

4-1
4-1
4-1
4-2
4-2
4-2
4-2
4-3
4-3
4-3
4-4

5-1
5-1
5-2
5-3
5-3
5-3
5-3
5-4
5-4
5-5
5-6
5-6
5-6

6. Getting Started

Operator Actions
start (0612)
main (1550)
Processes
Initialisation of proc[01
The story continues
sched (1940)
sleep (2066)
swtch (2178)
main revisited

7. Processes

The Process Image
The Proc Structure (0358)
The user Structure (0413)
The Per Process Data Area
The Segments
Execution of an Image
Kernel Mode Execution
User Mode Execution
An Example
Setting the Segmentation Registers
estabur (1650)
sureg (1739)
newproc (1826)

8. Process Management

Process Switching
Interrupts
Program Swapping
Jobs
Assembler Procedures
savu (0725)
retu (0740)
aretu (0734)
swtch (2178)
setpri (2156)
sleep (2066)
wakeup (2113)
setrun (2134)
expand (2268)
swtch revisited
Critical Sections

9. Hardware Interrupts and Traps

Hardware Interrupts
The Interrupt Vector
Interrupt Handlers
Priorities

6-1
6-1
6-2
6-3
6-3
6-4
6-4
6-4
6-4
6-5

7-1
7-2
7-2
7-2
7-3
7-3
7-3
7-3
7-3
7-4
7-4
7-4
7-5

8-1
8-1
8-1
8-1
8-2
8-2
8-2
8-2
8-2
8-2
8-3
8-3
8-3
8-3
8-4
8-4

9-1
9-2
9-2
9-2

Interrupt Priorities
Rules for Interrupt Handlers
Traps
Assembly Language 'trap'
Return

10. The Assembler "Trapn Routine

Sources of Traps and Interrupts
fuibyte (0814)
fuiword (0844)
Interrupts
call (0776)
User Program Traps
The Kernel Stack

11. Clock Interrupts

clock (3725)
timeout (3845)

12. Traps and System Calls

trap (2693)
Kernel Mode Traps
User Mode Traps
System Calls
System Call Handlers
The File 'sysl.c'
exec (3020)
fork (3322)
sbreak (3354)
The Files 'sys2.c' and 'sys3.c'
The File 'sys4.c'

13. Software Interrupts

An ticipa tion
Causation
Effect
Tracing
procedures
A. Anticipation
B. Causation
C. Effect
D. Tracing
ssig (3614)
kill (3630)
signal (3949)
psignal (3963)
issig (3991)
psig (4043)
core (4094)

9-2
9-2
9-3
9-3
9-3

HI-I
10-1
10-1
HI-2
10-2
HI-2
10-3

ll-l
11-2

12-1
12-1
12-2
12-2
12-3
12-3
12-3
12-4
12-4
12-4
12-4

13-1
13-1
13-1
13-2
13-2
13-2
13-2
13-2
13-2
13-2
13-2
13-3
13-3
13-3
13-3
13-3

grow (4136)
exit (3219)
rexit (32135)
wait (32713)
stop (41H6)
wait (32713) (continued)
ptrace (4164)
procxmt (42134)

14. Program Swapping

Text Segments
sched (19413)
xswap (4368)
xalloc (4433)
xfree (4398)

IS. Introduction to Basic I/O

The File 'buf.h'
devtab (45S1)
The File 'conf.h'
The file 'conf.c'
System generation
swap (5196)
Race Conditions
Reentrancy
For the Uninitiated
Additional Reading

16. The RK Disk Driver

Control Status Register (RKCS)
Word Count Register (RKWC)
Disk Address Register (RKDA)
The file 'rk.c'
rkstrategy (5389)
rkaddr (S42f1)
devstart (Sfl96)
rkintr (5451)
iodone (5 ~'ll8)

17. Buffer Manipulation

Flags
A Cache-like Memory
clrbuf (51338)
incore (4899)
getblk (4921)
brelse (4869)
binit (SflS5)
bread (47S4)
breada (4773)

13-3
13-4
13-4
13-4
13-S
13-S
13-S
13-6

14-1
14-2
14-3
14-3
14-3

lS-1
lS-1
lS-1
lS-1
lS-2
lS-2
lS-2
lS-3
15-3
lS-3

16-1
16-1
16-2
16-2
16-2
16-2
16-2
16-2
16-2

17-1
17-1
17-1
17-1
17-1
17-2
17-2
17-3
17-3

bwrite (48139)
bawrite (4856)
bdwrite (4836)
bflush (S229)
physio (S259)

18. File Access and Contral

Section Four
File Characteristics
System Calls
Control Tables
file (S5f17)
inode (56S9)
Resources Required
Opening a File
creat (5781)
openl (S8f14)
open (5763)
openl revisited
close (5846)
closef (6643)
iput (7344)
Deletion of Files
Reading and writing
rdwr (5731)
readi (6221)
writei
iomove (6364)
bmap (641S)
Leftovers

19. File Directories and Directory

Files
File Names
The Directory Data Structure
Directory Files
namei (7518)
Some Comments
link (59139)
wdir (7477)
maknode (7455)
unlink (3SlfI)
mknod (S952)
access (6746)

213. File Systems

The 'Super Block' (5561)
The 'mount' table (13272)
iinit (6922)
Mounting
smount (61386)

17-3
17-3
17-3
17-3
17-3

18-1
18-1
18-2
18-2
18-2
18-2
18-2
18-3
18-3
18-3
18-3
18-3
18-3
18-4
18-4
18-4
18-4
18-S
18-5
18-6
18-6
18-6
18-6

19-1
19-1
19-1
19-1
19-2
19-3
19-3
19-4
19-4
19-4
19-4

213-1
213-1
213-2
213-2
213-2

21.

22.

23.

24.

Notes
iget (7276)
getfs (7167)
update (7201)
sumount (6144)
Resource Allocation
alloc (6956)
itrunc (7414)
free (7000)
iput (7344)
ifree (7134)
iupdat (7374)

Pipes

pipe (7723)
readp (7758)
wri tep (7805)
plock (7862)
prele (7882)

Character Oriented Special Files

LPII Line Printer Driver
lpopen (8850)
Notes
lpoutput (8986)
lpstart (8967)
lpint (8976)
lpwrite (8870)
lpclose (8863)
Discussion
lpcanon (8879)
For idle readers: A suggestion

Character Handling

cinit (8234)
getc (0930)
putc (0967)
Control Characters
Graphic Characters
Graphic Character Sets
UNIX Conventions
maptab (8117)
partab (7947)

Interactive Terminals

Interfaces
The 'tty' Structure (7926)
Note
Initialisation

20-2
20-2
20-3
20-3
20-4
20-4
20-4
20-4
20-5
20-5
20-5
20-5

21-1
21-1
21-1
21-1
21-1

22-1
22-1
22-2
22-2
22-2
22-2
22-3
22-3
22-3
22-3
22-4

23-2
23-2
23-2
23-3
23-3
23-3
23-3
23-4
23-4

24-1
24-1
24-2
24-2

25.

26.

stty (8183)
sgtty (8201)
klsgtty (8090)
ttystty (8577)
The DLll/KLll Terminal Device Handler
Device Registers
Receiver Status Register (klrcsr)
Receiver Data Buffer Register (klrbuf)
Transmitter Status Register (kltcsr)
Transmitter Data Buffer Register (kltbuf)
UNIBUS Addresses
Software Considerations
Interrupt Vector Addresses
Source Code
klopen (8023)
klclose (8055)
klxint (8070)
klrint (8078)

The File ntty.c n

flushtty (8252)
wflushtty (8217)
Character Input
ttread (8535)
canon (8274)
Previous character was not a backslash
Previous character was a backslash
Character ready
line completed
Notes
ttyinput (8333)
Character Output
ttwrite (8550)
ttstart (8505)
ttrstrt (8486)
ttyoutput (8373)
Terminals with a restricted character set
A. The test for 'TTLOWAT' (Line 8074)
B. Inactive Terminals
well, that's all, folks •••

Suggested Exercises

Section One
Section Two
Section Three
Section Four
Section Five
General

24-2
24-2
24-2
24-2
24-2
24-3
24-3
24-3
24-3
24-3
24-3
24-3
24-3
24-3
24-4
24-4
24-4
24-4

25-1
25-1
25-1
25-1
25-1
25-2
25-2
25-2
25-2
25-2
25-2
25-3
25-3
25-3
25-3
25-3
25-3
25-4
25-5
25-5

26-1
26-2
26-2
26-2
26-2
26-2

PREFACE

This book is an attempt to explain in
detail the nucleus of one of the most
interesting computer operating systems
to appear in recent years.

It is the UNIX Time-sharing System,
which runs on the larger models of
Digital Equipment Corporation's PDPII
computer system, and was developed by
Ken Thompson and Dennis Ritchie at Bell
Laboratories. It was first announced to
the world in the July, 1974 issue of
the "Communications of the ACM".

Very soon in our experience with UNIX,
it suggested itself as an interesting
candidate for formal study by students,
for the following reasons:

UNIX Operating System

it runs on a system which was already
available to us;

it is compact and accessible;

it provides an extensive set of very
usable facilities;

it is intrinsically interesting, and
in fact breaks new ground in a
number of areas.

Not least amongst the charms and vir­
tues of the UNIX Time-sharing System is
the compactness of its source code.
The source code for the permanently
resident "nucleus" of the system when
only a small number of peripheral dev­
ices is represented, is comfortably
less than 9000 lines of code.

It has often been suggested that 10,000
lines of code represents the practical
limit in size for a program which is to
be understood and maintained by a sin­
gle individual.

Most operating systems either exceed
this limit by one or even two orders of
magnitude, or else offer the user a
very limited set of facilities, i.e.
either the details of the system are
inaccessible to all but the most deter­
mined, dedicated and long-suffering
student, or else the system is rather
specialised and of little intrinisic
interest.

There seem to be three main approaches
to teaching Operating Systems.

First there is the "general principles"
approach, wherein fundamental princi
pIes are expounded, and illustrated by
references to various existing systems,
(most of which happen to be outside the
students' immediate experience). This
is the approach advocated by the COSINE
Committee, but in our view, many stu­
dents are not mature or experienced
enough to profit from it.

i-I

The second approach is the "building
block" approach, wherein the students
are enabled to synthesise a small scale
or "toy" operating system for them­
selves. While undoubtedly this can be a
valuable exercise, if properly organ­
ised, it cannot but fail to encompass
the complexity and sophistication of
real operating systems, and is usually
biased towards one aspect of operating
system design, such as process syn­
chronisation.

The third approach is the II~ study"
approach. This is the one originally
recommended for the Systems Programming
course in IICurriculum '68 11 , the report
of the ACM Curriculum Committee on Com­
puter Science, published in the March,
1968 issue of the IICommunications of
the ACMII.

Ten years ago, this approach, which
advocates devoting IImost of the course
to the study of a single system ll was
unrealistic because the cost of provid­
ing adequate student access to a suit­
able system was simply too high.

Ten years later, the economic picture
has changed significantly, and the
costs are no longer a decisive disad­
vantage if a minicomputer system can be
the subject of study. The considerable
advantages of the approach which under­
takes a detailed analysis of an exist­
ing system are now attainable.

In our opinion, it is highly beneficial
for students to have the opportunity to
study a working operating system in all
its aspects.

Moreover it is undoubtedly good for
students majoring in Computer Science,
to be confronted at least once in their
careers, with the task of reading and
understanding a program of major dimen­
sions.

Preface

In 1976 we adopted UNIX as the subject
for case study in our courses in
Operating Systems at the University of
New South Wales. These notes were
prepared originally for the assistance
of students in those courses (6.602B
and 6.657G).

The courses run for one semester each.
Before entering either course, students
are presumed to have studied the PDPll
architecture and assembly language, and
to have had an opportunity to use the
UNIX operating system during exercises
for earlier courses.

In general, students seem to find the
new courses more onerous, but much more
satisfying than the previous courses
based 6n the "general principles"
approach .of the COSINE Committee.

Some mention needs to be made regarding
the documentation provided by the
authors of the UNIX system. As repro­
duced for use on our campus, this
comprises two volumes of A4 size paper,
with a total thickness of 3 cm, and a
weight of 1250 grams.

A first observation is that the whole
documentation is not unreasonably tran­
sportable in a student's brief case.
However it must not be assumed that
this amount of docu~entation, which is
written in a fresh, terse, whimsical
style, is necessarily inadequate.

In fact the second observation (which
is only made after considerable experi­
ence) is that for reference purposes,
the documentation is remarkably
comprehensive. However there is plenty
of scope for additional tutorial
material, one part of which, it is
hoped, is satisfied by these notes.

The actual UNIX operating system source
code is recorded in a separate compan­
ion volume entitled "UNIX· Operating
System Source Code", which was first

UNIX Operating System

printed in July, 1976. This is a spe­
cially edited selection of code from
the Level Six version of UNIX, as
received by us in December, 1975.

During 1976, an initial version of the
present notes was distributed in
roneoed form, and only in the latter
part of the year were the facilities of
the "nroff" text formatting program
exploited. The opportunity has
recently been taken to revise and
"nroff" the earlier material, to make
some revisions and corrections, and to
integrate them into their present form.

A decision had to be made quite early
regarding the order of presentation of
the source code. The intention was to
provide a reasonably logical sequence
for the student who wanted to learn the
whole system. With the benefit of
hindsight, a great many improvements in
detail are still possible, and it is
intended that these changes will be
made in some future edition.

It is our hope that this book will be
of interest and value to many students
of the UNIX Tlme-sharing System.
Although not prepared primarily for use
as a reference work, some will wish to
use it as such. The indices provided at
the end should go some of the way
towards satisfying the requirement for
reference material at this level.

Since these notes refer to proprietary
material administered by the Western
Electric Company, they can only be made
available to licensees of the UNIX
Time-sharing System, and hence are
unable to be published through more
usual channels.

Corrections, criticism and suggestions
for improvement of these notes will be
very welcome.

i-2

Acknowledgements

The preparation of these notes has been
encouraged and supported by many of my
colleagues and students including David
Carrington, Doug Crompton, Ian Hayes,
David Horsfall, Peter Ivanov, Ian John­
stone, Chris Maltby, Dave Milway, John
O'Brien and Greg Rose.

Pat Mackie and Mary Powter did much of
the initial typing, and Adele Green has
assisted greatly in the transfer of the
notes to "nroff" format.

David Millis and the Publications Sec­
tion of the university of New South
Wales have assisted greatly with the
mechanics of publication, and Ian John­
stone and the Australian Graduate
School of Management provided facili­
ties for the preparation of the final
draft.

Throughout this project, my wife
Marianne has given me unfailing moral
support and much practical support with
proof-reading.

Finally Ken Thompson and Dennis Ritchie
started it all.

To all the above, I wish to express my
sincere thanks.

The co-operation of the "nroff" program
must also be mentioned. Without it,
these notes could never have been pro­
duced in this form. However it has
yielded some of its more enigmatic
secrets so reluctantly, that the
author's gratitude is indeed mixed.
Certainly "nroff" itself must provide a
fertile field for future practitioners
of the program documenter's art.

Preface

Jonn Lions
Kensington, NSW
May, 1977

CHAPTER ONE

Introduction

"UNIX" is the name of a time-sharing
system for PDPll computers, written by
Ken Thompson and Dennis Ritchie at Bell
Laboratories. It was described by them
in the July, 1974 issue of the "Commun­
ications of the ACM".

UNIX has proved to be effective, effi­
cient and reliable in operation and was
in use at more than 150 installations
by the end of 1976.

The amount of effort to write UNIX,
while not inconsiderable in itself (
-10 man years up to the release of the
Level Six system) is insignificant when
compared to other systems. (For
instance, by 1968, OS/360 was reputed
to have consumed more then five man
millennia and TSS/360, another IBM
operating system, more than one man
millennium.)

UNIX Operating System

Much of the effectiveness of UNIX
derives from the simple and direct
implementation, by two people (presum­
ably sharing the same office!) using an
appropriate high level language called
pC", and restrained by the very defin­
ite size limitations of the PDPll.

Not only is UNIX effective, but it is
accessible in a way that most other
systems are not: the amount of material
which must be mastered in order to gain
a reasonably deep understanding of the
system is not impossibly large. By way
of comparison, OS/360 and its succes­
sors are far too complex to be com­
pletely understood by anyone indivi­
dual. Most major operating systems
require many months of study before an
individual will be ready to make major
modifications to the system.

Of course there are systems which are
easier to understand than UNIX but, it
may be asserted, these are invariably
much simpler and more modest in what
they attempt to achieve. As far as the
list of features offered to users is
concerned, UNIX is in the "big league".
In fact it offers many features which
are notable by their absence from some
of the well-known major systems.

The UNIX Operating System

The purpose of this document, and its
companion, the "UNIX Operating System
Source Code", is to present in _detail
that part of the UNIX time-sharing sys­
tem which we choose to call the "UNIX
Operating System", namely the code
which is permanently resident in the
main memory during the operation of
UNIX. This code has the following
major functions:

initialisation;
process management;
system calls;
interrupt handling;
input/output operations;
file management.

1-1

Utilities

The remaining part of UNIX (which is
much larger!) is composed of a set of
suitably tailored programs which run as
"user programs", and which, for want of
a better term, may be termed "utili­
ties".

Under this heading come a number of
programs with a very strong symbiotic
relationship with the operating system
such as

the "shell" (the command language
interpreter)

"/etc/init" (the terminal configura­
tion controller)

and a number of file system management
programs such as:

check
chmod
clri
df

du
mkdir
mkfs
mount

rmdir
sync
umount
update

It should be pointed out that many of
the functions carried out by the
above-named programs are regarded as
operating system functions in other
computer systems, and that this cer­
tainly does contribut-e significantly to
the bulk of these other systems aS~COm­
pared _ with the UN[:X Operating System
(in the way we have defined ~t) .

Descriptions of the function and use of
the above programs may be found in the
"UNIX Programmer's Manual" (UPM) ,
either in Section I (for the commonly
used programs) or in Section VIII (for
the programs used only by the System
Manager) .

Other Documentation

These notes
the "UNIX
occasional
Documents"

Introduction

make frequent reference to
Programmer's Manual" (UPM),
reference to the "UNIX

booklet, and constant

reference to the "UNIX Operating System
Source Code".

All these are relevant to a complete
understanding of the system. In addi­
tion, a full study of the asse~bly
language routines requires reference to
the "PDPII Processor Handbook", pub­
lished by Digital Equipment Corpora­
tion.

UNIX Programmer'~ Manual

The UPM is divided into eight major
sections, preceded by a table of con­
tents and a KWIC (Key Word In Context)
index. The latter is mostly very use­
ful but is occasionally annoying, as
some indexed material does not exist,
and some existing material is not
indexed.

Within each section of the manual, the
material is arranged alphabetically by
subject name. The section number is
conventionally appended to the subject
name, since some subjects appear in
more than ~ne section, e.g. "CHDIR(I)"
and "CHDIR(II)".

Section I contains commands which
either are recognised by the
"shell" command interpreter, or
are the names of standard user
utility programs;

Section II contains "system calls"
WhICh are operating system rou­
tines which may be invoked from a
user program to obtain operating
system service. A study of the
operating system will render most
of these quite familiar;

Section III contains "subroutines"
which are- library routines which
may be called from a user program.
To the ordinary programmer, the
distinctions between Sections II
and III often appear somewhat
arbitrary. Most of Section III IS

irrelevant to the operating sys­
tem;

UNIX Operating System

Section IV describes "special
files", which is another name for
peripheral devices. Some of these
are relevant, and some merely
interesting. It depends where you
are;

Section V describes "File Formats
and Conventions". A lot of highly
relevant information is tucked
away in this section;

Sections VI and VII describe "User
Maintained" -programs and subrou­
tines. No UNIXophile will ignore
these sections, but they are not
particularly relevant to the
operating system;

Section VIII describes "system
maintenance" (software, not
hardware!). There is lots of use­
ful information here, especially
if you are interested in how a
UNIX installation is managed.

UNIX Documents

This is a somewhat miscellaneous col­
lection of essays of varying degrees of
relevance:

Setting ~ UNIX really belongs in
Section VIII of the UPM (it's
relevant);

The UNIX Time-sharing System is an
updated version of the original
"Communications of the ACM" paper.
It should be re-read at least once
per month;

UNIX for Beginners is useful if
your UNIX experience is still lim­
ited;

The tutorials on "C" and the edi­
tor, and the reference manuals for
"C" and the assembler are highly
useful unless you are completely
expert;

The UNIX I/O System provides a
good--o\Tervlew of many features of
the operating system;

1-2

UNIX Summary provides a check list
which will be useful in answering
the question "what does an operat­
ing system do?"

UNIX Operating System Source Code

This is an edited
operating system as
Laboratories.

version of the
supplied by Bell

The code selection presumes a "model"
system consisting of:

PDPII/4~ processor;

RK~5 disk drives;

LPII line printer;

PCII paper tape reader/punch;

KLII terminal interface.

The principal editorial changes to the
source code are as follows:

the order of presentation of files
has been changed;

the order of material within
several files has been changed;

to a very limited extent, code has
been transferred between files
(with hindsight a lot more of this
would have been desirable);

about 5% of the lines have been
shortened in various ways to less
than 66 characters (by elimination
of blanks, rearrangement of com­
ments, splitting into two lines,
etc.) ;

a number of comments consisting of
a line of underscore characters
have been introduced, particularly
at the end of procedures;

the size of each file has been
adjusted to an exact multiple -" Ui.

5~ lines by padding with blank
lines;

Introduction

a four digit line number has been
inserted at the beginning of each
line to identify it for cross-'
referencing.

The source code has been printed in 3

double column format with fifty lines
per column, giving one hundred lines
per sheet (or page). Thus there is a
convenient relationship between line
numbers and sheet numbers.

A number of summaries have been
included at the beginning of the Source
Code volume:

A Table of Contents showing files
Tn--order- of appearance, together
with the procedures they contain;

An alphabetical list of procedures
with line numberS;--

A list of Defined Symbols with
theIrvalues;

~ Cross Reference Listing giving
the line numbers where each symbol
is used. (Reserved words in "C"
and a number of commonly used sym­
bols such as "p" and "u" have been
omi tted.)

Source Code Sections

The source code has been divided into
five sections, each devoted primarily
to a single major aspect of the system.

The intention, which has been largely
achieved, has been to make each section
sufficiently self-contained so that it
may be studied as a unit and before its
successors have been mastered:

Section One deals with system ini­
tialisation, and process manage­
ment. It also contains all the
assembly language routines;

UNIX Operating System

Section Two deals with interrupts,
traps, system calls and signals
(software interrupts);

Section Three deals primarily with
disk operations for program swap­
ping and basic, block oriented
input/output. It also deals with
the manipulation of the pool of
large buffers;

Section Four deals with files and
file systems: their creation,
maintenance, manipulation and des­
truction;

Section Five deals with "character
special fTIes", which is the UNIX
term for slow speed peripheral
devices which operate out of a
common, character oriented, buffer
pool.

The contents of each section is out­
lined in more detail in Chapter Four.

Source Code Files

Each of the five
described consists of
code files. The name
includes a suffix which
type:

sections just
several source
of each file
identifies its

".s" denotes a file of
language statements;

a'ssembly

".c" denotes a file of executable "C"
language statements;

".h" denotes a file of "C" language
statements which is not for
separate compilation, but for
inclusion in other ".c" files
when they are compiled i.e. the
".h" files contain global
declarations.

Use of these notes

These notes, which are intended to sup­
plement the comments already present in

1-3

the source code, are not
understanding the UNIX
tern. It is perfectly
proceed without them,
attempt to do so as long

essential for
operating sys­
possible to

and you should
as you can.

The notes are a crutch, to aid you when
the going becomes difficult. If you
attempt to read each file or procedure
on your own first, your initial pro­
gress is likely to be slower, but your
ultimate progress much faster. Reading
other people's programs is an art which
should be learnt and practised
because it is useful!

~ Note on Programming Standards

You will find that most of the code in
UNIX is of a very high standard. Many
sections which initially seem complex
and obscure, appear in the light of
further investigation and reflection,
to be perfectly obvious and "the only
way to fly".

For this reason, the occasional com­
ments in the notes on programming
style, almost invariably refer to
apparent lapses from the usual standard
of near perfection.

What caused these? Sometimes it appears
that the original code has been patched
expediently. More than once apparent
lapses have proved not to be such: the
"bad" code has been found in fact to
incorporate some subtle feature which
was not at all apparent initially. And
some allowance is certainly needed for
occasional human weakness.

But on the whole you will find that the
authors of UNIX, Ken Thompson and
Dennis Ritchie, have created a program
of great strength, integrity and effec­
tiveness, which you should admire and
seek to emulate.

-000-

Introduction

CHAPTER TWO

Fundamentals

UNIX runs on the larger models of the
PDPll series of computers manufactured
by Digital Equipment Corporation. This
chapter provides a brief summary of
certain selected features of these com­
puters with particular reference to the
PDPll/40.

If the reader has not previously made
the acquaintance of the PDPll series
then he is directed forthwith to the
·PDPll Processor Handbook", published
by DEC.

A PDPll computer consists of a proces­
sor (also called a CPU) connected to
one or more memory storage units and
peripheral controllers via a bi­
directional parallel communication line
called the "bnibus".

UNIX Operating System

The Processor

The processor, which is designed around
a sixteen bit word length for instruc­
tions, data and program addresses,
incorporates a number of high speed
registers.

Processor Status Word

This sixteen bit register has subfields
which are interpreted as follows:

bits

14,15

12,13

5,6,7

4

3

2

description

current mode

previous mode

(00

(11

kernel;)

user;)

processor priority (range 0 .• 7)

trap bit

N, set if the previous result
was negative

Z, set if the previous result
was zero

1 V, set if the previous
operation gave an overflow

o C, set if the previous
operation gave a carry

The processor can operate in two dif­
ferent modes: kernel and user. Kernel
mode is the more privileged of the two
and is reserved by the operating system
for its own use. The choice of mode
determines:

The set of memory management segmen­
tation registers which is used
to translate program virtual
addresses to physical addresses;

The actual register used as r6, the
"stack pointer";

Whether certain instructions such as
"halt" will be obeyed.

2-1

General Registers

The processor incorporates a number of
sixteen bit registers of which eight
are accessible at any time as "general
registers". These are known as

r0, rl, r2, r3, r4, r5, r6 and r7.

The first six of the general registers
are available for use as accumulators,
address pointers or index registers.
The convention in UNIX for the use of
these registers is as follows:

r0, rl are used as temporary accu­
mulators during expression evalua­
tion, to return results from a
procedure, and in some cases to
communicate actual parameters dur­
ing a procedure call;

r2, r3, r4 are used for local
variables--during procedure execu­
tion. Their values are almost
always stored upon procedure
entry, and restored upon procedure
exit;

r5 is used as the head pointer to
a "dynamic chain" of procedure
activation records stored in the
current stack. It is referred to
as the "environment pointer".

The last two of the "general registers"
do have a special significance and are
to all intents, "special purpose":

r6 (also known as "sp") is used as
the stack pointer. The PDPll/40
processor incorporates two
separate registers which may be
used as "sp", depending on whether
the processor is in kernel or user
mode. No other one of the general
registers is duplicated in this
way;

r7 (also known as "pc") is used as
the program counter, i.e. the
instruction address register.

Fundamentals

Instruction Set

The PDPII instruction set includes dou­
ble, single and zero operand instruc­
tions. Instruction length is usually
one word, with some instructions being
extended to two or three words with
additional addressing information.

With single operand instructions, the
operand is usually called the "destina­
tion"; ~i~h double operand instruc­
tions, the two operands are called the
"source" and "destination". The various
modes of addressing are described
later.

The following instructions have been
used in the file "m40.s" i.e. the file
of assembly language support routines
for use with the 11/40 processor. Note
that N, Z, V and C are the condition
codes i.e. bits in the processor status
word ("ps"), and that these are set as
side effects of many instructions
besides just "bit", "cmp" and "tst"
(whose stated function is to set the
condition codes).

adc Add the contents of the C
the destination;

bit to

add Add the source to the destination;

ash Shift the
register
specified
negative
shift.) ;

contents of the defined
left the number of times
by the shift count. (A
value implies a right

ashc Similar to "ash" except that two
registers are involved;

asl Shift all bits one place to the
left. Bit 0 becomes 0 and bit 15
is loaded into C;

asr Shift all bits one place to the
right. Bit 15 is replicated and
bit 0 is loaded into C;

beq Branch if equal, i.e. if Z = 1;

Branch if greater than
to, i.e. if N = V;

or equal

UNIX Operating System

bhi Branch if higher, i.e. if C
and ·z = ";

bhis Branch if higher or the same, i.e.
if C = 0;

bic Clear each bit to zero in the des­
tination that corresponds to a
non-zero bit in the source;

bis Perform an "inclusive or" of
source and destination and store
the result in the destination;

bit Perform a logical "and" of the
source and destination to set the
condition codes;

ble

blo

bne

br

clc

Branch if greater than or equal
to, i.e. if Z = 1 or

Branch if lower (than
ifC = 1 ;

Branch if not equal
i.e. if Z 0;

Branch to a location
range (.-128, .+127)
the current location;

Clear C;

N = V;

zero) , i.e.

(to zero) ,

within the
where " " is

clr Clear destination to zero;

dec

Compare the source and destination
to set the condition codes. N is
set if the source value is less
than the destination value;

Subtract one from the contents of
the destination;

div The 32 bit two's complement
integer stored in rn and r(n+l)
(where n is even) is divided by
the source operand. The quotient
is left in rn, and the remainder
in r (n+l) ;

inc Add one to the contents of the
destination;

~ Jump to the destination;

Jump to subroutine. Register
values are shuffled as follows:

2-2

pc, rn, -(sp) = dest., pc, rn

mfpi Push onto the current stack the
value of the designated word in
the "previous" address space;

mov Copy the source value to the des­
tination;

mtpi Pop the current stack and store
the value in the designated word
in the "previous" address space;

mul Multiply the contents of rn and
the source. If n is even, the pro­
duct is left in rn and r(n+l);

reset Set the IN IT line on the Unibus
-----for 10 milliseconds. This will

have the effect of reinitialising
all the device controllers;

ror

rts

Rotate all bits of the destination
one place to the right. Bit 0 is
loaded into C, and the previous
value of C is loaded into bit 15;

Return from subroutine. Reload pc
from rn, and reload rn from the
stack;

rtt Return from
Reload both
stack;

interrupt or trap.
pc and ps from the

sbc

sob

Subtract the carry bit from the
destination;

Subtract one from the designated
register. If the result is not
zero, branch back "offset" words;

sub Subtract the source from the des­
tination;

swab Exchange the high and low order
bytes in the destination;

tst Set the condition codes, Nand Z,
according to the contents of the
destination;

wait Idle the processor and release the
Unibus until a hardware interrupt
occurs.

Fundamentals

The "byte" version of the following
instructions are used in the file
"m40.s", as well as the "word" versions
described above:

bis
clr
cmp

Addressing Modes

inc
mov
tst

Much of the novelty and complexity
the PDPll instruction set lies in
variety of addressing modes which
be used for defining the source
destination operands.

The, 'a,dqres,s'ing\ mode,s which are uS,ed
"m4'0\ .. s'" are des'cr'fbed below.

Register Mode. The operand resides
one of the general registers, e.g.

clr r0
mov rl,r0
add r4,r2

of
the
may
and

in

in

In the following modes, the designated
register contains an address value
which is used to locate the operand.

Register Deferred Mode.
contains the address
e.g.

inc (rl)
asr (sp)
add (r2) ,rl

The register
of the operand,

Autoincrement Mode. The register con­
tains the address of the operand. As a
side effect, the register is incre­
mented after the operation, e.g.

clr
mfpi
mov
mov
cmp

(rl)+
(r0)+
(rl)+,r0
r2,(r0)+
(sp)+, (sp)+

UNIX Operating System

Autodecrement Mode. The register is
decremented and then used to locate the
operand, e.g.

inc -(r0)
mov - (r 1) ,r2
mov (r0)+,-(sp)
clr - (sp)

Index Mode. The register contains a
value which is added to a sixteen bit
word following the instruction to form
the operand address, e.g.

clr
movb
movb
mov

2(r0)
6 (sp) , (sp)
reloc(r0) ,r0

=10(r2), (rl)

Depending on your viewpoint, in this
mode the, register is either an index
register or a base register. The
latter case actually predominates in
"m40.s". The third example above is
actually one of the few uses of a
regist~r as an index register. (Note
that " reloc" is an acceptable variable
name.)

There are two addressing modes whose
use is limited to the following two
examples:

jsr pc,*(r0)+
jmp *0f (r0)

,The first example involves the use of
the "autoincrement deferred" mode.
(This occurs in the routine "callI" on
lines 0785, 0799.) The address of a
routine intended for execution is to be
found in the word addressed by r0, i.e.
two levels of indirection are involved.
The fact that r0 is incremented as a
side effect is not relevant in this
usage.

The second example (which occurs on
lines 1055, 1066) is an instance of the
"index deferred" mode. The destination

2-3

of the "jump" is
word whose address is
plus the value of r0
integer). This is a
implement a mUlti-way

the content of the
labelled by "0f"
(a small positive
standard way to
switch.

The following two modes use the program
counter as the designated register to
achieve certain special effects.

Immediate Mode. This is the pc autoin­
crement mode. The operand is thus
extracted from the program string, i.e.
it becomes an immediate operand, e.g.

add $2,r0
add $2, (rl)
bic $17,r0
mov $KISA0,r0
mov $77406,(rl)+

Relative Mode. This is the pc index
mode. T~address relative to the
current program counter value is
extracted from the program string and
added to the pc value to form the abso­
lute address of the operand, e.g.

bic,
bit
inc
mov

$340,PS
$1,SSR0
SSR0
(sp) ,KISA6

It may be noted that each of the modes
"index", "index deferred", "immediate"
and "relative" extends the instruction
size by one word.

The existence of the "autoincrement"
and "autodecrement" modes, together
with the special attributes of r6, make
it conveniently possible to store many
operands in a stack, or LIFO list,
which grows downwards in memory. There
are a number of advantages which flow
from this: code string lengths are
shorter and it is easier to write posi­
tion independent code.

Fundamentals

Unix Assembler

The UNIX assembler is a two pass assem­
bler without macro facilities. A full
description may be found in the "UNIX
Assembler Reference Manual" which is
contained in the "UNIX Documents"

The following brief notes should be of
some assistance:

(a) a string of digits may define a
constant number. This is assumed
to be an octal number unless the
string is terminated by a period
("."), when it is interpreted as
a decimal number.

(b) The character "I"
signify that the
line is a comment;

is
rest

used to
of the

(c) If two or more statements occur
on the same line, they must be
separated by semicolons;

(d) The character • is used to
denote the current location;

(e) UNIX assembler uses the charac­
ters "$" and "*" where the DEC
assemblers use "I" and "@"
respectively.

(f) An identifier consists of a set
of alphanumeric characters
(including the underscore) •
Only the first eight characters
are significant and the first
may not be numeric;

(g) Names which occur in DC" pro­
grams for variables which are to
be known globally, are modified
by the addition of a prefix con­
sisting of a single underscore.
Thus for example the variable
" regloc" which occurs on line
1025 in the assembly language
file, "m40.s", refers to the
same variable as "regloc" at
line 2677 of the file, "trap.c";

(h) There are two kinds of statement
labels: name labels and numeric
labels. The latter consist of a

UNIX Operating System

single digit followed by a
colon, and need not be unlque.
A reference to "nf" where Un" is
a digit, refers to the first
occurrence of the label "n:"
found by searching forward.

A reference to "nb" is similar
except that the search is con­
ducted in the backwards direc­
tion;

(i) An assignment statement of the
form

(j)

(k)

identifier = expression

associates a value and type with
the identifier. In the example

the operator I~I delivers the
value of the first operand and
the type of the second operand
(in this case, "location");

The string quote symbols are "<"
and 11)" i

Statements of the form

.globl x, y, z

serve to make the names "x", "yO
and HZ" external;

(1) The names "edata" and "end"
are loader pseudo variables
which the define the size of the
data segment, and the data seg­
ment plus the bss segment
respectively.

Memory Management

Programs running on the PDPII may
address directly up to 64K bytes (32K
words) of storage. This is consistent
with an address size of sixteen bits.
Since it is economical and not unrea­
sonable to do so the larger PDPII
models may be equipped with larger
amounts of memory (up to 256K bytes for
the PDPll/40) plus a mechanism for con­
verting sixteen bit virtual (program)

2-4

addresses into physic·al addresses of
eighteen bits or more. The mechanism,
which is known as the memory management
unit, is simpler on the PDPll/40 than
on the 11/45 or the 11/70.

On the PDPll/40 the memory management
unit consists of two sets of registers
for mapping virtual addresses to physi­
cal addresses. These are known as
"active page registers" or "segmenta­
tion registers". One set is used when
the processor is in user mode and the
other set, in kernel mode. Changing the
contents of these registers changes the
details of these mappings. The ability
to make these changes is a privilege
that the operating system keeps firmly
to itself.

Segmentation Registers.

Each set of segmentation registers is
composed of eight pairs, each consist-
ing of a "~ address re~ister" (PAR)
and a ~ descriptlon register"
(PDR) •

Each pair of registers controls the
mapping of one ~ i.e. one eighth
part of the virtual address space which
has a size of 8K bytes (4K words).

Each page may be regarded as an aggre­
gate of 128 blocks, each of 6~bytes
(32 words). This latter size is the
"grain size" for the memory mapping
function, and as a practical conse­
quence, it is also the "grain size" for
memory allocation.

Any virtual address belongs to one page
or other. The corresponding physical
address is generated by adding the
relative address within the page to the
contents of the corresponding PAR to
form an extended address (18 bits on
the PDPll/40 and 11/45; 22 bits on the
11/70) .

Fundamentals

Thus each page address register acts as
a relocation register for one page.

Each page can be divided on a 32 word
boundary into two parts, an upper part
and lower part. Each such part has a
size which is a multiple of 32 words.
In pa~ticular one part may be null, in
which case the other part coincides
with the whole page.

One of the two parts is deemed to con­
tain valid virtual addresses. Addresses
in the remaining part are declared
invalid. Any attempt to reference an
invalida,ddress will be trapped by the
hardware. The advantage of this scheme
is that space in the physical memory
need only be allocated for the valid
part of a page.

Page Description Register

The page description register defines:

(a)

(b)

the size of the lower
the page. (The number
actually the number of
blocks less one);

part of
stored is

32 word

a bit which is
upper part is
(Also known as
direction" bit);

set when the
the valid part.
the "expansion

(c) access mode bits defining "no
access" or "read only access" or
"read/write access".

Note that if the valid part is null,
this fact must be shown by setting the
access bits to "no access".

Memory Allocation

The hardware does not dictate the way
areas in physical memory which
correspond to the valid parts of pages

UNIX Operating System

should be allocated (except to the
extent that they must begin and end on
a 32 word boundary). These areas may be
allocated in any order and may overlap
to any extent.

In practice the allocation of areas of
physical memory is much more discip­
lined as We shall see in Chapter Seven.
Areas for pages which are related are
most often allocated contiguously and
in the order of their page numbers, so
that all the segment areas associated
with a single program are contained
within one or at most two large areas
of physical memory.

Memory Management
Status Registers

In addition to the segmentation regis­
ters, on the PDPll/40 there are two
memory management status registers:

SR0 contains abort error flags and
other essential information for
the operating system. In particu­
lar memory management is enabled
when bit 0 of SR0 is on;

SR2 is loaded with the 16 bit vir­
tual address at the beginning of
each instruction fetch.

"i" and "~" Spaces

In the PDPll/45 and 11/70 systems,
there are additional sets of segmenta­
tion registers. Addresses created using
the pc register (r7) are said to belong
to "i" space, and are translated by a
different set of segmentation registers
from those used for the remaining
addresses which are said to belong to
"d" space.

The advantage of this arrangement is
that both Hi" and lid" spaces may occupy
up to 32K words, thus allowing the max­
imum space which can be allocated to a
program to be increased to twice the

2-5

space available on the PDPll/40.

Initial Conditions

When the system is first started after
all the devices on the Unibus have been
reinitialised, the memory management
unit is disabled and the processor is
in kernel mode.

Under these circumstances, virtual
(byte) addresses in the range 0 to 56K
are mapped into identically valued phy­
sical addresses. However the highest
page of the virtual address space is
mapped into the highest page of the
physical address space, i.e. on the
PDPll/40 or 11/45, addresses in the
range

0160000 to 0177777

are mapped into the range

0760000 to 0777777

Special Device Registers

The high page of physical memory is
reserved for various special registers
associated with the processor and the
peripheral devices. By sacrificing one
page of memory space in this way, the
PDPll designers have been able to make
the various device registers accessible
without the need to provide special
instruction types.

The method of assignment of addresses
to registers in this page is a black
art: the values are hallowed by tradi­
tion and are not to be questioned.

-000-

Fundamentals

CHAPTER THREE

Reading "c" Programs

Learning to read programs written in
the "c" language is one of the hurdles
that must be overcome before you will
be able to study the source code of
UNIX effectively.

As with natural languages, reading is
an easier skill to acquire than writ­
ing. Even so you will need to be care­
ful lest some of the more subtle points
pass you by.

UNIX Operating System

There are two of the "UNIX
which relate directly
language:

Documents·
to the ·C n

nC Reference Manual", by Dennis Ritchie

"Programming in C - A Tutorial",
by Brian Kernighan

You should read them now, as far as you
can, and return to reread them from
time to time with increasing comprehen­
sion.

Learning to write "C" programs is not
required. However if you have the
opportunity, you should attempt to
write at least a few small programs.
This does represent the accepted way to
learn a programming language, and your
understanding of the proper use of such
items as:

semicolons;
n=n and "==";
"{n and "}";
"++n and " __ ";
declarations;
register variables;
"if" and "for" statements;
etc.

will be quickly reinforced.

You will find that nCR is a very con­
venient language for access1ng and
manipulating data structures and char­
acter strings, which is what a large
part of operating systems is about. As
befits a terminal oriented language,
which requires concise, compact expres­
sion, nC n uses a large character set
and makes many symbols such as "*" and
"&" work hard. In this respect it
invites comparison with APL.

There many features of "c" which are
reminiscent of PLIl, but it goes well
beyond the latter in the range of
facilities provided for structured pro­
gramming.

3-1

Some Selected Examples

The examples which follow are
directly from the source code.

Example 1:.

taken

The simplest possible procedure, which
does nothing, occurs twice(!) in the
source code as "nullsys" (2864) and
"nulldev" (6577), sic.

6577 nulldev ()
{
}

While there are no parameters, the
parentheses, "(" and ")", are still
required. The brackets "{" and "}"
delimit the procedure body, which is
empty.

Example 1

The next example is a little less
trivial:

6566 nodev ()
{

u.u error ENODEV;

The additional statement is an assign­
ment statement. It is terminated by a
semicolon which is part of the state­
ment, not a statement separator as in
Algol-like languages.

"ENODEV" is a defined symbol, i.e. a
symbol which is replaced by an associ­
ated character string by the compiler
preprocessor before actual compilation.
"ENODEV" is defined on line 0484 as 19.
The UNIX convention is that defined
symbols are written in upper case, and
all other symbols in lower case.

"=" is the assignment operator, and
"u.u error" is an element of the struc­
ture-nu". (See line 0419.) Note the use
of " " as the operator which selects an

Reading "C" Programs

element of a structure. The element
name is "u error" which may be taken as
a paradigm-for the way names of struc­
ture elements are constructed in the
UNIX source code: a distinguishing
letter is followed by an underscore
followed by a name.

Example 1

6585 bcopy (from, to, count)
int *from, *to;
{

register *a, *b, c;
a from;
b = to;
c = count;
do

*b++=*a++;
while (--c);

The function of this procedure is very
simple: it copies a specified number of
words from one set of consecutive loca­
tions to another set.

There are three parameters. The second
line

int *from, *to;

specifies that the first two variables
are pointers to integers. Since no
specification is supplied for the third
parameter, it is assumed to be an
integer by default.

The three local variables, a, b, and c,
have been assigned to registers,
because registers are more accessible
and the object code to reference them
is shorter. "a" and "b" are pointers to
integers and "c" is an integer. The
register declaration could have been
written more pedantically as

register int *a, *b, c;

to emphasise
integers.

the connection with

UNIX Operating System

The three lines beginning with "do"
should be studied carefully. If "b" is
a "pointer to integer" type, then

*b

denotes the integer pointed to. Thus to
copy the value pointed to by "a" to the
location designated by "b", we could
write

*b *a;

If we wrote instead

b = a;

this would make the value
same as the value of "a",
"a" would point to the
Here at least, that is
required.

of
i.e.
same
not

"b" the
"b" and
place.

what is

Having copied the first word from
source to destination, we need to
increase the values of "b" and "a" so
that the point to the next words of
their respective sets. This can be done
by writing

b b+l; a = a+l;

but "c" provides a shorter notation
(which is more useful when the variable
names are longer) viz.

b++; a++;

or alternatively

++b; ++a:

Now there is no difference between the
statements "b++:" and "++b:" here.

However "b++" and "++b" may be used as
terms in an expression, in which case
they are different. In both cases the
effect of incrementing "b" is retained,
but the value which enters the expres­
sion is the initial value for "b++" and

3-2

the final value for "++b".

The "--" operator obeys the same rules
as the "++" operator, except that it
decrements by one. Thus "--c" enters an
expression as the value after decremen­
tation.

The "++" and" " operators are very
useful, and are used throughout UNIX.
Occasionally you will have to go back
to first principles to work out exactly
what their use implies. Note also
there is a difference between

*b++ and (*b)++

These operators are applicable to
pointers to structures as well as to
simple data types. When a pointer
which has been declared with reference
to a particular type of structure is
incremented, the actual value of the
pointer is incremented by the size of
the structure.

We can now see the meaning of the line

*b++ = *a++;

The word is copied and the pointers are
incremented, all in one hit.

The line

while (--c);

delimits the end of the set of state­
ments which began after the "do". The
expression in parentheses "--c", is
evaluated and tested (the value tested
is the value after decrementation). If
the value is non-zero, the loop is
repeated, else it is terminated.

Obviously if the initial value for
"count" were negative, the loop would
not terminate properly. If this were a
serious possibility then the routine
would have to be modified.

Reading nC" Programs

Example !

6619 getf (f)
{

register *fp, rf;
rf = f;
if (rf < 111 II rf >= NOFILE)

goto bad;
fp = u. u ofile [rf] ;
if (fp I;; NULL)

return (fp);
bad:

u.u error = EBADF;
return (NULL);

The parameter "f" is a presumed
integer, and is copied directly into
the register variable "rf". (This pat­
tern will become so familiar that we
will now cease to remark upon it.)

The three simple relational expressions

rf < 111 rf >=NOFILE fp 1= NULL

are each accorded the value one if
true, and the value zero if false. The
first tests if the value of "rfn is
less than zero, the second, if "rf" is
greater than the value defined by
nNOFILE n and the third, if the value of
"fp" is not equal to "NULL" (which is
defined to be zero).

The conditions tested by the nif"
statements are the arithmetic expres­
sions contained within parentheses.

If the expression is greater than zero,
the test is successful and the follow­
ing statement is executed. Thus if for
instance, "fp" had the value 001375,
then

fp 1= NULL

is true, and as a term in an
expression, is accorded the
This value is greater than
hence the statement

return (fp);

arithmetic
value one.
zero, and

UNIX Operating System

would be executed, to terminate further
execution of "getf", and to return the
value of "fp" to the calling procedure
as the result of "getf".

The expression

rf < 0 I I rf >= NOFILE

is the logical disjunction (norn) of
the two simple relational expressions.

An example of a "goto" statement and
associated label will be noted.

"fp" is assigned a value, which is an
address, from the "rf"-th element of
the array of integers ·u ofile", which
is embedded in the structure "un.

The procedure "getfn returns a value to
its calling procedure. This is either
the value of "fp" (i.e. an address) or
"NULL".

Example ~

2113 wakeup (chan)
{

register struct proc *p;
register c, i;
c = chan;
p = &proc[0];
i = NPROC;
do {

if (p->p wchan c) {
setrun-(p) ;

p++;
while (--i);

There are a number of similarities
between this example and the previous
one. We have a new concept however, an
array of structures. To be just a
little confusing, in this example it
turns out that both the array and the
structure are called "procH (yes, "C"
allows this). They are declared on

3-3

Sheet 03 in the following form:

0358 struct proc
{

proc [NPROC];

"p" is a register variable of type
pointer to a structure of type "procH.

p = &proc [0] ;

assigns to "p" the address of the first
element of the array "proc n • The
operator "&" in this context means "the
address of "

Note that if an array has n elements,
the elements have subscripts 0, 1, .. ,
(n-l). Also it is permissible to write
the above statement more simply as

p = proc;

There are two statements in between the
"do" and the "while".

The first of these could be rewritten
more simply as

if (p->p_wchan == c) setrun (p);

i.e. the brackets are superfluous in
this case, and since "C" is a free form
language, the arrangement of text
between lines is not significant.

The statement

setrun (p);

invokes the procedure "setrun" passing
the value of "pH as a parameter. (All
parameters are passed by value.)

The relation

Reading nCo Programs

tests the equality of the value of DC"
and the value of the element "p wchan"
of the structure pointed to by Up".
Note that it would have been wrong to
have written

because
ture.

lip"

p.p_wchan == c

is not the name of a struc-

The second statement, which cannot be
combined with the first, increments Up"
by the size of the "procH structure,
whatever that is. (The compiler can
figure it out.)

In order to do this calculation
correctly, the compiler needs to know
the kind of structure pointed at. When
this is not a consideration, you will
notice that often in similar situa­
tions, Up" will be declared simply as

register *p:

because it was easier for the program­
mer, and the compiler does not insist.

The latter part of this procedure could
have been written equivalently but less
efficiently as

i = e;
do

if (proc[i].p wchan
setrun (&proc[i]):

while (++i < NPROC):

Example .§.

5336 geterror (abp)
struct buf *abp:
{

register struct buf *bp:
bp = abp:

c)

if (bp->b flags&B ERROR)
if((u.u-error=bp->b error)==e)

u.u_error = EIO: -

UNIX Operating System

This procedure simply checks if there
has been an error, and if the error
indicator "u.u error" has not been set,
sets it to a-general error indication
("EIO") •

"B ERROR"
4575) so
it can be
number 2.

has the value e4 (see line
that, with only one bit set,

used as mask to isolate bit
The operator "&" as used in

is the bitwise logical conjunction
("and") applied to arithmetic values.

The above expression is greater than
one if bit 2 of the element "b flags"
of the "buf" structure pointed -to by
"bp" , is set.

Thus if there has been an error, the
expression

is evaluated and compared with zero.
Now this expression includes an assign­
ment operator "=". The value of the
expression is the value of "u.u error"
after the value of "bp->b flagi" has
been assigned to it. -

This use of an assignment as part of an
expression is useful and quite common.

Example I

3428 stime ()
{

if (suser()) {
time[e] = u.u are[Re]:
time[l] = u.u-are[RI]:
wakeup (tout);

In this example, you should note that
the procedure "suser" returns a value
which is used for the "if" test. The

3-4

three statements whose execution
depends on this value are enclosed in
the brackets "I" and "J".

Note that a calIon a procedure with no
parameters must still be written with a
set of empty parentheses, sic.

suser ()

Example .!!

"CO provides a conditional expression.
Thus if "a" and Db" are integer vari­
ables,

(a > b ? a : b)

is an expression whose value is that of
the larger of "a" and Db".

However this does not work if "a" and
Db" are to be regarded as unsigned
integers. Hence there is a use for the
procedure

6326 max (a, b)
char *a, *b:
{

if (a > b)
return(a) :

return (b):

The trick here is that "a" and Db",
having been declared as pointers to
characters are treated for comparlson
purposes as unsigned integers.

The body of the procedure could have
been written as

if (a > b)
return (a):

else
return (b):

but the nature of "return" is such that
the "else" is not needed here!

Reading ·C· Programs

Example ~

Here are two "quickies" which introduce
some different and exotic looking
expressions. First:

7679 schar()
{

return (*u.u_dirp++ & 0377);

where the declaration

char *u_dirp;

is part of the declaration of the
structure "u".

"u.u_dirp" is a character pointer.
Therefore the value of n*u.u dirp++n is
a character. (Incrementation of the
pointer occurs as a side effect.)

When a character is loaded into a six­
teen bit register, sign extension may
occur. By "and"ing the word with 0377
any extraneous high order bits are
eliminated. Thus the result returned
is simply a character.

Note that any integer which begins with
a zero (e.g. 0377) is interpreted as an
octal integer.

The second example is:

1771 nseg(n)
(

return «n+127) »7) ;

The value returned is "n divided by 128
and rounded up to the next highest
integer".

Note the use of the right shift opera­
tor "»" in preference to the division
operator "/".

UNIX Operating System

Example !!

Many of the points which have been
introduced above are collected in the
following procedure:

2134 setrun (p)
{

register struct proc *rp;
rp = p;
rp->p wchan = 0;
rp->p-stat = SRUN;
if (rp->p_pri < curpri)

runrun++;
if (runout != 0 &&

(rp->p flag&SLOAD) 0) {
runout =-0;
wakeup (&runout);

Check your understanding of "C" by
figuring out what this one does.

There are two additional features you
may need to know about:

"&&" is the logical conjunction ("and")
for relational expressions. (Cf. "II"
introduced earlier.)

The last statement contains the expres­
sion

&runout

which is syntactically an address vari­
able but semantically just a unique bit
pattern.

This is an example of a device which is
used throughout UNIX. The programmer
needed a unique bit pattern for a par­
ticular purpose. The exact value did
not matter as long as it was unique.
An adequate solution to the problem was
to use the address of a suitable global
variable.

3-5

Example 11

4856 bawrite (bp)
struct buf *bp;
(

register struct buf *rbp;
rbp = bPi
rbp->b flags =1 B_ASYNC;
bwrite-(rbp) ;

The second last statement is interest­
ing because it could have been written
as

In this statement the bit mask
"B ASYNC" is Horned into
"rbp->b flags". The symbol "I" is the
logical- disjunction for arithmetic
values.

This is an example of a very useful
construction in UNIX, which can save
the programmer much labour. If "I" is
any binary operator, then

x = x I a;

where "a" is an expression, can be
rewritten more succinctly as

x =1 a; .

A programmer using this construction
has to be careful about the placement
of blank characters. Since

x =+ 1;

is different from

x = +1;

what is to be the meaning of

x =+1; ?

Reading nC n Programs

Example 12

6824 ufalloc ()
{

register i:
for (i=0: i<NOFILE: i++)

if (u.u ofile[i]==NULL)
u.u ar0[R0] = i:
return (i):

u.u error = EMFILE:
return (-1):

This example introduces the "for"
statement, which has a very general
syntax making it both powerful and com­
pact.

The structure of the "fo~~-statement is
adequately described on page 10 of the
"C Tutorial", and that description is
not repeated here.

The Algol equivalent of the above "for"
statement would be

for i:=l step 1 until NOFILE-l do

The power of the "for" statement in nCR
derives from the great freedom the pro­
grammer has in choosing what to include
between the parentheses. Certainly
there is nothing which restricts the
calculations to integers, as the next
example will demonstrate.

Example 13

3949 signal (tp, sig)
{

register struct proc *p:
for (p=proc:p<&proc[NPROC]:p++)

if (p->p ttyp == tp)
psignaI (p,sig):

In this example of the
the pointer variable
through each element
"proc" in turn.

"for" statement,
"p" is stepped
of the array

UNIX Operating System

Actually the original code had

for (p=&proc[0]:p<&proc[NPROC]:p++)

but it wouldn't fit on the line! As
noted earlier, the use of "procH as an
alternative to the expression
"&proc[0]" is acceptable in this con­
text.

This kind of "for" statement is almost
a cliche in UNIX so you had better
learn to recognise it. Read it as

for p = each process in turn

Note that "&proc[NPROC]" is the address
of the (NPROC+l)-th element of the
array (which does not of course exist)
i.e. it is the first location beyond
the end of the array.

At the risk of overkill we would point
out again that whereas in the previous
example

i++

meant "add one to the integer in, here

p++

means "skip p to point to the next
structure".

Example 14

8870 Ipwrite ()
{

register int c:
while «c=cpass (» >= 0)

Ipcanon(c) :

This is an example of the "while"
statement, which should be compared
with the "do .•. while "construc­
tion encountered earlier. (Cf. the
"while" and "repeat" statements of Pas­
cal.)

3-6

The meaning of the procedure is

Keep calling "cpass" while the
result is positive, and pass the
result as a parameter to a calIon
"lpcanon".

Note the redundant
declaration for "c".
omittedi

Example 15

Hint" in the
It isn't always

The next example is abbreviated from
the original:

5861 seek ()
{

int n[2]:
register *fp, t:
fp = getf (u.u_ar9[R9]):

t = u.u_arg[l]:

switch (t)

case 1:
case 4:

n[9] =+ fp->f offset[9]:
dpadd (n, fp->f_offset[l]):
break:

default:
n[0] =+ fp->f inode->i size0

&9377: - -
dpadd(n,fp->f_inode->i_sizel):

case 9:
case 3:

Note the array declaration for the two
word array Un", and the use of "getf"
(which appeared in Example 4).

The "switch" statement makes a multi­
way branch depending on the value of
the expression in parentheses. The
individual parts have "case labels":

Reading nCR Programs

If nth is one or four, then one
set of actions is in order.

If "t" is zero or three, nothing
is to be done at all.

If "t" is anything else, then a
set of actions labelled "default"
is to be executed.

Note the use of "break" as an escape to
the next statement after the end of the
"switch" statement. Without the
"break", the normal execution sequence
would be followed within the "switch"
statement.

Thus a "break" would normally be
required at the end of the "default"
actions. It has been omitted safely
here because the only remaining cases
actually have null actions associated
with them.

The two non-trivial pairs of actions
represent the addition of one 32 bit
integer to another. The later versions
of the "C" compiler will support "long"
variables and make this sort of code
much easier to write (and read).

Note also that in the expression

fp->f_inode->i_size0

there are two levels of indirection.

Example ~

6672 closei (ip, rw)
int *ip;
{

register *rip;
register dev, maj;
rip = ip;
dev = rip->i addr[0];
maj = rip->i-addr[0].d major;
switch (rip->i_mode&IFMT) {

case IFCHR:
(*cdevsw[maj].d close) (dev,rw);
break; -

UNIX Operating System

case IFBLK:
(*bdevsw[maj] .d_close) (dev,rw);

iput (rip);

This example has a number of interest­
ing features.

The declaration for "d_major" is

struct {
char d minor;
char d=major;

so that the value assigned to "maj" is
the high order byte of the value
assigned to "dev".

In this example, the "switch" statement
has only two non-null cases, and no
"default". The actions for the recog­
nised cases, e.g.

(*bdevsw[maj] .d_close) (dev,rw);

look formidable at first glance.

First it should be noted that this is a
procedure call, with parameters "dev"
and "rw".

Second "bdevsw" (and "cdevsw") are
arrays of structures, whose "d close"
element is a pointer to a function,
i.e.

bdevsw [maj]

is the name of a structure, and

bdevsw[maj] .d_close

is an element of that structure which
happens to be a pointer to a function,
so that

*bedsw[maj] .d_close

is the name of a function.
pair of parentheses is
sugar" to put the compiler
frame of mind!

3-7

The first
"syntactical
in the right

Example 17

We offer the following as a final exam­
ple:

4043 psig ()
{

register n, p;

swi tch (n) {

case SIGQIT:
case SIGINS:
case SIGTRC:
case SIGIOT:
case SIGEMT:
case SIGFPT:
case SIGBUS:
case SIGSEG:
case SIGSYS:

u.u_arg[0]
if (core ())

n =+ 0200;
}

n;

u.u arg[0]=(u.u ar0[R0]«8) I n;
exit (); -

Here the "switch" selects certain
values for Un" for which the one set of
actions should be carried out.

An alternative would have been to write
a "monster" "if" statement such as

if (n==SIGQIT I I n==SIGINS I I
••• I I n==SIGSYS)

but that would not have been either
transparent or efficient.

Note the addition of an octal constant
to Un" and the method of composing a 16
bit value from two eight bit values.

-000-

Reading "C" programs

CHAPTER FOUR

An Overview

The purpose of this chapter is to sur­
vey the source code as a whole i.e. to
present the "wood" before the "trees".

Examination of the source code will
reveal that it consists of some 44 dis­
tinct files, of which:

two are in assembly language,
have names ending in ".s";

28 are in the "C"
have names ending in

language
".e" ;

and

and

14 are in the "C" language, but
are not intended for independent
compilation, and have names ending
in ".h".

The files and their contents were
arranged by the programmers presumably
to suit their convenience and not for

UNIX Operating System

ours. In many
between files is
present discussion
abolished entirely.

ways the divisions
irrelevant to the

and might well be

As mentioned already in Chapter One,
the files have been organised into five
sections. As far as was possible, the
sections were chosen to be of roughly
equal size, to cluster files which are
strongly associated and to separate
files which are only weakly associated.

variable Allocation

The PDPII architecture allows efficient
access to variables whose absolute
address is known, or whose address
relative to the stack pointer can be
determined exactly at compile time.

There is no hardware support for multi­
ple lexical levels for variable
declarations such as are available in
block structured languages such as
Algol or Pascal. Thus "C" as imple­
mented on the PDPll supports only two
lexical levels: global and local.

Global variables are allocated stati­
cally; local variables are allocated
dynamically within the current stack
area or in the general registers (r2,
r3 and r4 are used in this way).

Global Variables

In UNIX with very few exceptions, the
declarations for global variables have
been all gathered into the set of ".h"
files. The exceptions are:

(a) the static variable "p" (2l8~)
declared in "swtch" which is
stored globally, but is accessi­
ble only from within the pro­
cedure "swtch". (Actually "pH is
a very popular name for local
variables in UNIX.);

4-1

(b) a number of variables such as
"swbuf" (4721) which are refer­
enced only by procedures within
a single file, and are declared
at the beginning of that file.

Global variables may be declared
separately within each file in which
they are referenced. It is then the job
of the loader, which links the compiled
versions of the program files together
to match up the different declarations
for the same variable.

The 'f' Preprocessor

If global declarations must be repeated
in full in each file (as is required by
Fortran, for instance) then the bulk of
the program is increased, and modifying
a declaration is at best a nuisance,
and at worst, highly error-prone.

These difficulties are avoided in UNIX
by use of the preprocessor facility of
the "C" compiler. This allows declara­
tions for most global variables to be
recorded once only in one of the few
".h" files.

Whenever the declaration for a particu­
lar global variable is required the
appropriate ".h" file can then be
"included" in the file being compiled.

UNIX also uses the ".h" files as vehi­
cles for lists of standard definitions
for many symbolic names which represent
constants and adjustable parameters,
and for declaration of some structure
types.

For example,
contains a
references a
"gin" which
"box.h", then

if the file "bottle.c"
procedure "glug" which
global variable called

is declared in the file
a statement:

jlinclude "box.h"

An Overview

must be inserted at the beginning of
the file "bottle.c". When the file
"bottle.c" is compiled, all declara­
tions in "box.hn are compiled, and
since they are found before the begin­
ning of any procedure in "bottle.c n
they are flagged as external in the
relocatable module which is produced.

When all the object modules are linked
together, a reference to "gin" will be
found in every file for which the
source included "box.h". All these
references will be consistent and the
loader will allocate a single space for
"gin" and adjust all the references
accordingly.

Section One

Section One contains many of the ".h"
files and the assembly language files.

It also contains a number of files con­
cerned with" system initialisation and
process management.

param.Q [Sheet 01] contains no vari­
able declarations, but many defini­
tions for operating system constants
and parameters, and the declarations
for three simple structures. The
convention will be noted of using
"upper case only" for defined con­
stants.

systm.Q [Sheet 02; Chapter 19] con­
sists entirely of declarations (with
definitions of the structures "cal­
lout" and "mount" as side-effects).
Note that none of the variables is
initialised explicitly, and hence
all are initialised to zero.

The dimensions for the first three
defined in
file which
must have

arrays are
"param.h".
"includes"

parameters
Hence any
"systm.h"

UNIX Operating System

previously "included" "param.h".

~.Q [Sheet 03] contains a few
definitions and one declaration,
which are used for referencing the
segmentation registers. This file
could be absorbed into "param.h" and
"systm.h" without any real loss;

proc.Q [Sheet 03; Chapter 7] con­
tains the important declaration for
"proc", which is both a structure
type and an array of such struc­
tures. Each element of the "procH
structure has a name which begins
with "p ", and no other variable is
so named. Similar conventions are
used for naming the elements of the
other structures.

The sets of values for the first two
elements, "p stat" and "p_flag",
have individual names which are
defined.

user.h [Sheet 04; Chapter 7] con­
tains- the declaration for the very
important "user" structure, plus a
set of defined values for "u error".

Only one instance of the "user":
structure is ever accessible at one
time. This is referenced under the
name "un and is in the low address
part of a 1024 byte area known as
the "per process data area".

In general the complete ".h" files are
not analysed in detail later in this
text. It is expected that the reader
will refer to them from time to time
(with increasing familiarity and under­
standing) •

Assembly Language Files

There are two
language which
the source code.
tance with these

files in assembly
comprise about 10% of
A reasonable acquain­
files is necessary.

4-2

low.s [Sheet 05; Chapter 9] contains
information, including the trap vec­
tor, for initialising the low
address part of main memory. This
file is generated by a utility pro­
gram called "mkconf" to suit the set
of peripheral devices present at a
particular installation;

m40.s [Sheets 06 .. 14; Chapters 6, 8,
~ 10, 22] contains a set of rou­
tines appropriate to the PDPll/40,
to carry out a variety of special­
ised functions which cannot be
implemented directly in pC".

Sections of this file are introduced
into the discussion as and where
appropriate. (The largest of the
assembler procedures, "backup", has
been left to the reader to survey as
an exercise.)

There is an alternative to "m40.s",
which is not presented here, namely
"m45.s", which is used on PDP11/45's
and 70's.

Other Files in Section One

main.£ [Sheets 15 .• 17; Chapters 6,
7] contains "main" which performs
various initialisation tasks to get
UNIX running. It also contains
"sureg" and "estabur" which set the
user segmentation registers.

~.£ [Sheets 18 •. 22; Chapters 6, 7,
8, 14] contains the major procedures
required for process management
including "newproc", "sched",
"sleep" and "swtch".

E£f.£ [Sheets 23, 24; Chapter 5]
contains "panic" and a number of
other procedures which provide a
simple mechanism for displaying ini­
tialisation messages and error mes­
sages to the operator.

An Overview

malloc.£ [Sheet 25; Chapter 5] con­
tains "malloc" and "mfree" which are
used to manage memory resources.

Section Two

Section Two is concerned with traps,
hardware interrupts and software inter­
rupts.

Traps and hardware interrupts introduce
sudden switches into the CPU's norm~l
instruction execution sequence. This
provides a mechanism for handling spe­
cial conditions which occur outside the
CPU's immediate control.

Use is made of this facility as part of
another mechanism called the "system
call", whereby a user program may exe­
cute a "trap" instruction to cause a
trap deliberately and so obtain the
operating system's attention and assis­
tance.

The software interrupt (or "signal") is
a mechanism for communication between
processes, particularly when there is
"bad news".

~.~ [Sheet 26; Chapter l~] defines
a set of constants which are used in
referencing the previous user mode
register values when they are stored
in the kernel stack.

trap.£ [Sheets 26 •. 28; Chapter 12]
contains the nCR procedure "trap"
which recognises and handles traps
of various kinds.

sysent.£ [Sheet 29; Chapter 12] con­
taIns the declaration and initiali­
sation of the array "sysent" which
is used by "trap" to associate the
appropriate kernel mode routine with
each system call type.

UNIX Operating System

sysl.£ [Sheets 3~ •. 33; Chapters 12,
13] contains various routines asso­
ciated with system calls, including
"exec", "exit", "wait" and "fork".

sys4.£ [Sheets 34 •• 36; Chapters 12,
13, 19] contains routines for
"unlink", "kill" and various other
minor system calls.

clock.c [Sheets 37, 38; Chapter 11]
contains "clock" which is the
handler for clock interrupts, and
which does much of the incidental
housekeeping and basic accounting.

~.£ [Sheets 39 .• 42; Chapter 13]
contains the procedures which handle
"signals" or "software interrupts".
These provide facilities for inter­
process communication and tracing.

Section Three

Section Three is concerned with basic
input/output operations between the
main memory and disk storage.

These operations are fundamental to the
activities of program swapping and the
creation and referencing of disk files.

This section also introduces procedures
for the use and manipulation of the
large (512 byte) buffers.

text.~ [Sheet 43; Chapter 14]
defines the "text" structure and
array. One "text" structure is used
to define the status of a shared
text segment.

text.£ [Sheets 43, 44; Chapter 14]
contains the procedures which manage
the shared text segments.

4-3

buf.h [Sheet 45; Chapter 15] defines
the -"buf" structure and array, the
structure "devtab", and names for
the values of "b error". All these
are needed for the management of the
large (512 byte) buffers.

conf.~ [Sheet 46; Chapter 15]
defines the arrays of structures
"bdevsw" and "cdevsw", which specify
the device oriented procedures
needed to carry out logical file
operations.

conf.c [Sheet 46; Chapter 15] is
generated, like "low.s", by the
"mkconf" utility to suit the set of
peripheral devices present at a par­
ticular installation. It contains
the initialisation for the arrays
"bdevsw" and "cdevsw", which control
the basic i/o operations.

bio.c [Sheets 47 •• 53; Chapters 15,
16, -17] is the largest file after
"m40.s". It contains the procedures
for manipulation of the large
buffers, and for basic block
oriented i/o.

rk.c [Sheets 53, 54; Chapter 16] is
the- device driver for the RKll/RK05
disk controller.

Section Four

Section Four is concerned with files
and file systems.

A file system is a set of files and
associated tables and directories
organised onto a single storage device
such as a disk pack.

This section covers the means of
creating and accessing files;
locating files via directories;
organising and maintaining

file systems.

An Overview

It also includes the code for an exotic
breed of file called a ·pipe-.

file.h [Sheet 55; Chapter 18]
OeTInes the "file" structure and
array.

filsys.~ [Sheet 55; Chapter 2a)
defines the "filsys" structure which
is copied to and from the "super
block" on "mounted" file systems.

ino.h [Sheet 56] describes the
structure of "inodes" as recorded on
the "mounted" devices. Since this
file is not "included" in any other,
it really exists for information
only.

inode.h [Sheet 56; Chapter 18]
defines the "inode" structure and
array. "inodes" are of fundamental
importance in managing the accesses
of processes to files.

sys2.£ [Sheets 57 •• 59; Chapters 18,
19] contains a set of routines asso­
ciated with system calls including
"read", "write", "creatH, "open" and
"close".

iYj3.c [Sheets 6a, 61; Chapters 19,
a contains a set of routines asso­

ciated with various minor system
calls.

rdwrLc [Sheets 62, 63; Chapter 18]
contains intermediate level routines
involved with reading and writing
files.

subr.c [Sheets 64, 65; Chapter 18]
contaIns more intermediate level
routines for i/o, especially
which translates logical
pointers into physical
addresses.

"bmap"
file
disk

UNIX Operating System

fio.c [Sheets 66 •• 68; Chapters 18,
19] contains intermediate level rou­
tines for file opening, closing and
control of access.

alloc.c [Sheets 69 .. 72; Chapter 2a]
contains procedures which manage the
allocation of entries in the "inode"
array and of blocks of disk storage.

t§et.c [Sheets 72 .. 74; Chapters 18,
, 2a] contains procedures con­

cerned with referencing and updating
"inodes".

namLc [Sheets 75, 76; Chapter 19)
contaIns the procedure "namei" which
searches the file directories.

~.£ [Sheets 77, 78; Chapter 21]
is the "device driver" for "pipes",
which are a special form of short
disk file used to transmit informa­
tion from one process to another.

Section Five

Section Five is the final section. It
is concerned with input/output for the
slower, character oriented peripheral
devices.

Such devices share a common buffer
pool, which is manipulated by a set of
standard procedures.

The set of character oriented peri­
pheral devices are exemplified by the
following:

KL/DLII interactive terminal
PCll paper tape reader/punch
LPII line printer.

!!y.~ [Sheet 79; Chapters 23, 24]
defines the "clist" structure (used
as a list head for character buffer
queues), the "tty" structure (stores

4-4

relevant data for controlling an
individual terminal), declares the
"par tab" table (used to control
transmission of individual charac­
ters to terminals) and defines names
for many associated parameters.

kl.c [Sheet 8a; Chapters 24, 25) is
the device driver for terminals con­
nected via KLII or DLII interfaces.

!!y.£ [Sheets 81 .. 85; Chapters 23,
24, 25] contains common procedures
which are independent of the attach­
ing interfaces, for controlling
transmission to or from terminals,
and which take into account various
terminal idiosyncrasies.

oc.c [Sheets 86,87; Chapter 22) is
the- device handler for the PCll
paper tape reader/punch controller.

lE..£ [Sheets 88, 89; Chapter 22] ,is
the device handler for the LPII line
printer controller.

mem.c [Sheet 9a] contains procedures
which provide access to main memory
as though it were an ordinary file.
This code has been left to the
reader to survey as an exercise.

-000-

An Overview

Section One contains many of the global
declaration files and the assembly
language files.

It also contains a number of files con­
cerned with system initialisation and
process management.

UNIX Operating System

CHAPTER FIVE

Two Files

This chapter is intended to provide a
gentle introduction to the source code
by looking at two files in Section One
which can be isolated reasonably well
from the rest.

The discussion of these files supple­
ments the discussion of Chapter Three
and includes a number of additional
comments regarding the syntax and
semantics of the "C" language.

The File 'malloc.c' --- ---- -
This file is found on Sheet 25 of the
Source 1"'1'\..=10. and consists of just two _ _,
procedures:

malloc (2528) mfree (2556)

5-1

These are concerned with the allocation
and subsequent release of two kinds of
memory resources, namely:

main memory in units of 32 words
(64 bytes);

disk swap ~ in units of 256
words (512 bytes).

For each of these two kinds of
resource, a list of available areas is
maintained within a resource "map"
(either "coremap" or "swapmap"). A
pointer to the appropriate resource
"map" is always passed to "malloc" and
"mfree" so that the routines themselves
do not have to know the kind of
resource with which they are dealing.

Each of "coremap" and "swapmap· is an
array of structures of the type "map"
as declared at line 2515. This struc­
ture consists of two character pointers
i.e. two unsigned integers.

The declarations of "coremap· and
"swapmap" are on lines e293, 1!21!4.
Here the "map" structure is completely
ignored a regrettable programming
short-cut which is possible because it
is not detected by the loader. Thus the
actual numbers of list elements in
"coremap" and "swapmap" are "CMAPSIZ/2"
and "SMAPSIZ/2" respectively.

Rules for List Maintenance

(A) Each available area is defined
by its size and relative address
(reckoned in the units appropri­
ate to the resource);

(B) The elements of each list are
arranged at all times in order
of increasing relative address.
Care is taken that no two list
elements represent contiguous
areas - the alternative course,
to merge the two areas into a
single larger area is always
taken;

Two Files

(C) The whole list can be scanned by
looking at successive elements
of the array, starting with the
first, until an element with a
zero size is encountered. This
last element is a "sentinel"
which is not part of the list
proper.

The above rules provide a complete
specification for "mfree", and a
specification for "malloc" which is
complete except in one respect:

We need to specify how the
resource allocation is actually
made when there exists more than
one way of performing it.

The method adopted in "malloc" is one
known as "First Fit" for reasons which
should become obvious.

As an illustration of how the resource
"mapn is maintained, suppose the fol­
lowing three resource areas were avail­
able:

an area of size 15 beginning at
location 47 and ending at location
61;

an area of size 13 spanning
addresses 27 to 39 inclusive;

an area of size 7 beginning at
location 65.

Then the "map" would contain:

Entry Size Address

" 13 27
1 15 47
2 7 65
3 " ??
4 ?? ??

If a request for a space of size 7 were
received, the area would be allocated
starting at location 27, and the "map"
would become:

UNIX Operating System

Entry Size Address

" 6 34
1 15 47
2 7 65
3 " ??
4 ?? ??

If the area spanning addresses 4" to 46
inclusive is returned to the available
list, the "map" would become

Entry Size Address

" 28 34
1 7 65
2 " ?
3 ?? ??

Note how the number of elements has
actually decreased by one because of
amalgamation though the total available
resources have of course increased.

Let us now turn to a consideration of
the actual source code.

malloc (2528)

The body of this procedure consists of
a "for" loop to search the "map" array
until either:

(a) the end of the list of available
resources is encountered; or

(b) an area large enough to honour
the current request is found;

2534: The "for" statement initialises
"bp" to point to the first ele­
ment of the resource map. At
each succeeding iteration "bp" is
incremented to point to the next
"map" structure.

Note that the continuation condi­
tion "bp->m size" is an expres­
sion, which becomes zero with the
sentinel is referenced. This
expression could have been writ­
ten equivalently but more tran­
sparently as "bp->m_size>"".

5-2

Note also that no explicit test for the
end of the array is made. (It can be
shown that this latter is not necessary
provided CMAPSIZ, SMAPSIZ >= 2*NPROC !)

2535: If the list element defines an
area at least as large as that
requested, then •..

2536: Remember the address of the first
unit of the area;

2537: Increment the address stored in
the array element;

2538: Decrement the size stored in the
element and compare the result
with zero (i.e. was it an exact
fit?) ;

2539: In the case of an exact fit, move
all the remaining list elements
(up to and including the sen­
tinel) down one place.

Note that "(bp-l)" points to the
structure before the one refer­
enced by "bp";

2542: The "while" continuation condi­
tion does not test the equality
of " (bp-l)->m size" and
"bp->m_size"! -

2543:

The value tested is the value
.. assign-ed to "(bp-l) ->m. sbe"

.. co.piedfrom "bp->m_size". -

(You are forgiven for: not
recognising this at .once.);

Return the address of the
This represents the end
procedure and hence very
itely the end of the "for"

Note that a value of

area.
of the
defin­
loop.

zero
returned means "no luck". This is
based on the assumption that no
valid area can ever begin at
location zero.

Two Files

mfree (2556)

This procedure returns the area of size
"size" at address "aa" to the "resource
map" designated by "mp". The body of
the procedure consists of a one line
"for" statement, followed by a multi­
line "if" statement.

2564: The semicolon at the end of this
line is extremely significant,
terminating as it does the empty
statement. (It would aid legibil­
ity if this character were moved
to a line on its own, as is done
on line 2394.)

Depending on your point of view,
this statement demonstrates
either the power or the obscurity
of the "CD language. Try writing
equivalent code to this statement
in another language such as Pas-
calor PL/l. .

Step "bp" through the list until
an element is encountered either
with an address greater than the
address of the area being
returned.

i.e. not "bp->m_addr <= a"

or which indicates the end of the
list

Le. not "bp->m_size != 0";

2565: We have now located the element
in front of which we should
insert the new list element. The
question is: will the list grow
larger by one element or will
amalgamation keep the number of
elements the same or even reduce
it by one?

If "bp > mpH we are not trying to
insert at the beginning of the
list. If

(bp-l)->m_addr+(bp-l)->m_size==a

then the area being return abuts
the previous element in the list;

UNIX Operating System

2566: Increase the size of the previous
list element by the size of the
area being returned;

2567: Does the area being returned also
abut the next element of the
list? If so ..•

2568: Add the size of the next element
of the list to the size of the
previous element;

2569: Move all the remaining
ments (up to the one
the final zero size)
place.

list ele­
containing

down one

Note that if the test on
2567 fortuitously gives a
result when "bp->m size" is
no harm is done; -

line
true
zero

2576: This statement is reached if the
test on line 2565 failed i.e. the
area being returned cannot be
amalgamated with the previous
element on the list.

Can it be amalgamated with the
next element? Note the check that
the next element is not null;

2579: Provided the area being returned
is genuinely non-null (perhaps
this test should have been made
sooner?) add a new element to the
list and push all the remaining
elements up one place.

In conclusion ••.

The code for these two procedures has
been written very tightly. There is
little, if any, "fat" which could be
removed to improve run time efficiency.
However it would be possible write
these procedures in a more transparent
fashion.

If you feel strongly on this point,
then as an exercise, you should rewrite
"mfree" to make its function more
easily discernible.

5-3

Note also that the correct functioning
of "malloc" and "mfree" depends on
correct initialisation of "coremap" and
"swapmap". The code to do this occurs
in the procedure "main" at lines 1568,
1583.

This file is found on Sheets 23 and 24,
and contains the following procedures:

printf
printn
putchar

(2340)
(2369)
(2386)

panic
prdev
deverror

(2416)
(2433)
(2447)

The calling relationship between these
procedures is illustrated below:

panic deverror

printf (2340)

I I
I prdev
I I
\ /

printf
I

printn
I

putchar

The procedure "printf" provides a
direct, unsophisticated low-level,
unbuffered way for the operating system
to send messages to the system console
terminal. It is used during initialisa­
tion and to report hardware errors or
the imminent collapse of the system.

(These versions of "printf" and
"putchar" run in kernel mode and are
similar to, but not the same as, the
versions invoked by a nCo program which
runs in user mode. The latter versions
of "printf" and "putchar" live in the
library "/lib/libc.a". You may still
find it useful to read the sections
"PRINTF(III)" and "PUTCHAR(III)" of the
UPM at this point.)

Two Files

2340: The programmer must have been
carried away when he declared all
the parameters for this pro­
cedure. In fact the procedure
body only contains references to
·xl" and "fmt".

This serves to reveal one of the facts
of "c" programming. The rules for
matching parameters in procedure calls
and procedure declarations are not
enforced, not even with respect to the
numbers of parameters.

Parameters are placed on the stack in
reverse order. Thus when "printf" is
called "fmt" will be nearer to the "top
of stack" than "xl", etc.

x2
xl
fmt

stack
grows
down

top of
stack

"xl" has a higher address then· "fmt"
but a lower address then "x2", because
stacks grow downwards on the PDPII.

2341: "fmt" may be interpreted as a
constant character pointer. This
declaration is (almost)
equivalent to

"char *fmt;"
The difference is that here the
value of "fmt" cannot be changed;

2346: "adx" is set to point to "xl".
The expression "&xl" is the
address of "xl". Note that since
"xl" is a stack location, this
expression cannot be evaluated at
compile time.

(Many of the expressions you will
find elsewhere involving the

UNIX Operating System

2348:

2349:

addresses of variables or
are effective because they
evaluated at compile or
time.) ;

arrays
can be
--load

Extract into the register "c"
successive characters from the
format string;

If lie" is not a '% ' then ...
23513: If "c" is a null character

('\13'), this indicates the end of
the format string in the normal
way, and "printf" terminates;

2351: Otherwise call "putchar" to send
the character to the system con­
sole terminal;

2353: A '%' character has been seen.
Get the next character (it had
better not be the '\13'!);

2354: If this character is a 'd' or 'I'
or '0', call "printnn passing as
parameters the value referenced
by "adx" and either the value "8"
or "10" depending on whether "c"
is '0' or not. (The 'd' and 'I'
codes are clearly equivalent.)

"printn" expresses the binary
numbers as a set of digit charac­
ters according to the radix sup­
plied as the second parameter;

2356: If the editing character is's',
then all but the last character
of a null terminated string is to
be sent to the terminal. "adx"
should point to a character
pointer in this case;

2361: Increment "adx" to point to the
next word in the stack i.e. to
the next parameter passed to
"printf";

2362: Go back to line 2347 and continue
scanning the format string.
Enthuisiasts for structured pro­
gramming will prefer to replace
lines 2347 and this by

"while (1) {" and "}"
respectively.

5-4

printn (2369)

This procedure calls itself recursively
1n order to generate the required
digits in the required order. It might
be possible to code this procedure more
efficiently but not more completely.
(Anyway, in view of the implementation
of "putchar", efficiency is hardly a
consideration here.)

Suppose n = A*b + B where A = Idiv(n,b)
and where B lrem(n,b) satisfies
0<=B<b. Then in order to display the
value for n, we need to display the
value for A followed by the value for
B.

The latter is easy for b = 8 or 10: it
consists of a single character. The
former is easy if A = 0. It is also
easy if "printn" is called recursively.
Since A < n, the chain of recursive
calls must terminate.

2375: Arithmetic values corresponding
to digits are conveniently con­
verted to their corresponding
character representations by the
addition of the character '0'.

The procedures "Idly" and "lrem" treat
their first parameter as an unsigned
integer (i.e. no sign extension, when a
16 bit value is extended to a 32 bit
value before the actual division opera­
tion). They may be found beginning on
lines 1392 and 1400 respectively.

putchar (2386)

This procedure transmits to the system
console the character which was passed
as a parameter.

It illustrates in a small way the basic
features of i/o operations on the PDPII
computer.

2391: "SW"
the

Two Files

is defined on line 0166 as
value "0177570". This is the

kernel address of a read only
processor register which stores
the setting of the console switch
register.

The meaning of the statement is
clear: get the contents at loca­
tion 0177570 and see if they are
zero. The problem is to express
this in "CU. The code

if (SW == 0)

would not have conveyed this
meaning. Clearly "SW" is a
pointer value which should be
dereferenced. The compiler might
have been changed to accept

if (SW -> == 0)

but as it stands, this is syntac­
tically incorrect. By inventing a
dummy structure, with an element
"integ" (see line 0175), the pro­
grammer has found a satisfactory
solution to his problem.

Several other examples of this program­
ming device will be found in this pro­
cedure and elsewhere.

In hardware terms, the system console
terminal interface consists of four 16
bit control registers which are given
consecutive addresses on the Unibus
beginning at kernel address 0177560
(see the declaration for "KL" on line
0165.) For a description of the formats
and usage of these registers, see
Chapter Twenty-Four or the "PDPll Peri­
pherals Handbook".

In software terms, this interface is
the unnamed structure which is defined
beginning on line 2313, with four ele­
ments which name the four control
registers. It does not matter that the
structure is unnamed because it is not
necessary to allocate any instances of
it (the one we are interested in is
essentially predefined, at the address
given by "KL").

UNIX Operating System

2393: While bit 7 of the transmitter
status register ("XST") is off,
keep doing nothing, because the
interface is not ready to accept
another character.

This is a classic case of "busy wait­
ing" where the processor is allowed to
cycle uselessly through a set of
instructions until some externally
defined event occurs. Such waste of
processing power cannot normally be
tolerated but this procedure is only
used in unusual situations.

2395: The need for this statement is
tied up with the statement on
line 2405;

2397: Save the current contents of the
transmitter status register;

2398: Clear the transmitter status
register preparatory to sending
the next character;

2399: With bit 7 of the control status
register reset, move the next
character to be transmitted to
the transmitter buffer register.
This initiates the next output
operation;

2400: A "new line" character needs to
be accompanied by a "car r iage
return" character and this is
accomplished by a recursive call
on "putchar".

A couple of extra "delete" char­
acters are thrown in also, to
allow for any delays in complet­
ing the carriage return operation
at the terminal;

2405: This calIon "putchar" with an
argument of zero effectively
results in a re-execution of
lines 2391 to 2394.

(It is very hard to see why the
proqrammer chose to use a recur­
sive call here in preference to
simply repeating lines 2393 and
2394, since both code efficiency

5-5

and compactness not to mention
clarity seem to have suffered.);

2406: Restore the contents of the
transmitter status register. In
particular if bit 6 was formerly
set to enable interrupts then
this resets it.

panic (2419)

This procedure is called from a number
of locations in the operating system.
(e.g. line 1605). When circumstances
exist under which continued operation
of the system seems undesirable.

UNIX does not profess to be a "fault
tolerant" or "fail soft" system, and in
many cases the calIon "panic" can be
interpreted as a fairly unsophisticated
response to a straightforward problem.

However more complicated responses
require additional code, lots of it,
and this is contrary to the general
UNIX philosophy of "keep it simple".

2419: The reason for this statement is
given in the comment beginning at
line 2323;

2420: "update" causes all the large
block buffers to be written out.
See Chapter Twenty;

2421: "printf" is called with a format
string and one parameter, which
was passed to "panic";

2422: This "for" statement defines an
infinite loop in which the only
action is a calIon the assembly
language procedure "idle" (1284).

"idle" drops the processor prior­
ity to zero, and performs a
"wait". This is a "do nothing"
instruction of indefinite dura­
tion. It terminates when a
hardware interrupt occurs.

Two Files

An infinite set of calls on ftidle" is
better than the execution of a nhalt ft
instruction, since any i/o activities
which were under way can be allowed to
complete and the system clock can keep
ticking.

The only way for the operator to
recover from a "panic" is to reinitial­
ise the system, (after taking a core
dump, if desired) ••

prdev (2433)

deverror (2447)

These procedures provide warning mes­
sages when errors are occurring in i/o
operations. At this stage, their only
interest is as examples of the use of
"printf".

Included Files

It will be noted that whereas the file
"malloc.c" contains no request to
include other files, requests to
include four separate files are
included at the beginning of "prf.c".

(The observant reader will note that
these files are presumed to reside one
level higher in the file hierarchy than
"prf.c" itself.)

The statement on line 2304 is to be
understood as if it were replaced by
the entire contents of the file
"param.h". This then supplies defini­
tions for the identifiers ftSW", "KL"
and "integ" which occur in "putchar".

We noted earlier that declarations for
"KL", "SW" and "integ" occurred on
lines 0165, 0166 and 0175 respectively,
but this would have been meaningless,
if the file "param.h" had not been
"included" in "prf.c".

UNIX Operating System

The files ftbuf.hft and "conf.h" have
been included to provide declarations
for "d majorn. "d minor", "b dev" and
"b blkno", which- are used Tn "prdev"
and "deverror".

The reason for the inclusion of the
fourth file, "seg.h", is a little
harder to find. In fact it is not
necessary as the code stands, and the
author owes his readers an apology. In
editing the source code, it seemed like
a good idea to move the declaration for
"integ" from "seg.h" to "param.h".
Q.E.D.

Note that the
(2328) is also
not referenced
declaration has
".h" file.

variable "panicstr"
global but since it is
outside nprf.c", its
not been placed in any

-000-

5-6 Two Files

CHAPTER SIX

Getting Started

This chapter considers the sequence of
events which occur when UNIX is
"rebooted" i.e. it is loaded and ini­
tiated in an idle machine.

A study of the initialisation process
is of interest in itself, but more
importantly, it allows a number of
important features of the system to be
presented in an orderly manner.

The operating system may have to be
restarted in the aftermath of a system
crash. It will also have to be re­
started frequently for quite ordinary,
operational reasons, e.g. after an
overnight shutdown. If we assume the

UNIX Operating System

latter case, then we can assume that
all the disk files are intact and that
no special circumstance needs to be
recognised or dealt with.

In particular, we can
file in the root
"/unix", which is the
the operating system.

assume there is a
directory called
object code for

This file began life as a set of source
files such as we are investigating.
These were compiled and linked together
in the normal way to form a single
object program file, and stored in the
root directory.

Operator Actions

Reinitialisation
action at the
operator must:

requires operator
processor console. The

stop the processor by setting the
"enable/halt" switch to "halt"~

set the switch register with the
address of the hardware bootstrap
loader program~ .

depress and release the
address" switch~

"load

move the "enable/halt" switch to
"enable"~

depress and release the "start"
switch.

This activates the bootstrap program
which is permanently recorded in a ROM
in the processor.

The bootstrap loader program loads a
larger loader program (from block 10 of
the system disk), which looks for and
loads a file called "/unix" into the
low part of memory.

It then transfers control to the
instruction loaded at address zero.

6-1

Address zero is occupied by a branch
instruction (line 0508), which branches
to location 000040, which contains a
jump instruction (line 0522), which
jumps to the instruction labelled
"start" in the file "m40.s" (line
0612) .

start (0612)

0613: The "enabled" bit of the memory
management status register, SR0,
is tested. If this set, the pro­
cessor will dwell forever in a
two instruction loop. This regis­
ter will normally be cleared when
the operator activates the
"clear" button on the console
before starting the system.

A number of reasons have been
suggested for the necessity for
this loop. The most likely is
that in the case of a double bus
timeout error, the processor will
branch to location zero, and in
this situation it should not be
allowed to go further.

0615: "reset" clears and initialises
all the peripheral device control
and status registers~

The system will now be running in
kernel mode--wIth-:ffiemory management
disabled.

0619: KISA0 and KISD0 are the high core
addresses of the first pair of
kernel mode segmentation regis­
ters. The first six kernel
descriptor registers are initial­
ised to 077406, which is the
description of a full size, 4K
word, read/write segment.

The first six kernel address
registers are initialised to 0,
0200, 0400, 0600, 01000 and 01200
respectively.

As a result the first six kernel
segments are initialised (without

Getting Started

•

any reference to the actual size
of UNIX) to point to the first
six 4K word segments of physical
memory. Thus the "kernel to phy­
sical" address translation is
trivial for kernel addresses in
the range ° to 0137777;

0632: n end" is a loader pseudo vari­
able which defines the extent of
the program code and data area.
This value is rounded up to the
next multiple of 64 bytes and is
stored in the address register
for the seventh segment (segment
#6) •

Note that the address of this
register is stored in Rka6", so
that the content of this register
is accessible as "*ka6";

0634: The corresponding descriptor
register is loaded with a value
which (since "USIZE" is equal to
16) is the description of a
read/write segment which is 16 x
32 = 512 words long.

The value 007406 is obtained by
shifting the octal value 017
eight places to the left and then
Horning in the value 6;

0641: The eighth segment is mapped into
the highest 4K word segment of
the physical address space.

It should be noted that with
memory management disabled, the
same translation is already in
force i.e. addresses in the
highest 4K word segment of the
32K program address space are
automatically mapped into the
highest 4K word segment of the
physical address space.

We may note that from this point on,
all the kernel mode segmentation regis­
ters will remain unchanged with the
single exception of the seventh kernel
segmentation address register.

This register is explicitly manipulated
by UNIX to point to a variety of

UNIX Operating System

locations in physical memory. Each such
location is the beginning of an area
512 words long, known as a "per process
data area".

The seventh kernel address register is
now set to point to the segment which
will become the per process data area
for process *0.

0646: The stack pointer is set to point
to the highest word of the per
process data area;

0647: By incrementing the value of SR0
from zero to one, the "memory
management enabled" bit is con­
veniently set.

From this point, all program addresses
are translated to physical addresses ~
the memory management hardware.

0649: "bss" refers to the second part
of the program data area, which
is not initialised by the loader
(see "A.OUT(V)" in the UPM). The
lower and upper limits of this
area are defined by the loader
pseudo variables, "edata" and
"_end" respectively; -

0668: The processor status word (PS) is
changed to indicate that the
"previous mode" was "user mode".

This prepares the way for the
investigation and initialisation
of the areas of physical memory
which are not part of the kernel
address space. (This involves use
of the special instructions
"mtpi" and "mfpi" (Move To/From
Previous Instruction space)
together with some manipulation
of the user mode segmentation
registers.) ;

0669: A call is then made to the pro­
cedure "main" (1550).

It will be seen later that "main" calls
"sched" which never terminates. The
need for or use of the last three
instructions of "start" (lines 0670,

6-2

0671 and 0672) is therefore somewhat
enigmatic. The reason will come later.
In the meantime you might like to
ponder "why?". What do these lines do
anyway?

main (1550)

Upon entry to this procedure:

(a) the processor is running at
priority zero, in kernel mode
and with the previous mode shown
as user mode;

(b) the kernel mode segmentation
registers have been set and the
memory management unit has been
enabled;

(c) all the data areas used by the
operating system have been ini­
tialised;

(d) the stack pointer (SP or r6)
points to a word which contains
a return address in "start".

1559: The first action of "main" would
appear to be redundant, since
"updlock" should have already
been set to zero as part of the
initialisation performed by
"start";

1560: "in is initialised to the ordinal
of the first 32 word block beyond
the "per process data area" for
process *0;

1562: The first pair of user mode seg­
mentation registers are used to
provide a "moving window" into
higher areas of the physical
memory.

At each position of the window an
attempt is made (using "fuibyte")
to read the first accessible word
in the window. If this is not
successful, it is assumed that
the end of the physical memory
has been reached.

Getting Started

Otherwise the next 32 word block
is initialised to zero (using
"clearseg" (~676» and added to
the list of available memory, and
the window is advanced by 32
words.

"fuibyte" and "clearseg" are both to be
found in "m4~.s". "fuibyte" will nor­
mally return a positive value in the
range ~ to 255. However, in the excep­
tional case where the memory location
referenced does not respond, the value
-1 is returned. (The way this is
brought about is a little obscure, and
will be explained later in Chapter
Ten.)

1582: "maxmem" defines the maximum
amount of main memory which may
be used by a user program. This
is the minimum of:

the physically available memory
("maxmem") ;

an installation definable parame­
ter ("MAXMEM") (~135);

the Ultimate limit imposed by the
PDPII architecture;

1583: "swapmap" defines available space
on the swapping disk which may be
used when user programs are
swapped out of main memory. It is
initialised to a single area of
size "nswap", starting at rela­
tive address "swplo". Note that
"nswap" and "swplo" are initial­
ised in "conf.c" (lines 4697,
4698) ;

1589: The significance of this and the
next four lines will be discussed
shortly;

1599: The design of
existence of a
interrupts the
frequency (i.e

UNIX assumes the
system clock which
processor at line
50 Hz or 60 Hz).

There
types
clock
trol

are two possible clock
available: a line frequency
(KWII-L) which has a con­
register on the Unibus at

UNIX Operating System

address 777546, or a programm­
able, real-time clock (KWII-P)
located at address 77754~ (lines
15~9, 1510).

UNIX does not presume which clock
will be present. It attempts to
read the status word for the line
frequency clock first. If suc­
cessful, that clock is initial­
ised and the other (if present)
remains unused. If the first
attempt is unsuccessful, then the
other clock is tried. If both
attempts are unsuccessful, there
is a calIon "panic" which effec­
tively halts the system with an
error message to the operator.

Since the absence of a clock will be
indicated by a bus timeout error, it is
convenient to make the reference via
"fuiword", preceded by the setting of a
user mode segmentation register pair
(1599, 1600).

16~7: Either type of clock is initial­
ised by the statement

*lks = ~1l5;

As a consequence of this action,
the clock will interrupt the pro­
cessor within the next 2~ milli­
seconds. This interrupt may
occur at any time, but it will be
convenient for this discussion to
assume that no interrupt will
occur before initialisation is
complete;

1613: "cinit" (8234) initialises the
pool of character buffers. See
Chapter 23;

1614: "binit" (5~55) initialises the
pool of large buffers. See
Chapter 17;

1615: "Hnit" (6922) initialises table
entries for the root device. See
Chapter Twenty.

6-3

Processes

"process" is a term which has occurred
more than once already. A definition
which will suit our purposes reasonably
well at present is simply "a program in
execution".

Details of the representation of
processes in UNIX will be discussed in
the next chapter. For now we just note
that each process involves a "procH
structure from the array called "procH
and a "per process data area" which
includes one copy of the structure "un.

Initialisation of proc[!]

The explicit initialisation of the
structure "proc[0J" is performed start­
ing at line 1589. Only four elements
are changed from the overall initial
value of zero:

(a)

(b)

(c)

(d)

"p stat" is set to "SRUN"
implies that process
"ready to run";

which
#0 is

"p flag" is set to show both
"SLOAD" and "SSYS". The former
implies that the process is to
be found in core (it has not
been swapped out onto the disk),
and the second, that it should
never be swapped out;

"p_size" is set to "USIZE";

"p addr" is set to the contents
of- the kernel segmentation
address register #6.

It will be seen that process #0 has
acquired an area of "USIZE" blocks
(exactly the size of a "per process
data area") which begins immediately
after the official end (" end") of the
operating system data area.

The ordinal number of the first block
of this area has been stored for future
reference in "p addr". This area,
which was cleared to zero in "start"

Getting Started

(e661), contains a single copy
"user" structure called "u·.

of the

On line 1593, the address of
is stored in "u.u-procpn,
"procH structure and the ·u"
are mutually linked.

"proc[0]"
i.e. the
structure

The story continues ...

1627: "newproc"
cussed in
chapter.

(1826) will
detail in

be
the

dis­
next

In brief this initialises a
second "procH structure viz.
"proc[l]", and allocates a second
"per process data area" in core.
This is a copy of the "per pro­
cess data area" for process *0,
exact in all but one respect: the
value of "u.u-procp" in the
second area is "&proc[l]".

We should note here that at line
1889, there is a calion "savu"
(0725) which saves the current
values of the environment and the
stack pointers in "u.u rsav"
before the copy is made.

Also from line 1918 we can see
that the value returned by
"newproc" will be zero, so that
the statements on lines 1628 to
1635 will not be executed;

1637: A call is made to ·sched" (1940)
which, it may be observed, con­
tains an infinite loop, so that
it never returns!

sched (1940)

At this stage we are only interested in
what happens when ·sched" is entered
for the first time.

1958: "sp16" is an assembler routine
(1292) which sets the processor
priority level to six. (Cf. also
"sp10", "sp14", "sp15" and "spI7"
in "m4e.s").

UNIX Operating System

When the processor is at level six,
only devices with priority seven can
interrupt it. The clock whose priority
level is six is thus inhibited from
interrupting the processor between this
point and the subsequent calion "sp10"
at line 1976.

1960: A search is made through "procH
for a process whose status is
"SRUN" and which is not "loaded".

(Processes *0 and *1 have status "SRUN"
and are loaded. All remaining
processes, have a status of zero, which
is equivalent to "undefined" or
"NULL") .

1966: The search fails ("n" is still
-1). The flag "runout" is made
non-zero, indicating that there
are no processes which are both
ready to run and "swapped out"
onto disk;

1968: "sleep" is called (to wait for
such an event) with a priority
"PSWP" (== -100) for when it
wakes up, which is in the
category of "very urgent".

sleep (2066)

2070: UpS" is the address of the pro­
cessor status word. The processor
status is stored 1n the register
Us" (0164, 0175);

2071: "rp" is set to the address of the
entry in the array "procH of the
current process (still "proc[e]"
at this stage!);

2072: "prig is negative, so the "else"
branch is taken, setting the
status of the current process
('0) to "SSLEEP". The reason for
"going to sleep" and the "awaken­
ing priority" are noted.

2093: "swtch" is then called.

6-4

swtch (2178)

2184: "pO is a static variable (2180),
which means that its value is
initialised to zero (1566) and is
preserved between calls. For the
very first calion "swtch", "p"
is set to point to "proc[0]";

2189: "savu" is called to save the
stack pointer and the environment
pointer for the current process
in "u.u_rsav";

2193: "retu" is called:

(a) to reset the kernel address
register for segment *6 to the
value passed as an argument
(this causes a change in the
current process!);

(b) to reset the stack and environ­
ment pointers to values
appropriate to the revised
current process, whose execution
is about to be resumed.

The combination of successive calls on
"savu" and "retu" at this point consti­
tutes a so-called "coroutine jump" (Cf.
"exchange jump" on the Cyber or "Load
PSW" on the /360 or "Move Stack" on the
B670e) .

This time however the coroutine jump is
from process '0 to proc~ss '0 (not y~r~
inte~e.sting!) .-

2201: The set of processes is searched
to find the process whose state
is "SRUN" and which is loaded and
for which "p_pri" is a maximum.

The search is successful and pro­
cess '1 is found. (N.B. The
state of process '0 was just
changed from "SRUN" to "SSLEEP"
in "sleep" so it no longer satis­
fies the search criterion);

2218: Since "pH is not "NULL", the idle
loop is not entered;

2228: "retu" (0740) causes a coroutine
jump to process *1 which becomes

Getting Started

the current process.

What is process #1 ? It is a copy
of process #0, made at a previous
stage of the latter's existence.

This call on "retu" was not preceded by
a call on "savu" because the necessary
information has in fact been saved
already. (Where?)

2229: "sureg" is a routine (1738) which
copies into the user mode segmen­
tation registers, the values
appropriate for the current pro­
cess. These have been stored ear­
lier in the arrays "u.u uisa" and
"u.u uisd".

The very first call on "sureg" copies
zeros and serves no real purpose.

2240: The "SSWAP" flag is not set, so
that this enigmatic (2239) sec­
tion can be ignored for now;

2247: Finally "swtch" returns with a
value of "1". But where does the
"return" return to? Not to
"sleep" !

The "return" follows values set by the
stack pointer and the environment
pointer. These (just before the return)
have values equal to those in force
when the most recent "savu(u.u rsav) "
was performed. -

Now process #1, which is only just
starting has never performed a "savu",
but values were stored in "u.u rsav"
before the copy of process #0 was made
by "newproc", which had been called
from "main".

Thus in this case, the return from
"swtch" is made to "main", with a value
of one. (Look over this again, t"()l)"e
sure you understand!)

UNIX Operating System

main revisited

The story so far: process #0, having
created a copy of itself in the form of
process #1, has gone to sleep. As a
result process #1 has become the
current process and has returned to
"main" with a value of one. Now read
on •••

1627: The statements in "main" which
are conditional on "newproc" are
now executed;

1628: "expand" (2268) finds a new,
larger area (from USIZE*32 to
(USIZE+l) *32 words) for process
#1, and copies the original data
area into it.

In this case, the original user
data area consists only of a "per
process data area", with zero
length data and stack areas. The
original area is released;

1629: "estabur" is used to set the
"prototype" ~egmentation regis­
ters which are stored in
"u.u uisa" and "u.u uisd" for
later use by "sureg". "estabur"
calls "sureg" as its last action.

The parameters for "estabur" are
the sizes of the text, data and
stack areas plus an indicator to
decide whether the text and data
areas should be in separate
address spaces. (Never true on
the PDPll/40.) The sizes are all
in units of 32 words;

1630: "copyout" (1252) is an assembler
routine which copies an array in
kernel space of specified size
into a region in user space. Here
the array "icode" is copied into
an area starting at location zero
in user space;

1635: The "return" is not special. From
"main" it goes to "start" (0670)
where the three last instructions
have the effect of causing
execution in user mode OL the
instruction- at user mode address
zero. i.e. the execution of a

6-5

copy of the first instruction in
"icode". The instructions subse­
quently executed are copies also
of instructions in "icode".

AT THIS POINT, THE INITIALISATION OF
THE SYSTEM IS COMPLETE.

Process #1 is running and to all
intents and purposes, is a normal pro­
cess. Its initial form is (almost)
that which would come from compilation,
loading and execution of the simple,
but non-trivial "C" program:

char *init "/etc/init";
main () {
exec 1 (init, init, 0);
while (1);
}

The equivalent assembler program is

sys exec
init
initp
br

ini tp: init
o

init: </etc/init\0>

If the system call on "exec" fails
(e.g. the file "/etc/init" cannot be
found) the process falls into a tight
loop, and there the processor will
stay, except when the occasional clock
interrupt occurs.

A description of the functions per­
formed by "/etc/init" can be found in
the section "INIT (VIII)" of the UPM.

-000-

Getting Started

CHAPTER SEVEN

Processes

The previous chapter traced the
developments which occur after the
operating system has been "rebooted",
and in so doing introduced a number of
significant features of the process
concept. One of the aims of this
chapter is to go back and re-explore
some of the same ground more
thoroughly.

There are a number of serious difficul­
ties in providing a generally accept­
able definition of "process". These are
akin to the difficulties faced by the
philosopher who would answer "what is
life?" We will be in good company if we
brush the more subtle points lightly
aside.

UNIX Operating System

The definition for "process" already
given, "a program in execution", does
reasonably well in suggesting what is
intended. However it does not fit the
case of either process Ie throughout
its life or process #1 during its first
moments. All other processes in the
system however are clearly associated
with the execution of some program file
or other.

Processes can be introduced into dis­
cussions of operating systems at two
levels.

At the upper level, "process" is an
important organising concept for
describing the activity of a computer
system as a whole. It is often
expedient to view the latter as the
combined activity of a number of
processes, each associated with a par­
ticular program such as the "shell", or
the "editor". A discussion of UNIX at
this level is given in the second half
of Ritchie's and Thompson's paper, "The
UNIX Time-sharing System".

At this level the processes themselves
are considered to be the active enti­
ties in the system, while the identi­
ties of the true active elements, the
processor and the peripheral devices,
are submerged: the processes are born,
live and die~ they exist in varying
numbers; they may acquire and release
resources; they may interact,
cooperate, conflict, share resources;
etc.

At the lower level, "processes" are
inactive entities which are acted on by
active entities such as the processor.
By allowing the processor to switch
frequently from the execution of one
process image to another, the impres­
sion can be created that each of the
process images is developing continu­
ously and this leads to the upper level
interpretation.

7-1

Our present concern is with the low
level interpretation: with the struc­
ture of the process image, with the
details of execution and with the means
for switching the processor between
processes.

The following observations may be made
about processes in the UNIX context:

(a) the existence of a process is
implied by the existence of a
non-null structure in the "procH
array, i.e. a "procH structure
for which the element "p_stat"
is non-null;

(b) for each process there is a "per
process data area" containing a
copy of the "user" structure;

(c) the processor spends its entire
life executing one process or
another (except when it is rest­
ing between instructions);

(d) it is possible for one process
to create or destroy another
process;

(e) a process may acquire and pos­
sess resources of various kinds.

~ Process Image

Ritchie and Thompson
define a "process" as
an "image", where the
current state of a
i.e. an abstract data
may be represented
memory or on disk.

in their paper
the execution of
"image" is the
pseudo-computer,

structure, which
in either main

The process image involves two or three
physically distinct areas of memory:

(1) the "procH structure, which is

(2)

contained within the core
resident "procH array and is
accessible at all times;

the data
sists----ot

segment, which con­
the "per process data

Processes

area", combined with a segment
containing the user program
data, (possibly) program text,
and stack:

(3) the text segment, which is not
always present, consists of a
segment containing only pure
program text i.e. re-entrant
code and constant data.

Many programs do not have a separate
text segment. Where one is defined, a
single copy will be shared among all
processes which are executions of the
same particular program.

The proc Structure (0358)

This structure, which is permanently
resident in main memory, contains fif­
teen elements, of which eight are char­
acters, six are integers, and one a
pointer to an integer. Each element
represents information that must be
accessible at any time, especially when
the main part of the process image has
been swapped out to disk:

"p stat" may take one of seven
values which define seven mutually
exclusive states. See lines 0381
to 0387;

"p flag" is an amalgam of
bit flags which may
independently. See lines
0396;

six
be

0391

one
set
to

"p addr" is the address of the
data segment:

If the data segment is in main
memory this is a block number:

otherwise, if the data segment
has been swapped out, this is a
disk record number;

"p_size" is the size of the data
segment, measured in blocks;

"p pri" is the current process
prlority. This may be recalculated

UNIX Operating System

from time to time as a function of
"p_nice", "p_cpu" and "p_time";

"p pid", "p ppid" are numbers
whIch uniquely identify a process
and its parent;

"p_sig", "p uid", "p ttyp" are
involved with external communica­
tion i.e. with messages or "sig­
nals" from outside the process's
normal domain;

"p wchan" identifies, for a
"sleeping" process ("p_stat"
equals either "SSLEEP" or
"SWAIT"), the reason for sleeping;

"p_textp" is either null or a
pointer to an entry in the "text"
array (4306), which contains vital
statistics regarding the text seg­
ment.

The user Structure (0413)

One copy of the "user" structure is an
essential ingredient of each "per pro­
cess data area". At anyone time there
is exactly one copy of the "user"
structure which is accessible. This
goes under the name "un and is always
to be found at kernel address 0140000
i.e. at the beginning of the seventh
page of the kernel address space.

The "user" structure has more elements
than can be conveniently or usefully
introduced here. The comment accompany­
ing each declaration on Sheet 04 suc­
cinctly suggests the function of each
element.

For the moment you should notice:

(a) "u_rsav","u qsav", "u_ssav"
which are two word arrays used
to store values for r5, r6;

(b) "u_procp" which gives the
address of the corresponding
"procH structure in the "proc n

array;

7-2

(c)

(d)

"u uisa[16]", "u uisd[16]" which
store prototypes for the page
address and description regis­
ters;

"u tsize", "u _dsize", "u ssize"
which are the size of the text
segment and two parameters
defining the size of the data
segment, measured in 32 word
blocks.

The remaining elements are concerned
with:

saving floating point registers
(not for the PDPll/40);

- user identification;

- parameters for input/output opera­
tions;

- file access control;

- system call parameters;

accounting information.

The Per Process Data Area

The "per process data area" corresponds
to the valid part (lower part) of the
seventh page of the kernel address
space. It is 1024 bytes long. The lower
289 bytes are occupied by an instance
of the "user" structure, leaving 367
words to be used as a kernel mode stack
area. (Obviously there will be as many
kernel mode stacks as there are
processes.)

While the processor is in kernel mode,
the values of r5 and r6, the environ­
ment and stack pointers, should remain
within the range

0140441 to 01437777.
Transition beyond the upper limit would
be trapped as a segmentation violation,'
but the lower limit is protected only
by the integrity of the software. (It
may be noted that the hardware stack
limit option is not used by UNIX.)

Processes

The Segments

The data segment is allocated as one
single area of physical memory but con­
sists of three distinct parts:

(a) a "per process data area";

(b) a data area for the user pro­
gram. This may be further
divided into areas for program
text, initialised data and unin­
itialised data;

(c) a stack for the user program.

The size of (a) is always "USIZE"
blocks. The sizes of (bl and (cl are
given in blocks by "u.u dsize" and
"u.u ssize". (It may be noted in pass­
ingthat the latter two may change dur­
ing the life of a process.)

A separate text segment containing only
pure text is allocated as one single
area of physical memory. The internal
structure of the segment is not impor­
tant here.

Execution of an Image

The image currently being executed (and
hence the identity of the current pro­
cess) is determined by the setting of
the seventh kernel segmentation address
register. If process *i is the current
process, then the register has the
value "proc[iJ .p_addr".

It is often desirable to distinguish
between a process being executed in
kernel mode and the same one being exe­
cuted in user mode. We will use the
terms "kernel process *i" and "user
process *i" to denote "process *i exe­
cuting in kernel mode" and "process #i
executing in user mode" respectively.

If we chose to associate processes with
particular execution stacks rather than
with an entry in the "pr06" array, then
we would consider kernel process *i and

UNIX Operating System

user process Ii to be separate
processes, rather than different
aspects of a single process ii.

Kernel Mode Execution

The seventh kernel segmentation address
register must be set appropriately.
None of the other kernel segmentation
registers is ever disturbed and so
their values are assumed. As was seen
earlier, the first six kernel pages are
mapped to the first six pages of physi­
cal memory, while the eighth is mapped
into the highest page of physical
memory. The size of the seventh segment
is always the same.

In kernel mode the setting of the
mode segmentation registers is in
eral irrelevant. However they are
mally set correctly for the user
cess.

user
gen­
nor­
pro-

The environment and stack pointers
point into the kernel stack area in the
seventh page, above the "user" struc­
ture.

User Mode Execution ----
Each activation of a user process is
preceded and succeeded by an activation
of the corresponding kernel process.
Accordingly both the user mode and ker­
nel mode registers will be properly set
whenever a process image is being exe­
cuted in user mode.

The environment and stack pointers
point into the user stack area. This
begins as the upper part of the eighth
user page, but may be extended down­
wards, e.g. to occupy the whole of
eighth page and part or all of the
seventh page, etc.

Whereas the setting of the kernel seg­
mentation registers is fairly trivial,

7-3

setting the user segmentation registers
is much less so.

An Example

Consider a program on the PDPll/40
which uses 1.7 pages of text, 3.3 pages
of data, and 0.7 pages of stack area.
(Our use of fractions in this example
is admittedly a little crude.) The set
of virtual addresses would be divided
as shown in the following diagram:

888 III sl stack
+-~8~88~/~/~/~s~1~-=area

888
777
777
777
666
666
666
555
555
555
444
444
444
333
333
333
222

I 222
I 222
I III
I III
I 111

\~\
\ \
\\\
\\\
\\\
\\\
\\\
\\\
\\\
\\\

III
III
III
III
III

d4
d3
d3
d3
d2 data
d2
d2 area
dl
dl
dl

t2
t2 text
tl
tl area
tl

Virtual Address Space

Two whole pages in the virtual address
space must be allocated to the text
segment, even though the physical area
required is only 1.7 pages.

222 III t2
222 III t2 text
III III tl
III III tl area
111 III tl

Text Segment

Processes

The data and stack areas require the
dedication of four and one pages of
virtual address space, and 3.3 and 0.7
pages of physical memory respectively.

The whole data segment requires four
and one eighth pages of physical
memory. The extra eighth is for the
"per process data area" which
corresponds (from time to time) to the
seventh kernel address page.

888 III sl
888 III sl
666 \\\ d4

stack
+-~~~~~~+-=area

555 \\\ d3
555 \\\ d3
555 \\\ d3
444 \\\ d2 data
444 \\\ d2
444 \\\ d2 area
333 \\\ dl
333 \\\ dl
333 \\\ dl

ppda

Data Segment

Note the order of the components of the
data segment, and that there is no
embedded unused space.

The user mode segmentation need to be
set to reflect the values in the fol­
lowing table, where "tn, "d" denote the
block numbers of beginning of the text
and data segments respectively:

Page Address Size Comment

1
2
3
4
5
6
7
8

=======

t+0
t+l28
d+l6
d+144
d+272
d+400

?
d+400

1.0
0.7
1.0
1.0
1.0
0.3
0.0
0.7

read only
read only

not used
grows downwards

Note the setting of the eighth address
register. The address prototypes stored
in t~e array "u.u_uisa" are obtained by
settlng "t" and "d" to zero.

UNIX Operating System

Setting the Segmentation Registers

Prototypes for the user segmentation
registers are set up by "estabur" which
is called when a program is first
launched into execution, and again
whenever a significant change in memory
allocation requires it. The prototypes
are stored in the arrays "u.u_uisa",
"u.u uisd".

Whenever process #i is about to be re­
activated, the procedure "sureg" is
called to copy the the prototypes into
the appropriate registers. The descrip­
tion registers are copied directly, but
the address registers must be adjusted
to reflect the actual location in phy­
sical memory of the area used.

estabur (1650)

1654: Various checks on consistency are
performed, to ensure that the
requested sizes for the text,
data and stack are reasonable.

Note that a non-zero value for
"sep" implies separate mappings
for the text area ("i" space) and
the data area ("d" space). This
is never possible on the
PDPll/40;

1664: "a" defines the address of a seg­
ment relative to an arbitrary
base of zero. nap" and "dp" point
to the set of prototype segmenta­
tion address and descriptor
registers respectively.

The first eight of each of these sets
are intended to refer to Hi" space, and
the second eight, to "d" space.

1667: "ntH measures the number of 32
word blocks needed for the text
segment. If "ntH is non-zero,
one or more pages must be allo­
cated for this purpose.

7-4

Where more than one page is allocated,
all but the last will consist of 128
blocks (4096 words), and will be read
only, and will have relative addresses
starting at zero and increasing succes­
sively by 128.

1672: If some fraction of a page of
text is still to be assigned.
allocate the appropriate part of
the next page;

1677: if "in and "d" spaces are being
used separately, mark the segmen­
tation registers for the remain­
ing "in pages as null;

1682: "a" is reset because all remain­
ing addresses refer to the data
area (not the text area) and are
relative to the beginning of this
area. The first "USIZE" blocks
of this area are reserved for the
"per process data area";

1703: The stack area is allocated from
the top of the address space
towards the lower addresses
("downwards");

1711: If a partial page must be allo­
cated for the stack area, it is
the high address part of the page
which· is valid. (For text and
data areas, which grow "upwards",
it is the lower part of a partial
page which is valid.) This
requires an extra bit in the
descr iptor, hence "ED" (" expan­
sion downwards");

1714: If separate "in and "d" spaces
are not used, only the first
eight of the sixteen prototype
register pairs will have been
initialised by this point. In
this case, the second eight are
copied from the first eight.

This routine is called by
(1724), "swtch" (2229) and
(2295) , to copy the

Processes

"estabur"
"expand"

prototype

segmentation registers into the actual
hardware segmentation registers.

1743: Get the base address for the data
area from the appropriate element
of the "procH array;

1744: The prototype address registers
(of which there are only eight
for the PDPll/40) are modified by
the addition of "a" and stored in
the hardware segmentation address
registers;

1752: Test if a separate text area has
been allocated, and if so, reset
"a" to the relative address of
the text area to the data area.
(Note this value may be negative!
Fortunately at this point,
addresses are in terms of 32 word
blocks.);

1754: The pattern of code now followed
is similar to the beginning of
the routine, except ...

1762: a rather obscure piece of code
adjusts the setting of the
address register for segments
which are not "writable" i.e.
which presumably are text seg­
ments.

The code in "estabur"
evidence of having
several stages and is
could be desired.

newproc (1826)

and "sureg" shows
been developed in
not as elegant as

It is now time to take a good look at
the procedure which creates new
processes as (almost exact) replicas of
their creators.

1841: "mpid" is an integer which is
stepped through the values 0 to
32767. As each new process is
created, a new value for "mpid"
is created to provide a unique

UNIX Operating System

distinguishing number for the
process. Since the cycle of
values may eventually repeat, a
check is made that the number is
not still in use; if so a new
value is tried;

1846: A search is made through the
"procH array for a null "procH
structure (indicated by "p stat"
having a null value); -

1860: At this point, the address of the
new entry in the "procH array is
stored as both Up" and "rpp", and
the address of "procH entry for
the current process is stored
both as"up" and "rip";

1861: The attributes of the new process
are stored in the new "procH
entry. Many of these are copied
from the current process;

1876: The new process inherits the open
files of its parent. Increment
the reference count for each of
these;

1879: If there is a separate text seg­
ment increment the associated
reference counts. Notice that
"rip", "rpp" are used for tem­
porary reference here;

1883: Increment the reference count for
the parent's current directory;

1889: Save the current values of the
environment and stack pointers in
"u.u rsav" . IIsavu lf is an assem--bIer routine defined at line
0725 ;

1890: Restore the values of "rip" and
"rpp". Temporarily change the
value of "u.u procp" from the
value appropriate to the current
process to the value appropriate
to the new process;

1896: Try to find an area in main
memory in which to create the new
da ta segf.len t;

1902: If there is no suitable area in
main memory, the new copy will

7-5

have to be made on disk. The
next section of code should be
analysed carefully because of the
inconsistency introduced at line
1891 Le.

u.u_procp->p_addr != *ka6

1903: Mark the
"SIDL" to
any further
out (Le.
(1940» ;

current process as
head off temporarily
attempt to swap it
initiated by "sched"

1904: Make the new "procH entry con­
sistent, i.e. set

rpp->p_addr = *ka6;

1905: Save the current values of the
environment and stack pointers in
"u.u_ssav";

1906: Call "xswap" (4368) to copy the
data segment into the disk swap
area. Because the second parame­
ter is zero, the main memory area
will not be released;

1907: Mark the new process as "swapped
out";

1908: Return the current process to its
normal state;

1913: There was room in main memory, so
store the address of the new
"-proc" entry and copy the data
segment a block at a timeL

1917: Restore the current process's
"'per' process data area" to its
previous state;

1918: Return with a value of zero.

Obviously "newproc" on its own is not
sufficient to produce an interesting
and varied set of processes. The pro­
cedure "exec" (3020) which is discussed
in Chapter Twelve provides the neces­
sary additional facility: the means for
a process to change its character, to
be reincarnated.

-000-

Processes

CHAPTER EIGHT

Process Management

Process management is concerned with
the sharing of the processor and the
main memory amongst the various
processes, which can be seen as com­
petitors for these resources.

Decisions to reallocate resources are
made from time to time, either on the
initiative of the process which holds
the resource, of for some other reason.

Process Switching

An active process may suspend
i.e relinquish the processor,
ling "swtch" (2178) which calls
(1!7U) •

itself
by cal­

" retu"

UNIX Operating System

This may be done for example if a pro­
cess has reached a point beyond which
it cannot proceed immediately. The pro­
cess calls "sleep" (2066) which calls
"swtch".

Alternatively a kernel process which is
ready to revert to user mode will test
the variable "runrun" and if this is
non-zero, implying that a process with
a higher precedence is ready to run,
the kernel process will call "swtch".

"swtch" searches the "proc" table, for
entries for which "p stat" equals
"SRUN" and the "SLOAD" bit is set in
"p flag". From these it selects the
pr;cess for which the value of "p pri"
is a minimum, and transfers contr;l to
it.

Values for "p_pri" are recalculated for
each process from time to time by use
of the procedure "setpri" (2156). Obvi­
ously the algorithm used by "setpri"
has a significant influence.

A process which has called "sleep" and
suspended itself may be returned to the
"ready to run" state by another pro­
cess. This often occurs during the
handling of interrupts when the process
handling the interrupt calls "setrun"
(2134) either directly or indirectly
via a calIon "wakeup" (2113).

Interrupts

It should be noted that a hardware
interrupt (see Chapter Nine) does not
directly cause a calIon "swtch" or its
equivalent. A hardware interrupt will
cause a user process to revert to a
kernel process, which as just noted,
may call "swtch" as an alternative to
reverting to user mode after the inter­
rupt handling is complete.

If a kernel process is interrupted,
then after the interrupt has been han­
dled, the kernel process resumes where

8-1

it had left off regardless. This point
is important for understanding how UNIX
avoids many of the pitfalls associated
with "critical sections" of code, which
are discussed at the end of this
chapter.

Program Swapping

In general there will be insufficient
main memory for all the process images
at once, and the data segments for some
of these will have to be "swapped out"
i.e. written to disk in a special area
designated as the swap area.

While on disk the process images are
relatively inaccessible and certainly
unexecutable. The set of process
images in main memory must therefore be
changed regularly by swapping images in
and out. Most decisions regarding
swapping are made by the procedure
"sched" (1940) which is considered in
detail in Chapter Fourteen.

"sched" is executed by process #I!,
which after completing its initial
tasks, spends its time in a double
role: openly as the "scheduler" i.e. a
normal kernel process; and surrepti­
tiously as the intermediate process of
"swtch" (discussed in Chapter Seven).
Since the procedure "sched" never ter­
minates, kernel process #I! never com­
pletes its task, and so the question of
a user process #I! does not arise.

Jobs

There is no concept of "job" in UNIX,
at least in the sense in which this
term is understood in more conven­
tional, batch processing oriented sys­
tems.

Any process may "fork" a new copy of
itself at any time, essentially without
delay, and hence create the equivalent
of a new job. Hence job scheduling,
job classes, etc. are non-events here.

Process Management

Assembler Procedures

The next three procedures are written
in assembler and run with the processor
priority level set to seven. These
procedures do not observe the normal
procedure entry conventions so that r5
and r6, the environment and stack
pointers, are not disturbed during pro­
cedure entry and exit.

As has already been noted, "savu" and
"retu" can combine to produce the
effect of a coroutine jump. The third
procedure, "aretu", when followed by a
"return" statement produces the effect
of a non-local "goto".

savu (0725)

This procedure is called by "newproc"
(1889, 1905), "swtch" (2189, 2281),
"expand" (2284), "trapl" (2846) and
"xswap" (4476,4477).

The values of r5 and r6 are stored in
the array whose address is passed as a
par arne te r .

retu (0740)

This procedure is called by "swtch"
(2193, 2228) and "expand" (2294).

It resets the seventh kernel segmenta­
tion address register, and then resets
r6 and r5 from the newly accessible
copy of "u.u rsav" (which it may be
noted, is at the beginning of "u").

aretu (0734)

This procedure is called by "sleep"
(2106) and "swtch" (2242).

It reloads r6 and r5 from the address
passed as a parameter.

UNIX Operating System

swtch (2178)

"swtch" is called by "trap" (0770,
0791), "sleep" (21384, 2093), "expand"
(2287), "exit" (3256), "stop" (4027)
and "xalloc" (4480).

This procedure is unique in that its
execution is in three phases which in
general involve three separate kernel
processes. The first and third of
these processes will be called the
"retiring" and the "arising" processes
respectively. Process *0 is always the
intermediate process; it may be the
"retiring" or the "arising" process as
well.

Note that the only variables used by
"swtch" are either registers, or global
or static (stored globally).

2184: The static structure pointer,
"p", defines a starting point for
searching through the "proc"
array to locate the next process
to activate. Its use reduces the
bias shown to processes entered
early in the "proc" array. If "p"
is null, set its value to the
beginning of the "proc" array.
This should only occur upon the
very first calIon "swtch";

2189: A calIon "savu" (0725) saves the
current values of the environment
and stack pointers (r5 and r6);

2193: "retu" (137413) resets r5 and r6,
and, most importantly, resets the
kernel address register *6 to
address the "scheduler's" data
segment;

2195: Phase Two begins:

The code from this line to line
2224 is only ever executed by
kernel process ia. There are two
nested loops, from which there is
no exit until a runnable process
can be found.

At slack periods, the processor

8-2

spends most of its time executing
line 22213. It is only disturbed
thence by an interrupt (e.g. from
the clock);

2196: The flag "runrun" is reset. (It
is used to indicate that a higher
priority process than the current
process is ready to run. "swtch"
is about to look for the highest
priority process.);

2224: The priority of the "arising"
process is noted in "curpri" (a
global variable) for future
reference and comparison;

2228: Another calIon "retu" resets r5,
r6 and the seventh kernel address
register to values appropriate
for the "arising" process;

2229: Phase Three begins:

"sureg" (1739) resets the user
mode hardware segmentation regis­
ters using the stored prototypes
for the arising process;

22313: The comment which begins here is
not encouraging. We will return
to this point again towards the
end of this chapter;

2247: If you check, you will find that
none of the procedures which call
"swtch" directly examines the
value returned here.

Only the procedures which call
"newproc" which are interested in
this value, because of the way
the child process is first
activated!

setpri (2156)

2161: Process priorities are calculated
according to the formula:

priority = min {127, (time used +
PUSER + p_nice)}

where

Process Management

(1) time used = accumulated central
processor time (usually since the
process was last swapped in),
measured in clock ticks divided
by 16 i.e. thirds of a second.
(More on this later when we dis­
cuss the clock interrupt.);

(2) PUSER == 100;

(3) "p nice"
bias the
normally
reduces

is a parameter used to
process priority. It is

positive and hence
the process's effective

precedence.

Note the somewhat confusing convention
in UNIX that the lower the priority,
the higher the precedence. Thus a
priority of -10 beats a priority of 100
every time.

2165: Set the rescheduling flag if the
process, whose priority has just
been recalculated, has less pre­
cedence than the current process.

The sense of the test on line 2165 is
surprIsIng, especially when it is com­
pared with line 2141. We leave it to
the reader to satisfy himself that this
is not an error. (Hint: look at the
parameters for the calls on "setpri".)

sleep (2066)

This procedure is called (from nearly
30 different places in the code) when a
kernel process chooses to suspend
itself. There are two parameters:

- the reason for sleeping;

- a priority with which the process
will run after being awakened.

If this priority is negative the pro­
cess cannot be aroused from its sleep
by the arrival of a "sianal". "sianals"
are discussed in Chapter Thirteen: .

UNIX Operating System

2070: The current processor status is
saved to preserve the incoming
processor priority and previous
mode information;

2072: If the priority is non-negative,
a test is made for "waiting sig­
nals";

2075: A small critical section begins
here, wherein the process status
is changed and the parameters are
stored in generally accessible
locations (viz. within the array
"proc").

This code is critical because the
same information fields may be
interrogated and changed by
"wakeup" (2113) which is fre­
quently called by interrupt
handlers;

2080: When "runin" is non-zero, the
scheduler (process #0) is waiting
to swap another process into main
memory;

2084: The calIon "swtch" represents a
delay of unknown extent during
which a relevant external event
may have occurred. Hence the
second test on "issig" (2085) is
not irrelevant;

2087: For negative priority "sleeps",
where the process typically waits
for freeing of system table
space, the occurrence of a "sig­
nal" is not allowed to deflect
the course of the activity.

wakeup (2113)

This procedure complements "sleep". It
simply searches the set of all
processes, looking for any processes
which are "sleeping" for a specified
reason (given as the parameter "chan"),
and reactivating these individually by
a calIon "setrun".

8-3

setrun (2134)

2140: The process status is set to
"SRUN". The process will now be
considered by "swtch" and "sched"
as a candidate for execution
again;

2141: If the aroused process is more
important (lower priority!) than
the current process, the
rescheduling flag, "runrun" is
set for later reference;

2143: If "sched" is sleeping, waiting
for a process to "swap in", and
if the newly aroused process is
on disk, wake up "sched".

Since it turns out that "sched" is
only procedure which calls "sleep"
"chan" equal to "&runout", line
could be replaced by the recursive

setrun (&proc[0]);

or better still, by just

rp = &proc[0];
goto sr;

the
with
2145
call

where "sr" is a label to be inserted at
the beginning of line 2139.

expand (2268)

The comment at the beginning of this
procedure (2251) says most of what
needs to be said about the procedure,
except for the question of "swapping
out" when not enough core is available.

Note that "expand" takes no particular
notice of the contents of the user data
area or stack area.

2277: If the expansion is actually a
contraction, then trim off the
excess from the high address end;

2281: "savu" stores the values of r5
and r6 in "u.u_rsav";

Process Management

2283: If sufficient main memory is not
available ••.

2284: The environment pointer and stack
pointer are recorded again in
"u.u ssav". But note that since
no -new procedures have been
entered, and since there has been
no cumulative stack growth, the
values recorded are the same as
at line 2281;

2285: "xswap" (4368) copies the core
image for the process designated
by its first parameter to disk.

Since the second
non-zero the main
occupied by the data
returned to the list
space.

parameter is
memory area

segment is
of available

However
using
memory
"retu"

the computation continues
the same area in main

until the next calIon
(2193) in "swtchn.

Note also that the calIon "savu" at
line 2189 in "swtch" stores new values
in "u.u_rsav" after the disk image has
been made (and therefore serves no use­
ful purpose since the core image has
already been officially "abandoned");

2286: The "SSWAP" flag is set in the
process's "proc" array element.
(This is not swapped out, so the
effect is not lost!);

2287: "swtch" is called, and the pro­
cess, still running in its old
area suspends itself. Since the
calIon "xswap" will have
resulted in the "SLOAD" flag
being switched off, there is no
way that "swtch" will choose the
process for immediate reactiva­
tion.

Only after the disk image has
been copied back into core again
can the process be activated
again. The "return" executed by
"swtch" is a return to the pro­
cedure which called "expand".

UNIX Operating System

swtch revisited

What happens to the process when it is
reactivated i.e. it becomes the "aris­
ing" process in "swtch"?

2228: The stack and environment
pointers are restored from
"u.u rsav" (Note that a pointer
to "un is also a pointer to
"u. u_rsav" (1iI415) but

2241i1: If the core image was "swapped
out" e.g. by expand" ...

2242: No reliance is placed on the
values of the stack and environ­
ment pointers, and they are reset
from "u.u ssav".

The question is "if the values stored
in "u.u ssav" at line 2284 are the same
as valuis stored in "u.u rsav" at line
2281, how did they git to be dif­
ferent?"

Presumably this is what "you are not
expected to understand" (line 2238)
clearly "xswap" should be investigated

the trail finally ends at Chapter
Fifteen ... in the meantime you may
wish to investigate for yourself so
that you may join the "2238" club that
much sooner.

Critical Sections

If two or more
same set of
output of the
depend on the
of the various

processes operate on the
data, then the combined
set of processes may

relative synchronisation
processes.

This is usually considered to be highly
undesirable and to be avoided at all
costs. The solution is usually to
define "critical sections" (it is the
programmer's responsibility to recog­
nise these) in the code which is exe­
cuted by each process. The programmer
must then ensure that at any time no
more than one process is executing a

8-4

section of code which is critical with
respect to a particular set of data.

In UNIX user processes do not share
data and so do not conflict in this
way. Kernel processes however have
shared access to various system data
and can conflict.

In UNIX an interrupt does not cause a
change in process as a direct side
effect. Only where kernel processes
may suspend themselves in the middle of
a critical section by an explicit call
on "sleep", does an explicit lock vari­
able (which may be observed by a group
of processes) need to be introduced.
Even then the actions of testing and
setting the locks do not usually have
to be made inseparable.

Some critical sections of code are exe­
cuted by interrupt handlers. To pro­
tect other sections of code whose out­
come may be affected by the handling of
certain interrupts, the processor
priority is raised temporarily high
enough before the critical section is
entered to delay such interrupts until
it is safe, when the processor priority
is reduced again. There are of course
a number of conventions which interrupt
handling code should observe, as will
be discussed later in Chapter Nine.

In passing it may be noted that the
strategy adopted by UNIX works only for
a single processor system and would be
totally inappropriate in a multi­
processor system.

-000-

Process Management

Section Two is concerned with traps,
hardware interrupts and software inter­
rupts.

Traps and hardware interrupts introduce
sudden switches into the CPU's normal
instruction execution sequence. This
provides a mechanism for handling spe­
cial conditions which occur outside the
CPU's immediate control.

Use is made of this facility as part of
another mechanism called the "system
call", whereby a user program may exe­
cute a "trap" instruction to cause a
trap deliberately and so obtain the
operating system's attention and assis­
tance.

The software interrupt (or "signal") is
a mechanism for communication between
processes, particularly when there is
"bad news".

UNIX Operating System

CHAPTER NINE

Hardware Interrupts and Traps

In the PDPII computer, as in many other
computers, there is an "interrupt"
mechanism, which allows the controllers
of peripheral devices (which are dev­
ices external to the CPU) to interrupt
the CPU at appropriate times, with
requests for operating system service.

The same mechanism has been usefully
and conveniently applied to "traps"
which are events internal to the CPU,
which relate to hardware and software
errors, and to requests for service
from user programs.

Hardware Interrupts

The effect of an interrupt is to divert
the CPU from whatever it was doing and
to redirect it to execute another pro­
gram.

9-1

During a hardware interrupt:

The CPU saves the current processor
status word (PS) and the current
program count (PC) in its inter­
nal registers;

the PC and PS are then reloaded from
two consecutive words located in
the low area of main memory. The
address of the first of these
two words is known as the
"vector location" of the inter­
rupt;

finally the original PC and PS values
are stored into the newly
current stack. (Whether this is
the kernel or user stack depends
on the new value of the PS.)

Different peripheral devices may have
different vector locations. The actual
vector location for a particular device
is determined by hard wiring, and can
only be changed with difficulty. More­
over there are well entrenched conven­
tions for choosing vector locations for
the various devices.

Thus after the interrupt has occurred,
because the PC has been reloaded, the
source of instructions executed by the
CPU has been changed. The new source
should be a procedure associated with
the peripheral device controller which
caused the interrupt.

Also since the PS has also been
changed, the processor mode may have
changed. In UNIX, the initial mode may
be either "user" or "kernel", but after
the interrupt, the mode is always "ker­
nel". Recall also that a change in mode
implies:

(a) a change in memory mappings.
(Note that to avoid any confu­
sion, vector locations are
always interpreted as kernel
mode addresses.);

(b) a change in stack pointers.
(Reca'll that the stack pointer,

Hardware Interrupts and Traps

SP or r6, is the only special
register which is replicated for
each mode. This implies that
after a mode change, the stack
pointer value will have changed
even though it has not been
reloaded!)

The Interrupt Vector

For our sample system, the representa­
tive peripheral devices chosen are
listed in Table 9.1, along with their
conventional hardware defined vector
locations and priorities.

vector peripheral interrupt process
location device priority priority
======== ========== ========= ========

363
364
373
374
133
134
233
223

teletype input 4
teletype output 4
paper tape input 4
paper tape output 4
line clock 6
programmable clock 6
line printer 4
RK disk drive 5

Table 9.1 Interrupt
vector-LOCations and Priorities

Interrupt Handlers

4
4
4
4
6
6
4
5

Within this selection of UNIX source
code, there are seven procedures known
as "interrupt handlers", i.e. which are
executed as the result of, and only as
the result of, interrupts:

clock
rkintr
klxint
klrint

(3725)
(5451)
(8373)
(8378)

pcrint
pcpint
lpint

(8719)
(8739)
(8976)

"clock" will be examined in detail in
Chapter 11. The others are discussed
with the code for their associated dev­
ices.

UNIX Operating System

Priorities

An interrupt does not necessarily occur
immediately the peripheral device con­
troller requests it, but only when the
CPU is ready to accept it. It is usu­
ally desirable that a request for a low
priority service should not be allowed
to interrupt an activity with a higher
priority.

Bits 7 to 5 of the PS determine the
processor priority at one of eight lev­
els (labelled zero to seven). Each
interrupt also has an associated prior­
ity level determined by hardware wir­
ing. An interrupt will be inhibited as
long as the processor priority is
greater than or equal to the interrupt
prior i ty.

After the interrupt the processor
priority will be determined from the PS
stored in the vector location and this
does not have to be the same as the
interrupt priority. Whereas the inter­
rupt priority is determined by
hardware, it is possible for the
operating system to change the contents
of the vector location at any time.

As a matter of curiosity, it may be
noted that the PDPII hardware restricts
the possible interrupt priorities to 4,
5, 6 and 7 i.e. levels 1, 2 and 3 are
not supported by the Unibus.

Interrupt Priorities

In UNIX, interrupt handling routines
are initiated at the same priority as
the interrupt priority.

This means that during the handling of
the interrupt, a second interrupt from
a device of the same priority class
will be delayed until the processor
priority is reduced, either by the exe­
cution of one of the "spl" procedures,
which are intended for just this pur­
pose (see lines 1293 to 1315), or by

9-2

reloading the processor status word
e.g. upon returning from the interrupt.

During interrupt handling, the proces­
sor priority may be raised temporarily
to protect the integrity of certain
operations. For instance, character
oriented devices such as the paper tape
reader/punch or the line printer inter­
rupt at level four. Their interrupt
handlers call "getc" (0930) or "putc"
(3967), which raise the processor
priority temporarily to level five,
while the character buffer queues are
manipulated.

The interrupt handler for the console
teletype makes use of a "timeout"
facility. This involves a queue which
is also manipulated by the clock inter­
rupt handler, which runs at level six.
To prevent possible interference, the
"timeout" procedure (3835) runs at
level seven (the highest possible
level) .

Usually it does not make sense to run
an interrupt handler at a processor
priority lower than the interrupt
priority, for this would then risk a
second interrupt of the same type, even
from the same device, before completion
of the processing of the first inter­
rupt. This likely to be at best incon­
venient and at worst disastrous. How­
ever the clock interrupt handler, which
once per second has a lot of extra work
to do, does exactly this.

Rules for Interrupt Handlers

As discussed above, interrupt handlers
need to be careful about the manipula­
tion of the processor priority to avoid
allowing other interrupts to happen
"too soon". Likewise care needs to be
taken that the other interrupts are not
delayed excessively, lest the perfor­
mance of the whole system be degraded.

Hardware Interrupts and Traps

It is important to note that when an
interrupt occurs, the process which is
currently active will very likely not
be the process which is interested in
the occurrence. Consider the following
scenario:

User process #m is active and initiates
an i/o operation. It executes a trap
instruction and transfers to kernel
mode. Kernel process #m initiates the
required operation and then calls
"sleep" to suspend itself to await com­
pletion of the operation ...

Some time later, when some other pro­
cess, user process #n say, is active,
the operation is completed and an
interrupt occurs. Process #n reverts to
kernel mode, and kernel process #n
deals with the interrupt, even though
it may have no interest in or prior
knowledge of the operation.

Usually kernel process #n will include
waking process #m as part of its
activity. This will not always be the
case though, e.g. where an error has
occurred and the operation is retried.

Clearly, the interrupt handler for a
peripheral device should not make
references to the current "un structure
for this is not likely to be the
appropriate "un structure. (The
appropriate "un structure could quite
possibly be inaccessible, if it has
been temporarily swapped out to the
disk.)

Likewise the interrupt handler should
not call "sleep" because the process
thus suspended will most likely be some
innocent process.

"Traps" are like "interrupts" in that
they are events which are handled by
the same hardware mechanism, and hence
by similar software mechanisms.

UNIX Operating System

"Traps" are unlike "interrupts" in that
they occur as the result of events
internal to the CPU, rather than exter­
nally. (In other systems the terminol­
ogy "internal interrupt" and "external
interrupt" is used to draw this dis­
tinction more forcefully.) Traps may
occur unexpectedly as the result of
hardware or power failures, or predict­
ably and reproducibly, e.g. as the
result of executing an illegal instruc­
tion or a "trap" instruction.

"Traps" are always recognised by the
CPU immediately. They cannot be delayed
in the way low priority interrupts may
be. If you like, "traps" have an
"interrupt priority" of eight.

"Trap" instructions may be deliberately
inserted in user mode programs to catch
the attention of the operating system
with a request to perform a specified
service. This mechanism is used as part
of the facility known as "system
calls".

Like interrupts, traps result in the
reloading of the PC and PS from a vec­
tor location, and the saving of the old
values of the PC and PS in the current
stack. Table 9.2 lists the vector loca­
tions for the various "trap" types.

vector trap type process
priority location

004
010
014
020
024
030

034
114
240
244
250

bus timeout
illegal instruction
bpt-trace
iot
power failure
emulator trap

instruction
trap instruction
11/70 parity
programmed interrupt
floating point error
segmentation violation

Table ~.~ Trap

7
7
7
7
7
7

7
7
7
7
7

vector Locations and priorities

9-3

The contents of Tables 9.1 and 9.2
should be compared with the file
"low.s" on Sheet 05. As noted earlier,
this file is generated at each instal­
lation (along with the file "conf.c"
(sheet 46», as the product of the
utility program "mkconf", so as to
reflect the actual set of peripherals
installed.

Assembly Language 'trap'

From "low.s" it appears that traps and
interrupts are handled separately by
the software. However closer examina­
tion reveals that "call" and "trap" are
different entry points to a single code
sequence in the file "m40.s" (see lines
0755, 0776). This sequence is examined
in detail in the next chapter.

During the execution of this sequence,
a call is made on a "C" language pro­
cedure to carry out further specific
processing. In the case of an inter­
rupt, the "C" procedure is the inter­
rupt handler specific to the particular
device controller.

In the case of a trap, the "C" pro­
cedure is another procedure called
"trap" (yes, the word "trap" is defin­
itely overworked!), which in the case
of a system error will most likely call
"panic" and in the case of a "system
call", will invoke (indirectly via
"trapln(284l» the appropriate system
call procedure.

Return

Upon completion of the handling of an
interrupt or trap, the code follows a
common path ending in an "rtt" instruc­
tion (0805). This reloads both the PC
and PS from the current stack, i.e. the
kernel stack, in order to restore the
processor environment that existed
before the interrupt or trap.

-000-"

Hardware Interrupts and Traps

CHAPTER TEN

The Assembler "Trap" Routine

The principal purpose of this chapter
is to examine the a~sembly langua~e
code in "m40.s" which IS involved In
the handling of interrupts and traps.

This code is found between lines 0750
and 0805, and has two entry points,
"trap" (0755) and "call" (0766). There
are several different and relevant
paths through this code and we shall
trace some examples of these.

Sources of Traps and Interrupts

The discussion in Section One intro­
duced three places where the occurrence

UNIX Operating System

of a trap or interrupt was expected:

(a) "main" (1564) calls "fuibyte"
repeatedly until a negative
value is returned. This will
occur after a "bus timeout
error" has been encountered with
a subsequent trap to vector
location 4 (line 0512);

(b) The clock has been set running
and will generate an interrupt
every clock tick i.e. 16.7 or 20
milliseconds;

(c) Process *1 is about to execute a
"trap" instruction as part of
the system calIon "exec".

fuibyte (0814)

fuiword (0844)

"main" uses both "fuibyte" and "fui­
word". Since the former is more compli­
cated in a non-essential way, we leave
it to the reader, and concentrate on
the latter.

"fuiword" is called (1602) when the
system is running in kernel mode with
one argume~t which is an address in
user address space. The function of the
routine is to fetch the value of the
corresponding word and to return it as
a result (left in (0). However if an
error occurs, the value -1 is to be
returned.

Note that with "fuiword", there is an
ambiguity which does not occur with
"fuibyte", namely a returned value of
-1 may not necessarily be an error
indication but the actual value in the
user space. Convince yourself that for
the way it is used in "main", this does
not matter.

Also the code does not
between a "bus timeout
"segmentation error".

10-1

distinguish
error" and a

The routine proceeds as follows:

0846: The argument is moved to rl;

0848: "gword" is called;

0852: The current PS is stored on the
stack;

0853: The priority level is raised to 7
(to disable interrupts);

0854: The contents of the location
"nofault" (1466) are saved in the
stack;

0855: "nofault" is loaded with the
address of the routine "err";

0856: An "mfpi" instruction is used to
fetch the word from user space.

If nothing goes wrong this value will
be left on the kernel stack.

0857: The value is transferred from the
stack to r0;

0876: The previous values of "nofault"
and PS are restored;

0878: Return via line 0849.

Now suppose something does ~ wrong
with the "mfpi" instruction, and a bus
time-out does occur.

0856: The "mfpi" instruction will be
aborted. PC will point to the
next instruction (0857) and a
trap via vector location 4 will
occur;

0512: The new PC will have the value of
"trap". The new PS will indicate:

present mode
previous mode
priority

kernel mode
kernel mode
7;

0756: The next instruction executed is
the first instruction of "trap".
This saves the processor status
word two words beyond the current
"top of stack". (This is not
relevant here.);

The Assembler "Trap" Routine

0757: "nofault" contains the address of
"err" and is non-zero;

0765: Moving 1 to SR0 reinitialises the
memory management unit;

0766: The contents of "nofault" are
moved on top of the stack,
overwriting the previous con­
tents, which was the return
address in "gword";

0767: The "rtt" returns, not to "gword"
but to the first word of "err";

0880: "err" restores "nofault" and PS,
skips the return to "fuiword",
places -1 in r0, and returns
directly to the calling routine.

Interrupts

Suppose the clock has interrupted the
processor.

Both clock vector locations, 100 and
104, have the same information. PC is
set to the address of the location
labelled "kwlp" (0568) and PS is set to
show:

present mode
previous mode
priority

kernel mode
kernel or user mode
6

Note. The PS will contain the true pre­
vious mode, regardless of the value
picked up from the vector location.

0570: The vector location contains a
new PC value which is the address
of the statement labelled "kwlp".
This instruction is a subroutine
calIon "call" via r0.

After the execution of this
instruction, r0 is left with the
address of the code word after
the instruction which contains
" clock", i.e. r0 contains the
address of the address of the
"clock" routine in the file
"clock.c" (3725).

UNIX Operating System

call (0776)

0777: Copy PS onto the stack;

0779: Copy rl onto the stack;

0780: Copy the stack pointer for the
previous address space onto the
stack. (This is only significant
if the previous mode was user
mode) .

This represents a special case of
the "mfpi" instruction. See the
"PDPII Processor Handbook", page
6-20;

0781: Copy the copy of PS onto the
stack and mask out all but the
lower five bits. The resulting
value designates the cause of the
interrupt (or trap). The or1g1-
nal value of the PS had to be
captured quickly;

0783: Test if the previous m~de is ker­
nel or user.

If the previous mode is kernel
mode the branch 1S taken (0784).
PS is changed to show the previous
mode as user mode (0798);

0799: The specialised interrupt han­
dling routine pointed to by r0 is
entered. (In this case it is the
routine "clock", which is dis­
cussed in detail in the next
chapter.)

0800: When the "clock" routine (or some
other interrupt handler) returns,
the top two words of the stack
are deleted. These are the
masked copy of the PS and the
copy of the stack pointer;

0802: rl is restored from the stack;

0803: Delete the copy of PS from the
stack;

0804: Restore the value of r0 from the
stack;

0805: Finally the "rtt" instruction
returns to the "kernel" mode

19-2

routine that was interrupted;

If the previous mode ~ user mode
it is not certain that the inter­
rupted routine will be resumed
immediately;

0788: After the specialised interrupt
routine (in this case "clock")
returns, a check ("runrun > 0)"
is made to see if any process of
higher priority than the current
process is ready to run. If the
decision is to allow the current
process to continue, then it is
important that it be not inter­
rupted as it restores its regis­
ters prior to the "return from
interrupt" instruction. Hence
before the test, the processor
priority is raised to seven (line
(787), thus ensuring that no more
interrupts occur until user mode
is resumed. (Another interrupt
may occur immediately thereafter,
however.)

If "runrun > 0", then another, higher
priority, process 1S waiting. The pro­
cessor priority is reset to 0, allowing
any pending interrupt to be taken. A
call is then made to "swtch" (2178), to
allow the higher priority process to
proceed. When the process returns from
"swtch", the program loops back to
repeat the test.

The above discussion obviously extends
to all interrupts. The only part which
relates specifically to the clock
interrupt is the calIon the special­
ised routine "clock".

User Program Traps

The "system call" mechanism which
enables user mode programs to calIon
the operating system for assistance,
involves the execution by the user mode
program of one of 256 versions of the
"trap" instruction. (The nversionn is
the value of the low order byte of the
instruction word.)

The Assembler "Trap" Routine

1:'1518:

0756:

Execution of the "trap" instruc­
tion in a user mode program
causes a trap to occur to vector
location 34 which causes the PC
to be loaded with the value of
the label "trap" (lines 0512,
0755). A new PS is set which
indicates

present mode
previous mode
priority

kernel mode
user mode
7

The next instruction executed is
the first instruction of "trap".
This saves the processor status
word in the stack two words
beyond the current "top of
stack".

It is important to save the PS as
soon as possible, before it can
be changed, since it contains
information defining the type of
trap that occurred. The somewhat
unconventional destination of the
"move" is to provide compatibil­
ity with the handling of inter­
rupts, so that the same code can
be used further on;

0757: "nofault" will be zero so the
branch is not taken;

0759: The memory management status
registers are stored just in case
they will be needed, and the
memory management unit is reini­
tialised;

0762: A subroutine entry is made to
"callI" using r0. (This neatly
stores the old value of r0 in the
stack, but not a return address.
The new value is the address of
the address of the routine to be
entered next (in this case the
"trap" routine in the file
"trap.c" (2693));

0772: The stack pointer is adjusted to
point to the location which
already contains the copy of PS;

0773: The CPU priority is set to zero;

UNIX Operating System

0774: A branch is taken to the second
instruction of "call".

From here the same path as for an
interrupt is followed.

The Kernel Stack

The state of the kernel stack at the
time that the "trap" procedure ("C"
version) or one of the specialised
interrupt handling routines is entered,
is shown in Figure 10.1.

(rps 2)

(r7 1)

(r0 0)

(rl -2)

(r6 -3)

7 1
1

6 1
1

5->1
1

4 1
1

3 1
1

2 1
1

1 1
1

0->1
1

ps

pc

r0

nps

rl

sp

dev

tpc

previous top
of stack

old PS

old PC (r7)

old r0

new PS after
trap

old rl

old SP for
previous mode

masked new PS

return address
in "call"

=======================================
(r5 -6) -1 (r5) old r5

(r4 -7) -2 (r4) old r4

(r3 -8) -3 (r3) old r3

(r2 -9) -4 (r2) old r2

(1) (2) (3) (4) (5)
stack

Figure 10.1

Columns (2) and (3) give the positions
of stack words relative to the posi­
tions in the stack of the words
labelled "r0" and "tpc" respectively.

10-3

Columns (1) and (2) define (or explain)
the contents of the file "reg.h" (Sheet
26) •

"dev", ASp", Arlo,
Ups" in that order
parameters used in
the procedures
"clock" (3725).

"nps" "r0", "pc"
are the names of
the declaration
"trap" (2693)

and
the
of

and

Note that just before entry to "trap"
("C" version) or the other interrupt
handling routines, the values for the
registers r2, r3, r4 and r5 have not
yet been saved in the stack. This is
performed by a call on "csv" (1420)
which is automatically included by the
"CO compiler at the beginning of every
compiled procedure. The form of the
calIon "csv" is equivalent to the
assembler instruction

jsr r5,csv

This saves the current value of r5 on
the stack and replaces it by the
address of the next instruction in the
"C" procedure.

1421: This value of r5 is copied into
r0;

1422: the current value of the stack
pointer is copied into r5.

Note that at this point, r5 points to a
stack location containing the previous
value of r5 i.e. it points to the
beginning of a chain of pointers, one
per procedure, which "thread" the
stack. When a "C" procedure exits, it
actually returns to "cretA (1430) where
the value of r5 is used to restore the
stack and r2, r3 and r4 to their ear­
lier condition (i.e. as they were
immediately prior to entering the pro­
cedure) • For this reason r5 is often
called the environment pointer.

-000-

The Assembler "Trap" Routine

CHAPTER ELEVEN

Clock Interrupts

The procedure "clock" (3725) handles
interrupts from either the line fre­
quency time clock (type KWII-L, inter­
rupt vector address 100) or the pro­
grammable real-time clock (type KWII-P,
interrupt vector address 104).

UNIX requires that at least one of
these should be available. (If both are
present, only the line time clock is
used.)

Whichever clock is used, interrupts are
generated at line frequency (i.e. with
a 50 Hz power supply, every 20 mil­
liseconds). The clock interrupt prior­
ity level is six, higher than for any
other peripheral device on our typical
system, so that there will usually be
very little delay in the initiation of
"clock" once the interrupt has been
requested by the clock controller.

clock (3725)

The function of "clock" is one of gen­
eral housekeeping:

UNIX Operating System

the display register is updated
(PDPll/45 and 11/70 only);

various accounting values such as
the time of day, accumulated pro­
cessing times and execution pro­
files are maintained;

processes sleeping for a fixed
time interval are awakened as per
schedule;

core swapping activity is ini­
tiated once per second.

"clock" breaks most of the rules for
peripheral device handlers: it does
reference the current "u" structure,
and it also runs at a low priority for
some of the time. It abbreviates its
activity if a previous execution has
not yet completed.

3740: "display" is a no-op on the
PDP11/40 ;

3743: The array "callout" (0265) is an
array of "NCALL" (0143) struc­
tures of type "callo" (0260).
The "callo" structure contains
three elements: an incremental
time, an argument and the address
of a function. When the function
element is not null, the function
is to be executed with the sup­
plied argument after a specified
time.

(For the systems under study, the
only function ever executed in
this way is "ttrstrt" (8486),
which is part of the teletype
handler. (See Chapter 25.»;

3748: If the first element of the list
is null, the whole list is null;

37513: The "callout" list is arranged in
the desired order of execution.
The time re.corded is the number
of clock ticks between events.
Unless the first time (the time
before the next event) is already
zero, (meaning that the execution
is already due) this time should
be decremented by one.

11-1

If this time has already been
counted to zero, decrement the
next time unless it is already
zero also, etc. i.e. decrement
the first non-zero time in the
list. All the leading entries
with zero times represent opera­
tions which are already due. (The
operations are actually carried
out a little later.);

3759: Examine the previous processor
status word, and if the priority
was non-zero, bypass the next
section, which executes those
operations which are due;

3766: Reduce the processor priority to
five (other level six interrupts
may now occur) ;

3767: Search the "callout" array look­
ing for operations which are due
and execute them;

3773: Move the entries for operations
which are still not yet due, to
the beginning of the array;

3787: The code from here until line
3797 is executed, whatever the
previous processor priority, at
either priority level five or
six;

3788: If the previous mode was "user
mode", then increment the user
time counter, and if an execution
profile is being accumulated,
call "incupc" (13895) to make an
entry in a histogram for the user
mode program counter (PC).

"incupc" is written in Assembler,
presumably for efficiency and
convenience. A description of
what it does may be found in the
section "PROFIL(II)" of the UPM.
See also the procedure "profil"
(3667) ;

3792: If the previous mode was not user
mode, increment the system (ker­
nel) time counter for the pro­
cess.

Clock Interrupts

The code just described performs the
basic time accounting for the system.
Every clock tick results in the incre­
menting of either "u.u utime" or
·u.u stime" for some process. Both
·u.u-utime" and "u.u stime" are initi­
alised to zero in "fork" (3322). Their
values are interrogated in "wait"
(3270). The values will go negative
after 32K ticks (about 10 hours)!

3795: "p_cpu" is used in determining
process priorities. It is a char­
acter value which is always
interpreted as a positive integer
(0 to 255). When it is moved to a
special register, sign extension
occurs so that 255, for instance,
becomes like -1. Adding one then
leaves a zero result. In this
case the value is reduced to -1
again, and stored as 255
unsigned. Note that in the other
places where "p cpu" is refer­
enced (2161, 3814), the top eight
bits are masked off after the
value has been transferred to a
special register;

3797: Increment "lbolt"
exceeds "HZ", i.e.
more has elapsed .•.

and if it
a second or

3798: Then provided the processor was
not previously running at a non­
zero priority, do a whole lot of
housekeeping;

3800: Decrement "lbolt" by "HZ";

3801: Increment the time of day accumu­
lator;

3803: The events which follow may take
some time, but they may reason­
ably be interrupted to service
other peripherals. So the proces­
sor priority is dropped below all
the device priority levels i.e.
below four.

However there is now a possibil­
ity of another clock interrupt
before this activation of the
"clock" procedure is completed.
By setting the processor priority
to one rather than to zero, a

UNIX Operating System

second activation of "clock" will
not attempt to execute the code
from line 3804 on also. Note how­
ever that to the hardware, prior­
ity one is functionally the same
as priority zero;

3804: If the current time (measured in
seconds) is equal to the value
stored in "tout", wake all
processes which have elected to
suspend themselves for a period
of time via the "sleep" system
call i.e. via the procedure
"sslep" (5979).

"tout" stores the time at which the
next process is to be awakened. If
there is more than one such process,
then the remainder, which will have
been disturbed, must reset "tout"
between them. This mechanism, while
quite effective, will not be efficient
if the number of such processes ever
becomes large.

In this situation, a mechanism similar
to the "callout" array (see 3767) would
need to be provided. (In fact, how dif­
ficult would it be to merge the two
mechanisms? What would be the disadvan­
tages ??);

3806: When the last two bits of
"time[l]" are zero i.e. every
four seconds, reset the schedul­
ing flag "runrun" and wake up
everything waiting for a "light­
ning bolt". ("lbolt" represents a
general event which is caused
every four seconds, to initiate
miscellaneous housekeeping. It is
used by "pcopen" (8648).);

3810: For all currently defined
processes:

increment "p time" up to a maximum
of 127 (it- is only a character
variable) ;

decrement "p_cpu" by "SCHMAG"
(3707) but do not allow it to go
negative. Note that as discussed
earlier (line 3795) "p_cpu" is

11-2

treated as a positive integer in
the range 0 to 255;

if the processor priority is
currently set at a depressed
level, recalculate it.

Note that "p cpu" enters into the cal­
culation of process priorities,
"p pri", by "setpri" (2156). "p_pri"
is- used by "swtch" (2209) in choosing
which process, from among those which
are in core ("SLOAD") and ready to run
("SRUN"), should next receive the CPU's
attention.

"p time" is used to measure how long
(in seconds) a process has been either
in core or swapped out to disk.
"p-time" is set to zero by "newproc"
(1869) , by "sched" (2047) and by
"xswap" (4386) . It is used by II sched."
(1962, 2009) to determine which
processes to swap in or out.

3820: If the scheduler is waiting to
rearrange things, wake it up.
Thus the normal rate for schedul­
ing decisions is once per second;

3824: If the previous mode before the
interrupt was "user mode", store
the address of "r0" in a standard
place, and if a "signal" has been
received for the process, call
"psig" (4043) for the appropriate
action.

timeout (3845)

This procedure makes new entries in the
"callout" array. In this system it is
only called from the routine "ttstart"
(8505), passing the procedure "ttrstrt"
(8486). Note that "ttrstrt" calls
"ttstart", which may call "timeout",
for a thoroughly incestuous relation­
ship!

Note also that most of "timeout" runs
at priority level seven, to avoid clock
interrupts.

Clock Interrupts

CHAPTER TWELVE

Traps and System Calls

This chapter is concerned with the way
the system handles traps in general and
system calls in particular.

There are quite a number of conditions
which can cause the processor to
"trap". Many of these are quite
clearly error conditions, such_ as
hardware or power failures, and UNIX
does not attempt any sophisticated
recovery procedures for these.

The initial focus for our attention is
the principal procedure in the file
"trap.c".

The way that this procedure is invoked
was explored in Chapter Ten. The

UNIX Operating System

assembler "trap" routine carries out
certain fundamental housekeeping tasks
to set up the kernel stack, so that
when this procedure is called, every­
thing appears to be kosher.

The "trap" procedure
though it had been
"CO procedure in the
seven parameters

can operate as
called by another
normal way with

dev, sp, rl, nps, r0, pc, ps.

(There is a special consideration which
should be mentioned here in passing.
Normally all parameters passed to "C"
procedures are passed by value. If the
procedure subsequently changes the
values of the parameters, this will not
affect the calling procedure directly.

However if "trap" or the interrupt
handlers change the values of their
parameters, the new values will be
picked up and reflected back when the
"previous mode" registers are
restored.)

The value of "dev" was obtained by cap­
turing the value of the processor
status word immediately after the trap
and masking out all but the lower five
bits. Immediately before this, the pro­
cessor status word had been set using
the prototype contained in the
appropriate vector location.

Thus if the second word of the vector
location was "br7+n~" (e.g. line 0516)
then the value of "dev" will be n.

2698: "savfp" saves the floating point
registers (for the PDPll/40, this
is a no-op!);

2700: If the previous mode is "user
mode", the value of "dev" is
modified by the addition of the
octal value 020 (2662);

27al: The stack address where r0 is
stored is noted in "u.u ar0" for
future reference. (Subsequently

12-1

the various register values can
be referenced as "u.u_ar0[Rn]".);

2702: There is now a mUlti-way "switch"
depending on the value of "dev".

At this point we can observe that UNIX
divides traps into three classes,
depending on the prior processor mode
and the source of the trap:

(A) kernel mode;

(B) user mode, not due to a "trap"
instruction;

(C) user mode, due to a "trap"
instruction.

Kernel Mode Traps

The trap is unexpected
exception, the reaction
The code executed is the
the "switch" statement:

and with one
is to "panic".
"default" of

2716: Print:

the current value of the
kernel segment address
(i.e. the address of the
per process data area);

seventh
register
current

the address of Ups" (which is in
the kernel stack); and

the trap type number;

2719: "panic", with no return.

Floating point operations are only used
by programs, and not by the operating
system. Since such operations on the
PDPll/45 and 11/70 are handled asyn­
chronously, it is possible that when a
floating point exception occurs, the
processor may have already switched to
kernel mode to handle an interrupt.

Thus a kernel mode
exception trap can
sionally and is the
current user program.

Traps and System Calls

floating point
be expected occa­

concern of the

2793: Call "psignal" (3963) to set a
flag to show that a floating
point exception has occurred;

2794: Return.

This raises an interesting ques­
tion: "Why are the kernel mode
and user mode floating point
exceptions handled slightly dif­
ferently?"

User Mode Traps

Consider first of all a trap which is
not generated as the result of the exe­
cution of a "trap" instruction. This
is regarded as a probable error for
which the operating system makes no
provision apart from the possibility of
a "core dump". However the user program
itself may have anticipated it and pro­
vided for it.

The way this provision is made and
implemented is the subject of the next
chapter. At this stage, the principal
requirement is to "signal" that the
trap has occurred.

2721: A bus error has occurred while
the system is in user mode. Set
"i" to the value "SIGBUS" (IH23);

2723: The "break" causes a branch out
of the "switch" statement to line
2818;

2733: Apart from the one special case
noted, the treatment of illegal
instructions is the same at this
level as for bus errors;

2739:
2743:
2747:
2796: Cf. the comment for line 2721.

Note that cases "4+USER" (power fail)
and "7+USER" (programmed interrupt) are
handled by the "default" case (line
2715) .

UNIX Operating System

2810: This represents a case where
operating system assistance is
required to extend the user mode
stack area.

The assembler routine "backup"
(1012) is used to reconstruct the
situation that existed before
execution of the instruction that
caused the trap.

"grow" (4136) is used to do the
actual extension.

The procedure "backup" is non-trivial
and its comprehension involves a care­
ful consideration of various aspects of
the PDPII architecture. It has been
left for the interested reader to pur­
sue privately.

As noted for the PDPll/40, "backup" may
not always succeed because the proces­
sor does not save enough information to
resolve all possibilities.

2818: Call "psignal" (3963) to set the
appropriate "signal". (Note that
this statement is only reached
from those cases of the "switch"
which included a "break" state­
ment.) ;

2821: "issig" checks if a "signal" has
been sent to the user program,
either just now or at some ear­
lier time and has not yet been
attended to;

2822: "psig" performs the appropriate
actions. (Both "issig" and "psig"
are discussed in detail in the
next chapter.);

2823: Recalculate the priority for the
current process.

System Calls

User mode programs use "trap" instruc­
tiQns as part of the "system call"
mechanism to call upon the operating
system for assistance.

12-2

Since there are many possible "ver­
sions· of the "trap" instruction, the
type of assistance requested can be and
is encoded as part of the "trap"
instruction.

Parameters which are part of a system
call may be passed from the user pro­
gram in different ways:

(a) via the special register r0;

(b) as a set of words embedded in
the program string following the
"trap" instruction;

(c) as a set of words
program's data area.
the "indirect" call.)

in the
(This is

Indirect calls have a
than direct system
calls are needed when
are data dependent and
mined at compile time.

higher overhead
calls. Indirect

the parameters
cannot be deter-

Indirect calls may sometimes be avoided
if there is only one data dependent
parameter, which is passed via r0. In
choosing which parameters should be
passed via r0, the system designers
have presumably been guided by their
own experience, since the pattern
doesn't satisfy the law of least aston­
ishment.

The "C" compiler does not give special
recognition to system calls, but treats
them in the same way as other pro­
cedures. When the loader comes to
resolve undetermined references, it
satisfies these with library routines
which contain the actual "trap"
instructions.

2752: The error indicators are reset;

2754: The user mode instruction which
caused the trap is retrieved and
all but the least significant six
bits are masked off. The result
is used to select an entry from
the array of structures,

Traps and System Calls

"sysent". The address of the
selected entry is stored in
"callp";

2755: The "zeroeth" system call is the
"indirect" system call, in which
the parameter passed is actually
the address in the user program
data space of a system call
parameter sequence.

Note the separate uses of "fuword" and
"fuiword". The distinction between
these is unimportant on the PDPll/40,
but is most important on machines with
separate "in and "d" address spaces;

2760: "i=077" simulates a calIon the
very last system call (2975),
which results in a calIon
"nosys" (2855), which results in
an error condition which will
usually be fatal for the user
mode program;

2762:
2765: The number of arguments specified

in "sysent" is the actual number
provided by the user programmer,
or that number less one if one
argument is transferred via r0.
The arguments are copied from the
user data or instruction area
into the five element array
"u.u arg". (From "sysent" (Sheet
29) -it would seem that four ele­
ments would have been sufficient
for "u arg[J" is this an
allowance for future inflation?);

2770: The value of the first argument
is copied into "u.u dirp", which
seems to function mainly as a
convenient temporary storage
location;

2771: "trapl" is called with the
address of the desired system
routine. Note the comment begin­
ning on line 2828;

2776: When an error occurs, the "c-bit"
in the old processor status word
is set (see line ~UJOJ c:tllU t,..ll~
error number is returned via r0.

UNIX Operating System

System Call Handlers

The full set of system calls may be
reviewed in the file "sysent.c" on
Sheet 29, but more relevantly, these
are discussed in full detail in Section
II of the UPM.

The procedures which handle the system
calls aL~ found mostly in the files
"sysl.c", sys2.c", sys3.c" and
"sys4.c".

Two important "trivial" procedures are
"nullsys" (2855) and "nosys" (2864)
which are found in the file "trap.c".

The File 'sysl.£'

This file contains the procedures for
five system calls, of which three will
be considered now, and two ("rexit" and
"wait") will be deferred to the next
chapter.

The first procedure in this file, and
also the first system call we have
encountered, is "exec".

exec (3020)

This system call, #11, changes a pro­
cess executing one program into a pro­
cess executing a different program.
See Section "EXEC(II)" of the UPM.
This is the longest and one of the most
important system calls.

3034: "namei" (6618) (which is dis­
cussed in detail in Chapter 19)
converts the first argument
(which is a pointer to a charac­
ter string defining the name of
the new program) into an "inode"
reference. (" inodes" are essen­
tial parts of the file referenc­
ing mechanism.);

3637: Wait if ~ne number of "exec"s
currently under way is too large.
(See the comment on line 3011.);

12-3

3040: "getblk(NODEV)" results in the
allocation of a 512 byte buffer
from the pool of buffers. This
buffer is used temporarily to
store in core, that information
which is currently in the user
data area, and which is needed to
start the new program. Note that
the second argument in "u.u arg"
is a pointer to this information;

3041: "access" returns a non-zero
result if the file is not execut­
able. The second condition exam­
ines whether the file is a direc­
tory or a special character file.
(It would seem that by making
this test earlier, e.g. just
after line 3036, the efficiency
of the code could be improved.);

3052: Copy the set of arguments from
the user space into the temporary
buffer;

3064: If the argument string is too
large to fit in the buffer, take
an error exit;

3071: If the number of characters in
the argument string is odd, add
an extra, null character;

3090: The first four words (8 bytes) of
the named file are read into
"u.u arg". The interpretation of
these words is indicated in the
comment beginning on line 3076
and, more fully, in the section
"A.DUT(V)" of the UPM.

Note the setting of "u.u base",
"u.u count", "u.u offset" and
"u.u-segflg" preparatory to the
read-operation;

3095: If the text segment is not to be
protected, add the .text area size
to the data area size, and set
the former to zero;

3105: Check whether the program has a
"pure" text area, but the program
file has already been opened by
some other program as a data
file. If so, take the error exit;

Traps and System Calls

3127: When this point is reached, the
decision to execute the new pro­
gram is irrevocable i.e. there is
no longer the opportunity to
return to the original program
with an error flag set;

3129: "expand" here actually implies a
major contraction, to the "per
process data" area only;

3130: "xalloc" takes care of allocating
(if necessary) and linking to the
text area;

3158: The information
buffer area is
stack in the user
the new program;

stored in the
copied into the
data area of

3186: The locations in the kernel stack
which contain copies of the "pre­
vious" values of the registers in
user mode are set to zero, except
for r6, the stack pointer, which
was set at line 3155;

3194: Decrement the reference count for
the "inode" structure;

3195: Release the temporary buffer;

3196: Wake up any other process waiting
at line 3037.

A calIon "exec" is frequently preceded
by a calIon "fork". Most of the work
for "fork" is done by "newproc" (1826),
but before the latter is called, "fork"

.. makes an independent search for a slot
in the "procH array, and remembers the
place as "p2" (3327).

"newproc" also searches "procH but
independently. Presumably it always
locates the same empty slot as "fork",
since it does not report the value
back. (Why is there no confusion on
this point?)

UNIX Operating System

3335: For the new process, "fork"
returns the value of the parent's
process identification, and 1n1-
tialises various accounting
parameters;

3344: For the parent process, "fork"
returns the value of the child's
process identification, and skips
the user mode program counter by
one word.

Note that the values finally returned
to a PC" program are slightly different
from the above. Refer to the section
"FORK(II)" of the UPM.

sbreak (3354)

This procedure implements system call
#17 which 1S described in the Section
"BREAK (II)" of the UPM. The comment at
the head of the procedure has confused
more than one reader: clearly the iden­
tifier "break" is used in pC" programs
(leave an enclosing program loop) in an
entirely different way from that
intended here (change the size of the
program data area).

"sbreak" has clear similarities with
the procedure "grow" (4136) but unlike
the latter, it is only invoked expli­
citly and may in fact cause a contrac­
tion of the data area as well as an
expansion (depending on the new desired
size) •

3364: Calculate the new size for the
data area (in 32 word blocks);

3371: Check that the new size is con­
sistent with the memory segmenta­
tion constraints;

3376: The area is shrinking. Copy the
stack area down into the former
data area. Call "expand" to trim
off the excess;

3386: Call "expand" to increase the
total area. Copy the stack area
up into the new part, and clear

12-4

the areas which were formerly
occupied by the stack.

The following procedures which are also
contained in "sysl.c" are described in
Chapter 13:

rexit
exit

(3205)
(3219)

wait (3270)

"sys2.c" and "sys3.c" are mainly
cerned with the file system
input/output, and they have
relegated to Section Four of
operating system source code.

The File 'sys4.£'

con­
and

been
the

All the procedures in this file imple­
ment system calls. The following pro­
cedures are described in Chapter 13:

ssig (3614) kill (3630)

The following procedures are straight­
forward and have been left for the
amusement and edification of the
reader:

getswit (3413) sync (3486)
gtime (3420) getgid (3472)
stime (3428) getpid (3480)
setuid (3439) nice (3493)
getuid (3452) times (3656)
setgid (3460) profil (3667)

The following procedures which are con­
cerned with file systems, are described
later:

unlink
chdir
chmod

(3510)
(3538)
(3560)

chown
smdate

-000-

Traps and System Calls

(3575)
(3595)

CHAPTER THIRTEEN

Software Interrupts

The principal concern of this chapter
is the content of the file "sig.c",
which appears on Sheets 39 to 42. This
file introduces a facility for communi­
cation between processes. In particular
it provides for the course of one "user
mode" process to be interrupted,
diverted or terminated by the action of
another process or as the result of an
error or operator action.

In this discussion the term "software
interrupt" has been deliberately used
in place of the term "signal". This
latter has been eschewed because it has
obtained connotations in the UNIX
milieu which are rather different from
the usage of ordinary English.

UNIX Operating System

UNIX recognises 20 ("NSIG", line 0113)
different types of software interrupts,
of which (as the reader may discover
for himself by perusal of the the Sec­
tion "SIGNAL (II)" of the UPM) thirteen
have standard names and associations.
Interrupt type #0 is interpreted as "no
interrupt".

Within the "per process data area" of
each process is an array, "u.u signal",
of "NSIG" words. Each word corresponds
to a different software interrupt type
and defines the action which should be
taken if the process encounters that
kind of software interrupt:

u_signal[n] when interrupt #n occurs

zero

odd
non-zero

even
non-zero

the process will terminate
itself ;

the software interrupt is
ignored;

the value is taken as the
address in user space of
a procedure which should
be executed forthwith.

Interrupt type #9 ("SIGKIL") is espe­
cially distinguished because UNIX
ensures that "u.u signal[9]" remains
zero until the ver~ end of a process's
existence, so that if a process is ever
interrupted for that reason, it will
always terminate itself.

Anticipation

Each process can set the contents of
the array "u.u_signal[]" (with the
exception of "u.u signal[9]" as just
noted) in anticipation of future inter­
rupts so that the appropriate action is
taken. The user programmer does this
via the ·signal" system call (see "SIG­
NAL (II)" of the UPM).

13-1

Thus if for example the programmer
wishes to ignore software interrupts of
type #2 (which result if the user hits
the "delete" key on his terminal), he
should set "u.u signal[2]" to one by
executing the s~stem call

"signal (2,1);"

from his "C" program.

Causation

An interrupt is "caused" for a process
quite simply by setting the value of
"p sig" (0363) in the process's "proc"
entry, to the type number appropriate
to the interrupt (i.e. a value in the
range 1 to "NSIG"-l).

"p sig" is always directly accessible,
even when the affected process and its
"per process data area" have been
swapped out to disk. Obviously this
mechanism only allows one interrupt per
process to be outstanding at anyone
time. The outstanding interrupt will
always be the most recent one, unless
one of the interrupts was of type #9,
which always prevails.

Effect

The effect of a software interrupt
never takes place immediately. It may
occur after only some slight delay if
the affected process is currently run­
ning, or possibly after a considerable
delay if the affected process is
suspended and has been swapped out.

The action dictated by the interrupt is
always inflicted on the affected pro­
cess by itself, and hence can only
occur when the affected process is
active.

Where the effect is to execute a user
defined procedure, the kernel mode pro­
cess adjusts the user mode stack to

Software Interrupts

make it appear that the procedure had
been entered and immediately inter­
rupted (hardware style) before execut­
ing the first instruction. The system
then returns from kernel mode to user
mode in the usual manner. The result
of all this is that the next user mode
instruction which is executed is the
first instruction of the designated
procedure.

Tracing

The software interrupt facility has
been extended to provide a powerful but
somewhat inefficient mechanism whereby
a parent process may monitor the pro­
gress of one or more child processes.

Procedures

Since the interrelationships of the
procedures associated with software
interrupts are somewhat confusing at
first sight, it is worthwhile introduc­
ing the procedures briefly before
plunging in with both feet ••..

~. Anticipation

"ssig" (3614) implements system call
#48 ("signal") to set the value in one
element of the array "u.u_signal".

B. Causation

"kill" (3630) implements system call
#~ ("kill") to cause a specified
interrupt to a process defined by its
process identifying number.

"signal" (3949) causes a
interrupt to be caused
processes controlled and/or
from a specified terminal.

specified
for all

initiated

UNIX Operating System

"psignal" (3963) is called by
(3649) and "signal" (3955) (also
(2793, 2818) and "pipe· (7828»
the actual setting of ·p_sig".

C. Effect

"kill"
"trap"
to do

"~~Hg" (3991) is called by "sleep"
(, 2085), "trap" (2821) and "clock"
(3826) to enquire whether there is an
outstanding non-ignorable software
interrupt for the active process "just
waiting to happen".

"~"
"issig"
(except
little
action

(4043) is called whenever
returns a non-zero result

in "sleep" where things are a
more complex) to implement the

triggered by the interrupt.

"core" (4094) is called by "psig" if a
core dump is indicated for a terminat­
ing process.

"grow" (4136) is called
enlarge the user mode
necessary.

by "psig" to
stack area if

"exit" (3219) terminates the currently
active process.

Q. Tracing

"ptrace" (4164) implements the "ptrace"
system call lt26.

"stop" (4016) is called by "issig"
(3999) for a process which is being
traced to allow the supervising parent
to have a "look-see".

"procxmt" (4204) is a procedure called
from "stop" (4028) whereby the child
carries out certain operations related
to tracing, at the behest of the
parent.

13-2

This procedure implements the "signal"
system call.

3619: If the interrupt reason is out of
range or is equal to "SIGKIL"
(9), take an error exit;

3623: Capture the initial value in
"u.u signal[a)" for return as the
result of the system call;

3624: Set the element of "u.u_signal"
to the desired value

3625: If an interrupt for the current
reason is pending, cancel it. (It
is not clear why this step should
be necessary or even desirable.
Any suggestions??)

kill (3630)

This procedure implements the "kill"
system call to cause a specified type
of software interrupt to another desig­
nated process.

3637: If "a" is non-zero, it is the
process identifying number of a
process to be interrupted. If
"a" is zero, then all processes
originating from the same termi­
nal as the current process are to
be interrupted;

3639: Consider each entry in the "proc"
table in turn and reject it if:
it is the current process (3640);
it is not the designated process
(3642) ;
no particular process was desig­
nated ("a" == 0) but it does not
have the same controlling termi­
nal, or it is one of the two ini­
tial processes (3644);
the user is not the "super user"
and the user identities do not
match (3646);

3649: For any process that survives the
above tests, call "psignal" to
change "p_sig".

Software Interrupts

signal (3949)

For every process, if it is controlled
by the specified terminal (denoted by
"tp"), hit it with "psignal".

psignal (3963)

3966: Reject the call if "sign is too
large (but why not if negative??
"kill" does not check this param­
eter before passing it to "psig­
nal". Admittedly the "kill" com­
mand could only result in a posi­
tive value for "sign •••);

3971: If the current value of "p sign
is NOT set to "SIGKIL", -then
overwrite it (i.e. once a process
has been "killed outright" there
is no way to revive it.);

3973: Seems to be an error here ••• for
"p stat" read "p pri" ••• improve
the priority of the process if it
is not too good;

3975: If the process is waiting for a
non-kernel event i.e. it called
"sleep" (2066) with a positive
priority, then set it running
again.

issig (3991)

3997: If up_sign is non-zero, then •••

3998: If the "tracing" flag is on, call
"stop" (this topic will be
resumed later);

4000: Return a zero value if "p sign is
zero. (This apparently redundant
test is necessary because "stop"
may reset "p sign as a side
effect.); -

4003: If the value in the corresponding
element of "u.u signal" is even
(may be zero) return a non-zero
value;

UNIX Operating System

4006: Otherwise return a zero value.

The comment regarding the frequency of
calls on "issig" which occurs on lines
3983 to 3985 needs some clarification.
At least one calion "issig" is a part
of every execution of "trap" but only
of one interrupt routine ("clock",
which calls "iS5ig" only once ~~~
second). In cases where "pri" is posi­
tive, "sleep" (2073, 2085) calls
"issig" before and after calling
"swtch".

This procedure is only called if
"u.u signal[nj" was found by "issig" to
have-an even value. If this value is
found (4051) to be non-zero, it is
taken as the address of a user mode
function which has to be executed.

4054: Reset "u.u signal[nj" except in
the case -where the interrupt is
for an illegal instruction or a
trace trap;

4055: Calculate the user space
addresses of the lower of two
words which are to be inserted
into the user mode stack

4056: Call "grow" to check the current
user mode stack size, and to
extend it (downwards!) if neces­
sary;

4057: Put the values of the processor
status register and the program
counter which were captured at
the time of the "trap" or
hardware interrupt (in the case
of a "clock" interrupt) into the
user stack, and update the
"remembered" values of r6, r7 and
the processor status word. Upon
returning to user mode, execution
will resume at the beginning of
the designated procedure. When
this procedure returns, the r~~
cedure which was originally
interrupted will be resumed;

13-3

4066: If "u.u signal[nj" is zero, then
for the interrupt types listed,
generate a core image via the
procedure "core";

4079: Store a value in "u.u arg[0j"
composed of the low order-byte of
the remembered value of r0, and
of Un", which records the inter­
rupt type and whether a core
image was successfully created;

4080: Call "exit" for the process to
terminate itself.

core (4094)

This procedure copies the swappable
program image into a file called "core"
in the user's current directory. A
detailed explanation of this procedure
must wait until the material of Sec­
tions Three and Four, which deal with
input/output and file systems, have
been covered.

grow (4136)

The parameter, "spa, of this procedure
defines the address of a word which
should be included in the user mode
stack.

4141: If the stack already extends far
enough, simply return with a zero
value.

Note that this test relies on the
idiosyncrasies of 2's complement
arithmetic, and if both

and
Ispl > 2 A 15

lu.u_size * 641 > 2 A l5

the decision to extend the stack
may be taken wrongly at this
juncture;

4143: Calculate the stack size incre­
ment needed to include the new
stack point plus a 20*32 word
margin;

Software Interrupts

•

4144: Check that this value is in fact
positive (i.e. we are not dealing
with a failure of the test on
line 4141.);

4146: Check that the new stack size
does not conflict with the memory
segmentation constraints ("esta­
bur" sets "u.u error" if they do)
and reset the segmentation regis­
ter prototypes;

4148: Get a new, enlarged data area,
copy the stack segments (32 words
at a time) into the high end of
the new data area, and clear the
segments which now become the
stack expansion;

4156: Update the
"u.u ssize" and
cessful" resul t.

exit (3219)

stack size,
return a "suc-

This procedure is called when a process
is to terminate itself.

3224: Reset the "tracing" flag;

3225: Set all of the values in the
array "u.u signal" (including
"u.u signal[!IGKILj") to one so
that- no future execution of
"issig" will ever be followed by
execution of "psig";

3227: Call "closef" (6643) to close all
the files which the process has
open. (For the most part, "clos­
ing" simply involves decrementing
a reference count.);

3232: Reduce the reference count for
the current directory;

3233: Sever the process's connection
with any text segment;

3234: A place is needed to store "per
process" information until the
parent process can look at it. A
block (256 words) in the swap
area of the disk is a convenient
place;

UNIX Operating System

3237: Find a suitable
words) and ..•

buffer (256

3238: Copy the lower half of the nun
structure 1nto the buffer area;

3239: Write the buffer into the swap
area;

3241: Enter the core space occupied by
the process into the free list .
(This space is of course still in
use, but the use will terminate
before any other process gets to
dip into the free list again.
This could not be done any
sooner, because, as will be seen
later, both "getblk" and "bwrite"
can call "sleep", during which
all sorts of things might happen.
In view of all this, it might be
reasonable if the statement

"expand (USIZE);"
were inserted after line 3226.);

3243: Set the process state to "zombie"
(i.e. "a corpse said to be
revived by witchcraft" (O.E.D.»;

3245: The remaining code searches the
"procH array to find the parent
process and to wake it up, to
make any children "wards of the
state", and, if they have
"stopped" for tracing, to release
them. Finally the code includes
(for this process) a last calIon
"swtch".

Before going on to consider tracing,
there are two routines which are
closely associated with "exit", which
can be conveniently disposed of now.

rex it (3205)

This procedure implements the "exit"
system call, #1. It simply salvages the
low order byte of the user supplied
parameter and saves it in "u.u_arg[0j"

13-4

which is in the lower half of the "un
structure i.e. the part that is written
to the "swap area" as a "zombie".

For every calIon "exit", there should
be a matching calIon "wait" by an anx­
ious parent or ancestor. The principal
function of the latter procedure, which
implements the "wait" system call, is
for the parent or ancestor to find and
dispose of a "zombie" child.

"wait" also has a secondary function,
to look for children which have
"stopped" for tracing (which is the
next major topic).

3277: Search the whole "procH array
looking for child processes. (If
none exist, take an error exit
(line 3317»;

3280: If the child is a "zombie":

save the child's process identi­
fying number, to report back to
the parent;

read the 256 word record
from the disk swap area,
release the swap space;

reinitialise the "procH
entry;

accumulate the various
accounting entries;

back
and

array

time

save the "u arg[0j" value also to
report back-to the parent;

3298: Finally, release the buffer area;

3300: Is the child in a "stopped"
state? (If so, wait for the dis­
cussion on tracing);

3313: If one or more children were
found but none were "zombies" or
"stopped", "sleep" and then look
again.

Software Interrupts

Tracing

The tracing facilities are provided
through a modification and extension of
the software interrupt facilities.
Briefly, if a parent process is tracing
the progress of child process, every
time the child process encounters a
software interrupt, the parent process
is given the opportunity to intervene
as part of the total response to the
interrupt.

The parent's intervention may involve
interrogation of values within the
child process's data areas, including
the "per process data area". Subject to
certain constraints, the parent process
may also change values within these
data areas.

The source of the software interrupts
may be the parent process, the user
himself (e.g. by entering "kill" com­
mands or "delete"s through his termi­
nal) or the child process itself (e.g.
if it is prone to executing illegal
instructions or other maladies).

The communication between child and
parent processes is a kind of ritual
dance:

(1) the child experiences a software
interrupt and "stops"~

(2) the waiting parent discovers the
"stopped" child (line 3391), and
revives. Subsequently .••

(3) the parent may execute the
"ptrace" system call which has
the effect of leaving a request
message in the system defined
structure Wipc" (3939) for the
child process ~

(4) the parent then goes to "sleep"
while the child "wakes up"~

(5) the child reads the message in
"ipc" and acts upon it (e.g.
copying one of its own values

UNIX Operating System

into "ipc.ip_data")~

(6) the child then goes to "sleep"
while the parent "wakes up"~

(7) the parent inspects the
as recorded in "ipc",
operation~

result,
of the

(8) steps (3) to (7) may be repeated
several times in succession.

Finally the parent may allow the child
to continue its normal execution, pos­
sibly without ever knowing that a
software interrupt had occurred.

A discussion of the tracing facility is
contained in the Section "PTRACE (II)"
of the UPM. To the list of functional
limitations noted in the "Bugs" para­
graph, we can add the following com­
ments on efficiency:

There should be a mechanism for
transferring large blocks (e.g.
up to 256 words at a time) of
information from the child to
the parent (though not neces­
sarily in the reverse direc­
tion) ~

There should be a proper coroutine
procedure (analogous to "swtch")
to allow rapid transfer of con­
trol between child and parent.

stop (4916)

This procedure
(3999) if the
9395) is set.

is called
tracing

by "issig"
flag ("STRC",

4022: If your parent is
(Le. "/etc/init"),
"exit" (line 4932) ~

process jll
then call

4023: Otherwise look through "procH
your parent ••• wake him up
declare yourself ~stopped"

call "swtch" (Note do
call "sleep". Why?)~

13-5

for

and
NOT

4028: If the tracing flag has been
reset, or the result of the pro­
cedure "procxmt" is true, return
to "issig"~

4029: Otherwise start again.

wait (327~) (continued)

3301: If the child process has
"stopped" and ••.

3302: If the ~SWTED~ flag is not set
(i.e. the parent hasn't noticed
this child lately) ••.

3303: As an "aide-memoire" set the
"SWTED" flag. Set "u.u ar0[R0]",
"u.u_ar9[Rl]" so that the child
process status word is returned
to the parent~

3399: The "SWTED" flag was set. This
means that the parent, by per­
forming at least two "waits" in
succession without any interven­
ing calIon "ptrace", is not very
interested in the child. So
reset both the "STRC" and the
"SWTED" flags and release the
child. (Note the use of "setrun"
(not "wak'eup") to complement the
call on "swtch" (4927)).

ptrace (4164)

This procedure implements the "ptrace"
system call, #26.

4168: "u.u arg[2]" corresponds to the
first parameter in the "CO pro­
gram calling sequence. If this is
zero, a child process is asking
to be traced by its parent, so
set the "STRC" flag and return.

Note that this code handles the on~y
explicit action the child process lS
asked to take with respect to tracing.
There is no real reason why even this
action should be taken by the child
process and not by the parent process.

Software Interrupts

From a security point of view it is
most probably desirable that a child
process should only be traceable if it
gives its permission. On the other
hand, if the child asks to be traced
and is then ignored by the parent, the
child process may be blocked indefin­
itely. Perhaps the best solution would
be for the "STRC" flag to be set only
after explicit action by both the
parent and the child. ----

4172: Search the "proch table looking
for a process which:
is stopped;
matches the given process identi­
fying number;
is a child of the current pro­
cess;

4181: Wait for the "ipc" structure to
become available if it is
currently in use;

4183: Copy the parameters into "ipc"

4187: reset the "SWTED" flag, and •••

4188: return the child to a "ready to
run" state;

4189: Sleep until "ipc.ip req" is non­
positive (4212);

4191: Extract a value that is to be
returned to the parent process,
check for errors, unlock "ipc"
and "wake up" any processes wait­
ing for "ipc".

Note that the "sleeps" on lines 4182,
4190 are for essentially different rea­
sons, and could be differentiated to
good effect by replacing "&ipc" by
"&ipc.ip_req" on lines 4190 and 4213.

procxmt (4204)

This procedure is executed by the child
process under the influence of data
left by the parent in the "ipc" struc­
ture.

UNIX Operating System

4209: If "ipc.ip lock" is set wrongly
for the current process, then
certainly the rest of "ipc"
should be ignored.

After "stop" (4027) calls "swtch", the
child process is restarted by one of
three calls on "setrun" which leave the
"STRC" and "SWTED" flags in the state
indicated:

STRC SWTED ipc.ip_ lock
--- -- ----

exit (3254) set set arbitrary
wait (3310) reset reset arbitrary
ptrace (4188) set reset properly set

In the third case "ptrace" will always
set "ipc.ip lock" properly, before the
child is restarted, so that there is
then no chance of the test on 4209
failing.

In the second case, where the parent
has ignored the child, "procxmt"_ will _
never in fact be called.

By executing the statement "return
(0);" on line 4210, "procxmt" forces
"stop" to loop back to line 4020. In
the case where the parent has already
died, the test on line 4022 will then
fail, and a calion "exit" (4032) will
resul t.

4211: Store the value of "ipc.ip req"
before resetting the latter,
"wake up" the parent, and select
the next action as indicated.

The various actions are adequately
explained in Section "PTRACE (II)" of
the UPM, with the one qualification
that cases 1, 2 and 4, 5 are documented
the wrong way around (i.e. "I" and "0"
spaces respectively, not "0" and "I"!).

-000-

13-6
Software Interrupts

Section Three is concerned with basic
input/output operations between the
main memory and disk storage.

These operations are fundamental to the
activities of program swapping and the
creation and referencing of disk files.

This section also introduces procedures
for the use and manipulation of the
large (512 byte) buffers.

UNIX Operating System

CHAPTER FOURTEEN

Program Swapping

UNIX, like all time-sharing systems,
and some multiprogramming systems uses
"program swapping" (also called "roll­
in/roll-out") to share the limited
resource of the main physical memory
among several processes.

Processes which are suspended may be
selectively "swapped out" by writing
their data segments (including the "per
process data") into a "swap area" on
disk

The main memory area which was occupied
can then be reassigned to other
processes, which quite probably will be
"swapped in" from the "swap area".

14-1

Most of the decisions regarding "swap­
ping out", and all the decisions
regarding "swapping in", are made by
the procedure "sched". "swapping in" is
handled by a direct call (2034) on the
procedure "swap" (5196), whereas "swap­
ping out" is handled by a call (2024)
on "xswap" (4368).

For those archaeologists who like to
ponder the "bones" of earlier versions
of operating systems, it seems that
originally "sched" called "swap"
directly to "swap out" processes,
rather than via "xswap". The extra pro­
cedure (one of several to be found in
the file "text.c") has been necessi­
tated by the implementation of the
sharable "text segments".

It is instructive to estimate how much
extra code has been necessitated by the
text segment feature: in "text.c" are
four procedures "xswap", "xalloc",
"xfree" and "xccdec", which manipulate
an array of structures called "text",
which is declared in the file "text.h".
Additional code has also been added to
"sysl.c" and "slp.c".

Text Segments

Text segments are segments which con­
tain only "pure" code and data i.e.
code and data which remain unaltered
throughout the program execution, so
that they may be shared amongst several
processes executing the same program.

The resulting economies in space can be
quite substantial when many users of
the system are executing the same pro­
gram simultaneously e.g. the editor or
the "shell".

Information about text segments must be
stored in a central location, and hence
the existence of the "text" array. Each
program which shares a text segment
keeps a pointer to the corresponding
text array element in "u.u_textp".

Program Swapping

The text segment
beginning of the
program to begin
copy of the text
the "swap" area.

is stored at the
code file. The first
execution causes a

segment to be made in

When subsequently no programs are left
which reference the text segment, the
resources absorbed by the text segment
are released. The main memory resource
is released whenever there are no pro­
grams which reference the text segment
currently in main memory; the "swap"
area is released in general whenever
there are no programs left running
which reference the text segment.

The numbers in each of these states are
denoted by "x ccount" and "x count"
respectively. Decrementing these
numbers is handled by the routines
"xccdec" and "xfree" which also take
care of releasing resources when the
counts reach zero. ("xccdec" is called
whenever a program is swapped out or
terminates. "xfree" is called by "exit"
whenever a program terminates.)

sched (1940)

Process 10 executes "sched". When it is
not waiting for the completion of an
input/output operation that it has ini­
tiated, it spends most of its time
waiting in one of the following situa­
tions:

A. (runout)
None of the p~ocesses which are
swapped out 1S ready to run, so
that there is nothing to do. The
situation may be changed by a call
to "wakeup", or to "xswap" called
by either "newproc" or "expand".

B. (runin)
There--IS at least one process
swapped out and ready to run, but
it hasn't been out more than 3
seconds and/or none of the
processes presently in main memory
is inactive or has been there more
than 2 seconds. The situation may

UNIX Operating System

be changed by the efflux ion of
time as measured by "clock" or by
a call to "sleep".

When either of these situations ter­
minate:

1958: With the processor running at
priority six, so that the clock
can't interrupt and change values
of "p time", a search is made for
the process which is ready to run
and has been swapped out for the
longest time;

1966: If there is no such process then
situation A holds;

1976: Search for a main memory area of
adequate size to hold the data
segment. If an associated text
segment must be present also but
is not currently in main memory,
the area is increased by the size
of the text segment;

1982: If an area of adequate size is
available the program branches to
"found2" (2031). (Note that the
program does not handle the case
where there is sufficient space
for both text and data segments
but in distinct areas of main
memory. Would it be worth while
to extend the code to cover this
possibility?) ;

1990: Search for a process which is in
main memory, but which is not the
scheduler or locked (i.e. already
being swapped out), and whose
state is "SWAIT" or "SSTOP" (but
not "SSLEEP") (i.e. the process
rs-waiting for an event of low
precedence, or has stopped during
tracing (see Chapter Thirteen)).
If such a process is found, go to
line 2021, to swap the image out.

Note that there seems to
bias here against processes
"procH entries are early in
"procH array;

be a
whose

the

2003: If the image to be swapped in has
been out less than 3 seconds,
then situation B holds;

14-2

2005: Search for the process which is
loaded, but is not the scheduler
or locked, whose state is "SRUN"
or "SSLEEP" (i .e. ready to run,
or waiting for an event of high
precedence) and which has been in
main memory for the longest time;

2013: If the process image
swapped out has been
memory for less than 2
then situation B holds.

to be
in main
seconds,

The constant "2" here (also the
"3" on line 2(03) is somewhat
arbitrary. For some reason the
programmer has departed from his
usual practice of naming such
constants to emphasise their ori­
gins;

2022: The process image is
not loaded and is
using "xswap" (4368).

flagged as
swapped out

Note that the "SSWAP" flag is not
set here because the process
swapped out is not the current
process. (Cf. lines 1907, 2286);

2032: Read the text segment into main
memory if necessary. Note that
the arguments for the "swap" pro­
cedure are:

an address within the swap area
of the disk;

a main memory address (ordinal
number of a 32 word block);

a size (number of 32 word blocks
to be transferred);

a direction
("B_READ==I" denotes
main memory");

indicator
"disk to

2042: Swap in the data segment and ...

2044: Release the disk swap area to the
available list, record the main
memory address, set the "SLOAD"
flag and reset the accumulated
time indicator.

program Swapping

4373: If ·oldsize" data was not sup­
plied, use the current size of
the data segment stored in "un;

4375: Find a space in the disk swap
area for the process's data seg­
ment. (Note that the disk swap
area is allocated in terms of 512
character blocks);

4378: "xccdec" (4490) is called (uncon­
ditionally!) to decrease the
count, ao~cciatcd with the text
segment, of the number of "in
main memory" processes which
reference that text segment. If
the count becomes zero, the main
memory area occupied by the text
segment is simply returned to the
available space. (There is no
need to copy it out, since, as we
shall see, there will be a copy
already in the disk swap area);

4379: The "SLOCK" flag is set while the
process is being swapped out.
This is to prevent "sched" from
attempting to "swap out" a pro­
cess which is already in the pro­
cess of being "swapped out".
(This can only happen if "swap­
ping out" was started initially
by some routine other than
"sched" e.g. by "expand");

4382: The main memory image is released
except when "xswap" is called by
"newproc";

4388: If "runout" is set, "sched" is
waiting for something to "swap
in", so wake it up.

xalloc (4433)

"xalloc" is called by "exec" (3131!l),
when a new program 1S being initiated,
to handle the allocation of, or linking
to, the text segment. The argument,
nip", is a pointer to the "mode" of the
code file. At the time of this call,
"u.u arg[l]" contains the text segment
size-in bytes.

UNIX Operating System

4439: If there is no text segment,
return immediately;

4441: Look through the "text" array for
both an unused entry and an entry
for the text segment. If the
latter can be found, do the book­
keeping and go to "out" (4474);

4452: Arrange to copy the text segment
into the disk swap area. Initi­
alise the unused text entry, and
get space in the disk swap area;

1159:

4460:

Change the space 1"\1" 11 n; on hu the l:'---1.

process to one large enough to
contain the "per process data"
area and the text segment;

The calion "estabur" is
sary to set the user mode
tation registers before
the code file;

neces­
segmen­
reading

4461: A UNIX process can only initiate
one input/output operation at a
time. Hence it is possible to
store i/o parameters at standard
locations in the "un structure,
viz. "u.u count", "u.u offset []"
and "u.uJ:iase";

4462: The octal value 020 (decimal 16)
is an offset into the code file;

4463: Information is to be read into
the area beginning at location
zero in the user address space;

4464: Read the text segment part of the
code file into the current data
segment;

4467: "Swap out" the data segment
(minus the "per process data")
into the disk swap area reserved
for the text segment;

4473: "Shrink" the data segment - it is
about to be swapped out;

4475: "sched" always "swaps in" the
text segment before the data seg­
ment i.e. there is no mechanism
for bringing the text segment
into main memory once the data
segment is present. If the text

14-3

segment is not in main memory,
get back into step by "swapping
out" the data segment to disk.

It will be noted that the code to han­
dle text segments is very conservative
whenever the situation starts to get
complicated. For example, the "panic"
(4451) when no more text entries are
available would seem to be a rather
extreme reaction. However the strategy
of being generous with "text" array
space is quite likely to be less expen­
sive than the code needed to do
"better". What do you think?

xfree (4398)

"xfree" is called by
when a process is being
by "exec" (3128), when
being transmogrified.

"exit" (3233),
terminated, and

a process is

4402: Set the text pointer in the
"procH entry to "NULL";

4403: Decrement the main memory count
and if it is now zero •..

4406: and if the text segment has not
been flagged to be saved, •••

4408: Abandon the image of the text
segment in the disk swap area;

4411: Call "iput" (7344) to decrement
the "inode" reference count and
if necessary delete it.

"ISVTX" (5695) is a mask which defines
the "sticky bit" mentioned in section
"CHMOD(I)" of the UPM. If this bit is
set, the disk copy of the text segment
is allowed to remain in the disk swap
area even when no programs are running
which reference it, in the expectation
that it will be required again shortly.
This is an efficient device for com­
monly used programs such as the "shell"
or the editor.

-000-

Program Swapping

•

CHAPTER FIFTEEN

Introduction to Basic I/O

There are three files whose contents
need to be thoroughly absorbed before
the subject of UNIX input/output is
broached in detail.

The File 'buf.h'

This file declares two structures
called "buf" (4520) and "devtab"
(4551) . Instances of the structure
"buf" are declared as "bfreelist"
(4567) and as the array "buf" (!)
(4535) with "NBUF" elements.

UNIX Operating System

The structure "buf" is possibly
misnamed because it is in fact a buffer
header (or buffer control block). The
buffer areas proper are allocated
separately and declared (4720) as

"char buffers [NBUF] [514];"

Pointers from the "buf" array to the
"buffers" array are set up by the pro­
cedure "binit".

Other instances of the structure nbuf"
are declared as "swbuf n (4721) and
"rrkbuf" (5387). No 514 character
buffer areas are associated with
"bfreelistn or "swbuf n or "rrkbuf".

The "buf" structure may be divided into
three parts:

(a) flags: These convey status infor­
mation and are contained within
a single word. Masks for set­
ting these flags are defined as
"B WRITE", liB READ" etc. in
lines 4572 to 4586.

(b) list pointer: Forward and back­
ward pointers for two doubly
linked lists, which we shall
refer to as the "b"-list and the
"av"-list.

(c) i/Q parameters: A set of values
associated with the actual data
transfer.

devtab (4551)

The "devtab" structure has five words,
the last four of which are forward and
backward pointers.

One instance of "devtab" is declared
within the device handler for each
block type of peripheral device. For
our model system the only block device
is the RK05 disk, and "rktab" is
declared as a "devtab" structure at
line 5386.

15-1

The "devtab" structure contains some
status information for the the device
and serves as a list head for:

(a) the list of buffers associated
with the device, and simultane­
ously on the "av"-list;

(b) the list of outstanding
requests for the device.

The File 'conf.h' ---

The file "conf.h" declares:

i/o

yet another way to dissect an
integer into two parts ("d minor"
and "d major"). Note - that
"d major"- corresponds to "hibyte"
(0180);

two arrays of structures;

two integer variables, "nblkdev"
and "nchrdev".

The two arrays of structures, "bdevsw"
and "cdevsw", are declared but not
dimensioned or initialised in "conf.h".
The initialisation of these arrays is
performed in the file "conf.c".

The file 'conf.c' -- --- ----
This file, along with "low.s", is gen­
erated individually at each installa­
tion (to reflect the set of peripherals
actually installed) by the program
"mkconf". (In our case, "conf.c"
reflects the representative devices for
our model system.)

This file initialises the following:

bdevsw (4656)
cdevsw (4669)
rootdev (4695)

swapdev (4696)
swplo (4697)
nswap (4698)

Introduction to Basic I/O

System generation

System generation at a UNIX installa­
tion consists mainly of:

running "mkconf" with appropriate
inputl

recompiling the output files (created
as "c.c" and "l.s") 1

reloading the system with the revised
object files.

This process only takes a few minutes
(not the several hours of some other
operating systems). Note that "bdevsw"
and "cdevsw" are defined differently in
"conf.c" from elsewhere, namely as a
one dimensional array of pointers to
functions which return integer values.
This quietly ignores the fact that, for
example, "rktab" is not a function, and
relies on the linking program not to
enquire too closely into the nature of
the work which it is performing.

Before plunging into all the detail of
the file "bio.c", it will be instruc­
tive as well as convenient to examine
one routine which was introduced ear­
lier, namely "swap".

The buffer head "swbuf" was declared to
control swapping input/output, which
must share access to the disk with
other activity. No element of "buffers"
is associated with "swbuf". Instead the
core area occupied (or to be occupied)
by the program serves as the data
buffer.

5200: The address of the flags in
"swbuf" is transferred to the
register variable "fp" for con-
venience and economy;

5202: The "B BUSY" flag is tested, and
if it is on, a swap operation is
already under way, so that the
"B WANTED" flag is set and the

UNIX Operating System

process must wait via a calIon
"sleep".

Note that the code loop on lines
5202 to 5205 runs at priority
level six, i.e. one higher than
the disk interrupt priority.

Can you see why this is neces­
sary? Under what conditions will
the "B_BUSY" flag be set?

5206: The flags are set to reflect:

"swbuf" is in use ("B BUSY") 1

physical i/o implying a large
transfer direct to/from the user
data segment ("B_PHYS")1

whether the operation is read or
write. ("rdflg" is a parameter to
"swap") 1

5207: The "b dev" field is initialised.
(Presumably this could have been
performed once during initialisa­
tion rather than every time
"swbuf" is used, i.e. in
"binit".)1

5208: "b wcount" is initialised. Note
the negative value and the effec­
tive multiplication by 321

5210: The hardware device controller
requires a full physical address
(18 bits on the PDP/11-40). The
block number of a 32 word block
must be converted into two parts:
the low order ten bits are
shifted left six places and
stored as "b addr", and the
rema~n~ng six high order bits as
"b xmem". (On the PDP 11/40 and
11745 only two of these bits are
significant.) 1

5212: A mouthful at first glance! Shift
"swapdev" eight places to the
right to obtain the major device
number. Use the result to index
"bdevsw". From the structure
thus selected, extract the stra­
tegy routine and execute it with
the address of "swbuf" passed as
a parameter;

15-2

5213: Explain why this calIon ·sp16"
is necessary 1

5214: wait until the i/o operation is
complete. Note that the first
parameter to ·sleep" is in effect
the address of "swbuf"1

5216: Wakeup those processes (if any)
which are waiting for "swbuf"1

5218: Reset the process or priority to
zero, thus allowing any pending
interrupts to "happen"1

5219: Reset both the "B BUSY" and
"B WANTED" flags.

Race Conditions

The code for "swap" has a number of
interesting features. In particular it
displays in microcosm the problems of
race conditions when several processes
are running together.

Consider the following scenario:

No swapping is taking place when pro­
cess A initiates a swapping operation.
Denoting "swbuf.b flags" by simply
"flags", we have i~itially

flags == null

Process A is not delayed at line 5204,
initiates its i/o operation and goes to
sleep at line 5215. We now have

flags == B_BUSY I B PHYS rdflg

which was set at line 5206.

Suppose now while the i/o operation is
proceeding, process B also initiates a
swapping operation. It too begins to
execute "swap", but finds the "B BUSY"
flag set, so it sets the "B WANTED"
flag (5203) and goes to sleep also
(5204). We now have

Introduction to Basic I/O

flags == B BUSY
S WANTED

B PHYS rdflg

At last the i/o operation completes.
Process C takes the interrupt and exe­
cutes "rkintr", which calls (5471)
"iodone" which calls (5301) "wakeup" to
awaken process A and process B.
"iodone" also sets the HS DONE" flag
and resets theUS_WANTED" flag so that

flags == B BUSY
B DONE

B PHYS rdflg

What happens next depends on the order
in which process A and process Bare
reactivated. (Since they both have the
same priority, "PSWP", it is a toss-up
which goes first.)

Case (~): Process A goes first.
"B_DONE" is set so no more sleeping is
needed. "B WANTED" is reset so there is
no one to "wakeup". Process A tidies up
(5219), and leaves "swap" with

flags B PHYS I rdflg B DONE

Process B now runs and is able to ini­
tiate its i/o operation without further
delay.

Case (b): Process B
finds -"B_BUSY" on,
"B WANTED" flag back
sleep again, leaving

goes
so it

on, and

flags == B BUSY I B PHYS
B_DONE I B_WANTED

first. It
turns the
goes to

rdflg

Process A starts again as in Case (a),
but this time finds "B WANTED" on so it
must call "wakeup" (5217) in addition
to its other chores. Process B finally
wakes again and the whole chain com­
pletes.

Case (b) is obviously much less effi­
cient than case (a). It would seem that
a simple change to line 5215 to read

UNIX Operating System

"sleep (fp, PSWP-l);"

would cost virtually nothing and ensure
that Case (b) never occurred!

The necessity for the raising of pro­
cessor priority at various points
should be studied: for example if line
5201 was omitted and if process B had
just completed line 5203 when the "i/o
complete" interrupt occurred for Pro­
cess A's operation, then "iodone" would
turn off "B WANTED" and perform
"wakeup" before-process B went to sleep
... forever! A bad scene.

Reentrancy

Note also the assumption made above,
that both process A and process B could
execute "swap" simultaneously. All UNIX
procedures are in general Pre-entrant"
(which means multiple simultaneous exe­
cutions are possible). How would UNIX
have to change if re-entrancy were not
allowed?

For the Uninitiated ----
we can now return to complete an inves­
tigation started in Chapter Eight con­
cerning "aretu" and "u.u ssav":

After setting "u.u ssav" (2284),
"expand" calls (2285) "xswap",
which calls (4380) "swap",
which calls (5215) "sleep",
which calls (2"'84) "swtch",
which resets "u.u_rsav" (2189).

Thus in fact "u.u rsav" finally
reset to a value appropriate to
procedure calls deeper than that
"u.u ssav".

15-3

gets
four
for

Additional Reading

The article "The UNIX I/O System" by
Dennis Ritchie is highly pertinent.

-000-

Introduction to Basic I/O

CHAPTER SIXTEEN

The RK Disk Driver

The RK disk storage system employs a
removable disk cartridge containing a
single disk, which is mounted inside a
drive with moving read/write heads.

The device designated RKll-D consists
of a disk controller together with a
single drive. Additional drives, desig­
nated RKa5, up to a total of seven, may
be added to a single RKll-D.

UNIX Operating System

A requirement for more than eight
drives would require an additional con­
troller with a different set of UNIBUS
addresses. Also the code in the file
"rk.c" would have to be modified to
handle the case of two or more con­
trollers. This case is most unlikely
because requirements for large amounts
of on-line disk storage will be more
economical Iv provided otherwise e.g.
by the RPa4-disk system.

Cartridge capacity: 1,228,8AA words
(4800 512 byte records)

Surfaces/cartridge: 2
Tracks/surface: 2a0(plus 3 spare)
Sectors/Track: 12
Words/Sector: 256
Recording density: 2040 bpi maximum
Rotation speed: 1500 rpm
Half revolution: 20 msecs
Track positioning:

10 msecs (one track)
50 msecs (average)
85 msecs (worst case)

Interrupt Vector Address: 220
Priority Level: 5

unibus Register
Drive Status
Error
Control Status
Word Count

Addresses
RKDS
RKER
RKCS

Current bus address
Disk address

RKWC
RKBA
RKDA
RKDB Data Buffer

777400
777402
777404
777406
777410
777412
777416

RK Vital Statistics ----

The average total access time is 70
milliseconds. With multi-drive subsys­
tems, seeking by one drive may be over­
lapped with reading or writing by
another drive. However this feature is
not used by UNIX because of bugs which
existed at one time in the hardware
controller.

In initiating a data transfer, RKDA,
RKBA and RKWC are set, and then RKCS is
set. Upon completion, status informa­
tion is available in RKCS, RKER and

16-1

RKDS. When an error occurs, UNIX simply
calls ndeverror n (2447) to display RKER
and RKDS on the system console, without
any attempt at analysis. An operation
is repeated up to ten times before an
error is reported by the device driver.

The register formats which are
described fully in the "PDPll Peri­
pherals Handbook n are reflected in the
program code at several points. The
following summaries suffice to describe
the features used by UNIX:

Control Status Register (RKCS)

bit description

15 Set when any bit of RKER
Error Register) is set;

(the

7 Set when the control is no
longer engaged in actively exe­
cuting a function and is ready
to accept a command;

6

5-4

3-1

When set, the control will issue
an interrupt to vector address
220 upon operation completion or
error;

Memory Extension. The two most
significant bits of the 18 bit
physical bus address. (The other
16 bits are recorded in RKBA.);

Function to be performed:

CONTROL RESET 000
WRITE 001
READ 010
etc. ,

Initiate the function designated
by bits 1 to 3 when set. (write
only) ;

Word Count Register (RKWC)

Contains the twos complement of
number of words to be transferred.

The RK Disk Driver

the

Disk Address Register (RKDA)

bit

15-13
12-5
4
3-0

description

Drive number (0 to 7)
Cylinder number (0 to 199)
Surface number (0,1)
Sector address (0 to 11)

The file 'rk • .£'

This file contains the code which is
specific to the RK disk system, i.e.
which is the RK "device driver".

rkstrategy (5389)

The strategy routine is called, e.g.
from "swap" (5212), to handle both read
and write requests.

5397: The test and calIon "mapalloc"
here is a "no-op" except on the
PDPll/70 system;

5399: The code from here to line 5402
appears to be unnecessarily devi­
ous! See the discussion of
"rkaddr" 6elow. If the block
number is too large, set the
"B ERROR" flag and report "com­
pletion";

5407: Link the buffer into a FIFO list
for the controller. The list is
singly linked, uses the "av forw"
pointer of the "buf" structures,
and has head and tail pointers in
"rktab". Interrupts from disk
devices may not be allowed after
the first step;

5414: If the RK controller is not
currently active, wake it up via
a calIon "rkstart" (5440), which
checks that there is something to
do (5444), flags the controller
as busy (5446) and calls
"devstart" (5447), passing as
parameters:

a pointer to the first enqueued
buffer header;

UNIX Operating System

the address of the
address register.
passed is in effect
lines 5363, 5382.);

a "disk address"
"rkaddr";

RKDA disk
(The value

0177412. See

computed by

zero (not really important in our
discussion, and may be ignored).

rkaddr (5420)

The code in this procedure incorporates
a special feature for files which
extend over more than one disk drive.
This feature is described in the UPM
Section "RK(IV)". Its usefulness seems
to be restricted.

The value returned by "rkaddr" is for­
matted for direct transmission to the
control register, RKDA.

devstart (5096)

This procedure when called for the RK
disk loads appropriate values into the
registers RKDA, RKBA, RKWC and RKCS in
succession. Only the last value needs
to be computed at this stage.

The calculation, though messy in
appearance, is straight forward. Note
that "hbcom" is zero and "rbp->b xmem"
contains the two high order bits of the
physical core address. The loading of
RKCS initialises the disk controller
i.e. the operation is now entirely
under the control of the hardware.

"devstart" returns to "rkstart" (5448),
which returns to "rkstrategy" (5416).
which resets the processor priority and
returns to "swap" (5213), which ...

16-2

rkintr (5451)

This procedure is invoked to handle the
interrupts which occur when RK disk
operations are completed.

5455: Check for a false alarm!

5459: Inspect the error bit; if set ...

5460: Call Rdeverror" (2447) to display
a message on the system console
terminal;

5461: Clear the internal registers of
the disk controller and ...

5462: wait till this is completed (usu­
ally a few microseconds) ;

5463: If the operation has been retried
less than ten times, call
"rkstart" to try again. Otherwise
give up and report an error;

5469: Set the "retry" (!) count back to
zero, remove the current opera­
tion from the "actf" list, and
complete the operation by calling
"iodone";

5472: "rkstart" is called uncondition­
ally here. If the call is not
necessary (because the "actf"
list IS empty) "rkstart" will
return immediately (5444).

iodone (5018)

This routine is primarily concerned
with the return of resources when a
block i/o operation has completed. It:

frees up the Unibus map (for II/70'S,
if appropriate);

sets the "B_DONE" flag;

releases the buffer if the i/o was
asynchronous, or else resets the
"B WANTED" flag and wakes up any
process waiting for the i/o
operation to complete.

-000-

The RK Disk Driver

CHAPTER SEVENTEEN

Buffer Manipulation

In this chapter we look at the file
"bio.c" in detail. It contains most of
the basic routines used to manipulate
buffer headers and buffers (4535,
4720) .

Individual buffer headers are tagged by
a device number"b dev", (4527) and a
block number "b blkno", (4531) • (Note
the way in which the latter is declared
as an unsigned integer.)

Buffer headers may be linked simultane­
ously into two lists:

the b -lists are lists, one
device controller, whlcn
together buffers associated
that device type;

per
link
with

UNIX Operating System

the av -list is a list of buffers
whic~ may--be detached from their
current use and converted to an
alternate use.

Both the "av"-list
"b"-lists are doubly
tate insertion and
point.

and the various
linked to facili­
deletion at any

If a buffer is withdrawn temporarily
from the "av"-list, then its "B BUSY"
flag is raised.

If the contents of a buffer correctly
reflect the information that is or
should be stored on disk, then the
"B_DONE" flag is raised.

If the "B DELWRI" flag is raised, the
contents -of the buffer are more up to
date than the contents of the
corresponding disk block, and hence the
buffer must be written out before it
can be reassigned.

~ Cache-like Memory

It will be seen that the large buffers
in UNIX are manipulated in a way which
is analogous to the operation of a
hardware cache attached to the main
memory of a computer e.g. the PDPll/70.

Buffers are not assigned to any partic­
ular program or file, except for very
short intervals at a time. In this way
a relatively small number of buffers
can be shared effectively amongst a
large number of programs and files.

Information is left in the buffers
until the buffer is needed i.e. immedi­
ate "write through" is avoided if only
part of the buffer has recently been
changed. Programs which read or write
records which are small compared with
the buffer size are then not penalised
unduly.

17-1

Finally when programs are terminated
and files are closed, the problems of
ensuring that the program's buffers are
flushed properly (problems which have
plagued other operating systems) have
largely disappeared.

There is one area of practical concern:
if the decision "when to write" is left
to the operating system alone, then
some buffers may not be written out for
a very long time. Accordingly there is
a utility program which runs twice per
minute and forces all such buffers to
be written out unconditionally. This
limits the likely amount of damage that
a sudden system crash may cause.

clrbuf (5038)

This routine zeros out the first 256
words (512 bytes) of the buffer. Note
that the parameter passed to "clrbuf"
is the address of the buffer header.
"clrbuf" is called by "alloc" (6982).

incore (4899)

This routine searches for a buffer that
is already assigned to a particular
(device, block number) pair. It
searches the circular "b"-list whose
head is the "devtab" structure for the
device ~. If a buffer is found, the
address of the buffer header is
returned. "incore" is called by
"breada" (4780, 4788).

getblk (4921)

This routine performs the same search
as "incore" but goes further in that if
the initial search is unsuccessful, a
buffer is allocated from the "av"-list
(available list).

By a cal~ on "notavail n (4999), the
Dutter 1S removed from the "avO-list
and flagged as "B_BUSY".

Buffer Manipulation

"getb1k n is more SUSP1C10US of its
parameters than nincore". It is called
by

exec
exit
bread
breada
smount

(3041!!)
(3237)
(4758)
(4781,4789)
(6123)

wr i tei
iinit
alloc
free
update

(6304)
(6928)
(6981)
(7016)
(7216)

4940: At this point the required buffer
has been located by searching the
"b"-list. Either it is nB BUSY"
in which case a "sleep" must be
taken (4943), or else it is
appropriated (4948);

4953: If the required buffer has not
been located, and if the
"av"-list is empty, set the
"B WANTED" flag for the "av"-list
and go to "sleep" (4955);

4960: If the "av"-list is not empty,
select the first member, and if
it represents a "delayed write"
arrange to have it written out
asynchronously (4962);

4966: "B RELOC" is a relic! (See 4583);

4967: The code from here until 4973
unconditionally removes the
buffer from the "b"-list for its
current device type and reinserts
it into the "bn-list for the new
device type. Since this will fre­
quently be a "no-op" i.e. the new
and old device type will be the
same, it would seem desirable to
insert a test

if (bp->b dev == dev)
before executing lines 4967 to
4974.

Note the special handling for
calls where "dev == NODEV" (-1).
(Such calls incidentally are made
without a second parameter - tut!
tut! See e.g. 3040).

"bfreelist" serves as the "devtab"
structure for the "b"-list for "NODEV".

UNIX Operating System

brelse (4869)

This procedure takes the buffer passed
as a parameter and links it back into
the navn-list.

Any process which is either waiting for
the particular buffer or any available
buffer is woken up.

Note however that since both nsleeps"
(4943, 4955) are at the same priority,
if two processes are waiting - one for
the particular buffer and one for any
buffer - it will be a toss-up which
will get it.

By glvlng the first priority over the
second (e.g. by biasing by one) the
race should be resolved more satisfac­
torily. The disadvantage of such a
change might be that it could lead to a
deadlock situation in certain rather
peculiar circumstances.

If an error has occurred e.g. upon
reading information into the buffer,
the information in the buffer may be
incorrect. The assignment on line 4883
ensures that the information in the
buffer will not be mistakenly retrieved
subsequently. The "B ERROR" flag is
set e.g. by "rkstrategy" (5403) and
"rkintr" (5467).

To see how this could occur, consider
what happens to a buffer when a disk
i/o operation is completed:

5471
5026
5028
4887

"rkintr" calls "iodone";
"iodone" sets the"B DONE" flag;
"iodone n calls "breIse";
"brelse" resets the "B WANTED",

"B BUSY" and "B ASYNC" flags
but not the "B DONE" flag;

4948 "getblk n finds the buffer and
calls "notavail";

5010 "notavail" sets the "B BUSY"
flag; -

4759 "bread n (which called "getblk")
finds the "B DONE" flag set
and exits. -

17-2

Note that buffer headers are removed
from the navn-list by "notavail" and
are returned by "brelse n • Buffer
headers are moved from one AbA-list to
another by "getblk".

bini t (5055)

This procedure is called by nmain"
(1614) to initialise the buffer pool.
Empty, doubly linked circular lists are
set up:

for the "avn-list ("bfreelist" is
head) ;

the "b"-list for null devices ("dev
== NODEV") ("bfreelist" is again
head) ;

a "b"-list for each major device
type.

For each buffer:

the buffer header is linked into the
"b"-list for the device "NODEV"
(-1) ;

the add~ess of the buffer is set in
the header (5067);

the buffer flags are set as "B BUSY"
(this doesn't seem to be really
necessary) (5072);

the buffer header is linked into the
"av"-list by a calIon "brelse"
(5073) ;

The number of block devices is recorded
as "nblkdev". This is used for checking
values for "dev" in "getblk" (4927),
"getmdev" (6192) and "openi" (6720).
Inspection of "bdevsw" (4656) shows
that "nblkdev" will be set to eight
whereas the value one is what is really
required.

This result could be obtained by "edit­
ing" as follows:

/5084/m/5081/
/5083/m/5077/

Buffer Manipulation

"nblkdev=i;
"i++

bread (4754)

This is the
reading from
called by:

standard
block

procedure
devices. It

wait (3282) iinit (6927)
breada (4799) alloc (6973)
statl (6051) ialloc (7097)
smount (6116) iget (7319)
readi (6258) iupdat (7386)

for
is

writei (6305) itrunc (7426,7431)
bmap (6472,6488) namei (7625)

"getblk" finds a buffer. If the
"B DONE" flag is set no i/o is needed.

breada (4773)

This procedure has an additional param­
eter, as compared with "bread". It is
called only by "readi" (6256).

4780: Check if the desired block has
already been assigned to a
buffer. (It may not yet be
available, but at least is it
there?);

4781: If not initiate the necessary
read operation but don't wait for
it to finish;

4788: Look around for the "read ahead"
block. If it is not there, allo­
cate a buffer (4789) but release
it (4791) if the buffer is
already ready;

4793: The "read ahead" block is not
ready, so initiate an asynchro­
nous read operation;

4798: If a buffer was assigned to the
current block call "bread" to
wrap it up, else ••.

4800: Wait for the completion of the
operation which was started at
line 4785.

UNIX Operating System

bwrite (4809)

This is the standard procedure for
writing to block devices. It is called
by "exit" (3239), "bawrite" (4863),
"getblk" (4963) , "bflush" (5241) ,
"free" (7021), "update" (7221) and
"iupdat" (7400). N.B. "writei" calls
"bawrite" (6310) 1

4820: If the "B ASYNC" flag is not set,
the procedure does not return
until the i/o operation is com­
pleted;

4823: If the "B ASYNC" flag is set, but
"B DELWRI1I" was not set (note
"flag" is set----at line 4816) call
"geterror" (5336) to check on the
error flag. (If "B DELWRI" was
set, and there is an-error, send­
ing the error indication to the
right process is "too hard.").
The call (4824) on "geterror"
will only report errors related
to the initiation of the write
operation.

bawrite (4856)

This procedure is called by "writei"
(6310) and "bdwrite" (4845). "writei"
calls either "bawrite" or "bdwrite"
depending on whether the block to be
written has been wholly or partially
filled.

bdwrite (4836)

This procedure is called by "writei"
(6311) and "bmap" (6443, 6449, 6485,
6500 and 6501 I).

4844: Don't delay the write if the dev­
ice is a magnetic tape drive ...
keep everything in order;

4847: Set the "B DONE", "B DELWRI"
flags and call "brelse"-to link
the buffer into the "av"-list.

17-3

bflush (5229)

This procedure
(7201), which
(2420), "sync"
(6150) •

is called by "update"
is called by "panic"

(3489) and "sumount"

"bflush" searches the "av"-list for
"delayed write" blocks and forces them
to be written out asynchronously.

Note that as "notavail" adjusts the
links of the "av"-list, the search
(which runs at processor priority six)
is reinitiated after each "delayed
write" block is encountered.

Note also that since it happens that
"bflush" is only called by "update"
with "dev" equal to "NODEV", line 5238,
in particular, could be simplified.

physio (5259)

This routine is called to handle
input/output i.e. operations
ignore the normal 512 character
size.

"raw"
which
block

"physio" is called by "rkread" (5476)
and "rkwrite" (5483) which appear as
entries in the array "cdevsw" (4684)
i.e. as entries for a character device.

"Raw i/o" is not an essential feature
of UNIX. For disk devices it is used
mainly for copying whole disks and
checking the integrity of the file sys­
tem as a whole (see e.g. ICHECK (VIII)
in the UPM) , where it is convenient to
read whole tracks, rather than single
blocks, at a time.

Note the declaration of "strat" (5261).
Since the actual parameter used e.g.
"rkstrategy" (5389) does not return any
value, is this form of declaration
really necessary?

-000-

Buffer Manipulation

Section Four is concerned with files
and file systems.

A file system is a set of files and
associated tables and directories
organised onto a single storage device
such as a disk pack.

This section covers the means of

creating and accessing files;
locating files via directories;
organising and maintaining

file systems.

It also includes the code for an exotic
breed of file called a "pipe".

UNIX Operating System

CHAPTER EIGHTEEN

File Access and Control

A large part of every operating system
seems to be concerned with data manage­
ment and file management, and UNIX
turns out to be no exception.

Section Four

Section Four of the source code con­
tains thirteen files.

The first four contain common declara­
tions needed by various of the other
routines:

18-1

"file.h" describes the structure
of the-"file" array;

"filsys.h" describes the structure
of the "super block" for "mounted"
file systems;

"ino.h" describes the structure of
"TnOdes" recorded on "mounted"
devices;

"inode.h" describes the structure
of the "inode" array;

The next two files, "sys2.s:" and
"~ys3.s:" contain code for system calls.
(sysl.c" and "sys4.c" were presented
in Section Two) .

The next five files, "rdwri.c",
"subr.c", "fio.c", nalloc~ and
"iget..§:", together-present the -princi­
pal routines for file management, and
provide a link between the i/o oriented
system calls and the basic i/o rou­
tines.

The file "nami.c" is concerned with
searching directories to convert file
pathnames into "inode" references.

Finally, ".ei.E.§..s:"
driver" for pipes.

File Characteristics

is the "device

A UNIX file is conceptually a named
character string, stored on one of a
variety of peripheral devices (or in
the main memory), and accessible via
mechanisms appropriate to the usual
peripheral devices.

It will be noted that there is no
record structure associated with UNIX
files. However "newline" characters may
be inserted into the file to define
substrings analogous to records.

File Access and Control

U~~h carries the ideas of device
independence to their logical extreme
by allowing the file name in effect to
determine uniquely all relevant attri­
butes of the file.

System Calls

The following system calls are provided
expressly for file manipulation:

Name Line # Name Line

3 read 5711 14 mknod 5952
4 write 5720 15 chmod 3560
5 open 5765 16 chown 3575
6 close 5846 19 seek 5861
8 creat 5781 21 mount 6086
9 link 5909 22 umount 6144
10 unlink 3510 41 dup 6069
12 chdir 3538 42 pipe 7723

Control Tables

The arrays "file" and "inode" are
essential components of the file access
mechanism.

The array "file" is defined as an array
of structures (also named "file").

An element of the "file" array is con­
sidered to be unallocated if "f count"
is zero.

Each "open" or "creatH system call
results in the allocation of an element
of the "file" array. The address of
this element is stored in an element of
the calling process's array
"u.u ofile". It is the index of the
newly allocated element of the latter
array which is passed back to the user
process. Descendants of a process
created by "newproc" inherit the

UNIX Operating System

contents of the parent's "u.u ofile"
array.

Each element of "file" includes a
counter, "f count", to determine the
number of current processes which
reference it.

is incremented by
"dup" (6079) and

"f count"
(1878) ,
(6857) ;
(6657)
opened)

it is decremented by
and (if the file

by "openl" (5836).

"newproc"
"falloc"
"closef"

can't be

The "f flag" (5509) of the "file" ele­
ment notes whether the file is open for
reading and/or writing or whether it is
a "pipe" or not. (Further discussion of
"pipes" will be deferred till Chapter
Twenty-One.)

The "file" structure also contains a
pointer, "f inode" (5511) to an entry
in the "inode" table, and a 32 bit
integer, "f offset" (5512), which is a
logical pointer to a character within
the file.

inode (5659)

"inode" is defined as an array of
structures (also named "inode").

An element of the "inode" array is con­
sidered to be unallocated if the refer­
ence count, "i_count", is zero.

At each point in time, "inode" contains
a single entry for each file which may
be referenced for normal i/o opera­
tions, or which is being executed or
which has been executed and has the
"sticky" bit set, or which is the work­
ing directory for some process.

Several "file" table entries may point
to a single Rinode" entry. The inode
entry describes the general disposition
of the file.

18-2

Resources Reguired

Each file requires the dedication of
certain system resources. When a file
exists, but is not being referenced in
any way, it requires:

(a) a directory entry (16 characters
in a directory file);

(b) a disk "inode" entry (32 char­
acters in a table stored on the
disk) ;

(c) zero, one or more blocks of disk
storage (512 characters each).

In addition if the file is being refer­
enced for some purpose, it requires

(d) a core "inode" entry (32 charac­
ters in the "inode" array);

Finally if a user program has "opened"
the file for reading or writing, a
number of resources are required:

(e) a "file" array entry (8 charac­
ters) ;

(f) an entry in the user program's
"u.u ofile" array (one word per
file~ pointing to a "file" array
entry) ;

Mechanisms have to be set up for allo­
these

The
the

cating and deallocating each of
resources in an orderly manner.
following table gives the names of
principal procedures involved:

resource obtain free
======== ======

directory entry namei namei
disk "inode" entry ialloc ifree
disk storage block alloc free
core "inode" entry iget iput
"file" table entry falloc closef
"u ofile" entry ufalloc close -

File Access and Control

Opening ~ File

When a program wishes to reference a
file which already exists, it must
"open" the file to create a "bridge" to
the file. (Note that in UNIX,
processes usually inherit the open
files of their parents or predecessors,
so that often all needed files are
already implicitly open.) If the file
does not already exist, it must be
"created".

This second case will be investigated
first:

creat (5781)

5786: "namei" (7518) converts a path­
name into an "inode" pointer.
"uchar" is the name of a pro­
cedure which recovers the path­
name, character by character,
from the user program data area;

5787: A null "inode" pointer indicates
either an error or that no file
of that name already exists;

5788: For error conditions, see "CREAT
(II)" in the UPM;

5790: "maknode" (7455) creates a core
"inode" via a calIon "ialloc"
and then initialises it and
enters it into the appropriate
directory. Note the explicit
resetting of the "sticky" bit
("ISVTX") .

openl (5804)

This procedure is called by "open"
(5774) and "creatH (5793, 5795), pass­
ing values of the third parameter,
"trf", of 0, 2 and 1 respectively. The
value 2 represents the case where no
file of the desired name already
exists.

5812: The second parameter, "mode", can
take the values 01 ("FREAD"), 02

UNIX Operating System

("FWRITEn) or 03 (-FREADIFWRITE")
when "trf" is 0, but only 02 oth­
erwise;

5813: Where a file of the desired name
already exists, check the access
permissions for the desired
mode(s) of activity via calls on
"access" (6746), which may set
"u.u error" as a side-effect;

5824: If the file is being "created",
eliminate its previous contents
via a calIon "itrunc" (7414) •
The code here could be improved
by changing the test to "(trf
1)". Verify that this would be
so.

5826: "prele" (7882) is used to
"unlock" "inodes". Where, you
may ask, did the "inode" get
"locked", and why?

5827: Note that "falloc" (6847) calls
"ufalloc" (6824) as the first
thing it does;

5831: "ufalloc" leaves the user file
identifying number in
"u.u_ar0[R0j". Why does this
statement occur where it does,
instead of after line 5834?

5832: "openi" (6702) is called to call
handlers for special files, in
case any device specific actions
are required (for disk files
there is no action);

5839: In the case of an error while
making the "file" array entry,
the "inode" entry is released by
a calIon "iput".

It will be seen that responsibility is
quite widely distributed. The "file"
table entry is initialised by "falloc"
and "openl"; the "inode" table entry,
by "iget", "ialloc" and "maknode".

Note that "ialloc" clears out the
"i addr" array of a newly allocated
"i~ode" and "itrunc" does the same for
a pre-existing "inode", so that after

18-3

the "creat" system call, there are no
disk blocks associated with the file,
now classed as "small".

open (5763)

We now turn to consider the case where
a program wishes to reference a file
which already exists.

"namei" is called (5770) with a second
parameter of zero to locate the named
file. ("u.u arg[0]" contains the
address in the user space of a charac­
ter string which defines a file path
name.)

"u.u arg[lj" has to be incremented by
one,- because there is a mismatch
between the user programming conven­
tions and the internal data representa­
tions.)

openl revisited

"trf" is now zero, so access permis­
sions are checked (5813) but the exist­
ing file (if any) is not deallocated
(5824) .

What is a little disconcerting here is
that, apart from the calIon "falloc"
(5827), there is no direct calIon any
of the "resource allocation" routines.
Of course, for an existing file, nei­
ther directory entry nor disk "inode"
entry nor disk blocks need be allo­
cated. The core "inode" entry is allo­
cated (if necessary) as a side-effect
of the calIon "namei", but ... where
is it initialised?

close (5846)

The "close" system
sever explicitly the
a user program and a
be regarded as the

call is used to
connection between
file and thus can
inverse of "open".

File Access and Control

The user program's file identification
is passed via r0. The value is vali­
dated by "getf" (6619), the "u.u ofile"
entry is erased, and a call is made on
"closef".

closef (6643)

"closef" is called by "close" (5854)
and by "exit" (3230). (The latter is
more common since most files do not get
closed explicitly but only implicitly
when the user program terminates.)

6649: If the file is a pipe, reset the
mode of the pipe and "wakeup" any
process which is waiting for the
pipe, either for information or
for space;

6655: If this is the last process to
reference the file, call "closei"
(6672) to handle any special end
of file processing for special
files and then call "iput";

6657: Decrement the "file" entry refer­
ence count. If this now zero, the
entry is no longer allocated.

"closei", as its last action calls
"iput". This routine is in fact called
from many places, whenever a connection
to a core "inode" is to be severed and
the reference count decremented.

7350: If the reference count is one at
this point, the "inode" is to be
released. While this is happen­
ing, it should be locked.

7352: If the number of "links" to the
file is zero (or less) the file
is to be deallocated (s~e below);

7357: "iupdat"
accessed

(7374) updates the
and update times as

UNIX Operating System

recorded on the disk "inode";

7358: "prele" unlocks the "inode". Why
should it be called here as well
as at line 7363?

Deletion of Files

New files are automatically entered
into the file directory as permanent
files as soon as they are "opened".
Subsequent "closing" of a file does not
automatically cause its deletion. As
was seen at line 7352, deletion will
occur when the field "i nlink" of the
core "inode" entry is ziro. This field
is set to one initially by "maknode"
(7464) when the file is first created.
It may be incremented by the system
call "link" (5941) and decremented by
the system call "unlink" (3529).

Programs which create temporary "work
files" should remove these files before
terminating, by executing an "unlink"
system call. Note that the "unlink"
call does not of itself remove the
file. This can only happen when the
reference count ("i count") is about to
be decremented to ziro (7350, 7362).

To minimise the problems associated
with "temporary" files which survive
program or system crashes, programmers
should observe the conventions that:

(a) temporary files should
"unlinked" immediately
they are opened;

be
after

(b) temporary files should always be
placed in the "tmp" directory.
Unique file names can be gen­
erated by incorporating the
process's identifying number
into the file name (See "getpid"
(3480») •

18-4

Reading and Writing

It is of interest to
abbreviated summary
is invoked when a user
a "read" system call
the code in detail.

work through an
of the code which

process performs
before examining

read (f; b; n) i /*user program*/

{trap occurs}

2693 trap

{system call :ft3}

5711 read ();
5713 rdwr (FREAD);

Execution of the system call by the
user process results in the activation
of "trap" running in kernel mode.
"trap" recognises system call #3, and
calls (via "trapl") the routine "read",
which calls "rdwr".

5731 rdwr

5736
5743
5744
5745
5751
5752
5754
5756

fp = getf (u.u_ar0[R0]);
u.u base = u.u arg[0];
u.u-count = u.u arg[l];
u.u-segflg = 0;-
u.u-offset[l] = fp->f offset[l];
u.u-offset[0] = fp->f-offset[0];
readi(fp->f inode); -
dpadd(fp->f-offset,

u.u=arg[l]-u.u_count) ;

"rdwr" includes much code which is com­
mon to both "read" and "write" opera­
tions. It converts, via "getf" (6619),
the file identification supplied by the
user process into the address of an
entry in the "file" array.

Note that the first parameter of the
system call is passed in a different
way from the remaining two parameters.

"u.u segflg" is set to zero to indicate
that- the operation destination is in
the user address space. After "readi"

File Access and Control

is called with a parameter which is an
"inode" pointer, the final accounting
is performed by adding the number of
characters requested for transfer less
the residual number not transferred
(left in "u.u count") to the file
offset. -

6221 readi

6239
6240
6241
6248
6250
6258
6260
6261

Ibn = lshift (u.u offset, -9);
on = u.u offset[lT & 0777;
n = min (512 - on, u.u count);
bn bmap(ip, Ibn); -
dn = ip->i dev;
bp = bread-(dn, bn);
iomove (bp, on, n, B_READ);
brelse (bp);

"readi" converts the file offset into
two parts: a logical block number,
"Ibn", and an index into the block,
"on". The number of characters to be
transferred is the minimum of
"u.u count" and the number of charac­
ters left in the block (in which case
additional block(s) must be read (not
shown» (and the number of characters
remaining in the file (this case is not
shown».

"dn" is the device number which is
stored within the "inode". "bn" is the
actual block number on the device
(disk), which is computed by "bmap"
(6415) using "Ibn".

The calIon "bread" finds the required
block, copying it into core from disk
if necessary. "iomove" (6364)
transfers the appropriate characters to
their destination, and performs
accounting chores.

"read" and
operations
two system

"write" perform similar
and share much code. The
calls, "read" (5711) and

UNIX Operating System

"write" (5729), call "rdwr" immediately
to:

5736: Convert the user
identification to
the file table;

program file
a pointer in

5739: Check that
write) is
mode with
opened;

the operation (read or
in accordance with the
which the file was

5743: Set up various standard locations
in "un with the appropriate
parameters;

5746: "pipes" get special
right from the start!

treatment

5755: Call "readi" or
appropriate;

"writei" as

5756: Update the file offset by, and
set the value returned to the
user program to, the number of
characters actually transferred.

readi (6221)

6230: If no characters are to be
transferred, do nothing;

6232: Set the "inode" flag to indicate
that the "inode" has been
accessed;

6233: If the file is a character spe­
cial file, call the appropriate
device "read" procedure, passing
the device identification as
parameter;

6238: Begin a loop to transfer data in
amounts up to 512 characters at a
time until (6262) either an irre­
coverable error condition has
been encountered or the requested
number of characters has been
transferred;

6239: "lshift" (1410) concatenates the
two words of the array
"u.u_offset", shifts right by
nine places, and truncates to 16
bits. This defines the "logical

18-5

block number" of the file which
is to be referenced;

6249: "on" is a character offset within
the block:

6241: "n" is determined initially as
the minimum of the number of
characters beyond "on" in the
block, and the number requested
for transfer. (Note that "min"
(6339) treats its arguments as
unsigned integers.)

6242: If the file is not a special
block file then ...

6243: Compare the file offset with the
current file size;

6246: Reset "n" as the minimum of the
characters requested and the
remaining characters in the file:

6248: Call "bmap" to convert the logi­
cal block number for the file to
a physical block number for its
host device. There will be more
on "bmap" shortly. For now, note
that "bmap" sets "rablock" as a
side effect;

6250: Set "dn" as the device identifi­
cation from the "inode":

6251: If the file is a special block
file then •..

6252: Set "dn" from the "i addr" field
of the "inode" entry: (Presumably
this will nearly always be the
same as the "i dev" field, so why
the distinction?)

6253: Set the "read ahead block" to the
next physical block:

6255: If the blocks of the file are
apparently being read sequen­
tially then ...

6256: Call "breada" to read the desired
block and to initiate reading of
the "read ahead block":

6258: else just read the desired block:

File Access and Control

6260: Call "iomove" to transfer
mation from the buffer
user area;

6261: Return the
"av"-list.

writei

buffer to

infor­
to the

the

6303: If less than a full block is
being written the previous con­
tents of the buffer must be read
so that the appropriate part can
be preserved, otherwise just get
any available buffer;

6311: There is no "write ahead" facil­
ity, but there is _a "delayed
write" for buffers whose final
characters have not been changed;

6312: If the file offset now points
beyond the recorded end of file
character, the file has obviously
grown bigger!

6318: Why is it necessary/desirable to
set the "IUPO" flag again? (See
line 6285.)

iomove (6364)

The comment at the beginning of this
procedure says most of what needs to be
said. "copyin", "copyout", "cpass" and
"passc" may be found at lines 1244,
1252, 6542 and 6517 respectively.

A general description of the function
of "bmap" may be found on Page 2 of
"FILE SYSTEM (V)" of the UPM.

6423: Files of more than 2**15 blocks
(2**24 characters) are not sup­
ported;

UNIX Operating System

6427: Start with the "small" file algo­
rithm (file is not greater than
eight blocks i.e. 4096 charac­
ters) ;

6431: If the block number is 8 or more,
the "small" file must converted
into a large file. Note this is
a side effect of "bmap", and
should occur only when "bmap" has
been called by "writei" (and
never by "readi" see line
6245). Thus all files start life
as "small" files and are never
explicitly changed to "large"
files. Note also that the change
is irreversible!

6435: "alloc" (6956) allocates a block
on device "d" from the device's
free list. It then assigns a
buffer to this block and returns
a pointer to the buffer header;

6438: The eight buffer addresses in the
"i addr" array for the "inode"
are copied into the buffer area
and then erased;

6442: "i addr[0]" is set to point to
the buffer which is set up for a
"delayed" write;

6448: The file is still small. Get the
next block if necessary;

6456: Note the setting of "rablock";

Leftovers

You should investigate the following
procedures for yourself:

seek
sslep
fstat
stat

(5861)
(5979)
(6014)
(6028)

-000-

18-6

statl
dup
owner
suser

(6045)
(6069)
(6791)
(6811)

File Access and Control

CHAPTER NINETEEN

File Di~ecto~ies and Directo~y Files

As we have seen, much impo~tant info~­
mation about individual files is con­
tained in the "inode" tables. If the
file is cu~~ently accessible, o~ being
accessed, the relevant info~mation is
held in the co~e "inode" table. If a
file is on disk (mo~e generally, on
some "file system volume") and is not
cu~~ently accessible, then the relevant
"inode" table is the one ~ecorded on
the disk (file system volume) .

File Names -----
Notably absent f~om the "inode" table
is any info~mation ~egarding the "name"
of the file. This is sto~ed in the
directory files.

UNIX Operating System

Each file must have at least one name.
A file may have more than one distinct
name, but the same name may not be
shared by two distinct files, i.e.
each name must define a unique file.

A name may be multipa~t. When w~itten,
the parts o~ components of the name are
sepa~ated by slashes ("/"). The orde~
of components within a name is signifi­
cant i.e. "a/b/c" is different from
"a/c/b".

If file names a~e divided into two
pa~ts: an initial part or "stem" and a
final part or "ending", then two files
whose names have identical stems a~e
usually related in some way. They may
reside on the same disk, they may
belong to the same use~, etc.

The Directory Data Structure

Users make initial ~efe~ence to files
by quoting the file name, e.g. in the
"open" system call. An important
ope~ating system function is to decode
the name into the corresponding "inode R

entry. To do this, UNIX c~eates and
maintains a directory data structure.
This structu~e is equivalent to a
di~ected g~aph with named edges.

In its purest form, the g~aph is a tree
i.e. it has a single root node, with
exactly one path between the root and
any node. More commonly in UNIX (but
not so commonly in othe~ operating sys­
tems) the graph is a lattice which may
be obtained f~om a t~ee by coalescing
one o~ more groups of leaves.

In this case, while there is still only
one path between the root and any inte­
rior node, the~e may be mo~e than one
path between the ~oot and a leaf.
Leaves are nodes without successo~s and
correspond to data files. Inte~ior
nodes a~e nodes with successo~s and
cor~espond to directo~y files.

19-1

The name for a file is obtained from
the names of the edges of the path
between the root and the node
co~responding to the file. (For this
~eason, the name is often referred to
as a "pathname".) If the~e are several
paths, then the file has several names.

Di~ectory Files

A directory file is in many respects
indistinguishable from a non-directory
file. However it contains information
which is used in locating other files
and hence its contents are ca~efully
protected, and are manipulated by the
operating system alone.

In every file, the information is
stored as one or more 512 character
blocks. Each block of a directory file
is divided into 32 * 16 character
structures. Each structure consists of
a 16 bit "inode" table pointer and a 14
character name. The "inode" pointer is
to the "inode" table on the same disk
or file system volume as the files
which the directo~y references. (More
on this later.) An "inode" value of
zero defines a null entry in the direc­
tory.

The procedures which reference direc­
tories are:

namei
link
wdir
unlink

(7518)
(5909)
(7477)
(3510)

search directory
create alternate name
write directory entry
delete name

namei (7518)

7531: "u.u cdir" defines the "inode" of
a process's current directory. A
process inherits its parent's
current directory at birth
("newproc", 1883). The current
directory may be changed using
the "chdir" (3538) system call;

File Directories and Directory Files

7532: Note that "func" is a parameter
to "namei" and is always either
"uchar" (7689) or "schar" (7679);

7534: "iget" (7276) is called to:

wait until such time as the
"inode" corresponding to "dp" is
no longer locked;

check that the associated file
system is still mounted;

increment the reference count;

lock the "inode";

7535: Multiple slashes are acceptable!
(i.e. "////a///b/" is the same as
"/a/b") ;

7537: Any attempt to replace or delete
the current working directory or
the root directory is bounced
immediately!

7542: The label "cloop" marks the
beginning of a program loop that
extends to line 7667. Each cycle
analyses a component of the path­
name (i.e. a string terminated by
a null character or one or more
slashes). Note that a name may
be constructed from many dif­
ferent characters (7571);

7550: The end of the pathname has been
reached (successfully). Return
the current value of "dp";

7563: "search" permission for direc­
tories is coded in the same way
as "execute" permission for other
files;

7570: Copy the name into a more acces­
sible location before attempting
to match it with a directory
entry. Note that a name of
greater than "DIRSIZ" characters
is truncated;

7589: "u.u count" is set to the number
of entries in the directory;

7592: The label "eloop" marks the
beginning of a program loop which

UNIX Operating System

extends to line 7647.
of the loop handles
directory entry;

Each cycle
a single

7600: If the directory has been
searched (linearly!) without
matching the supplied pathname
component, then there must be an
error unless:
(a) this is the last component of
the pathname, i.e. "c=='\0'";
(b) the file is to be created,
i.e. "flag == 1"; and
(c) the user program has "write"
permission for the directory;

7606: Record the "inode" address for
the directory for the new file in
"u.u_pdir";

7607: If a suitable slot for a new
directory entry has previously
been encountered (7642), store
the value in "u.u offset[l]";
else set the "IUPD" frag for the
"dp" designated "inode" (but
why?);

7622: When appropriate, read a new
block from the directory file
(note the use of "bread") (why
not "breada"?), after carefully
releasing any previously held
buffer;

7636: Copy the eight words of the
directory entry into the array
"u.u dent". The reason for c6py­
ing -before comparing is obscure!
Can this actually be more effi­
cient? (The reason for copying
the whole directory at all is
rather perplexing to the author
of these notes.);

7645: This comparison makes efficient
use of a single character pointer
register variable, "CpR. The
loop would be even more efficient
if word by word comparison were
used;

7647: The "eloop" cycle is terminated
by one of:

"return (NULL);" (7610)

19-2

"goto out;" (7605, 7613)

a successful match
branch to "eloop"
taken;

so that the
(7647) is not

7657: If the name is to be deleted
("flag==2"), if the pathname has
been completed, and if the user
program has "write" access to the
directory, then return a pointer
to the directory "inode";

7662: Save the device identity tem­
porarily (why not in the register
"c"?) and call "iput" (7344) to
unlock "dp", to decrement the
reference count on "dp" and to
perform any consequent process­
ing;

7664: Revalidate "dp" to point to the
"inode" for the next level file;

7665: "dp==NULL" shouldn't happen,
since the directory says the file
exists! However "inode" table
overflows and i/o errors can
occur, and sometimes the file
system may be left in an incon­
sistent state after a system
crash.

Some Comments

"namei" is a key procedure which would
seem to have been written very early,
to have been thoroughly debugged and
then to have been left essentially
unchanged. The interface between
"namei" and the rest of the system is
rather complex, and for that reason
alone, it would not win the prize for
"Procedure of the Year".

"namei" is called thirteen times by
twelve different procedures:

File Directories and Directory Files

line routine Earameters

3034 exec uchar 0
3543 chdir uchar 0
5770 open uchar 0
5914 link uchar 0
6033 stat uchar 0
6097 smount uchar 0
6186 getmdev uchar 0
6976 owner uchar 0

5786 creat uchar 1
5928 link uchar 1
5958 mknod uchar 1

3515 unlink uchar 2

4101 core schar 1

It will be seen that:

(a) there are two calls from "link";

(b) the calls can be divided into
four categories, of which the
first is by far the largest;

(c) the last two categories have
only one representative each;

(d) in particular, there is only one
call involving the routine
"schar", which is always for a
file called "core". (If this
case were handled as a special
case e.g. where the second
parameter had the value "3",
then the "uchar"s and "schar"
could be eliminated.)

"namei" may terminate in a variety of
ways:

(a) if there has been an error, then
a "NULL" value is returned and
the variable "u.u error" is set.

(Most errors result in a branch
to the label "out" (7669) so
that reference counts for the
"inode"s are properly maintained
(7670). This is not necessary if
the failure occurs in "iget"
(7664) .) ;

UNIX Operating System

(b) if "flag==2" (Le. the call is
from "unlink"), the value
returned (in normal cir-
cumstances) is an "inode"
pointer for the parent directory
of the named file (7660);

(c) if "flag==l" (Le. the call is
from "creat" or "link" or
"mknod", and a file is to be
created if it does not already
exist) and if the named file
does not exist, then a "NULL"
value is returned (7610). In
this case a pointer to the
"inode" for the directory which
will point to the new file, is
left in "u.u pdir" (7606). (Note
also that- in this case,
"u.u offset" is left pointing
either at an 2mpty directory
entry or at the end of the
directory file.);

(d) if in the remaining cases, the
file exists, an "inode" pointer
for the file is returned (7551).
The "inode" is locked and the
reference count has been incre­
mented. A call to "iput" is
needed subsequently to undo both
these side effects.

link (5909)

This procedure implements a system call
which enters a new name for an existing
file into the directory structure.
Arguments to the procedure are the
existing and the new names of the file;

5914: Look up the existing file name;

5917: If the file already has 127 dif­
ferent names, quit in disgust;

5921: If the existing file turns out to
be a directory, then only the
super-user may rename it;

5926: Unlock the existing file "inode"
This is locked when the first
calIon "namei" does an "iget"
(7534,7664) .

19-3

Under what conditions would the
failure to unlock the "inode"
here be disastrous? The chances
that the existing file would be a
directory encountered in the
search for the new name would
seem slight, if not impossible.
Most probably the relevant cir­
cumstance is where the system is
attempting to recreate an alter­
native file name or alias, which
already exists;

5927: Search the directory for the
second name, with the intention
of creating a new entry;

5930: There is an existing file with
the second name;

5935: "u.u pdir is set as a side effect
of the call on "namei" (5928).
Check that the directory resides
on the same device as the file;

5940: write a new directory entry (see
below) ;

5941: Increase the "link" count for the
file.

wdir (7477)

This procedure enters a new name into a
directory. It is called by "link"
(5940) and "maknode" (7467) with a
pointer to a (core) "inode" as parame­
ter.

The sixteen characters of the directory
entry are copied into the structure
"u.u dent", and written from there into
the directory file. (Note that the pre­
vious content of "u.u dent" will have
been the name of the-last entry in the
directory file.)

The procedure assumes that the direc­
tory file has already been searched,
that the "inode" for the directory file
has already been allocated and that the
values of "u.u offset" have been set
appropriately.-

File Directories and Directory Files

rnaknode (7455)

This procedure is called from "core"
(4105) , "creatH (5790) and "mknod"
(5966), after a previous calion
"namei" with a second parameter of one,
has revealed that no file of the speci­
fied name existed.

unlink (3510)

This procedure implements a system call
which deletes a file name from the
directory structure. (When all refer­
ences to a file are deleted, the file
itself will be deleted.)

3515: Search for a file with the speci­
fied name, and if it exists,
return a pointer to the "inode"
of the immediate parent direc­
tory;

3518: Unlock the parent directory;

3519: Get an "inode" pointer to the
file itself;

3522: Unlinking directories is forbid­
den, except for super-users;

3528: Rewrite the directory entry with
the "inode" value set to zero;

3529: Decrement the "link" count.

Note that there is no attempt to reduce
the size of a directory below its "high
water" mark.

mknod (5952)

This procedure, which implements a sys­
tem call of the same name, is only exe­
cutable by the super-user. As explained
in the Section "MKNOD(II)" of the UPM,
this system call is used to create
"inodes" for special files.

"mknod" also solves the problem of
"where do directories come from"? The

UNIX Operating System

second parameter passed to "mknod" is
used, without modification or restric­
tion to set" i mode". (Compare "creatH
(5790) and "chmod" (3569)). This is
the only wayan "inode" can get flagged
as a directory, for instance.

In such cases, the third parameter
passed to "mknod" must be zero. This
value is copied into--n-r-addr[0]" (as is
appropriate for special-files), and, if
non-zero, will be accepted uncritically
by "bmap" (6447). It might be prudent
to insert a test

if (ip->i_mode & (IFCHR & IFBLK) != 0)

before line 5969, rather than rely
indefinitely on the infallibility of
the super-user.

access (6746)

This procedure is called by "exec"
(3041), "chdir" (3552), "core" (4109),
"openl" (5815, 5817) r "namei" (7563,
7664, 7658) to check access permission
to a file. The second parameter,
"mode", is equal to one of "IEXEC",
"IWRITE" and "IREAD", with octal values
of 0100, 0200 and 0400 respectively.

6753: "write" permission is denied if
the file is on a file system
volume which has been mounted as
"read only" or if the file is
functioning as the text segment
for an executing program;

6763: the super-user may not execute a
file unless it is "executable" in
at least one of the three "per­
mission" groups. In any other
situation he is always allowed
access;

6769: If the user is not the owner of
the file, shift "m" three places
to the right so that group per­
missions will be operative ... If
the groups don't match, shift "m"
again;

19-4

6774: Compare "rn" and the access per­
missions.

Note that there is an anomaly here in
that if a file has a "mode" of 0077,
the owner cannot reference it at all,
but everyone else can. This situation
could be changed satisfactorily by
inserting a statement

m = I (m I (m» 3)) » 3;

after line 6752, and replacing lines
6764, 6765 by

if (m & IEXEC && (m & ip->i_mode) 0)

-000-

File Directories and Directory Files

CHAPTER TWENTY

File Systems

In most computer systems more than one
peripheral storage device is used for
the storage of files. It is now neces­
sary to discuss a number of matters
pertaining to the management by UNIX of
the whole set of files and file storage
devices. First, some definitions:

file system: an integrated collec­
tion of files with a hierarchical
system of directories recorded on
a single block oriented storage
device;

storage device: a device which can
store information (especially disk
pack or DECtape, etc.);

access device: a mechanism for
transferring information to or
from a storage device;

UNIX Operating System

~ storage device is only
accessible if it is inserted in an
access device. In this situation,
reference to the storage device is
made via a reference to the access
device;

a storage device is acceptable as
a fIle system volume if:

(a) information is recorded as
addressable blocks of 512 char­
acters each, which can be
independently read or written.

(b)

(Note IBM compatible magnetic
tape does not satisfy this con­
dition.);

the information recorded on the
device satisfies certain con­
sistency criteria:

block ill is
"super block"

formatted as
(see below);

a

blocks #2 to # (n+l) (where n is
recorded in the "super block")
contain an "inode" table which
references all files recorded on
the storage device, and does not
reference any other files;

directory files recorded on the
storage device reference all,
and only, files on the same
storage device, i.e. a file sys­
tem volume constitutes a self­
contained set of files, direc­
tories and "inode" table;

~ file system volume is mounted if
the presence of the storage device
in an access device has been for­
mally recognised by the operating
system.

The 'Super Block' (5561)

The "super block" is always recorded as
block #1 on the storage device. (Block
#0 is always ignored and is available
for miscellaneous uses not necessarily
concerned with UNIX.)

20-1

The "super block" contains information
used in allocating resources, viz. the
storage blocks and the entries in the
"inode" table recorded on the file sys­
tem. While the file system volume is
mounted a copy of the "super block" is
maintained in core and updated there.
To prevent the storage device copy
becoming too far out of date, its con­
tents are written out at regular inter­
vals.

The 'mount' table (0272)

The "mount" table contained an entry
for each mounted file system volume.
Each entry defines the device on which
the file system volume is mounted, a
pointer to the buffer which stores the
"super block" for the device, and an
"inode" pointer. The table is refer­
enced as follows:

iinit (6922) which is called by
"main" (1615), makes an entry for
the root device;

smount (6086) is a system call
which makes entries for additional
devices;

iget (7276) searches the "mount"
table if it encounters an "inode"
with the 'IMOUNT' flag set;

getfs (7167) searches the "mount"
table to find and return a pointer
to the "super block" for a partic­
ular device;

update (7201) is called periodi­
cally and searches the "mount"
table to locate information which
should be written from core tables
into the tables maintained on the
file system volumes;

sumount (6144) is a system call
whIch deletes entries from the
table.

File Systems

iinit (6922)

This routine is called by "main" (1615)
to initialise the "mount" table entry
for the root device.

6926: Call the "open" routine for the
root device. Note that "rootdev"
is defined in "conLc" (4695);

6931: Copy the contents of the root
device "super block" into a
buffer area not associated with
any particular device;

6933: The zeroeth entry in the "mount"
table is assigned to the root
device. Only two of the three
elements are explicitly initial­
ised. The third, the "inode"
pointer, will never be refer­
enced;

6936: The "locks" stored in the "super
block" are explicitly reset.
(These locks may have been set
when the "super block" was last
written onto the file system
volume) ;

6938: The root device is mounted in a
"writable" state;

6939: The system sets its idea of the
current time and date from the
time recorded in the "super
block". (If the system has been
stopped for an appreciable
period, the computer operator
will need to reset the contents
of "time".)

From an operational view point, "mount­
ing" a file system volume involves
placing it in a suitable access device,
readying the device, and then entering
a command such as

"/etc/mount /dev/rk2 /rk2"

to the "shell", which forks a program
to perform a "mount" system call, pass­
ing pointers to the two file names as

UNIX Operating System

parameters.

smount (6086)

6093: "getmdev" decodes the first argu­
ment to locate a block oriented
access device;

6096: "u.u dirp" is reset preparatory
to ~alling "namei" to decode the
second file name. (Note that
"u.u dirp" is set by "trap" to
"u.u=arg[0j" (2770);

6100: Check that the file named by the
second parameter is in a satis­
factory condition, i.e. no one
else is currently accessing the
file, and that the file is not a
special file (block or charac­
ter) ;

6103: Search the "mount" table looking
for an empty entry
("mp->m bufp==NULL") or an entry
already- made for the device.
(The "mount" data structure is
defined at line (272);

6111: "smp" should point to a suitable
entry in the "mount" table;

6113: Perform the appropriate "open"
routine, with the device name and
a read/write flag as arguments.
(As was seen earlier, for the
RK05 disk the "open" routine is a
"no-op") ;

6116: Read block #1 from the device.
This block is the "super block";

6124: Copy the "super block" into a
buffer associated with "NODEV",
from the buffer associated with
"d". The second buffer will not
be released again until the dev­
ice is unmounted;

6130: "ip" points to the
the second named

"inode"
file.

for
This

"inode" is now flagged as
"IMOUNT". The effect of this is
to force "iget" (7292) to ignore
the normal contents of the file,

20-2

while the file system volume is
mounted. (In practice, the second
file is an empty file created
especially for this purpose.)

Notes

1. The "read/write r, status of a mounted
device depends only on the parameters
provided to "smount". No attempt is
made to sense the hardware "read/write"
status. Thus if a disk is readied with
"write protect" on, but is not mounted
"read only", then the system will com­
plain vigorously.

2. The "mount" procedure does not carry
out any kind of label checking on the
"mounted" file system volume. This is
reasonable in a situation where file
system volumes are rarely rearranged.
However in situations where volumes are
mounted and remounted frequently, some
means of verifying that the correct
volume has been mounted would seem
desirable. (Further, if a file system
volume contains sensitive information,
it may be desirable to include some
form of password protection as well.
There is room in the "super block"
(5575) for the storage of a name and an
encrypted password.)

This procedure is called by "main"
(1616,1618), "unlink" (3519), "ialloc"
(7078) and "namei" (7534, 7664) with
two parameters which together uniquely
identify a file: a device, and the
"inode" number of a file on the device.
"iget" returns a reference to an entry
in the core "inode" table.

When "iget" is called, the core "inode"
table is searched first to
entry already exists for the
the core "inode" table. If
"iget" creates one.

File Systems

see if an
file in

not, then

7285: Search the core "inode n table •••

7286: If an entry for the designated
file already exists .•.

7287: Then if it is locked go to sleep;

729~: Try again. (Note the whole table
needs to be searched again from
the beginning, because the entry
may have vanished!);

7292: If the "IMOUNT" flag is on

73~2:

73~6:

73~9:

7314:

this is an important possibility
for which we will delay the dis­
cussion;

If the "IMOUNT" flag is not set,
increase the "inode" reference
count, set the "ILOCK" flag and
return a pointer to the "inode";

Make a note of the first empty
slot in the "inode" table:

If the "inode" table is full,
send a message to the operator,
and take an error exit;

At this point, a new entry is to
be made in the "inode" table;

7319: Read the block which contains the
file system volume "inode". Note
the use of "bread" instead of
"readi", the assumption that
"inode" information begins in
block #2 and the convention that
valid "inode" numbers begin at
one (not zero);

7326: A read error at this point isn't
very well reported to the rest of
the system;

7328: Copy the relevant "inode" infor­
mation. This code makes implicit
use of the contents of the file
"ino.h" (Sheet 56), which isn't
referenced explicitly anywhere.

Let us now return to unfinished busi­
ness:

7292: The "IMOUNT" flag is found to be
set. This flag was set by

UNIX Operating System

"smount", when a file
volume was mounted;

system

7293: Search the "mount" table to find
the entry which points to the
current "inode". (Although
searching this table is not a
horrendous overhead, it does seem
possible that a "back pointer"
could be conveniently stored in
in the "inode" e.g. in the
"i lastr" field. This would save
both time and code space.);

7396: Reset "dev" and "ino" to the
mounted device number and the
"inode" number of the root direc­
tory on the mounted file system
volume. Start again.

Clearly, since "iget" is called by
"namei" (7534, 7664), this technique
allows the whole directory structure on
the mounted file system volume to be
integrated into the pre-existing direc­
tory structure. If we momentarily
ignore the possible deviations of
directory structures away from tree
structures, we have the situation where
a leaf of the existing tree is being
replaced by an entire subtree.

getfs (7167)

There is little that needs to be said
about this procedure in addition to the
author's comment. This procedure is
called by

"access"
"alloc"
"free"

(6754)
(6961)
(7~~4)

"ialloc"
"ifree"
"iupdat"

(7~72)
(7138)
(7383)

Note the cunning use of "nl", "n2"
which are declared as character
pointers i.e. as unsigned integers.
This allows only one sided tests on the
two variables at line 7177.

2~-3

update (7201)

The function of this procedure, in its
broadest terms, is to ensure that
information on the file system volumes
is kept up to date. The comment for
this procedure (beginning on line 719~)
describes the three main sub-functions,
(in the reverse order!).

"update" is the whole business of the
"sync" system call (3486). This may be
invoked via the "sync" shell command.
Alternatively there is a standard sys­
tem program which runs continuously and
whose only function is to call "sync"
every 3~ seconds. (See "UPDATE (VIII) "
in the UPM.)

"update" is called by "sumount" (615~)
before a file system volume is
unmounted, and by "panic" (242~) as the
last action of the system before
activity ceases.

72~7: If another execution of "update"
is under way, then just return;

721~: Search the "mount" table;

7211: For each mounted volume,

7213: Unless the file system has not
been recently modified or the
"super block" is locked or the
volume has been mounted "read
only" •••

7217: Update the "super block", copy it
into a buffer and write the
buffer out onto the volume:

7223: Search the "inode" table, and for
each non-null entry, lock the
entry and call "iupdat" to update
the "inode" entry on the volume
if appropriate;

7229: Allow additional executions of
"update" to commence;

723~: "bflush" (5229) forces out any
"delayed write" blocks.

File Systems

sumount (6144)

This system call deletes an entry for a
mounted device from the "mount" table.
The purpose of this call is to ensure
that traffic to and from the device is
terminated properly, before the storage
device is physically removed from the
access device.

6154: Search the "mount" table for the
appropriate entry;

6161: Search the "inod~" table for any
outstanding entries for files on
the device. If any such exist,
take an error exit, and do not
change the "mount" table entry;

6168: Clear the "IMOUNT" flag.

Resource Allocation

Our attention now turns to the manage­
ment of the resources of an individual
FSV (file system volume) .

Storage blocks are allocated from the
free list by "alloc" at the request of
"bmap". Storage blocks are returned to
the free list by "free" at the behest
of "itrunc" (which iscalled by "core",
"openl" and "iput").

Entries in the FSV "inode" tables are
made by "ialloc", which is called by
"maknode" and "pipe". Entries in this
table are cancelled by "ifree", which
is called by "iput".

The "super block" for the FSV is
tral to the resource management
cedures. The "super block" (5561)
tains:

cen­
pro­
con-

size information (total
available) ;

resources

list of up to 100
blocks;

available storage

UNIX Operating System

list of up to 100 available "inode"
entries;

locks to control manipulation of the
above lists;

flags;

current date of last update.

If the list in core of available
"inode" entries for the file system
volume ever becomes exhausted, then the
entire table on the FSV is read and
searched to rebuild the list. Con­
versely if the available "inode" table
overflows, additional entries are sim­
ply forgotten to be rediscovered later.

A different strategy is used for the
list of available storage blocks.
These blocks are arranged in groups of
up to one hundred blocks. The first
block in each group (except the very
first) is used to store the addresses
of the blocks belonging to the previous
group. Addresses of blocks in the last
incomplete group are stored in the
"super block".

The first entry in the first list of
block numbers is zero, which acts as a
sentinel. Since the whole list is sub­
ject to a LIFO discipline, discovery of
a block number of zero in the list sig­
nifies that the list is in fact empty.

alloc (6956)

This is called by "bmap" (6435, 6448,
6468, 6480, 6497) whenever a new
storage block is needed to store part
of a file.

6961: Convert knowledge of the device
name into a pointer to the "super
block";

6962: If "s flock" is set, the list of
available blocks is currently
being updated by another process;

20-4

6967: Obtain the block number of the
next available storage block;

6968: If the last block number on the
list is zero, the entire list is
now empty;

6970: "badblock" (7040)
check that the

is used to
block number

obtained from the list seems rea­
sonable;

6971: If the list of available blocks
in the "super block" is now
empty, then the block just
located will contain the
addresses of the next group of
100 free blocks;

6972: Set "s flock" to delay any other
procesi from getting a "no space"
indication before the list of
available blocks in the "super
block" can be replenished;

6975: Determine the number of valid
entries in the list to be copied;

6978: Reset "s flock", and
anyone waIting;

"wakeup"

6982: Clear the buffer so that any
information recorded in the file
by default will be all zeros;

6983: Set the "modified" flag to ensure
that the "super block" will be
written out by "update" (7213).

itrunc (7414)

This procedure is called by "core"
(4112), "openl" (5825) and "iput"
(7353). In the first two cases, the
contents of the "file" are about to be
replaced. In the third case, the file
is about to be abandoned.

7421: If the file is a character or
block special file then there is
nothing to do;

7423: Search
block
"inode";

File Systems

backwards
numbers

the list
stored in

of
the

7425:

7427:

If the file is "large", then an
indirect fetch is needed. (A dou­
ble indirect fetch is needed for
blocks numbered seven and
higher.);

Reference all 257 elements of the
buffer in reverse order. (Note
this seems to be the only place
where characters #512, #513 of
the buffer area are referenced.
Since they will presumably con­
tain zero, they will contribute
nothing to the calculation. Hence
if "510" were substituted for
"512" here, and again on line
7432, a general improvement all
round would result (?»;

7438: "free" returns an individual
block to the available list;

7439: This is the end of
statement commencing
7427. (Likewise the
which begins at 7432
7435.);

the "for"
on line

statement
ends at

7443: Clear the entry in "i_addr[l";

7445: Reset size information, and flag
the "inode" as "updated".

This procedure is
(7435, 7438, 7442)
storage block into
for a device.

called by "itrunc"
to reinsert a simple
the available list

713135: It is not clear why the "s fmod"
flag is set here as well-as at
the end of the procedure (line
71326). Any suggestions?

71306: Observe the locking protocol;

7010: If no free blocks previously
existed for the device, restore
the situation by setting up a one
element list containing an entry
for block #0. This value will
subsequently be interpreted as an
"end of list" sentinel;

UNIX Operating System

7014: If the available list in the
"super block" is already full, it
is time to write it out onto the
FSV. Set us_flock";

71316: Get a buffer, associated with the
block now being entered in the
free list;

7019: Copy the contents of the super
block list, preceded by a count
of the number of valid blocks,
into the buffer; write the
buffer; unset the lock and
"wakeup" anybody waiting;

7025: Add the returned block to the
available list.

This procedure is one of the most popu­
lar in UNIX (called from nearly thirty
different places) and its use will have
already been frequently observed.

In essence it simply decrements the
reference count for the "inode" passed
as a parameter, and then calls "prele"
(7882) to reset the "inode" lock and to
perform any necessary "wakeup"s.

"iput" has an important side effect. If
the reference count is going to be
reduced to zero, then a release of
resources is indicated. This may be
simply the core "inode", or both that
and the file itself, if the number of
links is also zero.

ifree (7134)

This procedure is called by "iput"
(7355) to return a FSV "inode" to the
available list maintained in the "super
block". If this list is already full
(as noted above) or if the list is
locked (using "s ilock") the informa­
tion is simply discarded.

20-5

iupdat (7374)

This procedure is called by "statl"
(6050), "update" (7226) and "iput"
(7357) to revise a particular "inode"
entry on a FSV. It does nothing if the
corresponding core "inode" is not
flagged ("IUPD" or "IACC");

The "IUPD" flag may be set by one of

unlink
chmod
chown
link
writei

(3530)
(35713)
(3583)
(5942)
(6285,6318)

bmap (6452,6467)
itrunc (7448)
maknode (7462)
namei (7609)
pipe (7751)

The "IACC" flag may be set by one of

readi (6232)
wr itei (6285)

maknode (7462)
pipe (7751)

The flags are reset by "iput" (7359) •

7383: Forget it, if the FSV
mounted as "read only";

has been

7386: Read the appropriate block con­
taining the FSV "inode" entry.
As observed earlier with respect
to "iget", note the the use of
"bread" instead of "readi", the
assumption that the "inode" table
begins at block #2 and the con­
vention that valid "inode"
numbers begin at one;

7389: Copy the relevant information
from the core "inode";

7391: If appropriate, update the time
of last access;

7396: If appropriate, update the time
of last modification;

741313: write the updated block back to
the FSV.

-000-

File Systems

CHAPTER TWENTY-ONE

Pipes

A "pipe" is a FIFO character list,
which is managed by UNIX as yet another
variety of file.

One group of processes may "write" into
a "pipe" and another group may "read"
from the same "pipe". Hence "pipeRs may
be, and are used, primarily for inter­
process communication.

By exploiting the concept of a
"filter", which is a program which
reads an input file and transforms it
into an output file, and by using
"pipes" to link two or more programs of
this type together, UNIX offers its
users a surprisingly comprehensive and
sophisticated set of facilities.

A "pipe" is created as the result of a
system calion the "pipe" procedure.

7728: Allocate an "inode" for the root
device;

UNIX Operating System

7731: Allocate a "file" table entry;

7736: Remember the "file" table
as Dr" and allocate a
"file" table entry;

entry
second

7744: Return user file identifications
in R0 and Rl;

7746: Complete the
"file" array
entry.

entries
and the

in the
"inode"

"pipes" are different from other files
in that two separate offsets into the
file are kept - one for "read" opera­
tions and one for "write" operations.
The "write" offset is actually the same
as the file size.

7763: the parameter passed to "readp"
is a pointer to a "file" array
entry, from which an "inode"
pointer can be extracted;

7768: "plock" (7862) ensures
one operation takes
time: either "read" or

that only
place at a
"write";

7776: If a process wishing to write to
a "pipe" has been blocked because
the pipe was "full" (or rather
because the valid part of the
file had reached the file limit),
it will have signified its predi­
cament by setting the "IWRITE"
flag in "ip->i_mode";

7786: Release the lock before going to
sleep;

7787: "i count" is the number of file
table entries pointing at the
"inode". If this is less than
two, then the group of "writers"
must be extinct;

7789: A process waiting for input will
raise the "IREAD" flag. Since a
pipe cannot be full and empty
simultaneously, no more than one
of the flags "IWRITE" or "IREAD"
should be set at one time;

21-1

7799: "prele" unlocks
"wakes up" any
for the pipe.

the file and
process waiting

wr itep (7805)

The structure of this procedure echoes
that of "readp" in many respects.

7828: Note that a "writer", which finds
that there are no more "readers"
left, receives a "signal" just in
case he is not monitoring the
result of his "write" operation.

(A "reader" in the analogous
situation receives a zero charac­
ter count as the result of the
read, and this is the standard
end-of-file indication.)

7835: The "pipe" size is not allowed to
grow beyond "PIPSIZ" characters.
As long as "PIPSIZ" (7715) is no
greater than 4096, the file will
not be converted to a "large"
file. This is highly desirable
from the viewpoint of access
efficiency.

(Note that "PIPSIZ" limits the
"write" offset pointer value. If
the "read" offset pointer is not
far behind, the true content of
the "pipe" may be quite small).

plock (7862)

Lock the "inode" after waiting if
necessary. This procedure is called by
"readp" (7768) and "writep" (7815).

prele (7882)

Unlock the "inode" and "wake" any wait­
ing processes. This procedure is called
by several others (especially "iput"),
in addition to "readp" and "writep".

-000-

Pipes

Section Five is the final section: last
but not least. It is concerned with
input/output for the slower, character
oriented peripheral devices.

Such devices share a common buffer
pool, which is manipulated by a set of
standard procedures.

The set of character oriented peri­
pheral devices are exemplified by the
following:

KL/DLll interactive terminal
PCll paper tape reader/punch
LPll line printer.

UNIX Operating System

CHAPTER TWENTY-TWO

Character Oriented Special Files

Character oriented peripheral devices
are relatively slow (< 1000 characters
per second) and involve character by
character transmission of variable
length, usually short, records.

A device handler (as its name suggests)
is the software part of the interface
between a device and the general sys­
tem. In general, the device handler is
the only part of the software which
recognises the idiosyncrasies of a par­
ticular device.

As far as possible or reasonable, a
single device driver is written to
serve many separate devices of similar

22-1

types, and, where appropriate, several
such devices simultaneously. The group
of "interactive terminals" (with key­
board input and a serial printer or
visual display output) can just be
coerced with difficulty into a single
device driver, as the reader may judge
during his perusal of the file "tty.c".

The standard UNIX device handlers for
character devices make use of the pro­
cedures "putc" and "getc" which store
and retrieve characters into and from a
standard buffer pool. This will be
described in more detail in Chapter
Twenty-Three.

The "PDPII Peripherals Handbook" should
be consulted for more complete informa­
tion on the device controller hardware
and the devices themselves.

LPll Line Printer Driver

This driver is to be found in the file
"lp.c" (Sheets 88, 89). Much of the
complexity of this driver is contained
in the procedure "lpcanon" (8879).
This procedure is involved in the
proper handling of special characters
and this is a separate issue from the
one we wish to study first.

Initially one may ignore "lpcanon" by
assuming that all calls upon it (lines
8859, 8865, 8875) are simply replaced
by similar calls upon "lpoutput"
(8986). "lpcanon" acts as a "final
filter" for characters going to the
line printer: handling code conver­
sions, special format characters, etc.

lpopen (8850)

When a line printer file is opened, the
normal calling sequence is followed:

Character Oriented Special Files

"open" (5774) calls "openl",
which (5832) calls "openi", which
(6716) calls, in the case of a
character special file,
"cdevsw[.. l.d open". In the case
of the line printer, this latter
translates (4675) to "lpopen".

8853: Take the error exit if either
another line printer file is
already open, or if the line
printer is not ready (e.g. the
power is off, or there is no
paper, or the printer drum gate
is open, or the temperature is
too high, or the operator has
switched the printer off-line.)

8857: Set the "lpll.flag" to indicate
that the file is open, the
printer has a "form feed" capa­
bility and lines are to be
indented by eight characters.

Notes

(A). "lpll" is a seven word structure
defined beginning at line 8829. The
first three words of the structure in
fact constitute a structure of type
"clist" (7ge8). Only the first element
is explicitly manipulated in "lp.c".
The next two are used implicitly by
"putc" and "getc".

(B). "flag" is the fourth element of
the structure. The remaining three ele­
ments are

"mee"
"cec"
"mlc"

maximum character count
current character count
maximum line count

(C). The line printer controller has
two registers on the UNIBUS.

Line Printer Status Register (".!J?g")

bit 15 Set when an error condition
exists (see above);

bit 7 "DONE" Set when the printer

UNIX Operating System

bit 6

controller is ready to receive
the next character;

"IENABLE" Set to allow "DONE"
or "Error" to cause an inter­
rupt;

Line Printer Data
("Ipbuf")

Buffer Register

Bits 6 through e hold the seven bit
ASCII code for the character to be
printed. This register is "write only".

8858: Set the "enable interrupts" bit
in the line printer status regis­
ter.

8859: Send a "form feed" (or "new
page") character to the printer,
to ensure that characters which
follow will start on a new page.
(As already noted above, at this
stage we are ignoring "lpcanon"
and assuming line 8859 to be sim­
ply "lpoutput (FORM)". "lpcanon"
does things like suppressing all
but the first "form feed" in a
string of "form feed"s and "new
linens, to avoid wasting paper.);

lpoutput (8986)

This procedure is called with a charac­
ter to be printed, as a parameter.

8988: "lpll.cc" is a count of the
number of characters waiting to
be sent to the line printer. If
this is already large enough
("LPHWAT", 8819), "sleep" for a
while (so as not to flood the
character buffer pool);

89ge: Call "putc" (e967) to store the
character in a safe place. (The
function of "putc" and its com­
panion "getc" is a major topic to
be discussed in Chapter Twenty­
Three.) It should be noted that
no check is made that "putc" was
successful in storinq the charac­
ter. (There may have been no
space in the character buffers.)
In practice there seems to be no

22-2

real problem here, but one can
wonder.

8991: Raise the processor priority suf­
ficiently to inhibit the inter­
rupts from the line printer, call
"lpstart" and then drop the
priority again.

lpstart (8967)

While the line printer is ready, and
while there are still characters stored
away in the "safe place", keep sending
characters to the printer controller.

The presumption is that while the con­
troller is building up a set of charac­
ters for a complete line, the "DONE"
bit will reset faster than the CPU can
feed characters to the controller.

However once a print cycle has been
initiated, the "DONE" bit will not be
reset again for a period of the order
of lee milliseconds (depending on the
speed of the printer).

Note that during this series of data
transfers, interrupts will be inhibited
and so "lpint" will not be getting into
the act whenever the "DONE" bit is set,
except possibly once at the very end
when the processor priority is reduced
again.

lpint (8976)

This procedure is called to handle
interrupts from the line printer. As
mentioned above, most potential inter­
rupts are ignored by the processor.
Those interrupts which are accepted by
the CPU will be associated with either

(a) completion of a print cycle; or

(b) the printer going ready after a
period during which the "Error"
bit was set; or

Character Oriented Special Files

(c) the last transfer in a series of
character transfers;

8980: Start transferring characters
into the printer buffer again:

8981: Wakeup the process waiting to
feed characters to the printer if
the number of characters waiting
to be sent is either zero or
exactly "LPLWAT" (8818).

This latter condition is somewhat puz­
zling in that it will only occasionally
be satisfied. The intention surely is
"if the number of characters in the
list is getting low, start refilling".
However if "lpstart" carries out a
series of transfers without interrup­
tion (at least by "lpint") the number
of characters could go from a value
greater than "LPLWAT" to one less than
this without this test ever being made.
Accordingly the waiting process will
not be awakened until the list is com­
pletely empty. The result could be fre­
quently to delay the initiation of the
next print cycle, and hence to allow
the printer to run below its rated
capacity.

One solution to this problem is to
change entirely the buffering strategy
for line printers. A less drastic
change would involve inventing a new
flag, "lpll.wflag" say, replacing lines
8981, 8982 by something like

if (lpll.cc <= LPLWAT && lpll.wflag)
{ wakeup (&lpll);

Ipll.wflag = 0
}

and replacing line 8989 by

lpll. wflag++;
sleep (&lpll, LPPRI):

lpwrite (8870)

This is the procedure which is invoked
as a result of the "write" system call:

UNIX Operating System

"write n (5722) calls "rdwrn,
which (5755) calls "writein,
which (6287) calls
"cdevsw[•• J.d write n , which
translates (4675) to "lpwrite".

"lpwrite" takes the non-null characters
of a null terminated string recorded in
the user area, and passes them to
"lpoutput" (via "lpcanon n) one at a
time.

lpclose (8863)

The list of procedure calls which leads
to the invocation of this procedure is
similar to that for "lpopen". A "form
feed" character is output to clear the
current page, and the "open" flag is
reset.

Discussion

"lpwrite" is called one or more times
to send a string of characters to the
printer. In turn it calls "lpcanon"
which calls "lpoutput". If at any point
too many characters are stored away,
the process will "sleep" in "lpoutput".
Sooner or later "lpoutput" will con­
tinue, will store the character in a
buffer area, and will then call
"lpstart" to send, if ~ossible, a
string of characters to the printer
controller.

"lpstart"
characters
and when an
is taken.

is called both when more
are available to be sent,
interrupt from the printer

The majority of calls on "lpstart" will
in fact achieve nothing. Occasionally
(usually when the printer has just com­
pleted a print cycle) "lpstart" will be
able to send a whole string of charac­
ters to the printer controller.

22-3

Ipcanon (8879)

This procedure interprets characters
being sent to the line printer and make
various modifications, insertions and
deletions. It thus functions as a
filter.

8884: The section of code from here to
line 8913 is concerned with char­
acter translation when the full
96 character set is not avail­
able, and a 64 character set is
in use.

8885:

8887:

Since the capabilities of a
printer do not usually change
with time, the defined variable
"CAP" (8840) must be set once and
for all (at a particular instal­
lation) .

The run-time test
(lpll. flag &

could be replaced by
time test on

(CAP)

on
CAP)

a compile-

and if the compiler has its
"druthers", if CAP turns out to
be zero, the whole section of
code to line 8913 could be com­
piled down to nothing.

The present code could be said
to plan ahead for a situation
where an installation may have
two or more printers of different
types. Even so there is a basic
inconsistency here in the use of
"CAP", "IND" and "EJECT" on the
one hand, and "EJLINE" ,and "MAX­
COL" on the other. lri fact since
forms of different s±zes are not
uncommonly used on a single
printer, the last two should not
be constants at all, but should
be dynamically settable.

Lower case
translated by
constant, which
defined as "'A'

alphabetics are
the addition of a
is conveniently

- • a 1 II;

Certain of the remaining charac­
ters are special characters which
are printed as a similar charac­
ter with an overprinted minus
sign, e.g. "{" (8889) is printed
as "-t";

Character Oriented Special Files

8909: The "similar" character
via a recursive
"lpcanon", which will
"lpll.ccc" by one as
effect;

is output
calion
increment

a side

8910: Decrement the current character
count (for the same effect as a
"back space" character) and ...

8911: prepare to output a minus sign:

8915: The "switch" statement beginning
here extends to line 8963. Cer­
tain characters involved in vert­
ical and horizontal spacing are
given special interpretations
with delayed actions;

8917: For a horizontal tab character,
round the current character count
up to the next multiple of eight.
Do not output any blank charac­
ters immediately;

8921: For a "form feed" or nne. line"
character, if:

(a) the printer does not have a "page
restore" capability; or

(b) the current line is not empty; or

(c) some lines have been completed
since the last "form feed" char­
acter. then '"

3925: reset "lpll.mcc" to zero;

8926: Increment the
count;

completed line

8927: Convert a "new line" character to
a "form feed" if sufficient lines
have been completed on the
current page, and the printer has
a "form feed" capability;

8929: Output the character, and if it
was a "form feed", reset the
number of completed lines to
zero;

Examination of this code will show
that:

UNIX Operating System

(a) Any string of "form feed"s or
"new linens which begins with a
"form feed", will, if sent to a
printer with "form feed" capa­
bility, be reduced to a single
"form feed";

(b) A "form feed" character sent to
a printer without the "form
feed" capability, will cause a
new line to be started but will
be passed on otherwise without
comment.

8934: For "carriage return"s, and,
note, "form feed"s and "new
linens, reset the current charac­
ter count to zero or eight,
depending on "IND", and return;

8949: For all other characters •••

8950: If a string of "backspaceRs (real
or contrived) and/or "carriage
return"s has been received, out­
put a single "carriage return"
and reset the maximum character
count to zero;

8954: Provided the current character
count does not exceed the maximum
line length, output blank charac­
ters to bring the maximum charac­
ter count to the current charac­
ter count. (Perhaps these two
variables would be more accu­
rately called the "actual charac­
ter count" and the "logical char­
acter count".);

8959: Output the actual character.

For idle readers: A suggestion

It will be observed that backspaces for
overprinting or underscoring characters
introduce separate print cycles, and
where these features are in heavy use,
the effective output rate of the
printer may be drastically reduced. If
this is considered a serious problem,
"lpcanon" could be rewritten to ensure
that no more than two print cycles are

22-4

used per line in such cases.

PC-II paper Tape Reader/Punch Driver

This driver is to be found in the file
"pc.c· on Sheets 86, 87. It is simpler
than the line printer driver in that
there is no routine analogous to
"lpcanon". However it is more compli­
cated in that there is both an input
and an output device which can be
simultaneously and independently
active.

A description of the operation of this
device is included in the document "The
UNIX I/O System" by D. Ritchie. Certain
special features may be noted:

(1). Only one process may open the file
for reading at a time, but there is no
limit on the number of writers;

(2). This routine pays a little more
attention to error conditions than the
line printer driver, but the treatment
is still not exhaustive;

(3). "passc" (8695) knows how many
characters are required and returns a
negative value when "enough" is
reached;

(4). "pcclose" is careful to flush out
any remaining characters in the input
queue if and only if it believes the
device was opened for input.

-000-

Character Oriented Special Files

CHAPTER TWENTY-THREE

Character Handling

Buffering for character special devices
is provided via a set of four word
blocks, each of which provides storage
for six characters. The prototype
storage block is "cblock" (81413) which
incorporates a word pointer (to a simi­
lar structure) along with the six char­
acters.

Structures of type "clist" (79138) which
contain a character counter plus a head
and tail pointer are used as "headers"
for lists of blocks of type "cblock".

"cblock"s which are not in current use
are linked via their head pointers into
a list whose head is the pointer

UNIX Operating System

"cfreelist" (8149). The head pointer
for the last element of the list has
the value "NULL".

A list of "cblock"s provides storage
for a list of characters. The procedure
"putc" may be used to add a character
to the tail of such a list, and "getc",
to remove a character from the head of
such a list.

Figures 23.1 through 23.4 illustrate
the development of a list as characters
are deleted and added.

$.~

g m
h n
i 0'

.14 j :P'
head k q
tail 1 ,r

Figure 23·1

$ $' $

g m
h ' n'
i 0

13 j, P
head k q
tail f ,1 r

Figure 23.~

Initially the list is assumed to con­
tain the fourteen characters
"efghijklmnopqr". Note that the head
and tail pointers point to characters.
If the first character, "e", is removed
by "getc", the situation portrayed in
Figure 23.1 changes to that of Figure
23.2. The character count has been
decremented and the head pointer has
been advanced by one character posi­
tion.

If a further character, "f", is removed
from the head of the list, the

23-1

situation becomes as in Figure ~3.3.
The character count has been decre­
mented; the first "cblock" no longer
contains any useful information and has
been returned to "cfreelist"; and the
head pointer now points to the first
character in the second "cblockn.

$

m
n

i 0

12 j P
head $, k q
tail $ 1 r

Figure 23.3

The question now poses itself: "how is
the difference between the first and
second situations detected so that the
action taken is always appropriate?":

The answer (if you have not already
guessed) involves looking at the value
of the pointer address modulo 8. Since
division by eight is easily performed
on a binary computer, the reason for
the choice of six charac~ers per
"cblock" should now also be apparent.

The addition of a character to the list
is illustrated in the change between
Figure 23.3 and Figure 23.4.

$:$ $1

g m' s
h n
i 0

13 j 'p
!head $ k q
tail $i 1 r

Figure Q.!,

Since thi last "cblock" in Figure 23.3
was' full, a new one has been obtained
from "cfreelist" and linked into the
list of "cblock"s. The character count

Character Handling

and tail pointer have been adjusted
appropriately.

cinit (8234)

This procedure, which is called once by
"main" (1613), links the set of charac­
ter buffers into the free list,
"cfreelist", and counts the number of
character device types.

8239: "ccp" is the address of the first
word in the array "cfree" (8146) I

8240: Round "ccp" up to the next
highest multiple of eight, and
mark out "cblock" sized pieces,
taking care not to exceed the
boundary of "cfree".
Note. In general there will be
"NCLIST 1" (rather than
"NCLIST") blocks so defined;

8241: Set the first word of the
"cblock" to point to the current
head of the free list.
Note that "c next" is defined on
line 8141, -and that the initial
value of "cfreelist" is "NULL".

8242: Update "cfreelist" to point to
the new head of the list;

8244: Count the number of character
device types. Upon reference to
"cdevsw" on Sheet 46, it will be
seen that "nchrdev" will be set
to 16, whereas a more appropriate
value would be 10.

This procedure is called by

flushtty
canon
ttstart
ttread
pcclose

(8258,
(8292)
(8520)
(8544)
(8673)

8259, 8264)
pcread (8688)
pcstart (87l4)
Ips tart (897l)

with a single argument which is
address of a "clist" structure.

the

UNIX Operating System

0931: Copy the parameter to rl and save
the initial processor status word
and value of r2 on the stack;

0934: Set the processor priority to
five (higher than the interrupt
priority of a character device);

0936: rl points to the first word of a
"clist" structure (i.e. a charac­
ter count). Move the second word
of this structure (i.e. a pointer
to the head character) to r2;

0937: If the
pointer
0961;

list is empty
is "NULL") go

(head
to line

0938: Move the head character to r0 and
increment r2 as a side effect;

0939: Mask r0 to get rid of any
extended negative sign;

0940: Store the updated head pointer
back in the "clist" structure.
(This may have to be altered
later.);

0941: Decrement the character count and
if this is still positive, go to
line 0947;

0942:

0947:

The list is
the head
pointers to
0952;

now empty,
and tail

"NULL". Go

so reset
character
to line

Look at the three least signifi­
cant bits of r2. If these are
non-zero, branch to line 0957
(and return to the calling rou­
tine forthwith);

0949: At this point, r2 is pointing at
the next character position
beyond the "cblock". Move the
value stored in the first word of
the "cblock n (i.e. at r2 8) ,
which is the address of the next
"cblock n in the list, to the head
pointer in the "clist". (Note
that rl was incremented as a side
effect at line 094l);

0950: The last value stored
incremented by two

23-2

needs to
(Consult

Figures 23.2 and 23.3);

0952: At this point, a "cblock" deter­
mined by r2 is to be returned to
.. cfreelist.... Either r2 points
into the "cblock" or just beyond
it. Decrement r2 so that r2 will
point into the "cblock";

0953: Reset the three least significant
Dlts of r2, leaving a pointer to
the "cblock";

0954: Link the "cblock" into "cfreel­
ist";

0957: Restore the values of r2 and PS
from the stack and return;

0961: At this point the list is known
to be empty because a "NULL" head
pointer was encountered. Make
sure that the tail pointer is
"NULL" also;

0962: Move -1 to r0 as the result to be
returned when the list is empty.

putc (0967)

This procedure is called by

canon
tty input
ttyoutput
pcrint
pcoutput
lpoutput

(8323)
(8355,8358)
(8414, 8478)
(8730)
(8756)
(8990)

with two arguments: a character and the
address of a "clist" structure.

"getc" and "putc" have related func­
tions and the codes for the two pro­
cedures are similar in many respects.
For this reason the code for "putc"
will not be examined in detail, but is
left for the reader.

It should be noted that "putc" can fail
lL a new ~cblock~ is needed and
"cfreelist" is empty. In this case a
non-zero value (line 1092) is returned

Character Handling

rather than a zero value (line (996).

Note. The procedures "getc n and "pu tc n
discussed here are NOT directly related
to the procedures dISCussed in the Sec­
tions "GETC(III)n and "PUTC(III)" of
the UPM.

Character Sets

UNIX makes use of the full ASCII char­
acter set, which is displayed in Sec­
tion "ASCII(V) " of the UPM. Since
knowledge of this character set is
often assumed without comment, not
always justifiably, some comment here
would seem to be in order.

"ASCII" is an
Standard Code
change" •

acronym for "American
for Information Inter-

Control Characters

The first 32 of the 128 ASCII charac­
ters are non-graphic and are intended
for the control of some aspect of
transmission or display. The control
characters explicitly used or recog­
nised by UNIX are

Numeric Mnemonic
Value

Description

004 eot

010 bs
011 ht
1n2 nl
1n4 np
inS cr
034 fs
040 sp
0177 del

end of transmission
or (control-D)

back space
(horizontal) tab
new line or line feed
new page or form feed
carriage return
file separator or quit
forward space or blank
delete

UNIX
Name

004

010
'\t'
FORM
'\n'
'\r'
CQUIT , ,
CINTR

It will be noted that the last two of
these belong to the last 96 characters,
or the graphic portion, of the code.

UNIX Operating System

Graphic Characters

There are 96 graphic characters. Two of
these, the space and the delete, are
not "visible", and may be classified
with the control characters.

The graphic characters may be divided
into three groups of 32 characters,
which may be roughly characterised as

I. numeric and special characters
II. upper case alphabetic characters
III. lower case alphabetic characters.

Of course, since there are only 26
alphabetic characters, the latter two
groups include some special characters
as well. In particular, the last group
includes the following six non­
alphabetic characters:

140
173
174
175
176
177

reverse apostrophe
left brace
vertical bar
right brace
tilde
delete

Graphic Character Sets

Devices such as line printers or termi­
nals which support all the ASCII
graphic symbols are often-said to sup­
port the 96 ASCII character set (though
there are only 94 graphics actually
involved) •

Devices which support all the ASCII
graphic symbols except those in the
last group of 32, are said to support
the 64 ASCII character set. Such dev­
ices lack the lower case alphabetics
and the symbols listed above, namely
"-II, "{", "I", "}" and II-II. Note that
"delete", since it is not a visible
character, can still be supported.

Devices in this latter group may be
referred to as "upper case only".

23-3

Sometimes some of the graphic symbols
may be non-standard, e.g.","" n instead
of • ", and this can be inconvenient,
though not usually fatal.

UNIX Conventions

UNIX prefers, as the reader is no doubt
well aware, to view the world through
"lower case" spectacles. Alphabetic
characters received from an "upper case
only" terminal are translated
immediately upon receipt from upper
case to lower case. A lower case alpha­
betic may subsequently be translated
back to upper case if it is preceded by
a single backslash. For output to such
a terminal, both upper and lower case
alphabetic characters are mapped to
upper case.

Equivalences for the five "upper case"
special characters are as follows:

character line printer terminal

.L

of
of
t

\'
\(
\1
\)
\A

The conventions for line printers and
terminals are different because:

(a). for line printers, horizontal
alignment is usually important,
and it is possible (without too
much difficulty) to print compo­
site, overstruck characters
(using the minus sign in this
case); and

(b) for terminals, horizontal align­
ment is not considered to be so
important: backspacing to pro­
vide overstruck characters does
not work on most VDUs; and,
since the same graphic conven­
tions are used for both input
and output, the symbols should
be as convenient to type as pos­
sible.

Character Handling

maptab (8117)

This array is used in the translation
of character input from a terminal pre­
ceded by a single backslash, "\".

There are three characters, 004 (eot),
'#' and '@', which always have special
meanings and need to be asserted by a
backslash whenever they are to be
interpreted literally. These three
characters occur in "map tab" in their
"natural" locations (i.e. their loca­
tions in the ASCII table). Thus for
example 'i' has code 043 and

maptab[043] == 043.

The other non-null characters in "map­
tab" are involved in the translation of
input characters from "upper case only"
devices and do not occur in their
"natural" locations but in the location
of their equivalent character, e.g. "I"
occurs in the natural location for "en,
since "\(n will be interpreted as "I",
etc.

Note the situation regarding alphabetic
characters. This is only explicable
when it is remembered that the alpha­
betic characters are all translated to
lower case before any backslash is
recognised.

partab (7947)

This array consists of 256 characters,
like "maptab". Unfortunately the initi­
alisation of "par tab" was omitted from
the UNIX Operating System Source Code
booklet. It is certainly needed, and so
is given now:

UNIX Operating System

char par tab [] {

0001,0201,0201,0001,0201,0001,0001,0201,
0202,0004,0003,0205,0005,0206,0201,0001,
0201,0001,0001,0201,0001,0201,0201,0001,
0001,0201,0201,0001,0201,0001,0001,0201,
0200,0000,0000,0200,0000,0200,0200,0000,
0000,0200,0200,0000,0200,0000,0000,0200,
0000,0200,0200,0000,0200,0000,0000,0200,
0200,0000,0000,0200,0000,0200,0200,0000,
0200,0000,0000,0200,0000,0200,0200,0000,
0000,0200,0200,0000,0200,0000,0000,0200,
0000,0200,0200,0000,0200,0000,0000,0200,
0200,0000,0000,0200,0000,0200,0200,0000,
0000,0200,0200,0000,0200,0000,0000,0200,
0200,0000,0000,0200,0000,0200,0200,0000,
0200,0000,0000,0200,0000,0200,0200,0000,
0000,0200,0200,0000,0200,0000,0000,0201

} ;

Each element of "par tab" is an
bit character, which, with the
appropriate bitmasks (0200 and
can be interpreted as a two part
ture:

parity bit;

eight
use of
0177) ,
struc-

bit 7
bits 3-6
bits 0-2

not used. Always zero;
code number.

The parity bit is appended to the seven
bit ASCII code when a character is
transmitted by the computer, to form an
eight bit code with even parity.

The code number is used by "ttyoutput"
(8426) to classify the character into
one of seven categories for determining
the delay which should ensue before the'
transmission of the next character.
(This is particularly important for
mechanical printers which require time
for the carriage to return from the end
of a line, etc.)

-000-

23-4 Character Handling

CHAPTER TWENTY-FOUR

Interactive Terminals

Our remaining task, to be completed in
this and the following chapter, is to
consider the code which controls
interactive terminals (or "terminals",
for short).

A wide variety of terminals is avail­
able and several different types may be
simultaneously attached to a single
computer. Distinguishing characteris­
tics for different classes of terminal
include (besides such non-essential
features as shape, size and colour):

(~) transmission s~3ed, e.g. 110
baud for an ASR teletype, 300
baud for a DECwriter, 2400 baud
or 9600 baud for a Visual
Display Unit ("VDU");

(£) graphic character set, notably
the full ASCII graphic set and
the 64 graphic subset;

(£) transmission parity: odd, even,
none or inoperative;

UNIX Operating System

(~)

(~)

(!)

output technique: serial printer
or visual display;

miscellaneous: combined carriage
return/line feed character; half
duplex terminal (input charac­
ters do not need echoing);
recognition of tab characters;

characteristic delays for cer­
tain control functions, e.g.
carriage returns may not be com­
pleted within a single character
transmission time, etc.

Interfaces

As well as the wide variety of termi­
nals which are available and in use,
there is also a variety of hardware
devices which may be used to interface
a terminal to a PDP 11 computer. For
example:

DLll/KLll single line, asynchronous
interface; 13 standard
transmission rates between
40 and 9600 baud;

DJl1 16 line, asynchronous, buf­
fered serial line multi­
plexer; 11 speeds between
75 and 9600 baud, select­
able in four line groups;

DHII 16 line, asynchronous, buf­
fered, serial line multi­
plexer; 14 speeds, indivi­
dually selectable; DMA
transmission

Each of the above interfaces will work
in full or half duplex mode; handle 5,
6, 7 or 8 level codes; generate odd,
even or no parity; and generate a stop
code of 1, 1.5 or 2 bits.

In addition to the above asynchronous
interfaces, there are a number of syn­
chronous interfaces, e.g. DQll.

24-1

Each interface has its own control
characteristics and it requires a
separate operating system device
driver. The common code which can be
shared between these is gathered into a
single file "tty.c n , to be found on
Sheets 81 to 85. A set of common defin­
itions is gathered in the file "tty.h"
on Sheet 79.

By way of example, Sheet 80 contains
the file "k1.c", which constitutes the
device driver for a set of DL11/KLll
interfaces. This device driver always
needs to be present, since one KLl1
interface is invariably included in a
system for the the operator's console
terminal.

The '!lY' Structure (7926)

An instance of "tty" is associated with
every terminal port to the system (no
matter what type of hardware interface
is used). A "port" in this context is a
place to attach a terminal line. Hence
a DLII supplies only one port, whereas
a DJl1 supplies up to sixteen ports.

The "tty" structure consists of sixteen
words and includes:

A. t dev
t addr

B. t speeds
t-erase
t-kill
t=flags

C. t rawq
t-canq
t=outq

D. t state
t-delct
t-col
t-char

fixed for a particular
terminal port;

fixed for a particular
terminal. These values may
be set by "stty" and
interrogated by "gtty";

list heads for three char­
acter queues: the so­
called "raw" input,
"cooked" input and the
output queues;

status information which
changes frequently during
normal processing;

Table 24.1

Interactive Terminals

Note

The reader should study the information
on Sheet 79 carefully. Certain items
listed below are not referenced in any
essential way in the selection of code
examined here.

t char
t-speeds
HUPCL
ODDP
EVENP

(7940)
(7941)
(7966)
(7972)
(7973)

Initialisation

NLDELAY
TBDELAY
CRDELAY
WOPEN
ASLEEP

(7974)
(7975)
(7976)
(7985)
(7993)

Initialisation of the "tty" structures
is the responsibility of the various
"open" routines in the device drivers,
for example, "klopen" (8023).

The items in Group
be changed by a
The current values
by a "gtty" system

B of Table 24.1 may
"stty" system call.

may be interrogated
call.

A description of these is contained in
the sections, "STTY(II)" and "GTTY(II)"
of the UPM. These calls are invoked by
the "stty" shell command which is
described in the section "STTY(I)".

Since the "stty" and "gtty" system
calls require a file descriptor as a
parameter, they can only be applied to
an "open" character special file.

The two system calls share a good deal
of common code. We will trace the pro­
gress of an execution of "stty" below
and leave the tracing of a similar exe­
cution of "gtty" to the reader.

This procedure implements the "stty"
system call. It copies three words of
user parameter information into

UNIX Operating System

"u.u arg[.• j" using the parameter sup­
plied as a pointer, and then calls
"sgtty".

~ (8201)

8206: Get a validated pointer to a
"file" array entry;

8209: Check that the file is a "charac-
ter special";

8213: Call the appropriate "d sgtty"
routine for the device type. (See
Sheet 46.)

Note that the "d sgtty" routine is
"nodev" for the li~e printer and paper
tape reader/punch.

klsgtty (8090)

This is an example of a "d sgtty" rou­
tine. It calls "ttystty" passing a
pointer to the appropriate "tty" struc­
ture as a parameter.

ttystty (8577)

A call originating from "stty" will
have a second parameter of zero.

8589: Empty all the queues associated
with the terminal forthwith. They
quite likely contain nonsense;

8591: Reset the speed information (use­
ful in the case of a DHII inter­
face, but of little interest for
the present selection of code);

8592: Reset the "erase" character and
the "kill" character. ("kill"
here denotes "throwaway the
current input line".) Note that
if these characters are changed
away from their normal values of
-.- and "@" respectively, no
corresponding changes are made to
"maptab". Nor should they!);

24-2

8593: Reset the "flags" defining some
relevant terminal characteristics
(see Sheet 79):

flag bit

XTABS 1

LCASE 2

ECHO 3

CRMOD 4

RAW 5

if set .•. ---

the terminal will not inter­
pret horizontal tab characters
correctly;

the terminal supports only the
64 character ASCII subset;

the terminal is operating in
full duplex mode, and input
characters must be echoed
back;

upon input, a "carriage
return" is replaced by a "line
feed"; upon output, a "line
feed" is replaced by a "car-
riage return" and a "line
feed";

input characters are to be
sent to the program exactly as
received, without "erase" or
"kill" processing, or adjust­
ment for backslash characters.

In addition, the following bits are
interrogated by "ttyoutput" (8373) in
choosing the delay which should ensue
after the character indicated is sent,
before sending the next character:

8,9
10,11
12,13

14

line feed;
horizontal tab;
carriage return;
vertical tab or form feed.

The DLll/KLll Terminal Device Handler

The file "kl.c" constitutes the device
handler for terminals connected to the
system via DLll/KLll interfaces. This
group always has at least one member -
the operator's console terminal. Hence
this device handler will always be
present.

Interactive Terminals

Each DLll/KLll hardware controller pro­
vides an asynchronous, serial interface
to connect a single terminal to a PDP
11 system. For more complete details
regarding this interface, the reader
should consult the "PDPII Peripherals
Handbook".

interrupt to be generated
whenever bit 7 is set.)

Transmitter
(kltbuf)

Data Buffer Register

bits 7-0 Transmitted data. Write only.

It will be seen that "klopen· calcu­
lates the correct kernel mode address
(16 bits) for the Receiver Status
Register for each interface, and this
is stored (8e44) into the the At addr"
element of the appropriate "tty" struc­
ture.

Device Registers Interrupt vector Addresses

Each DLll/KLll unit has a group of four
registers occupying four consecutive
words on the UNIBUS. UNIX maps a
structure of type "klregs" (8016) onto
each register group.

Receiver Status Register (klrcsr)

bit 7

bit 6

bit 1

bit 0

Receiver Done. (A character has
been transferred into the
Receiver Data Buffer Regis­
ter.) ;

Receiver
(When
caused
set.) ;

Interrupt Enable.
set, an interrupt is
every time bit 7 is

Data terminal ready;

Reader Enable.
(When set,
cleared.).

write
bit

only.
7 is

Receiver Data Buffer Register (klrbuf)

bit 15 Error indication, when set.

bits 7-0 Received character, Read
only.

Transmitter Status Register (kltcsr)

bit 7

bit 6

Transmitter ready. This is
cleared when data is loaded
into the Transmitter Data
Buffer, and is set when the
latter is ready to receive
another character;

Transmitter
(When

Interrupt Enable.
set, causes an

UNIX Operating System

UNIBUS Addresses

The Receiver Status Register always has
its lowest address starting on a four
word boundary. (The addresses which
follow are all 18 bit octal addresses.)

Receiver
Status

Transmitter
Data

Operator's console 777560 -> 777566

Group Two 776500 -> 776506
776510 -> 776516
------ ------
776670 -> 776676

Group Three 775610 -> 775616
775620 -> 775626
------ ------

776170 -> 776176

Apart from the operator's console
interface which has its own standard
UNIBUS location, the interfaces are
gathered into two groups (for reasons
which are irrelevant here). within
each group, by convention, registers
are allocated in consecutive locations
starting at the lowest address.

Software Considerations

"NKLll" (8011) must be set to define,
for a particular installation, the
number of interfaces in the first two
groups, and "NDLll" (8012), the number
in the third group. Any hardware
alterations which changed the actual
number of interfaces would have to be
reflected in the software by changing
and recompiling "kl.c", and reI inking
the operating system.

24-3

The vector addresses for the first
interface are 060 and 064 (for receiver
and transmitter interrupts, respec­
tively). Additional DLll/KLll inter­
faces have vector addresses which are
always at least e300, and which are
assigned according to rules which take
into consideration other interfaces
which may be present.

The second word of an interrupt doublet
is the "new processor status" word. The
five low order bits of this word may be
chosen arbitrarily, and are in fact
used to define the minor device number
(cf. a similar use to distinguish the
various kinds of "traps" see Sheet
05) • A masked version of the new pro­
cessor status word is provided to the
interrupt handling routines as the
parameter "dev" (see e.g. line 8070).

Source Code

We can now turn to a detailed study of
the code in the files "kl.c" (Sheet 80)
and "tty.c" (Sheets 81 to 85). We
shall look first at "opening" and
"closing" terminals as character spe­
cial files and the handling of inter­
rupts. Then in the next chapter we
shall look at the receipt of data from
the terminal, and finally transmission
of data to the terminal.

"klread" (8062), "klwrite" (8066) and
"klsgtty" (8090) have already been dis­
cussed above.

Interactive Terminals

klopen (8023)

This procedure is called to "open" a
terminal as a character special file.
This call is usually made by the pro­
gram "/etc/init" for each terminal
which is to be active in the system.
Since child processes inherit the open
files of their parents, it is not usu­
ally necessary for other processes to
~open" the device again. It will be
noted that the there is no attempt to
stop two unrelated processes having the
terminal as an open file simultane­
ously.

8026: Check the minor device number;

8030: Locate the
structure;

appropriate "tty"

8031: If ·the process opening the file
has no associated controlling
terminal designate the current
terminal for this role. (Note
that the reference stored is the
address of a "tty" structure.);

8033: Store the terminal device number
in the "tty" structure;

8039: Calculate the address of the
appropriate set of device regis­
ters for the terminal and store
in "t_addr";

8045: If the terminal is not already
"open", do some initialisation of
the "tty· structure

8046: "t state" is set to show the file
is-"open", so that the next three
lines will not be executed if the
file is opened a second time,
possibly undoing the effect of a
"stty" system call;
"t state" is also set to show
"CARR ON" ("carrier on"). This is
a software flag which shows that
the terminal is logically
enabled, regardless of the true
hardware status of the terminal.
If ·CARR ON fi is reset for a ter­
minal, the system should ignore
all input from the terminal.

UNIX Operating System

(This does not seem to be
entirely true, and this point
will be taken up again later.);

8047: The standard terminal is assumed
to be unable to interpret hor­
izontal tabs, to support only the
64 character ASCII subset, to run
in full duplex mode and to
require both "carriage return"
and "line feed" characters to
provide normal "new Line" pro­
cessing. (Could this be a Model
33 teletype?);

8048: The "erase" and "kill" characters
are set according to the UNIX
convention;

8051: The Receiver Control Status
register is initialised with the
pattern "0103" so that the termi­
nal is made ready, reading is
enabled and receiver interrupts
are enabled;

8052: The Transmitter Control Status
register is initialised so that
an interrupt will be generated
whenever the interface is ready
to receive another character.

Note that the "open" routine does not
distinguish between the cases where the
file is opened for reading only, or
writing only, or for both reading and
writing.

klclose (8055)

8057: Find the address of the appropri­
ate "tty" structure in the array
of such structures, "kIll"
(8015) • (This operation may be
observed in all the procedures in
the second column of Sheet 80,
and its relevance should be
noted.) ;

8058: "wflushtty" (8217) allows the
output queue for the terminal to
"drain" and then flushes the
input queue;

24-4

8059i "t state" is reset so that "ISO­
PEi" and "CARR ON" are no longer
true.

klxint (8070)

This procedure is executed in response
to a transmitter interrupt. It should
be compared with "pcpint" (8739) and
"lpint" (8976). Note that the parameter
"dev" is a masked version (low order
five bits preserved) of the "new pro­
cessor status" word in the interrupt
vector. Provided the vector was prop­
erly initialised, the minor device
number will be properly identified.

The second part of the test on line
8074 will be discussed at the end of
the next chapter.

klrint (8078)

This procedure is executed in response
to a receiver interrupt. It is not so
readily compared with "pcrint" (8719)
although similarities certainly exist.

8083: Read the input character from the
Receiver Data Buffer register;

8084: Enable the receiver for the next
character;

8085: The comment says "hardware
botch". Better believe it;

8086: Pass the character to "ttyinput"
to insert it into the appropriate
"raw" input queue.

-000-

Interactive Terminals

CHAPTER TWENTY-FIVE

The File ~tty.c"

In this, the last chapter, the intrica­
cies of interactive terminal handlers
are finally unveiled, including:

(a) the handlihg of the "erase" and
"kill" characters;

(b) the conversion of characters
during input and output for
upper case only terminals;

(c) the insertion of delays after
various special characters such
as "carriage return".

The routines "gtty" (8165), "stty"
(8183), "sgtty" (82"'1) and "ttystty"
(8577) were dealt within the previous
chapter.

UNIX Operating System

flushtty (8252)

The purpose of this procedure is to
"normalise" the queries associated with
a particular terminal. Its effect is
to terminate transmission to the termi­
nal forthwith and to throwaway any
accumulated input characters.

8258: Throwaway everything in
"cooked" input queue;

8259: ditto for the output queue;

the

826"': Wakeup any process waiting to
extract a character from the
"raw" input queue;

8261: ditto for the output queue;

8263: Raise the processor priority to
prevent an interrupt from the
terminal while •••

82~4: the "raw" input queue is flushed,
and

8265: the "delimiter count" is properly
set to zero.

"flush tty" is called by "wflushtty"
(see below) and "ttyinput" (8346,835"')
when either:

(a) the terminal is not operating in
"raw" mode and a "quit" or
"delete" character is received
from the terminal; or

(b) the "raw" input queue has grown
unreasonably large (presumably
because no process is reading
input from the terminal);

wflushtty (8217)

This procedure waits until the queue of
characters for a terminal is empty
(because they"ve all been sent!) and
then calls "flushtty" to clean up the
input queues.

25-1

"wflushtty" is called (8"'58) by
"klclose". This does not happen very
often - in fact only when all files
referencing the terminal are closed
i.e. usually only when the user logs
off.

It is also called by "ttystty" (8589)
just before the terminal environment
parameters are adjusted.

Character Input

For a program requesting input from a
terminal, there is a chain of procedure
calls which extends to "ttread" •.•

ttread (8535)

8541: Check that the
logically active;

terminal is

8543: If there are characters in the
"cooked" input queue or a calion
"canon" (8274) is successful ••.

8544: transfer characters from the
"cooked" input queue until either
it is empty or enough characters
have been transferred to suit the
user's requirements.

This procedure is called by "ttread"
(8543) to transfer characters from the
"raw input queue to the "cooked" input
queue (after processing "erase" and
"kill" characters and, in the case of
upper case only terminals, processing
"escaped" characters, i.e. characters
preceded by the character ','). "canon"
returns a non-zero value if the
"cooked" input queue is no longer
empty.

8284: If the number of
the "raw" input
then •••

The File "tty.c"

delimiters in
queue is zero

8285: if the terminal is logically
inactive, then just return;

8286: otherwise go to "sleep".

Note that delimiters in this context
are characters of all ones (octal value
is 377) and are inserted by "ttyinput"
(8358) •

8291: Set "bp" to point to the third
character of the work array,
"canonb";

8292: Begin a loop (extending to line
8318) which removes one character
from the "raw" queue per cycle;

8293: If the character is a delimiter,
reduce the delimiter count by one
and exit the loop i.e. go to line
8319;

8297: If the terminal is not operating
in "raw" mode '"

8298: If the previous character (note
the "bp[-ll" notation!) was not a
backslash, '\', execute the code
from line 8299 to 8307, otherwise
execute the code beginning at
line 8309.

Previous character was not a backslash

8299: If the character is an "erase"
and .••

8300: if there is at least one charac­
ter to erase, backup the pointer
"bp";

8302: Start on the next cycle of the
loop beginning at line 8292;

8304: If the character is a "kill",
throwaway all the characters
accumulated for the current line,
by going back to line 8290;

8306: If the character is an "eot"
(004) (usually generated at the
terminal as "control-O"), ignore
it (and do not put it into
"canonb") and start on the next

UNIX Operating System

cycle;
(If this character occurs at

the beginning of a line, then
subsequently "ttread" (8544) will
find no characters in the
"cooked" input queue i.e. it will
read a zero length record, which
then leads to the program receiv­
ing the normal "end of file"
indication.)

Previous character was a backslash

8309: If "maptab[cl" is non-zero, and
either "maptab[cl c" or the
terminal is upper case only, then

8310: if the last character but one was
not a backslash ('\'),
replace "c" by "maptab[cl"
back up "bp" (so that
backslash will be erased).

Character ready

then
and
the

8315: Move "c" into the next character
in "canonb", and if this array is
now full, leave the loop.

line completed

8319: At this point, an input line has
been assembled in the array
"canonb";

8322: Shift the contents of "canonb"
into the "cooked" input queue,
and return a "successful" result.

Notes

(A) The reason why "bp" starts (8291)
at the third character of "canonb" can
be found on line 8310.

(B) A number of subtleties in the han­
dling of backslashes (which the reader
will no doubt have encountered in his

25-2

practical use of UNIX) are still not
immediately apparent. Since
"maptab[cl" is zero for "c == '\'"
(octal value of 134), all backslashes
get copied into "canonb". A single
backslash will be subsequently over­
written if the following character is
to be asserted (as in the case of '#'
or '@' or eot (004), or if the case of
an alphabetic character is to be
changed for an upper case only terminal

ttyinput (8333)

"canon" removes characters from the
"raw" input queue. They are put there
in the first place by "ttyinput" which
is called by "klrint" (8087) whenever
an input character is received from the
hardware controller.

The parameters passed to "tty input" are
a character and a reference to a "tty"
structure.

8342: If the character is a "carriage
return" and the terminal operates
with a "carriage return" only
(instead of a "carriage return"
"line feed" pair) change the
character to a "new line";

8344: If the terminal is not operating
in "raw" mode and the character
is a "quit" or "delete" (7958)
then call "signal" (3949) to send
a software interrupt to every
process which has the terminal as
its controlling terminal, flush
all the queues associated with
the terminal, and return;

8349: If the "raw" input queue has
grown excessively large, flush
all the queues for the terminal
and return. (This may seem a
trifle harsh at first sight but
it will usually be what is
required.);

8353: If the terminal has a limited
character set, and the character
is an upper case alphabetic,
translate it into lower case;

The File "tty.c"

8355: Insert the character into the
"raw· input queue:

8356: If the terminal is operating in
"raw· mode, or the character was
a "new line" or neot" then ...

8357: ·wakeup" any process waiting for
input from the terminal, place a
delimiter character (all ones)
also in the "raw· queue and
increment the delimiter count.
Note this is one point where pos­
sible failure of "putc" (when
there is no buffer space) is
explicitly recognised. A failure
occurring here would explain why
the test on line 8316 may some­
times succeed.

8361: Finally, if the input character
is to be echoed i.e. the terminal
is running in full duplex mode,
insert a copy of the character
into the output queue, and and
arrange to have it transmitted
("ttstart") back to the terminal.

Character Output

ttwrite (855~)

This procedure is called via "klwrite"
(8~67) when output is to be sent to the
terminal.

8556: If the terminal is
inactive, do nothing:

logically

8558: Loop for each character to be
transmitted

856~: While there are still an adequate
number of characters queued for
transmission to the terminal ••.

8561: call "ttstart" just in case it is
time to send another character to
the terminal:

8562: Setting the "ASLEEP" flag here
(also in "wflushtty" (8224)) is
rather pointless since it is
never interrogated and never

UNIX Operating System

reset until the file is closed:

8563: Go to sleep. In the meanwhile the
interrupt handler will be drain­
ing characters from the output
queue and sending them down the
line to the terminal:

8566: Call "ttyoutput· to insert the
character in the output queue and
arrange to have it transmitted:

8568: Call "ttstart" again, for luck.

ttstart (85~5)

This procedure is called whenever it
seems reasonable to try and send the
next character to the terminal. It
often achieves nothing useful.

8514: See the comment on line 8499.
This code is not relevant here:

8518: If the controller is not ready
(i.e. bit 7 of the transmitter
status register is not set) or
the necessary delay following the
previous character has not yet
elapsed, do nothing:

852~: Remove a character from the out­
put queue. If DC" is positive,
the queue was not empty (as
expected) •••

8521: If DC" is less than "~177" it is
a character to be transmitted

8522: After setting the parity bit from
the corresponding element of the
array "partab", write "c" to the
transmitter data buffer register
to initiate the hardware opera­
tion:

8524: Otherwise ("c" > ~177) the char­
acter was inserted in the output
queue to signal a delay. Call
"timeout" (3845) to make an entry
in the "callout" list. The
result of this will be to ini­
tiate an execution of "ttrstrt"
(8486) after "c & ~177" clock
ticks. It will be seen that

25-3

"ttrstrtn calls nttstart n again,
and that the manipulation of the
"TIMEOUTn flag (8524, 8491) will
ensure that if another execution
of nttstart" is initiated in the
interim, on behalf of the same
terminal, it will (8518) return
without doing anything.

ttrstrt (8486)

See the comment above for line 8524.

ttyoutput (8373)

This procedure has more comments in the
source code and hence requires less
explanation than some others. Note the
use of recursion (8392) to generate a
string of blanks in place of a tab
character. Other recursive calls are
on lines 84~3 and 8413.

Terminals with ~ restricted character
set

84~~: "colp" points to a string of
pairs of characters. If the char­
acter to be output matches the
second character of ~ny of these
pairs, the character 1S replaced
by a backslash followed by the
first character of the pair.

84~7: Lower case alphabetics are con­
verted to upper case alphabetics
by the addition of a constant.

Note. The conversion here should be
compared with the handling of the
reverse problem on input. Here we have
an algorithm which clearly trades space
(no table analogous to "maptab") for
time (a serial search through the
string on line 84~~). A space conserv­
ing approach could be adopted in
"canon" but the problem is rather more
complicated there.

The File "tty.c·

8414: Insert the character into the
output queue. If perchance,
"putc" fails for lack of buffer
space, don't worry about insert­
ing any subsequent delay, or
updating the system's idea of the
current printing column;

8423: Set "colp" to point to the
nt_col" character of the "tty"
structure, i. e. "*colp" has a
value which is the ordinal number
of the column which has just been
printed;

8424: Set "ctype" to the element of
"par tab" corresponding to the
output character nco;

8425: Clear nco;

8426: Mask out the significant bits of
"ctype" and use the result as the
"switch" index;

8428: (Case 0) The common situation!
Increment nt_col";

8431: (Case 1) Non-printing characters.
This group consists of the first,
third and fourth octet of the
ASCII character set, plus "so"
(016), "sin (017) and "del"
(0177). Don't increment "t_col";

8434: (Case 2) Backspace.
"t col" unless it
zero;

Decrement
is already

8439: (Case 3) Newline. Obviously
"t col" should be set to zero.
The main problem is to calculate
the delay which should ensue
before another character is sent.

For a Model 37 teletype, this
depends on how far the print
mechanism has progressed across
the page. The value chosen is at
least a tenth of a second (six
clock ticks) and may be as much
as ((132/16) + 3) /60 0.19
seconds.

For a VT05, the delay is 0.1
second. For a DECwriter it is
zero because the terminal

UNIX Operating System

incorporates
has a double
print mode;

buffer
speed

8451: (Case 4) Horizontal
the value of bits
nt_flags" to "ctype";

storage and
"catch up"

tab. Assign
10, 11 of

8453: For the only non-trivial case
recognised ("c" == 1 or Model 37
teletype), calculate the the
number of positions to the next
tab stop (via the obscure calcu­
lation of line 8454). If this
turns out to be four columns or
less, take it as zero;

8458: Round "*colp" (Le. the value
pointed to by "colp"!) to the
next multiple of 8 less one;

8459: Increment "*colp" to be an exact
multiple of eight;

8462: (Case 5) vertical Motion. If bit
14 is set in "t flags", make the
delay as long as- possible, i.e.
0177 or 127 clock ticks, i.e.
just over two seconds;

8467: (Case 6) Carriage Return.
the value of bits 12,
"t_flags" to "ctype";

Assign
13 of

8469: For the first class, allow a
delay of five clock ticks;

8472: For the second class, allow a
delay of ten clock ticks;

8475: Set the "*colp" (the last column
pr inted) to zero.

25-4

Before leaving the file "tty.c", there
are two matters which deserve further
examination.

A. The test for 'TTLOWAT' (Line 8074)

On line 8074 in "klxint", a test is
made whether to restart any processes
waiting to send output to the terminal.
The test is successful if the number of
characters is zeio or if it is equal to
"TTLOWAT".

If the number of characters is between
these values, no "wakeup" is performed
until the queue is completely empty,
with the strong likelihood that there
will then be a hiatus in the flow of
output to the terminal. Since tem­
porary interruptions to the flow of
output are quite frequently observed in
practice and represent a source of
occasional irritation if nothing more,
one may reasonably enquire "is there
any way the character count can get
from being greater than "TTLOWAT" to
below it, without this being detected
at line 8074?"

Quite clearly there is, since each call
on "ttstart" can decrement the queue
size, and only one such call is fol­
lowed by the test. Thus if the calIon
"ttstart" from one of "ttrstrt" (8492)
or "ttwrite" (8568) happens to cross
the boundary, a delay will result. The
probability that this will happen is
small, but finite and hence the event
is likely to be observed in any reason­
ably long output sequence.

There are two other situations in which
"ttstart" is called which seem to be
satisfactory. At "ttwrite" (8561) the
queue is at its maximum extent; and at
"ttyinput" (8363) there is a preceding
calIon "ttyoutput" which usually (but
not invariably!) will have added a
character to the output queue.

The File "tty.c·

•

..

~. Inactive Terminals

When the last special f.ile for a termi­
nal is closed, "klclose" (8055) is
called and resets (8059) the "ISOPEN"
and ·CARR ONn flags. However the "read
enable" bit of the receiver control
status register is not reset, so that
incoming characters may still be
received and will be stored away (8087)
in the terminal's "raw" input queue by
nklrint" (8078), and nttyinput" (8333),
which do not test the "CARR ON" flag,
to see if the terminal is logically
connected.

These characters may accumulate for a
long time and clog up the character
buffer storage. Only when the nraw"
input queue reaches 256 characters
("TTYHOG", 8349) will the contents of
this queue be thrown away. It does seem
therefore, that a statement to disable
reader interrupts should be included in
nklclose n before line 8058.

-000-

UNIX Operating System 25-5

well, that'§. all, folks .••

Now that you, oh lo.~g-suffer ing,
exhausted reader have reached this
point, you will have. ,not-roubl,e in.
disposing of the last 'remaining fiie,
Amem.C n (Sheet 9il). And on ·this note,
we end this discussion of the UNIX
Operating System Source Code.

Of course there are lots more device
drivers for your patient examination,
and in truth the whole UNIX Time­
sharing System Source Code has hardly
been scratched. So this is not really

THE END

The File ntty.c n

CHAPTER TWENTY-SIX

Suggested Exercises

Any operating system design involves
many sUbjective and ad hoc judgements
on the part of system's designers. At
many places in the UNIX source code,
you will find yourself wondering "Why
did they do it that way?", "What would
happen if I changed this?"

The following exercises express some of
these questions. Some can be answered
from an examination of the source code
alone after a study in more depth: oth­
ers require some experimental probing
and measurement, for which read-only
access to the file "/dev/kmem" via ter­
minal will prove invaluable: and still
others really require the construction
and testing of experimental versions of
the operating system.

UNIX Operating System

Section One

1.1 Devise changes to "malloc" (2528)
to-implement the Best Fit algorithm.

1.2 Rewrite the procedure "mfree"
(2556) to render its function more
easily discernible by the reader.

1.3 Investigate the adequacy of the
sizes of the arrays "coremap" and
"swapmap" (0203, 0204). How should
"CMAPSIZ" and "SMAPSIZ" change when
"NPROC" is increased?

1.4 Prove that "malloc" and "mfree"
JoIntly solve the memory allocation
problem correctly.

1.5 By monitoring the contents of
"coremap", estimate the efficiency with
which main memory is utilised. Esti­
mate also the cost of compacting "in
use areas" of main memory from time to
time to reduce memory fragmentation.

Hence decide whether it would be
worthwhile to extend the present memory
allocation scheme to include memory
compaction.

l.~ In setting the first six kernel
page description registers, UNIX does
not make use of all the hardware pro­
tection features that are available
e.g. some pages which contain only pure
text could be made read-only. Devise
changes to the code to maximise the use
of the available hardware protection.

1.7 Compile the program
char *init "/etc/init":
main () {
execl (init, init, 0) 1
while (1):
}

and compare the result with the con­
tents of the array "icode" (1516).

1.8 Investigate the size required for
kernel mode stack areas. Hence show

26-1

that the 367 word area which is pro­
vided is adequate.

1.9 If main memory consists of several
Independent memory modules and one of
these, not the last, is down, "main"
will not include memory modules beyond
the one which is down, in the list of
available space in "coremap". Devise
some simple changes to ~main~ to handle
this situation. What other parts of the
system would also need revision?

lollil Rewrite the routines "estabur"
(1650) and "sureg" (1739) so that they
will work as efficiently as possible on
the PDPll/40. How often are these rou­
tines used in practice? Would it really
be worthwhile trying to implement your
improved versions?

~.ll Investigate the overheads involved
ln initiating a new process. Perform a
series of measurements for a set of
different sized programs under dif­
ferent conditions.

1.12 Evaluate the
which is intended
the basis for a
algorithm:

following scheme
by Ken Thompson as

revised scheduling

A number "pH is kept for each pro­
cess, stored as "p cpu". "p" is incre­
mented by one every-clock tick that the
process is found to be executing. "pH
therefore accumulates the CPU usage.
Every second, each value of Up" is
replaced by four fifths of its value
rounded to the nearest integer. This
means that "pH has values which are
bounded by zero and the solution of the
equation { k = 0.8*(k + HZ) } i.e.
4*HZ. Hence if HZ is 50 or 60, and "pH
is integerised, "pH can be stored in
one byte.

1.13 The "procH table is always
searched via a direct linear search. As
the table ·size is increased, the search
overheads also increase. Survey the
alternatives for improving the search
mechanism, when "NPROC" is say 300.

Suggested Exercises

Section Two

1.1 Explain in detail how the system
reacts to a floating point trap which
occurs when the processor is in kernel
mode.

1.1 When a process dies, a "zombie"
record is written to disk, and is sub­
sequently read back by the parent. Dev­
ise a scheme for passing back the
necessary information to the parent
which will avoid the overhead of the
two i/o operations.

2.3 Document "backup" (1012).

2.4 It is relatively easy using the
·shell" to set up a set of asynchronous
processes which will flood your termi­
nal with useless output. Trying to stop
these processes individually can be a
problem, since their identifying
numbers may not be known. Use of the
command "kill 0" is usually an act of
sheer desperation. Devise an alterna­
tive scheme, e.g. based on the use of
messages such as "kill -99", which will
be effective, but more selective.

2.5 Design a form of coroutine jump
whTch will cause control to pass more
efficiently between a program which is
being traced, and its parent.

Section Three

3.1 Rewrite the procedure "sched" to
avoid the use of "goto" statements.

1.1 Modify "sched" so that the text
segment and data segment for a program
will possibly be allocated in separate
main memory areas if a single large
area is not immediately available.

3.3 If the system crashes and must be
Wribooted" the contents of the buffers
which were not written out at the time

UNIX Operating System

of the crash are lost.
However if a core dump is taken,

the contents of the buffers can be
obtained and hence the contents of the
disk can be brought completely up to
date. Outline a detailed plan for car­
rying out this scheme. How effective
do you think it would be?

3.4 Explain why the buffer areas
declared on line 4720 are 514, and not
512, characters long.

3.5 Explain how deadlock situations may
irTse if there are too few "large"
buffers available. What measures can
you suggest to alleviate the problem,
assuming that increasing the number of
buffers is not possible.

Section Four

4.1 Devise a scheme for labelling file
system volumes and checking these
labels when the volumes are mounted.

4.2 Discuss the problems of supporting
ANSI standard labelled tapes under
UNIX, and propose a solution.

4.3 Design a scheme for providing index
sequential access to files.

4.4 The emergence of the "sticky bit"
1s~e "CHMOD(I)" in the UPM) confirms
that there are some residual advantages
in allocating all the space for a file
contiguously. Discuss the merits of
making "contiguous files" more gen­
erally available.

4.5 Devise a technique to measure the
~fficiency of pipes. Apply the tech­
nique and report your results.

4.6 Devise modifications to "pipe.c"
which will make pipes more efficient
according to the following scheme:

26-2

whenever the "read" pointer is greater
than 512, rotate the non-null block
numbers in the "inode" and decrease
both the "read n and "write" pointers by
512.

Section Five

5.1 By monitoring the number of free
buffers or otherwise, determine ,lhether
the number of character buffers pro­
vided at your installation is adequate.

5.2 Perform measurements and/or experi­
ments to determine whether the charac­
ter buffer blocks would be more effi­
ciently utilised if they consisted of
four or eight characters, rather than
six, per block.

5.3 Redesign the line
handle overprinting
more efficiently in
minimising the number

printer driver to
and backspacing
the sense of

of print cycles.

5.4 Document "mmread"
"mmwrite" (9042).

General

(0916)

6.1 The easiest way to vary the
memory space used by the operating
tern is to vary "NBUF". If this is
bidden, propose the best way to:

and

main
sys­
for-

(a) reduce the space required by 500
words;

(b) utilise an additional 500 words.

6.2 Discuss the merits of "C" as a sys­
tems programming language. What
features are missing? or superfluous?

-000-

Suggested Exercises

Procedure Index

Procedure Page Procedure Page Procedure Page

access (6746) 19-4 iput (7344) 29-5 readi (6221) 18-5
al10c (6956) 29-4 issig (3991) 13-3 readp (7758) 21-1
aretu (9734) 8-2 itrunc (7414) 29-4 retu (9749) 8-2

iupdat (7374) 29-5 rexit (3295) 13-4
bawrite (4856) 17-3 rkaddr (5429) 16-2
bdwrite (4836) 17-3 kill (3639) 13-2 rkintr (5451) 16-2
bflush (5229) 17-3 klclose (8955) 24-4 rkstrategy (5389) 16-2
binit (5955) 17-2 klopen (8923) 24-4
bmap (6415) 18-6 klrint (8978) 24-4 savu (9725) 8-2
bread (4754) 17-3 klsgtty (8999) 24-2 sbreak (3354) 12-4
breada (4773) 17-3 klxint (8979) 24-4 sched (1949) 6-4

~ brelse (4869) 17-2 sched (19411l) 14-2
bwrite (4899) 17-3 link (5999) 19-3 setpri (2156) 8-2

Ipcanon (8879) 22-3 setrun (2134) 8-3
call (9776) 19-2 Ipclose (8863) 22-3 sgtty (8291) 24-2
canon (8274) 25-1 Ipint (8976) 22-2 signal (3949) 13-3
cinit (8234) 23-2 Ipopen (8859) 22-1 sleep (2966) 6-4
clock (3725) 11-1 Ipoutput (8986) 22-2 sleep (2966) 8-3
close (5846) 18-3 Ips tart (8967) 22-2 smount (6986) 29-2
closef (6643) 18-4 Ipwrite (88711l) 22-3 ssig (3614) 13-2
clrbuf (5938) 17-1 start (9612) 6-1
core (4994) 13-3 main (15513) 6-2 stop (4916) 13-5
creat (5781) 18-3 main revisited 6-5 stty (8183) 24-2

maknode (7455) 19-4 sumount (6144) 29-4
deverror (2447) 5-6 mal10c (2528) 5-2 sureg (1739) 7-4
devstart (5996) 16-2 map tab (8117) 23-4 swap (5196) 15-2
devtab (4551) 15-1 mfree (2556) 5-3 swtch (2178) 6-4

mknod (5952) 19-4 swtch revisited 8-4
estabur (1650) 7-4 swtch (2178) 8-2
exec (39211l) 12-3 namei (7518) 19-1
exit (3219) 13-4 newproc (1826) 7-5 timeout (3845) 11-2
expand (2268) 8-3 trap (2693) 12-1

open (5763) 18-3 ttread (8535) 25-1
file (5597) 18-2 openl (5894) 18-3 ttrstrt (8486) 25-3
flushtty (8252) 25-1 open 1 revisited 18-3 ttstart (8595) 25-3
fork (3322) 12-4 ttwrite (85511l) 25-3
free (71399) 29-5 panic (2419) 5-5 tty input (8333) 25-2
fuibyte (9814) 19-1 par tab (7947) 23-4 ttyoutput (8373) 25-3
fuiword (1Il844) 19-1 physio (5259) 17-3 ttystty (8577) 24-2

pipe (7723) 21-1
getblk (4921) 17-1 plock (7862) 21-1 unlink (3519) 19-4
getc (9939) 23-2 prdev (2433) 5-6 update (7291) 29-3
getfs (7167) 29-3 prele (7882) 21-1
grow (4136) 13-3 printf (23411l) 5-3 wait (3279) 13-5

• printn (2369) 5-4 wait (3279) 13-4
ifree (7134) 211l-5 procxmt (4294) 13-6 wakeup (2113) 8-3
iget (7276) 29-2 psig (4943) 13-3 wdir (7477) 19-3
iinit (6922) 20-2 psignal (3963) 13-3 wflushtty (8217) 25-1
incore (4899) 17-1 ptrace (4164) 13-5 writep (7805) 21-1
inode (5659) 18-2 putc (0967) 23-2
iodone (5918) 16-2 putchar (2386) 5-4 xalloc (4433) 14-3
iomove (6364) 18-6 xfree (4398) 14-3
iput (7344) 18-4 rdwr (5731) 18-5 xswap (4368) 14-3

Source Code Line Index Page 1

Line Page Line Page Line Page Line Page Line Page

9512 19-1 fuiword 0844 1I~-1 1615 6-3 sched 1940 14-2 2189 8-2
0518 10-3 0846 10-1 1627 6-4 1958 6-4 2193 6-4
0570 10-2 0848 19-1 1627 6-5 1958 14-2 2193 8-2

0852 10-1 1628 6-5 1960 6-4 2195 8-2
start 0612 6-1 0853 10-1 1629 6-5 1966 6-4 2196 8-2

0613 6-1 0854 10-1 1630 6-5 1966 14-2 2201 6-4
• 0615 6-1 0855 19-1 1635 6-5 1968 6-4 2218 6-4

0619 6-1 0856 10-1 1637 6-4 1976 14-2 2224 8-2
0632 6-2 0857 10-1 1982 14-2 2228 6-5
0634 6-2 0876 19-1 estabur 1650 7-4 1990 14-2 2228 8-2 • 0641 6-2 0878 10-1 1654 7-4 21:'03 14-2 2228 8-4
0646 6-2 0880 10-2 1664 7-4 2005 14-2 2229 6-5
0647 6-2 1667 7-4 2013 14-2 2229 8-2
0649 6-2 getc 9930 23-2 1672 7-4 2022 14-2 2230 8-2
0668 6-2 9931 23-2 1677 7-4 2932 14-2 2240 6-5
0669 6-2 9934 23-2 1682 7-4 2042 14-2 2249 8-4

9936 23-2 1703 7-4 2944 14-2 2242 8-4
savu 0725 8-2 0937 23-2 1711 7-4 2247 6-5

9938 23-2 1714 7-4 sleep 2066 6-4 2247 8-2
aretu 0734 8-2 0939 23-2

0940 23-2 sureg 1739 7-4 sleep 2066 8-3 expand 2268 8-3
retu 0749 8-2 0941 23-2 1743 7-5 2079 6-4 2277 8-3

0942 23-2 1744 7-5 2970 8-3 2281 8-3
9756 10-1 0947 23-2 1752 7-5 2071 6-4 2283 8-3
9756 10-3 9949 23-2 1754 7-5 2072 6-4 2284 8-4
9757 10-1 0959 23-2 1762 7-5 2072 8-3 2285 8-4
0757 10-3 9952 23-2 2075 8-3 2286 8-4
0759 10-3 9953 23-2 newproc 1826 7-5 2989 8-3 2287 8-4
0762 19-3 0954 23-2 1841 7-5 2084 8-3
0765 10-2 0957 23-2 1846 7-5 2087 8-3 printf 2340 5-3
0766 19-2 9961 23-2 1860 7-5 2093 6-4 2341 5-4
0767 10-2 0962 23-2 1861 7-5 2346 5-4
0772 10-3 1876 7-5 wakeup 2113 8-3 234.8 5-4
9773 10-3 putc 0967 23-2 1879 7-5 2349 5-4
0774 10-3 1883 7-5 setrun 2134 8-3 2350 5-4

1421 10-3 1889 7-5 2149 8-3 2351 5-4
call 0776 19-2 1422 10-3 1890 7-5 2141 8-3 2353 5-4

0777 10-2 1896 7-5 2143 8-3 2354 5-4
9779 10-2 main 1550 6-2 1992 7-5 2356 5-4
0789 10-2 1903 7-5 setpri 2156 8-2 2361 5-4
0781 10-2 main 1559 6-5 1904 7-5 2161 8-2 2362 5-4
0783 10-2 1559 6-2 1905 7-5 2165 8-3
0788 10-2 1569 6-2 1996 7-5 printn 2369 5-4

• 0799 10-2 1562 6-2 1997 7-5 swtch 2178 6-4 2375 5-4
0800 10-2 1582 6-3 1908 7-5
0802 10-2 1583 6-3 1913 7-5 swtch 2178 8-2 putchar 2386 5-4
0803 10-2 1589 6-3 1917 7-5 2391 5-4
0804 10-2 1599 6-3 1918 7-5 swtch 2178 8-4 2393 5-5
0805 19-2 1697 6-3 2184 6-4 2395 5-5

1613 6-3 sched 1940 6-4 2184 8-2 2397 5-5
fuibyte 9814 10-1 1614 6-3 2189 6-4 2398 5-5

Source Code Line Index Page 2

Line Page Line Page Line Page Line Page Line Page

2399 5-5 2776 12-3 3301 13-5 3801 11-2 4168 13-5
2400 5-5 2793 12-1 3302 13-5 3803 11-2 4172 13-6
2405 5-5 2794 12-2 3303 13-5 3804 11-2 4181 13-6
2406 5-5 2796 12-2 3309 13-5 3806 11-2 4183 13-6

2810 12-2 3313 13-4 3810 11-2 4187 13-6
panic 2419 5-5 2818 12-2 3820 11-2 4188 13-6 •

2420 5-5 2821 12-2 fork 3322 12-4 3824 11-2 4189 13-6
2421 5-5 2822 12-2 3335 12-4 4191 13-6
2422 5-5 2823 12-2 3344 12-4 timeout 3845 11-2

procxmt 4204 13-6
prdev 2433 5-6 exec 3020 12-3 sbreak 3354 12-4 signal 3949 13-3 4209 13-6

3034 12-3 3364 12-4 4211 13-6
deverror 2447 5-6 3037 12-3 3371 12-4 psignal 3963 13-3

3040 12-3 3376 12-4 3966 13-3 xswap 4368 14-3
malloc 2528 5-2 3041 12-3 3386 12-4 3971 13-3 4373 14-3

2534 5-2 3052 12-3 3973 13-3 4375 14-3
2535 5-2 3064 12-3 unlink 3510 19-4 3975 13-3 4378 14-3
2536 5-2 3071 12-3 3515 19-4 4379 14-3
2537 5-2 3090 12-3 3518 19-4 issig 3991 13-3 4382 14-3
2538 5-2 3095 12-3 3519 19-4 3997 13-3 4388 14-3
2539 5-2 3105 12-3 3522 19-4 3998 13-3
2542 5-2 3127 12-3 3528 19-4 4000 13-3 xfree 4398 14-3
2543 5-2 3129 12-4 3529 19-4 4003 13-3 4402 14-3

3130 12-4 4006 13-3 4403 14-3
mfree 2556 5-3 3158 12-4 ssig 3614 13-2 4406 14-3

2564 5-3 3186 12-4 3619 13-2 stop 4016 13-5 4408 14-3
2565 5-3 3194 12-4 3623 13-2 4022 13-5 4411 14-3
2566 5-3 3195 12-4 3624 13-2 4023 13-5
2567 5-3 3196 12-4 3625 13-2 4028 13-5 xal10c 4433 14-3
2568 5-3 4029 13-5 4439 14-3
2569 5-3 rexit 3205 13-4 kill 3630 13-2 4441 14-3
2576 5-3 3637 13-2 psig 4043 13-3 4452 14-3
2579 5-3 exit 3219 13-4 3639 13-2 4054 13-3 4459 14-3

3224 13-4 3649 13-2 4055 13-3 4460 14-3
trap 2693 12-1 3225 13-4 4056 13-3 4461 14-3

2698 12-1 3227 13-4 clock 3725 11-1 4057 13-3 4462 14-3
2700 12-1 3232 13-4 3741il 11-1 41il66 13-3 4463 14-3
2701 12-1 3233 13-4 3743 11-1 4079 13-3 4464 14-3
2702 12-1 3234 13-4 3748 11-1 4080 13-3 4467 14-3
2716 12-1 3237 13-4 3750 11-1 4473 14-3
2719 12-1 3238 13-4 3759 11-1 core 4094 13-3 4475 14-3
2721 12-2 3239 13-4 3766 11-1
2723 12-2 3241 13-4 3767 11-1 grow 4136 13-3 devtab 4551 15-1 • 2733 12-2 3243 13-4 3773 11-1 4141 13-3
2752 12-2 3245 13-4 3787 11-1 4143 13-3 bread 4754 17-3
2754 12-2 3788 11-1 4144 13-3
2755 12-3 wait 3271il 13-4 3792 11-1 4146 13-4 breada 4773 17-3
2760 12-3 3277 13-4 3795 11-2 4148 13-4 4780 17-3
2765 12-3 3280 13-4 3797 11-2 4156 13-4 4781 17-3
2770 12-3 3298 13-4 3798 11-2 4788 17-3
2771 12-3 3300 13-4 3800 11-2 ptrace 4164 13-5 4793 17-3

Source Code Line Index Page 3

Line Page Line Page Line Page Line Page Line Page

4798 17-3 5397 16-2 5917 19-3 6318 18-6 7916 20-5
4803 17-3 5399 16-2 5921 19-3 7919 23-5

5437 16-2 5926 19-3 iomove 6364 18-6 UJ25 23-5
bwrite 4839 17-3 5414 16-2 5927 19-3

4823 17-3 5933 19-3 bmap 6415 18-6 ifree 7134 23-5
4823 17-3 rkaddr 5423 16-2 5935 19-3 6423 18-6

5943 19-3 6427 18-6 getfs 7167 23-3
bdwrite 4836 17-3 rkintr 5451 16-2 5941 19-3 6431 18-6

4844 17-3 5455 16-2 6435 18-6 update 7231 23-3
4847 17-3 5459 16-2 mknod 5952 19-4 6438 18-6 7237 23-3

5463 16-2 6442 18-6 7213 23-3
bawrite 4856 17-3 5461 16-2 smount 6086 23-2 6448 18-6 7211 23-3

5462 16-2 6393 23-2 6456 18-6 7213 23-3
bre1se 4869 17-2 5463 16-2 6396 23-2 7217 23-3

5469 16-2 6103 23-2 c10sef 6643 18-4 7223 23-3
incore 4899 17-1 5472 16-2 6133 23-2 6649 18-4 7229 23-3

6111 23-2 6655 18-4 7233 20-3
getb1k 4921 17-1 file 5537 18-2 6113 23-2 6657 18-4

4943 17-2 6116 23-2 iget 7276 20-2
4953 17-2 inode 5659 18-2 6124 23-2 access 6746 19-4 7285 23-2
4963 17-2 6133 23-2 6753 19-4 7286 20-3
4966 17-2 rdwr 5731 18-5 6763 19-4 7287 23-3
4967 17-2 5736 18-5 sumount 6144 23-4 6769 19-4 7290 20-3

5739 18-5 6154 23-4 6774 19-4 7292 20-3
iodone 5018 16-2 5743 18-5 6161 20-4 7293 20-3

5746 18-5 6168 20-4 iinit 6922 20-2 7302 23-3
c1rbuf 5038 17-1 5755 18-5 6926 23-2 7336 23-3

5756 18-5 readi 6221 18-5 6931 23-2 7339 23-3
binit 5055 17-2 6233 18-5 6933 23-2 7314 23-3

open 5763 18-3 6232 18-5 6936 20-2 7319 23-3
devstart 5396 16-2 6233 18-5 6938 23-2 7326 23-3

creat 5781 18-3 6238 18-5 6939 23-2 7328 23-3
swap 5196 15-2 5786 18-3 6239 18-5

5233 15-2 5787 18-3 6243 18-5 a110c 6956 23-4 iput 7344 18-4
5232 15-2 5788 18-3 6241 18-5 6961 23-4
5236 15-2 5793 18-3 6242 18-5 6962 23-4 iput 7344 23-5
5237 15-2 6243 18-5 6967 20-4 7353 18-4
5238 15-2 open1 5834 18-3 6246 18-5 6968 23-4 7352 18-4
5213 15-2 5812 18-3 6248 18-5 6970 23-4 7357 18-4
5212 15-2 5813 18-3 6253 18-5 6971 20-4 7358 18-4
5213 15-2 5824 18-3 6251 18-5 6972 23-4
5214 15-2 5826 18-3 6252 18-5 6975 23-4 iupdat 7374 23-5
5216 15-2 5827 18-3 6253 18-5 6978 23-4 7383 23-5
5218 15-2 5831 18-3 6255 18-5 6982 23-4 7386 23-5
5219 15-2 5832 18-3 6256 18-5 6983 23-4 7389 23-5

5839 18-3 6258 18-5 7391 23-5

"
bflush 5229 17-3 6263 18-6 free 7333 23-5 7396 23-3

close 5846 18-3 6261 18-6 7335 23-5 7396 23-5
physio 5259 17-3 6303 18-6 7336 23-5 7433 23-5

link 5939 19-3 6311 18-6 7013 20-5
rkstrategy 5389 16-2 5914 19-3 6312 18-6 7014 23-5 itrunc 7414 23-4

Source Code Line Index Page 4

Line Page Line Page Line Page Line page Line Page

7421 2t:!-4 7799 21-1 cinit 8234 23-2 8424 25-4 8858 22-2
7423 2t:!-4 8239 23-2 8425 25-4 8859 22-2
7425 2t:!-4 writep 78t:!5 21-1 824t:! 23-2 8426 25-4
7427 2t:!-5 7828 21-1 8241 23-2 8428 25-4 Ipc10se 8863 22-3
7438 20-5 7835 21-1 8242 23-2 8431 25-4
7439 2t:!-5 8244 23-2 8434 25-4 1pwrite 8870 22-3
7443 20-5 plock 7862 21-1 8439 25-4
7445 2t:!-5 flushtty 8252 25-1 8451 25-4 1pcanon 8879 22-3

pre1e 7882 21-1 8258 25-1 8453 25-4 8884 22-3
maknode 7455 19-4 8259 25-1 8458 25-4 8885 22-3

par tab 7947 23-4 826t:! 25-1 8459 25-4 8887 22-3
wdir 7477 19-3 8261 25-1 8462 25-4 8909 22-4

k10pen 8923 24-4 8263 25-1 8467 25-4 8919 22-4
namei 7518 1"9-1 8926 24-4 8264 25-1 8469 25-4 8911 22-4

7531 19-1 893t:! 24-4 8265 25-1 8472 25-4 8915 22-4
7532 19-1 8931 24-4 8475 25-4 8917 22-4
7534 19-2 8t:!33 24-4 canon 8274 25-1 8921 22-4
7535 19-2 8939 24-4 8284 25-1 ttrstrt 8486 25-3 8925 22-4
7537 19-2 8945 24-4 8285 25-2 8926 22-4
7542 19-2 8946 24-4 8286 25-2 ttstart 85t:!5 25-3 8927 22-4
755t:! 19-2 8t:!47 24-4 8291 25-2 8514 25-3 8929 22-4
7563 19-2 8t:!48 24-4 8292 25-2 8518 25-3 8934 22-4
757t:! 19-2 8051 24-4 8293 25-2 852t:! 25-3 8949 22-4
7589 19-2 8t:!52 24-4 8297 25-2 8521 25-3 895t:! 22-4
7592 19-2 8298 25-2 8522 25-3 8954 22-4
7699 19-2 k1close 8955 24-4 8299 25-2 8524 25-3 8959 22-4
7606 19-2 8t:!57 24"':4 8300 25-2
76t:!7 19-2 8058 24-4 8392 25-2 ttr:ead 8535 25-1 1pstart 8967 22-2
7622 19-2 8959 24-4 8394 25-2 8541 25-1
7636 19-2 8396 25-2 8543 25-1 Ipint 8976- 22-2
7645 19-2 klxint 8979 24-4 8399 25-2 8544 25-1 8989 22-3
7647 19-2 83HJ 25-2 8981 22-3
7657 19-2 klrint 8978 24-4 8315 25-2 ttwrite 855t:! 25-3
7662 19-2 8983 24-4 8319 25-2 8556 25-3 Ipoutput 8986 22-2
7664 19-2 8984 24-4 8322 25-2 8558 25-3 8988 22-2
7665 19-2 8985 24-4 856t:! 25-3 899t:! 22-2

8986 24-4 ttyinput 8333 25-2 8561 25-3 8991 22-2
pipe 7723 21-1 8342 25-2 8562 25-3

7728 21-1 klsgtty 8099 24-2 8344 25-2 8563 25-3
7731 21-1 8349 25-2 8566 25-3
7736 21-1 map tab 8117 23-4 8353 2·5-3 8568 25-3
7744 21-1 8355 25-3
7746 21-1 stty 8183 24-2 8356 25-3 ttystty 8577 24-2

8357 25-3 8589 24-2
readp 7758 21-1 sgtty 8201 24-2 8361 25-3 8591 24-2

7763 21-1 8286 24-2 8592 24-2
7768 21-1 8209 24-2 ttyoutput 8373 25-3 8593 24-2 ,.
7776- 21-1 8213 24-2 8488 25-3
7786 21-1 8487 25-3 1popen 885H 22-1
7787 21-1 wflushtty 8217 25-1 8414 25-4 8853 22-2
7789 21-1 8423 25-4 8857 22-2

