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Introduction to this Guide 

This document provides information to developers on the use of the 
STREAMS mechanism at user and kernel levels. 

STREAMS was incorporated in UNIX System V Release 3 to augment 
the existing character input/output (I/O) mechanism and to support 
development of communication services. The STREAMS Programmer's Guide 
includes detailed information, with various examples, on the development 
methods and design philosophy of all aspects of STREAMS. 

This guide is organized into two parts. Part 1: Applications Program­
ming, describes the development of user level applications. Part 2: Module 
and Driver Programming, describes the STREAMS kernel facilities for 
development of modules and drivers. Although chapter numbers are con­
secutive, the two parts are independent. Working knowledge of the 
STREAMS Primer is assumed. 
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STREAMS Overview 

This section reviews the STREAMS mechanism. STREAMS is a general, 
flexible facility and a set of tools for development of UNIX system commun­
ication services. It supports the implementation of services ranging from 
complete networking protocol suites to individual device drivers. 
STREAMS defines standard interfaces for character input/output within the 
kernel, and between the kernel and the rest of the UNIX system. The asso­
ciated mechanism is simple and open-ended. It consists of a set of system 
calls, kernel resources and kernel routines. 

The standard interface and mechanism enable modular, portable 
development and easy integration of higher performance network services 
and their components. STREAMS provides a framework: It does not 
impose any specific network architecture. The STREAMS user interface is 
upwardly compatible with the character I/O user interface, and both user 
interfaces are available in UNIX System V Release 3 and subsequent 
releases. 

A Stream is a full-duplex processing and data transfer path between a 
STREAMS driver in kernel space and a process in user space (see Figure 1). 
In the kernel, a Stream is constructed by linking a stream head, a driver and 
zero or more modules between the stream head and driver. The Stream 
head is the end of the Stream closest to the user process. Throughout this 
guide, the word "STREAMS" will refer to the mechanism and the word 
"Stream" will refer to the path between a user and a driver. 

A STREAMS driver may be a device driver that provides the services of 
an external I/O device, or a software driver, commonly referred to as a 
pseudo-device driver, that performs functions internal to a Stream. The 
Stream head provides the interface between the Stream and user processes. 
Its principal function is to process STREAMS-related user system calls. 

Data are passed between a driver and the Stream head in messages. 
Messages that are passed from the Stream head toward the driver are said to 
travel downstream. Similarly, messages passed in the other direction travel 
upstream. The Stream head transfers data between the data space of a user 
process and STREAMS kernel data space. Data to be sent to a driver from a 
user process are packaged into STREAMS messages and passed downstream. 
When a message containing data arrives at the Stream head from down­
stream, the message is processed by the Stream head, which copies the data 
into user buffers. 
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Within a Stream, messages are distinguished by a type indicator. Cer­
tain message types sent upstream may cause the Stream head to perform 
specific actions, such as sending a signal to a user process. Other message 
types are intended to carry information within a Stream and are not directly 
seen by a user process. 
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STREAMS Overview 

One or more kernel-resident modules may be inserted into a Stream 
between the Stream head and driver to perform intermediate processing of 
data as it passes between the Stream head and driver. STREAMS modules 
are dynamically interconnected in a Stream by a user process. No kernel 
programming, assembly, or link editing is required to create the intercon­
nection. 
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Development Facilities 

General and STREAMS-specific system calls provide the user level facili­
ties required to implement application programs. This system call interface 
is upwardly compatible with the character I/O facilities. The open(2) sys­
tem call will recognize a STREAMS file and create a Stream to the specified 
driver. A user process can receive and send data on STREAMS files using 
read(2) and write(2) in the same manner as with character files. The ioctl(2) 
system call enables users to perform functions specific to a particular device 
and a set of generic STREAMS ioctl commands [see streamio(7)] support a 
variety of functions for accessing and controlling Streams. A close(2) will 
dismantle a Stream. 

In addition to the generic ioctl commands, there are STREAMS-specific 
system calls to support unique STREAMS facilities. The poll(2) system call 
enables a user to poll multiple Streams for various events. The putmsg(2) 
and getmsg(2) system calls enable users to send and receive STREAMS mes­
sages, and are suitable for interacting with STREAMS modules and drivers 
through a service interface. 

STREAMS provides kernel facilities and utilities to support development 
of modules and drivers. The Stream head handles most system calls so that 
the related processing does not have to be incorporated in a module and 
driver. The configuration mechanism allows modules and drivers to be 
incorporated into the system. 

Examples are used throughout both parts of this document to highlight 
the most important and common capabilities of STREAMS. The descriptions 
are not meant to be exhaustive. For simplicity, the examples reference 
fictional drivers and modules. 

Appendix C provides the reference for STREAMS kernel utilities. 
STREAMS system calls are specified in Section 2 of the Programmer's Refer­
ence Manual. STREAMS utilities are specified in Section 1M of the System 
Administrator's Reference Manual. STREAMS-specific ioctl calls are specified 
in streamio(7) of the System Administrator's Reference Manual. The modules 
and drivers available with UNIX System V Release 3 are described in Sec­
tion 7 of the System Administrator's Reference Manual. 
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Introduction to Part 1 

Part 1 of the guide, Application Programming, provides detailed infor­
mation, with various examples, on the user interface to STREAMS facilities. 
It is intended for application programmers writing to the STREAMS system 
call interface. Working knowledge of UNIX system user programming, data 
communication facilities, and the STREAMS Primer is assumed. The organi­
zation of Part 1 is as follows: 

• Chapter 1, Basic Operations, describes the basic operations available 
for constructing, using, and dismantling Streams. These operations 
are performed using open(2), close(2), read(2), write(2), and ioctl(2). 

• Chapter 2, Advanced Operations, presents advanced facilities pro­
vided by STREAMS, including: poll(2), a user level I/O polling facil­
ity; asynchronous I/O processing support; and a new facility for sam­
pling drivers for available resources. 

• Chapter 3, Multiplexed Streams, describes the construction of sophis­
ticated, multiplexed Stream configurations. 

• Chapter 4, Message Handling, describes how users can process 
STREAMS messages using putmsg(2) and getmsg(2) in the context of 
a service interface example. 
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A Simple Stream 

This chapter describes the basic set of operations for manipulating 
STREAMS entities. 

A STREAMS driver is similar to a character I/O driver in that it has one 
or more nodes associated with it in the file system and it is accessed using 
the open system call. Typically, each file system node corresponds to a 
separate minor device for that driver. Opening different minor devices of a 
driver will cause separate Streams to be connected between a user process 
and the driver. The file descriptor returned by the open call is used for 
further access to the Stream. If the same minor device is opened more than 
once, only one Stream will be created; the first open call will create the 
Stream, and subsequent open calls will return a file deSCriptor that refer­
ences that Stream. Each process that opens the same minor device will 
share the same Stream to the device driver. 

Once a device is opened, a user process can send data to the device 
using the write system call and receive data from the device using the read 
system call. Access to STREAMS drivers using read and write is compatible 
with the character I/O mechanism. 

The close system call will close a device and dismantle the associated 
Stream. 

The following example shows how a simple Stream is used. In the 
example, the user program interacts with a generic communications device 
that provides point-to-point data transfer between two computers. Data 
written to the device is transmitted over the communications line, and data 
arriving on the line can be retrieved by reading it from the device. 
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A Simple Stream 

#include <fcntl.11> 

main ( ) 
{ 

char bJf[ 1024]; 

int fd, count; 

if ((fd = open("/dev/ccmn01", o_~)) < 0) 
perror( "open failed"); 
exit( 1); 

while ((count = read(fd, bJf, 1024)) > 0) 
if (write (fd, buf, count) 1= c:oont) { 

perror("write failed"); 

break; 

exit(O) ; 

In the example, I dev I commOl identifies a minor device of the commun­
ications device driver. When this file is opened, the system recognizes the 
device as a STREAMS device and connects a Stream to the driver. Figure I­
I shows the state of the Stream following the call to open. 
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Figure 1-1: Stream to Communications Driver 

This example illustrates a user reading data from the communications 
device and then writing the input back out to the same device. In short, 
this program echoes all input back over the communications line. The 
example assumes that a user is sending data from the other side of the com­
munications line. The program reads up to 1024 bytes at a time, and then 
writes the number of bytes just read. 

The read call returns the available data, which may contain fewer than 
1024 bytes. If no data are currently available at the Stream head, the read 
call blocks until data arrive. 

Similarly, the write call attempts to send count bytes to /dev/commOl. 
However, STREAMS implements a flow control mechanism that prevents a 
user from flooding a device driver with data, thereby exhausting system 
resources. If the Stream exerts flow control on the user, the write call 
blocks until the flow control has been relaxed. The call will not return 
until it has sent count bytes to the device. exit(2) is called to terminate the 
user process. This system call also closes all open files, thereby dismantling 
the Stream in this example. 
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Inserting Modules 

An advantage of STREAMS over the existing character I/O mechanism 
stems from the ability to insert various modules into a Stream to process 
and manipulate data that passes between a user process and the driver. The 
following example extends the previous communications device echoing 
example by inserting a module in the Stream to change the case of certain 
alphabetic characters. The case converter module is passed an input string 
and an output string by the user. Any incoming data (from the driver) is 
inspected for instances of characters in the module's input string and the 
alphabetic case of all matching characters is changed. Similar actions are 
taken for outgoing data using the output string. The necessary declarations 
for this program are shown below: 

#include <string.11> 
#include <fcntl.11> 
#include <stropts. 11> 

1* 
* These defines w:ruld typically be 
* famd in a header file for the m:xiul.e 
*1 

#define CUl'Pl11' S'IRIN3 1 
#define INrur S'1'RlN3 2 

main ( ) 
{ 

char hlf[ 1024]; 
int fd, count; 
struct strioctl strioctl; 

The first step is to establish a Stream to the communications driver and 
insert the case converter module. The following sequence of system calls 
accomplishes this: 
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if ((fd = ope:n("/dev/ccmn01", O)~rnR)) < 0) { 
pen-or( "open failed"); 
exit(1); 

if (ioct1(fd, I_PUSH, "case_converter") < 0) 
pen-or( "ioctl I_PUSH failed"); 
exit(2) ; 

Inserting Modules 

The I_PUSH ioctl call directs the Stream head to insert the case con­
verter module between the driver and the Stream head, creating the Stream 
shown in Figure 1-2. As with any driver, this module resides in the kernel 
and must have been configured into the system before it was booted. 
I _PUSH is one of several generic STREAMS ioctl commands that enable a 
user to access and control individual Streams [see streamio(7)]. 
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Inserting Modules 
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An important difference between STREAMS drivers and modules is 
illustrated here. Drivers are accessed through a node or nodes in the file 
system and may be opened just like any other device. Modules, on the 
other hand, do not occupy a file system node. Instead, they are identified 
through a separate naming convention, and are inserted into a Stream using 
I_PUSH. The name of a module is defined by the module developer, and is 
typically included on the manual page describing the module (manual 
pages describing STREAMS drivers and modules are found in section 7 of 
the System Administrator's Reference Manual). 

Modules are pushed onto a Stream and removed from a Stream in Last­
In-First-Out (LIFO) order. Therefore, if a second module was pushed onto 
this Stream, it would be inserted between the Stream head and the case con­
verter module. 
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Module and Driver Control 

The next step in this example is to pass the input string and output 
string to the case converter module. This can be accomplished by issuing 
ioctl calls to the case converter module as follows: 

1* set inp.lt canversicm string *1 
strioctl.ic_aId = lNRJl'_S'I'RIN3; h cx::mnand type *1 
strioctl.ic _ tinolt = 0; 1* default tineout (15 sec) *1 
strioctl.ic_dp = "~"; 
strioctl.ic_len = strlen(strioctl.ic_dp); 

if (ioctl(fd, I_SIR, &strioctl) < 0) 
perror( "ioctl I _ S'IR failed"); 
exit(3) ; 

1* set ouq:ut canversicm strin:J *1 
strioctl.ic_aId = 00'I'P0l'_S'lRnG;1* cx::mnand type *1 
strioctl. ic _ dp = "abcdefghij"; 
strioctl. ic _len = strlen( strioctl. ic _ dp) ; 

if (ioctl(fd, I_SIR, &strioctl) < 0) 
perror ("ioctl I _ S'IR failed"); 
exit(4) ; 

ioctl requests are issued to STREAMS drivers and modules indirectly, 
using the I_STR ioctl call [see streamio(7)]. The argument to I_STR must be 
a pointer to a strioctl structure, which specifies the request to be made to a 
module or driver. This structure is defined in <stropts.h> and has the fol­
lowing format: 
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Module and Driver Control 

struct strioctl { 

} 

:int 
:int 
:int 
char 

ic_ard; 
ic_timJut; 
ic_len; 
*ic_dp; 

/* ioctl request */ 
/* ACKINAK timeout */ 
/* length of data argument */ 
/* ptr to data argument */ 

where ic_cmd identifies the command intended for a module or driver, 
ic_timout specifies the number of seconds an I_STR request should wait for 
an acknowledgement before timing out, ic Jen is the number of bytes of data 
to accompany the request, and ic_dp points to that data. 

I_STR is intercepted by the Stream head, which packages it into a mes­
sage, using information contained in the strioctl structure, and sends the 
message downstream. The request will be processed by the module or 
driver closest to the Stream head that understands the command specified 
by ic_cmd. The ioctl call will block up to ic_timout seconds, waiting for the 
target module or driver to respond with either a positive or negative ack­
nowledgement message. If an acknowledgement is not received in ic_timout 
seconds, the ioctl call will fail. 

I_STR is actually a nested request; the Stream head intercepts I_STR and 
then sends the driver or module request (as specified in the strioctl struc­
ture) downstream. Any module that does not understand the command in 
ic_cmd will pass the message further downstream. Eventually, the request 
will reach the target module or driver, where it is processed and ack­
nowledged. If no module or driver understands the command, a negative 
acknowledgement will be generated and the ioctl call will fail. 

In the example, two separate commands are sent to the case converter 
module. The first contains the conversion string for input data, and the 
second contains the conversion string for output data. The ic _cmd field is 
set to indicate whether the command is setting the input or output conver­
sion string. For each command, the value of ic _timout is set to zero, which 
specifies the system default timeout value of 15 seconds. Also, a data argu­
ment that contains the conversion string accompanies each command. The 
ic_dp field points to the beginning of each string, and icJen is set to the 
length of the string. 
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Module and Driver Control 

Only one I_STR request can be active on a STREAM at one time. Further 
requests will block until the active I_STR request is acknowledged and the 
system call completes. 

The strioctl structure is also used to retrieve the results, if any, of an 
I_STR request. If data is returned by the target module or driver, ic_dp must 
point to a buffer large enough to hold that data, and icjen will be set on 
return to indicate the amount of data returned. 

The remainder of this example is identical to the previous example: 

while «count = read(fd, buf, 1024» > 0) 
if (write (fd, buf, count) 1= count) { 

perror( "write failed"); 
break; 

exit(O) ; 

The case converter module will convert the specified input characters to 
lower case, and the corresponding output characters to upper case. Notice 
that the case conversion processing was realized with no change to the com­
munications driver. 

As with the previous example, the exit system call will dismantle the 
Stream before terminating the process. The case converter module will be 
removed from the Stream automatically when it is closed. Alternatively, 
modules may be removed from a Stream using the I_POP ioctl call 
described in streamio(7). This call removes the topmost module on the 
Stream, and enables a user process to alter the configuration of a Stream 
dynamically, by pushing and popping modules as needed. 
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Module and Driver Control 

A few of the important ioctl requests supported by STREAMS have been 
discussed. Several other requests are available to support operations such as 
determining if a given module exists on the Stream, or flushing the data on 
a Stream. These requests are described fully in streamio(7). 
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Advanced Input/Output Facilities 

The traditional input/output facilities-open, close, read, write, and 
ioctl-have been discussed, but STREAMS supports new user capabilities 
that will be described in the remaining chapters of this guide. This chapter 
describes a facility that enables a user process to poll multiple Streams 
simultaneously for various events. Also discussed is a signaling feature that 
supports asynchronous I/O processing. Finally, this chapter presents a new 
mechanism for finding available minor devices, called clone open. 
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Input/ Output Polling 

The poll(2) system call provides users with a mechanism for monitoring 
input and output on a set of file descriptors that reference open Streams. It 
identifies those Streams over which a user can send or receive data. For 
each Stream of interest users can specify one or more events about which 
they should be notified. These events include the following: 

POLLIN Input data is available on the Stream associated with the 
given file descriptor. 

POLLPRI A priority message is available on the Stream associated with 
the given file descriptor. Priority messages are described in 
the section of Chapter 4 entitled "Accessing the Datagram 
Provider." 

POLLOUT The Stream associated with the given file is writable. That 
is, the Stream has relieved the flow control that would 
prevent a user from sending data over that Stream. 

poll will examine each file descriptor for the requested events and, on 
return, will indicate which events have occurred for each file descriptor. If 
no event has occurred on any polled file descriptor, poll blocks until a 
requested event or timeout occurs. The specific arguments to poll are the 
following: 

• an array of file descriptors and events to be polled 

• the number of file descriptors to be polled 

• the number of milliseconds poll should wait for an event if no 
events are pending (-1 specifies wait forever) 

The following example shows the use of poll. Two separate minor dev­
ices of the communications driver presented earlier are opened, thereby 
establishing two separate Streams to the driver. Each Stream is polled for 
incoming data. If data arrives on either Stream, it is read and then written 
back to the other Stream. This program extends the previous echoing exam­
ple by sending echoed data over a separate communications line (minor 
device). The steps needed to establish each Stream are as follows: 
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#include <fcnt1.h> 

#include <poll.h> 

Input/Output Polling 

#define NroLL 2 /* number of file descriptors to poll */ 

nain( ) 
{ 

stJ:uct p:>llfd pollfds[NroLL] j 
char blf[ 1024] j 
int COImt, i; 

if «pollfds[O].fd = open("/dev/ccmn01", O)U:MR:O_NDELAY» < 0) { 
perror( "open failed for /dev/ccmn01") j 
exit(1) ; 

if «pollfds[1].fd = open("/dev/ccmn02", O)Ul'lR.:O_NDELAY» < 0) { 
perror( "open failed for /dev/ccmn02"); 
exit(2) ; 

The variable pollfds is declared as an array of pollfd structures, where 
this structure is defined in <poll.h> and has the following format: 

stroct pollfd { 

} 

int fd; 
short events; 
short revents; 

1* file descriptor *1 
1* requested events *1 
1* returned events *1 

For each entry in the array, fd specifies the file descriptor to be polled 
and events is a bitmask that contains the bitwise inclusive OR of events to 
be polled on that file descriptor. On return, the revents bitmask will indi­
cate which of the requested events has occurred. 
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Input/Output Polling 

The example opens two separate minor devices of the communications 
driver and initializes the pollfds entry for each. The remainder of the exam­
ple uses poll to process incoming data as follows: 

1* set events to p:>1l for inc::anin:J data *1 
p:>llfds [0] • events = rolLIN; 
p:>llfds [ 1 ] • events = rolLIN; 

while (1) { 
1* p:>1l ani use -1 timeout (infinite) *1 
if (p:>ll(p:>llfds, NPOLL, -1) < 0) { 

pen:or( "p:>1l failed"); 
exit(3); 

for (i = 0; i < NPOLL; i++) { 
switch (p:>llfds [i]. revents) 

default: 
perrar( "error event"); 
exit(4) ; 

case 0: 
break; 

case roLLIN: 

1* default error case *1 

1* echo inc::anin:J data an "other" stream *1 
while «count = read(p:>llfds[i] .fd, buf, 1024» > 0) 

1* 
* the write loses data if flCM control 
* prevents the transmit at this time. 

*1 
if (write«i==O? p:>llfds[1].fd: p:>llfds[O].fd), 

buf, cnmt) I = count) 
fprintf(stderr, "writer lost data\n"); 

break; 
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Input/Output Polling 

The user specifies the polled events by setting the events field of the 
poll£d structure to POLLIN. This requested event directs poll to notify the 
user of any incoming data on each Stream. The bulk of the example is an 
infinite loop, where each iteration will poll both Streams for incoming data. 

The second argument to poll specifies the number of entries in the 
pollfds array (2 in this example). The third argument is a timeout value 
indicating the number of milliseconds poll should wait for an event if none 
has occurred. On a system where millisecond accuracy is not available, 
timeout is rounded up to the nearest legal value available on that system. 
Here, the value of timeout is -1, specifying that poll should block 
indefinitely until a requested event occurs or until the call is interrupted. 

If poll succeeds, the program looks at each entry in pollfds. If revents is 
set to 0, no event has occurred on that file descriptor. If revents is set to 
POLLIN, incoming data is available. In this case, all available data is read 
from the polled minor device and written to the other minor device. 

If revents is set to a value other than 0 or POLLIN, an error event must 
have occurred on that Stream, because the only requested event was POL­
LIN. The following error events are defined for poll. These events may 
not be polled for by the user, but will be reported in revents whenever they 
occur. As such, they are only valid in the revents bitmask: 

POLLERR A fatal error has occurred in some module or driver on the 
Stream associated with the specified file descriptor. 
Further system calls will fail. 

POLLHUP A hangup condition exists on the Stream associated with 
the specified file descriptor. 

POLLNVAL The specified file descriptor is not associated with an open 
Stream. 

The example attempts to process incoming data as quickly as possible. 
However, when writing data to a Stream, the write call may block if the 
Stream is exerting flow control. To prevent the process from blocking, the 
minor devices of the communications driver were opened with the 
0_ NDELA Y flag set. If flow control is exerted and 0 _ NDELA Y is set, write 
will not be able to send all the data. This can occur if the communications 
driver is unable to keep up with the user's rate of data transmission. If the 
Stream becomes full, the number of bytes write sends will be less than the 
requested count. For simplicity, the example ignores the data if the Stream 
becomes full, and a warning is printed to stderr. 
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This program will continue until an error occurs on a Stream, or until 
the process is interrupted. 
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Asynchronous Input/Output 

The poll system call described above enables a user to monitor multiple 
Streams in a synchronous fashion. The poll call normally blocks until an 
event occurs on any of the polled file descriptors. In some applications, 
however, it is desirable to process incoming data asynchronously. For 
example, an application may wish to do some local processing and be inter­
rupted when a pending event occurs. Some time-critical applications cannot 
afford to block, but must have immediate indication of success or failure. 

A new facility is available for use with STREAMS that enables a user 
process to request a signal when a given event occurs on a Stream. When 
used with poll, this facility enables applications to asynchronously monitor 
a set of file descriptors for events. 

The I_SETSIG ioctl call [see streamio(7)] is used to request that a SIG­
POLL signal be sent to a user process when a specific event occurs. Listed 
below are the events for which an application may be signaled: 

S_INPUT 

S HIPRI 

S_OUTPUT 

Data has arrived at the Stream head, and no data existed 
at the Stream head when it arrived. 

A priority STREAMS message has arrived at the Stream 
head. 

The Stream is no longer full and can accept output. That 
is, the Stream has relieved the flow control that would 
prevent a user from sending data over that Stream. 

A special STREAMS signal message that contains a SIG­
POLL signal has reached the front of the Stream head 
input queue. This message may be sent by modules or 
drivers to generate immediate notification of data or 
events to follow. 

The polling example could be written to process input from each com­
munications driver minor device by issuing I_SETSIG to request a signal for 
the S _INPUT event on each Stream. The signal catching routine could then 
call poll to determine on which Stream the event occurred. The default 
action for SIGPOLL is to terminate the process. Therefore, the user process 
must catch the signal using signal(2). SIGPOLL will only be sent to 
processes that request the signal using I_SETSIG. 
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Clone Open 

In the earlier examples, each user process connected a Stream to a driver 
by opening a particular minor device of that driver. Often, however, a user 
process wants to connect a new Stream to a driver regardless of which 
minor device is used to access the driver. 

In the past, this typically forced the user process to poll the various 
minor device nodes of the driver for an available minor device. To alleviate 
this task, a facility called clone open is supported for STREAMS drivers. If 
a STREAMS driver is implemented as a cloneable device, a single node in 
the file system may be opened to access any unused minor device. This spe­
cial node guarantees that the user will be allocated a separate Stream to the 
driver on every open call. Each Stream will be associated with an unused 
minor device, so the total number of Streams that may be connected to a 
cloneable driver is limited by the number of minor devices configured for 
that driver. 

The clone device may be useful, for example, in a networking environ­
ment where a protocol pseudo-device driver requires each user to open a 
separate Stream over which it will establish communication. Typically, the 
users would not care which minor device they used to establish a Stream to 
the driver. Instead, the clone device can find an available minor device for 
each user and establish a unique Stream to the driver. Chapter 3 describes 
this type of transport protocol driver. 

2-8 

A user program has no control over whether a given driver supports the 
clone open. The decision to implement a STREAMS driver as a cloneable 
device is made by the designers of the device driver. 
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Multiplexor Configurations 

In the earlier chapters, Streams were described as linear connections of 
modules, where each invocation of a module is connected to at most one 
upstream module and one downstream module. While this configuration is 
suitable for many applications, others require the ability to multiplex 
Streams in a variety of configurations. Typical examples are terminal win­
dow facilities, and internetworking protocols (which might route data over 
several subnetworks). 

An example of a multiplexor is one that multiplexes data from several 
upper Streams over a single lower Stream, as shown in Figure 3-1. An 
upper Stream is one that is upstream from a multiplexor, and a lower 
Stream is one that is downstream from a multiplexor. A terminal window­
ing facility might be implemented in this fashion, where each upper Stream 
is associated with a separate window. 

MUX 

Figure 3-1: Many-to-one Multiplexor 

A second type of multiplexor might route data from a single upper 
Stream to one of several lower Streams, as shown in Figure 3-2. An inter­
networking protocol could take this form, where each lower Stream links 
the protocol to a different physical network. 
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MUX 

Figure 3-2: One-to-many Multiplexor 

A third type of multiplexor might route data from one of many upper 
Streams to one of many lower Streams, as shown in Figure 3-3. 

MUX 

Figure 3-3: Many-to-many Multiplexor 
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Multiplexor Configurations 

A STREAMS mechanism is available that supports the multiplexing of 
Streams through special pseudo-device drivers. Using a linking facility, 
users can dynamically build, maintain, and dismantle each of the above 
multiplexed Stream configurations. In fact, these configurations can be 
further combined to form complex, multi-level multiplexed Stream 
configurations. 

The remainder of this chapter describes multiplexed Stream 
configurations in the context of an example (see Figure 3-4). In this exam­
ple, an internetworking protocol pseudo-device driver (IP) is used to route 
data from a single upper Stream to one of two lower Streams. This driver 
supports two STREAMS connections beneath it to two distinct sub­
networks. One sub-network supports the IEEE 802.3 standard for the 
CSMA/ CD medium access method. The second sub-network supports the 
IEEE 802.4 standard for the token-passing bus medium access method. 

The example also presents a transport protocol pseudo-device driver 
(TP) that multiplexes multiple virtual circuits (upper Streams) over a single 
Stream to the IP pseudo-device driver. 
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Figure 3-4 shows the multiplexing configuration to be created. This 
configuration will enable users to access the services of the transport proto­
col. To free users from the need to know about the underlying protocol 
structure, a user-level daemon process will build and maintain the multi­
plexing configuration. Users can then access the transport protocol directly 
by opening the TP driver device node. 

Stream 
head 

802.4 
Driver 

Figure 3-4: Protocol Multiplexor 

TP 
Driver 

IP 
Driver 
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Building a Multiplexor 

The following example shows how this daemon process sets up the pro­
tocol multiplexor. The necessary declarations and initialization for the dae­
mon program are as follows: 

#include <fc:ntl.h> 
#include <stropts. h> 

nain( ) 
{ 

int fd_802_4, 
fd_802_3, 
fd_ip, 
fd_tp; 

1* 
* daem:m-ize this process 
*1 

switch (fork( )) { 

case 0: 
break; 

case -1: 
perror( "fork failed"); 
exit(2) ; 

default: 
exit(O) ; 

setpgrp( ); 

This multi-level multiplexed Stream configuration will be built from the 
bottom up. Therefore, the example begins by constructing the IP multi­
plexor. This multiplexing pseudo-device driver is treated like any other 
software driver. It owns a node in the UNIX file system and is opened just 
like any other STREAMS device driver. 

The first step is to open the multiplexing driver and the 802.4 driver, 
creating separate Streams above each driver as shown in Figure 3-5. The 
Stream to the 802.4 driver may now be connected below the multiplexing IP 
driver using the I_LINK iodl call. 
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~emov 
_ L _____ ~ ______ l!:s_e: ~£ace 

802.4 
Driver 

Figure 3-5: Before Link 

IP 
Driver 

The sequence of instructions to this point is: 

if ((fd 8024 = open("/dev/802 4", ORIMR» < 0) { 
~(;;open of /dev/802_4-failed"); 
exit(1); 

if ((fd_ip=open("/dev/ip", O)~I:MR» < 0) { 
perror("Open of /dev/ip failed"); 
exit(2) ; 

/ * DCM link 802.4 to underside of IP */ 

if (ioctl(fd_ip, I_LINK, fd_802_4) < 0) { 
perror( "I_LINK ioctl failed"); 
exit(3); 

3·6 STREAMS PROGRAMMER'S GUIDE 

Kernel Space 



Building a Multiplexor 

I_LINK takes two file descriptors as arguments. The first file descriptor, 
fd~p, must reference the Stream connected to the multiplexing driver, and 
the second file descriptor, fd_B02_4, must reference the Stream to be con­
nected below the multiplexor. Figure 3-6 shows the state of these Streams 
following the I_LINK call. The complete Stream to the 802.4 driver has 
been connected below the IP driver, including the Stream head. The 
Stream head of the 802.4 driver will be used by the IP driver to manage the 
multiplexor. 

__________ ~s_e: ~~ace 

Kernel Space 

IP 
Driver 

802.4 
Driver 

Figure 3-6: IP Multiplexor After First Link 

I_LINK will return an integer value, called a mux id, which is used by 
the multiplexing driver to identify the Stream just connected below it. This 
mux id is ignored in the example, but may be useful for dismantling a mul­
tiplexor or routing data through the multiplexor. Its significance is dis­
cussed later. 
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The following sequence of system calls is used to continue building the 
internetworking multiplexor (IP): 

if ((fd_S02_3 = open("/dev/S02_3", O}~IMR» < 0) 
perror("open of /dev/S02_3 failed"); 
exit(4); 

if (ioctl(fd_ip, I_LINK, fd_S02_3) < 0) 
perror( "I_LINK ioctl failed"); 
exit(S) ; 

All links below the IP driver have now been established, giving the 
configuration in Figure 3-7. 
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The Stream above the multiplexing driver used to establish the lower 
connections is the controlling Stream and has special significance when dis­
mantling the multiplexing configuration, as will be illustrated later in this 
chapter. The Stream referenced by fdJp is the controlling Stream for the IP 
multiplexor. 

The order in which the Streams in the multiplexing configuration are 
opened is unimportant. If, however, it is necessary to have intermediate 
modules in the Stream between the IP driver and media drivers, these 
modules must be added to the Streams associated with the media drivers 
(using I_PUSH) before the media drivers are attached below the multi­
plexor. 
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The number of Streams that can be linked to a multiplexor is restricted 
by the design of the particular multiplexor. The manual page describing 
each driver (typically found in section 7 of the System Administrator's Refer­
ence Manual) should describe such restrictions. However, only one I_LINK 
operation is allowed for each lower Stream; a single Stream cannot be 
linked below two multiplexors simultaneously. 

Continuing with the example, the IP driver will now be linked below 
the transport protocol (TP) multiplexing driver. As seen earlier in Figure 
3-4, only one link will be supported below the transport driver. This link is 
formed by the following sequence of system calls: 

if «fd_tp = open("/dev/tp", O)~IMR» < 0) { 
perror( "open of /dev/tp failed"); 
ex:it(6) ; 

if (ioctl(fd_tp, I_LINK, fd_ip) < 0) 
perror("I_LINK ioctl failed"); 
ex:it(7) ; 

The multi-level multiplexing configuration shown in Figure 3-8 has 
now been created. 
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Figure 3-8: TP Multiplexor 
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Because the controlling Stream of the IP multiplexor has been linked 
below the TP multiplexor, the controlling Stream for the new multi-level 
multiplexor configuration is the Stream above the TP multiplexor. 

At this point the file descriptors associated with the lower drivers can 
be closed without affecting the operation of the multiplexor. Closing these 
file descriptors may be necessary when building large multiplexors, so that 
many devices can be linked together without exceeding the UNIX system 
limit on the number of simultaneously open files per process. If these file 
descriptors are not closed, all subsequent read, write, ioctl, poll, getmsg, 
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and putmsg system calls issued to them will fail. That is because I_LINK 
associates the Stream head of each linked Stream with the multiplexor, so 
the user may not access that Stream directly for the duration of the link. 

The following sequence of system calls will complete the multiplexing 
daemon example: 

close(fd_802_4); 
close(fd_802_3) ; 
close (fd_ ip); 

1* Hold nultiplexor open forever *1 
pause() ; 

Figure 3-4 shows the complete picture of the multi-level protocol multi­
plexor. The transport driver is designed to support several, simultaneous 
virtual circuits, where these virtual circuits map one-to-one to Streams 
opened to the transport driver. These Streams will be multiplexed over the 
single Stream connected to the IP multiplexor. The mechanism for estab­
lishing multiple Streams above the transport multiplexor is actually a by­
product of the way in which Streams are created between a user process and 
a driver. By opening different minor devices of a STREAMS driver, separate 
Streams will be connected to that driver. Of course, the driver must be 
designed with the intelligence to route data from the single lower Stream to 
the appropriate upper Stream. 

Notice in Figure 3-4 that the daemon process maintains the multiplexed 
Stream configuration through an open Stream (the controlling Stream) to 
the transport driver. Meanwhile, other users can access the services of the 
transport protocol by opening new Streams to the transport driver; they are 
freed from the need for any unnecessary knowledge of the underlying pro­
tocol configurations and sub-networks that support the transport service. 
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Building a Multiplexor 

Multi-level multiplexing configurations, such as the one presented in 
the above example, should be assembled from the bottom up. That is 
because STREAMS does not allow ioctl requests (including I_LINK) to be 
passed through higher multiplexing drivers to reach the desired multi­
plexor; they must be sent directly to the intended driver. For example, once 
the IP driver is linked under the TP driver, ioctl requests cannot be sent to 
the IP driver through the TP driver. 
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Dismantling a Multiplexor 

Streams connected to a multiplexing driver from above with open, can 
be dismantled by closing each Stream with close. In the protocol multi­
plexor, these Streams correspond to the virtual circuit Streams above the TP 
multiplexor. The mechanism for dismantling Streams that have been linked 
below a multiplexing driver is less obvious, and is described below in 
detail. 

The I_UNLINK ioctl call is used to disconnect each multiplexor link 
below a multiplexing driver individually. This command takes the follow­
ing form: 

ioctl(fd, I_UNLINK, mux_id); 

where fd is a file descriptor associated with a Stream connected to the multi­
plexing driver from above, and muxJd is the identifier that was returned by 
I_LINK when a driver was linked below the multiplexor. Each lower driver 
may be disconnected individually in this way, or a special muxJd value of -1 
may be used to disconnect all drivers from the multiplexor simultaneously. 

In the multiplexing daemon program presented earlier, the multiplexor 
is never explicitly dismantled. That is because all links associated with a 
multiplexing driver are automatically dismantled when the controlling 
Stream associated with that multiplexor is closed. Because the controlling 
Stream is open to a driver, only the final call of close for that Stream will 
close it. In this case, the daemon is the only process that has opened the 
controlling Stream, so the multiplexing configuration will be dismantled 
when the daemon exits. 

For the automatic dismantling mechanism to work in the multi-level, 
multiplexed Stream configuration, the controlling Stream for each multi­
plexor at each level must be linked under the next higher level multiplexor. 
In the example, the controlling Stream for the IP driver was linked under 
the TP driver. This resulted in a single controlling Stream for the full, 
multi-level configuration. Because the multiplexing program relied on clos­
ing the controlling Stream to dismantle the multiplexed Stream 
configuration instead of using explicit I_UNLINK calls, the mux id values 
returned by I_LINK could be ignored. 
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Dismantling a Multiplexor 

An important side effect of automatic dismantling on close is that it is 
not possible for a process to build a multiplexing configuration and then 
exit. That is because exit(2) will close all files associated with the process, 
including the controlling Stream. To keep the configuration intact, the pro­
cess must exist for the life of that multiplexor. That is the motivation for 
implementing the example as a daemon process. 
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Routing Data Through a Multiplexor 

As demonstrated, STREAMS has provided a mechanism for building 
multiplexed Stream configurations. However, the criteria on which a multi­
plexor routes data is driver dependent. For example, the protocol multi­
plexor shown in the last example might use address information found in a 
protocol header to determine over which sub-network a given packet 
should be routed. It is the multiplexing driver's responsibility to define its 
routing criteria. 

One routing option available to the multiplexor is to use the mux id 
value to determine to which Stream data should be routed (remember that 
each multiplexor link is associated with a mux id). I_LINK passes the mux 
id value to the driver and returns this value to the user. The driver can 
therefore specify that the mux id value must accompany data routed 
through it. For example, if a multiplexor routed data from a single upper 
Stream to one of several lower Streams (as did the IP driver), the multi­
plexor could require the user to insert the mux id of the desired lower 
Stream into the first four bytes of each message passed to it. The driver 
could then match the mux id in each message with the mux id of each 
lower Stream, and route the data accordingly. 
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Service Interface Messages 

A STREAMS message format has been defined to simplify the design of 
service interfaces. Also, two new system calls, getmsg(2) and putmsg(2) are 
available for sending these messages downstream and receiving messages 
that are available at the Stream head. This chapter describes these system 
calls in the context of a service interface example. First, a brief overview of 
STREAMS service interfaces is presented. 

Service Interfaces 
A principal advantage of the STREAMS mechanism is its modularity. 

From user level, kernel-resident modules can be dynamically interconnected 
to implement any reasonable processing sequence. This modularity reflects 
the layering characteristics of contemporary network architectures. 

One benefit of modularity is the ability to interchange modules of like 
function. For example, two distinct transport protocols, implemented as 
STREAMS modules, may provide a common set of services. An application 
or higher layer protocol that requires those services can use either module. 
This ability to substitute modules enables user programs and higher level 
protocols to be independent of the underlying protocols and physical com­
munication media. 

Each STREAMS module provides a set of processing functions, or ser­
vices, and an interface to those services. The service interface of a module 
defines the interaction between that module and any neighboring modules, 
and therefore is a necessary component for providing module substitution. 
By creating a well-defined service interface, applications and STREAMS 
modules can interact with any module that supports that interface. Figure 
4-1 demonstrates this. 
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Figure 4-1: Protocol Substitution 
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By defining a service interface through which applications interact with 
a transport protocol, it is possible to substitute a different protocol below 
that service interface in a manner completely transparent to the application. 
In this example, the same application can run over the Transmission Con­
trol Protocol (TCP) and the ISO transport protocol. Of course, the service 
interface must define a set of services common to both protocols. 

The three components of any service interface are the service user, the 
service provider, and the service interface itself, as seen in Figure 4-2. 
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Typically, a user makes a request of a service provider using some well­
defined service primitive. Responses and event indications are also passed 
from the provider to the user using service primitives. The service interface 
is defined as the set of primitives that define a service and the allowable 
state transitions that result as these primitives are passed between the user 
and provider. 
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The Message Interface 

A message format has been defined to simplify the design of service 
interfaces using STREAMS. Each service interface primitive is a distinct 
STREAMS message that has two parts: a control part and a data part. The 
control part contains information that identifies the primitive and includes 
all necessary parameters. The data part contains user data associated with 
that primitive. 

An example of a service interface primitive is a transport protocol con­
nect request. This primitive requests the transport protocol service provider 
to establish a connection with another transport user. The parameters asso­
ciated with this primitive may include a destination protocol address and 
specific protocol options to be associated with that connection. Some tran­
sport protocols also allow a user to send data with the connect request. A 
STREAMS message would be used to define this primitive. The control part 
would identify the primitive as a connect request and would include the 
protocol address and options. The data part would contain the associated 
user data. 

STREAMS enables modules to create these messages and pass them to 
neighbor modules. However, the read and write system calls are not 
sufficient to enable a user process to generate and receive such messages. 
First, read and write are byte-stream oriented, with no concept of message 
boundaries. To support service interfaces, the message boundary of each 
service primitive must be preserved so that the beginning and end of each 
primitive can be located. Also, read and write offer only one buffer to the 
user for transmitting and receiving STREAMS messages. If control informa­
tion and data were placed in a single buffer, the user would have to parse 
the contents of the buffer to separate the data from the control information. 

Two new STREAMS system calls are available that enable user processes 
to create STREAMS messages and send them to neighboring kernel modules 
and drivers or receive the contents of such messages from kernel modules 
and drivers. These system calls preserve message boundaries and provide 
separate buffers for the control and data parts of a message. 

The putmsg system call enables a user to create STREAMS messages and 
send them downstream. The user supplies the contents of the control and 
data parts of the message in two separate buffers. Likewise, the getmsg sys­
tem call retrieves such messages from a Stream and places the contents into 
two user buffers. 
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The syntax of putmsg is as follows: 

int putmsg (fd, ctIptr, dataptr, flags) 
int fd; 
struct strbuf *ct1ptr; 
struct strbuf ~taptr; 
int flags; 

The Message Interface 

fd identifies the Stream to which the message will be passed, ctlptr and 
dataptr identify the control and data parts of the message, and flags may be 
used to specify that a priority message should be sent. 

The strbu£ structure is used to describe the control and data parts of a 
message, and has the following format: 

struct strbuf { 
int naxlen; 
int len; 
char *buf; 

1* nax:imum buffer lenrth *1 
1* lenrth of data *1 
1* pointer to buffer *1 

} 

buf points to a buffer containing the data and len specifies the number of 
bytes of data in the buffer. maxlen specifies the maximum number of bytes 
the given buffer can hold, and is only meaningful when retrieving informa­
tion into the buffer using getmsg. 

The getmsg system call retrieves messages available at the Stream head, 
and has the following syntax: 

int getmsg (fd, ctIptr, dataptr, flags) 
int fd; 
struct strbuf *ct1ptr; 
struct strbuf ~taptr; 
int *flags; 

The arguments to getmsg are the same as those for putmsg. 

The remainder of this chapter presents an example that demonstrates 
how putmsg and getmsg may be used to interact with the service interface 
of a simple datagram protocol provider. A potential provider of such a ser­
vice might be the IEEE 802.2 Logical Link Control Protocol Type 1. The 
example implements a user level library that would free the user from 
knowledge of the underlying STREAMS system calls. The Transport 
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Interface of the Network Services Library in UNIX System Release 3.0 pro­
vides a similar function for transport layer services. The example here illus­
trates how a service interface might be defined, and is not an example of a 
complete IEEE 802.2 service interface. 
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Datagram Service Interface Example 

The example datagram service interface library presented below 
includes four functions that enable a user to do the following: 

• establish a Stream to the service provider and bind a protocol address 
to the Stream 

• send a datagram to a remote user 

• receive a datagram from a remote user 

• close the Stream connected to the provider 

First, the structure and constant definitions required by the library are 
shown. These typically will reside in a header file associated with the ser­
vice interface. 

1* 
* Pr:imi ti ves initiated by the service user. 
*1 

#define BIND RID 1* bini request *1 
#define UNI'IDATA RID 2 1* unitdata request *1 

1* 
* Pr:imitives initiated by the service provider. 
*1 

#define a< N:K 3 
#define ERRCR N:K 4 
#define UNI'IDATA IND 5 

1* bini ackn:lwledgment *1 
1* error ackn:lwledgment *1 
1* unitdata indication *1 

1* 
* The follCMiDJ structure definitions define the fonnat of the 
* control part of the service interface message of the above 

* pr:imi tives. 

stru.ct bini _ req { 

lan:J PRIM_type; 
lan:J BIND _ addr; 

}; 

1* bini request *1 
1* always BIND_RID *1 
1* addr to bind *1 
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struct unitdata _ req { 
lc:D] PRIM_type; 
lc:D] DEST _ addr; 

} ; 

struct ok _ ack { 

}; 

struct error _ ack { 
lc:D] PRIM_type; 
lc:D] UNIX_error; 

} ; 

struct uni tdata _:in:i { 
lc:D] PRIM_type; 
lc:D] SRC _ addr; 

}; 

1* unitdata request *1 
1* always UNI'lnr\TA)ID';! *1 
1* destination addr *1 

1* positive acknowledgment *1 
1* always ($.-,>1::1< *1 

1* error acknowledgment *1 
1* always ERRCR-,!CK *1 
1* UNIX error code *1 

1* unitdata :in:iication *1 
1* always UNI'lnr\TA _!NO *1 
1* source addr *1 

1* union of all primitives *1 
union primitives { 

lc:D] type; 

}; 

struct bind _ req 
struct unitdata_req 
struct ok ack 
struct error ack 
struct uni tdata :in:i 

b:in:i _ req; 
unitdata _ req; 
ok_ack; 
error_ack; 
unitdata _ :in:i; 

1* header files needed by li.brazy *1 
#include <stropts. h> 
#include <stdio. h> 
#include <errrx>. h> 

continued 

Five primitives have been defined. The first two represent requests 
from the service user to the service provider. These are: 

BIND_REQ This request asks the provider to bind a specified proto­
col address. It requires an acknowledgement from the 
provider to verify that the contents of the request were 
syntactically correct. 
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UNITDATA_REQ 
This request asks the provider to send a datagram to the 
specified destination address. It does not require an 
acknowledgement from the provider. 

The three other primitives represent acknowledgements of requests, or 
indications of incoming events, and are passed from the service provider to 
the service user. These are: 

OK_ACK This primitive informs the user that a previous bind 
request was received successfully by the service pro­
vider. 

ERROR_ACK This primitive informs the user that a non-fatal error 
was found in the previous bind request. It indicates 
that no action was taken with the primitive that caused 
the error. 

UNITDATA IND 
This primitive indicates that a datagram destined for 
the user has arrived. 

The structures defined above describe the contents of the control part of 
each service interface message passed between the service user and service 
provider. The first field of each control part defines the type of primitive 
being passed. 

Accessing the Datagram Provider 
The first routine presented below, inter _open, opens the protocol driver 

device file specified by path and binds the protocol address contained in 
addr so that it may receive datagrams. On success, the routine returns the 
file descriptor associated with the open Stream; on failure, it returns -1 and 
sets errno to indicate the appropriate UNIX system error value. 
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inter _ open (pa:th, oflags, addr) 

char *path; 
{ 

int fd; 
struct bind _ req bind Jeq; 
struct strbuf ctlbuf; 
union primitives rcvhlf; 
struct error _ ack *error _ ack; 
int flags; 

if ((fd = open(path, oflags» < 0) 
return(-1) ; 

1* sem bind request msg down stream *1 

bind _ req. PRIM_type = BIND }IDJ; 
bind _ req. BIND _ addr = addr; 
ct1buf.len = sizeof(struct bind_req); 
ct1buf . buf = (char * ) &bind _ req; 

if (putmsg(fd, &ctlbuf, NULL, 0) < 0) 
close(fd) ; 
return(-1) ; 

After opening the protocol driver, inter _open packages a bind request 
message to send downstream. putmsg is called to send the request to the 
service provider. The bind request message contains a control part that 
holds a bind _req structure, but it has no data part. ctlbuf is a structure of type 
strbuf, and it is initialized with the primitive type and address. Notice that 
the maxlen field of ctlbuf is not set before calling putmsg. That is because 
putmsg ignores this field. The dataptr argument to putmsg is set to NULL 
to indicate that the message contains no data part. Also, the flags argument 
is 0, which specifies that the message is not a priority message. 

After inter _open sends the bind request, it must wait for an ack­
nowledgement from the service provider, as follows: 
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1* wait for ack of request *1 

ctlblf .maxlen = sizeof (tmian primitives); 
ctlblf . len = 0; 
ctlblf . buf = (char * )&rcvbuf; 
flags = RS_HIP.RI; 

if (ge1:lnsg(fd, &ctlbuf, NULL, &flags) < 0) { 
close(fd) ; 
return(-1) ; 

1* did we get eoouqh to detennine type *1 
if (ctlbuf • len < sizeof (lCDJ» { 

close(fd) ; 

errno = EPROm; 
return(-1) ; 

1* switch on type (first 1()D:J in rcvl:uf) *1 
switch( rcvbuf • type) { 

default: 

errno = EPROm; 
close(fd) ; 
return(-1); 

case OK PCK.: 
return(fd) ; 

case ERROR PCK.: 
if (ctlb.lf.len < sizeof(st:ruct error_ack» 

errno = EPROm; 
close(fd); 
return(-1) ; 

error _ ack = (st:ruct error _ ack * )&rcvl:uf; 
errno = error_ack->UNIX_error; 
close (fd) ; 
return(-1) ; 
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getmsg is called to retrieve the acknowledgement of the bind request. 
The acknowledgement message consists of a control part that contains either 
an ok_ack or error _ack structure, and no data part. 

The acknowledgement primitives are defined as priority messages. Two 
classes of messages can arrive at the Stream head: priority and normal. Nor­
mal messages are queued in a first-in-first-out manner at the Stream head, 
while priority messages are placed at the front of the Stream head queue. 
The STREAMS mechanism allows only one priority message per Stream at 
the Stream head at one time; any further priority messages are discarded 
until the first message is processed. Priority messages are particularly suit­
able for acknowledging service requests when the acknowledgement should 
be placed ahead of any other messages at the Stream head. 

These messages are not intended to support the expedited data capabilities 
of many communication protocols, as evidenced by the one-at-a-time res­
triction just described. 

Before calling getmsg, this routine must initialize the strbuf structure 
for the control part. but should point to a buffer large enough to hold the 
expected control part, and maxlen must be set to indicate the maximum 
number of bytes this buffer can hold. 

Because neither acknowledgement primitive contains a data part, the 
dataptr argument to getmsg is set to NULL. The flags argument points to an 
integer containing the value RS_HIPRI. This flag indicates that getmsg 
should wait for a STREAMS priority message before returning, and is set 
because the acknowledgement primitives are priority messages. Even if a 
normal message is available, getmsg will block until a priority message 
arrives. 

On return from getmsg, the len field is checked to ensure that the con­
trol part of the retrieved message is an appropriate size. The example then 
checks the primitive type and takes appropriate actions. An OK_ACK indi­
cates a successful bind operation, and inter_open returns the file descriptor 
of the open Stream. An ERROR_ACK indicates a bind failure, and errno is 
set to identify the problem with the request. 
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Closing the Service 
The next routine in the datagram service library is inter _close, which 

closes the Stream to the service provider. 

close(fd); 

The routine simply closes the given file descriptor. This will cause the 
protocol driver to free any resources associated with that Stream. For exam­
ple, the driver may unbind the protocol address that had previously been 
bound to that Stream, thereby freeing that address for use by some other 
service user. 

Sending a Datagram 
The third routine, inter _snd, passes a datagram to the service provider 

for transmission to the user at the address specified in addr. The data to be 
transmitted is contained in the buffer pointed to by but and contains len 
bytes. On successful completion, this routine returns the number of bytes 
of data passed to the service provider; on failure, it returns -1 and sets errno 
to an appropriate UNIX system error value. 

MESSAGE HANDLING 4-13 



Datagram Service Interface Example 

inter_snd(fd, rut, len, addr) 

char *buf; 
1<D;J addr; 
{ 

struct strrut ctlruf; 
struct strrut databuf; 
struct unitdata_req unitdata_req; 

unitdata _ req. PRIM_type = UNI'lDATA _run; 
unitdata _ req. DEST _ addr = addr; 
ct1buf.len = sizeof(struct unitdata_req); 
ct1buf • rut = (char * )&unitdata _ req; 
databuf.len = len; 
databuf.rut = rut; 

if (plbnsg (fd, &ctlruf, &databuf, 0) < 0) 
return(-1); 

return( len) ; 

In this example, the datagram request primitive is packaged with both a 
control part and a data part. The control part contains a unitdata_req struc­
ture that identifies the primitive type and the destination address of the 
datagram. The data to be transmitted is placed in the data part of the 
request message. 

Unlike the bind request, the datagram request primitive requires no ack­
nowledgement from the service provider. In the example, this choice was 
made to minimize the overhead during data transfer. Since datagram ser­
vices are inherently unreliable, this is a valid design choice. If the putmsg 
call succeeds, this routine assumes all is well and returns the number of 
bytes passed to the service provider. 
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Receiving a Datagram 
The final routine in this example, inter _rev, retrieves the next available 

datagram. but points to a buffer where the data should be stored, len indi­
cates the size of that buffer, and addr points to a long integer where the 
source address of the datagram will be placed. On successful completion, 
inter _rev returns the number of bytes in the retrieved datagram; on failure, it 
returns -1 and sets the appropriate UNIX system error value. 

inter _ rcv(fd, b.lf, len, addr) 

char *b.lf; 
lCID1 *addr; 
{ 

struct strbut ctll::uf; 
struct strbut datab.lf; 
struct unitdata _ iIrl unitdata _ iIrl; 
int retval; 
int flags; 

ctlb.lf.maxlen = sizeof(st:ruct unitdata_ind); 
ctlb.lf • len = 0; 
ctlb.lf • but = (char * )&unitdata _ irxi; 
databuf .maxlen = len; 
databuf • len = 0; 
databuf . b.lf = b.lf; 
flags = 0; 

if « retval = getmsg (fd, &ctll::uf, &databuf, &flags» < 0) 
return ( -1); 

if (unitdata _ iIrl. PRIM_type 1= UNI'IDATA _lND) 
er.rno = EPROro; 
return ( -1); 

if (retval) { 

er.rno = ErO; 
return ( -1); 

*addr = unitdata_iIrl.SRC_addr; 
return ( databuf • len) ; 
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getmsg is called to retrieve the datagram indication primitive, where 
that primitive contains both a control and data part. The control part con­
sists of a unitdata_ind structure that identifies the primitive type and the 
source address of the datagram sender. The data part contains the data 
itself. 

In ctlbut, but must point to a buffer where the control information will 
be stored, and maxlen must be set to indicate the maximum size of that 
buffer. Similar initialization is done for databut. 

The flags argument to getmsg is set to zero, indicating that the next mes­
sage should be retrieved from the Stream head, regardless of its priority. 
Datagrams will arrive in normal priority messages. If no message currently 
exists at the Stream head, getmsg will block until a message arrives. 

The user's control and data buffers should be large enough to hold any 
incoming datagram. If both buffers are large enough, getmsg will process 
the datagram indication and return 0, indicating that a full message was 
retrieved successfully. However, if either buffer is not large enough, 
getmsg will only retrieve the part of the message that fits into each user 
buffer. The remainder of the message is saved for subsequent retrieval, and 
a positive, non-zero value is returned to the user. A return value of 
MORECTL indicates that more control information is waiting for retrieval. 
A return value of MOREDATA indicates that more data is waiting for 
retrieval. A return value of MORECTLjM:OREDATA indicates that data from 
both parts of the message remain. In the example, if the user buffers are 
not large enough (that is, getmsg returns a positive, non-zero value), the 
function will set errno to EIO and fail. 

The type of the primitive returned by getmsg is checked to make sure it 
is a datagram indication. The source address is then set and the number of 
bytes of data in the datagram is returned. 

The above example presented a simplified service interface. The state 
transition rules for such an interface were not presented for the sake of 
brevity. The intent was to show typical uses of the putmsg and getmsg sys­
tem calls. See putmsg(2) and getmsg(2) for further details. 
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Part 2 of this guide, Module and Driver Programming, describes the use 
of STREAMS kernel facilities for developing and installing modules and 
drivers. It is intended for system programmers with knowledge of UNIX 
system kernel programming, device driver development, and networking 
and other data communication facilities. Knowledge of the STREAMS Primer 
and the Driver Design Guide is assumed. 

STREAMS provides module and driver developers with integral func­
tions, a set of utility routines, and facilities that expedite design and imple­
mentation. The principle development facilities are listed below: 

• Message storage management - to maintain STREAMS's own memory 
resources for message storage 

• Flow control - to conserve STREAMS memory and processing 
resources 

• Scheduling - to control the execution of service procedures 

• Multiplexing - to switch data among multiple Streams 

• Error and trace loggers - for debugging and administrative use 

Part 2 is organized as follows: 

• Chapter 5, Streams Mechanism, reviews the operation of STREAMS 
and describes how a Stream is constructed and dismantled. 

• Chapter 6, Modules, describes the basic STREAMS data structures and 
the organization of a module. 

• Chapter 7, Messages, introduces message blocks, read and write sys­
tem calls, and the message storage pool. 

• Chapter 8, Message Queues and Service Procedures, discusses put and 
service procedures, message queueing and basic flow control. 

• Chapter 9, Drivers, describes STREAMS driver organization and 
discusses typical driver processing. 

• Chapter 10, Complete Driver, provides a full implementation of a 
driver and describes the clone mechanism. 
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• Chapter 11, Multiplexing, describes the multiplexing facility. 

• Chapter 12, Service Interface, discusses service interfaces within a 
Stream and at the Stream/user boundary. 

• Chapter 13, Advanced Topics, contains advanced topics including sig­
nals and Stream head options. 

• Appendix A, Kernel Structures, summarizes kernel structures used by 
modules and drivers. 

• Appendix B, Message Types, describes STREAMS message types. 

• Appendix C, Utilities, specifies the STREAMS kernel utility routines. 

• Appendix D, Design Guidelines, summarizes module and driver 
design guidelines. 

• Appendix E, Configuring, describes how modules and drivers are 
configured into the UNIX system, tunable parameters and STREAMS 
system error messages. 

• The Glossary defines terms unique to STREAMS. 
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Overview 

A Stream implements a connection within the kernel between a driver 
in kernel space and a process in user space. It provides a general character 
input/output (I/O) interface for user processes which is upwardly compati­
ble with the interface of the preexisting character I/O facilities. A Stream is 
analogous to a shell pipeline except that data flow and processing are 
bidirectional to support concurrent input and output. 

The components that form a Stream are the Stream head, driver and 
optional modules (see Figure 1 in the Preface). A Stream is initially con­
structed as the result of a user process open(2) system call referencing a 
STREAMS file. The call causes a kernel resident driver to be connected 
with a Stream head to form a Stream. Subsequent ioctl(2) calls select kernel 
resident modules and cause them to be inserted in the Stream. A module 
represents intermediate processing on messages flowing between the Stream 
head and driver. A module can function as, for example, a communication 
protocol, line discipline or data filter. STREAMS allows a user to connect a 
module with any other module. The user determines the module connec­
tion sequences that result in useful configurations. 

A process can send and receive characters on a Stream using write(2) 
and read(2), as on character files. When user data enters the Stream head or 
external data enters the driver, the data is placed into messages for 
transmission on the Stream. All data passed on a Stream is carried in mes­
sages, each having a defined message type identifying the message contents. 
Internal control and status information is transmitted among modules or 
between the Stream and user process as messages of certain types inter­
leaved on the Stream. Modules and drivers can send certain message types 
to the Stream head to cause the generation of signals or errors to be 
received by the user process. 

A module is comprised of two identical sets of data structures called 
QUEUEs. One QUEUE is for upstream processing and the other is for 
downstream processing. The processing performed by the two QUEUEs is 
generally independent so that a Stream operates in a full-duplex manner. 
The interface between modules is uniform and simple. Messages flow from 
module to module. A message from one module is passed to the single 
entry point of its neighboring module. 
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The last dose(2) system call dismantles the Stream and closes the file, 
semantically identical to character I/O drivers. 

STREAMS supports implementation of user level applications with 
extensions to the above general system calls and STREAMS specific system 
calls: putmsg(2), getmsg(2), poll(2) and a set of STREAMS generic ioct1(2) 
functions. 
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STREAMS constructs a Stream as a linked list of kernel resident data 
structures. In a STREAMS file, the inode points to the Stream header struc­
ture. The header is used by STREAMS kernel routines to perform opera­
tions on this Stream generally related to system calls. Figure 5-1 depicts the 
downstream (write) portion of a Stream (see Chapter 3 of the Primer) con­
nected to the header. There is one header per Stream. From the header 
onward, a Stream is constructed of QUEUEs. The upstream (read) portion of 
the Stream (not shown in Figure 5-1) parallels the downstream portion in 
the opposite direction and terminates at the Stream header structure. 

Stream 
header 

QUEUE 
H 

QUEUE 
PI 

Figure 5-1: Downstream Stream Construction 

QUEUE 
P2 

QUEUE 
D 

At the same relative location in each QUEUE is the address of the entry 
point, a procedure to be executed on any message received by that QUEUE. 
The procedure for QUEUE H, at one end of the Stream, is the STREAMS 
provided Stream head routine. QUEUE H is the downstream half of the 
Stream head. The procedure for QUEUE D, at the other end, is the driver 
routine. QUEUE D is the downstream half of the Stream end. PI and P2 
are pushable modules, each containing their own unique procedures. That 
is, all STREAMS components are of similar organization. 

This similarity results in the uniform manner of navigating in either 
direction on a Stream: messages move from one end to the other, from 
QUEUE to the next linked QUEUE, executing the procedure specified in the 
QUEUE. 

Figure 5-2 shows the data structures forming each QUEUE: queue_t, 
qinit, module_info and module_stat. queue_t contains various modifiable 
values for this QUEUE, generally used by STREAMS. qinit contains a 
pointer to the processing procedures, module_info contains limit values and 
module_stat is used for statistics. The two QUEUEs in a module will gen­
erally each contain a different set of these structures. The contents of these 
structures are described in following chapters. 
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Figure 5-2: QUEUE Data Structures 

Figure 5-1 shows QUEUE linkage in one direction while Figure 5-2 
shows two neighboring modules with links (solid vertical arrows) in both 
directions. When a module is pushed onto a Stream, STREAMS creates two 
QUEUEs and links each QUEUE in the module to its neighboring QUEUE in 
the upstream and downstream direction. The linkage allows each QUEUE 
to locate its next neighbor. The next relation is implemented between 
queue_ts in adjacent modules by the q_next pointer. Within a module, each 
queue_t locates its mate (see dotted arrows in Figure 5-2) by use of 
STREAMS macros, since there is no pointer between the two queue_ts. The 
existence of the Stream head and driver is known to the QUEUE procedures 
only as destinations towards which messages are sent. 
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When a file is opened [see open(2)], a STREAMS file is recognized by a 
non-null value in the d_str field of the associated cdevsw entry. d_str points 
to a stream tab structure: 

struct streamtab { 

}; 

struct qinit 
struct qinit 
struct qinit 
struct qinit 

*st_rdinit; 1* defines read QUEUE *1 
*st_wrinit; 1* defines write OOEUE *1 
*st _ IIJ.DCrinit; 1* for IIUlltiplexirx] drivers only *1 
*st_l1IlXWin:it; 1* for IIUlltiplexirx] drivers only *1 

streamtab defines a module or driver and points to the read and write 
qinit structures for the driver. 

If this open call is the initial file open, a Stream is created. First, the 
single header structure and the Stream head (see Figure 5-1) queue_t struc­
ture pair are allocated. Their contents are initialized with predetermined 
values including, as noted above (see QUEUE H), the Stream head process­
ing routines. 

Then, a queue_t structure pair is allocated for the driver. The queue_t 
contents are zero unless specifically initialized (see Chapter 8). A single, 
common qinit structure pair is shared among all the Streams opened from 
the same cdevsw entry, as is the associated moduleJnfo and module_stat 
structures (see Figure 5-2). 

Next, the q_next values are set so that the Stream head write queue_t 
points to the driver write queue_t and the driver read queue_t points to the 
Stream head read queue_to The q_next values at the ends of the Stream are 
set to NULL. Finally, the driver open procedure (located via qinit) is called. 

If this open is not the initial open of this Stream, the only actions per­
formed are to call the driver open and the open procedures of all pushable 
modules on the Stream. 
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As part of constructing a Stream, a module can be added with an ioctl 
IyUSH [see streamio(7)] system call (push). The push inserts a module 
beneath the Stream head. Because of the similarity of STREAMS com­
ponents, the push operation is similar to the driver open. First, the address 
of the qinit structure for the module is obtained via an fmodsw entry. 

fmodsw is an array, analogous to cdevsw. Each fmodsw entry 
corresponds to a unique module and contains the name of the module (used 
by I_PUSH and certain other STREAMS ioctls) and a pointer to the 
module's streamtab. Next, STREAMS allocates queue_t structures and ini­
tializes their contents as in the driver open, above. As with the driver, the 
read and write qinit structures are shared among all the modules opened 
from this fmodsw entry (see Figure 5-2). 

Then, q_next values are set and modified so that the module is inter­
posed between the Stream head and the driver or module previously con­
nected to the head. Finally, the module open procedure (located via qinit) 
is called. Unlike open, no other module or driver open procedure is called. 

Each push of a module is independent, even in the same Stream. If the 
same module is pushed more than once onto a Stream, there will be multi­
ple occurrences of that module in the Stream. The total number of push­
able modules that may be contained on anyone Stream is limited by the 
kernel parameter NSTRPUSH (see Appendix E). 

An ioctl IYOP [see streamio(7)] system call (pop) removes the module 
immediately below the Stream head. The pop calls the module close pro­
cedure. On return from the module close, any messages left on the 
module's message queues are freed (deallocated). Then, STREAMS connects 
the Stream head to the component previously below the popped module 
and deallocates the module's two queue_t structures. I_POP enables a user 
process to dynamically alter the configuration of a Stream by pushing and 
popping modules as required. For example, a module may be removed or a 
new one inserted below a module. In the latter case, the original module is 
popped and pushed back after the new module has been pushed. 

An I POP cannot be used on a driver. 
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The last close system call to a STREAMS file dismantles the Stream. 
Dismantling consists of popping any modules on the Stream, closing the 
driver and closing the file. Before a module is popped by close, it may 
delay to allow any messages on the write message queue of the module to 
be drained by module processing. If O_NDELAY [see open(2)] is clear, close 
will wait up to 15 seconds for each module to drain. If a _NDELA Y is set, 
the pop is performed immediately. close will also wait for the driver's 
write queue to drain. Messages can remain queued, for example, if flow 
control (see Chapter 6 in the Primer) is inhibiting execution of the write 
QUEUE. When all modules are popped and any wait for the driver to drain 
is completed, the driver close routine is called. On return from the driver 
close, any messages left on the driver's message queues are freed, and the 
queue_t and header structures are deallocated. 

STREAMS frees only the messages contained on a message queue. Any 
messages used internally by the driver or module must be freed by the 
driver or module close procedure. 

Finally, the file is closed. 
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Module Declarations 

A module and driver will contain, as a minimum, declarations of the 
following form: 

#include "sys/types.h" 
#include "sys/stream.h" 
#include "sys/param.h" 

h required in all m:xiu1es and drivers */ 

/* required in all m:xiu1es and drivers */ 

static stnlct rrodule _ info nninfo = { 0, "m::xi", 0, INFPSZ, 0, 0 }; 

static stnlct rrodule _ info \lminfo = { 0, "m::xi", 0, INFPSZ, 0, 0 }; 
static int nodopen( ), rcodrp.lt( ), m:xlwp.lt( ), m::xiclose( ); 

static stnlct qinit rinit = { 
l'IOfuput, NULL, nodopen, m::xiclose, NULL, &nn:info, NULL 
} ; 
static stnlct qinit winit = { 
m::xiwput, NULL, NULL, NULL, NULL, &wminfo, NULL 

}; 
stnlct streamtab m::xiinfo = { &rinit, &winit, NULL, NULL }; 

The contents of these declarations are constructed for the null module 
example in this section. This module performs no processing: Its only pur­
pose is to show linkage of a module into the system. The descriptions in 
this section are general to all STREAMS modules and drivers unless they 
specifically reference the example. 

The declarations shown are: the header set; the read and write QUEUE 
(rminfo and wminfo) module_info structures (see Figure 5-2); the module 
open, read-put, write-put and close procedures; the read and write (rinit and 
winit) qinit structures; and the stream tab structure. 

The minimum header set for modules and drivers is types.h and 
stream.h. param.h contains definitions for NULL and other values for 
STREAMS modules and drivers as shown in the section titled "Accessible 
Symbols and Functions" in Appendix D. 
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Configuring a STREAMS module or driver (see Appendix E) does not 
require any procedures to be externally accessible, only streamtab. The 
stream tab structure name must be the prefix used in configuring, appended 
with "info". 

As described in the previous chapter, stream tab contains qinit values for 
the read and write QUEUEs, pointing to a module_info and an optional 
module_stat structure. The two required structures, shown in Figure 5-2, 
are these: 

struct qini t { 

}; 

int ( *<Ii _putp) ( ); 
int ( *<Ii _ srvp) ( ); 
int ( *<Ii _ qopen) ( ); 
int (*<Ii_qclose)( ); 
int ( *<Ii _ qadmin) ( ); 
struct IOCldule info *<Ii _ minfo; 
struct IOCldule stat *<Ii _ mstat; 

1* PIt procedure *1 
1* service procedure *1 
1* called an each open or a pJ.Sh *1 
1* called an last close or a pop *1 
1* reserved for future use *1 

1* infornatian structure *1 
1* statistics structure - optional *1 

struct IOCldule _ info { 

} ; 

uslx:lrt mi _ idnum; 
char 

short 

short 
short 
ushort 

*mi_idname; 
mi_minpsz; 
mi_IIaXpSZ; 
mi_hiwat; 
mi_Iowat; 

1* m:xlule ID rrumber *1 
1* m:xlule name *1 
1* min packet size accepted, for developer use *1 
1* IMX packet size accepted, for developer use *1 
1* hi-water mark, for flow control *1 
1* Ie-water mark, for flow control *1 

qinit contains the QUEUE procedures. All modules and drivers with 
the same stream tab (Le., the same fmodsw or cdevsw entry) point to the 
same upstream and downstream qinit structure(s). The structure is meant to 
be software read-only, as any changes to it affect all instantiations of that 
module in all Streams. Pointers to the open and close procedures must be 
contained in the read qinit. These fields are ignored in the write side. The 
example has no service procedure on the read or write side. 

module info contains identification and limit values. All modules and 
drivers with the same streamtab point to the same upstream and down­
stream module_info structure(s). As with qinit, this structure is intended to 
be software read-only. However, the four limit values are copied to queue_t 
(see Chapter 8) where they are modifiable. In the example, the flow control 
high and low water marks (see Chapter 9) are zero since there are no ser­
vice procedures and messages are not queued in the module. 
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Module Declarations 

Three names are associated with a module: the character string in 
fmodsw, obtained from the name of the master.d file used to configure the 
module (see Appendix E); the prefix for streamtab, used in configuring the 
module; and the module name field in the moduleJnfo structure. This 
field is a hook for future expansion and is not currently used. However, it 
is recommended that it be the same as the master.d file name. The module 
name value used in the I_PUSH or other STREAMS ioctl commands is con­
tained in fmodsw. Each module 10 and module name should be unique in 
the system. The module 10 is currently used only in logging and tracing 
(see Chapter 6 in the Primer). For the example in this chapter, the module 
10 is zero. 

Minimum and maximum packet size are intended to limit the total 
number of characters contained in all (if any) of the M_OATA blocks in 
each message passed to this QUEUE. These limits are advisory except for 
the Stream head. For certain system calls that write to a Stream, the Stream 
head will observe the packet sizes set in the write QUEUE of the module 
immediately below it. Otherwise, the use of packet size is developer depen­
dent. In the example, INFPSZ indicates unlimited size on the read (input) 
side. 

module_stat is optional, intended for future use. Currently, there is no 
STREAMS support for statistical information gathering. The structure is 
described in Appendix A. 
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Module Procedures 

The null module procedures are as follows: 

static int nodopen(q, dev, flag, sflag) 
queue_t 
dev t 
int 

*<1; 
dev; 
flag; 

/ * pointer to read queue */ 
/ * major/minor device :number -- zero for m:::xfu.les */ 
/* file open flags -- zero for nodules */ 

int sflag; / * stream open flags */ 

/* retur.n success */ 
retur.n 0; 

static int nodwput(q, rrq:»/* write PIt procedure */ 
queue_t *<1; 
mblk t *rrq:>; 

/ * pointer to the write queue */ 
/ * message pointer */ 

PItnext(q, rrq:»; /* pass message through */ 

static int IIOdrput(q, rrq:»/* read PIt procedure */ 
queue_t *<1; 
mblk t *rrq:>; 

/ * pointer to the read queue */ 
/* message pointer */ 

PItnext(q, rrq:»; /* pass message through */ 

static int nodclose(q, flag) 
queue_t 
int 

*<1; /* pointer to the read queue */ 

flag; /* file open flags - zero for m:::xfu.les */ 

The form and arguments of these four procedures are the same in all 
modules and all drivers. Modules and drivers can be used in multiple 
Streams and their procedures must be reentrant. 
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Module Procedures 

modopen illustrates the open call arguments and return value. The argu­
ments are the read queue pointer (q), the major/minor device number (dev, 
in drivers only), the file open flags (flag, defined in sys/file.h), and the 
Stream open flag (sflag). For a module, the value of flag and dev are always 
zero. The Stream open flag can take on the following values: 

MODOPEN 

o 
normal module open 

normal driver open (see Chapter 9) 

CLONEOPEN clone driver open (see Chapter 10) 

The return value from open is >= 0 for success and OPENFAIL for 
error. The open procedure is called on the first I_PUSH and on all subse­
quent open calls to the same Stream. During a push, a return value of 
OPENFAIL causes the I_PUSH to fail and the module to be removed from 
the Stream. If OPENFAIL is returned by a module during an open call, the 
open fails, but the Stream remains intact. For example, it can be returned 
by a module / driver that only wishes to be opened by a superuser: 

if (I suser ( » return OPENFAIL; 

In the example, modopen simply returns successfully. modrput and modwput 
illustrate the common interface to put procedures. The arguments are the 
read or write queue_t pointer, as appropriate, and the message pointer. The 
put procedure in the appropriate side of the QUEUE is called when a mes­
sage is passed from upstream or downstream. The put procedure has no 
return value. In the example, no message processing is performed. All 
messages are forwarded using the putnext macro (see Appendix C). putnext 
calls the put procedure of the next QUEUE in the proper direction. 

The close procedure is only called on an I_POP or on the last close call 
of the Stream (see the last two sections of Chapter 5). The arguments are 
the read queue_t pointer and the file open flags as in modopen. For a 
module, the value of flag is always zero. There is no return value. In the 
example, modclose does nothing. 
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Module and Driver Environment 

As discussed in Chapter 7 of the Primer, user context is not generally 
available to STREAMS module procedures and drivers. The exception is 
during execution of the open and close routines. Driver and module open 
and close routines have user context and may access the u_area structure 
(defined in user.h, see "Accessible Symbols and Functions" in Appendix D). 
These routines are allowed to sleep, but must always return to the caller. 
That is, if they sleep, it must be at priority <= PZERO, or with PCATCH set 
in the sleep priority. (A process which is sleeping at priority> PZERO and 
is sent a signal via kill(2), never returns from the sleep call. Instead, the 
system call is aborted.) V STREAMS driver and module put procedures and service procedures have 

no user context. They cannot access the u_area structure of a process and 
must not sleep. 
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Message Format 

Messages are the means of communication within a Stream. A message 
contains data or information identified by one of 18 message types (see 
Appendix B). Messages may be generated by a driver, a module, or the 
Stream head. The contents of certain message types can be transferred 
between a process and a Stream by use of system calls. STREAMS maintains 
its own pools for allocation of message storage. 

All messages are composed of one or more message blocks. A message 
block is a linked triplet, two structures and a variable length buffer block. 
The structures are msgb (mblk_t), the message block, and datab (dblk_t), the 
data block: 

struct rnsgb { 

struct rnsgb 

struct rnsgb 

struct rnsgb 

unsigned char 
unsigned char 

struct datab 
}; 
typedef struct msgb mblk _ t; 

struct datab { 
struct datab 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 

*b_next;l* next message on queue *1 
*b _prev;l* previous message on queue *1 
*b_cant;l* next message block of message *1 
*b_rptr;l* first unread byte in hlffer */ 
*b_wptr;l* first unwritten byte in hlffer *1 
*b_datap;l* data block *1 

*<lli_freep;l* used internally *1 
*<lli_base;l* first byte of hlffer * *1 
*<lli_lim;l* last byte+1 of hlffer *1 
db_ref;l* co.mt of messages pointin:J to this block *1 
db_type; 1* message type *1 
db _ class; 1* used internally *1 

mblk_t is used to link messages on a message queue, link the blocks in 
a message and manage the reading and writing of the associated buffer. 
b _rptr and b _wptr are used to locate the data currently contained in the 
buffer. As shown in Figure 7-1, mblk_t points to the data block of the tri­
plet. The data block contains the message type, buffer limits and control 
variables. STREAMS allocates message buffer blocks of varying sizes (see 
below). db_base and dbJim are the fixed beginning and end (+1) of the 
buffer. 
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Message Format 

A message consists of one or more linked message blocks. Multiple 
message blocks in a message can occur, for example, because of buffer size 
limitations, or as the result of processing that expands the message. When a 
message is composed of multiple message blocks, the type associated with 
the first message block determines the message type, regardless of the types 
of the attached message blocks. 

I 
I 

queue I 
<- - - - of 

header 

I 

* 

Message 
1 

\ 

~ 

b"'prev 

data 
block 
(type) 

data 
block 

Figure 7-1: Message Form and Linkage 
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Message Format 

A message may occur singly, as when it is processed by a put procedure, 
or it may be linked on the message queue in a QUEUE, generally waiting to 
be processed by the service procedure. Message 1, as shown in Figure 7-1, 
links to message 2. In the first message on a queue, b yrev points back to 
the header in the QUEUE. The last b_next points to the tail. 

Note that a data block in message 1 is shared between message 1 and 
another message. Multiple message blocks can point to the same data block 
to conserve storage and to avoid copying overhead. For example, the same 
data block, with associated buffer, may be referenced in two messages, from 
separate modules that implement separate protocol levels. (Figure 7-1 illus­
trates the concept, but data blocks would not typically be shared by mes­
sages on the same queue). The buffer can be retransmitted, if required by 
errors or timeouts, from either protocol level without replicating the data. 
Data block sharing is accomplished by means of a utility routine (see 
dupmsg in Appendix C). STREAMS maintains a count of the message 
blocks sharing a data block in the db Jet field. 

STREAMS provides utility routines and macros, specified in Appendix 
C, to assist in managing messages and message queues, and to assist in other 
areas of module and driver development. A utility should always be used 
when operating on a message queue or accessing the message storage pool. 

Message Generation and Reception 
As discussed in the "Message Types" section in Chapter 4 of the Primer, 

most message types can be generated by modules and drivers. A few are 
reserved for the Stream head. The most commonly used types are 
M_DATA, M_PROTO and M_PCPROTO. These, and certain other message 
types, can also be passed between a process and the topmost module in a 
Stream, with the same message boundary alignment maintained on both 
sides of the kernel. This allows a user process to function, to some degree, 
as a module above the Stream and maintain a service interface (see Chapter 
12). M_PROTO and M_PCPROTO messages are intended to carry service 
interface information among modules, drivers and user processes. Some 
message types can only be used within a Stream and cannot be sent or 
received from user level. 
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Message Format 

As discussed previously, modules and drivers do not interact directly 
with any system calls except open and close. The Stream head handles all 
message translation and passing. Message transfer between process and 
Stream head can occur in different forms. For example, M_DATA, 
M _PROTO or M _PCPROTO messages can be transferred in their direct form 
by getmsg(2) and putmsg(2) system calls (see Chapter 12). Alternatively, a 
write causes one or more M_DATA messages to be created from the data 
buffer supplied in the call. M_DATA messages received from downstream 
at the Stream head will be consumed by read(2) and copied into the user 
buffer. As another example, M_SIG causes the Stream head to send a signal 
to a process (see Chapter 13). 

Any module or driver can send any message type in either direction on 
a Stream. However, based on their intended use in STREAMS and their 
treatment by the Stream head, certain message types can be categorized as 
upstream, downstream or bidirectional. M_DATA, M_PROTO or 
M_PCPROTO messages, for example, can be sent in both directions. Other 
message types are intended to be sent upstream to be processed only by the 
Stream head. Downstream messages are silently discarded if received by 
the Stream head. 
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Filter Module Declarations 

The module shown below, crmod, is an asymmetric filter. On the write 
side, newline is converted to carriage return followed by newline. On the 
read side, no conversion is done. The declarations are essentially the same 
as the null module of the preceding chapter: 

/* S:inple filter - converts newline -> carriage return, newline */ 

#include "sys/types.h" 
#include "sys/param.h" 
#include "sys/stream.h" 

static stnlct m:xiule _ info minfo = { 0, "cnrod", 0, INFPSZ, 0, 0 }; 

static int nodopen( ), m:xhp.lt(), IIOdwput(), nodclose(); 

static stnlct qinit rinit = { 
m::x:1rput, NULL, nodopen, m:dclose, NULL, &minfo, NULL 

} ; 
static stnlct qinit winit = { 

IIOdwput, NULL, NULL, NULL, NULL, &n:info, NULL 
} ; 
stru.ct streamtab crm:linfo = { &rinit, &winit, NULL, NULL }; 

Note that, in contrast to the null module example, a single module_info 
structure is shared by the read and write sides. A master.d file to configure 
crmod is shown in Appendix E. 

modopen, modrput and modclose are the same as in the null module of the 
preceding chapter. 
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Filter Module Declarations 

bappend Subroutine 
The module makes use of a subroutine, bappend, which appends a char­

acter to a message block: 

1* 
* Apperxl a character to a message block. 
* If (*bpp) is null, it will allocate a new block 
* Retunls 0 when the message block is full, 1 othel:wise 

*1 

#define IDDBLKSZ 128 

static bappend(bpp, ch) 

int ch; 
{ 

if (bp = *bpp) 

1* size of message blocks *1 

if (bp->b _ wpt:r >= bp->b _ datap->db _lim) 
return 0; 

} else if ((*bpp = bp = a11ocb(MODBLKSZ, BPRI_MED)) == NULL) 
return 1; 

*bp->b_wptr++ = ch; 
return 1; 

bappend receives a pointer to a message block pointer and a character as 
arguments. If a message block is supplied (*bpp 1 = NULL), bappend checks 
if there is room for more data in the block. If not, it fails. If there is no 
message block, a block of at least MODBLKSZ is allocated through allocb, 
described below. 
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Filter Module Declarations 

If the allocb fails, bappend returns success, silently discarding the charac­
ter. This mayor may not be acceptable. For TTY-type devices, it is gen­
erallyaccepted. If the original message block is not full or the allocb is suc­
cessful, bappend stores the character in the block. 
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Message Allocation 

The allocb utility (see Appendix C) is used to allocate message storage 
from the STREAMS pool. Its declaration is: 

mblk_t *allocb(buffersize, priority). 

allocb will return a message block containing a buffer of at least the size 
requested, providing there is a buffer available at the message pool priority 
specified, or it will return NULL on failure. Three levels of message pool 
priority can be specified (see Appendix C). Priority generally does not 
affect allocb until the pool approaches depletion. In this case, for the same 
internal level of pool resources, allocb will fail low priority requests while 
granting higher priority requests. This allows module and driver develop­
ers to use STREAMS memory resources to their best advantage and for the 
common good of the system. Message pool priority does not affect subse­
quent handling of the message by STREAMS. BPRI_HI is intended for spe­
cial situations. This transmission of urgent messages relating to time sensi­
tive events, conditions that could result in loss of state, loss of data or ina­
bility to recover. BPRI_MED might be used, for example, when requesting 
an M_DATA buffer for holding input, and BPRI_LO might be used for an 
output buffer (presuming the output data can wait in user space). The 
Stream head uses BPRI_LO to allocate messages to contain output from a 
process (e.g., by write or putmsg). Note that allocb will always return a 
message of type M_DATA. The type may then be changed if required. 
b_rptr and b_wptr are set to db_base (see mblk_t and dblk_t). 

allocb may return a buffer larger than the size requested. In bappend, if 
the message block contents were intended to be limited to MODBLKSZ, a 
check would have to be inserted. 

If allocb indicates buffers are not available, the bufcall utility can be 
used to defer processing in the module or the driver until a buffer becomes 
available (bufcall is described in Chapter 13). 
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Put Procedure 

modwput processes all the message blocks in any downstream data (type 
M_DATA) messages. 

1* Write side pIt procedure *1 
static m:xiwp.1t (q, rep) 

queue_t ~; 
mblk_ t *rep; 
{ 

switch (mp->b _ datap->db _ type) 

default: 
pItnext(q, rep); 1* n:m.'t do these, pass them along *1 
break; 

struct mblk _ t *nmp = NULL, *nbp = NULL; 

for (bp = rep; bp 1= NULL; bp = bp->b_cant) 
while (bp->b_rptr < bp->b_wptr) { 

if (*bp->b _ rptr == '\n') 
if (Ibappend(&nbp, '\r'» 

goto newblk; 
if (Ibappend(&nbp, *bp->b_rptr» 

goto newblk; 

newblk: 
if (nmp == NULL) 

nmp = nbp; 

else linkb(nmp, nbp); 1* link massage block to tail of nmp *1 
nbp = NULL; 

if (nmp == NULL) 
nmp = nbp; 

else linkb(nmp, nbp); 
freemsg(rep); 1* de-allocate massage *1 
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Put Procedure 

continued 

if (nmp) 

pltnext(q, nmp); 

break; 

Data messages are scanned and filtered. modwput copies the original 
message into a new block(s), modifying as it copies. nbp points to the 
current new message block. nmp points to the new message being formed 
as multiple M_DATA message blocks. The outer forO loop goes through 
each message block of the original message. The inner whileO loop goes 
through each byte. bappend is used to add characters to the current or new 
block. If bappend fails, the current new block is full. If nmp is NULL, nmp is 
pointed at the new block. If nmp is non-NULL, the new block is linked to 
the end of nmp by use of the linkb utility. 

At the end of the loops, the final new block is linked to nmp. The origi­
nal message (all message blocks) is returned to the pool by freemsg. If a 
new message exists, it is sent downstream. 
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The queue_t Structure 

Service procedures, message queues and priority, and basic flow control 
are all intertwined in STREAMS. A QUEUE will generally not use its mes­
sage queue if there is no service procedure in the QUEUE. The function of 
a service procedure is to process messages on its queue. Message priority 
and flow control are associated with message queues. 

The operation of a QUEUE revolves around the queue_t structure: 

struct queue { 

}; 

struct qinit *<I_qinfo; 
struct msgb *<I_first; 
struct msgb *<I_last; 
struct queue *<I_next; 
struct queue *<I_link; 
caddr t 

1* procedures arxl limits for queue *1 
1* head of message queue for this QUEXJE *1 
1* tail of message queue for this QUEXJE *1 
1* next aJEUE in stream*1 
1* link to next QUEXJE on S'ffiEAMS scheduling queue *1 
1* to private data structure *1 

usOOrt 
usOOrt 
short 
short 
usOOrt 
usOOrt 

q_ count; 1* weighted count of characters on message queue *1 
q_flag; 1* OOEXJE state *1 
q_minpsz; 1* min packet size accepted by this OOEXJE *1 
q_maxp5Z; 1* max packet size accepted by this OOEXJE *1 
q_hiwat; 1* message queue high water mark, for flow control *1 
q_ICMat; 1* message queue lOW' water mark, for flOW' control *1 

typede£ st:ruct queue queue _ t; 

As described previously, two of these structures form a module. When 
a queue_t pair is allocated, their contents are zero unless specifically initial­
ized. The following fields are initialized by STREAMS: 

• q_qinfo - from streamtab 

• q_minpsz, q_maxpsz, q_hiwat, qJowat - from module_info 

Copying values from module_info allows them to be changed in the 
queue_t without modifying the template (Le., streamtab and module_info) 
values. 

q_count is used in flow control calculations and is the weighted sum of 
the sizes of the buffer blocks currently on the message queue. The actual 
number of bytes in the buffer is not used. This is done to encourage the 
use of the smallest buffer that will hold the data intended to be placed in 
the buffer. 
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Service Procedures 

Put procedures are generally required in pushable modules. Service 
procedures are optional. The general processing flow when both pro­
cedures are present is as follows: A message is received by the put pro­
cedure in a QUEUE, where some processing may be performed on the mes­
sage. The put procedure transfers the message to the service procedure by 
use of the putq utility. putq places the message on the tail (see qJast in 
queue_t) of the message queue. Then, putq will generally schedule (using 
qJink in queue_t) the QUEUE for execution by the STREAMS scheduler fol­
lowing all other QUEUEs currently scheduled. After some indeterminate 
delay (intended to be short), the scheduler calls the service procedure. The 
service procedure gets the first message (qyrst) from the message queue 
with the getq utility. The service procedure processes the message and 
passes it to the put procedure of the next QUEUE with put next. The service 
procedure gets the next message and processes it. This FIFO processing 
continues until the queue is empty or flow control blocks further process­
ing. The service procedure returns to caller. V A service routine must never sleep and it has no user context. It must 

always return to its caller. 

If no processing is required in the put procedure, the procedure does 
not have to be explicitly declared. Rather, putq can be placed in the qinit 
structure declaration for the appropriate QUEUE side, to queue the message 
for the service procedure, e.g.: 

static struct qinit winit = { putq, modwsrv, ...... }; 

More typically, put procedures will, as a minimum, process priority mes­
sages (see below) to avoid queueing them. 

The key attribute of a service procedure in the STREAMS architecture is 
delayed processing. When a service procedure is used in a module, the 
module developer is implying that there are other, more time-sensitive 
activities to be performed elsewhere in this Stream, in other Streams, or in 
the system in general. The presence of a service procedure is mandatory if 
the flow control mechanism is to be utilized by the QUEUE. 
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Service Procedures 

The delay for STREAMS to call a service procedure will vary with 
implementation and system activity. However, once the service procedure 
is scheduled, it is guaranteed to be called before user level activity is 
resumed. 

Also see the section titled "Put and Service Procedures" in Chapter 5 of 
the Primer. 
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Message Queues and Message Priority 

Figure 7-1 depicts a message queue linked by b_next and byrev pointers. 
As discussed in the Primer, message queues grow when the STREAMS 
scheduler is delayed from calling a service procedure because of system 
activity, or when the procedure is blocked by flow control. When it is 
called by the scheduler, the service procedure processes enqueued messages 
in FIFO order. However, certain conditions require that the associated mes­
sage (e.g., an M_ERROR) reach its Stream destination as rapidly as possible. 
STREAMS does this by assigning all message types to one of the two levels 
of message queueing priority-priority and ordinary. As shown in Figure 
8-1, when a message is queued, the putq utility will place priority messages 
at the head of the message queue, FIFO within their order of queueing. 

QUEUE Message queue 

'--------1::;';:'::'r::: ·····1 I I I I I I I I I I I 1 
I I I 
IE Priority ;.IE Ordinary >:1 

I Messages I Messages I 

Head Tail 

Figure 8-1: Message Queue Priority 

Priority messages are not subject to flow control. When they are queued 
by putq, the associated QUEUE is always scheduled (in the same manner as 
any QUEUE; following all other QUEUEs currently scheduled). When the 
service procedure is called by the scheduler, the procedure uses getq to 
retrieve the first message on queue, which will be a priority message, if 
present. Service procedures must be implemented to act on priority mes­
sages immediately (see next section). The above mechanisms-priority mes­
sage queueing, absence of flow control and immediate processing by a 
procedure-result in rapid transport of priority messages between the ori­
ginating and destination components in the Stream. 
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Message Queues and Message Priority 

The priority level for each message type is shown in Appendix B. Mes­
sage queue management utilities are provided for use in service procedures 
(see Appendix C). 
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Flow Control 

The elements of flow control are discussed in Chapter 6 of the Primer. 
Flow control is only used in a service procedure. Module and driver coding 
should observe the following guidelines for message priority. Priority mes­
sages, determined by the type of the first block in the message, 

(bp->b_datap->db_type > QPCTL), 

are not subject to flow control. They should be processed immediately and 
forwarded, as appropriate. 

For ordinary messages, flow control must be tested before any process­
ing is performed. The canput utility determines if the forward path from 
the QUEUE is blocked by flow control. The manner in which STREAMS 
determines flow control status for modules and drivers is described under 
"Driver Flow Control" in Chapter 9. 

This is the general processing for flow control: Retrieve the message at 
the head of the queue with getq. Determine if the type is priority and not 
to be processed here. If both are true, pass the message to the put pro­
cedure of the following QUEUE with putnext. If the type is ordinary, use 
canput to determine if messages can be sent onward. If canput indicates 
messages should not be forwarded, put the message back on the queue with 
putbq and return from the procedure. In all other cases, process the mes­
sage. 

The canonical representation of this processing within a service pro­
cedure is as follows: 

while (getq 1= NULL) 
if (priority IOOssage :: canPlt) 

process IOOssage 
Pltnext 

else 

Pltlxl 
retunl 
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Flow Control 

A service procedure must process all messages on its queue unless flow con­
trol prevents this. 

When an ordinary message is enqueued by putq, putq will cause the 
service procedure to be scheduled only if the queue was previously empty. 
If there are messages on the queue, putq presumes the service procedure is 
blocked by flow control and the procedure will be automatically 
rescheduled by STREAMS when the block is removed. If the service pro­
cedure cannot complete processing as a result of conditions other than flow 
control (e.g., no buffers), it must assure it will return later (e.g., by use of 
bufcall, see Chapter 13) or it must discard all messages on queue. If this is 
not done, STREAMS will never schedule the service procedure to be run 
unless the QUEUE's put procedure queues a priority message with putq. 

putbq replaces messages at the beginning of the appropriate section of 
the message queue in accordance with their message type priority (see Fig­
ure 8-1). This might not be the same position at which the message was 
retrieved by the preceding getq. A subsequent getq might return a 

, different message. 

!) 
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Example 

The filter module example of Chapter 7 is modified to have a service 
procedure, as shown below. The declarations from the example in Chapter 
7 are unchanged except for the following lines (changes are shown in bold): 

#inc1ude "sys/stropts.h" 

static struct m::xiu1e _ info minfo = { 
0, "ps_crmod" , 0, INFPSZ, 512,128 

} ; 
static int nodopen( ), nodrp.lt( ), m::ldwpIt( ), modwsrvO, m::xlclose( ); 

static struct qinit winit = { 
m::ldwpIt, modwsrv, NULL, NULL, NULL, &minfo, NULL 

} ; 

stropts.h is generally intended for user level. However, it includes 
definitions of flush message options common to user level, modules and 
drivers. module_info now includes the flow control high- and low-water 
marks (512 and 128) for the write QUEUE (even though the same 
module_info is used on the read QUEUE side, the read side has no service 
procedure so flow control is not used). qinit now contains the service pro­
cedure pointer. modopen, modclose and modrput (read side put procedure) are 
unchanged from Chapters 6 and 7. The bappend subroutine is also 
unchanged from Chapter 7. 

Procedures 

The write side put procedures and the beginning of the service pro­
cedure are shown below: 
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static int m::xiwp1t(q, mp) 

queue _ t *<1; 
register mblk_ t *mp; 
{ 

if (rcp->b _ datap->db _ type > QPCl'L && rrp->b _ datap->db _ type 1 = M_ FLUSH) 
p.1tnext (q, mp); 

else 
p.1tq(q, mp); 

static int m::Xiwsrv(q) queue _ t *<1; 
mblk_t *mp; 

while «mp = getq(q) 1= NULL) { 
switch (rrp->b _ datap->db _type) 

default: 
1* always p.1tnext priority messages *1 
if (rrp->b_datap->db_ type > QPCl'L :: canplt(q->q_next» 

p.1tnext (q, mp); 

contimle; 

else { 
p.1tbq(q, mp); 

retmn; 

case M FLUSH: 

if (*rrp->b _:rptr &. FLUSHW) 
flusl'x:l( q, FWSHDATA); 

p.1tnext(q, mp); 

continue; 

Example 

ps _crmod performs a similar function to crmod of the previous chapter, 
but it uses a service routine. 
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Example 

modwput, the write put procedure, switches on the message type. Prior­
ity messages that are not type M_FLUSH are putnext to avoid scheduling. 
The others are queued for the service procedure. An M_FLUSH message is 
a request to remove all messages on one or both QUEUEs. It can be pro­
cessed in the put or service procedure. 

modwsrv is the write service procedure. It takes a single argument, a 
pointer to the write queue_to modwsrv processes only one priority message, 
M_FLUSH. All other priority messages are passed through. Actually, no 
other priority messages should reach modwsrv. The check is included to 
show the canonical form when priority messages are queued by the put pro­
cedure. 

For an M_FLUSH message, modwsrv checks the first data byte. If 
FLUSHW (defined in stropts.h) is set in the byte, the write queue is flushed 
by use of flushq. flushq takes two arguments, the queue pointer and a flag. 
The flag indicates what should be flushed, data messages (FLUSHDATA) or 
everything (FLUSHALL). In this case, data includes M_DATA, M_PROTO, 
and M_PCPROTO messages. The choice of what types of messages to flush 
is module specific. As a general rule, FLUSHDATA should be used. 

Ordinary messages will be returned to the queue if 

canput(q->q_next) 

returns false, indicating the downstream path is blocked. 

In the remaining part of modwsrv, M_DATA messages are processed 
similarly to the previous example: 

8-10 STREAMS PROGRAMMER'S GUIDE 



if (lcanp.1t(q->q_next» 

p.1tbq(q, np); 

return; 

1* Filter data, a~ to queue *1 
for (; np 1= NULL; np = next) { 

while (np->b_rptr < np->b_wptr) 

if (*IIp->b_rptr == '\n') 
if (Ibappend(&nbp, '\r'» 

goto p.1sh; 

if (Ibappenj.(&nbp, *np->b_rptr» 
goto p.1sh; 

p.1sh: 
p.1tnext( q, nbp); 

nbp = NULL; 
if (Icanplt(q->q_next» 

if (np->b _ rptr >= np->b _ wptr) 

next = np->b_cant; 
freeb(np) ; 

np=next; 

if (np) 

p.1tbq(q, np); 

return; 

next = np->b _cant; 
freeb(np) ; 

if (nbp) 

p.1tnext(q, nbp); 

Example 
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Example 

The differences in M _DATA processing between this and the previous 
example relate to the manner in which the new messages are forwarded and 
flow control. For the purpose of demonstrating alternative means of pro­
cessing messages, this version creates individual new messages rather than a 
single message containing multiple message blocks. When a new message 
block is full, it is immediately forwarded with putnext rather than being 
linked into a single, large message (as was done in the previous example). 
This alternative may not be desirable because message boundaries will be 
altered and because of the additional overhead of handling and scheduling 
multiple messages. 

When the filter processing is performed (following push), flow control is 
checked (canput) after, rather than before, each new message is forwarded. 
This is done because there is no provision to hold the new message until 
the QUEUE becomes unblocked. 1f the downstream path is blocked, the 
remaining part of the original mess~ge is returned to the queue. Otherwise, 
processing continues. 

Another difference between the two examples is that each message 
block of the original message is returned to the pool with freeb when its 
processing is completed. 
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Overview of Drivers 

This chapter describes the organization of a STREAMS driver, and 
discusses some of the processing typically required in drivers. Certain ele­
ments of driver flow control are discussed. Procedures for handling user 
ioctls, common to modules and drivers, are described. 

As discussed under "Stream Construction" in Chapter 5, driver and 
module organization are very similar. The call interfaces to all the driver 
procedures are identical to module interfaces and driver procedures must be 
reentrant. As described under "Environment" in Chapter 6, the driver put 
and service procedures have no user environment and cannot sleep. Other 
than with open and close, a driver interfaces with a user process by mes­
sages, and indirectly, through flow control. 

There are two significant differences between modules and drivers. 
First, a device driver must also be accessible from an interrupt as well as 
from the Stream, and second, a driver can have multiple Streams connected 
to it. Multiple connections occur when more than one minor device uses 
the same driver and in the case of multiplexors (see Chapter 11). However, 
these particular differences are not recognized by the STREAMS mechanism: 
They are handled by developer-provided code included in the driver pro­
cedures. 

Figure 9-1 shows multiple Streams (corresponding to minor devices), to 
a common driver. This depiction of two Streams connected to a single 
driver (also used in the Primer) is somewhat misleading. These are really 
two distinct Streams opened from the same cdevsw (i.e., same major device). 
Consequently,-they have the same streamtab and the same driver pro­
cedures. Modules opened from the same fmodsw might be depicted simi­
larly if they had any reason to be cognizant, as do drivers, of common 
resources or alternate instantiations. 

Multiple instantiations (minor devices) of the same driver are handled 
during the initial open for each device. Typically, the queue_t address is 
stored in a driver-private structure indexed by the minor device number. 
The structure is typically pointed at by qytr (see Chapter 8). When the 
messages are received by the QUEUE, the calls to the driver put and service 
procedures pass the address of the queue_t, allowing the procedures to 
determine the associated device. 
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Overview of Drivers 

In addition to these differences, a driver is always at the end of a 
Stream. As a result, drivers must include standard processing for certain 
message types that a module might simply be able to pass to the next com­
ponent. 

Module(s) Module(s) 

Port 
o 

Driver Procedures 
and 

Interrupt Code 

Figure 9-1: Device Driver Streams 
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Driver Flow Control 

The same utilities (described in Chapter 8), and mechanisms used for 
module flow control are used by drivers. However, they are typically used 
in a different manner in drivers, because a driver generally does not have a 
service procedure. The developer sets flow control values (mi_hiwat and 
miJowat) in the write side module_info structure, which STREAMS will 
copy into q_hiwat and qJowat in the queue_t structure of the QUEUE. A 
device driver typically has no write service procedure, but does maintain a 
write message queue. When a message is passed to the driver write side put 
procedure, the procedure will determine if device output is in progress. In 
the event output is busy, the put procedure cannot immediately send the 
message and calls the putq utility (see Appendix C) to queue the message. 
(N ote that the driver might have elected to queue the message in all cases.) 
putq recognizes the absence of a service procedure and does not schedule 
the QUEUE. 

When the message is queued, putq increments the value of q_count 
(approximately the enqueued character count, see the beginning of Chapter 
8) by the size of the message and compares the result against the driver's 
write high water limit (q_hiwat) value. If the count exceeds q_hiwat, putq 
will set the internal FULL (see the section titled "Flow Control" in Chapter 6 
of the Primer) indicator for the driver write QUEUE. This will cause mes­
sages from upstream to be halted (can put returns FALSE) until the write 
queue count reaches qJowat. The driver messages waiting to be output are 
dequeued by the driver output interrupt routine with getq, which decre­
ments the count. If the resulting count is below qJowat, getq will back­
enable any upstream QUEUE that had been blocked. The above STREAMS 
processing also applies to modules on both write and read sides of the 
Stream. 

Device drivers typically discard input when unable to send it to a user 
process. However, STREAMS allows flow control to be used on the driver 
read side, possibly to handle temporary upstream blocks. This is described 
in Chapter 13 in the section titled "Advanced Flow Control". 

To some extent, a driver or module can control when its upstream 
transmission will become blocked. Control is available through the 
M_SETOPTS message (see Chapter 13 and Appendix B) to modify the 
Stream head read side flow control limits. 
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Driver Programming 

The example below shows how a simple interrupt-per-character line 
printer driver could be written. The driver is unidirectional and has no 
read side processing. It demonstrates some differences between module and 
driver programming, including the following: 

Open handling A driver is passed a minor device number or is asked to 
select one (see next chapter). 

Flush handling A driver must loop M_FLUSH messages back upstream. 

Ioctl handling A driver must nak ioctl messages it does not under­
stand. This is discussed under "Driver and Module 
Ioctls", below. 

Write side flow control is also illustrated as described above. 

Driver Declarations 

The driver declarations are as follows: 

/* Sinple line printer driver. */ 

#include "sys/types.h" 
#include "sys/param.h" 
#include "sys/sysnacros .h" 
#ifdef u3b2 
#include "sys/psw.h" 
#include "sys/pcb.h" 
#errlif 
#include "sys/stream.h" 
#include "sys/stropts.h" 
#include "sys/dir .h" 
#include "sys/signal.h" 
#include "sys/user .h" 
#include "sys/ernx>. h" 

/* required for user.h */ 
/* required for user.h */ 

/* required for user.h */ 
/* required for user.h */ 

static struct m::xlule _info minfo = { 
0, "lp", 0, INFPSZ, 150, 50 

} ; 
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Driver Programming 

static int 1popen( ), 1pc1ose( ), 1pwput( ); 

static stru.ct qinit rinit = { 
NULL, NULL, 1popen, 1pc1ose, NULL, &ninfo, NULL 

}; 
static struct qinit winit = { 

1pwput, NULL, NULL, NULL, NULL, &ninfo, NULL 
}; 

stru.ct streamtab 1pinfo = { &ri.nit, &'winit, NULL, NULL }; 

continued 

#define SEl' OPl'IOOS «'1'«8):1)/* really must be in a .h file */ 

* 'Ibis is a private data structure, one per minor device number. 
*/ 

stru.ct 1p { 

}; 

short flags; 
ublk _ t *msg; 
queue _ t *<lPt:r:'; 

/* flags -- see below */ 
/ * current message belD] oo.tpJ.t */ 
/* back pointer to write queue */ 

/* Flags bits */ 
#define BUSY 1 * device is running aIXi interrupt is peOO.in} */ 

extern stru.ct lp 1p _lp[]; /* per device 1p structure array */ 
,extern int 1p_c:nt; /* IlllIOOer of valid minor devices */ 

As noted for modules in Chapter 6, configuring a STREAMS driver does 
not require the driver procedures to be externally accessible; only streamtab 
must be. All STREAMS driver procedures would typically be declared 
static. 

streamtab must be defined as "prefixinfo", where prefix is the value of the 
prefix field in the master.d file for this driver. The values in name and 10 
fields in the module_info should be unique in the system. The name field 
is a hook for future expansion and is not currently used. The 10 is 
currently used only in logging and tracing (see Chapter 6 in the Primer). 
For the example in this chapter, the 10 is zero. Note that, as in character 
110 drivers, extern variables are assigned values in the master.d file when 
configuring drivers or modules (see Appendix E). 
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Driver Programming 

There is no read side put or service procedure. The flow control limits 
for use on the write side are 50 and 150 characters. The private Ip structure 
is indexed by the minor device number and contains these elements: 

flags A set of flags. Only one bit is used: BUSY indicates that output is 
active and a device interrupt is pending. 

msg A pointer to the current message being output. 

qptr A back pointer to the write queue. This is needed to find the 
write queue during interrupt processing. 

Driver Open 

The driver open, Ipopen, has the same interface as the module open: 

static int lpopen(q, dev, flag, sflag) 
queue _ t *<l / * read queue */ 
{ 

struct lp dp; 

/* Check if nan-driver open */ 
if (sflag) 

return OPENFAIL; 

/* Dev is major/minor */ 
dev = m:in:>r(dev); 
if (dev >= lp_c::nt) 

return OPENFAIL; 

/ * Check if open already. q_ptr is assigned below */ 
if (q->q_ptr) { 

u.u_error = EBUSY'; /* only 1 user of the printer at a time */ 
return OPENFAIL; 

lp = &lp_lp[dev]; 
lp->qptr = WR(q) ; 

q->q_ptr = (char *) lp; 
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WR(q)->q_ptr = (char *) Ip; 
return dev; 

Driver Programming 

continued 

The Stream flag, sflag, must have the value 0, indicating a normal driver 
open. dev holds both the major and minor device numbers for this port. 
After checking sflag, the open flag, Ipopen extracts the minor device from 
dev, using the minor() macro defined in sysmacros.h. 

The use of major devices, minor devices and minor() macro the may be 
machine dependent. 

The minor device number selects a printer and must be less than lp_cnt. 

The next check, if (q->q_ptr) ••• , determines if this printer is already 
open. In this case, EBUSY is returned to avoid merging printouts from mul­
tiple users. qytr is a driver/module private data pointer. It can be used by 
the driver for any purpose and is initialized to zero by STREAMS. In this 
example, the driver sets the value of qytr, in both the read and write 
queue_t structures, to point to a private data structure for the minor device, 
IpJpfdev]. 

WR is one of three QUEUE pointer macros. As discussed in the section 
titled "Stream Construction," in Chapter 5, there are no physical pointers 
between QUEUEs, and these macros (see Appendix C) generate the pointer. 
WR(q) generates the write pointer from the read pointer, RD(q) generates 
the read pointer from the write pointer and OTHER( q) generates the mate 
pointer from either. 
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Driver Processing Procedures 

This example only has a write put procedure: 

static int lpwp1t(q, ~) 
queue _ t *<I; 1* write queue *1 
register mblk_t~; 1* massage pointer *1 
{ 

register struct lp dp; 
int s; 

lp = (struct lp *)q->q_ptr; 

switch (~>b _ datap->db _type) 
default: 

freemsg(~) ; 
break; 

case M FLUSH: 

1* Canonical flush haIxlliD;J *1 
if (~>b_rptr & FLUSHW) { 

flushq(q, FLUSHDATA); 

s = splS( ); 
1* also flush lp->msg since it is logically 
* at the head of the write queue *1 
if (lp->msg) { 

freemsg(lp->msg); 
lp->msg = NULL; 

splx(s); 

if (~>b_rptr & FWSHR) { 

flushq(RD(q). FLUSmlATA); 

~>b_rptr &= -FLUSHW; 

qreply(q, ~); 
} else 

freemsg(np) ; 
break; 

case M Icx::TL: 

case M DATA: 

pltq(q, ~); 
s = sp15( ); 
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if (I (lp->flags &. BUSY» 
lpout(lp) ; 

splx(s) ; 

Driver Flush Handling 

Driver Processing Procedures 

continued 

The write put procedure, Ipwput, illustrates driver M_FLUSH handling: 
Note that all drivers are expected to incorporate this flush handling. If 
FLUSHW is set, the write message queue is flushed, and also (for this exam­
ple) the leading message (lp->msg). splS is used to protect the critical code, 
assuming the device interrupts at levelS. If FLUSHR is set, the read queue 
is flushed, the FLUSHW bit is cleared, and the message is sent upstream 
using qreply. If FLUSHR is not set, the message is discarded. 

The Stream head always performs the following actions on flush 
requests received on the read side from downstream. If FLUSHR is set, 
messages waiting to be sent to user space are flushed. If FLUSHW is set, the 
Stream head clears the FLUSHR bit and sends the M_FLUSH message 
downstream. In this manner, a single M_FLUSH message sent from the 
driver can reach all QUEUEs in a Stream. A module must send two 
M_FLUSH messages to have the same affect. 

Ipwput enqueues M_DATA and M_IOCTL (see the section titled "Driver 
and Module loctls", below) messages and, if the device is not busy, starts 
output by calling Ipout. Messages types that are not recognized are dis­
carded. 
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Driver Processing Procedures 

Driver Interrupt 

[pintr is the driver interrupt routine: 

lpintr (dev) 
int dev; 1* m:i.n::xr device number of lp *1 
{ 

register struct lp *lp; 

lp = &1p _lp[dev] ; 
if (I (lp->flags & BUSY» 

printf ("lp: unexpected inten:upto); 
retm:n; 

lp->flags &= -BUSY; 
IJX:Ut(lp) ; 

1* Start outplt to device - used by put procedure am driver *1 

IJX:Ut(lp) 
register struct lp dp; 
{ 

register mblk _ t *bp; 

queue_t *<I; 

q = lp->qptr; 
loop: 

if «bp = lp->msg) == NULL) { 

if «bp = getq(q» == NULL) 

retm:n; 
if (bp->b_datap->db_type == M_IOCTL) 

lpdoioctl(lp, bp); 

9Oto loop; 

lp->msg = bp; 
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if (bp->b_rptr >= bp->b_wptr) 
bp = lp->msg->b_oant; 
lp->msg->b_oant = NULL; 
freeb(lp->msg) ; 
lp->msg = bp; 

goto loop; 

lpoutchar(lp, *bp->b rptr++); 
lp->flags : = BUSY; -

Driver Processing Procedures 

continued 

lpout simply takes a character from the queue and sends it to the printer. 
The processing is logically similar to the service procedure in Chapter 8. 
For convenience, the message currently being output is stored in Ip->msg. 

Two mythical routines need to be supplied: 

lpoutchar send a character to the printer and interrupt when complete 

Ipsetopt set the printer interface options 
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Driver and Module loctls 

Drivers and modules interface with ioctl(2) system calls through mes­
sages. Almost all STREAMS generic ioctls [see streamio(7)] go no further 
than the Stream head. The capability to send an ioctl downstream, is simi­
lar to the ioctl of character device drivers, is provided by the I_STR ioctl. 
The Stream head processes an I_STR by constructing an M_IOCTL message 
(see Appendix B) from data provided in the call, and sends that message 
downstream. 

The user process that issued the I_STR is blocked until a module or 
driver responds with either an M_IOCACK (ack) or M_IOCNAK (nak) mes­
sage, or until the request "times out" after a user specified interval. The 
STREAMS module or driver that generates an ack can also return informa­
tion to the process. If the Stream head does not receive one of these mes­
sages in the specified time, the ioctl call fails. 

A module that receives an unrecognized M _IOCTL message should pass 
it on unchanged. A driver that receives an unrecognized M _IOCTL should 
nak it. 

lpout traps M_IOCTL messages and calls IpdoioctI to process them: 

lpdoioctl(lp, mp) 

stroct lp dp; 
mblk _ t *lIP; 
{ 

stroct iocblk *iocp; 
queue _ t *<l; 

q ::;; lp->qptr; 

1* 1st block contains iocblk structure *1 
iocp ::;; (struct iocblk *}tnp->b_rptr; 

switch ( iocp->ioc _ani) { 
case SE"l' OPl'ICNS: 

1* Camt sb::n.lld be exactly one short's l\'Ort:h *1 
if (iocp->ioc_c::amt 1= sizeof(short)) 

goto iocnak; 
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1* Actual data is in 2m IOOssage block *1 
lpsetopt(lp, *(shart *)mp->b_cont->b_rptr); 

1* ACK the ioctl *1 
mp->b_datap->db_type = M_IOCACK; 
iocp->ioc_oount = 0; 
qreply(q, lIP); 

break; 

Driver and Module loetls 

continued 

default: 
iocnak: 

1* NAK the ioctl *1 
mp->b _ datap->db _ type = M _ ICCNAK; 
qreply(q, lIP); 

lpdoioctl illustrates M_IOCTL processing: The first part also applies to 
modules. An M_IOCTL message contains a struct iocblk in its first block. 
The first block is followed by zero or more M_DATA blocks. The optional 
M_DATA blocks typically contain any user supplied data. 

The form of an iocblk is as follows: 

struct iocblk { 

} ; 

int icc _ aId; 
usb:>rt icc _ uid; 
usb:>rt icc _gid; 
uint icc _ id; 
uint icc_count; 
int icc _ error; 
int icc _ rval; 

1* ioctl ccmnand type *1 
1* effective uid of user *1 
1* effective gid of user *1 
1* ioctl id *1 
1* count of bytes in data field *1 
1* error code *1 
1* return value *1 
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Driver and Module loetls 

ioc_cmd contains the command supplied by the user. In this example, 
only one command is recognized, SET_OPTIONS. ioc_count contains the 
number of user supplied data bytes. For this example, it must equal the size 
of a short (2 bytes). The user data is sent directly to the printer interface 
using lpsetopt. Next, the M_IOCTL message is changed to type M_IOCACK 
and the ioc count field is set to zero to indicate that no data is to be returned 
to the user. Finally, the message is sent upstream using qreply. If ioc_count 
was left non-zero, the Stream head would copy that many bytes from the 
2nd - Nth message blocks into the user buffer. 

If the M_IOCTL message is not understood or in error for any reason, 
the driver must set the type to M_IOCNAK and send the message upstream. 
No data can be sent to a user in this case. The Stream head will cause the 
ioctl call to fail with the error number EINV AL. The driver has the option 
of setting ioc _error to an alternate error number if desired. 

9-14 

ioe_error can be set to a non-zero value by both M_IOCACK and 
M IOCNAK. This will cause that value to be returned as an error number 
to the process that sent the I_STR ioctl. 
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Driver Close 

The driver close clears any message being output. Any messages left on 
the message queue will be automatically removed by STREAMS. 

static int Ipclose(q) 

struct Ip dp; 
int s; 

Ip = (struct Ip *) q->q_ptr; 
1* Free Iressage, queue is autanatica11y flushed by STREAMS *1 
s = sp15( ); 
if (lp->msg) { 

freemsg(1p->msg) ; 
Ip->msg = NULL; 

splx(s); 
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Cloning 

The clone mechanism has been developed as a convenience. It allows a 
user to open a driver without specifying the minor device. When a Stream 
is opened, a flag indicating a clone open is tested by the driver open rou­
tine. If the flag is set, the driver returns an unused minor device number. 
The clone driver [see clone(7)] is a system dependent STREAMS pseudo 
driver. 

Knowledge of clone driver implementation is not required to use it. A 
description is presented here for completeness and to assist developers who 
must implement their own clone driver. A clone-able device has a device 
number in which the major number corresponds to the clone driver and the 
minor number corresponds to the target driver. When an open(2) system 
call is made to the associated (STREAMS) file, open causes a new Stream to 
be opened to the clone driver and the open procedure in clone to be called 
with dev set to clone/target. The clone open procedure uses minor(dev) to 
locate the cdevsw entry of the target driver. Then, clone modifies the con­
tents of the newly instantiated Stream queue_ts to those of the target driver 
and calls the target driver open procedure with the Stream flag set to 
CLONEOPEN. The target driver open responds to the CLONEOPEN by 
returning an unused minor device number. When the clone open receives 
the returned target driver minor device number, it allocates a new inode 
(which has no name in the file system) and associates the minor device 
number with the inode. 
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The loop-around driver is a pseudo-driver that loops data from one 
open Stream to another open Stream. The user processes see the associated 
files as a full duplex pipe. The Streams are not physically linked. The 
driver is a simple multiplexor (see next chapter), which passes messages 
from one Stream's write QUEUE to the other Stream's read QUEUE. 

To create a pipe, a process opens two Streams, obtains the minor device 
number associated with one of the returned file descriptors, and sends the 
device number in an I_STR ioctl(2) to the other Stream. For each open, the 
driver open places the passed queue_t pointer in a driver interconnection 
table, indexed by the device number. When the driver later receives the 
I_STR as an M_IOCTL message, it uses the device number to locate the other 
Stream's interconnection table entry, and stores the appropriate queue_t 
pointers in both of the Streams' interconnection table entries. 

Subsequently, when messages other than M_IOCTL or M_FLUSH are 
received by the driver on either Stream's write side, the messages are 
switched to the read QUEUE following the driver on the other Stream's 
read side. The resultant logical connection is shown in Figure 10-1. Flow 
control between the two Streams must be handled by special code since 
STREAMS will not automatically propagate flow control information 
between two Streams that are not physically interconnected. 
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Figure 10-1: Loop Around Streams 

The declarations for the driver are: 

#include "sys/types.h" 
#include "sys/param.h" 
#include "sys/sysmacros .h" 
#ifdef u3b2 
#include "sys/psw.h" 
#include "sys/pc:b.h" 
#erxli.f 
#include "sys/stream.h" 

Loop-Around Driver 

Module(s) 
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#include "sys/stropts .h" 
#include "sys/dir.h" 
#include "sys/signa1.h" 
#include "sys/user .h" 
#include "sys/ernx:>.h" 

static struct rrodule _ info mil'lfo = { 
0, "loop", 0, DlFPSZ, 512, 128 

} ; 

continued 

static int 100p:>pen( ), 100pc1ose( ), l~t( ), 100pwsrv( ), 1ooprsrv( ); 

static struct qinit rinit = { 
NULL, 100prsrv, 1oopopen, 100pc1ose, NULL, &n:info, NULL 

} ; 

static struct qinit winit = { 
l~t, 1oopwsrv, NULL, NULL, NULL, &n:info, NULL 

} ; 

struct strearntab 100pinfo = { &rini t, &.wini t, NULL, NULL }; 

struct loop { 
queue _ t *QPCr; /* back pointer to write queue */ 
queue _ t *Oqptr; / * pointer to connected read queue *1 

}; 

#define LOOP SET «'1'«8):1) 

extern struct loop loop _loop [ ]; 
extern int loop _ cnt; 

/* shoold be in a .h file */ 

A master.d file to configure the loop driver is shown in Appendix E. 
The loop structure contains the interconnection information for a pair of 
Streams. loop JooP is indexed by the minor device number. When a Stream 
is opened to the driver, the address of the corresponding loop JooP element 
is placed in qytr (private data structure pointer) of the read and write side 
queue_ts. Since STREAMS clears qytr when the queue_t is allocated, a 
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NULL value of qytr indicates an initial open. loop JooP is used to verify 
that this Stream is connected to another open Stream. 

The open procedure includes canonical clone processing which enables 
a single file system node to yield a new minor device / inode each time the 
driver is opened: 

static int loopope:n(q, dev, flag, sflag) 
queue _ t *<1; 
{ 

stru.ct loop doop; 

1* 
* If cu:NEDPEN, pick a m:irxlr device number to use. 
* othel:wise, check the m:irxlr device ran:Je. 

if (sflag == cu:NEDPEN) { 
for (dev = 0; dev < loop _ cnt; dev++) 

if (loop_loop[dev].qptr == NULL) 

break; 

else 
dev = minor(dev); 

if (dev >= loop_cnt) 
retunl OPENFAIL; 1* default = ENXIO *1 

1* Setup data structures *1 

if (q->q_ptr) 1* already open *1 
retunl dev; 

loop = &loop_loop[dev]; 
WR(q)->q_ptr = (char *) loop; 
q->q_ptr = (char *) loop; 
loop->qptr = WR(q); 

1* 
* The retunl value is the m:irxlr device. 
* Ebr cu:NEDPEN case, this will be used for 
* newly allocated ilx:xie 
*1 

retunl dev; 
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In loopopen, sflag can be CLONEOPEN, indicating that the driver should 
pick a minor device (i.e., the user does not care which minor device is 
used). In this case, the driver scans its private loop JooP data structure to 
find an unused minor device number. If sflag has not been set to CLONEO­
PEN, the passed-in minor device is used. 

The return value is the minor device number. In the CLONEOPEN 
case, this value will be used by the clone driver for the newly allocated 
inode and will then be passed to the user. 

Write Put Procedure 

Since the messages are switched to the read QUEUE following the other 
Stream's read side, the driver needs a put procedure only on its write side: 

static int lcq:Mp.lt(q, lIP) 
queue _ t *<I; 
mblk _ t *lIP; 
{ 

register struct loop *loop; 

switch (np->b_datap->db_type) 
case M _ IOCTL: { 

struct iocblk docp; 
int error; 

iocp = (struct iocblk *)np->b_rptr; 
switch (iocp->ioc _ atd) { 

case IroP _ SFl': { 

/* 
* Sanity check. ioc _ c::a.mt cx:ntains the arrount of 

* user supplied data which must equal the size of an into 

*/ 

if (iocp->ioc_c::a.mt 1= sizeof(int» { 
error = EINVAL; 
goto iocnak; 
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continued 

1* fetch other dev fran 2rxi nessage block *1 

1* 
* M::xre sanity checks. '!be min::lr nust be in range, open already. 
* Also, this device am the other one nust be disconnected. 

*1 

if (to >= loop_c:nt II to < 0 II 1 loop_loop [to J,qptr) 

error = ENXIO; 
goto iocnak; 

if (loop->eqpt:r II loop _loop [ to] • cx:wtr) 

error = E8USY; 
goto iocnak; 

1* 
* Cross connect streams via the loop sb:uctures 

*1 

loop->cx:wtr = RD(loop_loop[to] .qptr); 
loop_loop[toJ,oqptr = RD(q); 

1* 
* Retmn successful ioctl. Set ioc count 
* to zero, since there is retmn 00 data. 

*1 

mp->b _ datap->db _ type = M _ IOCACK; 
iocp->ioc_count = 0; 
qreply(q, np); 
break; 

default: 

error = EINVAL; 
iocnak: 
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/* 
* Bad ioctl. Set:ti.n] icc_error causes the 
* ioctl call to return that particular en:no. 
* By default, ioctl will return EINVAL an failure 

*/ 
np->b _ datap->db _ type = M _ I<XlW<:; 

iocp->icc_error = error; /* set returned en:no */ 
qreply(q, mp); 

break; 

continued 

loopwput shows another use of an I_ISTR ioctl call (see the section titled 
"Driver and Module loctls" in Chapter 9). The driver supports a LOOP_SET 
value of ioc_cmd in the iocblk of the M_IOCTL message. LOOP_SET instructs 
the driver to connect the current open Stream to the Stream indicated in the 
message. The second block of the IM_IOCTL message holds an integer that 
specifies the minor device number of the Stream to connect to. 

The driver performs several sanity checks: Does the second block have 
the proper amount of data? Is the "to" device in range? Is the "to" device 
open? Is the current Stream disconnected? Is the "to" Stream disconnected? 

If everything checks out, the read queue_t pointers for the two Streams 
are stored in the respective oqptr fields. This cross-connects the two Streams 
indirectly, via loop Joop. 

Canonical flush handling is incorporated in the put procedure: 
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case M FLUSH: 

if (*Up->b_rptr &. FLUSHW) 

fluslx!(q, 0); 
if (*Up->b _ rptr &. FLUSHR) 

fluslx!(RD(q), 0); 
*Up->b _ rptr &.= -FLUSHW; 

qreply(q, np); 
} else 

freemsg(np) ; 
break; 

default: 

1* 

Loop-Around Driver 

* If this stream isn't c:annected, send an M _ ERROR upstream. 
*1 

if (loop->oqptr == NULL) { 
putct11(RD(q)->q_next, M_ERRCR, ENXIO); 
freemsg(np) ; 
break; 

putq(q, np); 

Finally, loopwput enqueues all other messages (e.g., M_DATA or M_PROTO) 
for processing by its service procedure. A check is made to see if the 
Stream is connected. If not, an M_ERROR is sent upstream to the Stream 
head (see below). 

putctll and putctl (see below) are utilities that allocate a non-data (i.e., 
not M_DATA, M_PROTO or M_PCPROTO) type message, place one byte in 
the message (for putctll) and call the put procedure of the specified QUEUE 
(see Appendix C). 
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Stream Head Messages 

Certain message types (see Appendix B) can be sent upstream by drivers 
and modules to the Stream head where they are translated into actions 
detectable by user process(es). The messages may also modify the state of 
the Stream head: 

Causes the Stream head to lock up. Message transmis­
sion between Stream and user processes is terminated. 
All subsequent system calls except c1ose(2) and poll(2) 
will fail. Also causes an M_FLUSH clearing all mes-. 
sage queues to be sent downstream by the Stream 
head. 

Terminates input from a user process to the Stream. 
All subsequent system calls that would send messages 
downstream will fail. Once the Stream head read 
message queue is empty, EOF is returned on reads. 
Can also result in SIGH UP signal to the process 
group. 

M_SIG/M_PCSIG Causes a specified signal to be sent to a process (see 
Chapter 13). 

Service Procedures 

Service procedures are required on both the write and read sides for 
purposes of flow control: 
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static int loopws:r:v( q) 
register queue _ t *<l; 
{ 

mhlk_t *mp; 
register stnlct loop * loop; 

~le «mp = getq(q» 1= NULL) { 

1* 
* Check if we can p.lt the message up the other stream read queue 

*1 

if (mp->b _ datap->db _type <= QECTL && 1 canplt (loop->oqptr->q_ next) ) 
p.ltbq(q, mp); 1* read side is blocked *1 
break; 

p.ltnext(loop->oqptr, mp); 1* To queue followin} other stream read queue *1 

static int looprs:r:v(q) 
queue _ t *<l; 

1* Enter cmIy when "back enabled" by flow control *1 

stnlct loop *loop; 

loop = (struct loop *)q->q_ptr; 
if (loop->oqptr == NULL) 

return; 

1* nanually enable write se:r:vice procedure *1 

qenable(WR(loop->oqptr» ; 
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The write service procedure, loopwsrv, takes on the canonical form (see 
Chapter 8) with a difference. The QUEUE being written to is not down­
stream, but upstream (found via oqptr) on the other Stream. 

In this case, there is no read side put procedure so the read service pro­
cedure, looprsrv, is not scheduled by an associated put procedure, as has 
been done previously. looprsrv is scheduled only by being back-enabled 
when its upstream becomes unstuck from flow control blockage. The pur­
pose of the procedure is to re-enable the writer (loopwsrv) by using oqptr to 
find the related queue_to loopwsrv can not be directly back-enabled by 
STREAMS because there is no direct queue_t linkage between the two 
Streams. Note that no message ever gets queued to the read service pro­
cedure. Messages are kept on the write side so that flow control can pro­
pagate up to the Stream head. There is a defensive check to see if the 
cross-connect has broken. qenable schedules the write side of the other 
Stream. 
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Close 
loopclose breaks the connection between the Streams. 

static int loopclose(q) 
queue _ t *<l; 
{ 

register struct loop *loop; 

loop = (stru.ct loop *)q->q_ptr; 
loop->qptr = NULL; 

1* 
* If we are connected to another stream, break the 
* linkage, and serrl a hangup message. 
* The hangup message causes the stream head to fail writes, 
* allow the queued data to be read cc:mpletely, and then 

* return IDF an subsequent reads. 
*1 

if (loop->aqptr) { 
((struct loop *)loop->oqpt:r->q_ptr)->qptr = NULL; 
( (struct loop *) loop->oqpt:r->q_ptr) ->oqpt:r = NULL; 
putctl (loop->oqpt:r->q_ next, M _lWGJP) ; 

loop->aqptr = NULL; 

loop close sends an M_HANGUP message (see above) up the connected 
Stream to the Stream head. 

This driver can be implemented much more cleanly by actually linking the 
q_next pointers of the queue_t pairs of the two Streams. 
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Multiplexing Configurations 

This chapter describes how STREAMS multiplexing configurations are 
created and discusses multiplexing drivers. A STREAMS multiplexor is a 
pseudo-driver with multiple Streams connected to it. The primary function 
of the driver is to switch messages among the connected Streams. Multi­
plexor configurations are created from user level by system calls. Chapter 6 
of the Primer contains the required introduction to STREAMS multiplexing. 

STREAMS related system calls are used to set up the "plumbing," or 
Stream interconnections, for multiplexing pseudo-drivers. The subset of 
these calls that allows a user to connect (and disconnect) Streams below a 
pseudo-driver is referred to as the multiplexing facility. This type of con­
nection will be referred to as a I-to-M, or lower, multiplexor configuration 
(see Figure 6-2 in the Primer). This configuration must always contain a 
multiplexing pseudo-driver, which is recognized by STREAMS as having 
special characteristics. 

Multiple Streams can be connected above a driver by use of open(2) 
calls. This was done for the loop-around driver of the previous chapter and 
for the driver handling multiple minor devices in Chapter 9. There is no 
difference between the connections to these drivers, only the functions per­
formed by the driver are different. In the multiplexing case, the driver 
routes data between multiple Streams. In the device driver case, the driver 
routes data between user processes and associated physical ports. Multiplex­
ing with Streams connected above will be referred to as an N-to-l, or upper, 
multiplexor (see Figure 6-1 in the Primer). STREAMS does not provide any 
facilities beyond open and close(2) to connect or disconnect upper Streams 
for multiplexing purposes. 

From the driver's perspective, upper and lower configurations differ 
only in the way they are initially connected to the driver. The implementa­
tion requirements are the same: route the data and handle flow control. 
All multiplexor drivers require special developer-provided software to per­
form the multiplexing data routing and to handle flow control. STREAMS 
does not directly support flow control among multiple Streams. 

M-to-N multiplexing configurations are implemented by using both of 
the above mechanisms in a driver. Complex multiplexing trees can be 
created by cascading multiplexing Streams below one another. 
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As discussed in Chapter 9, the multiple Streams that represent minor 
devices are actually distinct Streams in which the driver keeps track of each 
Stream attached to it. The Streams are not really connected to their com­
mon driver. The same is true for STREAMS multiplexors of any 
configuration. The multiplexed Streams are distinct and the driver must be 
implemented to do most of the work. As stated above, the only difference 
between configurations is the manner of connecting and disconnecting. 
Only lower connections have use of the multiplexing facility. 

Connecting Lower Streams 
A lower multiplexor is connected as follows: The initial open to a mul­

tiplexing driver creates a Stream, as in any other driver. As usual, open 
uses the first two stream tab structure entries (see the section titled "Open­
ing a Stream," in Chapter 5) to create the driver QUEUEs. At this point, the 
only distinguishing characteristic of this Stream are non-NULL entries in 
the streamtab st_mux[rwlinit (mux) fields: 

str.uct streamtab { 

}; 

str.uct qinit 
str.uct qinit 
str.uct qinit 
str.uct qinit 

*st _ rdinit; /* defines read aJEUE */ 
*st_wrinit; /* defines write QUEUE */ 
*st_rruxrinit; /* for nultiplexing drivers only */ 
*st_nuxwinit; /* for nultiplexing drivers only */ 

These fields are ignored by the open (see the rightmost Stream in Fig­
ure 11-1). Any other Stream subsequently opened to this driver will have 
the same streamtab and thereby the same mux fields. 

Next, another file is opened to create a (soon to be) lower Stream. The 
driver for the lower Stream is typically a device driver (see the leftmost 
Stream in Figure 11-1). This Stream has no distinguishing characteristics. It 
can include any driver compatible with the multiplexor. Any modules 
required on the lower Stream must be pushed onto it now. 

Next, this lower Stream is connected below the multiplexing driver 
with an I_LINK ioctl call [see streamio(7)]. As shown in Figure 5-1, all 
Stream components are constructed in a similar manner. The Stream head 
points to the stream-head-routines as its procedures (known via its queue_t). 
An I_LINK to the upper Stream, referencing the lower Stream, causes 
STREAMS to modify the contents of the Stream head in the lower Stream. 
The pointers to the stream-head-routines, and other values, in the Stream 
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head are replaced with those contained in the mux fields of the multiplex­
ing driver's streamtab. Changing the stream-head-routines on the lower 
Stream means that all subsequent messages sent upstream by the lower 
Stream's driver will, ultimately, be passed to the put procedure designated 
in st_muxrinit, the multiplexing driver. The I_LINK also establishes this 
upper Stream as the control Stream for this lower Stream. STREAMS 
remembers the relationship between these two Streams until the upper 
Stream is closed, or the lower Stream is unlinked. 

Finally, the Stream head sends to the multiplexing driver an M_IOCTL 
message with ioc_cmd set to I_LINK (see discussions of the iocblk structure 
in Chapter 9 and Appendix A). The M_DATA part of the M_IOCTL con­
tains a linkblk structure: 

struct linkblk { 

1; 

d_qtop; 
d_qbot; 

l_:irxlex; 

1* lowest level write queue of upper stream *1 
1* highest level write queue of lower stream *1 
1* system-unique iIrlex for lower stream. *1 

The multiplexing driver stores information from the linkblk in private 
storage and returns an M_IOCACK message (ack). Ijndex is returned to the 
process requesting the I_LINK. This value can be used later by the process 
to disconnect this Stream, as described below. linkblk contents are further 
discussed below. 

An I_LINK is required for each lower Stream connected to the driver. 
Additional upper Streams can be connected to the multiplexing driver by 
open calls. Any message type can be sent from a lower Stream to user 
process(es) along any of the upper Streams. The upper Stream(s) provides 
the only interface between the user process(es) and the multiplexor. 

Note that no direct data structure linkage is established for the linked 
Streams. The q_next pointers of the lower Stream still appear to connect 
with a Stream head. Messages flowing upstream from a lower driver (a dev­
ice driver or another multiplexor) will enter the multiplexing driver (Le., 
Stream head) put procedure with l_qbot as the queue_t value. The multi­
plexing driver has to route the messages to the appropriate upper (or lower) 
Stream. Similarly, a message coming downstream from user space on the 
control, or any other, upper Stream has to be processed and routed, if 
required, by the driver. 
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Also note that the lower Stream (see the headers and file descriptors in 
Figure 11-2) is no longer accessible from user space. This causes all system 
calls to the lower Stream to return EINV AL, with the exception of close. 
This is why all modules have to be in place before the lower Stream is 
linked to the multiplexing driver. As a general rule, the lower Stream file 
should be closed after it is linked (see following section). This does not dis­
turb the multiplexing configuration. 

Finally, note that the absence of direct linkage between the upper and 
lower Streams means that STREAMS flow control has to be handled by spe­
cial code in the multiplexing driver. The flow control mechanism cannot 
see across the driver. 

In general, multiplexing drivers should be implemented so that new 
Streams can be dynamically connected to, and existing Streams disconnected 
from, the driver without interfering with its ongoing operation. The 
number of Streams that can be connected to a multiplexor is developer 
dependent. However, there is a system limit, NMUXLINK (see Appendix 
E), to the number of Streams that can be linked in the system. 

Disconnecting Lower Streams 

Dismantling a lower multiplexor is accomplished by disconnecting 
(unlinking) the lower Streams. Unlinking can be initiated in three ways: 
an I_UNLINK ioctl referencing a specific Stream, an I_UNLINK indicating 
all lower Streams, or the last close (Le., causes the associated file to be 
closed) of the control Stream. As in the link, an unlink sends a linkblk 
structure to the driver in an M_IOCTL message. The I_UNLINK call, which 
unlinks a single Stream, uses the Ijndex value returned in the I_LINK to 
specify the lower Stream to be unlinked. The latter two calls must desig­
nate a file corresponding to a control Stream which causes all the lower 
Streams that were previously linked by this control Stream to be unlinked. 
However, the driver sees a series of individual unlinks. 

If the file descriptor for a lower Stream was previously closed, a subse­
quent unlink will automatically close the Stream. Otherwise, the lower 
Stream must be closed by close following the unlink. STREAMS will 
automatically dismantle all cascaded multiplexors (below other multiplexing 
Streams) if their controlling Stream is closed. An I_UNLINK will leave 
lower, cascaded multiplexing Streams intact unless the Stream file descriptor 
was previously closed. 
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This section describes an example of multiplexor construction and 
usage. A multiplexing configuration similar to the Internet of Figure 6-2 in 
the Primer is discussed. Figure 11-1 shows the Streams before their connec­
tion to create the multiplexing configuration of Figure 11-2. Multiple upper 
and lower Streams interface to the multiplexor driver. The user processes of 
Figure 11-2 are not shown in Figure 11-1. 

r---------------------------------------------------, 
I Setup and Supervisory Process I 
I I 
I I 

L I ~~e-dl:c~ ~ -1-1-:I:~: ~ -1-1 ~~ ~ls~.-; -1-'- ~~e ts~.- -1-1- -~:!e~c~ -, ~ 
· . . . . · . . . . · . . . . 

Stream Head 

QUEU~ Pro A 

Stream Head 

QUEU~ Pro B 

LAPB 
Driver 

Stream Head 

QUEU~ Pro C 

802.2 
Driver 

Stream Head 

QUEU~ Pair 

Stream Head 

QUEU~ Pair 

Figure 11-1: Internet Multiplexor Before Connecting 

The Ethernet, LAPB and IEEE 802.2 device drivers terminate links to other 
nodes. IP (Internet Protocol) is a multiplexor driver. IP switches datagrams 
among the various nodes or sends them upstream to a user(s) in the system. 
The Net modules would typically provide a convergence function which 
matches the IP and device driver interface. 
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Figure 11-1 depicts only a portion of the full, larger Stream. As shown 
in the dotted rectangle above the IP multiplexor, there generally would be 
an upper TCP multiplexor, additional modules and, possibly, additional 
multiplexors in the Stream. Multiplexors could also be cascaded below the 
IP driver if the device drivers were replaced by multiplexor drivers. 

r - - - - - - - - - - - - - - - - - - - - - - - - - - -, User 
Setup and Supervisory I P 

Process I rocesses 
I A 

------ ----------~-----~-----------
........ yl ....... . 

fds 
·······A·A·A······ 

•••••••• .'\J. YI.'V ........ . . . 
: Upper : 
: Multiplexor or : 
: Module : . . 

Internet Protocol 
Multiplexor Driver 

Figure 11-2: Internet Multiplexor After Connecting 
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Streams A, Band C are opened by the process, and modules are pushed 
as needed. Two upper Streams are opened to the IP multiplexor. The right­
most Stream represents multiple Streams, each connected to a process using 
the network. The Stream second from the right provides a direct path to 
the multiplexor for supervisory functions. It is the control Stream, leading 
to a process which sets up and supervises this configuration. It is always 
directly connected to the IP driver. Although not shown, modules can be 
pushed on the control Stream. 

After the Streams are opened, the supervisory process typically transfers 
routing information to the IP drivers (and any other multiplexors above the 
IP), and initializes the links. As each link becomes operational, its Stream is 
connected below the IP driver. If a more complex multiplexing 
configuration is required, the IP multiplexor Stream with all its connected 
links can be connected below another multiplexor driver. 

As shown in Figure 11-2, the file descriptors for the lower device driver 
Streams are left dangling. The primary purpose in creating these Streams 
was to provide parts for the multiplexor. Those not used for control and 
not required for error recovery (by reconnecting them through an 
I _UNLINK ioctl) have no further function. As stated above, these lower 
Streams can be closed to free the file descriptor without any effect on the 
multiplexor. A setup process installing a configuration containing a large 
number of drivers should do this to avoid running out of file descriptors. 
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This section contains an example of a multiplexing driver that imple­
ments an N-to-l configuration, similar to that of Figure 6-3 in the Primer. 
This configuration might be used for terminal windows, where each 
transmission to or from the terminal identifies the window. This resembles 
a typical device driver, with two differences: the device handling functions 
are performed by a separate driver, connected as a lower Stream, and the 
device information (Le., relevant user process) is contained in the input data 
rather than in an interrupt call. 

Each upper Stream is connected by an open(2), identical to the driver of 
Chapter 9. A single lower Stream is opened and then it is linked by use of 
the multiplexing facility. This lower Stream might connect to the tty 
driver. The implementation of this example is a foundation for an M to N 
multiplexor. 

As in the loop-around driver, flow control requires the use of standard 
and special code, since physical connectivity among the Streams is broken at 
the driver. Different approaches are used for flow control on the lower 
Stream, for messages coming upstream from the device driver, and on the 
upper Streams, for messages coming downstream from the user processes. 

The multiplexor declarations are: 
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#include "sys/types.h" 
#include "sys/param.h" 
#include "sysl sysnacros .h" 
#include "sys/stream.h" 
#include "sys/stropts.h" 
#include "sys/errno.h" 

Multiplexing Driver 

static int mJXOpeIl( ), III.DCClose( ), IIUXUWplt( ), muxlwsrv( ), nuxl.rp.J.t( ); 

static st:ruct lICldule info info = 
0, "IIUlX", 0, INFPSZ, 512, 128 

}; 
static st:ruct qinit urinit = 

NULL, NULL, nuxopeIl, IIIlXClose, NULL, &info, NULL 
}; 
static struct qinit uwinit = { 1* upper write *1 

IIUXUWplt, NULL, NULL, NULL, NULL, &info, NULL 
}; 
static st:ruct qinit lrinit = { 1* lower read *1 

nuxl.rp.J.t, NULL, NULL, NULL, NULL, &info, NULL 
}; 
static st:ruct qinit lwinit = { 1* lower write *1 

NULL, nuxlwsrv, NULL, NULL, NULL, &info, NULL 
}; 

struct streamtab nuxinfo = { &urinit, &uwinit, &lrinit, &1winit }; 

struct IIUlX { 

queue _ t *<JP"tr; 1* back pointer to read queue *1 
}; 

extern st:ruct nux nux _ IIUlX[ ]; 

extern int nux _ cnt; 

queue _ t *IIUXbot; 1* linked lC1Ner queue *1 
int IIUDCerr; 1* set if error of hangup em lower stream *1 
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The four streamtab entries correspond to the upper read, upper write, 
lower read, and lower write qinit structures. The multiplexing qinit struc­
tures replace those in each (in this case there is only one) lower Stream 
head after the I_LINK has completed successfully. In a multiplexing 
configuration, the processing performed by the multiplexing driver can be 
partitioned between the upper and lower QUEUEs. There must be an upper 
Stream write, and lower Stream read, put procedures. In general, only 
upper write side and lower read side procedures are used. Application 
specific flow control requirements might modify this. If the QUEUE pro­
cedures of the opposite upper/lower QUEUE are not needed, the QUEUE 
can be skipped over, and the message put to the following QUEUE. 

In the example, the upper read side procedures are not used. The lower 
Stream read QUEUE put procedure transfers the message directly to the 
read QUEUE upstream from the multiplexor. There is no lower write put 
procedure because the upper write put procedure directly feeds the lower 
write service procedure, as described below. 

The driver uses a private data structure, mux. mux_mux[dev] points back 
to the opened upper read QUEUE. This is used to route messages coming 
upstream from the driver to the appropriate upper QUEUE. It is also used 
to find a free minor device for a CLONEOPEN driver open case. 

The upper QUEUE open contains the canonical driver open code: 
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static int xruxopen(q, dev, flag, sflag) 

queue _ t *<I; 
{ 

struct ltUlX *iIIlX; 

if (sflag == CIl:NEDPEN) 

for (dev = 0; dev < IIIlX _ cnt; dev++) 
if (IIIlX_ltUlX[dev].qpt:r == 0) 

break; 

else 
dev = lI\in:)r (dev) ; 

if (dev >= IIIlX _ cnt) 
return OPENFAIL; 

IIUX = &rux _ IIIlX [dev] ; 

IIIlX->qptr = q; 
q->q_ptr = (char *) rn.lX; 
WR(q)->q_ptr = (char *) IIIlX; 

return dev; 

Multiplexing Driver 

muxopen checks for a clone or ordinary open call. It loads qytr to point 
at the mux_mux[] structure. 

The core multiplexor processing is the following: downstream data 
written to an upper Stream is queued on the corresponding upper write 
message queue. This allows flow control to propagate towards the Stream 
head for each upper Stream. However, there is no service procedure on the 
upper write side. All M_DATA messages from all the upper message 
queues are ultimately dequeued by the service procedure on the lower 
(linked) write side. The upper write Streams are serviced in a round-robin 
fashion by the lower write service procedure. A lower write service pro­
cedure, rather than a write put procedure, is used so that flow control, com­
ing up from the driver below, may be handled. 
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On the lower read side, data coming up the lower Stream is passed to 
the lower read put procedure. The procedure routes the data to an upper 
Stream based on the first byte of the message. This byte holds the minor 
device number of an upper Stream. The put procedure handles flow control 
by testing the upper Stream at the first upper read QUEUE beyond the 
driver. That is, the put procedure treats the Stream component above the 
driver as the next QUEUE. 

Multiplexor Routines 

Figure 11-3: Example Multiplexor Configuration 

This is shown (sort of) in Figure 11-3. Multiplexor Routines are all the 
above procedures. Ul and U2 are queue_t pairs, each including a write 
queue_t pointed at by an l_qtop in a linkblk (see beginning of this chapter). 
L is the queue_t pair which contains the write queue_t pointed at by l_qbot. 
Nl and N2 are the modules (or Stream head or another multiplexing driver) 
seen by L when read side messages are sent upstream. 

Upper Write Put Procedure 
muxuwput, the upper QUEUE write put procedure, traps ioctls, in partic­

ular I_LINK and I_UNLINK: 
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static int IlIlXUWplt (q, np) 
queue _ t *<I; 
mblk_t *np; 

int s; 
struct nUlX *nux; 

nux = (Struct nux *)q->q_pt:r; 
switch (np->b _ data}r>db _type) 

case M _ ICCl'L: { 

struct iocblk *iocp; 

struct linkblk * linkp; 

1* 
* Ioctl. Only channel 0 can do ioctls. ~ 

* calls are recognized: LINK, arrl UNLINK 

*1 

if (nux 1= nux_nUlX) 

goto iocnak; 

iocp = (struct iocblk *) np->b_rptr; 
switch (ioq:r>ioc_atd) { 
case I LINK: 

1* 
* Link. The data cx:mtains a linkblk structure 

* Remember the botton queue in ImlXbot. 

*1 

if (muxbot 1= NULL) 

goto iocnak; 
linkp = (struct linkblk *) np->b_cx:mt->b_rptr; 

muxbot = linkp->l_ qbot; 

nuxerr = 0; 
np->b _ data}r>db _ type = M _ IOCACK; 

ioq:r>ioc_count = 0; 
qreply(q, np); 

break; 
case I UNLINK: 

Multiplexing Driver 
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1* 
* Unlink. The data cxmtains a linkblk structure. 
* Should not fail an unlink. Null out muxbot. 
*1 

linkp = (stru.ct linkblk *) np->b_cxmt->b_rptr; 
nuxbot = NUIL; 
np->b _ datap->db _ type = M _ IOCACX; 
iocp->ioc_count = 0; 
qreply(q, 11i»; 
break; 

default: 
iocnak: 

np->b _ datap->db _ type = M _ ICXNAK; 
qreply(q, 11i»; 

break; 

continued 

First, there is a check to enforce that the Stream associated with minor 
device 0 will be the single, controlling Stream. Ioctls are only accepted on 
this Stream. As described previously, a controlling Stream is the one that 
issues the I_LINK. Having a single control Stream is a recommended prac­
tice. I_LINK and I_UNLINK include a linkblk structure, described previ­
ously, containing: 

l_qtop The upper write QUEUE from which the ioctl is coming. It 
should always equal q. 
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I_qbot The new lower write QUEUE. It is the former Stream head 
write QUEUE. It is of most interest since that is where the 
multiplexor gets and puts its data. 

I index A unique (system wide) identifier for the link. It can be used 
for routing, or during selective unlinks, as described above. 
Since the example only supports a single link, Ijndex is not 
used. 

For I_LINK, I_qbot is saved in muxbot and an ack is generated. From this 
point on, until an I_UNLINK occurs, data from upper queues will be routed 
through muxbot. Note that when an I_LINK, is received, the lower Stream 
has already been connected. This allows the driver to send messages down­
stream to perform any initialization functions. Returning an M_IOCNAK 
message (nak) in response to an I_LINK will cause the lower Stream to be 
disconnected. 

The I_UNLINK handling code nulls out muxbot and generates an ack. A 
nak should not be returned to an I_UNLINK. The Stream head assures that 
the lower Stream is connected to a multiplexor before sending an 
I_UNLINK M_IOCTL. 

muxuwput handles M_FLUSH messages as a normal driver would: 

case M FLUSH: 

if (*ltp->b _ rptr & FLUSHW) 

fluslX{(q, FLtJSHIlATA); 

if (*ltp->b_rptr & FLUSHR) 

fluslX{(RD(q), FLUSHDATA); 
*ltp->b _ rptr &= -FLUSHW; 

qreply(q, mp); 
} else 

freemsg(mp) ; 
break; 

case M DATA: 

1* 
* Data. If we have no bottan queue --> fail 
* Ot:henrise, queue the data, anj invoke the lower 
* service procedure. 
*1 

if (nuxerr :: 1IIlXbot == NULL) 

goto bad; 
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continued 

putq(q, mp); 1* place message an upper write message queue *1 
qenable(ImlXbot) ; 1* lower service write procedure *1 
break; 

default: 
bad: 

1* 
* Send an error message upstream. 
*1 

rrq:r>b _ data}r>db _ type = M _ ERRCR; 

*rrq:r>b _ wptr++ = EINVAL; 
qreply(q, mp); 

M_DATA messages are not placed on the lower write message queue. 
They are queued on the upper write message queue. putq recognizes the 
absence of the upper service procedure and does not schedule the QUEUE. 
Then, the lower service procedure, muxlwsrv is scheduled with qenable (see 
Appendix C) to start output. This is similar to starting output on a device 
driver. Note that muxuwput can not access muxlwsrv (the lower QUEUE 
write service procedure, contained in muxbot) by the conventional STREAMS 
calls, putq or putnext (to a muxlwput). Both calls require that a message be 
passed, but the messages remain on the upper Stream. 

Lower QUEUE Write Service Procedure 

muxlwsrv, the lower (linked) queue write service procedure is scheduled 
directly from the upper service procedures. It is also scheduled from the 
lower Stream, by being back-enabled when the lower Stream becomes 
unblocked from downstream flow control. 
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static int IIJJXl.wsrv(q) 

register queue_t *<I; 
{ 

register IIblk_ t *mp, *bp; 
register queue _ t *nq; 

1* 
* While lower stream is not blocked, find an ~ queue to 
* service (get_next _ q) arxi send one message fran it downstream. 

*1 
while (canp1t(q->q_next)) 

nq = get_next_q( ); 
if (nq == NULL) 

break; 
mp = getq(nq); 

1* 
* Prepend the outgoinq message with a sinqle byte header 
* that indicates the minor device Inllt'ber it came fran. 
*1 

if «bp = a1locb(1, BPRI_MED)) == NULL) { 
printf("mIX: a1locb failed (size 1)\n"); 
freemsg(mp) ; 
ocnt:inue; 

*bp->b_wpt:t"++ = (st:ruct mIX *)nq->q_ptr - mIX_mIX; 

bp->b_ocnt = mp; 
putnext(q, bp); 

muxlwsrv takes data from the upper queues and puts it out through mux­
bot. The algorithm used is simple round robin. While we can put to 
muxbot->q next, we select an upper QUEUE (via get_next_q) and move a 
message from it to muxbot. Each message is prepended by a one byte header 
that indicates which upper Stream it came from. 
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Finding messages on upper write queues is handled by get_next_q: 

11-18 

1* 
* Round-robin scheduliD]. 
* Return next uwer queue that needs servicing. 
* Returns NULL when IX> rrore work needs to be done. 
*1 

static queue _ t * 
get_next_q( ) 
{ 

static int next; 
int i, start; 
register queue _ t *q; 

start = next; 
far (i = next; i < mux_cnt; i++) 

if (q = ItUlX_mux[i] .qptr) 
q = WR(q); 
if (q->q_first) 

next = i+1; 
return q; 

far (i = 0; i < start; i++) 
if (q = ItUlX_mux[i].qptr) 

q = WR(q); 
if (q->q_first) 

next = i+1; 
return q; 

return NULL; 
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get_next_q searches the upper queues in a round robin fashion looking 
for the first one containing a message. It returns the queue_t pointer or 
NULL if there is no work to do. 

Lower Read Put Procedure 

The lower (linked) queue read put procedure is: 

static int Irl.lXl.rput(q, np) 

queue _ t *<l; 
mblk_t *np; 
{ 

queue _ t *uq; 
mblk _ t *b _cant; 
int dev; 

switch(mp->b _ datap->db _type) 

case M FIIJSH: 

1* 
* Flush queues. N:11'E: sense of tests is reversed 
* since we are actin:] like a "stream head" 

*1 

if (*mp->b _ rptr &. FLUSHR) 

fluslx:{(q, 0); 

if (*mp->b _ rptr &. FLUSHW) 

*I!1p->b _ rptr &.= ~FLUSHR; 
qreply(q, np); 

} else 
freemsg(mp) ; 

break; 

case M ERRJR: 

case M HAN3UP: 
nmcerr = 1; 
freemsg(np) ; 

break; 

case M DATA: 
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11-20 

1* 
* Rcute IOOssage. First byte indicates 
* device to send to. No flow oontrol. 

* 

continued 

* Extract am. delete device number. If the leading block is 
* rOil enpty am. nore blocks follow, strip the leaCliDJ block. 
* The stream head interprets a leaCliDJ zero length block 
* as an EDF regardless of what follows (sigh). 

*1 

dev = *mp->b_rptr++; 
if (mp->b _ rptr == mp->b _ wptr && (b _ oont = mp->b _ oont) ) 

freeb(np); 

np = b_oont; 

1* Sanity check. Device rust be in range *1 

if (dev < 0 :: dev >= mux_cnt) 
freemsg(np) ; 

break; 

1* 
* If upper stream is open am. not backed up, 
* send the IOOssage there, oth.enrlse discard it. 

*1 

uq = llIIlX _ mux[ dev] • qptr; 
if (uq 1= NULL &&. canp.1t(uq->q_next» 

p.1tnext(uq, np); 
else 

freemsg(np) ; 
break; 

default: 
freemsg(mp) ; 
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muxlrput receives messages from the linked Stream. In this case, it is 
acting as a Stream head. It handles M_FLUSH messages. Note the code is 
reversed from that of a driver, handling M_FLUSH messages from upstream. 

muxlrput also handles M_ERROR and M_HANGUP messages. If one is 
received, it locks-up the upper Streams. 

M_DATA messages are routed by looking at the first data byte of the 
message. This byte contains the minor device of the upper Stream. If 
removing this byte causes the leading block to be empty, and more blocks 
follow, the block is discarded. This is done because the Stream head inter­
prets a leading zero length block as an EOF [see read(2)]. Several sanity 
checks are made: Does the message have at least one byte? Is the device in 
range? Is the upper Stream open? Is the upper Stream not full? 

This mux does not do end-to-end flow control. It is merely a router 
(like the Department of Defense's IP protocol). If everything checks out, 
the message is put to the proper upper QUEUE. Otherwise, the message is 
silently discarded. 

The upper Stream close routine simply clears the mux entry so this 
queue will no longer be found by get_next_queue: 

1* 
* Upper queue close 
*1 

static int ltllXClose(q) 
queue_t *q; 
{ 
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Definition 

STREAMS provides the means to implement a service interface between 
any two components in a Stream, and between a user process and the top­
most module in the Stream. A service interface is defined at the boundary 
between a service user and a service provider (see Figure 4-2). A service 
interface is a set of primitives and the rules for the allowable sequences of 
primitives across the boundary. These rules are typically represented by a 
state machine. In STREAMS, the service user and provider are implemented 
in a module, driver, or user process. The primitives are carried bidirection­
ally between a service user and provider in M_PROTO and M_PCPROTO 
(generically, PROTO) messages. M_PCPROTO is the priority version of 
M_PROTO. 

Message Usage 

As described in Appendix B, PROTO messages can be multi-block, with 
the second through last blocks of type M_DATA. The first block in a 
PROTO message contains the control part of the primitive in a form agreed 
upon by the user and provider and the block is not intended to carry proto­
col headers. (Although its use is not recommended, upstream PROTO mes­
sages can have multiple PROTO blocks at the start of the message. getmsg 
will compact the blocks into a single control part when sending to a user 
process.) The M_DATA block(s) contains any data part associated with the 
primitive. The data part may be processed in a module that receives it, or it 
may be sent to the next Stream component, along with any data generated 
by the module. The contents of PROTO messages and their allowable 
sequences are determined by the service interface specification. 

PROTO messages can be sent bidirectionally (up and downstream) on a 
Stream and bidirectionally between a Stream and a user process. putmsg(2) 
and getmsg(2) system calls are analogous, respectively, to write(2) and 
read(2) except that the former allow both data and control parts to be 
(separately) passed, and they observe message boundary alignment across 
the user-Stream boundary. putmsg and getmsg separately copy the control 
part (M_PROTO or M_PCPROTO block) and data part (M_DATA blocks) 
between the Stream and user process. 
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An M_PCPROTO message is normally used to acknowledge M_PROTO 
messages and not to carry protocol expedited data. M _PC PROTO insures 
that the acknowledgement reaches the service user before any other mes­
sage. If the service user is a user process, the Stream head will only store a 
single M_PCPROTO message, and discard subsequent M_PCPROTO mes­
sages until the first one is read with getmsg(2). 

The following rules pertain to service interfaces: 

• Modules and drivers that support a service interface must act upon 
all PROTO messages and not pass them through . 

• Modules may be inserted between a service user and a service pro­
vider to manipulate the data part as it passes between them. How­
ever, these modules may not alter the contents of the control part 
(PROTO block, first message block) nor alter the boundaries of the 
control or data parts. That is, the message blocks comprising the data 
part may be changed, but the message may not be split into separate 
messages nor combined with other messages. 

In addition, modules and drivers must observe the rule that priority mes­
sages are not subject to flow control and forward them accordingly (e.g., see 
the beginning of modwsrv in Chapter 8). Priority messages also bypass flow 
control at the user-Stream boundary [e.g., see putmsg(2)]. 
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The example below is part of a module which illustrates the concept of 
a service interface. The module implements a simple datagram interface 
and mirrors the example in Chapter 4. 

Declarations 

The service interface primitives are defined in the declarations: 

#include "sys/types .h" 
#include "sys/param.h" 
#include "sys/stream.h" 
#include "sys/erDlO.h" 

1* 
* Primitives initiated by the service user: 
*1 

#define BIND RID 1* bind request *1 
#define UNI'lDATA RID 2 1* unitdata request *1 

* Primitives initiated by the service provider: 

*1 
#define OK ACK 
#define ERRCE. ACK 

3 1* bind acknowledgrrent 
4 1* error acknowledgment 

#define UNI'lDATA IND 5 1* unitdata indication 

1* 
* The follow.i..ng structures define the fomat of the 
* stream message block of the above primitives. 

*1 
stru.ct bind _ req { 1* bind request *1 

}; 

Ion:] PRIM_type; 1* always BIND_RID *1 
Ion:] BIND _ addr; 1* addr to bind *1 

stru.ct unitdata _ req { 1* unitdata request *1 
Ion:] PRIM_type; 1* always UNI'lDATA _RID *1 
Ion:] DEST_addr; 1* dest addr *1 

}; 
struct ok _ ack { 1* ok acknowledgment *1 

Ion:] PRIM_type; 1* always OK_ACK *1 
} ; 
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struct error _ ack { 
lc::m:J PRIM_type; 
lc::m:J UNIX _ error; 

1* error acknowledgIOOllt *1 
1* always ERR::RJ,.cl( *1 
1* UNIX error code *1 

} ; 
struct unitdata _ ind { 1* unitdata indication *1 

lc::m:J PRIM_type; 1* always UNI'IDATA_IND *1 
lc::m:J SRC _ addr; 1* source addr *1 

}; 
union primitives { 1* union of all primitives *1 

lc::m:J type ; 
struct bind _ req bind _ req; 
struct unitdata _ req unitdata _ req; 
struct ok ack ok _ ack; 
struct error ack error_ack; 
struct unitdata ind unitdata_ind; 

} ; 
struct dgproto { 

slx:lrt state; 
lc::m:J addr; 

} ; 

1* structure per minor device *1 
1* current provider state *1 
1* net address *1 

1* Provider states *1 

#define IDLE a 
#define HXJN[) 

continued 

In general, the M_PROTO or M_PCPROTO block is described by a data 
structure containing the service interface information. In this example, 
union primitives is that structure. 

Two commands are recognized by the module: 

BIND_REQ Give this Stream a protocol address, i.e. give it a name 
on the network. After a BIND_REQ is completed, 
datagrams from other senders will find their way 
through the network to this particular Stream. 
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UNITDATA_REQ Send a datagram to the specified address. 

Three messages are generated: 

OK ACK 

ERROR_ACK 

A positive acknowledgement (ack) of BIND _REQ. 

A negative acknowledgement of BIND _REQ. 

UNITDATA_IND A datagram from the network has been received (this 
code is not shown). 

The ack of a BIND _REQ informs the user that the request was syntacti­
cally correct (or incorrect if ERROR_ACK). The receipt of a BIND_REQ is 
acknowledged with an M_PCPROTO to insure that the acknowledgement 
reaches the user before any other message. For example, a UNITDATA_IND 
could come through before the bind has completed, and the user would get 
confused. 

The driver uses a per-minor device data structure, dgproto, which con­
tains the following: 

state current state of the Stream (endpoint) IDLE or BOUND 

addr network address that has been bound to this Stream 

It is assumed (though not shown) that the module open procedure sets 
the write queue qytr to point at one of these structures. 

Service Interface Procedure 
The write put procedure is: 

static int prot.owp.lt (q, np) 

queue_t ~; 
mblk_t *np; 
{ 

union primitives *proto; 
struct dgproto ~gproto; 
int err; 

dgproto = (struct dgproto *) q->q_ptr; 
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switch (np->b _ datap->db _type) { 

default: 

1* don't understand it *1 
np->b _ datap->db _ type = M _ ERRCR; 

np->b _ rptr = np->b _ wptr = np->b _ datap->db _base; 

*np->b _ wptr++ = EPRDID; 
qreply(q, lIP); 
break; 

case M FLUSH: 

1* st:.aIx1ard flush handliD1 goes here ••• *1 
break; 

case M PRO'ID: 

1* Protocol IOOssage -> user request *1 

switch (proto->type) { 

default: 
np->b _ datap->db _ type = M _ ERRJR.; 
np->b_rptr = np->b_wptr = np->b_datap->dbJase; 

*np->b _ wptr++ = EPRDID; 
qreply(q, lIP); 
return; 

case BIND RID: 
if (dgproto->state 1= mLE) 

err = EINVAL; 
goto error_ack; 

if (np->b_wptr - np->b_rptr 1= sizeof(struct birrl_req» 
err = EINVAL; 
goto error _ ack; 

if (err = chkaddr(proto->birrl_req.BIND_addr» 
goto error _ ack; 

dgproto->state = :EDlND; 
dgproto->addr = proto->bind _ req.BIND _ addr; 
np->b _ datap->db _ type = M _ PCPRaro; 
proto->type = a< -,C1<; 
np->b_wptr = np->b_rptr + sizeof(struct Ok_ack); 
qreply(q, lIP); 
break; 
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continued 

error ack: 
np->b _ datap->db _type = M _ FCPROro; 
proto->type = ERROR -'~O<; 
proto->error _ ack. UNIX_error = err; 
np->b_wptr = np->b_rptr + sizeof(struct error_ack); 
qreply(q, mp); 

break; 

case UNI'IDATA _ RID: 

if (dgproto->state 1= RXJND) 

goto bad; 
if (np->b_wptr - np->b_rptr 1= sizeof(stnlct unitdata_req)) 

goto bad; 
if (err = chkaddr (proto->uni tdata _ req .DEST _ addr) ) 

goto bad; 
if (np->b_cant) { 

pltq(q, np->b _cant) ; 

1* start device or ImlX outplt ... *1 

break; 
bad: 

freemsg(mp) ; 

break; 

The write put procedure switches on the message type. The only types 
accepted are M_FLUSH and M_PROTO. For M_FLUSH messages, the driver 
will perform the canonical flush handling (not shown). For M_PROTO mes­
sages, the driver assumes the message block contains a union primitive and 
switches on the type field. Two types are understood: BIND _ REQ, and 
UNITDATA_REQ. 
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For a BIND _REQ, the current state is checked; it must be IDLE. Next, 
the message size is checked. If it is the correct size, the passed-in address is 
verified for legality by calling chkaddr. If everything checks, the incoming 
message is converted into an OK_ACK and sent upstream. If there was any 
error, the incoming message is converted into an ERROR_ACK and sent 
upstream. 

For UNITDATA_REQ, the state is also checked; it must be BOUND. As 
above, the message size and destination address are checked. If there is any 
error, the message is simply discarded. (This action may seem rash, but it is 
in accordance with the interface specification, which is not shown. Another 
specification might call for the generation of a UNITDATA_ERROR indica­
tion.) If all is well, the data part of the message, if it exists, is put on the 
queue, and the lower half of the driver is started. 

If the write put procedure receives a message type that it does not 
understand, either a bad b _ datap->db _type or bad proto->type, the mes­
sage is converted into an M_ERROR message and sent upstream. 

Another piece of code not shown is the generation of UNITDAT A _IND 
messages. This would normally occur in the device interrupt if this is a 
hardware driver (like STARLAN) or in the lower read put procedure if this 
is a multiplexor. The algorithm is simple: The data part of the message is 
prepended by an M_PROTO message block that contains a unitdatajnd struc­
ture and sent upstream. 
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Recovering From No Buffers 

The bufcall utility (see Appendix C) is used to recover from an allocb 
failure. The call syntax is as follows: 

bufcall ( size, pri, func, arg); 
int size, pri, (*func)(); 
long arg; 

bufcall will call (*Junc)(arg) when a buffer of size bytes at pri priority is 
available. When June is called, it has no user context and must return 
without sleeping. Also, because of interrupt processing, there is no guaran­
tee that when June is called, a buffer will actually be available (someone else 
may steal it). bufcall returns 1 on success, indicating that the request has 
been successfully recorded, or 0 on failure. On a failure return, the 
requested function will never be called. V Care must be taken to avoid deadlock when holding resources while wait­

ing for bufcall to call (*func)(arg). bufcall should be used sparingly. 

Two examples are provided. Example one is a device receive interrupt 
handler: 

#include "sys/types.h" 
#include "sys/param.h" 
#include "sys/stream.h" 

dev _ rmtr( dev) 
{ 

1* 

1* allocate new buffer for device *1 
dev_re_load(dev); 

* Reload device with a new receive buffer 

*1 
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if «bp = a1locb(DEVBLKSZ, BPRI_MED» == NULL) 
printf("dev: a1locb failure (size %1.)\n", m.vmKSZ); 

/* 
* Allocation failed. Use tufcall to 
* schedule a call to on-self. 
*/ 

(void) tufcall(m.vmKSZ, BPRI_MED, dev_re_load, dev); 
retum; 

/* pass tuffer to device ••• */ 

continued 

dev _rintr is called when the device has posted a receive interrupt. The 
code retrieves the data from the device (not shown). dev Jintr must then 
give the device another buffer to fill by a call to dev Je Joad, which calls 
allocb with the appropriate buffer size (DEVBLKSZ, definition not shown) 
and priority. If allocb fails, devJeJoad uses bufcall to call itself when 
STREAMS determines a buffer of the appropriate size and priority is avail­
able. 

Since bufcall may fail, there is still a chance that the device may hang. A 
better strategy, in the event bufcall fails, would be to discard the current 
input message and resubmit that buffer to the device. Losing input data is 
generally better than hanging. 

The second example is a write service procedure, mod_wsrv, which needs 
to prepend each output message with a header (similar to the multiplexor 
example of Chapter 11). mod_wsrv illustrates a case for potential deadlock: 
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static int nrxl_wsrv(q) 
queue _ t *<I; 
{ 

int qenable () ; 
mblk _ t *mp, *bp; 

while (mp = getq(q» 

1* check far priority Iressages an:l canp..1t ••• *1 

1* 
* Allocate a header to preperrl to the Iressage. If 
* the a1locb fails, use blfca1l to reschedule aJrself. 
*1 

if ((bp = a1locb(lIDRSZ, BPRI _ MED» == NULL) { 

if (lbufca1l(HDRSZ, BPRI_MED, qenable, q» 

1* 

1* 
* 'lb.e tAlfca1l request has failed. Discard 
* the Iressage an:l keep runni.n;J to avoid hanging. 

*1 
freemsg(mp) ; 
continue; 

* Put the Iressage back an:l exit, we will be re-enabled later 

*1 
p!tbq(q, mp); 

retUl:n; 

1* process Iressage •••• *1 

However, if allocb fails, mod_wsrv wants to recover without loss of data 
ands calls bufcall. In this case, the routine passed to bufcall is qenable (see 
below and Appendix C). When a buffer is available (of size HDRSZ, 
definition not shown), the service procedure will be automatically re­
enabled. Before exiting, the current message is put back on the queue. This 
example deals with bufcall failure by discarding the current message and 
continuing in the service procedure loop. 
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Advanced Flow Control 

Streams provides mechanisms to alter the normal queue scheduling pro­
cess. putq will not schedule a QUEUE if noenable(q) had been previously 
called for this QUEUE. noenable instructs putq to queue the message when 
called by this QUEUE, but not to schedule the service procedure. no enable 
does not prevent the QUEUE from being scheduled by a flow control back­
enable. The inverse of noenable is enableok( q). 

An example of this is driver upstream flow control. Although device 
drivers typically discard input when unable to send it to a user process, 
STREAMS allows driver read side flow control, possibly for handling tem­
porary upstream blocks. This is done through a driver read service pro­
cedure which is disabled during the driver open with noenable. If the 
driver input interrupt routine determines messages can be sent upstream 
(from canput), it sends the message with putnext. Otherwise, it calls putq 
to queue the message. The message waits on the message queue (possibly 
with queue length checked when new messages are enqueued by the inter­
rupt routine) until the upstream QUEUE becomes unblocked. When the 
blockage abates, STREAMS back-enables the driver read service procedure. 
The service procedure sends the messages upstream using getq and canput, 
as in Chapter 8. This is similar to looprsrv in Chapter 10 where the service 
procedure is present only for flow control. 

qenable, another flow control utility, allows a module or driver to cause 
one of its QUEUEs, or another module's QUEUEs, to be scheduled. In addi­
tion to the usage shown in Chapters 10 and 11, qenable might be used 
when a module or driver wants to delay message processing for some rea­
son. An example of this is a buffer module that gathers messages in its mes­
sage queue and forwards them as a single, larger message. This module 
uses no enable to inhibit its service procedure and queues messages with its 
put procedure until a certain byte count or "in queue" time has been 
reached. When either of these conditions is met, the put procedure calls 
qenable to cause its service procedure to run. 

Another example is a communication line discipline module that imple­
ments end-to-end (i.e., to a remote system) flow control. Outbound data is 
held on the write side message queue until the read side receives a transmit 
window from the remote end of the network. Then, the read side schedules 
the write side service procedure to run. 
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Signals 

STREAMS allows modules and drivers to cause a signal to be sent to 
user process(es) through an M_SIG or M_PCSIG message (see Appendix B) 
sent upstream. M_PCSIG is a priority version of M_SIG. For both messages, 
the first byte of the message specifies the signal for the Stream head to gen­
erate. If the signal is not SIGPOLL [see signal(2) and sigset(2)], then the 
signal is sent to the process group associated with the Stream (see below). 
If the signal is SIGPOLL, the signal is only sent to processes that have 
registered for the signal by using the I_SETSIG ioctl(2) [also see streamio(7)] 
call. 

A process group is associated with a Stream during the open of the 
driver or module. If u.u_ttyp is NULL prior to the driver or module open 
call, the Stream head checks u.u_ttyp after the driver or module open call 
returns. If u.u_ttyp is non-zero, it is assumed to point to a short that holds 
the process group 10 for signaling. The process group and indirect TTY 
(/ dey / tty) inode are recorded in the Stream head. 

If the driver or module wants to have a process group associated with 
the Stream, it should include code of the following form in its open pro­
cedure: 

pp = u.u_procp; 
pdp = .•. 

1* pointer to prcx:ess structure *1 
1* private data pointer *1 

if (pp->p _pid == pp->p _pgrp 1* process group leader *1 
&&. u. u _ ttyp == NULL 1* with no exmt:rollin} tty *1 
&&. pdp->pgrp == 0) { 1* and this stream is unassigned *1 

u.u_ttyp = &pdp->pgrp; 
pdp->pgrp = pp->p -pgrp; 
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A private data structure containing a short pgrp element is required. 

M_SIG can be used by modules or drivers that wish to insert an explicit 
inband signal into a message stream. For example, an M_SIG message can 
be sent to the user process immediately before a particular service interface 
message to gain the immediate attention of the user process. When the 
M_SIG reaches the head of the Stream head read message queue, a signal 
will be generated and the M_SIG message will be removed. This leaves the 
service interface message as the next message to be processed by the user. 
Use of M_SIG would typically be defined as part of the service interface of 
the driver or module. 
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The M_SETOPTS message (see Appendix B) allows a driver or module to 
exercise control over certain Stream head processing. An M_SETOPTS can 
be sent upstream at any time. The Stream head responds to the message by 
altering the processing associated with certain system calls. The options to 
be modified are specified by the contents of the stroptions structure (see 
Appendix B) contained in the message. 

Six Stream head characteristics can be modified. As described in Appen­
dix B, four correspond to fields contained in queue_t (min/max packet sizes 
and high/low water marks). The other two are discussed here. 

Read Options 

The value for read options (so_readopt) corresponds to the three modes a 
user can set via the I_SRDOPT ioctl (see streamio) call: 

byte-stream (RNORM) 
The read(2) call completes when the byte count is satisfied, 
the Stream head read queue becomes empty, or a zero 
length message is encountered. In the last case, the zero 
length message is put back on the queue. A subsequent 
read will return 0 bytes. 

message non-discard (RMSGN) 
The read call completes when the byte count is satisfied or 
at a message boundary, whichever comes first. Any data 
remaining in the message is put back on the Stream head 
read queue. 

message discard (RMSGD) 
The read call completes when the byte count is satisfied or 
at a message boundary. Any data remaining in the message 
is discarded. 

Byte-stream mode approximately models pipe data transfer. Message 
non-discard mode approximately models a TTY in canonical mode. 
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Write Offset 

The value for write offset (so_wroff) is a hook to allow more efficient data 
handling. It works as follows: In every data message generated by a 
write(2) system call and in the first M_DATA block of the data portion of 
every message generated by a putmsg(2) call, the Stream head will leave 
so_wroff bytes of space at the beginning of the message block. Expressed as 
a C language construct: 

bp->b _ rptr = bp->b _ datap->db _base +write offset. 

The write offset value must be smaller than the maximum STREAMS mes­
sage size, STRMSGSZ (see the section titled "Tunable Parameters" in Appen­
dix E). In certain cases (e.g., if a buffer large enough to hold the offset+data 
is not currently available), the write offset might not be included in the 
block. To be general, modules and drivers should not assume that the offset 
exists in a message, but should always check the message. 

The intended use of write offset is to leave room for a module or a 
driver to place a protocol header before user data in the message rather than 
by allocating and prepending a separate message. This feature is not gen­
eral, and its use is discouraged. A more general technique is to put protocol 
header information in a separate message block and link the user data to it. 
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Appendix A: Kernel Structures 

This appendix summarizes previously described kernel structures com­
monly encountered in STREAMS module and driver development. 

STREAMS kernel structures are contained in <sys/stream.h> 

These and other STREAMS structures (shown in bold) contained in both 
parts of this guide will remain fixed in subsequent releases of UNIX System 
V, subject to the following: The offset of all defined elements in each struc­
ture will not change. However, the size of the structure may be increased 
to add new elements. 

streamtab 
As discussed in Chapter 5, this structure defines a module or driver: 

struct streamtab { 

} ; 

struct qinit *st_rdinit; 
struct qinit *st_wrinit; 
struct qini t *st _ muxrini t; 
struct qini t *st _ muxwini t; 

1* defines read QUEUE *1 
1* defines write QUEUE *1 
1* for multiplexing drivers only *1 
1* for multiplexing drivers only *1 
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QUEUE Structures 
Two sets of QUEUE structures form a module. The structures, discussed 

in Chapters 5 and 8, are queue_t, qinit, moduleJnfo and, optionally, 
module _stat: 

struct queue { 

} ; 

struct qinit *<I_ qinfo; 1* procedures and limits for queue *1 
struct msgb *<I_first; 1* head of message queue for this QUEUE *1 
struct msgb *<I_last; 1* tail of message queue for this QUEUE *1 
struct queue *<I_next; 1* next QUEUE in Stream*1 
struct queue *<I_link; 1* link to next QUEUE on STREAMS scheduling queue *1 
caddr _ t q_ptr; 1* to private data structure *1 
ushort q_ count; 1* weighted count of characters on message queue *1 
ushort q_flag; 1* QUEUE state *1 
short q_minpsz; 1* min packet size accepted by this QUEUE *1 
short q_maxpsz; 1* max packet size accepted by this QUEUE *1 
ushort q_hiwat; 1* message queue high water mark, for flow control *1 
ushort q_lowat; 1* message queue low water mark, for flow control *1 

typedef struct queue queue_t; 

When a queue_t pair is allocated, their contents are zero unless 
specifically initialized. The following fields are initialized: 

• q_qinfo - from streamtab.stjrd/wr]init (or st_mux[rw]init) 

• q_Ininpsz, q_maxpsz, q_hiwat, qJowat - from moduleJnfo 

• q-ptr - optionally, by the driver/module open routine 

struct qinit { 

} ; 

int ( *<Ii _putp) ( ) ; 
int ( *<Ii _ srvp)( ) ; 
int (*<Ii_qopen)(); 

1* put procedure *1 
1* service procedure *1 
1* called on each open or a push *1 

int (*<Ii_qclose)(); 1* called on last close or a pop *1 
int (*<Ii_qadmin) (); 1* reserved for future use *1 
struct IOC>dule _ info *<Ii _ minfo; 1* infonnation structure *1 
struct IOC>dule_stat *<Ii_mstat; 1* statistics structure - optional *1 
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struct m:Xiule _ info { 

} ; 

ushort 
char 
short 
short 
short 
ushort 

mi_idnum; 
*mi_idname; 
mi_minpsz; 
mi_maxpsz; 
mi_hiwat; 
mi_Iowat; 

struct m:Xiule stat { -
long IllS_pent; 
long IllS_sent; 
long IlIS_ocnt; 
long IllS_cent; 
long IlIS_aent; 
char *IlIS_xptr; 
short IlIS_xsize; 
} ; 

1* m:Xiule ID number *1 
1* m:Xiule name *1 

Appendix A: Kernel Structures 

1* min packet size accepted, for developer use */ 
1* max packet size accepted, for developer use */ 
1* hi-water mark, for flow control *1 
1* lo-water mark, for flow control *1 

1* COW'lt of calls to put proc *1 
1* COW'lt of calls to service proc *1 
1* COW'lt of calls to open proc *1 
1* COW'lt of calls to close proc *1 
1* COW'lt of calls to admin proc *1 
1* pointer to private statistics *1 
1* length of private statistics buffer *1 

Note that in the event these counts are calculated by modules or 
drivers, the counts will be cumulative over all instantiations of modules 
with the same fmodsw entry and drivers with the same cdevsw entry. 
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Message Structures 
As described in Chapter 7, a message is composed of a linked list of tri­

ples, consisting of two structures and a data buffer: 

struct msgb 
struct msgb 
struct msgb 
struct msgb 
unsigned char 
unsigned char 
struct datab 

} ; 

*b_next; 
*b_prev; 
*b_cont; 
*b_rptr; 
*b_wptr; 
*b_datap; 

1* next message on queue *1 
1* previous message on queue *1 
1* next message block of message *1 
1* first unread data byte in buffer *1 
1* first unwritten data byte in buffer *1 
1* data block *1 

typedef struct msgb mblk_t; 

struct datab { 

} ; 

struct datab *db_freep; 1* used internally *1 
unsigned char *db _ base; 
unsigned char *db _lim; 
unsigned char db_ref; 
unsigned char db_type; 
unsigned char db_class; 

1* first byte of buffer * *1 
1* last byte+1 of buffer *1 
1* count of messages pointing to this block *1 
1* message type *1 
1* used internally *1 

typedef struct datab dblk _ t; 

iocblk 
As described in Chapter 9 and Appendix B, this is contained in an 

M _ IOCTL message block: 

struct iocblk { 
int ioc _ cm:l; 1* ioctl cc:mnand type *1 
ushort ioc_uid; 1* effective uid of user */ 
ushort ioc _gid; 1* effective gid of user *1 
uint ioc_id; 1* ioctl id *1 
uint ioc _count; 1* count of bytes in data field *1 
int ioc _error; 1* error code *1 
int ioc_rval; 1* return value *1 

} ; 
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linkblk 
As described in Chapter 11, this is used in lower multiplexor drivers: 

struct linkblk { 

} ; 

queue _ t *1_ qtop; 1* lowest level write queue of upper stream *1 
queue_t *l_qbot; 1* highest level write queue of lower stream *1 
int I_index; h system-wrique index for lower stream. *1 
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Appendix B: Message Types 

Eighteen STREAMS message types are defined. The message types 
differ in their intended purposes, their treatment at the Stream head, and in 
their message queueing priority (see Chapter 8). 

STREAMS does not prevent a module or driver from generating any 
message type and sending it in any direction on the Stream. However, esta­
blished processing and direction rules should be observed. Stream head 
processing according to message type is fixed, although certain parameters 
can be altered. 

The message types are described below, classified according to their 
message queueing priority. Ordinary messages are described first, with 
priority messages following. In certain cases, two message types may per­
form similar functions, differing in priority. Message construction is 
described in Chapter 7. The use of the word module will generally imply 
"module or driver." 
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These message types are subject to flow control. These are referred to as 
non-priority messages when received at user level. 

M DATA Intended to contain ordinary data. Messages allocated by 
the allocb routine (see Appendix B) are type M_DATA by 
default. M_DATA messages are generally sent bidirec­
tionally on a Stream and their contents can be passed 
between a process and the Stream head. In the getmsg(2) 
and putmsg(2) system calls, the contents of M_DATA mes­
sage blocks are referred to as the data part. Messages 
composed of multiple message blocks will typically have 
M_DATA as the message type for all message blocks fol­
lowing the first. 

M PROTO Intended to contain internal control information and asso­
ciated data. The message format is one M _PROTO mes­
sage block followed by zero or more M _DATA message 
blocks as shown below: The semantics of the M DATA 
and M _PROTO message block are determined by the 
STREAMS module that receives the message. 

The M_PROTO message block will typically contain 
implementation dependent control information. 
M_PROTO messages are generally sent bidirectionally on 
a Stream, and their contents can be passed between a pro­
cess and the Stream head. The contents of the first mes­
sage block of an M_PROTO message is generally referred 
to as the control part, and the contents of any following 
M_DATA message blocks are referred to as the data part. 
In the getmsg(2) and putmsg(2) system calls, the control 
and data parts are passed separately. These calls refer to 
M_PROTO messages as non-priority messages. 

Note that, although its use is not recommended, the for­
mat of M_PROTO and M_PCPROTO (generically PROTO) 
messages sent upstream to the Stream head allows multi­
ple PROTO blocks at the beginning of the message. 
getmsg will compact the blocks into a single control part 
when passing them to the user process. 
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Ordinary Messages 

Figure B-1: M_PROTO and M_PCPROTO Message Structure 

M IOCTL Generated by the Stream head in response to an I_STR, 
and certain other, ioctl(2) system calls [see streamio(7)]. 
When one of these ioctls is received from a user process, 
the Stream head uses values from the process and sup­
plied in the call to create an M_IOCTL message contain­
ing them, and sends the message downstream. M _IOCTL 
messages are intended to perform the general ioctl func­
tions of character device drivers. 

The user values are supplied in a structure of the follow­
ing form, provided as an argument to the ioctl call (see 
I_STR in streamio): 

struct strioctl 
{ 

}; 

int ie aId; 
int ie - tinolt; 
int ie-len; 
char *ie_dp; 

1* downstream request *1 
1* ACKINAK t:ilreout *1 
1* le:r¥fth of data arg *1 
1* ptr to data arg *1 

where ic_cmd is the request (or command) defined by a 
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downstream module or driver, ic_timout is the time the 
Stream head will wait for acknowledgement to the 
MjOCTL message before timing out, ic_dp is a pointer to 
an optional data argument. On input, icJen contains the 
length of the data argument passed in and, on return 
from the call, it contains the length of the data, if any, 
being returned to the user. 

The form of an M_IOCTL message is one M_IOCTL mes­
sage block linked to zero or more M_DATA message 
blocks. STREAMS constructs an M _IOCTL message block 
by placing an iocblk structure in its data buffer: 

struct: iocblk 
{ 

}; 

int ioc _ ard; 
ushart ioc_uid; 
ushart ioc _gid; 
uint ioc _ id; 
uint ioc _ coont; 
int ioc _error; 
int ioc _ rval; 

1* ioctl cx::mtmld type *1 
1* effective user id mnnber *1 
1* effective groop id number *1 
1* ioctl identifier *1 
1* byte coont for ioctl data *1 
1* error code *1 
1* retunl value *1 

The iocblk structure is defined in <sys/stream.h>. 
ioc_cmd corresponds to ic_cmd. ioc_uid and ioc~id are the 
effective user and group IDs for the user sending the 
ioctl, and can be tested to determine if the user issuing 
the ioctl call is authorized to do so. ioc _count is the 
number of data bytes, if any, contained in the message 
and corresponds to icJen. 

iocjd is an identifier generated internally, and is used to 
match each M_IOCTL message sent downstream with a 
response which must be sent upstream to the Stream 
head. The response is contained in an M _IOCACK (posi­
tive acknowledgement) or an M_IOCNAK (negative ack­
nowledgement) messages. Both these message types have 
the same format as an M_IOCTL message and contain an 
iocblk structure in the first block with optional data 
blocks following. If one of these messages reaches the 
Stream head with an identifier which does not match 
that of the currently-outstanding M_IOCTL message, the 
response message is discarded. A common means of 
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assuring that the correct identifier is returned, is for the 
replying module to convert the M_IOCTL message type 
into the appropriate response type and set ioc_count to 0, 
if no data is returned. Then, the qreply utility (see 
Appendix C) is used to send the response to the Stream 
head. 

ioc _error holds any return error condition set by a down­
stream module. If this value is non-zero, it is returned to 
the user in errno. Note that both an M IOCNAK and an 
M_IOCACK may return an error. iocJval holds any 
M_IOCACK return value set by a responding module. 

If a user supplies data to be sent downstream, the Stream 
head copies the data, pointed to by ic_dp in the strioctl 
structure, into M_DATA message blocks and links the 
blocks to the initial M _IOCTL message block. ioc _count is 
copied from ic Jen. If there is no data, ioc _count is zero. 

If a module wants to send data to a user process as part 
of its response, it must construct an M_IOCACK message 
that contains the data. The first message block of this 
message contains the iocblk data structure, with any data 
stored in one or more M_DATA message blocks linked to 
the first message block. The module must set ioc _count to 
the number of data bytes sent. On completion of the 
call, this number is passed to the user in icJen. Data 
associated with an M_IOCNAK message is not returned 
to the user process, and is discarded by the Stream head. 

The first module or a driver that understands the request 
contained in the M_IOCTL acts on it, and generally 
returns an M_IOCACK message. Intermediate modules 
that do not recognize a particular request must pass it on. 
If a driver does not recognize the request, or the receiv­
ing module can not acknowledge it, an M_IOCNAK mes­
sage must be returned. 

The Stream head waits for the response message and 
returns any information contained in an M _ IOCACK to 
the user. The Stream head will "time out" if no response 
is received in ic timeout interval. 
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M CTL 

M BREAK 

MDELAY 

Generated by modules that wish to send information to a 
particular module or type of module. M_CTL messages 
are typically used for inter-module communication, as 
when adjacent STREAMS protocol modules negotiate the 
terms of their interface. An M_CTL message cannot be 
generated by a user-level process and is always discarded 
if passed to the Stream head. 

Sent to a driver to request that BREAK be transmitted on 
whatever media the driver is controlling. 

The message format is not defined by STREAMS and its 
use is developer dependent. This message may be con­
sidered a special case of an M _ CTL message. An 
M_BREAK message cannot be generated by a user-level 
process and is always discarded if passed to the Stream 
head. 

Sent to a media driver to request a real-time delay on out­
put. The data buffer associated with this message type is 
expected to contain an integer to indicate the number of 
machine ticks of delay desired. M_DELAY messages are 
typically used to prevent transmitted data from exceeding 
the buffering capacity of slower terminals. 

The message format is not defined by STREAMS and its 
use is developer dependent. Not all media drivers may 
understand this message. This message may be con­
sidered a special case of an M_CTL message. An 
M_DELAY message cannot be generated by a user-level 
process and is always discarded if passed to the Stream 
head. 

This is used by STREAMS to pass a file pointer from the 
Stream head at one end of a Stream pipe to the Stream 
head at the other end of the same Stream pipe. (A 
Stream pipe is a Stream that is terminated at both ends 
by a Stream head; one end of the Stream can always find 
the other by following the q_next pointers in the Stream. 
The means by which such a structure is created is not 
described in this document.) 
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The message is generated as a result of an I_SENDFD 
ioct! [see streamio(7)] issued by a process to the sending 
Stream head. STREAMS places the M_PASSFP message 
directly on the destination Stream head's read queue to 
be retrieved by an I_RECVFD ioct! [see streamio(7)]. The 
message is placed without passing it through the Stream 
(Le., it is not seen by any modules or drivers in the 
Stream). This message type should never be present on 
any queue except the read queue of a Stream head. Con­
sequently, modules and drivers do not need to recognize 
this message type, and it can be ignored by module and 
driver developers. 

M_SETOPTS Alters some characteristics of the Stream head. It is gen­
erated by any downstream module, and is interpreted by 
the Stream head. The data buffer of the message has the 
following structure: 

struct sb:options 
{ 

}; 

short so_flags; 
short so_readopt; 
usOOrt so _ wroff; 
short so _ minpsz; 
short so _ maxpsz; 
usOOrt so _hiwat; 
usOOrt so _lowat; 

1* options to set *1 
1* read optian *1 
1* write offset *1 
1* rnininnmI read packet size *1 
1* nax:i.rmlm read packet size *1 
1* read queue high-water mark *1 
1* read queue low-water mark *1 

where soJlags specifies which options are to be altered, 
and can be any combination of the following: 

o SO_ALL - Update all options according to the 
values specified in the remaining fields of the 
stroptions structure. 

o SO_READOPT - Set the read mode [see read(2)] to 
RNORM (byte stream), RMSGD (message discard), 
or RMSGN (message non-discard) as specified by 
the value of sOJeadopt. 

o SO WROFF - Direct the Stream head to insert an 
offset specified by so_wroff into the first message 
block of all M_DATA messages created as a result 
of a write system call. The same offset is inserted 
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into the first M_DATA message block, if any, of all 
messages created by a putmsg system call. The 
default offset is zero. 

The offset must be less than the maximum message 
buffer size (system dependent). Under certain cir­
cumstances, a write offset may not be inserted. A 
module or driver must test that bJptr in the 
mblk_t structure is greater than db _base in the 
dblk t structure to determine that an offset has 
been inserted in the first message block. 

D SO_MINPSZ - Change the minimum packet size 
value associated with the Stream head read queue 
to so_minpsz (see q_minpsz in the queue_t structure, 
in Appendix A). This value is advisory for the 
module immediately below the Stream head. It is 
intended to limit the size of M_DATA messages 
that the module should put to the Stream head. 
There is no intended minimum size for other mes­
sage types. The default value in the Stream head is 
o. 

o SO_MAXPSZ - Change the maximum packet size 
value associated with the Stream head read queue 
to so_maxpsz (see q_maxpsz in the queue_t structure, 
in Appendix A). This value is advisory for the 
module immediately below the Stream head. It is 
intended to limit the size of M_DATA messages 
that the module should put to the Stream head. 
There is no intended maximum size for other mes­
sage types. The default value in the Stream head is 
INFPSZ, the maximum STREAMS allows. 

o SO_HIWAT - Change the flow control high water 
mark on the Stream head read queue to the value 
specified in so_hiwat. 

o SO_LOWAT - Change the flow control low water 
mark (see q_minpsz in the queue_t structure, 
Appendix A) on the Stream head read queue to the 
value specified in soJowat. 
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Sent upstream by modules or drivers to post a signal to a 
process. When the message reaches the Stream head, the 
first data byte of the message is transformed into a signal, 
as defined in <sys/signal.h>, to the process(es) accord­
ing to the following. 

If the signal is not SIGPOLL and the Stream containing 
the sending module or driver is a controlling TTY, the 
signal is sent to the associated process group. A Stream 
becomes the controlling TTY for its process group if, on 
open(2), a module or driver sets u.u_ttyp to point to a 
(short) "process group value." 

If the signal is SIGPOLL, it will be sent only to those 
processes that have explicitly registered to receive the 
signal [see I_SETSIG in streamio(7)]. 
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Priority messages are not subject to flow control. 

M PCPROTO This message type has the same format and characteristics 
as the M _PROTO message type, except for priority and 
the following additional attributes. 

When an M_PCPROTO message is placed on a queue, its 
service procedure is always enabled. The Stream head 
will allow only one M_PCPROTO message to be placed 
in its read queue at a time. If an M_PCPROTO message 
is already in the queue when another arrives, the second 
message is silently discarded and its message blocks 
freed. 

This message type is intended to allow data and control 
information to be sent outside the normal flow control 
constrain ts. 

The getmsg(2) and putmsg(2) system calls refer to 
M_PCPROTO messages as priority messages. 

M_ERROR This message type is sent upstream by modules or drivers 
to report some downstream error condition. When the 
message reaches the Stream head, the Stream is marked 
so that all subsequent system calls issued to the Stream, 
excluding c1ose(2) and poll(2), will fail with errno set to 
the first data byte of the message. POLLERR is set if the 
Stream is being polled [see poll(2)]. All processes sleep­
ing on a system call to the Stream are awakened. An 
M_FLUSH message with an FLUSHRW argument is sent 
downstream. 

M HANGUP This message type is sent upstream by a driver to report 
that it can no longer send data upstream. As example, 
this might be due to an error, or to a remote line connec­
tion being dropped. When the message reaches the 
Stream head, the Stream is marked so that all subsequent 
write(2) and putmsg(2) system calls issued to the Stream 
will fail and return an ENXIO error. Those ioctls that 
cause messages to be sent downstream are also failed. 

8-10 STREAMS PROGRAMMER'S GUIDE 



Priority Messages 

POLLHUP is set if the Stream is being polled [see 
poll(2)]. 

However, subsequent read(2) or getmsg(2) calls to the 
Stream will not generate an error. These calls will return 
any messages (according to their function) that were on, 
or in transit to, the Stream head read queue before the 
M_HANGUP message was received. When all such mes­
sages have been read, read will return 0, and getmsg will 
set each of its two length fields to O. 

This message also causes a SIGHUP signal to be sent to 
the process group, if the device is a controlling TTY (see 
M_SIG). 

M IOCACK This message type signals the positive acknowledgement 
of a previous M_IOCTL message. The message may con­
tain information sent by the receiving module or driver. 
The Stream head returns the information to the user if 
there is a corresponding outstanding M_IOCTL request. 
The format and use of this message type is described 
further under M IOCTL. 

M IOCNAK This message type signals the negative acknowledgement 
(failure) of a previous M_IOCTL message. When the 
Stream head receives an M_IOCNAK, the outstanding 
ioctl request, if any, will fail. The format and usage of 
this message type is described further under M _IOCTL. 

M_FLUSH This message type requests all modules and drivers that 
receive it to flush their message queues (discard all mes­
sages in those queues) as indicated in the message. An 
M_FLUSH can originate at the Stream head, or in any 
module or driver. The first byte of the message contains 
flags that specify one of the following actions: 

o FLUSHR: Flush the read queue of the module. 

o FLUSHW: Flush the write queue of the module. 

o FLUSHRW: Flush both the read and the write 
queue of the module. 
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Each module passes this message to its neighbor after 
flushing its appropriate queue(s), until the message 
reaches one of the ends of the Stream. 

Drivers are expected to include the following processing 
for M_FLUSH messages. When an M_FLUSH message is 
sent downstream through the write queues in a Stream, 
the driver at the Stream end discards it if the message 
action indicates that the read queues in the Stream are 
not to be flushed (only FLUSHW set). If the message 
indicates that the read queues are to be flushed, the 
driver sets the M_FLUSH message flag to FLUSHR, and 
sends the message up the Stream's read queues. When a 
flush message is sent up a Stream's read side, the Stream 
head checks to see if the write side of the Stream is to be 
flushed. If only FLUSHR is set, the Stream head discards 
the message. However, if the write side of the Stream is 
to be flushed, the Stream head sets the M_FLUSH flag to 
FL USHW and sends the message down the Stream's write 
side. All modules that enqueue messages must identify and 
process this message type. 

This message type has the same format and characteristics 
as the M_SIG message type except for priority. 

M_START and M_STOP 
These messages request devices to start or stop their out­
put. They are intended to produce momentary pauses in 
a device's output, not to turn devices on or off. 

The message format is not defined by STREAMS and its 
use is developer dependent. These messages may be con­
sidered special cases of an M_CTL message. These mes­
sages cannot be generated by a user-level process and 
each is always discarded if passed to the Stream head. 
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adjmsg trim bytes in a message C-3 

allocb allocate a message block C-3 

backq get pointer to the queue behind a given queue C-3 

bufcall recover from failure of allocb C-4 
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copyb copy a message block C-5 
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datamsg test whether message is a data message C-5 

dupb duplicate a message block descriptor C-6 
dupmsg duplicate a message C-6 

enableok re-allow a queue to be scheduled for service C-6 

flushq flush a queue C-7 
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getq get a message from a queue C-8 

insq put a message at a specific place in a queue C-8 

linkb concatenate two messages into one C-9 

msgdsize get the number of data bytes in a message C-9 
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OTHERQ get pointer to the mate queue C-9 
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This appendix specifies the set of utilities that STREAMS provides to 
assist development of modules and drivers. There are over 30 utility rou­
tines and macros. 

The general purpose of the utilities is to perform functions that are 
commonly used in modules and drivers. However, some utilities also pro­
vide the required interrupt environment. A utility must always be used 
when operating on a message queue and when accessing the buffer pool. 

The utilities are contained in either the system source file io/stream.c 
or, if they are macros, in <sys/stream.h>. 

The utilities contained in this appendix represent an interface that will be 
maintained in subsequent versions of UNIX System V. Other than these 
utilities (also see the section titled "Accessible Symbols and Functions" in 
Appendix D), functions contained in the STREAMS kernel code may change 
between versions. 

All structure definitions are contained in Appendix A unless otherwise indi­
cated. All routine references are found in this appendix unless otherwise 
indicated. The following definitions are used. 

Blocked 

Enable 

A queue that can not be enabled due to flow control 
(see the section titled "Flow Control" in Chapter 6 of 
the Primer). 

To schedule a queue. 

Free De-allocate a STREAMS storage. 

Message block (bp) 
A triplet consisting of an mblk_t structure, a dblk_t 
structure, and a data buffer. It is referenced by its 
mhlk_t structure (see Chapter 7). 

Message (mp) One or more linked message blocks. A message is refer­
enced by its first message block. 

Message queue Zero or more linked messages associated with a queue 
(queue_t structure). 
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Queue (q) 

Schedule 

A queue_t structure. This is generally the same as 
QUEUE in the rest of this document (e.g., see the 
definitions for enable and schedule). When it appears 
with "message" in certain utility description lines, it 
means "message queue". 

Place a queue on the internal linked list of queues 
which will subsequently have their service procedure 
called by the STREAMS scheduler. 

The word module will generally mean "module and/or driver". The phrase 
"next/following module" will generally refer to a module, driver, or Stream 
head. Message queueing priority (see Chapter 8 and Appendix B) can be 
ordinary or Priority (to avoid "priority priority"). 
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The utilities are described below. A summary table is contained at the 
end of this appendix. 

adjmsg - trim bytes in a message 

int adjmsg(mp, len) 
mblk_t *mp; 
int len; 

adjmsg trims bytes from either the head or tail of the message specified by 
mp. If len is greater than zero, it removes len bytes from the beginning of 
mp. If len is less than zero, it removes (-)len bytes from the end of mp. If len 
is zero, adjmsg does nothing. adjmsg only trims bytes across message 
blocks of the same type. It will fail if mp points to a message containing 
fewer than len bytes of similar type at the message position indicated. 
adjmsg returns 1 on success, and 0 on failure. 

allocb - allocate a message block 

mblk_t *allocb(size, pri) 
int size, pri; 

allocb returns a pointer to a message block of type M_DATA, in which the 
data buffer contains at least size bytes. pri indicates the priority of the allo­
cation request, and can have the values BPRI_LO, BPRI_MED or BPRI_HI 
(see the section titled "Buffer Allocation Priority" in this appendix). If a 
block can not be allocated as requested, allocb returns a NULL pointer. 

backq - get pointer to the queue behind a given queue 

queue_t *backq(q) 
queue_t *q; 

backq returns a pointer to the queue behind a given queue. That is, it 
returns a pointer to the queue whose q_next (see queue_t structure) pointer 
is q. If no such queue exists (as when q is at a Stream end), backq returns 
NULL. 
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bufcall - recover from failure of allocb 

int bufcall(size, pri, func, arg) 
int (*funC)Oi 
int size, prii 
long argi 

bufcall is provided to assist in the event ·of a block allocation failure. If 
allocb returns NULL, indicating a message block is not currently available, 
bufcall may be invoked. 

bufcall arranges for (*Junc)(arg) to be called when a buffer of size bytes at 
pri priority (see the section titled "Buffer Allocation Priority" below) is avail­
able. When June is called, it has no user context. It cannot reference the 
u_area and must return without sleeping. bufcall does not guarantee that 
the desired buffer will be available when June is called since interrupt pro­
cessing may acquire it. 

bufcall returns 1 on success, indicating that the request has been success­
fully recorded, or 0 on failure. On a failure return, June will never be 
called. A failure indicates a (temporary) inability to allocate required inter­
nal data structures. 

canput - test for room in a queue 

int canput(q) 
queue_t *qi 

canput determines if there is room left in a message queue. If q does not 
have a service procedure, canput will search further in the same direction 
in the Stream until it finds a queue containing a service procedure (this is 
the first queue on which the passed message can actually be enqueued). If 
such a queue cannot be found, the search terminates on the queue at the 
end of the Stream. canput tests the queue found by the search. If the mes­
sage queue in this queue is not full (see the section titled "Flow Control" in 
Chapter 6 of the Primer), canput returns 1. This return indicates that a mes­
sage can be put to queue q. If the message queue is full, canput returns O. 
In this case, the caller is generally referred to as blocked. 
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copyb - copy a message block 

mblk_t *copyb(bp) 
mblk_t *bp; 

Utility Descriptions 

copyb copies the contents of the message block pointed at by bp into a 
newly-allocated message block of at least the same size. copyb allocates a 
new block by calling allocb with pri set to BPRI_MED (see the section titled 
"Buffer Allocation Priority", below). All data between the b_rptr and b_wptr 
pointers of a message block are copied to the new block, and these pointers 
in the new block are given the same offset values they had in the original 
message block. On successful completion, copyb returns a pointer to the 
new message block containing the copied data. Otherwise, it returns a 
NULL pointer. 

copymsg - copy a message 

mblk_t *copymsg(mp) 
mblk_t *mp; 

copymsg uses copyb to copy the message blocks contained in the message 
pointed at by mp to newly-allocated message blocks, and links the new mes­
sage blocks to form the new message. On successful completion, copymsg 
returns a pointer to the new message. Otherwise, it returns a NULL 
pointer. 

datamsg - test whether message is a data message 

#define datamsg(mp) ... 

The datamsg macro returns TRUE if mp (declared as mblk _ t *mp) points to 
a data type message. In this case, types M_DATA, M_PROTO, or 
M_PCPROTO (see Appendix B). If mp points to any other message type, 
datamsg returns FALSE. 
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dupb - duplicate a message block descriptor 

mblk_t *dupb(bp) 
mblk_t *bPi 

dupb duplicates the message block descriptor (mblk_t structure) pointed at 
by bp by copying it into a newly allocated message block descriptor. A mes­
sage block is formed with the new message block descriptor pointing to the 
same data block as the original descriptor. The reference count in the data 
block descriptor (dblk_t structure) is incremented. dupb does not copy the 
data buffer, only the message block descriptor. 

On successful completion, dupb returns a pointer to the new message block. 
If dupb cannot allocate a new message block descriptor, it returns NULL. 

This routine allows message blocks that exist on different queues to refer­
ence the same data block. In general, if the contents of a message block 
with a reference count greater than 1 are to be modified, copyb should be 
used to create a new message block and only the new message block should 
be modified. This insures that other references to the original message 
block are not invalidated by unwanted changes. 

dupmsg - duplicate a message 

mblk_t *dupmsg(mp) 
mblk_t *mpi 

dupmsg calls dupb to duplicate the message pointed at by mp, by copying 
all individual message block descriptors, and then linking the new message 
blocks to form the new message. dupmsg does not copy data buffers, only 
message block descriptors. On successful completion, dupmsg returns a 
pointer to the new message. Otherwise, it returns NULL. 

enableok - re-allow a queue to be scheduled for service 

#define enableok(q) ... 

The enableok macro cancels the effect of an earlier noenable on the same 
queue q (declared as queue _ t *«). It allows a queue to be scheduled for ser­
vice that had previously been excluded from queue service by a call to 
noenable. 
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flushq - flush a queue 

int flushq(q, flag) 
queue_t *q; 
int flag; 

Utility Descriptions 

flushq removes messages from the message queue in queue q and frees 
them, using freemsg. If flag is set to FLUSHDATA, then flushq discards all 
M_DATA, M_PROTO, and M_PCPROTO messages (see datamsg), but leaves 
all other messages on the queue. If flag is set to FLUSHALL, all messages 
are removed from the message queue and freed. FLUSHALL and FLUSH­
DATA are defined in <sys/stream.h>. 

If a queue behind q is blocked, flushq may enable the blocked queue, as 
described in putq. 

freeb - free a message block 

in t free b(bp) 
mblk_t *bp; 

freeb will free (de-allocate) the message block descriptor pointed at by bp, 
and free the corresponding data block if the reference count (see dupb) in 
the data block descriptor (dblk_t structure) is equal to 1. If the reference 
count is greater than 1, freeb will not free the data block, but will decre­
ment the reference count. 

freemsg - free all message blocks in a message 

int freemsg(mp) 
mblk_t *mp; 

freemsg uses freeb to free all message blocks and their corresponding data 
blocks for the message pointed at by mp. 
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getq - get a message from a queue 

mblk_t *getq(q) 
queue_t *qi 

getq gets the next available message from the queue pointed at by q. getq 
returns a pointer to the message and removes that message from the queue. 
If no message is queued, getq returns NULL. 

getq, and certain other utility routines, affect flow control in the Stream as 
follows: If getq returns NULL, the queue is internally marked so that the 
next time a message is placed on it, it will be scheduled for service 
(enabled, see qenable). Also, if the data in the enqueued messages in the 
queue drops below the low-water mark, qJowat, and a queue behind the 
current queue had previously attempted to place a message in the queue 
and failed (Le., was blocked, see canput), then the queue behind the current 
queue is scheduled for service (see the section titled "Flow Control" in 
Chapter 6 of the Primer). 

insq - put a message at a specific place in a queue 

int insq(q, emp, nmp) 
queue_t *qi 
mblk_t *emp, *nmpi 

insq places the message pointed at by nmp in the message queue contained 
in the queue pointed at by q immediately before the already-enqueued mes­
sage pointed at by emp. If emp is NULL, the message is placed at the end of 
the queue. If emp is non-NULL, it must point to a message that exists on 
the queue q, or a system panic could result. 

Note that the message is placed where indicated, without consideration of 
message queueing priority. The queue will be scheduled in accordance 
with the rules described in putq for ordinary priority messages. 
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linkb - concatenate two messages into one 

int linkb(mpl, mp2) 
mblk_t *mpl; 
mblk_t *mp2; 

Utility Descriptions 

linkb puts the message pointed at by mp2 at the tail of the message pointed 
at by mpl. 

msgdsize - get the number of data bytes in a message 

int msgdsize(mp) 
mblk_t *mp; 

msgdsize returns the number of bytes of data in the message pointed at by 
mp. Only bytes included in data blocks of type M_DATA are included in 
the total. 

noenable - prevent a queue from being scheduled 

#define noenable(q) .... 

The noenable macro prevents the queue q (declared as queue _ t *<V from 
being scheduled for service by putq or putbq when these routines enqueue 
an ordinary priority message, or by insq when it enqueues any message. 
noenable does not prevent the scheduling of queues when a Priority mes­
sage is enqueued, unless it is enqueued by insq. 

OTHERQ - get pointer to the mate queue 

#define OTHERQ(q) ... 

The OTHERQ macro returns a pointer to the mate queue of q (declared as 
queue _ t *<D. If q is the read queue for the module, it returns a pointer to 
the module's write queue. If q is the write queue for the module, it returns 
a pointer to the read queue. 
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pullupmsg - concatenate bytes in a message 

int *pullupmsg(mp, len) 
mblk_t *mp; 
int len; 

pullupmsg concatenates and aligns the first len data bytes of the passed 
message into a single, contiguous message block. Proper alignment is 
hardware-dependent. To perform its function, pullupmsg allocates a new 
message block by calling allocb with pri set to BPRI _ MED (see the section 
titled "Buffer Allocation Priority" below). pullupmsg only concatenates 
across message blocks of similar type. It will fail if mp points to a message 
of less than len bytes of similar type. A len value of -1 requests a pull-up of 
all the like-type blocks in the beginning of the message pointed at by mp. 

At completion of concatenation, pullupmsg replaces mp with a pointer to 
the new message block, so that mp still points to the same message block at 
the end of the operation. However, the contents of the message block may 
have been altered. On success, pullupmsg returns 1. On failure, it returns 
O. 

puthq - return a message to the beginning of a queue 

int putbq(q, bp) 
queue_t *q; 
mblk_t *bp 

putbq puts the message pointed at by bp at the beginning of the queue 
pointed at by q, in a position in accordance with the message's type. Prior­
ity messages are placed at the head of the queue, and ordinary messages are 
placed after all Priority messages, but before all other ordinary messages. 
The queue will be scheduled in accordance with the same rules described in 
putq. This utility is typically used to replace a message on a queue from 
which it was just removed. 
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putet! - put a control message 

int putctl(q, type) 
queue_t *qi 
int type; 

Utility Descriptions 

putctl creates a control (not data, see datamsg, above) message of type type, 
and calls the put procedure in the queue pointed at by q, with a pointer to 
the created message as an argument. putctl allocates new blocks by calling 
allocb with pri set to BPRI_HI (see the section titled "Buffer Allocation Prior­
ity" below). On successful completion, putctl returns 1. It returns 0 if it 
cannot allocate a message block, or if type M_OATA, M_PROTO or 
M _PCPROTO was specified. 

putct11 - put a control message with a one-byte parameter 

int putctll(q, type, p) 
queue_t *qi 
int type; 
int Pi 

putctlt creates a control (not data, see datamsg, above) message of type type 
with a one-byte parameter p, and calls the put procedure in the queue 
pointed at by q, with a pointer to the created message as an argument. 
putctl1 allocates new blocks by calling allocb with pri set to BPRI_HI (see 
the section titled "Buffer Allocation Priority" below). On successful comple­
tion, putctll returns 1. It returns 0 if it cannot allocate a message block, or 
if type M _OAT A, M _PROTO or M _PCPROTO was specified. 

putnext - put a message to the next queue 

#define putnext(q, mp) •.. 

The putnext macro calls the put procedure of the next queue in a Stream, 
and passes it a message pointer as an argument. The parameters must be 
declared as queue _ t *<! and mblk _ t *mp. q is the calling queue (not the next 
queue) and mp is the message to be passed. putnext is the typical means of 
passing messages to the next queue in a Stream. 
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putq - put a message on a queue 

int putq(q, bp) 
queue_t *q; 
mblk_t *bp; 

putq puts the message pointed at by bp on the message queue contained in 
the queue pointed at by q and enables that queue. putq queues messages 
appropriately by type (Le., message queueing priority, see Chapter 8). 

putq will always enable the queue when a Priority message is queued. 
putq will enable the queue when an ordinary message is queued if the fol­
lowing condition is set, and enabling is not inhibited by noenable: The 
condition is set if the module has just been pushed [see I_PUSH in 
streamio(7)], or if no message was queued on the last getq call and no mes­
sage has been queued since. 

putq is intended to be used from the put procedure in the same queue in 
which the message will be queued. A module should not call putq directly 
to pass messages to a neighboring module. putq may be used as the 
qiyutpO put procedure value in either or both of a module's qinit struc­
tures. This effectively bypasses any put procedure processing and uses only 
the module's service procedure(s). 

qenable - enable a queue 
int qenable(q) queue_t *q; 

int putq(q, bp) 
queue_t *q; 
mblk_t *bp; 

qenable places the queue pointed at by q on the linked list of queues that 
are ready to be called by the STREAMS scheduler (see the definition for 
"Schedule" above, and the section titled "Put and Service Procedures" in 
Chapter 5 of the Primer). 
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qreply - send a message on a stream in the reverse direction 

int qreply(q, bp) 
queue_t *qi 
mblk_t *bpi 

qreply sends the message pointed at by bp up (or down) the Stream in the 
reverse direction from the queue pointed at by q. This is done by locating 
the partner of q (see OTHERQ, below), and then calling the put procedure 
of that queue's neighbor (as in putnext). qreply is typically used to send 
back a response (M_IOCACK or M_IOCNAK message) to an M_IOCTL mes­
sage (see Appendix B). 

qsize - find the number of messages on a queue 

int qsize(q) 
queue_t *q; 

qsize returns the number of messages present in queue q. If there are no 
messages on the queue, qsize returns O. 

RD - get pointer to the read queue 

#define RD(q) •.• 

The RD macro accepts a write queue pointer, q (declared as queue _ t *<I>, as 
an argument and returns a pointer to the read queue for the same module. 

rmvb - remove a message block from a message 

mblk_t *rmvb(mp, bp) 
mblk_t *mpi 
mblk_t *bPi 

rmvb removes the message block pointed at by bp from the message pointed 
at by mp, and then restores the linkage of the message blocks remaining in 
the message. rmvb does not free the removed message block. rmvb returns 
a pointer to the head of the resulting message. If bp is not contained in mp, 
rmvb returns a -1. If there are no message blocks in the resulting message, 
rmvb returns a NULL pointer. 
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rmvq - remove a message from a queue 

int rmvq(q, mp) 
queue_t *q; 
mhlk_t *mp; 

rmvq removes the message pointed at by mp from the message queue in the 
queue pointed at by q, and then restores the linkage of the messages 
remaining on the queue. If mp does not point to a message that is present 
on the queue q, a system panic could result. 

splstr - set processor level 

int splstrO 

splstr increases the system processor level to block interrupts at a level 
appropriate for STREAMS modules when those modules are executing criti­
cal portions of their code. splstr returns the processor level at the time of 
its invocation. Module developers are expected to use the standard kernel 
function splx(s), where s is the integer value returned by splstr, to restore 
the processor level to its previous value after the critical portions of code 
are passed. 

strlog - submit messages for logging 

int strlog(mid, sid, level, flags, fmt, argl, ... ) 
short mid, sid; 
char level; 
ushort flags; 
char *fmt; 
unsigned argl; 

strlog submits messages containing specified information to the log(7) 
driver. Required definitions are contained in <sys/strlog.h> and 
<sys/log.h>. mid is the STREAMS module id number for the module or 
driver submitting the log message. sid is an internal sub-id number usually 
used to identify a particular minor device of a driver. level is a tracing level 
that allows selective screening of messages from the tracer. flags are any 
combination of SL_ERROR (the message is for the error logger), SL_TRACE 
(the message is for the tracer), SL_FATAL (advisory notification of a fatal 
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error), and SL_NOTIFY (request that a copy of the message be mailed to the 
system administrator). fmt is a print£(3S) style format string, except that %s, 
%e, %E, %g, and %G conversion specifications are not handled. Up to NLO­
GARGS numeric or character arguments can be provided. (See Chapter 6 of 
the Primer, and log(7).) 

testb - check for an available buffer 

int testb(size, pri) 
int size, pri; 

testb checks for the availability of a message buffer of size size at priority pri 
(see the section titled "Buffer Allocation Priority", below) without actually 
retrieving the buffer. testb returns 1 if the buffer is available, and 0 if no 
buffer is available. A successful return value from testb does not guarantee 
that a subsequent allocb call will succeed (e.g., in the case of an interrupt 
routine taking buffers). 

unlinkb - remove a message block from the head of a message 

mblk_t *unlinkb(mp) 
mblk_t *mp; 

unlinkb removes the first message block pointed at by mp and returns a 
pointer to the head of the resulting message. unlinkb returns a NULL 
pointer if there are no more message blocks in the message. 

WR - get pointer to the write queue 

#define WR(q) ... 

The WR macro accepts a read queue pointer, q (declared as queue _ t *<V, as 
an argument and returns a pointer to the write queue for the same module. 
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STREAMS buffers are normally allocated with allocb, described above. 
An associated set of allocation priorities has been established, which are also 
used in other utility routines: 

BPRI LO Low priority. At this priority, allocb may fail even though 
the requested buffer size is available. This priority is used by 
the Stream head write routine to hold data associated with 
user calls. 

BPRI_MED Medium priority. This priority is typically used for normal 
data and control block allocation. As above, allocb may fail 
at this priority even though a buffer of the requested size is 
available. However, for a given block size, an BPRI_LO 
allocb call will fail before a BPRI MED allocb call. 

BPRI HI High priority. This priority is typically used only for critical 
control message allocations. Calls to allocb will succeed if a 
buffer of the appropriate size is available. Developers should 
exercise restraint in use of BPRI_HI allocation requests. 

The values BPRI _ LO, BPRI _ MED ,and BPRI _HI are defined in 
< sys I stream.h > . 

STREAMS does not guarantee successful buffer allocation-any set of 
resources can be exhausted under the right conditions. The bufcall func­
tion will help modules recover from buffer allocation failures, but it does 
not guarantee that the resources will ever be available. Developers should 
be aware of this when implementing modules. 
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Utility Routine Summary 

ROUTINE 

adjmsg 
allocb 
backq 
bufcall 
canput 
copyb 
copymsg 
datamsg 
dupb 
dupmsg 
enable ok 
flushq 
freeb 
freemsg 
getq 
insq 
linkb 
msgdsize 
noenable 
OTHERQ 
pullupmsg 
putbq 
putctl 
putctl1 
putnext 
putq 
qenable 
qreply 
qsize 
RD 
rmvb 
rmvq 
splstr 
strlog 
testb 
unlinkb 
WR 

DESCRIPTION 

trim bytes in a message 
allocate a message block 
get pointer to the queue behind a given queue 
recover from failure of allocb 
test for room in a queue 
copy a message block 
copy a message 
test whether message is a data message 
duplicate a message block descriptor 
duplicate a message 
re-allowa queue to be scheduled for service 
flush a queue 
free a message block 
free all message blocks in a message 
get a message from a queue 
put a message at a specific place in a queue 
concatenate two messages into one 
get the number of data bytes in a message 
prevent a queue from being scheduled 
get pointer to the mate queue 
concatenate bytes in a message 
return a message to the beginning of a queue 
put a control message 
put a control message with a one-byte parameter 
put a message to the next queue 
put a message on a queue 
enable a queue 
send a message on a stream in the reverse direction 
find the number of messages on a queue 
get pointer to the read queue 
remove a message block from a message 
remove a message from a queue 
set processor level 
submit messages for logging 
check for an available buffer 
remove a message block from the head of a message 
get pointer to the write queue 
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Appendix D: Design Guidelines 

This appendix summarizes STREAMS module and driver design guide­
lines and rules presented in previous chapters. Additional rules that 
developers must observe are included. Where appropriate, the section of 
this document containing detailed information is named. The end of the 
appendix contains a brief description of error and trace logging facilities. 

Unless otherwise noted, "module" implies "modules and drivers". 

General Rules 
The following are general rules that developers should follow when 

writing modules. 

1. Modules cannot access information in the u_area of a process. 
Modules are not associated with any process, and therefore have no 
concept of process or user context. 

The capability to pass u_area information upstream using messages 
has been provided where required. This can be done in M_IOCTL 
handling (see Chapter 9 and Appendix B). A module can send error 
codes upstream in a M_IOCACK or M_IOCNAK message, where 
they will be placed in u_error by the Stream head. Return values 
may also be sent upstream in a M _IOCACK message, and will be 
placed in uJval1. Information can also be passed to the u_area via a 
M_ERROR message (see Chapter 10 and Appendix B). The Stream 
head will recognize this message type and inform the next system 
call that an error has occurred downstream by setting u_error. Note 
that in both instances, the downstream module cannot access the 
u_area, but it informs the Stream head to do so. 

2. In general, modules should not require the data in an M_DATA 
message to follow a particular format, such as a specific alignment. 
This makes it easier to arbitrarily push modules on top of each other 
in a sensible fashion. Not following this rule may limit module re­
usability (the ability to use the module in multiple applications). 

3. Every module must process an M_FLUSH message according to the 
value of the argument passed in the message. (See Chapters 8 and 
9, and Appendix B.) 
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4. A module should not change the contents of a data block whose 
reference count is greater than 1 (see dupmsg in Appendix C) 
because other modules that have references to the block may not 
want the data changed. To avoid problems, it is recommended that 
the module copy the data to a new block and then change the new 
one. 

5. Modules should only manipulate message queues and manage 
buffers with the routines provided for those purpose, (see Appendix 
C). 

6. Filter modules pushed between a service user and a service provider 
(see Chapter 12) may not alter the contents of the MYROTO or 
M_PCPROTO block in messages. The contents of the data blocks 
may be manipulated, but the message boundaries must be preserved. 

System Calls 
These rules pertain to module and drivers as noted. 

1. open and close routines may sleep, but the sleep must return to the 
routine in the event of a signal. That is, if they sleep, they must be 
at priority <= PZERO, or with PCATCH set in the sleep priority. 

2. The open routine must return >= zero on success or OPENFAIL if it 
fails. This ensures that a failure will be reported to the user process. 
errno may be set on failure. However, if the open routine returns 
OPENFAIL and errno is not set, STREAMS will automatically set 
errno to ENXIO. 

3. If a module or driver recognizes and acts on an M_IOCTL message, 
it must reply by sending a M_IOCACK message upstream. A unique 
id is associated with each M_IOCTL, and the M_IOCACK or 
M_IOCNAK message must contain the id of the M_IOCTL it is ack­
nowledging. 

4. A module (not a driver) must pass on any M_IOCTL message it does 
not recognize (see Appendix B). If an unrecognized M_IOCTL 
reaches a driver, the driver must reply by sending a M_IOCNAK 
message upstream. 
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Data Structures 
Only the contents of qytr, q_minpsz, q_maxpsz, q_hiwat, and qJowat. in a 

queue_t structure may be altered. The latter four quantities are set when the 
module or driver is opened, but may be modified subsequently. 

As described in Appendix E, every module and driver is configured in 
with the address of a streamtab structure (see Chapter 5). For a driver, a 
pointer to its streamtab is included in cdevsw. For a module, a pointer to 
its streamtab is included in fmodsw. 

Header Files 
The following header files are generally required in modules and 

drivers: 

types.h 

stream.h 

stropts.h 

contains type definitions used in the STREAMS header files 

contains required structure and constant definitions 

primarily for users, but contains definitions of the argu­
ments to the M_FLUSH message type also required by 
modules 

One or more of the header files described below may also be included 
(also see the following section). No standard UNIX system header files 
should be included except as described in the following section. The intent 
is to prevent attempts to access data that cannot or should not be accessed. 

errno.h defines various system error conditions, and is needed if 
errors are to be returned upstream to the user 

sysmacros.h contains miscellaneous system macro definitions 

param.h 

signa1.h 

defines various system parameters, particularly the value of 
the PCATCH sleep flag 

defines the system signal values, and should be used if sig­
nals are to be processed or sent upstream 
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file.h defines the file open flags, and is needed if O_NDELAY is 
interpreted 

Accessible Symbols and Functions 

The following lists the only symbols and functions that modules or 
drivers may refer to (in addition to those defined by STREAMS), if 
hardware and UNIX system release independence is to be maintained. Use 
of symbols not listed here is unsupported. 

• user.h (from open/close procedures only) 

struct proc *u yrocp process structure pointer 
short *u _ttyp tty group 10 pointer 
char u error system call error number 
ushort u uid effective user 10 
ushort u-Zid effective group 10 
ushort u ruid real user 10 
ushort u_rgid real group 10 

• proc.h (from open/close procedures only) 

short p yid process 10 
short p ygrp process group 10 

• functions accessible from open! close procedures only 

flg = sleep( chan, pri) sleep until wakeup 
delay( ticks) delay for a specified time 

• universally accessible functions 

bcopy(from, to, nbytes) copy data quickly 
bzero(buffer, nbytes) zero data quickly 
t = max(a, b) return max of args 
t = min (a, b) return min of args 
mem=malloc(mp, size) allocate memory space 
mfree(mp, size, i) de-allocate memory space 
mapinit(mp, mapsize) initialize map structure 
addr = vtop(vaddr, NULL) translate from virtual to physical address 
printf(format, ... ) print message 
cmn_err(level, ... ) print message and optional panic 
s = spInO set priority level 
id = timeout(func, arg, ticks) schedule event 
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untimeout(id) 
wakeup( chan) 

• sysmacros.h 

t = major(dev) 
t = minor( dev) 

• systm.h 
time t lbolt 
time_t time 

• param.h 
PZERO 
PCATCH 
HZ 
NULL 

• types.h 
dev t 
time t 
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cancel event 
wake up sleeper 

return major device 
return minor device 

clock ticks since boot in HZ 
seconds since epoch 

zero sleep priority 
catch signal sleep flag 
clock ticks per second 
o 

combined major/minor device 
time counter 

All data elements are software read-only except: 

u_error - may be set on a failure return of open 
u_ttyp - may be set in open to create a controlling tty 

Rules for Put and Service Procedures 
To ensure proper data flow between modules, the following rules 

should be observed in put and service procedures. The following rules per­
tain to put procedures. 

1. A put procedure must not sleep. 

2. Each QUEUE must define a put procedure in its qinit (see Appendix 
A) structure for passing messages between modules. 

3. A put procedure must use the putq (see Appendix C) utility to 
enqueue a message on its own message queue. This is necessary to 
ensure that the various fields of the queue_t structure are main­
tained consistently. 
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4. When passing messages to a neighbor module, a module may not 
call putq directly, but must call its neighbor's put procedure (see 
put next in Appendix C). Note that this rule is distinct from the one 
above it. The previous rule states that a module must call putq to 
place messages on its own message queue, whereas this rule states 
that a module must not call putq directly to place messages on a 
neighbor's queue. 

However, the q_qinfo structure that points to a module's put pro­
cedure may point to putq (Le. putq is used as the put procedure for 
that module). When a module calls a neighbor's put procedure that 
is defined in this manner, it will be calling putq indirectly. If any 
module uses putq as its put procedure in this manner, the module 
must define a service procedure. Otherwise, no messages will ever 
be sent to the next module. Also, because putq does not process 
M_FLUSH messages, any module that uses putq as its put procedure 
must define a service procedure to process M_FLUSH messages. 

5. The put procedure of a QUEUE with no service procedure must call 
the put procedure of the next QUEUE directly, if a message is to be 
passed to that QUEUE. If flow control is desired, a service pro­
cedure must be provided. 

Service procedures must observe the following rules: 

1. A service procedure must not sleep. 

2. The service procedure must use getq to remove a message from its 
message queue, so that the flow control mechanism is maintained. 

3. The service procedure should process all messages on its message 
queue. The only exception is if the Stream ahead is blocked (Le., 
can put fails, see Appendix C). Adherence to this rule is the only 
guarantee that STREAMS will enable (schedule for execution) the 
service procedure when necessary, and that the flow control 
mechanism will not fail. 

If a service procedure exits for any other reason (e.g., buffer alloca­
tion failure), it must take explicit steps to assure it will be re­
enabled. 
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4. The service procedure must follow the steps below for each message 
that it processes. STREAMS flow control relies on strict adherence 
to these steps. 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Remove the next message from the message queue using 
getq. It is possible that the service procedure could be 
called when no messages exist on the queue, so the service 
procedure should never assume that there is a message on 
its message queue. If there is no message, return. 

If all the following conditions are met: 

o can put fails and 

o the message type is not a priority type (see Appendix B) 
and 

o the message is to be put on the next QUEUE. 

then, continue at Step 3. Otherwise, continue at Step 4. 

The message must be replaced on the head of the message 
queue from which it was removed using putbq (see Appen­
dix C). Following this, the service procedure is exited. The 
service procedure should not be re-enabled at this point. It 
will be automatically back-enabled by flow control. 

If all the conditions of Step 2 are not met, the message 
should not be returned to the queue. It should be processed 
as necessary. Then, return to Step 1. 

Error and Trace Logging 
STREAMS error and trace loggers are provided for debugging and for 

administering modules and driver. Chapter 6 of the STREAMS Primer con­
tains a description of this facility which consists of log(7), strace{lM), 
strc1ean{lM) strerr{lM) and the strlog function described in Appendix C. 
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Appendix E: Configuring 

This appendix contains information about configuring STREAMS 
modules and drivers into UNIX System V Release 3 on the AT&T 3B2 Com­
puter. The information is incremental and presumes the reader is familiar 
with the configuration mechanism, which may vary on different processors. 
An example of how to configure a driver and a module is included. 

This appendix also includes a list of STREAMS system tunable parame­
ters and system error messages. 

Configuring STREAMS Modules and Drivers 
Each character device that is configured into a UNIX system results in 

an entry being placed in the kernel cdevsw table. Entries for STREAMS 
drivers are also placed in this table. However, because system calls to 
STREAMS drivers must be processed by the STREAMS routines, the 
configuration mechanism distinguishes between STREAMS drivers and 
character device drivers in their associated cdevsw entries. 

The distinction is contained in the d str field which was added to the 
cdevsw structure for this purpose. d_str provides the appropriate single 
entry point for all system calls on STREAMS files, as shown below: 

extern struct cdevsw { 

struct streamtab *d_str; 
} cdevsw[ ]; 

The configuration mechanism forms the d_str entry name by appending the 
string "info" to the STREAMS driver prefix. The "info" entry is a pointer to 
a stream tab structure (see Appendix A) that contains pointers to the qinit 
structures for the read and write QUEUEs of the driver. The driver must 
contain the external definition: 

struct streamtab prefix info = { .•. 
If the d_str entry contains a non-NULL pointer, the operating system will 
recognize the device as a STREAMS driver and will call the appropriate 
STREAMS routine. If the entry is NULL, a character I/O device cdevsw 
interface is used. Note that only streamtab must be externally defined in 
STREAMS drivers and modules. stream tab is used to identify the 
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appropriate open, close, put, service, and administration routines. These 
driver / module routines should generally be declared static. 

The configuration mechanism supports various combinations of block, 
character, STREAMS devices and STREAMS modules (see below). For exam­
ple, it is possible to identify a device as a block and STREAMS device, and 
entries will be inserted in the appropriate system switch tables. On the 3B2 
Computer, a device cannot be both a character and STREAMS device. 

When a STREAMS module is configured, an fmodsw table entry is gen­
erated by the configuration mechanism. fmodsw contains the following: 

#define FMNAMESZ 8 

extern struct :fm:ldsw { 
char f_name[FMNAMESZ+1]; 
struct streamtab *f _ str; 

} :fm:ldsw[ ]; 

I_name is the name of the module, used in STREAMS-related ioctl calls. 
I _str is similar to the d _str entry in the cdevsw table. It is a pointer to a 
streamtab structure which contains pointers to the qinit structures for the 
read and write QUEUEs of this STREAMS module (as in STREAMS drivers). 
The module must contain the external definition: 

struct streamtab prefixinfo = { ••. 

382 Computer Configuration Mechanism 
The 3B2 Computer configuration mechanism differentiates STREAMS 

devices from character devices by a special type in the flag field of master 
files contained in letc/master.d [see master(4)]. The c flag specifies a non­
STREAMS character I/O device driver. The f flag specifies that the associ­
ated cdevsw entry will be a STREAMS driver. The special file (node) that 
identifies the STREAMS driver must be a character special file, as is the file 
for a character device driver, because the system call entry point for 
STREAMS drivers is also the cdevsw table 

STREAMS modules are identified by an m in the flag field of master files 
contained in /etc/master.d and the configuration mechanism creates an 
associated fmodsw table entry for all such modules. 
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Any combination of block, STREAMS drivers and STREAMS module may be 
specified. However, on the 3B2 Computer, it is illegal to specify a 
STREAMS device or module with a character device. 

Configuration Examples 
This section contains examples of configuring the following STREAMS 

driver and module: 

loop the STREAMS loop-around software driver of Chapter 10 

crmod the conversion module of Chapter 7 

To configure the STREAMS software (pseudo-device) driver, loop, and 
assign values to the driver extern variables, the following must appear in 
the file /etc/master.d/loop [see master(4)]: 

* I.(X)p - S'ffiEAMS loop ara.mi software driver 

* 
*E'LAG ~ PREFIX OOFl' #OEN IPL DEPENDENCIESJVARIABLES 

fs loop 62 

$$$ 

NLP = 2 

loop_loop[NLP] (r~) 
loop _ c::nt (%i) ={NLP} 

The flag field is set to "fs" which signifies that it is a STREAMS driver and a 
software driver. The prefix "loop" requires that the streamtab structure for 
the driver be defined as loopinfo. "62" is an unused, but otherwise arbitrary, 
software driver major number. If this field contained "-", an unused 
software driver major number would be assigned by drivinstall(lM). 

To configure the STREAMS module crmod, the following must appear in 
the file /etc/master.d/crmod: 

* ~ stream cxmversian ItOdul.e 

* 
*E'LAG ~ PREFIX OOFl' #OEN IPL DEPENDENCIESJVARIABLES 

m enId 

The flag field is set to "m", which signifies that it is a STREAMS module. 
The prefix "crmd" (cannot exceed four characters) requires that the stream­
tab structure for the module be defined as crmdinfo. The configuration 
mechanism uses the name of the master.d file (crmod in this case) to create 

APPENDIX E: CONFIGURING E-3 



Appendix E: Configuring 

the module name field (fyame) of the associated fmodsw entry. The prefix 
and module name can be different. 

mkboot(lM) should be run on the corresponding object files in the 
appropriate directories for these master files. Also, if it is desired to have 
these objects loaded at boot time, then the file /etc/system must contain the 
following entries: 

INCLUDE: LOOP 

INCLUDE: CRMOD 

Neither of the above examples are hardware drivers. Configuring a 
STREAMS hardware driver is a similar to configuring a character I/O 
hardware driver: The major device number is the hardware board address 
and no INCLUDE is required. 

Tunable Parameters 
Certain system parameters referenced by STREAMS are configurable 

when building a new operating system (see the System Administrator's Guide 
for further details). This can be done by including the appropriate entry in 
the kernel master file. "queues" refers to queue_t structures. These parame­
ters are: 

NQUEUE 

NSTREAM 

NBLK4096 

NBLK2048 

NBLK1024 

Total number of queues that may be allocated at one time 
by the system. Queues are allocated in pairs. Each 
STREAMS driver, Stream head and pushable module 
requires a pair of queues. A minimal Stream contains 4 
queues (two for the Stream head, two for the driver). 

Total number of Streams that may be open at one time in 
a system. 

Total number of 4096 byte data blocks available for 
STREAMS operations. The pool of data blocks is a 
system-wide resource, so enough blocks must be 
configured to satisfy all Streams. 

Total number of 2048 byte data blocks available for 
STREAMS operations. 

Total number of 1024 byte data blocks available for 
STREAMS operations. 
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NBLK512 Total number of 512 byte data blocks available for 
STREAMS operations. 

NBLK256 Total number of 256 byte data blocks available for 
STREAMS operations. 

NBLK128 Total number of 128 byte data blocks available for 
STREAMS operations. 

NBLK64 Total number of 64 byte data blocks available for 
STREAMS operations. 

NBLK16 Total number of 16 byte data blocks available for 
STREAMS operations. 

NBLK4 Total number of 4 byte data blocks available for 
STREAMS operations. 

NMUXLINK Total number of Streams in system that can be linked as 
lower Streams to multiplexor drivers [by an I_LINK 
ioctl(2), see streamio(7)]. 

NSTREVENT Initial number of internal event cells available in system 
to support bufcall (see Appendix C) and poll(2) calls. 

MAXSEPGCNT The number of additional pages of memory that can be 
dynamically allocated for event cells. If this value is 0, 
only the allocation defined by NSTREVENT is available 
for use. If the value is not 0 and if the kernel runs out of 
event cells, it will under some circumstances attempt to 
allocate an extra page of memory from which new event 
cells can be created. MAXSEPGCNT places a limit on the 
number of pages that can be allocated for this purpose. 
Once a page has been allocated for event cells, however, 
it cannot be recovered later for use elsewhere. 

NSTRPUSH 

STRMSGSZ 

Maximum number of modules that may be pushed onto a 
single Stream. 

Maximum bytes of information that a single system call 
can pass to a Stream to be placed into the data part of a 
message (in M_DATA blocks). Any write(2) exceeding 
this size will be broken into multiple messages. A 
putmsg(2) with a data part exceeding this size will fail. 
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STRCTLSZ 

STRLOFRAC 

STRMEDFRAC 

Maximum bytes of information that a single system call 
can pass to a Stream to be placed into the control part of 
a message (in an M_PROTO or M_PCPROTO block). A 
putmsg(2) with a control part exceeding this size will 
fail. 

The percentage of data blocks of a given class at which 
low priority block allocation requests are automatically 
failed. For example, if STRLOFRAC is 80 and there are 
48 256-byte blocks, a low priority allocation request will 
fail when more than 38 256-byte blocks are already allo­
cated. This value is used to prevent deadlock situations 
in which a low priority activity might starve out more 
important functions. For example, if STRLOFRAC is 80 
and there are 100 blocks of 256 bytes, then when more 
than 80 of such blocks are allocated, any low priority 
allocation request will fail. This value must be in the 
range 0 <= STRLOFRAC <= STRMEDFRAC. 

The percentage of data blocks of a given class at which 
medium priority block allocation requests are automati­
cally failed. 

System Error Messages 
Messages are reported to the console as a result of various error condi­

tions detected by STREAMS. These messages and the action to be taken on 
their occurrence are described below. In certain cases, a tunable parameter 
(see previous section) may have to be changed. 

stropen: out of streams 
A Stream head data structure could not be allocated during the 
open of a STREAMS device. If this occurs repeatedly, increase 
NSTREAM. 

stropen: out of queues 
A pair of queues could not be allocated for the Stream head during 
the open of a driver. If this occurs repeatedly, increase NQUEUE. 

E-6 STREAMS PROGRAMMER'S GUIDE 



Appendix E: Configuring 

KERNEL: allocq: out of queues 
A pair of queues could not be allocated for a pushable module 
(I_PUSH ioctl) or driver (open). If this occurs repeatedly, increase 
NQUEUE. 

strinit: can not allocate stream data blocks 
During system initialization, the system was unable to allocate 
enough memory for the STREAMS data blocks. The system must 
be rebuilt with fewer data blocks specified. 

KERNEL: strinit: odd value configured for v.v_nqueue 
KERNEL: strinit: was qcnt, set to nqcnt 

During system initialization, the total number of queues allocated, 
qcnt, was not a multiple of 2. The system resets this to an 
appropriate value, nqcnt. 

WARNING: bufcall: could not allocate stream event 
A call to bufcall has failed because all Stream event cells have 
been allocated. If this occurs repeatedly, increase NSTREVENT. 

KERNEL: sealloc: not enough memory for page allocation 
An attempt to dynamically allocate a page of Stream event cells 
failed. If this occurs repeatedly, decrease MAXSEPGCNT. 

KERNEL: munlink: could not perform ioctl, closing anyway 
A linked multiplexor could not be unlinked when the controlling 
Stream for that link was closed. The linked Stream will be 
unlinked and the controlling Stream will be closed anyway. 
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Back enable 

Blocked 

Clone device 

Close procedure 

Control stream 

Downstream 

Device driver 

Driver 

Enable 

Flow control 

Lower Stream 

To enable (by STREAMS) a preceding blocked 
QUEUE when STREAMS determines that a succeed­
ing QUEUE has reached its low water mark. 

A QUEUE that cannot be enabled due to flow control. 

A STREAMS device that returns an unused minor 
device when initially opened, rather than requiring 
the minor device to be specified in the open(2) call. 

The module routine that is called when a module is 
popped from a Stream and the driver routine that is 
called when a driver is closed. 

In a multiplexor, the upper Stream on which a previous 
I_LINK ioctl [to the associated file, see streamio(7)] 
caused a lower Stream to be connected to the multi­
plexor driver at the end of the upper Stream. 

The direction from Stream head towards driver. 

The end of the Stream closest to an external interface. 
The principle functions of a device driver are han­
dling an associated physical device, and transform­
ing data and information between the external inter­
face and Stream. 

A module that forms the Stream end. It can be a dev­
ice driver or a pseudo-device driver. In STREAMS, a 
driver is physically identical to a module (Le., com­
posed of two QUEUEs), but has additional attributes 
in a Stream and in the UNIX system. 

Schedule a QUEUE. 

The STREAMS mechanism that regulates the flow of 
messages within a Stream and the flow from user 
space into a Stream. 

A Stream connected below a multiplexor pseudo­
device driver, by means of an I_LINK ioctl. The far 
end of a lower Stream terminates at a device driver or 
another multiplexor driver. 
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Message 

Message block 

Message queue 

Message type 

Module 

Multiplexor 

Open procedure 

Pop 

One or more linked message blocks. A message is 
referenced by its first message block and its type is 
defined by the message type of that block. 

Carries data or information, as identified by its mes­
sage type, in a Stream. A message block is a triplet 
consisting of a data buffer and associated control 
structures, an mblk_t structure and a dblk_t struc­
ture. 

A linked list of zero or more messages connected to a 
QUEUE. 

A defined set of values identifying the contents of a 
message block and message. 

A pair of QUEUEs. In general, module implies a 
push able module. 

A STREAMS mechanism that allows messages to be 
routed among multiple Streams in the kernel. A 
multiplexor includes at least one multiplexing 
pseudo-device driver connected to one or more upper 
Streams and one or more lower Streams. 

The routine in each STREAMS driver and module 
called by STREAMS on each open(2) system call 
made on the Stream. A module's open procedure is 
also called when the module is pushed. 

A STREAMS ioctl [see streamio(7)] that causes the 
push able module immediately below the Stream head to 
be removed (popped) from a Stream [modules can 
also be popped as the result of a close(2)]. 

Pseudo-device driver 

Push 

A software driver, not directly associated with a phy­
sical device, that performs functions internal to a 
Stream such as a multiplexor or log driver. 

A STREAMS ioctl [see streamio(7)] that causes a 
pushable module to be inserted (pushed) in a Stream 
immediately below the Stream head. 
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Push able module A module interposed (pushed) between the Stream 
head and driver. Pushable modules perform inter­
mediate transformations on messages flowing 
between the Stream head and driver. A driver is a 
non-pushable module and a Stream head includes a 
non-pushable module. 

Put procedure The routine in a QUEUE which receives messages 
from the preceding QUEUE. It is the single entry 
point into a QUEUE from a preceding QUEUE. The 
procedure may perform processing on the message 
and will then generally either queue the message for 
subsequent processing by this QUEUE's service pro­
cedure, or will pass the message to the put procedure 
of the following QUEUE. 

QUEUE A STREAMS defined set of C-Iangua'ge structures. A 
module is composed of a read (upstream) QUEUE and 
a write (downstream) QUEUE. A QUEUE will typi­
cally contain a put and service procedure, a message 
queue, and private data. The read QUEUE (d. read 
queue) in a module will also contain the open pro­
cedure and close procedure for the module. 

The primary structure is the queue_t structure, occa­
sionally used as a synonym for a QUEUE. 

Read queue The message queue in a module or driver containing 
messages moving upstream. Associated with a read(2) 
system call and input from a driver. 

Schedule Place a QUEUE on the internal list of QUEUEs 
which will subsequently have their service pro­
cedure called by the STREAMS scheduler. 

Service interface A set of primitives that define a service at the boun­
dary between a service user and a service provider and 
the rules (typically represented by a state machine) 
for allowable sequences of the primitives across the 
boundary. At a Stream/user boundary, the primi­
tives are typically contained in the control part of a 
message; within a Stream, in M _PROTO or 
M _PCPROTO message blocks. 
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Service procedure The routine in a QUEUE which receives messages 
queued for it by the put procedure of the QUEUE. 
The procedure is called by the STREAMS scheduler. 
It may perform processing on the message and will 
generally pass the message to the put procedure of the 
following QUEUE. 

Service provider In a service interface, the entity (typically a module or 
driver) that responds to request primitives from the 
service user with response and event primitives. 

Service user In a service interface, the entity that generates request 
primitives for the service provider and consumes 
response and event primitives. 

Stream The kernel aggregate created by connecting 
STREAMS components, resulting from an applica­
tion of the STREAMS mechanism. The primary com­
ponents are the Stream head, the driver, and zero or 
more pushable modules between the Stream head and 
driver. 

Stream end The end of the Stream furthest from the user process, 
containing a driver. 

Stream head The end of the Stream closest to the user process. It 
provides the interface between the Stream and the 
user process. 

STREAMS 

Upper stream 

A kernel mechanism that supports development of 
network services and data communication drivers. It 
defines interface standards for character 
input/output within the kernel, and between the 
kernel and user level. The STREAMS mechanism 
comprises integral functions, utility routines, kernel 
facilities and a set of structures. 

A Stream terminating above a multiplexor pseudo­
device driver. The far end of an upper Stream ori­
ginates at the Stream head or another multiplexor 
driver. 
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Upstream 

Water marks 

Write queue 

Glossary 

The direction from driver towards Stream head. 

Limit values used in flow control. Each QUEUE has a 
high water mark and a low water mark. The high 
water mark value indicates the upper limit related to 
the number of characters contained on the message 
queue of a QUEUE. When the enqueued characters 
in a QUEUE reach its high water mark, STREAMS 
causes another QUEUE that attempts to send a mes­
sage to this QUEUE to become blocked. When the 
characters in this QUEUE are reduced to the low 
water mark value, the other QUEUE will be 
unblocked by STREAMS. 

The message queue in a module or driver containing 
messages moving downstream. Associated with a 
write(2) system call and output from a user process. 
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