
('

c

• Macintosh~

Macintosh Programmer's
Workshop 3.0 Reference

C APPL! COMPUT!l, INC.

nu, manual and the soCtwue
described in i1 are a:ipyriahted, with ail
righrs reserved. Under the copyright
laws, this manual er me soCtwue may
net be copied, in whale er pan.
wUhout wrillen ~ of Apple, ·
except in the ncnnal u.se <i the softwa.re
or to make a mck:up copy of the
soAwve. Tbe same proprietary and
copyrigl& nctic:es must be affbed to any
pem1ited copies as were alB:m1 to the
origiml. lb.i.t excepcion does Del allow
copies to be made fer ochm, whether
or aot sold,· but ail of the material
purchased (wilh all backup copies)
may be sold, given, or loaned to
aaother pmoa. Under the law,
copyin8 includes tr:ulSlalins iitto
aaother fan&uase er f~

'••

You .may u.se the software on any
computer owned by you, but extra
copies c::umct be .made fer
this purpose.

0 1985-88 Apple Computer, Inc.
20525 Mam.Di Ave. · . . ., ..
Cupenjno, CaliComia 95()1.t' .
(408) 996-1010

Pua1Compiler0 1982.a8
Apple Computer, Inc.
0 1981 svs, Im:.

Apple, the Apple Ioso, Apple.Share,
AppleTaJk, A/tJX. fmqeWrilet,
tase:Writet, Usa, MacApp, Macimmh,
and SAN! are regiseJed tm!emarks of
Apple Computer, Inc.

MPY, Quir:kDr.lw, la!dl, and SAD!
are rncfemar!rs of Apple Computer, Inc.

MacDraw, .MacPaill, aod MKWrire
lie regiSered. uwtenndra of
Caris CotpCll'llilL

POSTSCRIPT is a~ <i
Adobe Systems Lncorponted.

LinoCronic is a registaed tracfermrk Of
Linotype company.

Adobe lllustrator 88 is a tr2.demaric of
Adobe Systema &xorponted.

ImageStudio is a tr2.demaric of Esselie
Pm:laflex Corpot2tim1 in the Unired
SWa; d I.araS« Camda Limited in
Caaada, and d P.1selte Lett2Set
Umited eJsewhere.

Mororola is a trademark of
Mctorola, Ice.

QMS is a regiaeted uadamrk of
QMS,Inc.

UNIX m a trademark of
• AT~T BeU laboratories.

Simulw1eoUsly pub&hed in the
United SWes and Camda.

MP'W sample program
· Apple Computer, Ice. gzmt.s users of
the Ma&mm~ \Vori:rhq?

'. a royalty-free liceme to incorpome
. Macintosll ~ Wonis/q)

sampM programs into their own
· propims, or to modify the sample
propims for u.se in their own
prognms, provided such u.se is
exdusiveiy on Apple c:ompurers. For
any modfied Mactnlmh .Prop.mimer's
\VOTishop sample progrim, you .may

·· add your own copyrip aotice
aloapide the Apple copyrighl aotice.

Contents

Figures and 12bles xxvii

Part I Shell Reference 1

Introduction: The New and the Neces.ury 3 ·
Power tools for Macintosh programmers 5
What's new in MPW 3.0 7

MPWC++ 7
Projector 8
Symbolic Application Debugging Environment (SAD;) g..:.
New or enhanced tools 8
New or enhanced Shell commands 10
New Sheil editor capabilities 12
New st:lndan:i Shell wriabies 13
Changes to menus and dialogs 14
Miscellaneous Shell changes 14
Numeric libraries 15
MPW C and MPW C++ Include files 16
MPW Pascal 16
MPW tool libraries 17

What you'll need 17
Hardware and system requiremena 17
System Folder requirements 18
Documentation 18

About this reference 19
F"mding information fast 20
Syntax notation 21

Aids to understanding 22
For more icjormation 22

CONTENTS ill

1 System Overview 23
• The MPW Shell 25

W'mdow commands 26
file-management commands rl
Project-management commands 28
Editing commands 29
Struc:tured commands 29
Other built-in commands 30

MPWsaip~ 31
MPWtools 32

MPW Assembler 33
MPW Pascal tools 33
MPW C compiler and C++ translator 34
Link 34
Make 35
Resowce compiler and decompiler 35
Commando 36
Projector 36
Conversion tools 37
Performance-me3SlllCment tools 37

Applications 37
ResEdit 38

SADE and MacsBug 38
Special scrip~ 39
Examples 39

Sample program files 39
Command-bnguage camples 40

Overview of MPW files and direaories 40

2 Getting Started 41
1Dst31ling the system 43
Using MPW with MultiF'mder 44
Using MPW on a file server 46
Starting up 46
Selecting commands from menus 48
Building a program: an introduction 49

The sample progi21m 49
Two easy Ste~ 50

Building a new program 54

iv MPW 3.0 Reference

'./

;

(:

3 Using the Shell Menus 59
Features 61
File format 62
Menu commands 62

Apple menu 62
Ft.le m:nu 63

New 63
Open 64
Open Selection 64
Close 64
Save 64
Save~ 65
Save a Copy 65
Revert to Saved 65
Page Setup 65
Print Window/Print Selection 65
Quit 66

Edit menu 67
Undo 67
Cut 67
Copy 67

·Paste 68
Clear 68
Select All 68
Show Clipboard 68
Formac 68
Align ff)

Shift Left, Shift Right 69
F'mdmenu 70

Fmd 70
F'ind Same 71
F'tnd Selection 71
Display Selection 71
Replace 71
Replace Same 71
Selection expression 73

Marie m:nu 75
Marie 16 ..
Unrmrlc 77

,., ;; \,

CONTE:iTS v

W"mdow menu 78
itle Windows 78
Stack W"mdows 78
Customizing window commands 78
List of oµen 'Windo'9.rs 79

Project menu 79
New Project 79
Checkln 80
CheckOut 81

Directory menu 81
Show Directory 82
Set Directory 82
List of directory names 82

Build menu 83
Create Build Commands 84
Build 85
Full Build 85
Show Build Commands 85
Show Full Build Olmmands 85

User-defined menus 86

4· Using MPW: The Basics 87

Editing 89
Entering commands 89

Typing commancb in a window 90
The Enter key 91
Executing several commands at once 92
Terminating a command 92
The Help command 93

File-management commands 95
F'de md window names 97

Selection specifiations 98
Directories and pathnames 98
Command search path 101
Changing directories 101
Pathname wriables 102
W"tldcards (filenaJne generation) 103
Locked and read-only files 103

vi MPW 3.0 Reference

(···.·.'·
"'" /

Commando dialogs 104
Invoking Commando 105
Using Commando dialogs 106
Standard dialog box controls 107

Generic text pai".amett:rs 107
Repeatable options 108
Radio buttons 108
Check boxes 108
Shadow pop-up menus 109
Other pop-up variations 109
Multiple input files 110
Multiple directories 111
Multiple ftles and/or directories 112
Single input or output file 112
Output file where a file or directory may be specified 113
New directories 114
Special dialog box controls 114 ·
Nested dialog boxes 114
Redirecting output 116
Options dependent on ocher options 118
Three-state controls 119

5 Using the Command Language 121
Overview 123
Types of commands 124
Entering and executing commands 124

Negative starus codes 125
Structure of a command 126

Command name 126
Parameters 126
Command terminators 127

Command continuation 128
Comments 128
Simple versus strucrured commands 128

Running an application outside the Shell environment 129
Scripts 130
Special scripts~ 131

The Startup and Use!Sta.rtup files 131
Suspend, Resume, and Quit 131

CONTENTS vii

Command aliases 132
Executable error messages 133

• Variables 133
- Predefined variables 134

Variables defined in the Stanup file 135
UserVariables 139
Parameters to scripts 141
Defining and redefuting variables 142
Exporting variables 142

Command substitution 144
Filename generation 145
Quoting special characters 146
How commands are interpreted 150
Structured commands 153

Control loops 156
Processing command parameters 157
Expressions 157

Redirecting input and output 160
Standard input 162

Terminating input with Command-Enter 163
Standard output 164
Diagnostic output 164

Pseudo-filenames 165
Editing with the command language 166
Defuting your own menu commands 168
Sample saiptS 168

•AddMenuAsGroup" 169
··cc- 110

..
...

vill MPW 3.0 Reference

c

6 Advanced Edlting 171
Editing commands 173
Selections 175

Current selection (S) 178
Selection by line number 179
Position 180
Marlce:s 180

Behavior of markeIS 181
Programmatic use of marke:s 181

Pattern 182
Extending a selection 183

Pattern matching (using regular expressions) 183
Character expre~ions 185
Wilda.rd operators 186
Repeated instances of regular expressions 187
Tagging regular expressions with the~ operator 188
Matching a pattern at the beginning or end of a line 189
Inserting invisible characteis 189
Nore on forward and backward searches 190

Some useful examples 191
Transfonning DumpObj output 192
Finding a whole word 193

Bulldozer 194

7 Projector: Project Management 195
About Projector 197

OveIView l'J7
Features 199
Umitations 200

Using Projector: A walk-through 201
Creating a new project 201
Checking in a revision 204

Project pop-up 206
User field 207
Info (question mark) button 207
Keep Read-Only, Keep Modifiable, and Delete Copy buttons 207
Adding·new files to a project 207
Touch Mtxi Date check box 208
Changing a revision's revision number 208

CONTENTS ix

Locating a project 209
Checking out a revision 209

Checkout direaory 212
User field 213
Task and Comment fields 213
Select Newer button 213
Select Ail button 214
Read-Only/ModifJable buttons 214
Branch check box 215
Touch Mod Date check box 215
Checking out a partic:ulat rewion 216
Info (question mark) button 216
Select Files in Name 216
Discarding changes 216
Using the CheckOut command 217

Creating branches 218
Merging branche$ 219

Retrieving information 220
Comparing revisions 223

Components of a project 223
Projects 224
Nested projects 226
Revision trees 228
Branches 230
User names 230
Symbolic names 231

Project administration 234
Moving, renaming, and deleting projects 234
Deleting revisions 235
Renaming a file in a project 235
rile organization within a project directory 235

CKID 1'50Utte 236
Projector icom 236

lcom Appearing in the Check In W'Uldow 236
Icons Appearing in the Check Out W"tndow 237

Projector command summary 238

·4

MPW 3.0 Reference

. ..., ___ ,

8 The Build Process 239
Overview: the build process 241
The structure of a Macinto.5h application 244
Llnking 244

What to link with 245
Llnking multilingual progr.um 246

File typeS and creators 247
Building a stand-alone code resource 248
Building a desk accessory or driver 251

Unking a desk accessory or driver 253
The desk accessory resource file 254
The DRVRRuntime library 255
What your routines need to do 257
Programming hints 258
Sample desk accessory 259

Modifying the Build menu and makefiles 259
Variables 259
ScriptS 260
F'tles 260
Use15t2rtUp 260
Modifying the makefiles 261

Include dependencies 261
Llbrary object files 261

9 Make 263
Format of a makefile 265
Dependency rules 267

Double{ dependency rules 269,
Def.ru1t rules 270

Built-in dc&ult ruJes 271
Di.reaory dependency rules 272

Variables in makefiles 273
Shell variables 273
Defining variables within a makefile 274
Built-in Make variables 275

Quoting in makefiles 275
tine continliation character 276

Comments in makeftles 276

CONTENTS xi

Executing Make's output 276
• The order in which Make builds targets 277
_ Debugging makefiles 278

Proble~ due to command generation before execution 278
Preble~ with different specifications for the same file 279
Proble~ with default rules 279

An CJ31Jlp(C 279
Notes on Make's makefile 282

10 More About I Inking 285

Unk functions 'JJI'/
Segment2tion 288

Segments with special treatments 289
Controlling the numbering of code resources 290
Resolving symbol definitions 291 .

Multiple external symbol definitions 291
Unresolved external symbols 292

Building applications with more than 32K of global dat2 292
32-bit references-MPW Pasal 293
32.fJit references-MPW Assembler 293

Unker location map 294
Map entties for the global dat2 segment 295
Optional map formats for compatibility 295

Optimizing your links 296
Llbrary construction · 296

Using Llb to build a speciali1.ed libruy 297
Rem:Mng unreferenced nxxiules 298
Guidelines for choosing files for a speci2lized library 299

11 Resource Compiler and Decompiler 301
About the resource compiler and decompiler 303

. Resource decompiler 304
Standard type declaration files 304
Using Rez and OeRez 304

Structure of a resource description file 306
Sample resource.tiescription file 307

4

xii MPW 3.0 Reference

.--~~
'1

'>. •c_,.,,r'

'.l.\ ___ ,,

Resource description statements 307
Syntax notation 308

Special terms 308
Include-include resources from another file 308

Synm 309
AS resource description synm 309
Resource attributes 310

Read-read data as a resource 310
Synm 310
Description 310

Data-specify raw data 311
Syntax 311
Description 311

Type-declare resource type 311
Synm 311
Description 312
Data-type specifications 313
rill and align typeS 316
Array type 317
Switch type 318
Sample type statement 319

Symbol definitions 319
Delete-delete a resource 320

Synm 320
Description 320

Change-change a resource's vitll information 321
Syntax 321
Description 321

Resource-specify resource data 322
Syntax 322
Description 322
Data stlt.ements 322
Sample resource definition 323

I.abe1' 324
Syntax 325
Description 325

Built-in functions to access resource data 325
Declaring labels within arrays 326
Label limitations 327
Using labels: two examples 327

CONTENTS xill

Preprocessor directives 330
Variable definitions 33 l

Include directives 331
If·Then-Else processing 332
Print directive 331.

Resource description syntax 333
Numbers and literals 334
Expressions 335
Variables and functions 336
Strings 338

Escape characters 339 ·

12 Writing an MPW Tool 341

Overview 343
Conventions 344

Status Codes 345
Restrictions 346

Initialization 346
Menx>ry Management 347

Heap 349
Stack 349

Building an MPW tool 350
I.inking a tool 350

Programming for the MPW Shell 351
Ac~ing the MPW Shell-MPW C 351
Accessing the MPW Shell-MPW Pa.5cal 352
Ac~ing the MPW Shell-Assembler 353

Importing the routines 353
Assembler calling conventions 353
The tmnit function 354
F'tles to link with 355

Pmmeters 355
Accessing MPW command·lirle parameters-MPW C 357
Accessing MPW command-line parameters-MPW Pascal 357
Accessing MPW command-line paramerers-As.sembler 358

.. ..

xiv MPW 3.0 Reference

;f--·\
(_,,,.,,

Standard VO channels 358
VO buffering 358
VO to windows and selections 360
Error information 361
Shell VO routines-MPW C 361

stdio-standard buffered input/output package 364
Shell VO routines-MPW Pascal 367
Shell I/O routines-Assembler 367

Shell I/O routines 367
open-open for reading or writing 367
dose-close a ftle descriptor 369
read-read from a file 370
write-write to a file 371
!seek-move read/write file pointer 372
fend-file control 373
IOCtl-<ommunic:ate with device handler 374

Shell utility routines 375
ScandAlone-check whether running under the MPW Sheil 375
getenv-access exported MPW Shell variables 376
atexit-install a function to be executed at program termination 3i8
exit-terminate the current application 379
facces.s-narned file access and control 380

Signal handling 383
Signal handling-<: 383
Signal handling-Pascal 384
Signal handling-Assembler 384
Signal-specify a signal handler 384
Raise-raise a signal 385
Writing a signal handler 386

·c

c

CONTENTS xv

13 Creating a Commando Interface For Tools 389
_ About Commando 391

Invoking Commando 391
Creating Commando dialogs 392
Editing Commando dialogs 393

Enabling Commando's Editor 393
Editing controls 393
Selecting controls 394
Moving controls 394
Sizing controls 394
Editing labels 395
Editing Help messages 395
Changing the size of a Commando dialog box 395
Saving the rmdified Commando dialog 396

Strings and Shell variables 396
Resource description 397

Resource ID and name 397
Size of the dialog box 398
Tool description 399

Regular enay control 399
Multiregular enuy 401
Check boxes 402
Radio buttons 404
Boxes, lines, and text tides 406

Box 407
TextBox 407
TextTitle 408

PoJHlp menus 409
F.dir2ble poJHlp menus 411

Lists 414
TJuee..state buttons 415
Icons and piaures 417
Control dependencies 418

Direct dependency 418
Inveise dependency 419
Dependency on the Do-It button 421
Multiple dependencies 421
Dependencies on radio buttons 422 ..

Nested dialog boxes 423

xvi MPW 3.0 Reference

((~·
'\._j,

Redirection 425
Files and directories 427

Individual ftles and directories 427
Multiple ftles and directories for input and output 430
Multiple files and directories for input only 436
Multiple new files 438

Version 439
A Commando example 442

14 Performance·Me3SUtement Tools 447
About performance-measurement tools 449

Components of performance tools 450
Requirements for using performance tools 451

How perfonnance measurement works 451
Program Counter sampling 451

Restrictions 452
Bucket counts 452

Using performance-measurement tools 453
1. Install under conditional compilation 453
2. Include the interface 454
3. Provide a pointer to a block of variables 455
4. Initialize the performance-me3Surement rools 455
5. Tum on the measurements 456
6. Dump the ~ts 457
7. Tenninate cleanly 457

MPW perfonnance tools routines 458
The function InitPerf 458
The function PerfControl 460
The function PerfDump 461
The function TennPerf 462

- Perl"onmnce reports 463
Performa~ce output file 463
Analyzing the results with PerformReport 466
Adding identification lines to a data ftle 467
Interpreting the performance report 468

Implementation issues 468
Locking the interrupt handler 469
Segmentation 469
Dirty CODE segments 469
Movable c:OOe resources 470 ..

CONTENTS xvii

A Macintosh Programmer's Workshop Files 471

• MPW 3.0 files 473
Distribution disk MPW Insrallation Disk: 473
Distribution disk MPWl: 473
Distribution disk MPW2: 474
Distribution disk MPW3: 475
Distribution disk MPW4: 476

MPW ~mbler files 477
Distribution disk MPW Assemblerl: 477
Distribution disk MPW Assembler2: 477

MPW Pascal files 478
Distribution disk MPW Pasclll: 478
Distribution disk MPW P2SC112: 479

MPW C files 481
Distribution disk MPW Cl: 481
Distribution disk MPW C2: 482

Hard disk configwation 484 ·

B Summary of Selections and Regular Expressions 495

Selections 497
Regular expressions 498
Option-key characters 500

C Spedal Operators 501

D Re5ource Description Syntax 505

Syntax notation 507
Struc:tuR: of a resource description file 508

Include-include resources from another file 509
Bead-re2d dat2 as a resowce 509
Om-specify raw dat2 509
Type-declare resource type 510

Data-type 510
rill-type 511
Alignment 511
Switch-type '"511
Array-type 5 fl

xviii MPW 3.0 Reference

Resource-specify resource data 512
Chang~hange resource vital information 512
Delete-delete resource(s) 512

labels 512
Syntu: 512

Preprocessor directives 513
Syntax 513

Identifiers 513
Token delimiters 514
Compound types 514
Expressions 514
Numbers 515
Variables and functions 516
Strings 517

E File Types, Creators, and Suffixes 519
File types and creators 521
File suffa:es 521

Text files 522
Object files 522
Data files · 522

F Tools Ubraries 523
Animated cursor control routines 525

Cursor control routines-MPW P3SC11 525
Cursor control routines-MPW C 525
The InitCursorCtl procedure 526
The Show_Cursor procedure 527
The Hide_Cursor procedure ?28
The RotateCursor procedure 5 29
The SpinCursor procedure 529

Error Message File manager 530
Error Manager-MPW Pascal 530

. Error Manager-MPW C 530
The InitErrMgr procedure 531
The GetSysErrText procedure 532
The GerTootErrText procedure 533
The AddErrifuert procedure 534
The CloseErrMgr function 534

CONTENTS xix

Disassembler Lookup routines 535
DisAsmLookUp.p-MPW Pascal 535
DisA.smLookUp.h-MPW C 535
Using the Disassembler 536

The InitLookup procedure 541
The Lookup procedure 542
The LookupTrapName procedure 542
The ModifyOperand procedure 543
The validMacsBugSymbol function 543
The endOfModule function 545
The showMacsBugSymbol function 545

G The Graf3D Ubrary S47
Overview 549
How to use Graf3D 549

How to use Graf3D-MPW M!embler 550
How to use Graf3D-MPW Pasa1 550
How to use G.raf3D-MPW C 550

Graf3D data typeS 551
Point3D 551
Point2D 552
XfMatrix 552
Port3DPtr 553

Graph3D procedures and functions 554.
The InitGraf3D procedure 555
The Open3DPort procedure 555
The SetPort3D procedure 556
The GetPort3D procedure 556
The Move procedures 557
The Une procedures 557
The Clip3D function 558
The Set Point procedures 558

Setting up the camera 559
The ViewPort procedure 559
The LookAt procedure 560
The V'iewAngle procedure S(i()

:r x MPW 3.0 Ref ere nee

(''"·,
,, ,,

The transformation matrix 561
The Identity procedure 561
The Scale procedure 561
The Translate procedure 562
The Pitch procedure 562
The Yaw procedure 562
The Roll procedure 563
The Skew procedure 563
The Transfonn procedure 564

H Object File Format 565
About object file records 567
Scoping of symbolic information 570
ModuleBegin implementation/declaration semantics 572
Record type nocuion 572
Object file records 573 .

Pad record 574
First record 574
Last record 575
Comment record 575
Dictionary record 575
Module record 576
Entry-Point record 577
Size record 578
Contents record 578
Reference record 579
Computed-Reference record -583
F'tlename record 584
Source Statement record 584
ModuleBegin record 586
ModuleEnd record 587
BloclcBegin record 588
BlockEnd record 589
Loc31 Identifier record 589
Looll Label record 593
Looll Type record 594

...

CONTENTS xxi

Type interpretation via pref ix code 596
Overview 597
Type functions 597
Representation of type information in the SADE symbol table 601
Representation of type codes 602
Representation of scalars 604
Examples 605
Possible object module representation 605
Possible compilation into ITE 607
Type interpretation and packed data 608

Storage framework 609
Examples 610
C source 610
Possible compilation into ITE 611

I In c.ase of Emergency 613
Crashes 615
Staclc space 615

Glossary- 617

hldex 623

..

xxU MPW 3.0 Reference

-· Part II Command Reference
A Command prototype 6
AddMenu-add menu item 9
Adjust-adjust lines 13
Alen-display an alen: box 14
Alias-def me or write command aliases 15
Align-align text to left margin 17
Asm-MC68xxx Macro Assembler 18
Backup-folder file backup 25
Bee~generate tones 34
Begin ... End-group comman~ 36
Break-break from For or Loop 38
BuildCommands-generate Build comman~ 40
BuildMenu-create the Build menu 42
Build.Program-build the specified program 43
C-C Compiler 45
Canon-ononical spelling tool 49
Catenate-concatenate files 52
Cheddn-check in files to a project 54
CheclcOut-check out files from a project 57
CheckOutDir-set checkout directory 61
Choose-di~ or list network volumes and printers 64
Clear-dear the selection 68
Close-close specified windows 69
Commando-display dialog intettace for a command 71
Compaze-compare text files 73
CompareF'iles-script that compares files side by side 79
CompareRevisions-compare and identify revisions 81
Confum-display confirmation dialog box 83
Continu~ontinue with next iteration of For or Loop 85
Copy-copy selection to Clipboard 87
Count-count lines and characters 89
CPlus-<:ompile C++ programs 91
CreateM.akewaeate a simple makefile 96
Cut-copy selection to Clipboard and delete it 99
Date-write th~ date and time 100
Delete-delete files and directories 102
DeleteMenu-delete user-defined menus and items 104

CONTENTS xxiii

OeleteNames-delete user-<iefined symbolic names 105
OeleteRevision.s-deiete revisions and branches 107

- OeRez-Resource Decompiler 109
- Directory-set or write the default directory 113
·DirectoryMenu-aeate the Directory menu 115
Dolt-script to highlight and execute a series of commands 117
DumpCode-write formatted resources 119
DumpFile-display contents of an arbi~ry file 122
DumpObj-write formatted object file 125
Duplicate-duplicate files and directories 128
Echo-echo parameters 130
Eject-eject volumes 132
Entab-convert rum of spaces to tabs 133
Equakompare files and directories 136
Etase-initi3lize volumes 139
Evaluate-evaluate an expression 140
Execute-execute a script in the current scope 145
Exists-confirm the existence of a file or directory 146
Exit-exit from a script 147
Export-make variables available to prograrm 148
FUeDiv-divide a file into several smaller files 150
Files-list files and directories 152
Find-find and selea a text pattern 155
Flush-clear the command cache 157
Format-set or view the window format 160
For ... -repeat commands once per parameter 158
GetErrorT~play text for system error numbers 162
GetrdeName-display a standard fde dialog box 164
GetListitem-<iisplay iten for selection in a dialog box .166
Heip-dbpby swmmry information 168
If ... -conditional command execution 171
Lib-combine object files into a libr.uy file 173
line-find a line number 177
Link-link an application, too~ or resource 179
Loop ... End-repeat cormmnd list until Break 189
Make-build up-ta-date veision of a program 191
MakeErrorFUe-create error message textfde 195
Mark-assign a marker to a selection 197
Markers-list markers"' 199
Matchlt-match paired language delimiters 200

i:i:iv MPW 3.0 Reference

.·c· .. ·
' .
. . _,,,,.

MergeBranch-merge a branch file onto the trunk 205
ModifyReadOnly-change a read-only file to modifiable 207
Mount-mount volumes 2C9
MountProject-mount an existing project 210
Move-move files and directories 212
MoveWindow-move window to h,v location 214
NameRevisions-name files and revisions 216
New-open a new Mndow 220
Newer-compare modification dates between files 221
NewFolder-create a directory 223
NewProject-create a project 224
Open-open a window 226
OrphanFiles-orphan a file or files from Projector 228
Parameters-write parameters 229
Pascal-Pa.seal compiler 230
PasMat-Pascal program formatter 234
PasRef-Pascl cross-referencer 241
Paste-replace selection with Clipboard contents 250
PerfonnReport-generate a performance report 251
Position-list position of selection in window 253
Print-print text files 254
ProcNam:s-display Pascal procedure and function names 258
Projea-set or write the current project 262
Projectinfo-list project information 263
Quit-quit MPW 272
Quote-quote parameters 273
Re~name files and directories 275
Replace-replace the selection 277
Reques~request ten from a dialog box 279
ResEqual----compare resources in files 281
Revert-revert to saved file 283
Rez-Resource compiler 284
RezDet-detect inconsistencies in resources 288
RotateWlndows-bring second window to front 291
Save-save windows 292
Search-search files for a pattern 293
Set-def me or 'Write Shell variable 295
SetDirectory-set the default directory 297
Setfile-set file ~ttributes 298
SetPrivilege-set access privileges to folders on file server 300

CONTENTS xxv

SetVersion-maintain version and revision number 302
_ Shift-renumber script parameters 317
• Shutdown-shutdown or software reboot 319

SizeWindow-set a window's size 321
Sort-sort or merge lines of text 322
StackWmdows-arrange windows diagonally 326
Target-make a window the target window 328
T'tleW'mdows-arrange windows in tile paaem 329
Transfe!Ckid--transfer CKID resources from one file to another 331
Translate-convert selected characters 332
Unalias-remove aliases 334
Undo-undo last edit 335
Unexport-remove a variable definition from export 336
Unmarlc-reroove a marker from a file 338
Unmounc-wunount volumes 339
UnmountProject-unmount projects 340
Unset-remove Shell variables 341
Volumes-list mounted volumes 342
Whereis-se:udl for flies in directory tree 343
Which-determine which file the Shell will execute 345
Windows-list windows 347
:zoomwtndow-enlarge or reduce a window 348

...

xxvl MPW 3.0 Reference .

Figures and tables

1 System Overview 23
Figure 1-1 Serup of MPW folders and files 40

2 Getting Started 41
Figure 2-1 Worksheet window 47
Figure 2-2 MPW menu bar with MultiFinder 48
Figure 2-3 Direacry menu SO
Figure 2-4 Show Directory alert 51
Figure 2-5 Build menu 51
Figure 2-6 Program Name dialog box 52
Figure 2-7 Finished Sample build 53
Figure 2..S Set Directory ... standard file dialog box 55
Figure 2-9 CreateMake dialog box S6

3 Using the Shell Menus 59
Figure 3-1 rile menu 63
Figure 3-2 New dialog box 63
Figure 3-3 Edit menu 67
Figure 3-4 Dialog box of the Format menu item 68
Figure 3-5 rind menu 70
Figure 3-6 Dialog box of the Replace menu item 72
Figure 3-7 Selection by line number 73
Figure 3-8 Example of a regular ex'Pression 74
Figure 3-9 Text selected with the rind command 75
Figure 3-10 Marie menu 76
Figure 3-11 Made dialog box 76
Figure 3-12 Unmade dialog box n
Figure 3-13 W"tndow menu 78
Figure 3-14 Project menu 79
Figure 3-15 New Project dialog box 80
Figure 3-16 Check In dialog 80
Figure 3-17 Check Out dialog box 81

CONTE~TS xxvii

Figure 3-18 Directory menu 82
Figure 3-19 Dialog box of the Set Di.rectory menu item 82

• Figure 3-20 Build menu 83
- Figure 3-21 Create.Make dialog box 84

Figure 3-22 Program Name dialog box 85

4 Using MPW: The Basics 87
Figure 4-1 Pressing Enter to execute selected text 92
Figure 4-2 Help summaries 95
Figure 4-3 Hierarchical directory strucrure 99
Figure 4-4 A locked file with the Lock icon in the Sta~ panel 103
Figure 4-5 A read-only file with the Read-Only icon in the Status panel 104
Figure 4-6 The Date dialog box lo6
Figure 4-7 Rez: the fll3t clialog box 115
Figure 4-8 Rez: nested Preprocessor dialog box 115
Figure 4-9 Rez: nested Redirection dialog box 116
Table 4-1 Basic ftle-manageqient commands 96

5 Using the Command language 121
Figure S-1 Trafficking in variables 143
Figure 5-2 Standard input and output 161
Figure 5-3 Redirecting diagnostic output 165
Figure ;.4 Text highlighted in the active and target windows 167
Table 5-1 Command terminators 127
Table 5-2 Variables defmed by the Shell 135
Table 5-3 Variables defined in the Startup file 136
Table 5-4 User variables not defined in Stanup file 140
Table 5-5 Pmmetea to scrip~ 141
Table 5~ Filename generation operatol'S 14 5
Table ;.7 Special char.aaea and words 147
Table 5-8 Quotes 148
Table 5-9 Special escape conventiom 150
Table 5-10 Structured commands 154
Table 5-11 Expression operatoa in order of deete3Sing precedence 158
Table 5-12 1/0 redirection 161
Table 5-13 Pseudo-filenames 166

..
..

· xrviU MPW 3.0 Reference

0

6 Advanced Editing 171
Figure 6-1 A seleaion specification 177
Figure 6-2 Selections in two windows 178
Table 6-1 Built-in editing commands 173
Table 6-2 MPW tools usefui for editing 175
Table 6-3 Selection operators 176
Table 6-4 Regular expression operators 184

7 Projector. Project Management 195
Figure 7-1 A projea structure 198
Figure 7-2 New Project window 202
Figure 7-3 New Projea window after creating a project 203
Figure 74 Check In window 205
Figure 7·5 Check Out window 211
Figure 7-6 A changing revision tree 218
Figure 7-7 Revision information 221
Figure 7-8 The View By filter 221
Figure 7-9 The •View BY- dialog with seleaion criteria 222
Figure 7-10 Sample project check-out configuration 225
Figure 7-11 _ A sample project hierarchy 27.7
Figure 7-12 A revision tree 229

8 The Build Process 239
The Build p~ 242
Linking 245

FigureS-1
Figure 8-2
Figure 8-3
Table 8-1 ·
Table 8-2

Building a desk accessory with DRVRRuntirne 252
Ftles to link 246
Fi.le cypes and creators 247

9 Make 263
Table 9-1 Makefile summary 2(,6

..
...

CONTE:-iTS xx ix

11 Resource Compiler and Decompiler 301
- Figure 11-1 Rez and DeRez 303
- Figure 11·2 Cre:ating a resource file 305

Figure 11·3 Padding of lite%2.ls 335
Figure 11-4 Internal represcnration of a Pascal string 338
Table 11-1 Numeric consrants 334
Table 11-2 Resource description expression operate~ 335
Table 11·3 Resource compiler escape sequences 339

12 Writing an MPW Tool 341
Figure 12-1 Memry map 348
Figure 12·2 Parameters in MPW C and MPW Pasal 356
Figure 12·3 L'O buffering 360
Figure 12-4 Format of envp amy for MPW C and MPW Pascal 377
Table 12· 1 Sheil L'O erro~ 362
Table 12-2 Standard flies 365
Table 12·3 Predeclared file descriptors 369

13 Creatiag a Commando Interface for Tools 389
Figure 13-1 Example ~ of the {Userl variable 397
Figure 13-2 Basic template for a Conunando dialog box 398
Figure 13-3 MultiRegular Entry 402
Figure 13-4 Setting the CheckOption default srate 404
Figure 13-5 Radio buttons with default setting 404
Figure 13-0 Clicking a button other than the default 405
Figure 13-7 No button specified as set 406
Figure 13-8 TextBox example 408
Figure 13-9 Pop-up menu with default V2lue 410
Figure 13-10 Pop-up menu without default value 410
Pigwe 13-11 How Font Size dependency is handled 412
Pigwe 13-12 Font Size pap-up menu with font selected 412
Pigwe 13-13 One pap-up menu dependent on another 413
Pigwe 13-14 Menu title and Item pap-up menm 414
Figure 13-15 List conuol 415
Figure 13-16 Three-srate buttons 417
Figure 13-17 lean in a Conunando window 417
Figure 13-18 Direct dependency 419
Figure 13-19 Inverseidependencies 420
Figure 13-20 Depenci£ncy on the Do-It button 421
Figure 13-21 Dependencies an radio buttons 422

xxx MPW 3.0 Reference

Figure 13-22 Setting up nested dialog boxes 424
Figure 13-23 Placement of nested dialog buttons 425
Figure 13-24 How to obtain input and output redirection 426
Figure 13-25 Resource description for •individual files and directories"

controls 428
Figure 13-26 Examples of "individual files and directories" controls 430
Figure 13-27 Example of multiple input files 432
Figure 13-28 Example of multiple input files with no file extension specified 434
Figure 13-29 Example of multiple input files with object files specified 435
Figure 13-30 Example of multiple input files with all files specified 436
Figure 13-31 Multiple directories for input 437
Figure 13-32 Example of a "directories• control for multiple input files 438
Figure 13-33 Using the MultiOutputFiles subcase of the case MultiFiles 439
Figure 13-34 Version string 440
Figure 13-35 A commando example: frontmost ResEqual dialog box 445
Table 13-1 Summary of recommended sizes for Commando screen

elements 399

14 Performance-Measurement Tools 447
Table 14-1 Predefined ROM IDs and names 460

B Summary of Selections and Regular Expressions 495
Table B-1 Selections 497
Table B-2 Regular expressions 498

C Special Operators 501
Table C·l MPW operators 503

E File Types, Creators, and Suffixes 519
Table E· 1 File types and C'Cltors 521

F Tool Libraries 523
Table F·l
Table F-2
Table F-3
Table F-4

Cursor kinds 527
Disassembler strings 536
Disassembler: Effective addresses 538
Bak register values 539

CONTENTS xxxi

G The Graf3D Library 547
• Table G-1 Port30Ptr variables 554

H Object File Format 565
Table H-1 Register numbers 592

...

xxxil MPW 3.0 Reference

(

Part I Shell Reference

...
...

--

?A'e. ~ cloe.s no+ P''""+.
"-----........

'-8:i

Introduction: The New and the Necessary

WEI.COME TO TI1E MACINTOSH• PROGRAMMER'S WORKSHOP 3.0. This introduction is
your guide to the new fearures and enhanced capabilities.

Those currently using MPP 2.0 are urged to carefully review the section "What's
New in MPW 3.0" because many changes may affect your MPW 2.0 scriprs and
other ways of doing things. The last two sections of this introduction describe
new hardware and software requirements as well as revised noration conventions
and reorganized documenration. If you are new to MPW you can skip the "What's
New in MPW 3.o· section, but be sure to read "What You'll Need" and "About This
Reference: This last section guides you to the pans of this book that help you
get Sta.rted. •

Contnt.1

Power tools for Macintosh programmers 5
What's new in MPW 3.0 7

MPWC++ 7
Projector 8
Symbolic Application Debugging Environment (SADE) 8
New or enhanced tools 8
New or enhanced Shell co~ 10
New Shell editor capabilities 12
New standard Shell variables 13
Changes to menus and diaiogs 14
Miscellaneous Shell changes 14
Numeric libraries 15
MPW C and MPW C++ Indude files 16
MPWPasaJ 16
MPW tool libraries 17

What you'll need 17
Hardware and system requirements 17
System Folder requirements 18 ..
Documentation 18

3

About this reference 19
Finding information fast 20
Syntax notation 21

Aids to understanding 22
For more infonnation 22

..
..

4 MPW 3.0 Reference

(~ ... ·~ .
.

Power tools for Macintosh programmers

The Macintosh Progranuner's Workshop (MPW) provides professional software
development tools for the Apple• Macintosh computer. Briefly, MPW 3.0 consists of d1e
following parn:

• MPW Shell (the prograrruning environment)

• Project management system (Projector Trademark)

• Resource compiler and decompiler (Rez and DeRez)

• Resource editor (ResEditnc)

• Llnker (link)

• Make (for tracking file dependencies)

• Dialog interface (Commando)

• Symbolic Application Debugging Environment (SADETM, an interactive symbolic
debugger) and MacsBug

• Performance-measurement tools

Note that ResEdit, although still part of MPW, has been enhanced and is now documented
separately. Also, the new interactive debugger, SADE, and an improved MacsBug are now
each documented in their own separate reference works, included with the MPW product

The system also includes a comprehensive array of additional tools for creating and
manipulating text and resource files. The following MPW products are separately
available:

• Macintosh Programmer's Worbhop 3.0 Assembler provides everything you need
to develop applications, tools, and desk accessories in as.sembly language, induding
the ability to _create macro libraries.

• Macintosh Progr2lDJilcr's Workshop 3.0 Pasa.1 provides the additional tools,
interfaces, and libraries you need to develop applieations, tools, and desk accessories
in Pasol.

• Macintosh Programmer's Worbhop 3.0 C provides a new C compiler and a C++
transbtor a.long with the interfaces and libraries needed to develop applications,
too~, and desk accessories in C or C ++.

• MacApp~, the Expandable Macintosh Application, provides of a set of object­
oriented libraries that automatically implement the standard Macintosh user interface,
thus simplifying and speeding up the process of software development Either MPW
Pascal or MPW C++ is required for use of MacApp

The entire MPW system i.5 outlined in detail in Chapter 1, •system Overview."

INTRODUCTION The New and the ~ecessary ;

The Macintosh Programmer's Workshop 3.0 provides these advantages over previous
development sysu:rns:
• Integratforu The numerous utilities and tools of the MPW system all run within the

MPW Shell environment The integrated environment enables separately developed
applications, called MPW tools, to run within the programming environment The
MPW editor is always available to generate both text and command lines; there is no
distinction between command and text windows.

• MultiFindcr™ compatibility? MPW 3.0 tools can now be operated in the
background when using Mac!ntosh System 6.02 with MultiFinder. This meam that you
can switch to another application while a tool, such as a compiler, is running. You can
also configure your system so that you can use the MPW Sheil for editing or other
operations while a tool runs in the background See 'Using MPW With Muitifinder" in
Chapter 2.

• Project management: Projector, a new program integrated with MPW, makes it easy
to keep trnck of large proj~ involving many programmers, or simply to maintain an
orderly revision hi.story, showing who did what to every file and why. You can use
Projector to branch, that is, create many experimental versions of a file at any stage
in its evolution-without risk of confusion. ·

• Automated build process: A pull-down menu provides several ways to build or
rebuild your program.$ quickly and automatically. You can also automate complex
builds by using the Make tool and command-language scripts.

• Command scripting: In addition to menu commands, MPW provides a full command
language, including Shell variables, command aliases, pipes, and the ability to redirect
input and output You can combine any series of commands into an elaborate,
specialized script (command file) for fast, accurate, automatic results.

• Regular expression processing: The editor component of the Shell provides
powerful search and replace capabilities with regular expressions, which form a
language for describing complex text patterns. Regular expressions allow you, for
instance, to restructure complex tables with a single command

• Extensibilltr. You can customize MPW in just about any way you can imagine. You
can create your own integrated tools and sai~ to run within the Shell environment
You can also add your own menus, menu itetm, and dialogs to the Shell.

• F.a,,e of use: On-line help is available at all times. In addition, the Commando dialog
incerface gives you immediate on-screen access to all of MPW's versatile options and
functions in specialized dialog boxes. This interface makes learning easier and faster.
You can compose complex command lines without referring to the manual. And you
can create a Commando interface for your own tools and scripts as well .

...
...

6 MPW 3.0 Reference

(,

\ (.,
I

c"

MPW 3.0 provides a customizable programming environment with a completeness, power,
and flel:ibility unmatched by any other Macintosh-based system. BecaU.se it is fuil­
fearured an<t extremely versatile, the first-time user should be prepared to devote some
time to learn -it This effort will be well repaid by the power and versatility that MPW
places in your hand.5.

What's new in MPW 3.0

MPW 3.0 is faster and easier to use than its predecessor and now fully el:ploits MultiFinder.
Use of MPW with MultiFinder greatly increases its convenience and efficiency. Many new
tools and options to el:isting tools have been added. Major additions to MPW include
Projector, a project management system, and SADE, the Symbolic Application Debugging
Environment MPW now al.so supports C++. These innovations are each briefly described
in the sections that follow. Changes to menus, tools, variables, and compilers are itemized
in the lists that follow.

If you are currently using MPW 2.0, it is especially important that you carefully review the
changes listed in this section. The extensive changes implemented in MPW 3.0 might
affect scripts written for the MPW 2.0 Shell.

MPW C++

MPW now includes extensions to the C language that support the fearures of C++. MPW
C++ is an approximate superset of the C programming language that maintains the
efficiency and power of C while adding features such as operator overloading (which lets
you define additional meaninS' for built-in operators), ANSI-like type-checking,
automatic type conversion, and class hierarchies with inherimnce. Because C++ supports
object-oriented programming, developers who prefer C to Pascal can now take advantage
of Mac:App. For mre infonnation, see MPW 3.0 C++ Refemice.

...
..

INTRODUCTION The New and the Necessary

Projector
~

MPW 3.0 includes.>n easy-to-use, built-in project management system, Projector, that can
be customized to fit any working style, from that of the single programmer to that of the
large, networked engineering team. Briefly, here's how it works: You check out a file or
group of files from Projector for either review or mcdiflcation. Although many people can
review a file, only one person at a time can modify il When you've fmished your work,
you check the file back in with Projector, along with a note decWing your mcxiifications.
Your name, your notes, and the date are automatically filed in Projectors revision history
for that project It's also possible to create parallel branches of a single project for
experimental purposes. Chapter 7 is a derailed account of Project~r.

Symbolic Application Debugging Environment (SADE)

The Symbolic Application Debugging Environment (SADE) allows you to roonitor the
execution of a program at both the processor level and at the symbolic program source
level. Both SADE and the enhanced MacsBug are now each documented separately from
the MPW Reference. For more infonmtion, see the MacsBug Refenmce and the SADE
Reference.

New or enhanced tools

The tools and scripts included with MPW 3.0 have been improved in many ways for
increased versatility. These enhancernenrs are briefly catalogued in the list that follows. In
addition, a number of. new tools and scriprs have been added to support Projector and
the C++ compiler.

MPW 3.0 suppom shared tools on a network file server.

These rarely used conversion tools are no longer included with MPW but are still available
from Technical Support at Apple Computer, Inc.:

• TLACvt

• MDSCvt

• CVTObj

8 MPW 3.0 Ref ere nee

c

Ail MPW 3.0 commands, including tools and scripts, are individually documented in the
alphabetically organized Corrunand Reference in Part II of this book; that is the first
place to look for more information about any tool.

. -
• Backup: Two new options have been added ..
• C: The C compiler has been completely rewritten for MPW 3.0. Some of the options

and calling conventions are different from those in the MPW 2.0 C compiler. See the
MPW 3.0 C Reference.

• CFront: New translator for C++.

• Choose: A new tool that enables you to mount servers and select Apple Laserwriter®
printers from within the MPW environment

• Commando: Now has a built-in editor that imkes it easy to modify Commando
dialog boxes.

· • CompareFilcs: A script that compares two files side by side, pinpointing any
differences.

• CompareRcvislons: A Projector script used to identify and compare revisions. See
Chapter 7 for details.

• CPlus: New script that compiles C ++ progr.um.

• CrcatcMake: Enhanced with a new option that supports SADE.

• Dolt: A script to highlight and execute a series of commands.

• OumpCode: Enhanced

• OumpFile: New -bf option. Note that the -c option has been renamed -w (for width).

• OumpObj: Enhanced to support SADE. Two new options have been added

• GetFilcNamc: Enhanced with a new -c (current) option to write the current St.andard
File pathname to standard output The syntax of this command has also been
improved.

• GetIJstltem: GetLlstltem now supports keyboard shortcuts and a new option: -s
(single) option that permits only a single item to be seiected from a di.splayed list

• lib: Enhanced. Lib now determines the optimum buffer allocation from the amount
of aV2i.bbJe merrory; the old -b, ·bs, -bf options are therefore o~olete and have been
eliminated.

• link: Enhanced to permit up to 1024 files, including both objea files and symbolic
debugger source file specifications. A new -map option produces a sophisticated link
map. Link now determines the optimum buffer allocation from the amount of
available memory; the old -b, -bs, -bf options are therefore obsolete and have been
eliminated. A new option supports SADE. See Chapter 10 .

...
..

INTRODUCTION The New and the Necessary 9

• MacsBug: MacsBug performance has been enhanced and upgraded. The MC68881 and
MC68882 floating-point coprocessors are supported. See the separate MacsBug
Reference. ~

• Make: ChangeS have been made to the way variables are treated. See "Variables in
Makefiles" in Chapter 9.

• Matchlt: A new command that intelligently seeks the mate oi a specified delimiter
used in Pasal, C, or Assembler, allowing for loops, comment fields, nesting, and so
on.

• McrgcBranch: A Projector script used to help merge a branch file back into the trunk
of a project. See Chapter 7 for details.

• P3SC2l: Enhanced with object-oriented capabilities. See the MPW Pascal section later
in this chapter and the MPW 3.0 Pascal Reference.

• Print: Enhanced. A. new option, -ps, lets you send a file of PostScript3 commands to
the LaserWritern..

• ProcNamcs: This Pasol utility now generates Shell marker commands, allowing easy
acc5 to the procedure, function headers, or bodies. Names are now displayed
indented to show their nesting level. Nesting level and line number are also displayed.

• Resource tools: The command language of Rez has been e:ttended with the new
syntax element Label to suppott color QuickDraw resources. There are a few new
synta ruJes, new options, and two new functions that allow you to delete resources or
change resource information. See Chapter 11 and Appendix 0. ·

• Sort: A new tool for salting lines of text.

• Wherds: This new tool helps you find files hidden deep in a direaory tree. You can
use it to locate files when you know only a partial pathname.

New or enhanced Shell commands

All of these built-in commands are fully described in the Command Reference· in Part II;
that is the first pbce ro look for roore information.

• Checkln: New Projector command fO check files in to a Project. See Chapter 7.

• CheckOut: New Projector command ro check mes out from a Project. See Chapter 7.

• CheckOutDir: New Projeaor command ro set Checkout directory. See Chapter 7.

• Oose: Enhanced with a -c option; it lets you select the dialog's Cancel button during a
scripted operation.

• Date: Enhanced to provide •cf3te anlhmetic."
•

• DeletcNamcs: New Projector command. See Chapter 7.

10 MPW 3.0 Reference

• DcletcRevisioos: New Projector command. See Chapter 7.
• · Directoey: A "directory path" variable (similar to the (Commands} variable) for

changing.current directories has been added.
• Evaluate: Enhanced to support different radices and variable assignments.

• Flush: A corrunand for fl~hing tools from the tool cache.
• Format: A scriptable form of the format option in the Edit menu.

• FullBuild: Enhanced.
• ModifyRC3dOnly: New Projector command to make read-only ftles modifiable. See

Chapter 7.

• MountProjcct: New Projector command. See Chapter 7.
• MovcWindow: Enhanced to provide current window size and position.

• NameRevisions: New Projector command to name revised projects. See Chapter 7.

• NewProjcct: New Projector corrunand to create a new project. See Chapter 7.

• OrphanFilcs: New Projector command See Chapter 7.

• PositJoo: This new command shows the current line number, beginning of selection.
and end of selection in specified windows.

• Project: New Projector command. See Chapter 7.

• Projec:tlnfo: New Projector command. See Chapter 7.

• Request: Enhanced with -q option to quiet any error messages, permitting a script to
continue regardless of user input

• RotateWindows: New command that sends the front window to the back.

• SlzcWindow: Enhanced to provide current window size and position.

• Stack Windows: Enhanced to support ~er-defined rectangles and. a variable number
of windows.

• TlleWindows: Enhanced to support user-defined rectangles and a variable number of
windows. .

• T.rmsferCkld: New Projec:tcr command. Sec Chapter 7.

• UmoaatProject: New Projector corrunand. See Chapter 7 .

..
...

INTRODUCI10N The New and the Necessary 11

New Shell editor capabilities

-
The MPW Shell ediror has been refined in various ways:
a MPW 3.0 supports the speciaJ keys on the Apple Extended Keyboard:

Esc Same as Cancel button in a diaJog box
Undo Same as Undo menu command
Cut
Copy
Paste
Help

Home
End

Page Up

Page Down

Same as Cut menu command
Same as Copy menu command
Same as Paste menu command
With no selection, ·displays a summary of the Help available. With a
selection, information on that selection is displayed.
Equivalent to moving the vertical scroll box to the top of the scroll bar.
Equivalent to moving the vertial scroll box to the bottom of the scroll
bar.
Equivalent to clicking the mouse pointer in the upper gray region of the
vertiaJ scroll bar.
Equivalent to clicking the mouse pointer in the lower gray region of the
venial scroll bar.

• The displayed line-length limit has been increased to 256 characters.

• The tab-length limit has been increased to 100 chat2cters.

• · Horizontal scrolling is faster; more saeen area is moved per mouse click.

• You an reverse the direction of the rind, r111d and Replace, r111d Same, Replace Same,
and rind Selection functions by holding down the Shift key when selecting a menu
item (or, in a dialog box, when dicking OK). This mkes interactive searching a little
more convenient but does not affect Shell search variables.

• Text selection by matching delimiters (such as { }, (), [], and so on), has been
modified. Imte3d of selecting the rest of the document when a matching chat2cter is
not found, the delimit.er at the position of the double-click is highlighted. ·During the
search you cm abort by pressing Command-Period.

• The new commands Format and Position (desaibed above in the •New or Enhanced
Sh~ Commands9 section) are useful for scripted editing.

• The lib1'2ry routine fac:c:ess has been enhanced to provide more programmatic
control over Shell windows.

..

..

12 MPW 3.0 Reference

,r--·)\
\,.__.,;/

• You can now disable Auto-Indent for one line by pressing Option-Rerum.

• The MPW Shell editor ignores any zero-width characters that are typed from the
ke}'boarct (Usually these are typed by accident.) If you really want a control character
in your document, you can enter it in the Key Caps desk accessory and then paste it in
your document To delete control characters that might not be visible, select Show
Invisibles from the Format dialog box. All control characters are displayed as an
inverse question mark (i).

New standard Shell variables

Twelve new variables have been added to give you control over ahrost all formatting and
editing optiom from scripts. (Only display invisibles cannot be predefined.) The first five
variables listed here provide default settings for new windows and are especially useful
with large-screen monitors. See ·variables Defined in the Startup File" in Chapter 5 for
more information.

• {Autolndend sets default indenting for new windows.

• {Fond sets default font for new windows.

• {FontSize} sets default font size for new windows.

• {NewWmdowRect} sets the default size for new windows.

• {ZoomWindowRectl sets default size for windows that are zoomed to full screen size.

• iI'ileOptions} sets options for the TileW'mdows menu item, for example, to specify a
rectangle for the tiled window arrangement

• (StackOptions} sets options for the StackW'mdows menu item; for example, to
specify a rectangle for the stacked window arrangement

• (SearchBackward} can be used to set your default environment to specify backward
searching.

• (SearchType} can be used to set your default environment to specify· searching for
litew chmctets, words, or regular expressions.

• (Search Wrap} can be used to set your default environment to specify wrap-around
searching.

....

INTRODUCTION The New and the :iecessar_; 13

• {Userl specifies the name of the user currently using MPW. It is predefined to be the
same as the user name specified in the Chooser.

• (IgnoreCmdPefiodl is a new variable referenced by MPW's command interpreter. Use
this variable in your scripts when you want any Command-Period input by the user to
be ignored

Changes to menus and dialogs

A few menus have been slightly changed since the release of MPW 2.0: ·

ii TlleWlndows and Stack.Windows menu items now, by default, do not include the
Work.sheet. You can include the Work.sheet in the tiling or stacking by pressing the
Option key when selecting the T'ueW'indows or SrackW"tndows menu item. The
(TIJeOptionsJ and {StackOptionsJ variables let you completely customize the
operations of the Tile Windows and StackW"tndows menu commands. See Chapter 3.

• Window menu now lists any open Projector windows. See Chapter 3.
• The Open dialog box now conrains a Read Only checkbox.

Mlscellaneous Shell changes

Here are some important improvements for the MPW Sheil:

• MPW 3.0 supports background operation of tools while running MultiFinder. This is a
significant improvement in convenience and efficiency. Please see ·using MPW With
MultiFinder' in Chapter 2 for instructions on configuring your system for true
multitasking.

• An automatic installation program is included with MPW 3.0. This program, Installer,
and the tools to support ir, can be found on the MPW Installation Disk. Please read
9Inst2lling the Systenf in Chapter 2 before doing anything with it This ~· impotf3nt
because the amngment of MPW files on the 3.5-inch distribution disks has been
changed ro repn:sent their final destination when moved to a hard disk. Thus there
will be some duplication of folders ac~ the set of distribution disks so that you
cannot simply copy the entire contents of a distribution disk without some conflict.

• The Starrup ftle now executes UserSrartup and then any file named UserStartup• name
in the directory that contains the Shell (Press Option-8 to obtain the • symbol.) If
you have a customized UserStartup file, you may want to personalize it (for example,
UserStaltUp•Tom) so that when you ftlsrall MPW 3.0 your customized file won't be
overwritten. ~

14 MPW 3.0 Reference

(

4.,

)

./

• Scandard output and diagnostic output can now be directed to the same place with
the l: (Option-W) character, meaning: "The summation of all output. .. ~ See
•Redirecting Input and OutpuC- in Chapter S for the new syntax.

• You can now use Option-Enter to invoke the Commando dialog boxes for commands.
Alternatively, you can still type the. command name, then the ellipsis diaracter
(Option-Semicolon), and then pre~ Enter.

• A new direaory path variable for changing current direaories is now available from
the Directory command. (See Part U.)

• Numeric variables have been added to the Shell command language. See the Evaluate
command in Part n for details.

• The notation conventions of this reference have been slightly modified. The index has
also been improved. See •About This Reference• at the end of this Introduction.

Numeric libraries

Linking with numeric libraries has been simplified by placing certain conversion functions,
such as nu.m2dec, in CRuntime.o. A program that simply uses printf will no longer need
to link with CSANElib.o.

A new {Aincludesl macro ftle called SANEMacs881.a is provided as a migration aid for
Macintosh II developers who seek even greater floating-point performance from their
products by using SANE macros. With little modification of their source files, they can
reassemble by using the 881 SANE macros and thereby generate a faster application that
runs only on the Macintosh II.

l.i~'TRODUCTION The New and the ~ecessary 15

MPW C and MPW C++ Include files

The capitalization ~onventions for those functions that use Poin~ or strin~ have been
changed for MPW 3.0. These changes are itemized here:
• Those functions that cail •glue" code to convert C strin~ to Pascal strin~ or

dereference Points are now spelled with all lower case letters.

• The in-line versions of those function calls, those that do no conversions, are now
spelled with mixed cases to match the conventions in Inside Macintosh.

• You will find in the Scripts folder a new saipt, CCvt, that changes source code to
conform to the new standard spelling conventions. CCvt first backs up the original
source and then uses two Canon dictionaries to change mixed case spellin~ to all
lower case and all upper case spellin~ to mixed case.

• The syntix for ROM calls (A-traps) has been changed. The new synca.x allows multiple
instructions for •direct functions• and is more compatible with standard ANSI C and
C++.

• The header ftles have been rewritten with function prototypes that allow ANSI C and
C ++ to do additional type<hecking and code optimization.

If you use MPW C, please see the MPW 3.0 C Reference for more information about
interfaces.

MPW Pascal

The MPW 3.0 Pascal Compiler no longer provides the compiler directive SLOAD and the
option -z that were supported in MPW 2.0 Pascal. In addition to providing nearly a!l the
capabilities described in the ANS Pascal Standard, MPW 3.0 Pascal expands the power
and flexibility of Pascal. propmming with a range of new features and options:

• SADE, the symbolic debugger (·sym option), and MacsBug (-mbg option) are
supponed.

• A replacement for the $LOAD meclwtism provides a more automatic and faster
method (-noJoad, -dean, and -rebuild options).

• You an~ character constants as valid string expressions.

• Symbol support for MacsBug has been extended and improved.

• Global data greater than 32K is now pos.sible.

• The requirements for forward type references are more flexible .
...

...

16 MPW 3.0 Reference

(·.·\

.•'

C\
/

MPW tool libraries

MPW language libraries that control the MPW Shell were previously documented in their
respective language references. All Shell-related routines are now combined in this
reference.
• Use of the MPW cursor control routines and error ftle manager is now explained in

Appendix F of this book. Examples are shown in both MPW C and MPW Pasca~
Assembly programmers can ~e both.

• Use of the MPW Integrated Environment routines are documented in Chapcer 12. The
routines are explained for MPW Assembler, MPW C, and MPW Pascal.

• The Graf3D libruy is now documented in Appendix G. Each routine or function is
explained for MPW C and MPW Paso4 Assembly programmers C3ll use both.

• The calls required co use the performance-me3SUrement tools are now inciuded in
Chapter 14 of this book. Examples are shown in MPW C, MPW Pasctl, and MPW
Assembler.

What you'll need

This section describes the hardware and documentation you need to develop software
with the Macincosh Programmer's Workshop 3.0.

Hardware and system requlrements
''.

The Macintosh Programmer's Workshop 3.0 C3ll generate applications that run on any
Macintosh, including the Macintosh II, Macintosh SE, Macintosh Pim, Macintosh l 2SK,
Macintosh 512K and 512K enhanced, and Macintosh XL

However, the MPW 3.0 sysr.em requires, at the minimum, a Macintosh Pim with 2
megabytes of RAM and a hard disk drive. MPW does not run on the Macincosh XI., the
Macintosh 128K, the Macintosh 512K, or Macintosh 512K enhanced or on systems without
hard disks . .MPW 3.0 requires the 12SK or 256K ROMs; it cannot execute on the older 64K
ROMs. The ideal developmental system for use with .MPW 3.0 is a Macincosh II with an
8<J..megabyte SCSI hard disk drive, 4 or nxm: megabytes of meroory, and System 6.0.2 or
later software with MuJtiFmder. .,

In general, a small RAM cache of about 32K is useful. Use of MPW with Switcher™ is not
supported.

uVI'RODUCI10N The New and the Necessary 17

MPW software is shipped on SOOK disks. Although MPW 3.0 can still read from and write
to disks that use the nonhierarchical filing system, MPW's files must be kept on disks that
use the hierarchial filing system (HFS). Hard disks, when used as boot disks, must be
HFS volumes.

Apple's Macintosh peripherals, including the LaserWriter family of printers and the
AppleShare• file server, are supported.

System Folder requirements

Please make sure that you are using System file Version 6.0.2 or later versions.

MPW 3.0 requires these minimum system file versions:

u System file 6.0.2

n Finder 6.1

• Laser Prep 4.0

• ImageWrite~ 2.6

• AppleTalk• IrnageWriter 3.1
• IaserWriter 4.0

These files are available on version 6.0.2 or later of the System Tools disk, and on the latest
version of the Printer Installation disk.

Docume.ntatlo.n

In addition to the MPW 3.0 Reference, you should have the SADE Reference, the Macsbug
Reference, and the ResEdil Reference. These books together m3.ke up the MPW 3.0
documentation suite.

The four MPW programming languages, MPW Assembler, MPW C, MPW C ++, and MPW
Pascal, are available as separate products.

All programmers need Volumes I-IV of Inside Macintosh (published by Addison-Wesley,
1985), the definitive guide to the Macintosh Operating System and user-interface
toolbox. Additional f earures of the Macintosh SE and Macintosh Il computers are
documented in Volume V. If you need to understand and control the numeric
environment, make sure that you have th~ Apple Numerics Manual, a guide to the
Standard Apple Numerics Environment (S,;NE,,.). Finally, you need the appropriate
documentation for the programming language you use:

18 MPW 3.0 Reference

' c

• Assembly lmguage: Macintosh Programmer's Workshop 3.0 Assembler Referrmce.
Th~ reference is part of a separate product available from Apple. You may also need
the appropriate microprocessor documentation from Motorola.

• C: Mad1~osh Prog1·ammer's Workshop 3.0 C Referrmce. This reference is available as
part of a separate MPW produa. For a guide to the C language itself, you'll need The C
Programming l.anguage by B. Kernighan and D. Ritchie, or a similar C manual.

• C++: MPW 3.0 C++ Referenca. Also recommended is The C++ Programming
I.anguage by Bjame Strousucup.

• MacApp: Mac.App Program11fe1'1S Reference. This reference is part of a separ.ate
product, MacApp, the Expandable Macintosh Application, available from Apple. The
MacApp product also requires MPW Pascal or MPW C ++.

• MacsBug: MacsBug Referenca. This reference is included as part of the MPW 3.0
product.

• Pasctl: Macintosh Program11fe1''s Workshop 3.0 Pascal Referenca. Th.is reference is
available as part of a separate MPW product.

• ResEdit: ResEdil Reference. This reference is included as part of the MPW 3.0 product.

• SADE: SADE Referencs. Th.is reference is included as part of the MPW 3.0 product.

About this reference

Part I of this book de.scribes the MPW development system, including the Sheil and tools.
Part II of this book is a complete alphabetical reference to MPW commands th.at may be
removed to a smaller binder for easy reference.

This reference is written for programmers who are alre3dy famili2r with the Macinto.5h. It
outlines the process of building a program but does not ·deaJ with the particula!s of writing
it Language-sped.fie information is covered in the appropriate language references.
Ia.nguagHpedfic examples in $i5 reference are given in MPW Assembler, MPW Pascal, or
MPWC.

If you are new to MPW, be sure to read the Overview in Chapter 1 and the brief section
•Building a Program: An Introduction• in Chapter 2. This introdUction will take you
through MPW's build process in minutes. Chapter 3 introduces the commanm available
from the menus and Chapter 4 covers the basics of using MPW, including features of the
Commando dialog interface.

INTRODUCTION The New and the Necessary 19

If you are a seasoned MPW user, this introduction should be sufficient co alert you co the
changes to the MPW Sheil since MPW 2.0, and to indicate where you can find complete
details on each innovation. You may wish to read the new Chapter 7, •Projector: Project
Management• Please note that Link and Make are now desaibed in their ow chapters in
this reference and that ResEdit and MacsDug are now documented in separate volumes.
More examples have been added since MPW 2.0, and suggestions from readers have been
incorporated to make it easier to find information.

Finding information fast

During MPW sessions, the on-line Help files included with MPW are your first recourse. If
you. don't fmd the information you need there, the recommended procedure is to check
the Table of Contents and then the index at the end of Part I in thls reference. Use the
color-keyed tabs to tum quickly to the section in the MPW Referrma that you need. Then
use the table of contents provided at the beginning of each chapter.

The index has been redesigned for MPW 3.0. A single darum in the text (excluding
appendixes and Part II) may be referenced from as many as six different points in the
Index and up to three levels deep. References include practical task-oriented
identification to help you find exactly what you need without looking up a series of page
references for a single word. Trivial references have been eliminated from the index to help
.you avoid wild-goose chases. Examples, tables, warnings, and special notes have been
listed to help you find things you may have encountered before but can't remember
exaaly where.

Throughout this book you will encounter supplementary background information, hints,
and tips in specially formatted boxes set off by dianxmd-shaped icons and sans-serif
type. You can ignore these boxes during routine reference.

In spite of redundancy and a plethora of c~ references, finding a specific item of
information in a book this size can someti!Ms be frustrating. A little preparation can help
out later when you are busy and need to find something fast. It's a good idea to begin by
carefully srudying the organization of the Contents pages, especially the list of Figures
and Tables and the appendixes at the end of Part I. The list of Figures and Tables and the
appendixes are often overlooked You may fmd it useful to glue tabs at the locations of
important figures and tables. Whenever you come acros.s something in the body of the
text that you think you may need to find later, place a tab there and label it

..

20 MPW 3.0 Reference

! ' c

(

(,~.,. '
-<4---_r

Part II of this manual is a complete alphabetical reference to MPW commands. A.s you
become familiar with MPW and no longer need to refer often to the indexed chapters of
Part I, you may find it convenient to rem:>ve Part II and pl.ace it in a smaller binder for
handy reference. You may want to include some of the appendixes (such as the summary
of the Resource compiler's syntax in App:ndix D) in the smaller binder also.

Syntax notation

The following syntax notation is used to describe MPW commands:

code Courier text is used in examples to indicate characters th.at
must appear in a command line exaafy as shown. Special
symbols (- , §, &, and so on) must also be entered exactly as
shown. Command-line examples are always set off in separate
paragraphs.

include

nonterminal

(FontSize}

[optional l
-0

repeated ...

alb

(grouping)

Command-language identifiers and syntax e'.ements are set in
Courier to differentiate them from surrounding Gararoond text
(following the Kernighan and Ritchie notation conventions).

Item.5 in italics can be replaced by anything that matches their
definition. When referred to in the text, variables nonnally
appear in iralics.

Standard MPW Shell variables appear without spaces between
braces.

Brackets mean that the endosed elements are optional.

Hyphenated command-line options appear in boldface when
mentioned in text.

An ellip.5is (. ..), when it appears in the text of this reference oniy,
indicates that the preceding item can be repeated one or more

· times. Do noc confuse th.is reference convention with the
ellips~ command-line character (Option-Semicolon), used to
invoke the Commando dialog interface.

A vertical bar indicates an either/or choice.

Parentheses indicate grouping (useful with the I and ...
notation).

This notation is also used in the output of the Help command (See -rhe Help Command"
in Chapter 4.)

..

LNTRODCCTION The New and the ~ecessa.0· 21

Filenames and command names are not sensitive co case. By convention, they are shown
'With initial capital letters. Important terms are princed in boldface when they are first
introduced and defined; these terms are also fully defined in the glossary. Proper names
of key user-incerface elemencs, such as the Shell, appear with initial capitals. Command­
key or option-key commands (such as Option-L) are always defined in the text 'With
capitals for clarity; nonetheless, the commands work with lower case letters.

Aids to understanding

Look for these visual cues throughout the manual:
A Warning Warnings like this indicate potential problems. •

6. Important Text set off in this manner presents important information. A

• Note: Text set off in this manner presents important points that should not be
overlooked.

+ Hints

Text set off in this manner in Helvetica type indicates pradiea! hints or bad<ground

information that need not be oerused during routine reference. +

For more information

A.PDATM provides a 'Wide range of teclutical products and documentation, from Apple and
other suppliers, for programmers and developers who work on Apple equipment (MPW is
distributed through A.PDA.) For information about A.PDA, contact

A.PDA
Apple Compucer, Inc.
20525 Mariani Avenue, Mailstop 33-G
Cupertino, CA 9501~29<)

1-800-282-A.PDA, or 1-800-282-2732
Fax: 408-562-3971
Telex: 171-576
Applelink: DEV.CHANNEI.S

If you plan to develop hardware or software products for sale through retail channels, you
can get valuable support from Apple Developer Programs. Write co
Apple Developer Progra.ms
Apple Computer, Inc.
20525 Mariani Avenue, Mail.stop 51-W
Cupertino, CA 9501~299

22 MPW 3.0 Reference

..
..

(

(

Chapter 1 System Overview

'nilS CHAPTER rs A GUIDE TO THE STRUCIURE OF THE MPW 3.0 SYSTEM and an
introduction to its components. If you are new to MPW, this chapcer will help vou co
get oriented. The MPW Sheil commands and the MPW tools are grouped accordtng
to task each tool or command is briefly introduced and cross-referenced. •

Content.s

The MPW Sheil 25
Window command.5 26
File-management command5 · 27
Project-management command.5 28
Editing commands 29
Strucrured commands 29
Other built-in commands 30

MPW scripts 31
MPW tools 32

MPW Assembler 33
MPW Pascal tools 33
MPW C compiler and C ++ translator 34
I.ink 34
Make 35
Resource compiler and decompiler 35
Commando 36
Projector 36
Conversion tools 37
Perfonnance-measurement tools 37

Applications 37
ResEdit 38

SADE and MacsBug 38
Special scripts 39
Examples 39

Sample program files 39
Command-language examples 40

Overview of MPW files and directories 40

23

¢.'- 'l
,'~ ·':

~<

("• /

The MPW Shell

The MPW Shell is an application that provides an integrated, window-based environment
for program editing, file manipulation, compiling, linking, and program execution. The
other parts of the Macintosh Programmer's Workshop 3.0-the language and resource
compilers, debuggers, Projector, Commando, and other tools described below (except
·independent applications such as ResEdit)-operate within the Shell environment. These
tools accept input from files and Shell windows, and direct output to them.

The Shell combines a command language, a text editor, the Commando user interface, and
the Projector project-management system. You can enter commands in any window, even
within an ordinary text file, or you can execute them by using menus and dialogs. (A
dialog may include one or more dJalog boxes, which may in rum contain text boxes,
check boxes, radio buttons, and so on.) For every MPW tool there is a Commando dialog
offering all parameters, functions, and options of the command language along with built·
in context-sensitive help.

The command language provides text~diting and program~xecution functions, including
parameters to prograrm, scripting (command file) capabilities, input/output redirection,
and strucrured commands. You run a tool by typing its name, and then a list of options
and affected files. You can link tools together in custom scripts, piping the output of one
to the input of another, thereby automating complex operations.

The window operations, menus, and menu items are easily customized r6 fit your specific
needs or preferences.

The MPW Shell integrates the following functional COmPonents:

• An editor for creating and lJXXiifying text files. The editor implements normal
Macintosh-style editing together with scriptable editing commands so that you can
program the Sheil to petfonn editing functions. (See Chapters 3, 4, and 6.)

• A command interpreter interprets and executes the commands you enter in a
window or read from a file. (See Chapter 5 and Pan ll.)

• The Commando user interface displays dialog boxes providing immediate, mou5e
access to all of MPW's many functions, features, and options, including on-line help.
(See Chapter 4 for an inttoducqon to the use of the Commando dialogs. Chapter 13 is
a guide to creating and editing your own Commando dialogs.)

CHAPTER 1 System Overview 25

• A command Interpreter interprets and executes the commands you enter in a
window or read from a file. (See Chapter 5 and Part II.)

• The Commando user Interface displays dialog boxes providing immediate, mouse
access to all of MPW's many functions, features, and options, including on-line help.
(See Chapter 4 for an introduction to the use of the Commando dialog.5. Chapter 13 is
a guide to creating and editing your own Commando dialogs.)

• Built-in commands, in addition to editing functions, include commands for
managing files without returning to the Finder, commands for manipulating windows,
processing variables, coaumnd control flow, and more. (See Chapter 5.)

• Projector, a project-management system. makes it easy to track the revision
history of even large projects with many contributors, with or without a network.
Projector helps you avoid confusing versions or getting out of synch with colleagues.
(See Chapter 7.)

• The MP'W tools, over 135 versatile programming tools and saipts designed to run
within the MPW environment. Every tool is equipped with a complete dialog interface
including context sensitive help. Part II of this reference is an alphabetically organized
guide to each of these tools and their many options.

Window commands

All work in MPW is done within windows. The following commands are available for
manipulating windows:

Close
Move Window
New
Open
Rotate Windows
Size Window
Stack Windows
Target
TtleW'mdows
Windows
Zoom Window

Close a window.
Move window to a specified location on screen.
Open a new window.

· Open a window.
Rotate the sequence of a tiled or stacked array of windows.
Set a windows dimensions.
Arr2nge open windows in a staggered diagonal array:
Make a window the target window.
Arnmge open windows in a tile pattern.
List windows.
Enlarge or reduce a selected window .

...
...

MPW 3.0 Reference

,,-~
'0'

(......
~' 'I

(,,\

./

0

File-management commands

The MPW Shell provides the following tools and built-in commands for manipulating files
and directories without having to exit to the Finder (see the MPW cool section lacer in this
chapter for ocher commands chat help to manage files):

Backup Back up folder mes.
Catenate Concatenate files.
Delete Delete files and directories.
Directory Set the default directory.
Duplicate Duplicate files and directories.
Eject Eject volumes.
Equal Compare mes and directories.
Erase Initialize volumes.
Exists Find out if a file or di.rectory exists.
Files Llst files and directories.

Mount volumes.
Move files and directories.

Mount
Move
Newer
NewFolder
Rename
Save
SetFile
Sort
Urumunt
Volumes
Which

Compare two files to see wh.ich was roodified most recently.
Create a directory.
Rename files and directories.
Save files in edit windows.
Set file attributes.
Sort or merge files.
Unmount volumes.
Llst trounced volumes.
Determine which file (pathname) the Shell will execute.

'C

...

CrlAPTER 1 System Overview ?::

Project-management commands

Project0r provides the following built-in commands and scripts for managing projects and
tracking revisions. See Chapter 7 for a complete explanation of Projector.

Checkln Add or rerum files to a project _
Checkout Check out a file for reading only or for modifadOn. "
CheckOutDir Set location of Chec.kOut directory. - -
CompareRevisions Compare two revisions of a ftle in a project
DeleteRevisions Delete selected revisions and branches of the named files.
DeleteNames Delete user-defined symbolic names.
MergeBranch Merge a branch revision onto the trunk
ModifyReadOnly Change a file checked out as read-0nly to allow modification.
MountProject Add the pathname of a project to the root project list.
NameRevisions Name a set of revisions for the flles of a project.
NewProject Create a new project directory.
OrphanFile Orphan a file from a project
Project Set or write the current project
Projectinfo List current state of all files within a project
TransferCKID Transfer resource information in one Projector file to another.
UnmountProject Remove the pathname of a project from the root project list

c

28 MPW 3.0 Reference

.. -

,{-4,
~'

()

Editing commands

Besides the Macint~h's usual mouse-and-menu editing capabilities, a number of. built-in
editing command-; are provided. You can use these commands both interactively and in
scripts. Editing commands feature the use of rcgular expressions, a set of special
operators that fonm a powerful language for defining text patterns. Other useful
comman~ for editing (such as Matchlt and Translate) are listed later in this chapter under
•MPW tools: See •pattern Matching' in Chapter 6 for a discussion of regular expressions.

Adjust Adjust lines.
Align Align text to left margin.
Clear Delete the selection.
Copy Copy the selection to the Clipboard. .
Cut Copy the selection to the Clipboard and delete the selection.
Find Find and select a text paaem.
Format Specify format of a file (font, l'3bs, font size).
Mark Marie and name a text selection.
Markers List marked selections.
Paste Replace the selection with contents of the Clipboard.
Position list the position of selections in a window.
Replace Replace the selection.
Revert Revert to saved file.
Undo Undo last edit
Unmark Remove a marker from· its text selection.

Structured comma.ads

The Shell also provides a number of built-in structured commands. Used mainly in scripts,
these commands provide conditional execution and looping capabilities:

Begin ••• End
Break
Continue
Exit
For ...
If...
Loop ... End

Group comman~.
Break from For or Loop.
Continue with next iteration of For or Loop.
Exit from a script
Repeat commands once per parameter.
Conditional command execution.
Repeat commands until Break .

..
..

CHAmR 1 System Overview 29

Other built-in commands

The MPW Shell also provides a number of other predefined commands:

AddMenu
Alert
Alias
Beep
Confirm
Date
DeleteMenu
Echo
Evaluate
Execute
Export
Flush
Help
Parameters
Quit
Quote
Request
Set
Shift
ShutDown
Unalias
Unexport
Unset

Add menu item.
Display alert box.
Defme alternate command names.
Generate tones.
Display confirmation dialog box.
Write the date and time.
Delete a u.5er-defmed menu or item.
Echo parameters.
Evaluate an expression.
Execute a script without affecting variable scope.
Make variables available to progr:um and scripts.
Clear the command cache.
Display surrumry infonn:ation.
Identify parameters.
Quit MPW.
Echo parameters, quoting if needed.
Request text from a dialog box.
Define and write Shell variables.
Renumber script positional parameters.
Shut down or reboot machine.
Remove aliases.
Remove variable definition from export list
Remove Shell variables.

30 MPW 3.0 Reference

c

MPW scripts

The menu commands available in the Directory and Build menus we some of these scripts:

BuildCommands Show build commands.
BuildMenu Create the Build menu.
BuildProgram Build the specified program.
CCvt Convert pre-3.0 C source to 3.0-compatibie source.
CompareFiles Compare two files side by side, pinpointing any differences.
CompareRevisions Identify and compare project revisions.
CPlus Compile C++ programs.
CreateMake Create a simple makefile.
DirectoryMenu Create the Directory menu.
Dolt Highlight and execute a series of commands.
Line Find specified line in file.
MergeBranch Merge a branch file back into the trunk of a project
OrphanFile Orphan a ftle from a project
SetDirectory Set current directory (from Directory menu).
TransferCK.ID Transfer resource i.riformation in one Projector file to another.

0
CHAPTER 1 System Overview 31

MPW tools

MPW tools are progr.um that run within the Shell environment With the exception of the
language compilers, the tools listed here are included with the Macimosh Programmer's
Workshop 3.0; several are described in more detail in the sections that follow.

Asm
Backup
c
Canon
CFront
Choose
Compare
Count
DeRez
DumpCode
Dump File
DumpObj
En tab
File Div
GetErrorText
GetFileName
GetListitem
Lib
Link
Make
MakeErrorFile
Match It
Pascal
Pas Mat
Pas Ref
PerformReport
Print
ProcNames
Res Equal
Rez
RezDet

MC68<JOO..family Macro Assembler (available as a separate product).
Back up folder files.
C compiler (available as a separate product).
Canoniol spelling tool.
Translator for C++.
Choose or list volumes or printers (saipcable chooser).
Compare text ftles.
Count lines and characters.
Resource decompiler.
Dump code resources.
Display contents of an arbitrary ftle as hex and ASCII.
Dump object files.
Convert runs of spaces to tibs.
Divide a file into several smaller files.
Display text for system em>r numbers.
Display a standard file dialog box.
Present file selection list in dialog box.
Combine object files into a library ftle.
Link an application, tool, or resource.
Program maintenance tool.
Create em>r message textfile.
Match paired language delimiters.
Pascal compiler (available as a separate product).
Pascal program formatter (part of MPW Pasol).
Pascal cross-referencer (part of MPW Pascal).
Generate a report analyzing program performance.
Print text files.
Display Pascal procedure and functions names (part of MPW Pascal).
Compm files on a resource-by-resource bas~.
Resource compiler.
Detect inconsistencies in resources.

32 MPW 3.0 Reference

,(·~J
·'!: ·:•.

,_,l

(~\ I

j

(~)

Search files for a pattern. Search
SetPrivilege
SetVersion
Sort
Translate
Where ls

Set access privileges to folders on file server.
Maintain version and revision numbers.
Sort files.
Convert one or more characters.
Locate files buried deep in a directory tree.

MPW Assembler

The Assembler is provided as a separate produa, MPW 3.0 Assembler, which includes the
following:

• Translation of MC68000, MC68010, MC68020, and MC68030 assembly-language
programs into object code

• Support for MC68881 and MC68882 floating-point instructions and MC68851 memory
management instructions

• Powerful macro facilities, code and data· modules, and entry points, local labels, and
(optional) optimized instruction selection

• Assembly-language interfaces to Inside Macintosh routines

• Sample programs

MPW Pascal tools

The Pasol system is provided as a separate product, MPW 3.0 Pascal, which includes the
following:

• Paso! compiler

• Paso! cro.reference program (PasRef)

• Pasa1 source file format program (PasMat)

• Pasal procedure and name program (ProcNames)
• Pasal runtime library

• Pascal interfaces to the Insitla Macintosh routines

• Sample progr:um

Macintosh Programmer's Workshop 3.0 Pascal is an improved version of MPW 2.0 Pascal.
The Pascal tools PasReC, PasMat, ProcNames, and the Pascal compiler are also
documented in Part II of this reference.

CHAPTER 1 System Overview 33

MPW C compiler and C++ tran.slator

The C compiler and C++ translator are provided as separate products. MPW 3.0 C includes
the following:

• C compiler

• Standard C Library

• C interfaces to the Inside Macintosh libraries

• Sample programs in MPW C

The C Compiler implements the full C language as defined in The C Programming
language, by Brian Kernighan and Dennis Ritchie. The usual extensions to this definition
provide enumerated types and structure assignment, parameters, and function results. In
addition, Apple extensions provide SANE numerics and interfaces to Pascal functions and
Macintosh traps. The compiler supports many ANSI C features, such as function
prototypes and strict pointer compatibility. Most Standard C Llbrary functions, including
character and string processing, meroory allocation, and formatted input/output, are also
provided.

MPW 3.0 C++ includes the following:

• C++ translator (CFront)

• C ++ Stream.5 Llbrary

• Sample program.5 in MPW C++

The CFront translator from AT&T implements the full C++ language as defined in The C++
Programming language, by Bjame Stroustroup. The current version, CFront 2.0, also
implements multiple inheritance and other extensions described in the paper "Evolution
of C++ from 1985 to 1987" by Bjame Stroustroup. In addition to the C extensions listed
in that paper, C++ also contains extensions that allow C++ to be used with MacApp.

Ilnk

The linker (Llnk) combines object code files into executable program.5, driver resources,
or stand-alone code resources. Llnk includes, by default, only the code and data modules
that are referenced. Lln.k replaces the code segments in an existing resource file, without
disturbing other resources in the file. An option directs Llnk to produce a link map as a
text file. Other options allow the creation of an object module cross-reference file, a file
containing a list of all the unreferenced modules, and a symbolic debugger file . ..

..

34 MPW 3.0 Reference

A separate tooL Lib, provides library manipulation. Llnking is performed automatically
for simple programs constructed by wing the Build menu. Chapter 8 describes the use of
Llnk in building a program. See Chapter 10 for more details on the operation of the linker.

Make

The Make tool simplifies software construction and maintenance. Its input is a list of
dependencies between files and instructions for building each of the files. Make generates
commands co build ·specified t:a.rget files, rebuilding only those components that are ouc­
of-date with respea to their dependencies. You can generate makefiles automatically
from commands in the Build menu. To use Make with more elaborate programs, see
Ch.apter 9.

Throughout this reference examples demnstrating Make or makefiles assume that you are
using Apple's MPW languages. Beouse Make as.sumes certain default rules that apply only
to Apple's MPW languages, you may need to make modifications for non-Apple
programming languages. Please consult your compilers documentation for instructions on
how to modify these default rules.

Resource compiler and decompiler

The resource compiler (Rez) reads a textual description of a resource and convens it into
a srandard Macintosh resource file. The resource decompiler (DeRez) convens resources
into a textual representation that can be edited in the Shell, and recompiled with Rez. You
can use DeRez to CI'C3te resource compiler input from any existing resource files. Rez and
DeRez need templates (type declarations) to define resource types. Definitions of the
standard Macintosh resource types ('MENU', 'STRt'~ 'ICON', and so on) are provided
in two commented text files, Types.r and SysTypes.r. Another tool, RezDet, checks
resource files for consistency (see Part IO. Rez and DeRez are documented in Chapter 11.

Rez's capabilities have been ~nded in MPW 3.0. Two new functions let you delete
resources or change resource types from within Rez. The new syntax element Label has
been supplied to suppon more complex resources, such as th~e found in color
QuickDraw.

CHAPTER 1 System Overview 35

Commando

The Corrunando tool implements the Corrunando dialog user interface for all MPW tools
and commands. Obviously, this is a great convenience for dealing with tool5 offering
many interdependent options. Newcomers to MPW will appreciate Commando's instant
assistance in building complex corrunand lines. The dialogs indude a Help frame with
infonnation on each selected data field or control. You can also use Commando to create
specialized dialogs for your own MPW tools and scripts.

Commando looks in a tool's or script's resowce fork for a resowte of the type ' cmdo • .

Commando then loads the resource, builds a dialog, handles events, and passes the
resulting command line back to the Shell for exeOJcion. The basics of using Corrunando
dialogs are described in Chapter 4. Dialogs utilizing specialized types of dialog boxes are
presented with the tools they support in Part II. Chapter 13 tel.ls you how to create a
Commando interface for your own tools and scripts.

Projector

Projector is an easy-to-use project-management system that can be customized to fit any
working style, from the single programmer to the large necworked engineering team Use

·Projector's file-locking feature to control changes to master files, track a project's
revision history, and generally keep your projects organized.

Briefly, here's how it works: You begin a work period by checking out a file from
Projector for either review or m:xl.ification. Although many people can review a file, only
one person at a time can modify a file. When you've fm.ished your work, you check any
modified files back in with Projector, along with a note detailing your modifications.
Your name, your notes, and the date are automatically filed in Projector's revision history
for that project Various branches of a file conraining different modifications may be
lacer merged into one master file.

Projector's co~ (listed in the section •project-Management Commands" earlier in
this chapter) are built into the Shell. Chapter 7 is a derailed account of Projector .

...
..

MPW 3.0 Reference

c

Conversion tools

Canon is a tool for regularizing the spelling and capitalization of identifiers in source files
moved from other systerm. (In MPW languages, all characters are significant rather than
just the first eight as in the Lisa Wede.shop. ill r., c-..sr. is al50 imponan-.)

The file Canon.diet contains the correct spelling and capitalization for Inside Macintosh
ROM routines. C programmers, in particular, will fmd Canon and Canon.diet useful.

Entab is a useful tool for converting space characters and tabs to conform to MPW editor
or other editor conventions.

You can look up these conversion tools in Pa.rt II.

Performance-measurement tools

The performance-measurement tools enable you to pinpoint where your code is spending
time. These libraries allow you to sample the program counter, produce a file of output
data, and analyze that data with a report generator. Advanced programmers will find these
tools useful for streamlining the execution of their code. Chapter 14 is devoted to this
subject. Examples of the actual calls and procedures are presented in MPW C and MPW
Pascal.

Applications

AppliC3tiom are stand-a.lone prograrm that can execute outside the Shell environment
SADE and ResEdit are both stand-alone prograrm provided with MPW. It is assumed that
you alre2dy have the .Fonr/DA Mover, which is distributed on the syscem tools and system
imtallation disks. Ally application can be executed from the MPW Shell. -

..
•

CHAPTER 1 System Oveiview 37

Res Edit

ResEdit is an interactive, graphically based editor for creating, editing, and copying
resources. An interface like that in the MacDraw application is provided to help you
design your own fonts. ResEdit includes a set of routines that make it possible to write
your own add-on resource editors for ResEdit See the separate ResEdit Reference for a
thorough explanation of ResEdit

SADE and MacsBug

The new Symbolic Application Debugging Environment (SADE) is a symbolic debugger
with an inter.ictive graphic interface like that of the MPW Shell. SADE is an application
that runs under MultiFinder and can be used to debug other applicatiom and MPW tools.
You can rmnitor the execution of your program simultmeously at the processor level and
the symbolic program source level. This first release of SADE includes

• source display

• variable display according to type

• display of Macintosh system structure

Ii source !eve! breaks and stepping

• programmable, extensible command language

SADE is included with MPW 3.0 but documented separately in the SADE Reference. See
Appendix F of this reference for the object file format

The familiar MacsBug has been improved for MPW 3.0, and is also documented in a
separate volume, Mac.sBug Referenca.

MacsBug fully supports the MC68X>O, MC68020, and MC68o30 processors, as well as the
MC68881, MC68881, and MC68851 coprocessors. MacsBug resides in RAM together with
your program. MacsBug allows you to examine mem:>ry, trace through a program, or set up
break conditiom and execute a program until they occur. MacsBug runs on all Macintosh
computers with 12SK or larger ROMs, including the Macintosh SE and Macintosh II. See
the MacsBug Reference for instructions on using MacsBug .

..
..

38 MPW 3.0 Reference

...• ,

c

Special scripts

Several special command scripts are provided. They are essential f'or operation of the
MPW Shell. These text files conr.ain commands that are read by the Shell at starrup <lnd

. shutdown:

• The Startup file is a command script that calls another script, UserStartUp, that is run
each time you start the MPW Shell. You on use UserStartUp to customize MPW. The
Startup file n9W executes UserStartup and then any file named UserStartup• name in
the directory that contaim the Shell. (Press Option-8 to obtain the • symbol.) If you
have a customized UserStartup file, you may want to personalize it (for example,
UserStartup•Tom) so that when you install MPW 3.0 your customized file won't be
overwritten. The Startup file is discussed in detail in Chapter 5.

• The Suspend and Resume files are scripts that preserve the state of the Shell
environment while a stand-alone application is executing. 1i1e Quit file saves the state
of the Shell envirorunent when you exit to the rmder.

Examples

In addition to the examples excerpted in this reference work, you'll find numerous
complete examples in the Examples folder included on the MPW distribution disks. The
examples are written in MPW C, MPW Pascal, and MPW Assembler. Examples illustrating
the use of Projector are also included in this folder. If you are using a different compiler
sold with MPW 3.0, check the compiler's documentation and distribution disks for
specific versions of these sample programs. See Appendix A for the location of the MPW
3.0 Examples folder.

Sample progrmi files

Source files are provided for sample MPW tools and desk accessories. Versions of these
sample programs are included in MPW Assembler, MPW C, and MPW Pasal. They can be
found in the Examples folder. The Examples folder also contaim instruction files and
makefiles for building the sample progmms. Some of these examples are referred to in
Chapter 2, •Building A Program: A4 Introduction.•

~ote that these sample files are part of rhe respective MPW C, MPW Pascal, and MPW
Assembler produc.s.

CHAPTER 1 System Overview 39

Command-language examples

Examples of the use of the MPW command language are provided in the folder Examples.
Among these are
• addmenu commands for creating user-defined menu items

• a list of UNIX-oriented aliases

• suggestions for modifying the Startup script

To learn more about these examples, open the file Instructions in the Examples folder.
Additional examples are included with each of the MPW commands in Part II of this
reference. The command language is documented in Chapter 5.

Overview of MPW files and directories

Appendix A contains a complete list of all of the Macinto.5h Workshop 3.0 files. It also
describes the recommended setup of files on a hard disk. Figure 1-1 shows the MPW folder
layout Folders for the Pascal, C, and Assembler systems are also shown, along with folders
for your applications and projects.

Setup of MPW folders and files

=o a
15 ittms

r:IMPW Shtll

[lj Stirtup

(E Usff'Stv"tup

(Esusp.nc1
ljJRtN'M

000utt
[!) Y'orkshfft

33 ,959K in d;sk

CJ lntff'1'~c.s

CJLibrvi.s

00 MP\/ .Htlp

0 SysErrs.Err

CJ Tools

CJ Scripts

Be sure to see "Installing the System" in €hapter 2 .
..

40 MPW 3.0 Reference

CJEx~mplu

LJROM M~ps

,,,'''"\ ,.

(- -

--

(

Chapter 2 Getting Started

THlS CHAmR EXPWNS HOW TO START USING MACINTOSH PROGRAMMER'S WORKSHOP
3.0. Even if you are familiar with MPW 2.0, it's a good idea to read the next
section that describes the new automated instillation procedure. (You might n.:n
into some pathname confli~ if you simply drag files from the 3.5-inch disk to
your hard disk.) This chapter also contains the section "Using MPW With
MultiF'Ulder," which explains how to use MPW while running a compiler in che
background You'll also find a section with guidelines for sharing MPW from .1 fiie
server.

Basic rules of operation are introduced here and in Chapters 3 and 4. If you are
new to MPW, the tutorial •Building a Program: . .\n Introdu~Jon, n lacer in this
chapter, will introduce you to the simplicity of using this environment •

Content.r

Installing the system 43
Using MPW with MultiFinder 44
Using MPW on a file server 46
Starting up 46
Selecting commands from menus 48
Building a program: an introduction 49

The sample progrum 49
Two easy ste~ 50

Building a new program 54

• ..

-tl

'
·.(.· ... ~
''

~J

Installing the system

Macintosh Programmer's Workshop 3.0 is shipped on five 800K disks: MPWl, MPW2,
MPW3, MPW4, and the MPW Installation Disi:. (M_Dr,1/,._~~ibL, MPW Pa.sea!, i}fPW' C, anci
MPW C++ are separate products.)

Before attempting to in.stall MPW, please check the section 'Hardware.and System
Requirements" in the Incroduction of this book.

Appendix A, "Macintosh Programmer's Workshop Files,• contains an annotated list of
MPW files and sho"WS the recommended arrangement of files on a hard disk. Pathname
rules for the Hierarchic.i File System CID'S) are explained later in this chapter. Al.so see
Figure 1-1 at r.he end of Chapter 1 for a suggested arrangement of MPW folders and files.

A complete MPW 3.0 system, including all three MPW languages, requires over 6 meglbytes
of disk space.

MPW 3.0 includes an Installer script on the MPW Installation D~k, ·for systematically
installing the complete MPW system from the other four disks so thac everything is
located in the folders that MPW expects. You need at least 6 megabyteS of space on your
HFS hard disk to complete the full installation. However, the Installer does give you the
option of stopping the installation before all of the tools on disks MPW3 and MPW4 have
been installed.

A Wami.ag Don't simply drag r.he MPW Shell or any other files from the Installer
disk to your hard disk. The files on the Installer disk are used for
automatic installation only, and thereafter you'll discard them.

To automatically install MPW 3.0, fol.low these ste~:

1. Insert the MPW Installer disk in the 3.5-inch disk drive.

2. Drag the Installation folder to your hard disk. If you have multiple hard disks, drag the
folder to the hard disk on which you wane MPW to reside.

3. Open the folder and double-dick the icon labeled 'MPW Installer:

4. The ft13t Imtaller dialog box appears:

..
..

CHAPTER 2 Getting Star--ed

This Is the Installation procedure for MPW 3.0.
"lntemar:MPW:" will be Installed. Insert the first
MPW distribution disk in driue 1 and click OK.

t OK J (Cane-er]

5. Click OK and insert the distribution disks in any order. The Installer program creares a
folder named MPW at the COO(directory of the volume in which the.Installer folder is
located.

6. When the installation is complete, or when you have clicked a Cancel button, the
Installer quits the Shell. Now throw away the Installation folder. You are left with MPW
in a folder at the root directory, ready to go.

The order in which the disks are copied doesn't matter, and it's okay to insert the same
disk more than once. You may also ch~e to stop by clicking the No button before
you've copied all the distribution disks.

If you decide to click the Cancel button for any reason, the MPW Shell Worksheet
appears. (In that case, after quitting MPW, don't save the Worksheet ftle that MS created
during the installation. It's better to start all over again.)

A Warning Don't use apostrophes or any other special chmc!ers in the hard disk
volume name. This would cause the Installer to fail . .t.

Using MPW with MultiFinder

It would be very convenient to be able to work in the Shell or editor while waiting for a
compiler to run in the background. But MultiFmder lets you switch to diffexent
applications only while running a tool; you cannot normally work in the Shell or editor
while running a tool in the background

However, you can obtain this virtual multitasking capability by configuring a second
MPW Shell. You work in the second Shell while the first maintains the background
operation of any tool or script Here is a "JllY to set up the second MPW Shell:

44 MPW 3.0 Reference

Cre.ate a folder called Concurrent MPW and put these files in it:

• MPW Shell
Be sure to rename the second MPW Shell in this directory to something like
•concurrent Shell" or perhaps •MPw Editing Shell" so that you can quickly identify
which Shell you ~currently ~g.

• Startup

• UserStutup
This file isn't crucial, but without the variables, aliases, and menus defined in your
UserStartup, the Concurrent Shell would not be configured to your nonnal working
environment.

• MPW.Hclp
Alternatively, you could keep just one copy of MPW.He!p in your main MPW directory
and use an alias in your Edit MPW. For example: alias help 'help .f HD:MPW:MPW.help1•

• SysEr:rs.Err
If you get an enor from MPW and don't have a copy of this file, you'll see an enor
message such as:

t OS error -43 (Error messaqe file not available)

• Quit

You can now use this second MPW Shell system while tools are running concurrently in the
first MPW Shell. This configuration is only a suggestion. You could simplify it a bit,as
indicated in the preceding notes. Also, the memory si1.e in the second Shell may be
decreased to ;12K if it is used only for editing and small tools.

• Note: Although you cannot roove Shell windo'WS or pull down menus while a tool is
running, remember that you can swicch applications by clicking the appliction icon in
the menu bar.

The same file an.not be opened for editing by both Shells at the same time.

It's a good idC2 to gene1'2te a sound (using Beep or other tools) at the end of scripts so
that you know when your background operations are completed.

..
•

CHAPTER 2 Getting Started 45

Using MPW on a file server

To set up MPW in a shared environment, install the MPW system on the file server. The
following files must reside on each workstation that shares the MPW system

• MPWShdl

• Startup

• UscrStartup
Alternatively, you can change Startup to execute a UserStirtup on the file server.

• MPW.Help
Alternatively, you can keep just one copy of MPW.Help on the file server by setting an
alias in your Startup file. For example:
alias help 'help -f SharedServer:MPW:MPW.Help'

• SysEtr!.Etr
If you get an error from MPW and don't have a copy of this file, you'll see an error
message such as:

t OS error -43 (Error messaqe file not available)

• Suspend/Resume
You need these files only if you are not running MultiFinder.

• Quit

Starting up

Stirt up MPW just as you would start any standard Macintosh application.

• Note: A srm.ll RAM cache (perhaps 32K) is useful when running MPW 3.0. You may use
larger caches if you have plenty of meroory. However, some functions in MPW 3.0 may
run rmre slowly with large RAM caches. Use of MPW with Switcher ~ not
recommended; use MultiFinder.

..

MPW 3.0 Reference

A

/(

'"-~ -"{

From the Flnder, select and open the MPW Shell icon. The Worksheet window (shown in
Figure 2-1) will appear with irs full pathname in the title bar (for example,
•HD:MPW:Worksheer"). This window has no close box and is always present on the
screen; otherwise it's just like any ocher window. The Worksheet is your home base. You'll
use ir rJ'l.o.5t often to type commands and see the rt:rurn output You can also write and
compile sections of code or keep a diary-anything in the Worksheet can be saved to any
window or ftle.

You can also start MPW by double-clicking any MPW document or tool.

• Figure 2·1 Worksheet window

Man Window Project Directory Build
HD:MPW:WortcshHt

The menus aV2ilable from the Shell appear in the menu bar at the top of the screen. An
expbn::itlon cl each menu is provided in Chapter 3. You can easily add your own menu
names. (See Chapter 8.)

A statm panel 2t the window's lower-left comer shows the name of the command that's
currently executing, or simply •MPw Shell• when you're not exci:uting a command. A
mouse click on the status panel is equivalent to pressing the Enter key.

When you first start the Macintosh Programmer's Workshop, a script called Starrup
executes. The Starrup file defines several variables and command aliases (alternative
command names); this file is further described in Chapter 5 . ..

CHAPTER 2 Getting Started 4i

6. Important The Srarrup file must be in the same directory as the MPW Sheil. See
Figure 1-1, "Serup of MPW folders and files," at the end of Chapter 1
for an illustration of how your root MPW folder should appear. ~

Sdecting commands from menus
.

In MPW, comrnand.5 may be built-in commands, scripts, tools, or applications, as
explained in Chapter 1.

Several of the built-in commands can be executed by using the File, Edit, Marie, and
Window menus. The Project, Directory, and Build menus are optional, and are nonnally
installed by UserStartup scripts. Some items in these menus execute scripts (see Chapter 3
for details about menus). These scripts must be located in a folder with a path in the
(Commands} variable.

You can add your own menu items ro the File, Edit, Find, Directory, and Build menus. By
using the Add.Menu command you can even add your own menus. Each user-defined menu
item specifies a list of MPW commands that are executed when the menu item is selected.
See the file Add.Menu in the Examples folder for a number of ideas for user-defined menus.

• Figure 2·2 MPW menu bar with MuitiFinder

• File Edit Find Mert Window Project Directory Build I l

...

48 MPW 3.0 Reference

Building a program: an introduction

Tiiis section takes you step by step through the process of building a sample program
You'll find that the Build menu and the Conunando dialog boxes make the leamlng process
intuitive and comfortable. Even if you've never used MPW before, you can immediately
use the Build menus to build programs.

MPW's automated Build menu lets you assemble, compile, and link simple programs
without studying the command language, the numerous compiler and I.inker options, or
coundes.5 other details. You cui use the Build menu to build applications, stand-alone
code resources, desk accessories, and tools written in MPW Assembly language, MPW C.
MPW C++, MPW Pase.a~ and Rez, or in a combination of these languages. You can include
resource specifications when building programs with these menus.

The sample programs

In this introduction, three assembly-language programs included with MPW Assembler are
suggested as examples:

• Sample: the •Inside Macintosh" sample application

• Count: an MPW tool that counts cbatacters and lines in a file (see Part II)

• Memory: a sample desk accessory that displays the memory available in the
application and system hea~ and on the boot disk

Similar progrun examples are included with MPW C and MPW Pascal. If you are primarily
interested in programming in one of these languages, be sure to read, in the corresponding
language reference, the section on the example programs. If you are using a different (non­
Apple) compiler, be sure to check its documentation for information on specific language
versions of these examples.

You an routinely rebuild imre complex programs by seleaing a single menu item. There is
a simodl tramition from the simple build.$ to the more complex ones. (See Chapter 8 for
information on how to rmdify the Build menu and the makeftle that it creates.)

CHAPTER 2 Getting Started i9

The source ftleS for each of these three assembly-language examples are in the
Examples:AExamples folder that is included with the MPW Assembler distribution disk.5.
For example, the source for Count consists of the ftles Counta and FScubs.a. A makefile
that contains the commands for building all of the examples is also provided in the same
folder. Instruction files are aJ.sc provided on the MPW disks for each Language. !f you m:
new ro MPW, we recommend that you start with the tutorial that follows rather than with
the Inuuctions file on the disks. At the conclusion of this tutorial you will be referred back
to the disk instructions.

Two easy steps

. You can build each of the example program; in two steps, using the Directory and Build
menus:

1. Set the current directory.

2. Build the program.

Both of these steps are explainCd next. You can use this section to take MPW on a test
drive.

t. Set the current dJtectory.

Open the Directory menu. The upper half of the menu contains the commands ro show the
current direaory and to change it ro an arbitrary directory. (See Figure 2·3.) The lower half
of the menu lists frequently used directories.

• Figure 2-3

Show Directory
Set Dlrectarg ...

Directory menu

IUil lllll I.I.iii

HD2:MPW:b plet:8E11ample1:
HD2:MPW:£Hrnple1:C£11amole1:
HD2:MPW:b :eP1usE11ample1:
HD2:MPW:Example1:£11ample1:
HD2:MPW:Eaample1:P[Hample1:
HD2:MPW:Eaemple1:Projectar Eaamples:
H02:MPW:

..
..

50 MPW 3.0 Reference

,r'"~~"'i
):; I

\.___,/

C;

()

Select Show Oi.reaory to find out what your current directory is. You'll see the alen shown
in Figwe 2-4.

• Flg':lte 2-4 Show Oireaory alen

lb• defeutt dlrHtorg I•

t OIC I

Click OK to remove the alert You're going to build the assembly-language program
Sample, so you'll need to set the current directory to the direaory that contains the
assembly-language examples. Now open the Oireaory menu again and seiea "AExamples.n
Selecting "A.Examples• from the Oi.reaory menu runs commands that set the current
directory. You can check to see if the current direaory has been correctly reset by
selecting the Show Directory menu item again. (The Set Di.reaory ... menu item is used to
add other directories to the list at the bottom of the Oi.reaory menu. This menu item is
explained in "Building a New Program• later in this chapter.)

2. Build the program.

Now open the Build menu, shown in Figure 2-5, and seiea any one of the four Build menu
items.

• Figure 2-5 Build menu

Creeco Build Cammend1 ...

IUlld- XI
FUR IUUd-
Slaom htld Cammend•­
Slaam Fun lulld commend1 •••

...
..

CHAPTER 2 Getting Scarr..ed 51

Each Build item builds your specified program in a slightly different way:

Build The program is built automatically, but only files that have
been roodified since you last built the program will be
process-ed. Use this item to save time. The Command-key
equivalent is Command-B.

Full Build The program is completely built, ignoring any object files or
intermediate files that may exist from a previous build.

Show Build The commands needed to build the program (using just those
Commanm files affected by modifications since the last build) are

displayed on the worksheet, but not executed. You can then
select any or all of the commands-or roodilY them-and
then press Enter to execute them

Show Full Build All the commands needed to completely rebuild the program
Command,, (whether axxiified since the last build or not) are displayed

on the worksheet, but not executed. ~ is a convenient way
to see ail of the commwd.s used in building the program
you've selected.

See "Build Menu• in Chapter 3 for more information on Build menu items. When selected,
each Build item first displays a dialog box like that in Figure 2-6, requesting the name of
your program

For this tutorial, select Full Build

• Figure 2-6 Program Name dialog box

Program Name?

I OK I Cancel

When the Program Name dialog box appears, type the name of the program you want to
build (in this ose, type -Sample•) and then click the OK button. $e sure that you type
the name Sample and not Sample.a. Since you have alre3dy set the directory to
A.Examples, you don't need to indicate that you want to build the assembly-language
version of Sample. If you give Sample.a as the program name, the Build script will
attempt to build the source file.)

MPW 3.0 Reference

(.. '

The Worksheet window now becomes the frontmost window. The staru.s panel in the
lower-left comer flashes the name of e:ach operation as it is perfonned by MPW. Each of
the MPW commands used by the Full Build script appears on the worksheet as it is
executed. When the build has finished, your worksheet should look like Figure 2-7.

• Figure 2-7 Finished Sample build

• fll• Edit Find Window M11rt Dlr•c1ory Bulld

--------- HD :MPW:Wor1cshHt

• 2:21:04 l'PI - .. I Id •f S-le.
• 2:21:04 l'PI - ~lo,izl"9 ,,. -cl•.
• 2:21:11 "" - & tl"9 l>Wlld -·

Ila 5-1• S-1• ... ,... ,_
~, .. S..01•···· ... S..01•

• 2:22:09 "" - 0-.. ,_,.

m.

/''':
I! i ,,
I !
i ~

.;q ,,
I ~

To check your work, press Enter. The Shell then executes the newiy built program,
displaying the text-edit window that Sample creates (desaibed at the beginning of Inside
Macintosh). When you quit the Sample program, you an: returned to the Sheil.

Use the same procedure to build the two other examples in the Examples:A.Uamples
folder: the tool Count and the desk acces.sory Meroory. For guidance in using these
examples, consult the file Instructions in the folder AExamples.

In general, to run a newiy built program, select its nam:" (and, in the case of a tool, any
parameters) and press Enter. If the program you have built is an applicition, your open
windows, user-defined menus, and other starus information will be saved before the
program is run. When you quit the application you an: rerumed directly to MPW with your
previously open windows and menus still displayed. If the program is an MPW tool, it is
run without leaving MPW (be sure to specify any required para.meters and options).

• Note: When MultiFi.nder is running, the application is simply launched in another
partition, and the MPW Shell does not exit or go through the Suspend/Resume
process.

..

CHAPTER 2 Getting Started ;3

When you build a desk ac~ory by using Build or Full Build, the last line of the Build
transaipt is a command that will run the Fonr/DA Mover to install the desk accessory in
the System file. (Make sure there is enough mem:>ry to launch Fonr/DA Mover.) After this
installation is complete, the desk accessory will appear in the Apple menu. If your
Font/DA Mover isn't in the directory specified by the {Commands} Shell variable, then you
should use either the Finder, the MPW Duplicate command, or the MPW Move command,
to move it there.

If you're curious about the functioning of any of the Build commands, see Chapter 8 for
more background on the Build process.

Building a new program

The Directory and Build menus are convenient to use when working with your existing
progr.um. You use slightly different steps for creating new progr.um:

1. Set the current directory by using the Directory ·menu.

2. Type your program.

3. Select Create Build Commands from the Build menu.

4. Select a build item from the Build menu.

Each of these steps is explained next

1. Set the directory.

The first step in creating a new program is to set the directory where you want your new
program to reside. You can select one of the cilrettories that appears in the Directory
menu, or you can select another directory by using the Set Ditectory menu item. When you
selea Set Directory from the Directory menu, a standard file dialog box, like that in Figure
2-8, appears.

..
..

MPW 3.0 Reference

' c

• Figure 2-3 Set Directery ... standard file dialog box

(Select Current Directory:)

lei MPWI

0 lnterfeCH
0 LlbrariH
CMPW Oema
CRGMMeos
Q scrtots
Q Tool•

c HL2

El•< t
Dr1ue

Open

(Dlnctarg J
[Cancel]

Select the directory you need. After highlighting the directory you want, click Directery or
Selea Current Directory: at the top of the dialog box. The new directory will then l:e
added to the list of directories on the Directery menu.

2. Type your program.

The next step is to create the source files for your progI2m. Select New in the File menu.
(Remember that ~mbly-language source filenames should end with •.a•, C ftlenames
with •.c•, C++ ftlenames with •.cp•, Pasal filenames with •.p•, and Rez filenames with
• .r" .) An empty window now appea.r.s and you are ready to type your program. Enjoy!

3. Select Cre2te Build Commands from the Build menu.

When you've finished typing in your program, select Create Build Corrumnds from the
Build menu. You'll see the dialog box shown in Figure 2-9.

..

CHAPTER 2 Getting Started 55

• Figure 2·9 CreateMake dialog box

.-CreeteMatca Options

Prognm Name I MyPrograrr4 I [Source Flies ...)

rPragram Type----. Creator I ?11? I
l ® flppllcetlon I Type j 11'1 I
i OToot i M•tn Entr1,1 Po4nt I i I 0 DHlc Accessory I RHource Type f J j 0 Coda Resource j

O Symbolic debugger Information

f Command Lin• -••9!Mlle ,...,,,...._ I
.-Help (Cancel)
CrNte • .-,1' ,..mt f• Wl1ftlt • .,_llNttM, tMI, _. ._
__,,. l1w l'Mbfllt. , .. - h 11.rilii-. (C r•GteMnk• J

Type in the progr.un's name (without ·.a•, •.c•, •.cp•, or •.p• suffixes) and click a radio
button to indicate whether you want to create an application, stand-alone code resource,
desk acc~ry, or MPW tool. When you click the Files button, another dialog box
appeais, permitting you to select the needed source and library (ending with the •.o"

. suffix) files. Your program will be linked with these files.

• Note: It isn't necessary to indicate the standard library files supplied with MPW. Your
program will be automatically linked with the appropriate libraries. The reference for
CreateMake in Part II explaim which standard library files will be used.

The Create Build Comma~ command in the Build menu runs a script thar creates a
makefile with the neces.my comm3Ilcb for building progr2Jm written in assembly
language, C, C++, Pascal, Rez, or a combination of languages. This file is given your
progmn's name with the suffix •.make•.

• Note: The Build script uses Make to determine the minimum operations necessary to
bring the program up to date. The Build script looks for its build instructions first in
program.make (for enmple, Sample.make). If no such file is found, the Build script
looks for its instructions in Makefile .

..
..

MPW 3.0 Reference

(
--I

/

4. Selcc:t a build command from the Build menu.

The four build commands on the Build menus are variations on a theme. (See Chapter 3 for
an explanation of each item. A brief explanation appears earlier in this chapter under Step
2 of ~~'O Easy Ste~.•) For now, select Full Build. The rotating beach b?Jl cursor ~i;pears,
indicating that processing has begun. Each step of the build proc~s is displayed on the
worksheet as it occurs. An.y errors will be displayed also, making it easy to track down a
bit of misplaced syntax. When you have faed the problem, just select Build from the
Build menu to quickly rebuild the program. The record of previous builds is left on the
worksheet.

See Part II for derailed information on each of the Build menu comm3nds.

...
..

CHAPTER 2 Getting Starred

(',.

(/

c

Chapter 3 Using the Shell Menus

THis CHAPTER DESCRIBES l1iE MENUS AND ASSOCIATED DlALOG BOXES of the
MacintQSh Programmer's Workshop 3.0 Shell. You on build simple programs by
using the Directoiy, File, and Build menus. (See Chapter 2 for an easy
demonstration.) The other menus are used for general editing. More advanced
editing capabilities, such as scripted editing and selection specification, are
discussed in Chapter 6. •

Contnt.s

Fearures 61
File fonnat 62
Menu commands 62

Apple menu 62
F'iJe menu 63

New 63
Open 64
Open Selection 64
Close 64
Save 64
Save A.s 65
Save a Copy 65
Revert to Saved 65
Page Setup 65
Print W'mdow/Print Selection 65
Quit 66

E.dit menu 67
Undo 67
Cut 67
Copy 67
Paste 68
CleM 68
Select Ail 68

' Show Clipboatd 68

Format 68
Align €11
Shift Left, Shift Right 69

Fmdmenu iO
Find 70
FindSame 71
Find Selection 71
Display Selection 71
Replace 71
Replace Same 71
Selection expression 73

Marie menu 75
Marie 76
Unrmrk T7

Window menu 78
T'tle Wtndows 78
Stack W'111dows 78
Customizing window commands 78
wt of open windows 79

Project menu 79
New Project 79
Checkin 80
Check Out 81

Directory menu 81 .
Show Directory 82
Set Directory 82

· · wt of directory names 82
Build menu 83

Cre3te Build Commands 84
Build 85
Full Build 85
Show Build Commands 85
Show Full Build Commands 85

User«fmed menus 86

..

6o MPW 3.0 Reference

Cl
'

Features

The MPW Shell provides the following editing features:

• Both menu and command-language editing. The menu commands p=uvi:ie the usual
Macintosh interface.

• Seletting text by program syntax. You can double<lick any of these paired quotation
characters:
() [] {} '' /\

to select everything between the character and its mate. To select text between

" .. ' ' I \ .
click the left quotation chatacter.

• Selection of large sections of text by embedding markers. Marked selections are
scrip12ble; your command files can refer to one or more marked selections. The
marker commands, Marie and Unmark, are available from the Marie menu. Basic
intetactive use of markers is covered later in thls chapter. See Chapter 6 for more
detailed information on scripting marked selections.

• Complete integtation of editing functions with the command interpreter. In the MPW
Shell, there is no sepatation of •command• and •editor" modes. To the Shell, text is
text-it is only when you try to directly execute a string of text that the Shell decides
whether it is a legitimate command or not

• Scriptable commands. Because editing commands are part of the command language,
you can use them with structured commands and variables to put together scripts that
clefme new editing commands. (See Chapter 6.)

• Regular exp~ions for matching text patterns. These make possible powerful search­
and-repi2ce functions that eliminate the need to make repetitive changes by hand
(See Chapter 6.)

•
..

CHAPTER 3 Using the Shell Menus 61

'

File format

Shell text is saved as a text-only (TEXI) file. The file conttins tab and return characters,
but no other formatting information. This format is compatible with other applications
that create text-only files-for example, the Shell can process MacWrite• files saved with
the Text Only option. When you select the Open command, the Shell displays all text-only
files in its standard ftle dialog box, regardless of the file creator.

6. Important From the Finder, you on open a text file created by another
application by selecting both the MPW Shell and the text file icons,
and then choosing the Open command A

You can display the invisible characters (spaces, tabs, returns, anchll other •control"
characters) with the Show Invisibles checkbox in the Format dialog box.

A file's tab setting, font setting, selection, window settings, auto-indent state, invisibles
state, and markers are saved with the file in its resource fork.

Menu commands

In general, the menu interface is the familiar Macintosh implementation. There are a few
differences and extemions, which are detailed in the following sections. Ut's assumed
that you are alre3dy familiar with standard Macintosh editing techniques.) Many menu
commands are scriptable, that is, a command-line form of the command exists (and is
described in Part m that lets you use the menu item nonintemaively in a script Each of
these are indk:ated later in this section.

All menu conirmnds act on the active (that is, the fronumst) window.

Apple menu

Open the •About MPW" menu item to display version information.

..
4

62 MPW 3.0 Reference

File menu

The File menu contlins the Shell commands for creating, opening, printing, do.sing, and
saving files. ·

• Figure 3-1 File menu

XN
Open ••• XO
Dl>t>n Sele(tion :•:D

(lose :•:111
Seue as
Sd1•e <1~ •••
Seu• e Copy •••
lleuert to Seued

Page Setup •••
Prtnt Window

Quit XQ

If the Worksheet is the current window, the menu commands Close will appear dimmed, as
shown in Figure 3-1. If a tool is executing, all menu commands (except New and Open)
appear dimmed.

New

Displays the New dialog box, shown in Figure 3-2. The MPW New diaJog box allows you co
enter a name and se!ea a di.rectory location for the document The Command-key
equivalent is Command-N. The?e is aJso a saiplable New, described in Part II.

• Figure 3-2

CH
c111.-...
C..._etlelt9
CCI•-•••• cc1nc--.
QCUltnrtn

Open document

New dialog box

cu
[jPC1

01111"

New

(Cancel

CHAPTER 3 Using the Sheil ~1e~us 63

Open

Displays an Open dialog box (similar to th.at in Figure 3-2) th.at allows you to open any
TEXT file on the disk. When you open a file for the first time, the selection point is at the
top of the file. When you open the file again, it reappears in the same state in which it was
saved; that is, the previous selection or insertion point is preserved unless the file has been
modified ourside the editor. The Read Only checkbox is loated just below the Open
Document box. Check the Read-Only box to open a nonmodifiable copy of the file. The
Command-key equivalent is Command-0. There is also a saiptable Open, described in
Part II.

• Nots: If you try to open a document that's already open in another window, th.at
window will be brought to the front Whenever you open a file, it appears in a new
window.

Open Selection

If you select a document name within a window, the Open Selection command
automatially displays the selected name. ~ is a useful shortcut when you have already
displayed filenames on the screen, with the Files command, for example. You can then
select a filename and open a file directly, bypassing the usual Open dialog box. Variable
and command substitution occur on the selection. The Command-key equivalent is
Command-0.

Close

Closes the active (fronanost) window. The Command-key equivalent is Command-W.
There is also a scriptable Close, described in Part II.

Save

Saves the active window under its current name,- without cl~ing it. This menu item is
dimmed if the contents of the window haven't been nxxii.fied since it was last saved. The
Command-key equiv2lent is Command-S. There is also a scriptable Save, described in
Part II.

64 MPW 3.0 Reference

c i

C>

SaveM

Displays a Save As dialog box, allowing you to change the name and directory location of
the active window. Saves the current contents of the window as the Save As file, and
allows you to continue editin~ the new file. The old me is cloSl!d without sa~·!ng, ur.der its
original name.

Save a Copy

Saves the current state of the active window to a new ftle on the disk. You can then
continue editing the old file.

Revert to Saved

Throws away any changes you have made since you last saved the active window. This
menu command is dimmed if the window has noc been modified since you last saved.
There is also a scriptable Revert, described in Part II.

Page Setup

Displays the standard Page Setup dialog box.

PriJlt Window/Print Selection

Prints either the entire contents of the active window or the selection in the active
window. If any text is selected in the active window, that text is printed If no text is
selected, the entire contents of the window (th.at is, the entire file) are printed.

• Note: For the Print c:Ommand to work properly, you must in.still the printer drivers
available on the latest version of the Printer Installation disk. Use the Chooser Desk
Acces,,ory from the Apple menu to specify which printer to use. Use the Page Serup
dialog box to specify paper size, orientation, and reductions or enlargements.

OiAPTER 3 Using the Sheil Menus 6;

The Print menu item doesn't display the u.5ual Print dialog box. Instead, you can specify
printing parameters by setting the Shell variable [PrintOptions}, described in Chapter 5.
Printing options include
• the number of copies to print
• which pages to print
• print qu2lity

• font
• font size

• headings

• title

• borders
• printing the pages in reverse order (for use with the I.a.serWriter)

See the description of the Print command in Part II for a complete specification of these
options, or enter the command Help Print to see a summary.

• Hew Print works
ihe Print Window menu Item executes 1he Shell commend
Print {PrintOptions} "{Active}" ~ "(Worksheet}"

Print Selec:tton executes ltle same c:ommond with.§ added otter the name of the
oc:ttve window. •

Quit

Quit returns you to the Finder, first allowing you to save all open files. The Command-key
equivalent is Command-Q. There is also a saiplable Quit, described in Part II .

..

(i6 MPW 3.0 Reference

c

(-·.,

,., ,/

Cl

~

Edit menu

In addition to the usual Macintosh editing commands, the MPW Edit menu (Figure 3-3)
contains a few special menu items. See "Editing With the Command Languagen in Chapter
5 for more information on using the scriptabi!! forms cf the commands on this menu.

• Figure 3-3 Edit menu

Undo ~z

Cut :J::H
[l>l>I~ :J[:I.

Paste XU
I: IP.tu

Select All XA
Show Cllpboerd

Format... XY

Rllgn
Shift Left X(
Shift RI ht XI

Undo

Undoes the most recent changes to te:rt in the active window (but not changes to resources
such as font or tab settings). You can select Undo again to redo changes. The Comrnand­
key equivalent i.s Command-Z. There is also a scripcable Undo, described in Part II.

Cut

Copies the current selection in the active window to the Clipboard and then deletes it
from its origin2i location. The Command-key equivalent is Command-X. ·There is also a
scriptable Cut, described in Part II.

Copy

Copies the current selection in the active window to the Clipboard. The Command-key
equivalent is Command-C. There i.s also a scriptable Copy, described in Part II.

..

CHAPTER 3 t:sing the Shell \fe:-:~s 6'7

Paste

Replaces th~ contents of the current selection in the active window with the contents of
the Clipboard. The Command-key equivalent is Command-V. There is also a scriptable
Paste, described in· Part II.

ClC31'

Deletes the current selection in the active window. There is also a scriptable Clear,
described in Part II. The keyboa.-U equivalent is the Clear key.

Select All

Selects the entire contents of the active window. The Command-key equivalent is
Command-A.

Show Clipboard

Opens a window displaying the contents of the Clipboard, if any.

Format

Displays the Format dialog box offering a selection of fonts and sizes. The Command-key
equivalent is Command-Y. This dialog box is shown in Figure 3-4. There is also a scriptab!e
Format, described in Part II.

• Figure 3-4 Dialog box of the Format menu item

Font Size

Chlc•g• ~ -
Caurt•r

&•n•u• rn
-=tue!mtlc• -l 12

nm.. la

Im lluto Indent
Cl new lnutatblH

Tu•: l!::J
I OIC ,

(Cancel

• Note: Selecting a font and font size affects the entire active window, not just the
current selection in that window. ..

•

MPW 3.0 Reference

Tabs

Auto Indent

Sets the number of spaces that a tab character will signify for the
active window.
You can set the default format for a new window by using the Shell
variables {Fond, {FontSizel, {Tab}, and {Autoindentl. These are
des, :bed in Chapter 5.

Toggles Auto Indent on and off. When Auto Indent is on, pressing
Return lines up text with the previous line. (A check mark indicates
that Auto Indent is on.)

Temporary disable fealure: To temporarily disable Auto Indent for one line, press Option­
Retum. Th.at line will begin flush left

Show In~iblcs Displays these invisible characters:

Tab ~

Space 0

Re tum ~

All other control characters

The MPW Shell editor ignores any zero-width characters (that is, control
characters that do not have a character bitmap) typed from the keyboard.
(Usually these are typed by accident) If you really want a control character in
your document, you can enter it in the Key Caps desk accessory and then paste it
in your document To delete control charaeters that might not be visible, select
Show Invisibles from the Format dialog box.

The rest of the dialog box consists of a selection of the fonts installed in your System file.
Available font sizes are displayed in the dialog window.

Align

Aligns the currently selected text with the top line of the selection.

-Shift Ldt, Shift Right

These commands move the selected text left or right by one tab stop. You can thus move
a block of text while maintaining indentation .

..

CHAPTER 3 Using the Shell Menus

Shift Left Removes a tab from the beginning of each line. The Command-key
equivalent is Command-{.

Shift Rfght Adds a tab, or the equivalent number of spaces, to the beginning of
each line. The Command-key equivalent is Command-].

If you hold down the Shift key while using these menu items, the selection will be shifted
by one space, rather th.an by one tab.

Find menu

The Find menu contains the routine commands for se2rching and replacing text. Each of
the icems in the Find menu is described below.

• Figure 3-5 Find menu

Find... Xf
Find Same X&
Find \ele1:tion :Ji::H
Dlspleg Selection

Replace... XR
Replace Same XT

Find

Displays a rind dialog box and finds the stting you specify. By default, the Shell editor
se2rches forward from the current selection in the active window (and does not wrap
around). The Command-key equivalent is Command-F. This dialog box is very similar ro
the Find-and-Replace dialog box desaibed under Figure 3-6; that explanation of the radio
controls and chedc boxes applies to both di2log boxes. There is also a scriptable Find,
described in P21't IL

• ..

iO MPW 3.0 Reference

C)
-

Find Same

Repeats the last Find operation, on the active window. The Command-key equivalent is
Command-G.

Find Selection

Finds the next occurrence of the current selection in the active window. The Corrunand­
key equivalent is Command-H.

Display Selection

. Scrolls the current selection in the active window into view.

Replace

Displays the Find-and-Replace dialog box shown in Figure 3-6 and explained there. The
Command-key equivalent is Command-R.

Replace Same

Repeats the last Replace operation. The Command-key equivalent is Command-T.

CHAPTER 3 Using the Shell Menus i1

• Figure 3-6 Dialog box of the Replace menu item

find whet string?

Replace with whet string?

·-----·------· .. ·····-----·--il Literal CJ Case Sensmue
0 Entire Word Cl Search Backwards
0 Selection EHpresslon CJ Wrap-around Search ________________. ________________________

[Replace] ijeplece Al) (find) [Cance•)

The operation of this dialog box is very similar to that of the Find dialog box, except that
selected strings can be located and replaced with a different string throughout a file. Both

• the Find and the Replace dialog boxes have three radio buttom, offering you one of three
options:

literal

Entire Word

Selection
Expression

Finds the exact string that you specify, wherever it may
appear, even if it is part of other words or expressions.

Finds the specified string only when it occws as a single word.
To the editor, a word is composed of the characters a-z, A-Z,
~9. and the undexscore character (_).(You can change these
default values by redefining the Shell variable (WordSet}-see
•Predefined Variables" in Chapter 5.)

Enables the full selection and regular expression syntax, as used
with the command language and described in Chapter 6. These
expressions allow powerl'ul selection and pattern-matching
capabilities that use a special set of meracharacters
introduced later in this section.

A!IY combination of these three check boxes may be selected:

Case Sensftlft Se31thing is normally case insensitive; selecting this checkbox
specifies case-sensitive searching.

Se2rch Backtr3rds Sean:h backward from the current selection to the beginning
of the file. (Normally, searching is forward and sto~ at the end
of the me.)

Wrap-Around
Se2rcll

Searches forward to the end of file, then wraps around and
searches from the beginning of the file to the cursor's
location when the search was initiated CThe direction of
Search is reversed l Search Backward is also selected)

72 MPW 3.0 Reference

0
l~ , __ ~'

·"'-"f

(
These dialog options set the Shell variables !CaseSensitivel, !SearchBackward},
(SearchWrapl, and (SearchTypeL You can also use these variables in scripts co set the
related options in the dialog boxes. See -Variables Defined in the Starrup File" in
Chapter;.
For Find and Find-and-Replace operations, a beep indicates th.de l"ie st.in~ >''as n'.Jt
found.

• Hints on ualng Find

You con reverse tne direction of o current search op«otlon by pressing Shift cs
you select the menu Item or c!lclc the OK button. The direction Is changed for
the current search operotlon only: the settings of tne dlOIOQ's check box end
the (SeorchBoclcwclrd) var!oble ore not effected.

For example. If you ore In the middle of o tlle ond you wont sometnlng obove
the current cursor position. tnen hold down the Sl"lltt key cs you c!lcl< OK. The
search Will then proceed bocl<word through tne l'lrst port of the file.

You might also use the Shift key to mol<e sure that you've found o!I Instances
of on Item from on orbltrcry position In tne Window. Pres,, Comrnond-G to run
Find Some forword. Press Sliitt-Commond·G to I'll'\ Find Some bocl<ward. •

Selection expression

When the Find-and-Re;:;ice dialog box's •Selection Expression" switch is selected, you
can use a special set of expression operators to specify selections and text patterns. This
section introduces a commonly used subset of these selection operators. Many more
capabilities are available. A full discussion of them can be found in Chapter 6.

Selection by line number: A number given by itself specifies a line number. In Figure 3-7,
for example, the command selects line 30 in the active window.

• Figure 3-7 · Selection by line number

find whet selection eHpnsslon?

0 Lltent
O Entin Word
® Selection EHpresslon

I find J

0 Case Senslttum
0 Sedn h Hock u•dl'd~
0 llJrap-ffrnund <,enrt:h

Cancel

•
•

CHAPTER 3 Using the Shell :.tem~s ':'3

Wlldard opencors: The sa~ wildcard operators wed in filenam! generation can also
be used to specify text patterns for find commands:

? Any single chmcter (other than ReOJm).

• Any suing of 0 or more characters, that doe5 not contain a
Return. (To get the • character, press Option-X.)

[charactwUst] Any charxter in the list

Note: The brackeis awst be typed; they don't indic:ue an
optioml synm e!emenE.

[-.charactnLlstJ Any character Mt in the list (To get the~ chmcter, press
Option·L.)

These pattern-matching operators are part of a larger set called regular expression
oper:ators, wed to defme Se2rches and other saipced operations. A regular expression
consists of liter:il characters and/or regular expression operators, and it must be enclosed
in slashes (j ... /). Figure 3-8 shows an ex:unple.

i4

E:ample of a regul:u expression

find whet selection tMpresslon?

0 Lltenst
0 Entire Word
®Selection £Hpresslan

(Find J

MPW 3.0 Reference

Cl Case sensmue
Cl Sean h 8nd:u•4rd~
Cl Wrnp·Around \Parch

Cencet

•
•

J

(
The command shown in Figure 3-8 finds and selects any string that begins with "init" and is
followed by any characters other than a rerum or a space. Figure 3-9 shows the result of this
command.

• Figure 3-9 Text selected with the Find command

11' U HO:MPW:Ewamptes:PEwamples:Sampte.p ill

(IS i.ain)
Bmift

lJft I oodSeq< 9..Dclta In i t >;
F~i,_,.;

~IZ-;

(Mt. U'wlt -Datalnit -t 110t be in 1'1ini) . •
(c:hck for - l)Qsic l"eqYi,,_t.; Di t. i • :
(uoand U'IOI l'*1D so =m,ta I oad Cit ~-

MMiM· (lnltlaliH U'IOI ~)
Uftiooel&eo;<flni ticil ize>; (Mte U'wlt lni tial i:a -t not be in llainl}

(cal I tN ea in -t loap)

~ mentioned, many additional Find-and-Replace capabilities are available. (See
Chapter 6.) In the command language, the find-and-Replace functions are performed by
the Find-and-Replace commands. There's also a tool nam:d Search (described in Part II)
that can search through a list of files for the occurrence of any ten pattern.

Mark menu

A marker is a text seleaion that has been given a name. Markers are u.5eful for navigating
within a window, and they can simplify many selection expressions. The upper part of the
Marie menu contaim the commands Mark and Unmade and the lower pa.rt lists all existing
markers. (By the way, when you first start MPW 3.0, you'll notice that this area of the Mark
menu contains a list of MPW corrunands that have been marlced in order to display them
conveniently in a rrenu. You can unmark them if you prefer.) To jump to the location of a
marker, you simply choose the nam: of the marker you want from the Mark menu, shown
in Figure 3-10.

..
..

CHAPTER 3 Using the Shell Menus 7;

Markers can be created and used both interactively, via the Mark menu, and
programmatically, via the Shell commands Mark, Unmark, and Markers. For a detailed
discussion of the syntax, characteristics, and programmatic use of markers, see Chapter 6
and Part II.

• Figure 3-10 Mark menu

•.:i IU: -

Mart ... •M
Unmenc ...

Commando
EHamples
Help
Riies
Cateru1te
Clear
Close
Copy
Count
Cut
Date
Delete
Dupllcate
Echo
Eject

Mark

To create a new marker interactively, first select the text you want to mark, then choose
"MaOC- from the Mark menu. A dialog box like that in Figure 3-11 appears, asking for the
name you want the marker to have. The editable text field in the Mark dialog box is
initialized to the first word (that is, whatever you would select by a double click) in the
selection. If you click Cancel in the dialog box, the selection is unchanged and no new
marker is created. If you click OK, a new marker is created with the specified name and
the new marker's name is added to the list of marker names displayed by the Mark menu.

• Figme 3-11 Marlc: dialog box

Merk tb• Hlectl .. wttb whet name?

I 01e I Cancat

..

MPW 3.0 Reference

If you uy to create a new marker using the name of an aiready existing marker, a dialog
box will appear, giving you the chance either to delete the old marlcer and add the new
(OK), or to forget about adding the new marker (Cancel).

• Hin~~ on ~:~ Mat:.

Mar1cers are very handy tor Qulcic navigation through source tlles. You mov
'N'Ont to marlc Important data declcrctlons and all procedures so thct you con
qulc:l<ly Ju-rip to any ~rocecture by selecting Its marl<•. Morlc8f's are listed
cc:eordlng to their position In the ftle. •

U1111W'k

If you choose the Unrnark menu item from the Mark menu, you'll see a dialog box (Figure
3-12) that contlins a list of currently defined markers and the two buttons Delete and
Cancel. If a marker is currently selected, ir.s name is highlighted in the marker list. You can
select any number of marker names from the list. If you click Delete, every marker
selected in the list is deleted. If you click Cance!, the selection remains unchanged and no
markers are deleted.

• Figure 3-12 Unmark dialog box

Delete wl'llcfl merters?

Here
Tb•r•
£uerywft•r•

(Delete) Cane at

•

CHAPTER 3 t:sing the She!! Me::u.s -·''

Window menu

The upper portion of the Window menu contains the two commands Tue Windows and
Stade Wlndows; the middle area lists all open windows, as shown in Figure 3-13. The lower
area of the W°Uldow menu li.1ts any op;:n Projector window:.

• Figure 3-13 Window menu

"'11Q ;MfWiWortsneet

Tile Wlndows

Use this command to arrange windows in a tile pattern on the saeen so that each window's
contents are visible. To include the Worksheet in the tiling, p~ the Option key as you
select Ttle Wlndows.

Stack WUldows

Use this command to arrange windows in a diagonally staggered pattern on your screen.
This is the •open file folder" way to see several windows at once. To include the
Worksheet in the stacking, pre~ the Option key as you select Stack W'Uldows.

Cmtomhfng window COD111Wld.t

The Ttle Windows and Stack Windows menu commands execute the Shell commands:

TileWindowa (TileOptiona} ~ "{Worksheet}•
StackWindows {StackOptiona} ~ "{Worksheet}"

You may customize the operations of tiling and stacking by using the Sheil variables
!TileOptionsl and {StadcOptionsl. Options include
• which windows to· tile

• including the Wodabeet (without pre~ing the Option key)

• horizontal or vertia1 tiling

• spacing between stacked windows

• specifying a rectangle in which to tile or stack windows
..

i'8 MPW 3.0 Reference

List of open windows

The remainder of the menu lists all open windovws in the order in which they were opened.
The fufl pathname is listed. To bring any window to the front, select that window from t.he
list.

Selecting a window from the menu brings that window to the front, that is, superimposes
it over anything else on your display. A check indicates that the window is currently t.he
"active .. window, that is, the froncmost. A bullet (•) indicates that the window is t.he
"target" window, that is, the second to the front Underlining indicates that a window
contains changes that have not yet been saved.

Project menu

The Project menu, shown in Figure 3-14, puts three of the rno.5t often used Projector
commands at your fingertips. Of course, you can modify this menu to add the rest of
Projectors commands or eliminate the menu altogether if you don't use it

The three menu ite~ on the Project menu are briefly described here. For an introduction
to the basics of using these functions, see "Projector Windovws .. in Chapter 4. For a
detailed explanation of the MPW project-management system, see Chapter 7.

• Figure 3-14 Project menu

New Project •••
Check In •••
Check out •••

New Project

The New Project dialog box appe:m as shown in Figure 3-15. Use this dialog box to create
a unique new project or subproject. You on use the Comment text frame to briefly
explain the purpose of the project or subproject. Projector automatically adds your user
name as the project's creator.

CHAPTER 3 Using the Shell Menus ".'9

• Figure 3-15 New Project dialog box

• ,I I New Pro ect

= Meut Project Neme:
JO Projector EHomp1ras.J ·Us.er: Jeff Pem._s_n ________ _.

a san • .,ie : l'iilew Pro ect comment:

(Clp<m)

.--0-n-ue__,j(,__£-.w-c-1 -.

Check In

f ·"-il:'UJ ~f P.t:t j

The Check r.n dialog box appeazs as shown in Figure 3-16. After checking out and
modifying a file, you will routinely use this dialog box to check the file back in to
Projector.

• Figure 3-16 Check In dialog

c Checx In

ciHD Project: I Test I I a Pro Jector EHemples I User: Jeff Pemsl'I
ru [:!:£ Teslt::J

(Reuisian ... l !#sample Reu: 1.0
•rest Checx In comment:

" ._,. fl I• ,,..,. I.tie r-.w ,.., ___ , ~ -·k~.j

Oi
lQj

CJ Touch mod det•
(\P.IP.1!1 dll) (Oe>•n)

iO ICHp reed-only : (Cancel Chectout)
~ Show an n1 .. i 0 IC••P modtneOI• : ~ (Chect In) (Drtue } (E Jee t) i@ Delete Copy

Click the Question Marie button ro display information about the project, a project file,
or a specific revision of a project file. Sec Chapter 7 for more information .

...
..

MPW 3.0 Reference

Check Out

The Check Out dialog box appears as shown in Figure 3-17. You'll routinely use this dialog
box to select a project for use and then to check out a project file you want to modify.
The date, time, and USC!' name of the checked-out file are recorded; no one else can
modify the same revision of a file at the same time.

• Figure 3-17 Check Out dialog box

l•r Check Out

CYCIIDS erg l!!:iS ; Chectout to: I HD:MPW:Scrtpts: I I g Utilities I i user: Jeff F'emsn
~ChectlnActlue ':Q r<1~k: !
~ Chectoutflctlue Che< k Dut comment:

~

~
Select FllH In Neme: ~Touch mod dete

~ I None I
(C<1n< P.I C hectout)

(Select all) (Open) :@ AHd·only i
: 0 Modtneble ! ~ (Che< k llut I (Select newer) CJ Branch l

Click the Question Marie button to display information about rhe project, a project file,
or a specific revision of a project file. See Chapcer 7 for more information.

Directory menu

The Directory menu, shown in Figure 3-18, lets you display and easily change the default
(cum:nt) directory. The Oiieaory menu is implemented by the scripts OirectoryMenu and
SetDirectory, which you cm rmdify to suit your own needs.

4

QtlJ>TER 3 Using the Shell ~1e!1us 81

• Figure ~18 Directory menu

Show Directory
sat Directory •••

HD2:MPW:EHamplas:REHamples:
HD2:MPW:£Hamples:C[Hamples:
HD2:MPW:£Hamples:CP1us£tcamples:
HD2:MPW:£tcamptes:Ewample1:
HD2:MPW:EHGmples:PtHamples:
HD2:MPW:EHemples:Projector EHmples:
HD2:MPW:

Show Directory

An alert box displays the name of the current default directory.

Set Directory

When you select this menu command the Set Directory dialog box (Figure 3-19) appears,
providing interactive selection of the default directory. Your selection is then added to

the Directory menu.

• Figure ~ 19 Dialog box of the Set Directory menu item

(Select CurTent Directory:]

laMPWt

Q lntarfecas
Q Libraries
Q MPWOemo
Q ROM Maps
Cl Scripts
Cl Tools

Ust of directory names

CIH02

E)ec t

(Driue

OJ en

[Directory J
Cancel

Selecting a di.rectory name makes this di!ectory the new default directory.

82 MPW 3.0 Reference

(
As you select various default direcrories, using eicher che Set Directory menu command or
che SetDirectory command, each is added as a separate menu command to make it easy
to return to that directory in che furure. The UserScarrup script creates menu items for
each of the Examples folders in the MPW directory, and for the default directory at th.e
time the UserScarrup script is run. You can add your own favorite direcrories by modifying
UserScarrup.

A. Warning Directory names should not contain any of these special characters:
A < I

These characters have special meanings when they appear
as menu iterm. •

Build menu

The Build menu, shown in Figure 3-20, has tWo primary purposes. The first purpose of the
Build menu is to create a makefile concaining the commands needed to build a program
The command Create Build Commands, which is listed first on the menu, creates the
makefile program.make (using the name of your program). If you have not used this
command-that is, if program.make does not exist-then MPW uses che file Makefile.

The second purpose of the Build menu is either to build a specified program or to display
the commands needed to do the build When you se!ea one of the remaining commands
on the menu-Build, Full Build, Show Build, and Show Full Build Commands-a dialog box
appears asking for che name of the program that you want to build

Use of che Build ~nu is demn.strated in Chapter 2, i3uilding a Program: An
Introduction.•

• Figure 3-20 Build menu

Create Build Commends-

Build- XI
Full IUlld-
Show Bulld Commend•­
Show Full Bulld Commends •••

•

CHAPTER 3 Using the Shell Menus 83

Create Build Commands

Use this item to create a makefile conf2ining the build commands for a specified
program. When you click Create Build Commands, the CreateMake dialog box appears.
(See Figure 3-21.) You can then enter the program name and select itS type (that is,
App.liotion, Tool, or Desk Accessory). Make sure that you do not include any of the
following four sufflxes to the progr.un name:

.a .c .p .cp

Click the Ftles button to selea the program's source and library files. (MPW libraries are
automatically linked; certain special libraries you may require might not be automatically
linked. See CreateMake in Pan II.) If the program's name is program, a new makefile,
called •program.make•, is created. The makefile will conf2in simple build commands from
the program. (See Chapter 9 for more information on Make.)

Be sure to run Create Build Commands whenever you create additional source or library
files for a program. Answering the Create.Make dialog box geneotes a new set of rules in
program.make that includes the new source files.

• Figure ~21 CrcateMake dialog box

.-CreeteMetce Optlons---------------­

Progrem Neme j'-M Y._Pro--gr_a_~.;.._---~' (Source Flies ...

,-Program Type--,
j ® Rppllcetlon l
i OTool '
i O Oesac Accessory
i 0 Code Resource

f Commend line ----,...,,..,,_

Creetor I 7?71 I
Type Inn I

Main Entry Point ! -------Re,ource Type I
------~

O Symllollc dellugger Information

Cnete ~ ,.. tMWtllt • •ltNtllft. to.I. tr ' rHtltt I [Cancel J

.... ::--' __ ._n._ __ "_""'_ ... _..,_ii._an_w_-__ · ----....1 (c rPftte""take J

When you selec.t one of the following four Build items from the Build menu, a dialog box
appears (as shown in Figure 3-22), asking for the name of the program you want to build .

..
..

MPW 3.0 Reference

(-,

_,,/

• Figure ~22 Program Name dialog box

Prognm Name?

I OIC I CaRHI

Type the name and click OK. The build option you have selected will proceed, displaying
on the Worksheet each command needed to build the program as it is used, along with any
error messages. Each of these four Build menu items uses the MPW tool Make to
determine which operatic~ are necessary to build the program.

Build

The program is built automatically, but only files that have been modified since you last
built the program will be compiled. Use this item to save time. The Command-key
equivalent is Command-B.

Full Build

The program is completely built, ignoring any object files or intermediate files that may
exist from a previous build

Show Build Commands

The commands needed to build the program (for just those files affected by
modifications since the last build) are displayed on the worksheet, but not executed. You
can then select any or all of the commands-or IIXXilfy them-and press Enter to execute
them.

Show Full Build Commands

All the commands needed to completely rebuild the program (whether modified since the
last build or oot) are displayed on the worksheet, but noc executed. This is a convenient
way to see all of the comma.nm used in building the progmn you've selected.

The Makef'ile •program.make• is created by the Create Build Commands menu item
(described previously in this chapter). If you have not used this item-that is, if
program.make doesn't exist-MPW will use the file Makefile.

4

4

OWTER 3 Using the Shell Menus 85

User-defined menus

You can define your own menu comman~ with the AddMenu command, described at the
end of Chapter 5. These comman~ can be appended t0 existing menus, or you can create
new menus. In fact, the Projector, Directory, and Build menus have been created by using
AddMenu. You may add ta, change, or delete these menus to suit your individual needs.

MPW 3.0 Reference

c

('

(,_/

'· ~ r

Chapter 4 Using MPW: The Basics

THis CHAPTER INTRODUCTS 11iE BASIC CQNVE."'('l'IONS FOR MA.-.1P1.JIXI1.'IG F1LES,
editing text, executing commands, and responding to dialogs in MPW 3,0. You
can easily enter all commands, command options, and parameters by using che
menus and dialogs. The basics for directly typing commands in any window are
also introduced. A full disawion of coaumnd scripting can be found in Chapter
5. For an introduction to building a simple program, using examples contained in
the Examples folder, see Chapter 2. Chapter 3 introduces the menus and their
contents. Chapter 7 presenrs the dialogs and complete information on Projector,
the project management system. •

Contnts

Editing 89
Entering commands 89

Typing commands in a window 90
The Enter key 91
Executing several commands at once 92
Terminating a command · 92
The Help command 93

rile-rnanagementcommands 95
File and window names 97

Selection specifications 98
Direaories and pathnames 98
Command SC3rCh path 101
Changing directories 101
Pathname variables 102
WUdards (filename generation) 103
Locked and read-only files 103

Commando dialogs 104
Invoking Commando 105
Using Commando dialogs 106
Standard di3log box controls 107

Generic text parameters 107

Repeatable options 108
Radio buttons 108
Check boxes 108
Shadow pop-up menus 109
Other pop-up variations 109
Multiple input files 110
Multiple directories 111
Multiple files and/or directories 112
Single input or output file 112
Output flle where a file or directory may be specified 113
New d.irectories 114
Special dialog box controls 114
Nested dialog boxes 114
Redirecting output 116
Options dependent on other options 118
Three·state controls 119

88 MPW 3.0 Reference

(

(
.

. " ... ·
\

Editing
Basic editing functions are available as menu commands. You can open a file by using the
Open command, or by selecting its name on the screen and choosing the Open Selection
command (Command-0) from the File menu. You can select an1 edit text witli the t1 ~uai
Macintosh editing techniques, using menu commands to cut, copy, and paste selected
text. The menu commands are described in Chapter 3.

You enter and edit command lines in a window exactly the same way you enter plain text
You can select any strer.ch of text and press Enter to send the selection to MPW s
command interpreter for execution.

Editing with MPW is unique in that rrost menu functions are duplicated in the Shell
command language. Ed.icing and other command-language functions are fully integrated­
you enter and execute editing commands just like any other commands. Editing
commands are entered in the active window (the fronuoost window), but they act on
text in the target window (the second window from the front), or another window that
you explicitly name. The command language lets you produce scripts of editing
commands: You can save any series of commands as a normal text file and execute the file
by simply entering the filename. Command-language editing is discussed further in
•Editing With the Command Language" in Chapcer 5.

For an explanation of selections, marke!S, and pattern matching with regular expressions,
see Chapter 6, •Advanced Editing:

Entering commands

All MPW commands and their options can be selected from menus and dialog boxes.
Generally, this interactive method of command selection is the easiest.You can
immedi2tely aecute commands selected from menus and dialog boxes, or you can use
the dialog boxes to compose complex command lines that can then be copied to a script.

4

CHAPTER 4 Using MPW: The Basics

The dialog boxes for MPW commanm are generated by the Commando user interface
(described in the last section of UU., chapter). Besides the usual Macintosh dialog boxes,
Commando provides several new forms and controls to handle the special requiremenrs of
MPW tools. For example, dialogs for commanm with mny options my have several
nested dialog boxes. Which dialog boxes are aaually displayed my vary according to
dependency relations between the particular options you my have selected Some of the
specialized dialog controls are introduced at the end of this chapter. Other unique dialog
boxes are shown in Part II of this reference, with their respective commands. A detailed
d~ion of all the elements of Commando dialogs can be found in Chapter 13, which
expJaim how to create a Commando interface for your own tools and scripts.

Of course, you an always type commanm directly in any window as a series of words
separated by spaces or tabs. (See below.)

Typing commands in a window

By default, command output and any error messages appe3t in the window immediately
below the executed command line. Cornman& are not case sensitive. You can have
multiple open files, and you can enter commands in any window.

The simplest commanm consist of the command name only. For example, type the
· command

Date

and press the Enter key (without pressing Rerum fll'St-dlat is, the insertion point must be
on the same line as the command when you press Enter). This command outputs the date
and time:

Tuesday, January 15, 1989 7:12:00 AM

Cornman& can have options. For example,

Date -d

The -cl-option ten. the Oare command to list the dare only, .

Tuesday, Janua:y lS, 1989

Comma.nm typed into an open fde are referred to as standard input. Output produced
by most commanm is sent to an open file called standard output, which is normally
connected to the window in which the commnd was entered Any window that is used to
enter standard input and display standard output is referred to as the console •

..
..

90 MPW 3.0 Reference

!~',,,,,\

\J

{
Most command.$ read from standard input, write their output to standard output, and
write error messages to diagnostic output By default, standard input refers to ten that is
selected and entered while the tool is running. Standard output and diagnostic output
appear following the command.$. (These input and output defaults can be changed using
VO redirection. See Chapter 5 for details.)

• Using the Alias commcmd

You may get ttred of fyplng the en11re eommand name tor freQuentty used
c:ommonds such cs Directory. However. you c:cn ecslty detlne your own
eltemattve names with the Alias command. For example. otter exec:u11ng this
c:orrmcnd.

Alia~ dir Directory

you eon execute the Directory eolTVTIClnd by entering the new commend
name:

dir

To make en cflos detlnitlon port of the Shell's standard startup i:irocedure. ptoce
the de11nit1on In the nte UserStcrtup. See Chapters. 'The Startup ond
UsetStartup Flies." •

The Enter key

The Enter key serves as a 'do it" button, causing command.$ to be executed. You can cype
command.$ in any window and press the Enter key to execute the command line. You can
al.so selea command text that is already on the screen and press the Enter key to execute
the selected text Clicking on the starus pane~ located at the lower left of a window, has
the same effect as pressing the Enter key. Pressing Comrmnd-Retum also has the same
effea as prcsing the Enter key.

6Importmt When no text is selected, the entire line is executed the moment the
Enter key is pressed, regardless of where the imertion point is on the
line.~

..

CHAPTER 4 Using MPW: The Basics 91

Executing several commands at once

By selecting several lines of command text and then pressing Enter, you can execute any
number of commands with one stroke. An example is shown in Figure 4-1.

• Figure 4-1 Pressing Enter to execute selected text

find Wlndoau Mart Dlractory Build

HD :MPW:WoncshHt ------~-

In Figure 4-1, executing the selected text would fust make a new folder (directory) named
Backup, then copy the files Stamip and UselStutup into Backup, and then List all of the
files in Backup. (Each of these commands, and the pathname syntax, is desaibed in the
sections that follow.)

You can also directly execute text files that contain other commands simply by entering
the filename of the script Executing a script has the same effect as selecting the
commarids in an open window and p~ing Enter-the only difference is the scope of
variable and alias definitions (discussed in Chapter S).

Terminating a command

To te~te a command while it's executing. press Command-period, the standard
Macintosh command for this purpose.

'

MPW 3.0 Reference

('

6.Importmt Many commands (induding Asm, C, and Pasc:aD normally rake their
input from a file; however, if no file is specified, they will begin
reading from the console (that is, from the window where the
command was entered: "standard input"). If the Shell appears not to
be listening to the commands you are entering, it probably isn't: The
currently executing command (shown in the active window's starus
paneO may be reading the text that you enter. If a program is reading
from standard input, you can press Command-Enter (or Command­
Shift-Rerurn) to indicate end-of-file and terminate input (See
"Terminating Input With Command-Enter' in Chapter 5.) ~

The Help command

The Help command <fupl.ays summary information for commands. For example, to display
a description of the Files (list ftles) command and i~ options, type the command

Help File:s

and press the Enter key. You'll see the following syntax description:

File:s (option..] (name •.] > fileLi:st
-c creator t li:st only files with this creator
-d t li:st only directories
-f t list full pathnames
-i t treat all arqument:s a:s files
-1

-m column:s
-n
-o
-q

-r
-s
-t type
-x format

I lonq format (type, creator, size, d.ate:s, et=.l
I n column format, where n - columns
t don't print header in lonq or extended for:nat

t omit directory headers
I don't quote f!lenames with :special character3
t recur:sively li:st :sW:xiirectorie:s
t suppre:s:s tha li:stinq of directorie:s
t li:st only file:s of thi:s type
t extended format--fields specified by format

Cl-L.\.PTER 4 Using MPW: The Basics 93

Note: The followinq characters can specify the fo::mat
a Flaq attributes
b Loqical size, in bytes, of the d.atafork
r Loqical size, in bytes, of the resource fork
c Creator of File ("Fldr" for folders)
d Creation date
k Physical size, in kilobytes, of both forks
m Modification date
t Type
o Owner (only for folders on a file server)
q Group (only for folders on a file server)
p Privileges (only for folders on a fi~e server>

• Note: In Help tens, the brackets are a synr:u: element indkating that a para.meter is
optional. An ellipsis (. ..) indicates that the preceding item may be repeated. (Note
that this use of the ellipsis is a synr:u: convention only for Help text and
documentation; an ellipsis character (Option-Semicolon) in an actual command line
invokes the command's Commando dialog.) See the section •synr:u: Notation• at the
end of the Introduction to this reference. The number sign(#) is the MPW comment
character.

You can direc:tiy edit and execute the text on the screen. For example, assuming that your
current directory is {MPW}, you can edit the above text as follows:
1. Use the mouse to select (op ti on. ••] and (name-] ; replace them with

the option ·1 and the directory name ScriptS.

2. Renx>ve the output specification > fileList.

The result is a command that will list the files in directory Scripts, in long format:

Files -l Scripts

(ScriptS is the directory containing various MPW scriptS; the -1 option generates •ton(
output) Press Enter to execute the comrmnd. Directory information appears
immediately following the command.

You can also use the Help command to display additional summary information, including
• an annowcd list of all MPW commands
• an annotated list of the charaam that have special meminS' to the MPW Shell
• desaiptions of the synr.ax of exp~ions, selections, and text patterns
• a summary of MPW Shell shortcuts
• a summary of predefined MPW Shell variables
• a summary of Projector, the project management system ..

MPW 3.0 Reference

For general information about Help, execute the Help command with no parameters:

Help

Th.is command di.splays the information shown in Figure 4-2.

• Figure 4-2 Help summaries

---------­
~---~~~ ~ HD:MPW:Wortcsh••t --------

Help _, .. - -1 table f• eod'I of \tie IW o 41.
To - \tie 1 lst of : • ent.r> "Help c-m•. In odd I tlan,
111-lef lptl- or ~·-· l'oti-, S.l•t•-. 0--.:trs,
8-\auts, uartcal•, ~ ""°Jec:t.cr - also tnc:I.....,..,

To - Help -·-· !rlt.ir ca ~ Sidi •

Help =n••..,_.
Help c -
Help bpr-.1-
Htilp l'GU­
Help Selec:tl­
Help aw---t­
Help --\Guts
Help UIPIClll:U•
He Ip """j ec:.._. .

Cooi,rl9\t filllplo Calput.o, Inc. 1-..1 ..
... I P'lfltts ,,_

,....,._n

You can direaly execute the Help commands given in the "Help Summaries" list

• Note: The MPW Help file should be in the same direaory as the MPW Sheil or in the
System folder.

File-management commands

The MPW Shell lets you manipulate files without returning to the Finder. Table 4-1
introdua:s the amt comDX>nly used file-management commands.

• Note: The descriptions in the table omit some of the command options that are
available. For complete descriptions, see Part II.

CHAPTER 4 Using MPW: The Basics 95

• Tab1e 4-1 Basic file-management commands

Backup [option! -from folder -to folder (file . ..]
Copy files in source folder to destination folder
based on modification date. This is useful when you
maintain an identical backup folder on a separate
disk.

catenate [file ... l

Close [option] [-a I window ...]

Delete name ...

Directory directory

Duplicate name ... targetName

Exists name ...
Files [name .. . l

Read the data fork of each file and write it to
standard output (By default, standard output is to
the active window, immediately after the
command.)

Close windows.

Delete file or directory name. If name is a directory,
all of its contents are deleted.

Set the default directory to directory. Directory
with no parameters writes the pathname of the
current di.rectory.

Duplicate file or directory name to ftle or directory
targetName.
Detennine the existence of file or directory name.
Ust names of directories and files. Options allow
you to include various attributes in the listing.

GetFileName [cy.>tion .. .l [pathname l Display a standard file dialog box.

Mount drive .. .

Move name ... targetName
New(name. ..]

Newedq?tion . ..1 name ... target

NewFolder nanw ...
Open [q'.]tioni [names. ..]

Rename namel name2

Revert

Save [-a I window ...]

SetDirectory directory

SetFile [cy.>tton. .. l file ...

96 MPW 3.0 Reference

Mount volumes.

Move file or directory name to targetName.
Open a new window.

Compare modification dates between files name
and target. List files newer than target ..

Cte3te the new directory name.
Open a window.

Rename rile or Directory namel to name2.
Revert window to previous saved state.

Save windows.

Set the default directory.

SetJtle attributes.

(Continued)

(~)
/

• Tab.le 4-1 (Continued) Basic file-management commands

SetPrivi!ege [option ... lfolder ...

SetVeision [~lion ... l file

Target name
Volumes [name ..• J

WhereJs [~lion. .• I pattern

Which [command I

Windows

File and window names

Set acces.s privileges for fcldeis on the file servc:­

Independently maintain the veision and revision
nurnbels as a resource in the application or tool.
Optionally, update a version and revision string in a
source file.

Make a window the target window.

List roounted volumes.

Find all files that have a partial pathname pattern, in
any level of any directories.

Determine, for the specified command, which
existing aliases, Shell built-in commands, and
commands accessed via the Shell variable
{ Commandst will be executed when command is
entered.

List open windows.

In the MPW, files and windows are specified in the same way. When a name is passed as a
parameter to a command, the system looks fust for an open window with that name; if no
window is found, it looks for a file on the disk.

The following rules apply to naming:

• Names are not case semitive.
• A single a>mponent (file or directory 112me) of an HFS pathname is limited to 31

chmcters.

• Any chaaaer ccep< a colon(:) may be used in a file or directory name. (Colons
sepmte elements in a pathname.)

..

CHAPTER 4 Using MPW: The Basics

It's best to avoid using spaces and special chancters in filenames. When using filenames
that contain spaces, you'll need to quo.tc them so that they won't be interpreted as
individual words in the command language-for example, you would need to specify the
name •sysr.em Folder' as follows:
Files "HD:System Folder"

For the rules concerning quoting, see •Quoting Special Characters• in Chapter 5.

Selection spedfications

Commands that take filenames for parameters can also act on the current selection in a
window. The cum:nt selection character, §(Option~, represents the currently selected
text in a window. There are two ways to use this chmcter.

§

nanN.§

Currently selected text in the tuget window. (The target window is the
second window from the front, as explai.iied in Chapter 1.)

Cum:ndy selected text in window name.

For example, the Count command counts lines and/or chancters in a file. The command
Count -l Sample.a.§

counts the lines within the current selection in the window Sample.a.

The current selection is explained more fully in 'Editing With the Command Language• in
Chapter 5.

• Note: The MPW Shell uses a number of special characters (like §) from the extended
character set These characters are fully listed in Appendix C.

Directories and pathnames

With the hieran:hial fde system (HFS), specifying a ftlename alone is often not enough to
identify a file-you frequently need to specify a pathname. (See Figure 4-3 for a sample
HFS strucrure.) A full pathname is specified as follows:
volume : [ditectory : ...] filename

98 MPW 3.0 Reference

(···. »

(~·~

c \ i

A full pathnam: contains at least one colon(:), but caMot begin 'Nith a colon. An example
of a full pathname ~
"HD:MPW:MPW Shell"

(The quotation marks are required because the filename "MPW Shell" contains a space.)

• Figure 4-3 Hier2rchical directory strucrure

MO:

I I
LJ LJ etc.

Syme111 FOlcllW: MPW:

I
I I I I
~ 00 etc. LJ LJ etc.

,......n Stanup: Scnpte: Toole:

I I I
I
I

00 00 00 etc.

BullCIP~ram Cl'Ml•Mllle SetOlrectoty

etc.

A partial pathname is u.ruaily all you'll need to specify. When HFS encounters a partial
pathname, it begim the path at the cwrent default directory. Any name that contains no
colom or begins with a colon ~ considered a partial pathname. A partial pathname that
contains DO colom is a le:afname. For example, the name

:AExamples

· is taken as a partial pathname. However, the name

MPW:

is ta.ken to be afui/ pathname (that is, a volume name only), r.lther than meaning the
directory HD:MPW. (When in doubt, you C1I1 always specify the full pathname for a file or
command.) •

4

CHAfl'l:...R 4 Using MPW: The Basics 99

Double colons (::) in a pathname specify the current directory's parent directory; triple
colons specify the "grandparent" directory (two levels up), and so on. See the chaprer
•file Manager" in Volume IV of Inside Macintosh for m:>re information on HPS
conventions.

• Note: Notice that there's no single •rooc- directory-each volume name (that is, disk
name) is a separate starting point for a directory tree.

You can use the Files command to list the names of files and directories. For example, the
·command

Files HD:MPW:

might display the following:

:Examples:
:In~erfac::es:

:Libraries:
:ROM Maps:
: Sc::ript.s:
:Tool.s:
'MPW Shell'
MPW.Help
Quit

·Resume
Startup
Su.spend
SysErrs.Err
tJserStartup
Worksheet
... and soon

In the output of the Files command, the names that begin and end with colons are
directory names, and the other names are filenames. All of these names are partial
pathnames-in this case, W:MPW" fonm the beginning of each pathname .. Also note
that filenames contlining special characters are quoted.

100 MPW 3.0 Reference

~\
! '

c

(,

Command search path

When you enter a command name (that is, a leafnarne), the Shell searches for the
command in the directories listed in the Shell variable (Commands!. As described in
Chapter 5, this search path is initially set to

: (the current directory)
HD:MPW:Tools:,
HD:MPW:Scripts:,
HD:MPW:Applications:,

This meam that when you type any command the Shell fust as.rumes that you want to
Cl'.ecute a tool; if it can't find the tool, it then assumes that you want a script; if it can't
find the script, it then as.rumes th.at you want an application. JI your frequency of use is
different, you can change the search path to improve the Shell's performance. (See

Chapter 5.)

Changing directories

You can change the default directory with the Directory command . .Wuming you have a
hard disk named HD, you could change the default directory to the directory Examples in
the MPW folder with the command

Directory HD:MPW:Example~

Like most commands, Directory runs silentl~t is, it generates output only if an error
occurs. To verify that you have set the appropriate directory, enter the Directory
command with no parameters:

Directory

This command <:&plays the current or default directory.

Remember that to specify a pathname containing spaces or other special characters, you
must surroond it with single or double quo<ation marks. (See Chapter 5 for rules on
quotation.).

If you specify a directory whose name is a leafname, the Directory command searches the
directories listed in the Sheil variable (DirectoryPathJ. JI the variable is undefined, then
the command looks in the current directory.

CHAPTER 4 Using MPW: The Basics 101

+ Using the {OlrectoryPath}
Here's an easy way to move quickly between directories on different branches.
Suppose you have a directory structure like that shown in Figure 4·3, with a
OirectoryPath of

" : , HD : MPW : "
Now, if you happened to be In the System folder, you could sat your directory to
Tools with this command:

directory Tools

Because this command spr.acifies only a leafname, the Tools directory is looked
for first in •:• (where it is not found) and then in HO:MPW (where it is found).
The directory is then set to HO:MPW:Tools. •

Pathname variables

One way of specifying a pathname is by using Shell variables. For el:lmple, the Shell
variable {MPW}, defined in the Startup file, expands to fonn the full pathname for the
MPW folder, in this case "HD:MPW:" (assuming that the MPW folder is at the top levei).
Thus, the Oirectery command could be entered as
Directory "{MPW}E:xamples"

In this particular case, the quotation marks aren't necessary. If you adopt the practice of
never using spaces or other special characters in a pathname, you don't need to bother
with quotation marks. On the other hand, if you sometimes use spaces or other special
characters in a pathname, it would be a good idea to use quotation marlcs whenever
variables are included in a pathname.

You can use the Set command to define and redefine variables, as described in Chapter 5.
To see the values of all currently defined variables, enter the ~t command with no
parameters:

Set

102 MPW 3.0 Reference

)

(
~.,

.·

Wlldcard.s (filename generation)

You can specify a number of files at once by using the wildcard characters ? and""
(Option-x). The ? character matches any single character (except a colon or Return); =
macches any string of zero or more characters (other than colon or Return). For ex.ample,
the command

E'iles •.a

lists all filenames in the current di.rectory that end with the suffix •.a". (Several other
wildcard characters can also be used to generate filenames-see 'Filename Generation" in
Chapter 5.)

Locked and read-only files

If you open a file that is locked, or 10C2ted on a locked disk, the starus panel displays a
lock icon, as shown in Figure 4-4. When you open a read-0nly file, the starus panel displays
a read-0nly icon, as shown in Figure 4-5. No editing or command execution is allowed in
these windows.

• Figure 4-4 A locked file with the I.ode icon in the Starus panel

;! · HD:MPW:wort:!ocludflle
I"

• 'Thi• •• Q lockad fl •• . ,
l

When you check out a read-0nly copy of a file from a project, this file will always open in
read-0nly axxie. The read-0nly icon is displayed in the starus pane~ as shown in Figure 4-5 .

..

CHAPTER 4 Using MPW: The Basics 103

• _Figure""' A read-only file with the Read-Only icon in the Srarus panel

II I HD:MPW:wortc:nadOnl flle ,.
• This is•,.,..._,.., file • . ,

I

... ill I

Commando dialogs

The Commando user interface lets you operate any properly configured MPW command
by meam of a special Macintosh dialog, rather than the traditional command line
interface. Commando dialogs may consist of several dialog boxes containing a variety of
controls. You can choo,,e options, select filenames, pick directories, and access help
information for ~ch option. Cormnando lets you ope1'2te MPW commands iri a more
inruitive format All options are visible, and help tct for ea.ch option can be instantly
displayed.

Because of the complexity of many MPW commands, seve1'21 specialized controls and
nested dialog boxes have been implemented for them. The various typeS of controls and
dialog boxes are introduced below. Other dialog boxes, specific to a particular
command, appear together with the command in Part II .

..

lM MPW 3.0 Reference

/J

(
I.nvoking Commando

There are three Mys you can invoke a Commando dialog from the Worksheet:

• Option-.~nter: Type the command name ancl lhP.n pre~ Option-Enter. This is the
easiest method for routine interactive use.

• Ellipsis: Type the command name followed by an ellipsis character(. ..) and press
Enter. You can also use this e:tpression in a script
The ellipsis may appez anywhere in a command line (except with quotes or after a)
and is considered a word-break character. Although the ellipsis may be sitw.ted
anywhere within the command line, only the first word of the line is actually processed.
For example, in the command line

addmenu asm alert-

only the AddMenu dialog will appear. Th.is results with or without Exit set to 0 or 1.

The ellipsis invokes the Commando user interface after the Shell has carri,ed out ail alias
and variable substitutions. The entire command line i.s passed to Commando and the
output of Commando is then e:tecuted by the Shell.

• Important No~: To obrain the ellipsis character, hold down the Option key while
simultaneously typing the semicolon(;) character. Although three periods do.5ely
resemble an ellipsis character, Commando won't be fooled; you must use Option­
semicolon to get the true ellipsis character that invokes Commando.

• Type Commando: Type the word Commando in front of the command line and press
Enter. This method of invoking Commando only outputs the command line; the
command is not executed. You can also use this e:tpres.sion in a script For example, if
you don't Mnt the resulting command line to be immediately e:tecuted, you can type
commando c::ommand.name

The tool's frontIOOSt Commando dialog box is displayed. Clicking the Do It button
writes the command line to standard output (that is, the window in which you typed
the command) instead of e:tecuti.ng it immediately. Th.is second method of using
dialog boxes is useful for building command lines that are to be cut and pasted into
scripts. In this case, Commando will not find a command if the command has been
aliased to a dilf erent name.

See ·rnvoking Commando• in Chapter 13 for more inforrmtion ..

...

CF.APTER 4 Using MPW: The Basics 105

Using Commando dJalOS'

The function and appearance of Commando dialog boxes may vary widely· according to
the syntax and semantics of the patticular command or rool selected. The basic dialog
box is typical of a simple corrunand such as Date, the first example u.sed in this ch.apter.
Type
Oat.e _

Be sure to use Option-semicolon to get the ellipsis. Then press Enter. Figure 4-6 shows the
resulting Co~do dialog box for Date.

• Figure 4-6 The Date dialog box

Data Options-------------------.
rDete/Time rRmount of Detalll rDate Input
! ® Botll date end time ! I ® Full date ! I Date In Seconds
'I 0 Date only I O llbbreuleted date I I
O nme only I 0 Short date j .__ ____ __.

I 0 In Seconds

Out11ut

f Command Line

Error

rsH•IP I [Cancal
~1$My_11w_..,...... __ •_t_• ... _t*"' __ . ____________ __.-liiiiiii•o•.•,.iiiiiii~J

Most dialog boxes share the basic structure shown in Figure 4-6. Various controls for
options and parameters appear in the largest, upper area of the box. Inte has three
parameters:

Date/rime
Amount of Detill
Date Input

radio button control
radio button control
editable field ·

The default settin&' for Date appear preselected as the topmost radio button for each
parameter.

Clicking and holding down the rrouse button on any control or option displays Help
information in the standard Help window at the bottom of every Corrunando dialog box.
Clicking on the title of a control also displays the Help information.

Use the pop-up menu of the Output box"to redirea output See the section "Redirecting
Outpur9 later in this ch.apter. 4

to6 MPW 3.0 Reference

The Command Llne window displays the command line resulting from the options you
select from the dialog box. As you select options or change parameters, this Command
Line box is continuously updated. You can then copy all or any pan of the command line
using Command-C or the Edit menu.

Clicking the Do It button (the button labelled "Date• i.n Fit;ure 4-6) p:wes the completed
command line back to the Shell for execution. Alternatively, you can press the Enter key.
If you change your mind and decide ro exit from the dialog, you can click the Cancel
button, which has the same effect as pressing Command-Period.

You can get these special results by holding down the Option and/or Command keys while
clicking a Do It button:

Option key (or pressing Enter) The command line is also written to standard error.
~ means that the command is executed and is
echoed to the active window.

Command key The command line is not passed ro the Shell; that is,
nothing is executed.

Option key and Command key The command line is written to the active window
without being executed.

Standard dialog box controls

This section describes the most frequendy encountered Commando dialog box controls.

Generic tat parameters

Not only do tools have options, they also have parameters. Nonspecific parameters,
where the parameter can be just about any string, are simply entered in an editable text
field. For iteim where text is required, the text is quoted by Commando before being
passed to the ShelL You can scroll the line right and left (by dragging) if the text in the box
is longer than the text box. Here's an example of an editable text field:

Mert tile tMctlon wttll wllet neme7

•

CHAPTER 4 Using MPW: The Basics 107

. Repeatable optloas.

Various text field options, such as the -df efinel option in Rez and Asm, may be specified
more than once. The control below shoM an option of this type. The number of lines
displayed is conuollable by the tool's builder. The small window is bsica1l1 ai. area whert•
text can be entered, very much like the Notepad desk accessory. This window does not
automatically wrap around lines larger than the window area. Instead, it scrolls left and
right You create a new line by pressing the Return key. Saoll the window horizontally by
dragging. You can scroll the window's contents vertially either by dragging or by using the
scroll bar control.

PnproceHor defines:
Lenguege-engtl•ft
11u•belgtat•2oa

Radio buttons

Some options are mutually exclusive and a.re therefore available as a set of radio buttons.
The default setting of the button corresponds to the default state of the option. Grou~
of mutually exclusive items are often surrounded with a labeled perimeter:

Prtnt Quellty
QHlglt
® Stenderd
ODnft

Check boxes

An option, such as the Assembler's -print option, imy have imny simultaneous settings.
Options like this are implemented with check boxes (veisus on/off radio buttons). Most
of the MPW tool's options are Boolean flags. Check boxes are also used for these types of
options, and are usually surrounded by a labeled perimeter:

Listing Centnl-----
181 $"-.. ,.
181 Rllocu eut ... tlc P•t• ejecta
181n.. , , ..
181 ne. _,. cd •tetomont•
181 De9 Mject C.-
0 S.... .. te 25S 'ttH ef dete
min,.._,, .. ,
181 ne. Meder II•••
181 S"9w generated lltonl•
0 Sllew otHmbly 1totu1

tmt MPW 3.0 Reference

..

Shadow pop-up mcnm

Some options require the name of a window, alias, font, or Shell variable. Commando v.ill
display a field of this type as a shadowed box:

Window I HO:OS:WonshHt I

When you click inside the shadowed box, a polHJp menu displays all the choices for that
particular field (that is, wtndows, aliases, fonts, or Shell variables). The menu box is
aligned around the current selection. The current selection is checked in the menu box. As
long as the irouse button is held down, the menu behaves like a standard pull-down menu.
If necessary, the polHJp menu will scroll vertically. When the mouse is released within a
rrenu item, that item then appears in the shadowed box.

Window HD:OS:Wor1tlhHt J
HD:MPW:MyCroft: tHt.c
HD:MPW:MyCroft:9etoot.c

Other pop-up variations

Some options are similar to the polHJp menus above but also allow a little more
flexibility. The Menu Name box in AddMenu allows you to type in the name of a new menu
or selea an existing menu name from a list of names:

Men• H•m•I _____ _,,IJ_

Click the menu icon at the right of the box to display a poirUP menu containing the
existing choices:

MenuH•mell J •
"--------"'! F'll•

Find -~

Window
"'1ettc
Olntctory
IUlld

Drag down the polHJp menu until the item you want is highlighted and then release the
trou.se buacn. The selected item will appear in the text edit box. If you type an item into
the text~~ any identical item in the pop-up menu will be automatically checked.

CHAYrER 4 l:sing MPW: The Basics l~

Multiple input files

When a tool can handle multiple input files of the same type (C, ASM, Rez, and so on), only
a single button is displayed.

Source files

Clicking on the button displays a nxxiified standard file dialog box. Commando adds
some functionality to the standard file package (SFGetFile) to let you select multiple mes
in different directories. Another scrollable list appeus under the file list Use the standard
file conttols to select files and cUck the Add button to add the selected file to the

. scrollable list under rhe SFGetFile. Airl!r doing so the dialog box does not disappear.
Instead, the file is added to rhe lower list. (Alternatively, you can just double-click a
filename to add it to the lower list) You can delete a file from the list by selecting it (in
rhe lower list) and clicking Remove. You can select several files at once by holding down
the Command key while you dick rheir filenames. When all desired files have been
selected, click Done or Cancel to return ro Commando's first dialog box.

A tool may tell Commando that the tool requires files wirh a particular extension. A radio
button lets you display and select any text file (or whatever type of me rhe tool wants).
When you select a folder, the Open button reads •open.• When a file is selected, this
same button is labeled •Add.• If you select a file that has already been added to rhe lower
list, rhcn that me is selected (and scrolled into view if ne~ry), and the Remove button
undimmed.

110 MPW 3.0 Reference

(--... ',
I

./

I ea CE11emplH I , .•... •' ~

Q Memory.c
C Semple.c
C Stulls.c
C testperf.c

f.11Ht

Ch 11•1!

[Done

[Canul

• f'llH ending In .c 0 1111 tHt nlH

Souru:

rlili!ii!@N!iiiiilf! , I Add)

Remou•

Multiple dlrectorics

Some tools, such as C 2nd Asm, have options that let you specify direaories to ~h
when looking for V2rious files. Clicking a single button, like this one, will display a
nxxiified s12ndard file db.log box:

(I nctlMI• Dlnctor1H l

The selection of multiple di.rectories works in the same way as the selection of multiple
files. In this C2mple, however, only folders are visible. Because a selected direaory has
the potential for being both opened and adt.kd to the lower list, there must be cwo
controls for both operations. Clicking rhe Add button adds the directory seleaed in rhe
upper list to the lower list The Open button operates in its normal manner: Clicking it
opens the selected folder. You an delete a directory from the lower list by selecting it (in
the lower list) and clicking Rem:>vc. Finally, clicking Continue or Cancel rerums control to

Commando.

CHAPTER 4 t:sing MPW: The 3a.sics 111

[Add currant Directory:)

le lnterlecesf
C AlncludH ~
C llStructMecs
C Clncludes

CHO

E ;ec t)

C Plnterleces D1i11e

Done

to Cencat

•Include Search Paths:
(Open]

I ffdd I
Remaue

Multiple files and/or cilrcctorles

For MPW tools or built·in commands dl2t can deal 9t'ith both multiple files and directories,
this dialog box, alimst the same as the one shown above, lets you select files and
directories. The model is al.tmst the same as the one above, except that both files and
folders are visible. Selecting anything in the upper scroll window highlights the lower Add
button. The controls work as shown in the CX21Dple above.

Single input or output me
You select opdom or parametm that require a single file (whether for input or output)
with a conuol similar to the es:a.mple bck>w. Clicking in the shadowed recrangle cmplays a
pop-up menu with cho~ depending upon the tool The first choice can be either
Default Output or No Output (or, if the file is an input file, Dcbult Input or No Input).
The Oebult Output is used for ~ that write to a def2ult output file if one is not
specified. Unk and Rez, for mmplt, write to link.out and rez.out, respectively, if no
explicit output tlle a specified. If Input F'tle or Output F'tle is selected, SFGetFUe (for
input files), or SPPutPUe (for ootput files) is cmplayed so that a file can be chosen. If the
filename selected ii tDO k>ng to fit in the space provided, the middle c:i the ~ is
annowed widl • ... •. All elllpsi.t (typographicd; not a Commando invocation) is added to
rhe end c:i the end If the full filename does not fit within the confines of the box.

llHource tutput FWe! ._re_z._ .. _t __ __.

..
..

112 MPW 3.0 Reference

;(-~

0

(\
Here's an example of an output file pop-up menu:

Setect .n Hitting output me ...
Wrtt• auttut to 1 new mo •••

Output me where a file Ot ditec:tory ll12f be specUlcd

The various compile:s have options to specify the objca filename or the object file
direaory. Commando displays a pop-up rn:nu similar to this one:

Fllo/Dtnctorg Wuyjtt&ll@"l&&@@f
Q11eclf ao ect 111• n1me ar Hl•ct dlrwct•"t= I

e:tcept that the standard dialog box that appears when you selea the Output File or
Directory item looks Ii.Ice this one:

Select Current Direct~ J
[0 llEHmPIH]

~ cHa

[F jlfC t l
(l)rtUP l

K5 (0111tc torg)

Olljoct Fllo/Dlr9ctary I OK I
[I J (Cancot I

The OK button is dimmed when the text-edit box is empty. After entering text into the
text-edit box, the OK button i.$ highlighted. Clicking the OK button specifies the file as
the output Clicking the Directory button specif JCS a direaory a5 output

..
..

CHAPTER 4 Using MPW: The Basics 113

New directories

The NewFolder command lets you specify the creation of multiple directories. The
example below (based upon SFPutFile) is used to create multiple directories. When you
cype a directory name in the middle text-edit area and click the Add buaon (or press
Rerum), a pathname is added to the lower list The root of the new directory is the same
as that displayed in the upper scroll list You can continue to add more directories. Click
the Done buaon to dose the dialog box and retum to the first, or 'main• dialog box.

I a R£Hemo1es I
-~ Cuunl.d
~ Counl.r
: tn,truc1ion'
: ""atefile
: ""erncu-y.c1
~ '>1tmote

New dlnctor1H:

II

cHD

Oona

(Cancel

fl I 1~1211 I
'-------___.bl...., (Remoue)

Spedal dJalog box controls

Commando uses standard Macintosh text-edit boxes, radio buttons, and check boxes. In
addition to these, you' 11 encounter some specialized concroi., because of che variecy of
options and par.ameters and certain dependencies between them. These various types of
specialized controls are .introduced below.

Nested dJalog boxes

Some tools, such as Rcz and PasMat, have roore options and parameters than can fit into
one dialog box. The :additional options an: grouped into nested dialog boxes that are
available from the fU'St dialog box. Figure 4-7 below shows, as an example, the fust dialog
box of Rcz.

...

114 MPW 3.0 Reference

I

• Figure 4-7 Rez: the first dialog box

,...Rez Option•---------------------...
•.. Resource Output Fiie ~----. 0 Progress Information
• Typ• amill · 0 Redeclared typn ok
• !Ru.out I O Modification i:ete
j Creator 77??
! [® Rewrtte resource me (Description Flies ... J
• O Make resouru nl• rHd-only (•includ• Petns ...]
: .- Resource Alignment •
• . ®Byte O Word O Longword : (Include Patnt...)

I 0.Merge resourcH Into resource me i (Preprocessor...)
· O DK 10 rnpld(P. 1>rntec1<~d re~oures: [] Redirection ...

f Command line
it.i

'----------------------'
Note the five control buttons at the right side of the 'Rez Options• window. When you
click one of these buttons, a nested dialog box appears with the title of the selected
button. For example, selecting the button labeled 'Preprocessor ... • displays the nested
dialog box shown in Figure 4-8.

• Figure 4-8 Rez: nested preprocessor dialog box

..t:..RU ~tlons

,..PnttrHa11or -
Dennet: Undenner.

I ~ I ~
fa 1111&.JM

I
f "- I (l Cane at
:· - .,.....,._ ... D0' ... 4•111UM'O•

I Continue ,
ll

..

CHAPTER 4 Using MPW: The Basics 115

As you type in rhe preprocessor defines and undefines, the command line you began in the
fll'St dialog box is further updated in the Command Line window of the nested dialog box.
The lower-right Do It button in a nested dialog box is always labeled •eontinue." Clicking
Continue closes the nested dialog box, and again displays the first dialog box with the
corrunand line updated to show the optiom and parameters selected in the nested dialog
box. ('This is always the case, except for the C compiler dialog, which has a third level of
dialog boxes.) If you click Cance~ changes from nested dialog boxes an: not recorded and
you return to the fll'St dialog box. From there you can then select another nested dialog
box.

Redlrecting output

Every tool that can write infonnation to standard output or to standard error has controls
to assign destinatiom for this output Comider the Error Output window in the
Redirection nested dialog box of Rez, shown in Figure 4-9.

• Figure 4-9 Rez: nested Redirection dialog box

]

[

Recllnc11an-

ln•ut _Ema_r ___ I
1 ________ 1 _1 ------~'

p.o•mand Lin.---------------,

I (Cane.I I
_ (Continue I

Clio*..._._·-•,,,. .. ,,.._. _II. . . f Kelp
1

[Cancel]

-----------------" I •a I

..

116 MPW 3.0 Reference
0

Clicking inside the Error window (and holding the mouse button down) displays chis pop­
up menu:

Ernr
~ N• llllf//llll .lltllr#fltW

New flle-
(Mlltlng me.ff
Wln411ew-
CUrrHt Selectlon In Window_.
curnnt se .. ctl•• In Terget Window
Slandenl Output
Standen Dl!inattlc

lll.J..[[;;r

Consolo ~

Here Null Device has been selected. When the mouse~ released, the filename dev:null
appears in the Error window. Whenever you select an output redirection, the (';I;"() invisible
radio buttons directly above the error pop-up are activated.

Selecting "Existing File ... " in the pop-up menu displays the standard file dialog box.
Selecting "New File'" brings up the standard output file dialog box and lets you create a
new file. Selecting "Window ... w brings up a list of the active windows to choose from.
Because a window ~ a file, you could also choose a window with the Existing File
command.

Selecting Current Selection in Window also brings up a list of windows to choose from.
When you select Current Selection in Target Wiridow, output is redirected to§. When you
choose a window, output is redirected to window.§. When you choose any file other than
a new file, the Overwrite and Append radio buttons are activated. These buttons
correspond to the functions of the >,~ and », ~ redirection operators, respectively.
Selecting No Output Redirection clears the pop-up menu so that no redirection occurs.

After you release the rrouse over Null Device, the command window looks like this:

Error <i l Ou
lo1u:Null I

The Diagnostic Output windows and Standard Input windows (in the case of tools th.at
read stltldard input) work in a similar fashion.

'4

CHAPTER 4 Csing MPW: The 3a.sics 117

Options dependent on other options ·

Some options may be dependent on other options. For example, the ·hf (header font) and
-hs (header size) options of the print tool don't mean anything unless the ·h (header)
option is specified. Commando implements this model by disabling all controls
dependent upon some other control. When you check (or otherwise activate) the main
control, the dependent controls are enabled. Another example is the Add.Menu command
The syntax of this command is

AddMenu [menuName [itemName [command...]]]

An itemName cannot be entered until a menuName is entered. llkewise, a command
cannot be entered until an itemName is entered.

Menu Nemel.._I _____ _.lj_
Item Neme l._ _____ _.ft1,...

Herc is the same set of options after -Pind• has been typed in the first text-edit entry
field. Notice that as soon as something is entered in the field, the Item Name entry is
enabled, but the Commands field remains dimmed

Menu Neme I Find lj
Item Neme I 11

Command~

When an item is selected from the Item Name pop-up menu or simply typed into the Item
text-edit box, the Commands field is enabled. If Find is a valid menu name,. then Find's
menu items will appear in the Item Name pop-up menu.

Me• NemelFM Ii
.... ,,. ,....... 11

Camm ...

There may be several text-edit boxes th3t are disabled (dimmed) until you have entered
something in the adjacent enabled text~t box.

118 MPW 3.0 Reference

' C-i

("

Three-state controls

Some options, like the -a option of Setfile, need the support of a three·state control. For
example, Setfile can set, clear, or do nothing to the bundle bit Clicking this control cycles
through its three states. The color of the diamond determines its state:

Gray Don't touch the flag
White Clear the flag
Black Set the flag

Attributes-­

<> Locked <> I nuisible
+Bundle
+System
+Protected
+Open
+Changed + lnited <> on Desktop

CHAPTER 4 Csing ~1PW: The Basics 119

(/~~<t

\""-~//

c

Chapter S Using the Command Language

THis CHAP1'ER DESCRIBES 11iE COMPLm SYNTAX OP 11iE MPW' 3.0 COMMA:'-<D
LANGUAGE and explains its use. Each command is defined in detail in Part :r. •

Content.s

Overview 123
Types of commands 124
Entering and executing commands 124

Negative status codes 125
Strucrure of a command 126

Command name 126
Parameters 126
Command terminators 127

Command continuation 128
Comments 128
Simple versus structured commands 128

Running an application outside the Shell envirorunent 129
Scriprs 130
Special scripts 131

The Starrup and UserStartup files 131
Suspend, Resume, and Quit 131

Command aliases 132
Executable error mes.sages 133

Variables 133
Predefined variables 134
Variables defined in the Srarrup file 135
UserVariables 139
Parameters to scripts 141
Defining and redefining variables 142
Exporting variables 142

Command substirution 144
' Filename generapon 145

Quoting special characters 146

121

How commands are interpreted 150
Strucrured commands 153

Conuol loops 156
Processing command parameters 157
Expressions 157

Redirecting input and output 160
Standard input 162

Tenninating input with Command-Enter 163
Standard output 164
Diagnostic output 164

Pseudo-filenames 165
Editing with the command language 166
Defining your own n:cnu commands 168
Sample scripts 168

"AddMenuAsGroupn 169
·cc· i10

c

122 MPW 3.0 Reference

(

Overview

The command language provides the following fearures:

• Built-in and user-definable variables of the form {variableNamer

• Command aliases, used to create alternative names for commands

• Command substitution, by which commands encl~ed in back-quotation marks
(• ... •) are replaced by their output

• A quoting mechanism for disabling special characters or inserting invi.sible characters
in ten: a literalizes a Single character; I ••• I and It••• ti quote Strings

• An extensive set of structured commands for controlling the order of command
execution, including Begin ... End, If ... Else ... End, and For ... In ... End

• Filename generation with "wildc:arci• operators such as = and '?

• Redirection of input and output with the<,>, », ~. ~. r. and LL operators

When you enter command text, the Shell fi.tSt interprets and processes all special symbols
before actually running the command. The order of interpretation is explained later in this
chapter under "How Commands Are Interpreted: For the roost part, the order of
presentation in this chapter follows the order of interpretation by the Shell.

In order to begin using MPW, you should read the following sections of this chapter at a
minimum:

• The opening sections of the chapter, which describe the basic form of all commands:
"I'ypes of Corrunands, • "Entering and Executing Commands,· and "Strucrure of a
Command•

• "Command Scripts" and "Special Scripts•

• "Variables"

• "Quoting Special Characters•

The operators and syntax of the command language are summarized in Appendix D .

..

CHAPTER 5 Using the Command unguage 113

Types of commands

In ail, four kinds of commands are provided:

• Built-in commands, such as Files or Duplicate, are part of the MPW Sheil.

• Command saipts, such as Startup, are text files that contain commands. You can
combine any series of MPW commands in a text file, and execute the file by entering
its filename, just like any other command. You can also pass parameters to a script
and use them in commands within the file.

• Tools, such as Link or Asm, are executable programs (that is, separate files on the
disk) that are fully integrated with the Shell environment.

• Applications, such as ResEdit or MacPain~, are stand-alone progrum that can be
launched from the Sheil buc can also run outside the Shell environment.

To execute a tool, application, or script, you need to have the proper program file
on your disk.

• Note: A built-in command overrides a script or executable program with the same
name. You should therefore use either full pathnames or quotation marks to specify a
script or program with the same name as a built-in command (Quotation marks work
for this purpose because the names of built-in commands must appear unquoted-see
•Quoting Special Characters" later in this chapter.)

+ Note. The Shell will not execute a tool whose roodification date is 12:00 A.M. 1/1/04.

Entering and executing commands

P~ the Enter key to execute selected command text If no text is selected, pressing
Enter executes the entire line that contains the insertion point. Alternatively, you can use
the muse to click the Status Panel in the Worksheet's lower-left corner, or press
Comrnand-Rerum; both methods have the same result as pressing the Enter key.

6. Important If no text is selected, pressing Enter always passes the entire line to
the Sheil (or to whaceter other program happens to be reading from
the console). This rule' also applies to your own integrated programs
that run within the Sheil. ~

U4 MPW 3.0 Reference

(\

~ Im.port:lnt If you enter a line that ends with the Shell escape character, a, the
command interpreter will pause, waiting for the rest of the line. c.

All c:Ommands return a status code: 0 indicates successful completion; nonzero values
USU3lly indicate an error. This code is rerumed in the {Status) variable, described later in
this chapter.

Negative status codes

The command interpreter will return negative status codes when it encounters an error.
These codes are:
-1 Command nae found, script is a directory, script is nae

-2

-3

-4

-5

-6

-7

-8

-9

executable, or script has a bad date.

Filename expansion failed, or there was an error in the expression
syntax.

Bad syntax. Quotation characters and braces were not balanced,
or were missing end or •)• command. Error in control constructs.

Missing filename following J/O redirection or the file could nae
be opened.

Invalid expression (If, Break If, Continue If, and other such
constructs).

Tool could not be s12rted.

Runtime error during tool execution, nx:>st likely an out-of­
meroory error.

User aborted the tool from the debugger.

User aborted the tool with Command-period.

These wlucs can be used to distinguish between errors returned by the commands
thetmelves and errors returned by the Shell.

~ Impottlnt All negative numbers are reserved for the Shell. Use only positive
numbers for errors in tools or script!. c.

4

4

CHAPTER 5 Using the Command Language US

Structure of a command

A command is written as a list of words separated by blanks. (Blanks may be either space
or tab characters.) The first word is the name of the command, and each word that follows
is passed as a parameter to the command. The genera.I form of a simple command is

commandName [parameters ... l commandTermina:or

Each of these elements is described below.

Command name

The command 1Wl1C is either the name of a built-in command or the filename of the
program or script to execute. Command names are not case sensitive. Alternative names
can be defined for a command-see 'Command Aliases" in this chapter for information.

The command name is passed to tools and scripts as parameter 0, and cm be referenced
by scripts in the variable { O } , explained later in this chapter under -Variables:

Parameters

Each of the subsequent words in a command is a p31'2Jlletcr to the command or to the
command interpreter. Note that certain parameters, such as VO redirection, are
interpreted by the Shell, and never seen by the command itself. Variables are also
interpreted before being passed to the program.

By convention, there are two distinct types of parameters to commands: options and
files. See the 'Command Prototype• section at the beginning·of Part II for more details
on these conventions.

You can referena: parameters within scripc.s by using the variables 1 l}, (2} , ... (n 1. (See
Table 5-5.)

..
..

126 MPW 3.0 Reference

.)

Command terminators

Each command is nonnally terminated by a return character. Commands can also be
terminated by the pipe symbol (I), the conditional execution operators (&& and I I), or
the simple command terminator (;). Each of these symbols may be followed by a return.
Table 5-1 describes the command terminators in order of decreasing precedence.

Except as modified by strucrured commands, commands are read sequentially and
executed as they are read.

• Table 5-1 Command tenninators

cmdl I cmd2 Saves the standard output of cmdl in a temporary file and uses it as
the standard input of cmd2. (Standard I/O is explained later in this
chapter.)

Note: In MPW, unlike ~ syste~. the commands are executed
sequentially.

cmdl && cmd2 Executes cmd2 only if cmdl succeeds (that is, returns a starus value
of zero).

cmdl 11 cmd2 Executes cmd2 ocly if cmdl fails (rerums a nonzero status value).

cmdl ; cmd2 Executes cmdl followed by cmd2; this tenninator allows more than
one command to appear on a single line.

These command terminators my be applied to both simple and structured commands.
Grouping is from left to right You an use parentheses to group commands for
conditional execution and pipe specifications. Here are some examples:
Files f Count -l

This comm.and pipes the output of the Files command (a list of files and directories) to
the Count command, which counts the lines in the list
Asm Sample.a && Link Sample.a.a -o Sample.code I I

(Echo Failed; Beep)

This example begins by assembling Sample.a. If that operation succeeds, it links the
object file; but if the assemble-and-link operation fails, it echoes the message •Failed,•
and beeps. · •

•

CHAPTER 5 Using the Command Language 127

Command continuation

You an continue a command onto the next line by typing a (Option-D) followed by a
rerum. Both charactets are discarded when the line is interpreted. The rerum must come
immediaU!ly after the a, with no blanks or comments bc:tween them. (For more
information about the a escape charaaer, see 'Quoting Special Ch.aracrets• in this
chapter.)
Echo This is all a
one command
This is all one command

Notice that the output appears on one line.

Comments

The number sign (t) indicates a comment. Everything from the t to the end of the line is
ignored. (Conunents always end at the next return, even if the rerum is preceded by a a.)
Echo This is echoed.
Echo parameters

more parameter:s

t This i:s not .
t comment a
t another comment

Simple versus structured commands

All of the commands introduced so fat have been simple comm.ands. Simple commands
consist of a single keyword, followed by zero or more parametets. Simple commands are
distinguished from structured comm.ands-commands such as For and If, for example,
that let you control the order in which other commands are ~ecuted. For example,
For file In •.c; Count {file}; End

All structwcd commaom are built-in, and usually have more than one keyword. The entire
structured command is read before its execution begins.

Also ~ •Structun:d Commands9 in th.is chapter.

128 MPW 3.0 Reference

Running an application outside the Shell environment

You can run an application outside the MPW Shell environment by executing the program
name just like any other command. For examrle,
ResEd.it

The application is loaded and launched as if it had been started from the Finder. Any files
specified as parameters are passed to the program vi.a the application parameter handle,
in Flllder fashion. (See "Finder Infonnation• in the chapter "Segment Loader' of Inside
Macimosh.) The following option is available on the command line:

·P file... Tell the program to print the specified ftles.

For example,
MacPaint -p "HD:Screen l" "HD:Screen 2"

This command tells the Shell to run MacPaint (assuming MacPaint is in a directory listed in
the Shell variable {Commands}), and to print the files Screen l and Screen 2.

The Shell environment is saved when the appl.iotion is launched and restored when the
application terminates. (These actions are performed by the Suspend and Resume
command files, described below.)

• Note: When running MPW under MultiF'tnder, the application is launched into a
separate MultiFinder partition and the state is not saved.

.A Warning Running an application from a script nonnally terminates the script
Under MultiFinder, the application starts and the script continues to
execute

c

..

CHAPTER 5 Using the Command language 129

Scripts

You can create your own commands by writing text files of previously defined commands,
called saipts (command files). You can execure such~ file ;ust like any other command
within the Shell environment-the name of the file you created is the name of the new
command. For example,
Cate
Echo Volum.es . ..•..••••••••••••••••••••.•.••••.•..•...••
Volwne3
Echo Current Directory
Ci:ect.ory
Echo Files
Files

If th.is text is on the saeen, you can execute it by se!ecting it and pressing Enter. You can
also save this text as a saipt so that it's always available. To save it under the name "Info,•
for example, first select the command text, making sure that the window with the
se!eaed text is the target (second from che front) window. Then type the following
command in ano<her window:
Duplicate -d S Info

You can now execute th.is series of commands by entering the command name Info.
(Recall that the § character indicates the selection in the target window.)

·You can pass parameters to a script just as you would to a predefined command by using
the normal Shell syntax:

filename [parameters. ..]

Parameters can be referred to within the scripts by using the built-in variables (l > ,

(2 J , ... (n), explained below under "Parameters to Scripcs:

• Note: AJ a matter of convenience, scripcs (as well as applications and tools) are usually
kept in diredories chat the Shell automatically searches when a leafname is given for a
command mm:. 1'bjs convention allows you to invoke the command by using its
leafname instead of its full pathname. The Shell variable {Commands} contains a
comma-sepmred list of directories to be searched You can easily roodify it to
include additioml directories.

..
..

130 MPW 3.0 Reference

l~\
~

/,,,~~ \

'"-.. ____ ,/

C~,

i

Special scripts

The scripts described in this section are provided with MPW. You can modify the
commands in each of these ftles to suit your neF..ds.

~ Important Each of these scriprs must be in the same directory as the MPW Sheil,
or in the System Folder. ~

The Startup and UserStartup files

When you stlrt up the Shell, commands are initially read from a ftle named Startup. The
Shell executes the commands in Stlrtup as if you had entered them interactively. The
Startup file provided with MPW contains several default variable and alias definitions.
You can roodify the commands in Startup tb suit your own needs; for in.stlnce, you can
change the default pathnames to suit a speciaJ direaory configuration.

Startup executes another script called UserStartup. It's recommended that you use this file
for your own changes and additions to the startup sequence. You can redefine the
variables defined in Startup, set and export any number of additional command-language
variables, and de.fine aliases and create ~nu iteim. Aliases and variables are fully
described in the sections that follow.

Suspend, Resume, and Quit

When you run an application from the Shell, commands.are read from the file Suspend.
When you quit the appl.iation and rerum to the Shell, commands are .read from the file
Resume. Tbe Suspend and Resume files save stlte infonmtion about variable definitions,
exports, 2li2ses, and windows before running an application; they then restore the state
after returning to the Shell.

• No/8: Suspend and Resume are not used if the MPW Shell is running under MultiFinder.

When you quit from the Shell, commands are read from the file Quit The Shell executes
these commands before cl~ing any windows . ..

CHAPTER 5 Using the Command Language 131

• Note: If you cancel from the Quit conunand, the Quit file will already have been
executed.

Llke Startup and UserStarrup, these saiptS run as if you had entered the conunands
interactively. You can modify the:n to suit any special requirements you may have.

Command aliases

An a.J.m is an alternative name for a conunand (and possibly some parameters). The Alias
conunand is used to define aliases and to display the list of aliases. If an alias has been
defined, it will be recognized by the conunand interpreter and the corresponding
definition will be substituted.

• Note: Variable sumtirution and alias sumtitution occur on the alias definition itself
after it has been substituted.

The following commands are used to define and undefme aliases:

Alias name word... Name becomes an alW for the list of worm.
Alias name Displays any alias definition associated wtth name.
Alias Displays all alias deflllitions.
Unal.ias name Removes any alias definition associated wtth name.
Unal.ias Removes all alias defmitiom.

Aliases are local to the script in which they are defined (and are globally available if they
are defined in the Startup and UserStutup files or entered interactively). Aliases are
automatically inherited from enclosing scriptS, and they may be redefined locally.
However, aliases redefined loally will revett to their previous· wlue when the script
termina.tes.

See the Alias and Unalias commands in Part II for a complete specification of aliases and
several CX2mplc:s.

•
•

132 MPW 3.0 Reference

0

Executable error messages

The following alias is defined in the Startup file:
Alia3 File Target

That is, the word "File" is defined as an alias for the Target command, which opens a file as
the target window. (See Chapter 6, "Editing Commands:) This alias is useful when a
compiler returns an error message such as
ttt Not a parameter name: count3

File ftcount.cft ; line 73

By placing the insertion point anywhere on the error message line or by selecting the entire
line and pressing the Enter key, you'll automatically open the specified file as the target
window, find and select the offending line, and bring the window to the top. The
command that the Shell acrually executes is
Target ftcount.cft ; Line 73

Llne is a saipt that automatically finds and selects a line by number and then brings the
target window to the top.

Variables

The Shell provides several predefined variables and allows you to dedare any number of
additional variables. Variables are used for

• shorthand notation

• status information

• local variables in scriptS

• parameters to scripts and tools

• cer12in de&ults for the MPW Shell

You can define or redefine variables with the Set command and remove variable
definitiom with the Unset command. For example, the command
Set PFiles HD:MPW:PFile3:

defines a variable {PFtles} with the value "HD:MPW:PFiles:".

CHAPTER 5 Using the Command Language 133

Variables have strings as their values. You can reference them by using the notation
{name!, where name is the name of the variable. When a corrunand containing a variable
(name! is executed, (name! is replaced with the current value of the variable. In this
example,
Files (PFiles}Src.p

{PFiles} is replaced with its definition before the corrunand is executed.
A variable may comprise one or more words, or pan of a word. If a variable is undefined,
{name! is removed (that is, replaced with a string of length zero, called a null string).

Variable names are case insensitive, and must not include the right brace character (}), for
obvious reasons. It's wise ro avoid using any special characters in variable names because
future extensions ro the corrunand language may assign special meanings ro some of these
characters.

• Note: For variables such as {Exid and {CaseSensitive} that can be either •true• or
"false,• the variable is considered true if it is set ro anything other than zero or the null
string (a string of length zero). The variable is considered false if it is set ro zero, null,
or undefined. The best way ro. set one of these variables is like this:

Set Exit 1 1 tum {exid on
Set Exit 0 1 tum (exid off

(These values also apply to expressions that return a Boolean value, defined later in
this chapter under "Structured Commands.")

Predefined variables

Table 5-2 lists the variables defined by the MPW Shell. These variables provide the
scarus value returned by the last command as well as the pathnames of several files
and directories. ·

6. Important Since the variables &ted in Table 5-2 are predefined or defined
dynamically by the Shell, you should not modify the values of these
variables. ~

c

..

134 MPW 3.0 Reference

(

[""~

i'l./

c \ ,I

• Table S-2

Variable

[Active}
{Aliases}

{Boot}

{Command}

{ShellDirectory}

{Status}

(SystemFolderl

{Target}

{Windows}

(Worksheet}

Variables defined by the Shell

Dacripdoa.

Full pathn:une of the current active window.

A list of all defined aliases, with each name separated by a comma.
The list contains only the names, not the definitions. Commando
uses this variable with the built-in commands Alias and t:nalias.
Commando needs this variable to know the names of existing
variables. {Aliases} must be exported

Volume name of the boot disk.

Full pathname of the last command e:teruted. (For built-in
commands, this is the name of tbe command.)

Full pathname of the directory that contains the MPW Shell.

Result of the last command e:tecuted. (A value of O means successful
completion. An.y other value is an error code: Typically, 1 means an
error in parameters, and 2 means that the command failed.)

Full pathname of the directory that contains the System and Finder
files.

Full pathname of the target window. The target window is the second
window from the top; by defaul~ this is the window where editing
commands (such as cut, copy, and paste) take effect

Contains a list of the current windows, with each name separated by
a comma. Commando uses this list to allow redirection of output or
input to or from existing windows. Commando needs this variable to
know the names of the current windows. (W11ldowsl must be
exported.

Full pathname of the Worksheet window.

Variables defined in the Startup file

Table 5-3 mu the variables defined in the Startup ftle (described in the 'Special Scripts"
section euller in this chapter). These variables define pathnames and default settings to
the Shell and are referenced by the Shell and by some of the MPW tools. You can change
any of these definitions to suit your preferences.

Hierarchical file system (HFS) pathname conventions are described in Chapter 4.

CHAPTER S Using the Conumnd Lmguage 135

• Table S-3 Variables defined in the Startup file

Variable

Variables rcferellced by the command ~terprctcr

!Commando}

{MPW}

(Commands}

This variable telli th~ Shell wh.ich command to execute when the
ellipsis character (Option-semicolon) is present anywhere in a
command line. The Startup file sets um variable to ·eommando." The
{Commando} variable allows the development of similar tools whose
output is to be executed by the Shell. If the variable is not set, then
the ellipsis character is rem::ived from the command line and normal
execution proceeds. {Commando! must be exported if scripts are to
use Commando.

The volume or folder containing the Macintosh Programmer's
Workshop. Initially set to the directory containing the MPW Shell. If
you put the MPW Shell on your desktop, mcdify the value of (MPW}
in the Startup file.

A list of the directories that the Shell searches when looking for a
command to execute. Directories in the list are separated by
commas. A single colon indicues the default directory. (Commands}
is initially set to

:,(Ml?W}Tool~:,{Ml?W}Script~:

-that is, the current directory; then HD:MPW:Toois, then
HD:MPW:Scripts, and then HD:MPW:Appliotions (assuming that
{MPW} is set to HD:MPW:).

(Echol When (Echol is set to a nonzero value, commands are written to
diagnostic output after aliasing, variable substirution, command
substitution, and filename generation, and just prior to execution.
This capability is useful for watching the progress of a script and for
debugging scripts. As the first line of your ftle, include the line

(Exit}

(Test}

Set Echo l
{Echo} is initially set to 0.

When {Exid is set to a nonzero value, scripts terminate whenever a
command returns a nonzero starus. This nonzero starus is returned as
the status value of the script (See the {Sr.arusl variable in Table 5-2.)
{Exit} is initially set to 1.

When {Test} is set to a nonzero value, the command interpreter
executes built-in commands and scriptS, but not tools or
appliC2tions. {Test} is useful for checking the control flow in
command files. (It's mo.st useful if (Echol i.5 also nonzero.) (Tesd is
initially set to 0.

(Continued)

..

136 MPW 3.0 Reference

(

('·

)

• Table S-3 (Continued) Variables defined in the Startup file

Varlab~ rc.fe:rencecl by ~~ editor

{Autolndentl Specifies the setting for automatic indenting. The default setting for
a new window is 1. If (Autolndentl is set to any value greater than 0,
automatic indenting occurs.

(CaseSensitive} Any nonzero value specifies case-sensitive pattern matching.
{CaseSensitivel is initially set to 0 (that is, fa~e). You can also set
{CaseSensitivel from the Find and Replace dialog boxes, by clicking
the Case Sensitive button. (See •Find Menu• in Chapter 3.)

{Font} Specifies the font for a new window. Its predefined value is
•Monaco.•

(FontSize} Specifies the font size for a new window. It is preset to 9.
(PrintOptions} Options used by the Print Window and Print Selection menu items.

They are initially set to -h. CThe -h option prints pages with heade~.
For more infonnation on possible print options, see the Print
command in Part II.)

(SearchBackward} If set to any nonzero value, searching will proceed backward. This
variable can be used to set up the default environment so that you
can access the backward search option. The default value is 0. You
can also set {SearchBackward} from the Fmd and Replace dialog
boxes by clicking the Search Backward button. (See "Find Menu" in
Chapter 3.)

{Search Type}

{Search Wrap}

{Tab}

Use this variable to set up the default environment so you can access
selective search options. If {SearchType} is set to 0, the search will
find the literal character string specified. If it is set to 1, only words
will be searched. If set to 2, regular expressions will be searched. The
default value is 0. You can also set {SearchTypel from the Find and
Replace dialog boxes by clicking one of the Literal, Word, or
Selection Expres.sion buttons. (~·Find Menu• in Chapter 3.)
Use this variable to set up the default environment for wrap-around
searching. If set to any nonzero value, searching will wrap around. The
default value is 0. You can also set {Search Wrap} from the Find and
Replace dialog boxes, by clicking the Wrap Around button. (See
•rmd Menu• in Chapter 3.)
Default tab setting for new windows (ini~y -0.

(Continued) ..

CHAPTER 5 Using the Conunand Language 13i

• Table S-3 (Continued) Variables defined in the Startup ftle

Vamble Dacripdoo

Variables referenced by the editor (Continued)

{User}

{WordSed

The name of the current user of MPW, predefined to be the same as
the user name specified in the Chooser.

The set of characters that constitute a word to the editor (for use
with F"tnd and Replace menu corrunanm, and for word selection by
double-clicking). By default, {WordSed is set to the characters a-z,
A-Z, ~. and _(underscore). If a char.laer ~ not in the list, the
editing commands regard it, like a blank, as a break between words.

Pathnames for libraries and Include mes

{Alndudes}

(Cindudes}

(Cllbraries}

{Llbrariesl

{Plnterfaces}

(PLlbraries}

(Rlncludes}

The directcries to search for assembly-language Include files,
referenced by the ~mbler. Initially .set to

•(MPW}Interfaces:Aincludes:•.

The directories to search for C Include files, referenced by the C
compiler. Initially set to

•(MPW}Interfaces:Cincludes:".

The direaory that contains C library ftles. Initially set to

"{MPW)Libraries:CLibraries:".

The direaory th.at conr.ains shared library files. Initially set to

"{MPW}Libraries:Libraries:".

The directories to searth for Pasca.l interface files, referenced by the
Pascal compiler. Initially set to.

"{MPW}Interfaces:Pinterfaces:"

The directory th.at contains Pasal library-files. Initially set to

• {MPW} Interfaces :PLibraries: "·

The directory that contains Resource compiler (Rez) Include files.
Initially set to

•(MPW}Interfaces:Rincludes:•.

138 MPW 3.0 Reference

"'"'

User Variables

UserVariables is a script that lets you use Commando to create Set commands for user
variables that you may wish to include in your startup saipt. Paste the command line
c:·!. :d by Commando into your User Startup file and fotmat it as you likr. No~P. that tht
c; ... unands are separated by semicolons. Don't forget to reroove the UserVariables
corrunand from the beginning of the command line.

The variables in the UserVariables script are divided into six groups:
Control Variables {Echo}, {E.xid, UgnoreCmdPeriodl, and {Test)
Search Variables {SearchType}, {CaseSensitive), {SearchBackward},

Print Options
Window Stacking
Window Tiling
Wtndow Variables

{SearchWrap}, and {WordSed
{PrintOptions}
{StackOptions}
{TileOptions}
{NewWindowRect}, {ZoomWindowRectl, {Autoindentl,
{Fond, {FontSize}, and {Tab}

These variables are described in Table 5-4 that follows and in Table 5-3 in the previous
section.

. .
..

CHAPTER ; Using the Command Language 139

• Table s-4 User variables not defined in Starrup file

(OirectoryPath} Use this variable to change directories easily. {Ditet:toryPathl is
searched by the Directory command when you attempt to set a
direc:tcry by using only its leafname. (See Directory in Part II.)

{lgnoreCmdPeriodl This variable tells saiprs ro ignore Command-Period. This is useful
for critical sections of a script If this variable is set to a nonzero
number, Command-Period is ignored. Tools that run in the scope that
has (lgnoreCmdPeriodl defined will afso ignore Command-Period.
This overrides any signal handler defined in the tool itself.
(IgnoreCmdPeriod} is undefined at startup.

6 lmport3nt II {lgnoreCmdPeriod} is set, the only way to
prematurely srop execution is to reboot ~

(NewWindowRecd Specifies the window size when a new window is created. The value
of this variable is the four coordinates of a reaangle, listed in this
order: top, left, bottom, right The defined rectangle mu.st be visible
on the Macintosh screen. If the rectangle specified is not totally
visible it is clipped to the edges of the screen. The coordiates (O,O)
are at the left side of the saecn at the botrom of the menu bar. For
example, ro create all new windows in the rop left comer of the screen
400 pixels wide and 200 pixels high, use the following command:
Set NewWindowRect 0,0,400,200

{StackOptions} Options used by the Stack Windows menu command. Use this
variable ro specify your own preferences. (See -Window Menu" in
Chapter 3.)

(TileOptions} Options used by the Tue Wmdo~ menu command. Use this variable
to specify your preferences. (See -Wmdow Menu• in Chapter 3.)

{Zoom Window Recd
Specifies the size of a window when it is zoomed ro full screen size.
The value of this variable is the four coordinates of a rectangle, listed
in dlb o~ top, left, bottom, right The defined rect3ngle mu.st be
visible on the Macin~h screen. If the rectangle specified is not
tcc3.lly visible, it is clipped to the edges of the screen. The
coordinates (0,0) are at the left side of the screen at the bottom of
the menu bar.

..

140 MPW 3.0 Reference

/'-­
·~,_,,,./

c

) c

Parameters to saipts

When a script is executed, the values of certain Shell variables are set automatically. These
vniab!t:s are explainc:<l in Table 5-5.

• Table S-'

!al
(1), {2}, ... {nl

{#}

{Parameters}
{"Parameters•}

Parameters to scri prs

Name of the currently executing script

First, second, and nth parameter passed to the current script
(These values are null for commands entered interactively.)
Number of parameters (excluding the command name).
Equivalent to { l} (2} ... { 11}.

Equivalent to "l l J • • l 2 J" ... • l 11} '".This fonn should be
used if the p-mmeters could contain blanks or other special
chaacters.

The {Parameters} variable is especially ~ful when the number of parameters is unknown.
The quoted fonm, such as •(1)• or {"Parameters•), are usually preferable to the unquoted
fonm beause, after variable su~titution, m, {21, and so on could contain blanks or other
spedaJ characteis. For example, consider the Line script (which is useful with error
mes.sages, as explained earlier in this chapter under "Executable Error Messagesn):
Find "(l}'" "(Tarqet}'"
Open "(Tarqet}'"

t Find line n in the tarqet window.
• Make the tarqet window the active a
t (top) window.

This script takes- one parameter, a line number. Pmmeter {1} is quoted to handle the case
where Llne is called without any p-mmeters. In this case the value of {1} is the null string,
and without the quores the {1} would completely disappear, leaving the name of the target
window a,, the only pamneter to rind. The quotation marks ensure that at least a null
string b sent ro Find as irs fust parameter--thi.s is essential, beause the window name
must be the second parameter. Also notice that the {Target! variable is quoted, beause it
is a filename th2t might contain blanks or other special characters. (For more information
on quoting rules, see •Quoting Special Characteis• later in this· ch.apter.)

...
..

CHAPTER 5 Using the Command Language 141

Defining and redefining variables .

The following commands are used to define and modify variables:
Set name value Assigns the string value to variable Mme.
Set name
Set

Unset name
Unset

A Warning

Writ.es the value of variable name to standard output
Writes a list of all variables and their values to standard
output.
Removes the definition of variable name.
Removes the deflllition of ail variables in the current scope.
(For an explanation of the scope of a variable, see the next
section.)

Removing all variables in the outennost scope can have serious
consequences. For example, the Shell uses the variable {Commands! to
locate MPW tools and other commands. The assembler and compilers
use other variables to help locate Include flles. Some variables, such as
{Boot}, cannot be reinitialized without restarting MPW. •

Defining a variable and making it available for use by scripcs and prograrm involves two
separate steps:

1. You can define a vari3ble with the Set command. Not.e that variables are local to the
script in which they are defined-a variable definition ceases to exist when its
command me terminates.

2. You can pass a variable to scripts and tools with the Export command After you
export a variable, nested scripts can reference that variable and may override its value
locally-but any redefinition is strictly local and terminates when the script
terminates. It's impossible to affect the value of a variable in an enclosing script (See
Figure 5-1.)

Exporting vubbles

The Export command makes variables available to scripts and tools:
Export name... Exports the named variables.
Export Writes the list of exported variables to standard output.
Unexport name... Removes specified variables from the list of exported variables.
Unexport Writes the list of .. unexported variables to standard output

..

142 MPW 3.0 Reference

()

You can define a variable globally by setting its value in the Scarrup file and exporting it.
Figure 5-1 illustrates how Export works.

• Figure 5-1 Trafficking in variables

UserStartup File ###
Set var X
Export var

(var) • 'X'
ACommandFile

ACommandFile ###
Set Var Y
Export var
Set local Z
AnotherCommandFile

AnotherCommandFile ###
(local} is undefined
(var) • 'Y'
Set var Z
(var) • ·r

(var) • 'Y'
#(local) • ·r

(var) • 'X'

• Note: You can use the Execute command to execute a script without creating a new
scope for variables, exports, and aliases. The Shell ~executes• the Sturup, Suspend,
Resume, and Quit saipcs, and Startup uses Execute to run the UserStartup script For
nx>rc details about Execute, see Part II.

4

4

CHAPTER 5 Using the Command Language 143

Command substitution

Command substirution causes a command to be replaced by its output You can specify
conunand substitution by enclosing one or more commands in backquoces (• .. :).The
backquote key is located at the upper-left comer of the original Macintosh keyboard; it
is located near the space bar of the newer keyboards. When the command is executed, the
standard output of the enclosed commands replaces the • ... •. Command substirution can
form pan: of a word, a complete word, or several words. Command substitution is not
done within •hard• quotation marks (that is, the Standard Single quotation maoo I.,, I),

• Note: If the standard output of the enclosed commands contains rerum characters, the
rerums are replaced by blanks. If the output ends with a rerurn, this return is
discarded.

For example, the command
Echo The date is ·cate'

echoes the parameters, replacing the Date command with its output, as follows:
The date is Wednesday, October 22, 1987 10:40:00 PM

The following example duplicates the files whose names are output by the Files command:
Duplicate 'Files -t MPST MyCisk:' "(MPW}Tools"

The command line
'Files -t MPST MyDisk:'

is replaced with a string of filenames of type MPST (that is, MPW tools) before the
Duplicate command is executed; these files are then copied to the folder (MPW)Tools.
This command is useful beause the F'tles command allows you to specify files with a
certain type or aeator, something you can't do with wi1dcard operators.

144 MPW 3.0 Reference

,[-''0
'__,)

(

(

Filename generation

After variables have been substiruted, an unquoted word that contains any of the
characters
? • • + «

is considered a filename pattern. The word is replaced -with an alphabetically sorted list of
filenames that match the pattern. An error is returned if no filename is found that marches
the pattern.

You can specify a group of file- (or window-) names with the 'wiJdcard• notation given in
Table 5-6.

• Table s-6

-
[characterlisl l
[-. characterlist l
•

+

Filename generation operators

Matches any single character (except a colon).

Matches any string of zero or !IX)re characters (except a colon).

Matches any character in the list

Matches any character not in the list

0 or roore repetitions of the preceding character or character list(?* is
the same as •).

1 or roore repetitions of the preceding character or character list

«number of repetitions»
Specifies number of repetitions of the preceding character or
character list

The parhm~ separator (:) must appear explicitly in the pattern because the : character
will never be submtuted for ?, •,or[...].

• Note: P2ttCm matching is not case sensitive.

CHAPTER 5 Using the Command language 145

These special characters are the same regular expression operators used in editing
commands. For a complete discussion of regular expressions, see Chapter 6.

Nacurally, you need to be careful with these wildca.rd operators. The Parameters and Echo
commands are very useful for double-checking which filenames a command will generate.
For example, before giving the command
Oelete •.c.o

you might mnt to run the comrmnd
Parameter~ •.c.o

This command lists your • .c.o• files to standard output so that you can make sure you
really mnt to delete them all.

• Note: Wildcard characters only generate names that match existing filenames; they do
not create new files. For example, the following attempt to rename files will not work:

Rename •.obj •.o

An example of how to perform a wildcard rename can be found under the description
of the Rename command in Part II.

Quoting special characters

There are numerous characters that have special mean.in~ to the MPW Shell. Normally, the
Shell performs the action indicated by the special character-but you can· disable a
character's special meaning (that is, include it as a literal character) by quoting it You
commonly need quotes when specifying filenames that contain blanks or other special
characters or when sean:hing for the literal occurrence of a sped.al character. See also
"Pattern Matdtin(in Chapter 6. ·

Table 5-7 lists all of the special symbols recognized by the Shell.

•
..

146 MPW 3.0 Reference

C:':
• Table 5-7 Special characters and words

Chancier ~ W'bc:rc ds:nbcd

Space Separates wares "Struaure of a Command"
Tab Separates words

Return Separates commands •struaure of a Command"
; Separates commands Table 5·1
I Separates commands, piping output to input
&& Separates commands, executing the second

if the first succeeds
I I Separates commands, executing the second

if the fust fails
(...) Coaunand grouping; groµping in filename

generation
Invokes Commando "Invoking Commando"

• Note: This elli~is character is an Option·semicolon key command, not
three periods.

Comments "Struaure of a Conunand"

a Escape character: quotes the In this section (Table ;..8) ('',, subsequent character
j/ ' I Quotes all special characters

" " Quotes all special characters, except a, {, and '
! .. ./ Quotes all special characters, except a, {, and'
\ ... \ Quotes ail special characters, except a, !, and '
{ ' .. } Variable substitution "Variables•

Command substitution ·command Substitution"
? Matches a single character in filemme ."rtlemme Generation"

generation. In this chapter
= Matches any string in filename generation "Pattern Matching" in

t ..] Character list in filemme generation
. Chapter 6

• 1.ero or IIX>re repetitions in
filename generation

+ One or roore repetitions in filename

« »
genention
Specified number of repetitions in filename
genention

4

() (Continued)

CHAmR 5 Using the Command Language 147

• Table S-7 (Continued) Special characters and words

< Input file specification •Redirecting Input and Outputn
> Output file specification Table 5-12
> > Output file specification (append)
2: Diagnostic file specification
2:2: Diagnostic file specification (append)
I. Output file and diagnostic file specification
I.! Output file and aiagnostic file specification (append)

You can literailze a character by preceding it 'With the Shell escape character, a (Option­
D), or by including it 'Within the quoration symbols' ... ',• ... •,/ .. ./, or\ ... \. The escape
character, a, quotes a single character only; the other quotation symbols may be used to
quote part or all of a word. These symbols are described in Table 5-8.

• Table 5-8

Quote

' '

" "

/ .. ./or\ ... \

Quotes

•Harcf quotation marks•: Take the enclosed string literally-no
substitutions occur. The quotation marks are removed before
execution.

•Soft quotation marks•: Take the endosed string literally. ac, variable
substitutions, and command substirutions occur. The quotation marks
are removed before execution.

Regular expression quotation characters: Notmlily used to enclose
regular expressions. Take the entire string literally, including the
quo12tion characters-the I or\ characters are not removed. Variable
substirutions and command substirution.s occur. ' ... ', " ... ", and a have
their usual meanings-however, they are not removed.

Single quotation marks, double quoration marks, and a are removed before parameters
are passed to progr:um (unless they are the~lvcs enclosed in quoration marks). For
example, here are two ways you might define an AddMenu that compiles a C program in an
active window:

Wrong: AddMenu Extra~ "C Compile" C "{Active}"
R~hl: AddMenu Extra~ "C Compile" 'C "{Active}"'

• ..

148 MPW 3.0 Reference

('
The fll'St example won't work because the (Active} variable will be expanded when the
menu is added (it should be expanded when the menu item is e::ecuteti). The second
example is correct-when the AddMenu command is executed, the single quotation marks
defeat variable expansion; they are then stripped off before the item is actually added.
The double quotation marks remain ~ ~e the ~thruur..e of tht active window h<t!Jr.<:ns ·
to contain any s pedal characters.

• Note: When quoting spaces (as in filenames), you'll usually use double quotation marks
(soft quotes) to pennit variable and command substitution.

Slashes (or bac~lashes) are used ro pass regular expressions as parameters ro commands,
without filename expamion occurring. For example,
Search /proc•/ Sample.p

This command searthes the file Sample.p for any string beginning with the characters
"proc•. (See "Pattern Matching- in Chapter 6 and the desaiption of the Search command
in Pan II.)

..

CHAPTER 5 Using the Command language 149

• Table S-9 Special escape conventions

ac Escape char.ictet: Take the single character c literally. TI1e four escape
conventions that follow are exceptions to this rule.

oRetum oRetum is discarded, allowing you to continue a command onto the
next line.

Inserts a return char.icter.
Inserts a tab char.icter.

Inserts a form feed charaaer.

How commands are interpreted

When you send text to MPW's command interpreter (by pressing the Enter key or the
equivalent), the following sequence of steps is perl'ormed:

1. Alias substitution.

. 2. Evaluation of control constructs. (This means that control constructs can't be
produced by command substitution but can have aliases.)

3. Variable substitution, command subsntution. All variables (unquoted or quoted with
w ••• •, I .. ./, or \ ... \) are replaced with their value. All commands enclosed in ' ... '
(unquoted or quoted with• ... •,/ ... /, or\ ... \) are replaced with their output If the
ellipsis char.icter (Option-semicolon) is found, Commando is executed .and the
command is replaced by the output of Commando.

4. Blank i~tation. Airer variables and commands have been substituted, the
command text is divided inro individual words separated by blanks. A blank is an
unquoted space or tab.

• Note: 1be following symboJs are. normally considered separate words, whether or
not they are set off by blanks:

; I I I && <) < > >> ~ ~

Within expressions (used with If and Evaluate), all operators are considered
separate words, unle~ they are quoted. See 'Structured Commands" in

· this chapter.

..

150 MPW 3.0 Reference

,,- '~'.,

~0

(/

5. Filename generation. A word that contains any of these unquoced characters
1 - [• + «
after variable substitution is considered a filename pattern. The word is replaced with
an· alphabetically sorted list of the filenames that match the pattern. (If no filename is
found that matches the pattern, an error results.)

6. lnput/ourput redirection. Because this step is performed last, variable substitution,
command substitution, and filename generation can all be used to fonn the filenames
u.5ed in I/O redirection.

7. &ecution.

You can suppress any part of this p~ by using quotation symbols as described in the
previous section. Remaining single and double quotation marks are removed prior to

execution.

CHAPTER 5 Using the Command wguage 151

• What went wrong?

If you ever wonder why a command line doesn't work, refer back to this section
to study the order of command interpretation. You may use the {Echo} variable to
examine hew the Shell is interpreting your command. Use the command

Set Echo l

With {Echo} defined, the command lines will be echoed to standard output after
they are interpreted by the Shell.
The command Parameters is also useful for finding out which parameters will be
passed to the command. Parameters writes its parameters to standard output.
This command is especially handy when you want to experiment with quoting. For
example, try the following commands:

Parameters •
I parameters will be all the files in current directory

Parameters "•"
I parameter will be the • character

Parameters "{Commands}"
I Enclosed in soft quotation marks, the

variable will be expanded
Parameters '{Commands}'

I Enclosed in hard quotation marks, the parameter
will be the strinq {Commands}

Parameters 'date'
I the output of date will be passed as multiple

parameters
Parameters "'date'"

t the output of date will be passed as one parameter •

..
..

152 MPW 3.0 Reference

(

Structured commands

Structured commands (listed in T2ble S-10) override the normal sequential execution of
commands. They can be iJSed interactively and within scriptS. They may be nested to any
depth, subject to a limitation on stack space. The entire structured command is read
before execution begins. All structured commands are built into the MPW Sheil.

A Wam.blg After the Shell "executes• an opening parenthesis or the opening word
of a Begin, If, For, or loop command, it will not e:cecute any
subsequent commands until a matching dosing parenthesis or End
word is encountered. While it is waiting for the end of the command,
the starus panel of the Worksheet window will contain the left
parenthesis character,(, or the command name. You can abort the
entire strucrured command by typing Command-period

The starus value for a structured command is the starus of the last command executed
within the strucrured command (e:ccepc for the Ex.it command, which lets you sec your
own status value).

Expressions (used in If, Break, Continue, and Exit) are defined later in this chapter.

c

c

CHAPTER 5 Using the Command Language 153

• Table S-10

(command ...)

Begin ... End

If... Else ... End

For ... End

Loop ... End

Break

Structured commands

Parentheses are used to group commands for conditional execution,
pipe specifications, and input/output specifications.

Begin
command. ..

End

Like parenthese.s, Begin and End group commands for conditional
execution, pipe specifications, and input/output specifications.

If e:rpression
command. ..

[Else If e::i:pressicm
command. .. J ...

[Else
command ... I

End

The command If ... Else ... End executes the commands foilo'Wing the
first ~'eSSion whose value is true (that is, nonzero and non-null). At
roost one of the lists of commands is executed. If none of the
commands is executed, If returns a status value of 0.

For name In word. ..
command ...

End

The command For ... End executes the enclosed commands once for
each word from the "In word ... • list For each iteration, a variable of
the fonn { name} represents the current value from the word ... list

Loop
command. ..

End

This command repeatedly executes the enclosed commands. The
Bre3k command is used to tenninate the loop.
Break [If e:xpression]

The command Break terminates execution of the immediately
enclosing For or Loop. If the expression is present, the loop is
terminated only if the expression evaluates to true (nonzero and non­
nuil).

(Continued)

..

154 MPW 3.0 Reference

• Table S-10 (Continued) Strucrured commands

Continue Continue [If e:r{Jre:SS~)h l
The command Continue terminates th.b iteration of the immediately
enclosing For or Loop and continues with. the next iteratiOn. If the
expression is present, the continue ts executed only iftne

- expression evaluates to true (nonzero and non-nulD.

Exit Exit [number] [If e:t:pression]

The command Exit terminates execution of the scrip< in which it
appeatS. If number is present, it is returned as the status value of the
script; otherwise, the starus of the last command executed is
returned. If the expression is present, the scrip< is terminated only if
the expression evaluates to true (nonzero and non-null). (You can also
use Exit interactively to terminate aecution of all previously entered
commands.)

The return charactetS in the command definitions above are significant; a rerum must
appear at the end of each line, as shown above, or it mu.st be replaced by a semicolon(;).

The following keywotrls are rerognized when they appear unquoted as the first word of a
command:
Begin For If El~e Loop End Break Continue Exit

The keyword "In" is recognized when it appears unquoted fol.lowing For; the keyword •If"
is recognized when unquoted following Else, Break, Continue, and Exit These keywords
are not considered special in other contexts and need not be quoted.

• Note: These keywotrls cannot be produced as a result of variable substitution or
command substirution.

You an apply conditional execution (&& and I I), pipe specifications (I), and·
input/output specifiotions (<, >, », ~. ~. !., and l:D to entire strucrured
commands (that is, to Begin ... End, If ... Else ... End, For ... End, and I.oop ... End, and to
commands within parentheses).

CHAPTER 5 Using the Command Language 155

The operator should appear folloVwing the End or cl~ing parenthesis. For example, you can
collect the output of a series of commands and redirect it as follows:
Seqin

!cho Good day
Echo Sunshine

End > OutputFile

rnpur/output specifications are discussed later in this chapter. Each of the structured
commands is described in detail in Part II.

Control loops

The For and Loop commands are used for looping.

The For ... End command executes the enclosed commands once for each word in the •In
word. .• • list The cwrent word is assigned to variable name, so you an reference the
current wotd by using the Shell variable not1tion {name}. For example,
For File In •.c

C "{File}" ; Echo "{File}" compiled.
End

The Loop command provides unconditional looping, so you'll need to use the Break or
Exit commands to .terminate the loop. You an use the Continue command to continue
with the next iteration.

For example, the script below runs a command several times, once for each parameter:
ttt Repeat - Repeat a command for several parameters ttt
t
t Repeat con=and parameter-

t Repeat command once for each parameter in the parameter
t list. Options can be specified by includinq them in
t quotes with the command name.
t
Set c:ind "{1} "
Loop

Shift
Break If {t} -- 0
<c:indJ ·u1·

End

In this ex3mple, the Shilt command (explained in the next section) is used to step through
the parameters, and the Break command ends the loop when all the pammete?S have been
used. Us~g the script Repeat, you could compile several C programs, with progress
information, using the command
Repeat 'C -p•· Sample.c Count.p Memory.c

..

156 MPW 3.0 Reference

1',,.------"--.:,\

\ ~1

(

Processing command parameters

In addition to the commands introduced in Table 5-10, there are several other commands
that are highly useful in scripts. You can use the following commands to display or modify
parameters:

Echo [parameters ... l

Parameters [parameters .. . l

Shift [number 1

Writes its parameters, separated by blanks and
terminated by a return, to standard output

Writes its parameters, including its name, to
standard output One parameter is written per
line, preceded by the parameter number in
braces and a space. A rerum is written following
the last parameter.
For example:
Parameter3 l 2 "3a 3b"
will output
(OJ parameter3
{ l} l
{ 2) 2
(3} 3a 3b

Renames the parameters by subtracting number
from the parameter number; that is, parameters
number+ 1, number+ 2, and so on are renamed
1, 2, and so on. If number is not specified, the
default vafue is 1. The variables Ill, {2} ... (nl, (it!,
!Parameters), and !"Parameters"! are all
affected. Shift does not affect parameter {01
(the command name).

See the Hints box "What Went Wrong."' in the previous section, "How Commands Are
Interpreted,• for some suggestions on using Echo and Parameters to troubleshoot
reluctant command lines. For an example of how the various strucrured commands can
work together, see "Sample Scripcs• at the end of tltis chapter.

Expressions

. Expres.s.iom are used in the If, Break, Continue, and Exit commands. They're also used in
the Evaluate command, which returns the result of an expression.

Table 5-11 lisrs the expression operators in order of decreasing precedence. Some
operators have more than one representation; these equivalent symbols are listed on a
single line. Groupings indicate operators of the same order of precedence .

•

CHAPTER 5 Using the Command Language 15i

• Table S-11 Expression operators in order of decreasing precedence

Operation Operator

. 1. (expr)

2. -

3 .•

4. +

5. <<
>>

6. <
<•
>
>•

7. --
!---
!-

8. I:

9, A

10.

Expression grouping

Unary negation
Bitwise negation

NOT ..., Logical NOT

Multiplication
DIV Division
MOO Modulus division

<> ;*

Addition
Subtraction

Shift left
Shift right

Less than
Less than or equal to
Greater than
Greater than or equal to

Equal
Not equal
Equal pattern (regular
expression)
Not equal pattern
(regular expression)

11. &a AND

Bitwise AND

Bitwise XOR

Bitwise OR

Logical AND

Logical OR 12. 11 OR

All operators group from left to right You can use parentheses to override the operator
precedence. Null or missing operands are interpreted as zero. The result of an expression is
always a string representing a ded.rna1 number. Relational operators return the value 1 when
the relation is true and the value 0 when the relation is false.

158 MPW 3.0 Reference

(

Logial operators: The logical operators !, NOT, ..,, &&, AND, I I , and OR interpret
operands of value O or null as false; and they interpret nonzero, non-null operands as true.

Numbers may be

• hexadecimal, beginning with either $ or Ox

• octal, beginning with zero

• binary, beginning with Ob

Every expression is computed as a 32-bit signed value. Overflows are ignored.

String operators: The operators ••, !•, •-, and!- compare their operands as strings. Ail
ochers operate on numbers.

+ Note: The {CaseSensitive} variable does not apply to the string operators.

Comparing text pattcrm: The·- (equal pattern) and!- (not-equal pattern) operators
are like•• and!• (which compare two strings), except that•- and!- are used for
comparing a string with a text pattern. The right side is a regular expression against which
the left-side operand is matched. For example:
If "{1}" !• /•.(acp]/

Echo Filename mu~t end with .a, c, or .p
End

+ Note: The regular expression in the above example must be enclosed in the regular
expression quotation symbols, I .. ./. See Chapter 6 for more information about regular
expression syntax.

If the regular expression contaim the tagging operator ®, then, as a side effect of
evaluating the expression, Shell variables of the form { ® n} containing the matched
substrings arc created for each tag operator in the expression. (For an example, see the
impl~ntition of a wildcard rename command under the description of the Rename
command in Patt II.)

•
•

CHAPTER 5 Using the Command Language 159

Use of spedal chatacters: With.in expressions in the If, Break, Continue, Exit, and
Evaluate commands, the following Shell operations are disabled:

• Filename generation
• Conditional execution (I I and &&)

• Pipe specifications (I)
• Input/output specifications(>, », t?, ~ <, !, and!!)

This allows the use of many expression operators that would otherwise have to be quoted.
In the case of If commands, the conditional execution or 1/0 specification should come
after the End word. For other commands that contain expressions, you can specify
conditional execution or VO redirection by enclosing the command in parentheses. For
example,
(Evaluate {l} + {2}) ~Errors

Redirecting input and output

All built-in commands, scripts, and tools are provided with three open files: standard
input, standard output, and diagnostic output (Figure 5-2). By default, standard input

· ~omes from the console (the window where the command is executed). Standard output
and diagnostics are returned to the console immediately following the command.

16o MPW 3.0 Reference

• Figure S-2

StandOrd
Input

Standard input and output

>.>>

Reso1.1ce Compiler
(Rez>

St~ndarC'
output

01aonost1c
output

You can override these default as.signments with the<,>, >>, ~. ~. L, and Li:
symbols described in Table 5-12. Note that input and output specifications are
interpreted by the Sheil; they are not pas.sed to commands as parameters. You can use
parentheses (or the Begin and End commands) to group commands for input/output
specifications.

• Table S-12 I/O redirection

<name
>name

>>name

Standard input is taken from name.
Standard output replaces the contents of name. The file name is created
if it doesn't exist

Standard output is appended to name. The file name is created if it
doesn't exist

Diagnostic output replaces the contents of name. The file name is
created if it doesn't exist

Diagnostic output is appended to name. The file name is created if it
doesn't exist

Standard output and diagnostic output replace the contents of name.
The file name is created if it doesn't exist

Standard output and diagnostic output are appended to name. The file
name is created if it doesn't exist

CHAPTER S Using the Command Language 161

Files and windows are treated identically;·. when given a name, the system looks first for an
open window. Input and output can also be applied to selections:
• § indicates the current selection (in the target window).

• name.§ indicates the current selection in window name.

From the point of view of a command running within the Shell environment, input always
comes from the standard input file and output goes to the standard output file. The
command doesn't need to know whether standard input happem to be text from a file, a
window, or a selection, or is typed in from the keyboard. For example, in the statement
Program > OutputFile

the string '> OutputFile" is interpreted by the Shell and is not passed as a parameter to the
comman~ process is completely invisible to the command.

VO specifications also apply to scriprs. The standard input, standard output, and
diagnostic output files provided to a script become the defaults for commands in the
script.

In addition to the sections later in this chapter, you'll find more on input and output in
"Standard VO ChaMels" in Chapter 12. .

Standard input

By default, standard input is supplied by typing text and pressing Enter, or by selecting
text that is already on the screen and pressing Enter. You can redirect standard input with
the < operator. Note, however, that most commands that read standard input also accept
a filename parameter. For example, the following two commands have the same result:
Catenate < Sample.c
Catenate Sample.c

The Alert command reads from standa.rd input if no mes.sage is supplied as a parameter to
the command, but Alert doesn't accept filenames as parameters. Thus input redirection is
the only way to awe Alert to read input from a file.
Alert Errors
Alert < Er:ors

t Display Alert box containing the word Errors
t Display Alert box containing the contents
I of the file Errors.

Many commands, including the Assembler and compilers, optionally read standard input
to allow input to be read from a pipe (I) or entered interactively, as explained in the next
section.

c

162 MPW 3.0 Reference

Tennin.atfng input with Command-Enter

Many commands read from standard input if no filename is specified. For example, if you
execute the command

the Assembler will begin reading from standard input-that is, you can enter text to
standard input, and the Assembler will process each line as you enter it

You can repeatedly enter text to a program that reads standard input by typing or
selecting text and pressing Enter. You indicate end-0f-file by holding down the Command
key and pressing Enter (or Command-Shift-Rerum). For example, after you execute the
command
Catenate >> (Worksheet}

the Catenate command will be running (its name will appear on the starus panel at the
bottom of the window). You can now enter data from the keyboard or select and enter
text from various windows, and all of it will be concatenated to the Worksheet window.
Pressing Command-Enter indicates end-0f-file and terminates the command.

• Power techniques using standard Input

There are many ways you eon save ttme and effort by running tools from
standard Input.

For example: Suppose you want to compose a flte from ports of other files-and
there are ten sections that you wont to use In your new flle. Normclly you'd
eut and poste ten times. However. you could also run Cctenote from standard
input with the command

Catenate >> MyComposed.File

While Catenate Is n.nilng, you ean open the different so1.1ee files. select the
desired sec1tona. and press Enter. Eaeh ttme you press Enter. that selection ls
appended to the tie MyComposedRte. When you have l!nlshed. press
Command-Enter.

Many 1lmea it's convenient to quickly type a few lines of eode In the
Worksheet and then lnteraettvely eomplle (or Rez. using the resource
eompller) those lines to test out syntax or examine compiler behcvlor. You'll
find that you ean speed up many tasks and Increase confidence with qulel<
tes1s by running tools lnteraettvely and using selections as Input. •

•

CHAmR 5 Using the Command Language 163

Standard output

By default, standard output appears in the window in which the command was executed
(that is, the console) im .. rr.ediately follo'1r.ng t..'le command. When commands are executed
from menus, standard output appears following the selection in the active window. You
can redirect standard output with the> and» operators. For example, the Catenate
command
Catenate Filel File2 > Combined.File

concatenates F"ue2 to F"tlel-but instead of appearing in the active window, output is
sent to the file named CombinedFile. If the window CombinedFile is open on the
desktop, its contents are overwritten. Otherwise, the file Combined.File is replaced (or
created if it doesn't exist).

The » operator appends standard output to the end of a selection, window, or file. If
che named file doesn't exist, a new file is aeated. For example,
Catenate S >> AFile

appends the contents of the current selection in the target window to AFile. (If the
command was entered in the active window, the current selection is the selection in the
target window.) You can also specify a selection in a named window:
Catenate Sample.c.S >> AFile

Diagnostic output

By default, a command's diagnostic output also appears immediately after the command,
interleaved with standard output The diagnostic output of commands executed from
menus appears following the selection in the active window. You can redirect diagnostic
output exactly as you redirea standard output, except that you use the operators~ (to
replace filename) and~ (to append to filename) in place of> and ». You may find it
useful to have all error reporting appear in a separate window set aside for that task. For
example, in Figwe 5-3, the Assembler has been run and error and progress infonnation has
been appended to a window called •Errors.•

..

164 MPW 3.0 Reference

0

• Figure S-3 Redirecting diagnostic output

• File Edit Find Mar1c:

HD:MPW:Wor1c:sheet

••• tn1:luctlri; 1«1:1'1'W:lnt.erf.:ii:tis:ftln1:l~:Q.llc:KE~.o
.•• cont1....,1ri; •I Ut ~le.o
..• ln1:luclini; l«l:l'PW:lnt.r-fca:.s:~ln1:h~:~.a
••• contl""I"' •IUt le.o
QJ I O<Df'ftl
Cl.CM.CATA
~
SHCIU'llCUTT'IE I fl..Oll
COCC &AG
~

! I ap9IMI t I•: 17. :50 MCOrlds.

Al!AMl\j ~··ta • NI _._. f....t. 4719 11-.

-------­. ~--

Often it ~ useful to redirect both standard output and diagnostic output to the same file,
using the summation operators ! (to replace fllaname) or!! (to append to filename).
The example used in Figure 5-3 might then be written in the Worksheet like this:
Asm -a Sample.a !.I Sa.mpleTest

Then both the output of Sample.a and ii! diagnostics, including any errors, would be
appended to a file named HD:MPW:AExamples:SampleTest

Pseudo-filenames

Pseudo-ffJen;ames ate a set of device names that you can use in place of filenames;
however, they have no disk files associated with them. Any command can open a pseudo­
fdename as a file. These device names are ~t comroonly used for I/O redirection.

Table 5-13 shows the available pseudo-filenames.

'

CHAPTER 5 Using the Command Language 16;

• Table S-13 Pseudo-filenames

Dev:Console Always refers to the current console device. The console is the default
source of input and the default destination of output-that is, the
active window where a command is entered and its output displayed.

Dev:Null Null device. If you read from Dev:Null, it immediately rerums end~f-
file. If you write to Dev:Null, output is thrown away.

Dev:Stdln Standard. input.

Dev:StdOut Standard output.

Dev:StdErr Diagnostic output

Pseudo-filenames are especially useful inside a script if you want to do something like
sending standard. output to the diagnostic output of the script. Here are some examples:
Echo "An error messaqe." >> Cev:StdErr
Echo "HELP !" >> Cev:Console

Oev:Null is useful in scripts when you want to throw away diagnostic output. For example:
Eject l ~ Dev:Null

This command ejects the disk in drive 1; if no disk is in drive 1, the script continues to run
siiently. (Note that you wouid al.so need to set !U.id to 0-see "Variables• earlier in this
chapter.)

Editing with the command language

Alroost all menu c:ommanm have equivalents in the cotmmnd language. In llX)St respects,
there is no diffcn:nce between the menu commands and their command-language
equivalents. The primuy difference is that with the cotmmnd language, you enter
commands in the active (frontmost) window, while an editing cotmmnd acts on a
selection in anocher window. You can explicitly name a window as a parameter to the
command. If you don't specify a window, the command acts on the t3rget window .

..
..

166 MPW 3.0 Reference

C"·
I

For example, to use command-language techniques to edit the file Sample.a, you must
first open that file, and then click on another window, such as the Worksheet window, to
make it the active window. You enter your commands in the active window, as shown in
Figure 5-4. When you select text in the active window, it's highlighted in the normal
Macintosh fashion. In other windows, selected tex: is indicatecl by dim highlighting
(outlining), as shown in the target window in Figure 5-4.

• Figure 5-4 Text highlighted in the active and target windows

• • Fiie Edit Find Marlr Window Project Dlncto~ Build

, .. ,,. HD:MPW:War1cshHt

HD:MPW:£MamptH:fl£Hemoles:Sample.a
~lelO, -<A?> fl le
; · CIPlll :• 0.UlerNCcwlelO>;
<"7>,,..,.,. .._ •V. •f e Oft
("7),•(117) , .. _....,.wC' ...
•<"7> lrwtal I Apple - in _... bar'

1,...UWMCCIPlll.,..,.,.., O>;
e•Ciil• ,•<fl?> Mf Dfl r-. to Apple _...
, AddlwC1eiMCCIPlll , 'DfM'' >;

... lf1
•fl lelD,•<"7> .

...... ,. •• - f-ol
flle

fl I....,.. :• Gli~(rl 1•10>;

Editing commands generally act on a selection. (The Find command simply creates a
selection-"DRVR• in this example.)

The 5 met2Character (Option-6) is the current selection character. It signifies the current
selection in a window. For example, the following command er3SCS froin the current
selection or imertion point in the t2rget window to the end of the window:
Clea~ 5:-

The infinity chmcter, - (Option-5), is a selection operator that indicates the end of a
- window, as described in Chapter 6. For interactive editing, press Command-Delete to

clear to the end of a file.

•

CHAPTER 5 Using the Command Language 16i

Defining your own men"!- commands

The AddMenu and DeieteMenu commands are for adding and deleting menu items. The
AddMenu command takes three parameteis: the menu name, the item name, and the
command text. For example,
AddMenu Find 'Top of Window/O' 'Find • "!Active}"'

This command adds a "Top of Window" item ro the Find menu, using the keyboard
equiwlent Command-U. When you select the menu command, the corresponding
commands are executed. (The Top of Window item moves the ~rti.on point ro the top
of the active window.) ,_

Invoking a user-defined menu Command is the same as entering the command text from a
window-variable substitution and command substitution are performed normally. Note,
however, that the text of the menu command is processed twice-once when the
AddMenu command i~Jf is executed, and again whenever the menu item is executed.
This m:ans that you have ro be especially careful in your use of quotation symbols. The
mysteries of quoting are explained earlier in this chapter in •Quoting Special Characteis, •
together with further AddMenu examples. You should also pay particular attention to the
section 9How Commands Are Interpreted.• For further information, and more examples,
see the AddMenu command in Pan II.

Sample scripts

The following examples use most of the Shell's fearures to illustrate how you can extend
the MPW Shell with your own commands.

"
"

168 MPW 3.0 Reference

C\
' '

"AddMenuAsGroup"

The following script acids an extra fearure to the AddMenu command:

t AddMer~ul' • .sGronp - AddMenu, qroupinq u"er defined menu iterr..s:
t
t AddMenuA,,Group [menuNa.me [itemName [command Jll
t
t AddMenuA,,Group duplicates the functionality of the AddMenu
t command, adding a disabled divider before the first user-
defined menu item:s in the File, Edit, and Find menus.
t
t1nalia"
Set Exit 0
Set Ca3eSensitive 0
If ((t} •• 3) AND ("{l}" ·­

OR "(l}" •- /Find/)
/File/ OR "(l}'" •- /Edit/ a

If 'AddMenu "{l}"' -- '""

End

AddMenu " (1 } "
End

AddMenu {"Parameter,,"}

.. (-"
t If this i3 the first addition
t in (l},
t add the qroup divider

When adding menu items to the predefined menus, it's useful to add a disabled dotted
line item to separate the new menu iterm from the original ones. The script above
automatically adds the separator before the fi.rst new item in the File, Edit, and Find
menus, the only predefined menus chat can be llXXiified by using Add.Menu. If you put this
script in a file named AddMenuAsGroup, the following alias will override the built-in
Add.Menu cemmand:
Alia" AddMenu AddMenuA3Group

•
•

CHAPTER 5 Using the Command L1.nguage 169

"CC"

The following script extends the C command by making it possible to compile a number
of specified files:

t CC - Compile a list of files with the C compiler
t
t CC (options •.] (file_J
t
t Note that the options and the files may be intermixed, and
t that all options apply to all the files. The individual C
t commanc:Us are echoed to diagnostic output as they are executed.
t
t1nalias
Set: Exit 0
Set CaseSensitive 0
Set options ""
Set files ""
Set exitStatus 0
Loop

End

Break If {#} •• 0
If "{l}" -- /-(diosu)/

Set options "{options}
Shift 2

Else If "{l}" -- !-•!
Set options "(options} '{l}'"
Shift l
Else
Set files " {files} ' (l} ' ,.
Shift l
End

For i in {files}

t options with a parameter
I. { l } I I { 2 } t "

t other options

C (options} "(i}" I I Set exitStatus l
End
Exit (exitStatus}

•

170 MPW 3.0 Reference

Chapter 6 Advanced Editing

MPW'S EDITING OPERATIONS ARE AVAIUJ3LE AS BUILT-IN COMMANDS, including
scriptable selections and the use of regular expressions. These commands enable
powerful find-and-replace functions and make it possible to automace edicmg
operations by using scripts.

Menu commands for editing are described in Chapter 3. The basics of routine
interactive editing are described in Chapter 4. For a full description of the use of
the command language, see Chapter 5. Appendix B contains a summary of
selections and regular expressions. •

Contents

Editing commands 173
Selections 175

Current selection (S) 178
Selection by line number 179
Position 180
Markers 180

Behavior of markers 181
Programmatic use of markers 181

Pattern 182
Extending a selection 183

Pattern matching (using regular expressions) 183
Character expressions 185
W'tldc:ud operators 186
Repeated instances of regular expressions 187
Tagging regular expressions with the ® operator 188
Matching a pattern at the beginning or end of a line 189
Inserting invisible characters 189
Note on forwani and back'w'ard searches 190

Som: useful examples 191
Transforming DumpObj output 192
F'tnding a woole word 193

Bulldozer 194

Editing commands

The command language contains editing commands that duplicate the functions of many
of the menu commands and provide additional capabilities. The eSting commands are
listed in Table 6-1. (They're explained in detail in Part II.)

• Table 6-1 Built-in editing commands

Adjust [-c cou~ (-1 ~ selection [windou.j

Align [-c coun4 sekctian [wina'ou,!

Clear [-c coun4 selection [windo~
Copy [-c coun4 sekctian [windou,i

Cut [-c coun~ sekction [wina'ou,!

Find [-c cou~ seieaian [windou.i

Format [option ... J [window ... J

Mark [-y I -n J selection name [windou,i

Markers [-q] (window l

Paste (-c cou1U} seiectian [windo~

Position [-c I -1 l [window ...]

Replace [-c cou~ selection replacemenl [windou,i

Revert [-y I [wmdow ... l
Target name
Undo [window I
Unmark name... window

Adjust lines in a selection.

Align text with first line of selection.

Delete selected text.

Copy selected text to the Clipboard.

Copy selected text to the Clipboard and
then delete the selection.

Find and select text

Set or view font name, font size, tabs,
and indents on specified windows.

Assign the marker name to the range of
text selection selected in window.

Print list of ail markers associated with
window.

Replace seiectian with the contents of
the Clipboard.

Display the position of the selection in
each specified window.

Replace seiectian with repl.acement.

Revert window to last saved state.

Make a window the target window.

Undo last command.

Remove the marker(s) name ... from the
list of markers available for window.

CHAPTER 6 Advanced Editing li3

If no window parameter is specified, editing commands act on the target wiJ:ldow,
which is the second window from the fronL Therefore, to edit the active window, you'll
need to switch to another window for entering your commands, or else specify the name
of the active window in the command line. (The Target command makes a window the
r.arget window; the Shell variables !Active} and fl'arget} always contain the full pathnames
of the current active and target windows.)

Most editing commands take the following parameters:

-c count

selection

window

You can specify a repeat count with the -c option; count is the
number of times the command should be executed. Count may also
be the infinity character, oo (Option-5), which specifies th.at the
operation should be repeated as many times as possible. ·

Most editing commands act on a selection, either the current
selection in the target window or another selection th.at you
specify. Filst, an implicit Ftnd is done to select the specified text.
Then the text is modified. The selection syntax is defined in the
next section.

The optional window parameter lets you specify the name of the
window to be affected by a command without changing the
position of the affected window.

A command nxxiifies the selection only if there were no syntactic errois in the selection
and if all regular expressions were matched. Commands run silently unl~ an error occuis.

~n addition to the routine editing commands incorporated in the command language,
MPW includes a number of tools and scripts that are useful for many specialized editing
tasks. Some of these are listed in Table 6-2. See Part Il for detailed information.

•

174 MPW 3.0 Reference

'I .. ,

"-. __ ./

(_/

("\
)

~ •.---'

• TabJc 6-2 MPW tools useful for editing

Canon [cption. ..] dictiorAryFi!e [ir.putFile ...]

Compare
Enrab [cption. .. J [file ...]
FileDiv [cption. .. l file

Line [numb?r 1
Matchlt [option. .. 1 [Window 1

RezDet [cption ... J resourcefi/e
TransJate [cption. ..] source [destinationj

Selections

Replace a file's identifiers witfl.
canonical spellings given in
dictionary Fi le.
Compare text files.
Convert runs of spaces to rabs.
Divide a file into several smaller
files.
Find specified line number in a file.
Match currently selected left
language delimiter with irs mate in
window.
Detect inconsistencies in resources.
Convert selected characters.

A selection is a par.a.meter to editing commands; it tells the command what text to select
A selection may be any of the following:

• A line in a file (se.!ected by line number)

• A ~ition in a file

• A marker
• A specific chancter pattern

• A seleaioa tba begins and ends with any of the above

Al an enmple of the selection syntax, consider the definition of the Find command:

Find [-C coun4 selection [windauj

Find takes a selection as an argument and selects the argument text (or sets the insertion
point). An actual command might rake the fonn

Find I ~hazam/

CHAPTER 6 Advanced Editing 175

This command finds and selects the first instance of the string "shazam" th.at appears
after the current selection. (The slashes are used to enclose a pa:tern, a special case of a
selection, as explained below.) No count is specified, so the command is executed once.
No window name is specified, so the command operates on the wget window.

Table 6-3 shows all of the selection operators. These are more fully explained in the
sections following the table.

• Table 6-3 Selection operators

Opcntot Type of seJecdoa.

Current selectloo.
§ Current selection in the target window (§ is Option~

on the keyboard)

Unc numbered selections
n Linc number n
! n Line number n lines after the end of the current

selection

Positloo. (lnscttioo. point)

Line number n lines before the start of the current
selection (i is Option-1)

• Position before the first character of the ftle (• is
Option-8)

Aselection

selection.A
selection!n
selectionln

Position after the last character of the file (- is
Option-5)
Position before the first character of selection (A is
Option-])
Position after the last character of selectton
Position n characters after the end of selection
Position n characters before the beginning of
selection

Pattern (clmxtcrs to be matched)
I pa:tmr/ Pattern (regular expression)-search forward (see

•pattern Matching,• below)
\pattsm\ Pattern-search backward
Extended selection
se/ectionl:selectUm2
marked selection name

Grouping
(selection)

176 MPW 3.0 Reference

Both selections and everything in between
The name of a marked selection may conta.in any
characters except
§ ! (• - A I\

Controls orel.er of evaluation

0

()

A formal definition of selections can be found in Appendix B.

All of ·the operators group from left to right, and evaluation proceeds from left to right.
The selection operators are listed below in order of precedence:

I and \ Everythiilg within slashes is t3ken as a regi.iJ:u expression and
is evaluated as explained below under "Pattern Maa:hing. •
Conuols the order of evaluation. ()

~
! and 1

Indicates position.
Indicates position (! • after; i • before).
Joins two selections.

Some examples will illustrate why it's important to pay attention to the precedence of
these operators:
4/beqin/!l means

. rather than
(4/beqin/) !l
~ (/beqin/ ! ll

That is, the insertion point is located after the "b" of "begin• rather than
after the •n.•

/beqin/:/end/!l means the selection /beqin/: (/end/!l)

rather than the position < I beqin I : I end/ l ! l

That is, the character after "end" is included in the selection, as shown in Figure 6-1.

• Figure 6-1 A selection specification

Fiie Edit Find Marte: Window Project

HD:MPW:Wortc:sheet

FiM /tl99in/:/ertd/!I
I

I It
I F clC ll • . clC ll • i ndow <> It 11.. THet
BEGllt

DiS!'OSeMI,,._ (J.11 tr<clCtl• .dCtlJ.11));
, • f • • • ltl .

•

CHAPTER 6 Advanced Editing

Current sdcctlon CS)

The ament selection character, § (Option-6), always indicates the current selection in a
window. If no window is specified, § indicates the current selection in the target window.
For example, consider the windows shown in Figure 6-2.

• Figure 6-2 Selections in two windows

ti File Edit Find Marie Window Project

= HO:MPW:Worlcsheet

.,,,.ect: Aec:t;
~ i "°°": ~ i noo.P tr;

B£GIH
IF CICtl*.CICtl~i"°°9 •HI~ nE!'f
BEGIH

Get.Port <S_..,..ort>;
~i..00. :• Getl'!...Uil'ldow<RR"clO<CICll >,~il,~OIHTER<-t>>;
• I ,,.,o..,eelt (~ j ,..,., ..)* u j l'l(!Qwi(1 l"ld . • <IC t I • CIC t I Re fl'lua . (sho9 ~

dCll" dCtlUif">doe • ;t.:11'd0! (let the d- ._qer 1<~0• too i
bsOj)QFo. : • l'ICXM!!!I (cpQroe) ·I
SetPort cs-ei>ort>;

Elie
ORUROp.,, :• l'IOEr?-;

ENO;

The command
Replace S On
would replace the current selection in the target 'Window with a single return (newline)
character. c-an· ~a special code for inserting a return-see •wetting Invisible
Cha!acters• bter in this chapter.)

Note that the cwrcnt selection is a dynamic quantity-it's determined by the last
subexpression evaluated and thus represenrs the current state of a selection as it's being
calculated. For example, consider the command
Find /if/:S!l:S!l

..
..

178 MPW 3.0 Reference

(')
~'

c

At variom points in the evaluation of the search string "/if/:§!1:§!1", the current selection
(§)has the following different values: ·

Before calculation
Afr.et "/if/.
After "/if/:§! i •

The pre-existing selection in the target window
"if9
All characters from "i.r to (anc.4 ind1.1ding) Lhc firs~
character after the "ir
All characters from "i.r to (and including) the first
two characters after the "i.r

Selection by line number

If you give a number unquoted by slashes as a selection, it is taken to be a line number.
This may be an absolute line number or a number of lines relative to the current selection.
For example, to selea line 3 of a file, you'd use the corrumnd
Find 3

This expression is equivalent to

Find 1 3 1

but
Find 3 or Find 1 3 1

is not equivalent to

Find /3/ or Find \3\

The exclamation mark and inverted exclamation mark (! and ~ specify the number of lines
after or before the current selection. Thm, the command
Find !3

selects a line that is 3 lines beyond the current selection. Note that the !n notation
specifies a line relative to the end of the current selection (that is, n lines past the line
conraining f A); jn specifies a line ~Jative to the start of the current selection (n lines
before the Line containing ~§).

..

CHAPTER 6 Advanced Editing 179

Position

A position is a special case of selection. Po.5ition means the location of the insertion
point Oflly. The .1 character (Option-J) is used to convey position relative to a selection.
For example, consider the commands
Find 3
Find A3
Find 3'1

The first Find command selects the entire third line in the target file. The Find A3 and
Find 3A commands place the insertion point at the beginning and at the end of the third
line, respectively.

You can also use the! and i operators to specify a position that's a given number of
characters from a selection: selectio1i n specifies a position n characters after selection,
and selection;. n specifies a position n characters before selection.

Note that this leads to two different uses of the ! and i operators, as in the following
example:
Find !4!4

The first "!4• indicates a selection that's 4 lines beyond the current selection; the second
•!4• indicates the position that's 4 characters beyond the end of that selection.

·You can specify other positions in a file with the following special notation:

• (Option-8) Position preceding the first character in a file
oo (Option-5) Po.5ition following the last character in a file

Markers

A marker ~ a selection that has been given a name. A marker may be used as a selection
variable. You can mark~ rmny selections and insertion points as you wish. You can create
markers directly by se1ec:ting text in a window and then dicking the Marie command in the
Mark menu. See "M2rk Menu• in Chapter 3 for lIDre information on the interactive use of
markers. This scaion desaibes the general behavior and programmatic use of markers .

..

180 MPW 3.0 Reference

Behavior of markers

Markers may be as simple as a position in a window, but more often a marker names a
range of positions. Markers have the special attribute of being able to remember their
assigned position(s) even when you're making editing changes all around them. For
example, typing before marked text has the effect of moving both the text and its
associated marker toward the end of the window. Editing "inside" the range of a marker
will either increase or decrease the range of the marker, depending on whether the editing
was an insertion or deletion, respectively.

Markers are "sticky: For example, if an insertion point is marked and you enter text at
that point, everything you type will be added to that marker.

If you delete the ten encompassing a marker the marker will also be deleted. For ex.ample,
if the string Tp." is deleted and the character ""(is marked, the Y marker will be
deleted. However, if the string ~ itself is marked as -y,· deleting the string -xyz· will
result in marker "y" being reduced to an insertion point.

Markers are associated with individual windows. When you switch between windows, the
Mark menu is updated to reflect the markers of the new active window.

Markers are persistent. They are saved in the resource fork of the file you are editing, just
like font, tab, and other infonnation about the window. However, markers are not saved
to the Clipboard. Thu.5, if you cut a marked region and paste it somewhere else, the
marker will be lost.

Markers are case sensitive. A marker named "Y" is different than a marker named -y. •

Programmatic use of markers

You can create or delete MarkeIS programmatically by using the following three Shell
commands:

Mark [-y I -n] se1edion name [windou! A.5sign the marker name to range of text
selection selected in window.

Markers (-q 1 [wtndtJw] Print a list of all markers associated
with windmu.

Unmark namr. .. window Reax>ve the markeI(s) name ... from the
list of markers available for window.

For ex.ample, to mark the currently seieqed ten in the target window with the name
"Function B" and to replace any previous marker of that name, you would type
Mark -y § 'Function 9'

..

CHAPTER 6 Advanced Editing 181

The new marker namie will appear in the Mark rrenu. You might remove the marker later by
using the Unmarlc command:
Un.mark 'Function B' "{Target}"

This command would remove that marker from the target window.

To use markers as selections, ~t type the marker name. For example,
Find qeorqe

For further details on the Shell comman~ for markers, see Pan II.

• Automatic Selecffon

You'll ftnd many ways to use markers for autcma1k: selections. For example. to
automo1k:ally select 1he output of o script tor a user. you could use o scnpt
slmllor to this:

Mark s~ x
Make
Find X

Pattern

#Mark the start of output
fRun your Make command
#Select the output of Make •

A pattern may be either a litetal text pattern or a regular expres.5ion (defined in the next
section). You specify a pattern between the/ .. ./ and\ ... \ delimiters. Forward slashes
indicate a searth forward, and backslashes indicate a searth backward. A forward search
begins at the end of the cwrent selection and continues to the end of the file. A backward
search begins at the start of the cwrent selection and continues to the beginning of the
file. For example, the command
Find /myStJ:inq/

searches forwml for the liter21 expression •rnystring. • (Recall that to specify case­
sensitive pattern nrrbing, you need to set the Shell V2riable {CaseSensitive}, or selea the
·ease Sensitive- menu item.)

182 MPW 3.0 Reference

C'·
/:

Extending a selection

A colon i.s wed to join two selections. For example,
Find /beqin/:/end/

This command selects •begin,• •end,• and everything in between. (See Figure 6-1.)
Compare this command with
Find /beqin~nd/

which looks for a begin-end pair on a single line.

Pattern matching (using regular expressions)

Regular expressions are a shorthand language for specifying text patterns. Regular
expressions are used in editing command,,, in the Search command (which searches one or
more ftles for occurrences of a pattern), and in If and Evaluate expressions following the
·- and !- operators. Most d the regular expres,,ion operators may also be used in filename
generation.

Regular expressions are always used within the pattern delimiters/ .. ./ or\ ... \.

• A special set d met2characrers, oiled regular expres,,ion operators, i.s wed in regular
expressions (and in filename generation). The regular expression operators are listed in
Table 6-4.

•

CHAPTER 6 Advanced Editing 183

• Tab.le 6-4 Regular expression operators

Opcntor

c

ac

I I

" "
? -
[character. ..]
[-,character ...]

regular&pr"
regularE:r:pr+
regularE:r:pr« n>>

Anycharactermatchesitse~(unlessirsoneofthe
special characters listed below)
Defeat the special meaning of the following character
(c is taken literally) except

an. return
at • tab
ar • fonn feed

Literalize enclosed characters
Literalize enclosed characters, except a, {, and '
Any single character (other than a Rerum)
Any string of 0 or roore characters that does not contain
a Return
Any character in the list
Any character not in the list (..., is Option·L on the
keyboard)
Regular expression 0 or more times
Regular expression 1 or roore times
Regular expression n times (« is Option·\ ; » is
Option·Shift-\)

reguJarE:r:pr« n,» Regular expression nor roore times
regularE:r:pr«n1, "?» Regular e:r:pression ni to 112 times
(regularE:r:pr) Grouping
(regularE:r:pr)®n Tagged regular expression (where 0 Sn S 9)
regularE:r:pr1 regular&prz regularf.:rpri followed by regularF.:r{rrz
• regularE:r:pr Regular expression at the beginning of a line
regularF.::pr- Regular expression at the end of a line
These char3ctcrs are considered special 111 the following circumstances:
a Special everywhere except within single quotation

•

-
I \
..,

184 MPW 3.0 Reference

marks(' ... ')
Special anywhere except within[...],' ... ', and~ ... ~
Special only after a right parenthesis,)
Special as the first character of an entire regular
expression
Special as the last character of an entire regular
expression
Special if used to delimit a regular expression
Special only after a left bracket, [
Special in brackets, except immediately following
a left ti'racket, [

.... \
1
'-·

(··. ·,

/

Their precedence (from highest to lowest) is as follows:

1. ()

2. ? - • + [1 « '
3. concatenation

4 .• -

A formal defutition of regular expressions can be found in Appendix B. The rest of this
section describes the use of regular expressions for describing selections.

Charadcr expresisions

In the simplest C3Se, regular expressions consist of literal ch.meters enclosed in slashes.
For ex.ample,
/what the ?/

Notice one complication, however: if the literal char.icter happens to be one of the
regular expression oper.itors (such as "?"), it will be specially interpreted r.ither than taken
as a literal ch.meter. If you w.utt to specify a literal char.icter that happens to have a
special meaning within the context of regulat expressions, you'll have to precede it with
the escape character, a, or enclose it in quotation marks. The ch.meter a has the effect of
•liter:tlizi.ng" the char.ieter that follows it For example, to find the literal expression given
above, you vrould use one of the following commands:
Find /what the d?/
Find /what the '?'/
Find /'what the?'/

You could al.so use double quo12tion marks, that is • ... • .

..
..

CHAPTER 6 Advanced Editing 185

W.lldard operators

In addition to literal characte:s, regular expressions can include the operators?, •
(Option-X), and [], which are used as follows:

? Any character other than a Return
= Any string not containing a Return, including the null string

(dm is the same as ? *)

[characterlisil Any charaaer in the char.lcter list (as defined below)
[_, characterl~ Any character not in the list

These operators are also used as wildcards in filename generation. (You can also use the*,
+, ?, •,[.. .},and« ... » operators in filename generatioD-See •Filename Generation" in
Chapter 5.)

A character list is an expression consisting of one or [JX)re characters enclosed in brackets
([...]). It marches any character found in the list The case sensitivity of characters in the
list is governed by the {CaseSensitive} variable. A list may consist of individual characters
or a range of characters, specified with the minus sign(-). For instance, the following two
command,, are equivalent:
Find /[ABCDEF]/
Find /[A-F]/

You can also mix the two norations:
Find /[0-9A-F$]/

• Note: This command specifies any of the charaaers O through 9, A through F, and
$. To specify the] or - character, place it at the beginning of the list or lir.eralize
it with the escape character, a.

The negation symbo~ '"" (Option-L), lets you specify any character not in the list For
example,
Find I [-.A-Zl I

This example specifies all characters e:rcept the letters A through Z. (To specify the ..,
character irself, place it anywhere in the list other than the beginning. or lir.eral.i1.e it by
preceding it with the escape cbaract.er, a.)

c

c

186 MPW 3.0 Reference

(

{',

Repeated lnst3nces of regular expressions

The asterisk character(*) matches zero or more occurrences of the immediately
pre~eding regular e:<pres.5ion. The plus sign (+) matches one or more occurrences of an
expres,,ion. For example, the command
Find /(0-9]+/

will find any string of one or more digits.

You can also specify an ~pres,,ion that occurs an explicit number of times by using the
« n» notation:
regular&pr-no Regular expression n times
regularE:r.pron,• Regular expression at least n times

. regularE:r.p,. n1, 112• Regular expression at least n1 times and at most "2 times

For example,
Replace -c: • I' '«4, »/ c7t

Th.is command finds any string of four or nx:>re spaces and replaces it with a tab.
(The -c: oo option sped.fies a repeat count of •infinity"; that is, it replaces all occurrences
of of the selection to the end of the document)

CHAPTER 6 Advanced Editing 187

Tagging regular expressions with the ® operator

The ® (Option-R) operator rags a regular expression between parentheses. This operator
. is useful with the Replace command, for example, in reformatting rabies of data. Consider
a table with two columns of numbers separated by spaces or tabs:

123 456
123 456
123 456
123 456
•• • and soon

The following Replace command switches the order of the two colwnns, which are
separated by one tab:
Replace -c • I ((0-9] +) ®l (Ot] + ((0-9] +) ®2/ '®2 ®l'

Translated into English, this expression means
c 0-9 J + Match one or mrc characters in the set V' to •9".
([0-9] +) ®l Remember that selection (the expression enclosed in

parentheses) as ®1.
Next, match at least one space or tab. (at]+

((0-9]+)®2 Then match one or mre characters in the set V' to ~ and
remember it as 112.

'®2 ®l' Finally, replace the whole matched string with what was
remembered as 112, a space, and what was remembered as ®l.

• Note: The quoration symbols are stripped off, as explained under 'Quoting Special
Characters• in Chapter 5.

After this sequence is executed, the table will look like this:.
456 123
456 123
456 123
456 123
•• • and soon

..

188 MPW 3.0 Reference

r\
·.·..)
~-/

(:/

Matching a pattern at the beginning or end of a line

In the context of regular expressions, the • meticharacter (Option-8) means that the
subsequent expression must be matched at the beginning of a line. For example, the
regular expression
/•main/

will match a line that begins with •zna.in• but not a line that begins with "space main". The
beginning of a line is either the fust character after a return or the first character of the
file.

likewise, the - meracharacter (Option-5) means that the previous expression must be
matched at the end of a line. The regular expression
/main•/

will match a line that ends with •mam• but not a line that ends with "ma.in space". The end
of a line is either the last character of a line prior to the return, or the end of the file.

Notice that • and - have another meaning within selections. Within a pattern, they
indicate the beginning and end of a line. Within a selection, they indicate the beginning
and end of the fik.

Inserting invisible chatacters

You can use the Shell escape character, o, to insert the folloWi.ng special characters in text:

an return
ot tab
of form feed

For IYX>re information on the escape character, see "Quoting Special Characters" in
ChaprerS.

CHAPTER 6 Advanced Editing 189

Note on fonrard and backward searches

Forward and backward sean:hes aren't always completely symmetrical. For example,
consider the command
Find /?*/

This command finds zero or more occurrences of any character other than a return. The
first time you execute this command, some range of chaacten will be selected if the
current selection is not at the end of a line. However, in subsequent invocations, the
selection will stick at the end of the line and only an insertion point will be left at the end
of the line. This is because the • metacha.acter matches zero occurrences and the search
starts with the character following the current selection-in this case, the insertion point
preceding a return. A .backward searth of the form
Find \?*\

will never stick at the beginning of a line. This is because a backward sean:h begins with
the fust character to the left of the current selection and so has the effect of jumping over
a rerum after encountering it

•
•

190 MPW 3.0 Reference

(f ____ \
\,___4

CJ

(

(

+ SoMng se4ectlon difflcuttl.es

Whet If a selection expression doesn't select what you Intended? Ask yourself

c:iuesttons like these:

• Am I quoting sPeCIOI chorocters?
For example, the . ('

chorocter Is speciol. If you ore searching for this character, then you
must use
·ac

• Do I remember the detlnlffons of speclol chorocters?
Review the special chorocter definitions In Appendix B.

• Are my precedence end usoge correct'?
Consider the slightly different syntax of these two Find commends:

Find • : /main/

This tells MFW to select ev6('fthlng from the beglmlng of the flle until the
tlrst occurrence of the word ·main"

Find /•main/

This tells MFW to select the next occurrence of the word ·main· ot the
beglmlng of a llne.

• Do the lndMdual pieces select what I Intended?
Break the dlftlcuit expression down Into smell ports. Try each port seporotely
to make sure thot It does what you wont. Then odd eoch new. tested port
to create more complicated expresaions. •

Some useful examples

This seaion shows some examples of the complex use of regular expression.s .

•

CHAPTER 6 Advanced Editing 191

Transforming DumpObj output

The DumpObj command, described in Pan II, formats the contents of an object file. This
example shows how to cran.sfonn a DumpObj listing, such as the following, back into valid
assembly code.

000000: 4EBA 06F8 'N • •• •
000004: 4EBA 04EA IN ••• '
000008: 3B7C 0014 FCC4 ' ; I '
OOOOOE: 2660 0010 '&m •• '
000012: 2653 '&S'
000014: OCSB 0000 I • (• • I
000018: 6600 0008 If• • • I
OOOOlC: 3AlB I : •

I
OOOOlE: 6600 0010 t f • • • I
•• • and soon

JSR
JSR
MOVE.W
MOVEA.L
MOVEA.L
CMPI. W
BNE
MOVE.W
BNE

*+$06FA
*+$04EC
J$0014, SFCC4 (AS l
SOOl0(A5),A3
(A3) ,A3
1$0000, (A3)+
*+$000A
(A3)+,05
*+$0012

6004282A
60042620

60042152

60042160

You could position the insertion point at the beginning of the code and use the following
Replace command:
Replace -c - /?«41»/ "otctt" t replace everything up to the

t instruction with 2 tabs

However, the previous command works only because DurnpObj happens to place the
instruction at column 42. The following example, by defining some Sheil variables, works
regardless of the exaa column layout:
Set hex "[0-9A-FJ«4,6»"
Set space "(ct]+"
Set chars "oo'?+oo'"

t 4 to 6 characters in the set 0-9 and A-F
t l or more spaces or tabs
t l or more of any character between a
t single quotes

Replace -c - /{hex}: ({space}{hex})«l,3»{space}{chars}{spacel/ "atctt"

192 MPW 3.0 Reference

Finding a whole word

The following example illustrates how you could fmd an exact march for a C identifier that
you had previously defmed in the variable {ident}:
Set tokensep "[-.a-zA-Z_0-9)" t a token separator is any character

t not in the set a-z, A-Z, , or 0-9
Set CaseSensitive l t set to "true"~the case of each

t character must match

The following F'md command is not quite right, because it selects not only the matched
identifier but also the token separator on each side of the identifier:
Find /(tokensep}(ident}(tokensep}/

The following Find command select.sonly the matched identifier. It accomplishes this by
adding 1 to the starting position of the selection (.6.selection!l), and uses that as the
starting point for a new selection that extends to the beginning. of the next token
separator:
Find 4/(tokensep}{ident}{tokensep}/!1:4/(tokensep}/

•

CHAPTER 6 Advanced Editing 193

• Bulldozer

If you are making a very large number of changes (such as scripted globol
replacements In a large nre). that nre·s memory may become fragmented. If this
happens. the rarely seen bulldozer Icon may replace your cursor. ihe bulldozer
tells you that MPW Is tTylng to dear more memory space tor yovt flle.

If you regain the regular cusor. you con clcse (save) the window and reopen
It. thus completely relnl11a11Zlng Its memcry area. If the bulldozer llngers It may
mean that your computer will be busy with this one script over the weekend.
To ovoid this problem. It Is better to reboot and modify your script to proceed In
stages so that you don't run out of Ille memory.

For example. let's suppose that you have a 10.ooo-llne nle that you wish to edit
with this script:

clear -c • I• I
replace -c • !"<"! •c•
These two formatting commands operate on each of the 10.CDJ lines In the n1e.
a total of 20.CDJ operations (assuming that each line was changed). Unless
you have a gigantic amount of RAM. this Is probably more wor1c 1han your
computer con comtortcbly handle. (Of course. you might also try to tree more
memoiy by fUming off MultlFlnder or Increasing MPW' s application area. but
doing so would help only a llttle In this case.)

If your Macintosh has S MB ot RAM. then you might be able to perform the first
10.CXO opera11ons of the first command without ever glimpsing the dread
bulldozer. In this case. modify the script so that otter the ftrst command the
script closes the window (thus automatlcolly saving the ftle) and reopens It to
continue with the next large operation:

clear -c • I• I
close -y {JtfyEdUWindoun
open -e { JAyEditWindow}
replace -c • /"("/ "["
Alas. what If the bulldozer appears dt.rlng the exeeu11on of the ftrst command?
First deduce at what point the bulldozer appeared (let's say somewhere well
otter the ftrst 4CXO llnet were c:hanged) and then modify yoi.z sc:tfpt to stop
processing ot regular Intervals. In the example that follows. the editing
operation s1cpl after 4000 operations. closes the window (fhus saving It
automa1tcaly), and reoperw It. Then the program ren.ms to the top of the nle
and resune1 edl1lng tor ano1her 40CXJ operations.

find•
loop

clear -c 4000 /• I
break if {starus}• O
close -y {JAyEditWindou.+
open -t {JAyEditWindou.+

end

194 MPW 3.0 Reference

• ..
..

C" ~

c

Chapter 7 Projector: Project Management

PROJECTOR IS A BUil.T·IN MPW PACIUIY FOR MANAGING PROGRAMMI~G PROJECTS of
any size. Projector makes 'it easy to keep track of the revision history of the files
comprising your progr.uns: who changed wha~ when, why, and other information.
You can use Projector to create experimental branches of a project and lare:­
remerge the successful efforts.

The syntax of all Projector commands is summarized at the end of this cha pre:-..
You can find detailed information and examples for each of these commands in
Part II. There are a number of Projector-spedfic terms defined throughout this
chapter; these terms can also be found in the glossary. ii

Contents

About Projector 197
Overview 1 '1/
Features 199
I.imications 200

Using Projector: A walk-through 201
Creating a new project 201
Checking in a revision 204

Project pop-up 206
User field 207
Info (question mark) button 207
Keep Re3d-Only, Keep Modifiable, and Delete Copy buttons 20i
Adding new fdes to a project 207
Touch Mod Date check box 208
Changing a revision's revision number 208

Locating a project 209

..
..

195

Checking out a revision 209
Checkout directory 212
User field 213
Task and Comment fields 213
Select Newer button 213
Selea All button 214
RC2d-Only/Modifiable buttons 214
Branch check box 215
Touch Mod Date check box 215
Checking out a particular revision 216
Info (question mark) button 216
Select Files in Name 216
Discarding changes 216
Using the CheckOut command 217

Creating branches 218
Merging branches 219

Retrieving infonnation 220
Comparing revisions 223

Components of a projea 223
Projects 224
Nested projects 226
Revision trees 228
Branches 230
User nam:s 230
Symbolic names 231

Project administration 234
Moving, remming, and deleting projects 234
Deleting revisions 235
Renaming a me in a project 235
F'tle organization within a project directory 235

CKID resowte 236
Projector icons 236

Icons Appearing in the Check In Window
Icons Appe2ring in the Check Out W"tndow

Projector command summary 238

..
..

196 MPW 3.0 Reference

236
237

About Proj«tor

Projector is a collection of built-in MPW commands and windows ttiat help prc~n.mmers
(both individuals and tea~) control and account for changes to ail the files
(documentation, source, applications, and so on) associated with a software
development project. Use Projector to coordinate changes among a team of
programmers and to maintain a history of project revisions. When you begin work on a
project, you select the appropriate project and check out the files needed just as books
are checked out from the public library-although in tttis case, Projector distributes both
read-only and modifiable copies of its •books.•

Projector requires the presence of MPW 3.0 and does not run ·outside MPW as either a
Macintosh application or desk accessory. The terms and concepts introduced in th.is
section are discussed in greater detail the the section ·components of a Project,· near the
end of tttis chapter.

Overview

During the evolution of a software development project, each team member invariably
makes numerous changes to the source and documentation files. Sometimes the changed
source files are alternative versions or experimental efforts; later you want to discard the
failed efforts and merge the best versions together. Projector is designed to substantially
ease tttis task by providing an easy-to-use yet powerful facility for file management that is
valuable to both the individual programmer working on a small project and to a team of
programmers working on a complex set of programming projects. Use Projector to
organize your mes into projects that can be stored locally on a hard disk, a 3.5-inch disk,
or remtely anywhere on the AppleTalk network.

A project is a conceprual entity for organizing files, analogous to an HFS directory. Once
within Pro;ector, each file becomes a rerislon tree. Each revision tree comprises the
entiie histcrial sequence c::i revisions and branches c::i a particular file. Any of these
revisiom may be opened for reading only or checked out exclusively by one user for

. mxiification. Figure 7-1 shows how three files might appear as three revision trees in a
hypothetical project The sequentially numbered circles represent revisions. Those circles
with letter suffixes are branches, which may in tum sprout their own branches and
subsequent revisions. The numbering scheme for revisions, branches, and revisions of
branches is explained in the section •Revisions" later in this chapter .

..

CHAPTER 7 Projector: Project Management 19i

• Figure 7·1

Revision Tree
tttename.a

A project suucrure

A Project

Revision Tree
fflename.b

Revision Tree
tflflname.c ·

·When you check out a •file• for modification you are actually checking out a copy of a
revision-usually the latest revision-from the file's revision tree. The revision you have
checked out appears in your HFS directory as an ordinary file named after its associated
Projector revision tree. When you check it back in, the •file• becomes the next revision in
its Projector revision tree.

When checking out a ftle for mxl.ification you can write a comment desaibing the
changes you're about to rmke (so ocher project use:s can see why you have checked out
the revision). Projector remembe:s that the revision is checked out and denies access to
anyone else attcmpdng to mxilfy checked out revisions. (Of course, you can always
create a new br2ncb off a checked-out revision.)

You can chcc:k the revision back into Projector at any time, although you would normally
check in revisiom as soon as your nxxlifications are complete and tested. Once your
revision is checked back in, the next sequential number is, by default, appended to its
name to identify its place in the revision tree. Tii.b revision is now available to anyone on
the team.

c

198 MPW 3.0 Reference

C\
j

(~:

Besides.supporting a single sequence of revisions to each file, Projector also allows
alternative revisions to be created This feature is called revision bta.11c.hiJJg. Branching
makes possible
• the modification of old revisions
• work on the same revision of a file by several progr.urimers simultaneously

• paralle~ experimental lines of development

See the section •creating Branches• later in this chapter.

Whenever you go through the simple check-in process, you are encouraged to document
all the changes you have made and the reasons for these changes. This allows the project's
current status and history to be easily retrieved by all team members. It's also extremely
handy when you have to go back through old revisions to find a problem or retrieve
something of value.

Projects may contain other projects, oiled subprojects. This last fact is of key
importance, beca~e it lets you break down large projects into subunits that can still be
accessed as a whole by those outside the immediate programming team. See "Nested
Projects" later in this chapter.

Features

Some of Projectors key capabilities are listed here:

• Projects and subprojects can be organized into a hierarchy.

• All revisions to a file are saved in the revision tree. Each revision is uniquely identified
by its filename and revision number.

• Nontext files as well as text files may be stored in the project

.Di. Importmt Be careful of. pro~ that may inadvertantly delete Projector's
'ckid' (that is, check IO) resources from files. When a program such
as Microsoft Wordn. saves a file, it deletes the file's • ckid • resource.
These resources contain the identification Projector uses to track
fdes. ~.

..
"

CHAPTER 7 Projector: Project Management 199

• Revisions made to text mes are stored in a compact format
• Access by multiple users is supported. Requests to modify the Project database are

controlled by user name on a per-project basis. AppleShare can be used to assign
privileges.

• A flexible naming facility allows revisions to be identified by symbolic name as well as
by filename and revision number. (See •symbolic Names• lacer in this chapter.)

• The entire history and starus of all revision trees in the project can be displayed
convenicndy and accurately. A data field for comments is saved with revisions,
revision trees, and projects. Projector also associates another data field, called Task,
with every revision of a file.

• Projector supports a command line incerl'ace so that you can embed Projector
commands in MPW Shell scriprs.

• A window-based incerl'ace is provided for convenient and easy browsing and access to
projects. Any or all Projector windows can be opened from rhe Project menu.
(However, not all command-line functions are supponed in the window interface.)

• ScriptS that compare and merge revisions are supplied in" (MPW} Script~:"

Umitations

Keep these rules in mind when using Projeaor:

• All files (revision trees) in a project must have unique names.

• There is no easy, integrated way to change a filename.

• Revisions cannot be arbitrarily deleted out of sequence. (See "Deleting Revisions"
lacer in this chapter.) ·

• Revisions to noncext files are not compressed.

• Commas are not allowed in ftlemmes.

• Symbolic mmes mu,,t not be hyphenated.

See -Project Admiaistcation• later in this chapter for information on ways to get around
some of these limi12tions.

..
..

200 MPW 3.0 Reference

c)

('~ ..• ·
"

Using Projector: A walk-through

This section r.akes you through each step of the principle operations of Projector,
demonstrating the functions of the principal windows. The conceptr a.1 ': or!Vnization will
become evident as you go through this hands-on tutorial.

First, you'll create a new project Next, you'll check a new file into the project you just
created. Finally, you'll mount the project Sample and check out revisions from the project
Utilities.

The concepts used here are defined in derail in the section 'Components of a Project" and
the summary sections following this walk-through. You can also find Projector terms in th.e
glossary.

Creating a new project

The simplest way to create a project is to use the New Project window. Follow these steps
to create a project called Test:

1. Double-click the MPW Shell icon to launch MPW and open the Worksheet

• Note: Make sure that the {User} variable is set to your name.

2. Type
Set User 'username'
Note that the Chooser user name will be used if it is available.

3. Set your directory to the Projector example folder by typing the following command
- in the worksheet:

Directory·"{MPW}Examples:Projector Examples:"

4. Select New Project from the Project menu. The New Project window appears. You can
display all cl the other Proiector windows in a similar fashion (see Figure 7-2) .

..
..

CHAPTER 7 Projector: Project M.anageme;it 201

• Figure 7·2 New Project window

•It ' . New Pro ·ect

=Maul Project Name:
la Projector EH11mples I user. Jeff Pem'-s-n---------J
c:::i sample

(Open J
,...-0-ri-ue~) [,...-E-.JP.-. c-1,

• New Pro ect comment:

f ~et.u Pro.1ec1 :t

5. Type the new project's name, Test, into the Project Name field of the New Project
Window.

6. You may add some descriptive information about the new project in the Comment
fie id.

7. Finally, click the New Project button at the lower right comer of the window. (If the
user name is not specified, the New Project button remains disabled.)

The New Project window should now look like the e:umple shown in Figure 7·3, e:xcept
that your name will appear in the User field.

..
..

202 MPW 3.0 Reference

("'

'"

c

• Figure 7-3 New Project window after creating a project

New Pro ·ect

c Meui : Project Neme:
I~ Projector EHemptes I•
O Semple ' New Pro ect comment:

(Oe>en)
,--0-11-L'e---.)[--[-JP-t:-1 --.

Tl'\1s ll"'OJ41Ct ~toorw o _,.,. of t .. t
suites for - ·~td Closs ~t•rwa"
pr"OCl..c t .

The left side of the New Project window is a list similar to that in the Standard File dialog;
it displays the Macintosh's HF'S file struaure. This lets you create a project anywhere in
the file system, either under an existing project or in some other directory.

You could also create the new project Test by using the command line

NewProjec:t Te~t

This creates a project named Test whose project directory, created by Projector, is
:Test:. Projector maintains all information regarding this project in the file ProjectorDB
within this directory. Nested projects will appear as folders within this directory. The
checkout directory is set to the current directory at the time of the check out. (See the
description of checkout directories later in this chapter.)

Test is automatically mounted for you and also becomes the current project. Test can
actually be an HFS pathname or, if a project is currently mounted, a Project pathname. In
either case, the name of the new project is the leaf of ~ path. If an HFS path is given,
that directory becomes the project directory for the new project. If a project pathname
is given, the new project becomes a subproject of its parent, as shown here:

NewProject SamplefFortran

This creates a new projea, Fortran, which is a subproject of the Sample project. If the
project directory of the Sample project were

"{MPW}Example~:Projector Example~":Sample:

then the project directory of the Fortran project would be

"{MPW}Example~:Projec:tor"Example~":Sarnple:Fortran

CHAPTER 7 Projector: Project Management

This command is equivalent to the previous example:

NewProject "{MPW}Examples:Projector Examples":Sample:Fortran

Since the project directory of the Sample project is ~{MPW}Examples:Projector
Examplcs:Sample", the Fortran project automatically becomes a subproject of the Sample
project.

When you roouru a project, all of its subprojects are roounted at the same time. See the
section ·components of a Projecr9 later in this chapter for roore information on project
directories and details of namL"lg conventions.

Checking in a revision

When you have finished modifying an existing revision of a file, you should check it back
into the projea. When you want to add a new file to a project, follow the same
procedure.

You can add comments to indicate the changes you've made. Projector will record the
date and time, as well as other information about the revision. The changes you have
made become pan of a new revision in the file's revision tree. (Of course, read-<>nly
revisions cannot be checked in because they do not contain changes and therefore cannot
create new revisions.)

When using the Check In window keep in mind that the HFS directory (displayed in the
list on the left side of the window) is similar to a regular Macintosh Standard File dialog
that displays the files and folde%3. The Check In window's list does not show files that are
not a part of a project unless you click the Show All Ftles box.

To check a new file into a project, follow these steps:

1. Execute the following command to create a simple new ftl~ that can be used in this
example:
Echo •a new file• > newfile

2. From the Prcject menu, select Check In. The Check In window appeais (Figure 7-4).

3. You must check the Show All rtles check box at the boaom left of the window to
select a new file because the list at the left side of the window, by default, lists only
revisions that belong to the current project.

4. Select the file •newftle• in the list at the left of the Check In window.

204 MPW 3.0 Reference

Ci

(\

,/

(--·.

_j

• Note: You can select several flies at once for check-in. Use shift-click co select
contiguous filenames by dragging. Use command-clicking to select discontiguous
filenames.

5. Type a comment inro the comment field of the Check In window. Whenever you
check a revision into a project, it is a good ide-" to add a comment describing the
changes you've made (or in the case of a new file, its purpose).

6. To check "newfue• in with an initial revision of 1 1.0" (the default would be •r), click
the Revision button. When the Revision Number dialog box appears, type "1.0" into
the Revision field, and then click the OK button. The Check In window should now
look like the example shown in Figure 7-4.

• Figure 7-4 Check In window
Check In

c= Maul Project: I Test
la Projector EHamples ! . user: Jef•f P-e-m-sn-.--------

c Semple
t::l Test

Taste:
~~~~~~~-::::====~ 

Reu: 1.0 ( Reulslon ... ] 
Check In comment: 
A .._ •• file ,,,_ t.N rP14 ,..,_ --· 
... k~. 

OTouctl mod date 

[E ( cnecx In l 
( \t:>IP.1:1 dll J ( l>t>l:'O J 
~ Show 111 mes i@i<••P read-only i 
~ :O ICHP modlfiablej 
llr11Je J ( E i<H t ) :a ~•l•t!_co~L_J 

7. Click the Check In button. 

Later, when you open the Check Out window, you will see that •newftle" has been entered 
into the project Test 

.. 
.. 

CHAPTER 7 Projector: Project Management 20; 



• Reeding tccns In the Check In window 

lhla Is o llst of S'T'IOll Icons that may appear In the Check In window's llst. 

D 

. .P 

i 

Read-only. The 1He Is a read-only Ille belonging to the current project. 

Modlfted read-only. 1he tile Is a mcdlfted read-only Ille {explained loter In 
this chapter) belonging to the curent projeet. 

The regular document Icon represenb a ftle that does not belong to any 
project. It Is visible only when Show All Files Is cheeked . 

The penc:I Icon means. that the HFS Ille Is checked out from the current 

project tor modlftectlon by the current user. 

The lode Icon means that the HFS file Is checked out from the current 

project tor modlftc:c11on by another user. 

Fiie belongs to a project other then current project. Appears only In the 

Check In window when Show All Flies Is cheeked. 

Modln<lble Ille belonging to another project (denoted by the 11ny plus 
sign In the lower-right comer). Appears only In the Check In window 

when Show All Flies Is cheeked. 

Corrupt • c:Jcid' resource {explained later In this chapter). Appears only 

In the Check In window when 5rlow All Files Is checked. • 

Each of the features of the Check In window is ~ below: 

Project pop-up 

Click on the sprojea:• field at the top center of the Check In window to select the current 
project. This 1' the project into which you will be checking rues. The HFS list (shown on 
the left side of the Check In window) will be updated to list the seleaed project's 
associated checkout directcry (if there is one) . 

.. 
.. 

206 MPW 3.0 Reference 

,.(-·-··,-:". 

u \ 
\"'-.,,."' 



c 

User field 

. The value of the (Userl variable is displayed here. The (Userl variable must be set in order to 
check in revisions. 

Info (question mark) button 

When you click the lnfo (question mark) button in the Check In window, the right side of 
the window displays Projector's current information on the selected file (that is, the 
contents of the file's • ckid • resource). The Check Out window also has an Info View. 
Figure 7-7 shows the lnfo View of the Check Out window. If you are checking in a new me, 
the Info View is blank because Projector has not yet created a • ckid • resource for it. If 
you are checking in a revision that W2S checked out for modification, you can roodify the 
Comment or Task fields in the Info View. These changes are saved in the revision's 
• ckid • resource. 

Keep Read-Only, Keep Modifiable, and Delete Copy buttons 

The default action after checking in a file is to leave you with a read-only copy. The three 
radio buttons in Figure 7-4 can alter this default The top button corresponds to the 
default; it leaves you with the read-only copy. Use the Keep Modifiable button to check 
in the file and still retain a modifiable copy. The Delete Copy button deletes- your copy of 
the file once it is successfully checked in. These last two radio buttons correspond to 

the ·m and -delete options of the Checkin command. 

Adding new mes to a project 

You add new files to projects by checking the Show All Flies check box in the Check In 
window (or by using the -new option of the Checkln command). When that check box is 
checked, all files in the current directory are shown. Any files not belonging to a project 
may then be selected and checked in. These files will be added to the current projea. 

CHAPTER 7 Projector: Project Management 20i 



A Wanililg If, for any reason, the 'ckia • resource of the revision is corrupted or 
renx>ved, then Projector will not be able to identify the revision, 
which becomes an orphan file, no longer belonging to any project If 
you still need to check the ftle in, nx>ve or rename your copy, cancel 
the c:hecl:-out of the revision that is damaged (see •Checking Out a 
Revision• later in this chapter), checlc out the revisiou again, and use 
the TransferCkid command to move the Projector information from 
the checked-out revision to your orphaned file. • 

In the Check In window, you can select a ftle only if it is currently checked out In other 
words, only the enabled filenames can be selected. This restriction means that only files 
that have been checked out for m:xiification can be checked in. In the Info View, all files 
are seiectlble so that you can ai1io get inf onnation on your read-only files. 

Touch Mod Date check box 

This check box appears on both the Check In and the Check Out windows. In both cases 
it lets you change the convention for time and date stlmping. In the Check In window, 
Projector's default is to leave the date and time of check-in untouched. Check the Touch 
Mod Date box to swnp the revision of the file that you are checking in with the current 
date and time, that is, the check-in time. 

·changing a revision's revision number 

Use the Revision button in the middle right comer of the Check In window to open a 
dialog box that allows you to specify the revision number for the revision you are about to 
check in. Besides enabling you to specify the revision number, the Revision dialog box 
also lets you create a branch. This is useful when you want to save your changes but not 
along the main ttunk of the revision tree. 

It is not possible to specify the mme of the branch that will be created . 

.. 
.. 

208 MPW 3.0 Reference 

Q . 

c 



Locating a project 

The set of mounted projects defines a set of project trees. This list tells Projector the 
names of tbe mounted projects and where their project directories are located. If a 
project is not in one of those trees, the project cannot be accessed. If a root project is 
moved or renamed (by changing its project directory), users must change their 
MountProject commands in order to reconnect to the project 

Use the MountProject command to see a list of currently mounted projects. 

Checking out a revision 

The simplest way to check out a revision is to open the Check Out window (shown in 
Figure 7-5) by selecting Check Out from the Project menu. You can al.so use the CheckOut 
conunand, as explained later in this section. 

Nonnally, when you begin work in MPW you first check out a revision for nxxiification 
from a Projector revision tree. The checked-out revision then appears in your directory as 
a regular HFS file bearing the filename of its Projector revision tree. When you check this 
file back into its project, it will be saved as the next sequential revision in its revision tree. 

• No~: The Check Out facility in Projector does not copy the actual data if you already 
have a copy of the revision that you are checking out For example, if you already 
have a read-only copy of revision 5 of file.c in hd:work: and you check out a 
modifiable copy of revision 5 of file.c into that same directory, Projector does not 
recopy the data of that revision. The • ckid • resource is updated to reflect the new 
check-out. 

Keep in mind that, unlike the Check In window, the list at the left side of the Check Out 
window lists the projea heirarchy, not HFS. 

A checked-out revision matches its corresponding checked-in revision in ail Mys except 
for the 'ckid • resource and optionally the modification date. By default, when 
checking out a revision, the rmdification date is set to the current time in order to trigger 
any makefile dependencies. This setting is needed to automatically trigger rebuilds when 
old revisions of source files are checked out You can override this default behavior by 
clicking the Touch Mod Date check box in the Check Out window or by using 
the -noTouch option to the CheqOut command. 

CHAPTER 7 Projector: Project Manageme:lt 209 



As pan of the check-out process, you can leave a comment describing the changes you 
plan to make. Other membeis of your group can then see what is being done to the 
checked-out revisions. This does not prevent anyone else from reading the revisions in any 
revision tree of a project, but it does prevent anyone else from modifying the same 
revisions at the same time. A!ri!r completing your 'WOrk, check your revision back in with 
Projector, and add a note describing any changes you have made (if you had not done so 
when you checked out the revision or if you want to nxxiify your initial comment). 

Follow these steJ).' to tJXlUnt the Sample Project: 

1. Click on the worksheet to make it the active window. 

2. Mount the sample project by typing this command: 
MountProject "(MPW}Examples:Projector Examples:Sample" 

3. Set the checkout directories by executing these commands: 
CheckOutOir -project Samplefcommancb "(MPW}Scripts:" 
CheckOutOir -project Samplefotilities "(MPW}Scripts:" 

This directs Projector to place files from these projects into the Scripts folder. 

4. From the Project menu, select Check Out 

5. Find the Utilities project in the Project list at the left side of the window, select it, and 
click the Open button. The Check Out window appe31'S as shown in Figure 7-5. 

• Note: The conttol at the left of the Check Out window is the Project list and works 
somewhat like a Standan:i File dialog, except that it displays only tJXlunted 
projects and the revision trees and revisions within those projects. It does not 
show HF'S directories. 

210 MPW 3.0 Reference 

Ci 
J 



(_~) 

c 

• Figure 7·5 
ID 

Check Out window 
Check Out 

Cyrrent Prg !ect 
I rm Utilities I 

Chectclnftct!ue 
~ CheckOutActlue -] 

Select Flies In Name: 181 Touch mod date 
I None I 

( C<ID< P.I C hP.1:11: out J 

IE (Che< IC Dut iJ 
( Select ell J . ® Reed-only j 

· O ModlfleOle : 

. ·--J~. Brn.n<_~_ .. J ( Select newer ) 

6. Choose the Modifiable radio button. 

7. Click the Select All button in the lower·left corner. This selects the !acest trunk 
revisions of all revision trees that are noc checked out for rrxxiification in the Test 
project (you have the option of selecting only individual revisions from the project). 

8. Click the Check Out button in the lower-right comer. 

• Note: You can automatically open a TEXT revision as you check it out by holding 
down the Option key while you click the Check Out button. 

Now you are ready to open and modify the revisions you have just checked out from the 
Utilities project. No one else can m:xilfy the specific revisions you have checked out until 
you check them back in by using the Check In window (or Chcckln command). 

The procedure for checking out nontext revisions is the same as the procedure for 
checking out text revisions. 

.. 

CHAPTER 7 Projector: Project Management 211 



• Recdng lccns in the Check Out window 

These vtsual cues may appear In the Chec:k Out window. 

A project. A similar. but larger Icon Is used In the Finder to represent ttle 
Projector08 tile. 

A Projector revision tree. Appears only In the Checlc Out window. 

'The regular document Icon represents an lndlvlduol revision currently 
avellable. It Is visible when an Individual revision tree Is displayed. 

When a project Is displayed (so that au Its revision trees ore listed). the 

pencJI Icon means that the latest revision of the main truik Is checked 

out tor modltlcaflcn by the current user. When an Individual revision 
wtthln a revision tree Is displayed (a llst of revtsons). the pencil Icon 
means that the particular revision Is ehec:lced out for modlftca11on by the 
currant user. 

i When a project Is dlsployed (so that all 111 revision trees ore listed). the 

Ioele Icon means that the latest revision of the main trur1'c Is checlced out 
for modlftcatton by another user. When on Individual revision within a 
revision tree fa displayed (a list of revisions). the lock Icon means that 

the particular revision Is checked out for revision by another user. • 

Here is an explanation of each part of the Check Out window: 

Checkout directory 

The •Check out to• field in the window's upper-right comer shows the direaory where 
checked-out revisiom will be pbced. Clicking the field displays a pop-up menu that gives 
you three choices: · 

. • The checkoui directory for the current project 

• The current dheaory 
• Acc5 to a Staodmi F'de dialog where you can choose any directory 

The directory that is displayed by default in the field is the check out directory for the 
current project (see CheckOutDir command) . 

• 
• 

212 MPW 3.0 Reference 

a 



User field 

The value of the {User! variable is displayed here. The {User! variable must be set in order to 
check out revisions. 

Ta,,k and Comment fields 

The Task and Comment fields are optional but it's recommended that you get in the habit 
of always stating your purpose. Use the Task field to let others know why you have 
checked out the revision. This information can help later if you have to review a long 
revision history to find something. 

The Comment field is intended to document the specific changes to a revision while the 
Task field could be used to relate different revisions, perhaps ac!'OS.l several files (that is, 
Projector revision treeS). You can change the purpose stated in the Task and Comment 
fields when you check the revision back in. 

For example, implementing a certain fearure might require several changes to each of three 
files. Each revision might have a different comment, but the tasks for all the revisions 
might say "Enhancement X. • The Task field makes it easier to look at the history of a 
projea and determine what changes were made to accomplish various tasks. 

To save a Task field across several revisions, selea the revisions in the list at the left of the 
window and type direaly into the Task field of the Check In window proper. Then click 
the Check In button to check in the selected files. To save a unique Comment field with a 
particular revision, first select that revision and then click the Info button. Type into the 
Info view's Comment field, click Save, and then click Done. 

Select Newer button 

Use the Selea Newer button to selea all the revisions for which the latest revision on the 
main trunk is not in the "Check out to• directory. Projector looks in the checkout 
directory to determine which revisions to compare against the project If you have a 
roodifiable file (or a file that is on a branch) in the checkout directory, then the 
corresponding revision trees are no< selected. In the case of nxxiifiable files, this is done 
to prevent checking out a file by overwriting a 1oodifi.able file. In the case of any files 
that you may have on a branch, Projector assumes that you Mnt to leave that file alone. 

+ Note: If you do have read-only copies of branches, then use the Select All button to 
ensure that you get the latest revision on the main trunk of every revision tree . 

.. 
.. 

CHAPTER 7 Projector: Project Management 213 



If you hold down the Option key as you use the Select Newer button, then revisions that 
are new to the project (that is, you don't already have a copy of them) will not be 
selected. 

The Select Newer button cannot be used when checking out revisions for mo<'.Jfication. 

Select All button 

If you are checking revisions out for imdification, the Select All button will select all 
revision trees whose ~t recent revisions are noc already checked out for modification. 
When checking out read~nly copies, the Select All button will select all revisions in the 
project. 

• Note: The two buttons Select All and Select Newer do noc acrually check out revisions; 
they simply make a selection in the Project list (the leftmost frame of the Check Out 
window). Only the Check Out buaon (the buaon in the lower-right comer of 
Figure 7-5) aaually checks out the selected revisions. 

Read-Only/Modillable buttons 

The two radio buttons at the bottom of the window specify read~nly or write-modify 
· types of revision check out. The default is to check out read-only copies. Everyone with 

access to the project can check out revisions for te3ding-only at any time; Bue if the 
revision is checked out for modification, no one else can check that revision out for 
modification. 

214 MPW 3.0 Reference 

Oi 
' 



( ...• 

~/ 

• ModlflcbWt read-only file 

On rare occasions you moy went to modify o read-only tile. For example. 
suppose you hove token o number of modltloble tlles home. You moy hove olso 
brought olcng cartoln read-only copies of n1es thot you did not expect to 
modify. However. once you get Into your wor1< o·r home you discover that you 
do. after oil. need to make changes In these nles In such on exceptional case. 
you con use Projector's ModlfyReodOnly command. In the Worksheet type: 

ModifyReadOnly filename 

You can now make changes to this reod-only tile exoc11y os If you hod 
checked It out os o modltloble tlle. with two except1CN: 

• Once It Is saved. the spec!ol modl1klble read-only Icon appears next to the 
tllenome In tne Project list. 

• Vv'hen you check o modified reod-only tile· bock Into Its project you will 
have no problem unless someone else hos modified the some revision. In this 
case you must manually merge the two versions. See "Merging Branches' 
later In this chapter for step-by-step Instructions. 

Obviously, the ModlfyReodOnly command Is Intended only as on emergency 
convenience; you should not routinely rely on It. • 

Branch check box 

Use this check box to create a branch. This control is enabled only when doing modifiable 
check-outs. If the file that you have selected is locked, then th.is check box will be 
selected automatically. See the "Creating Branches• section that follows this Ml.k-through 
for instructions on creating and merging branches. See the ·components of a Project" 
section for detailed explanations of branching in Projector. 

+ Note: You can selea dimmed files by holding down the Option key while you 
click the names. 

Touch Mod Date check box · 

· When the Touch Mod Date check box is checked, the revisions checked out (into the 
check out to directory) are touched, that is, the modification date is set to the date and 
time of check-out If the box isn't checked, the checked-out revisions have the same 
modification date as when the corresponding revision MS checked in. 

" 

CHAPTER 7 Projector: Project Management 215 



Checldng out a particular revision 

To check out a particular revision of a revision tree, first display the revision tree by 
selecting its filename and clicking the Open button (or you can simply double<lick the _ 
filename); You can then selea the revision you want. You can select several noncontiguous 
filenames by command<licking. 

ID.fo (question mark) button 

If you have selected an individual revision in the Project list, clicking the Info button 
overlays the right side of the Check Out window with the Info View, which is a display of 
the information pertinent to the selected revision. At this point you can edit the 
Conunent and Task fields. You can also get information about revisions that are checked 
out for modification or information about any other revision in the project · 

Select Files In Name 

Click on the Select Files in Name field to display a pop-up menu showing both private and 
public symbolic names, the private names appearing at the top, the public at the bottom. 
When you select a symbolic name, the project list at the left side of the window highlights 
all revision trees that correspond to the selected symbolic name. Click the Check Out 
button to check out all of them This makes it easy to select at any time just those 
revisions that comprise, for example, an alpha ~lease. 

• Note: If you manually change the selection after selecting a symbolic name, you will 
void the selection of the name. 

Dlscardlng changes 

To throw aw.ay any changes, use the Cancel Checkout button looted in the lower·right 
comer of the window just above the Check Out button. For exmple; if half the revision 
trees were xddem:ally checked out for roodifation, you could undo the mistake by 
simply cancdng their check outs: This button is also handy if you want to experiment or 
if you checked out a modifiable copy when you intended to make it read~nly . 

.. 
.. 

216 MPW 3.0 Reference 



Using the CbeckOut command 

Revisions can also be checked out wing the CheckOut command: 
Checkout file.c -m 

This will place a roodifiable copy of Sle.c in the checkout directocy of the current project 
You can change the checkout directory by wing the CheckOutDir command. If no project 
has been rmunted, or if fi.le.c does not e:cist in the current project, Projector reports an 
error. You can get a modifiable copy by wing the -m option; the default behavior of 
CheckOut is to distribute read~nly copies. 

There are several different ways to specify where checked~ut revisions should be placed. 
The rules for determining the directory are as follows, from highest to lowest precedence: 

1. The directory indicated if a nonleaf name is specified. 
2. The directory specified with the -d option. 
3. The checkout directory for the project (see the CheckOutDir command). 

For example: 
Checkout -d hd:MPW: file.c hd:work:defines.h 
Checkout hd:MPW:main.c library.h 

This Mt CheckOut will place a copy of flle.c in hd:MPW:ftle.c and a copy of defines.h in 
hd:work:defines.h. In this case, the checkout directory was not used. The second 
CheckOut will place a copy of main.c in hd:MPW:main.c and a copy of library.h in the 
checkout directory for the project. 

• A quick switch from Read-Only to Modifiable 

You can qulcl<ly check out tne ccttve (frontmost} window end change Its 
stcrus from reod-oniy to modlftoble by u:sing the CheclcOutActtve script found 
In the project 

{MPW}Examples:Projector E.xamples:Sa.mple:Utilities: 

Ukewlle. you can qUcidy checlc In modlftoble flies by using tne 
ChecknActtve script. • 

.. 
.. 

CHAPTER 7 Projector: Project Management 217 



Creating branches 

In addition to supporting a sequence of revisions to a file in a project, Projector also lets 
you create branches. Bra.nchc:; are altem~tive sequenc~ of revisions that are parallel to 
the main revision sequence. Branches may be used for 

• the nxxlification of old revisions 
• work on the same revision of a me by sevenl programme:s simultaneously 
• panllel, experimental lines of development 

You an create a branch off a revision during the check-oot or check-in process by 
clicking the Branch check box in the Check In or Check Out windows. 

Checking out a modifiable copy of an old revision creates a new branch (as shown in 
Figure 7-6'). When file.c is checked back in, it will automatically become Revision 2al. 

• Figure 7-6 A changing revision tree 

Revision Tree Revision Tree 
file.c Ule.c 

The following command will create a branch when checking in a revision: 
Checkin tile.c -b 

" 
' 

218 MPW 3.0 Reference 

\\\ 



() 

c 

In this eXample, the user did not need to specify a revision number to create a branch. 
The branch is autoimtically created off the revision that W"aS checked out. This is possible 
because Projector remembers which revision was checked out When a revision (obtained 
from revision x) is checked back in, it can create a revision in one of two places: 
• The next revision after .x, continuing on the same line 
• On a branch off revision :e 

Referring to Figure 7-6, you'U see that the user could not check in ftle.c as Revision 3al or 
Revision 5. 

The following command will create a branch and number the fust revision 2: 

Checkin file.c,2 -b 

If Revision 4 of ftle.c W"aS initially checked out, the preceding Checkln command would 
create Revision 4a2 (or 4b2 if Revision 4 already had one branch, and so on). 

Merging branches 

You can merge a branch revision with the trunk by using MergeBranch. You'll find details 
on this script in Part II. 

1. Make sure you have checked out the branch revision you want to merge. 

2. Execute the MergeBranch script on the file you want to merge. 
MerqeBranch file.c 

• 
• 

CHAPTER 7 Projector: Project Management 219 



Retrieving information 

Information retrieval is one of the most important aspects of any source file control 
system. Once again, there are two different ways to get information out of Projector: oy 
using the Projcctinfo command or by clicking the Question button in the Check Out or 
Check In window. The information that you can retrieve from a project includes 

• Project Jnfonutioo. 
c Author 

c la.st modification date of the project 

c Project comment 

• lc'rUion tree (file) Information 

c Author 
c Date original file was added to the project 

c la.st nxx:lification date of the revision tree 

c Revision tree comment 

• Rerision Information 

c Author 

c Task 

c Date the revision was created 

c Revision comment 

The Check Out window's Info View (see Figure 7-7) is designed to help you browse 
through the project, finding information about revision trees or individual.revisions. The 
command-line intedace can handle irore complex batch-type requests, such as •list all 
revisions, including commems, that Bob made to a particular file, Commands.• 

The script Co~ioos lets you compare two revisions side by side, highlighting the 
differences. Use ol this script is described at the end of this section and in Part II . 

.. 
.. 

220 MPW 3.0 Reference 

0 I 

) 

0 , 
' 



( 

(' 

• Figure 7.7 Revision information 

·• -_ 

Cyqent Prq lect 

llQJ Headers I 

Chee le Out/ Information 

• When Fiie Selected Show: 
®Latest Reulslon Info O File lafo 

; Name: shereOefs.l'I lieu: 6• 
! Owner: Peter Mac 
: Clleclced Out: Mon, Sep 25, 19aa. 3 os PM 

. T<t,I<: .~i"9 ,._ -.a t.,._ 
: L11tP.~~~~~·s < t>mnwnt: 
. ;"' fw ,_ ti,,pa bet on; ;,, tl\is file. 

!i 
'-===~:==:::::::::::' 
( '>P.f P.1:1 rnma ) ( Open J . "---------------_._"'-' 

( Ulew by ... ) O rn1er • (Done U Heuert) [ <,11111:') 

You can al.so retrieve information in the Check Out window, by selecting a subset of the 
project to view via the View By dialog (see Figure 7-8). 

• Figure 7-8 The View By filter 

Ulew by ••• 

I Reuisionf Author. I Peter Mee I 
:::::======~-::=======~ I Reuisionl Date: ]-[ l 

I Reulsionl Comment: I 
========================:::::::! 

Task: 

Neme: [ l ;-Re1J1sum' in Mme 
_______ ....,, 1 

0 Modlfteble 
ONewer 
0 Upd•t• 

Clear All 
( Cancel J 

l OIC , 

The View By di2log provides different ite~ 'With which you can filter the revisions in the 
list Only revi.1ion trees or revisions that match your criteria will. be displayed. To specify 
a filter, bring up the Vlew By dialog box and select the items that are important to you. 
You may specify these ite~: 

• The author of a revision tree or revision. All the authors knovm to the project will be 
listed in a pop-up menu. Selea the desired author from the list ... 

.. 

CHAPTER i Projector: Project Management 221 



• The ftle roodiBCation date or revision creation date. Type in the starting and ending 
·dates. The format is dd/rnm/yy [hh:mml:s,,] [AM I PMIJ. To specify •on or since a date, -
enter the stuting date in the first box, and leave the second box empty. To specify 
•before or on a date,• enter the ending dare in the second box, and leave the first box 
empcy. 

• File or revision comments. Type in either a literal string, or a regular expres,,ion in 
slashes (J regular e:rpression/). 

• Task comments. Type in either a literal string, or a regub.r exp~ion in slashes (such 
as: /regular e:tpres.rionl). 

• Name. The pop-up menu conta.im all your private names followed by the project's 
public names. Selca the desired name from the list You may also specify a relation to 
that name (for example, to list all the revisions since alpha). Select the desired relation 
from the pop-up menu next to the name. 

• Modifiable. Ust only those revisions checlced out for axxiifction. 
• Newer/Update. Ust only those revisions that would be checked out by using the 

corresponding option to the CheckOut command 

For the author, date, and comment items, you must specify whether each should be 
applied to revision trees or to revisions. 

+ Note: The cmplay of all the revision trees is affeaed unl~ you specify a "file• filter 
from the Revision/F'tle pop-up menu. 

For example, in Figure 7-9, the user has specified a ftlter to list all revisions in alpha, 
created by John Dance, on or after August 12, 1988, dealing with Bug 1222 

• Figure 7-9 The 'View Bf dialog with selection criteria 

I Reutston I 11ut1tor. 

I 11eutsionl D•te: 

Ulew bg ••• 

I Joftn D•nca 

I 1112111 1-1 
I 11euisionl Comment: :====================! Test: I 111ug,. 222/ 

Name: I alpha 11 Reulslons In name I 
0 Modlflalll• ( Cancel ) 
ONewer Clear.RH I J 0Update OK 

' 

222 MPW 3.0 Reference 

r·" 
\___/,; 



c 

The following Projectlnfo command is equivalent to the View By dialog in Figure 7-9. 
Projectinfo -a 'John Cance' -d ·~8/12/88' -t '/bug-222/' -n alpha 

Selecting a project displays information about the project (see Figure 7-7). Selecting a 
revision tree either displays the current state of the revision tree, that is, the status of the 
latest revision (see Figure 7-7), or it displays the revision tree information. Which is 
displayed depends on the radio buttons in the upper part of the window's information 
display (see Figure 7-7). Double·dick a filename to display its revision tree. The latest 
revision is selected by default, and its infonnation (status) is displayed. Selecting another 
revision displays its status. The Comment and Task fields are editable so that changes or 
additions can be made to old comments. 

Comparing revisions 

You can compare two revisiom by using the script CompareRevisions. You'll find details 
on CompareRevisiom in Part II. • 

1. Make sure you have checked out the branch revision against which you want to 
compare another revision. 

2. Execute the CompareRevisions script on the file you have checked out 

Components of a project 

This section explains in det3il how Projector works. Projector kee~ track of these 
components for each projett under its supervision: 

• Projects 
• Nested projects (subprojects) 

• The files (ievision trees) belonging to a project 

· • All revisions of C3Ch file (ievision tree) 

• The branches of each file (revision tree) 

• Names of every user creating or nxxiifying a ftle or projea 
· • Symbolic !13mes .. 

Each of these components is discussed in the sectiom that follow. 

CHAPTER 7 Projector: Project Management 223 



Projects 

A project consists of a project name, an author, some text describing the project, a set of 
revision trees belonging to the Prc>iect. and whatever subprojects the project may have, 
which are actually projects in their oWn righl The author is the person who created the 
project. 

ProjCC1S can reside locally on an individual user's disk, or they can be placed on an 
AppleTalk file server to facilitate access by multiple users. AppleSbare can be used to 
assign access privileges to various users. (Projector does not itself provide facilities for 
assigning access privileges.) 

Use the Projea command to set and show the current project. Projector assumes that all 
Projector commands pertain to the current project unless told otherwise. 

The project directory is the directory in which a given project resides. It is defined at the 
time the project is created. All revisions to all revision trees and all other Projector 
information are kept in the project directory within the project file, ailed ProjcctorDB. 
All users access the same ProjectorDB. Nested projects are al.so kept in this directory as 
subdirectories. (See •Nested ProjCC1S• later in this chapter.) 

Every user has a checkout directory for each project. This is the directory into which, by 
default, Projector places checked-out revisions. You can change the checkout directory 

. .by using the CheckOutDir command. 

Each user can select one or more projCC1S for access by using the MountProject command. 
Selecting a project makes it and all its nested projects (subprojects) accessible to the 
user. You can reioove projCC1S from the root project list with the UnMountProject 
conunand. The MountProject and ChedcOutDir conunands allow individuals to 
customize their own project nam: space. 

It is easy to check out one revision into ax>re than one directory by changing the 
checkout directory with the CheckOutDir command or by explicitly specifying the 
directory with the -d option. This makes it C3SY to look at an old revision of a file or to 
compare the differences between revisions. 

This flexibility of the CheckOutDir conunand might inadvertently 
ause problem. during check-out because the roodifl2ble revision 
might not be in the usual checkout directory. • 

• 
• 

224 MPW 3.0 Reference 

Q 

c 



( •, 
'· 

/ 

Typically; the UserStanup file, a script, or AddMenu contains a series of MountProject and 
CheckOutDir commands that coMects users to a set of projects. Simply mounting a 
volume does not give you access to the projects that are contained on that volume. This 
would be undesirable since many projects may not be of interest to every user. 

• Figure 7·10 Sample project check-out configuration 

File Server 

Bob's Hord Disk 
CJ 

I<): 

CJ 

Bob's Checkout 
Directories 

,CHAPTER 7 Projector: Project Management 225 

. :·: : : :<:. : ·. ;~ 

:·: 
. ···::; 



The location of the project directory is the same for everyone, but the checkout directory 
can be different for each individual. For c:ample, Bob and Perer both access the 
Commands project, but they have different checkout directories (see Figure 7-10). When 
Peter checks out files, they go by default to Ram.bo:work:Commands. Bob's files, on the 
other hand, go to hd:MPW:Sample Project:Ccm.1r~nds:. 

Peter's UserStutup could contain the following commands: 
MountProject FileServer:Projects:Sample:Commands 
CheckOutDir -project Commandsf Rambo:work:Commands 

Bob's could contlin 
MountProject FileServer:Projects:Sample: 
CheckOutDir -project SampleJ fthd:MPW:Sample Projectft . 
CheckOutDir -project Samplefcommands "hd:MPW:Sample Project:Command~" 
CheckOutDir -project SamplefUtilities hd:MPW:Utils 

(See the MountProject and CheckOutDir commands in Part II for roore information and 
examples.) 

Projecter provides two ways to specify the current project, that is, the project a 
command will affea. The older of precedence (from greatest to least) is 

1. Use the project spedf'ied on the command line with the -project option. 

2. Use the current project specified by the Project command If you set the current 
project to the name of a particuJar project, then you don't need to specify that 
project with every succeeding i.ise of a Projector command. The current project is thus 
analogous to the current directory of the Directory command. 

If Projector cannot determine the current project, an error is reported and the command 
is aborted. In the Check Out window you select the current project in the Project list, just 
as you would select a file in a Standard File cfjajog box. In the Check In window, click on 
the •project:9 in the upper-left comer to display the Project pop-up menu. 

Nested projedl 

Projector suppora nested projects, aha C3J1ed subprojects. A series of related projects, 
such as the enmple pro;ects found in the Examples folder of MPW, can be configured as a 
hiel2rChy of projects. People can then access the project structure on any level they 
choose, much in the same way people use HFS (see Figure 7-10). See Figure 7-11 for a 
sample project hierarchy. 

.. 
.. 

226 MPW 3.0 Reference 

c ) -



c 

c 

• Figure 7·11 A sample project hierarchy 

Sample/ 

In Figure 7-11 the Sample projea ~the highest level project, that is, it does not have a 
parent projea. Projects are represenr.ed as circles, and revision trees (that is, files with ail 
their associated revisions) are represenr.ed as smaller boxes. Just as you can IOOUnt several 
volumes, you can also roounc several projects. However, Projecter does not allow root 
projects to have identical names. In Figure 7-11, axxmting the Sample project gives you 
acces.s to all the projects in the project tree. 

Projects are named nruch in the same way as directories, except that the integral character 
( f ), obWned by pressing Option-B, is used as the name separ.1tor. Projector requires full 
Projea pathnames at all times. Partial pathnames are not supported. Use of the integral 
character at the end of a project path is optional. 

• To avoid confusion with HFS pathnames, Projector does not use colons as 
project pathname separators. Some commands, NewProject for instance, 
accept both HFS and projea paths as parameters. Because the separators are 
different, there is no confusion as to what the parameter represents. 

• Integral charaaers ( I) are not allowed in Projea names for the same reason 
that colons are not allowed in HFS paths . 

.. 
.. 

CHAPTER 7 Projector: Project Management ,.,.,. __ , 



Revision trees 

When a file is added to a project, it fotrn.5 the first revision of a new revision tree. The new 
revision tree bears. the original file's name. F.ach revision tree in a project consists of the 
follov.-ing compoGents: 

• Anarne 
• An author, the person who added the original file to the project 
• A comment describing the revision tree 
• A record describing the curre:.1t state of the revision tree, that is, who has checked out 

the revision tree and all of its revisions 
• The set of revisions and branches of the original file 

Projector can be used with all types of files, such as TEX!', OBJ, APPL, application 
documents, and so on. The only difference between text files and nontext files is that 
revisions to nontext files are not compressed, and they cannot be automatically opened 
at check-0ut time. Otherwise, there is no distinction between text and nontext files. You 
can check out read-0nly copies of nontext files, or check out any such revision for 
modification and then check it back in as a new revision. Revisions of nontext files can 
also be named and deleted. 

Each time a programmer checks in an updated copy of a revision, a new revision is 
created. As changes are made and the number of revisions grows, a revision tree fornl5. 
The revision tree traces the history of the file. By accessing various portions of this tree 
you can retrieve, inspect, and compare any of the previous revisions of a file. Projector 

·also allows old revisions to be deleted when they are no longer of interest, provided that 
you delete all old revisions prior to a selected revision. In other words, arbitrary deletion is 
not allowed. 

Once a revision is checked out for modification, it is locked, thus preventing a second 
modifiable copy of that revision from being checked out at the same time. You may 
check out a read-only copy of the locked revision. 

However, it is possible to check out a modifiable copy of another revision. If you insist 
on checking out a revision that is already locked, Projector creates a branch for this new 
copy. You an later merge the changes to synchronize the file. Figure 7-12 shows a revision 
tree with br.lllchcs and revisions of branches. 

Each revision in a revision tree contains the following identification: 
• A revision number 
• A creation date 
• A Comment field describing the reason for the revision 

• A Task field describing any specific tasks undertaken or any other information 
• The author of the revision • 
• A copy of the revision itself (compacted in the case of TEXT files) 

228 MPW 3.0 Reference 

,r~. 

l~/J 



(~ 

• Figure 7-12 A revision tree 

Revtsion Tree 
flte.c 

Revisions are normally identified in numeric order, that is, 1, 2, 3, ... , 99, 100, 101, and so 
on. However, you can use major/minor numbering instead, that is, 1.1, 1.2, 1.3, ... 1.99, 
1.100, 1.101, ... 2.1, 2.2, and so on. When a new revision is checked in, Projectar will 
automatically increase its revision number by 1, for example, from 4 to 5, or 4.9.2 to 4.9.3. 
You can override this action by specifying a different revision number. The only 
restriction is that th.is new number must be sequentially greater than the revision that was 
checked out Here's the syntaX for major/minor numbering. 

Revision Numbers: Ma]Or[. Minor .. .! 

To specify a particular revision in a command, append a comma followed by the desired 
revision number to the end of the name. In other words, file.c,3 refers to revision 3 of 
file.c. (Remember that commas are no< allowed in project filenames.) The first command 
in the following example checks out the latest (current) revision of file.c. The second 
command checks out revision 3 of file.c regardless of what the current revision is 

Checkout file.c 
Checkout file.c,3 

The following command checks in file.c, forcing the revision to ·4.1: 

Checkin file.c,4.l 

This cormnand ~legal only if the revision that was checked outwas less than 4.1-for 
example, 4, 3.9, 4.0.9, or 2, and so on . 

.... 
.. 

CHAPTER 7 Projector: Project Management 229 



Branches 

In addition to supporting a sequence of revisiom to a file in a project, Projector also lets 
you c~te brar.ches. Branr.hc:: are a!t.cmative sequences of revisions th.at are parallel to 
the main revisiuu sequenct. 

In Figure 7-3, Revisiom 1, 2, 3, and 4 form the main trunk of file.e's revision tree. 
Revisiom that are not on the main trunk form branches. These branches can be easily 
identified by the alphabetic charaaer embedded in the revision number. For example, 
you might check out ~ion :Z cf a me and check it back in as Revision 2al, instead of 
Revision 3. This would begin the new sequence, 2al, 2:a2, 2a3, and so on. A second branch 
off Revision 2 would create Revision 2bl. Revisiom off branches follow the same default 
numbering scheme as revisiom on the main trunk, 1, 2, 3, and so on. However, you can IJ5e 

major/minor numbering, with an arbitrary number of minor components. 

When specifying a revision, a name such as ftle.C,2a denotes the Latest revision on the •a• 
branch of Revision 2. II there are two revisiom, 2al and 2a2, then Revision 2a2 is used. 

To refer to particular revisiom when ~ing the Check Out window, double<lick on a 
filename to display its revision tree. You can then se.lea and act upon the individual 
revisiom-to check out a particular revision of a file or get information about th.at 
revision. To i.nte!2ctively check in a file with a particular revision, click the Revision 
button in the Check In window. This displays a small dialog that lets you change the 
number. 

User names 

Most Projector commands require a user name ro keep track of who did what. These 
commands report an error if oo user is specified. Projeaor reserves the S~il variable 
{Userl as a place ro maintain the current user name. The MPW Shell initi2li1.es the {Userl 
variable at launch time to the User Name field in the Chooser. When you use Projector 
interactively, via·its windows, the cum:nt value of {Userl appears in the User field. On the 
command line th= a.re two ways to specify the c:utient user. In their order of precedence 
(from greaa ro le2st), they are 

1. Use the name given on the command line (via the -u option) 

2. Use the name given in the {Userl variable. 

• Note: User privileges should be handled by AppleShare. Because AppleShare 
determines privileges when a network volume is initially rrounted, changing the {Userl 
variable will not change the access privileges to tho.5e corresponding to the new ~er . 

.. 

230 MPW 3.0 Reference 



Symbolic names 

Projector supports a general-purpose naming facility, NameRevisions, that allows project 
users co easily specify revisior trees, versions, and branches within a project. Using 
NameRevisions you can create a narne that symbolically represents a set of files almost 
anywhere Projector acceptS a set of files. For instance, you could use a name co specify 
the •tatest revisions of' a set of files that are checked out regularly. You could also use a 
symbolic name co specify the •alpha version• that labels a set of the revisions that can be 
used to build an alpha version. 

Names arc specified by the project user. These resttictions apply: 
• The first character of a symbolic mme Name cannot be a digit (Q-9). 

• Commas are not allowed anywhere in a name. 
• Greater-than or less-than symbols ( < , .S , > , ~) are not allowed anywhere in a name. 
• Dashes ( - ) are not allowed anywhere in a name. 
• Names are not case sensitive. 
• Names are kept on a per-project basis and can refer, at most, co one revision per 

revision tree in that project 

For example, the following conunands create the symbolic name Work for three revisions 
that you always check out together. Thereafter you need only check out Work. 
NameRevi=ion= Work file.c file.h library.c 
Checkout Work 

Projector cannot create symbolic names by using the Set command and the existing Shell 
variable mechanism for these reasons: 

• Names can refer to only one revision per file. Shell variables are arbitrary text macros, 
so this resttiction could not be enforced. 

• Names are kept on a per-project basis. In Projector the scope is the current project. 
In the Shell, scope i.1 based on nested scripts. · 

• Names do not need special delimiters ( ( and } ) to be recognized, unlike Shell 
variables, which do require delimiters. · 

.. 

CHAPTER 7 Projector: Project Management 231 



By default, names are expanded to the revision level when they are defined, not when they 
are used. Alternatively, by u,,ing the -dynamic option, the names will be expanded to the 
revision level when they are used, not when they are defmed. In the above example, the 
name Work has expanded to the latest revisio~ of the three revision trees at the time 
Work was defined. This means chat the revisions that Work implies will never change as 
new revisions to th~ revision trees are aeated. You can also explicitly bind a name to a 
revision (even while u,,ing the -dyDa.mic option) by including the revision number at the 
time of definition. lb.is example illustrates the differences: 
NameReviaions Work file.c file.h library.c 

is equiwlent to 

NameRevisions Work file.c,6 file.h,3.5 library.e,7 

where the specified revisions are the latest revisions of the respective revision trees at the 
time Work was defined The -dynamic option allows you to postpone expanding 
revisions to the revision level until the name is used For example, 
NameRevisions -dynamic Work file.c,4 file.h,3 library.c 

may be equivalent to 

NameRevisions -dynamic Work file.c,4 file.h,3 library.c,S 

at one time, and equivalent to 

NameRevisions -dynamic Work file.c,4 file.h,3 library.c,21 

at a· tater point in time. 

Names are recursively expanded until no further expansion can occur or until a comma is 
found For example, given the following names: 
Na.me!tevisions defs.h defs.h,l.l 
NameRevisions fila.c file.c,2.0 
NameRevisions -dynamic Work file.c defs.h,2.l library.c 

this. CheckOut command, 
Checkout Work 

expand,, to 

Checkout file.c,2.0 defs.h,2.1 library.c 

Became an C%plic:it tension was specified for defs.h in the definition of Worlc, the 
expansion of defs.h to defs.h,1.1 does not occur. 

232 MPW 3.0 Reference 



·. 

Names are particularly useful when working on a branch. For example, suppose you are 
designing a new algorithm in file.c and want to implement the algorithm on branch 4a of 
file.c. By defuling this name: 
NameRevisions -dynamic file.c file.c,4a 

you can automatically check out and check in the latest revisions on the 4a branch. 

The command 
Checkout -m file.c 

checks out a modifiable copy of the latest revision on the 4a branch of ftle.c. You can 
override the name simply by specifying a particular revision along with the name. 

The command 
Checkout file.c,3 

checks out revision 3 of file.c, regan:ile~ of any names. Because an explicit revision was 
given, no name expansion occurs. A comma with no subsequent revision number denotes 
the latest revision on the main trunk of the revision tree. 

The command 
Checkout file.c, 

checks out the latest revision on the main trunk of ftle.c. If ftle.c has not been defined as 
a name, the comma at the end is unnecessary. 

Names can be defined reOJrsive!y in a project tree. Going back to Figure 7-10 as an 
example, suppose Bob w:mted to freeze the current state of his projects and name the 
current version Release 1. Then the command 
NameRevisions -a -r -project Sample "Release l" 

would create the name Release 1 in each of the projects. This name would thus expand to 
the latest revisions when the name was defined. 'I'lm command is equivalent to the 
following: 

NameRevisions -project Sample/ "Release l" -a 
Na.meRevisions -proj•ct Sampleicommands "Release l" -a 
NameRevisions -project Sample/Utilities "Release l" -a 

Both public and priwte (the default) names are supported. Public names are visible to all 
· members cl the projea. local names are visible only to the individual who created them. 

Local names can be declared in the UserStartup file by using the NameRevisions command. 
Public names are stored with the project itseJf. 

' 

CHAPTER 7 Projector: Project Management 233 



Project administration 

The administrative duties for projectS under Projector are very simple. Anyone who has 
write access to the projea (under AppleShare) can administer the project. 
Responsibilities include 

• moving, renaming, and deleting projecrs 

• deleting old reWiions that are no longer needed 

• renaming a file in a project 

• deleting files that do not belong in the project 

Moving, renaming, and deleting projects 

You can move or rename a project by using the Finder or the regular MPW commands. 
Simply renaming the projea directory will rename the project 

No other Finder or MPW operations are allowed on project directories. 

There are two points to keep in mind when moving or renaming a project: 

.. When you move or rename a project, the project hierarchy changes; · 
MountProject commands must be modified to reflea the location of the 
project. 

• It is highly recommended that projects be moved or renamed only when no 
revisions are checked out for modification, and that after the project has 
been changed au read-only copies be checked out again. This is 
recommended because Projector puts the project name in the resource forks 
of reWiions during check-out Once the projea is moved or renamed, the 
infonnation is no longer valid · 

You can delete an entire project by deleting the folder conWning the project Use the 
Finder or the MPW Shell's Delete command 

A Wamfng Once you delete the project, all files and their revisions are lost • 

• 

234 MPW 3.0 Reference 

Q 



( 

Deleting revisions 

You can delete old revisions in a revision tree by using the DeleteRevisions command and 
specif~1ing the oldest revision that you Mnt to keep. Ail pri_or revisions are then deleted. 

For example, if you specify the revisionfilename,5, then filenames revisions 4, 3, 2, and 1 
are deleted, leavingfilename,5 intact You cannot, however, arbitrarily deletefilename,4 
while leaving revisions 3, 2, and 1 intact This restriction prevents confusion of the 
revision numbering scheme. 

You can delete entire branches by naming the branch (for instance, filename.c,2'2.a). 

.A Warning Once you delete revisions, there is no way to recover them. .& 

If you accidenr.ally check a file into the wrong project, you can remove it and ail its 
revisions by using the -me option of the DeleteRevisions command. 

Renaming a file in a project 

It is impossible to rename a file in a project Instead, you must check out the file you 
wish to rename and check the file back in under a different name by first using the 
OrphanFiles command. 

File organization within a project directory 

A project resides in an HFS directory called the project directory. The na~ of this 
directory is the name of the project. You need not worry about the exact file structure 
within a project directory. 

All information regarding a project, including all revision trees, revisions, comments, and 
so on, is kep< in a single HFS file called ProjectorDB with the type 'MP SP' . 

.. 

CHAPTER 7 Projector: Project Management 23; 



CKID resource 

Projector maint3im a • ckid • (Check ID) resource in the resoun:e fork of all files that 
belong to a project This i.s where Projector identifies each revi.sion tree's filename, 
project, user, revision number, anc! so ou. The structure of this rescun:e is subject to 
change by Apple. 

Projector icons 

AJ you browse through the project hierarchy in Projector windows, look for the following 
visual cues that convey revision ownership. 

Icons AJ:)pearing In the Check In W1ndow 

.':I.. Read-only. The file is a read-only file belongmg to the current project. 

'.:P. Modified read-only. The file is a modified read-only file belonging to the current 
project. 

0 The regular document icon represents a file that does not belong to any project It 
is visible only when Show All Files i.s checked. 

..P The pencil icon meam that the HFS ftle is checked out from the current project for 
modification by the current user. 

i The lock icon meam that the HFS file is checked out from the current project for 
modification by another user. 

111 File belonp to a ·project other than current project. It appears only in the Check In 
Window when Show All Flies ~checked. 

~ Modifiable file belonging ro another project (denoted by the tiny plus sign in the 
· lower-right corner). Appeais only in the Check In window when Show All F'Lles ~ 
checked. 

ISi Corrupt • ckid • resource. Appears only in the Check In window when Show All Files 
is checked. .. 

.. 

236 MPW 3.0 Reference 

c 



Icons A~ng In the Check Out Window 

g A project. A similar, but larger icon is used in the Finder to represent the 
ProjectorDB file. 

~ A Projector revision tree. Appears only in Check Out window. 

0 The regular document icon represents an individual revision currently available. It is 
visible when an individual revision tree is displayed. 

. ..P When a project is displayed (so that all its revision trees are listed), the pencil icon 
means that the latest revision of the main trunk is checked out for modification by 
the current user. When an individual revision tree within a project is displayed (a list 
of revisions), the pencil icon means that the particular revision is checked out for 
modification by the current user. 

i When a project is displayed (so that all its revision trees are listed), the lock icon 
means that the latest revision of the main trunk is checked out for modification by 
another user. When an individual revision tree within a project is displayed (a list of 
revisions), the lock icon means that the particular revision is checked out for 
revision by another user. 

.. 

CHAPTER 7 Projector: Project Management 23i 



Projector command summary 

The syntax of the commands used to operate Projector '.re summarized here for your 
convenience. Detailed information on each of these comm:nd~ can be found in Part II. 

Checkln-w I <lose I [-u useri [-projectprojedJ (-t tasM [<S comment I -dfl/ei [.;.pl 
[-new I -b] [-m I -delete] [-touch] [-y I -n I -cl (-a I flle. .. ) 

ChcckOut -w I -ckR I [-u ~ (-project projecA [-m I -b [-t tasiD [-cs comment I .<f fl/ei [-pl 
[-d directofji [-rJ [-open} (-y I -n I -cl [-noTouchl [-ancefi 
(-update I -newer I -a I file ... ) 

CheckOutDft [-project projedJ [-mJ [-r] [-x I directot}i 

DelctcNames [-u useJi [-project projeal [-public] [-r) [names. .. I -al 

DelcteRcvfsfom [-u useri [-project projedJ [-fuel [-y] revision. •. 

Modifylcadoaly filename 

MountProjcct [-s) [-pp) [-q] [-rl [projec4 

NamcRC'risiom 

NewProjcct -w I -close I 

OrphanFlles file ... 

Project 

Projcctlnfo 

[-u Userl [-project Project] [-public I -bl [-r] 
[-only] I mme [-expand] [-s] [-replace] I [(names ... (-dynamicD I [-aDil 

[-u useJi [-cs comment I .<f filei project 

[-q I projectName 1 

(-projeaprojec4 [-log] [-comments} [-laresd [-fl [-rJ [-sl [-only] [-ml [-af awhori 
[-a authori [-df dat&1i [-d dat&1i [-d pattem. [-c pattem. [-t pa:teml (-n namt'l 
[object. .. ! 

TraasferCJdd sourceFUe desltnat1onFile 

UnmountProject [-a I projec4 

c 

c 

238 _ MPW 3.0 Reference 



Chapter 8 The Build Process 

THis CHAPTER DESCRIBES TiiE ~ECHANICS OF BUILDING A PROGRA.\1. The steps 
involved are nearly the same for applications, desk accessories, stand-alone code 
resources, drivers, and MPW tools. (However, you'll find special in.strurnons on 
building your own MPW tools in Chapter 12.) Ail programmers should read the 
opening sections of tttis chapter, which explain the entire build process for :rn 
application, the usu.al case. Later sections explain what's diffe:ent about 8udding 
a desk accessory, stand-alone code resource, or driver. 

Those new to MPW should first read "Building a Program: An Inrroduction" in 
Chapter 2. This brief introduction takes you through the steps of using the 
Directory and Build menus to build a simple program. For more detailed 
infonnation on using the linker and how it works, see Chapter 10, "More Abouc 
Llnking." • 

Contents 

Overview: the build process 241 
The strucrure of a Macinco.sh application 244 
Llnking 244 

What to link with 245 
Llnking multilingual programs 246 

File types and creators 247 
Building a stand-alone code resource 248 
Building a desk accessory or driver 251 

Un.king a desk accessory or driver 253 
The desk accessory resource file 254 
The DRVRRuntime library 255 
What your routines need to do 257 
Programming hints 258 
Sample desk accessory 259 

Modifying the Build menu and makefiles 259 
Variables 259 .. 
Scripts 26°-
F'tles 2€i0 

239 



240 

UserSranup 260 
Modifying the makefiles 261 

~elude dependencies 261 
Library objea mes 261 

MPW 3.0 Reference 

c ' ~ 



Overview: the build process 

Building a program consists of the foilo-;ying seeps: 

1. Create source files and compile them. Source files are compiled or assembled to 
produce object files. For information on writing programs in MPW Pascal, MPW C, or 
MPW assembly language, and including the proper interface or include files, see the 
appropriate language manual. Chapter 12 describes writing an MPW tool. 

2. Create noncode resources wiJh ResEdit or Rez. If your program requires any additional 
resources (other than cede resources), you can create them by u.sing the resourte 
editor (ResEdit) or resource compiler (Rez). These may be decompiled with DeRez 
into text files that can be further modified by the Shell editor before being 
recompiled with Rez (see Figure 8-1). See Chapter 11 for detailed information. 

3. Create .thefinai executable file with Link. The object files are linked together, along 
with any needed library routines, into either a new resource file or an existing one 
(replacing the • cooE •, 'ORVR •, or other execurable resources). The output of Link 
should be placed in the same file as any resourtes created in Step 2 (e:ccepc in the case 
of drivers, as noted in the next paragraph). 

• Note: To build a desk accessory or driver in Pascal or C, an additional step is required: 
you must run Rez co create the final • DRVR' resourte. For details, see "Building a Desk 
Accessory or Driver,~ later in this chapter. 

Figure 8-1 illustrates the complete process. 

CHAPTER 8 The Build Process 241 



• Figure 8-1 

• ;a .p . c 
'TEXT' 

Objec:f 
ties 
.o 

'OBJ I 

.code 
'APPL' 

The Build process 

Ubfories 
.o 

'OBJ I 

242 MPW Reference 3.0 

.. 
.. 

~~Ce 
lies 

. rsrc: 

Re 
SO\.rc:• ftl• 

.r 
'TEXT' 

Cl 

-'1 

~I 



c, 

In Figure 8-1 you'll notice that the output from the linker may be placed in a file with the 
•.code" extension. That file i.s then reprocessed with Rez to build the final application 
program Also keep in mind that it is usually best to run Rez before running Llnk, even 
though Rez appeazs to the right in F.igure 8-1. If you do run Rez after running link, 
remember to use the ·append option. 

For example, the following series of commands compile, run Rez to compile the resource 
file, and link the sample Pascal application Sample.p: 
Pascal Sample.p 
Rez Sample.r -o Sample 
Link Sample.p.o o 

"(Libraries}"Interface.o o 
"(Libraries}"Runtime.o o 
"(PLibraries}"Paslib.O' a 
-o Sample 

This process is usually automated by using the Make tool. (See the sample makefiles in the 
Examples folders, and "Using Make" in Chapter 9.) 

• Nots: If you build an application with customized icons for documents (that is, a 
• BNDL' resource for bundling • ICNt' and •!'REF• resources), then you need to use 
SetFile to set your application's bundle bit like this: 
SetFile -a B MyApp 

See the chapter •Finder Interface" of ln.sit/8 Macintosh for infonnation . 

.. 
.. 

CHAPTER 8 The Build Process 243 



The structure of a Macintosh application 

Macintosh files have two forks: a resource fork and a data fork. The resource fork 
contains a number of resources. The data. fodnnay contain anyi.hing the application puts 
there. On the Macintosh, a program is a file whose resource fork contains code resources 
( • cooE • or other executable resources), and in roost cases additional resources 
containing strings, dialogs, menus, and the like. The code resources for applications and 
tools must contain a main program (an execution starting point). Desk accessories and 
drivers, by contrast, don't requin;. a main program, but instead contlin collections of 
routines that are called individually when the desk accessory or driver is used. 

The simplest possible application has two resources in the resource fork and nothing in 
the data fork. The first t'esou.rce is a • cocE • resource with ID • 0. {The linker O'l~res this 
resource, which contains the jump table and information about the application's use of 
parameter and global space.) The second resource is a 'coo!' resource with ID• 1, which 
contains the application's code segment For imre information, see the chapter 'Segment 
Loader" of Inside Macintosh. 

Linking 

This section desaibes how to link an application, desk accessory, or driver. (The process 
is very similar in the case of MPW tools. Special information on linking MPW tools can be 
found in Chapter 12.) 

For more detailed information about linker functions, see Chapter 10. The Link command 
itself is desaibed in Part II. The MPW object-file format is described in Appendix H. 

Use the command Unk to link object files into an application, desk accessory, driver, or 
other executable resource. By default, linked segments are placed in • cooE • resources in 
the resource fort <i the output file. Unk links together the compiled or assembled object 
files, along with any needed library routines, into either an existing resource file (replacing 
the 'coca:', 'OR.VR •,or ocher executable resources of the type th.at it is aeating) or a 
new one (Figure 8-2). 

.. 

244 MPW Reference 3.0 



• Figure 8-2 

Object 
tiles 
•.O 

'06.J. 

Llnking 

Linker 

Code 
resources 

'APPL'. 
'MPST', 

or 'ORVR' 

llbrorles 
•.o 

'OBJ, 

The linker resolves all symbolic references and controls final program segmentation. A 
related tool, Llb, provides facilities for roodifying and combining object files (libraries). 

Llnk's default action is to link an application (type APPL, creator"'?'?'?'?"), placing the 
output segments into 'CODE• resources. You can set a file's type and creator with 
Link's ·t and -c options. (See •File Types and Creators" later in this chapter.) 

What to link-with 

Applications, MPW tools, and desk accessories should be linked with the libraries listed in 
Table 8-1. It's wise to link new programs with all of the librarie,s that might be needed. lf 
unnecessary files are specified, Llnk displays warnings indicating that they can be 
removed from your build instructions . 

.. 
. ""' \ :~_/ 

\
. t \\. 

\ I I . 

i\\ I , 
•J \ 

\ 

CHAPTER 8 The Build Process 245 



• Table 8-1 Files to link 

Files 

Insid~ Madnmsh Interfaces 
{Libraries}Interface.o 

RWJ.time support 
Llnk with one of the following: 
{Libraries} Runtime.o 
{ CLibraries}CRuntime .o 

Pascal llbr:uics 
{PLibraries}PasLib.o 
{PLibrarieslSANELib.o 

C libr:uics 
!CLibraries)Cinterface.o 
{ CLibraries lCSANELlb. o 
{CLlbrarieslMath.o 
{CLibraries}StdCLlb.o 

Speclall7.cd llbr:uics 
!Libraries!ObjLlb.o 
(LibrarieslToolLlbs.o 

Desk accessories 
(LibrarieslDRVRRuntime.o 

If no part of the program is written in C 
If any part of the program is written in C 

Pascal language library 
SANE numerics library 

Macintosh interface for C 
SANE numerics library 
Math functions 
Standard C library 

Object-oriented programming (Pascal and Assembler) 
Routines for MPW tools 

Driver runtime library 

For dettil.s about linking st.and-alone code resources or desk accessories refer to "Building 
a Stand-Alone Code Resource,• or "Building a Desk Accessory or Driver,• later in this 
chapter. Details on linking an MPW tool can be found in Chapter 12. MPW tools libraries 
(the Cwsor Control and Error Message Fi.le manager routines) are listed in Appendix F. The 
library of 3-D graphics routines is in Appendix G. 

I Inking multfllngual prograxm 

When you link progrnim that use libraries from more th.an one language, the linker may 
detect several duplicate entry points. Normally it doesn't matter which of the duplicate 
copies of a particular routine are linked with your program. (You can use Ilnk's -d option 
to suppreM the duplicate definitions wahtings.) 

• 

246 MPW Reference 3.0 

,'.(-~"\., 

\'--,""j 



However, program; written partly in C and partly in assembly language or Pascal require 
special precautions. When you link C code with other languages, link with the file 
CRuntime.o and not with Runtime.a. If execution is expected to begin with the C 
function ma in ( ) , no special action L~ necessary. However, if your main progra.rn is 
written in a.;.~embly language or Pascal, but part of your program is written in C, then you 
must do one of two things: 
1. Place the object ftle containing your main program before CRuntime.o in the list of 

object files passed to link. 

2. Use Link's -m option to specify the name of the main routine. 

For more hinrs on using Link's -m option, see "Dead Code" later in this chapter. 

File types and creators 

When you execute a command, the Shell determines how to run it based on its file type. 
Files of type APPL are considered applications and are run as if launched from the Finder. 
Files of type MPST are considered MPW tools and are run within the Shell environment 
Files of type TEXT are taken ·to be scripts and are interpreted by the Shell. An attempt to 
run a file of any other type produces an error message. Table 8-2 summarizes file types and 
creators. 

• Table 8-2 File types and creators 

Type of Pft>ll'2Dl Type Ctator 

Application APPL any 
MPW tool MPST 'MPS' 
Desk acces.sory OFIL DMOV 
Script TEXT any 

See Table E-1 in Appendix E for a complete list of special MPW ftle types. 

• Note: F.ach application has its own unique aeator (or signature). For more 
infonnation see the chapter "Finder Interface• of Inside Macintosh. For example, 
creating a file with the type DFIL and creator DMOV tells the Font/DA Mover that this 
file contains desk accessories. 

c 

You can set a file's type and creator,with the ·t and -c options to Link, Rez, or Setfile. 

CHAPTER 8 The Build Process 247 



Building a stand-alone code resource 

When developing progrum for the Macintosh environment, it is often desirable to build 
stand-alone code resources. For example, you may want to create custom ccnt."Ols. Some 
of these resources are 
WDEF window deflllition procedure (for cmtom windows) 
CDEF control deflllition procedure (for custom controls) 
LDEF list defmition procedure (for Llst Manager) 
MDEF menu definition procedure (for cmtom menus) 
INIT a code resource that is loaded and run at boot time by the system startup code 
XCMD external command for Hypercard 

· These rules must be observed to aeate a stand-alone code resource: 

1. No global or stttic variables can be declared. No calls can be rmde to libl'2ty routines 
that use global variables (such as prinlf( )). 

2. If you are using string or floating-point constants in C source, you'll usually need to use 
the C compiler's -b option to put those constants in the code segment (rather than 
generating global variables). 

3. You must use link's ·rt option to specify the code resource type (such as • WOEF •, 

• INIT', and so on) and the resource ID. 

4. Because most sttnd-a!one code resources are called as if they were Pascal procedures, 
you must declare the main procedure wich the P2SCal keyword in C. 

S. You must use Link's -m option to specify the entry point for the code resource if you 
want dead-code-stripping (see "Dead Code" in the hint section that follows). The 
procedure that is the main procedure for the stand-alone code resource must be the 
first procedure in the source file, and that source file's object file must be the first file 
in Link's list of object files to link. In the case of MPW C, you must make the main 
entry point the fust function in your file (including all t include files) if your main 
entry point b not named "main" or if it b named "main" but is of type Pasa~ as 
required for a CDEF. 

6. If you need to place all of your object ioodules in one resource (as in the ase of a 
CDEF), use link's -sn and -sg option to combine several segments into one segment. 

248 MPW Reference 3.0 



c. 

• Dead code 

Given on entry point too module. the !Inker loods object l'lles end creotes o 
tcble of oll references reoched from thct point. The toble. collsd o Olr111cted 
Acyclic Graph. Is o tree of ell reochobl& modules. It trcckll 3very single mo:!uie 
going Into c !Ink. For excmple. SOO modules may be submitted to !Inking wtien 
only 100 of them will octuclly be used by the tlncl linked object. The remaining 
400 modules cannot be reoched by references stemnilng from the moln entry 
point ond ore therefore considered d~d code. 

Here's how to use Unk's -m option with moln modules: 

When you llnk o • cocE • resource with 10 equal to zero (thot ls. o normol 
oppllcctton), you must specify o main module with Unk's ·m option or specify a 
module In one of the object Illes Included with the link. 

When you !Ink ony other type of resource (such os o • CRVR • or • cooE • resource 
with an 10 other thon zero), the linker doesn't require o moln module. 
However. you can specify a maln module by using the -m option or by 
specifying Mein ot ossembly time. Then. If there Is a main module. the linker 
strips out unreachable modules. that Is. deed code. If there ls no moln module 
going Into a llnk, then the linker doea not remove deed code. In thot case. 
whatever libraries you submit to the llnker will be Included In their entirety. 

In some coses. for Instance. code to be used In a ROM. you might not hove o 
single entry point: there might be a number of possible entry points. In such 
coses you wont to be careful to submit only the modules ttiot will oc:tuolly be 
needed by your program. • 

Here is a sample CDEF written in C and Pascal that draws boxes: 

/* File Line3CDEF.c 

*/ 

Copyright Apple Computer, Inc. l988 
All right3 re3erved. 

.. 

CHAPTER 8 The Builq Process 249 



/* This file implements a control definition proc for drawing boxes. •/ 

it include 
it include 
itinclude 

<Types.h> 
<Quick.Oraw.h> 
<Controls.h> 

*((lonq *)0x904) #define 
tdef ine 

CurrentAS 
GrayPat (**((Pattern **)CurrentAS) - Oxl8l 

pascal long BoxControl (short 
ControlHand.le 
short 
.l.onq 

varCode, 
theControl, 
message, 
par am) 

if (message•• drawCntl && (*theControl)->contrlVis) 
FrameRect(&((*theControll->contrlRect)); 

l else if <message •• testCntl) ( 
return PtinRect(*(Point *)&param, 

&(*theControl)->contrlRect) && 
((*theControl>->contrlHilite !• 255); 

retu=n 0; 

The makefile rules to build the above sample into a program ailed Application 
look like this: 

· Application J J LinesCDEF. c. o 
Link -rt COEF•258 a 

-m BOXCONTROL a 
-sn "Main•Lines" a 
LinesCDEF.c.o o 
-o Application 

Here is the same sam~le CDEF code written in Pascal: 
File LinesCOEF.p 
Copyright Apple Computer, Inc. 1988 
All rights reserved. 

This file implements a control definition proc for drawing boxes. l 

UNIT LinesQ)&!'; 

INTERFACE 
USES 

Memtypes, Quick.Draw, OSintf, Toolintf; 

IMPLEMENTATION .. 
' 

2SO MPW Reference 3.0 
c 



FUNCTION BoxControl (varCode: INTEGER; 

BEGIN 

END; 

END. 

BoxControl :• 0: 

theControl: 
me.s.saqe: 
pa ram: 

ControlHandle; 
INTEGER; 
LONGINT) : LONGINT; 

IF (me.s.saqe • drawCntl) AND (theControlAA.contrlVi.s <> 0) THE~ 
FrameRect(theControlAA.contrlRect) 

ELSE IF me.s.saqe • te.stCntl THEN 
BoxControl :• ORD4(PtinRect(Point(param), 
theControlAA.contrlRect) AND 

(theControlAA.contrlHilite <> 255) l; 

Here are the makefile rules to build the above sample into a program called Application: 
Application ff Line.sCOEF.p.o 

Link -rt CDEF•258 o 
-m BOXCONTROL o 
-.sn "Main•Line.s" o 
Line.sCDEF.p.o o 
-o Application 

Building a desk accessory or driver 

Putting together a desk accessory or driver in languages other than assembly language 
requires two steps: 

1. link your driver code with the DRVRRuntime library (thi5 ~t appear first) and with 
any other libraries you need. The object code is linked into a code resouce of type 
'DRVW', an intermediate fonn of the standard 'DRVR' resource. (The DRVRRuntime 
library is the header code for operating desk accessories that cannot be created in C 
or Pasa1. See the section '"The DRVRRuntime Llbr.uy" later in this chapter.) 

2. Use the resource compiler, Rez, to create the fmal driver file. That is, compile the 
linked •cavw• resource into a standard 'ORVR' resource, using the 'DRVW' type 
declared in :Rlncludes:MPWI'ypes.r, together with any other resources your desk 
accessory may require. 

You then install your desk accessory in the System file by using the Font/DA Mover. 

Figure 8-3 illustrates the process of .building a desk accessory or other driver . 
.. 

CHAPTER 8 The Build Process 251 



• Figure 8-3 Building a desk accessory with DRVRRuntime 

COl"l"OHed 
driver 
C:Ode 

C'YP• 'OSJ ') 

ORVR· 
l:iuntime.o 

llbtCliy 

Unker 

'ORVW' 
resourc:e 

Otl'ler 
llbrortes 

MPW· 
Types.r 

(for 'OrNW' 
dedoratton) 

Resource COl'T'IC)ller 
CRez> 

Orlver Ille 
C'ORVR' 

rescurce: 
'Yi>• 'OFIL') 

AddtttonCll 
resources 

• Note: Of c:cwse, it's alwiys possible to create a desk accessory directly in assembly 
language, without U1ing DRVRRuntime . 

.. 

MPW Reference 3.0 



(j 

(~ 

I inking a desk acc~ory or driver 

These rules must be observed to link a driver or desk accessory: 

• Llnk's -rt option must be specified. The ·rt option indicates the link of a desk 
accessory or driver and sets the resource type and ID. (The default, if no ·rt option is 
specified, is to output •coos:• resources beginning with resource ID 0.) 

• The code must be in a single segment (that is, no jump table is constructed). You can 
map code from several segments into a single segment with the -sg or -sn options. 

• Desk accessories written in Pascal or C must be linked with DRVRRuntime.o, which 
should appear first in the list of object files. 

For example, the following command links the sample desk accessory file Memory.c.o, 
placing the output in the file Memory. (This output is the intermediate 1 cRvw' resource, 
which must be converted into a 'CRVR' resource as explained in the next section.) 
Link -rt CRVW•O o 

-sn Main•Memory a 
"{Libraries}"ORVRRuntime.o # must appear first a 
Memory.c.o o 
"{CLibraries}"CRuntime.o a 
"(CLibraries}"Cinterface.o a 
-o Me.mory.CRVW 

This command has these results: 

• The ·rt option sets the output resource type to • oRvw • and the resource ID to 0. 

• Note: This ID must match the ID specified in the SS resource statement in the 
Rez input file. Note also that any additional resources •owned" by the desk 
accessory must observe a spedal numbering convention, as described in the 
chapter "Resource Manager" of Inside Macintosh. 

• The -sn option combines the segment Main into the segment Memry. 

• The specified files are linked. The DRVRRuntime.o library must be the fi.rst object file 
in the link list This ordering ensures that the main entry point in CRuntime.o is 
overridden by the DRVRRuntime.o entry point (A linker warning will call attention ro 
dm n:qullement unless you suppress it with the ·W option.) The main entry point in 
CRuntime.o cannot be used for desk accessories . 

.. 

CHAPTER 8 The Build Process 253 



• An easy way to make sure ail the cede Is in one segment 

As mentioned in the preceding list of instructions, you must keep your code in a 
single segment when linking a desk accessory or driver. Use the ·•g option 
without an squal (•) si~n. For example 

Link -rt oRvw-oa 
-sq Memorya 
"(Libraries}" ORVR.Runtime... • 

t6. Important Desk accessories ~t not call routines that ~ global variables, and 
therefore are less likely to need routines from the Pascal, C, and 
specialized libraries listed in Table 8-1. In a correct link, the linkers 
progress information will report •size of global data area: O," and "No 
data initialization.• If global data is somehow allocated, the link will 
succeed, but the desk accessory will not run correctly. A 

The desk accessory resource me 

The last step in constructing a desk accessory or driver is to put together the DRVR header 
with the linked code. The following example of a resource compiler (Rez) input file shows 
how this is done: 

#include "Types.r" 
#include "MPWTypes.r" 
type 'ORVR' as 'ORVW'; 
#define OriverIO 12 /*The number must be in the ranqe (12 ... 26) */ 

resource 

} ; 

'ORVR' (OriverIO, "\OxOOMemc:ry", purqeable) { 
dontNeedLock, /* OK to float around, not saving 

needTime, 
dontNeedGoodbye, 
noSt.atusEnable, 
ctlEnable, 
noWriteEnable, 
noReadEnable, 

ProcPtrs */ 
I* Yes, qive us periodic Control 
I* No special requirements */ 

I* DA's do only Control calls */ 

5*60, /* Wake up every S seconds *I 

calls */ 

updateMask, /* This DA only handles update events */ 
O, I* This DA has no menu */ 
"Memory", /* This isn't used by the OA */ 
$$resource("Memory.ORVW", 'DRVW', 0) 

.. 

254 MPW Reference 3.0 

C. 
' 



(
.~ ... 

/ 

The header information contains the details of the desk accessory's event mask, menu. ID, 
and so on. (See the chapter 'Device Manager' of Inside Macintosh and the file 
MPWTypes.r for information about the format of a 'ORVR' resource.) The ss resource 
directive then appends the linked object code co the DRVR header where it belongs. 

II your desk accessory has any owned resources, such as • STRt' or •WIND • resources, you 
can add them co your desk accessory's resoutte compiler input 

To build the desk accessory resoutte, use the Re2 command to compile the resources you 
have specified, and set the file type and creator for a Font/DA Mover document: 

Rez -c OMOV -t OFIL Memory.r -o Memory 

The fJ.le type DFII. indicates a document file for the Fonr/DA Mover; the deator DMOV 
indicates a Fonr/DA Mover document (the suitcase icon). 

To install a desk accessory, use the Font/DA Mover to place the desk accessory in the 
System file. You can do this from MPW as follows: 

"Font/DA Mover" Memory 

After exiting the Font/DA Mover, you can execute the desk accessory by selecting its 
name from the Apple menu. 

The DRVRRuntime library 

This section documents the DRVRRuntime library and describes the specifics of writing a 
desk accessory or other driver by using MPW and MPW Pascal or MPW C. If you are using 
assembly language, you don't need ORVRRuntime. (See Inside Macintosh for details on 
creating a desk accessory.) Beouse a desk accessory is a special case of a driver, all of 
the information in this chapter applies to both. You should already be familiar with the 
following: 

• "Writing Your Own Desk Accessories• in the chapter •Desk Manager" of Inside 
Madnto.sh 

• The chapo:r •Device Manager" of Inside Macintosh (for information about • DRVR • 
resowteS, and so on) 

• •Building a Desk Accessory or Driver" earlier in this chapter 

For information about the actual routines used in Pascal, C, or assembly language, see the 
appropriate MPW language reference manual. 

CHAPTER 8 The Build Process 25; 



A desk accessory.is a • oRVR • resource whose resource name begi,n.s with a null character 
($00). • oRvR • resewt:es reside in the System file. Desk accessories have traditionally 
been wriaen in assembly language, partly because of the peculiar • ORVR • resource format 
used for desk accessories. Setting up the 'oava' layout header, passing register-based 
procedure parameters, and coping with th~ nonsr.andard exit conventions of the driver 
routines have made it difficult to implement desk accessories in higher level languages. To 
overcome these difficulties and to simplify the task of writing a desk accessory in Pascal 
or C, MPW provides the following: 
• The library DRVRRuntime.o, which cont3ins the •gtue• for setting up your open, prime, 

status, connol, and close routines. 

• The resource type • o RVW • , declared in IRincludes}MPWI'ypes.r. The ' c RVW' resource 
is an intermediate fonn of the • oava • resource and contains constants that point to 

the actdresses of the driver routines in DRVRRuntime.o. 

The DRVRRuntime library cont3ins a main entry point that overrides the main entry point 
in CRuntime.o or in your Pascal or assembly-language source. The DRVRRuntime entry 
point contains driver glue that sets up the parameters for you, calls your routines, and 
pertorms the sped21 exit procedure required for a desk accessory to return control to the 
system Your routines pertonn the actions of the desk accessory, such as opening a 
window and responding to imuse clicks in it 

The resource compiler input (resource description file) for your desk accessory includes 
the details of your desk accessory header, such as its driver flags, event mask, menu ID, 
and driver name. The driver is built by coercing the intermediate 'oavw • resource to a 
resource of type • cavR • , which is the fonnat required for desk accessories. Your 
resource description file also specifies resources for any strings, windo"WS, and menus used 
in your desk accessory. (For an example of such a resource description file, see '"The Desk 
Accessory Resource File• earlier in this chapter.) 

Using DRVRRuntime.o has several advantages: 

• No assembly-language source code is required. 

• The rcsoun:e compiler is an integral step in the build p~, permiaing the easy 
addition ol 2 desk attcssory menu or other owned resources. 

• The prog1:umrts interl2ce to the ~ prime, StalUS, cmurol, and close routines uses 
standard ailing conventions. F.ach function returns a result code which is passed b-4ck 
to the system. 

• The DRVRRuntime glue handles the proper exit conventions. (DrivefS have peculiar 
exit conventions, requiring immediate calls to exit via an m instruction, but non­
immediate calls to jump to the IOOone routine-these exit procedures cannot be 
expressed in C or Pascal.) .. 

256 MPW Reference 3.0 

0 

c, 



(_ 

Together, the DRVRRuntime library and the 'CRVW' resource form the dispatch 
mechanism to your driver routines. The next section describes the structure of your driver 
routines. 

What your routines need to do 

To write a driver, you need to write five functions named DRVROpen, DRVRPrime, 
DRVRStatus, DRVRControl, and CRVRClo.se. 

• Pascal note: In Pase.a~ you'll need to write a unit that declares these five functions in 
your interface. 

Each of these functions is declared to use Pasc:al calling conventions, so that the 
DRVRRuntime library is available for use by both C and Pascal programmers. (See the 
appropriate language reference manual for details.) 

The calling sequence for all five driver routines is the same: The parameter ioPB is the 
pointer to the driver's L'O parameter block (pwed from the system in register AO), and 
dCtl is the pointer to the "driver's device control entry (from register Al). The function 
returns a result code, which DRVRRuntime puts in register DO. This. result code is a Pascil 
integer (C short). Desk acc~ries always return a result code of 0. 

For example, here is the Pascal declaration for your oavaopen routine: 
FUNCTION DRVROpen(ctlPB: Pa::mSlkPtr: dCTl: CCtlPtr): OSErr; 

Types ParmSlkPtr and CCtlPtr are declared in the file OSintf.p. Type OS Err is 
declared in the u~t Types. 

In C, write the routines like this: 
pascal OSZrr 
CRVROpen(ctlPB,dCtl) 

CntrlParam •ctlPB; 
CCtlPtr dCtl; 

return(resultCode); 

Types CntrlParam and CCtlPtr are declared in the file Devices.h. Type OSErr is a 
.short and is defined in Types.h . 

.. 
.. 

CHAPTER 8 The Build Process 25i 



Desk accessories only: The body of the desk accessory code resides in your routines 
ORVROpen, oaVP.Control, and ca.VP.Close. Your routines oavurime and 
oavastatu:s are never called by the system, but the DRVRRuntime library expeas them 
to be present anyway-they cannot be omitted. It is sufficient to declare them and have 
them simply return O. 

Programming hints 

In the current release of MPW, global data is not available for use by desk accessories. 
That is, variables deemed outside your functions cannot be used. In p-articular, the 
following language constructs reference the global data area and cannot be used: 
Asm DATA directives 
Pascal UNIT V2riables 
C :static or extern variables 

Also note that QuickOraw globals cannot be used directly. Furthemx>re, you cannot call 
library functions ctl3t use any .of these things. (Look for the linker message •No global data 
was allocated•) 

Typically, C and Pa.seal programmers allocate global stor.ige from the heap and use 
• STRt' resources for string constants. On MPW Pascal, constants are allocated as part of 
the code ll'XXiule in which they appear. The same effect can be obtained in MPW C by 
using the ·b option.) If you need to allcx:ue global data from the heap, you can declare a 
record containing all of the global variables you need. In your oaVP.open routine, you 
showd allocate memry from the heap with the size of this record and store irs handle in 
the dCtlStoraqe field of the device conaoJ entry. lhen, to reference an element in the 
record, you can use this handle to reference the global variable you want to use. 

" 

258 MPW Reference 3.0 

a 



Sainplc desk accessory 

A sample desk accessory, Memory, is included in the Examples folders for assembly 
language, C, and Pascal. Th.is desk accessory has the following fP.arures: 

• It displays the current amount of free space in both the application heap and the 
system heap. 

• It displays the number of free byres on the default volume, along with the name of the 
default volume. 

• It perfonm these operations every 5 seconds, so that you can see how your memory 
conditions change. 

Modifying the Build menu and makefiles 

The Directory and Build menus are implemented as AddMenu commands and scripts. This 
lers you customize these menus to serve your own specific needs. In addition, the 
makefiles created by using the Cre2te Build Commands menu command (script 
CreateMa.ke) can be modified as your scripts grow in complexity. See Chapter 3 for a 
description of the Directory and Build menus. 

Variables 

The Shell variable {Program} is used to remember the name of the roo.5t recently built 
program. It is set by the Create Build Commands menu command and by each of the Build 
menu commands. (Program} is used as the default program name for the Build menu items. 

CHAPTER 8 The Build Process 259 



Scripts 

The following scrip<s implement the Directory and Build menus. Two of these are 
supported by Commando dialogs, as noted. These saiprs are located in the Scripts 
folder. F.ach is documenced in detail in ?an II. 

Directory Menu 

SetDirectory 

BuildMenu 

Create Make 

BuildProgram 

BuildCommands 

Files 

Create the Directory menu 
Set the current directory. (Commando dialog available.) 

Create the Build menu 

Create a program makefile. (Commando dialog available.) 

Build the selected program 

Display the commands required to build the ·selected program 

Commands in the Directory and Build menus may create the following files: 

<Program> .make 
<Program> .makeout 

· {MPWIMPW:Errors 

UserStartup 

Makefile containing build commands for program 
Build instructions for current build 
Diagnostic output from commands run from menus 

The Directory and Buil<i menus are installed by scripts from the UserStartup file. The 
commands listed below should be in UserStanup. In addition to aeating the Directory 
and Build menus, they create the aliases needed to support the Directory menu. 
Oi:ectoryMenu ·(Files -d -i "{MPW}"Exa.mples:• I I Set Status 0) ~ 

Oev:Null''Oi:ectory· 
Build.Menu 

The parametea to OircaoryMenu become the initial list of directories in the Directory 
menu. You an replace or augment the Examples directories with your favorite list of 
directories. 

• 

26o MPW Reference 3.0 

0 4 

0 



Modifying the makefiles 

As the complexity of your program increases, you can modify the makefile created by the 
Create Build Commands menu command. You might add ne"' dependencies, specify 
compiler and linker options, and so on. The Build menu command will continue to build 
the program, using the modified instructions. 

Include dependencies · 

You may want to modify a makefile created by the Create Build Commands rnenu 
command, if you need to overcome the limitations of the Create.Make script Makefiles 
created by CreateMake do not include dependencies on include files or Pascal USES 

files. If you plan to change the include or USES files, consider modifying the makefile 
to express these dependencies. 

For example, assuming that the C source file Count.c includes the header file Utilities.h, 
add the follovring dependency rule to the file Count.make: 

Count.c.o f Utilitie~.h 

No build rules are required; just add the dependency rule. Several include or USES files 
can be listed in the same dependency rule, or separate rules can be used for each 
dependency. Don't forget to specify the directory for files located in another directory. 

· I1brary objca mes 

Makefiles created by CreateMake link your program with the selected libraries listed on 
the Create.Make command page in Part II. The libraries are selected according to the 
language or languages in which your program is written and according co the program type 

(application, tool, desk accessory). 

If your program calls routines in a library that is not a\ltomatically included in the build 
commands, then roodify the makefile to add that library. The library's name should be 
added in two places: in the dependency rule immediately before the Llnk command (if 
you expect to. roodify the library), and in the list of libraries in the I.ink command itself. 

If you consistently need to add the same library to your makefiles, you can modify the 
Create.Make script to include it automatically in the dependency and build rules . 

.. 

CHAPTER 8 The Build Process 261 



' I q 

C· 



(_-

Chapter 9 Make 

THE MAKE TOOL E.~ABLES YOU TO KEEP TRACX OP All OP TiiE COMPONENTS OF A 

PROGRAM and their relationships to each other. When one component of a 
program is modified or updated, ·Make lets you automatically update all other 
pans of the program that depend on it These updates may be such things as 
compiles, as.5emblies, links, and resource compiles. 

Make reads a makefile that describes the dependencies of the various 
componen~ of a program and outpu~ commands on the basis of those 
dependencies. Thi,, section describes how to write a makefile and use Make. (The 
Make command and command-line options are desaibed in Part II.) • 

Contents 

Fonnat of a makefile 265 
Dependency rules 267 

Double1 dependency rules 269 
Default rules 270 

Built-in default rules 271 
Directory dependency rules 272 

Variables in makefiles 273 
Shell variables 273 
Defining variables within a makefile 274 
Built-in Make variables 275 

Quoting in makefiles 275 
Unc continuation character 276 

Comments in makefiles 276 
Executing Make's output 276 

The order in which Make builds targets 277 
Debugging makefiles 278 

Problems due to command generation before execution 278 
Problems with different specifications for the same file 279 
Preble~ w4h default rules 279 

An example 279 
Notes on Make's makef1..Ie. 282 





C: 

Format of a makefile 

A makefile is a text file that describes dependency infonnacion for one or more target 
files. A WgCt me is a file to be rebuilt; it depend,, on one or more prerequisite mes that 
must exist or be brought u~to-date before the target can be rebuilt For example, an 
application depends on its source file or files, a number of library files, and resource files. 
If any of a target's prerequisite files are newer than the target, then the rarget needs to be 
rebuilt. 

A target's prerequisites may them.5elves be targets with their own prerequisites, and so on. 
A target that is not a prerequisite of any other target is called a root. A makefile may have 
one or more roots. -

A makefile can include dependency rules, variable definitions, and comrnems. Table 9-1 
summarizes the syntax of a makefile, and the sections following the table describe this 
syntax in roore detail. 

.. 
.. 

CHAPTER 9 Make 265 



• Table 9-1 Makefile summary 

targetFile... J [ prmquisiteFile ... ] 
[ ShellCommands. .. 1 

targetFile... JI [ pmequisiteFile ... l 

ShelICommands ... 

. (sufihi I·~ 
ShellCommands ... 

Dependency rule, v.ith or 'Without build cor1unands 
This rule means that targetFile depends upon 
prerequisitmle. If any of the prerequisites are 
newer than the target, the subsequent Shell 
commands are output so that the target can be 
made up-to-dace 'With respect to its prerequisites. 
Important: Build commands must begin 'With a 
space or tab. 
Dependency rule, requiring its own set of build 
commands 

Default rule (specifies suffix dependencies) 

targetDirectory : .. . / seardiDirectory : ... 

variableName • stringValue 
I comment 
{namet 

" ... ",' ... ',a 
a Return 

Directory dependency rule (used with debult rules) 
Variable definition 
Comment 
Variable reference 
Quotes (as in the Sheil) 
Ilne continuation character 

+ Note: Use Option·F to obtain the / character. 

+ Note: Makefile physical input lines may not exceed 255 characters. Logical input lines 
(made up of one or roore physical input lines continued 'With the continuation 
c:bmcter) may be of arbitrary length. 

2(i6 MPW 3.0 Reference 



A makefile for the sample Pascal application (Sample) is shown below: 
ttt Variable Definitions ttt 
Libs • "{Librariesl"Interface.o d 

"{Libraries)"Runtime.o d 
"{PLibrariesf"Paslib.o 

ttt Dependency Rules ttt 
Sample ff Sample.r t Sample depends on Sample.r 

Rez Sample.r -a -o Sample 
Sample ff Sample.p.o t Sample depend.3 on Sample.p.o a 

Sample.r t and Sample.r 
Link Sample.p.o d 

(Libs) o 
-o Sample 

Sample.p.o f Sample.p 
Pascal Sample.p 

Sample makefiles are contained in the Examples folder (introduced in Chapter 2). 

Dependency rules 

A dependency rule specifies the prerequisite files of a given target file, together with a 
list of the cormnands needed for building the target file. These commands will be written 
to standard output if any one of the prerequisite files is newer than the target file or if the 
target doesn't exist The general form of a dependency rule is 
targetFile... J [ pmequisiteFiJe. .. l 

[ ShellCommands ... 1 
The first line is called the dependency line. It consists of one or more target file names, 
followed by the I (Option-F) character (meaning •is a function of»), followed by a list of 
prerequisite files ..separated by blanks or tabs. Make looks at the modification dates of 
the prerequisite files (and their prerequisites, if any) and decides whether the target needs 
to be rebuilt. · 

Beca~ a target's prerequisites may themselves be targets with their own prerequisites, 
the investi~tion of prerequisites is recursive and •ooaom up.• Thus, commands to 
rebuild lower-level targets are issued, if necessary, before the dependency rule determines 
whether higher-level targets need ro be rebuilt 

All subsequent lines thal begin wilh a space or tab are build command llncs. These are 
Shell commands that will be output if the target needs updating. (When Make writes these 
command lines ro standard output, the initial space or tab is omitted.) If the dependency 
rule omits the build commands, the rule expresses only the target's dependencies. The 
build lines for the target are as.s~ to be supplied by another rule . .. 

CHAPTER 9 Make 267 



For example, 

Sample.p.o f Sample.p 
Pascal Sample.p 

The first line in the example· is a dependency rule for the Pascal object file Sample.p.o. 
This rule sr.ares that Sample.p.o depends on the source file Sample.p. 

The second line is the as.wci3ted build command line. If Sample.p is newer than 
Sample.p.o, or if SampJe.p.o doesn't exist, the command Pascal Sample. p is 
written to standard output 

The target is built according to that set of build rules whenever it is out-of-date with 
respect to any of its prerequisites. If no build commands are specified for a dependency 
line, the build commands are taken from one of the target's other dependency rules, or 
from default rules if no build rules were specified for the target. 

If you specify mre than one singlef dependency line for a r.arget, then the target 
depends on all the prerequisite names on all the lines. However, only one sequence of build 
commands may be specified for each r.arget 

More than one target filename an appear on the left-hand side of an 1 rule.• F.ach target · 
file on the left-hand side depends on all of the files listed on the right side (and has the 
same build commands, if specified). If mre than one r.arget file is specified, it's exactly 
as if a separ2te dependency rule had been given for each r.arget. The built-in Make variable 
{Targ} has the value of the 01rrent r.arget 

• Note: Typically, you'll have mre than one r.arget on the left side of an/ rule only when 
expressing dependencies, so you won't include any build rules. If you do supply build 
rules, you must write them in a generic bshion by using the {Targ} variable because 
each r.arget is built independendy. Conuary to what the synm might suggest, 
multiple r.argets on the left side of an f rule do not imply that Make builds all r.argets by 
a single application of the build rules. Therefore you cannot use this construct to 
express dependencies in which a tool has mre than one output file. 

You can also wrire a dependency rule with an abstract target, that is, a target that is not 
actually built but represents a collection of iteim. A rule with an a~traa target h3s no 
build rules, just dependencies; the target on the left side of the f rule does not exist It 
serves merely to trigger the dependencies for the prerequisite files on the right side of the 
f rule. Thus, if your makefile represents several different roots that could be built, they 
can be collected into a single a~tract target that (when it is built) triggers the builds for 
all the separate objects. That is, 

All J A B C 

268 MPW 3.0 Reference 

1C: J 



Double{ dependency rules 

Double1 dependency rules are slightly different from the standard single-/ rules. 
Syntactically, a double1 dependency rule is the same as a single-/ rule, except rhat// i.s 
used in place off. The difference in use is that IOOre than one double-/ rule is ex~ressed 
for an individual target and that each double-/ rule requires its ovm set of build 
commands. Here is a simple ~pie: 

TarqetFile ff A B O 
build commands-I 

TarqetFile ff C O 
build commands-2 

If the target is out-of-date with respect to one or roore dependency sets, each of the 
corresponding sets of build corrumnds will be output (in the order they appear in the 
makefile). That is, if TargetFLie is out-of-date with respect to both A and C, then both 
sets of build corrumnds are output (In singie1 rules, only one set of build commands can 
be spedfied for any one target) 

If TargetF"tle is out-of-date only with respect to B, then only the first set of build 
commands is output If Targetfile is out-of-date with respect to D, then both sets of 
build commands are output, beause D appears in the dependency sets for both. In other 
worth, the same file can appear as a prerequisite in mre than one double-/ 
dependency set. 

Here is a roore realistic ~mple showing how double-/ rules are typicilly used to 
separately concrol the building of different components of the sarne file: 

App ff foo.c.o bar.c.o 
link foo.c.o bar.c.o ... -o App 

App ff App.r 
rez App.r ... -a -o App 

Use double-/ rules only when you have roore than one action to take in building a file, and 
when you w:mt the actiom to be independent (that is, triggered by different 
dependm:ies and not always occurring together). Double1 rules are useful for separately 
building code and resources, as shown in the makefile for Sample. (For IOOre examples, see 
the sample makefile at the end of this section.) 

The build commands may be left off a double·/ rule if they are to be supplied by default 
rules. If build commands are left out of roore than one double-/ rule for the same targe~ 
Make applies the default rules only to the first empty set 

.. 
.. 

CHAPTER 9 Make 269 



Default rules 

Default rules express dependencies between pairs of files wh~ names are the same but 
whose suffixes differ. They have the following form: 
J~J) f .JUjft:;:2 

ShellCommands. .. 

• Note: The period must be present directly in front of the suffix for a default rule to be 
recognized. The period is taken as pa.rt of the suffix. 

Default rules are powerful because many specific dependencies and build commands can 
be expressed by a single rule, thereby eliminating the need to specify many similar 
dependency rules. Make bas built-in default rules for assemblies and for C and Pascal 
compiles. You need to specify only the dependencies not covered by default rules. 

For example, in its simplest form a default rule for C compiles might be 
.c.o f .c 

C {defauld.c 

In this example the built-in Make V2riable {default} represenrs the common part of the 
filenames marching the rule. The C compiler will be run on the SOWte file with a • .c' suffix 

· and will produce an object ftle with a •c.o• suffix. 

Default rules are applied only when no build commands have been given for a particular 
target. You can augment the default rules for a partic:ular file by using additional 
dependency rules, so long as these dependency rules do not include build commands. 

If you are planning to have an objea ftle built by a default rule, there is no need to express 
the dependency on the. source file because it is implied by the default rule. Only . 
additional dependencies, such as includes, need to be exp~ explicitly. 

Make applies default rules only if the file implied by the right~side suffix c:i the rule wts, 
or if Make can arrive at a file that exists by further applications of default ruies. 

It the left side of a default rule lw mre than one period (or component), there is the 
pcmibility that DX>re than one default ruJe applies. For example, you may have a default 
rule for building • .o• files and another for building • .c.o• files. Beause Make tries to apply 
default rules by matching the longest suffix first, the • .c.o• rule is tried first. 

Default rules of the form 

I .suffix 
• specify dependencies between files with a._ny name and files with the same name followed 

by the given suffix. 

270 MPW 3.0 Reference 

0 ' 
' 



( 

• Note: Default rules of this form slow down Make processing, because the empty left 
side of the rule causes it to match against all filenames. 

Built-111 default rules 

A compiled or assembled objea file is dependent on its soutte file. This dependency is 
typically handled by the built-in default rules. 

Additional object file dependencies may result from other units that you use or refer to in 
your source file-these may be include files, C header files, or Pascal USES files. These 
additional dependencies can be expressed by dependency rules with no build line 
component, leaving the build lines and object-to-soutte dependency implied by the 
default rules. 

The data fork of the Make tool contains the following built-in default rules: 
.a.o f .a 

(Asm) (AOptions) (CepOir}(Oefault).a -o (TarqOir}(CefaultJ.a.o 
.c.o f .c 

{C} {COptions) {CepCir)(Cefault}.c -o (TarqOir}{Cefault).c.o 
.p.o f .p 

{Pascal} {POptions} {CepOir){Cefault).p -o (TarqOir}(Cefault).p.o 

{Asm), {Pascal}, and {Cl are built-in Make variables. Their initial values are 
{Asm} Asm 
{PascaU Pascal 
{Cl C 

{AOptionsl, {POptions}, and {COptionsl are initially null; you can customize the built-in 
default-rule build commands by defining these variables in your makefile. For instance, 
you might want to specify the location of your Pascal Include files by adding an -i 
pathname option to the default rules by a variable definition of the form 

?Options• -I pathname 

Or you may want to indicate the use of a different C compiler by changing the value of the 
{Cl wriable. 

You cm redefine the {Asm), {Pascal}, {Cl, {AOptions}, {POptions}, and (COptions} 
variables. Variable definitions can be overridden in your makefile, on the command line 
(with M2kc's -d option), or by an exported Shell variable. See "Variables in Makefiles" later 
in this chapter. 

CHAPTER 9 Make 2i1 



If you cannot sufficiently customize the default rules by aMigning to these built·in 
variables, you can override any of the default rules by placing your own versions of the 
default rules in your makefUe. 

{Defauld is anocher built-in variable; its value is r.he common part of the filenames 
matched by a default rule (defined dynamically when Make applies the default rule). The 
{Default} variable is what allows you to write a generic default rule without referring to a 
specific filename. Because its value is set dynamically by Make, its value cannot be 
oveniden in your makef'tle. 

{OepDirl and (I'argDirl are built-in Make variables that allow default rules to work with the 
target and prerequisite mes in different (or the same) clireaories: 

{DepDir} The direaory component of the prerequisite name 
{TargDirl The directory component of the wget name 

• Note: {DepDiri and (I'argDid have values only when used in the build commands of 
default rules for which directory dependency rules wen: applied. In all other cases 
these variables evaluate to the null string so that they won't interfere with the normal 
behavior of default rules. Directory dependency rules are explained in the section that 
follows. 

Directory dependency rules 

Nonnally, default rules work only within a single directory; that is, the target and 
prerequisite files will have the same direaory component because the default rules change 
only the suffixes of the filenames. Directory dependency rules allow default rules to be 
applied aaos.s directories. Just as default rules imply changing a filename suffix between a 
target filename and a prerequisite filename, clireaory dependency rules imply changing 
the directory prefix of the filenames, Directory dependency rules have the fonn 

ta'BetDiteaory: ... I searr:hDfreclmy: ... 

Directory dependency rules are identified by dependency names that end in colons (that 
is, dhedory names). Por ex:amplc, · 
ObjFiles: f SrcFiles: 

The above rule, together with the st2ncb.rd default rules, would mean, for example, that 
ObjFiles:name.c.o depends on SrcFiles:name.c. See the working example at the end of 
this chapter. 

• 

m MPW 3.0 Reference 

c 



No build comrmnds may be given for a directory dependency rule. More than one 
directory name may appear on either side of the rule. The current directory can be 
specified by a single colon(:) on either side of a directory dependency rule. 

Directory dependency rules are applied only during the processing of defaull rules. If 
Make is applying a default rule and encounters a target name with a directory component, 
Make checks for a directory dependency rule for that directory. If one exists, Make tries 
prerequisite filenames with the directory prefixes given on the right side of the rule. The 
names are tried in the order they appear in the rule; thus rmre than one directory name on 
the right side of a directory dependency rule constirutes a list of directories to search. 

+ Note: If default rules are meant to be applied from a directory A:. to a directory B: and 
also within A:. (that is, from A: to A:.), then A:. should appear on both the left and right 
sides of the directory dependency rule. For example, 
A: f A: B: 

Variables in makefiles 

You can use exported Shell variables and built-in Make variables within makefiles. You can 
also define variables within a makefile or on the Make command line. MPW Sheil variables 
are described in Chapter 5. 

Shell variables 

Make automatblly defines exported Sheil variables before it reads the makefile, so you 
can use Shell variables in dependency lines and build comrmnds. 

Shell variables in dependency lines are expanded because they are typically filenames or 
. pattS of a file. Shell variables in build rules pw th.rough unexpanded so that the Shell will 

be able to process and expand them. 

If Make doesn't recognize a variable reference in a build comrmnd line, the build line Ls 
left unchanged when it i.s output so that it can be processed later by the Shell. 
(Unidentified variables in dependency lines are reported as errors.) .. 

.. 

CHA.PTER 9 Make 273 



Exported Shell variables override Make variables with the same names. 
An attempt to redefine a Shell variable in the makefile results in a 
warning message. • 

Defln.ing variables wfthla. a makefile 

Variable definitions are makefile entries of the form 

variableName • strlngValue 

Subsequent appe3t211ces of [variableNamit are replaced by string Value. Any leading or 
trailing blanks or tabs are removed from the variable definition. You can use line 
continuations to make a string Value 2tbitrarily long. 

When a string Value~ continued a~ lines, a single blank replaces any comments, 
blanks, or tabs at the end of the continuation line and at the beginning of the line after the 
continuation. Thus, variable values can conveniently contain lists of files. Note that 
variable values may cont.ain references to other variables. 

One common use of variables ~ to provide parameters to the directory portion of 
ruem.mes so that you can e2Sily adapt a makefile to different directory setups. Another 
use is to create a list of filenames that will be used in m:>re than one place. 

• Note: Make variables are not expanded until they are used in dependency lines or until 
generated in a build line. Thus, you mu.st define any variables appearing in 
dependency lines somewhere previously in the makefile because variables in 
dependency lines are expanded immediately to produce filenames. You on define 
variables in build lines anywhere in the makefile because variables in build lines are not 
expanded until after the build lines are generated (that is,· after the entire makefile has 
been read). 

You can define a varbble on the command line with the Make option 4; thi<s option 
ovenidcs any defiDition d the variable within the makefile, thus allowing the definition in 
the makefile to function as a debult 

• Note: Values of Make variables may not contain the ASCII charactets 0 or 1. 

.. 

?74 MPW 3.0 Reference 



Built-in Make variables 

The following built-in Make variables have values that are dynamically assigned (and that 
cannot be overridden) as Make generates the build commands: 
{Targ} The complete filename of the target on the left side of the 

dependency rule whose build commands are being processed. 
{NewerDeps} A list of the names of all of the target's direct prerequisites that 

were newer than the target; that is, the files that caused the 
target to be out-of-date. 

These built-in variables can be used only in build command lines because they have no 
value when dependency lines are processed. They cannot be overridden. 

When default rules are applied, the following variables are also defined: 
{Default} The collUOOn part of the filenames matched by a default rule 
{TargDirl The directcry component of the target name 
!DepDir} The directory component of the prerequisite name 

• Nots: When expanding the built-in variables (Targ}, {NewerDeps}, {TargDirl, {DepDirl,. 
and {Default} in build commands, Make automatically quotes their values, if 
necessaiy, because they will represent filenames or parts of filenames. Don't quote 
them yourself. 

Quoting in makefiles 

The Make command supports several of the Shell's quoting conventions. Quoted items 
can appear in dependency lines, variable definition lines, and build command lines. The 
following quotation characters are used: · 

a Quotes the subsequent character; that is, the a is removed and the subsequent 
cbar.M:ter is taken to be a literal character (except when dRetum is used at the end 
of a line as a continuation character). 

I I Quotes the enclosed string. The single quotation marks are removed. 

" " Quotes the enclosed string, but { ... J variable references are expanded, and the 
escape character a is processed. The double quotation marks are removed. 

.. 

CHAPTER 9 Make 2i5 



Quotation characters are processed as follows: 
• In dependency lines and in the name pan of variable definitions, quotation literalizes 

the quoted characters (useful for expanding file or variable names). 
o On the right side of variable definitions, quoted items are passed th.rough •as is,• so 

that the quoting will take effect when the variable is expanded. 

• In build command lines, quoted item are passed through as is, so that the quoting will 
take effect when the build comma00$ are executed by the Shell. 

Une continuation chatacter 

Ulce Shell commands, dependency and variable definition lines can be continued over 
ioore than one line by using oRetum. oRetum causes the a, any bl.anlcs preteding the a, the 
return, and any leading blanks on the next line to be replaced with a single space. 
Comments at the ends of such continued lines do not comment out the continuation 
character. 

Comments in makefiles 

The number sign (#) indicates a comment. Everything from the # to the end of the line is 
ignored Comments always end at the next return, even if the rcrum is preceded by a a. 
Comments may appeu in dependency lines, variable definitions, and build command 
lines, or on lines by themselves. Comments in build command lines are passed through to 
stand:.ud output where they are p~ as commenlS by the; Shell. 

Executing Makc's output 

Make genentes a set of commands, which must be executed sepa12tely to perform the 
actu3l updates. You can automatically execute Make's command output by calling Make 
from a Shell script The simplest form of such a script consists of the two commands 
Make {"Parameter3"} > MakeOu~ 
MakeOut 

2'76 MPW 3.0 Reference · 

c 



( .. 

The first command executes Make, using the parameters passed to the script (See the 
description of the {8Parameterswl variable in Chapter 5 under "Variables:) Output (that is, 
build commands) is redirected to the file MakeOut The second line of the script executes 
MakeOut. 

The order in which Make build,, targets 

Make builds the top-level target and its prerequisite subtugets in a recursive, "bottom 
up" fashion. The top-level target (or targets) may be specified on the Make command 
line. If no target is specified on the command line, then Make builds the first target 
appe3.ring on the left side of a dependency rule in the makefile (that is, the default top­
level target). 

The prerequisites of the top-level target (and subtargets) are also investigated in a 
recursive, •bottom up" order, starting with the fust prerequisite in the target's 
prerequisite list After the first prerequisite (and its own prerequisites) have been 
investigated, the target's next prerequisite is investigated. The next prerequisite will be 
the next one mentioned in the current dependency rule or in the next dependency rule in 
the file that has the same left-side target 

Thus, the important orderings within a makefile are: the fust target mentioned (the 
default top-level target) and the order of prerequisites for any given target Otherwise, 
the order in which targets are mentioned is not important 

Please note, however, that once a target has been investigated by Make it is not revisited, 
even if it appears somewhere eJse in the top-level target's prerequisite dependency 
hierarchy. In other words, while a file may appear as a prerequisite of a number of program 
components, Make will rebuild it only once (if necessary) when it is first encountered in 
the recursive •bottom up" tmversal of the dependency hie12rChy. 

Remember that a makefile may have one or irore top-fevel targets (or roots), that is, it 
may desaibc how to build irore than one object (The -r option will identify all the 
roots.) Running Make will rebuild only the targets you specify on the command line. If no 
targets are specified, Make will rebuild the default targets . 

.. 

CHAPTER 9 Make r:7 



Debugging makefiles 

When Make doesn't seem to be doing what you expect, the next step is to debug your 
makefile. The follo~J·1g procedures are helpful in debugging makefiles: 
1. Use Make's ·V option to generate verbose dia.gn~tic output This output tells you 

which files don't emt, which files are up-to-date, which files need rebuilding, and why 
they are out-of-date. It also points out which fdes don't have build rules and are thus 
assumed to be artificial target.s. (Targets that are abstract and not really built. See, for 
example, Note 8 in the Make example that follows this section.) 

.2. Use Make's -s option to show the strucrure of your target's dependency relations. This 
option displays the complete structWe of dependencies, including those generated by 
de.fault rules. A target (or subtarget) that doesn't appear or that has no prerequisites 
may indicate a typographical error in the dependency line for that target (or in the line 
for one of the targets that depend on it). A target that appeais at the wrong level in 
the dependency graph indicates an error in your dependency specification. 

3. Use the -u option to fuld unreachable targets. These may be patts of your target 
dependencies that did not get conneaed to the rest of the dependency hier.art:hy 
became of a bad or mistyped rule. 

Problems due to command generation before execution 

Make generates commands that amst be sepmte!y executed to perform the actual 
updates. Because Make must detennine what buikl commands to generate before any 
targets are actually built, the possibility of •phase errois• exists; that is, unexpected 
behavior may occur when generated commands alter the assumptions that Make med to 
detennine whether targets were out-of-date. (You won't experience these probletm unless 
you have build commands that do thin~ such as deleting ftleS that Make thinks are 
already up-to-date.) 

.. 
.. 

278 MPW 3.0 Reference 

C ... ·. ·, . ' 

.,/ 



Probleim with different specifications for the same file 

You'll experience problem,, with Make if you use different pathname specifications for 
the same file (that is, pathnames with different degrees of vt)lume and directory 
qualification). Make uses the name strings exactly as encountered in dependency lines, so 
different name strings will result in different entries. (This is done for the sake of 
performance-no calls are made to the file system, except to inquire about the date of 
targets that are supposed to be built) If there is mre than one name specifiotion for 
the same f'tle, each name results in a different Make target, and the resulting dependency 
relations will be wrong. 

Probleim with default rules 

An eJTOr message may appear saying that no rules were available to build something that 
should have been covered by a default rule. This situation may result from any one of the 
following problems: 

• The default rule may not have matched agaimt anything, and was thus not applied; for 
example, the default rule 
.p.o f .p 

caMot be applied if the .p file does not exist either in the file system or in the 
makefile dependency specification. 

• There may be a typogr.iphical em>r in the fllename, so that the default rule could noc 
be applied. You should be able to detect such errors by inspecting the output of 
Make's ·S and ·T options. 

• There may be a typographical eJTOr in a default rule that was given in the makefile, in 
which case you may not see any dependencies generated by the rule when you use the 
· -s option on the Make command line. 

An example 

This section lists the makefile used ro build an experimenr.al version of the Make tool 
itself (represented in this ma.kef.tle by the MakeX tlrget). A series of explanatory notes 
follows the listing. These notes describe in detail a number of the Make fearures that were 
used .. 

CHAPTER 9 Make Z79 



~· 
(·i; 
~-~"J 

ttttfffffttttttttttt Variables tfttttttttttttttttttt 

ToolDir - {Boot}ToolOnits: s.. nof• 

ObjDir - :Obj: 
MaketJse.s - (ToolDir}Macinterfaces.p.o a s- nol• 2 

(ToolDir}MemMqr.p.o a 
{ToolDir}SymMqr.p.o a 
(ToolDir}Otilitie.s.p.o a 
{ToolDir}IOinterface.s.p.o a 
{ToolDir}Cur.sorCtl.p.o a 
{ToolDir}Er:Mqr.p.o a 
{Pinterface.s}IntEnv.p a 
{Pinterface.s}MemType.s.p a 
{Pinterface.s}Ouick.Oraw.p a 
{Pinterface.s}OSintf.p 

MakeObjs - (ObjDir}Make.p.o a 
{ToolDir}Stub.s.a.o a 
{ToolDir}CallProc.a.o a 
{ToolDir}Otilities.p.o a 
{ToolDir}Otilities.a.o a 
(ToolDirJIOinterface.s.p.o a 
(ToolDir}IOinterface.s.a.o a 
{ToolDir}MemMqr.p.o a 

.{ToolDir}MemMqr.a.o a 
(ToolDir}SymMqr.p.o a 
(ToolDir}SymMqr.a.o a 
{ToolDir}CursorCtl.p.o a 
{ToolDir}Cur.sorCtl.a.o a 
{ToolDir}ErrMqr.p.o a 
{ToolDir}Macint.a.o a 
{ToolDir}Macinterfaces.p.o 

Libs - {Libraries}Runtime.o a 
{PLibraries}Pa.sLib.o a 
{Librarie.s)Interface.o 

LinkOpts - -w t no warninq:s (for duplicates due to Stubs.a.o) 
s.. not• 3 

Sourcei'ile.s • Malce.p a 
DefaultRules a 
Malcef ile 

HfttftttH Default Rule Customizations HHHtttttt 

POptions - -i (Boot)ToolOnit.s: SM not• 4 
{ObjDir} f t directory dependency rule SM note 5 

.. 
.. 

1S> MPW 3.0 Reference 



('· 

c:· 

tttttttttttttttt Cependency Rules tttttttttttttttttt 
MalceX ff {MalceObjsl {Libsl S•• note 6 

Link !Linl<Opts) -p -b -o MalceX 
-t MPST -c "MPS " a 
{MalceObjs) {Libs) 2LinlcMsqs 

MalceX ff defaultRules 
Cuplicate -d defaultRules Mal<eX -y t copy default rules into Make' s daea ~c:-:< 

Mal<eX 

Mal<eX 

ff 
Rez Mal<e.r -o Mal<eX -a 

ff 
SetFile MalceX -m • -d • 

{ObjCir)Mal<e.p.o ff 

Malce.r 
t Malce's Commando resource 

{Hal<eObjs} (Libs} defaultRules 
tset last-mod and creator dates 

Halce.p See note 7 

Sava Malce.p 2Cev:Nu'll 11 Set Status O tsave source before compile if c!"lanqed 

{ObjCirlHal<e.p.o ff (Mal<aUses}twill be auqmented by default rules 

{ToolDirlMacinterfaces.p.o 

IToolCir)HemMqr.p.o 

IToolDir)SymMqr.p.o 

IToolDir!Otilities.p.o 

!ToolDirlIOinterfaces.p.o 

f (Pintertaces}MemTypes.p 
See note I 

!Pinterfaces}Quicl<Draw.p 
IPinterfaces}OSintf.p 
!Pinterfaces)Toolintt.p 
!PintarfaceslPasLibintf.p 

f 

f 

f 

J 

IToolOirlUtilities.p.o 
!ToolDirlHacinterfaces.p.o 
!Pinterfaces)HemTypes.p 

{ToolDir}HemHqr.p.o 
(Pinterfaces}HemTypes.p 

{Pinterfacas)HemTypas.p 

(ToolCir}Otilities.p.o 
{ToolDir}Hacinterfaces.p.o o 
!Pinterface~IHemTypes.p 

Sacl<up f 
Duplicate -y • HalceSrc: 

Restore 
Duplicate -y HaJceSrc:• 

Listinqs 

f 

f 

tbaclcup to Sony 

trestore from Sony 

{SourceFiles} 
Print -h -r -ls .as -s 8 -b -hf helvetica -hs 12 {NewerDeps) 
Echo •Last listinqs made ·cace·• >Listinqs 

d 
d 
d 

S•• note 8 

See not• 1 O 

SH note 11 

CHAPTER 9 Make 281 



Notes on Mate's maketlle 

These notes are referenced in the preceding example. 

1. The e:::pon:ed Sheil varizble {Bood, i.wed in the definition of IToolDirl, is automatically 
defined by Make when invoked 

2. Several variables-{MakeUsesl, {MakeObjsl, {Libs}, and {SourceFiles}-are used for lists 
of fllenames. This is a convenience because the lists are used in several places later in the 
makefJle; it al.so helps to reduce errors. Note that you can temporarily remve any file 
from the list by placing a comment character at the beginning of the line for the file. 

3. The {UnkOprsl variable is used to specify linker options (and is used only once). This 
usage is handy because the definition in the makefile functions as a default that can be 
overridden from the command line with the -d option. as in 
Make -d LinkOpts•'-w -l >Map' 

4. This directory dependency rule allows the MakeX tool's objec13 and sources to be in 
different directories and yet be built by the built-in deb.ult rules. In pa.rtiailar, 
Make.p.o will be in the :Obj: directory while Make.p is in the current directory. Note 
that for this device to work, Make.p.o must appear with the object directory prefix. 
Thus it appeais in the makefile as (ObjDirlMake.p.Q. 

5. The {POptionsl definition gives a value to one of the V2riables used in the default rules, 
customizing the built-in default rules for Pascal compiles for this panicu1ar makefile. 

6. The four sets off/ rules for MakeX (an experimentll version of the Make tooO handle 
(a) the Make link (which creates MakeX's code resources), (b) the copying of the 
default rules to MakeX's dal3 fork (Make reads the built-in default rules from its own 
data fork), and (c) the setting of the C1'C2tion and axxilfication dates. The link will 
take place only if the MakeX objects or libraries change. The default rules will be copied 
only if the rules have changed The resowte compiler will rebuild Make's Commando 
resource only if Make.r Im changed. And the setting of the dates will take place if either 
of the first two rules M.S activated. (Note that the fourth rule has the union of the 
dependency rebtions of the first two.) 

-7. The two sets off f rules for Make.p.o control the compilation of the main source for 
Make, widl som: interesting side effeas. The first// rule saves the Make source before 
it is compiled, only if the source ftle has changed The second ff rule does the actUal 
compile. Note that this last rule Im no explicit build command,,, so it will be augmented 
by the built-in default rules, which will add a dependency relation (on the source file 
Make.p), and will supply the actual build commands for the compile. 

8. The {ObjDirl prefix is necessary for .. the directory dependency rule to take effect It 
allows the object and source to be ii(l different directories. 

282 MPW 3.0 Reference 

C\ 
( ; __ .;11 



9. The dependency rules for Maclnterfaces, MemMgr, SymMgr, Utilities, and IO Interfaces 
describe dependencies between various utility units used by Make. Several 
dependencies on library interface files are given. Dependencies aroong the utility units 
the~elves are described by indicating a dependency on the object files of the !ower­
level (predecessor) units. These dependencies could have been expressed as 
dependencies on the source files of the lower-level units (because it is the source files 
that are read in a Uses list). However, 'expressing these dependencies on the object files 
has the nice property of enruring that the lower-level units have been successfully 
compiled before the higher-level units are built 

10. The Backup, Restore, and Listings targets are additional roots (top-level targets) in 
Make's makefile, and thus represent other things that can be built besides MakeX itself. 
Note that the Backup and Restore targctS do not actUally get built by their build rules; 
they are thus artificial targets and will always generate build command,, if they are 
specified on the Make command line. Note also that they do not have any dependency 
relations. 

11. The build rules for the Listings target denx>mtrates the use of the !NewerDep.5} variable. 
The prerequisite of Listings is a list of the Make source files. The first build command 
prints the {Newer.Depsl files. {Newer.Depsl contains the names of the prerequisites that 
are newer than the target, that is, the sowte files that have changed since listings were 
last made. The last line of the build rules simply writes the current date into a file called 
Llstings, which is the name of our target-this action results in a file that remembers 
when listings were last made. (Writing the datecvf into the file is unnecessary but 
convenient; the Echo itself is enough to change the file's 1.ast-axxilfied date.) 

• Note: There are several implicit build,, that are generated as needed by the default 
rules. For eX2mple, the {MakeObjs} variable includes several assembly-language object 
files. Because {MakeOb~J appe3!S as a prerequisite of the link step, these assemblies 
are generated, if necessary, before the link . 

.. 
.. 

CHAPTER 9 Make 283 



c 



Chapter 10 More About linking 

THIS CHAPTER SUPPLEMENTS lliE INFORMATION IN 1liE SECDON "LL'IKING" IN 
CHAPTER 8 and in the description of the Unk command in Part II. This chapter will 
be more useful after you're familiar with Chapter 8 and the major MPW tools and 
when you are ready to optimize your progr:um or build procedures. 

Use Unk, the MPW linker, to combine a group of MPW object files (such as the 
output of the compilers) into a Macintosh-executable resource, such as an 
application, desk acce~ory, driver, or MPW tool. • 

Contnts 

Link functions 'JJ31 
Segmentation 288 

Segments with special treaanenrs 289 
Controlling the numbering of code resources 290 
Resolving symbol definitions 291 

Multiple external symbol definitions 291 
Unresolved external symbols 292 

Building applications with more than 32K of global data 292 
32-bit refetences-MPW Pascal 293 
32-bit references-MPW M.sembler 293 

Linker location map 294 
Map entries for the global data segment 295 
Optional map fomuts for compatibility 295 

Optimizing your links 296 
Libraty construction 296 

Using Lib to build a speciali7.ed library 297 
Remving unreferenced modules 298 
Guidelines for choosing files for a specialized library 299 

285 



' .,, . 



Link functions 

After a source file has been assembled or compiled into an object file, it contains 

• Object code (relocatable machine language). 

• Symbolic (named) references ta all identifiers whose locations were not known at 
compile time. (These include references ta routines from separate compilations and 
libraries, and references ta global variables.) 

The linker perl'orms the following functions: 

• Sorts code and data modules into segments, by segment name. (Within a segmen~ 
modules are placed in the order in which they occur in the input files.) The -sg and -sn 
options allow you to change segmentation at link time. 

+ No~: A module is a contiguous region of memory that contains code or static 
data. A module is the smallest unit of memory that is included or rermved by the 
linker. A segment is a named collection of modules. 

• Omits unused ('dead•) code and data modules from the output file. (These modules 
can be listed with I.in.k's .uf option, and deleted from libraries with the Lib command's 
-df option.) 

• Provides (together with the Segment Loader) a jump table architecrure that supports 
relocation of code and data at run time. (See the chapter "Segment Loader" of Inside 
Macintosh for more information about the jump table.) 

• Constructs jump table entries only when needed, that is, only when a symbol is 
referenced across segments. This means that the jump table will be of mini.mum size. 

• Edits instructions to use the most efficient addressing mode. AS-relative Gump table) 
addressing is used across segmenG, and PC-relative addressing is used within a 
segment. 

If you take the address of a procedure that is within the same 
segment, then, as stated, a PC-relative address is used ta generate 
the effective address. (This is the case in MPW C by default, and in 
MPW Pascal when used with the -b option.) If the procedure 
address is stored as a variable (or passed to the tool box), and the 
segment is unloaded, then any routine calling th.at address will 
transfer consrol to the wrong place, with the result that the 
program willccrash. See Macintosh Technical Nore 42 ..... 

CHAPTER 10 More About Linking ?S7 



t::.. Imporrant Note that the ·b option in MPW Pascal means that you will use the 
AS offset to the jump table, rather than the PC-relative address. 
The meaning of the -b option in MPW C is opposile; it forces PC· 
relative addressing and also places strings and constants in the 
same module. ~ · 

• Provides (with the data initialization interpreter) support for relocation of data 
references at run time. (The data inidall7.3tJon interpreter is the module _DATA.INTI' 
in the libraries Runtime.a and CRuntime.o.) 

• Gener.ates a cross-reference listing of link-time (object-level) names (·J: option). 
• Generates a location map for debugging or performance analysis (-map option). 

Llnk copies linked code segmenrs into code res0urces in the resource fork of the output 
file. By default, these resources are given the same names as the corresponding segment 
names. 

If linker errors or a user interrupt cause the output file to be invalid, the linker s.ets the 
file's nxxlification date to •zero• Oanuary 1, 1904, 12:00 A.M.). Th.is action guarantees 
that the Make command will recognize that the file nee~ to be relinked, and that the 
MPW Sheil will not run the file. 

Segmentation 

Segmenting a program makes it possible for temporarily unneeded parts of the program 
to be unloaded and purged from menx>ry, thus freeing menx>ry space. You specify the 
name of a segment by placing a directive in your program's source file. See the 
appropriate language reference manu2l for infonnation. Each.segment is linked into a 
separate code resource. 

• Note: For a desk accessory or driver, the code must be in a single segment, and no jump 
table is coastructed. SegmenWion applies only to applications and MPW tools. 

The linker sorts object code into load segments by mme, allowing you to organize your 
source code for clarity and understuiding. You can specify the same segment mme more 
than once. Llnk collects code for a given segment name from all of Unlc's input files and 
places it into a single segment in the output file . 

.. 

288 MPW 3.0 Reference 



(, . 

. 

C . . 

Segment names are case sensitive. For example, "Segl" and "SEG 1" are 
not equivalent names. If yeu aren't sure about the cases used, you can 
use the linker's ·P option to get a listing. • 

By default, resources created by the linktr are given resource names identical to the 
corresponding segment names. Unk provides options for combining and renaming 
segments at link time (-sg and -sn). If you don't specify a segment name before the first 
routine in your file, the rmin segment name ("Main")~ assumed there. Normally, you 
should give the rmin segment the name Main. 

By default, segments are limited to 32, 7(/J bytes. Th.is limit ensures compatibility with ail 
versions of the Macintosh ROM. Larger segments are allowed ·with Llnk's ·SS option. 

• No~: Objea code ~ placed in a segment in the order that it's encountered in the input 
file. For segments larger than 32K, the order is important because PC-relative offsets 
are limited to 32K by MC68COO instructions. 

For more information about segmentation, see the ch2ptet "Segment Loader" of 
Inside Macintosh. 

Segments with sped3.l treatments 

When linking a rmin program, Unk creates two segments that don't appear in the input 
objea files: 

• The jump table (' cooE ' resource, IO-<>), which is unnamed. 

• The global data arei (no resource), which is named %GlobalDa12 and appears only in 
the link map file (described below). You can't change the name %GlobalData at link 
time. 

• 
.. 

CHAPTER 10 More About Linking 289 



There are also two segments that have special conventions: 

• The segment that contains the main program entry point(• CODE' resource, ID•l), 
usually named Main. 

• A segment named %A5Init, which ccnti.ins the i!iitbl values for the global cfati. area 
and code that moves these initial values to the global data area. Applications should 
unload this segment before allocating any memory in order to avoid memory 
fragmentation. You can unload the %A5Init segment by calling UnloadSeq with 
the addres.s of entry point _cATAINIT as irs parameter. In Pascal, for example, 

UnloadSeq(&_CATAINIT); 

In C, the same call looks like this: 
UnloadSeq((Ptr)_Catainit); 

In C and Pascal, this call should be the first statement in the application. In assembly 
language the call to UnloadSeg should follow the call to _catainit. 

Controlling the numbering of code resources 

·Normally, you don't need to worry about which segments are given which resource 
numbers. However, you may want to control the assignment of resource numbers to 
optimize program load time, to implement a specialized code man.ager, or to match the 
numbering produced by another linker. 

Llnk creates and numbers code resources based on the order in which it encounters the 
segment names in the command-line parameters and the input object files. If you can't 
easily predict the order·in which the names appear in the objea files, you may want to 
force the ordering with command-line options that contain d~ segment-mapping 
directives. For a.ample, the following sequence of linker options forces Main to come 
first, followed by Init, Body, and Terl?I: 

Link -sn dummyl•Main t must contain the main code module a 
• or entry point a 

-sn tASinit•Init o 
-sn dummy3•Body o 
-sn dummy4•Term a 
•. and.soon 

.. 
.. 

290 MPW 3.0 Reference 



( 

( ··.·: 
' 

The "olcr segment names may be either "dummy" names (which don't appear in the object 
files) or actual mappings, such as the mapping of the us I nit code into the segment 
Init. 

• Note: The segment containing the main code module 'Will alvra~s be segment 11. 

Resolving symbol definitions 

This section desaibes how the linker resolves references to symbols. For a more detailed 
discussion of local and external symbols, see Appendix H. 

Syrmols in object files are either locai or external. A loal roodu!e or entry point can be 
referenced only from within the me where it is defined. An atcmal module or entry point 
can be referenced from different object files. An entry point is a location (offset) within 
a module. (The m:xiuJe itself is treated as an entry point with offset zero.) A reference is a 
location within one roodu1e that will contain the address of another module or entry. 

If the linker finds a symbol, it will fl!'St try to match the symbol to a local symbol in the 
same file. If the name cannot be located, the linker will then look for it externally. (An 
exception to th.is procedure is described in the "Record• section of AppendU: H.) 

Multiple external symbol definitions 

If the object files contain roore than one definition for an external symbol, the first 
definition is used, and all references are treated as references to the first definition. This 
lets you se!eaively override entry points in libraries so that you can substirute new 
versions <i cede. When subsequent definitions are encountered, a warning is generated. 

• NollJ: If you override a m:xiuJe, then all succeeding entry points within the overridden 
nxxiuJe also disappear. Therefore be sure that any other referenced entry poin~ in the 
overridden m)dule are also defined in the new, overriding module. 

CHAPTIR 10 More About Linking 2'91 



Unresolved atenW symbols 

Occasionally, you may find th2t an external symbol is unresolved because a reference MS 

generated with case sensitivity set one my, whereas the definition v...s generated with 
different case rules. When this happens, you can avoid recompiling by using the Unk 
option -ma (module alW). Whenever llnk encounters an unresolved symbo~ it checks the 
list of module aliases in an attempt to resolve it 

Building applications with more than 32K of global data 

To pennit your application to use ioore than 32K of global data, use the -m option of the 
MPW Pascal and MPW C compilers. The -m option generates code that causes global data 
references to be 32-bits. You should be aware that the code for 32-bit references is larger 
and slower than the code for 16-bit references. . 

Follow these steps: 

1. Use the -m option when you compile Pascal or C files that reference •far' datl. All 
Pascal units and the Pascal main \it any) in the program must be compiled using either 
-m or -11 (see the note for Pascal users below). 

2. Implement 32-bit references in assembly language when n~ (see the note for 
Assembler users below). 

3. Use the linker's -srt option. ~option instructs the linker to sort data modules into 
near and far groups, placing all 16-bit referenced global data as close to A5 as possible, 
and all only-32-bit-referenced data farther away. Thus, any data with a 16-bit 
reference is forced to within 32K of A5. You an also use the -ss size option to 
supp~ the linker's warning about code or data segmencs.Jargcr than 32K. 

The -srt option alters the usual oldering d global data (that is, it is no longer governed 
strictly by Unk coamand line order). 

292 MPW 3.0 Reference 

0 " 

C: \ : I 

. .,.;:? 



( ,,_ 

,1., / 

32-bit references-MPW Pascal 

rt any Pascal unit in a program is compiled with ·4 or -m, then all Pascal units (including 
the Pascal main) must be compiled with either the -m or ·n options. For unir.s that don't 
need 32-bit references, specify ·4. 

Historically, Pascal global data was held in a single nxxiule (with the same naire as the 
unit) and referenced by offsets into the mxiule. The ·4 option generates a named roodule 
per data item (as in C). The ·m option implies the ·4 option. 

rt you compile one unit (UNITA) with ·4 and another (UNITB) without -a, and if both 
units reference data declared in the other unit, this situation results: 

UnJt compffed wtttl exports 

UNITA 
UNITB 

foo, bar 
baz, bletch 

·4or-m 
nothing 

foo, bar 
_UNITB 

baz, bletch 
_UNITA (+offset) 

UNITA references data modules in UNITB using variable names (which are never defined), 
while UNITB references a nxxiule called _UNITA, which is never defined. The link will fail. 

32-bit references-MPW Assembler 

In assembly language you must explicitly code 32-bit references when you want to avoid 
fixing a data nxxiule to within 32K of AS. For the MC6800>, you could write something 
like this: 

IMPORT 
MOVE.L 
MOVE.x 

i.ndi.rect:: 

LONCDATA:OATA 
i.ndi.rect: <PC> , 00 
tAS,00.L),de.sc 

DC.I. LONCDATA 

( 417 /9 cloclts J 'offset: -> scraech reg isi:er 
[ea: 3/6/7 cloclts] access vari&Dle (PEA,ei::.) 

32-bit: offset of·daca 

In code that i1 intended to run only on a MC68020, you an do this: 
MACBIR 
IMPORT 
MOVE • .¥ 

MC68020 
LONCOATA:OATA 
((LONCDATAI .I.,ASJ,de.sc 

·4 

4 

; move co descinacion <er ?EAl 
; [ea: ll/lS/25 clocks) 

CHAPTER 10 More About Llnking 293 



+ Nots: The MC68020 code, while smaller, runs rrore slowly than the MC68oc0 code 
shown above if we ignore the possible impact of the temporary register required (11 
versus 7 dcx:ks best case, 1 S versus 13 docks cache case, and 25 versus 16 docks worst 
case). 

linker location map 

If you specify the Link option -m2p, Link writes a loation map to standard output The 
map contlins information about segments and where modules are located in the 
segmencs. (See note later in this section about optional formacs.) 

For each code segment, the linker writes a segment map that looks like 
Segment "Main" :size•$0326 r:srcid•l JTindex•SOOOO tJTEnts•SOOOl 

COMPACTMEM $0000 size•SOOl8 file•"Interface.o" 
SAVEORETAl $000A 
SAVERETAl SOOOC 
SAVE $000E 
SAVEO $0014 
NEWPTR $0018 size•$000C 
CMain $0024 size•S0036 JT•S0000(A5) 

RTinit SOOSA size•S01F4 file•"CRunTime.o" 
exit $024E size•$0020 

RTExit S026E size•SOOSO 
c2pstr $02BE size•$0032 
p2cstr S02FO size•$001E 
main S030E size•S0018 

• The first line indicates the segment's name, size, and resource id. One or rrore module 
or entry point entries follow the segment description. 

• JTindex is the number of the segment's first jump table-entry. 
• JTEnt:s indicates the number of jump-table entries belonging to the segment 
• A name of ., ? Anon• indicues that the nxxiule or entry point is anonymous (was not 

given a mme by the language proces.sor). 
• The first mmb:r following the name i.1 the module or entry point's segment offset (If 

the segment~ a 'cooe:' segment, the segment offset doesn't include the +byte 
segment ~ required by the Segment Loader.) 

• If the entry i.1 for 2 module, the module's size is indicated. 
• If the module or entry point has a jump-table entry, the As-offset of that entry is 

indicated. 

The name of the object file that the rrodule came from is printed every ti.me the object 
filename changes. That is, if subsequent..roodules come from the same object file, the 
object ftlename is not printed again (which reduces the size of the location map). 

294 MPW 3.0 Reference 



(" 

Map entries for the global data segment 

When linking an application or tool with global data, Un.k writes a map of the global data 
segment that looks like: 
Segment "%Global0ata" size•S0106 

tOOOl -SOl06(AS) 
ArqC -SOl06(AS) 

-ArqV -$0l02(AS) 
-EnvP -SOOFE(AS) 
StandAlone -SOOFA(AS) 

IntEnv -$00F6(A5) 
-SAGlbls -$00C2(AS) 
foo -$0004(AS) 

size•SOOOC 

size•$0004 hasContents 
size•$0034 hasContents 
size•$00BE hasContents 
size•$0004 hasContents 

• The first line summarizes the global data segment, giving only its name and size. 

• Subsequent lines indicate the AS-Offsets of variables. 
• If a line describes a mdule, the mdule's size is indicated; if there is no size prese!'.lt, 

the line describes an enay point within the ioodule immediately above. 

• If the datl module contlins initialized data, the word • hasContents • follows the 
size. 

As for code segments, the name of the object file the data mdule came from is printed 
whenever the object file name changes. 

Optional map formats for compatibility 

The optiom -~ -12, and .If produce a linker map in an obsolete format nus fonnat has 
been retained only for compatibility with the MPW Perl'ormance Tools, which currendy 
read the map files to determine IOOduJe locations. Tools shouJd rwl depend on the fonnat 
of the location map, as it is likely to change in future releases of MPW. (If tools need 
infonnation aboot mdule loatiom, they should read symbolic information files 
produced with the -Sym option. Documentation on the Sym file format is available 
separ.uely from Developer TechniaJ Support) 

CHAPTER 10 More About Llnking 295 



Optimizing your links 

Because of the complexity of the linker's functions, th;: llttk step is often the !ong'!"..st 
single step during incremental rebuilding of your program. The following steps can 
substantially speed up Unk's performance: 

• Use a RAM cache. Link must open and close many object files. Experience has shown 
that large links run up to four times faster when you use a RAM cache of 64K or more on 
machines with at least 1 megabyte or mre of RAM. (Use the Control Panel desk 
accessory to check your RAM cache settings. If you change the setting, you must 
restut the system to have the new setting take effect) 

• Use the Lib Ult/Uy to combine input files. You can use the Lib cormmnd to reduce the 
number of input files. Using Llb can give a 10-15 percent improvement in linking 
speed. See 'Library Construction• later in this chapter. 

• Eliminate unneeded files. You can eliminate unneeded input to the linker by heeding 
the warning 'Ftle not needed for link,• and rem:>ving such files from the link. Th.is 
means customWrig your link lists, rather than relying on a generic makefile for linking. 

• Eliminate unneeded references. You can also eliminate unneeded input by using Llb to 
rem:>ve unreferenced mdules. Experience has shown that producing a specialized 
library file can increase Llnk's speed by as much as 40 percent See the next section, 
"Library Construction.• 

Library construction 

The Llb tool enables library construaion by allowing you to rombine object code from 
different files and languages into a single ob;ea file. For CI3lriple, you can combine 
assembly-language code with C or Pascal. The Lib tool was used for this purpose in 
constructing the libraries distributed with MPW. 

The tool Llb and its options are described in Part n. This section explains some aspeas 
of using Llb. 

.. 

296 MPW 3.0 Reference 



Llb reorganizes the input files, placing the combined library file in the data fork of the 
· output library file. By default, the library output file is given type ' osJ 1 and creator 

• Ml?S '. Llb's output is logically equivalent to the concatenation of the input files, except 
for its optional renaming, resegmentation, and deletion operations, and the possibility of 
overriding an external name (as in Llnk). Llb doesn't combine modules into larger modules, 
nor does it resolve cross·module references. This limitation guarantees that the output of 
a link that uses the output of Llb is the same as that of a link using the "raw" files 
produced by the compilers and assembler. 

• Why lib can speed up your links 

Object fifes processed with Ub result In slgnltlcontty foster llnla then the •row· 
object tlles produced by the compilers ond assembler. There ore several reasons for 
the speed Improvements: 

• Code ond Doto modules ore seporoted Into different sections. ond Code 
modules ore further sorted by segment nome. These oc11ons Improve the 
performance of Link. which must sort Input modules Into output code 
resources. 

• All of the named symbols In the object Ille ore gathered Into a single Dlc11onory 
oreo at the start of the Ille. This makes the output Ille smaller and slmpUtles the 
processing needed by Link to resolve references. 

• When several obJect flies ore combined. ml.i11ple Instances of o symbol 
detlnUlon ore replaced by o single detlnlt1on. Again. this makes the output file 
smeller and slmplltles the processing by Unk. + 

Llb correctly handles file-relative scoping conve.ntions, such as nested procedures in 
Pascal, ~ta tic functions in C, or ENTRY names in assembly language; that is, it never 
confuses references to an external symbol with references to a local symbol of the same 
name, even if the two symbols are in two files combined with Llb. 

Using Lib to build a speclallzed library 

Each of the language libraries has files that you may or may not need to link with, 
depending on the functions your program calls. (See Append.ix A.) Once you determine 
which files are needed for linking a particular program, you can greatly improve the 
perfonnance of subsequent links by combining libraries into a single specialized library 
file. In building a specialized library .. you can use Lib to 

CHAPTER 10 More About LL11king m 



• change segmentation (with the -sg and -sn options) · 

• change the scope of a symbol from external to loal (with the -dn option) 

• delete UMeeded modules (with the -dm option) 

Lib's renaming, resegmentation, and deletion operations give you precise conuol over 
external names, the contencs of library mes, and the segmentation of object cede. To use 
these features, you may need to review some of the material in Appendix H to understand 
how roodules and entry points ate represented in object files. The OumpObj command is 
also useful in exploring the contem and strUctU1e of the library mes provided with MPW. 

lemming uo.re.fercnccd modules 

You an eliminate unneeded input to link by using Ub to reIOOve unreferenced modules. 
You an determine the number of unreferenced rrxxiules from Lin.lc's progress information. 
(Use the ·P option.) link reports the total number of symbols read, as well as the number 
of active symbols (that is, the symbols in the output), and the number of visible symbols 
(that is, the symbols requiring jump-table entries)-for example, 
lSS active and 54 visible entries of 714 read. 

The difference between the total read and the number of active symbols is the number of 
unreferenced (and unneeded) symbols. Most of these unreferenced symbols represent 
standard library functions that your particular program doesn't require. 

Unreferenced modules an be reIOOved in three steps: 

1. Use Lin.lc's -uf option to produce a file containing the unreferenced names. 

2. Use the ·uf file produced by llnk as the input to Lib, using the Lib option -df to 
produce a specializ.ed library that contains only the tmdules that your program 
requires. 

3. Use the output of Lib as the input to subsequent linlcs • 

.. 
.. 

298 MPW 3.0 Reference 



(-

( 

Guidcll11es for choosl.ng files for a spedallzed library 

The choice of files to include in a specialized library file is largely dictated by stability 
is.sues. Files that are unlikely to change for many builds are the best candidates. Stable 
files include the library files provided by A!Jp!e for the ROM interfaces and for language 
support. Files that are under development are best left as single files. 

Should you find it necessary to change one of the component files of a specialized libr.i.ry, 
you don't always need to rebuild the specialized library immediately. You can simply 
include the newer version of the object file in the link list by placing it before the 
specialized library file that contains the older version. You'll get some warning messages 
about duplicate symbols, but ail references will be correctly moved to the first definition 
encountered by Llnlc. later, after the file is stable again, you can rebuild the library. 

CHAPTER 10 More About Linking 'ffl 



c 



( 

( 

Chapter 11 Resource Compiler and Decompiler 

THIS CHAPTER EXP!J\INS THE USE OF THE RESOURCE COMPILER (REZ) AND RESO CRC:: 

derompiler (DeRez). The command line syntax for Rez and DeRez is explained in 
Part II. The general syntax for resource description files is summarized in 
Append.ix D. You can build a resource in text fonn by using Rez, or graphicallv bv 
using the application ResEdit Complete background information on :Vlacmcosh 
resource files is given in the ch.apter "Resource Manager" of Inside Macintosh. • 

Contents 
About the resource compiler and decompiler 303 

Resource decompiler 304 
Standard type declaration files 304 
Using Rez and DeRez 304 

Strucrure of a resource description file 306 
Sample resource description ftle 307 

Resource description statements 307 
Syntax notation 308 

Special temlS 308 
Include-include resources from another file 308 

Syntax 309 
AS resource description syntax 309 
Resource attributes 310 

Read-read data as a resource 310 
Syntax 310 
Description 310 

Data-specify raw data 311 
Syntax 311 
Description 311 

3-01 



Type-<iecl.are resource type 311 
Syntax 311 
Description 312 
02ta-type specifications 313 
Fill and align typeS 316 
Array type 317 
Switch type 318 
Sample type statement 319 

Symbol definitions 319 
Delete-delete a resource 320 

Syntax 320 
Description 320 

Change-change a resource's vif21 infonnation 321 
Syntax 321 
Description 321 

Resource-specify resource data 322 
Syntax 322 
Description 322 
Data statements 322 
Sample resource definition 323 

Ubels 324 
Syntax 325 
Description 325 

Built-in functions to access resource data 325 
Declaring labels within arrays 326 
Label limitations 327 
Using labels: two examples 327 

Preproce~r ditcctives 330 
Variable definitions 331 

Include directives 331 
If-Then-Else processing 332 
Print ditective 332 

Resowce description synm 333 
Numbers and literals 334 
Expressions 335 
Variables and functions 336 
Strin~ 338 

F..5cape charaCters 339 
.. 

302 MPW 3.0 Reference 



( 

About the resource compiler and decompiler 

The resource compiler, Rez, compiles a text ftle (or files) called a resource description 
file and produces a resource file as output The resource decompiler, DeRez, decompiles 
an existing resource, producing a new resource description file that can be understood by 
Rez. Figure 11-1 illustrates the complementary relationship between Rez and DeRez. 

• Figure 11·1 Rez and DeRez 

Resource Resource Compiler 
file (Rez) 

Resource Decompiler 
(OeRez) 

Resource 
description 

file 
('TEXT') 

Rez can combine resources or resource descriptions from a number of files into a single 
resource file. Rez can al.so delete resources or change resource attributes. Rez supporu 
preprocessor directives that allow you to substitute macros, include other files, and use if­
then~lse constructs. (These are described under the heading "Preprocessor Directives" 
later in this chapter.) 

' 
' 

CHAPTER 11 Resource Compiler and Decompiler 303 



Resource decompiler 

The DeRez tool creates a textual representation of a resource ftle based on resource type 
declarations identical· to those used by Rez. (If you don't specify any type declarations, 
the output of DeRez takes the form of raw data statements.) The output of DeRez is a 
resource description file. that may be used as input to Rez. This ftle can be edited in the 
MPW Shell, allowfug you to-add comments, translate resourte data to a foreign language, 
or specify conditional resource compilation by using the if-then-else sauctures of the 
preprocessor. You can also compare resources by using the MPW Compare command to 
compare resourte description files. 

+ Nots: MPW includes a too~ ResEqual, which directly compares resource files. The 
Pascal source for ResEqual is located in the PExamples folder. Also see the MPW tool 
RezDet, described in Part II. 

Standard type declaration mes 

Four text files, Types.r, SysTypes.r, MPWTypes.r, and Pict.r, contain resource dec!arations 
for standard resource cypes. These files are located in the {Rlndudes} directory, which is 
automatically searched by Rez and DeRez (that is, you can specify a file in !Rlncludes} by 
its simple filename).These mes contain definitions for the following types: 

Types.r Type declarations for the most common Macintosh 
resource types ( •AI.RT • , • o I 'rL • , ' MENO• , and so on) 

SysTypes.r 

MPWTypes.r 

Pict.r 

Cmdo.r 

Type declarations for • ORVR • , • FOND • , ' FONT • , • FWIO ' , ' IN'rL • , 
I NFM'? I I and many others 

Type declarations for the MPW driver type 'DRVW' 

Type dedar.ation for PICT resourtes for debugging PICTs 

Type dedmtion for Commando resources 

Using Rez and DeRez 

Rez and DeRez are primarily used to create and m:xiify resource files. Figure 11 ·2 
illustrates the process of creating a resource file . 

.. 

304 MPW 3.0 Reference 

r\ 
(" ' v 

C', 
' 



( 

( 

• Figure 11·2 Creating a resource file 

Shell editor or OeRez 

Resource 
descrtpt1on 

(.r} nres 
('TEXT') 

Resource Editor 
(ResEdlt) 

Resot..rce Compiler 
(Rez} 

Resource 
ft1e 

Other 
resource 

mes 

Rez can also form an integral pan of the process of building a program. For instance, when 
putting together a desk accessory or driver, you would use Rez to combine the linker's 
output with other resources, creating an executable program file. (See Chapter 8 for 
details on building desk a~ries and drivers.) 

.. 

CHAPTER 11 Resource Compiler and Decompiler 305 



Structure of a resource description file 

The resource description file con.c;ists of resource type declarations (which can be 
included from another file) followed by resource data for the declared types. Note that 
the resource compiler and resource decompiler have no built-in resource types. You need 
to define your own types or include the appropriate •. r'" mes. 

A resource description file may contain any number of these statements: 

include 

read 

data 

type 

resource 

chanqe 

delete 

Include resources from another file. 
Read data fork of a me and include it as a resource. 
Specify raw data. 
Type declaration-declare resource type descriptions for 
subsequent resource statements. 
Data specification-specify data for a resource type declared in 
a previous type statement 
Change the type, ID, name, or attributes of existing resources. 
Delete existing resources. 

Each of these statements is described in the sections that follow. 

A type declaration provides the pattern for any associated resource dara specifications 
by indicating data types, alignment, size and placement of strings, and so on. You can 

· intersperse type declarations and data in the resource description file as long as the 
declaration for a given resource precedes any resource sratements that ref er to it. An error 
is returned if data (that is, a resource statement) is given for a type that has not been 
previously defined. Whether a type was declared in a resource description file or in an 
include file, you can redeclare it by providing a new declaration later in a resource 
description file: 

A resource description file can also include comments and preprocessor directives: 

• Comments can be included any place white space is allowed in a resource description 
file, by putting it within the comment delimiteis I* and•/. Note that comments do 
not nest For example, this is one comment: 

/* Hello /* there */ 

Rez also supports C ++ style comments: 

type 'tost• ( // the rest of this line is iqnored 

• Preprocessor ditcctfvcs substitute macro definitions and include files, and 
provide if-then-else processing befote other Rez processing takes place. The syntax of 
the preprocessor is very similar to that of the C-language preprocessor. 

~ 

306 MPW 3.0 Reference 

·\ 



( 

Sample resource desaiption me 

An easy way to leam about the resource description format is to decompile some existing 
resources. For example, the following command decompiles only the •WINO• resources in 
the Sample application, according to the type declaration in {Rincludes!Types.r. 

OeRez Sample -only WINO Types.r > OeRez.Out 

Nore that Rez auromatically finds Types.r in {Rincludes}. Afr.er executing this command, 
DeRez.Out would contain the following decompiled resource: 

resource 'WINO' (128, wsample Window") ( 

} ; 

{64, 60, 314, 460}, 
documentl?roc, 
visible, 
noGoAway, 
OxO, 
wsample Window• 

Nore that this statement is identicll to the resource description in the file Sample.r, which 
was originally wed to build the resource. This resource data corresponds to the follov.ing 
type declaration, contained in Types.r: 

type 'WIND' { 

} ; 

rect; 
inteqer documentl?roc, dBoxl?roc, plainDBox, 

altDBoxProc, noGrowOocProc, 
zoomProc•S, rOocProc•l6; 

:byte invisible, visible; 
fill :byte; 
:byte noGoAway, qoAway; 
fill :byte; 
unsiqned hex lonqint; 
pstrin:q 
/* title */ 

I* :boundsRect */ 
/* procIO */ 

/* visible */ 

/* qoAway */ 

I* refCon */ 
Untitled• "Untitled"; 

Type and resource statements are explained in del2il in the reference section that follows. 

Resource description statements 

This section describes the syntax ~d use of the seven types of resource description 
statemenG available for the resourcacompiler: include, read, data, type, 
delete, chanqe, and resource. 

C~ 11 Resource Compiler and Decompiler 3fJ7 



Syntax notation 

The syntax notation in this chapter follows the conventions given in the preface of this 
book. In addition, the following conventions are u.5ed: 

• Words that are pan of the resource description language are shown in the Courier font 
(following the conventions used in documentation of the C language) to distinguish 
them from surrounding ten. Rez ~ not sensitive to the case of these words. 

• Punctuation characters such as commas(,), semicolons(;), and quotation marks(' 
and 1) are to be written as shown. If one of the syntax notation characters (for 
example, [ or] ) llllSt be written as a literal, it is shown enclosed by 'curf1 single 
quotation marks (' .. .'); for example, 
bit:strinq f length']' 

U1 this case, the brackets would be typed literally-dtey do not mean that the 
enclosed element is optional 

• Spaces between syntax elements, constants, and puncruation are optional; they are 
shown for readability only. 

Tokens in resource description statements may be separated by spaces, tabs, rerurns, or 
comments. 

. Spedal terms 

The following terms represent a minimal subset of the nontenninal symbols used to 
describe the syntax of commands in the resource description language: 

Term 
resource-type 
resource-name 
resource-ID 
ID-range 

Dcfln.Woo. 
long-e:tpressWn 
string 
word-e:rpression 
IL(:~ 

• Nots: F.:rpress'ion ~ defined later in this chapter under 'Expressions.• 

A full synm definition can be found at the end of this chapter and in Appendix D. 

Include-include resources from another me 

The include statement lets you read ~urces from an existing file and include all or 
some of them. 

~ MPW 3.0 Reference 



( .. 

Syn tu 

An include statement can take the following forms: 
• include fik [ resOUTC2-l)pe [' (' resource-name I ID [:ID/')']] ; 

Read the resource of type resource-type with the specified resource name or resource 
ID range in fik. If the resource name or ID is omitted, read all resources of the type 
resource-type in file. If resource-type is omitted, read all the resources in file. 

• include file not resource-type; 

Read all resources not of the type resource-lype in file. 

• include file resource-typel a.s resource-type2; 

Read ail resources of type resource-typel and include them as resources of resotirce-
type2. f 

• include file resource-typel ' (' resource-name I ID [:ID I') ' 
a.s resource-l")pe2 ' (' ID [, 11!50U1Ce-name l [, attributes. .. l ') ' ; 

Read the resource of type resource-typel with the specified name or ID range 'mfile, 
and include it as a resource of resource~type2 with the specified ID. You can option.ally 
specify a resource name and resource attributes. (Resource attributes are def med 
below.) 

Some examples follow: 
include "otherfile"; /* include all resource.s from the file */ 
include "otherfile" 'CODE'; /* read only the· CODE resources */ 
include "otherfile" 'CODE' (128); /*read only CODE resource 128 */ 

AS resource description syntax 

The following string variables can be used in the a.s resource description to modify the 
resource information in include statements: 

$$Type 

$$ID 

$$Na.me 

SSAttribute.s 

Type of resource from include file 
ID of resource from include file 
Name of resource from include file 
Attributes of resource from include file 

For example, ID include all 'DRVR • resources from one file and keep the same information 
but also set the SYS HEAP attribute: . 

INCLUDE "file" 'DRVR' (0:40) AS 
'DRVR.' ($$ID, $$Name, $$Attributes 64) ; 

The $$Type, SSID, $$Name, a.ad SSAttributes variables are also set and legal 
within a normal resource statement..At any other time the values of these variables are 
undefined. 

CHAPTER 11 Resource Compiler and Decompiler 3W 



Resource attributes 

You can specify attributes as a numeric expression (as described in the chapter •Resource 
Manager' of Inside Macintosh), or you can set them individually by specifying one of the 
keywords from any of the following paitS: 

De&ulc Alternative Mesning 

appheap sysheap Specifies whether the resource is to be loaded into 
the application heap or the system heap. 

nonpurqeable purqeable Purgeable resoUites can be automatically purged by 
the Mem:>ry Manager. 

unlocked locked Locked resources cannot be moved by the Memory 
Manager. 

unprotected protected Protected resources cannot be modified by the 
Resource Manager. 

nonpreload preload Preloaded resources are placed in the heap as soon 
as the Resource Manager opens the resource file. 

unchanqed chanqed. Tells the Resource Manager whether a resource has 
been changed. Rez does not allow you to set this 
bit, but DeRez will display it if it is set 

Bits 0 and 7 of the resource attributes are reserved for use by the Resource Manager and 
cannot be set by Rez, but are displayed by DeRez. 

You can specify mre than one attribute by separating the keywords with a comma(.). 

Read-read data as a resource 

' The read statement lets you read a file's data fork as a resoUite. 

Syntu 

read ~'('ID(, 7!SOIU'r:e-natne] [, attribuJei ')' fi/,e ; 

Dcsaiption 

Reads the data fork from fl/8 and writes it as a resource with the type resource-type and the . 
resource ID ID, with the optional resoun;.e name 1eS0Urce-name and optional resource 
attributes (as defined in the preceding section). For example, 

4 

read 'STR ' (-789,nTest Strinqn,sysHeap,PreLoad) nTest8"; 

310 MPW 3.0 Reference 

((~~-, 
'\__.) 

( "· I 

J 



· Data-6pedfy raw data 

Use the data statement to specify raw data as a sequence of bits, without any 
formatting. 

Syn tu 

data resource-l)pe ' ( ' ID [, resource-name l [, altribules .. . l ') ' ' ( ' 
data-string 

'},; 

Dcsaiption 

Reads the data found in data-string and writes it as a resource with the type resource-type 
and the ID ID. You can optionally specify a resource name, resource attributes, or both. 

For example, . 

data 'PICT' (128) { 
$"4F35FF8790000000" 
$"FF234F35FF790000" 

} ; 

• Note: When DeRez generates a resource description, it uses the data statement to 
represent any resource type that doesn't have a corresponding type declaration or 
cannot be disassembled for some other reason. 

Type-declare resource type 

A type declaration provides a template that defines the structure of the resource data for 
a single resource type or for individual resources. If more than one type declaration is 
given for a resource type, the last one read before the data definition is the one that's 
used. 'I'1m lets you override declarations from include files or previous resource 
description files. 

Syntax 

type 1'f!SOUTU-~ [I(' JD.range')'] < { 1 

type-spedfictmon... ' 
I}' ; 

' 

CHAmR 11 Resource Compiler and Decompiler 311 



Descriptioll 

Causes any subsequent resource st.atement for the type resource-type to use the 
declaration { type-specification. .. } . The optional JD-range specifiation auses the 
ded2r.ltion to apply only to a given resource ID or range of IDs. 

Type-specification is one of the following: 
bi tstrinq [n) 
byte 
intec;er 
lonqint 
boolean 
char 
strinq 
pstrinq 
wstrinq 
cstrinq 
point 
re ct 
fill 
aliqn 
switch 
array 

l.ero fill 
l.ero fill to nibble, byte, word, or long word boundary 
Control construct Case st.atement) 
Amy data specifiation-zero or roore inst.ances of 
dat.a types 

These types an be used singly or together in a type st.atement. F.ach of these type 
specifiers is desaibed in the sectiom that follow. 

• Note: Several of these types require additional fields. The exact syntax is given in the 
sections that follow. 

You an also declan: a resource type that uses another resource's type declaration by 
using the following variant of the type statement: 

type ~1 [ 1 (' JD.rrznge ') ' 1 as resource-type2 {'('ID ?1; 

.. 
.. 

312 MPW 3.0 Reference 

ii'.~<\ 

\ . 
"'-~/ 



(/ 

Data-type spedficatloos 

A Data-type statement declares a field of the given data type. It can also associate 
symbolic names or constant values with the data type. The data-type specification 
can take three fa~. as shown in ~ example: 
type 'XAMP' { /* declare a resource of type 'XAMP' */ 

byte: 
byte off•O, on•l: 
byte • 2: 

} ; 

• The first byte statement declares a byte field; the actual data is supplied in a 
subsequent resource statement. 

. • The second byte statement is idential to the first, except that the two symbolic 
names •ofr and •on• are associated with the values 0 and 1. These symbolic names 
could be used in the resource data. 

• The thitd byte statement declares a byte field whose value is always 2. In this case, no 
corresponding statement would appear in the ~esource data. 

Numeric expressions and strings can appear in type statements; they are defined later in 
this chapter under "Expressions.• 

Numeric types: The nwn:ric types Cbitstrinq.byte, inteqer. lonqint) are fully 
specified like this: 
[ unsigned] [ rrzdi=] numeric-type [ •expr I symbol-definition. .. l; 
• The Unsigned prefix signals DeRez that the number should be displayed without a 

sign-that the high~rder bit can be used for data and the value of the integer cannot 
be negative. The Unsigned prefix is ignored by Rez but is needed by DeRez to 
correctly represent a decompiled number. Rez uses a sign if it is specified in the data. 
Precede a si~ed negative constant with a minus sign(-}, SFFFFFF85 and-$7B are 
equivalent in value. 

• Rada ~ one of the following string constants: 
hex decimal octal binary literal 

You an supply num:ric data as decirml, OCT3I, hexadecimal, or literal data. 

• Numeric-type w one of the following: 

bitatring' ['length']' Declare a bitstring of length bits (maximum 32). 

byte Declare a byte (8-bit) field This is the same as 
bi tstrinq [ 8]. 

integer Integer(16-bit) field This is the same as bitstrinq [ 16]. 

lonqint Long integer (32-bit) field. This is the same as 
bi t'strinq [ 3 2 J . 

CHAmR 11 Resource Compiler and Decompiler 313 



Rez uses integer arithmetic and stores numeric values as integer numbers. Rez translates 
booleans, byres, integers, and longints to bitstring equivalents. All computations are done 
in 32 birs and auncated. 

An error is generated if a value won't fit in the number of bits defined for the type. The 
valid ranges for values of byte, inteqe:, and lonqint constana are as follows: 

Maximum Minimum 

255 -128 byte 
inteqe: 
lonqint 

65,535 -32,768 
4,294,967,295 -2,147,483,648 

Boolean type: A Boolean is a single bit with twO ~ible states: 0 (or false) and 1 (or 
t.rue). (T:ue and false are global predefined identifiers.) Boolean values are declared 
as follows: 
boolean [ • constant I symbolic-value ... ] ; 

The type boolean declares a 1-bit field; this is equivalent to 
unsiqned bitst:inq(l] 

• No/8: 11'm type is not the same as a Boolean variable as defined by Pascal. 

Char2cter type: Characters are declared as follows: 
cha: [ • string I symbolic-value. .. 1; 

Type Cha: declares an 8-bit field (this is the same as writing st:inq tl] ). 

Here is an example: 
type 'SYMB' { 

cha: dollar • "$",pe:cent • "\"; 
} ; 

:esou:ca 'SYMB' (128) 
dollar 

} ; 

String type: String data types are specified like this: 
strlng-l)Pe (1 [. length I] ') (• string I symbol-value. .. }; 

String-type is one of the following: 

.. 

314 MPW 3.0 Reference 

(\ (~ . 
~! 



(hex] string 

pst.ring 

wstring 

c:string 

Plain string (no length indicator or termination character is generated). 
The optional hex prefix tells DeRez to display it as a hex string. 
strinq [n] contains nc.haracters and is n bytes long. The type char is 
shorthand for String ( l l . 
Pascal string (a leading byte containing the length information is 
generated). E>strinq ( n] contains n characters and is n+l bytes long. 
E>:string has a built-in maxi.mum length of 255 characters, the highest 
value the length byte can hold. If the string is too long to fit the field, a 
warning is given and the string is truncated. 

Word string is a very large pstring. Its length is stored in the first nvo 
byres. Therefore, a word string can contain up to 65,535 characters. 
wstring{nl contains n characters and is n+2 bytes long. 

C string (a trailing null byte is generated). c:string [ n] contains n-1 
characters and is n byres long. A C string of length 1 can be assigned only 
the value "", beouse est ring [ l J has room only for the tenninating 
null. 

Each string type may be followed by an optional length indicator in brackets ( ( n] ). 

I.ength is an expression indicating the string length in bytes. l.ength is a po.5itive number in 
the range 1Slengths2147483647 for string and cstring, and in the range 1 S length 
S 255 for p:string, and in the range 1S,lengthS.65535 for wstring. 

• Note: You cannot assign the value of a literal to a string type. 

If no length indicator is given, a pstring, wstring, or est ring stores the number of 
characters in the corresponding data definition. If a length indicator is given, the data 
may be truncated on the right or padded on the right The padding characters for all string 
typeS are nulls. If the data contains roore characters than the length indicator provides for, 
the string is truncated and a warning message is given . 

A WamJng 
. 

A null byte widtin a c:string is a termination indicator and may 
confuse DeRez and C programs. However, the full string, 
including the explicit null and any text that follows it, will be stored 
by Rez as input • 

Resource description statemen:s: Point and rectlngie types: Because points and rectangles 
appear so frequently in resource files, they have their own simplified syntax: 
point [ •point-constant I symbolic-value ... ] ; 
re ct { • Teet-constant I symlJolic-vaJue ... I; 

.. 
where .. 
point-constanz • ' { 'x-integer-expr, y-integer-€:([Jr ' } ' 

CHAPTER 11 Resource Compiler and Decompiler 315 



and 
rect-constant • • { 'integer-cqir, integer-e:i:pr, integer-epr, integer-ex:pr •}' 

These type statements declare a point (two 16-bit signed integers) or a rectangle (four 16-
bit signed integers). The integers in a rectangle definition specify the rectangle' J upper· 
left and lower-right points, respectively. 

Fm aa.d align types 

The resource created by a resource definition has no implicit alignment. It's treated as a 
bit stream, and integers and strings can start at any bit The fill and aliqn type 

specifiers are two ways of padding fields so that they begin on a boundary that 
corresponds to the field type. Align is automatic and fill is explicit. Both fill and 
aliqn generate zero-filled fields. 

Fm speciflcr.tion: The fill statement causes Rez to add the specified number of bits 
to the data st.ream. The fill is always 0. The fonn of the statement is 

fill ftll•size [I[' lengtH ] t] ; 

where fill-size is one of the following strings: 
bit nibble byte word lonq 

These declare a fill of 1, 4, 8, 16, or 32 bits (optionally multiplied by the length nxxiifier). 
Length is an expression S 2147483647. 

The following fill statements are equivalent: 
fill word[2]; 
fill lonq; 
fill bit[32]; 

The full fonn of a t yp_e statement specifying a fill might be: 

type 'XRES' {data-type specifical1on.s; fill bit ( 2] : } : 

• Note: Rez supplies zeim as specified by fill and aliqn statemenrs. DeRez does not 
supply any wlues for fill or aliqn statements; it just skips the specified number of 
bits, or umil data is aligned as specified. 

Align spcdf]Cldoa: Alignment auscs Rez to add fill bits of zero value until the data is 
aligned at the specified boundary. An alignment statement takes the following form: 

align aiign-siz,e ; .. 
where align-size is one of these strings: .. 

nibble byte word lonq 

316 . MPW 3.0 Reference 

d 



Alignment pads with zeros until data is aligned on a 4-, 8-, 16-, or 32-bit boundary. This 
alignment affects all data from the point where it is specified until the next align 
statement. 

Array type 

An array is declared as follows: 
[ wide ] array [ amzy-name I '['length']' l '{'array-list'}'; 

The arTay-list, a list of type specifications, is repeated zero or more times. The wide 
option outputs the array data in a wide display format (in DeRez}--die elements that 
make up the array-list are separated by a comma and space in.stead of a comma, rerum, 
and tab. Either array-name or (length] may be specified. Array-name is an identifier. 

If the amy is named, then a preceding statement should refer to that array in a constant 
expression with the SScountof(amzy-name) function; otherwise DeRez will treat the 
array as an open-ended array. For example, 

type 'STRf' { /* define a strinq list resource */ 
inteqer • $$Countof(StrinqArray); 
array StrinqArray { 

p.strinq; 
) ; 

I; 

The SScountof function, renims the number of array elements (in this case, the number 
of strings) from the resource data. 

If c lengthJ is specified, there nut be eX2Ctly length elements. 

Amy elements are generated by commas. Commas are element separators. Semicolons are 
element terminators. In this example, however, it may be. a good idea to use semicolons as 
element separators: 
type 'xyzy' { 

array Increment 
inteqer • $$Arrayindex(Increment); 

) ; 
) ; 

resource 'xyzy' (0) 
( /* zero elements */ 
) 

I ; 
resource 'xyzy' ( l) { 

/* two elements */ 

I ; 

CHAPTER 11 Resource Compiler and Decompiler 317 



resource •xyzy' (3) ( 
} /* two elements */ 

} : 

.. ' , 

l* The only way to specify one element in an array that has all 
constant elements, is to use a semicolon terminator. 

I* 
resource 'xyzy' (4) { 

} : 

Switch type 

/* one element */ . 
' 

The switch statement specifies a number of case statemenrs for a given field or fields 
in the resource. The format is: 

switch ' t' case-statement... ' } ': 

where a case-statement has this fonn: 

case case-name : [ case-body ; J ... 

Case-name is an identifier. Case-body may contain any number of type specifications and 
must include a single constant dec:Wation per case, in this fonn: 
key data-type- constant 

Which case applies is based on the key value. For example, 

/(-'\ 

~--') 

(,--,,,, 

~~,./ 

type 'DITL' < I* dialoq item list declaration from Types.= "/ 

} : 

... lypl~ •• 
switch { /* one of the followinq */ 
case Sutton: 

boolean enabled, disabled: 
key bitstrinq(7] • 4; /* key value */ 
pstrinq; 

case CheckBox: 

} ; 

boolean enabled, disabled: 
key bitstrinq(7] • S; /* key value */ 
patrinq; 

••• •nd so on. 

318 MPW 3.0 Reference 



. Sample type statement 

The following sample type statement is the standard declaration for a 'WIND ' resource, 
taken from the Types.r file: 
type 'WIND' { 

rect; 
inteqer 

byte 
fill byte; 
byte 
fill byte; 

I* bounds 
documentProc, d.SoxProc, plainDBox, /* procID 
altOBoxProc, noGrowDocProc, 
zoomProc•S, rDocProc•l6; 
invisible, visible; /* visible 

noGoAway, qoAway; /* close box 

unsigned hex lonqint; I* ref Con 
pstrinq Ontitled • "Untitled"; /* title 

} ; 

The type declaration consists of header information followed by a series of statements; 
each terminated by a semicolon (;). The header of the sample window declaration is 

type 'WIND' 

The header begins with the Type keyword followed by the name of the resource type 
being declared-in this .case, a window. You may specify a standard Macintosh resource 
type, as shown in the chapter •Resource Manager" of Inside Macintosh, or you may declare 
a resource type specific to your application. 

The left brace m introduces the body of the declaration. The declaration continues for as 
many lines as necessary until a matching right brace} is encountered. You can write more 
than one statement on a line, and a statement may be on more than one line (like the 
Integer statement above). Each statement represents a field in the resource data. Recall 
·that comments may appear anywhere where white space may appear in the resource 
description file; comments begin with I* and end with I * as in C. 

Symbol deflnitions 

Symbolic mmes for data type fields simplify the reading and writing of resource 
·definitions. Symbol definitions have the fonn 

name• value[, name• value] ... 

' .. 

*/ 
*/ 

*/ 

*/ 

*/ 
*/ 

CHAPTER 11 Resource Compiler and Decompiler 319 



For numeric data, the •• value • part of the statement can be omitted. If a sequence of 
values com~ts of consecutive numbers, the explicit assignment can be left out-if value 
is omitted, it's assumed ro be one greater than the previous value. (The value is assumed 
to be zero if it's the first value in the list) This is true for bitstrings (and their derivatives, 
byte, inteqe.z:, and lonqint). For example, · 

inteqe.z: doc:umentProc:, d.BoxP.z:oc:, plainDBox, 
altOBoxP.z:oc:, noG.z:owOoc:P.z:oc:, 
zoomP.z:oc:•S, rDoc:P.z:oc:•l6; 

In this example, the symbolic names documentProc, dBoxProc, plainDBox, altDBoxProc, 
and noGrowOocProc are automatic:ally assigned the n~c values 0, 1, 2, 3, and 4. 

Mem>ry is the only limit to the number of symbolic values that can be declared for a single 
field. There is also no limit to the number of names you can assign to a given value; for 
example, 
inteqe.z: documentP.z:oc•O, d.BoxP.z:oc:•l, plainDBox•2, altDBoxProc•3, 

.z:Ooc:P.z:oc:•l6, Ooc:ument•O, Oialoq-1, OialoqNoShadow•2, 
Modelesscialoq-3, OeskAccessory-16; 

Delete-delete a resource 

Sometimes you may want ro delete a resource without switching to ResEdit Some 
resource operatiom, such as those needed by "internationalizing- system disks and 
appliatiom need to translate menu and dialog text, and hence require deleting or 
changing resources. 

Syn tu 

delete resou~ [' C'raiutt1-nanwl ID [:ID] 1) ']; 

Descrlptfoa 

Delete the ne:scurce of type resource-type from the output file with the specified resource 
name or resowce m 12nge. If the resource name or m w omitted, all resources of type 
resoun:s-type an: deleted. 

• Note: Of course, the delete function is valid only when the -a (append) option is 
specified in the command line. It makes no sense to delete resources while creating a 
new resource ftle from scratch. .. 

.. 
You can delete resources that have their protected bit set only if you use the -ov option. 

320 MPW 3.0 Reference 



( 

( 

Here is an example of an executable Shell command that deleteS the 'ckid' resource 
from a file: 
echo "delete 'ekid';" I rez -a -o SomeTextFile 

Change-change a resource's vital 1.nformatlon 

You can change a resource's vital information by using this function. Vital information 
includes the resource type, ID, naire, attributes, or any combination of these at once. 

Syn tu 

chanqe resource-type! [1 C' resource-namet ID C: ID)'> 'J 
to resource-type2 '('ID c, resoun;e-nameJ c, altributes. •• J '> '; 

Description 

Change the resource of type resource-t}Pel from the output file with the specified 
resource name or resource ID range to a resource of type resource-type2 with the specified 
ID. You can optionally specify a resource name and resource attributes. If the resource 
name or attributes are not specified, the name and attributeS are not changed. 

For example, here is a Shell command that sets the protected bit on all code resources in 
the rite TestDA: 

echo "chanqe 'CODE' to $$type ($$Id,$$Attributes I 8);" o 
I rez -a -o TestOA 

• Note: The chanqe function is only valid when the -a (append) option is specified in 
the command line. It makes no sense to change resources while creating a new 
resource file from scratch. · 

.. 
.. 

CHAPTER 11 Resource Compiler and Decompiler 321 



Resource-specify resource data 

Resource statements specify acrual resources, based on previous type declarations. 

Syn tu 

resource resource-l)pe ' (' ID {, 1!SOUtte-name] [, altribulei ') ' ' {' 
[ data-s:atement [ ' data-stazement ) ... ] 

'} '; 

Description 

Specifies the data for a resource of type resource-type and ID ID. The latest type 
dedaration declared for resource-type is used to parse the data specification. Data­
statements specify the aaual da12; data-statements appropriate to each resource type are 
defined in the next section. 

The resource definition causes an aaual resource to be generated. A resource 
statement can appear anywhere in the resource descripcion file, or even in a separate file 
specified on the command line or as an t include file, as long as it comes after the 
relevant type dedaration. 

Data statements 

The body of the data specification contains one data statement for each declaration in 
the corresponding type declaration. The ~ type must match the declaration. 
Base type wt.ma: types 
strinq strinq, cstrinq, pstrinq, wstrinq, char 
bitstrinq boolean, byte, integer, lonqint, bitstrinq 
re ct re ct 
point · 'point 

Switch cbt2: Switch data statements are specified by using this format: 
swilch-namt data-body 

For example, the following could be specified for the • DITL • type given earlier: 
.... 
CheckSox { enabled, "Check here• }, 

Arny data: Amy data statements have this format: 
'{' [ array-element( ' amzy-e/ement J ... ] '}' 

4 

where an array-elemenl consists of any q_umber of data statements separated by commas. 

322 MPW 3.0 Reference 

f( '\ 

:~ 



( 

( 

For example, the following data might be given for the 'STU' resource defined earlier: 

resource 'STRt' (280) { 

} ; 

{ '"this", 
"is" I 
"a•, 
"test" 

Sample resource dcfin.iti\>n 

This section describes a sample resource description file for a window. (See the chapter 
"Window Manager" of Inside Macintosh for information about resources in windows.) 

Here, again, is the type dewr:ition given above under "Sample Type Statement": 

/* bounds */ 
type I WINO I I 

rect: 
inteqer docwnentProc, dSoxProc, plainOBox, /* procID 

} ; 

altOBoxProc, noGrowDocProc, 
zoomProc•S, rDocProc•l6: 

byte invisible, visible; /* visible 
fill byte: 
byte noGoAway, goAway; 
fill byte; 
unsiqned hex lonqint; 
pstrinq Untitled • "Untitled"; 

/* close box */ 

/* refCon *I 
/* title *I 

Here is a typical example of the window data corresponding to this dedar:ition: 

*/ 

resource 'WINO' (128,"My window",appheap,preloadl I 
*/ 

/* Status report window 

{40,80,120,3001, 
documentProc, 
Visible, 

/* Boundinq rectangle 
/* documentProc etc .. 
/* Visible or Invisible 

•/ 
•I 
•/ 

qoAway, 
O, 

/*(;()Away or NoGoAway •/ 
/* Reference value RefCon •/ 

•status Report• /* Title •I 
); 

This data definition declares a resource of type •WINO•, using whatever type declaration 
was previomly specified for 'WINO•. The resource ID is 128; the resource name is "My 
window.• Because the resource name is represented by the Resource Manager as a 
pstrinq, it should not contain more than 255 char:icters. The resource name may cbntain 
any char:iaer including the null character ($00). The rcsoura: will be placed in the 
application heap when loaded, and it will be loaded when the resource file is opened. 

CHAPTER 11 Resource Compiler and Decompiler 



The first statement in the window type declaration declares a bounding rectangle for the 
window: 

rect: 

· The rectar.g!.'! is described by ~"O point!: the upper-left come: and the lower-righi: comer. 
The points of a rectangle are seP'lrated by corIUIW like thl,,: 

{top, left, bottom, right} 

An example of data for these coordinates is 

{40,80,120,300} 

Symbolic oamc:s: Symbolic names may be associated with P'lrticular values of a numeric 
type. Notice that a symbolic name is given for the data in the second, third, and fourth 
fields of the window declaration. For example, 

inteqer documentProc•O, d.BoxProc•l, plain.OBox•2, 
alt0BoxProc•3, noGrowOocProc•4, 
zoom.eroc•S, roocProc•l6; /* windowType */ 

This statement specifies a signed 16-bit integer field with symbolic names associated 
with the values Oto 4 and 16. The values 0 through 4 need not be indicated in tru,, case; if 
no values are given, symbolic names are automatically given values starting at 0, as 
explained previously. 

In the sample window declaration, we gave the values True (1) and False (0) to two 
different byre variables. For clarity, we used those symbolic names in the window's ' 
resource data; that is, 
vi:sible, 
qoAway, 

instead of their equivalents 
TRUE, 
TRUE, 

or 
l, 
l, 

Labels 

Labels support some of the imre compliated resources such as • NFNT ' and color 
QuickDraw resources. Use labels within ~ resource type declaration to calculate offsets 
and permit accessing of data at the labels. 

324 MPW 3.0 Reference 



( 

Syn tu 

label ::• character {alphanum}* '·' 
character::• '-' I A I B I C -
numbe.o: : : • 0 I l ! 2 I 3 I 4 I 5 I 6 7 I & I 9 
alphanum ::• character I number 

Dcsaiptioo 

Labeled statements are valid only within a resource type declaration. Labels are local to 
each type declaration. More than one label can appear on a statement. 

Labels may be used in expressions. In expressions, use only the identifier portion of the 
l.abe1 (that is, everything up to, but excluding, the colon). See "Declaring Labels Within 
Arrays'" later in this chapter for more infonnation. 

TI1e value of a label is always the offset, in bits, between the beginning of the resource and 
the position where the label occurs when mapped to the resource data. In this enmple, 

type 'cool' { 
c.:strinq; 

endOfStrinq: 
integer • endOfStrinq; 

} ; 

re.:SOUrCe I C00l I ( 8) { 
"Neato" 

the integer following the cstring would contain: 

( len ("Neato") [5] + null byte [1] ) * 8 (bit.:s per byte] • 48 . 

. Built-In functions to acce55 resource data 

In some ~ it is desirable to access the actual resource data that a label points to. 
Several built-in functions allow access to that data: 

• SSBitField(label, .:startinqPo.:sition, numberOfBit.:s) 
Returns the nu.mbeTOJBtts (maximum of 32) bitstring found startingPosition bits 
from label. 

• SSByte (label) 
Returns the byte found at labeL 

• SSWord(label) 
Returns the word found at labe~ 

• SSLong<label) • 
Returns the longword found at labeL 

CHAPTER 11 Resource Compiler and Decompiler 325 



32-6 

For example, the resoutte tyPe • STR' could be redefined without using a pstrinq. 
Here is the ddlnition of • STR • from Types.r: 
type 'STil' ( 

p.strinq: 

Here is a redefinition of • STP. • using labels: 

type 'STR. ' { 
len: byte • (stop - len) I 8 - l; 

strinq($$Byte(len)]; 
stop: ; 
) ; 

Labels declared within arrays may have mmy values. For every element in the array, there is 
a corresponding value for each label defined within the array. Use array sumaipts to 
access the individual values of these labels. The subscript values 1'2.Dge from 1 to n where n 
is the number of elements in the array. Labels within arrays that are nested in other arrays 
require multidimensional subscripts. Each level of nesting actm another subscript The 
righaoost subscript varies nDt quickly. Here is an example: 

. type • te.st • ( 
inteqer • S$Count0f(arrayl); 
array arrayl { 

inteqer • $$Count0f(array2); 
array array2 { 

foo: inteqer; 
} ; 

) ; 
} ; 

resource 'test' (128) 
( 

} ; 

(l,2,3}, 
( 4, 5} 

In the above enmple, the label f oo takes on these values: 
foo[l,lJ - 32 $SWord(foo(l,lJ> - l 
foo(l,2] - 48 $$Word(fOO(l,2]) 

- 2 foo(l,3] - 64 $$Word(foo(l,3J> - 3 
foo(2,l] - 96 $$Wore (foo{2, lJ) - 4 
foo[2,2] - ll2 $$Word(foo{2,21> - s 

MPW 3.0 Reference 

,f'-) 
i~ 



( 

( 

A new built-in function may be helpful in using labels within arrays: 

$$Amyindex(arrayname) 

This function returns the current array index of the array arrayname. An error occurs if this 
function is used any•..vhere oucside the scope of the array arra:tw.me. 

Label limitations 

Keep in ·mind the fact that R~ and DeRez are basically one-pass compilers. This will help 
you understand some of the limitations of labels. 

• Note: To decompile (or "deRez'") a given type, that type must not contain any 
expressions with more than one undefined label. An undefined label is a label that 
occurs lexically after the expression. To define a label, use it in an expression before 
the label is defined 

This example demonstrates how expressions can only have only one undefined label: 
type 'test• { 

I* In the expression below, start is defined, next is undefined.*/ 
start: inteqer • next - start; 

/* In the expression below, next is defined because it was used 
in a previous expression, but final is undefined .. * I 

middle: inteqer • final - next; 
next: integer; 
final: 
} ; 

Actually, Rez can compile typeS that have expressions containing more than one 
undefined labeL but DeRez cannot decompile tho.se resources and simply generates data 
resource statements. 

• Note: The label specified in SSBitField (), SSByte (),$$Word (),and 
s s Lonq ( ) must occur lexically before the expression; ocherwise, an error is 
generated. 

Using Jabc1s: two examples 

The first example shows the roodified • ppat • decimtion using the new Rez labels. 
Boldface text in the ex.ample indicates everything that is different between the 2.0 and 
3.0 versions of • ppat • because of the use of labels. Without using labels, the whole end 
section of the resource would have.to be combined into a single hex string (everything 
following the e ixelOata labeD. t.Jsing labels, the complete • ppa t • definition can be 
expressed in Rez language. 

CHAPTER 11 Resource Compiler and Decompiler 3Z7 



type 'ppat' ( 
/* PixPat record */ 
integer oldPattern, /* Pattern type 

newPattern, 
dither?atte::n; 

unsigned 
unsigned 

lonqint. 
long.int 

*I 

~ Pi:Map I 9: /* Offset to pixmap 
• Pi:ulI>ata I a; 

to data 
fill long; 
fill word.; 
fill lonq; 
hex strinq [8]; 

Pi.zJCap: 

fill lonq; 
unsiqned bitstrinq(l] • l; 
unsiqned bitstring(2J • 0; 
unsiqned bitstrinq(l3J; 

/* Expanded pixel imaqe 
/* Pattern valid flaq 
/* expanded pattern 
/* old-style pattern 
/* PixMap record 

/* Base address 
/* New pixMap flag 
I* Must be 0 
/* Offset to next row 

rect; /* Bitmap boun~ 
integer; /* pixMap vers number 
integer unpacked; /* Packing format 
unsiqned longint; /* size of pixel data 
unsiqned hex long.int; /* h. resolution (ppi) 
unsiqned hex lonqint; /* v. resolution (ppi) 
integer chunky, chunkyPlanar, planar; 

storage format */ 
/* t bits in pixel 

*/ 

*/ 
/* Off set 

*/ 
*/ 
*/ 
*/ 
*/ 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

(fixed)* I 
(fixed)•/ 

/* Pixel 

*/ integer; 
integer; 
integer; 

I* t components in pixel */ 
/* t bits per field 

unsiqned longint; /* Off set to next plane 
unsigned longint • Color'I'a.bl• I 8; 

to color table */ 
fill long; /* Reserved 

Pi.z•ltlata: 
hez atrinq [ (Colod'a.bl• - PizelI>ata) I 8]: 

Colo:1'al::»le: 

} : 

328 

unaip.ed hez lonqint; 
izlteqer; 
integ"er • $$Cow:itof (Colo:Spec) 
wide array Colo:Spec ( 

} : 

integer; 
unaiqned 
unaiqned 
unaiqned 

MPW 3;0 Reference 

int•g-e:; 
int•g-e:; 

.. integer; 

.. 

I* ctseed 
/* t:analndez 
- 1; /* ctSise 

/* Yalu• 
/* RGB: :ed 
I* g-:een 
I* l>lu• 

*/ 
*/ 
/* 

*/ 

*/ 
*/ 
*/ 

*/ 
*/ 
*/ 
*/ 

Off set 



Here is another example of a new resource definition with the new fearures in bold. In this 
example, the s sai tF ield ( > function is used to access information stored in the 
resource, in order to calculate the size of the variom data areas added at the end of the 
resource. Without labels, all data would ~:ave to be combined into cne hex string. 

type 'cicn' { 
/* IconPMap (pixMap) record */ 
fill lonq; 
unsigned bitstrinq(l] • l; 
unsigned bitstrinq(2] • 0; 

pKapllcwByt••: unsigned bitstrinq(l3]; 
Bounda:rect; 

inteqer; 
inteqer 
unsigned 
unsigned 
unsigned 
inteqer 
inteqer; 
inteqer; 

unpacked; 
lonqint; 
hex lonqint; 
hex lonqint: 

chunky, chunkyPlanar, 

inteqer: 
unsigned lonqint; 
unsigned lonqint; 
fill lonq; 

fill lonq; 
maakRowByt••: integer: 

rec:t: 

fill lonq; 
ic:onBMapRowByt••: integer; 

rec:t; 
fill lonq; 

.. 
.. 

I* Base address • / 
I* New pixMap flaq •I 
/* Must be 0 "/ 
/* Offset to next row •/ 
I* Bitmap bounds •I 
I* pixMap vers nwnber •/ 
/* Pacldnq fo:cmat "I 
/* Size of pixel data */ 
/* h. resolution (ppi) (fixedl • / 
/* v. resolution (ppi) (fixed)* I 

planar; /* Pixel storage fo~at:. •/ 
/* t bits in pixel "/ 
/* t components in pixel "/ 
/* t bits per field */ 
I* Offset to next plane */ 
/* Offset to color table */ 

I* Reserved *I 

/* IconMask (bitMap) record .. / 
/* Base address */ 
/* Row bytes */ 

/* Bitmap bounds •/ 

I* IconBMap (bitMap) record •/ 
/* Base address */ 

/* Row bytes */ 
/* Bitmap bounds */ 

I* Handle.placeholder */ 

CHAPTER 11 Resource Compiler and Decompiler 329 



/* Haak d.ata *I 
hez .strinq [$$Word(ma.akRowBytea) 
/*bottom*/ 

* ($$BitField(Bound~. 32, 
16) 

$$BitFiald(Boun~D, 0, 16) /*t~~~/)]; 

/* BitMap data */ 
hez .strinq [$$Word(~conBMapRowByt••) * 

($$Bitrield(Bounda, 32, 16)/*bottom*/ 
- $$Bitrield(Bounda, O, 16) /* top */)]; 

I* Color 'ra.ble *I 
unsiqned hez lonqint; I* ct Seed 
inteqer; /* transindaz 
inteqer a $$Countot(ColorSpec) 1; 

ctSiza *I 

l ; 

wide array ColorSp.c 
inteqer; I* Talu• 
un.siqned int•q•r; I* !\Ga: red 
unsiqned inteqer: /* green 
un.siqned int•q•r: I* blu• 

} : 

/* Pi.zelMap 
hez .strinq 

data */ 
[$$Bitrield(pMapRowBytea,0,13) * 
($$Bitrield(Bounda,32,16) /* bottom 
$$Bitrield(Bcunds, O, 16) /*top*/)]; 

Preprocessor directives 

Preprocessor directives substirute macro definitions and include files and provide 
if-then~lse processing before other Rcz processing takes place. 

The syntlX of the preprcxessor ~ very similar to that of the C-language preprocessor. 
Preprocessor directives 1lDJSt observe these rules and restrictions: 

• Each preprocessor statement must be expressed on a single line, beginning on a new 
line and terminated by a rerum character. 

• The pound sign ( 1 ) must be the first character on the line of the preprocessor 
statement (except for spaces and ~s). 

• Identifiers (wed in macro names) may be letters (A-Z, a-z), digits (0-9), or the 
underscore character ( _ ). 

330 MPW 3.0 Reference 

*I 
*I 
I* 

*I 
*I 
*I 
*I 

*I 



( 

• Identifiers may be any length. 

• Identifiers may not start with a digit. 

• Identifiers are not case sensitive. 

Variable definitions 

The #define and #undef directives let you assign values to identifiers: 

#define macro data 
#undef macro 

The #define directive causes any occurrence of the identifier macro to be replaced 
with the text data. You can extend a macro over several lines by ending the line with the 
back.sla5h character(\), which functio~ as the Rez esci.pe character. For example, 

#define poem "I wander \ 
thro\' each \ 
charter\'d street" 

(Quotation marks within strings must also be escaped.) 

ifundef removes the previously defined identifier macro. Macro definitions can also be 
removed with the -undcf option on the Rez command line. 

The following predefined macros are provided: 

Variable Value 
true l 
fal.se 0 
rez l or 0 Cl if Rez 
derez l or 0 (0 if Rez 

Include dlm:tivcs 

The #include directive reads a text file: 

#include fiJe 

h 
i.s 

running, 0 .... 
l..-. DeRez 

running, l if DeRez 

lndude the text file file. The maximum nesting is to ten levels. For example, 

#include SSShellC"MPW") "MyProject:MyType.s.r" 

is running) 
is runnir:g) 

Note that the tinclude preprocessor directive (which includes a file) is different from 
the previously described include statement, which copies resources from another 
file. .. 

.. 

CHAPTER 11 Resource Compiler and Decompiler 331 



If. Then-~ processing 

These directives provide conditional processing: 

Jif expre88ir.m 
( #elif expre88ion 
[ telse ] 
#endif 

+ Note: &pression is defined later in this chapter. When used with the #if and tel if 
directives, e:rpression may also include this expres.sion: 
defined identifier or defined'(' identifier'>' 

The following imy also be used in place of tif: 

Hfdef macro 
#ifndef macro 

For example, 
tdef ine Thai 
Resource 'STR ' (199) 
tifdef Enqlish 

"Hello" 
#elif defined (French) 

"Bonjour" 
telif defined (Thai) 

"Sawati" 
telif defined (Japanese) 

"Konnichiwa" 
tendif 
} ; 

Print d.lreaive 

The tprintf directive is provided ro aid in debugging resowce description files: 

tpr;ntf(fo:matStrinq, arquments-> 

The format of the tprintf S12tement is exactly the same as the printf statement in 
the C language, with one exception: There an be no roore than 20 arguments. This is the 
same restriction that applies to the $$format function. The tprintf directive writes 
irs output to diagn~tic output Note that the tprintf direaive does not end with a 
semicolon. " 

.. 

332 MPW 3.0 Reference 



(·. 

For example: 
tdef ine 
Jifdef Monday 

Tuesday 3 

tprintf("The day is Monday, day #%d\n", Monday) 
telif defined(Tuesday) 
tprintf("The day is Tuesday, day #%d\n", Tuesday) 
telif defined(Wednesday) 
tprintf("The day is Wednesday, day #%d\n", Wednesday) 
telif defined(Thursday) 
tprintf("The day i~ Thursday, day t%d\n", Thursday) 
#else 
tprintf("DON'T KNOW WHAT DAY IT IS!\n") 
tendif 

The above me generates this text: 
The day is Tuesday, day #3 

Resource description syntax 

This section desaibes the detail$ of the resoun:e description syntax. For a complete 
summary definition, see Appendix D . 

.. 
.. 

CHAPTER 11 Resource Compiler and Decompiler 333 



Numbers and literals 

All arithmetic is performed as 32-bit signed arithmetic. The basic constants are shown in 
Table 11-1 

• Table 11·1 Numeric constants 

Decimal 

Hex 

Octal 

Binary 

Literal 

nnn ... 

OXhhh ... 

$hhh ... 

Oooo ••. 

OBbbb ... 

'aaaa' 

Signed decimal constant between 4,294,967,295 and 
-2,147,483,648. 

Signed hexadecimal constant between OX7FFFFFFF and 
oxaooooooo. 
Alternate form for hexadecimal constants. 

Signed octal constant between 0111111I1717 and 
020000000000. 

Signed binary constant between 
OB11111111111111111111111111111111 and 
OBlVV\JVVVVVVIJVV'>J\JVIJVVl.IVV\.IVV\.IVV\f\/VV 

A literal may conrain one to four characters. Characters 
are printable ASCil characters or escape characters.If 
there are fewer than four characters in the literai 
then the characters to the left (high bits) are assumed to 
be $00. Characters that are not in the printable character 
set, and are not the characteIS \' and\\ (which have 
speci21 meanings), can be escaped.according to the 
character escape rules. (See "Strings• later in this 
section.) 

Uterals and numbess are treated in the same way by the resource compiler. A literal is a 
wlue within single quocation marlcs; for instance, •A• i.1 a number with the wlue 65; on 
the other hand, "A" i,, the character A expressed as a string. Both are represented in 
meroory by the bitstring 010000)1. (Note, however, that "A" is not a valid number and 
'A' is not a valid string.) The following numeric expressions are all equivalent: 

'B' • 
66 
'A'+l • 

334 MPW 3.0 Reference 



( 

(~ 

(~ 

Literals are paddetl with nulls on the left side so that the literal 'ABC ' is stored as shown 
in Figure 11-3. 

• Figure 11·3 Padding of Uterais 

"ABC" - I soo I A I B c 

Expressions 

An expression may consist of simply a number or literal. Expressions may also include 
numeric variables, labels, and system functions. 

Table 11-2 lists the operacors in order of preeedence with highest precedence first­
groupings indicate equal precedence. Evaluation is always left to right when the priority is 
the same. Variables are defined following the table. 

• Table 11-2 Resource description expression operators 

Opentor Me2cinc 

1. ( e:rpr) Parentheses can be used in the normal manner to force preeedence 
in expression calculation 

2. -e:rpr Arithmetic (two's complement) negation of e:rpr 
-e:rpr Bitwise (one's complement) negation of e:rpr 
! e:rpr Logical negation of e:rpr 

3. e:rpr 1 * e:rpr2 Multiplication 
e:rpr 1 I e:rpr2 Division 
e:i:IJrl' e:rpr2 Retminder from dividing e:rprl by e:i:pr2 

4. e:rprl+e:rpr2 Addition 
e:rprl-e:tpr2 Subtraction 

5. e:rpr 1 < < e:rpr2 Shift left-shift e:rprl left by e:rpr2 bits 
e:rpr 1 > > e:rpr2 Shift right-shift e:rprl right by e:rpr2 bits 

6. e:rpr 1 > e:rpr2 Greater than 
e:rprl >= e:rpr2 Greater than or equal to 
e:rpr 1 < e:rpr2 Less than .. 
e:rpr 1 < = e:rpr2 Less than or equal to 

(Continued) 

CHAPTER 11 Resource Compiler and Decompiler 33; 



• Table 11-2 (Continued) Resource description expression operators 

Operator 

7. exprl == e:::pr2 Equal 
exprl ! .. e:r:pr2 Not equal 

8. e:r:prl & e:r:pr2 Bitwise AND 

9. e:r:prl "e:r:pr2 Bitwise XOR 

10. e::t:prl I e:r:pr2 Bitwise OR 

11. e::t:prl & & e:r:pr2 Logical AND 

12. e::t:pr 1 I I e:r;pr2 Lo gic:al 0 R 

The logical operators !, >, >•, <, <•, ••, !•, &&, and 11 evaluate to 1 (true) or 0 (false). 

Variables and functions 

Some resourte compiler variables contain COmIOOnly used values. All Rez variables start 
with s s followed by an alphanumeric identifier. 

·The following variables and functions have string values (typical values are given in 
parentheses): 

$$Date Current date. Useful for putting timestamps into the resource 
ftle. The format is generated through the ROM call 
ItmateStrinq. ('1'hursday, May 20, 1987") 

SSFormat ( "fonnatSlring", argumems) 

$$Name 

336 MPW 3.0 Reference 

Works just like the tprintf directive except that s sf o rrna t 
re~ a string rather than printing to standard output (See the 
section •print Directive'" earlier in this chapter.) 

Name of resource from the current resource. The current 
resoun::e is the resource being generated in a resource 
statement, being included from an include statement, being 
deleted from a delete statement, or changed in a chanqe 
statement. 

For example, to include all • DRVR • resourtes from one file and 
keep the same information, but also set the SYSHEAP 
attribute: 

4 

INCLUDE "file" 'ORVR' (0:40) AS 
'ORVR (~$ID, $$Name, $$Attributes 64) 



( 

( 

The SSType, SSIO, SSName, and SSAttributes var.ables 
areundefinedoutsideofa change, delete, include, or 
resource statement 

SSResource <"filename',' type', ID I •·resourr::eName') 

SS Time 

SSVersion 

Reads the resource ' iype' with the ID ID or the narne 
• resourceName' from the resource ftle "filename', and re rums a 
string. 
Current value of the exported Shell variable (stringE..."1Jr!. ~ote 
that the braces must be omitted, and the double quocation 
marks must be present 

Current time. Useful for time-stamping the resource file. The 
format is generated through the ROM call !UT ime st r i:lg. 
("7:50:54 AM") 

Version number of Rez. ("V3.0") 

These variables and functions have numeric values: 

SSAttributes Attributes of resource from the current resource. See the 
s SName string variable. 

SSBitField(label, startingFosition, numberOfBits) 
Returns the numberO}Bits (maximum of 32) bitstring found 
startingPosition bits rrom label. 

ssayte (label) Rerums the byte found at label 

ssoay Current day. Range 1-31. 

s SHour Current hour. Range 0-23. 

ssro ID of resource from the current resource. See the SSName suing 
variable. 

SSLong (label) Returns the longword found at label. 

SSMinute Current minute. Range 0-59. 

SSMonth Current month. Range 1-12. 

SSPacked.Size{Start, RowBytes, RowCount) 
Given an offset (Start) into the current resource and rwo 
integers, RowBytes and RowCoun~ this function calls the 
ToolBox routine Unpack.Bits Ro.wCount times. 
s SP ackedSi ze() rerums the unpacked size of the dara 
found at start. Use this function only for decompiling resource 
files. An example of this function is found in Pictr . 

.. 

CHAPTER 11 Resource Compiler and Decompiler 33i 



SSResourceSize 

$$Second 

$$Type 

$$Weekday 

$$Word(label) 

$$Year 

Strings 

Current size of resource in byteS. When decompiling, 
s SResourceSi ze is the actual size of the resource being 
decompiled. When compiling, SSResourceSize rerurm the 
number of byteS that have been compiled so far for the current 
resource. (See the • KCHR • resource in SysTypes.r for an 
example.) 

Current second. Range 0-59. 
Type of resource from the current resource. See the s SName 
string variable. 
Current day of the week. RanSe 1-7 (that is, Sunday-.Sarurday). 

Returns the word found at labeL 

Current yC2t. 

There are two basic types of strings: 

Text string "a. .. " The string can conl3in any prinrable character except ' " ' and '\ '. 
These and other charaaers an be created through escape 
sequences. (See Table 8-2.) The string " " is a wild string of 
length 0. 

Hex string $ "hh. .. " Spaces and tabs i.mide a hexadecimal string are ignored. There 
must be an even number of hexadecimal digits. The string $ " " is 
a valid hexadecimal string of length 0. 

Any two strings (hexadecimal or text) will be concatenated if they are placed next to each 
other with only white space in between. (In this case, returns and comments are 
considered white space.) 

Figure 11-4 shows a Pasal string declared as 

pstrinq [lOJ; 

whose dara definition is 

"Hello" 

• Figure 11-4 Internal representation of a Pascal string 

$05 H e I ~. I SCll I SCll I SCll I SCll I SCll I 

338 MPW 3.0 Reference 

~' 
!~t ? 

·~.· 

c 



(~, 

r..-.--'/' 

In the input ftle, string data is surrounded by double quotation marks("). You can 
continue a string on the next line. A separating token (for example, a comma) or brace 
signifies the end of the string data. A side effect of string continuation is th.at a sequence 
of cwo quoration marks("") is simply ignored. For example, 

"Hello ""out " 
"there." 

is the same string as 

"Hello out there."; 

To place a quotation mark character within a string, precede the quotation mark ~ith a 
backslash like this 

(\ "). 

E.1cape chatac:tcn 

The backslash character(\) is provided as an escape character to allow you to insert 
nonprinrable characters in a string. For example, to include a newline character in a string, 
use the escape sequence 

\n 

Valid escape sequences are shown in Table 11·3. 

• Table 11·3 Resource compiler escape sequences 

Escape Ha Primhlc 
sequence Name nJae eq1dftJem 

\t Tab $09 None 
\b Backspace sos ·None 
\r Re tum SOA None 
\n Newline SOD None 
\f Form feed soc None 
\v Vertical tab SOB None 
\? Rubout $7F None 
\\ Backslash SSC \ 
\' Single quotation mark S3A 
\" Double quotation.mark $22 w 

CHAmR 11 Resource Compiler and Decompiler 339 



You on also use octal, hexadedmaL decimal, and binary escape sequences to specify 
characters that do not have predefined escape equivalents. The forms are: 

Maller 
Base form . Dltitl EDmple 

2 \OB bbbbbbbb 8 \OBOlOOOOOl 
8 \000 

10 \OOddd 
16 \OXhh 
16 \Shh 

Here are some examples: 
\077 
\OxFF 
\SFl\SF2\SF3 
\Od099 

3 \101 
3 \00065 
2 \OX41 
2 \$41 

I* 3 octal diqits */ 
/* 'Ox' plu~ 2 hex diqits */ 
I* '$' plus 2 hex digits */ 
I* 'Od' plus 3 decimal diqit~ */ 

• Note to C programmers: An octal escape code comi.5ts of exactly three digits. For 
instance, to pl.ace an octal CSC2pe code with a value of 7 in the middle of an 
alphabetic string, write AB\007CD, not AB\ 7CD. 

You C2n use the OeRez command line option -e to print characters that would otherwise 
be esoped (characters preceded by a backslash, for example). Normally, only characters 
with values between $20 and $08 are printed as Macintosh characters. With this option, 
however, all characters (except null, newline, tab, backspace, form-feed, vertical tab, and 
rubout) will be printed as characters, not as CSC2pe sequences. See OeRez in Part II for 
details. 

.. 
.. 

340 MPW 3.0 Reference 



Chapter 12 Writing an MPW Tool 

THlS CHAmR PROVIDES INFORMATION SPECIFICTO WRITlNG AN hYI"EGRATED !.!PW 
TOOL You'll find the utility routines used by tools that run within the MPW Shell 
environment and how to access them. • 

Contents 

Overview 343 
Conventions 344 

Stanis Codes 345 
Restrictions 346 

Initialization 346 
Memory Management 347 

Heap 349 
Stack 349 

Building an MPW tool 350 
linking a tool 350 

Programming for the MPW Shell 351 
Accessing the MPW Shell-MPW C 351 
Accessing the MPW Shell-MPW Pascal 352 
Accessing the MPW Shell-Assembler 353 

Importing the routines 353 
Assembler calling conventiom 353 
The RTinit function 354 
Files to link with 355 

Parameters 355 
Accessing MPW command-line parameters-MPW C 357 
Accessing MPW command-line paramereis-MPW Pascal 357 
Accessing MPW command-line parameters-Assembler 358 

.. 

3-il 



Standard VO channels 358 
J/O buffering 358 
J/O to windows and selections 360 
Error information 361 
Shell J/O routines-MPW C 364 

stdio-standard buffered input/output package 364 
Shell I/O routines-MPW P3SCal '367 
Shell I/O routines-Assembler '367 

Shell J/O routines '367 
ope~pen for reading or writing 367 
close-dose a file desaiptor 369 
read-read from a file 370 
write-write to a file 371 
lseek-rmve read/write file pointer 372 
fend-file control 373 
IOCtl-communic:ate with device handler 374 

Shell utility routines 375 
StandAlone-dleck whether running under the MPW Shell 375 
getenv-access exported MPW Shell variables 376 
atexit-insta.11 a function to be executed at program termination 378 
exit-terminate the current application 379 
facces.r-named file access and control 380 

Signal handling 383 
Signal handling-C 383 
Signal handling-P3SCal 384 
Signal handling-Assembler 384 
Signal-specify a signal handler 384 
Raise-t'3ise a signal 385 
Writing a signal ha.ndler 386 

.. 

342 MPW 3.0 Reference 

,.(~ 

~~ 

c 



( 

Overview 

This chapter provides information specific to writing an integrated MPW tool. You'll also 
need to refer to the following: 

• Chapter 8, 'The Build Process,• for information about the mechanics of linking. 

• Chapter 13, "Creating a Commando Interface for Tools.• 

• Tools Llbraries in Appendix F. These contain the MPW Assembler, MPW C, and MPW 
Pascal routines for creating the rotating beach ball cursor and the Error Message File 
manager. 

• The Graf3D Llbrary in Appendix G. Your pro~ can use these routines to draw three-
dimensional objects. 

In this chapter you'll find the utility routines used by tools that run within the MPW Shell 
environment and how to access them. Examples of each of these routines are provided for 
MPW C, MPW Pascal, and MPW Assembly language. The MPW libraries contain four 
groups of these routines: 

• Shell environment routines: procedures, functions, and data structures required to 
access MPW command-line paramete~. Shell variables, and the standard input, 
output, and diagnostic files 

• Shell signal-handling routines: procedures and functions that give you access to MPW 
software interrupts 

• MPW cursor-conuol routines: procedures that let you conuol the form and action of 
the cwsor. These are in Appendix F. 

• Error message file management routines: procedures that let you access messages in 
the Macintosh system error message file. These are in Appendix F. 

These routines provide tools running within the MPW Shell envirorurent with many 
facilities, including: 

• parameter passing 

• access to Shell vari3bles 

• a set of preopened files for text-oriented input and output 

• 1/0 to windows and selections 

• a means for reruming status results 

• signal handling (for user abortS, and so on) 

• exit processing 
.. 

CHAPTER 12 Writing an MPW Tool 343 



After inuoducing the conventions that MPW tools should follow and the specifics of 
linking tools, each of the sections that follow explain the use of these facilities for each of 
the MPW programming languages MPW C, MPW Pascal, and MPW Assembler. 

Each section describes the environment in which the tool runs. It then lists the elernems 
needed to access the libraries available to a tool. Finally, it lists the individual functions 
available to tools. Sections detailing each function are titled according to the standard C 
naming conventions and are written in th.is format: 

name-5hort dcsaipdon of function 

function prototytpe 

Function desaiption: What the routine does, how to use it, arguments needed. 

MPWC 

function prototype in MPW C 

MPW Pasal 

function prototype in MPW Pa~cal 

Any applicable information for MPW Pascal. 

MPW Assembler 

function prototype in MPW A~~em.bler 

Any applicable information for MPW Assembler, including the language in which the 
function is written. 

Conventions 

MPW tools adhen: to a certain style that allows them to work well together in an 
integrated fashion: 

• Tools take their inputs as command-line parameters, rather than prompting for input 
This input style allows their execution to be automated and allows them to take 
advantage of the Shell's command-line processing features such as variable 
substitution and filename generation. 

• Deviations from a tool's standard behavior are specified with command options. 
Options may be specified anywhere otl the command line and their order is not 
significant. 

344 MPW 3.0 Reference 



( 

( 

• Tools operate on a list of filename parameters, not ju.st one, allowing the Shell's 
filename generation f earure to be exploited. 

• When no file parameters are given, tools take their input from standard input and 
wrirt: their output !C standard output. The use of standard VO allows the piping of 
the output of one program into the input of another. For example, 
Files I Count -l 
Th.is corrumnd sends the output of the Files command into the input of the Count 
command, yielding the number of files and directories in the current directory. 

• Tools spin the cursor to allow switching to different applications during tool 
execution (under MultiFinder). The cursor is spun at regular intervals for cooperative 
multi casking. 

• Most tools operate silently as they process their input Visual feedback is provided by 
the spinning cursor. If more feedback is desired, a ·P (progress) option is usually 
provided to send staru.s and .summary information to the di.agnostic output. 

• Error messages are in the fonn of Shell comments or are •executable• so that the error 
can be easily located. For example, the language translators report errors in the form 
File "Test.c"; line 25 #tt expected: ';'got: name 
Th.is message may be directly executed, to open the file and select the offending line. 
(See •Executable Error Messages" in Chapter 5.) 

See the "Command Prototype• section at the beginning of Part II for more information 
on MPW command language conventions. 

Status Code. 

Every tool is expected to rerum a starus ccxie to the Shell when it tenninates. The Shell 
wpeas this result-if the .starus ccxie is nonzero and if the Shell variable !Exid is nonzero 
(the default), the Shell terminates the execution of the current command file. The Shell 
al.so coaveiu the result to string fonn and creates a Shell vWble called {Status} with that 
value. The variable can then be tested with the Shell command language and action can be 
taken !med on its value. 

The following conventions are used for staru.s codes: 

0 Success 
1 Command syntax error 
2 Some error in processing 
3 System error or insufficen& resources 
-9 User abort 

CHAPTER 12 Writing an MPW Tool 34; 



• Note: Only the bottom 24 bits of a tool's status code are returned to the Shell. All 
negative numbers, except for -9, are reserved for use by the Shell. See •Negative 
Starus• in Chapter 5 for the meanin~ of negative status codes. 

You may want to return error codes other than these. In that case, you should carefully 
document the numbers and their meanin~. 

MPW C Result codes are passed as the return value from your main 
funaion or as the parameter to the C library exit function. 

MPW P2K2l Pascal programmers must call the IntEnv procedure IEexit to 
return the status result 

MPW Assembly The Integrated Environment routine _RT!!xi t is available 
to as,,embly-language programmers. _RTExit rakes the 
status code as a parameter. 

• Note: The returned status code will be undefined if you do not explicitly return a value 
by using the method recommended for your language. 

Restrictions 

Tools are similar to desk accessories in that they co-exist with another program (that is, 
the MPW Shell). The following sections touch on some of the considerations in enabling 
tools to co-exist with the Shell. 

InittaJmt1on 

Because tools nm with the Shell, nXlSt Macintosh Toolbox initialir.ition calls are not 
necessary and should not be alled In patticulat, you should not make the following calls: 

" 
• 

346 MPW 3.0 Reference 

, r--.,,, 
'Gi 



( 

InitFonts 
InitWindows 
InitMenus 
TEI nit 
InitOialoqs 
MaxApplZone 
SetApplLimit 
SetGrowzone 
InitResources 
R:srcZoneinit 
ExitToShell 

(Note that this is not an inclusive list) 

If your tool uses QuickDraw or any routine that uses QuickDraw, be sure to call the 
InitGraf routine. This routine is necessary when using QuickDraw, bee.use QuickDraw 
uses register AS-relative global variables, and tools have their own private A5 global area. 
Even a simple call to the QuickDraw function Random will not work properly unles.s 
Ini tGraf is called. 

If your program opens any windows, make sure that it closes or disposes of those 
windows before it terminates. 

+ Note: If your tool calls Ini tGraf and writes to stdout or stderr (including error 
messages), then you should call SetFScaleOisal:>le with a parameter value of true 
after your call to Ini tGraf. Otherwise your text output might be improperly scaled. 

Memory Management 

The Shell and tools execute out of the same heap and sh.are the same stack. When a tool is 
started, the Sheil allootes an area in the heap for the tool's globals and jump table, adjusts 
the global register A5 to point there, and then •calJs• the tool Any dynamic stack space 
required is alloared on the same stack, and any heap objects creared go into the same 
heap. 

.. 

01AmR 12 Writing an MPW Tool 34i 



• Figure 12· 1 Merrory map 

Screen 
i----------i-----A5-Globals (Shell) 

ShGll globals -------1--- Ao-Stock frome pointer 

Stock 

Heop 

Tool globals -----A5-Globols (TooO 

System stuff 

Low memory 

·When a tool terminates, the Shell restores the registers to their previous values and 
deallocates the tool's global area and any other pointers and handles in the heap that may 
have not been allocated. The tool's resources, however, are not deallocated immediately. 
They are unlocked and made purgeable so that the space can be used if needed. This 
practice allows for a quick restart of the tool if it is still in merrory, but with no memory 
wastage should the space be needed for other purposes. 

A Warning Alt.hough the Shell releases memory that has been allocated by the tool, 
sorretimes the Shell has insufficient information to determine the 
owner of a im.ster pointer. When a master pointer is NIL, it cannot be 
re.leased by the Shell and cannot be reu.5Cd. 
NIL master pointers are produced as a result of calls to 
EmptyHand.le, and by a nuni>er of Resoun::e Manager actions. For 
example, a GetResource with P.esLoad set to FALSE will create a 
NIL master pointer. If this is followed by a OetachResource or 
RmveResource, the handle rermins as a NIL pointer. It is always 
good programming practice to clean up handles after they have 
become obsolete. Use OisposHandle to get rid of such obsolete 
handles. • ' 

348 MPW 3.0 Reference 



() 

HC3p 

Because the Shell and tools share the same heap, some cooperation is necessary to ensure· 
efficient use of the heap. Before a tool is sr.arted, the Shell makes many of its heap 
objects lll1locked and purgeable. The Shell's meroory-residem code is keir~ as low in the 
heap as possible. The tool's code should be moved as high in the heap as possible. This is 
done automatically, if the locked bit ~ not set on the tool's code resources (the default 
from the linker). When allocating heap space, tools should attempt to allocate no more 
space than is needed so that objects aren't ne~Jy purged from the heap. 

When there is insufficient memory space to run a tool, you can make more space available 
in several ways. 

To obtain more memory while· running MPW: 

• Close all MPW windows. (Cerr.ain memory-resident data structures a.re required for 
each window.) 

• Pipe tool output to a file, rather than to a window. 

• Your tool may be able to borrow rrermry from the MultiFinder heap when running 
MuitiFinder. 

To obtain more memry by relaunching MPW: 

• If you are running MuitiF'mder, change the partition size for MPW in MPW's Get Info 
window. 

• Change the HEXA Sheil resource as described in the next section. 

To obtain more memry by rebooting the Macintosh system: 

• Tum off or reduce the size of the cache. (If you are running MultiFinder, you'll need to 
reboot to change the cache size.) 

• Remove any debuggeis from the system folder. You can free up about 90K by running 
without the MacsBug debugger (that is, hold down gie mouse button while booting). 

Here is the main difference between running under MultiFinder and Flnder: Under 
MultiFinder, the amount of memory allocated to MPW is determined by the partition size 
(which you an change in the Info window). Under the Flnder, available memory is 
affeaed by how much available system meroory exists. 

Stack 

When the Shell starts up, it immediately grows the heap to its maximum size based on the 
maximum stack size. The default maximum dynamic stack size is lOK bytes when les.s than 
480K is available for the application heap; the default maximum dynamic sr.ack size is 20K 
when roore than 4BOK is available. Because some tools may require roore stack space or 
more heap space, • H!XA • resource number 128 is available. 

CHAPTER 12 Writing an MPW Tool 349 



• Note: Because the stack is shared between the Shell and the tool, executing tools from 
within nested scrip rs results in less stack space for the tool. The Sheil uses about 200 
bytes of stack per nesting level. 

A Warning The MPW Shell segments might not be able to load into memory if: 
1. Your tool calls MaxMem and 
2. It allocates ail available memory and 
3. You then call any Sheil services (such as writing to 

an open window). ... 

Building an MPW tool 

In addition to traditional Macintosh applications, the Shell provides an environment for a 
type of program called an MPW tool. When a tool is run from the Shell, it does not replace 
the Shell or erase the saeen, but instead runs within the Shell environment and has access 
to the facilities provided by the Shell. The compilers, Link, Make, and so on, are ail tools 
in the MPW system. 

From a programming viewpoint, tools resemble applications in many aspects of their 
behavior. Like applications, tools may have global variables and tools are linked just as 
applications are linked. The major difference between tools and applications is that tools 
do not have to initialize their environment (except for Quickdraw, if used) and tools have 
access to any of the Shell's open windows. 

For a description of additional facilities available to an MPW tool, such as the Cursor 
Conuol and Error Message File Manager routines, see Appendix F. The Graf3d library i.s 
described in Appendix G. 

I Inking a tool 

Llnking an MPW tool is the same as linking an application (described in Chapter 8), 
except that the file type must be set to MPST and the creator t9 'MPS' (MPSspace): 

4 

Link -t MPST -c "MPS" ... 
4 

350 MPW 3.0 Reference 

0 

c 



Sample tools are provided in the Examples folders for each of the MPW languages-refer 
to the sample makefiles for examples of the commands used to build a tool. Note that the 
sample tools are linked with the file Stubs.o. This ftle contains dummy library routines 
used to override stindard library routir~ that aren't used by MPW tools, thus reducing the 
tools' code size. 

• Note: ~ a matter of convenience, tools are usually kept in the {MPW}Tools folder. This 
allows you to invoke the tool by using its simple name instead of its full pathname. 
{MPW}Tools is one of the directories that the Shell automatically searches when a 
command name is given with a partial pathname. The Shell variable !Commands} 
contains a com.ma-separated list of directories to be searcheq; you can easily modify 
it to include additional directories. 

See Chapter 8 for a general introduction to linking and for instructions on linking 
multilingual program;. See Chapter 10 for more detailed information on linking. 

Program.ming for the MPW Shell 

This section explains how to access the MPW Sheil by calling special MPW Pascal and MPW 
Assembler libraries. In the case of MPW C, the Sheil can be accessed by using routines in 
the Standard C Llbrary. 

Acc~ing the MPW Shell-MPW C 

To ac~ the MPW 3.0 Shell environment by using MPW C, do the following: 

• Include the necessary header files 

• Link your program with CRuntime.o, Clnterface.o, and lnterface.o. Also link with 
Tool!Jb.o if you are using the cursor control or error management routines described in 
Appendix F. You may also need to link with StdCI.ib.o. 

The standard c Library interface mes contain most of the interfaces needed for 
programming the MPW Shell. In addition to the Standard C library functions, MPW C 
contains: • 

• Signal.h, containing routines tmt give you access to MPW software intem.Jpts 

CHAPTER 12 Writing an MPW Tool 351 



• CursorCtLh, containing routines to control the form and action of the cursor (see 
Appendix F) 

• ErrMgr.h, containing routines to access messages in the Macintosh system error 
message file (see Appendix F) 

The code for Signal.h is in CRuntime.o. The code for CursorCtl.h and ErrMgr.h is in 
Too!Llbs.o. All interface files are in (Cincludesl. 

• Note: There is an example of a C tool that runs under the MPW environment in the 
folder {CExamples}. 

Accessing the MPW Shell-MPW Pascal 

To access the MPW 3.0 Shell environment by using MPW Pascal, do the following: 

• Include the statement 
USES (SU PasLibintf.p} PasLibintf,(SU IntEnv.p},IntEnv 

in your source text The USES clause and the su Compiler directive are described in 
the MPW 3.0 Pascal Reference. 

• Unk your program with the files Runtime.a, Pasllb.o, and Interface.a. If you are using 
cursor-control or error message routines, you'll need to link with Tooll.ibs.o. (See 
Appendix F for information on these routines). 

MPW Pascal 3.0 includes four interface files containing facilities for programs that work 
with the MPW Shell environment They are 

• IntEnv.p, containing the routines and data strucrures required to access MPW 
command-line parameters, Shell variables, and the standard diagnostic variable 

• Signal.p, containing routines that give you ac~ to MPW software intemlprs 

• CursorCd.p, containing routines that let you control the form and action of the cursor. 
See Appendix F of this reference for detailed information on these routines. 

• ErrMgr.p, containing routines that let you access messages in the Macintosh system 
e.rror message ftle. See Appendix F of this reference for detailed information on these 
routines. 

The code for IntEnv.p and Signal.pis in the library Runtime.a. The code for CursorCtl.p 
and ErrMgr.p is in the library ToolLibs.o. 

Progranuners writing tools may need to use the special facilities implemented by these 
interface files. Thev are all located in the director; (Pinterfaces}. . . 

352 MPW 3.0 Reference 

c , 



• Note: There is an example of a Pascal tool that runs under the MPW environment, using 
IntEnv, in the folder {PExamples}. 

Accessing the MPW Shell-Assembler 

To access the MPW Shell environment from MPW Assembly language, you must do the 
following: 

• Import the names of the routines you are using. 

• Use the correct calling conventions. 
• Call the _RTini t function early in your program and the exit or abort procedure at 

the end of the program. 

• Llnk your assembly with the library or libraries that contain the routines' code. 

These requirements are discussed in the following sections. 

• Note: There is an example of an Assembly language tool that runs under the MPW 
environment in the folder {!Examples}. 

Importing the routines 

Import the names of the routines described in this appendix by u.5ing IMPORT directives. 
For the Shell environment and signal-handling routines, you can simply include the files 
IntEnv.a and Signal.a, respectively; they contain the required directives. For the cursor­
control and error file management routines, you must write your own IMPORT directives in 
your source text 

The Shell environment and signal-handling routines are roosdy C routines; hence their 
names are case semitive. The cursor<onttol and error file management routines are all 
Pascal routines. Their names are not case sensitive unless CASE OBJ or CASE ON is in 
effect, in which case their names must be imported in capital letters. 

As.1cmbler aJJfng conventions 

Each routine described in this chapter indicates whether to use Pascal or C calling 
conventions. 

CHAPTER 12 Writing an MPW Tool 353 



If the calling convention is C, then push the parameters on the stack from right to left 
When the function rerums, its arguments will still be on the stack and its return value v.ill be 
in register DO. 

If the calling convention is Pascal, you must reserve space on the stack for the rerum 
value, if any. Then push the arguments from left to right When the routine rerurns, the 
arguments will no longer be on the stack; also, the return value (if the routine was a 
function) will be on top of the stack. 

All C functions described in this chapter leave their results in register DO. All Pascal 
functions described in this chapter leave their result on the stack. 

The RTinit funaioa 

longint _RTinit (ptr retPC, longint * pargc, longint * pargv, longint * penvp 
longint forPa~cal) 

One of the first calls in your program must be to the _RTini t function; the very last call 
should be to the exit or_ exit procedure, which calls the _RTExi t procedure. 
_RT I nit is described in this section; _RTExit is described lat.er under "Shell Utility 
Routines.• 

The _RTini t function allocates approximately 500 bytes of nonrelocatable space in the 
heap and calls _oatainit, the routine that initializes global data. _RTinit must be 
called before any of the other routines described in this section; if possible, it should be 
called before other code segments have been loaded. 

The _RTinit function has these parameters: 

• retPC is the address to which program control should pass upon execution of 
_RTExit, as described under "Shell Utility Routines.9 

• pArgC points to a long integer that _RTini t will set to the value of the Shell variable 
arqc, which is discussed under "Accessing MPW Comrnand-Une Parameters: 

• pArgv points to a point.er variable that _RTini t wil1 set to the value of the Shell 
variable arqv. The variable arqv is discussed under "Accessing MPW Command-line 
Parameters.• 

• pEnvP points to a pointer variable that _RTini t wil1 set to the vector of exported 
Shell vari2bles. 

• forPa~cal is a numeric value passed to _RTini t. Its value should be 0 if you want 
the strings pointed to by envp and argv to be in C format (terminated by a zero 
character), and one if you want them to be in Pascal format (preceded by a 
length byte). 

• 

354 MPW 3.0 Reference 



The RTI nit function re rums a value of 1 if your program is being launched by the 
Mac~tosh Finder, and O if it is being launched by the MPW Shell. This is the value placed in 
the standAlone variable, described below under •shell Utility Routines." 

The function _R.Tini t uses C calling conventions. 

For an example of the use of the _R.Tini t function in the code of an MPW tool, see 
Count.a. The routine Init shows how to call _RTinit. The exiting routine is called 
st op: it shows how to call the very last call, exit • 

Files to link with 

The code for the Shell environment and signal-handling routines is in the library Runtime.a, 
except for the code for the IEGetEnv function, which is in PasUb.o. The code for the 
cursor<antrol and error file management routines is in the library Toollib.5.o. You must 
link the appropriate file or files to your object files if you use any of these routines. 

Parameters 

Parameters are passed to tools by the Shell. Every tool is passed at least one parameter: 
the name of the tool itself. This parameter ~ always the first parameter (technically, 
parameter 0) and is useful for error messages or other special actions. 

The text that follows the command name on the command line is first analyzed by the 
Shell for any special processing, such as filename generation or variable substirution. (See 
"How Commands Are Interpreted• in Chapter 5.) This text is then split up into individual 
words and placed in a convenient data struaure for programmatic access. 

In any MPW language, there ate two variables, arqc and arqv. 

The argumem vector, arqv, ~a pointer to an array of string pointers. Figure 12·2 
delOOnstrates the arqv structure. 

CHAPTER 12 Writing an MPW Tool 3;; 



• Figure 12·2 Parameters in MPW C and MPW Pascal 

C Sample.a -a Sample Pascal Sample.p -a Sample 

0 

m P e o S o m p I e 

I e c: 0 So mp I e .p 

c: o I 

The argument count, arqc, contains the number of parameters including parameter 0. The 
value of arqc is always greater-than or equal to one, because the first parameter is always 
the command name. For example, in Figure 12·1, the variable arqc would have the value 4. 

Element 0 of arqv is always the command name, as supplied by the user. When a user is 
running an MPW Shell script, it's imponant that error messages include the name of the 
particular MPW program that generated the error. You can include the program name with 
code such as this (in MPW Pascal): 

{Store proqram name in temp variable.I 

IF IOResult <> 0 THEN 
Writeln(diaqnostic, proqName, '-cannot open file', fileName>: 

' 

356 MPW 3.0 Reference 

. 0 

d 



( 

Accessing MPW command-line parameters-M.PW C 

In C, the main program is acrually passed three parameters, named argc, the argument 
count; argv, the argument vector; and envp, the environmental pointer. The value of 
a rgc includes the command name (pararneter 0), :i.nd is thus always one more than the 
number of parameters to the command. a rgv is a pointer to a zero-terminated array of 
pointers to the parameters, each of which is in C string (zero-terminated) format. (See 
Figure 12-1.) 

Accessing MPW command-line parameters-MPW Pascal 

In MPW Pascal, the parameters are accessible as the unit global variables Argc and Argv 
from the IntEnv (Integrated Environment) unit. As in C, the value of Argc is one more 
than the parameter count; Argv is a pointer to a null-terminated array of Pascal string 
pointers. 

The Integrated Environment library uses the following types and variables to allow you to 
access the information given in an MPW command line. 

The unit IntEnv in the interface file IntEnv.p declares these types and variables: 
TYPE 

IEString • STRING; 
IEStringPtr • AIEString; 
IEStringVec •ARRAY (0 .. 8191) OF IEStringPtr; 
IEStringVecPtr • AIEStringVec; 

VAR 
ArgC: LONGINT; 
ArgV: IEStringVecPtr; 
EnvP: IEStringVecPtr; 
Diagnostic: TEXT; 

The ArgV variable is a pointer to an array of type ARRAY r o .. ArgC J of Pascal string 
pointers, dynamically allocated and initialized by the MPW Shell when a program begins 
execution. Each parameter to the program is stored as a string of type IEString and is 
pointed to by a pointer in the array. 

The code within the library routines creates strings of type IEString that are exactly the 
length of the arguments passed to them For this reason, you cannot assign values to 
variables of type IEString-dleir values are passed directly from the MPW Shell . 

• 

CHAPTER 12 Writing an MPW Tool 3;7 



Accessing MPW command-line parameters-Assembler 

The Intemted Environment routine, RTini t, can be used to access the command 
~ -

parameters in assembly language. The aJdresSc;:S of the variables a rqv and arqc are 
passed to _RTinit, which initializes them. · 

The arqv variable, set by _RTinit, is a pointerto an array of type AMAYC o .. arqcJ 
of pointers, dynamically allocated and initialized by the MPW Shell when a program begins 
execution. Each conunand·line para.meter to the program is stored as a Pasca!-fonnatted 
or C-formatted string (depending on the value of the forPa~cal parameter passed to 
_RTinit), pointed to by a pointer in the array. 

Standard 1/0 channels 

Before starting a tool, the Shell sets up three text VO channels that the tool can use to 
communicate with the outside world. These are 

• standard input 

·• standard output 

• diagnostic output (standard error) 

By default, these channels are connected to the console (that is, the fronunost, active 
window). Program input may be typed (or selected) and entered in any window; program 
output appears immediately after the conunand in the same window. This input and 
output may be taken from or directed to other files by specifying VO redirection ( <, >, 
>>,~~.I., or I.Don the command line. When the Sheil encounters the VO 
redirection notation, it opens or aeates the neceswy files, removes the redirection 
notation from the command line so that it doesn't appear in the program's parameter list, 
and then amnges for the open files to be passed to the program. When the tool finishes, 
the Shell flushes any buffered output and closes the files. 

I/O buffering 

When using VO routines provided by the language libraries, varying degrees of buffering 
are expected to occur on the standard VD channels: 

358 MPW 3.0 Reference 

c 



• Input from the console is buffered until the Enter key is pressed. If there is a selection 
when Enter is pressed, the selected text is used to satisfy the console read request; 
otherwise, the entire line that contains the insertion point is given to the reader. 
• Note: The MPW method of re:ld.ing inp•1: .·~""~s a difficulty for interacl.ive 

tools that write prompting text and pause t0 read a response entered on 
the same line: The tool will receive the prompt back as part of the line read, 
unless there was a selection when Enter was pressed. 

• When input is taken from a file, the VO package will, by defaul~ read the data from 
the disk in lK blocks. 

• Text written to standard output is also buffered lK at a time before being sent to a 
file or to the console. (~ a convenience, when a read request is issued to the console, 
all interactive output buffers are flushed so that any prompting text 'Will appear before 
the program pauses waiting for input) 

• Text written to the diagn~tic channel is buffered one line at a time, so that error 
messages and progress information appear in a timely manner while the program is 
executing. 

Note that this buffering C2n C2use apparently anomalous behavior: In particular, if both 
standard output and diagn~tic output are directed to the console, the order of the 
output on the screen may not match the order in which the data was written.This change in 
order may result because the separate buffers are flushed at different times, as illustrated 
in Figure 12-3. You can circumvent this problem by flushing standard output before writing 
to diagnostic output. 

• Note: Figure 12-3 shows the output conventions in C and Pascal Assembly-language 
programmers must do their own buffering, or call C or Pascal routines. 

CHAPTER 12 Writing an MPW Tool 359 



• Figure 12-3 1/0 buffering 

Fiie J 
1 lK buffer 

'-------' 

Stondard 
Input 

OR -----11~ 

Console Entered text 
(typically 

1 llne) 

Stondord 
output 

Tool 

Standard 
diagnostic 

lK buffer 

1-llne buffer 

C The standard 1/0 files are available for reading or writing in C, via the 
file descriptors 0, 1, and 2, or the Sr.dIO stream desaiptors std.in, 
stdout, stderr. These descriptors are fully documented in the 
MPV/ 3.0 C Refmnce. 

Pascal In Pascal, the program parameters Input and output correspond to 
the standard input and output chaMels. A text file variable called 
diagnostic, which is connected to the standard diagnostic channel, 
~ available from the IntEnv unit Most tools written in Pascal can use 
the standard Pascal input and output functions with the text files 
Input, Output, or Diaqnostic. The use of these parameters is 
documented in detail in the MPV/ 3.0 Pascal Refmnca. 

1/0 to windows and selections 

The MPW envimament also provides to tools the ability to read and write to windows or 
to selections wilhin windows. No special programming ~ required to use this fearure. The 
MPW Shell monitors file system calls, and intercepts those that refer to a file that ~ 
currently open as a window. These alls are redirected automatically to the window rather 
than the me. (Thus, any modifications to the file do not become permanent until the 
window ~ saved.) 

360 MPW 3.0 Reference 

0 

d 



Accessing selections within windows is equally transparent co prograiru. All that is required 
is that the filename contain the selection suffix(.§). Reading from a selection is the same 
as reading from a file, and the beginning and end of the selection are created as the 
bounds of the file. However, writing co a selectinti replat;P.S the selection and ha~ the 
interesting property that the data written is inserted into the file, rather than overwriting 
the data th.at follows. 

Because window and selection VO is handled automatically by the MPW Shell, tools 
should simply assume that they are always dealing with files. 

Error information 

All Sheil VO routines report errors by setting the value of the integer variable errno. In 
addition, the routines open, close, read, write, and ioctl set the variable 
MacOSErr. The error values are shown in Table 12-1. 

MPWC 

MPW P3K2l 

MPW Assembly 

The variables errno arid MacOSErr are global variables. 

Results are reported with IO result, which looks at both errno and 
MacOSErr. If IOresul t is positive, it holds errno. If IOresul t 
is negative, it holds MacOSErr. 

IMPORT the variables errno (a long) and MacOSErr (a word). You 
can import these variables with the IntEnv.a interface file. 

The variable errno is an integer. Its behavior is described in the MPW 3.0 C Reference. 
The values of errno are typically small positive integers. z.ero means that there is no 
error. However, libraries do not set errno to zero on successful cails. 

MacoSErr is a short that holds the error result from Macintosh toolbox calls made by the 
libraries (such as the result of a file system call made by the ioctl function). MacOSErr 
holds zero if there is no error; if it holds a negative number, that means there is an error. 
See /Mds MadnlOSh for details on error nuni>ers. 

' 

OiAPTER 12 Writing an MPW Tool 361 



• Table 12·1 Shell VO errors 

Valu.e I<kn tificr Message E.:i p Wl2 tion 

2 ENO ENT No such file or directory. This error occurs when a file whose 
filename is specified does not exist 
or when one of the directories in a 
pathname does not exist 

3 ENO RS RC Resource not found A required resource was not found. 
This error applies to faccess calls 
that return tab, font, or print record 
information. 

5 EIO VO error Some physical VO error has 
occurred. This error may in some 
cases be signaled on a call following 
the one to which it actually applies. 

6 ENXIO No such device or address VO on a special file refers to a 
subdevice that does not exist, or 
the VO is beyond the limits of the 
device. This error may also occur 
when, for example, no disk is 
present in a drive. 

7 E2EIG Insufficient space for The data to be returned 
return argument is too largefor 

the space allocated to receive it. 

9 EEAOF Bad file number Either a file descriptor does not 
refer to' an open file, or a read (or 
write) request is made to a file that 
is open only for writing (or reading). 

12 ENOMEM Not enough space The system ran out of memory while 
the library call was executing. 

13 EACCES Permission denied An attempt was made to access a 
file in a way forbidden by the 
protection system. 

(Continued) 
(',) 
{ 

_ .. ;:fo" 

362 MPW 3.0 Reference 



(_ 

• Table 12·1 (Continued) Shell I/O errors 

Value Identifier Mcssasc E.lpla111doa. 

17 EEXIST File exists An eri.ting file was mentioned in an 
inappropriate context. 

19 ENOOtv No such device An attempt was made to apply an 
inappropriate system call to a 
device; for example, to read a 
write-only device. 

20 ENOTDIR Not a directory An object that is not a directory 
was specified where a directory is 
required; for example, in a path 
prefix. 

21 EI SD IR Is a directory An attempt was made to write on a 
directory. 

22 EINVAL Invalid parameter Some invalid parameter was 

(~ 
provided to a library function. 

23 ENFILE File table overflow The system's table of open mes is 
full, so temporarily a call to open 
cannot be accepted. 

24 E:MFILE Too many open files The system cannot allocate memory 
to record another open file. 

28 ENOS PC No space left on device During a write to an ordinary file, 
there is no free space left on the 
device. 

29 ESPIPE Illegal seek ~ lseek was issued incorrectly. 

30 EROFS Read-only flle system An attempt to roodify a file or 
directory was made on a device 
mounted for read-only access. 

31 EMLINK Too many links An attempt to delete an open file 
was made. 

(_-

CHAPTER 12 Writing an MPW Tool 363 



Shell I/O routlnes-MPW C 

The MPW C input and output routines are part of the comprehensive Standard C Ubrary. 
• The Standard C Ubrary is a collection of basic routinr-s that let you read and write files, 

examine and manipulate strings, perform data conversion, acquire and release memory, 
and perform mathematical operations. You may use any of the Standard C Ubrary routines 
or low-level routines individually described later in this chapter. For more information, see 
the MPW 3.0 C Reference. 

stdio-mndard buffered input/output package 

The Standard LIO package constirutes an efficient user-level LIO buffering scheme. The 
inJine macro.5 getc and putc handle characters quickJy. 

The following ma~ and higher-level routines all use qetc and putc: 

get char put char fqetc fgets 
fprintf fputc fputs fread 
fscanf fwrite gets qetw 
printf puts putw scanf 

Calls to these mac~ and functions can be freely intermixed. 

The constants and the following functions are implemented as macros: 

qetc 
feof 

get char 
ferror 

putc 
clearerr 

Avoid redeclaration of these names. 

put char 
fileno 

Any program that uses the Standard LIO package must include the <StdIO.h> header file 
of macro definitions. The functions, macros, and constants used in the Standard VO 
package are declared in the header file and need no further declaration. 

A stream ~ a file with as.sociated buffering and ~ declared to be a pointer to a r I LE 

variable. Functions fopen, freopen, and fdopen rerum this pointer. The information in 
the FILE variable includes 

• the file access-read or write 

• the me desaip<or as reDJmed by open, creat, dup, or fcntl 

• the buffer size and location 

• the buffer style (unbuffered, line buffered, or file buffered) 

• 

364 MPW 3.0 Reference 

'~~ 

d 



(- ~ 

Output strea~, with the exception of the standard error stream "t de r r, are by default 
file buffered if the output refers to a file. File "tderr is by default line buffered. When an 
output stream is unbuffered, it is queued for writing on the destination file or 'Window as 
soon as wriaen; when it is file buffered, ~ny ch.arzcter.; ~.re saved 1.!p and wriw.n as a 
block; when it is line buffered, each line of output is queued for writing as soon as the line 
is completed (that is, as soon as a newline character is written). Function ,,etvbuf may 
be used to change the stream's buffering strategy. 

Normally, there are three open stre~ with constant pointers declared in the <StdIO.h> 
header file and associated with the standard open files: 

• Table 12·2 Standard files 

Fill n.riable Flldes Descrlpdoo. Bulfer sty le ------
"tdin 0 standard input file file buffered 
"tdout 1 standard output file file buffered 
"tderr 2 standard error file line buffered 

Buffer initialization: The FILE variable rerumed by fopen, freopen, or fdopen has an 
initial buffer size of 0 and a NULL buffer pointer. The buffer size is set and the buffer 
allocated by a call to "etbuf, "etvbuf, or the first LIO operation on the stream, 
whichever comes first Buffer initialization is done using the following algorithm 

1. If _IONBF (no buffering) was set by a call to ,,etvbuf, initialization steps 2 and 3 are 
skipped. The buffer size remains 0 and the buff er pointer remains NULL. 

2. Checks the access-roode word for _IOLBF (line buffering). Th.is bit is usually set only 
in the predefined FILE "tderr, but a call to setvbuf can set it for any file. If line 
buffering is set, the buffer size is set to LBUF s I z (100). If line buffering is not set, 
ioctl is called with an FIOBUFSIZE request and the buffer size is set to the rerumed 
value or to BUFSIZ (1024) if no value is returned. 

3. If the buffer pointer is NULL, a request is made for a buffer whose siz.C was 
determined in step 2; the buffer pointer is set to point to the newly allocated buffer. 
If the requested size cannot be allocated, attempts are made· to allocate B UF s I z or 
LBUFSIZ if these are smaller than the requested size. If all requests fail, the buffer 
pointer remains NULL and the _IONBF (no buffering) bit i.s set 

4. Function ioctl i.s called with an FIOINTERACTIVE request; if it returns true, the 
_IOSYNC bit is set in the access-mode vrord. Th.is is done for all FILE variables, 
regardless of their buffering scy1e and size. ('The _IOSYNC bit i.s describetl in the next 
section.) 

CHAPTER 12 Writing an MPW Tool 365 



The setvbuf function lets you specify values for buffer size, buffer pointer, and access­
mode word other than the default values of 0, NULL, and 0, respectively. The setvbuf 
function must be called before the first VO operation occurs, so that the buffer 
initialization procedure described above receives the values you specify instea,i of the 
default values. 

Buffered I/O: On each write request, the bytes are transferred to the buffer and an 
internal counter is set to account for the number of bytes in the buffer. If _roLar is set 
and a newline character is encoWltered while transferring bytes to the buffer, the buffer is 
flushed (written immediately) and the transfer continues at the beginning of the buffer. 
This continues until the write-request count is satisfied or a write error occurs. 

On each read request, the _IOSYNC bit in the acces.s-nxxie word is checked. If _IOSYNC 
is on, a11 current FI LE variables that have _I OSYNC on and are open for writing are 
flushed. In other words, a read from an interactive FI LE variable flushes a11 interactive 
output files before reading. This ensures that any prompts, LIO in a window, or other 
visual feedback is displayed before the read is initiated. Then if the internal counter is 0, 
an entire buffer is read into memory if possible. (For the console device, less than a 
buffer's worth is likely to be read.) The bytes required to satisfy the read request are 
transferred, going back to the device for more if necessary, and an internal pointer is 
advanced if any bytes remain unread. 

When the Standard LIO package is used, Standard LIO cleanup is performed just before 
termination of the application. Any normal return including a call to exit causes Standard 
LIO cleanup, which consists of a call to fclose for every open FILE stream. 

.A WarnJng Do not use a file descriptor (0, 1, or 2) where a FILE variable (std.in, 
stdout, or stderr) is required. File <StdIO.h> includes definitions 
other than those described above, but their use is not recor?lm:nded. 
Invalid stream pointers cause serious errors, possibly including 
program termination. Individual function 'descriptions describe the 
possible error conditions. • 

An integer comtant EOF (-1) is returned upon end of file or error by most integer 
functions that deal with streams. See the descriptions of the individual functiom for 
details. 

You may al.so refer to these Standard C Ubrary routines: 
close 
fopen 
gets 
printf 
scanf 

exit fclose 
fread fseek 
ls eek onexit 
putc puts 
setbuf unqetc 

3(i) MPW 3.0 Reference 

ferror 
~etc 
open 
:ead 
write 

r) 
~ 



( ' . 

Shell 1/0 routines-MPW Pascal 

The Integrated Environment library includes four general VO routines that you can use in 
conjunction \Vith the standard Pascal VO routing from MPW Pascal programs ~.hat run 
within the MPW environment. These functions are listed, where available, in the next 
section. 

Shell 1/0 routines-Assembler 

Eight general VO routines are available for use with MPW Assembler programs that run 
\Vithin the MPW environment 

Shell 1/0 routines 

In the sections that follow, each VO routine is individually described, along with the 
appropriate calls in MPW C, MPW Pascai and MPW Assembly language. 

open-open for reading or writing 

int open(char *filename, int mode) 

The Shell routine open opens the ftle, window, or selection named by filename for both 
reading and/or writing. The parameter mode sets the file-starus flags,.and specifies file 
creation, truncation, and/or exclusive access . 

.. 

CHAPTER 12 Writing an MPW Tool :/J ... 



To construct mode, first select one of the following access modes: 

• o_RDONLY Open for reading only. 
11 o _ WRONLY Open for writing only. 

• o_RDWR Open for reading and writing. 

Then optionally add one or more of these modifiers: 

• o_APPEND The file pointer is set to the end of"the file before each write. 

• O_CREAT 

• O_TRUNC 

• O_RSRC 

If the file does not exist, it is aeated. 

If the file exists, its length is truncated to O; the mode is 
unchanged. 
The file's resource fork is opened (Normally, the data fork is 
opened.) 

The following setting ~valid only if o_cREAT is al.so specified: 

• 0 EXCL Function open fails if the file exists. 

Upon successful completion, a nonnegative integer (the file descriptor) is rerumed. The 
file pointer used to mark the current position within the file is set to the beginning of the 
file. 

The named ftle is opened unless one or rrore of the following are true: 

• o_CREAT is not set and the named file does not exist [ENOENT] 

• More than about 30 file desaiptors are currently open. The actual limit varies 
according to runtime conditions. [EMFILE] 

• O_CREAT and O_EXCL are set and the named file emts. [EEXIST] 

MPWC 

int open(char *filename, int mode) 

PROCEDURE IEopen(VAR fvar: univ PascalFile; filename: string; mode: 
lonqint); 

After IEopen executes successfully, fvar cont.aim a pointer to the beginning of the file 
named by filename. 

Normally, MPW Pascal rools will use the built-in calls Reset, Rewrite, or Open. The 
Procedure IEopen provides additional options with the mode parameter. After using 
IEopen, the tool should then use the built-in MPW Pascal calls Read, Write, and Close 
using the fvar variable. • 

368 MPW 3.0 Reference 

~ 
i~ . l 
0 



( 

(·· 

MPW Assembler 

lonqint open(char *filename, lonqint mode) 

l:se the C ro:Jtine open . After open executes successfully, DO contains an integer file 
descrip~or (a nonnegative integer), with the file pointer set to the beginning of the file. 
File desaiptors for input, output, and the diagn05tic output are predeclared in the 
include file IntEnv.a, as shown in Table 12-3. 

• Table 12·3 Predeclared file descriptors 

0 Input FD 
1 OutputFO 
2 DiaqnosticFO 

Standard input 
Standard output 
Diagnostic output 

If there is an error, DO will contain-1 and errno will be set to indicate the error. 

dose-close a me desaiptor 

int close(int fdl 

The close function closes the file associated with the file descriptor fd. (The file 
descriptor is obtained from an open call.) 

Function close fails if fd is not a valid open file descriptor. 

Upon successful completion, a value of 0 is returned Otherwise, a value of 
-1 is returned and errno is set to indicate the error. 

MPWC 
int close(int fd) 

(File desaip(Dr fd may also be obtained from a creat, dup, or fcntl call.) 

. MPW P3SCl1 

To dose a file opened with IEopen, use the MPW Pascal built-in procedure Close. 

MPW Assembler 

lonqint close(lonqint fdl 
c 

Use the C function close. If succe~fuL close selS DO to 0. 

CHAmR 12 Writing an MPW Tool 369 



read-read from a me 
int readCint fd, char *buf, unsigned nbyte) 

On devices capable of seeking, read starts reading at the current position of the file 
pointer assQciated with fd. Non.seeking devices always read from the current position. 
The value of a file pointer associated with such a file is undefined. 

Upon return from read, the file pointer is incremented by the number of bytes acrually 
read. 

File descriptor fd is obtained from a call to open. Function read transfers up to nbyte 
bytes from the file associated with f d into the buff er pointed to by bu f. 

Upon successful completion, read returns the number of bytes actually read and placed in 
the buffer; th.is number may be less than nbyte if the file is associated with a window or if 
the number of bytes left in the file is less than nbyt e byteS. 

File descriptor 0 is opened by the MPW Shell as standard input. 

A value of 0 is returned when an end of file has been reached, or -1 if a read error occurred. 
Upon successful completion, a nonnegative integer is rerumed indicating the number of 
bytes actually read. Otherwise, -1 is returned and er rno is set to indicate the error. 

Function read fails if f d is not a valid file descriptor open for reading. 

MPWC 

int read(int fd, char *buf, unsigned nbyte) 

(File descriptor fd may also be obtained from a creat, dup, or fcntl call.) 

MPW Pascal 

To read from a file opened with IEOpen, use the MPW Pascal built-in procedure Read. 

MPW Assembler 

lonqint read(lonqint fd, char *buf, unsigned longint nbyte) 

Use the C routine read. If successfu~ read leaves the number of bytes acrually read in DO 
(which may be less than nbyte, if the end-of-file was encountered); otherwise it sets DO to 
-1 and sets the value of errno. 

370 MPW 3.0 Reference 

( ····· .. \ 
I . 

,....,,..·"" 



( 

write-write to a file 

int write(int fd, char *buf, unsigned nbyte) 

The function . ., rite attempts to writt nbyt e bytes from the buffer pointed to by bu f 
to the file associated with the fd. (File d~riptor fd is obt;,jned from an ope~.) Intemai 
I.imitations may cause write to write fewer bytes than requested; the number of bytes 
actually written is indicated by the return value. Several calls to write may therefore be 
necessary to write out the contents of bu f. 

On devices capable of seel<lng, the acrual writing of da12 proceeds from the position in 
the file indicated by the file pointer. Upon rerurn from write, the file pointer is 
incremented by the number of bytes actually written. On non.seeking devices, writing 
starts at the current position. The value of a file pointer associated with such a device is 
undefined. 

If the o_APPEND file status flag set in open is on, the file pointer is set to end of file 
before each write. 

The file pointer remains unchanged and write fails if f d is. not a valid file descriptor 
open for writing. 

If you try to •write more bytes than there is room for on the device, write writes as many 
bytes as possible. For example, if nbyte is 512 and there is room for 20 bytes more on the 
device, write writes 20 bytes and rerurns a value of 20. The next attempt ro 'Mite a 
nonzero number of bytes will return an error. 

File descriptor 1 is s12ndard output; file descriptor 2 is standard error. 

Upon successful completion, the number of bytes actually written is rerumed. Otherwise, 
-1 is returned and errno is set to indicate the error. 

MPWC 

int write(int fd, char *buf, unsigned nbyte) 

(File desaiptor fd may also be obtained from a creat, dup, or fcntl call.) 

Mn' Plsal 

To write to a file opened with IE open, use the MPW Pascal built-in procedure Write. 

MPW Assembler 

lonqint write(lonqint fd, char *buf, unsigned longint nbyte) 

Use the C routine write. 

CHAPTER 12 Writing an MPW Tool 3~1 



Jseek-move read/write file pointer 

int lseek(int fd, int offset, int whence> 

The functicr. : .. ;e<ak moves the re-.!dlwrite file pointer in the file associated wit'1 fd, 
according to the following value of whence and offset: 

• If whence is 0, the pointer is set to offset bytes. 

• If whence is 1, the pointer is set to its current location plus offset. 

• If whence is 2, the pointer is set to the size of the file plus offset. 

• If whence is 1or2, the value of offset may be negative. 

Upon successful completion, the file pointer value, as measured in byte.s from the 
beginning of the file, is returned. 

The file pointer remains unchanged and lseek fails if one or more of the following are 
true: 

• File descriptor fd is not open. (EBA.OF] 

• Parameter whence is not 0, 1, or 2. [EINVAL] 

• The resulting file pointer would point past end of file. (Es PIPE] 

• The resulting file pointer would point before beginning of me. [EINVAL] 

Some devices are incapable of seeking. The value of the file pointer associated with such 
a device is undefined. Upon successful completion, a nonnegative long integer indicating 
the file-pointer value is returned. Otherwise, a value of-1 is returned and errno is set to 
indicate the error. 

A Warning 

MPWC 

Function ls eek has no effect on a file opened with the o_APPENO 
flag because the next write to the file always repositions the file 
pointer to the end before writing. • 

int lseek(int fd, int offset, int whence> 

MPW Pascal 

FUNCTION IElseek(VAR fvar: UNIV PascalFile; offset: LONGINT; whence: 
LONGINT): LONGINT; 

Do not use IELseek with a structured file . 
• 

372 MPW 3.0 Reference 



( 
MPW Assembler 

longint lseek(longint fd, longint offset, longint whence) 

Use the C function ls eek. 

f~ccontrol 

int fcntl(int fd, unsigned int cmd, int arg) 

Function fcntl duplicates a file descriptor. A file remains open until all its file 
descriptors are closed. Parameter fd is an open file descriptor obtained from an open 

call. Parameter cmd takes the value F _DtrPFO, which tells fcntl to return the lowest 

numbered available file descriptor greater than or equal to arg. 

Nonnaily arc; is greater than or equal to 3, in order to avoid obcaining the standard me 
descripcors 0, 1, and 2. Function fcntl returns a new file desoipcor that points to the 
sarre open file as fd. The new file descriptor has the sarre ace~ roode (read, write, or 
read/write) and file pointer as f d. Any VO operation changes the file pointer for all file 
descriptors that share it. 

Function fcntl fails if one or more of the following are true: 

• Parameter fd is not a valid open file descriptor. [EBADF] 

• Parameter arq is negative or greater than the highest allowable file descriptor. 
(EINVAL] 

Upon successful completion, the value returned is a new file descriptor. Otherv.rise, a value 
of-1 is returned and errno is set to indicate the error. 

• Note: The r_:GETFO, r_sETFO, F_GETFL, and r_SETFL commands of fcntl 
are not supported on the Macintosh. 

MPWC 

int fcntl(int fd, unsigned int cmd, int arg) 

MPW Pasal 

The function fcntl is not supported in MPW Pa.sat. 

MPW Assembler 

lonqint fcntl(longint f~,'unsigned longint cmd, longint arg) 

Use the C routine fcntl. 

O!APTER 12 Writing an MPW Tool 3i3 



IOCtl-<:ommunicate with device handler 

The function ioctl communicates with a file's device handler by sending control 
information anJ/0r r<~quc~ring st3.ttJS i1lfr.m:; tion. 

The cmd parameter specifies one of the following device-specific operations: 

FIOINTERACTIVE Rerum a value of 0 if the device is interactive, -1 otherwise. 
Ignore arg. 

FIOBUFSIZE Rerum the default buffer size for the device. The buffer size is 
expressed in bytes and is returned as a longint value pointed to 
by arg. If the device has no default buffer size, ioctl rerurns a 
value of -1; it rerurns 0 otherwise. 

FIOFNAME 

FIOREFNUM 

FIOSETEOF 

TIOFLUSH 

MPWC 

Store the filename associated with fd in a character array 255 
characters in size, pointed to by arg. IEIOCtl rerurns a value of 
-1 if the filename length exceeds 255 characters, 0 otherwise. 

Rerum the Macintosh file reference number associated with f d . 

The reference number is rerurned as an integer value pointed to 
by arg. ioctl returns a value of -1 if the file associated with fd 
is not open on a Macinto.sh file (such as the console device), 0 
otherwise. 

Set the logical end of the file associated with fd to the value of 
arg, which becomes the new size of the file in bytes. Th.is 
command can be used to reduce or increase the size of an open 
file. The current file pointer is not affected unless the file size is 
set to a value lower than the position to which it points. 

Di.sclrd unread terminal input Th.is parameter value is used only 
for the console device and other terminal devices. ioctl re rums 
a value of -1 if the file associated with f d is not a terminal 
device, 0 ocherwise. Parameter arg is ignored. 

int ioctl(int fd, unsigned int cmd, long *arg) 

The cmd constants are in IOCtl. h. 

MPW Pascal 

FUNCTION IEioctl(VA.R fvar: UNIV PascalFile; cmd: LONGINT; arg: UNIV 
LONGINT) : LONGINT; 

The cmd constants are defined in IntEnv unit 

374 MPW 3.0 Reference 



( 

( 

MPW Assembler 

longint ioctl(longint fd, un~igned longint cmd, longint *arg) 

Use the C function ioc ~l. The cmd const4nts are defined in IntEnv.a. 

Shell utility routines 

These utilities are useful when writing an MPW tool. The utility routines provide methods 
to: 

• determine whether a program is running under the MPW Shell (StandAlone) 

• to access the values of MPW Shell variables (getenv) 

• to specify exit handlers (at exit) . 

• to terminate the current application (exit) 

• to access Wormation about MPW Shell documents (facce~:s) 

Stand.Alone-chedc whether running under the MPW Shell 

The standard libraries provide a method to tell whether a program is running under r.he 
MPW Shell. 

MPWC 

The global variable StandAlone is an int. If StandAlone is zero, the program is running 
under the MPW Shell. 

FUNCTION IEStandalone: BOOLEAN; 

The IEStandalone funaion returns a result of type boolean. The result is false if the 
program is running under MPW, true if it is not 

MPW Assembler 

Import the longint variable stand.Alone (in the Interface file IntEnv.a). If 
StandAlone is non-zero, the pro~m is running under the MPW Shell . 

• 

CHAPTER 12 Writing an MPW Tool 3~5 



getenv-access exported MPW Shell variables 

char *getenv(char *varname) 

The MPW Shell maintains a set of state variables that can be made available to tools v.·ith 
the Export coaunand. (See aVariabtes• in Chapter 5 for the list of standard exported Shell 
variables.) Whenever you run a tool, the Shell makes a copy of the names and string values 
of all exported variables and passes this list to the program. The tool can then determine 
the value of a variable by one of two methods: 

• doing a linear search of the list of variables until the desired variable name is found 

• using the qetenv function 

Because only a copy is passed, a tool cannot alter the Shell's value of a variable. 

Function qetenv searches the environment for a Shell variable with the name specified by 
varname and returns a pointer to the character string containing its value. The null pointer 
is returned if the Shell variable is not defined or has not been exported. The Shell-variable 
name search is case-insensitive. 

For sranda.lone applications, which do not run under the MPW Shell, qetenv always 
returns the null pointer. 

MPWC 

char *qetenv(char *varname) 

The environment can al.so be accessed by means of a parameter to the C main-entry-point 
function main if the main procedure is declared as 
main(arqc, argv, envp) 

The envp amy represents the set of MPW Shell variables that have been made available to 

tools by means of the ~W Export coaunand. The ith envp entry has the fonn 
envp(i] • "varname\Ovarvalue\0"; 

The last envp enuy is the null pointer. 

If you use envp to SC3tCh the environment, be sure to use case-insensitive string 
comparisons. 

FUNCTION IEqetenv(envNa.me: STRING; VAR envValue: UNIV IEString): 
BOOLEAN; 

.. 
• 

376 MPW 3.0 Reference 



(~ 

IEGetEnv retu.rru TRUE if it is successful in finding the value of a variable that is defined 
and exported in the MPW Shell environment. The parameter envName is a Pascal string 
naming an exported Shell variable, with uppercasP. and lowercase not cl.istinguished. The 
parameter envvalue is returned with ille value cf the Shd' variable. IEGetEnv ;\!rums 
FALSE if it cannot find the variable. 

Pascal programmers are also provided with another IntEnv unit global variable, called 
Envl?. The variable Envl? points to a list of variable name and value pairs. The strucrure 
used is the same as that for C, except that the vamame is in Pascal string format 

+ Note: VarValue is inc string format, that is, null-terminated with no length-byte. 
Please refer to Figure 12-4. 

• Figure 12-4 Format of envp array for MPW C and MPW Pascal 

MPWC MPW Pascal 

l'OJ K LO I J K L\O 

MPW Assembler 

char *qetenv(char *varname) 
Function IEqetenv(envNam.e: string; VAR envValue: univ IEStrinq): 
boolean; 

Vse qetenv if the value of the forflascal parameter in the _aTinit call was O; 
otherwise use IEGetEnv. 

' 

CHAPTER 12 Writing an MPW Tool 377 



The Integrated Environment routine, _RTinit, can also be used to access Shell variables 
in assembly language. The address of envp is pas.sed to _RTini t, which initializes it You 
can choose Pascal or C strings (by setting forPucal to the appropriate value in the call 
to _R'l'! nit). 

Functions getenv and IEGetEnv return a pointer to the place in 
memory where a copy of the MPW Shell variable resides. Do not 
modify the value of a Shell variable in such a way as to increase its 
length. • 

atexit--install a function to be executed at program termination 

int atexit(void (*func) (void)) 

Normal program termination closes and flushes open mes and releases program memory. If 
you want additional exit processing, you can u.se a texi t to insert a routine that is 
executed just before normal termination. The parameter func is a pointer to such a 
routine. Up to 32 exit procedures are perntitted (not including the one u.5ed by the 
Standard VO Package to flush all the buffers). The routines specified will be executed in 

· the reverse order of their installation. The routines vwil.I be called with no parameters. 

MPWC 

int atexit(void (*func) (void)) 

The routine at exit retums a zero value if the installation succeeds. 

MPW Pascal 

PROCEDURE IEatexit(exitProc: UNIV LONGINT); C; 

The exit routines cannot be nested procedures. 

MPW Assembler 
int atexit(void (*func) (void)) 

Use the MPW C a texi t routine. 

A Warning If a function is installed more than once, it 'Will be executed as many 
times as it was instal!ed. • 

378 MPW 3.0 Reference 

C.) 
' 

/ 



c 

exit-terminate the current application 

void exit(int statu~) 
void abort () 

The functions exit and abort clo.se open file descriptors and terminate the app!icai.:on 
or tool. Here is the order in which exit performs its duties: 

1. It executes all exit procedures in reverse order of their installation by atexi t, 
followed by the exit procedures for the Standard VO package if Standard VO 
routines were used. All buffered files are flushed and closed. 

2. It closes all open files that were opened with open. 

3. If the program is a tool running under the MPW Shell, exit places the lower three bytes 
of stat us into the Shell's stat us variable and returru control to the MPW Shell. 

4. If the program is an application, exit terminates the application. 

There is no return from exit or abort. 

The functions exit and abort do not clo.se files your tool opened with cal.ls to the VO 
routines documented in Inside MacinJosh. However, the MPW Shell closes them after the 
tool returns. 

Status should be 0 for nonnal execution or a small positive value for errors. (See the 
section "Status Codes• at the beginning of this ch.apter.) 

The function exit takes a value that will be returned to the caller; abort does not 

MPWC 

void exit(int status) 
void abort () 

Notice th.at in MPW C the main program is a function th.at returns an integer. The return 
value of main is interpreted by the MPW Sheil as the program starus. Main programs that 
rerurn to the Shell without setting ~tat us to an integer value will return a random starus. 

PROCEDURE IEexit(status: LONGINT); C; 
PROCEDURE IEabort(); C; 

MPW Assembler 

void exit(lonqint status) 
void abort() 

Both the exit and abort procedllre.s terminate a program running under the MPW Shell 
by calling _RTExi t. The action of .:RTExi t is de.scribed below. 
_RTExit(longint status): 

CHAPTER 12 Writing an MPW Toot 3""9 



The _RTExi t procedure must be the last executed routine in a tool running under the 
MPW Shell. It calls any routines in.stalled by the atexi t procedure (described above) and 
then returns control to the address specified by the retl?C parameter in the original 
_RTini t call. 

Programs normally call the exit or abort procedure, described above. 

faccess-named me access and control 

int faccess(char *filename, unsigned int crnd, long *arg) 

The function faccess provides access to contt0l and status information for named files. 

The parameter crnd must be set to one of the constants in the follo'W'ing list to indicate 
what operation is to be performed on the file. AJ noted in the list, some calls to faccess 
also require the arg parameter, usually as a long or as a pointer to a long. 

The follo'W'ing commands are available to all programs: 

F _DELETE Deletes the named file, or returns an error if the file is open or in a 'Window. 
Arg is ignored. 

F _RENAME Renames the named file. Arg is a pointer to a string containing the new 
name. 

The follov.ing commands are available to programs running under the MPW Shell. All of 
these calls can be used on open or closed files. 

F_GTABINFO 

F_STABINFO 

F_GFONTINFO 

Rerurns the tab setting for an MPW text file named by file n arne. 
Arg is a pointer to a long integer. The long integer's value is the tab 
setting expressed as the number of spaces in the text file's font 

Sets the tab setting for an MPW text file named by filename. 

Arg is a long integer representing the tab setting expressed as the 
number of spaces in its font 

Returns the font and font size of an MPW text file named by 
filename. Arg is a pointer to a long integer. The font number is 
stored in the upper word of the long integer; the font size is stored 
in the lower word . 

.. 

380 MPW 3.0 Reference 



( 

F_SFONTINFO 

F GPRINTREC 

F SPRINTREC 

F GSELINFO 

( 

c 

Sets the font and font size of an MPW text file named by 
filename. Arg is a long integer. The font number is read from the 
upper word of the long integer; the font size is read from the lower 
word. 

Gets a print record TPrint for the MPW text file filename. 
Arg is a handle to the print record. Before c:alling faccess with 
this cmd value, the Macintosh Printing Manager mu.st be initialized 
and the print record handle THP rint must be allocated. 

Sets a print record for the MPW text file filename. Arg is a 
handle to the print record. Before calling fa cc e,, s with this c :nd 

value, the Macintosh Printing Manager must be initialized and the 
print record handle THP rint must be allocated. 

Gets the selection information for the MPW text file filename. 

Arg is a pointer to a selection record. 
A selection record is a C strucrure (or Pascal record) in this form: 

struct SelectionRecord { 

long star~ingPos; 

long endingPos; 

long dispayTop 
} ; 

The startingPos is the starting position of the selection, the 
endingPos is the ending position of the selection, and displ.ayTop 
is the position of the first character at the top of the window. All 
three positions are off sets from the beginning of the file, with the 
first position in the file being 0. 

Sets the selection information for the MPW text file filename. 

Arg is a pointer to a selection record described above. The displ.ay 
will start on the line that contains the character displ.ayTop. 
DisplayTop does not have to be the fU"St character in a line. The 
window will not automatically scroll horizontally to display the 
actual character specified. It is invalid to set startingPos less than 
zero, greater than endingPos, or greater than the length of the file. 
It is also invalid to set displayTop to a value greater than the length 
of the file. If displ.ayTop is negative, it will be ignored, and only 
startingPos and endingPos will be used. (This is useful if you want 
the MPW Shell to provide for scrolling only when necessary. If 
displayTop !S greater than 0, scrolling 'will be done on each 
faccess call.) 

CHAPTER 12 Writing an MPW Tool 381 



F_GWININFO 

.• F SWININFO 

F Ol?EN 

Gets the current window position. Arg is a pointer to a rectangle 
(of cype Rect) to store the information. The rectangle is in global 
coordinates. 

Sets the current window positior1. Arg is a po_inter ~ca rectari3i"' 
(of type Rect) specifying the new size and position. If the window 
size is invalid, or the rectangle is completely off the screen, 
faccess returns-1. 

Reserved for operating system use. 

[f faccess is successful it returns a nonnegative value, usually 0. If the file cannot be 
accessed, faccess rerurns-1. If the requestedresourceforF_GTABINFO, 
F _GFONTINFO, or F _Gl?RINTREC does not exist for the named file, default values are 
stored and the function returns a value greater than 0. 

MPWC 

int faccess(char *filename, unsigned int cmd, long *arg) 

The cmd constants are declared in the file FCntl.h. If faccess rerurns with an error, it also 
sets the value of errno. 

MPW Pascal 

FUNCTION IEfaccess(filename: STRING; cmd: LONGINT; arg: UNIV LCNG!N7): 
LONGINT; 

The cmd constants are declared in the unit IncEnv. Ail strings are Pascal strings. 

MPW Assembler 

longint faccess(char *filename, unsigned longint cmd, longint *argl 

Cse the C function faccess. Ail strings are C strings. The cmd constants are declared in 
the file IntEnv.a. If faccess returns with an error, it also sets the value of errno. 

382 MPW 3.0 Reference 



(~ 

c 

Signal handling 

The MPW environment provides a set of routines to handle sigrui.L~. A ~ien.~ is similar to a 
hardware interrupt in that its invocation can cawe program conuol to be temporarily 
diverted from its normal execution sequence; the difference is that the events that raise a 
signal reflect a change in program state rather than hardware state. Examples of signal 
events are stack overflow, heap overflow, software floating-point exceptions, and 
Command-period interrupts. 

Signal handling is available only for tools that run under the MPW Shell; it is not available 
for applications that run under the Macintosh Finder. 

• Note: There are jwt two software interrupts that can be detected by a program running 
under the current version of the MPW Shell. One is the Command-period, represented 
by the value s I GI NT. The other is abnonnal termination by the Abort function, 
represented by the value SIGABRT. AJ additional software interrupts are added, new 
values will be added to represent them The signal-handling procedures will then accept 
these new values. 

The default action of any signal is to close all open files, execute any exit procedures 
(described above under "exit n), and terminate the program. If, however, your tool 
requires special handling of a signal, or chooses to ignore iti you can use the procedure 
:signal to replace the default signal handling procedure with your own procedure. 

Signal handllng-C 

To ac~ the signal handler in MPW C, do the following: 

• Include the me Signal.h in your source text 

• Link your program with the file CRuntime.o. 

+ Note: The type definition SiqnalHandler, used later in this section, is not included 
in the file Signal.h. SiqnalHandler is equivalent to: 

Typedef void (*SiqnalHandler) Cint); 

' 
• 

CHAPTER 12 Writing an MPW Tool 3"S3 



Signal handllng-hscal 

To access the signal handler in MPW Pascal, do the following: 

• Include the statement 

USES ($U Signal.pt Signal 
in your source text The USES clause and the su Compiler directive are described in 
the MPW 3.0 Pa.seal Refemice. 

• Llnk your compilation with the files Runtime.a and PasLib.o. 

The unit Signal declares the following types: 
SignalMap • integer; 
SiqnalHandler • Alonqint; 

Signal handling-Assembler 

To access the signal handler, do the following: 

• Include the file Signal.a in your soun:e text 
• Llnk your program with the file Runtirne.o. 

Signal-specify a signal handler 

void (*siqnal (int signum, void (*newHandler) (int))) (int); 

Function signal replaces the current signal handler (the procedure to be executed upon 
receipt of the signal specified in siqnum) with a user-supplied signal handler. The default 
signal handler may be set or restored by specifying SIG_OFL as the current signal handler. 

Some predefined signal handlers may be specifed as the newHandler. The function 
SIG_IGN does nocbing. It may be~ as the newHandler in a call to signal to 
ignore the signal. The function SIG_orL is the default signal handler. It calls the 
program's exit procedure. 

The newHandler function that is passed to signal takes one parameter (a long 
integer). The parameter is the number of the signal that is currently being handled. Writing 
a signal handler is described below. 

Function siqnal returns the previous SLqnalHandler pointer. If this pointer must be 
restored in another part of the program, ~ve the return value and restore it with another 
call to signal. 

384 MPW 3.0 Reference 

<~ 

''-" 



C' 

MPWC 

void (""ignal (int "ignum, void ("newHandler) (int))) (int); 

Aitematively, you can use the -equivalent: 
Typedef void (*SignalHandlerl (int); 
SignalHandler ""ignal(int "ignum, SignalHandler *newHandler) 

MPW Pascal 

FUNCTION IE,,ignal(SigNum: LONGINT; SigHdlr: UNIV SignalHandler): 
SignalHandler; C; 

MPW Assembler 

signalhandler *signal(longint signum, SignalHandler *newHandler) 

Use the C function signal. 

Raise-raJse a sign.al 

The raise allo-ws signals to be raised under program control. It sends the signals ignum 
to the program. It returns 0 if successful, nonzero otherwise. Notice that depending on 
the signal handler installed, rai"e might not return. 

MPWC 

int rai"e (int signum) 

MPW Pascal 

FUNCTION IEraise(SIGNUM:LONGINTl :LONGINT; C; 

MPW Assembler 

longint raise(longint "ignum) 

Use the C function raise. 

CHAPTER 12 Writing an MPW Tool 385 



Writing a sign..~ hanc:Uer 

void siqnalHandler(int siqnum) 

When a signal is raised, a call is made to the handler specified as the parameter 
newHandler in a call to signal. One parameter is passed to the signal handler. This 
parameter, siqnum, is the signal number currently being handled. 

When the tool starts, all signal handlers are set to SIG_orL. The action of SIG_orL is as 
follows: 

• Disable all signals 

• Call the procedure exit 

To specify your own signal handler procedure, call siqnal with your procedure as the 
newHandler parameter. When the signal is raised, your procedure will be called. Before 
your procedure is called, the SIG_orL procedure is re-installed as the handler for that 
signal. Therefore, if you want to continue handling the signal, your procedure must re­
install itself with another call to siqnal at the end of your signal handler. 

• WamJng Because SIG_orL is re-installed as part of the signal-handling 
process, your tool could be interrupted by a second signal that would 
then call SIG_orL. It is safest to disable funher signals by calling 
siqnal ( SIG_IGN) at the beginning of your handler. Then re-install 
the appropriate handler at the end. ... 

You can think of signals ·as operating at the interrupt level. Therefore, the safest signal 
handler would set a global flag, re-install itself, and rerum. Then in the main body of your 
code, you could check for the flag and do some appropriate actions. 

If you want to terminate program execution because of a signal, do the following: In your 
signal handler, disable that signal (using SIG_IGN) and set a flag. In the main body of 
your code, you can do some cleanup procedures, and call exit. 

If you install a signal handler for command period, you should rerum an exit code of -9 to 
the MPW Shell. (For infonnation on returning exit codes, see •Exit.w) 

c 

386 MPW 3.0 Reference 



c 

Signals ciMot be raised while executing in ROM or in the MPW Shell. If a signal event 
occurs while executing outside the tool, the signal state is set and the signal handler is 
executed as soon as program control returns to the tool. Because a signal can interrupt tl-ie 
tool at any point, there is no protection againsL heap corruption if a signai handler 
executes calls that modify the state of the heap. Because most buffered 1/0 potentially 
modifies the heap, writing to standard out or standard error is not recommended in signal 
handlers. 

If you must perform 1/0 or other operations .as a result of a signal, set a flag and check the 
flag during your own processing loop. 

CHAmR 12 Writing an MPW iool ~ 





c 

Chapter 13 Creating a Commando 
Interface for Tools 

YOU C..\N CREATE A COMMANDO DIALOG INTERPACE FOR YOUR OWN MPW TOOLS :\:'>U 
SCRIPTS. This chapter is a guide to creating the resources Commando requires to 
operate dialogs. The basic use of Commando's dialogs to operate MPW tools t.s 
described in Chapter 4. • 

Contents 
About Commando 391 

Invoking Commando 391 
Creating Commando dialogs 392 
Editing Commando dialogs 393 

Enabling Commando's Editor 393 
Editing controls 393 
Selecting controls 394 
Moving controls 394 
Sizing controls 394 
Editing labels 395 
Editing Help messages 395 
Changing the size of a Commando dialog box 395 
Saving the modified Commando dialog 396 

Strings and Shell variables 396 
Resource description 397 

Resource ID and name 397 
Size of the dialog box 398 
Tool description 399 

Regular entry control 391) 
Multiregular entry 401 
Check boxes 402 
Radio buttons 404 
Boxes, lines, aod text tides 406 

Box 407 • 
TextBox 407 
TextTitle 408 

389 



Pop-up menus 409 
Edirable pop-up menus 411 

Lists 414 
Three-state buttons 415 
Icons and pictures 417 
Conttol dependencies 418 

Direct dependency 418 
Inverse dependency 419 
Dependency on the Do It button 421 
Multiple dependencies 421 
Dependencies on radio buttons 422 

Nested dialog boxes 423 
Redirection 425 
Files and directories 427 

Individual files and directories 427 
Multiple files and directories for input and output 430 
Multiple files and directories for input only 436 
Multiple new files 438 

Version 439 
A Commando example 442 

390 MPW 3.0 Reference 



c 

About Commando 

Com.r~..an<ll) 1nakes it C;a.sier to use the MPW tools and scripts, both interactively and for 
composing scripts. A dlalog is the programmed interaction between a user and a tool. A 
dJalog bo.s: is the graphical vehicle used to display the various controls available for a 
tool or script A dialog may employ several nested dialog boxes. 

You implement the dialog interface for MPW tools by using Commando. This program 
looks in the resource fork of a tool or script for a resource of the type ' cmdo ' , that is, 
any dialogs to be used by the tool. Commando then loads the resource, builds a dialog lis~ 
handles events, and passes the command line back to the Shell for execution. 

Invoking Conunando 

You on invoke a Commando dialog from the Worksheet in three ways: 

• Option-Enter: Type the command name and then press Option-Enter. This is the 
easiest method for routine interactive use. 

• Type Commando: Type the word Commando in front of the command line and press 
Enter. The Commando dialog outputs the command line without executing it. You on 
also use this expression in a script For example, if you don't want the resulting 
command line to be immediately executed, you can type 

commando toolname 

In th.is case, Commando will not find a command if the command has been aliased to a 
different name. The tool's fronuoost Commando dialog box is displayed. Clicking the 
Do It button writes the command line to standard output (that is, the window in 
which you typed the command) inste3d of executing it immediately. This second 
method of using dialog boxes is useful for building command lines that are to be cut 
and J)3Sted into scriptS. (The Do It button and other Commando controls are 
described later in this chapter.) 

• Ellipsb: Type the command name followed by an ellipsis( ... ) and press Enter. You can 
also use this expression in a script. 

The ellipsis may appear anywhere in a command line (except within quotation marks 
or after o) and it is considered a word-break character. The ellipsis invokes the 
Commando user interface after the Shell has carried out all alias and variable 
substirutions. The enti.re co~d line is passed to Commando; the output of 
Commando is then executed by the Shell. 

CHAPTER 13 Creating a Commando Interface for Tools 391 



• Note: To get the ellip.5is character, hold down the Option key while simultaneously 
typing the semicolon (;) character. Although three periods closely resemble an 
elli~is char.lcter, Commando won't be fooled; you must use Option-semicolon to 
get the true ellipsis character that invokes Commando. 

Three Shell variables are used by Commando: 
• All2ses: This variable lists all defined aliases, with each name separated by a comma. 

The list contains only the names, not the definitions. Commando uses {Aliases! with 
the built-in command Alias. Without r.h.i.s variable Commando would have no way of 
knowing the names of the existing aliases. The variable {Aliases} is exported by the 
Scarrup script. 

• Com.mmdo: This variable tells the Shell which command to execute when the ellipsis 
character is present in a command line. To use the Commando tool, set the variable 
{Commando} to "Commando." You can use this variable to send the output of other 
too!s to the Shell for execution. If the variable does not exist, then the elli~is is 
removed from the command line and normal execution proceeds. 

• Windows: This variable lists the current windows, with each name separated by a 
comma. Commando uses this list to redirect input or output to or from existing 
windows. Without this variable Commando would have no way of knowing the names 
of the current windows. The variable {Windows} is exported by the Startup script. 

Throughout this chapter, each type of Commando control is illustrated with an excerpt 
. from Cmdo.r, found in the Rlncludes folder. 

Creating Commando dJalogs 

Here is a procedure for creating your own Commando dialogs: 

1. Create a Commando resource for your tool or saipt by starting with one of the 
example Commando resources, such as Counu in CExamples or ResEqual.r in 
PExampies. If an existing tool lw a Commando conuol that you want to use, derez 
(that is, decompile by using the resoura: decompiler OeRez) the c:mdo resource, then 
cut it and imte it into your new Commando resoun:e file. 

For example, to examine the Pascal compilers cmdo resource: 
CeRez (MPW}Tools:Pasc:al -only c:mdo c:mdo.r 

2. Add the Commando resource to your tool or script. For example, 
Rez AddMenu.r -o "{MPW}MPW Shell" -a 
Rez Rez. r -o (MPW) Tools.: Rez -a 

392 MPW 3.0 Reference 

(. 



( ' / 

c 

c 

3. Now display the Commando dialogs for your tool or script Adjust the coordinates of 
windows and move or resize the controls by using Conunando's editor (see the next 
section). Edit the Help messages and then derez the cmdo resource. 

Editing Commando dialogs 

In MPW 3.0, Commando offers a built-in editor that lets you edit text labels and help 
messages and graphically move and size the controls within a Commando dialog oox. This 
feature makes designing, redesigning, and fine-tuning Commando dialogs much easier. 
Although Conunando can move and size controls, controls cannot be created, duplicated, 
or deleted. This means th.at you still have to manually create the Commando resource, but 
you don't have to be too concerned aoout the coordinates and sizes of the controls. 
Once you've created the Commando resource, you can simply bring up the Commando 
dialog in edit mode, arrange all the controls to your liking, and then use DeRez to 
decompile the cmdo resource. 

Embllng Commando's Editor 

To enable Commando's built-in editor, hold down the command key immediately after 
launching Commando until the Warch cursor appears. Alternatively, you can write -modify 

. in the command line, like th.is 

Commando Rez -modify 

or 

Rez_. -modify 

Editing controls 

After you have launched Commando with the built-in editor enabled, it cin run in either of 
two diffen:nt mxies: 

• Normal mode, in which Commando works ~ usual 
• Edit mode, in which controls ca.n be dragged and sized. Hold down the Option key to 

put Commando in edit roode. You mwt also hold down the Option key to select, 
drag, or resize a control. 

CHAPTER 13 Creating a Commando Interface for Tools 393 



Selecting controls 

To select a control, simply press the Option key and click the control. To select multiple 
controls, p!'e..~ the Option and Shift keys tcgether and click each control to be selected. 
You can a!.so click and drag a marquee around a group of controls, as you would in a pair.I. 
program To umelect a control, click it with the Shift (and Option) key down. 

Basically, selecting controls works exactly like selecting icom in the Finder, except that 
you must hold down the Option key in Commando. Also, the Commando editor will not 
allow you to select controls outside tlle user control area. For that reason, the coordinates 
you give when manually creating the Commando resource should fall within the user area. 

Moving controls 

Moving controls worlcs as you would expect: hold down the option key as you click and 
drag a control or a selected group of controls. The Commando editor will not allow 
controls to be dragged outside the user control area. Controls cannot be dragged closer 
than two pixels from the boundary. 

You can move selected controls one pixel at a time by holding down the option key and 
pressing the appropriate arrow key. 

You can align the to~left comer of the control to a four-pixel grid by holding down the 
command key while dragging. If you drag a selected group of controls with the command 
key held down, then the to~left comers of each of the selected controls will be aligned to 
the grid. 

Sizing controls 

You size controls by dragging the small gray rectangle in the control's lower-right comer 
while holding down the Option key. 

Hold down the command key while sizing a control to size the control's height to the 
recommended Commando height (the sectiom that follow recommend a height for each 
control that worla and looks best). Also, the right edge will align to a four-pixel grid. To 
size the contra~ simply click the selected control's grow handle with Option and 
Command keys held down. List and MuJtiRegularEntry controls will be sized to the nearest 
whole line. 

Some controls, such as Redirection controls, cannot be resized and have no grow handles. 

394 MPW 3.0 Reference 



Editing labels 

To edit a text title label, simply select it in the same way you would select a control. You 
can change the text in the same way you change the text for an icon in the Fi11c:er. Once 
the title is selected, don't hold down the Option key to change the text Text title labels 
are the only labels that on be edited. 

Editing Help messages 

Whenever you select a control, the control's Help message is locked in the Help window. 
By clicking in.side the Help window you on edit the Help message in the same way you 
edit a regular text edit field except that you don't hold down the Option key. The Help 
message stays locked until another control is selected (and then the new control's Help 
message is locked) or until all the controls are unselected. 

Changing the sii.e of a Commando dialog box 

Once you have enabled Commando's built-in editor, you can resize any Commando dialog 
box by holding down the Option key while clicking and dragging by the dialog box's 
lower-right comer (where you wuld ordinarily find a Grow box in a standard Macintosh 
window). You can also resize nested dialog boxes. However, dialog boxes cannot be 
enlarged beyond the size of the original Macintosh screen. 

+ Hints and kinks 

Lines end boxes surrounding other controls must be declared later In the 
Commando resource ttion the controls they surroU"td. You moy encounter 
situotfons In which you have to move a control out of the way In order to 
sel&ct a control \.l'ldemeoth. 

Controls sized or moved n nested dlologs do not go bode to their or1glnol size 
or poettton when you click the nested Cancel button. + 

With the Commando editor enabled, any text entered in a Regular Entry or MultiRegular 
Entry fieki is saved as the default text The text will appear the next time Commando is 
invoked. See the sections on Regular Entry and MultiRegul.ar Entry controls later in this 
chapter. 

' 

CHAPTER 13 Creating a Commando Interface for Tools 395 



Saving the modlfled Commando dialog 

Once you've mcxlified a Corrunando dialog and clicked the main cancel or Do-It button, 
Commando prompts you with a Save dialog. The Save dialog has three. options: 

1. Save Lile r<:!"ource. 
2. Don't save the resource. 

3. Cancel the Save dialog and go back to Commando for more editing. 

When Commando saves the resource, it simply replaces the original resource, wherever it 
came from. The next time you run Commando on the changed resource, the control 
positions and sizes will be where you last left them. You can then use DeRez to decompile 
the emdo resource to get the actual coordinates or to generate the .r file that will be used 
in a build. 

Sttin~ and Shell variables 

You can dynamically change strings in Commando dialogs by having those strings come 
from Shell variables. To make strings come from Shell variables, define the string like this: 

"{shell variable)" 

· The string must begin with a 

I { I 

and end with a 

'I I 

No leading or trailing spaces are allowed. The Shell variable must be an exported variable. 
If the variable is undefined at the time the Commando dialog is invoked, the variable 
name with braces will be displayed. 

Any string in the Commando resource, including option strings, help strings, titles, and so 
on, on be a Shell variable. However, strings oMot be embedded within strings; they are 
stand·alone only. 

When Commando ~ invoked with its built·in editor, Shell variable strings are not 
expanded to the Shell variable values. This is done so that the strings can be edited and 
then saved as Shell variables rather than the values of Shell variables. 

Incidentally, this fearure has been used in some of Projector's Commando dialogs in order 
to display the current user, as shown in Figure l~l. 

396 MPW 3.0 Reference 



( 

• Figure 13-1 Example use of the {User! variable 

User Tom Ttayloi 

Or {{-l}}, RegularEntry 
"User", 

{ ' 

{Bl, 7B, 96, 113}, 
{Bl, 120, 97, 294}, 
"User", 
ignoreCase, 
"-u ft, 
"Enter the name of the current user. If 
"no name is entered, the name in {User} is used." 

Resource description 

Cmdo.r, the resource desaiption file for Commando, is located in {Rlncludeslcmdo.r. 

Resource ID and name 

Any resource ID may be used for tools or script.s. Commando uses the first ' err.do ' 
resource it finds in the command's resource fork. 

Commando draws an outlined button, the Do It button, in the lower-right comer of every 
dialog box. The Do It button is labeled with the name of the tool or script (Normally 
Commando ~ the name of the tool or script pwed from the Shell.) Commando will 
capitalize the first character and force the rest of the characters to lowercase. For 
example, •stackSNiffER• becomes "Stacksniffer ... 

Some people may prefer a different capitalization scheme. If you specify the 
• cmdo • resource of a tool or script with a resource name, Commando will use that name 
•as is• as the label for the outlined button. This fearure should be used sparingly; if you 
rename a tool, the previous name in the resource will still be displayed in the Do It button. 

CHAPTER 13 Creating a Commando Interface for Tools Y!i 



Size of the dialog box 

The width of Commando dialog boxes is fixed at 480 pixels. You are free to set the height 
to accomr1;.xl~te the controls in your tc-ol's dialog box. The number specifying the height 
shouldn't exceed 295 to be compatible with the smaller Macint~h screens. Specifying this 
height in the 'cmdo' resource will result in the screen elements shown in Figure 13-2. See 
Table 13-1 for other recommended dimensions. 

Please refer to the array declared under• resource 'cmdo' " in the sample resource 
description ftle at the end of this chapter. The area labeled "Options" in Figure 13-2 is the 
area reserved for your controls and options. 

• Figure 13·2 Basic template for a Commando dialog box 

!"'"0ptlon1 ----------------~ 

[Command Line 

rH•IP I ( Concel ) 

I I I .._ _____________ _. 

The dimensions given below are not policy but recommendations. The sizes of the text· 
edit fields are important if you want to avoid text that shifts up and down slightly when it 
is selected. 

398 MPW 3.0 Reference 

r '-> 

( 
I 



() 

• Table 13-1 Summary of recorrunended sizes for Commando screen elements 

Radio buttons 

Check boxes 

Pop-up menus 

Pop-up menu titles 

Regular entries 

Multi-regular entries 

Editable pop-up menus 

Editable pop-up titles 

Icons 

Pictures 

Tool description 

16 pixels high 

16 pixels high 

19 pixels high 

16 pixels high. Top of title starts 1 pixel below the top 
of the pop-up menu (that is, top of title • top of pop­
up menu + 1 pixeO. 

16 pixels high 

16 pixels per line 

22 pixels high 

16 pixels high. Top of title starts 3 pixels below the 
top of the editable pop-up menu (that is, top of title 
• top of editable pop-up + 3 pixels). 

32 pixels high; 32 pixels wide 

Same relative bounds as the rectangle stored in the 
'PICT' resource 

At the bottom of the Commando dialog box is a three-line Help box. The text in this box 
should be a brief, concise description of the tool, stating what it does. The Help box is 
not scrollable, so you need to limit your text to the confine of the box. See the array 
declared under •resource 'cmdo' "in the sample resource description file at the end 
of this chapter. 

· Regular entry control 

The regular entry control is the nat generic control available. The control behaves exactly 
like the text-edit fields in conventional Macintosh dialog boxes. In addition to strings 
and numbers, the regular entry control can be used for special options that have no 
specified standard control. • 

Here is the case declaration for regular entry controls: 

CHAPTER 13 Creating a Commando Interface for Tools 399 



case ReqularEntry: 
key byte • ReqularEntryID; 
est.ring: 
align "'·ord: 
rect; 
rect; 
cstrinq; 

byte ignoreCase keepCase; 

cstring; 
cstring; 

400 MPW 3.0 Reference 

/* title */ 

I* bounds of title */ 
/* bounds of input box */ 

/* default value */ 

/* the default value is never 
displayed in the Command 
window. If what the user 
types in the textedit window 
matches the default value, 
then that value isn't 
displayed. This flaq tells 
Commando whether to ignore 
case when comparing the 
contents of the text edit 
window with.the default value 
*/ 

I* option returned.*/ 
I* help text for entry */ 

( 
) 



Multiregular entry 

Multiregular entry ~ontrols are similar to regul.2.r entry controls, except that multiegul.ar 
entry controls accept values that can be entered more than once. For examp;c, most 
compilers accept some rype of -define option that can be specified more than once. 

Here is the case declaration for MultiRegular Entry. Note that the cstring for default 
values is the only control that passes its default values to the command line. This is an 
exception to the rule. 

case MultiRegularEntry: /* scrollable lists of an option •/ 
key byte • MultiRegularEntryIO; 
cstring; /* title *I 
align word; 
rect; /* bounds of title */ 

rect; /* bounds of input list */ 

byte• SSCountOf(DefEntryList); 
array DefEntryList { 

cstring; 
} ; 

cstring; 

est ring; 

/* default values */ 

I* option returned. Each value will 
be preceded with this option.*/ 

/* help text for entry */ 

Figure 1}3 shows the Defines window in the Rez dialog box with two defines entered. 
Here is the resource control for th.is function: 

NotOependent {}, MultiRegularEntry 
"Defines:", 

} , 

{ 20, 35, 35, 125}, 

{40, 30, 120, 225}, 
{ } , 
"-d·, 
"Type in multiple tdefines here (such as LANGUAGE•French)" 

The empty braces after the Defines window coordinates indicates that there are no 
default strings. 

' 

CHAPTER 13 Creating a Commando Interface for Tools 401 



• Figure 13-3 MultiRegular Entry 

debug-true 
lenguege•french 

r.Cammend Line: 
('z •d d1bug:lru1•d11ngu11ge:fr1nch 

Check boxes 

The check box control is likely to be the most often used because it corresponds to the 
on/off type options typical of MPW tools. Here is the case declaration for CheckOption: 

case CheckOption: 
key byte • CheckOptionIO; 
byte NotSet, Set; /* whether button is set or not */ 

rect; I* bounds *I 
cstrinq; /* title */ 

cstrinq; I* option returned *I 
cstrinq; I* help text for button *I 

The byte Not set or set is used to set the button's default state. The option is returned 
only when the button is not its default state. · 

This resource code produces the check boxes in Figure 13-4: 

notOependent { }, CheckOption { 
NotSet, {20, 10, 36, 235}, "Show macro expansions", 

"-print GEN", 
"Expand macros in the listinq file." }, 

notOependent { }, CheckOption { 
Set, (35, 10, 51, 235}, "Allow automatic paqe ejects", 

"-print NOPAGE", .. 
"Controls whether the Asseml:>ler sends automatic paqe ejects .. 

to the listing·file" J, 

402 MPW 3.0 Reference 



notOependent { ), CheckOption 
Set, (50, 10, 66, 235), "Show warning mesages", 

"-print NOWARN", 
"Controls both the ciisplay a,-,j, count of warning :r.e.ssages." •, 

notDependent ( ), CheckOption ( 
Set, (65, 10, 81, 235}, "Show macro call statements", 

"-print NOMCALL", 
"Controls the listing of macro call statements." }, 

notDependent { ), CheckOption ( 
Set, (80, 10, 96, 235), "Show generated object code", 

"-print NOOBJ", 
"List generated object code or data for each listed line." ·, 

notOependent ( ), CheckOption { 
NotSet, (95, 10, lll, 235), "Show up to 255 bytes of data", 

"-print DATA", 
"Cont%ols whether object data is shown in full 

(up to 18 lines) or limited to one line." }, 
notDependent ( }, CheckOption { 

Set, (110, 10, 126, 235}, "Show macro directive lines", 
"-print NOMDIR", 

"Controls whether macro directives (including conditional 
and set directives) are shown in the listing." I, 

notDependent ( }, CheckOption ( 
Set, (125, 10, 141, 235), "Show header lines", 

"-print NOHDR", 
"Controls whether header lines are printed in the listi:-.g." . , 

notDependent ( ), CheckOption ( 
Set, ll40, 10, 156, 235}, "Show generated literals", 

"-print NOLITS", 
"Controls listing of literals produce by PEA and LEA machi~e 

instructions." }, 
notDep.ndent ( J, CheckOption { 

NotSet, { 155, 10, 171, 235}, "Show assembly status", 
"-print STAT", 

"Controls display of assembly status in the listing." }, 

CH.APTER 13 Creating a Commando Interface for Tools -tD3 



Figure 13-4 shows a set of check boxes in their default state and again after the rv.:o top 
buttons have been clicked. 

• Figure 13-4 Setting the CheckOption defauit state 

Default stote of buttons 

O Show macro Hpensian1 
~ Rllow automatic page ejects 
~ Show warning me1sege1 
~Show macro cell st11temenl1 
~ Show generated abject code 
O Show up to 255 bytes of date 
~Show macro dtrectlue linH 
~ Show header lines 
~ Show generated literals 
O Show assembly status 

rCommend Line: 
1esm 

Radio buttons 

Stote otter top two buttons clicked 

Ci!:J Show macro eHpenslons 
D Allow automatic page ejects 
Ci!:J Show wemtng messages 
C!!:J Show macro cell statements 
Ci!:J Show generat1d object code 
D Show up to 255 llyt11 of data 
:82 Show macro dtrectlue 1tne1 
:82 Show heeder lines 
:82 Show generated literals 
0 Show assembly status 

rCommand Line: 
I !!Sm ·onnt GEN ·print NOPAGE 

The simplest set of radio buttons offers several murually exclusive options. For example, 
the Print Option radio buttons in Figure 13-5 let you choose High or Standard or Draft 
The Standard mode is· the default. 

• Figure 13-5 Radio buttons with default setting 

0 High 
<i St.sad_,. 
0 Dntt 

r.Cammand LJM:__,.. 
1test 

404 MPW 3.0 Reference 

' 

( 
, 



(~, 

Here is the case declaration for radio buttons: 

case RadioButtons: 
key byte • RadioButtonsIO; 
byte• SSCountOf(radioArray); 
wide array radioArray ! 

rect; 
cstrinq; 
cstrinq; 
byte NotSet, Set; 
cstring; 
aliqn word; 
} ; 

/* t of buttons */ 

/* bounds */ 

/* title */ 

/* option returned */ 

I* whether button is set or not */ 

/* help text for button */ 

To make the middle radio button the default, as shQwn in Figure 13-5, declare the middle 
Standard button set: 

notOependent { }, RadioButtons { 
{ 

{115, 300, 130, 400}, "High", "-q high", notset, 
"Print the selected files in the highest quality" 
navailable from the printer.", 

{132, 300, 147, 400}, "Standard", "-q standard", set, 
"Print the selected files in the normal quality mode.", 

{149, 300, 164, 400}, noraft", "-q draft", notset, 
"Print the selected files in the fastest way possiblen 
"at the expense of quality." 

No option is pas.sed to the comrmnd line box because the middle button is explicitly 
dec!ared the default If a button other than the default is clicked, Commando passes the 
appropriate option to the command line, as shown in Figure 13-6. 

• FJgure ~ Clicking a button other than the default 

®High 
O Standard 
0 Draft 

!:Command Line:­
! test -Q h1gh 

' 
• 

CHAPTER 13 Creating a Commando Interface for Tools 405 



Suppose that in the previous example you wanted the default radio button to display its 
option in the command line. You would simply change the order in which you declared the 
radio buttons, so that the middle button would be declared first. Be sure that all buttons 
:tre NotSet. The result is shown in Figure 13-7. Comrn:mdo vlill set the first button that i~ 
encounters if no button is specified as set 

• Figure 13--7 No button specified as set 

0 High 
®Standard 
0 Draft 

r.Commend Line: -
I test -q stondord 

• Note: A radio button can be either dependent upon or parent to another control. For 
purposes of establishing dependency relations, a cluster of radio buttons is 
considered a single item in the resource listing. See "Control Dependencies" later in 
this chapter for more information. 

Boxes, lines, and text titles 

It is recorrunended that'you group dialog controls or functions within boxes. Cormnando 
supplies the facilities to draw a box (case Box), to draw a tm with a title embedded in 
the upper-left comer (case TextBox), and to aeate titles in any font (case TextTitle). 

• Note: When you draw a box around a set of controls, always list the box declaration 
after listing the other controls. Otherwise the Dialog Manager might confuse which 
control is clicked. 

• 

406 MPW 3.0 Reference 

,f--, 
'~/ 



Box and TextBox caMot depend on other controls, nor can other controls depend on 
them. Commando would not complain if you set up such a dependency, but the line or 
box would not respond to the state of the determining item. TextTitles, on the other 
hand, can be dependent on another control. 

Box 

Use the case Box to draw boxes around control5 or to draw lines. To draw lines, make the 
rect 1 pixel wide or 1 pixel high. In other words, to draw a horizontal line, you might set 
the rect to {10, 10, 11, 100}. Here is the case declaration for the Box control: 

case Box: 
key byte • BoxID; 
byte black, qray; 
rect; 

TextBox 

/* Can be used to draw lines too */ 

/* color of object */ 

/* bounds of box or line */ 

The case TextBox lets you draw a box with the title embedded in the line at the upper-left 
comer. This is a frequently used convention in the Commando dialogs. (See the sample 
dialog box template in Figure 13-2.) Here is the case TextBox declaration from the 
Command resource file: 

case TextBox: 
key byte • TextBoxID; 
byte black, gray; 
rect; 
est ring; 

For exmiple, 

notOependent { }, TextBox 
gray, 

} , 

{105, 295, 169, 405) I 

"Print Quality" 

/* Draws a box with title in upper-lef~ */ 

/* color of object */ 

/* bounds of box or line */ 

I* title */ 

This decl.antion gives you the resulti shown in Figure 13-8 . 
.. 

CHAPTER 13 Creating a Commando Interface for Tools 40'7 



• Figure 13-8 Text.Box example 

r· Print Quality-, 
: ! 

i 0High ! 
I® Shmd&rd 1 
! O Draft i t..-·---------·-----·-·J 

TextTltle 

Use TextTitle to draw text in any font Here is the case declaration: 

case TextTitle: 
key byte • TextTitleID; 
byte plain; 
rect; 
int systemE'ont; 
int systemSize; 
cstrinq; 

/* style of text */ 

I* bounds of title */ 
/* font number to use */ 

I* font size to use */ 
/* the text to display */ 

For example, let's write •so cool" in a cool way: 

notDependent { }, TextTitle 
bold+ italic, {20,20,40,100}, 
systemE'ont, 12, "So Cool ... " 

} , 

So Coot ••• 

' 
' 

~ MPW 3.0 Reference 



c 

Pop-up menus 

Pop-up menus are a convenient way to select an item from a list of related iterm. 
Commando manages the associated windows, aliases, fonts, and Shell variables. Here is 
the case declaration: 

case PopUp: 
key byte - PopUpID; 
byte Window, Alias, Font, Set; 
rect; 
rect; 
cstrinq; 
cstrinq; 
cstrinq; 
byte noOefault, hasDefault; 

I* 
/* 

I* 
/* 

I* 
/* 
/* 

popup type */ 

bounds of title */ 

bounds of popup line */ 
title */ 
option returned */ 
help text for popup */ 

hasOefault if 1st item 
is "Default Value" */ 

The last field, "byte noOefault, hasOefault,• tells Commando whether the pop­
up menu has a default value or not If the pop-up menu does not have a default value, the 
fust value in the pop-up list is automatically selected and passed to the command line. If 
the pop-up menu does have a default value, then Commando adds a new item of the form 
"Default Value" to the front of the list. When this value (such as a font or file) is selected, 
no value is displayed in the window that generates the pop-up menu. 

Here is an example of the resource code for a pop-up menu with a default value. See Figure 
13·9 for the resulting window and pop-up menu. 

notOependent { }, PopUp 
Font, 

} , 

(21, 20, 37, 60}, 
( 20, 60, 39, 160}, 
"Font•, 
·-t•, 
"Popup help messaqe•, 
hasO.tault 

.. 

CHAPTER 13 Creating a Commando Interface for Tools 409 



• Figure 13-9 Pop-up menu with default value 

font ,_I ____ _. 

·' ~~ TLj 
Ruent 6erde "!." 
Boot men 
Chicago 
Courier 
6eneue 
Hetuetlce 
Moneco 
N Heluetlce Nerrvw 
New Century Schibi!: 
Pele Uno 
Saigon 
Symbol 
Times 

Here is the resource code for a pop-up menu with no default value. The results are shown in 
Figure 13-10. 

notDependent { } ' PopUp ' ( 

Font, 
{ 4 6' 20, 62, 60), 

(45, 60, 64, 160}' 
"Font", 
"-f", 
"popup help me:s:sage", 
noDefault 

I , 

• Figure 13-10 Pop-up menu without default value 

Font IRuent 6erde 

GenelJe 
Heluetica 
Monaco 
N Heluetlce Narrow 
New Century Schlbk 
Palatlno 
Saigon 
Symbol 
TI mes 

410 MPW 3.0 Reference 

,,~~ 

'··' 



(", 

Editable pop-up menus 

Pop-up menus associated with a text-edit box can be edited. You can choose existing 
values from a list and still have thf: flexibility to enter completely n~-;-; values. 

case EditPopUp: 
key byte - EditPopUpID; 
I* For Menuitem, this EditPopUp must be dependent on 

another EditPopUp of the MenuTitle type so that 
the control recognizes which menu item to display. 

For FontSize, this EditPopUp must be dependent on 
a PopUp of the Font type so that the control 
recognizes which sizes of the font exist. */ 

byte MenuTitle, Menuitem, I* Type of editable pop-up 
Font Size, Alias, Set; 

rect; /* bounds of title •/ 
rect; /* bounds of text edit area 
cstrinq; I* title */ 

cstrinq; /* option to return *I 
cstrinq; I* help text for text-edit 
cstring; /* help text for pop-up *I 

•/ 

•/ 

*/ 

The example in Figure 13-11 shows how the Font Size edir.able pop-up menu is made 
dependent on the current font. 

CHAPTER 13 Creating a Commando Interface for Tools 411 



• Figure 13·11 How Font Size dependency is handled 

Font 

i: on1 ~iz.•~ r ............ l~ 
~ .............. ;· ... . 

not~ependent !), ?op~p i 
Font, 

"Fon:", 

"-·· . , 
"Popup help messaqe.", 
hasOefault 

}, 

Or {!llJ, tditPopUp { 
FontSize, 
{48, 20, 64, 90), 
{45, 90, 6i, 140}, 
"!'ont Size", 
"-size", 
"Textedit help messaqe", 
"?opup help messaqe" 

1, 

If a particular font is selected in the Font box, then the font sizes that acrually exist are 
outlined In the example in Figure 13·12 the Monaco font has been selected in the Font 
box. The 9-point item is outlined and has been selected with the roouse. Any font size can 
be typed in the Font Size box. 

• Figure 13-12 Font Size pop-up menu with font selected 

font !Monaco 

font Size 9 
IO Point 
UI~ 
14 Point 
18 Point 
24 Point 

4U MPW 3.0 Reference 

' () 



( ·-

,,. 

Figure 13-13 demonstrates how one editable poi:rup menu can be dependent on another. 

• Figure U· 13 One pop-up menu dependent on another 

. f, 

i42, 99, 59, 1421, 
t 40, :29. 6S, 25~}, 

"~er.u", 

"-m" I 
"~ex:ed~: ~e:~ ~essaqe", 

"Pop~p ~elp ~essa;e" 

"-i", 
"~exted~~ ~el~ ~essaqe", 

"Popup he:p message• 

• Menu I 
--~~~~~~--1 File .............. 1 t•~nl r ................................................... . 
: ..................... -.............................. . Edit 

Find 
1'-1<ll"k 
lllind<Hl• 

Tools 
Cmds 
Directory 
Build 

Because the Menultem EditPopUp is dependent on the MenuTitle EditPopUp, the 
Menuitem control is dimmed until a menu is selected from the Menu poi:rup or until a 
menu is typed in the Menu textedit field. 

After •Project" is selected (Figure 13-13), the Item menu is enabled as shown in 
Figure 13-14. .. .. 

CHAPTER 13 Creating a Commando interface for Tools -il3 



• Figure 13-14 Menu title and Item pop-up menus 

Menu! Projec~ /!t 
ltam l New Project 

Check In 
cnack out 

AEHemples 
lIJI: Wt 
PEHemples 

.,. 
Rlncludas 

Cl'leclcOut {Actluel 
cnackln {Rcttue} 

Lists 

Use the case Llst to enable users to make multiple selections from a list of items. Four 
types of things can be listed: 

• volumes (Inserted disks will be recognized and added to the list.) 

• shell variables 

• windows 

• aliases 

Here is the case declaration for Llst: 

case List: 

key byte • ListIO; 
byte Volumes, ShellVars, 

Windows, Aliases; 
cstrinq; 
cstrinq; 
align word; 
rect; 
rect; 
cstring; 

414 MPW 3.0 Reference 

I* 

/* 

I* 
/* 

I* 
/* 

4 
/* 

Puts up list of items & allows 
multiple selections *I 

what to display in 
the list */ 

option to return before each item•/ 
title */ 

bounds of title */ 

bounds of list selection box •/ 
help text for selection box */ 

•. .... ~ 

f ., 



Here is the resource code for the two examples shown in Figure 13-lS. The second example 
shows that the user has already selected a window. 

notDependent { }, List I 
Volwnes, 

} I 

"" , 
"Volwnes", 
{20,30,35,120}, 
{37,30,101,200}, 
"Help message" 

notDependent I }, List I 
Windows, 

} I 

"-w", 
"Window List", 
{20,220,35,303}, 
{37,220,101,400}, 
"Help message" 

• Figure 13-15 List control 

Uolumes 
· HD 
lg) System Tools 

Three-state buttons 

Window List 

· Three-state buttons were invented to handle the SetFile and SetPrivilege commands. Both 
of these commands deal with the setting or clearing of flags. These commands al.so have 
another implicit state: •Don't touch." Therefore, these buttons have three states: Set, 
Clear, and DonrTouch. 

.. 

CHAPTER 13 Creating a Commando Interface for Tools i15 



case TriStateSuttons: 
key byte • TriStateSuttonsID; 
byte• SSCountOf (threeStateArray); /* t of buttons*/ 
cstrinq; /* option returned *I 
wide array threeStateArray 

aliqn word; 
rect; /* bounds */ 
est ring; /* title */ 
est ring; I* for Clear state */ 
est ring; /* for DontTouch state */ 
cstrinq; /* for Set state */ 
cstrinq; /* help text for button */ 
} : 

Here is the resource code for the example shown in Figure 13-16. 

notDependent { }, TriStateButtons ( 

} , 

"-a", 

{40, 25, 58, 135}, "Locked", "l", "", "L", 
"This button affects the file \"Locked\" attribute.", 

(58, 25, 76, 135}, "Invisible", "v", "", "V", 
"This button affects the file \"Invisible\" attribute.", 

(76, 25, 94, 135}, "Bundle", "b", "", "B", 
"This button affects the file \"Bundle\" attribute.", 

(94, 25, 112, 135}, "System", "s", "", "S", 
"This button affects the file \"System\" attribute.", 

1112, 25, iJo, 135}, "Inited", "i", "", "I", 
"This button affects the file \"Inited\" attribute.", 

{130, 25, 148, l35}A "On Desktop", "d", "", "D", 
"This button affects the file \"On Desktop\" attribute." 

.. 
.. 

416 MPW 3.0 Reference 

1ef 
\\._., . 



c 

• Figure 13-16 Three-state buttons 

Set ___... 
Don t roucn ___... 

Cleor~ 

. File Attributes -·· 
• LOclcld 

• •nulsibl• 
0 Bundle 
•System 
• •n1t1d 
•on Oesttop 

r:Commend Llne:-­
I setfllfl ·11 L.CI 

Icons and pictures 

L'se the case PictOricon to place icons, picrures, or both in the Commando windows. This 
item cannot be dependent on any ocher item, nor ocher iteim on it. Here is the case 
declaration for icons and picrures: 

case PictOricon: 
key byte • PictOriconID; 
byte Icon, Picture; 
int; 
rect; 

/* display a picture or icon */ 

/* resource ID of icon */ 

I* display bound3 */ 

The icon in Figure 13-17 is produced by an ' I CON' resource with an ID of 0, located in the 
system file. 

• Figure 13-17 Icon in a Commando window 

Here is the resource code th.at generates the example shown in Figure 13-17: 

notDependent, PictOricon { 
Icon, O, !20, 20, 52, .52} 

I , .. 

CHAPTER 13 Creating a Commando Interface for Tools 417 



Control dependencies 

Sometimes one control is dependent or. the va!ue of another control. For exa..-nple, a font 
size control might be dependent on a preceding font selection control. In this case the 
font size control is termed the dependent. The preceding font selection control is called 
the pa.rent because it enables or disables the dependent 

Commando numbers each item sequentially in the order of its appearance in the resource 
description file. The dependent/parent relationship in Commando is controlled by the 
sequential order of items entered into a Commando resource. 

• Note: These numbers do not appear in the resource code; you must count them 
manually. 

An item may be dependent only on other items within the same dialog box. In the case of 
nested dialog boxes, the items in the second and succeeding dialog boxes must be 
renumbered, starting from one. 

Direct dependency 

Usually dependency on another control means that the dependent control is disabled if 
the parent control ~ disabled (or has no value). 

Figure 13-18 sho'WS two states of a directly dependen~ control. In the first C3Se, nothing 
has been entered in the Type field, so the dependent Creator field ~ disabled and appears 
dimmed in the dialog box. In the second case, the Creator field is enabled as soon as 
something is typed in the Type field. · 

Figure 13-18 a1'o ill~trates how the ignoreCase/keepCase flag wor~. Because the flag is 
keepCase and 12ppl' is not equal to 'APPL' (the default value in this case), the option ~ 
displayed in the Command Line box. 

418 MPW 3.0 Reference 

(_i 



( 
• Figure 13-18 Direct dependency 

ritommand Line: 
I test 

r.tommend Line: 
I test -t eppl 

Inverse dependency 

Type CJ 
LrPtttl>r ·nr? : 

Type ~ 
Cree tor I ???? I 

A control can be inversely dependent on another control. In other words, if the parent is 
disabled, then the dependent is enabled. Or, if the parent is enabled, then the dependent 
is disabled. 

It is also possible for two concroLs to be inversely dependent on each other. This means 
that both controls are enabled until one is selected; then the other is disabled. For 
example, there are two typeS of dependencies illu.Str.ued in Figure 13-19. The user can 
select either the top check box or the bottom one, but not both; that is, the user is 
allowed to append resources to a resou.rte file or to make the resource imp read-only. The 
middle box is enabled only when the top box is checked, because it makes sense to 
replace pnxected resources only when appending to a sou.rte file . 

.. 

CHAPTER 13 Creating a Commando Interface for Tools 419 



• Figure 13-19 Inverse dependencies 

r-> r>o Append resources to resource file 
j l-- C OK to replace protected resources 

•· L---o- = Ms~• resource flle read-only 

~ Append resources to resource file 
O OK to replace protected resources 
O Make resource file read-only 

0 Append resources to resource tile 

C OK to replace protected resources 
~ Make resource flle 1'9ad-only 

Here is the resource description of the three check boxes shown in Figure 13·19. To make 
a control inversely dependent on another control, make the value of the parent negative. 

Or { !-3! }, CheckOption 
Not Set, 
{20, 10, 40, 350), 
"Append resources to resource file", 
"-a", 
"some help text ... " 

f I 

Or Ill }, CheckOption ! 
NotSet, 
{40, 10, 60, 350}, 

"OK to replace protected resources", 
"-ov", 
"some help text ... " 

l , 
Or {-ll }, CheckOption 

NotSet, 
{60, 10, 80, 350}, 

"Make resources file read-only", 
"-ro", 
"some help text_." 

I I 

The second CheckOption (the dependent) is enabled only if the first (the parent) is 
enabled. The third CheckOption is enabled only if the first is disabled . .. 

420 MPW 3.0 Reference 



C' 

Dependency on the Do It button 

To make the Do It button dependent on something, you must use the special Do It 
ButLon iCP.m in the Commando resoi.::ce type defiriition. This item can be specified :inly 
once per resource and can be specified only in the first dialog. ln the example shown in 
Figure 13-20 the Do It button is dependent on the check box. 

• Figure 1~20 Dependency on the Do It button 

t~ommand Line----------------

r~:::.1 ~· .... ..........., ....,1 - - ..... _... I ~[ iiiicii.ii"cii·-· ~i 
~L ______________ __,.1 ~---1-@~_, __ ,,,,1 

Here is the resource code for the above example: 

NotOependent { J, CheckOption 
Not Set., 
(20, 20, 40, 200}, 

"Check me baby", 
"-c", 
"Help us to help you.", 

} , 
Or {l} }, OoitButton 

Multiple dependencies 

A Commando item can be dependent on one or more other iterm. For example, a control 
might be enabled only when rwo other controls are enabled. Such siruations are 
considered multiple dependencies. 

CHAPTER 13 Creating a Corrunando Interface for Tools 421 



~1ultiple dependencies may be of twO cypes: OR and AND. In an OR dependency, a 
dependent control is enabled if any of itS parents is enabled .. In an AND dependency, the 
dependent control is enabled only if all itS parents are enabled. It is possible to mix ANDs 
and ORs. For example, indude an item -within an AND or OR list that is dependent on a 
dummy control (case Dummy)-and make the dummy control dependent on another list 
of controls. An example appears in the next section. 

Dependencies on radio buttons 

Conunando considers a duster of radio buttons to be one item. Remember that 
Conunando numbers each item sequentially in the order of irs appearance in the resource 
description file. When an item is dependent on a specific radio button -within a cluster of 
radio buttons, the number of the individual button is placed in the upper four bits of the 
item number that desaibes the entire cluster of radio buttons. For example, consider a 
radio button duster that is item #5 and contains six radio buttons. To have a dependency 
on button 13 you would write, in Rez synt3X, 

(3«12) + 5 

Figure 13-21 shows three ways in which the check box at the bottom of the dialog box is 
dependent on the upper check box and radio buttons. 

• Figure 13-21 Dependencies on radio buttons 

0 Check Me ®button 1 
O button 2 
0 button 3 

0 ll•~IH~n11s on tlm~ <1tuwe <1nd bu11 on~ I D· :S 

183 Check Me 0 button 1 
O button 2 
(j) button 3 

O Depends on baM eboue end buttons 1 & 3 

183 Check Me 0 button 1 
@button 2 
0 button 3 

D ll••1H~1uis on trnK <1bove <1nd bu11 on~ I ~)· :i 

.. 
.. 

422 MPW 3.0 Ref ere nee 

r 
'\_ .·· 



Here is the re.source description code describing the operation of the dialog box in Figure 
13-21: 

notDer-endeni: i l, Cho<'.'.lt:Optiou ( 
NotSet, (15, 15, 31, 100}, "Check Me", "-root", "" 

} , 
And {l, 3} }, CheckOption { 

NotSet, (65, 15, 81, 450}, "Depend~ on box above and" 

"button~ l & 3", "-abovel", "" 
} , 
0 r { ( 1 « 12 ) + 4, ( 3 « 12 ) + 4 l ) , Dummy { 

l , 
notDependent { l ' RadioButton~ 

(15, 150, 31, 4 50}, "button l"' "-bl", NotSet, 

{30, 150, 4 6, 450}, "button 2", "-b2", Not Set, 

{45, 150, 61, 450}, "button 3", "-b3", NotSet, 

} } ' 

"no help", 

"no help", 

"no help", 

In Figure 13-21 the first CheckOption is Item 11 in the re.source description file and the 
next CheckOption is Item 12 in the same fi.le. Item 13 is a dummy item used to perfonn 
the complex dependency. Item 14 is the entire cluster of three radio bunons. Item 12 (the 
bottom check box in the sample dialog) is dependent on Item 11 (the top check box) 
A.ND radio button 11 OR radio button 13. 

Nested dialog boxes 

Complex tools may require rmre than one dialog box in order to display all the options. 
When there are several nested dialog boxes, all of them are called from bunons in the fi..rst 
dialog box. It's best to avoid calling nested dialog boxes from other nested dialog boxes. 

Figure 13-22 shows how dialog box 12 can be called from dialog box 11. 

CHAPTER 13 Creating a Commando Interface for Tools 423 



• Figure 13-22 Setting up nested dialog boxes 

wide array itemArray { 
int notOependent • 0; /• item deper.dent 'Jpon • / 
~witch { 
case NesteciDialog: 

key byte • NestedOialogIO; 
--t---byte; /• the numk>er of the dialog 

. Ololog # 1 eons dlolog #2. 

resource 'CMOO' (128) < 

{ 

270, ..... 
notOependent {), NestedOialog { 

2, 
{135, 357, 155, 468}, 
"Nested Dialog-", 

to call. It ~ust be greater 
than the current dialog •/ 

rect; /• bounds of button •/ 
cstrinq; /• button's title •/ 
cstring; /• help text for button •/ 

Ololog #1 "This is the help message displayed when the nested dialoq button is cl.!.cked." 
} , 

} , 

270, 

~ { 
Ololog #21 

J 
) ; 

All items in a nested dialog box have an implied dependency on the nested dialog button. 
When a nested dialog button is disabled (dimmed), all the controls in that nested dialog 
act as if they weie di.$abled. 

Figuie 13-23 shows the iecommended placement of nested dialog call buttons . 

.. 

424 MPW 3.0 Reference 

(' 



• Figure 13-23 Placement of nested dialog buttons 

'Tut Option. 

~v 
_,/ 

Riii~-
tcomm1nd Lina 

..,j .l 
.L f.... 1 [ Cancel ) 

T'lltl II._ hti, _..,. ""'""'" .,.._ ._ _ ... $ ... IMtiM II .......... 

( Tut ) 

User Interface 
recommends 
that r.osted 
dialog buttons 
begin ot the 
lower-right 
and go up. 

While the mouse 
Is held down 
over ony control, 
help Info Is 
dlsployed here. 

Clicking the Cancel button in a nested dialog box reverts all its controls to their state 
before the nested dialog box was opened, thus returning the user to dialog box •1. 
Clicking the Do-It button (typically labeled 'Continue") saves the current state of all 
controls in the nested dialog box, and returns the user to the first dialog box. 

Redirection 

Redirection is the easiest control to add to a Commando resource description file. Simply 
specify the type of redirection desired and the point location of the upper-left comer. 
Commando takes care of the rest Here is the case declaration for redirection: 

case Redirection 
key byte • RedirectionIO; 
byte StandardOutput, /* the type of redirection */ 

DiaqnosticOutput, 
Standardinput; 

point; /* upper-left point of the entire contraption T/ 

Figure 13-23 shows the resource code for Redirection along with its results . 

.. 

CHAPTER 13 Creating a Commando Interface for Tools 425 



• Figure 13-24 Ho~ to obtain input and output redirection 

not.Dependent. (I, Redirect.ion { 
St.andard!nput., 
(15, 27 i 

}, 

noeOependene (}, Redireceion ( 
St.andardOut.pue, 
(lS, 252) 

), 

Input Output 

Ciiek here and 
get tnis pop-up 

,.,..,,~,­

[Mlltlng Rlt­
WIMGW-
Cumnt Sel1ctla11 II lllllldo .. _ 
Cum111 Seltctlon II lll"ttl .. ndtlu 
Stlll4tnl llllllt 
Nul lluic1 
Console .. ulct 

426 MPW 3.0 Reference 

'* ,,,, • .l#kWll# 
N•Flll-
EllllU1t F111-
lll111U-
Cumnt Sll1ct1111111 Wln4011-
Cum11t Sll1ct1111111 Terget lllndew 
Stlft4ml OltJUt 
St11141A DlegnesUc 
Niii ltllke 
C•llfeDHfce 

(' 



c 

Files and directories 

Tht:re w· four types of Cornmando dialogs, offering four different ways to nuke files and 
directories available: 
• as individual items for both input and ouput 

• as multiple files for input only 

• as multiple files and directories for input only 

• as multiple new files for output 

Input only means that a standard file dialog box is displayed when the command requires 
a file or directory on which co aa. Input or Output allows the user co write over an existing 
output file without going through the standard file dialog. 

Individual mes and directories 

The Files control enables ~rs to select a single file or directory that can be used for input 
or output This control supportS seven combinations of files, as illustrated in Figure 13-25 . 

.. 

CHAPTER 1.3 Creating a Commando Interface for Tools 4..'7 

\ 



• Figure 13-ZS Resource description for "individual files and directories· controls 

n.en.__,,,....irc-•"~.,.. 
!)I 0tr8C"t'Ot'y n'\&f i:at'I Oil ,..., *Of' tl"IQUt or OUCDUI 
~•I CC'll'C< S..~ , ... _. COl'llOt"-1 Cl hies. 

'P ••• , :: 

··'··'"·' 

:e:-..:.o.:• ':.:"• 
'Od .. '!;.:r:•., :•.te D•.,.:• 

~'"••• '!IP•• :flr',o.:a ':!':.e 
-.cfl!Ota. :a1e ~.;w 

;,,.:":1 '!":;..II !•le ~&el • 1'~0W.0 •;.:~ '!WCI ,f ':~: ... :•• 
':°:" •• .t ! :..:•: .. :•• .. J ·'" <::i u.ac: 1 aeraw.'! ! ··• :ir '!' 

o1ra •tees 
~; ••-•i:: .!!:p.o: :: .:.:p .. : ~ ..... l~=~-1 <ey .,;".'! • ; , 

:1:::..0:4; 
:tt:;.:o::::s; 
:1-:.:.·.;: 

:st: .. ".':J. 

.. :.;.• . ' 
:pt.:.:" '!: :•t•tft oetore !:..e •' 
:! '!~•• .. :- ·• a ..... M"t '"''°" 
tr:::<1•t r:. .. •• .:• . .,, eaiel'lu=" 
':a!'I. ,. IHC;.!.•CI -:ere '!!t H .... 
~; :!':.I ,_ .. ttQel'lt..t ~;..1. •1 

·•·• :1at !:ir ~oewp • · 
;yo:.• 1:.~. :Oflt::..s; -.o~ ... y. l•oe"oe"'t .'!•• ai·e 

:.;.~ o.t '::":e l'•U'etlt <.I UJU .. M • 

. ! '!!'la ~••·~ .. 1 ~:=ftt:-.a• '!:\el'I 

':.!':.;.J .: .. •OPI''! De 1• ... •· 

~!":••• -ieat :~r .. ttr:.:-.•• ai·• <:!':• tc.:•:"I•• :•••·•Y.0 .n '::"'• ,.,~, !llOat 

; t ~ ~• ! :.-• ': 1111•• ".•v• ::.n. y •. •O u: r •:'!.:it ::llol!. :!".p19t:.r:1ro: P•C.t o..e •no 
:·p..,:.:re1.:Jw:.:r:o.r :~•t• <::":tM n:•:l'f•· :t • nr;."'• .. a ••t :.; ••, 

=~"•• .~ ... ·•• • D1u.t·~,.. wre1ia•C. •1 

:1::0.!"I,. ~o''"'' .:• u 
:1tr•:o:•; ;te:fl.6 •• ,. u 
aa;."':fl; :c•1i1• .:• tl 

t:•n .a•~ ... :.:.r. ·• 
• .:s.."':i :~ •• =··· "I.I••• • ::i-.t':;l'I '::".et tCHI 4;.tect.y '::I IC&IUW.tO 

~ •• e ;se '::".o.J :ate •"•" e !.;.,.e .1 t8C\&•tH etlCI :ft• ••er ~,,., 
•• .,,. ':~e ::".;0.:1 ::.C t Mh1o1 ... :. !;..a ;t -,o !;. .... .. ,. . ~: . 

:ec:. :01i1ttU '' •1.1t::r1 •' 
:1~=-~~lf. :o.: .. e 'f ::iwtt;ft •• 

:1:: .·~; 
:1-::.-~ 

=••• ""•: .. :re. 
••v eyt• • J. 
:nto.:"lfl; ror !!'11'Yt'Ol'O\lt9"'Chl.9. Aft ~C.01'1. 

:.ari: - 1.-CJ.f• ... ~ .. I'll .. 

IOt ilYCJtiiCl ti.~· •• en•••"· • ' 
Catt;.l'I' P1,:.ce~I • •.•;/• pret•ltM f•l• eatMaa.oft ra.,e • :•> 

U !'Hu . .i.. l'te rA&.a.I hU9flll ... ,;,~ M 

•u•Ul"Jlll. :i rs..aar'1'ylle• •• ...... 
tAe rMi.o ._1t.01t• nu c~•• 
.. ,.._ IMNLll. f.o.;,.01 Oft,Ly ... ~!\ 

t!\e ,.,,.. ....... aM •• .;. t•••• ., 
at•.._, ·• ::,.t~• •f ::in1y ha• '""..._ •' 
Htn .. , , • tu.;.a '' ••• t.;.;.aa a..u'" •' 
9"'• • tteeu1ot11°"f'9M.rl'ar1; 1 • ... u • ,.,,.. • .. , • 1,.c-.h .. •• ..... .... : 
Htey ,,.....,.,., I 

~ueru .;...,.4111 ~•n • ·~·. »••r .. .-.'l.pwt !•!.• ~ype. •.-c:.!y 
.,.: • ·:a.: '. • 110 ,,.,.. ::.1 .. :. ,,.,. • • , 

:·1-:• • 

• .,,,~ • ·uri.·. 
Joe • . :r::." 
':HL • •ST'. 

428 MPW 3.0 Reference 

• 

.- .... -... _.._ .................... ---··~ 
·~- ~- .,. 



( , 
c' 

Here is the resource code for the "individual files and directories" controls that appear in 
Figure 13-25. 

notD'9r•endent { l , Files 
InputFile, 
OptionalFile 

{20,20,40,130}, 
{20,100,40,300}, 
"C Input Files", 

} , 

"" "" "" , , , 
"Help message here.", 
dim, 
"Read Standard Input", 
"Select a file to compile •. ", .... , 

} , 
Additional 

} , 

.. " , 
". c", 
"Only files that end in .c", 
"All text files", 
{text} 

Or { { l} ) , Files { 
OutputFile, 
OptionalFile 

l ' 

l ' 

(50,20,70,100}, 
'(50, 100, 70, 300}, 
"Object File", 
.. c . 0 .. , .. -o .. , " . 0" , 

"Help messaqe here.", 
dontOim, 
"Send object code to c.o", 
"Select an object file •. ", 
" .. I 

NoMore (}, 

.. 
• 

CHAPTER 13 Creating a Commando Interface for Tools 429 



Figure 13-26 shows the control resulting from the resource code above. The control is 
shown first in its default state, then as it appears after the user selects an input file, and 
finally as it appears after Commando produces the object file associated with the input 
file selected b;1 the user. 

• Figure 13-26 Examples of •individual files and directories• controls 

Default state 

C Input File 

----------------------Object Fiie l._c_.o ___________ __. 

Choose an input file 

Object file dependent on input 

C Input Fiie lhd: ... :Commando:checkBoH.c 

Object File Jhd: ... Commando:checkBoH.c.o I 

Multiple mes and directories for input and output 

Use the ase MultiFiles (shown here) to enable users to select multiple files and directories 
for input and outpul Note the four cases representing subtypes within the case MultiFiles: 

• case MultiinputFiles 

• case MultiDirs 

• case MultiinputFilesAndDirs .. 
• case MultiOutputFiles 

430 MPW 3.0 Reference 

(, 

,~1 

\ 

'-· 



Here is the MultiFiles case: 
case MultiFiles: 

key byte • MultiFilesID; 
cstring; /* b1Jt~_on tit le *I 
cstring; /* help tex'C for button ,. I 
align word; 
rect; I* bounds of button */ 
cstring; I* message like "Source files 

to compile:" *I 
... Cstring; /* option returned before each filename 

Can be Null */ 
switch { 

case MultiinputFiles: 
key byte • 0; 
byte• SSCountOf (MultiTypesArray); /* up to 4 types may be 

specified */ 
align word; 
array MultiTypesArray 

literal longinit text• 'TEXT', /* desired input file 

l ; 
cstring FilterTypes • 

cstrinq; 
cstring; 
case MultiDirs: 

key byte • l; 

obj • 'OBJ' ', 
appl • 'APPL', 
da • 'DFIL', 
tool - 'MPST'; 

/* 
type, specify 
for all types 

no type .,, I 
*/ 

/* preferred file extension 
(that is, ".c"l. If null, 
no radio buttons will be 
displayed. If FilterTypes 
is used, the radio buttons 
will toqqle between show­
ing files with only the types 
below, and all files. */ 

/* title of only files button •/ 
/* title of all files button •/ 

case MultiinputFilesAndDirs: 
key byte • 2; 

case MultiOutputFiles: 
key byte • 3; 

} ; 

.. 

CHAPTER 13 Creating a Commando Interface for Tools 431 



Figure 13-27 is a Files dialog oox controlled by resource code using the Multifiles case. 
Here is the resource code: 

notOepende~t (), MultiFiles { 
"C~~cri~tion Flle~-", 

} , 

"Select resource input files to compile", 

(60, 330, 80, 468), 

"Resource Description Files:", "" , 

MultiinputFiles 

{text), 

". r", 
"Files ending in 

"All text files" 
) , 

,.n . . , 

The button "Resource Description Files ... • is the Rez dialog box that displays 
the large standard file dialog box shown in Figure 13-27. The last rwo titles refer to the cwo 
radio buttons. 

• Figure 13-27 Example of multiple input files 

I a PEHemples I 
D Memory.r 
D ResEquel.r 

@ Only mes ending In .r 

Resource Descrtptlon Flies: 

432 MPW 3.0 Reference 

[ 1: J<H t 

Drtue 

( Done 

Cancel 

0 All teHt tiles 

l Add iJ 
Remoue ] 



In the example in Figure 13-27 two resource files have just been added. When a file 
extension is specified, two radio buttons allow you to see only those files that have the 
specified extension or all files, regardless of their extension. In either case, only files that 
have a file type matching one of the those specified in the resource are displayf"d. Vp ro 
four file types may be displayed. If no file Lype is specified, all files are eligible for 
display. 

If no file type or file extension is specified in the • cmdo • description, then no radio 
buttons are displayed, as shown in Figure 13-28: 

notDependent {}, MultiFiles { 
"Files to delete-", 
"Select files to delete", 

} , 

{ 60, 330, 80, 468}' 

"Files to delete:", 
"-d" , 
MultiinputFiles 

{ } ' 
"" ' I* no file extension specified */ 

} ' 

"" ' 
"" 

.. 
.. 

CHAPTER 13 Creating a Commando Interface for Tools 433 



• Figure 1~28 Example of multiple input files with no file extension specified 

I esi Commando I 
D 3stateCDEF.c c:= HD 

I 

D 3stateCDEFBMap.a [ 1: )<H t 

D checkBoH.c C Driue 
D cmdl.r 
Cl cmdo.h .............................................. 

D Cmdo.mep [ Done 
Cl cmndButtons.c 

[ D cmndWindow.c Cancel 

Files to delete: 

checkBoH.c ( , 
3stateCDEFBMep.a fie! d 

[ Remoue 

Sometimes the type of a file is more important than the ftle's extension. The Llnk tool, 
for example, identifies object files by the file type ( • oeJ ') rather than by the file 
extension. By spedfiying r il t e rType s as the extension string, the radio butt0ns will 
toggle between showing files matching the specified types and showing all files, regardless 
of type. Here is an example of this behavior: 

notOependent {), Multi!"iles 
"!"iles to link_,", 
"Select files to link", 
{60, 330, 80, 468}, 
"Files to link:", 

) I 

"-l" , 
MultiinputFiles 

{ I OBJ I}, 

) , 

!"ilterTypes, 
"Only object files", 
"All files" 

434 MPW 3.0 Reference 



(
~. 

,, ' 

• Figure 13-29 Example of multiple input files with object flies specified 

[ 5 C£Hamplei] 

®Only object files 

Files to fink:: 

0 All files 

c:::i HD 

I: j<H t 

Driue 

Done 

Cancel 

I Add , 

fl<HO<Jll(~ 

In Figure 13-29, TESampleGlue.a.o is the only file in the CExamples directory that has a 
type of 'oaJ '. After the "All files" radio buaon is clicked, all files in the CExamples 
directory are displayed, as shown in Figure 13-30 . 

.. 

CHAPTER 13 Creating a Commando lnterface for Tools -B; 



• Figure 13-30 Example of multiple input files with all files specified 

I esi CEHemples] 

0 TESemple.h 
O TESemple.make 
Q TESample.r 
Q TESempleGlue.a 

Q TestPerf .c 
Q TubeTest.c 
Q TubeTest.meke 
Cl TubeTest.r 

O Only object mes 

Flies to link: 

®All files 

I: j<H t 

Driue 

Done ) 

Cancel ] 

I Add , 

Fhm1<W<-! 

Multiple mes and directories for input only 

Here's how you can use the C35e MultiFiles to enable the user to select multiple directories 
for input only. 

NotOependent {i, MultiFiles { 
"Include Paths-", 

. , 

"Help message for directory button.", 
{110, 330, 130, 468}, 
"Inclu~ Search Paths:", 
"•s", 
MultiDirs (}, 

The first item in the above code, "Include Paths •. ", is the button in a frontmost 
dialog box (Rez was used in this example) that generates the file dialog box shown in 
Figure 13-31. •include Search Paths:· is the title of the scrollable window at the bottom of 
rhe dialog box. Two Includes folders hav.e just been selected from the upper window and 
added to the Include Search Paths window jwt below. 

436 MPW 3.0 Reference 



• Figure 1~31 Multiple directories for input 

[Add Current DlreclonJ:] 

@Et@ 
C: llEHemplu 

llL 
O llppllcatlons 
O llStructMecs 
O C£MemplH 
O Clnctudes 
CJ Cllbrartes 
CJ Etcemples 
CJ Librertas 

Include Seercn Paths: 

i
\Rlncludes: 
:lltttl@ii# 

I J<!< t 

Drtue 

Dane 

( Canul 

[ Open 

( Hdd \I 
llemaue 

Another file dialog box is used to select multiple files and directories. This dialog box 
appears in Figure 13-32. Here is the resource code that produces this dialog box. 

NotDependent {}, MultiFiles { 
"Files to duplicate .. ", 

l , 

"This button brings up a dialog allowing" 
"selection of files and directories to duplicate.", 

{ 25, SO, 45, 230 J, 
"Files and Directories to duplicat~:", 

"" , 
MultiinputFilesAndDirs {} 

CHAPTER 13 Creating a Corrunando Interface 437 



• Figure 13-32 Example of a "directories" control for multiple input files 

[Rod Current Directory: ] 
laMPWj 

Cl Rlncludes 
Cl ROM Meps 
Cl Scripts 
0 Startup 
0 Suspend 
Q SysErrs.Err 
Cl Tools 
0 UserStertup 

flies end Directories to duplicate: 

!!MIS'"kilii* 
f CE•amples: 

Multiple new mes 

c::i HD 

( I: j<H t 

Drtue 

( Done 

( Cancel 

[ Cltrnn 

I Add £1 
Remoue.) 

The case MultiFiles also gives the user the ability to selea multiple files for output. 

Here is the resource code resulting in the example shown in Figure 13-33. 

notCependent { ), MultiFiles { 
"New Files-•, 

} : 

"Help mesaa9e for button", 
{110, 330, 130, 468}, 
"New files to open:", 
"-n•, 
MultiOutputFiles ( }, 

438 MPW 3.0 Reference 

• 
.. 



(

'<. 

, 

C; 
I 

• Ftgun: 1~33 Using the MultiOutputfiles subcase of the case MultiFiles 

iOMPWI 

I 
le: AEHemples ;=: =hd 

I c:: 111 ncludes ~ [ E.1••1:1 l O llppllcetlons !1r, l O llStrucMecs ( Ortue ) 
0 CtHemptes 

~ O Clnctudes 

New flles to open: [ Done l 
I J [ Cencel l 
:testfllel ~ t I :testflle2 llllil 

hd:MPW:DlfferentDlrflle 
t<;; 

( RPtnlllJP l 

Version 

You can place a version string in your Commando dialogs for your own identification 
purposes, as shown in Figure 13-34. The version string is centered. below the Do-It button. 
Here is the declaration for VersionDialog: 

• 

CHAPTER 13 Creating a Commando Interface for Tools 439 



case VersionDialoq: /* Display a dialoq when the version t 

is clicked */ 

key by~e • VersionOialoqIO; 
switch l 

case VersionStrinq: 
key byte • 0: 

cstrinq; 

/* Version string eml:ledded riqht here */ 

I* Version strinq of tool Ce.q. V2.0l •/ 

case VersionResource: /* Versions strinq comes from another 
resource */ 

key byte • l; 
literal lonqint; /* resource type of pascal string 

containing version strinq */ 

inteqer; /* resource id of version strinq */ 

l ; 
cstrinq; /* Version text for help window 
aliqn word; 
inteqer noOialoq; I* Rsrc id of 'CLOG' */ 

If there is no modal dialog to display when the version string i.s clicked, set the resource ID 
to zero (noDialog). 

If the version string comes from another resource (VersionResource), the string must be 
the first thing in the resource, and the string must be a Pascal-style string. An 'STR ' 
resource is an example of a resource that fits the bill. 

If the modal dialog is to have a filter procedure, the procedure must be linked as an 
• flt r • resource with the same resource ID as the dialog. 

• Figure 13-34 Version string 

J [ Cancel ] 
laiiiiiiiiiiiiiRiieiiiziiiiiiiiiii-J 

2.8 

Version String 

440 MPW 3.0 Reference 

•/ 

(·. 

I 



The version string may be embedded in the commando resource using the VersionString 
case or the version string may come from a resource using the VersionResource case. If the 
version comes from a resource, the resource must contain a Rez-style p ~tr in g. You can 
use this ~.ith the SetVersion tool to :ead SetVersion's •MPs T • resource. 

As usuaL the help string is a string that is displayed when the version string is clicked. 
Typically, this help string contains more detailed author/version information. 

For extra flair, a dialog may be zoomed out when the version string is clicked. If a dialog 
is specified, you must give the resource ID of the 'DLOG • resource (found in the resource 
fork of your tool or script) to display. Commando simply cal.ls ModaIDialog() with that 
dialog. 

If you want to have a custom filter procedure, you must compile the filter procedure as a 
standalone resource with a resource type of •fl tr• and with the same id as the 'DLOG' 

resource. The visible/invisible flag in the o LOG resource should be set to invisible. 
Commando will rmve the • DLOG • window so that the bounds rect specified in the 
• DLOG • are relative to the bounds of the Commando dialog. 

CHAPTER 13 Creating a Commando Interface for Tools 441 



• Note: If you do not specify a VersionDialog commando item, Commando attempts to 
add one for you by looking for a • vers' resource with an ID of 1. If found, 
Commando displays the short version string under the Do-It button. When the version 
string is dicked, Commando displays the long version string in the help window. If a 
• vers • < l > resource is not found, Conunancio looks for a • ve .cs• < 2 > resource. 
If one is not found, no version string is displayed. 

A Commando example 

The best -way to leml how to make a Commando interface is to study an actual 
Commando resource for an existing MPW tool. Choose a tool, explore the operation of 
the controls in its Commando dialog, and then use OeRez to generate a readable version 
of the tool's Cmdo.r resource. 

To obtain the Commando resource for a too~ use this syntax: 

OeRez {MPW}Tools:toolname Crndo.r -only cmdo 

To obtain the Commando resource for a Shell command, use this syntax: 

OeRez "{MPW}MPW Shell" Crndo.r -only "'cmdo' (o"Commandnameo"l" 

For your convenience, the Commando resource for ResEqual, called ResEqual.r, is shown 
here. You can find this ftle in the PExamples folder . 

• 
.. 

442 MPW 3.0 Reference 

(' 



( ,. 

#include "cmdo.r" 
resource 'cmdo' (355) 

240, 
"ResEqual compares the resources in two files and repor~s 
the differences.", 

{ 

NotOependent {}, Files 
InputFile, 

} , 

Requi redF il e { 
{40, 40, 60, 190}, 
"Resource File l", 

"" ' 
"Select the first file to compare.", 

} , 
Additional { 

"" , 
FilterTypes, 
"Only applications, DA's, and tools", 
"All files", 

appl, 
tool, 
da 

Or {{l}}, Files { 
InputFile, 
RequiredFile 

{70, 40, 90, 190}, 
"Resource File 2", 

"" , 
"Select the second file to compare.", 

} , 
Additional { 

.. 

"" , 
FilterTypes, 
"Only applications, DA's, and tools", 
"All files", 
{ 

appl, 

CHAPTER 13 Creating a Commando Interface for Tools 443 



l ; 

l ' 

tool, 
da 

NotOependent {}, TextBox 

) ' 

gray, 
(30, 35, 95, 195), 

"E'iles to Compare" 

NotOependent {}, CheckOption 

l ' 

NotSet, 
(105, 75, 121, 155), 

"P regress", 
"-p", 
"Write progress information to diagnostic" 
"output." 

NotDependent { } , Redirection 
StandardOutput, 
(40, 300} 

} ' 
NotOependent {}, Redirection 

OiagnosticOutput, 
(80, 300) 

l ' 
NotOependent (), TextBox { 

} , 

gray, 
{30, 295, 121, 420}, 

"Redirection" 

Or {{2}), OoitButton 
) , 

The above resource code generates the frontroost dialog box of ResEqu.al, which appears 
in Figure 13-35. 

444 MPW 3.0 Reference 



• Figure 13-3' A Commando example: frontmost ResEqual dialog box 

,-ReseQuel Options------------------. 

I F'lles to Compere ·· ·· · · .. Redirection ................. . 

Resource Fiie 1 Output 

"(!~•>11ri:1! ''"' 2 I· 
I I' 
Error ............................. ~ .......... . 

OProgress r l 

c· 

.. 

CHAPTER 13 Creating a Commando Interface for Tools 445 



l 

· ?~E ~ clpe,g no+ pv-Hi+ . 
• 



Chapter 14 ·Performance.Measurement Tools 

MPW 3.0 PROVIDES A SET OF PWORMANCE·MEASUU.\tE~ TOOI..5 to aid 
professional software developers in measuring and improving the performance of 
their applications. This chapter explains how to use these tools and provides a 
detailed example. The PerfonnRepon tool is also described in Part rr. • 

Contents 

About performance-measurement tools 449 
Componenr.s of performance tools 450 
Requirements for using performance tools 451 

How performance measurement works 451 
Program Counter sampling 451 

Restrictions 452 
Bucket counr.s 452 

Using performance-measurement tools 453 
1. Install under conditional compilation 453 
2. Include the interface 454 
3. Provide a pointer to a block of variables 455 
4. Initialize the performance-measurement tools 455 
5. Tum on the measurements 456 
6. Dump the results 457 
7. Terminate cleanly 457 

MPW performance tools routines 458 
The function InitPerf 458 
The function PerfConuol 460 
The function Perf'Dump 461 
The fuilction Tenn.Perf 462 

Performance reports 463 
Performance output file 463 
Analyzing the results with PerformReport 4()6 
Adding identification lines to a data file 467 
Interpreting ;he performance report 468 

Implementation issues 468 

44i 



Locking the interrupt handler 469 
Segmentation 469 
Dirty CODE segments 469 
Movable code resources 470 

4 

• 

448 MPW 3.0 Reference 

() 

() 



( "'·. ' 
/ 

About performance-measurement tools 

In essence, the performance-measurement tools sample the Program Counter (PC) register 
just often enough to obtain a statistically a<.curat: estirnate of the program's actual use of 
time. The code is divided into "bucketsn of two or more bytes and a count of sampled PC 
values for each bucket during the program's exeo.Jtion is output to a text file. You can 
then analyze these results by running a report generator, PerformReport. PerformReport 
merges the output file with a linkmap of the me3SW'ed code resources to produce a list of 
procedures, sorted by the number of PC samples found within the procedure. 

.A. Warning The performance-measurement tools are designed for temporary 
inclusion in an application, desk accessory, or driver for purposes of 
measuring performance. They are not designed for inclusion in 
commercial products, because they rely on !ow-level system 
mechanisms that are not guaranteed to function correctly on all furure 
machines.• 

The memory management strategy for the performance tools is based on the assumption 
that develope~ wishing to measure performance will likely have a machine larger than the 
smallest target machine for their appliotions. Thus, they on use performance tools that 
require some additional memory without severely impacting the application's memory 
management strategy. 

The best way to use these tools depends upon your particular environment and the code 
you want to test These considerations are discussed in the section "Implementation 
Issuesn later in this chapter. You will need to temporarily insert calls to the performance 
tools within you! code. Examples of the placement of these oils are provided in MPW C 
and MPW Pascal. Be sure to rerrove these calls when you have completed your 
optimizations. 

CHAPTER 14 Performance-Measurement Tools 449 



Components of performance tools 

The performance tools consist of the following pieces: 
s3 A In;r~·f file (Perfon:itib.o): This ftle is in the {Libraries} folder. Link with this file. 

• Interface mes for Pascal (Pcrf.p) and C (Pcrf.h): These files are in the interface 
folders {Plnterfacesl for Pascal and {Clncludesl for C. These are the files that you use 
or include in the source files for your application. These interfaces depend only on the 
standard Macintosh merrory t}'J:'~ files: MemTypes.p for Pascal and Types.h for C. 

An assembly-language interface has not been provided for the perfonnance tools. 
Assembly-language progr.ammers can use either the Pascal or the C interface. Both go 
di!ectly to the Pascal and assembly-language implementation in Performl.ib.o. 

• Sample programs, makefiles, and lnstructJ.oos for execution: These files are in 
the Examples folders: {MPW}Examples:PExamples: for Pascal, and 
{CExampleslExamples:CExamples: for C. Instructions for running the performance 
tools sample progr.ams are included in the Examples folders. 

• PcrfonnRcport (a tool for analyzing performance data and ptodudng reports): 
This tool is found in the {MPW}Tools: folder. For detailed information about the tool, 
see the corrunand pages in Part II. For detailed instructions on how to run this tool, 
see the instructions in the appropriate Examples folder. Examples of the output from 
this tool are discussed below. 

• ROM map mes: You'll find a number of ROM ma~ in the folder {MPW}'ROM Ma~', 
including MacIIROM.map, MacSEROM.map, and MacPlusROM.map. These files are 
combined with the link map file for your application, to add location information for 
the OS and Toolbox routines to the performance data. You will usually append the 
appropriate ROM maps to your application's link map for input to the tool 
PerformReport. 

• 

450 MPW 3.0 Reference 

(l 



C'.; . 

Requirements for using performance tools 

To use the performance tools, you need to add calls to these routines in your application, 
desk accessory, or driver. They are described later in more detail: 

• IrtltP::rf specifies the types of measurements to be performed, and allocites storage. 
This should be called once near the beginning of your code. 

• Term.Perl stops measurements (if active), and frees the storage. Ter.nPerf must be 
called once after InitPerf succeeds, and measurement is finished. 

• PcrfControl starts and stops measurements. PerfControl must be called once 
(after InitPerf) to start measurements. Use PerfControl to avoid taking 
measurements in idle loops, dialog boxes, alerts, and other places where the user 
response time determines performance. 

• PerfDump stops measurements (if active), and writes the performance data to an 
output file. You should call PerfDwnp after measurements are collected for reporting. 

How performance measurement works 

The performance-measurement tools are designed to give you useful information about 
the performance of a program without severely altering the user responsiveness or memory 
requirements-that is, without changing the characteristics of what is being measured. 
However, the act of measurement necessarily alters what is being measured in the ways 
summarized below. 

Program Counter sampling 

The fundamental ide2 behind the performance-measurement tools is to sample the 
Program Counter (PC) register frequently enough to obtain a statistically accurate 
estimate of the actual program performance, but infrequently enough so that overall 
perfonmnce is not affected. The performance-measurement tools use the Verti<:al 
Blanking signal (VBL) on 64K ROMs and the Tune Manager on 128K and larger ROMS. 

The Time Manager allows 1 ms resolution in sampling, but this imposes about a 20 percent 
performance degradation. A value of 4 ms to 10 ms reduces the performance degradation 
to 4 percent to 10 percent Use of ~e VBL signal on old ROMs imposes a sampling rate of 
approximately 60 times per second 06 ms). 

CHAPTER 14 Performance-Measurement Tools 451 



Restrictions 

If your application directly uses the VIA Timerl (or some software that uses it, such as the 
sound gene .Jt<: ~or the Tl.::ne ~fanager) then you might not be able to use these 
perforrnance-measu1-ement tools. 

In the ase of old ROMs, the performance-measurement tools may not work correctly with 
programs that make use of YBL tasks. 

If you are running the performance tools under Multi.Finder, you may need to increase the 
· sampling interval. 

A Warning 

Bucket counts 

If you set the sampling interval too low for your machine, the 
performance tools may crash or cause your program to run very slowly. 
It is best to start with a high sampling interval, such as 10 ms or 20 m.5, 

and decrease it only after experience allows you to predict the effect 
of the shorter interval. For example, if measurements taken with a 
sampling rate of 10 m.5 cause your program to run 10 pen:ent slower, 
then it is probably safe to increase the sampling rate to every 5 ms at a 
cost of having the program run 20 percent slower. • 

The performance tools require 2 bytes of memory for a counter for each "bucket" of code 
that is measured. For instance, for a lOOK tool or application, using a bucket size of 16 
bytes, about 12,800 bytes are required for the counters. If the ROM is measured, an 
additional SK, 16K, or 32K byres (for 64K, 128K, or 256K ROMs) is required. 

If your program spends a substantial aroount of time outside CODE segments and ROM, 
then you may want tD measure RAM •misses.• Because RAM an be quite large, a second 
(generally larger) bucket size can be specified for RAM "misses.• And you can conuol the 
aroount of RAM to be me2SUred by using a low address to start setting up buckets and a 
high address for the wt bucket. If the RAM mes are measured, additional meroory is 
required. 

The sum of all meroory required for counters is allocated as a single contiguous block at 
the time Init.Perf is called. For this reason, you should call Init.Perf fairly early in 
your initialization, before meroory becoqies fragmented. 

452 MPW 3.0 Reference 



c 

In addition to the memory for bucket counters, the performance tools will use one master 
pointer for a handle to some infonnation, and will allocate a few small structures with 
NewPtr calls. 

Using performance-measurement tools 

This section presents a detailed explanation for each of the seven steps necessary to 
install the performance-measurement routines into your code. For each step the specifics 
for using these tools with MPW C and MPW Pascal are under separate subheadings. 

You need make only a few changes to install these tools in your code. The changes are 
basically the same, whether you are developing an application, a desk accessory, an MPW 
tool, or a driver. It is even possible to install performance tools in ROM. 

Here are the steps: 

1. Install under conditional compilation 

After measuring the performance of your program, you will ·probably want to make 
changes, test the changes for correctness, and then repeat the measurements to verify the 
performance improvements. While making and testing changes, it is very important not to 
include the performance tools, unless you are confident that the changes do not introduce 
any new bugs. If your code terminates early for any reason, then the normal system 
recovery techniques (in MacsBug, calls such as G SysRecover under the MPW Shell or ES 
from an application) do not work. In such a case, within a few milli.seconds after the 
system tries to reuse the meroory occupied by the performance tools, a timer interrupt 
occurs and a system error or crash results. The system error will probably force rebooting 
the system. For this reason, it is advisable to include the performance-measurement tools 
under a conditional flag. 

• Note: In the steps that follow, it is assumed that all the performance measurement 
changes are surrounded by conditional compilation. However, in the code fragments 
that follow, the actual conditional compilation statements are omitted to save space. 

CHAPTER 14 Performance-Measurement Tools -i;3 



MPWC 

/* 

*/ 

tdefine PERFORMANCE to turn on the measuring tools. 
fund~f PERFORMA..~CE to tu~n off the measuring tools. 

#define PERFORMANCE 

Calls to the performance tools routines can then be surrounded by the following 
conditional compilation statements: 

tifdef PERFORMANCE 

tend.if PERFORMANCE 

MPW Pascal 

!SSETC DoPerform :•true) (false to exclude Performance Tools) 

Calls to the performance tools routines can then be surrounded by the following 
conditional compilation statements: 

{ SIFC DoPerform} 

{SENDC} 

2. Include the interface 

In the main body of your MPW C code, you need to include the header file for the 
performance tools, like this: 

#include <Perf.h> 

In the main body of your MPW Pascal code, you need to reference the interface file for 
the perfonmnce tools, like this: 

USES 
MemTypes, 

Perf; 

4S4 MPW 3.0 Reference 



( 

3, Provide a pointer to a block of variables 

For an application or MPW tool, you can declare a global variable. If you are developing a 
desk accessory, driver, or ROM that does not rul\fe glcbal variables, then you netJ to be 
somewhat creative in finding a location for Lhe poin~l-. The choices in1..;ude: a local 
variable on the stack (assuming the stack frame 'Will persist long enough), a field of a 
block allocated and locked do'Wll in the heap, or a low meroory location. In any event, the 
address of the location allocated for the point.er must be passed to the performance 
routines, as indicated in the following steps. 

MPWC 
TP2PerfGlobals ThePGlobals; 

MP'W Pasal 
VAR thePerfGlobals: TP2PerfGlobals; 

4. Initlallze the performance-measurement tools 

Somewhere near the beginning of your code's execution, and when large chunks of 
memory are available, you need to initialize the performance tools. 

.A. Warning 

MPWC 

Once your code has initialized the performance routines successfully, 
it is important that you call the termination routine described in Step 
7 before your code terminates. Failure to do so alroost always results in 
a fatal system crash. ... 

ThePGlobals • nil; 
if < ! InitPerf (&ThePGlobals, ... other parameters ... )> { 

/* report error in initialization and terminate */ 
} ; 

The function Ini tPerf allocates a block on the heap for the performance global 
variables if ThePGlobals is nil. If the ThePGlobah is not nil, Ini tPerf assumes 
the block is already allocated. • 

CHAPTER 14 Performance-Measurement Tools ~55 



MPW PaKal . 

thePerfGlobals :• NIL; 
IF NOT InitPerf (thePerfGlobal.s, .. other parameters ... ) THEN 

BEG Pi 

{ f..epo.::t err-:::r in initialization aeld terminate.} 
END; 

When you set the pointer thePerfGlobah to NIL, Ini tPerf allocates a block on the 
heap for the performance global variable. If the pointer is not NIL, Ini tPerf assumes 
the block is already allocated. 

;. Turn on the measurements 

After initialization succeeds, you can start measurements at any point in your code. The 
call that staru (and stop.s) measurements returns the current on-off state as a Boolean 
value. 

You can call PerfControl with a second argument of false in order to tum 
performance measurements off. This is useful for disabling sections of code that you 
don't "Want to measure, such as the event loop of an application, a dialog box where user 
response time dominates the compute time, parts of the application that rely on the VIA 
timer, and so on. 

MPWC 

(void)PerfControl(ThePGlobals, true); 

MPW PaKal 

VAR OldState: boolean; 

OldState :• PerfControl (thePerfGlobals, true); 

Alternatively, you imy use: 

IF PerfControl(thePerfGlobals, true) 
THEN {dummy THEN statement}; 

4 

456 MPW 3.0 Reference 



C' 

6. Dump the results 

When you reach the end of the code to be measured, you must make a call to have the 
perfonm_11ce counters written inti') a ~ext file. If the dump routine encounters any VO, 
memory managemen~ or other system errors, it reti.irns a nonzero return code. You can 
examine this code to detenni.ne the nature of the problem. 

MPWC 

OSErr err; 

err• J?erfCump(Thel?Globals, "\pl?erform.out", ... otherparameters>; 
if (err !• noErr} 

/* Code to report erros during dump */ 

The J?erfCurnp routine takes the output-filename as a Pascal string. If the empty string is 
passed, the name defaults to Perform.out. 

MPW Pasal 

VU err: OSErr; 

err : • PerfOump (theJ?erfGlobals, 'Perform. out', ... other parametem ; 
If err <> noErr 

THEN (Report errors during dump}; 

If the empty string is passed for a filename, the name will default to Perform.out. 

7. Terminate cleanly 

After dumping the counters to a text ftle, you must terminate the performance­
measurement tools cleanly. TermPerf removes the interrupt routine and frees the 
memory associated with the perfonnance global variables and counters. 

MPWC 

TermPerf(Thel?Globals); 

MPW Pasal 

TermPerf (thel?erfGlobals); • 

CHAPTER 14 Performance-Measurement Tools 45i 



.. 

MPW performance tools routines 

This section gives detailed information about MPW C and MPW Pascal parameters to the 
performance cools routines. The C and Pascal call~ are presented first, followP.d by 
discussion relevant to both. 

The function InitPerf 

Here is the MPW C declaration for I ni tP er f: 

pascal Boolean InitPerf( 
TP2PerfGlobals 
short 
short 
Boolean 
Boolean 
const 
short 
const 
Boolean 
lonq 
lonq 
short 

) ; 

*thePerfGlobals, 
timerCount, 
codeAndROMBucketSize, 
do ROM, 

doAppCode, 
Str255 appCodeType, 
romIO, 
Str255 romName, 
do RAM, 

ramLow, 
ramHiqh, 
ramBucketSize 

Here is the MPW Pascal declaration for InitPerf: 

FUNCTION InitPerf ( 
VAR thePerfGlobals: 
timerCount, codeAndROMBucketSize: 
doP.OMr doAppCode: 
appCode'l'ype: 
romI:O: 
romName: 
doRAM: 
ramLow, ramHi9h: 
ramBucketSize: 

boolean; 

458 MPW 3.0 Reference 

' 
' 

TP2PerfGlobals; 
integer; 

boolean; 
Str25S; 
inteqer; 
Str2SS; 
boolean; 
lonqint; 
inteqer 



( 

Call the function InitPerf once to set up the performance-monitoring interrupt handler 
and to allocate the memory area for counters. The function rerurns true if initialization is 
successful, and false if it encounters errors. 

7he function In it Per f takes a nud:>er of parame1rrs: 

• thePerfGlobals is the address of the pointer to the global variable area. If the 
value of the pointer is nil, a new block of global variables is allocated on the heap. 

• timercount (for new ROMs) determines the number of milliseconds betv.reen PC 
samples. For most applications, good values are: 

:i 10 ms for Macintosh Plus and Macintosh SE, when running under the Finder. Cnder 
MultiFinder, allow 20 ms. 

o 4 ms for Macintosh II, running under the Finder. Under MultiFinder, allow 10 ms. 

+ Note: Forold(64K) ROMs, timercount is the numberofVBLevents (16 ms each) 
between PC samples. 

• codeAndROMEucketSize sets the bucket size for user code (and the ROM, if ROM 
measurement is requested). A separate parameter sets the bucket size for RAM, as 
described below. The bucket size may be any integer greater than or equal to 2. 

+ Note: The performance tools force the bucket size to be a power of 2 by rounding 
this parameter up to the nearest power of 2. 

If the bucket size is set as low as 2, individual instructions are measured. However, this 
requires a lot of memory-an amount equal to the amount of code (and ROM) being 
measured. 

A more practical value for this parameter is 8, which requires only 25 percent of the 
memory being measured. Even larger bucket sizes may be used if memory is scarce, 
although the resolution of the measurements becomes an issue at some point 

• doROM determines whether the ROM code as well as the user's code are measured. A 
value of true causes the ROM code to be measured. 

• doAppCode determines whether or not user code is measured. A value of true causes 
user code to be measured. 

• appCodeType ~a Pascal string that determines the resource type of user code to be 
measured. For application programs this should be • cooE • (in PascaO or" \pCOCE" 
(in C); for desk accessories it should be • DRVR' (in PascaO or "\pDRVR" (in C); and 
so on. Resources of the specified type are obtained from the current (top-level) 
resource file. 

• romID indicates ROM types. You'll normally pass a romID of 0, indicating the use of 
one of the predefined ROMs. T~ble 14-1 shows the predefined ROM IDs and names . . 

CHAPTER 14 Performance-Measurement Tools 4;9 



• Table 14-1 Predefined ROM IDs and names 

Computer IOM ID 

Macintosh 128K s 6 9 
Macintosh XL SFF 
Macintosh Plus S7 s 
Macintosh 512e $75 
Macintosh SE s 7 6 
Macintosh II s 7 a 
Macintosh Ilx s 7 a 

ROM 
ROMXL 
ROMPLUS 
ROMPLUS 
ROMSE 
ROMII 
ROMI I (unchanged from Macintosh II) 

ROM IDs and the following parameters are mainly co support older or newer ROMs not in 
Table 14-1. 

• romName indicates a ROM name other than one of the predefined names listed in 
Table 14-1. This value is usually the empty string, indicating the use of a predefined 
ROM name. This parameter can be used to specify the name of older or newer ROMs. 

• doRAM determines whether RAM misses are measured. A value of true invokes 
measurement. 

• ramLow specifies the lower limits of RAM to measure for misses. This parameter has 
no effect unless doRAM is true. 

• ramHigh specifies the upper limit of RAM co measure for misses. Th.is parameter has 
no effect unless doRAM is true. 

• ramBucketSiz:e specifies the bucket size to use for measuring RAM misses. This 
parameter has no effect unless do RAM is true. 

A "RA.i.\i miss" is a PC sample that is not conrained in any of the user code segments or the 
ROM. 

The function PcrfControl 

Here is the MPW C declaration for PerfControl: 

pascal Boolean PerfControl( 

TP2PerfGlobals thePerfGlobals, 
Boolean turnOn 

) ; .. 

460 MPW 3.0 Reference 



Here is the MPW Pascal declaration for PerfControl: 

FUNCTION PerfControl( 
thePerfGlobals~ TP2PerfGlobals; 
turnOn: boolean 

) : boolean; 

The l?erfControl function returns the previous state. You must call l?erfCont rol 
once to begin performance measurements. It can be called more frequently to avoid 
measuring uninteresting areas of code, such as idle loops or dialog boxes. 

• thel?erfGlobals points to the global variable area, initialized by a successful call to 
INITPERF. 

• turnon turns measurerrents on (true) and off (false). 

The function PertDump 

Here is the MPW C declaration of l?erfOump: 

pascal short l?erfOump( 
Tl?21?erfGlobals thel?erfGlobals, 

) ; 

const Str255 
Boolean 
short 

reportFile, 
doHistogram, 
rptFileColum.ns 

Here is the MPW Pascal declaration of l?erfDump: 

FUNCTION l?erfOu.mp( 
thel?erfGlobals: 
reportFile: 
doHi.stoqram: 
·rpt!'ileColumns: 

l: inteqer{OSErr}; 

Tl?21?erfGlobals; 
Str255; 
boolean; 
inteqer 

The function Pe rfDump dumps the statistics gathered by the performance tools into a 
text file suitable either for direct analysis or for processing by PerfonnReport. Perfoump 
calls l?erfControl to turn off measurements and accepcs the following parameters: 

• thel?erfGlobal.s points to the global variable area, initialized by a successful call to 
Initl?erf. . 

• reportFile specifies the name of the report file. If this is the empty string, the 
default name Perfonn.Out is used. 

CHAPTER 14 Performance-Measurement Tools 461 



• do Hi stoqram (if true) places a histogram after the bucket counts in the data file. 
The hist0gram consists of a number of asterisks for each bucke~ nonnalized so that 
the bucket with the largest number of hits receives a line of asterisks out to 
rptF il"°'Col umr.s. 

• rptFileColumns controls the number of columns in the report file. It !us no effect 
unless doHistoqra.m is true. 

The function TermPerf 

Here is the MPW C declaration of TermPerf: 

pascal void TermPerf(TP2PerfGlobals thePerfGlobals); 

Here is the MPW Pascal declaration of TermPerf: 

PROCEDURE TermPerf(thePerfGlobals: TP2PerfGlobals): 

If the call to InitPerf succeeds, then TermPerf must be called before terminating the 
program Otherwise, a system crash results because the timer interrup~ which is still 
enabled, will jump to points unknown. TermPerf rerooves the interrupt handler and frees 
the storage used by the counters with the parameter thePerfGlobah. This parameter 
points to the global variable area, initialized by a successful call to InitPerf. 

462 MPW 3.0 Reference 

(,; 

(I 



( ', 

/ 

Performance reports 

When your code has completed it.5 execution, you call P~rfDump to generate a 
perfonnarice output file shmving the result.5 of the bucket count.5. You can analyze this 
data by using the tool PerformReport. Examples of both the performance output and 
report files appear in this section. See Pan II for a command page describing the tool 
Perf ormReport. 

Performance output .flle 

The results of the performance test.5 are output to a perfonnance data file when 
PerfOump is called. This file is a text file containing the bucket locations and counts. 
You should call PerfOump at the very end of the test, so that no interference 'With 
program VO should occur. The performance output file is not opened until PerfDu."np is 
called. 

Below is an example of a performance output file as generated by a call to PerfDwnp. 

Some repeated lines have been omitted, as indicated by • ... w. 

Notice that the performance data is arranged on a per segment basis. Only nonzero 
buckets are reported; in other words, missing buckets had a hit count of zero. 
(PerfDump has an option to produce a histogram (bar graph) to the right of the Hit.5 
column. That option was not exercised in this example.) 

' 

CHAPTER 14 Performance-Measurement Tools 463 



Performance Parameters 

----------------------
Bytes per bucket, Code and ROM: 8 
Bytes per bucket, RAM: ~ 

Samplinq Interval: 4 m.s 

Performance Summary 

-------------------
Total hits outside of the sampled segments: 2 
Maximum hits in one bucket: 872 
Total hits in all buckets: 3222 

Performance Cata 

----------------
Offset Hits I Segment ll7 size 20000 
•••••••••••••••••••••••a•••••••••••••••••••••••••••••••••••••••••=== 

52F8 l 
5300 l 
53C8 l2 
53£8 l 
53FO 2 
5400 l 
5428 l 
5728 872 

lB830 9 
lB838 53 
lB840 41 
lB848 61 
lB850 41 

Offset Hits Segment 253 size lFFFFF 

--------------------------------------------------------------------C6AO 
28700 
1£6134 
lE:8990 
lFB20C 

l I 
40 I 

l I 
l I 

101 I 

Off set Hits I Segment 13 size 868 name STDIO 

--------------------------------------------------------------------
Offset Hits I Segment 12 size 7lE name SACONSOL 

-----------------------------------------------------------------=·-

464 MPW 3.0 Reference 

(1 

'"'-~ 

(' 



( 

(' 

Offset Hits Segment 5 size DO name ROMSEG2 

70 2 
88 5 
90 10 

BO 4 
BS 2 
co 3 

Offset Hits Segment 4 size 136 name ROMSEGl 

10 9 
lS 3 
20 5 

110 19 
118 5S 
120 46 

Offset Hits Segment 3 size SC name SEG2 

50 3 
5S 3 
60 9 
6S l 
70 14 
7S l 

Offset Hits Segment 2 size DO name SEGl 

10 2 
lS 18 
20 4 

AS 7 
BO 12 
BS lS 

Offset Hits Segment 1 size 101C name Main 
••••-----•••••••••••••••••••••••••••••••••••••••••••••••••~a••a•=•== 

F38 43 
F40 116 
F48 78 
FSO 19 
F58 77 
F60 66 
F68 56 

CHAPTER 14 Performance-Measurement Tools 465 



AJlalyzing the results with PerformReport 

Once the performance data file has been generated, you are ready to run the report 
generator, a tool called ?erformReport. This tool merges the performance output file 
with a linkrnap of the measured code resources to produce a list of procedures, sorted by 
the number of PC samples found within the procedure. (See Part II for more infonnation 
on PerformReport.) An example of the contents of this file is shown here. 

If your call to IniU'erf had the parameter doRom set to true, then you'll need to append 
the correct ROM map file to your application's link map before running 
Perform.Report. For example: 

Link -o YourApp -1 >Link.Map YourApp. p. o ... etc ... 
YourApp t run your application, generate Perform.Out 
Catenate (MPW}'ROM Maps':romName.Map >>Link.Map 
Perform.Report -1 Link.Map -m Perform.Out 

Perform.Report -- Merges Linker Output and Performance Dump January 30, 
1989 

Reading Link Map file: "Link.Map" 

Reading Performance Measurements file: "Perform.Out" 

Perform.Report Parameters: 

8 bytes per bucket, ROM and CODE. 
4 bytes per bucket, RAM. 
2 hits outside code measured. 

3224 hits total, 0.0% outside the segments. 
872 maximum hits in one bucket. 

466 MPW 3.0 Reference 



(_ 

Procedures by possible hits (showing Probable % of time) : 
Num Segment Procedure Def Prob Poss Prob% 

117 Main ATRAP68020 497 436 872 28.9% 
117 Main CHKSLOT 0 436 872 13. 5% 
117 Main OS PATCH 0 0 872 0.0% 
117 Main RSECT 474 13 26 15.1% 

1 Main U_MUL4 399 14 56 12.8% 

.. 1 Main U OIV4 0 3 5 0.6% 
4 ROMSEGl ROMwlOO 5 0 0 0 .1% 

117 Main LVLlINT 1 0 1 0.0% 
117 Main TFSOISPATCH 1 0 0 0.0% 
117 Main LVL2INT 0 0 1 0.0% 

Total Reported • 67. 6% 32.1% 99.8% 

PerformReport:: That's All Folks! 

Adding ldentlllcation lines to a data file 

After displaying a tide line, and giving the names of the files being read, PerformReport 
has an option (-e) to echo lines from the head of the measurements file until the phrase 
•performance Data" is encountered. This option allows you to add identification lines at 
the head of performance-measurement files. Various parameters are gathered from lines 
that begin with special keywords. Here are the keywords with the phrases they head: 

Bytes Bytes per bucket 
Total Total hits 
Ma:dm.um Maximum hits 
Pc:rformmce Performance Data 

You are free to add comment lines at the head of a data file, as long as the comment lines 
do not begin with these keywords. 

CHAPTER 14 Petformance-Measurement Tools 46i 



Interpreting the performance report 

PerformReport translates the bucket hit information into procedure-based 
:;. information. Because procedures can span buckets, there may be some uncertainty about 

how bucket hits are related to procedure hits. Per f o rmRepo rt attempts to deal with 
this uncertainty by classifying hits into several categories: 

Definite When a bucket is completely contained in a single 
procedure, all hits in the bucket are counted as definite 
hits in that procedure. 

Possible/Probable When a bucket is partially contained in several 
procedures, all hits in the bucket are counted as possible 
hits in each procedure; in addition, the hits in the 
bucket are counted as probable hits in a particular 
procedure, based on the amount of the bucket that is 
covered by the particular procedure. 

Please realize that the concept of probable hits is not intended to give an accurate 
statistical picture of the situation. Wh.at happens in practice is that buckets are 
frequently covered by two procedures, and almost all of the hits occur in one procedure or 
the other. The intent behind •possible and probable" hits is to give you some feeling for 
the accuracy of the resulting data. 

If the Pascal example TestPerf.p is modified to have a bucket size of 8, then the possible 
hits will be few relative to the definite hits. The exception is the u_oiv4 procedure, 
which will have zero definite hits, but sh.ares a bucket with % I_ MUL 4. In fact there are no 
divide operations in the sample program; therefore all hits apparently belonging to 
% I_ DIV 4 really belong to the multiply operations. 

If the percentage of definite hits becomes too low, you should con.sider reducing the 
requested bucket size. 

Implementation issues 

The performance tools have been designed to work "as is" for most comnx>n application, 
desk accessory, and driver runtime environments. However, because Macintosh h.as an 
open architecture, it is possible that actions taken or assumptions made by application 
code will conflict with the needs of the performance tools. This section discusses possible 
conflicts, and how to resolve them. 

468 MPW 3.0 Reference 



( 

·c: 

Locking the interrupt handler 

You must lock down both code and data for the performance tools while taking 
performance measurements. Code for the trap h3ndler must be locked do'"n because the 
timer interrupts occur asynchronously. Data for the counters must be locked down 
because handles caMot be assumed to be valid during interrupt processing. The data area 
for counters cannot be •grown• at interrupt time, because the heap may be inconsistent. 

Segmentation 

The code that must be locked down at execution time has been placed in segment "Main" 
and occupies about 1 kilobyte of space. This is because segment 'Main" is usually 
guaranteed not to be unloaded at run time. 

If your application's •Main" segment is too full to allow the performance tools to be 
linked correaly, then you may retarget the code in PerformLlb.o by using the Llb tool. 
However, your application must not have an -Unload all segments• routine in its idle 
procedure. One good segment to retarget to is "PerfMain", because this segment contains 
some of the other pieces of the performance tools. 

These MPW commands illustrate how to retarget the code in PerformLlb.o: 

Duplicate {Libraries}PerformLib.o temp 
Lib -o {Libraries}PerformLib.o -sn Main•PerfMain temp 
Delete temp 

The first command line creates a copy of PerformLlb.o in temp. The second line replaces 
the original Performl..ib.o with the output of Llb. The -sn option causes all code originally 
placed in segment "Main" to bC in segment "PerfMai.n". The third line deletes the file temp. 

pJrty CODE segments 

Because AS is oot valid at interrupt time, and there are no low meroory globals assigned to 
performance measurement, the interrupt routine stores some data values in its code 
space, including the pointer to the locked-down data. Thus, if your application uses 
checksums to detect code segments attacked by errors, the performance tools will cause 
erroneous checkrum failures. The easiest fix is simply not to checksum the "Main" 
segment (or whichever segment yoy choose) . 

.. 

CHAPTER 14 Performance-Measurement Tools 469 



Moveable code resources 

The code for the trap handler, and the data area for the counters, must be locked down 
during performance measurement. 

In counting "hits" in code resource segments, the performance interrupt routine checks 
that the handle to a measured resource is locked. If it is not locked, the resource is 
assumed to be "unloaded• and PC values are not checked for being within the resource. 

The petformance tools call StripAddre~~, among other A-traps. If you are using A-trap 
breaks in MacsBug (as with the ATHC commmd), you may get an A-trap from within the 
Performance Tool's interrupt handler, and MacsBug may state that the heap is corrupt 
The heap might not actually be corrupt, but simply inconsistent at interrupt time. 

' 

470 MPW 3.0 Reference 



( 

( "·. 
~ 

Appendix A Macintosh Programmer's 
Workshop Files 

THIS APPENDLX USI'S All OF TifE FILES PROVIDED WITH TiiE MACJhTOSH 

PROGRAMMER'S WORKSHOP 3.0. The files are listed as they appear on the 
distribution disks. (Volume names are shown in bold; directory names begir. :rnd 
end with a colon.) MPW Assembler, MPW Pascal, MPW C, and MPW C ... ~ are 
separate products. • 

Contents 

MPW 3.0 files 473 
Distribution disk MPW Installation Disk: 473 
Distribution disk MPWl: 473 
Distribution disk MPW2: 474 
Distribution disk MPW3: 475 
Distribution disk MPW4: 476 

MPW Assembler files 477 
Distribution disk MPW Assembler!: 477 
Distribution disk MPW Assembler2: 477 

MPW Pascal files 478 
Distribution disk MPW Pascall: 478 
Distribution disk MPW Pascal2: 479 

MPW C files 481 
Distribution disk MPW Cl: 481 
Distribution disk MPW C2: 482 

Hard disk configuration 484 



'P~E ~ ~g no+ f''.i+. 
(f. '1 <.._ 

,f ' 
l 



C' 

c\ 

MPW 3.0 files 

Distribution disk MPW Installation Disk: 

MPW Installation Disk: 

Outside Bug Reporter Application used to document bugs 

MPW Installation Dfsk:Installation Folder 

Backup 
Dolt 
error File 
'MPW Installer 
Stanup 
Worksheet 

Tool used by MPW Installer to copy files 
Script that shows each file copied 
File used for error redirection 
MPW Shell used for installation procedure 
Script that controls the installation 

Distribution disk MPWl: 

MPWl: 

'MPWS~ell' 
MPW.Help 
Quit 
Resume 
Stanup 
Suspend 
SysErrs.Err 
UserStartup 
Worksheet 

The MPW Shell program 
Command syntax descriptions (for Help command) 
Quit MPW script 
Script to resume MPW after executing an application 
Script ro initialize MPW Shell 
Script to suspend MPW ro run an application 
Indexed error message file (used by Shell and tools) . 
Customizable startup script called by Startup 
Worbheet contents saved from last session 

APPENDIX A Macintosh Programmer's Workshop Files 473 



Distribution dJsk MPW2: 

MPW:Z:Examples:Examples: 

AddMenus 
ChecklnActive 
CheckOutActive 
DerezPict 
Instructions 
Lookup 
'Startup, etc.' 
Seate 
't:nix Aliases' 

Add menu to MPW rrenu bar 
Check in the active window to Projector 
Check out the active window from Projector 
Derez a PICT data file 

MPW:Z:Examples:Projcctor Examples:Sample: 

ProjectorDB Projector database 

MPW2:Examples:Projcctor Examples:Sample:cOmmands: 

ProjectorDB Projector database 

MPW2:Examples:Projcctor Examples:Samplc: Utillties: 

· ProjectorDB Projector database 

MPW2:1ntcrfaces:Rlncludcs: 

Cmdo.r Commando graphic interface resources 
MPWTypes.r MPW-specific resource type definitions 
P ict.r Resource type definition for PICT 
SysTypes.r System resource type definitions 
Types.r Common resource type definitions , 

MPW2:1Jbnrics:llbraries: 

DRVRRuntime.o 
HyperXI.ib.o 
Interface.a 
ObjLib.o 
PerformLib.o 
Runtime.o 
SERO 
Stubs.o 
Too!Libs.o 

Driver runtime library 
Ubraries for Hypercard XCMD's and XFCN's 
Inside MaanlOsh intetf'ace library 
Object-oriented programming library 
Ubrary for performance-measurement tools 
Runtime library for Assembler and Pascal 
Serial driver resources 
Srub routines ~ make MPW tools smaller 
MPW tool libracy (spinning cursor, error manager) 

474 MPW 3.0 Reference 



C) 
, 

MPW2:ROM Maps: 

MacIIROM.map 
MacPlusROM.map 
M'lcSEROM.map 

MPW2:Scripts: 

BuildCommands 
BuildMenu 
BuildProgram 
CCvt 
Compare Files 
Compare Revisions 
Create Make 
Directory Me nu 
Do It 
Line 
MergeBranch 
OrphanFiles 
SetDirectory 
Transfert:KID 
UserVariables 

Automated build commands 
Generates menu for use with automated build commands 
Automated build 
Converts 2.0 C source to 3.0 
Compares two files side by side 
Compares two revisions of the same file 
Generates a makefile to build a program 
Generates Directory menu 
Highlights and executes a series of Shell commands 
Locates line number (useful with other tools and scripts) 
Merges a branch revision onto a project's trunk 
Removes Projector information from files 
Command to set current directory 
Move Projector information from one file to another 
Use Commando to set all user variables 

Distribution disk MPW3: 

MPW3:Tools: 

AboutBox 
Backup 
canon 
canon.Diet 
CCvtMxLdict 
CCvtUMx.dict 
Choose 
Commando 
Compare 
Count 
DeRez 
DumpCode 
Dump File 

• 

APPENDIX A Macintosh Programmer's Workshop Files i-; 



DumpObj 
Entab 
File Div 
GetErrorText 
GetfileName 
GetListltem 
Lib 

Distribution disk MPW4: 

MPW4:Tools: 

Link 
Make 
MakeErrorFile 
Matchlt 
PerformReport 
Print 
ProcNames 
Res Equal 
Rez 
RezDet 
Search 
SetPrivilege 
SetVersion 
Sort 
Translate 
Wherels 

476 MPW 3.0 Reference 



( 

MPW Assembler files 

Distribution disk MPW Assemblerl: 

MPW Asscmblcrl:Examples:AExamplcs 

Count.a 
Count.r 
FStUbs.a 
Instructions 
Makefile 
Memory.a 
Sample.a 
Sample.h 
Sample.incl .a 
Sample.make 
SampleMisc.a 
Sample.r 

MPW Assemblcrl:Tools 

Asm 

Distribution disk MPW Assembler2: 

MPW Asscmblcr2:1ntcrf2ccs:Alncludcs: 

ApplDeskBus.a 
ATalkEqu.a 
Fix Math.a 
FSEqu.a 
FSPrivatc.a 
Graf3DEqu.a 
HardwareEqu.a 
HyperXCmd.a 
IntEnv.a 
ObjMacros.a 
PackMacs.a 
PaletteEqu.a 
PickerEqu .a 
PrEqu.a 

APPENDIX A Macintosh Programmer's Workshop Files -i-:-:' 



PrintCallsEqu.a 
P rintTrapsEqu.a 
Private.a 
PrPrivate.a 
QuickEqu.a 
ROMEqu.a 
SANEMacs.a 
SANEMacs881.a 
ScriptEqu.a 
SCSIEqu.a 
ShutDownEqu.a 
Signal.a 
SlotEqu.a 
SonyEqu.a 
Sound.a 
SysEqu.a 
Sys Err.a 
TimeEqu.a 
ToolEqu.a 
Traps.a 
VideoEqu.a 

MPW Asscmblcr2:laterfaces:.AStructMacs: 

FlowCtiMacs.a 
ProgStrucMacs.a 
Sample.a 
Sample.r 

MPW Pascal files 

Distribution disk MPW Pascall: 

MPW Pascall:llbraries:Pllbraries: 

PasLib.o 
SANELib.o 
SANELib881.o 

478 MPW 3.0 Reference 

' 
,·( ... · r'l 

I 



( 

MPW Pascall:Tools: 

Pascal 
Pas Mat 
Pas Ref 

Distribution disk MPW Pascal2: 

MPW Pascal2:E.xamplcs:PE.xamples: 

EditCdev.make 
EditCdev.p 
EditCdev.r 
FSrubs.a 
Instructions 
Makefile 
Memory.p 
Memory.r 
ResEqual.p 
ResEqual.r 
Sample.h 
Sample.make 
Sample.p 
Sample.r 
Silly Balls.make 
SillyBalls.p 
TESample.h 
TESample.make 
TESample.p . 
TESample.r 
TESampleGlue.a 
TESampleGlue.a.o 
TestPerf.p 
TubeTest.make 
TubeTest.p 
TubeTestr 

MPW Pascal2:Intcrfaccs:Plntcrfaccs: 

Apple Talk. p 
Controls.p 
CursorCtl.p 
Desk.p 
DeskBus.p 

' 

APPENDIX A Macintosh Programmer's Workshop Files -t~ 



Devices.p 
DiaJogs.p 

· DisAsmLookUp.p 
Diskinit.p 
Disks.p 
ErrMgr.p 
Errors.p 
Events.p 
Files.p 
FixMath.p 
Fonts.p 
Graf3D.p 
HyperXCmd.p 
IntEnv.p 
Lists.p 
MacPrint.p 
Memory.p 
MemTypes.p 
Menus.p 
Notification. p 
Objintf.p 
OSEvents.p 
OSintf.p 
OSUtils.p 
Packages.p 
Packlntf.p 
PaletteMgr.p 
Palettes.p 
PasLiblntf.p 
Pe·rf.p 
Picker.p 
Pickerlntf.p · 
Printing.p 
PrintTraps.p 
Quickdraw.p 
Resources. p 
Retrace.p 
ROMDefs.p 
SANE.p 
Scrap.p 
Script.p 
SCSI.p 
SCSIIntf.p 
SegLoad.p 
Serial.p 
ShutDown.p 

480 MPW 3.0 Reference 



Signal.p 
Slots.p 
Sound.p 
Start. p 
Strings.p 
SysEqu.p 
TextEdit.p 
Timer.p 
Toollntf.p 
Too!Utils. p 
Traps.p 
Types.p 
Video.p 
Videointf. p 
Windows.p 

MPW C files 

Distribution disk MPW Cl: 

MPW Cl:llbraries:CUbraries: 

Cinterface. o 
CLib881.o 
Complex.o 
Complex881.o 
CRuntime.o 
CSANELib.o 
CSANELib881.o 
Math.a 
Math881.o 
StdCLib.o 

MPW Cl:Tools: 

c 
• 

APPENDIX A Macintosh Programmer's Work.5hop Files -i81 



Distribution dJsk MPW C2: 

MPW· C2:E.xamples:CExamples: 

Count.c 
Count.r 
EditCDEV.c 
EditCDev .make 
EditCdev.r 
FStubs.c 
Instructions 
Make File 
Memory.c 
Memory.r 
Sample.c 
Sample.h 
Sample.make 
Sample.r 
SillyBalls.c 
Silly Balls.make 
TESample.c 
TESample.h 
TESample.make 
TESample.r 
TESampleGlue.a 
TESampleGlue.a.o 
TestPerf.c 
TubeTest.c 
Tube Test. make 
TubeTest.r 

MPW Cl:lntetfaccs:Clncludes: 

AppleTalk.h 
Assen.h 
Complex.h 
Controls.h 
CType.h 
CursorCtl.h 
Oesk.h 
DeskBus.h 
Devices.h 
Dialogs.h 
OisAsmLookUp.h 
Diskinit.h 

482 MPW 3.0 Reference 

£. 
:"'=_; 

,,r 

.. 



(~ 

Disks.h 
ErrMgr.h 
ErrN'o.h 
Errors.h 
Events.h 
FCncJ.h 
Files.h 
FixMath.h 
Float.h 
Fonts.h 
Graf3D.h 
HyperXCmd.h 
IOCtl.h 
Limits.h 
Lists.h 
Locale.h 
Math.h 
Memory.h 
Menus.h 
Notification.h 

(0 OSEvents.h 
OSUtils.h 
Packages.h 
Palette.h 
Palettes.h 
Perf.h 
Picker.h 
Printing.h 
PrintTraps.h 
Quickdraw .h 
Resources.h 
Retrace.h 
ROMDefs.h 
SANE.h 
Scrap.h 
Script.h 
SCSI.h 
SegLoad.h 
Serial.h 
SetJmp.h 
ShutDown.h 
Signal.h 
Slots.h 
Sound.h 

.. 

c: Start.h 
StdArg.h 

APPENDIX A Macintosh Programmer's Workshop Files ;83 



StdDef.h 
StdIO.h 
StdLib.h 
String.h 
Strings.h 
SysEqu.h 
TextEdit.h 
Time.h 
Timer.h 
ToolUtils.h 
Traps.h 

. Types.h 
Values.h 
Video.h 
Windows.h 

Hard disk configuration 

HardDlsk:MPW: 

.:Examples: 
:Interfaces: 
:Libraries: 
':ROM Maps:' 
:Scripts: 
:Tools: 
'MPWSheU' 
MPW.Help 
Quit 
Resume 
Startup 
Suspend 
SysErrs.Err 
UserStartup 
Worksheet 

484 MPW 3.0 Reference 

(, 

\'-· 

• 



c 

HardDfsk:MPW:Examples: 

:AExamples: 
:CExamples: 
:Examples: 
:HyperXExamples: 
:PExamples: 
':Projector Examples:' 

HardDfsk:MPW:Examples:.AExamples: 

Count.a 
Count.r 
FStubs.a 
Instructions 
Makefile 
Memory.a 
Sample.a 
Sample.h 
Sample.incl.a 
Sample.make 
Sample.r 
SampleMisc.a 

HardDfsk:MPW:E.xamples:CE.xamples: 

Count.c 
Count.r 
EditCDEV.c 
EditCDev .make 
EditCdev.r 
FStubs.c 
Instructions 
Makefile 
Memory.c 
Meroory.r 

. Sample.c 
Sample.h 
Sample.make 
Sample.r 
SillyBalls.c 
SillyBalls.make 
TESample.c 
TESample.h 

• 

APPENDIX A Macintosh Programmer's Workshop Files -18; 



TESample .make 
TESample.r 
TESampleGlue.a 
TESampleGlue.a.o 
TestPerf.c 
TubeTest.c 
Tube Test.make 
TubeTesu 

HardDlsk:MPW:Examples:Examples: 

AddMenus 
ChecklnActive 
CheckOutActive 
DerezPict 
Instructions 
Lookup 
'Starrup, etc.' 
State 
'Unix Aliases' 

HardDlsk:MPW:Examplcs:HypcrXE.xamples: 

HardDlsk.:MPW:Examples:PExamples: 

EditCdev .make 
EditCdev.p 
EditCdev.r 
FSrubs.a 
Instructions 
Makefile 
Memory.p 
Memory.r 
ResEqual.p 
ResEqual.r 
Sample.h 
Sample.make 
Sample.p 
Sample.r 
Silly Balls.make 
Silly Balls. p 
TESample.h 
TESample.make 
TESample.p 
TESample.r 
TESampleGlue.a 

~ MPW 3.0 Reference 



.. (· 

C' 
•' 

TESampleGlue.a.o 
TestPerf.p 
Tube Test.make 
TubeTest.p 
TubeTest.r 

HardDisk:MPW:Examplcs:Projector Examples: 

:Sample: 

Hard.Disk:MPW:Examples:Projcctor Examples:Sample: 

:Commands: 
: Utilities: 
ProjectorDB 

Hard.Disk:MPW:Examples:Projector Examplcs:Sample:Commands: 

ProjectorDB 

HardDisk:MPW:Examples:Projector Examples:Sample:Utilities: 

ProjectorDB 

HardDisk:MPW:l.nterfaces: 

:Alncludes: 
:AStructMacs: 
:Cincludes: 
:P Ince rfaces: 
:Rlncludes: 

HardDisk:MPW:lnterfaccs:Alncludcs: 

ApplDeskBus.a 
ATalkEqu.a 
FixMath.a 
FSEqu.a 
PS Private.a 
Graf3DEqu.a 
HardwareEqu.a 
HyperXCmd.a 
IntEnv.a 
ObjMacros.a 
PackMacs.a 
PaletteEqu.a 
PickerEqu.a 
PrEqu.a 

.. 

APPENDIX A Macintosh Programmer's Workshop Files ~ 



PrintCallsEqu.a 
PrintTrapsEqu.a 
Private.a 
Pr Private.a 
QuickEqu.a 
ROMEqu.a 
SANEMacs.a 
SANEMacs881.a 
ScriptEqu.a 
SCSIEqu.a 
ShutDownEqu.a 
Signal.a 
SlotEqu.a 
SonyEqu.a 
Sound.a 
SysEqu.a 
Sys Err.a 
TimeEqu.a 
Too!Equ.a 
Traps.a 
VideoEqu.a 

HardDfsk:MPW:Intcrfaccs:.AStructMacs: 

FlowCtlMacs.a 
ProgStrucMacs.a 
Sample.a 
Sample.r 

HardDfsk:MPW:Intcrfaccs:Cincludcs: 

AppleTalk.h 
Assert.h 
Complex.h 
Controls.h 
CType.h 
CursorCtl.h 
Desk.h 
OeskBus.h 
Devices.h 
Dialogs.h 
DisAsml.ookUp.h 
Disklnit.h 
Disks.h 
ErrMgr.h 
ErrNo.h 

488 MPW 3.0 Reference 

' 



( 
Errors.h 
Events.h 
FCntl.h 
Fi1es.h 
FixMath.h 
Float.h 
Fonts.h 
Graf3D.h 
HyperXCmd.h 
IOCtl.h 
Limits.h 
Lists.h 
Locale.h 
Math.h 
Memory.h 
Menus:h 
Notification.h 
OSEvents.h 
OSUtils.h 
Packages.h 

( 
Palette.h 
Palettes.h 
Perf.h 
Picker.h 
Printing.h 
PrintTraps.h 
Quickdraw.h 
Resources.h 
Retrace.h 
ROMDefs.h 
SANE.h 
Scrap.h 
Script.h 
SCSI.h 
SegLoad.h 
Serial.h 
SetJmp.h 
ShutDown.h 
Signal.h 
Slots.h 
Sound.h 
Start.h 
StdArg.h 
StdDef.h 4 

c: StdIO.h .. 
StdLib.h 

APPENDIX A Macincosh Progranuners Workshop Files ~ 



String.h 
Strings.h . 
SysEqu.h 
TextEdit.h 
Time.h 
Timer.h 
ToolUtils.h 
Traps.h 
Types.h 
Values.h 

. Video.h 
Windows.h 

Har<iDisk:MPW:Interfaces:Plnterfaces: 

AppleTa!k. p 
Controls.p 
CursorCt!.p 
Desk.p 
DeskBus.p 
Devices.p 
Dialogs.p 
DisAsmLookU p. p 
Disklnit.p 
Disks.p 
ErrMgr.p 
Errors.p 
Events.p 
Files.p 
FixMath.p 
Fonts.p 
Graf30.p 
HyperXCmd.p 
IntEnv.p 
Lists.p 
MacPrint.p 
Memory.p 
MemTypes.p 
Menus.p 
Notification.p 
Objlntf.p 
OSEvents.p 
OSintf.p 
OSUtils.p 
Packages.p 

490 MPW 3.0 Reference 

• 

I 



(-

c:: 

Packlntf.p 
PaletteMgr.p 
Palettes.p 
PasLibintf.p 
Perf.p 
Picker.p 
Pickerlntf.p 
Printing.p 
PrintTraps.p 
Quickdraw.p 
Resources.p 
Retrace.p 
ROMDefs.p 
SANE.p 
Scrap.p 
Script.p 
SCSI.p 
SCSIIntf.p 
Segload.p 
Serial.p 
ShutDown.p 
Signal.p 
Slots.p 
Sound.p 
Start.p 
Strings.p 
SysEqu.p 
TextEdit.p 
Tirner.p 
Toollntf.p 
ToolUtils.p 
Traps.p 
Types.p 
Video.p 
Videolntf.p 
Windows.p 

HardDbk:MPW:Interfaces:Rincludes: 

Cmdo.r 
MPWI'ypes.r 
Pict.r 
SysTypes.r 
Types.r .. 

.. 

APPENDIX A Macintosh Programmer's Work.shop Files i91 



HardDfsk:MPW:llbr.uies: 

~cubraries: 
:Libraries: 
:PLlbraries: 

HarclDlsk:MPW:llbr.uies:Cllbraries: 

Clnterface.o 
CLlb881.o 
Complex.a 
Complex881.o 
CRuntime.o 
CSANELib.o 
CSANELib881.o 
Math.o 
Math881.o 
StdCLib.o 

HardDfsk:MPW:llbraries:llbraries: 

DRVRRuntime.o 
HyperXLlb.o 
Interface.o 
ObjLib.o 
PerformLib.o 
Runtime.o 
SERO 
Stubs.o 
ToolLibs.o 

HardDlsk:MPW:Ubraries:Pllbraries: 

PasLib.o 
SANELib.o 
SANELib881.o 

HardDlsk:MPW:llOM Maps: 

MacIIROM.map 
MacPlusROM.map 
MacSEROM.map 

492 MPW 3.0 Reference 

.. 



(" 
Hard.Disk:MPW:Scripts: 

BuildCorrunands 
BuildMenu 
BuildProgram 
C(vt 
Compare Files 
CompareRevisions 
CPI us 
Create Make 
Directory Menu 
Dolt 
Llne 
Merge Branch 
OrphanFiles 
SetDirectory 
TransferCKID 
UserV ari.ables 

HardDisk:MPW:Tools: 

( 
AboutBox 
Asm 
Backup 
c 
Canon 
Canon.Diet 
CCvtMxL.dict 
CCvtUMx.dict 
CFront 
Choose 
Corrunando 
Compare 
Count 
DeRez 
DumpCode 
DumpFde 
DumpObj 
En tab 
File Div 
GetErrorText 
GetFileName 
Getlistltem 
Lib 
Link 

(/ Make ' 

APPENDIX A Macintosh Programmer's Workshop Files 493 



•-'Mat 
Pas Ref 
PerformReport 
Prine 
ProcNames 
ResEquaJ 
Rez 
RezDec 
Search 
SetPrivUege 
SetVersion 
Sore 
Translate 
Where Is 

494 MPw 3.0 Reference 

' 

.. 



Appendix B Summary of Selections and 
Regular Expressions 

THlS APPENDOC FORMAllY DEFINES raE SYNI"AX OP SELECI10NS AND REGLlAR 
EXPR!SSIONS as used in the MPW Shell command language. It also lists the Opuon­
key ch.a.racters used in selections and regular expressions. For examples of L~eir 
use, see Chapter 6. • 

Conte11ts 

Selections 497 
Regular expressions 498 
Option-key characters 500 

' 

495 





Selections 

Selections are passed as arguments to the editing commands. They're defined in 
Table E-1. 

• Table B-1 Selections 

selection (specifics a selection or insertion point) 

§ Current selection 
name Identifies marked text 
number line number 
I number number lines after the end of the current selection 
i number number lines before the start of the current selection 
position Position (defined below) 
pattern Pattern (defined below) 
(selection) Selection grouping 
selection : selection Both selections and everything in between 

position (specifics an Insertion point) 
• Position before the first character in the file 
- Position after the last character in the file 
6 selection Position before the first character of selection 
selection 6 Position after the last character of selection 
selection ! number Position number characters after the end of selection 
selection 1 number Position number characters before the beginning of 

selection 

pattern (specifies characters to be m2tched) 
I enlireRegularF.:tpr I Regular expressiorr-search forward (see Table B-2) 
\ entireRegularF.:tpr \ Regular expressiorr-search backward 

This is the precedence of the selection operators, from highest to lowest: 

I and\ 
( ) 
~ 
! and.I 

.. 

APPENDIX B Summary of Selections and Regular Expressions 4'!7 



Regular expressions 

Regular expressions are used for pattern matching within/ ... / and\ ... \. (See •pattern' in 
Table S.1.) Regular expressions are defined in Table B-2. 

• Table B-2 Regular expressions 

entircRegularExpr 
• regular&pr 
regularExpr oo 

regularExpr 

regularExpr 
simpleE.xpr 
taggedf;pr 
literal 
regularExpr1 regularE.:cpr, 

simpleExpr 
( regularF.xpr) 
characterF.xpr 
simpleExpr* 
simpleExpr + 
simpleE:r.pr «number ,. 
simple&:.pr «number,,. 
simpleE:r.pr c 'i , n-z ,. 

taggedExpr 
( regularE:rpr)~ digit 

lltenl 
'string 
"Sirin( 

498 MPW 3.0 Reference 

Regular expression at beginning of line 
Regular expression at end of line 
Regular expression 

Untagged regular expression 
Tagged regular expression 
Quoted string literal 
regularF..xpr1 followed by regularExpr1 

Regular expression grouping 
Single<haracter regular expression 
Regular expression zero or more times 
Regular expression one or roore times 
Regular expression number times 
Regular expression at least number times 
Regular expression at least 'i times and at most n-z times 

The string matched by the reguJarF.:tpr can be 
referred to as 'digit (where 0 Sdtgil C!: 9) 

F.ach character in string is taken literally 
F.ach character in string is taken liter.illy, except for a, 

{ I, and • .. : substitutions 

(Continued) 



( 

• Table B-2 (Continued) 

charactcrExpr 
character 
()character 
? -
[ characterlist] 
[ -. characterlist] 

characterlJst 
1 

character 
characterlist character 
ch.aracter1 - ch.aracter2 

Regular expressions 

Character (unless it's listed as special in the following table) 
a defeats special meaning of following character 
Any character except Return 
Any string not containing a Rerum, including the null 

string (this is the same as ?*) 
Any character in the list 
Any character not in the list 

"]" first in list represents itself 
·-" first in list represents itself 
Character 
List of characters 
Character range from ch.aracter1 to character2 inclusive 

• Note: The regular expression operators 
? - [. .. ] * + « ... » 
are also used in filename generation. 

The following characters have special meanings: 

a Always special, except with.in I ••• I 

? • * + [ « () ' w Special everywhere except with.in [ ... ], ' ... ', and w ... w 

~ Special only after a right parenthesis character, ) 
• Special as first character of entire regular expression 
oo Special as last character of entire regular expression 
I \ Special if used to delimit regular ·expression 
{ } Special everywhere except within ' .. .' 
., Special immediately following left bracket [ 

Special within brackets except immediately following left bracket [ 

The operators are listed below beginning with tho.5e with the highest precedence. 

( ) 

? - * + [ 1 « » ~ 

concatenation 
• 

e CIO 

APPENDIX B Summary of Selections and Regular Expressions 499 



Option-key characters 

The following Option-key characters are used in selections and regular expressions. 

• Note: Option-key characters are not case-sensitive. Although upper case leaers are 
shown in the text of this reference for readability (the number 1 and lower case L look 
the same), you can use lower case for all Option-letrer characters. 

Character Key MC3lling 
§ Option-6 Current selection character 
a Option-0 EsClpe character - Option-X Any string 
• Option-8 Beginning of line or ftle - Option-5 End of line or file 

' Option-I Minus number of lines or spaces 
~ Option-] Position 
® Option-R Tag operator 
(( Option-\ Encloses number of repetitions 
» Option-Shift·\ Encloses number of repetitions 
.., Option-L Character list modifier 

500 MPW 3.0 Reference 



(_ 

AppendL~ C Special Operators 

HERE IS A BRIEF SUMMARY OP 1HE SPECIAL OPERATORS USED IN MPW 3.0. For 
characters that are pa.rt of the extended character set, Option-key combinations 
are al.s-0 given. For derails on the action of these operators, see Chapters 5 and 6. 
See Appendix B for a summary of selections and regular expressions. • 

• 
• 

501 



; 



(~ 

( 

• Table C·l 

Ope:;tor 

Shell char3cter 
space 
tab 
return 

I 
&& 
I I 
(commands) 
t comment 
a char 
'chars• 
"Chars"' 

!chars/ 

\cham 

{variablei 
'command' 

1/0 rcdircctfon 

MPW operators 

Separates words 
Separates words 
Separates commands 
Separates commands 
Pipe-separates commands, piping output to input 
•And" -separates commands, executing second if first succeeds 
"Or"-separates commands, executing second if first fails 
Group commands 
Ignore comment 
E.scape-literalizes char; an, at, and af are special (a Ls Option-D) 
"Hard quotation marks"-literalize chars 
"Soft quotation marks"-literalize chars except for{ ... ) (variable 

substitution), ' .. : (command substitution), and a (escape) 
Regular expression quotes-literalize I chars/ except for !. .. I, · ... ', and a 
Ellipsis (Option-semicolon; not three periods) following a 
corrunand invokes Commando 
Regular expression quotation marks-literalize \chars\ except for 

{ ... }, • .. :,and a 
Sub.stitute variable 
Substitute output of command 

Note: Filename 1' created if it does not exist. 
<filename Standard input is taken from filename 
> fi1ename Redirect standard output, replacing contents of filename 
»filename Redirect standard output, appending to filename 
~filename Redirect diagnostics, replacing contents of filename (~ is Option->) 
~filenatM Redirect diagnostics, appending to filename (~is Option->) 
I. filename Redirect both standard output and diagnostics, 

replacing contents of filename CI. is Option-W) 
I.I. filename Redirect both standard output and diagnostics 

appending to filename CI. is Option-W) 
.. 

(Continued) 

APPENDIX C Special Operators 503 



(f~ ) ,, 
~, 

• Table C-1 (Continued) MPW operators 

• Operator !ok:ianiill 

Shell numbers 
$ [ 0-9 a-f ]+ Hexadecimal number 
Ox [ 0-9 a-f ]+ Hexadecimal number 
0 (0-7]+ Octal number 
Ob[0-1]+ Binary number 

Shell operators (by precedence) 
(expr) Expression grouping 

(unary) arithmetic negation 
(unary) bitwise negation 

NOT ..., (unary) logical negation(..., is Option-L) 
... Multiplication 
+ DIV Division ( + is Option-/) 
% MOD Modulus 
+ Addition 

Subtraction /_,_,.,.-

<< Shift left \"'-........ 

>> Shift right (logical) 
< Less than 
<• s Less than or equal (S is Option-<) 
> Greater than 
>• ~ Greater than or equal(~ is Option->) 
•• Equal 
!• <> Not equal ( ~ is Option--) 
·- Equal to a pattern 
!- Not equal to a pattern 
& Bitwise AND 

" Bitwise XOR 
I Bitwise OR 
&& AND Logical ANO 
I I OR Logical OR 

' 

S04 MPW 3.0 Reference 



(~ 

( 

Appendix D Resource Description Syntax 

THIS APPENDIX DEmIT.S THE FORM OF RESOURCE DF.SCRIPTION FILES used by the 
MPW 3.0 resource compiler (Rez) and decompiler (DeRez). See Chapter 11 for 
information on how to use these tools. Each tool is defined in detail along with 
examples in Part II. • 

Contents 

Syntax notation 507 
Structure of a resource description file 508 

Include-include resources from another file 509 
Read-read data as a resource 509 
Data-specify raw data 509 
Type-declare resource type 510 

Data-type 510 
Fill-type 511 
Alignment 511 
Switch-type 511 
Amy-type 511 

Resource-specify resource data 512 
Change-change resource vital information 512 
Delete-delete resource(s) 512 

Labels 512 
Syntax 512 

Preprocessor directives 513 
Syntax 513 

Identifiers 513 
Token delimiters 514 
Compound types 514 
Expres.sions 514 
Nurri>ers 515 
Variables and functions 516 
Strings 517. 





Syntax notation 

The following syntax notation is used in this appendix: 

terminal 
nonterminal 
A I B I C 

{...)? 
{ ... )+ 

!. .. }* 
{...)n 

Must be entered as shown 
May be replaced by anything matching its definition 
Either A or B or C (vertical stacking also indicates an either/or 

choice) 
Enclosed element is optional, but may not be repeated 
Enclo.sed element may be repeated one or more times (not 

optional) 
Enclosed element may be repeated zero or more times 
Enclosed element must be repeated n times 

If one of the synr.ax elements must be included literally, it is shown enclosed in single 
quotation marks; for example, 

{ ' { ' data-string ' } ' l ? 

indicates that a data-string is optional, and must be enclosed in braces, if included. 
Otherwise, all punctuation(; , ' " s -) must be entered as shov.n. 

Note that the elli~is (three closely spaced periods) within braces signifies only some 
unspecified element on which an operation is to be performed. An actual ellipsis in a 
command line (Option-semicolon) would invoke a command's Commando dialogs. 

Note that the semicolon is a statement terminator; every statement must be terminated 
by a semicolon. In a resource type definition, semicolons can be liberally sprinkled 
without ill effect. In a resource specification (where the actual resource data is 
initialized), commas are used everywhere to separate ite~. including array elements. 

The nonterminal symbols used are fully defined under 'Syntax" at the end of this 
appendix. 

• 

APPENDIX D Resource Description Syntax W7 



Structure of a resource description file 

The MPW resource compiler input file consists of any number of statements, where a 
statement may be any of the foUowing: 

include Include resources from another rtle. 

read 

data 

type 

resource 

chanqe 

delete 

Read the data fork of a file and include it as a resource. 

Specify raw data. 

Declare resource type descriptions for subsequent re.source 
statements. 

Specify data for a resource type declared in a previous type 
statement. 

Change the type, ID, name, or attributes of existing resources. 

Delete existing resources. 

501 MPW 3.0 Reference 

(_, 

(_ ' 



(. 

Include-include resources from another file 

include file I include-selector)? 

include-selector::• 

file::• 

ID-specifier::• 

ID-range ::• 

resource-specifier::• -

resource-ID ::• 

resource-name ::• 

resource-attribuJes ::• 

resource-numeric-attributes::• 

resource-literal-attributes ::• 

Read read data as a resource 

resource-l)Pe{ '<'ID-specifier')'}? 
not resource-type 
resource-l)Pel as resource-l)Pe2 
resource-l)Pe 1 ' <' ID-specifier 'l , 

as resoun:e-l)Pe2' (' resource-specifier 'l' 

string 

ID-range 
resource-name 

ID {: J!J,,? 

resource-ID { , resource-naml )? ( resource-attribuies I? 

word-cpression 

string 

{resource-literal-attributes}• I resource-numeric-attributes 

,IJyte~n 

{ , sysheap I , appheap }? 
{ , purgeable I , nonpurgeable )? 
{ , locked I , unlocked}? 
{ , preload I , nonpreload )? 

read n?SOUtT:e-t}Pe' <'resource-specifier'>' ftk ; 

Data-tpedfy raw data 

data resoun:e-l)Pe' <'resource-specifier'>' 'I' data-string { ; }? 'l' 

· APPENDIX D Resource Description Syntax 509 



Type-declare resource type 

type res-ource-type {'('ID-range'>'}?' I' { !label ':'I ' type-statement ;} * 'l' 
resource-tjpe ::• 

type-statement::• 

label::• 

Data-type 

lon~~re.ssion 

data-type 
fill-type 
alignment 
switch-type 
array-type 

identifier 

daJa-type :: • data-type-specif.er ( symbolic-declaration I - dec!aration-co11Stant )? 

data-type-specifier::• char 

length::• 

numeric-type-specifier::• 

radix::• 

numeric-type::• 

symbolic-declaration ::• 

510 MPW 3.0 Reference 

string!'[' length']' I? 
pstring('[' length'J'l? 
est ring {'('length 1 ] 1 l? 
w:string {1' length']')? 
numeric-type-specif U!r 

point 

rect 

boolean 

I unsigned I?! radix)? numeric-type 

binary 

octal 

decimal 
hex 
literal 

byte 

integer 
longint 
bit:string '[' length']' 

range-block { , range-block}* 



( 

( 

( '.' 
/ 

declaration-constant::• 

Fill-type 

fill-type ::• 

fill-size ::• 

Alignment 

alignment::• 

align-size::• 

Switch-type 

switch-type ::• 

switch-body : : • 

case-name::• 

case-body::• 

key-constant-statement : : • 

Amly-type 

amr;-type : :• 

array-specifier::• 

array-name ::• 

type-body ::• 

er:pression 
point-constant 
rect-constant 
string 

filljill-size { 'c' expression 'J' J? 

bit I nibble I byte I word I long 

align align-size 

nibble I byte I word I long 

SW it ch c (.switch-body c} I 

{case case-name: case-body)+ 

identifier 

{type-statement; )* key-constant-statement ; { type-staJ.ement ; )* 

key data-type-specifier - declaration-constant 

{wide J? array {array-specifier)? type-lxxiy 

array-name 
'('~]' 

identifier 

c { , { type-statement ; ) * ' } , 

APPENDIX D Resource Description Syntax 511 



Resource-specify resource data 

resource resource-type'<' resource-specifier'>' data-body ; 

data-body ::• · ' {' { data-state111em { , dato.-statem!Jtll )"" )' '}' 

data-statement::• 

switch-data::• 

array-data::• 

array-eiemenl ::• 

e:r:pression 
point-constant 
rect-constant 
string 
identifier 
SU/itch-data 
array-dala 

case-name data-body 

I {I ( array-element { I array-element}* }? I} I 

'{' ( array element; l • 'I' 

{ data-sta:ement { I data-statement }* }? 

Change-change resource vital information 

· chanqe resource-type { '(' ID-specifier 'Y }? to resource-type2 '(' resource-specifier')' ; 

Delete-ddete resource(s) 

delete resource-type{ ·r ID-specifier')'}?; 

Labels 

Labels support some of the irore compliat.ed resources such as • NFNT • and color 
Quicklmw resoorces. Use labels within a resource type declaration to alculate offsets 
and permit accessing of data at the labels. 

Syntax 
laD9l : : • characeer { alphanum 1,• • : • 
characeer ::• '-' I A I B I c _ , 
nurr.ber : :• 0 I l I 2 I 3 I 4 I 5 t 6 I 7 I 8 I 9 
a:phanum ::• character t r.um.ber 

SU MPW 3.0 Reference 

,(~ I 
/, 

~ 



( 

Preprocessor directives 

These preprocessor directives are available: 

tdefine idemifier! define-string}? 
tundef identifier 
ti f prr!processor-e;r:pr 
teli f preprocessor-ecpr 
tehe 

tendif 
ti f def identifier 
#ifndef identifier 
tprintf (string{, [ ~s.slOn I string])•) 

Preprocessor-expr is the same as expression with the following additional expressions: 

defined '<'identifier'>' 
defined identifier 

Syntax 

This section defines the nonterminal symbols used in the previous sections. 

Identifiers 

• An idemifter may consist of letters (A-Z, a-z), digits (0-9), or the underscore 
charaaer ( _ ). 

• Identif11:1S may not start with a digit; otherwise any mix of letters, digits, and 
undeiscotcs is acceptable. 

• Identifiers are not case sensitive. 

• An identifier may be of any length. 

APPENDIX D Resource Description Syntax 513 



Token delimiters 

token-delimiter :: • 

comment::• 

Compound types 

point-constant::• 
rect-constant ::• 

Expressions 

bit-e:qJre:SSian ::• 
byte~n::• 
word-e:x:pression ::• 
long-e:r:pression ::• 

e:tpression ::• 

514 MPW 3.0 Reference 

{ space I tab I newline I comment}+ 

'/*' {printing-chara-:ter}* '* !' 
11 { pri~;zs1,g-characte; }"' newline 

I { J ex:pressicn t ex:pressicn I ) I 

' { 'e:xpressicn , e:tpression , e:ipressiOn , expression ' l ' 

ex:pressicn 
ex:pressicn 
ex:pressicn 
ex:pressicn 

integer-constant 
literal-constant 
numeric-variable 
system-function 
expreSS'ion 
label 
- expression 
- e:r:pression 
! expression 
'<: expreSS'ion 'Y 
e:rpressiOn >> o:pression 
e:t:presrJcn << o:pression 
~n /I. o:pression 
e:xpres;s1on '11' ex:pressicn 
e:t:presrJcn " ex:pressicn 
e:xprmon . , . expression 
expression ' ex:pressicn 
ex:pressicn !• e:t:presrJcn 
e:xpressicn -- e:r;pression 

• 
e:rpressiO'I >• ex:pressicn 
ex:pressicn <• e:r:pression 

,-',,...,..-.--

(:' 



( 

systemfunction ::• 

Numbers 

integer-constanl :: 111 

decimal-constant ::• 
octal-constant::• 
hexadecimal-constant ::• 
binary-constant::• 

decimal-marker ::• 
hex-marker::• 
binary-marker::• 

octal-digil ::• 
hex-digit::• 

binary-digit ::• 

literal-am.slant::• 

e:i:pression > e.xpresston 
e:i:pression < expression 
e:i:pression e.xpression 
e:i:pression + e.xpression 
exp; e..\lc:' * e:t.prr:ssi'Jn 
e:i:pression I e.xpresston 
e:i:pression % e.xpression 

SScountof '(' am:iy-name'>' 
SSpacked~ize ~· StartO.ffiet, RowBytes, RowCounl ')' 

d.ecimai-constant 
octal-constant 
binary-constant 
hexadecimal-constant 

nonzero-digit { digit}* 
0 { octal-digit)* 
hex-marker ( hex-digit )+ 
binary-marker { binary-digit)+ 

Od I OD 

Ox I ox I S 
Ob I OB 

011121314151617 
01112131415161718191 
AlslclolEIFI 
alblcldlelf 
Oil 

t { character}* I 

APPENDIX D Resource Description Syntax 515 



Variables and functions 

string-variable::• 

numeric-variable ::• 

516 MPW 3.0 Reference 

$$Version 

SSOate 
$$Time 
$$Name 
SS Shell' ('"Shell-variabfe.namr'>' 
$$Resource' ('jile, resource-id, resourceName-or-IDl' 
s $Fo%1Nlt (string { , [ e:q7reSSion I string 1} • ) 

resourceName-or-lD ::• 

SS Hour 
$$Minute 
SS Second 
$$Year 
$$Month 
$$Cay 
$$Weekday 
$$Type 
$SID 
$$Attributes 
SSResoureeSize 

resource-id 
resource-name 

SSBitField (expression, expression, expression) 
$$Byte (expression) 
SSLonq (expression) 
SSPaekedSize (expression, expression, expression> 
$$Word (expression) 

.. 



( 

<· 

Strings 

string ::• 

simple-string ::• 

hex-string ::• 

character :: • 

escape-character::• 

escape-code::• 

character-escape-code::• 

numeric~cape-code ::• 

simple-string 
hex-string 
.»""1 .• -.;;ari.ab·~ .... 
string string 

ft { character J * ft 
$ft { hex-digit ha-digit )* ft 

printing-character I escape-character 

\ escape-code 
character-escape-code I numeric~cape-code 

nltlblrlflvl?l\l 1 I" 

{ octal-digit 13 
.decimal-marker{ decimal-digit )3 
hex-marker{ Im-digit )2 
binary-marker { binary-digit 18 

• 
• 

APPENDIX D Resource Description Syntax 517 





( 

c 

Appendix E File Types, Creat.ors, and Suffixes 

Cont nu 
File types and creators 521 
File suffixes 521 

Text files 522 
Object files 522 
Dara files 522 

.. 
• 

519 



. I 

t 



( 

( 

File types and creators 

Table E-1 lists MPW file types and creators. 

• Note: The file type 'OBJ ' actually contains a space before the do.sing single 
quotation mark. Likewise, the creator 'MPs ' has a space before its closing 
quotation mark. 

II Table lE-1 File types and creators 

rue Type Creator 

MPWShell 'APPL' 'MPS I (MPSspace) 
Tools 'MPST' 'MPS ' 
Text files 'TEXT' 'MPS ' 
Object files 'OBJ ' 'MPS ' 
Assembler load/dump 'DMPA' 'MPS ' 
C load/dump 'DMPC' 'MPS I 

Pascal load/dump 'DMPP' 'MPS I 

ProjectorDB 'MPSP' 'MPS ' 
SADE 'APPL' 'sade' 
SADE text files 'TEXT' 'sade' 
SADE symbol files 'MPSY' 'sade' 
SADE symbol files .sym 'sade' 

File suffixes 

The following sections define file suffix conventions . 

• 
• 

APPENDIX E File Types, Creators, and Suffixes 521 



Text files 

name.a Assembly-language source file 
name.a.1st As.sembler listing file 
name.c C or C++ source file 
name.cp C ++ source file 
name.h C header file 
name.map Unker map 
name. p Pascal source file 
name.r Resource descripaon file (resource compiler (Rez) input) 

Text ftles are identified by their file type ('TEXT•) rather than by a special suffix. Several 
applications (including MacWrite, MDS Edit, and the MPW Shell) can create and edit files 
of type • TEXT • . The creator • MP s ' indicates to the Finder that the MPW Shell is the 
application to launch when a text file is opened. 

Object mes 

name.a.a 
name.p.o 

. name.c.o 
name.o 

Object file created by the assembler 
Object file created by the MPW Pascal Compiler 
Object file created by the MPW C Compiler 
Object file (library) created by Ub; object files shipped with MPW 

Compilers add the suffix • .o" to the source file name to construct the object file name. 
The language suffix is left in the name in order to prevent name conflicts for program.5 
whose components are written in several langua&-es. (For example, a program might have 
source files MacGismo.a and MacGismo.c and object files MacGismo.a.o and 
MacGismo.c.o.) 

Data files 

ProjectorDB 
name.SYM 

Dmbase file created by Projector 
Symbolic information file created by the linker 

The linker adds the suffex • .SYM" to the output filename in response to the -sym option . 

.. 
.. 

522 MPW 3.0 Reference 



Appendix F Tools Libraries 

TuE MPW TOOLS IJBRARY, FOUND IN TOOL.L!BS.O, INCLUDES PROCEDL'RE.5 :\:\0 

HE.ADER Fl1.E.5 to 

• control the MPW rotating beach ball cursor 

• retrieve the text of Macintosh Operating System error messages 
from the MPW error message file 

• dissassemble MC68xxx machine code 

MPW Assembly language programmers can use either MPW Pascal or :V1PW C calls 
to all of these routines. Therefore, only the Pascal and C calling convenuons are 
shown here. (However, you will find special notes for Assembler users.) • 

Contents 

Animated cursor control routines 525 
Cursor control routines-MPW Pascal 525 
Cursor control routines-MPW C 525 
The InitCursorCtl procedure 526 
The Show_ Cursor procedure 5 27 
The Hide_Cursor procedure 528 
The RotateCursor procedure 529 
The SpinCursor procedure 529 

Error Mes.sage File manager 530 
Error Manager-MPW Pascal 530 
Error Manager-MPW C 530 
The InitErrMgr procedure 531 
The GerSysErrText procedure 532 
The GetToolErrText procedure 533 
The AddErrlnsert procedure 534 
The Close.ErrMgr function 534 

• 



Disassembler Lookup routines 535 
DisAsmLookUp.p-MPW Pascal 535 
DisAsmLookUp.h-MPW C 535 
Using the Disassembler 536 

The InitLookup procedure 541 
The Lookup procedure 542 
The I.ookupTrapName procedure 542 
The ModifyOperand procedure 543 
The validMacsBugSymbol function 543 
The endOfModule function 545 
The showMacsBugSymbol function 545 

.. 
.. 

524 MPW 3.0 Reference 

tr••) 
\_ 



Animated cursor control routines 

Five prc•:i>durc:s in the MPW Tools Library let you control the appearance and action of 
.the ,\P'' . .::.F.:i-'.'.lr. Tne rotating beach b<ill cursor says "I am currently pro~essine.n These 
routines all use Pascal calling conventions and Pascal-style strings. 

• No~: Spinning the cursor allows your tool to operate in the background under 
MultiFinder. 

Cursor control routlnes-MPW Pascal 

To access the cursor control unit in MPW Pascal, do the following: 

• Inciude these statements in your source text: 

USES {SU MemTypes.p} MemTypes, 
!SU CursorCtl.p} CursorCtl; 

The us Es clause and the su compiler directive are described in the MPW 3.0 Pascal 
Reference. 

• Un.le your compilation with the file Toollibs.o. 

Cursor control routines-MPW C 

The MPW C header file CursotCtl.h provides interfaces to procedures in the MPW Tools 
library that let you control the appearance and action of the cursor. link th.is file with the 
file ToolUbs.o. 

To ace~ the cursor control unit in MPW C, include this statement in your source text: 

#include <CursorCtl.h> 

" 

APPENDIX F Tools Libraries 525 



The lnitCursotCtl procedure 

The InitCursorCtl procedure initializes the CursorCtl unit Call this procedure once 
ii prior to oiling the P.otateCursor or SpinCur.sor procedures described later in this 
... appendix. Note that Ini tCursorCtl doesn't need to be called if you use only 

Hide_ Cursor and Show_Cursor. 

If the parameter NewCu~rsis NIL, InitCursorCt.l loads in the 'acur' resource and 
the •CURS • resources specified by the • acur' resource ID. If any of the resources 
cannot be loaded, the cursor will not be changed. The •a cur• resource is assumed to be 
either in the currently running tool or application or the MPW 3.0 Shell for a tool or in the 
System file. The •a cur• resource ID must be 0 for a tool or application, 1 for the Shell, 
and 2 for the System file (assuming that cursors are in the System file). 

If NewCursors is not NIL, it is assumed to be a handle to an •a cur• -fonnatted resource 
designated by the caller and uses it instead of executing the GetResource procedure on 
'acur'. 

• Note: If you call RotateCursor or SpinCursor without first calling 
InitCursorCtl, then RotateCursor and SpinCursor do the work of 
InitCursor the first time you make the call. However, it is preferable to call 
InitCursorCtl first because of one ~sible disadvantage: The resource memory 
allocated may cause fragmentation to occur in the application. Calling 
InitCur:sorCtl has the advantage of allocating memory at a time you specify. 

CursorCtl declares acurHand.le as a handle to 'acur • resources of type RECORD as 
follows: 

TYl?E 
acurHand.le • Aacurl?tr: 
acurl?tr • Aacur; 

a cur - RECORD 
H: inteqer; 
Ind.ex: inteqer 
rra.mel: inteqer 
filll: inteqer 
Frame2: inteqer 
fill2: inteqer 

{- - -- - - - -- - - - -- - -
FrameN: inteqer 
fillN: inteqer 6 

ENC; 

526 MPW 3.0 Reference 

(Handles to •acur' resources} 
(Pointers to •acur• resources} 

{Layout of an •acur• resource} 
{Number of cursors ("frames of film") } 
(Next frame to show <for internal use>} 
{'CURS' resource ID - frame tl} 
(<for internal use>} 
{'CURS' resource ID - frame t2} 
{<for internal u:se>} - -- - - -} 
{'CURS' resource ID - frame t2} 
{{<for internal use>} 



See R"fbe RorateCursor Procedure" for a description of how the 'a cur' frames are used 
to animate the cursor. 

MPW P3Scal 

!r.itC,.rsorCtl mxlifies rhe 'acur' resource in memory. 
Spt:ciflc..aJ/, it ciian~·.:s each FrameN/fill.N integer pair to a handle to 
the corresponding •CURS• resource also in memory. Thus if 
NewCur:sor:s is not NUll when Ini tCursorCtl is called, you must 
guarantee that NewCursors always points to a •fresh" copy of an 
•a cur' resource. This need concern you only if you wane :to 

repeatedly use multiple •a cur' resources during execution 
of your tools. • 

InitCursorCtlCNewCursors: t1NIV acurHand.le); 

MPWC 

pascal void InitCursorCtl(acurHand.le newCursors); 

The Show_Cursor procedure 

The Show_cursor procedure increments the cursor level (which may have been 
decremented by Hide_cursor). If the level is zero, it displays the cursor. The cursor 
level never increments above zero. The parameter CursorKtnd lets you select the form of 
the cursor: 

Cwsor kinds 

0 Hidden cursor 
1 I-beam 
2 Cross 
3 Plus sign 
4 Watch 
5 Arrow 

APPENDlX F Tools Llbraries 5~ _, 



Except for HIDOEN_CUR.SOR, a Macintosh SetCursor is done for the specified cursor 
prior to doing a ShowCursor. HIOOEN_CUR.SOR. Simply causes a ShowCursor call. 

a • Note: IntiGraf ( > must be called before any calls to Showcursor 
·~· (AR.rtow_cuR.SOR.) becawe the arrow cursor is one of the QuickDraw globals set up by 

IntiGraf ( ) . 

MPW Pascal 

Show_Cursor(CursorKind: Cursors); 

CursorCtl declares the type Cursors as follows: 

TYPE 
Cursors • <HIOOEN_CURSOR, I_BEAM_CURSOR, CROSS_CUR.SOR, 

PLUS_CURSOR, WATCH_CURSOR, ARR.OW_CURSOR); 

MPWC 

pascal void Show_Cursor(Cursors cursorKind); 

The Hide_ Cursor procedure 

The Hide_Cursor procedure calls the Macintosh HideCursor routine. (Thus the 
Macintosh cursor level is decremented by 1 when th.is routine is called.) If the cursor was 
visible, it is then hidden. For funher information, see the chapter •QuickDraW- of Inside 
Macintosh. 

Hide_Cursor; 

MPWC 

pascal void Hide_Cursor{void) 

.. 
• 

S28 MPW 3.0 Reference 



( 

The RotatcCursor procedure 

The RotateCursor procedure rotates the beach ball cursor (or animates whichever 
s~q~ 1ence of cuMrs h':l.S b.~~n set by the user ir: an ' :: cur ' resoun:e and loadr:cl with 
Ini tCursurCtl > and rotates it one-quaiit1 i.um (tiiat is, advances to the next 'a cur' 
resource frame) whenever the value of Counter is a nrultiple of 32. To use 
Rotatecursor, your program nrust set up and inaement (or decrement) a suitable 
counter. If the value of Counter is positive, the cursor rotates clockwise (that is, 
sequencing is forward through the •a cur' cursor frames); if it is negative, it rotates 
counterclockwise (that is, sequencing is backward circularly through the 'a cur' resource 
frames). 

• Note: RotateCursor invokes a Macintosh SetCursor call for the proper cursor 
picture. It assumes that the cursor is visible as the result of a prior Show_cursor call. 

RotateCursor(Counter: lonqint); 

MPWC 

pascal void RotateCursor(lonq counter); 

The SpinCursor procedure 

The SpinCursor procedure perfonm the same actions as RotateCursor, but 
maintains irs own interml counter rather than passing a counter. It is provided for those 
who do not ba"Ve a convenient counter bandy but still want to use the spinning beach ball 
cursor or any sequence of cursors specified by InitCursorCtl. Your program sped.fies 
the lnc»llnent to be counted (either positive or negative), and Spincursor adch it to 
its counter. A positive increment spins the cursor dockwi.se (that· is, sequencing is forward 
through the ' acur • cursor frames); a negative increment spins it counterclockwise (that 
is, sequencing is backward circularly through the 'aeur • resource frames). An Incmnent 
value of zero resets the counter to zero. 

• Note: It is the sign of the increment, not the sign of the accumulated value of the 
SpinCursor counter, that determines the cursor's direction of spin. 

APPENDIX F Tools Libraries 529 



1 •. 

MPW Pucal 

SpinCursor(Increment: inteqer); 

pascal void SpinCursor(short increment); 

Error Message File manager 

Four procedures in the MPW Tools Library let you retrieve the text of error messages in the 
Macintosh Operating System error message file or in an error file private to a tool (created 
with the MakeErrorFile tool). 

Error Manager--MPW Pascal 

To use the error mes.sage file manager in MPW Pascal, do the following: 

• Include the statement 

USES {$U MemTypes.p} MemTypes, ($U ErrMqr.p} ErrMqr; 

in your source text. The USES clause and the su compiler directive are described in 
the MPW 3.0 Pascal Reference. 

• Link your compilation with the file Toollibs.o. 

Error Maaager-MPW C 

Use the header file EaMgr.h which includes the file Types.h. Link this file with Tooll.ibs.o. 

tinclude <ErrMqr.h> 

.. 
.. 

530 MPW 3.0 Reference 

t~ ) 
''-.__ .. 

,,f~ .l 
~~· 



( 

The InitErrMgr procedure 

The InitErrMgr procedure must be called before any of the other error message file 
manager procedures. To access Macintosh Operating System error messages, use the 
Fascal c.~il 

InitErrMqr('', 11 , false); 

This call causes the error manager to access the file SysErr.Err in the directory 
{ShellDirectoryl if that Shell. variable is defined; otherwise, it will use me SysErr.Err. 

If InitErrMqr is not explicitly called, then GetSysErrText or GetToolErrText will 
call Ini tErrMqr (' ' , ' ', TRUE) the fust time they are called. 

If you wish to access a tool-specific error file, supply the name of the error file as the first 
parameter to Ini tErrMgr. If the tool is an MPW tool with the error file copied into the 
tool's data fork, the fust parameter may be the null string and the ErrMqr will open the 
appropriate file. This occurs only if CRuntime.o or Pastib.o is linked with the program. 

Set ShowToolErrNbrs to TRUE if you want all messages to begin with the error number, as 
in 

<msqtxt> ((OS]Error<n>) 

Failure by the Error Manager to find the message text always results in a message of this 
form (without the <m:sqtxt> ). ToolErrFileName is used to specify the name of the 
tool-specific error me, and should be the null string if not used (or if the tool's data fork i.s 
to be used as the error file). Use sysErrFileName to specify the name of the system 
error file. This should normally be the null string which causes the Error Manager to look in 
the MPW Shell directory for "SysErrs.~. Specifying names for the error files avoids 
IntEnv cal.ls that look up the values of Shell variables. 

MPW Pascal 

PROCEJ:>U'RE InitErrMqr(toolErrFilename: Str255;sysErrFilename: 
Str255;showToolErr~rs: BOOLEAN); 

MPWC 

InitErrMqr(Str255 toolErrFilename,Str255 sysErrFilename, 
Boolean showToolErr~rs); 

4 

APPENDIX F Tools Libraries 531 



• Note: The Assembler caller must define and export the variable _EnvP with a null value 
if CRuntime.o or PasLlb.o is not linked with the tool. For example, outside all 
modules (procs) place the following: 

Envl? 

EXPORT 
OC.L 

_EnvP 

rz 

The GetSysErrTert procedure 

The GetSysErrText procedure fetches the rressage text th.at corresponds to the 
system error number value of MsgNbr. Errkfsg is a pointer to a string of type s ·t; r 2 s s, in 
which the error message text will be placed. The maximum length of the message is limited 
to 254 characters. 

If Get SysErrText is successful (and if ShowToolErrNbrs is true on the init call), the 
form of the error message returned is 

error text ( OS error number) 

If it is unsuccessful, the form of the error message returned is 

OS error number ( rea.ron message not f aund> 

Possible reasons for unsuccessful execution of GetSy:sErrText are th.at the file 
SysErr.Err was not found or th.at it contained no message text corresponding to MsgNbr. 

• No~: If a system message filename was not specified to Ini tErrMgr, then the error 
manager assurres the message file contained in the file SysErrs.Err. This file is first 
accessed as (ShellOirectory)SysErrs.Err on the assumption that SysErrs.Err is kept in 
the same directory as the MPW Shell. If the file caMot be opened, then the error 
manager attempts to open SysErrs.Err in the System Folder. 

MPW P3K21 

PROCEDURE GetSy:sErrText(~gNbr: INTEGER;err~g: StringPtr); 

' 
' 

532 MPW 3.0 Reference 



( 

MPWC 

void GetSysErrText(short m:sgNbr,char *errMsg); 

Get error message text corresponds to the error number m:sgNbr from the system error 
me~::;! fik ("Sysr: ·.:>:rt L"l i5he~'irector:. l). TI1c te~i. of the m'.iS~&·. ~. returned in 
errMsg. 

The GetToolErrTat procedure 

The GetToolErrText procedure fetches the message text that corresponds to the tool 
error message file error number m:sgNbr. (The tool error filename is specified in the 
InitErrMgr call.) The text message is returned in errMsg. 

Inserts are indicated in error messages by specifying a •11• (Up Arrow) to indicate where 
the insert is to be placed. Any message to be inserted should be contained in errin.sert. 
Otherwise, errinser should be null. The error insert is placed in the text of the error 
message replacing the first instance of the •11• character in the message; if no, •11• is 
present, the error insert is appended to, the end of the text of the message following an 
intervening blank. 

+ Note: If a tool message filename was not specified to Ini tErrMgr, then the error 
manager assumes the message file contained in the data fork of the tool calling the 
error manager. This name is contained in the Shell variable {Corrunandl and the value of 
that variable is used to open the error message file. 

PROCEDURE GetToolErrText(~gNbr: INTEGER;errin5ert: Str255;errM5g: 
StringPtr) ; 

MPWC 

void GetToolErrText(short m:sgNbr,char *errin5ert,char *errMsg); 

APPENDIX F Tools Libraries 533 



The AddErrlllsert procedure 

The AddErrinsert procedure adds another insert to an error message string. This call 
may be used when more thari one insert is needed in a message (because it contains more 
than one ""• character).·The insert is handled in the sam: fashion as in th<.. 
Get ToolErrText call. 

PROCEOtnU: AddErrinsert(insert: Str2SS;m.sqStrinq: StrinqPtrl; C; 

MPWC 

void AddErrinsert (unsigned char *insert, unsigned char *m.sqStr.i.nq); 

The CoseErrMgr function 

Ideally you should call CloseErrMqr at the end of execution to make sure all files 
opened by the error manager are closed. You can let normal program termination do the 
closing. 

MPW P3K21 

PROCEOtnU: CloseErrMqr; C; 

MPWC 

void CloseErrMqr(void); 

• 

S34 MPW 3.0 Reference 



c: 

Disassembler Lookup routines 

The Disassembler Lookup is an interface (available in MPW l>~SC4'.1 ~nd MPW C) to the 
Macintosh libraries. It is a Pascal rol'tine t.1-i;:;t di•..as.ser•ililc: ? se·f •e11ce of l1y~P; . 

. All MC68xxx family instructions are supported, including MC68881, MC68882, and 
MC68851 instructions. The sequence of byces to be disassembled are pointed to by 
FirstByte. Bytesu.sed bytes starting at Fir.stByte are consumed by the 
disassembly, and the Opcode, Operand, and Comment strings returned as NULL 
TERMINATED Pascal strings (for easier manipulation with C). You are then free to format 
or use the output strings in any way appropriate to the application. 

The Pascal interface file OisAsmlookUp.p is located in the Plnterfaces folder. The C 
interface file, DisAsmlookUp.h, is located in the Clnterfaces folder. A discussion of each 
of these interface files and a general explanation of the Disassembler follows. 

DlsAsmlookUp.~PW Pascal 

TYPE 

LookupReqs • 
(_AO_,_Al_,_A2_,_A3_,_A4_,_A5_,_A6_,_A7_,_PC_,_ABS_,_TRAP_); 

Oi.sAsmStr80 • Strinq[80]; 

PROCEDURE Oi.sassembler(OstAdjust: LONGINT;VAR Byte.sUsed: 
INTEGER; 

DisAsmStr80; 

FirstByte: UNIV Ptr; VAR. Opcode: UNIV Oi.sAsmStr80; 
VAR. Operand: UNIV DisAsmStr80;VAR. Comment: UNIV 

LookUpProc: UNIV Ptr); 

DJsAsmLookUp.b-MPW C 

enum (_AO_,_Al_,_A2_,_A3_,._A4_,_A5_,_A6_,_A7_,_PC_,_ABS_,_TRAP_}; 

typedef unsigned char LookupReqs; 
4 

pascal void Di.sassembler(lonq C.stAdju.st,.short *Byte.sU.sed,Ptr FirstByte, 
char *Opcode,char *Cperand,char *Comment,Ptr LookUpProc); 

APPENDIX F Tools Llbraries 535 



':' 

Using the Disassembler 

Depending on the opcode and effective addresses (EA.'s) to be disassembled, the 
Opcode, Operand, and Comment strings contain the following information: 

• Table F-2 Disassembler strings 

Case Opcode OperlDd 

Non PC-relative EA) op.sz EA's 
PC-relative EA.'s op.sz EA's ; address 
Toolbox traps DC.W SAXXX ;TBXXXX 
OS traps DC.W SAXXX ;OSXXXX 
Invalid bytes DC.W sxxxx . ,,.,, , .... 
Invalid byte #immediate DC.W SXXXX, ... ; op.sz itS??XX,EA 

For valid disassembly of processor instructions, Disassembler generates the appropriate 
MC68xxx opcode mnemonic for the Opcode string along with a siz.e attribute when 
required. The source and destination EA's are generated as the Operand along with a 
possible comment Comments stan with a semicolon ( ; ). Traps use a DC.W assembler 
directive as the Opcode, the trap word as the Operand, and a comment indicating the 
trap number and whether the trap is a toolbox or OS trap. As described later in this 
appendix, you can generate symbolic substirutions into EA.'s and provide names for traps. 

Invalid instructions cause the string • oc . w • to be returned in the Opcode string. 
Operand is • sxxxx • (the invalid word) with a comment of';????'. 

syte:su:sed is 2. This is similar to the trap call case except for the comment. 

A special case is made for immediate byte operands with a nonzero high-<:>rder byte. For 
example, the bytes so20011FF, when acrually executed, are interpreted as 
ANDI. B SFF, DO. 

The processor will ignore the high-<>rder byte of the immediate data! Thus, the byres may 
be considered as valid. Because the Disassembler has no way of knowing the context in 
which it is ~mbling, it returns the Opcode as 'oc. w • as in the normal invalid case. 
However, the Operand string sho\VS all the words disassembled separated with commas, 
and it places the possibly valid disassembly in the Operand's comment indicating the 
nonzero bytes. Thus, for the example $02001 lFF bytes, the Opcode will be • oc. w' , the 
Operand will be '$0200,SllFF, and the Comment'; ANDI.B 1$??FF,DO'. Byee:sused in this 
case would be 4. 

536 MPW 3.0 Reference 



(·. 

• Nole: the Operand EA's are syntactically similar to but not compatible with the MPW 
Assemblerl This is because the Disassembler generates byte hex constants as "SXX" 
and word hex constants as •sxxxxw. Negative values (such as SFF or S FFFF) produced 
by the Disassembler are treated as long word values by the MPW Assembler. Thus it is 
assumed that Disa.sY.mbler ouiput will Mt be 1Jsed as MP\7 A.ssr::r,itJler !.1µui·. If (l}a; is 
the goal, you must convert strings of the form SXX or SXXXX in the Operand string to 
their decimal equivalent. 

The routine ModifyOperand is provided in the Diswembler routine to aid with the 
conversion process. 

Since a PC-relative conunent is an address, the only address that the Disassembler knows 
about is the address of the code pointed to by FirstByte. Generally, that may be a 
buffer that has no relation to •reality,• that is, the acrual code loaded into the buffer. 
Therefore, to allow the address comment to be mapped back to some actual address, you 
may specify an adjustment factor, specified by OstAdjust, that is added to the value 
that normally would be placed in the comment 

The Diswembler generates operand-effective address strings as a function of the 
effective address ioode. A special case is made for A-trap opcode strings. In places where 
a possible symbolic reference could be substituted for an address (or a portion of an 
address), the Disassembler can call a user-specified routine to do the substitution (using 
the LookupProc paramerer described later). The following table summarizes the 
generated effective addresses and notes where symbolic substitutions (S) can be made: 

• 

APPENDIX F Tools Libraries 537 



• Table F-3 Disassembler: Effective addresses 

0 
1 
2 
3 
4 
5 
6n 
6n 
6n 
6n 
70 
71 
72 
73 
73 
73 
73 
74 

On 
An 
(An) 
(An)+ 
-{An) 
a(An) 
a(An,Xn.Size•Sale) 
(BD,An,Xn.Size•Scale) 
([BO,An],Xm.Size•Sale,00) 
aBO,An,Xn.Size•Scalel,OD) 
a 
a 
'±a 
'±a(Xn.Size•scale) 
C-±a ,Xn.Size•Sale) 
([-±a],Xm.Size•Scale,00) 
a-±a ,Xn.Size•Sale], OD) 
#data 

On 
An 
(An) 
(An)+ 
-{An) 
S(An) or just S (if An•A5, d~) 
S(An,Xn.Size•Scale) 
(S,An,Xn.Size•Scale) 
([S,An],Xm.Size•Sale, OD) 
([S,An,Xn.Size•Salel,OD) 
s 
s 
s 
S(Xn.Size•Scale) 
(S,Xn.Size•Scale) 
([SJ,Xm.Size•scale,00) 
([S,Xn.Size•Scalcl,OD) 
1data 

For A-traps, you can substitute for the OC.W opcode string. If the substitution is made, 
the Disassembler will generate ,Sy3 and/or ,Inmed flags as operands for Toolbox traps 
and AutoPop for OS traps when the bits in the trap word indicate these settings. · 

Generated 
0 code 0 rand Comment Comment 

Toolbox DC.W $AXXX ; TB XXXX ; AXXX 
OS OC.W SAXXX ·OS XXXX : AXXX 

All displacements (d, BD, OD) are hexadecimal values shown as a byte {$XX), word 
($XXXX), or long ($XXXXXXXX) as appropriate. The 8Sale is suppressed if it is 1. The Size 
is W or L Note that effective address substitutions can only be made for •a(An)•, 
·so,An·, and -:ta- cases. 

For all the effective addres.5 m>des 5, 6n, 7n, and for A-traps, a coroutine (a procedure) 
whose address is specified by the Lookup!? roe parameter is called by the Disassembler 
(if Loo kupl? roe is not Nll.) to do the substitution (or A-trap comment) with a string 
rerumed by the procedure. It is assumed that the procedure pointed to by Lookup!? roe 

is a level 1 Pascal procedure declared as Tqllows: 

S38 MPW 3.0 Reference 

(tr J 
\L .. · 



( 

PROCEDURE Lookup( PC:UNIV Ptr; 
BaseReg: LookupRegs; 

{Addr of extension/trap word) 
{Base register/lookup mode I 
{Trap word, PC addr, di~p. l 
{Returned substitution l VAR S: 

where ITP f i) is 

Opnd:UNIV Longint; 
DisAsmStr80); 

AsmStr80 • String(80J; 

or in C, 

pascal void LookUp(P~r 
LookupRegs 
long 

PC, 
BaseReg, 
Opnd, 

char *S) ; 

These values are explained here: 

PC 

Base Reg 

PC means pointer to instruction extension word or A-trap word 
in the buffer pointed to by the Disas.sembler's Firstsyte 
parameter. 

BaseReg detennines the meaning of the Opnd value and 
supplies the base register for the "a(An)•, "BD,An'", and~· 
cases. 

BaseReg may contain any one of the following values: 

• Table F-4 Base register values 

_AO_ • O->AO 
_Al_ • 1 ••>Al 
_A2_ • 2 ••> A2 
_A3_ • 3 ••> A3 
_A4_ • 4 ••> A4 
_A5_ • 5 ••> AS 
_A6_ • 6••>A6 
_A7_ • 7••>A7 
_PC_ • 8 ••> PC-relative (special case) 
_ABS_ • 9 ••> Abs addr (special case) 
_TRAP_ • 10 ••> Trap word (special case) 

For absolute addressing (nxxies 70 and 71), BaseReg contains _Ass_. 
For A-tra~, BaseReg would contain_ TRAP_ . 

.. 

APPENDIX F Tools Libraries 539 



Opnd The contents of this Long Int is detennined by the BaseReg parameter 
just described. 

For BaseReg •_TRAP_ (A-traps) 
opnd is the entire trap word. The high-order 16 bits of 
opnd are ze10. 

For saseReg •_ABS_ (absolute effective address) 
opnd contains the (extended) 32-bit address specified by 
the instruction's effective address. Such addresses are 
generally used to reference low-memory globals on a 
Macintosh. 

For saseReg • _PC_ (PC-relative effective address) 
Opnd contains the 32-bit address represented by "*±d" 
adjusted by the Disassembler's OstAdjust parameter. 

For saseReg •_An_ (effective address with a base register) 
Opnd contains the (sign-extended) 32-bit (base) 
displacement from the instruction's effective address. 

In the Macintosh environment, a saseReq specifying AS implies either global 
data references or Jump Table references. Positive opnd values with an AS 
saseReq thus mean Jump Table references, while a negative offset would mean a 
global data reference. Base registers of A6 or A7 would usually mean local data. 

S S is a Pascal string returned from Lookup containing the effective 
address substitution string or a trap name for A-traps. S is set to null prior 
to calling Lookup. If it is still null on return, the string is not used. If not 
null, then for A-traps, the returned string is used as a opcode string. In all 

. other cases the string is substituted as shown in the above table. 

540 MPW 3.0 Reference 



( 

( 

Depending on the application, you have three choices on how to use the Disassembler and 
an associated Lookup procedure: 

1. You can call just the Disassembler and provide your O'W'Il Lookup procedure. In that 
case, you must follow the ctlling conventions discussed above. 

2. You can provide ~11 for the LookupP roe par.imeter, i.11 \"lhich case, ;-,o Lookup ;:iioc 
will be called. 

3. You can fast call Ini tLookup (described later in this appendix, a procedure 
provided -with this unit) and pass the address of this unit's standard Lookup 
procedure when Disassembler is called. In this case, all the conuol logic to detennine 
the kind of substitution to be done is provided for you and all that you need to 
provide are the routines to look up any or all of the following: 

• PC-relative references 

• Jump table references 

• Absolute address references 

• Trap names 

• References with offsets from base registers 

The lllitLookup procedure 

PROCEDURE InitLookup(PCRelProc: UNIV Ptr;JTOffProc: UNIV Ptr: 
TrapProc: UNIV Ptr; AbsAddrProc: UNIV Ptr;IdProc: UNIV Ptrl; 

This procedure prepares for use of this unit's Lookup procedure. When the Disassembler 
is called and the address of this unit's Lookup procedure is specified, then for PC-
relative, jump table references, A-traps, absolute addresses, and offsets from a base 
register, the associated level 1 Pascal procedure specified here is called (if it is not 
NUU-all five addresses are preset to NUil). The calls assume the following declarations 
for these procedures (see "Lookupw later in this appendix for further details): 

PROCEDURE PCRelProc(Address: UNIV Lonqint; 
VARS: UNIV OisAsmStr80); 

PROCEDURE JTOffProc(A5JTOffset: UNIV Inteqer; 
VARS: UNIV OisAsmStr80); 

PROCEDURE TrapNameProc(TrapWord: UNIV Inteqer; 
VARS: UNIV OisAsmStr80); 

PROCEDURE AbsAddrProc(AbsAddr: UNIV Lonqint; 
VARS: UNIV DisAsmStr80); . 

• 

APPENDIX F Tools Libranes ;.il 



PROCEDURE IdProc(BaseReg: LookupRegs; 
Offset: UNIV Longint; 
VARS: UNIV OisAsmStr80); 

or in C, 

pascal void PCRelProc(lonq Address, char *S) 
pascal void JTOffProc(short ASJTOffset, char *S) 
pascal void TrapNameProc(unsigned short TrapWord, char *S) 
pascal void AbsAddrProc(long AbsAddr, char *S) 
pascal void IdProc(LookupRegs BaseReq, lonq Offset, char *S) 

• Not8: InitLookup contains initialized data that requires initializing at load time. 
This of concern only to users with assembly main pro~. 

The Lookup procedure 

PROCEDURE Lookup(PC: UNIV Ptr;BaseReg: LookupRegs;Opnd: 
UNIV Longint;VAR S: OisAsmStr80); 

This is a standard Lookup procedure available for calls to the Disassembler. If you use 
this procedure, then you must call InitLookup prior to any calls to the Oi.sassembler. 
'This procedure performs all the logic to determine the type of lookup. For PC-relative, 
jump cable references, A-era~. absolute addresses, and offsets from a base register, the 
associated level 1 Pascal procedure specified in the InitLookup call (if not NULL) is 
called. 

This scheme simplifies the Lookup mechanism by allowing you to focus on the problems 
related to the application. 

The LookupTrapNamc procedure 
-

PROCEtlURE LookupTrapName(TrapWord: UNIV Integer;VAR S: UNIV 
OisAsmStr80); 

This procedure allows conversion of a crap instruction (in TrapWord) to its 
corresponding trap name (in S). It is provided primarily for use with the Disassembler and 
its address may be passed to Ini tLookup above for use by this unit's Lookup routine. 
Alternatively, there is nothing prohibiting you from using it directly for other purposes or 
by some other lookup procedure. 

• 
• 

542 MPW 3.0 Reference 

r, 
\'--~-" 



( ,, 

-·· 

• Note: The tables in this procedure make the size of this procedure about 9500 bytes. 
The trap names are fully spelled out in upper and lower case. 

The ModlfyOperand procedure 

PROCEO~ ModifyOperand(VAR Operand: UNIV OisAsmStr80); 

The procedure scans an operand string, that is, the null-tenninated Pascal string rerurned 
by the Disassembler (null must be present here), and m:xlifies negative hex values to 
negated positive value. For example, SFFFF(A5) would be roodified to -S<ml(A5). The 
operand to be processed is passed as the function's parameter, which is then edited "in 
place" and rerumed to the caller. · 

This routine is essentially a pattern matcher and atte~ to nxxiify only 2-, 4-, and 8-
digit hex strings in the operand that "mighf be offsets from a base register. If the 
matching tests are passed, the same number of original digits are output (because that 
indicates a value's size: byte, word, or long). 

For a hex string to be roodified, the following tests must be passed: 

• There n:llSt have been exactly 2, 4, or 8 digits. Only hex strin~ SXX, SXXXX, and 
SXXXXXXXX are po.%ible candidates because th.at is the only way the Disassembler 
generates offsets. 

• The hex string must be delimited by a left parenthesis character,• ( " or a comma, • , •. 
The left parenthesis character allows offsets for sxxxx (An, .•• > and sxx (An, xn> 
addressing modes. The comma allows for the MC68020 addressing fonns. 

• The • sx • . • • must not be preceded by a plus-or-minus sign, • ± •. This eliminates the 
possibility of modifying the offset of a PC-relative addressing roode ahvays generated 
in the form "*±Sxxxx-9. 

• The • sx ... • must not be preceded by a pound sign, • t •. This eliminates roodifying 
inunedi2te data. 

• Value DIJSt be negative. Negative values are the only wlues IJX>dified A value srrrr 
is m>dilied fD -$ 0001. 

FUNCTION validMacsSuqSymbol(symStart: UNIV Ptr;limit: UNIV Ptr; 
symbol:StringPtr): StringPtr; C; 

Check that the bytes pointed to by symStart represent a valid MacsBug symbol. The 
symbol must be fully contained in the bytes starting at symStart, up to but not including 
the byte pointed to by the limit pahmeter. 

APPENDIX F Tools Libraries 543 



If a valid symbol is not found, then NULL is returned as the function's result However, if a 
valid symbol is found, it is copied to symbol (if it is not NUU.) as a null-terminated Pascal 
string, and return a pointer to where we think the following module begins. In the "old 
style" cases (see the following table) this will always be 8 or 16 bytes after the input 
symStart. For new style Apple Pascal and C cases this r:ill depend on the symbol length, 
existence of a pad byte, and size of the constant (literal) area. In all cases, trailing blanks 
are removed from the symbol. 

A valid MacsBug symbol consists of the characters'_','%', spaces, digits, and upper and 
lower case letters in a format determined by the first two bytes of the symbol as follows: 

1st byte 2nd byte Byte 
range rmae length Comments 

S20-S7F $20-$7F 8 Old style MacsBug symbol format 
S20-$7F $20-$7F 8 Old style MacsBug symbol format 
SAO-SFF S20-$7F 8 Old m1e MacsBu~ format 
S20-S7F $80-SFF 16 Old style MacApp symbol ab••>b.a 
SAO-$FF S80-SFF 16 Old ~le MacA..QQ. svmbol ab••>b.a 
$8) $01-SFF n n • 2nd byte (Apple Compiler symbol) 
S81-S9F SOO-SFF m m • 1st bvte & $7F.(AQple Com_12iler svm.bol} 

The formats are determined by whether bit 7 is set in the first and second bytes. This bit 
will removed when it i.5 found OR'ed into the first and/or second valid symbol characters. 

The first two formats in the above table are the basic "old-style• (pre-existing) MacsBug 
·formats. The first byte may or may not have bit 7 set if the second byte is a valid symbol 
character. The first byte (with bit 7 removed) and the next 7 bytes are assumed to 
comprise the symbol. 

The second pair of formats are also old-style formats, used for MacApp symbols. Bit 7 set 
in the second character indicates these formats. The symbol is assumed to be 16 byteS 
with the second 8 bytes preceding the first 8 bytes in the generated symbol. For example, 
12345678abcdefgh represents the symbol abcdefgh.12345678. · 

The last pair of formats are reserved by Apple and generated by the MPW Pascal and MPW 
C compilers. In these cases the value of~ first byte is always between $80 and S9F, or 
with bit 7 rem>~ between $00 and SlF. For $00, the second byte is the length of the 
symbol with that many bytes following the second byte (thus a amimurn length of 255). 
Values $01 to $1F represent the length itself. A pad byte may follow these variable length 
cases if the symbol does not end on a word boundary. Following the symbol and the 
possible pad byte is a word containing the size of the constants (literals) generated by the 
compiler. 

" 

S44 MPW 3.0 Reference 

) 



( 
+ Note: If symStart actually does point to a valid MacsBug symbol, then you can use 

showMacsBuqSyml::>ol to convert the Mac:sBug symbol bytes to a string that could 
be used as a DC.B operand for disassembly purposes. This string explicitly shows the 
MacsBug symbol encodings. 

The cndOfModulc function 

FUNCTION endOfModule(address: UNIV Ptr;limit: UNIV Ptr;syml::>ol: 
StrinqPtr; VAR nextModule: UNIV Ptr): StrinqPtr; C; 

This function checks to see if the specified memory address contains a. RTS, JMP <AO l 

or RTO tn instruction immediately followed by a valid MacsBug symbol. These 
sequences are the only ones that can detennine an end of module when Mac:sBug symbols 
are present During the check, the instruction and its following MacsBug symbol must be 
fully contained in the bytes sr.arting at the specified address parameter, up to, but not 
including, the byte pointed to by the limit parameter. 

If the end of module is net found, then NUll is returned as the function's result However, 
if a end of module is found, the Mac:sBug symbol is returned in symbol (if it is not NlJU) 
as a null-terminated Pascal string (with trailing blanks removed), and the function returns 
the pointer to the start of the MacsBug symbol (that is, address+2 for RTS or JMP (AO J 

and address+4 for RTO tn). This address may then be used as an input parameter to 
showMacsBugSy~ol to convert the Mac:sBug symbol to a Disassembler operand string. 

Also returned in nextModule is where the following module is expected to begin. In the 
old-style cases (see valid.MacsBuqSymbol) this will always be 8or16 byteS after the 
input address. For the new style, the Apple Pascal and C cases, this will depend on the 
symbol length, existence of a pad byte, and size of the constant (literaO area. See 
valid.MacsBugSyml::>ol for a description of valid MacsBug symbol formats. 

The showMacs~ymbol function 

FUNCTIOH showMacsBuqSymbol(symStart: UNIV Ptr;limit: UNIV Ptr;operand: 

StrinqPtr; VAR bytesUsed: INTEGER): StrinqPtr; C; 

This functkln formats a MacsBug symbol as a operand of a DC.B directive. The first one 
or two bytes of the symbol are generated as $80+'c' if their high bits are set. All other 
characters are shown as ch.araaers in a string constant The pad byte, if present, is also 
shown as $00. 

This routine is called to check that the bytes pointed to by symStart represent a valid 
MacsBug symbol. The symbol must' be fully contained in the bytes starting at ~ ymS ta rt, 
up to but not including the byte pointed to by the limit parameter. 

APPENDIX F Tools Libraries 545 



When called, .showMac.sBuqSymbol assumes that .sym.Start is pointing at a valid 
MacsBug symbol as validated by the valid.MacsBuqSymbol or endOfModule routine. 
As with valid.Mac.sBuqSymbol, the symbol must be fully contained in the bytes starting 
at s yms ta rt up to, but not including, the byte pointed to by the end parameter. 

The string is returned in the 'operand' parameter as a null-terminated Pascal string. 111e 
function also returns a pointer to this string as its return value (NUU is returned only if the 
byte pointed to by the limit parameter is reached prior to processing the entire symbol­
which should not happen if properly validated). The number of bytes used for the symbol 
is returned in bytesu.sed. Due !O the way MacsBug symbols are encoded, byte.sused 
may not necessarily be the same as the length of the operand string. 

A valid MacsBug symbol consists of the characters '_', '%', spaces, digits, and upper/lower 
case letters in a format determined by the first two bytes of the symbol as described in 
the valid.Mac.sBugSymbol routine. 

' .. 

S46 MPW 3.0 Reference 



( 

Appendix G The Graf3D Library 

GW3D IS A SET OP QUICKDRAW CAllS USED TO PRODUCE TiillEE-DIMENSIONAL 
GRAPHICS by providing a fixed-point interface to QuickDraw's integer 
coordinates. This appendix describes these routines and their use for both MPW 
Pascal and MPW C. • 

Contents 
Overview S49 
How to use Graf3D S49 

How to use Graf3I>-MPW A.5sembler SSO 
How to use Graf3I>-MPW Pascal S50 
How to use Graf3I>-MPW C S50 

Graf3D data types S51 
Point3D SSl 
Point2D SS2 
XfMatrix SS2 
Port3DPtr S53 

Graph3D procedures and functions S54 
The InitGraf3D procedure SSS 
The Open3DPort procedure SS5 
The SetPott3D procedure S56 
The GetPort3D procedure S56 
The Move procedures SS7 
The Line proced~ S57 
The Clip3D function 558 
The Set Point procedures 558 

Setting up the camera 559 
The ViewPort procedure 559 
The LookAt procedure 560 
The ViewAngle procedure 560 

.. 
• 

547 



The transformation matrix 561 
The Identity procedure 561 
The Scale procedure 561 
The Translate procedure 562 
The Pitch procedure 562 
The Yaw procedure 562 
The Roll procedure 563 
The Skew procedure 563 
The Transform procedure 564 

• 

;48 MPW 3.0 Reference 

c, 



Overview 

The GrafJD mutines provide several important f~tures: 
• A camera's-eye view. This allows you to set the point of view from which the observer 

sees the object independently from the coordinates of the object itself. The camera is 
set up with the ViewPort, Look.At, and View Angle procedures. You can set the 
focal length of the camera as if you had a choice of telephoto, wide-angle, or normal 
lenses. 

• Three.<firnensional clipping to a true pyramid. The apex of the pyramid is at the point 
of the camera eye, and the base of the pyramid is equivalent to the viewport. When 
you use the Clip30 function, only objects in front of the camera eye and within the 
pyramid are displayed on the screen. 

• Two-dimensional point and line capability using r ixed type coordinates. Graf3D 
provides commands corresponding to the QuickDraw commands but using Fixed 
type coordinates instead of integers. With Fixed type coordinates you have a larger 
dynamic range for graphics calailations; with integer coordinates you get faster 
drawing time. 

• Two-dimensional or three.<fimensional rotation. You can rotate an object along any or 
all axes simultaneously, by using the Pitch, Yaw, and.Roll procedures. 

• Translation and scaling of objects in one or more axes simultaneously. Translation 
means movement anywhere in three.<fimensional space. Scaling means shrinking or 
expanding. 

How to use Graf3D 

This section describes the language-specific preparations you need to make to use 
Graf3D with your MPW Assembler, MPW Pascal, or MPW C progra~ . 

• 

APPENDIX G The Graf30 Llbrary 549 



How to use Graf3D-MPW Assembler 

To use Graf3D with MPW Assembler, do the following: 
• Include the file Graf3DEqu.a in your source text. 
• Link your assembly with the file {Libraries!Interface.o. 

• Set values in the Graf3D data structures and call the Graf3D routines from your 
program, using the equates in Graf3DEqu.a. 

Throughout the rest of this appendix, Graf3D is described solely in MPW Pascal and MPW 
C notation. The Graf3d routines are implemented in MPW Pasca4 Assembly-language 
programmers should call these routines by using Pascal calling conventions. For 
information on how to convert this notation into assembly-language calling conventions 
for stack-based routines, see the chapter "Using Assembly Lmguage• in Inside Macintosh. 

How to use Graf3D-M.PW Pascal 

To use Graf3D in MPW Pascal, do the following: 

• Include the declaration USES Graf3D in your source text. 

• Llnk your assembly program or object file with the file Interface.a. 

• Set values in the Graf3D data structures, and call the Graf3D routines from your 
program, following the information given in the section "Graf3D Data Types" that 
follows in this appendix. 

How to use Graf3D-MPW C 

To use Graf3D in MPW C, do the following: 

1. Include these st2tements in your source text: 
tinclude <Types. h> 

#include <Quiek.Oraw.h> 
#include <Graf3D. h> 

2. Link your object me with the file {Libraries} Interface.a. 

3. Set values in the Graf3D data structures and call the Graf3D routines from your 
program, following the information given in the section "Graf3D Data Types• that 
follows in this appendix. 

' 

550 MPW 3.0 Reference 

) 



Graf3D data types 

·, Graf30 decla.tPs ~r.d uses tiese data types: 

c Fixf."d. 

• Point30 

• Point20 

• XfMatrix 

a Port3PPtr 

The type Fixed i.s discmsed in Insilk Macimosh, Volume 1. The other types are discussed 
in this section. Examples of the calls are supplied in MPW Pascal and MPW C. 

Point3D 

Point3o contains three fixed·point number coordinates: x, y, and z. Graf3D uses x, y, 
and z for fixed·point number coordinates to distinguish between the h and v inceger 
screen coordinates used by QuickDraw. 

MPW Pascal 

TYPE Point30 - RECORD 

MPWC 

x: Fixed;' 
y: Fixed; 

z: Fixed 
ENO; 

typedef struct Point30 
Fixed x, y, z; 

} Point3D; 

• 
• 

APPENDIX G The Graf3D Library 551 



. , 

Point2D 

l?oint20 is jwt like a l?oint3o but contains only x- and y- coordinates . 

MY\V Pascal 

TYPE l?oint2D - P.ECOJm 
x: Fixed; 
y: Fixed 

ENO; 

MPWC 

typedef struct l?oint20 
Fixed x, y; 

} l?oint2D; 

XfMatrix 

The XfMatrix ~a :4x4 matrix of Fixed values used to hold a tr.1nsformation equation. 
·.Each tr.1nsfomting routine alters this matrix so that it contains the concatenated effects 
of all transformations applied. 

MPW Pascal 

XfMatrix • ARRAY(0 .. 3, 0 .. 3] OF Fixed; 

MPWC 

typedef Fixed XfMatrix[4] [4]; 

' 
• 

552 MPW 3.0 Reference 

,r I 
~. 



() 

Port3DPtr 

The type Port3DPtr contains all the state variables needed to map fixed-point number 
coordinates into integer screen coordin::ires. 

Port30Ptr • ~Port3D; 

Port30 • RECORD 
GrPort: GrafPtr; 
viewRect: Rect; 
xLeft, yTop, xRiqht, yBottom: Fixed; 
pen, penPrime, eye: Point30; 
hSize, vSize: Fixed; 
hCenter, vCenter: Fixed; 
xCotan, yCotan: Fixed; 
ident: boolean; 
xForm: XfMatrix 

END; 

MPWC 

typedef struct Port30 { 
GrafPtr qrPort; 
Rect viewRect: 
Fixed xLeft, yTop, xRiqht, yBottom: 
Point30 pen, penPrime, eye; 
Fixed hSize, vSize; 
Fixed hCenter, vCenter; 
Fixed xCotan, yCotan; 
char filler; 
char ident; 
XfMatrix xForm; 

Port3D, *Port30Ptr; 

APPENDIX G The Graf3D Library 553 



.. 

• t?-blc G-1 Port30Ptr variables 

Name DctcripUOll 

GPort Pointer to the qrafi'ort associated with this Port3D 

view Re ct. Viewing rectangle within the grafPorti the base of the 
viewing pyramid 

xLeft, yTop, World coordinates corresponding to the viewRect 
xRiqht,yBottom 

pen Three-dimensional pen location 

penPrime Pen location transformed by the xForm matrix 

eye Three-dimensional viewpoint location established by 
ViewAnqle 

hSize,vSize Half-width and half-height of the viewRect in screen 
coordinates 

hCent.er, vCenter Center of the viewRect in screen coordinates 

xCotan,yCotan Viewing cotangents set up byviewAnqle, used by Clip3C 

I dent Boolean that allows the transformation to be skipped when 
xF o rm is an identity matrix 

xForm 4x4 matrix that holds the net result of all transformations 

Graph3D procedures and functions 

Graf3D provides the following procedures and functions to establish a graphics 
environment and create drawings within it: 

• The InitGraf procedure 

• The Open3DPort procedure 

• The SetPort3D procedure 

• The GetPort3D procedure 

• The Move procedures 

• The tine procedures 

• The Clip3D function 

• The SetPoint procedures 

Each procedure and function is described1n this section in both MPW Pascal and MPW C. 

SS4 MPW 3.0 Reference 

f{~ 

'=--"' 

,/-

t( .. I 

I\__ 



( 

c 

The I.nhGraf3D procedure 

The InitGraf30 procedure starts up Graf3D and initializes its data structures. G/oba/Ptr 
is a pointer to heap space for Graf3D data. Call InitGraf3o once and only once at the 
begir!!1ing of your proe1ath. Pdss it ac thl" address of a 1?ort30Ptr (using the@ operator) 
that you have declared and reserved for use by Graf3D. 

PROCEDtTRE InitGraf30(GlobalPtr: Ptr); 

MPWC 

pascal void InitGrf30(portl 
Port30Ptr *port; 

The InitGraf30 function initializes the Port3o variable. Call this routine before doing 
Graf3D operations. Allocate space for a variable of type Port30Ptr (whose address is 
passed as a parameter to this function). 

The Open3DPort procedure 

The Open30Port procedure initializes all the fields of a Port30 to their defaults, and 
makes that Port30 the current one. Gport is set to the currently open qrafPort. These 
are the default values: 

thePort30 :• port; 
portA.GPort :• thePort; 
ViewPort(thePortA.portRect); 
WITH thePortA.portRect DO LookAt(left, top, riqht, bottom); 
VievAnqle(O); 
Identity; 
MoveTo30(0, O, 0); 

PROCEDtTRE Open30Port(port: Port30Ptr); 

.. 
" 

APPE.~IX G The Graf3D Library 555 



MPWC 

pascal void Open3DPort (port) . 
Port3DPtr port; 

The SetPort3D procedure 

The SetPort3D procedure makes port the current Port3D and calls Set Port for that 
Port3o's :wociated grafPort. SetPort30 allows an application to we rrore than one 
Port3D and switch between them 

MPW Pascal 

PROCEDURE SetPort30(port: Port3Dptr); 

MPWC 

pascal void SetPort3D{port) 
Port30Ptr port; 

The GetPort3D procedure 

The Get Po rt Jo procedure rerurns a pointer to the current Port3D. This procedure is 
useful when you are wing rrore than one Port3D and want to save and restore the current 
one. 

PROCEDURE GetPort3D(VAR port: Port30Ptr); 

MPWC 

pascal void GetPort3D(port) 
Port3D *port; 

• 

S56 MPW 3.0 Reference 



(-

The Move procedures 

Graf3D provides four Move procedures that move the pen in two or three dimensions 
without drawing lines. The fixed-point number coordin'ltf.$ are transformed by the x r o rm 

matrix and projec,ed onto fl.:".t ~c;een coorf.inates; th.:; Gr::.f3C calls Quic:,D1dw's 
MoveTo procedure with the result 

MPW P3K2l 

E'ROCEDURE MoveTo2D(x, y: Fixed); 
E'ROCEDURE MoveTo3D(x, y, z: Fixed); 
E'ROCEOURE Move20(dx, dy: Fixed); 
PROCEDURE Move3D(dx, dy, dz: Fixed); 

MPWC 

pascal void MoveTo20(x, y) 

Fixed x, y; 

pascal void MoveTo3D(x, y, Z) 

Fixed x, y, z; 
pascal void Move2D(x, y) 

Fixed x, y; 
pascal void Move3D(x, y, Z) 

Fixed x, y, z: 

The llne procedures 

Graf3D provides four Line procedures that draw two- and three-diirensional lines from the 
current pen location. The LineTo2D and LineTo3D procedures stay on the same z-plane. 
The fixed-point number coordinates a.re first transformed by the xForm matrix, then 
dipped to tbe viewing py1'2mid, then projected onto the flat screen coordinates and 
drawn by alling QuickDraw's LineTo procedure. 

PROCEDURE LineTo2D(x, y: Fixed); 
PROCEDURE LineTo3D(x, y, z: Fixed); 
PROCEDURE tine2D (dx, dy: .Fixed); 
PROCEDURE Line30(d.x, dy, dz: Fixed); 

APPE.r..mrx G The Graf3D Llbrary 557 



MPWC 

pascal void LineTo2D(x, y) 
Fixed x, y; 

pascAl void LineTo30(x, y, z) 
Fixed x, y, z; 

pascal void Line20(x, y) 

Fixed x, y; 
pascal void Line3D(x, y, z) 

Fixed x, y, z; 

The Cllp3D .function 

The Clip30 function clip.5 a three-dimensional line segment to the viewing pyramid and 
·returns the dipped line projected onto screen coordinates. Clip3o rerurns true 
(nonzero) if any pa.tt of the line is visible. If no pa.It of the line is within the viewing 
pyramid, Clip3o rerurns false (zero). 

MPW Pascal 

FUNCTION Clip30(srcl, src2: Point30; VAR dstl, dst2: Point): 
boolean; 

MPWC 

pascal short Clip30(srcl, src2, dstl, dst2) 
Point30 *srcl, *src2; 
Point *dstl, *dst2; 

The Set Polat procedures 

Graf3D provides two Set Point procedures. The secPt3o procedure assigns three fixed­
point numbers to a Point3o. The SetPt2o procedure assigns two fixed-point numbers 
to a Point2D. 

MPW Pasal 

PROCEDURE SetPt30(VAR pt30: Point30; x, y, z: Fixed); 
PROCEDURE SetPt20(VAR pt20: Point2D; x, y: Fixed); 

558 MPW 3.0 Reference 



(~ 

( 

M.PWC 

pascal void SetPt3D(pt3D, x, y, z) 
Point3D *pt:.3D; 
Fixed x, y, z: 

pa~cal void SetPt2D(pt2D, x, y) 

Point2D *pt2D; 
Fixed x, y; 

--------------·------------·------------------------------·--------Setting up the camera 

Procedures Viewl?ort, Look.At, and ViewAngle po.5ition the irmge in the grafPort., 
aim the camera, and choose the !ens focal length in order to map three-dimensional 
coordinates onto the flat screen space. These procedures may be called in any order. 

The ViewPort procedure 

The Viewl?ort procedure specifies where to put the image in the grafl?ort. The 
ViewPort rectangle i.s in integer QuickDraw coordinates and tells where to map the 
LookAt coordinates. 

MPWP~ 

PROCEDURE Viewl?ort(r: Rect); 

MPWC 

pascal void Viewl?ort(r) 
Rect *r; 

.. 

APPENDIX G The Graf3D Library 559 



The LookAt procedure 

The LookAt procedure specifies the fixed-point number x- and y-coordinates 
- correspondu1g to the viewRect. 

MPW Pucal 

PROCEOURE LookAt(left, top, riqht, bottom: Fixed); 

MPWC 

pascal void LookAt(left, top, riqht, bottom) 
Fixed left, top, riqht, bottom; 

The VlewAngle procedure 

The ViewAnqle procedure controls the amount of perspeaive by specifying the 
horizontal angle (in degrees) subtended by the viewing pyramid. TypicaJ viewing angles 
are 0° (no perspective), 10° (telephoto lens), 25° (normal perspeaive of the human eye), 
and 80° (wide-angle lens). 

MPW Pucal 

PROCEOURE ViewAnqle(anqle: Fixed); 

MPWC 

pascal void ViewAnqle(anqle) 
Fixed anqle; 

S(i(> MPW 3.0 Reference · 

r 
\ .. 

. '~, 



The transformation matrix 

Use the transformation (xForrnl matrix to impose a coordinate transformation between 
the coordinates you p:ot and tnf'.' viewing coordinates. Each of the transformation 
procedures concatenates a cumulative transformation onto the xForm matrix. 
Subsequent lines drawn are first transformed by the xFo rn. matrix, then projected onto 
the screen as specified by ViewPort, LookAt, and ViewAngle. 

The Identity procedure 

The I dent it y procedure resets the transformation matrix to an identity matrix. 

M.PW Pasa.l 

PROCEDURE Identity; 

MPWC 

pa~cal void Identity(); 

The Sale procedure 

The Scale procedure modifies the transformation matrix to shrink or expand by xFactor, 
yFaaor, and zFactor. For example, 

Scale(X2Fix(2.0), X2Fix(2.0), X2Fix(2.0)) 

doubles the size of whatever you draw. 

PROCEDURE Scale (xFactor, yFactor, zFactor: Fixed); 

MPWC 

pa~cal void Scale(xFactor, yFactor, zFactor) 
Fixed xFactor, yFactor, zFactor; 

APPENDIX G The Graf3D Library ;61 



The Translate procedure 

The TraMlate procedure modifies the transfonnation matrix so as to displace by dx, 
dy, and dz. 

MPW Pasal 

PROCEDURE Translate(d.x, dy, dz: Fixed); 

MPWC 

pascal void Translate(d.x, dy, dz) 
Fixed dx, dy, dz; 

The Pitch procedure 

The Pitch procedure modifies the tra~formation matrix so as to rotate xAngle degrees 
around the x-axis. A positive angle rotates clockwise when looking at the origin from 
positive x. 

MPW Pascal 

PROCEDURE Pitch(xAngle: Fixed); 

MPWC 

pascal void Pitch(x.Angle) 
Fixed xAngle; , 

The Yaw procedure 

The Yaw procedure nxxiifies the tra~fonnation matrix to rotate yAngle degrees around 
the y-axis. A positive angle rotates clockwise when looking at the origin from positive y. 

MPW Pasal 

PROCEDURE 'X'aw(yAngle: Fixed);' 

562 MPW 3.0 Reference 



MPWC 

pascal void Yaw(yAnqle) 
Fixed yAnqle; 

The Roll procedure 

The Roll procedure modifies the transformation matrix so as to rotate zAngle degrees 
around the z-m. A positive angle rotates clockwise when looking at the origin from 
positive z. 

MP'W Pascal 

PROCEDURE Roll(zAngle: Fixed); 

MPWC 

pascal void Roll(zAngle) 
Fixed zAnqle; 

The Skew procedure 

The Skew procedure modifies the transformation matrix so as to skew zAngle degrees 
around the z-axis. Skew changes only the x<oordinate; the result is much like the slant 
that QuickDraw gives to italic characters. (skew< ls. o l makes a reasonable italic.) A 
po5itive angle rotates clockwise when looking at the origin from positive z. 

PROCEDURE Skew(zAnqle: Fixed); 

MPWC 

pascal void Skew(zAnqle) 
Fixed zAngle;. 

.. 
.. 

APPE.T\lDIX G The Graf3D Llbrary 563 



The Transform procedure 

The Transform procedure applies the xForm matrix to srcand returns the result as dst. If 
- the transformation matrix is Identity, dstwill be the same~~ src. 

MPW Pa,,cal 

PROCEDURE Transform (src: Point3C; VAR dst: Point3D); 

MPWC 

pascal void Transforrn(src, dst) 
Point3D *src, *dst; 

.. 

S64 MPW 3.0 Reference 



( 

( 

Appendix H Object File Format 

THIS APPENDIX IS ADDRESSED TO PROGRAMMERS who are writing compilers or 
assemblers to run under MPW 3.0. • 

Contents 

About object file records 567 
Scoping of symbolic information 570 
ModuleBegin implementation/declaration semantics 572 
Record type noration 572 
Object file records 573 

Pad record 574 
First record 574 
last record 575 
Comment record 575 
Dictionary record 575 
Module record 576 
Entry-Point record 577 
Size record 578 
Contents record 578 
Reference record 579 
Computed-Reference record 583 
Filename record 584 
Source Statement record 584 
ModuleBegin record 586 
ModuleEnd recottl 587 
BlockBegin record 588 
BlockEnd record 589 
Local Identifier record 589 
Locd label record 593 
Local Type record 594 



Type interpretation via prefix code 596 
Ovetview 597 
Type functions 597 
Representation of type infonnation in the SADE symbol table 601 
Representation of type codes 602 
Representation of scalars 604 
Examples 605 
Possible object module representation 605 
Possible compilation into m ·607 
Type interpretation and packed data 608 

Storage framework 609 
Examples 610 
C Source 610 
Possible compilation into m 611 

566 MPW 3.0 Reference 



( 

About object file records 

Object filf format describes the structure of MPW cbject files. These files are cre2ted by 
various language processors (such as MPW Assembler, MPW Pascal, and MPW C) and the 
MPW librarian (Llb). 

An object file consists of a sequence of object file records. The records described in the 
remainder of this appendix arc located in the dar.a fork of the object file. MPW object 
files have file type •OBJ ' and creator •MPs • . 

+ Note: The MPW linker validates only the file type, since other applications than MPW 
may create MPW-compatible object files. 

At the present time the linker tools do not use the resource fork. Although the current 
versions of Link, Llb, and DumpObj 'Nill ignore resource fork information in object files, 
Apple may specify resources for object files at some time in the furure. 

There are currently 20 types of object file records, numbered consecutively from 0 to 19. 
(Furure record types are not guaranteed to have consecutive record numbers). 

Code records: 

• The first record in the file must be a First record. 

• The last record in the file must be a Last record. 

• One-byte Pad records are used to maintain word alignment 

• Comment records allow comments to be included in the file. 

• Dictionary records associate names with unique IDs. 

• Module records define code and data modules. 

• Ea.tryPoio.t records define entry points in code and dar.a m<Xiules. 

• Size records specify the irodule sizes. 

• Contents records specify the contents of modules. 

• Reference and Computcdllcfctellce records specify locations in modules that 
contain references to other modules or entry points. 

APPENDIX H Object File Format ':1>7 



Symbolic records: 
• Filename records specify source filenames and modification dates. 

. • SourceStatcmcnt records specify correspondence between module offsets and 
source statements. 

• ModulcBcgln and ModuleE.nd records declare named scopes (typically associated 
with unir.s, files, or functions). 

• BlockBegln, and BJockEnd records declare unnamed or "block" scopes contained 
within modules. · 

• J-OcalID records declare identifiers scoped within modules or blocks. 

• Inca11.abel records specify correspondence between generated code, source 
statements, and label identifiers. 

• Loca.lType records define type information for IOCll identifiers and functions. 

A module is a contiguous region of memory that contains code or static data. A module 
is rhe smallest unit of memory th.at is included or removed by rhe linker. An entry point is 
a location (offset) within a module. (The module itself is treated as an entry point wirh 
offset zero.) A segment is a named collection of modules. 

• Note: The jump table (described in Inside Macintosh, Volume II) is considered to be 
code. 

All modules, entries, segments, and symbolic records have a unique 16-bit ID that is 
assigned by the compiler, assembler, or librarian. An m is an object ftle-related number 
th.at identifies a module, entry point, segment, or other enticy within a single object file. 

• Note: Older versions of the MPW linker support only ID values in the range 1. .. 16,383. 
The current version accepts ID values in the range 1...65,534 (values 0 and 65,535 are 
reserved). If your compiler needs to be compatible with MPW 2.0, then you should 
restrict the r:ange of IDs accordingly. 

• Note: The linker i,, faster and more efficient if the compiler allocates IDs 
sequentially from 1. 

568 MPW 3.0 Ref ere.nee 

/ ' 



( 

( 

Modules and entry points may be local or external. 

• A loal module, entry point, or segment can be referenced only from within the file 
where it is defined 

• An external module, entry point, or segment r.an be referenced from different files. In 
addition to an ID, each external module or entry point defined or refere11ced in an 
object file must also have a unique name (a string identifier) that identifies it across 
files. 

If an ID has a name, that narre is specified in a dictiomry record. 

If no dictionary entry exists for it, an ID is considered anonymous. 

Local modules and entries need not have unique names, and an external segment may have 
the same name as an external module or entry point. 

+ Note: Although the names need not be unique, the IDs of these different objects musr 
be unique. There must be multiple dictionary entries even though the names are the 
same. If symbolic debugging record.5 are generated, then ModuleBcgi.n records that 
correspond to Module record.5 must also share the same ID. 

A segment is declared implicitly by specifying a segment ID in a code-type Module record. 

At any given point in an object file there can be one current code module and one current 
data module. The beginning of a new code or data module is indicated by a Module 
record. The current code and data modules are further defined by Entry Point, Size, 
Contents, Reference, and Computed-Reference records-these record.5 can occur in any 
order after the Module record. 

In each of these intra-module record.5, a flag bit indicates whether the record refers to 
the code or the data stream, permitting the interleaving of code and data record.5 by 
compilers. Code and data may be arbitrarily interleaved. For instance, the record 
sequence: 

Module(Code, ID•l) 
Contents, Stu, EmryPoinl, and reference records for module 1 
Module(Oata, ID•2) 
Coments, Sm, EmryPoint, and reference records for modules 1 and 2 
Module(Code, ID•3) 
Contents, Size, Entry Point, and reference records for modules 2 and 3 
Module(Code, ID•4) 
Contents, Size, Entry Point, and reference records for modules 2 and 4 

declares three code modules and one data module; data module 2's scope extends until 
the next data module, across an arbitrary number of code modules. 

APPENDIX H Object File Format 569 



Scoping of symbolic information 

All symbolic records contain a parent ID field that specifies the scope to which the record 
applies. These records may be emitted in any order, in any part of the object file. 
Whether the code-generating and the symbolic records are interleaved, nested, or 
completely separated is left to the discretion of the language implementor. (However, 
source statement records for a panicular module must be written in order by increasing 
source offset.) · 

Executable objects (functions and procedures) are scoped lexically, while vwbles are 
scoped according to their visibility. To see why this is so, consider the following example 
in C (Pascal UNITs are similar): 

I* example.c */ 

static int static_var; 
int pu.blic_var; 
static local_func() { _ 
public_func() ( _ } 

If 'pu.blic_func' were contained by the root scope, then it vrould be impossible to 
access any file-level static variables (such as ' static_ var ' ) from within a breakpoint in 
the function. Even though the Module record for 'pu.blic_func' has its external bit se~ 
the ModuleBegin for the function must specify the source file as the parent scope. 

On the other hand, the variable •public_ var• must be visible to procedures outside 
the file scope, so it is necessary to specify the root as its parent. 

.570 MPW 3.0 Reference 



( 

( 

(' 

The records generated for the above example might be: 

Fir.st(ver.sion•3) 
Cictionary(l, "example.c") 
Filename ( l, modificatianDat.e> 
Oictionary(2, "example.c"> 
ModuleBegin(moduleID•2, parentIO•O, fileIO•l, kind•Unit) 
Cictionary(3, ".static_var") 
LocalIO (parentI0•2, fileID•l, ID•3, tjpe, etc.) 

Oictionary(4, "public_var") 
Local ID (parentID•O, fileID•l, ID•4, t)Pe, etc.) 

Cictionary(S, "local_func") 
ModuleBeqinCmoduleID•S, parentID•2, fileID•l, kind•Function) 
ModuleEnd(moduleID•S) 
Dictionary(6, "public_func") 
ModuleBegin(moduleID•6, parentID•2, fileID•l, kind•Functionl 
ModuleEnd(moduleID•6) 

ModuleEnd(moduleID•2, flkOjJseo 
Module (ID•S) 
Contents, ref emrces, and entry points for module 5 
Likewise, source statement information 
Module(ID•6, flag.s•external) 
Cont.ents, references, and entry points for module 6 
Likewise, source statement information 
La.st 

The symbolic records may appear in any order (ModuleEnd.s preceding ModuleBeqins, 
if necessary), interspersed with the nonsymbolic records (which do have order 
dependencies). There are a few items of interest in this example: 

• A parent ID of zero indicates the root. 

• The ID referred to by a Filename record cannot also be referred to by a ModuleBegin 
record. Languages (such as C) which have file scoping will need to produce two 
Oictiomry records that have the same name but different IDs: one for the filename, 
the odler for the file-level scope. 

• A point ci fine style: The linker is more efficient when multiple entries are emitted in 
the same Dictionary record. Many of the symbolic records also allow multiple 
definitions in the same record, and compiler writers should make ~ of this facility. 

• Even though it may be necessary to emit data Module record.$ for variables, it is 
incorrect to emit ModuleBegin records for the data modules; 1.1.5e Loc:alIO records 
instead. 

APPENDIX H Object File Format ;-1 



ModuleBegin implementation/declaration semantics 

· The terms implementation and declaration refer to McxiuleBegin records with the 
• isDeclaratlon bit set at, respectively, zero or one. 

If a module has only an implementation, the linker assumes the declaration and 
implementation source locations are the same. The first declaration encountered is used, 
except that a declaration in the same object file as the first implementation will override 
any previous declaration. Any dedarations or implementations following the first 
implementation are ignored (anything contained in such an ignored scope is also 
ignored). It is legal co have a declaration without an implementation or a Module. 

Module scope information is supplied solely by implementation records; declaration 
records may be nested, but the nesting is ignored since the declaration information does 
not affect mapping be:.ween the source and the executable code. 

Local variables (such as parameter variables) and types should be attached to either the 
implementation or declaration, but not to both. 

~ecord type notation 

This section contains important information about the documentation conventions used 
in the record descriptions that follow. Each record type is represented by a diagram such 
as the following: 

10 flags record size 101 

7 6 5 4 

572 MPW 3.0 Reference 

102 

0 

3 2 

0 

offsets 

code/ 
data 

0 



( 

The first box illustrates the record. Each square block represents a byte. The first byte 
indicates the record type, in this case, 10. The Flags byte is expanded in the second box. 
The Record Size is a signed, 16-bit integer that indicates the total length of the record 
(including the record type byte, flags byte, and record size field). Hence, any one object 
file record is limited to 32767 bytes. (This is not a limit on th'! size of the moduk, because 
partial contents can be placed in several records.) 

The second box represents the flag bits. In this example, they are interpreted as follows: 

Bit Meming 

0 0 in icates c ta 
1, 2 Must be 0 
3 0 indicates short, and 1 indicates long 
4-5 O indicates 32 bits, 1 indicates 16 bits, and 2 indicates 8 bits 
6 Must be 0 
7 1 indicates a difference computation 

• Note: All unspecified bits must be zero. 

In the remainder of this document, names in bit-fields will be specified in numeric order. 
For instance, in the case of the text 'local/ extern', the tags local and extern are 
understood to be respectively zero and one. 

The records have been defined so that: 

• All 16-bit and 32-bit fields are word-aligned in the me. 

• Fixed-size records do not have a Record Size field. 

• All variable-length records have a Record Size field. 

Object file records 

This section describes and diagra~ each object file record. 

APPENDIX H Object File Format ;-3 



Pad record 

A pad record is a single byte that is always zero. 

In order to maintain word alignment, a Pad record follows any record whose length is an 
odd number of bytes. (Other than pad records, all records are word-aligned.) 

First record 

The first record in an object file must be a First record. 

flags version 

nested 

0 

If the nested bit in the flags field is one, then the linker interprets all references to 
undefined ID-name pairs as external references. If the nested bit is zero, the linker will try 

to match the name of an undefined symbol with a local name before treating the 
undefined symbol as external. 

The version field contaim a version number: 

Version number 

1 

2 

3 

Nonsymbolic MPW 2.0 OMF file 

NonsymboJic MPW 3.0 OMF file 

OMF me containing symbolic information 

574 MPW 3.0 Reference 



Last record 

The last record in an object file must be a Last record. 

r.·T:l 
LL.J 

Comment record 

A comment record allows comments to be included in an object file. 

I 3 I 0 I .. =f~· I =t1nu I 
The record size field specifies the total number of byteS in the record. 

Dictionary record 

A dictionary reconi associates a name with an ID (or several names with several IDs). 

4 flags record size first 10 strings 

7 6 s 3 2 0 

. At nat one dictionary record may appear for a given ID in a single objea file. 

The record size field specifies the total number of byteS in the record. 

The strings field contaim one or rrore na~. each of which is preceded by an unsigned 
length byte. 

The first name in the strings field is associated with the ID given in the FirstID field. The 
second name is associated with FirstID + 1, and so on. 

APPE..~IX H Object File Format 575 



The dictionary record for an ID must appear before the module or entry-point record that 
defines the ID, but need not appear before reference or computed-reference records that 
refer to the ID. If an ID has no dictionary record or has a name with a length of zero, it's 
considered anonymous. 

The LlnklD/CbgID flag bit is used to differentiate symbolic debugging identifiers fron 
code-generating identifiers. When the linker is not linking symbolically it ignores 
dictionary records with this bit set, reducing the Link's memory requirements. 

Module record 

A Module record associates an ID with a module, and establishes that module as the 
"current" code or data module. All Entry-Point, Size, Contents, Reference, and Computed­
Reference records combine to define a code or data module. 

5 flags module 10 

7 6 

segment IOI 
size 

main 

5 4 

Modules may contain either code or data: 

0 

3 2 

0 
code/ 
data 

0 

• For code modules, the segment ID field specifies the segment in which the code is 
placed. Segments may be named or anonymous. Named segments are treated as 
external; anonyroous segments are local. (If the segment is named, the dictionary 
record specifying the name must appear before the segment ID can be used in a 
Module record.) 

• For data axxiules, a nonzero size field specifies the size of the module. In this case 
Size or Contents records are unneces.sary. (The size of a roodule can also be specified 
by a Size record, or implicitly specified by the offset of the last byte in a Contents 
record.) 

Modules may be either local or external. (Local modules may be anonymous.) 

576 MPW 3.0 Reference 

(( J ,_ 



( 

( 

A code nxxiule flagged as main becomes the execution starting point of the program. A 
data roodule flagged as main becomes the main program data area, just below the 
location pointed to by AS. At most one main code roodule or entry point and one main 
data module may appear in an object file. 

If a code or data module has the force-active bit set, then the linker will not strip that 
module even though it is not referenced by any other roodule and is not the main module. 

References to a module are considered to be references to the first byte of the module. 

• Note: The linker ensures that roodules are aligned on word or longword boundaries. 

Entry-Point record 

An Entry-Point record declares an entry-point ID. The entry point is in the current code or 
data roodule, as indicated by bit 0 of the flags field. 

6 flogs entry 10 

7 6 5 4 

offset 

3 2 

0 
code/ 
dote 

0 

The offset field gives the byte offset of the entry point relative to the beginning of the 
module. The offset ci an entry point may be outside the nxxiule (for example, a virtual 
base for an array). 

An entry point may be defined for either a code or a data roodule. Entry points may be 
either local or external (Local entry points may be anonyrrous.) ·A code entry point 
flagged as ma.in becomes the execution starting point of the program. At most one main 
code module or entry point may appear in an objea file. 

APPENDIX H Object File Format ;n 



Size record 

A Size record specifies the size of the current code or data module in bytes . 

•• 
7 

7 6 5 A 3 2 

code/ 
dote 

0 

The size of a module may al5o be specified in a Contents record, or (for data modules) in 
the Module record. If more than one size is specified, the largest size given is taken as the 
size of the module. 

Contents record 

Contents records specify the contents of the current code or data nxxiule. 

8 flags record size 

r...,.at ccmpV 0 
- .. - partial 

7 6 5 3 2 

The record size field specifies the total number of bytes in the record. 

[repeat) 

0 
code/ 
data 

0 

Either complete or partial contents may be specified. If partial contents are specified, 
the first four bytes of the contents field specify the offset of .the contents from the 
beginning of the rrodule. 

578 MPW 3.0 Reference 



c· 

c 

The contents may be either the bytes to be placed in the module, or a 2·byte repeat count 
followed by the byteS to be repeated. (If both an offset and a repeat count are 
specified, the offset comes first.) 

MultJpi-: <:ontl'11r~ rec•:•ds J)f'r m.x!uk- ::re pcrniitted, in any order. The offset of the last 
b}te for Vv·hich contents are specified detemlines the module's total size. (Size 
specifications may also appear in the Module record, and in Size records-if more than 
one size is specified, the largest size given is taken as the size of the module.) 

Reference record 

A Reference record specifies a list of references to an ID. The references are from the 
current code or data rrxxiule, and may be to either code or data. 

9 flags record size ID offsets 

7 6 5 4 3 2 

The record size field specifies the total number of bytes in the record. 

The ID field specifies the module or entry point being referenced. 

code/ 
data 

0 

The offsets field· specifies a list of byte offsets from the beginning of the current code or 
data nxxiule. These offsets may be either short (16 bits) or long (32 bits). The location 
nxxiified may be either 32 or 16 birs. Multiple references to the same or overlapping 
locations aie permitted. References from code may indicate instruction editing (that is, 
whether an offset is AS- or PC-relative). 

References &.11 into the four categories described here: 

• Code·tlM:ode .references: If the AS-relative flag is 1, the AS-relative offset of a jump­
table entry associated with the specified roodule or entry is added to the specified 
location. No insttuction editing is perfonned. 

APPENDIX H Object File Format 5i9' 



If the AS-reladTe flag is O, the linker selects either PC-relative or AS-relative 
addressing. The immediately preceding 16-bit word must contain a JSR, JMP, LEA, or 
PEA instruction, and is modified to indicate either PC-relative or AS-relative 
addressing. If the referenced module or entry point and the current code module are in 

• the same segment, the PC-relative offset of the module or entry point is added tc the 
contents of the specified location. If they are in different segments, the AS-relative 
offset of a jump-table entry associated with the specified mldule or entry is added to 
the specified location. 

• Code-to-data references: The AS-relative flag must be 1 for code-to-data references. 
The AS-relative offset of the specified data module or entry is added to the contents 
of the specified location. No instruction editing is performed. The location rmy be 
either 16 or 32 bits. (32-bit AS-relative addressing is available for the MC68020, .but not 
for the MC68000.) 

• Data-to-code references: If the AS-relative flag is 1, the AS-relative offset of a jump­
table entry is added to the specified location, which rmy be either 16 or 32 bits. 

If the AS-relative flag is 0, the meroory address of a jump-table entry associated with 
the specified roodule or entry is added to the contents of the specified location, 
which must be 32 bits. (Note that this requires a run-time operation that adds the 
actual value of AS to the AS-relative offset) 

• Data-t<Hlata references: If the AS-relative flag is 1, the AS-relative offset of the 
module or entry is added to the specified location, which rmy be either 32 or 16 bits. 

If the AS-relative flag is 0, the meroory addres.$ of the specified mldule or entry is 
added to the contents of the specified location, which m\J.$t be 32 bits. (Note that 
th.is requires a run-time operation that adds the actual value of AS to the AS-relative 
offset.) 

A5:0 

Edit inatructiont 
Force Pc-rel if in same segment. 
otherwtM add JT ·Offset. 18 

A5:1 

Adel JT -offset. 
Force PC-r•IZiv• for ncn-·cooe· 
linktt_. 3_2L1 8 
Add AS-offset of data. 

32118 
Add JT offset of code, Add JT -OffHt of code. 
requires load-time addition of M. 

32 32118 
Add AS-offset of data. Add AS-offsat of data. 
requires load-time addition of M. 

tt t2l18 

t Edited or forced instrudions must bt JMP, JSR, LEA or PEA. 

S80 MPW 3.0 Reference 

4~ 

\__j 



( 

32-bit code-to-code A5•1 references are possible in applications but not non-' cooE' 

links, because the instruction has to be forced PC-relative for a nonapplication link and 
32-bit references cannot be edited. 

This MPW Assembly Languag~ e:x;imple exe1ds~,~ 2~1. p:iZ~;'. ,ie modes of flxu~ except 32·bit 
code-t0<ode AS-6 which cannot easily be shown in MPW Assembler. Note that further 
instruction editing is done by the linker (for instance, the PC-relative JSR to J?ROC2 

below will be forced AS-relative when the linker realizes that J?Roc2 is in a different 
segment). 

APPENDIX H Object File Format 581 



SEG 'SEGl' 
l?ROC MAIN 

IMPORT l?ROCl:COOE, l?ROC2:CODE, DATAl:DATA 
IMPORT CATAINIT 
JSR _CATAINIT 

CODEREFS FORCEJT 
JSR PROCl 
JSR PROC2 
LEA DATAl,AO 

CO CATA INITIALIZATION 

FORCE AS-RELATIVE: 
CODE-TO-CODE, AS•l, SAME SEGMENT 
CODE-TO-COOE, AS•l, DIFFERENT SEGMENT 
CODE-TO-DATA, AS•l 

CODEREFS NOFORCEJT; FORCE PC-RELATIVE: 
JSR PROC2 

JSR l?ROCl 
END MAIN 

OATAl RECORD 

CODE-TO-CODE, AS•O, DIFFERENT SEGMENT 
; (FORCED AS-RELATIVE B? LINKER) 

COCE-TO-CODE, AS•O, SAME SEGMENT 

IMPORT l?ROCl:CODE, OATA2:0ATA 

OATAREFS RELATIVE 
OC.L l?ROCl 
cc.w l?ROCl 
OC.L CATAl 
oc.w DATAl 

DATAREFS ABSOLUTE 
OC.L l?ROCl 
CC.L OATAl-
ENDR 

l?ROCl PROC EXPORT 
ENDPllOC 

SEG 'SEG2' 
PROC2 PROC EXPORT 

ENDPROC 
END 

; 

; 

FORCE AS-RELATIVE 
CATA-TO-CODE, AS•l, 32-BIT 
CATA-TO-CODE, AS•l, 16-BIT 
CATA-TO-OATA, AS•l, 32-BIT 
OATA-TO-OATA, AS•l, 16-BIT 

FORCE ABSOLUTE 
OATA-TO-CODE, AS•O, 32-BIT 
OATA-TO-CATA, AS•O, 32-BIT 

THROUGH AS · 
THROUGH AS 
THROUGH AS 
THROUGH AS 

The •toad-time• addition of AS is performed by the procedure • _CATAINIT', which 
appears in the library '{Libraries}Runtime.o'. 

582 MPW 3.0 Reference 



(~ •.. 
,. 

The Code-to-Code and Code-to-Data reference modes have obvious utility. The reason 
that non-AS-relative Code-to-Data references are disallowed is that there is no mechanism 
for fixing up code on the Macin~h. which would otherwise have to be done every time a 
segment containing such a reference were loaded. 

C's pointer initialization makes use of the 32-bit Data-to-Code and Dat...-to-Data 
reference modes, as in the following examples: 

extern int func(); 
int (*fp> () • func: 1* Data-to-Code, 32-bit, load-time addition of AS */ 

int (**pfp) • &fp: /* Data-to-Data, 32-bit, load-time addition of AS *I 

The AS-relative Data-to-Code and Data-to-Data reference modes can be used for saving 
space if the application has a large number of pointers to data or code (a dispatch table, 
for instance). 

Computed-Reference record 

A Computed-Reference record specifies a list of computed references based on two 
specified IDs. 

10 record size 101 

7 6 5 4 3 

102 

2 

offsets 

··-...... . 

0 
cede/ 
data 

0 

The record si1.i: field sped.fies the total number of byres in the record. The references are 
from the current code or data imdule, and may be to either code or data. 

The IDl and ID2 fields specify the imdules or entry points being referenced. If IDl 
specifies a code reference, ID2 must also be a code reference in the same segment-if ID 1 
is a data reference, ID2 must also be a data reference. 

The only computation provided is difference (that is, bit 7 must be set). 

The offsets field specifies a list of byte offsets from the beginning of the current code or 
data module. These offsets may be either shon (16 bits) or long (32 bits). The location 
modified may be either 32, 16, or 8 bits (a 0 in bits 4 and S indicates 32, 1 indicates 16, 
and 2 indicates 8). No instruction editing is performed. 

APPENDIX H Object File Format 583 



The value of the address of IDl minus the address of ID2 is added to the contents of the 
specified location. Multiple references to the same or overlapping locations are 
permitted. 

Filename record 

The Filename record associates a file object with a mxiification date. 

I 
The me ID associates a dictionary ID with a filename. 

The modification date is the file's modification date. This is used by the debugger to 
help verify that the source fi..le being displayed corresponds to the object file. 

Although the fileID may be used by other records (such as source statements) prior to the 
appearance of the filename record, a Filename record must exist in the file for every fileID 
encountered. In addition, a dictionary ID must exist for the fileID; that is, files cannot be 
anonymous. 

Source Statement . record 

The Source Statement record specifies the correspondence between generated code and 
source statements. The debugger uses this information to display source as a function of 
code location. The meaning of •statemenC- is defined by the language and the compiler's 
author. 

584 MPW 3.0 Reference 



12 flags record size parent ID file ID 

7 6 5 4 3 2 

The record size field specifies the total number of bytes in the record. 

The file ID associates a dictionary ID with a filename. 

The parent ID specifies the scoping entity containing the statement 

file offset 

file code 
delta delta 

0 

The file offset and code offset specify the source file offset and code or data roodule 
offset for the first statement specified by this source statement record. These fields may 
be either 16 or 32 signed values. The ftle offset is the ()..relative byre offset in the file 
specified by the file ID. The ccxie offset is the byre offset from the beginning of the 
code or data roodule for the first byre of ccxie or data corresponding to the statement 
whose off set is specified by the file off set 

Each additional statement following the one specified by the ftle and code offset fields is 
specified by a file delta and code delta field. The deltas represent the diff mnce between 
adjacent ftle and code offsets starting with the one specified by the file and code fields. 
These deltas arc in the range from 0 to 255. 

If the subsequent statement cannot be expressed with these offsets, then a new Source 
Statement record should be emitted with new beginning offsets. 

All of the Soulte Statement recorm for a mxlule must be erilitted in order of inaeasing 
source code offset 

APPEN'DIX H Object File Format 585 



ModuleBegin record 

The ModuleBegin record supplies symbolic infonnation for a module. 

13 flags 

file 
offset 
32116 

7 6 

r.COrd size 

s 4 

modul& 10 

3 

is 
decl'n 

2 

parent ID 

0 

••• 

module 
kind 

The isDeclaration bit in the flags field provides a way to specify source location 
information for a module's declaration, if the module's declaration and implementation 
are separated in the source ccxie (such as a Pascal FORWARD or INTERFACE declaration). 

The record size field specifies the totd number of byres in the record. 

·The module ID associates a dictionary ID with the record. This ID ~t be the same value 
used in the Module record. It is through this ID that the coMection is made between the 
debugger object file stream for a module and the standard object module stream. 

• Note: There doesn't have to be a Module record as.rociated with the ModuleBegin. If 
there isn't a module with the same ID then the scope declared by the ModuleBegin is 
treated as a wrapper that doesn't have any code, but that can contain other symbolic 
objects. This is usually the case when the imd:ule-kind fie~d is unit 

The parent ID specifies the scoping entity that con12ins the module. An ID of zero 
indicates global scope. This field is ignored if the isDcdaration bit is set (parentage 
information is not extracted from a declaration). 

The file ID assod2tes a dictionary ID with a ftlename. 

The file offset specifies the source file offset for the module header. This field may be 
either 16 or 32 bits and is the 0-relative byte offset in the file specified by the file ID. 

The module kind indicates the kind of the module as follows: 

586 MPW 3.0 Reference 

0 

/f-- I 
'~-' 



( 

Kind Descripdon 

0 none 
1 reserved 
2 unit 
3 procedure 
4 function 
5 data roodule 
6 .. .15 reserved 

A Pascal program's program level should be treated as a unit (nxxiule kind 2). 

The byte following the module kind field is reserved 

ModuleEnd record 

The ModuleEnd record is associated with a ModuleBegin record by the moduleID field. 

14 flags mcdulelO 

7 8 5 3 

file offset 

is 
deel'n 

2 0 

The file offset specifies the last byte in the source file that is to be considered part of the 
mxiule. The isDeclaration bit specifies whether the file offset refleas the end of the 
mxiule's implementation or declaration. 

APPENDIX H Object File Format 58i 



BlockBegin record 

A Block.Begin record declares a nested scope. Usually these scopes don't have names, but 
it's OK to associate a dictionarv ID with the block scope for symbolic r.aming purposes 
only; the ID can't also be as.sociate<.i wili. 4.no~her object (such .:s an entry point). 

15 flags record size Block 10 Parent 10 ••• 

code offset 

7 6 5 4 3 2 0 

The record size field specifies the total number of bytes in the record. 

The parent ID specifies the scoping entity (such as the block or module) containing the 
block. It's illegal to specify a parent of zero, or to specify a parentage chain that doesn't 
(evenrually) include a {ModuleBegin, Module} pair; there must be a l.in.kable object in the 
chain. 

The file ID and file offset specify the source file and source file offset of the first 
statement within the block. 

The code offset specifies the offset of the first instruction in the block. The offset is 
relative to the module that the block appears in, and does not depend on any intervening 
scopes between the Bkx:kBegin and the module in which it appears. 

A Block scope can't contain another ModuleBegin scope. 

588 MPW 3.0 Reference 

/r . \ 

,f .) 
il_ 



( 

( ', 

/ 

C:', 

BlockE.nd record 

The BlockEnd record indicates the end of a block. There mu.st be a block end record for 
each BlockBegin record. 

: cod• :•ff••• : 

The me offset specifies the last byte in the source me that is to be considered part of the 
block. 

The code offset specifies the offset within the containing module of the fi.rst instruction 
not to be treated as part of the block. 

Local Identifier record 

Local Identifier records specify formal parameters to procedures and functions as well as 
local identifiers (and their types) declared within rrxxiules or blocks. 

APPENDIX H Object File Form.at 589 

l 



.. 
• 

17 flags record size parent 10 file 10 file offset 

·~ 
.· ·.:: :: ... -4:~ ~-

... .. ·•· .. · ... ·.·.· .·. 

file 
offset 
32/16 

7 6 5 4 3 2 0 

10 type kind count offset data 

offset size enca value 

7 6 5 4 3 2 0 

The record size field i.s used to cletennine the number of IDs which follow. 

The parent ID specifies the scoping entity (such as module or block) containing the 
identifier. 

The file ID associates a dictionary ID with a ftlename. 

The file offset specifies the source me offset for the first statement specified by this 
Local Identifier Record. This field may be either a 16- or 32-bit signed value giving the 
zero-relative byte offset in the file specified by the file ID. 

Following the initial me offset one or mre sets of 5 fields will provide information about 
local identifiers. 

The ID wociab:S a dictionary ID with a formal par.lmeter or a 1ocaJ variable. 

The type~ a type ID specifying the identifier's type. For primitive typeS, this ID will 
range from O to 99; for nonprimitive types it will be the ID (~l 00) of the LocalType record 
describing the type. 

The File Delta byte specifies the identifiers source offset. (The first delta byte will 
usually be zero.) If the delta for the variable is not in the range 0 .. 255 then a new record 
must be started. 

S90 MPW 3.0 Ref ere nee 

rt~·.~ 
)~ 



c.· 

c· 

The Kind byte is used to determine whether the identifier is in fact a formal parameter, a 
function rerum •parameter,• or a local variable. The Kind field also specifies the size of 
the byte offset which follows, as well as the storage mode ~or the parameter or variable. 

The offset size field indicates whether there is a byte: offs~t field presert: ::ind if there is, 
how large it is. If it is three, a 16-bit COUllt fieid Sp...-CWCS ti'le number Ct bytes that follow 
the count (used for representing floating-point or string constants). If the count is odd, a 
pad byte should be added to the data. 

offset she 

0 
1 
2 
3 

descripdon 
no offset field follows 
2-byte off set field 
4-byte offset field 
variable size offset field (preceded by 16-bit count) 

The reference and value bits in the Kind field must be 0 in the case of local identifiers, and 
must be specified in the case of formal parameters. 

5tot2fC class description offKt Js the ••• 
0 register register number 
1 AS-relative ID of the module or entry point 

corresponding to this variable 
2 A6-relative A6-relative offset 
3 A7-relative A7-relative offset 
4 absolute absolute address 
s constant value of the constant 
6 ... 15 reserved reserved /or future use 

A7-offsets (storage class 3) are encoded as offsets from the top of the stack (usually the 
return address) prior to executing a LINK instruction. 

Register numbers are encoded as integers indicating the specific register as follows: 

APPENDIX H Object File Format ;91 



• Table H-1 Register numbers 

Value Rqfster Manfa1 

0 .. 7 DO .. D7 Data registers 
8 . .15 A0 .. A7 Address registers 
16 CCR Condition code register 
17 SR Status register 
18 USP User stack pointer 
19 MSP Master stack pointer 

. 20 SFC Source function code register 
21 DFC Destination function code register 
22 CACR Cache control register 
23 VBR Vector base register 
24 CAAR Cache address register 
25 ISP Interrupt stack pointer 
26 PC Program counter 
27 reseroed 
28 FPCR Floating-point control register 
29 FPSR Floating-point status register 
30 FPIAR Floating-point instruction address register 
31 reserved 
32 . .39 FPO .. FP7 Floating-point data registers 
40 .. 50 reserved 
51 PSR PMMU status register 
52 PCSR PMMU cache status register 
53 VAJ.. PMMU validate access level register 
54 CRP PMMU CPU root pointer register 
55 SRP PMMU supervisor root pointer register 
56 DRP PMMU OMA root pointer register 
57 TC PMMU translation control register 
58 AC PMMU access control register 
59 sec PMMU stack change control register 
60 CAL PMMU current access level register 
61..62 TTO .. m MC68030 transparent translation registers 
63 reserved 
64 .. 71 BADO .. BAD7 PMMU breakpoint acknowledge data registers 
72 .. 79 BACO .. BAC7 PMMU breakpoint acknowledge control registers 

592 MPW 3.0 Reference 

r) 
"'-/ 

ir- ) 
\l .. · 



( 

(J 

Local Label record 

Local Label records give the correspondence between generated code, source statements, 
and label identifiers. 

18 flags record size 

7 6 

parent 10 

5 

label ID/ 
Entry ID 

4 

These records are similar to Source Statement records. 

file ID file offset a:lde offset 

3 2 0 

file axle 
delta delta label ID 

The flag.s, record size, parent ID, file ID, file offset, and code offset fields are identical to 
those fields in the Source Statement record (see description earlier in th.is appendix). 

The file delta and code delta are also encoded as they are in Source Statement records, 
but here an additional label ID field ~ supplied with each file and code delta pair. The 
label ID associates a dictionary ID with a label identifier. The first label ID in the Local 
Label record has no file and code delta following it since th3t ID i.s at the location 
specified by the file and code offset fields. 

APPENDIX H Object File Fomllt 593 



Local Type record 

Local Type recorm associate type declarations with type IDs (or several types with 
several IDs). Type IDs are used to define types referred to by Loca1ID and other Local 
Type records. 

19 flags rec:crd size 

32116 
size 

6 5 

32116 
file 

offset 

sizeOfOata 

typeOata 

fileOelta 

4 3 

cntOfFixups physicalSize 

Pad 

(end of record) __ ,, 

first ID 

must be 
zero 

The record size field specifies the total number of bytes in the record. 

file 10 

data_offset 

fixupType 

The parent ID specifies the scoping entity (such as a nxxiule or block) containing the 
identifier. 

The 32/16 size bit in the flags field specifies whether the physicalSize fields of all type 
declarations in the record are 16 or 32 bits. 

The 32116 file offset bit in the flags field specifies whether the ftleOffset field is 16 or 32 
bits. 

594 MPW 3.0 Reference 

fileOffset 

10 



Bit zero of the flags field must be zero. 

The firstID field specifies the first type ID declared by the record, ' first ID + l ' is 
associated with the second type declared, and so on. The first type ID should be ~ 100; 
IDs O through '1) are treated as "primitive" types and should never be defined by a 
Loca!Type record. 

The fileID field specifies the dictionary ID containing the source filename. If the file ID 
is 0 then the type declarations in the record are not associated with any source cooe, and 
the fileOffset and fileDelt.a fields are ignored (though they must appear). 

The fileOffset field specifies the offset of the type declaration in the source file. This Ls a 
16-bit or 32-bit unsigned value, as determined by the 32/16 file offset bit in the flags field. 

Type declarations immediately follow the firstID field, and extend to the end of the 
record. For each declaration the following fields appear: 

• The sizeOfDat.a field specifies the size of the type dat.a in bytes. (If this field is odd, 
a pad byte of zero must follow the type dat.a.) 

• The cntOfFixups field specifies the number of type ID and dictionary ID fixups that 
follow the type data. 

• The physicalSize field is either 16 or 32 bits (see definition of the flags field) and 
specifies the type's physical representation size, in bytes (such as the value returned 
by C's sizeof operator). This field may be inaccurate for packed types and sliced 
arrays, and is meaningless for ProcOf types. 

• The type data follows the physica!Size record. The format of the type dat.a is 
described in the following section, "Type Incerpret.ation via Prefix Code.• If the size 
of the type dat.a is odd then a pad byte of zero must be appended to it. The pad byte 
is not included in the size of the type data. 

• Following the type data is the fixup list, consisting of cntOfFixups entries. Each fixup 
entry is two words: an offset into the original type data followed by an ID to translate. 
The ID is translated and the result is inserted into the type data at the specified 
offset The upper three bits of the fixup offset indicate the kind of translation to be 
made; the temaining bits are the type data offset. The translation kinds are: 

APPENDIX H Object File Format S~ 



,. 

bit bit bit 

lS 14 13 Tr:msladon tratment 

0 0 0 Insert the TIE index of the ID (which must be a LocalType or a number from 
0 to 99) as a 16-bit word 

0 0 1 reserved 
0 1 0 Insert a scalar based on the ID's type: 

Module insert MTE index of the module 
LocalID insert cvrE index of the variable 
Segment insert RTE index of the segment 
Source file insert FRTE index of the SOW'Ce file 
LocalType insert TIE index of the type 

0 1 1 reserved 
1 0 0 Insert NTE index of the ID, as a scalar 
1 0 1 reserved 
1 1 0 reseroed 
1 1 1 reserved 

(MTEs, CVI'Es, RTEs, FRTEs, and TIEs and so forth are part of the Sym file produced 
by the linker, and are described in the document SADE Sym File Format, which is 
available separately from Developer Technical Support at Apple Computer, Inc.) 

• The fileDelta field indicates the soW'Ce file offset of the next type declaration as a 
signed 16-bit integer. This field does not appear following the last type declaration in 
the record. If the source offset will not fit in 16 bits, then a new Local Type record 
should be started. 

A type ID is associated with a name by a ·obgld" -type dictionary entry with a 
corresponding ID. 

A new Local Type record should be started whenever the SOW'Ce file changes, when the file 
delta cannot be represented in a 16-bit signed integer, or when a type has no source 
declaration. 

Type interpretation via prefix code 

The goals of type interpretation are to support the interpretation of SADE debugger 
variables by type, map from name to type, and map from type information to name. 
Operators such as array indexing, indirection, field name, and so on, are applied to types 
to yield more type and address information. 

596 MPW 3.0 Reference 

,,,~ 

i~ .) ,_ 

'""--



( 
The type infonnation should be complete. By complete is meant that the debugger should 
have a minimum amount of knowledge about how data for any particular type is stored. 
Type infonnation should be easy for compilers to emit and for the linker to extract from 
the Object module fonnat. The storage of type information should be compact, yet fast 
zn<l easy to t. 'i-~nd. Hig11-level language interpreters for type in'.'ormztior. should not be 
prohibitively expensive. 

Overview 

SADE type information is contained in word aligned variable length data structures called 
Type Table Entries, (m). These type table entries are contiguously numbered (starting at 
100, as the incfo:es 0 .. 99 are reserved) and accessed via an indexing table of four byte 
disk addresses. An index into this table is called a 7TE Index. The type table entries are 
aligned on word (two byte) boundaries. No globaVlocal scope information is contained 
in the type table; scoping is via the Modules table and its Contained Modules, Types, and 
so on. A picture of a 7TE appears later in this appendix. 

The TypeCodes portion of a m contains size information and an interpretative 
representation of a type. The exact form for the TypeCodes is described below. The 
paradigm used for the SADE type mechanism is types as functions. All types are either 
basic types or functions with types and integral constants as arguments. The realization 
of this paradigm is prefix code: an operator followed by operands. 

Type values are either scalar types or composite types. Instances of a scalar type can be 
ordered, while composite types cannot necessarily be ordered. Scalar types are funher 
divided into integral and nonintegral scalar types. Integral types can be mapped to the 
set of integers. 

Type functions 

Following arc the definitions for the type functions and their arguments. Except for two 
cases, type function arguments are either other type functions, encoded scalars, or 
instances of a scalar type (see the section "ScalarOf'). In one exception, ConstantOf( ), 
one argument is a sequence of uninterpreted bytes. In the ocher, ITE( ), the argument is 
an unaligned 2 bytes interpreted as an unsigned word. Except in these two cases, the 
convention used is to prefix arguments with S if it is a scalar or T if it is a type or an 
instance of a type. 

APPENDIX H Object File Format ;r 



BasicTypc(STypc) 

This function returns a ground type, one which cannot be composed of other typest. The 
argument is an integer in the range (}-99. By convention, the empty type, called void, is 
represented by BasicType(O). 

lTE(UnsigncdWord) 

The type, and also the name for the type, is found at the UnsignedWord entry in the type 
table. This aliasing function alloM the association of a name to a type, or the factoring­
out of a shared anonymous type into one common entry, thus saving table space. 

PointetTo(Ttype) 

The argument is a type. The value of the function is pointer to that type. 
PointerTo(void) is a generic pointer, equivalent to the C type (void•). 

Scala.rOf(Ttypc, Svaluc) 

The type returned by the ScalarOf function names an instance of given scalar type. The 
ScalarOf function is usually referred to by RecordOf or EnumerationOf. 

Namedl'ypcOf(Sntc, Ttypc) 

The scalar is an index for a Name Table Entry. That entry gives the name for the type 
Ttype. This mechaitism is used to give names which are local to a type, such as record and 
union field names. 

ConstantOfO'type, Slength, byte. •. ) 

The function ConstantOf is similar to ScalarOf, except that the constant can be of a 
nonintegral type, such as floating-point constan~ or composite type constants. The 
TType is the type d. the constant, the Slength is the number of byres in the constant, and 
the unencoded bytes following are the byres comprising that type. 

t This is oot quite true. Due to historical reaso~. strings are consid.ere<l a groond type in.stead of a derive<l type. 

598 MPW 3.0 Reference 



EnumeratJonOf(Tbase, Slower, Supper, Snelements, Ttypc •.. ) 

The function EnumerationOf names an enumeration type. 1base names the underlying 
scalar type that the elements of the enumeration are drawn from. It also determines the 
storage stze of the Enumeration. Usually, the elerrents w· cir:lwn from 
BasicTypc;(SignedWord). The Slower and Supper are the lower and UJ:.pe• boufo:i.s ot the 
enumeration. Snelements is the number of Ttype elements named as part of the 
enumeration. Snelements can be less than Supper Slower + 1 if the enumeration is sparse, 
as is ~sible with C enwm. 

VcctorOf(Tindcx, Tclcmcnt) 

The function takes two arguments. The first is the index type, which is the scalar type 
from which the vector indices are drawn. The second argument is the type of the vector 
elements. The value of the function is Amy [Tindexl OF Telement 

RccordOf(Snflclds, Soft'sct a: Ttypc ... ) 

The function RecordOf returns a type composed of a linear sequence of types. Snfields is 
the number of types in the composite type. The argument types are pairs of a scalar and a 
type. The Soffset scalar gives the offset to that element from the beginning of the type. 
The Ttype is the type of that element The offsets are byte offsets. The representation 
details are discussed in the following section. 

UnionOf(Ttag, Soft'sct, S.o.flclds, Tvariant A: Ttype...) 

The Union function could be built from the RecordOf function. Ttag is the scalar type of 
the tag. For C and other languages whose unions do not have a tag, Ttag is the ground type 
void. Soffset is the offset to the first variant from the start of .the union. If there is no 
tag variable, then Soffset will be 0. Otherwise, Soffset is the size of the tag variable plus 
any required alignment The Snfields is the number of variants in the union. The Tvariant 
and 1'ype pairs define one element of the union. The Tvariant is an instance of the Ttag 
and names the Variant If Ttag is void, Tvariant is void Ttype is the field of the union. 

SubRaageOi{'l'bae, 'nower, Tupper) 

The function SubRangeOf names a subrange of the scalar type, Thase. The bounds of the 
subrange are given by the 'flower and Tupper values. 

APPE."1..;1)IX H Object File Format ;99 



SetOf(Tbase) 

The function SetOf names a set type. The set is composed of elements drawn from scalar 
type Tbase. 

ProcOt{SClass, TReturn, SArgc, TA.fl...) 

The function ProcOf names a procedure type. SClass is the class of procedure. The class 
of the procedure defines how arguments are passed to it and values are returned from it 
!Return is the type of the return value; if void the ProcOf names a procedure instead of a 
function. SArgc is the number of arguments to the procedure. The TArg are the arguments 
to the procedure. The argument order is the order of declaration, as it appears in the 
source text. How the TArgs are actually passed, on the stick, Pascal or C, or in registers, is 
as per the SC!ass. 

ValucOf(Ttype, Scvtc, Smte) 

The scalar value, of type Ttype, can be obtained by fetching the variable who.5e CVTE 
index is Scvte and whose contiining rmdule's MTE index is given by Smte. Smte is 
required because the variable named by the Scvte might be in a register or relative to A6, 
requiring a debugger to find the proper stack frame. Ttype will be the same as the type in 
the CVI'E; it is duplicated because it's not desirable to reference the CVI'E just to find the 
type. 

AttayOf(Telement, Sonier, Saditm, Tboundt, ... ) 

The ArrayOf type descriptor is used to describe monolithic arrays, those which cannot or 
should not be described with VectorOf functions. The Telement is the type of each array 
element Sorder describes how the address of an element is computed from the array 
indices. Sndim is the number of ~nsions of the array, and Tboundl... are the indexing 
types, usually SubRangeOf typcS. 

Sorcier can have one of two values. If 0, then the ~ of amy(i,j,k) is computed by 

(i-lowerBount(Iboundl)) + 
(j-lowerBount('lbound2)) • spaJ(Iboundl) + 
(k-lowerBount(Ibound3)) • spa1(Ibound2) • spa7(Tboundl) 

If 1, then the address is computed by 

(i-lowerBoutU(Iboundl)) • spaJ(Ibound2) • spa7(Tbound3) + 
(i·lowerBount(Tbound2)) • spaJ(Iboundl) + 
(k-lowerBount.(1bound3)) 

6oo MPW 3.0 Reference 



where 

lowerBound.Type) • lower bound of the subrange or enumeration 
upperBountl.Type) • upper bound of the subrange or enumeration 
spar.(:"yp:) • upperBound.Type) - lowerBound.Type) 

Note the difference in the order of the element type and index type from that in the 
vectorof function. This was done to keep the variable number of bounds as the last 
argumen~ to the Arrayof function. 

Representation of type information in the SADE symbol table 

The SADE symbol table, created by the linker from information in the object modules 
linked, stores type information in a type table Enuy. The type table Enuy is a word­
aligned variable-length data structure of the form: 

Physical Size 

0 .. 1023 

NTE inda 

The NTE index is a 4-byte field, giving the name of the type via an index into the Name 
Table. The index can be zero, meaning that this is an anonymous type. 

Physlal Size 

The Physial Size 2-byte field defines the number of bytes taken up by the TypeCodes 
field It does noc include the physical size or logiC21 size fiel~. The maximum size of a 
TypeCodes field w 1023 bytes. The other bits are flag bits. Of these flag bits, only one, 
the B bit, is defined. The other bi~ are reserved for future expediencies and should be set 
to zero. The B bit applies to the LogiC21 Size and meam Big. When set, the logical size 
field will be 4 bytes instead of 2, allowing the desaiption of very large data structures such 
as Fortran arrays. 

APPENDIX H Object File Format 6ot 



Logical Siz.e 

The Logical Size field is either 2 byres or 4 byres wide. II the B bit in the Physical Size 
field is zero, then the Llogial Size is 2 byres long. II set, the field is 4 byres long. In either 

., case, the va.lue of r.he field is the number of bytes required to store the type. 

TypeCodcs 

Following the header infonnation are the TypeCodes themselves. This is a sequence of 
Physical Size bytes of type information. The TypeCodes are described in the next 
section. 

Representation of type codes 

Type function codes are single bytes. The Basic Type function has the Most Significant 
Bit (MSB) of the byre 0 and the basic type number encoded in the lower 7 bits. The Type 
Composition Function has a 1 in the MSB and the function code in the lower 6 bits. The 
next-to-MSB is a flag indicating the type of offset encountered in the arguments to that 
type. II zero, then offsets are byte offsets from the beginning of the type. II 1, then 
off sets are bit off sets from the beginning of the type. 

Basic type 

l ... o__.l ___ o_ .. _99 __ __.I 

The byte names a Basic type in the range 0 .. 99. The standard values for Basic types are 
named earlier in this appendix and are as follows: 

6o2 MPW 3.0 Reference 

11. 
'"---) 

(( I 
~ ... · 



( 

( 
/ 

0 no type 
1 Pascal string 
2 unsigned long word 
3 signed lot:1g word 
4 . eXL!nde<! UO bytes) 
5 Pasal boolean (1 byte) 
6 unsigned byte 
7 signed byte 
8 character (1 byte) 
9 character (2 bytes) 
10 unsigned word 
11 signed word 
12 singled 
13 double 
14 extended (12 bytes) 
15 computational (8 bytes) 
16 C string 
17 as-is string 

Type composition function 

I 1 I p I 0 .. 63 

The type ccxie is in the lower 6 bits. The P bit means the type is PACKED. The defaul~ 
P-0, means that the type is unpacked. The values for the type codes are: 

1 ITE 
2 PointerTo 
3 ScalarOf 
4 ConstantOf 
5 EnumerationOf 
6 VectorOf 
7 Record Of 
8 UnionOf 
9 SubRangeOf 
10 SetOf 
11 NamedTypeOf 
12 ProcOf 
13 ValueOf 
14 ArrayOf 

The SC!ass for ProcOf types has the following immediate meanings: 

APPfu\fDIX H Object File Format 603 



0 Undcfi11ed 

The calling conventions of the function are undefined. 

1 Pasa.l 

The calling convention follows Pa.ccal co11ventions. The return value or a f:Ointer to the rerum 
value is placed on the stack and is then followed by a fixed number of arguments. The called 
procedure/function cleans up the stack before returning to the caller. 

2 C with fixed arguments 
C calling convention. The caller removes any arguments that were passed. The arq count is the 
number that was specified in the prototype for the C function or in the function definition. 

3 C with variable number of arguments 
Similar to the above, except that the argument count is the minimum number of arguments to 
pass to the function. It is suggested that compilers emit a Proc0f(3, TReturn, 0) for functions 
referenced without prototypes or function definitions, as that is the imst general case. This is 
especially useful for declarations of pointers to function. 

Representation of scalars 

I o I o .. i21 

A constant in the range 0-127 firs into a single byte. The high bit is zero, marking this as a 
small integer. 

·63 .. -~ 

If the 2 high bits of a byte are one, then the byte represents a small negative integer in the 
range-63-1. The value-64, with the lower 6 bits zero, is used as switch to long. 
See below. 

0 •. 16383 

If the two high bits of a byte are 10, then a larger integer in the range 0 .. 16383 is specified 
by appending the next byte to the 10 byte and stripping off the high two bits of the word. 
The constant is not aligned to word boundaries. 

604 MPW 3.0 Reference 

\"---

11'.. \ 

~-··· 



4 bytes of longint 

A byte whose value is -64 is used for expansion past the preceding bounds. The four bytes 
following (not aligned to word boundaries) are die i,,r:qint. 

Examples 

In these examples, it is assumed that "Integer" is the name of a BasicType of SignedWord. 

PaScal source 

TYl?E 
VHSelect • (v, h); 

Point -
RECORD 

CASE Integer OE" 
0: (v: Integer; 

h: Integer); 
1: (vh: AR.RAY (VHSelect) OE" Integer); 

END; 

Re ct • 
RECORD 

CASE Quux: Integer OE" 
0: (top: Integer: 

left: Integer; 
bottom: Integer; 
right: Integer); 

1: (topLeft: l?oint; 
botRiqht: l?oint); 

END; 

Possible object module representation 

The representation of type information in the object module must be less compact than 
in the type table so that the linker will not have to interpret the type information, just 
resolve linkages, fold anonymous types into types referring to them, and emit the 
compacted information. The differences are: 

• m(x) are replaced by the dictionary numbers of the entries. 
• BasicType(x) are replaced by dictionary numbers less than 100. 

APPENDIX H Object File Forrnat 60; 



In the following, dictionary numbers are distinguished from integers. BasicType(n) 
should be viewed as having been replaced by the canonical dictionary for that type. 

Dta I 

;a 0 0 0 
3010 
3020 
3050 
3052 
3054 

3056 
3060 

3132 

3134 

3140 

Name 
v 
h 

VHSelect 
vh 

Point 

Re ct 

6o6 MPW 3.0 Reference 

Type ddnldoa 

Scalar0f(3020, 0) 
Scalar0f(3020, 1) 
EnumerationOf(BasicType(O), O, 1, 2, 3000, 3010) 
Vector0f(3020, BasicType(INTEGER)) 
ScalarOf(BasicType{INTEGER), 0) 
RecordOf( 

/* Record has two fields */ 
2, 
/* First, at offset O, is the "v: Integer"•/ 
I* Two bytes after it is "h: Integer"•/ 
0, NamedTypeOf("v", BasicType(INTEGER) ), 
2, NamedTypeOf{"h", BasicType(INTEGER)) 
) ' 

ScalarOf(BasicType{INTEGER), l) 

tJnionOf( 
/* Two variants, Integer selector, no tag •/ 
2, BasicType (INTEGER)' 
3052, 3054, /* 0: selects the record c.~-

"v" and "h" */ 
3056, 3050 /* 1: selects the array of 

two ints */ 

RecordOf( 
4, 

RecordOf ( 

UnionOf( 

O, Na.medTypeOf("top", BasicType{INTEGER)), 
2, NamedTypeOf("left", BasicType<INTEGER)), 
4, NamedTypeOf("oottom", BasicType(:NTEGER) ), 
6, NamedTypeOf("right", BasicType{!NTEGER)) 

2, 
0, NamedTypeOf("topLeft", 3060), 
4, NamedTypeOf("botR.ight", 3060) 

/* Two variants, Integer selector, 
tag is "Quux", size 2 */ 

2, NamedTypeOf("Quwc", BasicType(INTEGER)), 2 
3052, 3132, /* 0: First variant is the 

3056, 3134 
recQrd of 4 Integers •/ 
/* l: Second variant is the 
record of 2 Points */ 



Possible compilation into ITT 

The linker an compact the representation, folding anonymous entries into the type 
definitions referring to them. This would yield the following: 

JlOO 

3101 

3102 

JlOS 

Jl06 

v 

h 

VHSeleo: 

vh 

Point 

ScalarOf<TTEIJ102), 0) 

ScalarOf<TTE<31021, 11 

EnumerationOf(SasioType(SICNtOWORO), 0, l, 2, 77SiJ~::) 

TTE 13101) I 

Vector0f(TTE(3102)' SasicType(!NTtCtR)) 

UnionOf( 

/• Two variants, Inteqer selec:or, ~~ 

2, SasicTypelIHTtCtRI, 

/• 0: selects the record of "v" and "~" •/ 

Scalar0f(SasicType(INT£CtR), 0), 

RecordOf( 

/• Record has two fields •/ 

2, 

/• First, at offset 0, is the 

"v: In:eqer" •I 

0, NamedType_Of ( "v", Sasio:'ype 1 :~::::;::i'1 ' 

/• Two Dytes past :he fi:st, :s 

"h: Inteqe:" •/ 

2, NamedTypeOf t"h", Basic!ype 1 :s:::co:;;1 1 

) , 

/• 1: selects the array of two ints •; 

ScalarOf(BasicType(IHTtCER), l), 

TTE<JlOSl 

APPENDrx H Object File Format Goi 



31:.4 Rect t.TnionOf( 

Type interpretation and packed data 

/• Two variants, Inteqer selector, 

taq is "Quux", size 2•/ 

2, NamedTypeOf("Quux", BasicTypeCINT£G£Rl ), 2 

/• O: First variant is the record 

of 4 Inteqers •/ 

ScalarOf<BasicTypeCINTtC£R), 0), 

Rec:ordOt'( 

4, 

0, NamedTypeOf("top", BasicTypec:s:::c::Ri 1. 

2, NamedTypeOfc"left", BasicTypecrs:::;::RI 1, 

4, NamedTypeOf("bottom", Basic':'ypec:s-::::c::~J 1: 

6, NamedTypeOf ( "riqht.", Basic!ype C r~m:::;::R1. I 

) , 

/• l: Second variant is the record 

of 2 Points • / 

ScalarOf<BasicTypec"Inteqer"l, ll, 

RecordOt'( 

2, 

0, NamedTypeOf("topLeft", 3106), 

4, NamedTypeOf ("botRiqht", 3:.C6) 

The previous section did not describe PAC KEO data, such as Pascal's packed arrays 
(actually vectolS) and records and Cs bit-field sttuc:tures. This pro~al for describing 
packed data rests on the observation that it is nol the composite types that are packed 
but rather components of the composite types. The solution is general enough to solve 
today's problem and be extensible to future language implementations. 

When a type has the PACKED attribute, it is followed by packing information. The 
packing information describes the packing for that occurrence of the type. In the case of 
the VectorOf composing type, the packing information describes how a given number of 
elemen~ are arranged within a foced number of bytes. 

608 MPW 3.0 Reference 

/f~ 

'~.-! 

(I 



Storage fr.uncwork 

In general, an instance of a datatype is a sequence of bits. These bit sequences are usually 
aligned on address boundaries and are totally contained within an integral unit of 
addressable units of storage (bytes). Packing an instance of a dataty~ miniI!1lzes the 
amount of wasted bits, possibly at the expense of access time. Therefore, the patked 
type information assumes the following bit-level view of K bytes of storage, with the 
most significant bit (and byte) at the left and the least significant bit (byte) at the right: 

K BytH 

A packed data field is represented by two scalars: the MSB and lSB. The scalars are 
represented as described in the TypeCodes document. This allows bitfields and packed 
data to be from 1 to 2••32-1 bits widet. The number of bytes ocaJpied by that packed 
data field is (MSB+ 7) DIV 8. ISB can be thought of as the shift factor and MSB-ISB+ 1 
the number of bits in the mask. 

A packed non-VectorO/type is followed by a single ocaJrrence of MSB and ISB. 

Packed vectors have a regular sciucrure. A group of vector elements, M, will be packed 
into a number of bytes, N. The packing is regular, meaning that the bit field for 
Vector{p•M+k] is the same as that for Vectorlkl except that it is p•N bytes after Vectorlkl. 
Because of this regularity, the bitfield information is in a different format: 

't Originally, it wu t.hougti Um the packed daia field could be represented by' a single byte of mask axxi shift information. 
One nibble in the byte represented the field width (0 to 15 bits) in the word. The position d the tield was represemed by 

the other nibble as the number of bits to left shift the mask. However, ooe common case, the C bitfield with more than l S 
bits, prevents a single byte represenution for packed data. Since more than ooe byte is required to represent packed ea:.a, 

the MSB/ISB view was adop<ed. 

~SB/LSB was chosen over MASK and SHIFT because one less addition is required to yield the number of bytes reqJ:.rec 
for the dat1 type. 

APPENDIX H Object File Format 6W 



/LJ 
• • • • • 
c::i ~ m r- r-
'< a; (/) (/) 

~ u; 3 n:J c::i 
Ill ;:;; = :§ ~ -Ci) ~ = .. 3 

u; I 

0 - -c = Ci) 
't.'l =. .. 

0 c 
't.'l 

The first scalar gives N, the number of bytes into which the M vector elements can fit The 
next scalar gives the width of the bit mask. The third scalar gives M, the number of 
elements in the repeating group. Following these three scalars are M scalars. These M 
scalars give the L.5B for the O'th to the M-l'th vector element. l.SB[i]+# Bits/Elements-1 
gives MSB[il. 

Examples 

The following example is in C and from Harbison and Steele. It is as.5umed to follow 
MC68000 addressing in that the mo.5t significant bytes are at the lowest addresses. Also 
note that the ex.ample assumes that this particular C compiler packs fields into in ts 
starting with the least significant bit of the int. 

Here is a sample bitfleld: 

jslx I Segment I Page 

31 29 23 

C source 

typedef struct { 
unsiqned offset 
unsiqned paqe 
unsiqned segment 
unsiqned 

Offset 

1 5 0 

lEi; 
: 8; 

6; 

l; /* For future use */ 

unsiqned supervisor : l; 
} V_A.OCR; 

610 MPW 3.0 Reference 



(~ 

Possible compilation into TIE 

The preceding .fields are not all packed fields. Only the segment and supervisor fields 
need to have the PACKED attribute applied to them. Those two fields are followed by the 
bit positions within th~ byte. 

3107 V_ADDR RecordOf( 
4, 

/* First is "offset". Note its byte of!set */ 

2, NamedTypeOf("offset", «Unsignedintege=»l, 

/* Next is "page".It is physically befc=e "~::se:" ~ · 
l, NamedTypeOf("page", «Unsignedinteger»), 

/* Finally, "Segment" and "Supervisor" _ .. byte 
0, l?ACKEO NamedTypeOf ("segment:.", 

«Unsignedinteger»), 5, O, 
0, i?ACI<EO NamedTypeOf ("supervisor", 

«Unsignedinteger»), 7, 7 
) 

"". v , 

APPE~DIX H Object File Fonnat 611 



. J 



( 

c:: 

Appendix I In Case of Emergency 

THI5 APPENDCX CONTAINS SOME INFORMATION THAT ~y BE USEFUL 

when serious system errors occur. • 

Contents 

Crashes 615 
Stack space 615 

613 





( 

Crashes 

If you end up in the MacsBug debL1gptr while tunning M?W, it may be possibl~ to recover 
without rebooting and losing your recent changes. Type G SYSRE-.:QVER. The Shell will 
attempt to recover by aborting the current command, saving the contents of all the 
windows, and/or returning to the Finder. If this fails, type c:s to return to the Finder, then 
shut down the system immediately. 

Stack space 

The MPW Shell and tools that run integrated 9.'ith the Shell share a single stack. The stack 
size is determined by the Shell at initialization time. Complex command files, large links, 
and other tools may require more stack space than is available. System errors 28, 2, and 3 
are possible indications of this problem. You can increase the stack size by using ResEdit 
to modify 'HEXA' resource number 128 in the file MPW Shell. The default size is $2710 
(10,(X)() bytes) when less than 480,(X)() bytes are available for the application heap and 
S4E20 (20,()()) bytes) when more than 480K are available. 

APPENDIX I In Case Of Emergency 61; 





Glossary 

abstract target: In Make dependency rules, a 
target that is not actually built but represents a 
collection of ite~. Use an abstract target to 
trigger dependencies on the right side of the 
dependency rule. See Chapter 9 for details on 
Make dependency rules. 

active window: The frontnx>St window. The 
Shell variable {Active! always contains the name 
of the current frontnx>St window. 

a.l.12s: An alternate name for a command, 
defined with the Alias command 

appllcadon: A program that runs stand-alone, 
outside of the Shell environment An 
application's file type is APPL 

author: In Projector, with respect to a 
particular revision, the name of the person who 
made a revision. With respect to Projector's 
mes and projects, the person with the primary 
responsibility for a file or project. 

blank: A space or a tab character (in the 
context of separating words in the command 
language). 

branch: In Projector, an additional sequence of 
revisions emanating from another revision and 
running parallel to the main trunk. 

build commands: Shell commands that are 
output by the Make tool, used to build a 
program. 

build com•u•nd line: In the dependency rule 
of a makefile, the lines beginning with a space or 
tab that follow the dependency line. 

built-in comm.ands: Editing commands, 
structured commands, and other Shell 
commands that are patt of the MPW Shell 
application (as opposed to MPW tools, which 
are separate files on the disk.) 
ClleckOut directory: The directory into which, 
by default, Projector places checked out files. 
Each project has a corresponding Checkout 
directory which can be changed with the 
CheckOutDir command. 

'ckld' resource: The "check ro· resource that 
Projector maintains in the resource fork of all 
files belonging to a project The 'ckid' resource 
contains identification such as User name, Ta.sk, 
Project, and so on. 

code resource: A resource that contains a 
program's code-most commonly a resource of 
type 'CODE' (for applications and MPW tools) 
but also other resource types such a.s 'OR'v''R' and 
'POEF that also contain code. 
command file: See saipt. 

command name: The fust word of a 
command, identifying the name of a built-in 
command or the name of a file (tool, command 
file, or application) to execute. 

com.nwid saipt: See saipt. 

command subsdtutlon: The replacement of a 
command by its output Command substitution 
takes place. within back quores (' ... '). 

comment: In Projector, wer-supplied text 
describing a particular revision, file, or project. 

617 



r:r·~. \ 

'-._A 

console: The window where a corrumnd is dlagnostic output: Commands and tools send 
entered and executed (standard input). Also, error and progress output to diagnostic output 
the window to which the command's output is (by default, the window where the command 

" 
rerurned (standard output). was executed). You can redirect diagnostic 

~· 

Cl!t:~·e!lt pr·oject: In Projector, the name of the output to another file, window, or selection ,. 
with the ~ and ~ operators. Diagnostic output current project. Projector assumes all actions ~ also referred to as •standard error.· pertain to this project unless a different project 

is specified with the -project option. dJalog: In Commando, the programmed 

current selection: The currently selected text interaction between a user and a tool or sc:ipt. A 

in a window. In editing commands, the current dialog may utilize roore th.an one dfalog box. 

selection in the target window is represented by dfalog bo%: A window th.at appears when a 
the S metacharacter. command is invoked, offering options and 

data fork: The part of a file th.at contains data parameters. 

accessed via the Macintosh File Manager. Directed Acyc:llc Graph: The MPW linker 

data hliti2li22tloa interpreter: The module creates a tree of all reachable m:xiules from a 

_DATAINIT in the libraries Runtime.a and given main module. See •Dead Code" in Chapter 

CRuntime.o. 8 for roore information. 

de2d code: In the linker, modules th.at cannot Editor: When appearing with initial capitals, 

be reached from any references available, given the built-in commands appearing in MPW's Edit 
a main module. See •Dead Code• in Chapter 8 rn:nu, a part of the MPW Shell. 

for roore information. entry point: A location (offset) within a .~ 

dependency file: A makefile. module. 

.dependency line: In Make, the fuse line of a esope c:h2rxtcr: The Shell escape character is 
o (Option-0). It is used to disable (or "escape") dependency rule. See also: dependency rule. the special meaning of the character following 

dependency rule: In Make, a rule th.at it, to continue commands over more than one 
specifies the prerequisite files of a given target line (aRerum), and to i.nsen invisible characters 
file, along with a list of the commands needed into command text. 
to build the target file. external: A module,· entry point, or segment 
dependent: In a Commando dialog, a control th.at can be referenced from different object 
th.at is enabled or disabled depending on the files. 
state of its parent control. extcrm1 reference: A teference ro a routine or 
dera: To decompile a resource file by using the variable defined in a separate compilation or 
MPW resouce decompiler, OeRez. assembly. 
desk accessory: A •mini-application,• me information: Information maintained by 
implemented as a device driver, that can be run Projector on a per-file basis. Examples are: 
at the same time as an application. Desk Author, Last Modification Date, and Comment. 
accessories are files of type DFIL and creator Blemme: A sequence of up to 31 printing OMOV, and are installed by using the Font/DA 
Mover. characters (excluding colons), th.at identifies a 

dCvice dmcr: A program that controls the 
file. See also pathname. 
file type: A four-character sequence, specified exchange of information between an 

application and a device. when a file is created, th.at identifies the type of 
file. (Examples: TEXT, APPL, MPST.) r' 

' 
"'--

618 MPW 3.0 Reference 



Finder Information: Information that the 
Finder provides to an application upon starting 
it, telling it which documents to open or print. 

Font/DA Mover: An al."plication, available on 
the System Tools disk, used for insr.alling d-=sk 
acces.sories in the System file. 

full pathname: See pathname. 
HFS: Hierarchical File System used on SOOK 
disks and the Apple hard disks. 

ID: A file-relative number for identifying a 
module, an entry point, or a segment, within a 
single object file. 

insertion point: An empty selection range; that 
is, the character position where text will be 
inserted (marked with a blinking vertical bar). 

I.o.tcgrated Environment: A set of routines, 
modeled on the C language, that provide 
parameter passing, access to variables, and 
other functions to MPW tools. (See Ch.apter 12 
and Appendix F.) 

interface routi:ac: A routine called from C, 
Pascal, or Assembler whose purpose is to trap to 
a certain ROM or library routine. 

jump table: A table that contains one entry for 
every routine in an application or MPW tool, and 
is the means by which the loading and unloading 
of segments is implemented. 

lc2fnamc: A partial path.name that contains no 
colons. A leafname might be a directory and a 
filename, such as .,.ools:ResDet" or simply a 
filename. MPW assumes the default direcrory. 
See also: pathname and partial pathname. 

literal: In the resource compiler, Rez, a value 
within single quotation marks. (See Ch.apter 8.) 

local: A module, entry point, or segment that 
can be referenced only from within the file where 
it is defined. . 

loatlon map: The linker can write to standard 
output a map of memory segments sorted by 
segNum and segO.ffset. (See Ch.apter 10.) 

locked revision: ln Projector, a revision 
currently checked out for modification. 

main segment: The segment containing the 
main program or procedure. 

makefile: Used by the Make command, a file 
that describes dept.ndencies between the 
vatiO'..I.) pi.!ces <.·i a program, and cui«tains l set 
of commands for building up-t~te files. The 
default makefile is named Makefile. 

module: A contiguous region of memory that 
contains code or static data. A module is the 
smallest unit of memory that is included or 
removed by the linker. 

mounted project: In Projector, a project that 
is not nested within another project Similar to 
the root directory on a volume. You can mount 
several projects, just as you can mount several 
volumes. You can access all projects under L~e 
mounted project 

MPW Shell: The application that provides the 
environment within which the other parts of the 
Macintosh Progranuner's Workshop operate. 
The Shell combines an editor, command 
interpreter, and built-in commands. 

MPW tool: An executable program (type 
MPST) that is integrated with the MPW Shell 
environment (contrasted with an application, 
which runs stand-alone). Like applications, tools 
exist as separate programs on the disk. 

name: In Projector, an identifier that represents 
a set of files, revisions, and branches, with the 
restriction that a name can refer to only one 
revision in any one file. 

non-HFS: The nonhierarchical file system, used 
on 400K disks and Macintosh XL hard disks. 

option: A command-line switch, specifying 
some variation from a command's default 
behavior. Options always begin with a hyphen ( -
). 

orphaned file: In Projector, a file that belongs 
to a project, but whose resource fork no longer 
contains the information that Projector needs 
to determine to which project it belongs. 

GLOSSARY 619 



parameter: The words following the keyword in 
a simple command. There are two types of 
parameters: optJons and files. Note that certain 
parameters, such as I/O redirection, are 
interpreted by the Shell and never seen by the 
command itself. 

parent: In Commando, an option or conuol 
whose starus determines whether a dependent 
option or control is enabled or disabled. 
partJal pathname: A pathname that either 
contains no colons or has a leading colon. See 
also: lcafna.mc. 

pathname: A sequence of up to 255 characters 
that identifies a file, directory, and/or volume. 
A full pathname contains embedded colons but 
no leading colon. It specifies volume: 
dtreaory: .. .filename. A partial pathname either 
contains no colons or has a leading colon. A 
partial pathname is convenient to use if the file 
is located in the current default diteaory. A 
leaf name is a partial pathname that contains no 
colons. See also: leafname, partial pathname. 
pattern: A literal text pattern (such as 
I ABCDEFGI), or a regular expression. Patterns 
are a case of selection and ahvays appear 
between the pattern delimiters I .. .! or \ ... \. 

pipe: The command terminator I is the pipe (or 
pipeline) symbol. It causes the output of the 
preceding command to be used as the input for 
the subsequent command. (See Chapter 5, 
Table 5-1.) 

position: In editing commands, position refers 
to the location of the insertion point 

preflz: The diiectory portion of a filename. 

prcrcqui1ite me: In Make, the files that must 
exist or be up-to-date before the target file can 
be built. 

project: In Projector, a set of ftles that may 
include other projects (subproject). 

project directory: The directory in which 
Projector maintains all the projecr.rnanagement 
information about a given project. 

620 MPW 3.0 Reference 

project file: In Projector, the file (always named 
ProjectorDB) in which an entire project is 
maintained. There is one and only one project 
file within every project directory. 
project information: Information maintained 
by Projector on a per-project basis, including: 
author, last modification date, and comment. 
project name: In Projector, the name of a 
project as well as the name of the directory 
containing that project. 
ProjcctorDB: In Projector, the name of the 
database file in which Projector stores all 
information about projects, their revision trees, 
revisions, and branches. 
project tree: In Projector, the set of mounted 
projects 

pseudo-filename: Any device name that you 
can use in place of a filename but that has no 
disk file associated with it. Any command can 
open a pseudo-filename. These are most often 
used for VO redirection. 
quotes: A set of characters that literalize the 
enclosed characters, used for disabling special 
characters. The quote symbols are ' ... ', • ... •, 
\ ... \, and I ... !. The escape character, o, quotes 
the character that follows it 

reference: The location within one module that 
contains the address of another module or entry. 

regular expressions: A language for specifying 
text patterns, using a special set of 
metach.aracters. (See Appendix B, Table B-2.) 

regular expression Opci"Jtors: A special set 
of mer.acha13ctets used in regular expressions 
and filename generation. (See "Pattern 
Matching" in Chapter 6.) 
resource: Data or ccxie stored in a resource file 
and managed by the Macintosh Resource 
Manager. 
resource attribute: One of several 
characteristics, specified by bits in a resource 
reference, that determine how the resource 
should be dealt with. 

) 



c 

resource compiler. A program that creates 
resources from a texrual description. The MPW 
resource compiler is named Rez. 
resource description me: A text file that can 
be read by the resource compiler and compiled 
into a resource file. The resource decompiler 
~assembles a resource ftle, producing a 
resource description file as output. 

resource me: Common us.1ge for the resource 
fork of a Macintosh file. 
resource fork: The part of a file that contains 
data used by an application, such as menus, 
fonts, and icons. An executable file's code is 
also stored in the resource fork. 
revision: In Projector, an instance of a file in a 
project A new revision is created each time a 
modified file is checked in. 

revision infonnatlon: Information maintained 
by Projector on a per-revision basis. Also known 
as the current state of a revision. For unlocked 
revisiom this includes: Author, Creation date, 
Comment, and Task. For locked revisions the 
information is: Author (person who checked out 
the file), Check-out Date, and Task. 

revision tree: In Projector, the composite 
history of a file; that is, all the revisions and 
branches made to a file. The revision tree for a 
file can be displayed via the Sta~ command or 
by double clicking a filename in the Project 
hierarchy frame of the Check In and Check Out 
windows. 

root: In a makefile, a to~level target that is not 
a prerequisite of any other target 
salfag: In graphics, to shrink or expand an 
image. See Appendix G: The Graf3D Ubrary for 
more information. 

scope: In Projector, the current project 

script: An ordinary text file (type TEXI) 
containing a series of commands. The entire file 
can be executed by entering the filename. A 
script is also referred to as a command file or 
command script. 

segment: One of several paru into which the 
code of an application may be divided. Not all 
segments need to be in memory at the same 
time. 
selection~ A series of ch217.Ct."!lS, or a character 
position, at which the next editing operation 
will occur. Selected characters are inverselv 
highlighted in the active window, and outlined 
in other windows. A selection is used as an 
argument to most editing commands and can be 
specified by using a special set of selection 
operators. (See Appendix B, Table B-1.) 

signal: An event that diverts program control 
from its normal sequence. (See Chapter 12.) 

signature: Each Macintosh application has its 
own unique signature (or creator). For example, 
creating a file with the type Dffi and signature 
OMOV tells the Font/DA Mover that this file 
contains desk accessories. See the Finder 
Interface chapter-of Inside Macintosh. 

simple command: Any command consisting 
of a single keyword followed by zero or more 
parameters. 

standard error. See "diagnostic output." 

standard Input: Input to a command, usually 
typed directly into the active window (the 
console). 

standard output: Output produced by most 
commands that i.s returned to an open file, 
usually the window in which its command or 
program was typed. 

Startup me: A special command file containing 
commands that are executed each time the Shell 
is launched. S12rtup executes a second 
command file ailed UserStarrup. 

status pane!: The panel in the lower left comer 
of the Worksheet window. The status panel 
shows what command MPW is executing. 
Clicking in the statu.s panel is equivalent to 
pawing the Enter key. 

GLOSSARY 621 



status value: A code returned by commands in 
the Shell variable {Status!. Zero indicates 
successful completion of the previous 
comrnancl. and other values usually indicate an 
error. 
structured command: Any command that 
controls the order in which other commands are 
executed. For and If are eXlmples of strucrured 
commands. All strucrured commands are built 
into MPW and usually have roore than one 
keyword. See also simple command. 

subproject: In Projector, any project 
contained within another project. Subprojects 
may, in rum, contain other subprojects. 

target selection: The current selection in the 
target window, represented by the S character. 

target file: In Make, a file that is to be rebuilt 
and that depends on one or more prerequisite 
files. 

target window: The second window from the 
front-this is the default target for editing 
commands that are entered in the active 
window. The Shell variable !Target} always 
contains the name of the current target window. 

task: In Projector, a short description of the 
task that a user accomplished with a revision. 

(task!: In Projector, the name of the current 
task. It appears in the Check Out and Check In 
windows as the default task. 
tool: See MPW Tool. 

type dedar.ltio11: In the resource compiler, a 
statement that specifics the pattern for any 
as.5ociated resource data by indicating data 
types, alignment, size, and placement of strings. 

translation: In graphics, rrovement anywhere in 
three'1imensionaJ space. See Appendix G: The 
Graf3D Ubrary for roore information. 

trunk: In Projector, the main sequence of 
revisions to a file. Branches from any revision 
are always named and numbered with respect to 
the trunk. 

users: In Projector, those persons with access 
to the files of a project. 

6?2 MPW 3.0 Reference 

{user!: In Projector, the name of the current 
user. Projector logs tl'tis name with ail 
transactions. You can override this name bv 
specifying a different name with the -u option 
available in all Projector commands. 

user interface: The system or set of 
conventions by which the user interacts with 
software. In addition to the standard Macintosh 
mouse-and-menu interface, MPW indudes both 
a command language and a dialog user interface 
(Commando). 

word: A single, blank-separated element in a 
command. A command name and each of its 
parameters are separate words in the command 
language. 
Worksheet window: The main work area in 
MPW; the window usually used as the console. 



Index 

Ca.st of Characters 

$$Attributes 337 
$$BitField 337 
$$Byte 337 
SSDate 336 
$$Day 336 
$$Format 336 
$$Hour 337 
$$ID 337 
$$Long 337 
$$Minute 337 
$$Month 337 
$$Name 336 
$$PackedSize 337 
$$Resource 337 
$$resource directive 255 
SSResourceSize 338 
$$Second 338 
SSShell 337 
$$Time 337 
$$Type 338 
$$Version 337 
$$Weekday 338 
$$Year 338 
%ASinit m 
%Global0ata 289 
_IOSYNC bit36~ 
_RTExit379 

. RTinit 377·78 
fcharacter 167 
s symbol 162, 167, 178 
• symbol 

in pattern matching 189 
- character 167, 189 

a character 128, 148, 184 
invisibles 189 
liceralizing 185 

an symbo111s 
I character 227 
f rule 268 

A 

abstract target 268 
accessing MPW command-line paramer.ers 

in Assembler 358 
inC 357 
in Pascal 357 

accessing resource data 325 
accessing Sheil commands 

in Assembler 358 
in Pascal 357 

accessing the Shell 
Assembler 353 
C352 
Pascal 351 

active window 89, 167, 174 
Adding libraries to Build commands 261 
Add.Menu 

use of 48 
AddMenuAsGroup 169 
addressing 

AS-relative 287 
PC-relative 288 

alias 
definition 132 
use in case of error message 133 

annotated list of commands 94 
annotated list of special characters 94 
AppleSh.are 

use with Projector 200 
application 

structure of 244 
applications 37 

INDEX 623 



difference from MPW tools 351 
running outside Shell 129 

arqc 357 
arqv 357 
arrangement of MPW ftle 40 
Assembler 33 
attributes 

in Rez 310 

B 

backquote key 144 
backquotes 144 
backslashes 148, 149 
blank interpretation 150 
'BNDL' resource 243 
branching 

definition 199 
in Projector 218 

bucket counts 
performance measurement 452 

buffering 
buffer initialization procedure 365 
MPW Shell input/output 358 
standard LIO buffering 366 
stdio 364 
warning about use of me descriptors with 

FILE variable 366 
Build menu 

introduction 49 
tutorial 50 
modifying 259 

building 
desk accessories 

limitations 258 
location of cede 258 
result axie 257 

desk accessory 251 
ste~ in building 251 

driver 254 
Ste~ in building 251 

drivers 
calling sequence 257 
structure of 257 

MPW tools 350 
stand-alone code resources 248 

624 MPW 3.0 Reference 

steps in creating 248 
building a program 

introduction 49 
new program 54 
steps 241 

bulldozer 194 
bundle bit 243 

c 
C compiler 34 
C++ translator 34 
case sensitivity-186 
Caution 

on use of global variables 254 
cc 170 
changing direaories 101 
characters 145 

asterisk 
in regular expressions 187 

case sensitivity of 186 · 
character list 186 
colon 183 
current selection 162, 167 
escape 148 
exclamation mark 179 

in filename generation 145 
infinity 167 
integral character 227 
invisible 189 
litera.lizing 185 
negation 186 
newline 178 
plmsign 

in rqularexpres.sion 187 
t oeprator 188 
regular expression operators 

table of 184 
returns in command definitions 155 
swhes 182 
special 147-48 

use of 1(,() 
close function 370 
code resources 

controlling the numbering of 290 
'CODE' resources 244 

<-
\l_. · 



( 

colons 
use in Projector 227 

command aliases 132 
command language 173 

editing with 166 
command line 

executing selected text 92 
Command-Enter 163 
Command-period 92 
Command-Return 91 
Commando 36, 391 

acces.sing files and directories 427 
boxes 406 
changing the size of a dialog box 395 
check boxes 108, 402 
Cmdo.r 397 
creating dialogs 392 
declaring lines and boxes around controls 395 
default values of popup menus 409 
dependencies between controls 418 
dependency 

direct 418 
on the Do It button 421 
inverse 419 
multiple dependencies 421 
on radio buttons 422 

designing dialog boxes 392 
dialogs introduction 104 
dynamically changing strings 396 
editing controls 393 
editing dialogs 393 
editing Help messages 395 
editing labels 395 
elli~1' cllaraaer to invoke 105 
Files a>naol 427 
font si1.e dependency 412 
handling of options 401 
icons 417 
invoking built-in editor 393 
invoking Commando 105 391 
lines 4<AS ' 
list control 414 
rooving controls 394 
MultiFiles 

control 430 

directories 111 
files and directories for input only 436 
files and/or directories 112 
files for output 438 
input fil~s no 
nested dialog boxes 423-425 
output me with specifications 113 

new directories 114 
Multiregular entry control 401-402 
pictures 417 
pop-up menus 409-411 
pop-up variations 109 
ra.dio buttons 1 (JJ, 404 
redirection 425-426 
regular entry control 399-400 
resource dependency file 

redirection of 425--426 
resource description file 397 

case conventions 397 
ID and name 397 
numbering of ite~ 418 
size of dialog box 398 
tool description 399 

sample resource 442-445 
saving modified dialogs 396 
shadow pop-up menus 109 
Shell variables 396-397 
single input or output file 112-113 
sizing controls 394 
special dialog box contra~ 114, 116, 118, 119 
standard dialog box controls 107-119 
repeatable options 108 
text edit fields 399 
text parameters 107 
text title embedded in box comer 407 
text titles 406-407 
three-state buttons 415-417 

using Commando dialogs 
introduction 106 

commands 167 
AddMenu 168, 169 
Alert 162 
Alias 

hints for using Alias 91 

INDEX 625 



Align69 
Auto-Indent 69 
Begin ... End 154 
blanks in command lines 126 
Break 154 
Build 85 

include dependencies 261 
c 170 
Catenate 

use of 163, 164 
Check In 80, 204 
Check Out 81 
Check.In 204-212, 219 
CheckOut 212-217 

use with naires 232-233 
CheckOutDir 224-226 
Clear68 
Close 64 
corrunents 128 
Compare 304 
continuation of line 128 
Continue 155, 156 
Copy 67 
Count, use with Files command34 5 
Create Build Commands 84 

customizing its makefile 261 
CreateMake 259, 260 
Cut67 
DeleteMenu 168 
DeRez 303-305 

-e option 340 
use of 304-305 

difference between menu commands and 
language equivalents 166-167 

Directory 101-102 
changing diredories 101 

Display Selection 71 
doublc1 dependency 2ffJ 
DumpObj 

transforming output 192 
Duplicate 144 
Echo 157 

use of 146, 321 
entering and executing 89-91, 124-125 
Exit 155. 

626 MPW 3.0 Reference 

Export 142 
example of use 143 

expressions used in 157-160 
file-management 95-97 
Files 

use of 144 
Files, use with Count 345 
Find dialog box 70 

finding a whole word 193 
m:nu70 
use in forward and backward searches 
190 
use of 175, 180 

Find Same 71 
Find Selection 71 
For 154 
Format dialog box 68 
For ... End 156 
Full Build 85 
Help 93-95 
If 154 
input/output specifications 156 
interpretation of 15~ 151 
interpreter 125 
keywords 155 
lib 296-298 

-df option '2El, 298 
how optimizing works 297 
to combine input files with link 296 

tine continuation character 276 
link 241-247 

·m2 option 292. 
-map option 294 
·P option 289, 298 
·SS option 289 
.uf option '2El, 298 
code resources 290 
use of 287 
use with RAM cache 296 

list open windows 79 
listing in Mark menu 75 
Loop 156 
Loop ... End 154 
Make 



·S option 278 
·U option 278 
·V option 278 
caution about command generation 
before execution 278 
caution about default rules 279 
caution about specifications for same 
file 279 
contents of data fork 271 
debugging makefiles 278 
order of building targets 277 
output execution 276 
phase errors 278 
quoting conventions in 275 
sample makefile 279-283 

Mark 76-77, 180, 181 
Markers 180-182 
menu 

defining your own 168 
MountProject 224 
NameRevision.s 

use of 231 
~e with names 233 

narw of 126 
negative status 125 
New dialog box 63 
New Project 79-80, 201-202 
Open dialog box 64 
Open Selection 64, 89 
Page Setup dialog box 65 
parameters 126, 157 

use of 146 
Paste 68 
PerformRepott 467-468 
Print 66 
Print \Viodow 65 
Project 224 
Projectinfo 220 
Projector command summary 238 
Quit 66 
Replace 71, 187 

reformatting tables 188 
transforming DumpObj output 192 

Replace Same 71 

ResEqua! 304 
Reven to Saved 65 
Rez 303 

use in building a p!'1gram 305 
Save 64 
Save a Copy 65 
Save As 65 
scripts 130 
Select All 68 
Set 142 

use of 133 
Set Directory 82 
SetFile 

use of 243 
Shift 157 
Shift Left/Right 69 
Show Clipboard 68 
Show Build Commands 85 
Show Directory 82 
Show Full Build Commands 85 
Show Invisibles 69 
simple commands128 
Stade Windows 78 
structure of 126 
strucrured 128, 153, 155 

conditional execution 1 SS 
pipe specifications 155 
table of 154-155 
warning on closing parenthesis 153 

structured commands 
substitution 144 
Tabs 69 
Tue Wlndows 78 
to modify parameters 157 
types of 124 
Undo67 
Unexpon 143 
Unmark 77, 181 
Unset142 
use of parenthesis 154 

comments 
in makefiles 276 

CompareRevisions 223 
compilers 

Rez, DeRez 303-304 

INDEX 6'1:7 



concurrent MPW 45 
concurrent Shell 45 
conditional execution operators 127 
console 90, 160 

., control loop.5 156 
conversion tool.s 37 
CRuntime.o 247 
current selection character 98, 162, 167 
CursorCtl.p 352 

. customized icons 243 
customizing 

D 

Build menu 259 
Directory menu 259 
makefile of Create Build Commands 261 
menu commands 168 
project names 224 
sample scripts 168 
Starrup and UserStartup 131 

DATA directives 
in desk accessories 258 

data fork 244 
data initialization interpreter 288 
dead code 

stripping 249 
debuggers 38 
defaults 

customizing Startup 131 
delimiters 

slashes 182 
dependency rules 267-269 
dependency 

in Commando 418-423 
OeRez 303-340 

use with Commando 393 
desk accessories 

programming ~ 258 
warning on sc~tation 288 

desk accessory 
building with DRVRRuntime.o 256-257 
header details 256 
resource file 254 

Dev 
Console 166 

628 MPW 3.0 Reference 

Null l(i6 
StdErr 166 
Stdln 1()6 
StdOut 166 

diagnostic output 160, 164-165 
dialog 25 
dialog boxes 391 
Directed Acyclic Graph 249 
directories 98-100 

listing 100 
name82 
narres warning 83 

Directory menu 81-83 
tutorial 50-51 

DisposHandle, use of 348 
drivers 

structure of 257 
warning on segmentation 288 

'DRVR' resource; 241 
DRVRClose 257-258 
DRVRControl 257-258 
DRVROpen 257-258 
DRVRPrime 257-258 
DRVRRuntime library 251, 255-258 
DRVRRuntime.o 253 

advantages 256 
DRVRStatus 257-258 
'DRVW' resoun:e 256 
dummy control 

use in Commando 422 
dummy segment·mapping directives 290 

E 

editing 89' 173-175 
Commando dialogs 393-395 
commands 29 
extending a selection 183 
fmding a whole word 193 
forward and backward searches 190 
markers 180 
parameters 17 4 
pattern 182 
pattern matching 183 

at beginning or end of line 189 
position 180 



(' 
reformatting tables 188 
selection 175 

by line number 179 
solving selection difficulties 191 
with command language 166-167 

ellipsis 
in Commando 391-392 
use with Commando 105 

Enter key 91, 359 
as status panel 47 

entering commands 89-91 
entry point 

in linking 291 
envp 377 
ErrMgr.p 352 
Error information 

ermo361 
MPW Shell 362 

error message 
use of alias for tracing 133 

escape character 
with invisibles 189 
for literalizing 185 
in Rez 340 

escape conventions 
table of 150 

examples 39 
commando resource 442~5 
finding a whole word 193 
labels in Rez 329 
makefile for CDEF resource 249-251 
Mem:>ry 253 
MPW tools 351 
performance-mC3SWCment output file 464-

46S 
sample desk acc~ry 

Menx>ry 259 
sample ~e description file '!IJ7, 323 
sample resource type statement 319 
transforming DumpObj output 192 

exit 379-380 
experiments 199 
exporting variables 142-143 
expres.sion operators 

in resource description statements 335-336 
order of precedence 158 

table of 158 
expres.sions 157 
extending a selection 183 
external 

in Linking 291 

F 

F_DELETE 380 
F _ GFONTINFO 380 
F _ GPRINTREC 381 
F _ GTAB INFO 380 
F_OPEN 382 
F _RENAME 380 
F _SFONTINFO 381 
F _SPRINTREC 381 
F STAB INFO 380 
faccess 3~382 
fend 373 
file creator 

OMOV254 
ftle dependencies 

Make 35 
file-management commands 27 
file names 97-98 
ftle organization 

in Projector 235 
file type 'MP SP ' 235 
me types 247 

APPL 247 
OFIL 247, 255 
MPST 247 
setting with Unk, Rez, or SetFile 247 
TEXT 247 

file-relative scoping conventions 297 
filenames 

generation 14 5, 151 
~dcrftlenames 165-166 

files 
created by Directory and Build menu 

commands 260 
listing 100 
resource description 

structure of 306 
standard type declaration 304 

Find-and-Replace dialog 

INDEX 629 



regular expres.sion 74 
selection by line number 73 
wildcard operators 7 4 

Finder 
compared to MultiFinder 349 

FIOBUFSIZE 374 
FIOFNAME 374 
FIOINTERACTIVE 374 
FIOREFNUM374 
FIOSETEOF 374 
font/font size 

important note 68 
'FREF' resource 243 
full pathname 98 
G 
getenv 376 
global variables caution 254 
globals 

use in desk accessories 258 

H 

hardware interrupt 
comparison to signal handling 384 

· heap management, of MPW Shell 349 
hints 

I 

automatic selection 182 
Commando 

declaring lines and boxes around 
controls 395 

solving difficulties with large scripted 
operations 194 

solving selection difficulties 191 
troubleshooting command lines 152 
used. almes in tracing error messages 133 
use d. Une saipt in tr.acing error ~ges 

133 
usingAIW91 
using {DitedoryPath) 102 

'ICNI' resource 243 
IEGetEnv 377 
IEIOCtl 374 
IEOnE.xit 379 

630 MPW 3.0 Reference 

IEStandalone 375 
if-then-else processing 

in Rez preprocessor directives 332 
include dependencies 

Build comman& 261 
index 

flags 596 
infinity symbol 

in pattern matching 189 
InitGraf 347 
InitPerf 451, 459 
input 

standard 160, 162 
terminating with Command-Enter 163 

input/ output 
buffering 358-359 

MPW C stdio 365 
FILE variables 366 
MPW Shell 358 
redirection 151, 160-162 

insertion point 
location of 180 

installation 43 
automatic 43-44 

Installer 43 
integral character 

use in Projector 227 
Integrated Environment 

MPW Assembler 353 
MPW Pascal 352 
Shell J/O routines 

MPW Assembler 369 
MPWC.368 
MPW Pascal 368 

signal handling 384 
MPW Pascal 384, 385 

IntEnv 357 
IntEnv.p 352 
interface fues 

MPW Assembler 353 
MPW Pascal 352 
(Perf .h} 450 
{Perf.p} 450 

invisible characters 62, 189 
Show Invisibles command 69 

(~.J : 



(J. 

J 
jump table 289 

L 

labels 
in resource description statements 326, 512 

leafnames 99 
libraries 

DRYRRuntime library 25)-257 
dummy library routines 351 
guidelines for choosing files 299 
MPW 

overview 343-344 
MPW Assembler 353 
MPW Pascal 352 
object files 261 
specialized 297-299 
{PerformLlb.ol 450 

library.PasLlb.o 352 
library.ToolLlbs.o 352 
line number 179 
Line script 133 
Link 34 

-m option 247, 248 
use with main modules 249 

·rt option 248, 253 
-sg option 248, 253, 254 
·Sil option 248, 253 
·W option 246 
introduction to 244 

Link and Rez 
sequence of use 243 

linker 34 
linking 

choosing files for specialized library 299 
conrenm of an object file 2ff/ 
dead code m 
desk accessory 253 
diagram 245 
driver 253 
introduction to 244 
libraries from different languages 246 
location map 294 
MPW tools 350 

multiple external symbol definitions 291 
numbering of code resoun:e 290-291 
rerroving unreferenced modules 298 
resolving symbol definitions 291 
segment:ition 283-289 
unresolved e.<ternal symbols 292 
wanting on addressing 287 
what to link with 24)-246 

literal 
. in Rez 336-338 

literal characters 185 
local 

in linking 291 
lootion map 294 
locked files 103-104 
logical operators 159 
looping 156 
lseek 373 

warning on use with O_APPEND 3i2 

M 

MacOSErr 362 
MacsBug 38 
main entry point 248 
main trunk 

in Projector 230 
Make 35 

abstract target 268 
makefile 263 

build command lines 267 
built·in default rules 271 
comments 1:!6 
CreateMakc 

libraries 261 
debugging 278 
default rules r;o 
dependency line 267 
dependency rule 267 
directory dependency rules 272 
double-/ dependency rules 269 
format of 265 
input limits 266 
overriding default rules 270 
prerequisite file 265 
root 265 

INDEX 631 



sample makefile 279 
Shell wriables 273 
target file 265 
wriables 273 

built-in make275 
defming wriables within a makefile 274 
overriding 271 
precedence of Shell and Make wriables 
274 
{AOptions} 271 
{Asm} 271 
{COptions} 271 
{C} 271 
{Default} 272, 275 
{DepDirl 272, 275 
{NewerDeps} 275 
{Pascal) 271 
{?Options} 271 
{TargDirl 272, 275 
{Targ) 275 

makefiles 
marketS 75, 180-182 

programmatic use of 181-182 
range of 181 

meroory management 
in performance tools 449 

memory map 
MPW tools 348 

meroory, ways to increase 349-350 
menu commands 48, 62-86 

defming your own 168 
menus 

Build menu 8H6 
checla, bullets, underlinings 79 
Directory m:nu 81-83 
Edit menu 67-71 
File menu 63-(J6 
rind menu 70-75 
Marie menu 75-77 
Project menu 79-81 
user-defined menus 86 
Window menu 78-79 

merging 
in Projector 219 

632 MPW 3.0 Reference 

modules 
in linking 287, 291 
unreferenced 298 

MPW Assembler 
L1\1PORT directives 353 
libraries 352 

MPW dialogs 391 
MPW Pascal 33 

libraries 353 
{MPWJROM.Maps 450 
MPWShell 

definition 25-26 
features 61 
heap 349 
input/output 358-359 
input/output buffering 358-359 
meroory management 347-348 
selection abilities 361 
stack 349-350 
starus codes 345-346 
window handling 360-361 

MPW tools 32 
caution on initialization 346 
conventions 344-345 
how to build 350-351 
how to link 351 
how to write 

Lib 

dialog interface 391 
overview 343-344 

use with performance measurement 469 
meroory management 347-350 
performance-measurement 449-458 
PerfonnReport 450, 463, 466 

using ~ option 468 
QuickDmw 347 
restrictions 346 
stack 349-350 
starus codes 345-346 

MPW utilities 
overview 343-344 

MPWfypes.r 251, 304 
MultiFinder 

compared to rmder 350 
cursor control 345 

(~ .. ,J ) 



( 

(~ 

( 

use with MPW 44-45 
multilingual programs 

a caution 247 
combining 'With Llb '196-297 

multitaskinr. 44, 345 

N 

names 
command names 126 
in Make 279 
pseudo-filenames 16S-166 

nested dialog boxes 90 
number sign 128 
numbers and literals 159 

in resource description syntax 334-335 

0 

O_APPEND 369 
O_CREAT 369 
O_EXCL369 
0 _ RDONLY 369 

O_RDWR369 
O_RSRC 369 
O_TRONC 369 
0 WRONLY 369 
object files 

contents of 287 
multiple external symbol definitions 291 
records 567 
unresolved external symbols 292 

operators 
regular expression 146 

optimizing 
linb 296 
program load time 290 

Option-Enter 105, 391 
Option-Rcrum 69 

·orphan file 
in Projector 2m 

output 
diagnostic 16o, 164 
standard 16o, 164 

p 

parameters 
commands for modifying 157 
count 174 
editing 174 
in programming the MPW Shell 355-356 
selection 174, 175 

current selection 178 
operators 
order of precedence 177 

window 174 
parent 

in Commando 418 
pathnames 98 

quotes and speciaJ characters 102 
variables 102 

patterns 182 
pattern matching 183 

at beginning or end of line 189 
PC 

in performance measurement 451 
PerfControl 451, 456, 46)-461 
PerfDump 451, 457, 461-462 
{Perf.h} 450 
(Perf.p} 450 
{PerformLlb.ol 450 
performance measurement 449-458 

AS at interrupt time 469 
adding identification lines to a data file 467 
analyzing results 466-467 
bucket counts 452-453 
checksum failures 469 
conditional flag 453 
dirty CODE segments 469 
dumping the results 457 
implementation issues 468-470 
initializing the tools 455-456 
InitPerf 455-456 
interpreting the report 468 
locking the interrupt handler 469 
nx:>veable code resources 470 
MPW C routines 458-462 

InitPerf 458-461 
PerfControl 451, 456. 460-461 
PerfDump 451, 461-462 

INDEX 633 



TermPerf 462 
MPW Pascal routines 

InitPerf 458-460 
PerfControl 451, 456, 460-462 
PerfDump 451, 457, 461-462 
TermPerf 462 

output file 463-467 
PerfControl 456 
PerfDump 457 
PerfGlobals 456 
PerformReport450,467 
pointers 453 
probable hits 468 
procedure for use 453-458 
Program Counter sampling 451-452 
provide pointer to a block of variables 455 
referencing the interface file 454 
reports 463-467 
restriction on use Virith VIA Tunerl 452 
segmentation 469 
terminating cleanly 457 
TermPerf 457 
tools 37, 449-452, 453-457 
ruming on the measurements 456 
warning on low sampling interval 452 
warning on terminating cleanly 455 

PerformReport 450, 467 
using -e option 467 

Pict.r 304 
pipe symbol 

as terminator 127 
piping, example of 345 
point types 315-316 
' ppa t ' definitk>n.-expressed in Rez, an 

example 31.8-329 
predefined ROM IDs and names 460 
preprocessor directives 

expressed in Rez 330-333 
probable hits 

in performance measurement 468 
Program Counter 

in peif ormance measurement 451 
programming hints 

building desk accessories 258 
programming the MPW Shell 

634 MPW 3.0 Ref ere nee 

Commando dialog inteiface 391 
files to link with 355 
VO routines 

MPW Assembler 369 
MPWC 368 

. MPW Pascal 368 
MPW Assembler 353-355 

_RTExi t function 354 
RTinit function 354 

MPW Pascal 352-353 
parameters 355-358 
signal handling 383-387 
standard VO channels 358-359 

project management 36 
commands 28 
about Projector 197 

Projector 36, 197-238 
access privileges 200 
adding new files to a project 207-208 
administration 234-236 

rooving, renaming, and deleting 
projects 234 
retrieving information 220-222 

author 224 
automatically opening a revision 211 
branching 19') 

branch check box 215 
creating branches 218-219 
identifying branches 230 
irerging branches 219 

cancelling check out 216 
caution on deleting projects 234 
caution on deleting revisions 235 
caution on use with certain applications 199 
changing revision tree 218-219 
Check Out button 211 
check out default 217 
checking out a particular revision 216 
checkout directory 203, 212, 224-225 
' ck id ' resoun:e 236 
colons '1I! 
command parameters 

order of precedence 226-227 
command summary 238 
co rnrnents 200 



c 

comment field 213 
comparing revisions 223 
components of 223-233 
Delete Copy radio button 207 
deleting revisions 235 
difference between text and nontext files 228 
discarding changes 216 
di.splaying a file's revision tree 230 
experimental projects 199 
file organization 235 
icons 2*-237 
Info View 216, 220 
Keep Copy radio button 207 
limitations 200 
main trunk 230 
Modifiable button 211, 214 
modifiable read-<>nly file 215 
modification date 209 
moving, renaming, and deleting projects 234 
multiple users 200 
names 

limitations 231 
private 233 
public 233 
symbolic names 231 
user names 230 

Nested projects 203, 224, 226-227 
New Project 201-204 
Option Key, use of 214 
pathnames 227 
ProjectDB file 224, 235 
projects 197, 224 

data 220 
din:ctory 203, 224, 235-236 
list 210 -
location 224 
menu79 
trees 2® 

radio buttons 214 
Read Only button 214 
renaming a project 209 
retrieving filtered information 221 
retrieving infonnation 220-223 
revisions 198, 228 

button 208 

data 228 
number 19CJ 
numbering of 229 
trees 228-229 

sample project 210-211 
check-<>ut configuration 225-226 

Select All button 211, 213, 214 
Selea Newer button 213 
selecting revisions by symbolic name 216 
selection criteria 221-222 
Show All Files check box 207 
subprojects 224, 226-227 
task field 200, 213 
Touch Mod date 2~. 215 
tutorial 201-207 

checking in a revision 204-209 
checking out a revision 209-217 
aeating a new project 201-202 
locating a project 209 

user field 207, 213 
user privileges 230 
using CheckOut 217 
View By dialog box 221-222 
warning on 'ck id' ~ 
warning on orphan files 208 

ProjectorDB file 224, 235 
projects 

definition 197 
protected bit 

in resource description statements 322-323 
pseudo-filenames 165-166 

table of 166 . 

Q 
Quit 131-132 
quoting 146-149 

I 

in makefiles 275-276 
quoting spaces 149 

RAM cache 46 
with llnk 296 

read370 
read-only files 103-104 

INDEX 635 



rectangle typeS 316 
redirecting input/output 160-162 
redirection 

in Commando 425-426 
reference 

in linking 291 
reformatting tables 188 
regular expression operato.rs 183-185 

asterisk character 187 
character expressions 185 
character list 186 
examples 191-193 
fmcling a whole word 193 
forward and backward searches 190 
inserting invisibles 189 
matching pattern at beginning or end of line 

189 
negation symbol 186 
plus sign 187 
repeated 187 
table of 184 
tagging 188 
transforming DumpObj output 192 
wildcard operato.rs 186 
® operator 188 

ResEdit 38, 241 
ResEqual.r 442 
resource attributes 311 
resource compiler see Rez 
resource declarations 304 
resource dea>mpiler see DeRc:z 
resource description files 303 

Commando numbering of 418 
comments 306 
for Commando 397 
preprocessor diiecrives 307 
sample Conxmndo iesource 442 
structure of 306 
type declarations 306 

resource description statements 
$$countof 

use of 317 
align types 316 
array types 317-318 
boolean typeS 315 
built·in functions 325-326 

636 MPW 3.0 Reference 

change 321 
character types 314 
cstring 315 
data 311 
data·type 313 
delete 320 
escape characters 339-340 
fill typeS 317 
include 308-30') 
labels 326-330, 512 

declaring in arrays 326-327 
examples 328-330 
limitations 327 

numeric types 313-314 
bitstring 313 
byte 313 
integer 313 
longint 313 

pstring 316 
read310 
resource statements 323 
sample resource description file 323 
sample type statement 319 
special team 308 
string 315 
string types 314-315 
strings 338-340 
synwc 308, 335 

expressions 335-336 
numbers and literals 334-335 

type 311-312 
variables 336-338 
wstring315 

resource editor 
definition 38 

resource files 
creating and nxxlifying 304-305 

resource fork 244 
resource types 

defining 306 
resources 

CDEF 248 
I.DEF 248 
MDEF 248 

/- ) 

·il. 



owned by desk accessory 255 
WDEF 248 
XCMD 248 

restrictions 
MPW tools 346-347 

Resume 131 
revision trees 197, 228-229 
revisions 

definition 197 
number198 

Rez 35, 303-340 
array types 317-318 
change resource data 321 
data statements 323-314 
delete a resource 320-321 
escape characters 339-340 
fill and align types 316 
point and rectangle types 315-316 
preprocessor directives 330-333 

if-then~Lse processing 332 
print directive 332-333 
variable definitions 331 

sample type statement 319 
specify acrual resource data 322-323 
String.5 33&-340 
switch types 31~319 
symbolic definitions 319-320 
symbolic names 324 
variables 336-338 

Rez and Unk 
sequence of use 243 

Rindudes 251 
{Rlncludes} directory -

contents 304 
Rincludes folder 

Cmfo.r 392 
ROM inted2c:es 

guidelines for special libraries 299 
ROM maps 450 

s 
SADE 38 
sample progra~ 49-50 
scoping 570-571 
scripts 31, 39, 1~170, 260 

AddMenuAsGroup 169 
cc 170 
definition 130 
examples 168 
llne 133 
parameters 141 
Quit 131 
referencing command parameters 126 
Repeat 156 
Resume 131 
special MPW scripts 131-132 
Startup 131 
Suspend 131 
use of ~eudo-ftlenames 166 
used by Directory and Build menus 260 
useful commands for use in 157 
UserStarrup 131 
UserVariables 139 
using variables 142 

search path 101 
segmentation 2~290 

case sensitivity of names 289 
length limit 289 

selection 175-193 
automatic 182 
by line number 179 
extending 183 
forward and backward searches 190 
markers 180-182 
MPW Shell abilities 361 
operators 
order of precedence 177 
pattern 182 
pattern matching 183 
position 180 
specifications 98 

selection expression 
Find-an~Replace dialog 73 

setting a file type 245 
setting protected bit on code resources 321 
setup <:i MPW files 40 
setvbuf 365 
Shell 

features 61 
file format 62 
summary <:i shortcuts 94 

INDEX 637 



summary of variables 94 
variables 3-n 

Shell commands 30 
SIG IGN 384 
signal 384-385 
signal handling 383-387 

caution about heap corruption 387 
MPW C 383, 385 
MPW Finder 383 
MPW Pascal 384, 385 
types 385 

Signal.p 352 
signature 247 
single f dependency 268 
slashes 147, 148 
software interrupt 

as signal handling 383 
specifying files with wildcards 103 
specifying P..tbnames with variables 102 
stand-alone ccxie resources 248 
Standard VO buffering 364-366 
standard input 90, 160, 162 

important note 93 
standard output 90, 161, 164 
Start up 46-48 
Stanup 131 
Startup file 48, 131 
Statw Code 125, 345-346 
Statw panel 47, 91, 124 
stderr 365-366 
st din 365-366 
stdio 365-366 
stdout 365-366 
storing Shell commands 
in~ler358 
in PasaJ 358 

sucams 365 
String 33&-~ 

constants 
desk accessories 258 
operators 159 
Rez 340 

structured commands 29 
Stubs.o 351 
Suspend file 131 

638 MPW 3.0 Reference 

symbolic names 
in resource description statements 325 
in Rez 320 

symbols 145 
asterisk 

in regular expressions 187 
beginning of line metacharacter 189 
colon 183 
considered as separate words 150 
corrupt 'CKID ' resource icon 207, 236 
current seleaion 162, 167, 178 
end of line metacharacter 189 
escape character 

w;ed to insert invisibles 189 
escape conventions 150 
exclamation marlc 179 
expression operators 158 
expressiom 157-160 
infinity 167 
integral 227 
loclcicon206, 212, 236, 237 
modified reack>nly icon 206, 236 
negation 186 
newline 178 
pencil icon 206, 212, 236, 237 
plus sign 

in regular expression 187 
project icon 212, 237 
read-only icon 206, 236 
regular document icon 206, 212, 236, 237 
regular expression operators 

table of 184 
revision tree icon 212 
selection operators 176 
special 

w;e of 160 
~ operator 188 

synm 
in resource desaiption statemei11S 335 
resource description statements 

expressiom 335-336 
Rez language 308 

SysTypes.r 304 

/ .. ) 

if 
·{__ 



T IEString type 357 
tagging operator 159 in makefiles 27~276 
target window 89, 167, 174 in Rez 336-338 
terminating input 163 in Rez preprocessor directives 330-333 
TermPerf 451, 462 names 134 
text patterns pathnames for libraries and Include files 138 

comparing 159 QuickDraw globals 
Tune Manager in desk accessories 258 

in peifonnance measurement 451 Rez string variables 310 

TIOFLUSH 374 Shell variables in makefiles 27~274 

tools Stand.Alone 355 
editing, table of 175 static .variables 

tutorial 49-57 in desk accessories 258 
Types.r 304 true/false values 134 
typing commands 90-91 ON IT variables 

in desk accessories 258 
u use of 13~134 ... 

UserStarrup 131 [Active} 135, 174 . . ~~ .. 

.... Directory and Build menu scripts 260 [Alncludesl 138 
' . UserVariables 139 (Aliases} 135, 392 .i>i 

~·· 
USES files {AOptionsJ 271 

Build· commands with 261 {Asm) 271 
(Autolndent} 137 

v {Boot} 135 

variable 
{CaseSensitivel 137, 186 

{Targ} 268 
{Clndudes} 138 

variables 
{CI.ibrariesl 138 

$$Attributes 309 
{Commandol 136, 392 

SSID 309 
{Commands} 136 
{Command} 135 

SSName 309 {COptionsl 271 
. ~$Type 309 {C}m 
~qV3S7 (Default} 271 
~uilt-in makefile variables 275 {DepDirl 272 
cjefmed m Stutup 135-138 {Di.rectoryPath} 140 

;····' 
refeienced by editor 137-138 {Echo} 136 
table d 136, 137, 138 {Exid 136 

defuiing 142 {Fond 137 
defming variables within a ma.keftle~274 {FontSize} 137 
defining with Set 133 .· . {IgnoreCnxiPeriod} 140 
exporting 142-143 {Libraries} 138 
extern variables {NewWindowRect} 140 

c·· in desk accessories 258 {Parameters} 141 
'"NI hints for using {DirectoryPath} 102 {Pasal} 271 

.,/ 

how to use in scripts 141 {Pinteifaces} 138 

INDEX 639 



. :· •, ... 

{PLibr.ariesl 138 
{POptions) 271 
{PrintOptionst 137 
(Program) 259 
{Rlrtdudesl 138 
{SearchBackwatd} 137 
{Seatchtype} 137 
{Searcb\Vcap} 137 
(ShellDireCTOry} 135 
{StackOpeions} 140 
(Status} 135 
{Systemf'older} 135 
{Tabt 137 
{TargDirl 272 
{Target} 135~ 174 
(Test! 136 
{TileOptions) 140t: - ;· 
{Userl 230 
(Windows} 135,,~392 
(W«siSed 138 
{Woriihetthl35 
tz.mnt®wRect} 140 

VBL _ 
ill pedorrnance measurement 451 

Vertical Blan.king signal 
in petfonnance measurement-,451 

w 
'~g 

buff erirtg 366 
calls to Empt yHartdle 348 
CheckOutDir 224 
NU master pointers 348 
00. ~~----11&:+!9" 
on use.of$ tG OFL 386 

wildcmkl8 - . 
'Mll~~t~;~~~ 14'6 
,:.r.:;.:.;· ·· · operatoss 

h1 regular ~ions 186 
'W?ND' .... 

sample window resource fi.Ie323-324 
'windows 

active 89, 1671 174 
·1~~Qec:k In window 205-20t.~ 

MPW Shell input/output abilities 361 

6to MPW 3.0 Refetence 

names97 
New Project 201-204 
~rojector 

retrieving infonnatiod tlo-223 
reading projecto~· v.ndows 2i6 

·target 89, 167, 174 
trindow commands 26 
'NOrksheet 47 

'WOrl<sheet window 47 
wtite 371 .· 
Writing a signal handler 386-~ 

z 
teRYWidtlt characters ffJ 


