@2 Macintosh®

Macintosh Programmer’s
Workshop 3.0 Reference

€ APPLE COMPUTER, INC.

This manual and the software
described in it are copyrighted, with all
rights reserved. Under the copyright
laws, this manual or the software may
not be copied, in whele or part,
without written consent of Apple, -
except in the normal use of the software
or to make a backup copy of the
software. The same proprietary and
copyright notices must be affixed to any
permitted copies as were affixed to the
original. This exception does not allow
copies t0 be made for others, whether
or not sold, but all of the material
purchased (with all backup copies)
may be sold, given, or loaned to
another person. Under the law,
copying includes transiating into
another language or format.

You may use the software on any
computer owned by you, but extra
copies annot be made for

this purpose.
0198&88Apkaompuwm
20525 Marani Ave.. - o
Cupetino, California 95014

(408) 956-1010

Pascal Compiler © 1982-88

Apple Computer, Inc.
© 1981 §VS, Inc.

Appie, the Apple logo, Appleshare,
AppleTalk, A/UX, ImageWriter,
LaserWriter, Lisa, MacApp, Macintosh,
and SANE are registered trademarks of
Apple Computer, Inc.

MPW, QuickDraw, ResEdit, and SADE

are trademarks of Apple Computer, !m:.

MacDraw, Mzc?an,mdMache
are registered trademmarks of

Claris Corporation.
Microsoft Word is 2 trademark of
Microsoft Corporation.

POSTSCRIPT is 4 trademark of

Adobe Systems Incorporated.
Linotronic is a registered trademark of
Linotype company. A
Adobe Hlustrater 88 is 2 rademark of
Adobe Systems incorporated.

ImageStudio is a trademark of Esselte
Pendaflex Corporation in the United
States, of LetraSet Canada Limited in
Canada, and of Esselte LetraSet
Limited elsewhere.
Motorola is a trademark of
Motorola, Inc.

QMS is 2 registered trademark of
QMS, Inc.

UNIX is 2 trademark of

AT&T Bell Laboratories.

' Simultanecusly published in the

United States and Canada.

MPW sample programs

“Apple Computer, Inc. grants users of

the Macintosh Programmer's Workshop

. a royalty-free license to incorporate
" Macintosh Programmer's Workshop

sample programs into their cwn

" programs, or to modify the sample

programs for use in their own
programs, provided such use is
exclusively on Apple computers. For
any modified Mactniosh Programmer's
Workshop sample program, you may

alongside the Apple copyright notice.

Contents

Figures and tables xxvii

PartI Shell Reference 1_

Introduction: The New and the Necassary 3
Power tools for Macintosh progmmmers 5
What's new in MPW 3.0 7 .-
MPWC+ 7
Projector 8
Symbolic Application Debugging Envnmnment (SADE) 8~
New or enhanced tools 8
New or enhanced Shell commands 10
New Shell editor capabilities 12
New standard Shell variables 13
Changes to menus and dialogs 14
Miscellaneous Shell changes 14
Numeric libraries 15
MPW C and MPW C++ Include files 16
MPW Pascal 16
MPW tool libraries 17
What you'll need 17
Hardware and system requirements 17
System Folder requirements 18
Documentation 18
About this reference 19
Finding information fast 20
Syntax notation 21
Aids to undersanding 22
For more information 22

<

CONTENTS

1

-

-

System Overview 23

The MPW Shell 25
Window commands 26
File-management commands 27
Project-management commands 28
Editing commands 29
Structured commands 29
Other built-in commands 30
MPW scripts 31
MPW tools 32
MPW Assembler 33
MPW Pascal tools 33
MPW C compiler and C++ translator 34
Link 34
Make 35
Resource compiler and decompiler 35
Commando 3
Projector 36
Conversion tools 37
Performance-measurement tools 37
Applications 37
ResEdit 38
SADE and MacsBug 38
Special scripts 39
Examples 39
Sample program files 39
Command-language examples 40
Overview of MPW files and directories 40

Getting Started 41
Insulling the system 43
Using MPW with MultiFinder 44
Using MPW on a file server 46
Startingup 46
Selecting commands from menus 48
Building a program: an introduction 49
The sample progams 49
Two easy steps 50
Building a new program 54

MPW 3.0 Reference

|
. L

3 Using the Shell Meaus 59

Featres 61
- File format 62
Menu commands 62
Apple menu 62
File menu 63
New 63
Open 64
Open Selection 64
Close &
Save &4
Save As 65
Savea Copy 65
Revert to Saved 65
Page Semp 65
Print Window/Print Selection 65
Quit 66
Edit menu 67
(\\ Undo 67
L Cut 67
Copy 67
‘Paste 68
Clear 68
SelectAll 68
Show Clipboard 68
Format 68
Align 69
Shift Left, Shift Right 69
Findmenu 70
Find 70
FindSame 71
Find Selection 71
Display Selection 71
Replace 71
Replace Same 71
Selection expression 73
Mark menu 75
Mark 76

(Unmark 77

CONTENTS

Window menu 78
Tile Windows 78
- Stack Windows 78
Customizing window commands 78
List of open windows 79
Project menu 79
New Project 79
CheckIn 80
Check Out 81
Directory menu 81
Show Directory 82
Set Directory 82
List of directory names 82
Build menu 83
Create Build Commands 84
Build 85
Full Build 85
Show Build Commands 85
Show Full Build Commands 85
User-defined menus 86

4 Using MPW: The Basics 87

Editing 89

Entering commands 89
Typing commands in a window 90
The Enter key 91
Executing several commands at once 92
Terminating a command 92
The Help command 93

File-management commands 95

File and window names 97
Selection specifications 98
Directories and pathnames 98
Command search path 101
Changing directories 101

- Pathname variables 102

Wildcards (filename generation) 103
Locked and read-anly files 103

vi MPW 3.0 Reference

Commando dialogs 104

Invoking Commando 105

Using Commando dialogs 106

Standard dialog box controls 107
Generic ext parameters 107
Repeatable options 108
Radio buttons 108
Check boxes 108
Shadow pop-up menus 109
Other pop-up variations 109
Multiple input files 110
Multiple directories 111
Multiple files and/or directories 112
Single input or output file 112
Output file where a file or directory may be specified 113
New directories 114
Special dialog box controls 114
Nested dialog boxes 114
Redirecting output 116
Options dependent on other options 118
Three-state controls 119

5 Using the Command Language 121

Overview 123
Types of commands 124
Entering and executing commands 124
Negative status codes 125
Structure of a command 126
Command name 126
Parameters 126
Command terminators 127
Command continuation 128
Comments 128 ,
Simple versus structured commands 128
Running an application outside the Shell environment 129
Scripts 130
Special scripts _ 131
The Startup and UserStartup files 131
Suspend, Resume, and Quit 131

CONTENTS

»KSS
/

(

Command aliases 132
Executable error messages 133
" Variables 133
" Predefined variables 134
Variables defined in the Startup file 135
UserVariables 139
Parameters to scripts 141
Defining and redefining variables 142
Exporting variables 142
Command substitution 144
Filename generation 145
Quoting special characters 146
How commands are interpreted 150
Structured commands 153
Control loops 156
Processing command parameters 157
Expressions 157 ‘
Redirecting input and output 160
Standard input 162
Terminating input with Command-Enter 163
Standard output 164
Diagnostic output 164
Pseudo-filenames 165
Editing with the command language 166
Defining your own menu commands 168
Sample scripts 168
‘AddMenuAsGroup” 169
CC 170

viii MPW 3.0 Reference

;’{w) ‘\\,
LW

Advanced Editing 171

Editing commands 173
Selections 175
Current selection (f) 178
Selection by line number 179
Position 180
Markers 180
Behavior of markers 181
Programmatic use of markers 181
Pattern 182
Extending a selection 183
Pattern matching (using regular expressions) 183
Character expressions 185
Wildcard operators 186
Repeated instances of regular expressions 187
Tagging regular expressions with the ® operator 183
Matching a pattern at the beginning or end of a line 189
Inserting invisible characters 189
Note on forward and backward searches 190
Some useful examples 191
Transforming DumpObj output 192
Finding a whole word 193
Bulldozer 194

Projector: Project Management 195

About Projector 197
Overview 197
Featres 199
Limitations 200
Using Projector: A walk-through 201
Creating a new project 201
Checking in a revision 204
Project pop-up 206
User field 207
Info (question mark) button 207
Keep Read-Only, Keep Modifiable, and Delete Copy buttons 207
Adding aew files to a project 207
Touch Mod Date check box 208
Changing a revision’s revision number 208

CONTENTS

ix

X

Locating a project 209
Checking out 3 revision 209
Checkout directory 212
- Userfield 213
Task and Comment fields 213
Select Newer button 213
Select All button 214
Read-Only/Modifiable buttons 214
Branch check box 215
Touch Mod Date check box 215
Checking out a particular revision 216
Info (question mark) button 216
Select Files in Name 216
Discarding changes 216
Using the CheckOut command 217
Creating branches 218
Merging branches 219
Retrieving information 220
Comparing revisions 223
Components of a project 223
Projects 224
Nested projects 226
Revision trees 228
Branches 230
User names 230
Symbolic names 231
Project administration 234
Moving, renaming, and deleting projects 234
Deleting revisions 235
Renaming a file in a project 235
File organization within a project directory 235
CKID resource 236
Projector icons 236
Icons Appearing in the Check In Window 236
Icons Appearing in the Check Out Window 237
Projector command summary 238

MPW 3.0 Reference

i

The Build Process 239

Overview: the build process 241
The structure of a Macintosh application 244
Linking 244
What to link with 245
Linking multilingual programs 246
File types and creators 247
Building a stand-alone code resource 248
Building a desk accessory or driver 251
Linking a desk accessory or driver 253
The desk accessory resource file 254
The DRVRRuntime library 255
What your routines needto do 257
Programming hints 258
Sample desk accessory 259
Modifying the Build menu and makefiles 259
Variables 259 '
Scripts 260
Files 260
UserStartup 260
Modifying the makefiles 261
Inciude dependencies 261
Library object files 261

Make 263
Format of 2 makefile 265
Dependency rules 267
Double-fdependency rules 269
Default rules 270
Built-in default rules 271
Directory dependency rules 272
Variables in makefiles 273
Shell variables 273
Defining variables within 2 makefile 274
Built-in Make variables 275
Quoting in makefiles 275
Line continiation character 276
Comments in makefiles 276

CONTENTS

xi

xii

10

11

Executing Make’s output 276 : R
The order in which Make builds targets 277

_ Debugging makefiles 278

Problems due to command generation before execution 278
Problems with different specifications for the same file 279
Problems with default rules 279

Anexample 279
Notes on Make’s makefile 282

More About Linking 285
Link functions 287
Segmentation 288
Segments with special treatments 289
Controlling the numbering of code resources 290
Resolving symbol definitions 291
Multiple extemal symbol definitions 291
Unresolved extemal symbols 292
Building applications with more than 32K of global daa 292
32-bit references—MPW Pascal 293 S
32-bit references—MPW Assembler 293 ¢
Linker locaion map 294
Map entries for the global data segment 295
Optional map formats for compatibility 295
Optimizing your links 296
Library construction 296
Using Lib to build a specialized librarcy 297
Removing unreferenced modules 298
Guidelines for choosing files for a specialized library 299

Resource Compiler and Decompiler 301

About the resource compiler and decompiler 303
Resource decompiler 304
Standard type declaration files 304
Using Rezand DeRez 304

Structure of a resource description file 306
Sample resource. description file 307

a

o
!‘n‘ f}

MPW 3.0 Reference

Resource description statements 307
Syntax notation 308
Special terms 308
Include—inctude resources from another file 308
Syntax 309 -
AS resource description syntax 309
Resource attributes 310
Read—read data as a resource 310
Synax 310
Description 310
Data—specify aw data 311
Syntax 311
Description 311
Type—declare resource type 311
Syntax 311
Description 312 »
Data-type specifications 313
Fill and align types 316
Armay type 317
Switch type 318
Sample type statement 319
- Symbol definitions 319
Delete—delete a resource 320
Syntax 320
Description 320
Change—change a resource’s vital information 321
Synax 321
Description 321
Resource—spedify resource data 322
Syntax 322
Description 322
Daa satements 322
Sample resource definition 323
labels 324
Syntax 325
Description 325
Built-in functions to access resource data 325
Declaring labels within arrays 326
Label limitatons 327
Using labels: two examples 327

CONTENTS xiii

xiv

Preprocessor directives 330
Variable definitions 331
y Include directives 331
" If-Then-Else processing 332
Print directive 332
Resource description syntax 333
Numbers and literals 334
Expressions 335
Variables and functions 336
Strings 338
Escape characters 339

12 Writing an MPW Tool 341

Overview 343
Conventions 344
Status Codes 345
Restrictions 346
Initialization 346
Memory Management 347 o
Heap 349 .
Stack 349
Building an MPW tcol 350
Linking 2 tool 350
Programming for the MPW Shell 351
Accessing the MPW Shell-MPW C 351
Accessing the MPW Shell—MPW Pascal 352
Accessing the MPW Shell—Assembler 353
Importing the routines 353
Assembler aalling conventions 353
The RTInit function 354
Files to link with 355
Parameters 355
Accessing MPW command-line parameters—MPW C 357
Accessing MPW command-line parameters—MPW Pascal 357
Accessing MPW command-line parameters—Assembler 358

-,

MPW 3.0 Reference

Standard [/O channels 358
/O buffering 358
/O to windows and selections 360
Error information 361
Shell /O routines—MPW C 364
stdio—standard buffered input/output package 364
Shell /O routines—MPW Pascal 367
Shell /O routines—Assembler 367
Shell /O routines 367
open—open for reading or writing 367
close—close a file descriptor 369
read—read from a file 370
write—write to a file 371
Iseek—move read/write file pointer 372
fcnd—file control 373
[OCt—communicate with device handler 374
Shell utlity routines 375
StandAlone—check whether running under the MPW Shell 375
getenv—access exported MPW Shell variables 376
atexit—install a function to be executed at program termination 378
exit—terminate the current application 379
faccess—named file access and control 380
Signal handling 383
Signal handling—C 383
Signal handling—Pascal 384
Signal handling—Assembler 384
Signal—specify a signal handler 384
Raise—raise a signal 385
Writing a signal handler 386

CONTENTS Xv

xvi

13 Creating 2 Commando Interface For Tools 389

. About Commando 391
- Invoking Commando 391
Creating Commando dialogs 392
Editing Commando dialogs 393
Enabling Commando’s Editor 393
Editing controls 393
Selecting controls 394
Moving controls 394
Sizing controls 394
Editing labels 395
Editing Help messages 395
Changing the size of a Commando dialog box 395
Saving the modified Commando dialog 396
Strings and Shell variables 396
Resource description 397
Resource ID and name 397
Size of the dialog box 398
Tool description 399
Regular entry control 399
Multiregular entry 401
Check boxes 402
Radio buttons 404
Boxes, lines, and text tides 406
Box 407
TextBox 407
TextTide 408
Pop-up menus 409
Editable pop-up menus 411
Lists 414
Three-state buttons 415
Icons and pictures 417
Control dependencies 418
Direct dependency 418
Inverse dependency 419
Dependency on the Do-It button 421
Multiple dependencies 421
Dependencies ori radio buttons 422
Nested dialog boxes 423

MPW 3.0 Reference

V,g,»

‘Jé;

14

Redirection 425

Files and directories 427
Individual files and directories 427
Multiple files and directories for input and output 430
Muttiple files and directories for input only 436
Multiple new files 438

Version 439

A Commando example 442

Performance-Measurement Tools 447

About performance-measurement tools 449
Components of performance tools 450
Requirements for using performance tools 451

How performance measurement works 451
Program Counter sampling 451

Restrictions 452
Bucket counts 452

Using performance-measurement tools 453

Install under conditional compilation 453

Include the interface 454

Provide a pointer to a block of variables 455 .

Initialize the performance-measurement tools 455

Tum on the measurements 456

Dump the results 457
7. Terminate cleanly 457

MPW performance tools routines 458
The function InitPerf 458
The function PerfControl 460
The function PerfDump 461

* The function TermPed 462

SV e

- Pefformance reports 463

Performance output file 463

Analyzing the results with PefformRepont 466

Adding identification lines to a dat file 467

Interpreting the performance report 468
Implementation issues 468

Locking the interrupt handler 469

Segmentation 469

Dirty CODE segments 469

Movable code resources 470

CONTENTS

xvii

xviil

A

Macintosh Programmer's Workshop Files 471

MPW 3.0 files 473
Distribution disk MPW Installation Disk: 473
Distribution disk MPW1: 473
Distribution disk MPW2: 474
Distribution disk MPW3: 475
Distribution disk MPW4: 476
MPW Assembler files 477
Distribution disk MPW Assemblerl: 477
Distribution disk MPW Assembler2: 477
MPW Pascal files 478
Distribution disk MPW Pascall: 478
Distribution disk MPW Pascal2: 479
MPW C files 481
Distribution disk MPW C1: 481
Distribution disk MPW C2: 482
Hard disk configuration 484

Summary of Selections and Regular Expressions 495

Selections 497
Regular expressions 498
Option-key characters 500

Special Operators 501

Resource Description Syntax 505

Syntax notation 507
Structure of a resource description file 508
Include—include resources from another file 509
Read—read dat as a resource 509
Data—specify raw data 509
Type—declare resource type 510
Data-type 510
Fill-type 511
Alignment 511
Switch-type +511
Armay-type 511

MPW 3.0 Reference

/ﬁﬂ‘ 3
%
—~——

.

Resource—specify resource data 512
Change—change resource vital information 512
Delete—delete resource(s) 512
Labels 512
Syntax 512
Preprocessor directives 513
Syntax 513
Identifiers 513
Token delimiters 514
Compound types 514
Expressions 514
Numbers 515
Variables and functions 516
Strings 517

File Types, Creators, and Suffixes 519

File types and creators 521
File suffixes 521

Text files 522

Object files 522

Data files - 522

Tools Libraries 523

Animated cursor control routines 525
Cursor control routines—MPW Pascal 525
Cursor control routines—MPW C 525
The InitCursorC procedure 526
The Show_Cursor procedure 527
The Hide_Cursor procedure 528
The RotateCursor procedure 529
The SpinCursor procedure 529

Error Message File manager 530
Error Manager—MPW Pascal 530

. Error Manager—MPW C 530
The InitErMgr procedure 531
The GetSysEnText procedure 532
The GetToolEnText procedure 533
The AddErrinsert procedure 534
The CloseErrMgr function 534

CONTENTS

xix

Disassembler Lookup routines 535
DisAsmLookUp.p—MPW Pascal 535
DisAsmLookUp.h—MPW C 535
Using the Disassembler 536

The InitLookup procedure 541

The Lookup procedure 542

The LookupTrapName procedure 542
The ModifyOperand procedure 543
The validMacsBugSymbol function 543
The endOfModule function 545
The showMacsBugSymbol function 545

G The Graf3D Library 547

Overview 549
How to use Graf3D 549
How t0 use Graf3D—MPW Assembler 550
How to use Graf3D—MPW Pascal 550
How t0 use Graf3D—MPW C 550
Graf3D data types 551
Point3D 551
Poin2D 552
XfMarix 552
Port3DPtr 533
Graph3D procedures and functions 554
The InitGraf3D procedure 555
The Open3DPort procedure 555
The SetPort3D procedure 556
The GetPort3D procedure 556
The Move procedures 557
The Line procedures 557
The Clip3D function 558
The Set Point procedures 558
Setting up the camera 559
The ViewPort procedure 559
The LookAt procedure 560
The ViewAngle procedure 560

-

xx MPW 3.0 Reference

The transformation matrix 561
The Identity procedure 561
The Scale procedure 561
The Translate procedure 562
The Pitch procedure 562
The Yaw procedure 562
The Roll procedure 563
The Skew procedure 563
The Transform procedure 564

Object File Format 565

About object file records 567
Scoping of symbolic information 570
ModuleBegin implementation/declaration semantics 572
Record type nomtion 572
Object file records 573
Pad record 574
First record 574
Last record 575
Comment record 575
Dictionary record 575
Module record 576
Entry-Point record 577
Size record 578
Contents record 578
Reference record 579
Computed-Reference record 583
Filename record 584
Source Statement record 584
ModuleBegin record 586
ModuleEnd record 587
BlockBegin record 588
BlockEnd record 589
Local Identifier record 589
Local Label record 593
Local Type record 594

-

‘4

CONTENTS

XXxi

xxii

Type interpretation via prefix code 5%
Overview 597
Type functions 597
Representation of type information in the SADE symbol table £01
Representation of type codes 602
Representation of scalars 604
Examples 605
Possible object module representation 605
Possible compilation into TTE 607
Type interpreration and packed data 608
Storage framework 609
Examples 610
C source 610
Possible compilation into TTE 611

I In Case of Emergency 613
Crashes 615

Stack space 615

Glossary 617

Index 623

MPW 3.0 Reference

Part II

Command Reference

A Command prototype 6

AddMenu—add menu item 9

Adjust—adjust lines 13

Alert—display an alert box 14

Alias—define or write command aliases 15

Align—align text to left margin 17

Asm—MC68xxx Macro Assembler 18

Backup—folder file backup 25

Beep—generate tones 34

Begin...End—group commands 36

Break—break from For or Loop 38
BuildCommands—generate Build commands 40
BuildMenu—create the Build memu 42
BuildProgram—build the specified program 43

C—C Compiler 45

Canon—canonical spelling tool 49
Catenate—concatenate files 52 -

CheckIn—check in files to a project 54
CheckOut—check out files from a project 57
CheckOutDir—set checkout directory 61
Choose—choose or list network volumes and printers 64
Clear—clear the selection 68

Close—close specified windows 69
Commando—display dialog interface for a comxmnd 71
Compare—compare text files 73

CompareFiles—script that compares files side by side 79
CompareRevisions—compare and identify revisions 81
Confirm—display confirmation dialog box 83
Continue—continue with next iteration of For or Loop 85
Copy—copy selection to Clipboard 87

Count—count lines and characters 89

CPlus—compile C++ programs 91

CreateMake—create a simple makefile %

Cut—copy selection to Clipboard and delete it 99
Date—write the date and time 100

Delete—delete files and directories 102
DeleteMenu—delete user-defined menus and items 104

CONTENTS xxiii

DeleteNames—delete user-defined symbolic names 105
DeleteRevisions—delete revisions and branches 107
" DeRez—Resource Decompiler 109
Directory—set or write the default directory 113
DirectoryMenu—create the Directory meau 115
Dolt—script to highlight and execute a series of commands 117
DumpCode—write formatted resources 119
DumpFile—display contents of an arbitrary file 122
DumpObj—write formatted object file 125
Duplicate—duplicate files and directories 128
Echo—echo parameters 130
Eject—eject volumes 132
Entab—convert runs of spaces to tabs 133
Equal—compare files and directories 136
Erase—initialize volumes 139
Evaluate—evaluate an expression 140
Execute—execute a script in the curreat scope 145
Exists—confirm the existence of a file or directory 146
Exit—exit from a script 147 o
Export—make variables available to programs 148
FileDiv—divide a file into several smaller files 150
Files—list files and directories 152
Find—find and select a text pattern 155
Flush—clear the command cache 157
Format—set or view the window format 160
For...—tepeat commands once per parameter 158
GetErrorText—display text for system efror numbers 162
GetFileName—display a standard file dialog box 164
GetListitem—display items for selection in a dialog box 166
Help—display summary information 168
If...—conditional command execution 171
Lib—combine object files into a library file 173
Line—find 2 line number 177
Link—link an application, tool, or resource 179
Loop...End—repeat command list until Break 189
Make—build up-to-date version of a program 191
MakeErrorFile—create error message textfile 195
Mark—assign a marker t0 a selection 197
Markers—list markers*199
Matchlt—match paired language delimiters 200 3{ |

.‘,W»fv;"

. xxiv MPW 3.0 Reference

MergeBranch—merge a branch file onto the trunk 205
ModifyReadOnly—change a read-only file to modifiable 207
Mount—mount volumes 209

MountProject—mount an existing project 210
Move—move files and directories 212
MoveWindow—move window to h,v location 214
NameRevisions—name files and revisions 216
New—open 2 new window 220

Newer—compare modification dates between files 221
NewFolder—create a directory 223
NewProject—create a project 224

Open—open a window 226

OrphanFiles—orphan a file or files from Projector 228
Parameters—write parameters 229

Pascal—Pasaal compiler 230

PasMat—Pascal program formatter 234
PasRef—Pascal cross-referencer 241

Paste—replace selection with Clipboard contents 250
PerformReport—generate a performance report 251
Position—list position of selection in window 253
Print—print text files 254

ProcNames—display Pascal procedure and function names 258
Project—set or write the current project 262
Projectinfo—list project information 263

Quit—quit MPW 272

Quote—quote parameters 273

Rename—rename files and directories 275
Replace—replace the selection 277

Request—request text from a dialog box 279
ResEqual—compare resources in files 281
Revert—revert to saved file 283

Rez—Resource compiler 284

RezDet—detect inconsistencies in resources 288
RotateWindows—bring second window to front 291
Save—save windows 292

Search—search files for a pattern 293

Set—define or write Shell variable 295
SetDirectory—set the default directory 297
Setfile—set file “attributes 298

SetPrivilege—set access privileges to folders on file server 300

CONTENTS

XXy

xxvi

SetVersion—maintain version and revision number 302

_ Shift—renumber script parameters 317

. Shutdown—shutdown or software reboot 319
SizeWindow—set 2 window’s size 321
Sort—sort or merge lines of text 322
StackWindows—arrange windows diagonally 326
Target—make 2 window the target window 328
TileWindows—arrange windows in tile pattern 329
TransferCkid—--transfer CXID resources from one file to another 331
Translate—convert selected characters 332
Unalias—remove aliases 334
Undo—undo last edit 335
Unexport—remove a variable definition from export 336
Unmark—remove a marker from a file 338
Unmoune—unmount volumes 339
UnmountProject—unmount projects 340
Unset—remove Shell variables 341
Volumes—list mounted volumes 342

Whereis—search for files in directory tree 343 .

Which—determine which file the Shell will execute 345
Windows—list windows 347
ZoomWindow—eniarge or reduce 2 window 348

MPW 3.0 Reference..

Figures and tables

System Overview 23

Figure 1-1

Setup of MPW folders and files 40

Getting Started 41

Figure 2-1
Figure 2-2
Figure 2-3
Figure 24
Figure 2-5
Figure 26
Figure 2-7
Figure 2-8
Figure 2-9

Worksheet window 47 -

MPW menu bar with MultiFinder 48
Directory menu 50

Show Directory alert 51

Build menu 51

Program Name dialog box 52

Finished Sample build 53

Set Directory... standard file dialog box 55
CreateMake dialog box 56

Using the Shell Menus 59

Figure 3-1
Figure 3-2
Figure 3-3
Figure 34
Figure 3-5

. Figure 36

Figure 3-7

Figure 3-8

Figure 3-9

Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13
Figure 3-14
Figure 3-15
Figure 3-16
Figure 3-17

File menu 63

New dialog box 63

Edit menu 67

Dialog box of the Forrmat menu item 68
Find menu 70

Dialog box of the Replace menu item 72
Selection by line number 73

Example of a regular expression 74

Text selected with the Find command 75
Mark menu 76

Mark dialog box 76

Unmark dialog box 77

Window menu 78

Project menu 79

New Project dialog box 80

Check In dialog 80

Check Out dialog box 81

4

CONTENTS xxvii

Figure 3-18 Directory menu 82

Figure 3-19 Dialog box of the Set Directory menu item 82
" Figure 3-20 Build menu 83
" Figure 3-21 CreateMake dialog box 84

Figure 3-22 Program Name dialog box 85

4 Using MPW: The Basics 87

Figure 4-1
Figure 4-2
Figure 4-3
Figure 44
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Table 4-1

Pressing Enter to execute selected text 92

Help summaries 95

Hierarchical directory structure 99

A locked file with the Lock icon in the Status panel 103

A read-only file with the Read-Only icon in the Status panel 104
The Date dialog box 106

Rez: the first dialog box 115

Rez: nested Preprocessor dialog box 115

Rez: nested Redirection dialog box 116

Basic file-management commands 96

5 Using the Command Language 121 .

Figure 5-1
Figure 5-2
Figure 5-3
Figure 54
Table 5-1
Table 5-2
Table 5-3
Table 54
Table 5-5
Table 56
Table 5-7
Table 5-8
Table 5-9
Table 5-10
Table 5-11
Table 5-12
Table 5-13

-xxviil MPW 3.0 Reference

Trafficking in variables 143

Standard input and output 161

Redirecting diagnostic output 165

Text highlighted in the active and target windows 167
Command terminators 127

Variables defined by the Shell 135

Variables defined in the Startup file 136

User variables not defined in Startup file 140
Parameters to scrips 141

Filename generation operatos 145

Special characters and words 147

Quotes 148

Special escape conventions 150

Structured commands 154

Expression operators in order of decreasing precedence 158
/O redirection 161

Pseudo-filenames 166

6 Advanced Editing 171

3 Figure 6-1
. Figure 6-2
Table 6-1

Table 6-2

Table 6-3

Table 64

A selection specification 177
Selections in two windows 178
Built-in editing commands 173
MPW tools usefui for editing 175
Selection operators 176

Regular expression operators 184

7 Projector: Project Management 195

Figure 7-1
Figure 7-2
Figure 7-3
Figure 74
Figure 7-5
Figure 76
Figure 7-7
Figure 7-8
Figure 7-9
(Figure 7-10

Figure 7-11

Figure 7-12

8 The Build Process

Figure 81
Figure 8-2
Figure 8-3
Table 8-1
Table 8-2

A project structure 198

New Project window 202

New Project window after creating a project 203
Check In window 205

Check Out window 211

A changing revision tree 218

Revision information 221

The View By filter 221

The *View By” dialog with selection criteria 222
Sample project check-out configuration 225

A sample project hierarchy 227

A revision tree 229

239

The Build process 242

Linking 245

Building a desk accessory with DRVRRuntime 252
Filesto link 246

File types and creators 247

9 Make 263

Table 9-1

Makefile summary 266

CONTENTS

XXix

XXX

11

12

13

4

N

Resource Compiler and Decompiler 301

- Figure 11-1 Rezand DeRez 303

- Figure 11-2 Creating a resource file 305
Figure 11-3 Padding of literals 335
Figure 114 Intemal representation of a Pascal string 338
Table 11-1 Numeric constants 334
Table 11-2 Resource description expression operators 335
Table 11-3 Resource compiler escape sequences 339

Writing an MPW Tool 341

Figure 12-1 Memory map 348

Figure 12-2 Parameters in MPW C and MPW Pascal 356

Figure 12-3 I/O buffering 360

Figure 124 Format of envp array for MPW C and MPW Pascal 377
Table 12-1 Shell /O errors 362

Table 12-2 Standard files 365

Table 12-3 Predeclared file descriptors 369

Creating a Commando Interface for Tools 389 7o

Figure 13-1 Example use of the {User} variable 397

Figure 13-2 Basic template for 2 Commando dialog box 398
Figure 13-3 MuitiRegular Entry 402

Figure 134 Setting the CheckOption default state 404
Figure 13-5 Radio buttons with default setting 404

Figure 136 Clicking a button other than the default 405
Figure 13-7 No button specified as set 406

Figure 138 TextBox example 408

Figure 13-9 Pop-up menu with default value 410

Figure 13-10 Pop-up menu without default value 410
Figure 13-11 How Font Size dependency is handled 412
Figure 13-12 Font Size pop-up menu with font selected 412
Figure 13-13 One pop-up menu dependent on another 413
Figure 13-14 Menu title and Item pop-up menus 414

Figure 13-15 List control 415 ‘

Figure 13-16 Three-state buttons 417

Figure 13-17 Icon in a Commando window 417

Figure 13-18 Direct dependency 419

Figure 13-19 Inverse-dependencies 420

Figure 13-20 Dependency on the Do-It button 421

Figure 13-21 Dependencies on radio buttons 422 P

MPW 3.0 Reference

14

Figure 13-22 Setting up nested dialog boxes 424

Figure 13-23 Placement of nested dialog buons 425

Figure 13-24 How to obtain input and output redirection 426

Figure 13-25 Resource description for “individual files and directories”
controls 428

Figure 13-26 Examples of “individual files and directories” controls 430

Figure 13-27 Example of multiple input files 432

Figure 13-28 Example of multiple input files with no file extension specified 434

Figure 13-29 Example of multiple input files with object files specified 435

Figure 13-30 Example of multiple input files with all files specified 436

Figure 13-31 Multiple directories for input 437

Figure 13-32 Exampie of a “directories” control for multiple input files 438

Figure 13-33 Using the MultiOutputFiles subcase of the case MultiFiles 439

Figure 13-34 Version string 440

Figure 13-35 A Commando example: frontmost ResEqual dialog box 445

Table 13-1 Summary of recommended sizes for Commando screen
elemens 399

Performance-Measurement Tools 447
Table 14-1 Predefined ROM IDs and names 460

Summary of Selections and Regular Expressions 495

Table B-1 Selections 497
Table B-2 Regular expressions 498

Special Operators 501
Table C-1 MPW operators 503

File Types, Creators, and Suffixes 519
Table E-1 File types and creators 521

Tool Libraries 5§23

Table F-1 Cursorkinds 527

Table F-2 Disassembler strings 536

Table F-3 Disassembler: Effective addresses 538
Table F4 Bale register values 539

CONTENTS xxxi

G The Graf3D Library 547
. Table G-1 Port3DPtr variables 554

H Object File Format 565
Table H-1 Register numbers 592

xxxii MPW 3.0 Reference

S '\)

Part I Shell Reference

a
.m

Introduction:

The New and the Necessary

WELCOME TO THE MACINTOSH® PROGRAMMER'S WORKSHOP 3.0. This introduction is
your guide to the new features and enhanced capabilities.

Those currently using MPW™ 2.0 are urged to carefully review the section “What's
New in MPW 3.0” because many changes may affect your MPW 2.0 scripts and
other ways of doing things. The last two sections of this introduction describe
new hardware and software requirements as well as revised notation conventions
and reorganized documentation. If you are new to MPW you can skip the “What's
New in MPW 3.0 section, but be sure to read “What You'll Need” and “About This
Reference.” This last section guides you to the parts of this book that help vou
get started. =

Contents

Power tools for Macintosh programmers 5
What's new in MPW 3.0 7
MPW C++ 7
Projector 8
Symbolic Application Debugging Environment (SADE) 8
New or enhanced tools 8
New or enhanced Shell commands 10
New Shell editor capabilities 12
New standard Shell variables 13
Changes to menus and dialogs 14
Miscellaneous Shell changes 14
Numeric libraries 15
MPW C and MPW C++ Include files 16
MPW Pascal 16
MPW tool libraries 17
What you'llneed 17
Hardware and system requirements 17
System Folder requirements 18
Documentation 18

4

About this reference 19
Finding information fast 20
Syntax notation 21

" Aids to understanding 22
For more information 22

MPW 3.0 Reference

£
.
A

Power tools for Macintosh programmers

The Macintosh Programmer’s Workshop (MPW) provides professional software
development tools for the Apple® Macintosh computer. Briefly, MPW 3.0 consists of the

following parts:

s MPW Shell (the programming environment)

Project management system (Projector Trademark)
Resource compiler and decompiler (Rez and DeRez)
Resource editor (ResEdit™)

Linker (Link)

Make (for tracking file dependencies)

Dialog interface (Commando)

Symbolic Application Debugging Environment (SADE™, an interactive symbolic
debugger) and MacsBug

» Performance-measurement tools

Note that ResEdit, although still part of MPW, has been enhanced and is now documented
separately. Also, the new interactive debugger, SADE, and an improved MacsBug are now
each documented in their own separate reference works, included with the MPW product.

The system also includes a comprehensive array of additional tools for creating and
manipulating text and resource files. The following MPW products are separately
available:

s Macintosh Programmer’s Workshop 3.0 Assembler provides everything you need
to develop applications, tools, and desk accessories in assembly language, inctuding
the ability to create macro libraries.

s Macintosh Programmer’s Workshop 3.0 Pascal provides the additional tools,
interfaces, and libraries you need to develop applications, tools, and desk accessories
in Pascal.

s Macintosh Programmer’s Workshop 3.0 C provides a new C compiler and a C++
translator along with the interfaces and libraries needed to develop applications,
tools, and desk accessories in C or C++.

® MacApp®, the Expandable Macintosh Application, provides of a set of object-
oriented libraries that automatically implement the standard Macintosh user interface,
thus simplifying and speeding up the process of software development. Either MPW
Pascal or MPW C++ is required for use of MacApp.

The entire MPW system is outlined ia detil in Chapter 1, *System Overview.”

INTRODUCTION The New and the Necessary

—d

The Macintosh Programmer's Workshop 3.0 provides these advantages over previous v s
developmeat systems:
s Integration: The numerous utilities and tools of the MPW system all run within the

MPW Shell environment. The integrated environment enables separately developed

applications, called MPW tools, to run within the programming environment. The

MPW editor is always available to generate both text and command lines; there is no

distinction between command and text windows.

s MultiFinder™ compatibility: MPW 3.0 tools can now be operated in the
background when using Macintosh System 6.02 with MultiFinder. This means that you
can switch to another application while a tool, such as a compiler, is running. You can
also configure your system so that you can use the MPW Shell for editing or other
operations while a tool runs in the background. See “Using MPW With MultiFinder” in
Chapter 2.

s Project management: Projector, 2 new program integrated with MPW, makes it easy
to keep track of large projects involving many programmers, or simply to maintain an
orderly revision history, showing who did what to every file and why. You can use
Projector to branch, that is, create many experimental versions of a file at any stage
in its evolution—without risk of confusion.

s Automated build process: A pull-down menu provides several ways to build or
rebuild your programs quickly and automatically. You can also automate complex
builds by using the Make tool and command-language scripts.

s Command scripting: In addition (0 menu commands, MPW provides a full command
language, including Shell variabies, command aliases, pipes, and the ability to redirect
input and output. You can combine any series of commands into an elaborate,
specialized script (command file) for fast, accurate, automatic results.

s Regular expression processing: The editor component of the Shell provides
powerful search and replace capabilities with regular expressions, which form a
language for describing complex text patterns. Regular expressions allow you, for
instance, to restructure complex tables with a single command.

a Extensibility: You can customize MPW in just about any way you can imagine. You

can create your own integrated tools and scripts to run within the Shell environment
You can also add your own menus, menu items, and dialogs to the Shell.

s Ease of use: On-line help is available at all times. In addition, the Commando dialog
interface gives you immediate on-screen access to all of MPW's versatile options and
functions in specialized dialog boxes. This interface makes learning easier and faster.
You can compose complex command lines without referring to the manual. And you
can create 3 Commando interface for your own tools and scripts as well.

‘]

6 MPW 3.0 Reference

MPW 3.0 provides a customizable programming environment with a completeness, power,
and flexibility unmatched by any other Macintosh-based system. Because it is full-
featured and extremely versatile, the first-time user should be prepared to devote some
time to leamit. This effort will be well repaid by the power and versatility that MPW
places in your hands.

What’s new in MPW 3.0

MPW 3.0 is faster and easier to use than its predecessor and now fully exploits MultiFinder.
Use of MPW with MultiFinder greatly increases its convenience and efficiency. Many new
tools and options to existing tools have been added. Major additions to MPW include
Projector, a project management system, and SADE, the Symbolic Application Debugging
Environment. MPW now also supports C++. These innovations are each briefly described
in the sections that follow. Changes to menus, tools, variables, and compilers are itemized
in the lists that follow.

If you are currently using MPW 2.0, it is espedially important that you carefully review the
changes listed in this section. The extensive changes implemented in MPW 3.0 might
affect scripts written for the MPW 2.0 Shell.

MPW C++

MPW now includes extensions to the C language that support the features of C++. MPW
C++ is an approximate superset of the C programming language that maintins the
efficiency and power of C while adding features such as operator overloading (which lets
you define additional meanings for built-in operators), ANSI-like type-checking,
automatic type conversion, and class hierarchies with inheritance. Because C++ supports
object-oriented programming, developers who prefer C to Pascal can now take advantage
of MacApp. For more information, see MPW 3.0 C++ Reference.

INTRODUCTION The New and the Necessary

. \V"‘W’M
Projector

MPW 3.0 includes an easy-to-use, built-in project management system, Projector, that can
be customized to fit any working style, from that of the single programmer to that of the
large, networked engineering team. Briefly, here's how it works: You check out a file or
group of files from Projector for either review or modification. Although many people can
review a file, only one person at a time can modify it. When you've finished your work,
you check the file back in with Projector, along with a note detiling your modifications.
Your name, your notes, and the date are automatically filed in Projector’s revision history
for that project. It's also possible to create parallel branches of a single project for
experimental purposes. Chapter 7 is a detailed account of Projector.

Symbolic Application Debugging Environment (SADE)

The Symbolic Application Debugging Eavironment (SADE) allows you to monitor the
execution of a program at both the processor level and at the symbolic program source
level. Both SADE and the enhanced MacsBug are now each documented separately from
the MPW Reference. For more information, see the MacsBug Reference and the SADE
Reference.

New or enhanced tools

The tools and scripts included with MPW 3.0 have been improved in many ways for
increased versatility. These enhancements are briefly catalogued in the list that follows. In
addition, a number of new tools and scripts have been added to support Projector and
the C++ compiler.

MPW 3.0 supports shared tools on a network file server.

These rarely used conversion tools are no longer included with MPW but are still available
from Technical Support at Apple Computer, Inc.:

s TLACwvt

s MDSCwt

s CVTODbj

8 MPW 3.0 Reference

All MPW 3.0 commands, including tools and scripts, are individually documented in the
alphabetically organized Command Reference in Part II of this book; that is the first
place to look for more information about any tool.

s Backup: Two new options have been added. .

m C: The C compiler has been completely rewritten for MPW 3.0. Some of the options
and calling conventions are different from those in the MPW 2.0 C compiler. See the
MPW 3.0 C Reference.

a CFront: New translator for C++.

s Choose: A new tool that enables you to mount servers and select Apple Laserwriter®
printers from within the MPW environment.

s Commando: Now has a built-in editor that makes it easy to modify Commando
dialog boxes.

- m CompareFiles: A script that compares two files side by side, pinpointing any
differences.

s ComparcRevisions: A Projector script used to identfy and compare revisions. See

Chapter 7 for details. ‘

CPlus: New script that compiles C++ programs.

CreateMake: Enhanced with 2 new option that supports SADE.

Dolt: A script to highlight and execute a series of commands.

DumpCode: Enhanced.

DumpFile: New -bf option. Note that the -¢ option has been renamed -w (for width).

DumpObj: Enhanced to support SADE. Two new options have been added.

GetFileName: Enhanced with 2 new -¢ (current) option to write the current Standard

File pathname to standard output. The syntax of this command has also been
improved.

m GetListitem: GetListitem now supports keyboard shortcuts and a new option: -s
(single) option that permits only a single item to be selected from 3 displayed list.

s Lib: Enhanced. Lib now determines the optimum buffer allocation from the amount
of available memory; the old -b, -bs, -bf options are therefore obsolete and have been
eliminated.

s Link: Enhanced to permit up to 1024 files, including both object files and symbolic
debugger source file specifications. A new -map option produces a sophisticated link
map. Link now determines the optimum buffer allocation from the amount of
available memory; the old -b, -bs, -bf options are therefore obsolete and have been
eliminated. A new option supports SADE. See Chapter 10.

<

INTRODUCTION The New and the Necessary

Pl x\
f (

MacsBug: MacsBug performance has been enhanced and upgraded. The MC68881 and R
MC68882 floating-point coprocessors are supported. See the separate MacsBug

Reference. -~

Make: Change§ have been made to the way variables are treated. See “Variables in

Makefiles” in Chapter 9.

MatchlIt: A new command that intelligently seeks the mate of a specified delimiter

used in Pascal, C, or Assembler, allowing for loops, comment fields, nesting, and so

on.

MergeBranch: A Projector script used to help merge a branch file back into the trunk

- of a project. See Chapter 7 for details.

Pascal: Enhanced with object-oriented capabilities. See the MPW Pascal section later
in this chapter and the MPW 3.0 Pascal Reference.

Print: Enhanced. A new option, -ps, lets you send a file of PostScript® commands to
the LaserWriter™,

ProcNames: This Pascal utility now generates Shell marker commands, allowing easy
access to the procedure, function headers, or bodies. Names are now displayed
indented to show their nesting level. Nesting leve! and line number are also displayed.

Resource tools: The command language of Rez has been extended with the new
syntax element Labe! to support color QuickDraw resources. There are a few new
syntax rules, new options, and two new functions that allow you to delete resources or
change resource information. See Chapter 11 and Appendix D. ' '

Sort: A new tool for sorting lines of text.

Wherels: This new tool helps you find files hidden deep in a directory tree. You can
use it to locate files when you know only a partial pathname.

New or enhanced Shell commands

All of these built-in commands are fully described in the Command Reference in Part II;
that is the first place to look for more information.

10

ChecklIn: New Projector command to check files in to a Project. See Chapter 7.
CheckOut: New Projector command to check files out from a Project. See Chapter 7.
CheckOutDir: New Projector command to set Checkout directory. See Chapter 7.

Close: Enhanced with a ¢ option; it lets you select the dialog's Cancel button during a
scripted operation.

Date: Enhanced to provide “date arithmetic.”
DeleteNames: New Projector command. See Chapter 7.

MPW 3.0 Reference

DeleteRevisions: New Projector command. See Chapter 7.

" Directory: A “directory path” variable (similar to the {Commands} variable) for

changing current directories has been added.

Evaluate: Enhanced to support different radices and variable assignmeants.
Flush: A command for flushing tools from the tool cache.

Format: A scripable form of the format option in the Edit menu.
FullBuild: Enhanced.

ModifyReadOnly: New Projector command to make read-only files modifiable. See
Chapter 7.

MountProject: New Projector command. See Chapter 7.

MoveWindow: Enhanced to provide current window size and position.
NameRevisions: New Projector command to name revised projects. See Chapter 7.
NewProject: New Projector command to create a new project. See Chapter 7.
OrphanFiles: New Projector command. See Chapter 7.

Position: This new command shows the current line number, beginning of selection,
and end of selection in specified windows.

Project: New Projector command. See Chapter 7.

ProjectInfo: New Projector command. See Chapter 7.

Request: Enhanced with -q option to quiet any error messages, permitting a script 0
continue regardless of user input.

RotateWindows: New command that sends the front window to the back.
SizeWindow: Enhanced to provide current window size and position.

StackWindows: Enhanced to support user-defined rectangles and a variable number
of windows.

TileWindows: Enhanced to support user-defined rectangles and a variable number of
windows.

TransferCkid: New Projector command. See Chapter 7.
UmountProject: New Projector command. See Chapter 7.

INTRODUCTION The New and the Necessary

11

New Shell editor capabilities B s

The MPW Shell edifor has been refined in various ways:

r

MPW 3.0 supports the special keys on the Apple Extended Keyboard:

Esc Same as Cancel button in a dialog box

Undo Same as Undo menu command

Cut Same as Cut menu command

Copy Same as Copy menu command

Paste Same as Paste menu command

Help With no selection, displays 2 summary of the Help available. With 2
selection, information on that selection is displayed.

Home Equivalent to moving the vertical scroll box to the top of the scroll bar.

End Equivalent to moving the vertical scroll box to the bottom of the scroll
bar. .

Page Up Equivalent to clicking the mouse pointer in the upper gray region of the
vertical scroll bar.

Page Down Equivalent to clicking the mouse pointer in the lower gray region of the
vertical scroll bar.

The displayed line-length limit has been increased to 256 characters.
The tab-length limit has been increased to 100 characters.

- Horizontal scrolling is faster; more screen area is moved per mouse click.

You can reverse the direction of the Find, Find and Replace, Find Same, Replace Same,
and Find Selection functions by holding down the Shift key when selecting a menu
item (o, in a dialog box, when dlicking OK). This makes interactive searching a lile
more convenient but does not affect Shell search variables.

Text selection by matching delimiters (such as { }, (), (], and so on), has been
modified. [nstead of selecting the rest of the document when a matching character is
not found, the delimiter at the position of the double<click is highlighted. During the
search you can abort by pressing Command-Period.

The new commands Format and Position (described above in the *New or Enhanced
Shell Commands® section) are useful for scripted editing.

The library routine faccess has been enhanced to provide more programmatic
control over Shell windows.

MPW 3.0 Reference

C

s You can now disable Auto-Indent for one line by pressing Option-Return.

s The MPW Shell editor ignores dny zero-width characters that are typed from the
keyboard, (Usually these are typed by accident.) If you really want a control character
in your document, you can enter it in the Key Caps desk accessory and then paste it in
your document. To delete control characters that might not be visible, select Show
Invisibles from the Format dialog box. All control characters are displayed as an
inverse question mark (;).

New standard Shell variables

Twelve new variables have been added to give you control over almost all formarting and
editing options from scripts. (Only display invisibles cannot be predefined.) The first five
variables listed here provide default settings for new windows and are especially useful
with large-screen monitors. See “Variables Defined in the Startup File” in Chapter 5 for
more information.

{Autolndend sets default indenting for new windows.

{Font sets default font for new windows.

{FontSize} sets default font size for new windows.
{NewWindowRect} sets the default size for new windows.
{

ZoomWindowRect} sets default size for windows that are zoomed to full screen size.

{TileOptions} sets options for the TileWindows menu item, for example, to specify a
rectangle for the tiled window arrangement. ‘

s (StackOptions} sets options for the StackWindows menu item, for example, to
specify a rectangle for the stacked window arrangement.

» {SearchBackward} can be used to set your default environment to specify backward
searching.

u (SearchType} can be used to set your default environment to spedify searching for
literal characters, words, or regular expressions.

» {SearchWrap} can be used to set your default environment to specify wrap-around
searching.

INTRODUCTION The New and the Necessary

13

w (User} specifies the name of the user currently using MPW. It is predefined to be the
same as the user name specified in the Chooser.

 (IgnoreCmdPeriod} is 2 new variable referenced by MPW's command interpreter. Use
this variable in your scripts when you want any Command-Period input by the user to
be ignored.

Changes to menus and dialogs

" Afew menus have been slightly changed since the release of MPW 2.0: -

s TileWindows and StackWindows menu items now, by default, do not inciude the
Worksheet. You can include the Worksheet in the tiling or stacking by pressing the
Option key when selecting the TileWindows or StackWindows menu item. The
(TileOptions} and (StackOptions} variables let you completely customize the
operations of the TileWindows and StackWindows menu commands. See Chapter 3.

s Window menu now lists any open Projector windows. See Chapter 3.
s The Open dialog box now conuins a Read Only checkbox.

Miscellaneous Shell changes

Here are some important improvements for the MPW Shell:

s MPW 3.0 supports background operation of tools while running MultiFinder. This is a
significant improvement in convenience and efficiency. Please see *Using MPW With
MultiFinder” in Chapter 2 for instructions on configuring your system for true
multitasking.

® An automatic installation program is included with MPW 3.0. This program, Installer,
and the tools to support it, can be found on the MPW Installation Disk. Please read
“Installing the System” in Chapter 2 before doing anything with it. This is important
because the arrangment of MPW files on the 3.5-inch distribution disks has been
changed to represent their final destination when moved to a hard disk. Thus there
will be some duplication of folders across the set of distribution disks so that you
cannot simply copy the entire contents of a distribution disk without some conflict.

n The Startup file now executes UserStartup and then any file named UserStartupe name
in the directory that contains the Shell. (Press Option-8 to obtin the ¢ symbol.) If
you have a customized UserStartup file, you may want to personalize it (for example,
UserStartupe Tom) so that when you Ihszall MPW 3.0 your customized file won't be
overwritten.

14 MPW 3.0 Reference

s Standard output and diagnostic output can now be directed to the same place with
the ¥ (Option-W) character, meaning: “The summation of all output...” See
“Redirecfing Input and Output” in Chapter S for the new syntax.

s You can now use Option-Enter to invoke the Commando dialog boxes for commands.
Alternatively, you can still iype the command name, then the ellipsis character
(Option-Semicolon), and then press Enter.

® A new directory path variable for changing current directories is now available from
the Directory command. (See Part 0.)

s Numeric variables have been added to the Shell command language. See the Evaluate
command in Part I for details.

s The notation conventions of this reference have been slightly modified. The index has
also been improved. See “About This Reference” at the end of this Introduction.

Numeric libraries

Linking with numeric libraries has been simplified by placing certain conversion functions,
such as num2dec, in CRuntime.o. A program that simply uses print £ will no longer need
to link with CSANEib.o.

A new (Alncludes} macro file called SANEMacs881.a is provided as a migration aid for
Macintosh I developers who seek even greater floating-point performance from their
products by using SANE macros. With little modification of their source files, they can
reassemble by using the 881 SANE macros and thereby generate a faster application that
runs only on the Macintosh II.

INTRODUCTION The New and the Necessary

MPW C and MPW C++ Include files

The capitalization.conventions for those functions that use Points or strings have been
changed for MPW 3.0. These changes are itemized here:

m Those functions that cail “glue” code to convert C strings to Pascal strings or
dereference Points are now spelled with all lower case letters.

s The in-line versions of those function calls, those that do no conversions, are now
spelled with mixed cases to match the conventions in /nside Macintash.

w You will find in the Scripts folder a new script, CCvt, that changes source code to
conform to the new standard speiling conventions. CCwt first backs up the original
source and then uses two Canon dictionaries to change mixed case spellings to ail
lower case and all upper case spellings to mixed case.

s The syntax for ROM calls (A-traps) has been changed. The new syntax allows multiple
instructions for “direct functions” and is more compatible with standard ANSI C and
Cr+,

s The header files have been rewritten with function prototypes that allow ANSI C and
C++ to do additional type-checking and code optimization.

If you use MPW C, please see the MPW 3.0 C Reference for more information about
interfaces.

MPW Pascal

The MPW 3.0 Pascal Compiler no longer provides the compiler directive SLoAD and the
option -z that were supported in MPW 2.0 Pascal. In addition to providing nearly all the
capabilities described in the ANS Pascal Standard, MPW 3.0 Pascal expands the power
and flexibility of Pascal programming with a range of new features and options:

s SADE, the symbolic debugger (-sym option), and MacsBug (-mbg option) are
supported. »

s A replacement for the SLOAD mechanism provides 2 more automatic and faster
method (-noload, clean, and -rebuild options).

You can use character constants as valid string expressions.
Symbol support for MacsBug has been extended and improved.
Global data greater than 32K is now possible.

The requirements for forward type references are more flexible.

<

K
t,ﬁ’

16 MPW 3.0 Reference

MPW tool libraries

MPW language librasies that control the MPW Shell were previously documented in their

respective language references. All Shell-related routines are now combined in this

reference. o

s Use of the MPW cursor control routines and error file manager is now explained in
Appendix F of this book. Examples are shown in both MPW C and MPW Pascal;
Assembly programmers can use both.

s Use of the MPW Integrated Environment routines are documented in Chapter 12. The
routines are explained for MPW Assembler, MPW C, and MPW Pascal.

s The Graf3D library is now documented in Appendix G. Each routine or function is
explained for MPW C and MPW Pascal; Assembly programmers can use both.

s The calls required to use the performance-measurement tools are now included in
Chapter 14 of this bock. Examples are shown in MPW C, MPW Pascal, and MPW
Assembler.

What you’'ll need

This section describes the hardware and documentation you need to develop software
with the Macintosh Programmer's Workshop 3.0.

Hardware and system requirements

The Macintosh Programmer’s Workshop 3.0 can generate applications that run on any
Macintosh, including the Macintosh II, Macintosh SE, Macintosh Plus, Macintosh 128K,
Macintosh 512K and 512K enhanced, and Macintosh XL.

However, the MPW 3.0 system requires, at the minimum, a Macintosh Plus with 2
megabytes of RAM and a hard disk drive. MPW does not run on the Macintosh XL, the
Macintosh 128K, the Macintosh 512K, or Macintosh 512K enhanced or on systems without
hard disks. MPW 3.0 requires the 128K or 256K ROMs; it cannot execute on the older 64K
ROMs. The ideal developmental system for use with MPW 3.0 is 2 Macintosh I with an
80-megabyte SCSI hard disk drive, 4 or more megabytes of memory, and System 6.0.2 or
later software with MultiFinder.

In general, a small RAM cache of about 32K is useful. Use of MPW with Switcher™ is not
supported.

INTRODUCTION The New and the Necessary

17

MPW software is shipped on 800K disks. Although MPW 3.0 can still read from and write
to disks that use the nonhierarchical filing system, MPW's files must be kept on disks that
use the hierarchical filing system (HFS). Hard disks, when used as boot disks, must be
HFS volumes. -

Apple’s Macintosh peripherals, including the LaserWriter family of printers and the
AppleShare? file server, are supported.

System Folder requirements

Please make sure that you are using System file Version 6.0.2 or later versions.

MPW 3.0 requires these minimum system file versions:
System file 6.0.2

Finder 6.1

Laser Prep 4.0

ImageWriter® 2.6

AppleTalk® ImageWriter 3.1

LaserWriter 4.0

These files are available on version 6.0.2 or later of the System Tools disk, and on the latest
version of the Printer Installation disk.

Documentation

In addition to the MPW 3.0 Reference, you should have the SADE Reference, the Macsbug
Reference, and the ResEdit Reference. These books together make up the MPW 3.0
documentation suite. '

The four MPW programming languages, MPW Assembler, MPW C, MPW C++, and MPW
Pascal, are available as separate products.

All programmers need Volumes -1V of /nside Macintosh (published by Addison-Wesley,
1985), the definitive guide to the Macintosh Operating System and user-interface
toolbox. Additional features of the Macintosh SE and Macintosh II computers are
documented in Volume V. If you need to understand and control the numeric
environment, make sure that you have the Apple Numerics Manual, a guide to the
Standard Apple Numerics Environment (SANE™). Finally, you need the appropriate
documentation for the programming language you use:

18 MPW 3.0 Reference

o
.

s Assembly language: Macintash Programmer’s Workshop 3.0 Assembler Reference.
This reference is part of a separate product available from Apple. You may also need
the appropriate microprocessor documentation from Motorola.

@ C: Macindosh Programmer's Workshop 3.0 C Reference. This reference is available as
part of a separate MPW procuct. For a guide to the C language itself, you'll need The C
Programming Language by B. Kernighan and D. Ritchie, or a similar C manual.

m C#+: MPW 3.0 C++ Reference. Also recommended is The C++ Programming
Language by Bjamne Stroustroup.

s MacApp: MacApp Programmer's Reference. This reference is part of a separate
product, MacApp, the Expandabie Macintosh Application, available from Apple. The
MacApp product also requires MPW Pascal or MPW C++.

w MacsBug: MacsBug Reference. This reference i is included as part of the MPW 3.0
product.

» Pascal: Macintosh Programmer’s Workshop 3.0 Pascal Reference. This reference is
available as part of a separate MPW product.

m ResEdit: ResEdit Reference. This reference is included as part of the MPW 3.0 product.
m SADE: SADE Reference. This reference is included as part of the MPW 3.0 product.

About this reference

Part | of this book describes the MPW development system, including the Shell and tools.
Part II of this book is a complete alphabetical reference to MPW commands that may be
removed to a smaller binder for easy reference.

This reference is written for programmers who are already familiar with the Macintosh. It
outlines the process of building a program but does not deal with the particulars of writing
it. Language-specific information is covered in the appropriate language references.
Language-specific examples in this reference are given in MPW Assembler, MPW Pascal, or
MPW C.

If you are new to MPW, be sure to read the Overview in Chapter 1 and the brief section
*Building a Program: An Introduction” in Chapter 2. This introduction will take you
through MPW's build process in minutes. Chapter 3 introduces the commands available
from the menus and Chapter 4 covers the basics of using MPW, including features of the
Commando dialog interface.

-

INTRODUCTION The New and the Necessarv

19

If you are a seasoned MPW user, this introduction should be sufficient to alert you to the S
changes to the MPW Shell since MPW 2.0, and to indicate where you can find complete

details on each infiovation. You may wish to read the new Chapter 7, “Projector: Project

Management.” Pledse note that Link and Make are now described in their own chapters in

this reference and that ResEdit and MacsBug are now documented in separate volurmes.

More examples have been added since MPW 2.0, and suggestions from readers have been

incorporated to make it easier to find information.

Finding information fast

During MPW sessions, the on-line Help files included with MPW are your first recourse. If
you don't find the information you need there, the recommended procedure is to check
the Table of Contents and then the index at the end of Part] in this reference. Use the
color-keyed tabs to turn quickly to the section in the MPW Reference that you need. Then
use the table of contents provided at the beginning of each chapter.

The index has been redesigned for MPW 3.0. A single datum in the text (excluding

appendixes and Part [I) may be referenced from as many as six different points in the

Index and up to three levels deep. References include practical task-oriented

identification to help you find exactly what you need without looking up a series of page e
references for a single word. Trivial references have been eliminated from the index o help N
you avoid wild-goose chases. Examples, tables, wamings, and special notes have been

listed to help you find things you may have encountered before but can’t remember

exactly where.

Throughout this book you will encounter supplementary background information, hints,
and tips in specially formatted boxes set off by diamond-shaped icons and sans-serif
type. You can ignore these boxes during routine reference.

In spite of redundancy and a plethora of cross references, finding a specific item of
information in a book this size can sometimes be frustrating. A little preparation can help
out later when you are busy and need to find something fast. It's 2 good idea to begin by
carefully studying the organization of the Contents pages, especially the List of Figures
and Tables and the appendixes at the end of Part I The List of Figures and Tables and the
appendixes are often overlooked. You may find it useful to glue tabs at the locations of
important figures and tables. Whenever you come across something in the body of the
text that you think you may need to find later, place a tab there and label it.

20 MPW 3.0 Reference

Part II of this manual is 2 complete alphabetical reference to MPW commands. As you
become familiar with MPW and no longer need to refer often to the indexed chapters of
Part I, you may find it convenient to remove Part II and place it in a smaller binder for
handy referefice. You may want to include some of the appendixes (such as the summary
of the Resource compiler's syntax in Appendix D) in the smaller binder also.

Syntax notation

The following syntax notation is used to describe MPW commands:

code

include

nonterminal

{FontSize}

(optional |
-0

tepeated...

alb
(grouping)

Courier text is used in examples to indicate characters that
must appear in 2 command line exactly as shown. Special
symbols (-, §, &, and so on) must also be entered exactly as
shown. Command-line examples are always set off in separate
paragraphs.

Command-language identifiers and syntax elements are set in
Courier to differentiate them from surrounding Garamond text
(following the Kemighan and Ritchie notation conventions).

Items in italics can be replaced by anything that matches their
definition. When referred o in the text, variables normally
appear in italics.

Standard MPW Shell variables appear without spaces between
braces.

Brackets mean that the enclosed elements are optional.

Hyphenated command-line options appear in boldface when
mentioned in text. ~

An ellipsis (...), when it appears in the text of this reference oniy,
indicates that the preceding item can be repeated one or more

~ times. Do not confuse this reference convention with the

ellipsis command-line character (Option-Semicolon), used to
invoke the Commando dialog interface.

A vertical bar indicates an either/or choice.

Parentheses indicate grouping (useful with the l and ...
notation).

This notation is also used in the output of the Help command. (See “The Help Command”
in Chapter4.)

INTRODUCTION The New and the Necessarv

21

Filenames and command names are not sensitive to case. By convention, they are shown s
with initial capital letters. Important terms are printed in boldface when they are first
introduced and défined; these terms are also fully defined in the glossary. Proper names
of key user-interface elements, such as the Shell, appear with initial capitals. Command-
key or option-key commands (such as Option-L) are always defined in the text with
capitals for clarity; nonetheless, the commands work with lower case letters.

Aids to understanding

Look for these visual cues throughout the manual:
A Warning Warnings like this indicate potential problems. a
A Important Text set off in this manner presents important information. a

& Note: Text set off in this manner presents important points that should not be
overlooked.

¢ Hints

Text set off in this manner in Helvetica type indicates practical hints or background
information that need not be perused during routing referancse. &

For more information

APDA™ provides a wide range of technical products and documentation, from Apple and
other suppliers, for programmers and developers who work on Apple equipment. (MPW is
distributed through APDA.) For information about APDA, contact

APDA

Apple Computer, Inc.

20525 Mariani Avenue, Mailstop 33-G

Cupertino, CA 95014-6299

1-800-282-APDA, or 1-800-282-2732
Fax: 408-562-3971

Telex: 171-576

AppleLink: DEV.CHANNELS

If you plan to develop hardware or software products for sale through retil channels, you
can get valuable support from Apple Developer Programs. Write to

Apple Developer Programs

Apple Computer, Inc.

20525 Mariani Avenue, Mailstop 51-W
Cupertino, CA 95014-6299

<

a

2 MPW 3.0 Reference

"N
[s’

Chapter 1

System Overview

THIS CHAPTER IS A GUIDE TO THE STRUCTURE OF THE MPW 3.0 SYSTEM and an
introduction to its components. If you are new to MPW, this chapter will help vou ©
get oriented. The MPW Shell commands and the MPW tools are grouped according
to task each tool or command is briefly introduced and cross-referenced. a

Contents

The MPW Shell 25
Window commands 26
File-management commands - 27
Project-management commands 28
Editing commands 29
Structured commands 29
Other built-in commands 30
MPW scripts 31
MPW tools 32
MPW Assembler 33
MPW Pascai tools 33
MPW C compiler and C++ translator 34
Link 34
Make 35
Resource compiler and decompiler 35
Commando 36 '
Projector 36
Conversion tools 37
Performance-measurement tools 37
Applications 37
ResEdit 38
SADE and MacsBug 38
Spedial scripts 39
Examples 39
Sample program files 39
Command-language examples 40
Overview of MPW files and directories 40

Q)\/

PAC
c
H
doe
.‘ S
- no“T F
i
\ VL+

The MPW Shell

The MPW Shell is an application that provides an integrated, window-based environment
for program editing, file manipulation, compiling, linking, and program execution. The
other parts of the Macintosh Programmer’s Workshop 3.0—the language and resource
compilers, debuggers, Projector, Commando, and other tools described below (except

‘independent applications such as ResEdit}—operate within the Shell environment These

tools accept input from files and Shell windows, and direct output to them.

The Shell combines a command language, a text editor, the Commando user interface, and
the Projector project-management system. You can enter commands in any window, even
within an ordinary text file, or you can execute them by using menus and dialogs. (A
dialog may include one or more dialog boxes, which may in tumn contain text boxes,
check boxes, radio buttons, and so on.) For every MPW tool there is 2 Commando dialog
offering all parameters, functions, and options of the command language along with built-
in context-sensitive help.

The command language provides text-editing and program-execution functions, including
parameters 0 programs, scripting (command file) capabilites, input/output redirection,
and structured commands. You run a tool by typing its name, and then a list of options
and affected files. You can link tools together in custom scripts, piping the output of one
to the input of another, thereby automating complex operations.

The window operations, menus, and menu items are easily customized to fit your specific
needs or preferences.

The MPW Shell integrates the following functional comi)onents:

» An editor for creating and modifying text files. The editor implements normal
Macintosh-style editing together with scriptable editing commands so that you can
program the Shell to perform editing functions. (See Chapters 3, 4, and 6.)

® A command interpreter interprets and executes the commands you enter in a
window or read from a file. (See Chapter § and Part II.)

s The Commando user interface displays dialog boxes providing immediate, mouse
access 10 all of MPW's many functions, features, and options, including on-line help.
(See Chapter 4 for an introductjon to the use of the Commando dialogs. Chapter 13 is
a guide to creating and editing your own Commando dialogs.)

CHAPTER 1 System Overview

, -y
s A command Interpreter interprets and executes the commands you enter in a g£°

window or read from a file. (See Chapter 5 and Part [I.)

s The Commando user interface displays dialog boxes providing immediate, mouse
access (o all of MPW's many functions, features, and options, including on-line help.
(See Chapter 4 for an introduction to the use of the Commando dialogs. Chapter 13 is
a guide to creating and editing your own Commando dialogs.)

s Built-in commands, in addition to editing functions, include commands for
managing files without returning to the Finder, commands for manipulating windows,
processing variables, command coantrol flow, and more. (See Chapter 5.)

a Projector, a project-management system, makes it easy 0 track the revision
history of even large projects with many contributors, with or without a network.
Projector helps you avoid confusing versions or getting out of synch with colleagues.
(See Chapter 7.)

s The MPW tools, over 135 versatile programming tools and scripts designed to run
within the MPW environment. Every tool is equipped with a complete dialog interface
including context sensitive help. Part I of this reference is an alphabetically organized
guide to each of these tools and their many options.

‘Window commands N

All work in MPW is done within windows. The following commands are available for
manipulating windows:

Close Close a window.

MoveWindow Move window to a specified location on screen.
New Open a new window.

Open " Open 2 window.

RotateWindows Rotate the sequence of a tiled or stacked array of windows.
SizeWindow Set a window’s dimensions.

StackWindows Arange open windows in a staggered diagonal array.
Target Make a window the target window.

TileWindows Armange open windows in a tile pattern.

Windows List windows.

ZoomWindow Enlarge or reduce a selected window.

2% MPW 3.0 Reference

File-management commands

The MPW Shell provides the following tools and built-in commands for manipulating files
and directories without having to exit to the Finder (see the MPW tool section later in this
chapter for other commands that help to manage files):

Backup
Catenate
Delete
Directory
Duplicate
Eject
Equal
Erase
Exists
Files
Mount
Move
Newer
NewFolder
N Rename
(Save
SetFile
Sort
Unmount

Volumes
Which

Back up folder files.

Concatenate files.

Delete files and directories.

Set the default directory.
Duplicate files and directores.
Eject volumes.

Compare files and directories.
Initialize volumes.

Find out if a file or directory exists.
List files and directories.

Mount volumes.

Move files and directories.
Compare two files to see which was modified most recently.
Create a directory.

Rename files and directories.

Save files in edit windows.

Set file atributes.

Sort or merge files.

Unmount volumes.

List mounted volumes.

Determine which file (pathname) the Shell will execute.

CHAPTER 1 System Overview

Q|

Project-management commands

Projector provides the following built-in commands and scripts for managing projects and

tracking revisions. See Chapter 7 for a complete explanation of Projector.

CheckIn
CheckOut
CheckQutDir
CompareRevisions
DeleteRevisions
DeleteNames
MergeBranch
ModifyReadOnly
MountProject
NameRevisions
NewProject
OrphanFile
Project
Projectinfo
TransferCKID
UnmountProject

Add or retumn files to a project.

Check out a file for reading only or for modxﬁcnnon.
Set location of CheckOut directory. - T
Compare two revisions of a file in a project.

Delete selected revisions and branches of the named files.
Delete user-defined symbolic names.

Merge a branch revision onto the trunk

Change a file checked out as read-only to allow modification.
Add the pathname of a project to the root project list.
Name a set of revisions for the files of a project

Create a new project directory.

Orphan a file from a project.

Set or write the current project.

List current state of all files within a project

Transfer resource information in one Projector file to another.

Remove the pathname of a project from the root project list

3 MPW 3.0 Reference

b

Editing commands

Besides the Macintosh’s usual mouse-and-menu editing capabilities, a number of built-in
editing commands are provided. You can use these commands both interactively and in
scripts. Editing commands feature the use of regular expressions, a set of special
operators that forms a powerful language for defining text patterns. Other useful
commands for editing (such as Matchit and Translate) are listed later in this chapter under
“MPW tools.” See “Pattern Matching” in Chapter 6 for a discussion of regular expressions.

Adjust
Align
Clear
Copy
Cut
Find
Format
Mark
Markers
Paste
Position
Replace
Revert
Undo
Unmark

Adjust lines.

Align text to left margin.

Delete the selection.

Copy the selection to the Clipboard. _

Copy the selection to the Clipboard and delete the selection.
Find and select a text pazem.

Specify format of a file (font, tabs, font size).

Mark and name a text selection.

List marked selections.

Replace the selection with contents of the Clipboard.
List the position of selections in a window.

Replace the selection.

Revert to saved file.

Undo last edit.

Remove a marker from'its text selection.

Structured commands

The Shell also provides a number of built-in structured commands. Used mainly in scripts,
these commands provide conditional execution and looping capabilities:

Begin...End
Break
Continue
Exit

For...

If...
Loop...End

Group commands.

Break from For or Loop.

Continue with next iteration of For or Loop.
Exit from a script.

Repeat commands once per parameter.
Conditional command execution.

Repeat commands until Break.

CHAPTER 1 System Overview

Other built-in éommands

The MPW Shell also provides a number of other predefined commands:

AddMenu Add menu item.

Alert ' Display alert box.

Alias Define alternate command names.

Beep Generate tones.

Confirm Display confirmation dialog box.

Date Write the date and time.

DeleteMenu Delete a user-defined menu or item.

Echo Echo parametess.

Evaluate Evaluate an expression.

Execute Execute a script without affecting variable scope.
Export Make variables available to programs and scripts.
Flush Clear the command cache.

Help Display summary information.

Parameters Identify parameters.

Quit Quit MPW.

Quote Echo parameters, quoting if needed.
Request Request text from a dialog box.

Set Define and write Shell variables.

Shift Renumber script positional parameters.
ShutDown Shut down or reboot machine.

Unalias Remove aliases. :
Unexport Remove variable definition from export list.
Unset Remove Shell variables.

30 MPW 3.0 Reference

N

MPW scripts

The menu commands available in the Directory and Build menus use some of these scripts:
BuildCommands Show build commands.

BuildMenu Create the Build menu.

BuildProgram Build the specified program.

CCwvt Convert pre-3.0 C source to 3.0-compatible source.
CompareFiles Compare two files side by side, pinpointing any differences.
CompareRevisions Identify and compare project revisions.

CPlus Compile C++ programs.

CreateMake Create a simple makefile.

DirectoryMenu Create the Directory menu.

Dolt Highlight and execute a series of commands.

Line Find specified line in file.

MergeBranch Merge a branch file back into the trunk of a project.
OrphanFile Orphan a file from a project.

SetDirectory Set current directory (from Directory menu).

TransferCKID Transfer resource information in one Projector file to another.

CHAPTER 1 System Overview

31

MPW tools | -

MPW tools are programs that run within the Shell environment. With the exception of the
language compilers, the tools listed here are included with the Macintash Programmer’s
Workshop 3.0; several are described in more detail in the sections that follow.

Asm MC68000-family Macro Assembler (available as a separate producy).
Backup Back up folder files.

C C compiler (available as a separate product).

Canon Canonical spelling tool.

CFront Translator for C++.

Choose Choose or list volumes or printers (scriptable chooser).

Compare Compare text files.

Count Count lines and charactess.

DeRez Resource decompiler.

DumpCode Dump code resources.

DumpFile Display contents of an arbitrary file as hex and ASCII.

DumpObj Dump object files.

Entab Convert runs of spaces to tabs.

FileDiv Divide a file into several smaller files.

GetErrorText Display text for system efror numbers. A
GetFileName - Display a standard file dialog box. o
Getlistltem Present file selection list in dialog box. “
Lib Combine object files into a library file.

Link Link an application, tool, or resource.

Make Program maintenance tool.

MakeErrorFile Create error message textfile.

Matchlt Match paired language delimiters.

Pascal Pascal compiier (available as a separate product).

PasMat Pascal program formater (part of MPW Pascal).

PasRef Pascal cross-referencer (part of MPW Pascal).

PerformReport Generate 2 report analyzing program performance. -

Print Print text files.

ProcNames Display Pascal procedure and functions names (part of MPW Pascal).
ResEqual Compare files on a resource-by-resource basis.

Rez Resource compiler. v

RezDet Detect inconsistencies in resources.

f - \
N

R MPW 3.0 Reference

Search Search files for a pattern.

SetPrivilege Set access privileges to folders on file server.
SetVersion Mainain version and revision numbers.

Sort Sort files.

Translate Convert one or more characters.

Wherels Locate files buried deep in a directory tree.
MPW Assembler

The Assembler is provided as a separate product, MPW 3.0 Assembler, which inctudes the
following:

Translation of MC68000, MC68010, MC68020, and MC68030 assembly-language
programs into object code

Support for MC68881 and MC68382 floating-point instructions and MC68851 memory
management instructions

Powerful macro facilities, code and data' modules, and entry points, local labels, and
(optional) optimized instruction selection

Assembly-language interfaces to /nside Macintosh routines

s Sample programs

MPW Pascal tools

The Pascal system is provided as a separate product, MPW 3.0 Pascal, which includes the
following:

Pascal compiler

Pascal cross-reference program (PasRef)

Pascal source file format program (PasMat)
Pascal procedure and name program (ProcNames)
Pascal runtime library

Pascal interfaces to the /nside Macintosh routines
Sample programs

Macintosh Programmer’s Workshop 3.0 Pascal is an improved version of MPW 2.0 Pascal.
The Pascal tools PasRef, PasMat, ProcNames, and the Pascal compiler are also
documented in Part II of this referehce.

CHAPTER 1 System Qverview

MPW C compiler and C++ translator

The C compiler and C++ translator are provided as separate products. MPW 3.0 C includes
the foilowing:

s C compiler

s Standard C Library

s C interfaces to the /nside Macintosh libraries
n Sample programs in MPW C

The C Compiler implements the full C language as defined in The C Programming
Language, by Brian Kernighan and Dennis Ritchie. The usual extensions to this definition
provide enumerated types and structure assignment, parameters, and function resuits. In
addition, Apple extensions provide SANE numerics and interfaces to Pascal functions and
Macintosh traps. The compiler supports many ANSI C features, such as function
prototypes and strict pointer compatibility. Most Standard C Library functions, including
character and string processing, memory allocation, and formatted input/output, are also
provided.

MPW 3.0 C++ includes the following:

s C++ translator (CFront)

s C++ Streams Library

s Sample programs in MPW C++

The CFront translator from AT&T implements the full C++ language as defined in The C++
Programming Language, by Bjame Stroustroup. The current version, CFront 2.0, also
implements multiple inheritance and other extensions described in the paper “Evolution

of C++ from 1985 to 1987" by Bjarne Stroustroup. In addition to the C extensions listed
in that paper, C++ also contains extensions that allow C++ to be used with MacApp.

Link

The linker (Link) combines object code files into executable programs, driver resources,
or stand-alone code resources. Link includes, by default, only the code and data modules
that are referenced. Link replaces the code segments in an existing resource file, without
disturbing other resources in the file. An option directs Link to produce a link map as a
text file. Other options allow the creation of an object module cross-reference file, a file
containing a list of all the unreferenced npdula, and a symbolic debugger file.

<

% MPW 3.0 Reference

A separate tool, Lib, provides library manipulation. Linking is performed automaticaﬂy

~ for simple programs constructed by using the Build menu. Chapter 8 describes the use of

Link in building a program. See Chapter 10 for more details on the operation of the linker.

Make

The Make tool simplifies software construction and maintenance. [ts input is a list of
dependencies between files and instructions for building each of the files. Make generates
commands to build specified target files, rebuilding only those components that are out-
of-date with respect to their dependendies. You can generate makefiles automatically
from commands in the Build menu. To use Make with more elaborate programs, see
Chapter 9.

Throughout this reference examples demonstrating Make or makefiles assume that you are
using Apple's MPW languages. Because Make assumes certain default rules that apply only
to Apple’s MPW languages, you may need to make modifications for non-Apple
programming languages. Please consult your compiler’s documentation for instructions on
how to modify these default rules.

Resource compiler and decompiler

The resource compiler (Rez) reads a textual description of a resource and converts it into
a standard Macintosh resource file. The resource decompiler (DeRez) converts resources
into a textual representation that can be edited in the Shell, and recompiled with Rez. You
can use DeRez to create resource compiler input from any existing resource files. Rez and
DeRez need templates (type declarations) to define resource types. Definitions of the
standard Macintosh resource types (*MENU ', 'STR#','ICON', and so on) are provided
in two commented text files, Types.r and SysTypes.r. Another tool, RezDet, checks
resource files for consistency (see Part II). Rez and DeRez are documented in Chapter 11.

Rez's capabilities have been extended in MPW 3.0. Two new functions let you delete
resources or change resource types from within Rez. The new syntax element Label has
been supplied to support more complex resources, such as those found in color
QuickDraw. '

CHAPTER 1 System Overview 35

5

Commando g

The Commando tool implements the Commando dialog user interface for all MPW tools
and commands. Obvicusly, this is a great convenience for dealing with tools offering
many interdependent options. Newcomers to MPW will appieciate Commando's instant
assistance in building complex command lines. The dialogs include a Help frame with
information on each selected data field or control. You can also use Commando to create
specialized dialogs for your own MPW tools and scripts.

Commando looks in a tool’s or script’s resource fork for a resource of the type *emdo’.
Commando then loads the resource, builds a dialog, handles events, and passes the
resulting command line back to the Shell for execudon. The basics of using Commando

" dialogs are described in Chapter 4. Dialogs utilizing specialized types of dialog boxes are
presented with the tools they support in Part II. Chapter 13 tells you how to create a
Commando interface for your own tools and scripts.

Projector

Projector is an easy-to-use project-management system that can be customized to fit any
working style, from the single programmer to the large networked engineering team. Use
-Projector’s file-locking feature to control changes to master files, track a project’s
revision history, and generally keep your projects organized.

Briefly, here’s how it works: You begin 2 work period by checking out a file from
Projector for either review or modification. Although many people can review a file, only
one person at a time can modify a file. When you've finished your work, you check any
modified files back in with Projector, along with 2 note detailing your modifications.
Your name, your notes, and the date are automatically filed in Projector's revision history
for that project. Various branches of a file contining different modifications may be
later merged into one master file.

Projector’s commands (listed in the section “Project-Management Commands” earlier in
this chapter) are built into the Shell. Chapter 7 is a detiled account of Projector.

3% MPW 3.0 Reference

Conversion tools

Canon is a tool for regularizing the spelling and capitalization of identifiers in source files
moved from other systems. (In MPW languages, all characters are significant rather than
just the first eight as in the Lisa Workshop. In £, csse is also imponan..)

The file Canon.dict contains the correct spelling and capitalization for /nside Macintosh
ROM routines. C programmers, in particular, will find Canon and Canon.dict useful.

Entab is a useful tool for converting space characters and tabs to conform 0 MPW editor
or other editor conventions.

You can look up these conversion tools in Part I

Performance-measurement tools

The performance-measurement tools enable you to pinpoint where your code is spending
time. These libraries allow you to sample the program counter, produce a file of output
data, and analyze that data with a report generator. Advanced programmers will find these
tools useful for streamlining the execution of their code. Chapter 14 is devoted to this
subject. Examples of the actual calls and procedures are presented in MPW C and MPW
Pascal.

Applications

Applications are stand-alone programs that can execute outside the Sheil environment.
SADE and ResEdit are both stand-alone programs provided with MPW. It is assumed that
you already have the Font/DA Mover, which is distributed on the system tools and system
installation disks. Any application can be executed from the MPW Shell,

CHAPTER 1 System Overview

)

ResEdit

ResEdit is an interactive, graphically based editor for creating, editing, and copying
resources. An interface like that in the MacDraw application is provided to help you
design your own fonts. ResEdit includes a set of routines that make it possible to write
your own add-on resource editors for ResEdit. See the separate ResEdit Reference for a
thorough explanation of ResEdit.

SADE and MacsBug

The new Symbolic Application Debugging Environment (SADE) is a symbolic debugger
with an interactive graphic interface like that of the MPW Shell. SADE is an application
that runs under MultiFinder and can be used to debug other applications and MPW toois.
You can monitor the execution of your program simuitaneously at the processor level and
the symbolic program source level. This first release of SADE includes

s source display

variable display according to type

display of Macintosh system structure

source level breaks and stepping
programmable, extensible command language

SADE is included with MPW 3.0 but documented separately in the SADE Reference See
Appendix F of this reference for the object file format.

The familiar MacsBug has been improved for MPW 3.0, and is also documented in a
separate volume, MacsBug Reference.)

MacsBug fully supports the MC68000, MC68020, and MC68030 processors, as well as the
MC68881, MC68881, and MC68851 coprocessors. MacsBug resides in RAM together with
your program. MacsBug allows you to examine memory, trace through a program, or set up
break conditions and execute a program until they occur. MacsBug runs on all Macintosh
computers with 128K or larger ROMs, including the Macintosh SE and Macintosh II. See
the MacsBug Reference for instructions on using MacsBug,

i,

38 MPW 3.0 Reference

Special scripts

Several special command scripts are provided. They are essential for operation of the
MPW Shell. These text files contain commands that are read by the Shell at startug and
. shutdown:

s The Startup file is a command script that calls another script, UserStartup, that is run
each time you start the MPW Shell. You can use UserStartup to customize MPW. The
Startup file now executes UserStartup and then any file named UserStartupe name in
the directory that contains the Shell. (Press Option-8 to obtain the o symbol.) If you
have 2 customized UserStartup file, you may want to personalize it (for example,
UserStartupe Tom) so that when you install MPW 3.0 your customized file won't be
overwritten. The Sartup file is discussed in detail in Chapter 5.

a The Suspend and Resume files are scripts that preserve the state of the Shell
environment while a stand-alone application is executing. The Quit file saves the state
of the Shell environment when you exit to the Finder.

Examples

In addition to the examples excerpted in this reference work, you'll find numerous
complete examples in the Examples folder included on the MPW distribution disks. The
examples are written in MPW C, MPW Pascal, and MPW Assembler. Examples illustrating
the use of Projector are also inctuded in this folder. If you are using a different compiler
sold with MPW 3.0, check the compiler's documentation and distribution disks for
specific versions of these sample programs. See Appendix A for the location of the MPW
3.0 Examples folder.

Sample program files

Source files are provided for sample MPW tools and desk accessories. Versions of these
sample programs are included in MPW Assembler, MPW C, and MPW Pascal. They can be
found in the Examples folder. The Examples folder also contins instruction files and
makefiles for building the sample programs. Some of these examples are referred to in
Chapter 2, “Building A Program: Ag Introduction.”

Note that these sample files are parf of the respective MPW C, MPW Pascal, and MPW
Assembler products.

CHAPTER 1 System Qverview

39

Command-language examples

Examples of the use of the MPW command language are provided in the folder Examples.
Among these are

s addmenu commands for creating user-defined menu items

s a list of UNIX-oriented aliases

s suggestions for modifying the Startup script

To leam more about these examples, open the file Instructions in the Examples folder.

. Additional examples are included with each of the MPW commands in Part I of this
reference. The command language is documented in Chapter 5.

Overview of MPW files and directories

Appendix A contains a complete list of all of the Macintosh Workshop 3.0 files. It also
describes the recommended setup of files on a hard disk. Figure 1-1 shows the MPW folder
layout. Foldess for the Pascal, C, and Assembler systems are also shown, along with folders
for your applications and projects.

e« Figure1-1 Setup of MPW folders and files

S| MPLD HIE
1S items 33,955K in disk 5,093K available
MPV Shell () interfaces (Toots ()Examples Q‘
@ Startup (Libraries ()Seripts (T ROM Maps
@ UserStartup
[3) suspend B MPw e
@ Resume D Systrrs.Err
@) ouit
[3) Worksheet =

25
<a| =

Be sure to see “Installing the System” in €hapter 2.

<

40 MPW 3.0 Reference

Chapter 2 Getting Started

THIS CHAPTER EXPLAINS HOW TO START USING MACINTOSH PROGRAMMER'S WORKSHOP
3.0. Even if you are familiar with MPW 2.0, it's a good idea to read the next
section that describes the new automated insailation procedure. (You mignt run
into some pathname conflicts if you simply drag files from the 3.5-inch disk 0
your hard disk.) This chapter also contins the section “Using MPW With
MultiFinder,” which explains how to use MPW while running a compiler in the
background. You'll also find a section with guidelines for sharing MPW from z file
server.

Basic rules of operation are introduced here and in Chapters 3 and 4. If you are
new to MPW, the tutorial “Building a Program: An Introduction,” later in this
chapter, will introduce you to the simplicity of using this environment. a

Contents

Installing the system 43
Using MPW with MuitiFinder 44
Using MPW on a file server 46
Startingup 46
Selecting commands from menus 48
Building a program: an introduction 49
The sample programs 49
Two easy steps 50
Building 2 new program 54

41

PACE # q\oes ho‘&‘ Fym‘\' .

S

Installing the system

Macintosh Programmer's Workshop 3.0 is shipped on five 800K disks: MPW1, MPW2,
MPW3, MPW4, and the MPW Installation Disk. (MPW ,.emiblz., ¥PW Pascal, MPV C, and
MPW C++ are separate products.)

Before auempting to install MPW, please check the section *Hardware and System
Requirements” in the [ntroduction of this book.

Appendix A, “Macintosh Programmer’s Workshop Files,” contains an annotated list of
MPW files and shows the recommended arrangement of files on a hard disk. Pathname
rules for the Hierarchical File System (HFS) are explained later in this chapter. Also see
Figure 1-1 at the end of Chapter 1 for a suggested arrangement of MPW folders and files.

A complete MPW 3.0 system, including all three MPW languages, requires over 6 megabytes
of disk space.

MPW 3.0 includes an Installer script on the MPW Instailation Disk, for systematically
insaalling the complete MPW system from the other four disks so that everything is
located in the folders that MPW expects. You need at least 6 megabytes of space on your
HFS hard disk to complete the full installation. However, the Installer does give you the
option of stopping the installation before all of the tools on disks MPW3 and MPW4 have
been installed.

A Warning Don't simply drag the MPW Shell or any other files from the Instailer
disk to your hard disk. The files on the Installer disk are used for
automatic installation only, and thereafter you'll discard them. a

To automatically install MPW 3.0, follow these steps:
1. Insert the MPW Installer disk in the 3.5-inch disk drive.

2. Drag the Installation folder to your hard disk. If you have multiple hard disks, drag the
folder to the hard disk on which you want MPW to reside.

3. Open the folder and double<click the icon labeled *MPW Installer.”
4. The first Installer dialog box appears:

CHAPTER 2 Geming Started

S

—
————

This is the instailation procedure for MPW 3.0.
“internal:MPWJ:” will be installed. Insert the first
MPUW distribution disk in drive 1 and click 0K.

5. Click OK and insert the distribution disks in any order. The Installer program creates a
folder named MPW at the root directory of the volume in which the Insaller folder is
located.

6. When the instailation is complete, or when you have clicked a Cinccl button, the
Installer quits the Shell. Now throw away the Installation folder. You are left with MPW
in a folder at the root directory, ready to go.

The order in which the disks are copied doesn’t matter, and it's okay to insert the same
disk more than once. You may also choose to stop by clicking the No button before
you've copied all the distribution disks.

If you decide to click the Cance! button for any reason, the MPW Shell Worksheet
appears. (In that case, after quitting MPW, don't save the Worksheet file that was created
during the installation. It's better to start all over again.)

A Warning Don't use apostrophes or any other special charactess in the hard disk
volume name. This would cause the Installer to fail. a

Using MPW with MultiFinder

It would be very convenient to be able to work in the Shell or editor while waiting for a
compiler t0 run in the background. But MultiFinder lets you switch to different
applications only while running a tool; you cannot normally work in the Shell or editor
while running 2 tool in the background.

However, you can obuin this virtual multitasking capability by configuring a second
MPW Shell. You work in the second Shell while the first maintins the background
operation of any tool or script. Here is a yay 10 set up the second MPW Shell:

L}

iy

44 MPW 3.0 Reference

Create a folder called Concurrent MPW and put these files .in it

s MPW Shell
Be sure to rename the second MPW Shell in this directory to something like
“Concurrent Shell” or perhaps “MPW Editing Shell” so that you can quickly identify
which Shell you are currently using;

a Startup

s UserStartup
This file isn't crudial, but without the variables, aliases, and menus defined in your
UserStartup, the Concurrent Shell would not be configured to your normal working
environment.

s MPW.Help
Alternatively, you could keep just one copy of MPW.Help in your main MPW directory
and use an alias in your Edit MPW. For example: alias help 'help -f HD:MPW:MPW help'.

m SysErrs.Err
If you get an error from MPW and don'’t have a copy of this file, you'll see an error
message such as:

OS error -43 (Error message file not available)
s Quit

You can now use this second MPW Shell system while tools are running concurrently in the
first MPW Shell. This configuration is only a suggestion. You could simplify it a bit,as
indicated in the preceding notes. Also, the memory size in the second Shell may be
decreased to 512K if it is used only for editing and small tools.

Note: Although you cannot move Shell windows or pull down menus while 2 tool is
running, remember that you can switch applications by clicking the application icon in
the menu bar. '

The same file cannot be opened for editing by both Shells at the same time.

It's a good idea to generate a sound (using Beep or other tools) at the end of scripts so
that you know when your background operations are completed.

CHAPTER 2 Getting Started

45

Using MPW on a file server

To set up MPW in a shared environment, install the MPW system on the file server, The
following files must reside on each workstation that shares the MPW system.

MPW Shell
Startup

UserStartup
Alternatively, you can change Startup to execute a UserStartup on the file server.

MPW.Help
Alternatively, you can keep just one copy of MPW.Help on the file server by setting an
alias in your Startup file. For example:
alias help 'help -f SharedServer:MPW:MPW.Help'
SysErrs.Err
If you get an error from MPW and don't have a copy of this file, you'll see an error
message such as: ‘
OS error -43 (Error message file not available)

Suspend/Resume
You need these files only if you are not running MultiFinder.

Quit

Starting up

Start up MPW just as you would start any standard Macintosh application. -

& Note: A small RAM cache (perhaps 32K) is useful when running MPW 3.0. You may use

46

larger caches if you have pleaty of memory. However, some functions in MPW 3.0 may

run more slowly with large RAM caches. Use of MPW with Switcher is not
recommended; use MultiFinder.

MPW 3.0 Reference

.

4

From the Finder, select and open the MPW Shell icon. The Worksheet window (shown in
Figure 2-1) will appear with its full pathname in the title bar (for example,
“HD:MPW:Worksheet”). This window has no close box and is always present on the
screen; otherwise it’s just like any other window. The Worksheet is your home base. You'll
use 1t most often to type commands and see the refurn output You can also write and
compile sections of code or keep a diary—anything in the Worksheet can be saved to any
window or file.

You can also start MPW by double<licking any MPW document or tool.

s Figure2-1 Worksheet window

& File Edit Find Mark Window Project Oirectory Build
e m—— 0+ 4P W :Workshese t

BIBRBERL

O
s
2
%
:
i
11
5
i
8

T-rere e

e

The menus available from the Shell appear in the menu bar at the top of the screen. An
explanation of each menu is provided in Chapter 3. You can easily add your own menu
names. (See Chapter 8.)

A status panel at the window’s lower-left comer shows the name of the command that's
currendy executing, or simply “MPW Shell* when you're not executing 2 command. A
mouse click on the status panel is equivalent to pressing the Enter key.

When you first start the Macintosh Programmer's Workshop, a script called Starmup
executes. The Startup file defines several variables and command aliases (alternative
command names); this file is furthér described in Chapter 5.

CHAPTER 2 Getting Sared

47

A Important The Startup file must be in the same directory as the MPW Shell. See
Figure 1-1, “Setup of MPW folders and files,” at the end of Chapter 1
for an illustration of how your root MPW folder should appear. a

Selecting commands from menus

In MPW, commands may'be built-in commands, scripts, tools, or applications, as
explained in Chapter 1.

Several of the built-in commands can be executed by using the File, Edit, Mark, and

Window menus. The Project, Directory, and Build menus are optional, and are normally

installed by UserStartup scripts. Some items in these menus execute scripts (see Chapter 3

for deails about menus). These scripts must be located in a folder with a path in the
(Commands} variable.

You can add your own menu items to the File, Edit, Find, Directory, and Build menus. By

using the AddMenu command you can even add your own menus. Each user-defined menu

item specifies a list of MPW commands that are executed when the menu item is selected.

See the file AddMenu in the Examples folder for a number of ideas for user-defined menus. -

» Figure 2.2 MPW menu bar with MultiFinder

(& File Edit Find Mark Window Project Directory Build P |

48 MPW 3.0 Reference

Building a program: an introduction

This section takes you step by step through the process of building a sample program.
You'll find that the Build menu and the Commando dialog boxes make the leaiaing process
intuitive and comfortable. Even if you've never used MPW before, you can immediately
use the Build menus to build programs.

MPW's automated Build menu lets you assemble, compile, and link simple programs
without studying the command language, the numerous compiler and Linker opdons, or
countless other details. You can use the Build menu to build applications, stand-alone
code resources, desk accessories, and tools written in MPW Assembly language, MPW C,
MPW C++, MPW Pascal, and Rez, or in 2 combinaton of these languages. You can include
resource specifications when building programs with these menus.

The sample programs

In this introduction, three assembly-language programs included with MPW Assembler are
suggested as examples:

s Sample: the “Inside Macintosh” sample application

s Count: an MPW tool that counts characters and lines in a file (see Part II)

s Memory: a sample desk accessory that displays the memory available in the
application and system heaps and on the boot disk

Similar program examples are included with MPW C and MPW Pascal. If you are primarily
interested in programming in one of these languages, be sure to read, in the corresponding
language reference, the section on the example programs. If you are using a differeat (non-
Apple) compiler, be sure to check its documentation for information on specific language
versions of these examples.

You can routinely rebuild more complex programs by selecting a single rﬁenu item. There is
a smooth transition from the simple builds to the more complex ones. (See Chapter 8 for
information on how to modify the Build menu and the makefile that it creates.)

CHAPTER 2 Gening Started

The source files for each of these three assembly-language examples are in the =

Examples:AExamples folder that is included with the MPW Assembler distribution disks.
For example, the source for Count consists of the files Count.a and FStubs.a. A makefile
that contains the commands for building all of the examples is also provided in the same
folder. Instruction files are alsc provided on the MPW disks for each language. If you are
new to MPW, we recommend that you start with the tutorial that follows rather than with
the Intructions file on the disks. At the conclusion of this tutorial you will be referred back
to the disk instructions.

Two easy steps

~ You can build each of the example programs in two steps, using the Directory and Build
menus:

1. Set the current directory.
2. Build the program.

Both of these steps are explained next. You can use this section to take MPW on a test
drive.

1. Set the current directory. o

Open the Directory menu. The upper half of the menu contains the commands to show the
current directory and to change it to an arbitrary directory. (See Figure 2-3.) The lower half
of the menu lists frequently used directories.

s Figure 2-3 Directory menu

Show Directory
Set Dirsctory...

HD2:MPW:Exemples:AEnamples:
HO2:MPW:Enemples:CExampies:
HD2:MPW:Examples:CPlusEnamples:
HD2:MPW:Enamples:Exampies:
HO2:MPW:Exampies:PExamples:
HD2:MPI:Exampies:Pro jector Examples:
HD2:MPWI:

£

4

50 MPW 3.0 Reference

Select Show Directory to find out what your current directory is. You'll see the alert shown
in Figure 24.

s Figare24 Show Directory alert

The defauit dirsctory is

HOMPD:

Click OK to remove the alert. You're going to build the assembly-language program
Sample, so you'll need to set the current directory to the directory that conains the
assembly-language examples. Now open the Directory menu again and select *AExamples.”
Selecting “AExamples” from the Directory menu runs commands that set the current
directory. You can check to see if the current directory has been correctly reset by
selecting the Show Directory menu item again. (The Set Directory... menu item is used to
add other directories to the list at the bottom of the Directory menu. This menu item is
explained in “Building a New Program” later in this chapter.)

2. Build the program.

Now open the Build menu, shown in Figure 2-5, and select any one of the four Build menu
items.

s Figure2-5 Build menu

Create Bulid Commands...

Bulld... %18
Fuill Bulld...

Show Bulld Commands...
Show Fufl Bulld Commands...

CHAPTER 2 Geting Sarted

51

Each Build item builds your specified program in a slighty different way:

Build The program is built automatically, but only files that have
been modified since you last built the program will be
processed. Use this item to save time. The Command-key
equivalent is Command-B.

Full Build The program is completely built, ignoring any object files or
intermediate files that may exist from a previous build.

Show Build The commands needed to build the program (using just those

Commands files affected by modifications since the last build) are
displayed on the worksheet, but not executed. You can then
select any or all of the commands—or modify them—and
then press Enter to execute them.

Show Full Build All the commands needed to completely rebuild the program

Commands (whether modified since the last build or not) are displayed
on the worksheet, but not executed. This is a convenient way
to see all of the commuands used in building the program
you've selected.

See “Build Menu” in Chapter 3 for more information on Build menu items. When selected,
each Build item first displays a dialog box like that in Figure 26, requesting the name of
your program.

For this tutorial, select Full Build.

s Figure 26 Program Name dialog box

Program Name?

|

When the Program Name dialog box appears, type the name of the program you want to
build (in this case, type “Sample”) and then click the OK button. (Be sure that you type
the name Sample and not Sample.a. Since you have already set the directory to
AExamples, you don't need to indicate that you want to build the assembly-language
version of Sample. If you give Sample.a as the program name, the Build script will
attempt to build the source file.)

52 MPW 3.0 Reference

The Worksheet window now becomes the frontmost window. The status panel in the
lower-left corner flashes the name of each operation as it is performed by MPW. Each of
the MPW commands used by the Full Build script appears on the worksheet as it is
executed. When the build has finished, your worksheet should look like Figure 2-7.

s Figure 2.7 Finished Sample build

¢ Flla Edit Find Window Mark DOirsciory Bulld
HO :MPW:Worksheet mEES

—— Build of Sameila.

— ARG iNg cependencies.
Executing duild commencs.

-9 Sempia e

.

-0 Sample
Qore.

i

-08
a9

i
]

® 2:22:08
Sample

To check your work, press Enter. The Shell then executes the newly buiit program,
displaying the text-edit window that Sample creates (described at the beginning of /nside
Macintosh). When you quit the Sample program, you are returned to the Shell.

Use the same procedure to build the two other examples in the Examples:AExamples
folder: the tool Count and the desk accessory Memory. For guidance in using these
examples, consult the file Instructions in the folder AExamples.

In general, to run a newly built program, select its name (and, in the case of a tool, any
parameters) and press Enter. If the program you have built is an application, your open
windows, user-defined menus, and other status information will be saved befare the
program is run. When you quit the application you are retumed directdy to MPW with your
previously open windows and menus still displayed. If the program is an MPW tool, it is
run without leaving MPW (be sure to specify any required parameters and options).

Note: When MultiFinder is running, the application is simply launched in another
partition, and the MPW Shell does not exit or go through the Suspend/Resume
process. .

4

CHAPTER 2 Getting Saarted

When you build a desk accessory by using Build or Full Build, the last line of the Build
transcript is a command that will run the Font/DA Mover to install the desk accessory in
the System file. (Make sure there is enough memory to launch Font/DA Mover.) After this
installation is complete, the desk accessory will appear in the Apple menu. If your
Font/DA Mover isn't in the directory specified by the {Commands} Shell variable, then you
should use either the Finder, the MPW Duplicate command, or the MPW Move command,
to move it there.

If you're curious about the functioning of any of the Build commands, see Chapter § for
more background on the Build process.

Building a new program

The Directory and Build menus are convenient to use when working with your existing
programs. You use slightly different steps for creating new programs:

1. Set the current directory by using the Directory menu.
2. Type your program.

3. Select Create Build Commands from the Build menu.
4. Select a build item from the Build menu.

Each of these steps is expléined next.
1. Set the directory.

The first step in creating a new program is to set the directory where you want your new
program (o reside. You can select one of the directories that appears in the Directory
menu, O you can select another directory by using the Set Directory menu item. When you
select Set Directory from the Directory menu, a standard file dialog box, like that in Figure
2-8, appears.

% MPW 3.0 Reference

<‘ ¢
'

s Figure2-8 Set Directory... standard file dialog box

Select Current Directory:

E NIl omrs S o *Hiptomin b oS HB2
O interfacss
O Libraries
QO MPW Gema
0 ROM Maps
Q Scripts

O Toois

il

Select the directory you need. After highlighting the directory you want, click Directory or
Select Current Directory: at the top of the dialog box. The new directory will then be
added to the list of directories on the Directory menu.

2. Type your program.

The next step is to create the source files for your program. Select New in the File menu.
(Remember that assembly-language source filenames should end with *.a*, C filenames
with “.c*, C++ filenames with ®.cp”, Pascal filenames with *.p”, and Rez filenames with
“r".) An empty window now appears and you are ready to type your program. Enjoy!

3. Select Create Build Commands from the Build meaw

When you've finished typing in your program, select Create Build Commands from the
Build menu. You'll see the dialog box shown in Figure 2-9.

CHAPTER 2 Geting Started

55

s Figure 29 CreateMake dialog box

~CreatemMaks Options

Program Name (MyProgram | [sourcsFiles...)

~Program Type Creator | 7777
E @ Application Typa [7727

l i 8;“; . Main Entry Point
{ O Desk Recessary
i O Code Resource Resource Type

[0 symbolic debugger information

~Command Line

createmake MyPregram

Help
[Croate 2 simple makeffie for Wfieing an apptieation, toel, w dosk (__Cancal |
accessary. The makefTie is fer use by the Build menu. LreateMnke

Type in the program’s name (without “.2°, “.c*, “.cp®, or *.p” suffixes) and click a radio
button to indicate whether you want to create an application, stand-alone code resource,
desk accessory, or MPW tool. When you click the Files button, another dialog box
appears, permitting you to select the needed source and library (ending with the “.0”
suffix) files. Your program will be linked with these files.

& Note: It isn't necessary to indicate the standard library files supplied with MPW. Your
program will be automatically linked with the appropriate libraries. The reference for
CreateMake in Part II explains which standard library files will be used.

The Create Build Commands command in the Build menu runs a script that creates a
makefile with the necessary commands for building programs written in assembly
language, C, C++, Pascal, Rez, or a combination of languages. This file is given your
program’s name with the suffix *.make”. '

& Note: The Build script uses Make to determine the minimum operations necessary to
bring the program up to date. The Build script looks for its build instructions first in

program.make (for example, Sample.make). If no such file is found, the Build script
looks for its instructions in MakeFile.

56 MPW 3.0 Reference

/
/

&
A

4, Select 2 build command from the Build menu

The four build commands on the Build menus are variations on a theme. (See Chapter 3 for
an explanation of each item. A brief explanation appears eardier in this chapter under Step
2 of "Two Easy Steps.”) For now, select Full Build. The rotating beach ball cursor appears,
indicating that processing has begun. Each step of the build process is displayed on the
worksheet as it occurs. Any errors will be displayed also, making it easy to track down a
bit of misplaced syntax. When you have fixed the problem, just select Build from the
Build menu to quickly rebuild the program. The record of previous builds is left on the
worksheet.

See Part II for detailed information on each of the Build menu commands.

CHAPTER 2 Getting Started

57

N

N\

Q)\/

PACE % does not pvw’r.

{ /////

’ {i

X ;
.

Chapter 3 Using the Shell Menus

THIS CHAPTER DESCRIBES THE MENUS AND ASSOCIATED DIALOG BOXES of the
Macintosh Programmer’s Workshop 3.0 Shell. You can build simple programs by
using the Directory, File, and Build menus. (See Chapter 2 for an easy
demonstration.) The other menus are used for general editing. More advanced
editing capabilities, such as scripted editing and selection specification, are
discussed in Chapter 6. =

Contents

Features 61
File format 62
Menu commands 62
Applemenu 62
File menu 63
New 63
Open 64
Open Selection 64
Close &4
Save 64
Save As 65
Save a Copy 65
Revert to Saved 65
Page Setwp 65
Print Window/Print Selection 65
Quit 66
Edit menu 67
Undo 67
Cut 67
Copy 67
Paste 68
Clear 68
SelectAll 68
Show Clipboard €8

60

Format 68

Align 69

Shift Left, Shift Right 69
Find menu 70

Find 70

Find Same 71

Find Selection 71

Display Selection 71

Repiace 71

Replace Same 71

Selection expression 73
Mark menu 75

Mark 76

Unmark 77
Window menu 78

Tile Windows 78

Stack Windows 78

Customizing window commands 78

List of open windows 79
Project menu 79

New Project 79

CheckIn &0

Check Out 81
Directory menu 81

Show Directory 82

Set Directory 82

- - List of directory names 82
Build menu 83

Create Build Commands 84

Build 85

Full Build 85

Show Build Commands 85

Show Full Build Commands 85
User-defined menus 86

MPW 3.0 Reference

Features

The MPW Shell provides the following editing features:

Both menu and command-language editing. The menu commarnds grovide the usual
Macintosh interface.

Selecting text by program syntax. You can double<lick any of these paired quotation

characters:
() (| {1} "o ¢ vt / \

to select everything between the character and its mate. To select text between

n w [| s / \ .
click the left quotation character.

Selection of large sections of text by embedding markers. Marked selections are
scriptable; your command files can refer to one or more marked selections. The
marker commands, Mark and Unmark, are available from the Mark menu. Basic
interactive use of markers is covered later in this chapter, See Chapter 6 for more
detailed information on scripting marked selections.

Complete integration of editing functions with the command interpreter. In the MPW
Shell, there is no separation of “command” and “editor” modes. To the Shell, text is
text—it is only when you try to directly execute a string of text that the Shell decides
whether it is a legitimate command or not.

Scriptable commands. Because editing commands are part of the command language,
you can use them with structured commands and variables to put together scripts that
define new editing commands. (See Chapter 6.)

Regular expressions for matching text patterns. These make possible powerful search-
and-replace functions that eliminate the need to make repetitive changes by hand.
(See Chapter6.)

CHAPTER 3 Using the Shell Menus

61

l“‘\w,, /

File format

Shell text is saved as a text-only (TEXT) file. The file contains tab and return characters,
but no other formatting information. This format is compatible with other applications
that create text-only files—for example, the Shell can process MacWrite? files saved with
the Text Only option. When you select the Open command, the Shell displays all text-only
files in its standard file dialog box, regardless of the file creator.

A Important From the Finder, you can open a text file created by another
application by selecting both the MPW Shell and the text file icons,
and then choosing the Open command. &

You can display the invisible characters (spaces, tabs, returns, and all other “control”
characters) with the Show Invisibles checkbox in the Format dialog box.

A file's tab setting, font setting, selection, window settings, auto-indent state, invisibles
state, and markers are saved with the file in its resource fork.

Menu commands

In general, the menu interface is the familiar Macintosh implementation. There are a few
differences and extensions, which are detailed in the following sections. (It's assumed
that you are already familiar with standard Macintosh editing techniques.) Many menu
commands are scriptable, that is, a command-line form of the command exists (and is
described in Part IT) that lets you use the menu item noninteractively in a script. Each of
these are indicated later in this section.

All menu commands act on the active (that is, the frontmost) window.

Apple menu

Open the “About MPW™ menu item to display version information.

<

]

o
{
-—‘§ /

62 MPW 3.0 Reference

File menu

The File menu contains the Shell commands for creating, opening, printing, closing, and

saving files.

s Figure 3-1 File menu
New... BN
Open... %0
Dpen Selection =0
{lpse ol
Save E 3
Sdave as...

Save a Copy...
Revert to Saved
Page Setup...

Print Window

Quit %40

appear dimmed.

New

If the Worksheet is the curreat window, the menu commands Close will appear dimmed, as
shown in Figure 3-1. If a tool is executing, all menu commands (except New and Open)

Displays the New dialog box, shown in Figure 3-2. The MPW New dialog box allows you to
enter 2 name and select a directory location for the document. The Command-key
equivalent is Command-N. There is also a scripable New, described in Part II.

s Figure 3-2

New dialog box

CHAPTER 3 Using the Shell Menus

63

»

Open

Displays an Open dialog box (similar to that in Figure 3-2) that allows you to open any
TEXT file on the disk. When you open a file for the first time, the selection point is at the
“top of the file. When you open the file again, it reappears in the same state in which it was
saved; that is, the previous selection or insertion point is preserved unless the file has been
modified outside the editor. The Read Only checkbox is located just below the Open
Document box. Check the Read-Only box to open a nonmodifiable copy of the file. The
Command-key equivalent is Command-O. There is also a scriptable Open, described in
Part II.

& Note: If you try to open a document that's already open in another window, that
window will be brought to the front. Whenever you open a file, it appears in a new
window. '

Open Selection

If vou select 2 document name within a window, the Open Selection command
automatically displays the selected name. This is a useful shortcut when you have already
displayed filenames on the screen, with the Files command, for example. You can then
select a filename and open a file directy, bypassing the usual Open dialog box. Variable
and command substitution occur on the selection. The Command-key equivalent is S
Command-D.

Close

Closes the active (frontmost) window. The Command-key equivalent is Command-W.
There is also a scriptable Close, described in Part 1.

Save

Saves the active window under its current name, without closing it. This menu item is
dimmed if the conteats of the window haven't been modified since it was last saved. The
Command-key equivalent is Command-S. There is also a scriptable Save, described in
Part I

64 MPW 3.0 Reference

Save As

Displays a Save As dialog box, allowing you to change the name and directory location of
the active window. Saves the current contents of the window as the Save As file, and
allows you to continue editing the new file. The old fie is closed without saving, urder its
original name.

Save a Copy

Saves the current state of the active window to a new file on the disk. You can then
continue editing the old file.

Revert to Saved

Throws away any changes you have made since you last saved the active window. This
menu command is dimmed if the window has not been modified since you last saved.
There is also a scriptable Revert, described in Part II.

Page Setup
Displays the standard Page Setup dialog box.

Print Window/Print Selection

Prints either the entre contents of the active window or the selection in the active
window. If any text is selected in the active window, that text is printed. If no text is
selected, the entire contents of the window (that is, the entire file) are printed.

Note: For the Print command to work properdy, you must instail the printer drivers
available on the latest version of the Printer Installation disk. Use the Chooser Desk
Accessory from the Apple menu to spedify which printer to use. Use the Page Setup
dialog box to specify paper size, orientation, and reductions or enlargements.

CHAPTER 3 Using the Shell Menus

./

The Print menu item doesn’t display the usual Print dialog box. Instead, you can specify
printing parameters by setting the Shell variable {PrintOptions}, described in Chapter 5.
Printing options include

the number of copies to print

which pages to print

print quality

font

font size

headings

title

borders

printing the pages in reverse order (for use with the LaserWriter)

See the description of the Print command in Part II for a complete specification of these
options, or enter the command Help Print to see a summary.

¢ How Print works

The Print Window menu item executes the Shell comfncmd
Print {PrintOptions]} "{Active}"™ 22 "(Worksheet}"

Print Selection executes the same command with .§ added after the name of the
active window. e

Quit

Quit returns you to the Finder, first allowing you to save all open files. The Command-key
equivalent is Command-Q. There is also a scriptable Quit, described in Part I1.

%

k{w.xi '

MPW 3.0 Reference

Edit menu

In addition to the usual Macintosh editing commands, the MPW Edit menu (Figure 3-3)
conains a few special menu items. See “Editing With the Command Language” in Chapter
S for more information on using the scripabie forms cf the commands on this menu.

Figure 3-3

Undo 82

Lut R
Lopy E
Paste XY
Llear

Select Al %A
Show Clipboard

Format... ®Y

Align
Shift Left X(
shift Right %1

Uado

Edit menu

Undoes the most recent changes to text in the active window (but not changes to resources
such as font or tab settings). You can select Undo again to redo changes. The Command-
key equivalent is Command-Z. There is also a scriptable Undo, described in Part II.

Cut

Copies the current selection in the active window to the Clipboard and then deletes it
from its original location. The Command-key equivalent is Command-X. There is also a

scriptable Cut, described in Part II.

Copy

Copies the current selection in the active window to the Clipboard. The Command-key
equivalent is Command-C. There is also a scripable Copy, described in Part II.

CHAPTER 3 Using the Shell Menus

67

£

Ay

Paste

Replaces the contents of the current selection in the active window with the contents of

the Clipboard. The Command-key equivalent is Command-V. There is also a scriptable

Paste, described in Part II.

Clear

Deletes the current selection in the active window. There is also a scripable Clear,

described in Part II. The keyboard equivalent is the Clear key.

Select All

Selects the entire contents of the active window. The Command-key equivalent is

Command-A. :

Show Clipboard

Opens a window displaying the contents of the Clipboard, if any.

Format &
S A

Displays the Format dialog box offering a selection of fonts and sizes. The Command-key
equivaient is Command-Y. This dialog box is shown in Figure 3-4. There is also a scriptable
Format, described in Part II. '

s Figure 34 Dialog box of the Format menu item

Font

Chicage (X Auto Indent
Courier [shew Inuisidles
Saneve

Tads: E

Helvetica
R LIRS

& Note: Selecting a font and font size affects the entire active window, not just the
current selection in that window.

68 MPW 3.0 Reference

Tabs

Auto Indent

Sets the number of spaces that a tab character will signify for the
active window. A

You can set the default format for a new window by using the Shell
variables (Font, (FontSize}, (Tab}, and {Autolndent}. These are
des. ‘bed in Chapter 5.

Toggles Auto Indent on and off. When Auto Indent is on, pressing
Return lines up text with the previous line. (A check mark indicates
that Auto Indent is on.)

Temporary disable feature: To temporarily disable Auto Indent for one line, press Option-
Return. That line will begin flush left.

Show lavisibles Displays these invisible characters:

Tab A
Space 0
Return : n
All other control characters ¢

The MPW Shell editor ignores any zero-width characters (that is, control
characters that do not have a character bitmap) typed from the keyboard.
(Usually these are typed by accident.) If you really want a contol character in
your document, you can enter it in the Key Caps desk accessory and then paste it
in your document. To delete control characters that might not be visible, select
Show lnvisibles from the Format dialog box.

The rest of the dialog box consists of a selection of the fonts installed in your System file.
Available font sizes are displayed in the dialog window.

Align

Aligns the currendy selected text with the top line of the selection.

‘Shift Left, Shift Right

These commands move the selected text left or right by one tab stop. You can thus move
a block of text while maintaining indentation.

“

<

CHAPTER 3 Using the Shell Menus ®

Shift Left ~ Removes a tab from the beginning of each line. The Command-key
| equivalent is Command-{.
Shift Right Adds a tab, or the equivalent number of spaces, to the beginning of
each line. The Command-key equivalent is Command-].
If you hold down the Shift key while using these menu items, the selection will be shifted
by one space, rather than by one tab.
- Find menu

The Find menu contins the routine commands for searching and replacing text. Each of
the items in the Find menu is described below.
s Figure 3-S5 Find menu

find... RF

Find Same %6

Find Seipctian N e
Display Selection f

Replace... %A
Replace Same XT

Find

Displays a Find dialog box and finds the string you specify. By default, the Shell editor
searches forward from the current selection in the active window (and does not wrap
around). The Command-key equivalent is Command-F. This dialog box is very similar to
the Find-and-Replace dialog box described under Figure 3-6; that explanation of the radio
controls and check boxes applies to both dialog boxes. There is also a scriptable Find,
described in Part IL.

70 MPW 3.0 Reference

Find Same

Repeats the last Find operation, on the active window. The Command-key equivaleht is
Command-G.

Find Selection

Finds the next occurrence of the current selection in the active window. The Command-
key equivalent is Command-H.

Display Selection

Scrolls the current selection in the active window into view.

Replace

Displays the Find-and-Replace dialog box shown in Figure 3-6 and explained there. The
Command-key equivalent is Command-R.

Replace Same
Repeats the last Replace operation. The Command-key equivalent is Command-T.

CHAPTER 3 Using the Shell Menus

71

O

* Figure3-6 Dialog box of the Replace menu item

find what string?

L

Replace with what string?

@ Literal [0 Case Sensitive
Q Entire Word {J Search Backwards
O salection Expression U Wrap-around Search

Repiace a1l [Find) [Cancei)

The operation of this dialog box is very similar to that of the Find dialog box, except that
selected strings can be located and replaced with a different string throughout a file. Both
the Find and the Replace dialog boxes have three radio buttons, offering you one of three
options:

Literal Finds the exact string that you specify, wherever it may
appear, even if it is part of other words or expressions. N
Entire Word Finds the specified string only when it occurs as a single word. N

To the editor, 2 word is composed of the characters a-z, A-Z,
0~9, and the underscore character (_). (You can change these
default values by redefining the Shell variable {WordSetl—see
“Predefined Variables” in Chapter 5.)

Selection Enables the full selection and regular expression syntax, as used

Expression with the command language and described in Chapter 6. These
expressions allow powerful selection and pattern-matching
capabilities that use a special set of metacharacters
introduced later in this section.

Any combination of these three check boxes may be selected:
Case Seasitive Searching is normally case insensitive; selecting this checkbox
specifies case-sensitive searching.

Search Backwards Search backward from the current selection to the beginning
of the file. (Normally, searching is forward and stops at the end

of the file.)
Wrap-Around Searches forward to the end of file, then wraps around and
Search searches from the beginning of the file to the cursor's

location when the search was initiated. (The direction of
Search is reversed f Search Backward is also selected.)

7 MPW 3.0 Reference

These dialog options set the Shell variables (CaseSensitive}, {SearchBackwardl,
{SearchWrap}, and {SearchTypel. You can also use these variables in scripts (o set the
related options in the dialog boxes. See “Variables Defined in the Startup File” in
Chapter 5.

For Find and Find-and-Replace operations, a beep indicates that the string v7as not
found.

& Hints on using Find

You can reverse the direction of @ current search ocperation by pressing Shift cs
you select the menu Itemn or click the OK button. The direction Is changed for
the current search operation only: the settings of the dialeg’'s check box cnd
the (SearchBackward} variable are not affected.

For example, if you are in the middle of a flle and you want something acbove
the curent cursor position. then hold down the Shift key as you click OK. The
search will then proceed backward through the first part of the file.

You might qlso use the Shift key to make sure that you've found ail instances
of an item from an arbitrary pesiion In the window. Press Command-G to run
Find Same forward. Press shift-Command-G to run Find Same backward. ¢

Selection expression

When the Find-and-Regace dialog box’s “Selection Expression” switch is selected, you
can use a special set of expression operators to specify selections and text patterns. This
section introduces 3 commonly used subset of these selection operators. Many more
capabilities are available. A full discussion of them can be found in Chapter 6.

Selection by line number: A number given by itself specifies a line aumber. In Figure 3-7,
for example, the command selects line 30 in the active window.

s Figure 3-7 - Selection by line number

find what selection enpression?

EL] |
QO Literai O Case Sensitive
Q Entire Word O Search Backwards

@ Selection Expression O wrap-traund Search

CHAPTER 3 CUsing the Shell Menus

.z:f'/ =}
Wildcard operators: The same wildcard operators used in filename generation can also N
be used to specify text paterns for Find commands:
? Any single character (other than Return).

= Any string of 0 or more characters, that does not contain 2
Return. (To get the = character, press Option-X.)

[characterList] Any character in the list

Note: The brackets must be typed; they don't indicate an
optional syntax element.

[—characterList] Any character notin the list (To get the — character, press
Option-L.)

These pattem-matching operators are part of a larger set called regular expression
operators, used to define searches and other scripted operations. A regular expression
consists of literal characters and/or regular expression operators, and it must be enclosed
in slashes (/..../). Figure 3-8 shows an example.

s Figure 38 Example of a regular expression

Find what sefection expression?
[/init=/)

Q Literal O Case Sensitive

Q Entirs Word {J search 8ackwards
@ Selection Expression {J Weap-Araund Search

74 MPW 3.0 Reference {\y / L

The command shown in Figure 3-8 finds and selects any string that begins with “init” and is
followed by any characters other than a return or a space. Figure 3-9 shows the result of this
command.

s Figure 3-9 Text selected with the Find command

HO:MPW:EHamples:PERaMpIes:Sample.0 Sk

N
{$8 main)
BEGIN
UnlocadSeqg(@ Datainit); (nrote What Datainit aust not be in Maini) R
Forcsirwirons; {chack for scee bDasic requiresents; exits it
Nodipp | 2one; (expand the head 3o code sagments lcad at &

19

B (Iinitializa the prograa) -
UnicodSeg(@initiaiize); (note that Initialize must not ba in Mainli}g

Eventloop; {eai! e main event locop)
80.
Aol =T I S EE T HR R N (U PR H [

As mentioned, many additional Find-and-Replace capabilities are available. (See
Chapter 6.) In the command language, the Find-and-Replace functions are performed by
the Find-and-Replace commands. There’s also a tool named Search (described in Part II)
that can search through a list of files for the occurrence of any text pattern.

Mark menu

A marker is a text selection that has been given a name. Markers are useful for navigating
within a window, and they can simplify many selection expressions. The upper part of the
Mark menu contains the commands Mark and Unmark and the lower part lists all existing
markers. (By the way, when you first startt MPW 3.0, you'll notice that this area of the Mark
menu contins a list of MPW commands that have been marked in order to display them
convenienty in 2 menu. You can unmark them if you prefer.) To jump to the location of a
marker, you simply choose the name of the marker you want from the Mark menu, shown
in Figure 3-10.

CHAPTER 3 Using the Shell Menus

~4

AW [

Markers can be created and used both interactively, via the Mark menu, and S
programmatically, via the Shell commands Mark, Unmark, and Markers. For a detailed

discussion of the syntax, characteristics, and programmatic use of markers, see Chapter 6

and Part II.

s Figure 310 Mark menu

Mark... XM™|

Unmark...

Commando
Enampies
Help
fllas
Catenate
Clear
Close
Copy
Count
Cut

Date
Delets
Duplicats
Echo
Eject

v

Mark

To create a new marker interactively, first select the text you want to mark, then choose
“Mark” from the Mark menu. A dialog box like that in Figure 3-11 appears, asking for the
name you want the marker to have. The editable text field in the Mark dialog box is
initialized to the first word (that is, whatever you would select by a double click) in the
selection. If you click Cancel in the dialog box, the selection is unchanged and no new
marker is created. If you click OK, a new marker is created with the specified name and
the new marker's name is added to the list of marker names displayed by the Mark menu.

= Figure 311 Mark dialog box

Mark the seiection with what name?

'
7 MPW 3.0 Reference -

If you try to create a new marker using the name of an already existing marker, a dialog
box will appear, giving you the chance either to delete the old marker and add the new

(OK), or to forget about adding the new marker (Cancel).

€ Hin!z on using Max.

Markers cre very handy for quick navigation through source flles. You may
want to mark important data declarations and ail procedures so that you can
quickly jump to any procedure by selecting its marker. Markers cre listed

aceording to their position In the fle. o

Unmark

If you choose the Unmark menu item from the Mark menu, you'll see a dialog box (Figure
3-12) that conains a list of currently defined markers and the two buttons Delete and
Cancel. If 2 marker is currently selected, its name is highlighted in the marker list. You can
select any number of marker names from the list If you click Delete, every marker
selected in the list is deleted. If you click Cance!, the selection remains unchanged and no
markers are deleted.

Deiete which markers?

Here <
Thers

fverywhere

7

Figure 312 Unmark dialog box

e ——— |

/

CHAPTER 3 Using the She!l Menus

/

Window menu

The upper portion of the Window menu contains the two commands Tile Windows and
Stack Windows; the middle area lists all open windows, as shown in Figure 3-13. The lower
area of the Window menu lists any open Projector windowe.

s Figure 313 Window menu

Tile Windows
Stack Windows

g Mewwortsnest

Tile Windows

Use this command to arrange windows in a tile pattern on the screen so that each window's
contents are visible. To include the Worksheet in the tiling, press the Option key as you
select Tile Windows. :

Stack Windows

Use this command to arrange windows in a diagonally staggered pattern on your screen.
This is the “open file folder” way to see several windows at once. To include the
Worksheet in the stacking, press the Option key as you select Stack Windows.

Customizing window commands
The Tile Windows and Stack Windows menu commands execute the Shell commands:

TileWindows (TileOptions} 2> "{WorkSheet)"
StackWindows {StackOptions} 2> "{WorkSheet}"

You may customize the operations of tiling and stacking by using the Shell variables
(TileOptions} and {StackOptions}. Options include

s which windows to tile

including the Worksheet (without pressing the Option key)
horizontal or vertical tiling

spacing between stacked windows

specifying a rectangle in which to tile or stack windows

<

78 MPW 3.0 Reference

List of opea windows

The remainder of the menu lists all open windows in the order in which they were opened.
The full pathname is listed. To bring any window to the front, select that window from the
list.

Selecting a window from the menu brings that window to the front, that is, superimposes
it over anything else on your display. A check indicates that the window is currently the
*active” window, that is, the frontmost. A bullet () indicates that the window is the
*target” window, that is, the second to the front. Underlining indicates that a window
contains changes that have not yet been saved.

Project menu

The Project menu, shown in Figure 3-14, puts three of the most often used Projector
commands at your fingertips. Of course, you can modify this menu to add the rest of
Projector's commands or eliminate the menu altogether if you don't use it.

The three menu items on the Project menu are brefly described here. For an introduction
to the basics of using these functions, see “Projector Windows” in Chapter 4. For a
detailed explanation of the MPW project-management system, see Chapter 7.

» Figure 314 Project menu

New Project...
Check In...
Check Out...

New Project

The New Project dialog box appears as shown in Figure 3-15. Use this dialog box to create
a unique new project or subproject. You can use the Comment text frame to briefly
explain the purpose of the project or subproject. Projector automatically adds your user
name as the project’s creator. '

CHAPTER 3 Using the Shell Menus

‘\W/’
s Figure 3-15 New Project dialog box

I G LENEIREE New Pro ject HIIINNEEEKIEEEEEEERENEN

<= Maut ' Project Name: | |
[&9 Projector Erampies |

User: Jeff Parmisn

Csamuie o New Project comment:
O
S A

(orive | ggeect |

Check In

The Check [n dialog box appears as shown in Figure 3-16. After checking out and
modifying a file, you will routinely use this dialog box to check the file back in to
Projector. _

s Figure 316 Check In dialog

IC SRR Checx |n TR
= HD Project: [Test |

(3 Project ples | yser: Jeff Parmisn
H e nas frlesdd S Task: | |
e Reu: 1.0 | Revision...

Check In comment:

A sampie file from the MPU reference sarwal O
wa ik througn. |

s

- %
& O Touch mad datse

setect all Open
! e 3“ m[“) O Keep read-oniy (Cancel Checkout |

(_ Orive |(Eject | 8::1‘:':' ::;::.m [2] -

Click the Question Mark button to display information about the project, a project file,
or a specific revision of a project file. See Chapter 7 for more information.

<

80 MPW 3.0 Reference

Check Out

The Check Out dialog box appears as shown in Figure 3-17. You'll routinely use this dialog
box to select a project for use and then to check out a project file you want o modify.
The date, time, and user name of the checked-out file are recorded; no one else can
modify the same revision of a file at the same time.

s Figure 317 Check Out dialog box
IR Check Out IR RN

Current Project : Checkout to: | HO:MPW:Scripts:]
| User Jaff Parrisn
i CheckinActive M Task: !

£ CheckoutActive Chack Dut camment:
! o
s <
Seiect Files in Name: (X Touch mod date

S | None |
N PP Cancel Lheckout
(Seiectall | (Upen | gﬂud';'omg 2)
Mad OMO

(Seiect newer | D Aranch | @ m

Click the Question Mark button to display information about the project, a project file,
or a specific revision of a project file. See Chapter 7 for more information.

Directory menu
The Directory menu, shown in Figure 3-18, lets you display and easily change the default

(current) directory. The Directory menu is implemented by the scripss DirectoryMenu and
SetDirectory, which you can modify to suit your own needs.

CHAPTER 3 Using the Shell Meaus 81

: A
= Figure 3-18 Directory menu

show Oirectory
sat Directory...

HO2:MPW:Enampies:AEHamples:
HO2:MPW:Exampies:CExampies:
HO2:MPW:Enamples:CPlusEnamples:
HD2:MPW:Enamplas:Eamples:
HD2:MPW:Exampiles:PEvamples:
HO2:MPW:Enampies:Projector Examples:
HO2:MPW:

Show Directory
An alert box displays the name of the current defauit directory.

Set Directory

When you select this menu command the Set Directory dialog box (Figure 3-19) appears,
providing interactive selection of the default directory. Your selection is then added to
the Directory menu.

s Figure 3-19 - Dialog box of the Set Directory menu item

(_Setect Current Directory: |

| L bramplesei: o F
0O IntarTacss

Q Libraries
O MPW Demeo
3 ROM Maps
QO Scripts

O Toels

List of directory names

Selecting a directory name makes this directory the new default directory.

<

2 MPW 3.0 Reference

As you select various default directories, using either the Set Directory menu command or
the SetDirectory command, each is added as a separate menu command to make it easy
to return to that directory in the future. The UserStartup script creates menu items for
each of the Examples folders in the MPW directory, and for the default directory at the

. time the UserStartup script is run. You can add your own faverite direciories by modifying
UserStartup.

A Warning Directory names should not contain any of these special characters:

. ; A ! < / (

These characters have special meanings when they appear
as menu items. a

Build menu

The Build menu, shown in Figure 3-20, has two primary purposes. The first purpose of the
Build menu is to create a makefile containing the commands needed to build a program.
The command Create Build Commands, which is listed first on the menu, creates the
makefile program.make (using the name of your program). If you have not used this
command—that is, if program.make does not exist—then MPW uses the file Makefile.

The second purpose of the Build menu is either to build a specified program or t display
the commands needed to do the build. When you select one of the remaining commands
on the menu—Build, Fuil Build, Show Build, and Show Full Build Commands—a dialog box
appears asking for the name of the program that you want to build.

Use of the Build menu is demonstrated in Chapter 2, “Building a Program: An
Introduction.”

s Figure 320 Build menu

Create Build Commands...

Builld... %8
Full Build...

Show Build Commands...
Show Full Bulild Commands...

CHAPTER 3 Using the Shell Menus

83

Create Build Commands

Use this item t0 create 2 makefile containing the build commands for a specified
program. When you click Create Build Commands, the CreateMake dialog box appears.
(See Figure 3-21.) You can then enter the program name and select its type (that is,

~ Application, Tool, or Desk Accessory). Make sure that you do not include any of the
following four suffixes to the program name:

a .c P .cp

Click the Files button to select the program’s source and library files. (MPW libraries are
automatically linked; certain special libraries you may require might not be automatically
linked. See CreateMake in Part II.) If the program’s name is program, a new makefile,
called “program.make”, is created. The makefile will contain simple build commands from
the program. (See Chapter 9 for more information on Make.)

Be sure to run Create Build Commands whenever you create additional source or library
files for a program. Answering the CreateMake dialog box generates a new set of rules in
program.make that includes the new source files.

s Figure 321 CreateMake dialog box

~Createmake Optians

Program Name | MyProgram | (Sourcefiles... |

~Program Type Creator | 7277
| @ Application Type : 72777

8;00; a Main Entry Point
esk Accessory
O code Resourcs Rasource Type

O symbolic dedugger information

~Command Line
createmake MyProgram

Create 3 synple maiterfie for duniding an application, toel, or desk

ao0essory. The maiwetiie is for use by the Build meny. Create™Make 1

When you select one of the following four Build items from the Build menu, a dialog box
appears (as shown in Figure 3-22), asking for the name of the program you want to build.

a

84 MPW 3.0 Reference

» Figure 322 Program Name dialog box

Program Name?

L

Type the name and click OK. The build option you have selected will proceed, displaying
on the Worksheet each command needed to build the program as it is used, along with any
error messages. Each of these four Build menu items uses the MPW tool Make to
determine which operatons are necessary to build the program.

Build

The program is built automatically, but only files that have been modified since you last
built the program will be compiled. Use this item to save time. The Command-key
equivalent is Command-B.

Full Build

The program is completely built, ignoring any object files or intermediate files that may
exist from a previous build.

Show Build Commands

The commands needed to build the program (for just those files affected by
modifications since the last build) are displayed on the worksheet, but not executed. You
can then select any or all of the commands—or modify them—and press Enter to execute
them.

Show Fulil Build Commands

All the commands needed to completely rebuild the program (whether modified since the
last build or not) are displayed on the worksheet, but not executed. This is a convenient
way to see all of the commands used in building the program you've selected.

The Makefile *program.make” is created by the Create Build Commands menu item
(described previously in this chapter). If you have not used this item—that is, if
program.make doesn'’t exist—MPW will use the file MakeFile.

<

P

CHAPTER 3 Using the Shell Menus

85

User-defined menus

You can define your own menu commands with the AddMenu command, described at the
end of Chapter 5. These commands can be appended to existing menus, or you can create
new menus. In fact, the Projector, Directory, and Build menus have been created by using
AddMenu. You may add to, change, or delete these menus to suit your individual needs.

% MPW 3.0 Reference

Chapter 4 Using MPW: The Basics

THIS CHAPTER INTRODUCES THE BASIC CONVENTIONS FOR MANIPULATING FILES,
editing text, executing commands, and responding to dialogs in MPW 3.0. You
can easily enter all commands, command options, and parameters by using the
menus and dialogs. The basics for directly typing commands in any window are
also introduced. A full discussion of command scripting can be found in Chapter
5. For an introduction to building a simple program, using examples conuined in
the Examples folder, see Chapter 2. Chapter 3 introduces the menus and their
contents. Chapter 7 preseats the dialogs and complete information on Projector,
the project management system. s

Contents
Editing 89
Entering commands 89
Typing commands in a window 90
The Enter key 91
Executing several commands at once 92
Terminating a command = 92
The Help command 93
File-management commands 95
File and window names 97
Selection specifications 98
Directories and pathnames 98
Command search path 101
Changing directories 101
Pathname variables 102
Wildcards (filename generation) 103
Locked and read-only files 103
Commando dialogs 104
Invoking Commando 105
Using Commando dialogs 106
Standard dialog box controls 107
Generic text parameters 107

8

Repeatable options 108

Radio buttons 108

Check boxes 108

Shadow pop-up menus 109

Other pop-up variations 109

Multiple input files 110

Multiple directories 111

Multiple files and/or directories 112
Single input or output file 112

Output file where a file or directory may be specified 113
New directories 114

Spedial dialog box controls 114

Nested dialog boxes 114

Redirecting output 116

Options dependent on other options 118
Three-state controls 119

MPW 3.0 Reference

A

Editing

Basic editing functions are available as menu commands. You can open a file by using the
Open command, or by selecting its name on the screen and choosing the Open Selection
command {Command-D) from the File menu. You can select and edit text witli the vsuai
Macintosh editing techniques, using menu commands to cut, copy, and paste selected
text. The menu commands are described in Chapter 3.

You enter and edit command lines in a window exactly the same way you enter plain text.
You can select any stretch of text and press Enter to send the selection to MPW's
command interpreter for execution.

Editing with MPW is unique in that most menu functions are duplicated in the Shell
command language. Editing and other command-language functions are fully integrated—
you enter and execute editing commands just like any other commands. Editing
commands are entered in the active window (the frontmost window), but they act on
text in the target window (the second window from the front), or another window that
you explicitly name. The command language lets you produce scripts of editing
commands: You can save any series of commands as a normal text file and execute the file
by simply entering the filename. Command-language editing is discussed further in
“Editing With the Command Language” in Chapter 5.

For an explanation of selections, markers, and pattern matching with regular expressions,
see Chapter 6, “Advanced Editing.”

Entering commands

All MPW commands and their options can be selected from menus and dialog boxes.
Generally, this interactive method of command selection is the easiest. You can
immediately execute commands selected from menus and dialog boxes, or you can use
the dialog boxes to compose complex command lines that can then be copied to a script.

CHAPTER 4 Using MPW: The Basics

The dialog boxes for MPW commands are generated by the Commando user interface
(described in the last section of this chapter). Besides the usual Macintosh dialog boxes,
Commando provides several new forms and controls to handle the special requirements of
MPW tools. For example, dialogs for commands with many options may have several
nested dialog boxes. Which dialog boxes are actually displayed may vary according to
dependency relations between the particular options you may have selected. Some of the
specialized dialog controls are introduced at the end of this chapter. Other unique dialog
boxes are shown in Part II of this reference, with their respective commands. A detailed
discussion of all the elements of Commando dialogs can be found in Chapter 13, which
explains how to create 2 Commando interface for your own tools and scripts.

" Of course, you can always type commands directly in any window as a series of words
separated by spaces or tabs. (See below.)

Typing commands in a window

By default, command output and any error messages appear in the window immediately
below the executed command line. Commands are not case sensitive. You can have
multiple open files, and you can enter commands in any window.

The simplest commands consist of the command name only. For example, type the
- command

Date

and press the Enter key (without pressing Return first—that is, the insertion point must be
on the same line as the command when you press Enter). This command outputs the date
and time:

Tuesday, January 15, 1989 7:12:00 aM
Commands can have options. For example, -
Date -d
The-dopnont:ﬂstheDatcoomndtohstmcdateon!y
Tuesday, January 1S5, 1989

Commands typed into an open file are referred to as standard input. Output produced
by most commands is sent to an open file called standard output, which is normally
connected to the window in which the command was entered. Any window that is used to
enter standard input and display standard output is referred to as the console.

L

-

%0

MPW 3.0 Reference

iy

Most commands read from standard input, write their output to standard output, and
write error messages to diagnostic output. By default, standard input refers to text that is
selected and entered while the tool is running. Standard output and diagnostic output
appear following the commands. (These input and output defaults can be changed using
VO redirection. See Chapter 5 for details.)

¢ Using the Alias command

You may get fired of typing the entire command name for frequenity used
commands such as Directory. However, you con egsily define your own
aitemative names with the Allas command. For example, after executing this
command,

Alias dir Directory

you can execute the Directory command by entering the new command
ncme:

dir

To make an clias definition part of the Shell’s standard startup procedure. placse
the definition in the flle UserStartup. See Chapter S, “The Startup and
UserStartup Files.” o

The Enter key

The Enter key serves as a “do it* button, causing commands to be executed. You can type
commands in any window and press the Enter key to execute the command line. You can
also select command text that is already on the screen and press the Enter key to execute
the selected text. Clicking on the status panel, located at the lower left of a window, has
the same effect as pressing the Enter key. Pressing Command-Return also has the same
effect as presing the Enter key.

A Important When no text is selected, the entre line is executed the moment the
Enter key is pressed, regardless of where the insertion point is on the
line. &

CHAPTER 4 Using MPW: The Basics

91

Executing several commands at once

By selecting several lines of command text and then pressing Enter, you can execute any
number of commands with one stroke. An example is shown in Figure 4-1.

s Figure 41 Pressing Enter to execute selected text

¢ Flle Edit Find Window M™ark Dirsctary Build
aEsaessssesssssssarat H0 (MPW:Worksheet

date -d
Tuesdey, Wiy 3, 1987

sty _..v-,.-t—v—g pr‘l'

[n Figure 4-1, executing the selected text would first make a new folder (directory) named
Backup, then copy the files Startup and UserStartup into Backup, and then list all of the
files in Backup. (Each of these commands, and the pathname syntax, is described in the
sections that follow.)

You can also directly execute text files that contain other commands simply by entering
the filename of the script. Executing a script has the same effect as selecting the
commands in an open window and pressing Enter—the only difference is the scope of -
variable and alias definitions (discussed in Chapter 5).

Terminating 2 command

To terminate a command while it's executing, press Command-period, the standard
Macintosh command for this purpose.

R MPW 3.0 Reference

A Important Many commands (including Asm, C, and Pasaal) normally take their
input from a file; however, if no file is specified, they will begin
reading from the console (that is, from the window where the
command was entered: “standard input”). If the Shell appears not to
be listening to the commands you are entering, it probably isn't: The
currendy executing command (shown in the active window’s status
panel) may be reading the text that you enter. If a program is reading
from standard input, you can press Command-Enter (or Command-
Shift-Return) to indicate end-of-file and terminate input. (See
“Terminating Input With Command-Enter” in Chapter 5.) &

The Help command

The Help command displays summary information for commands. For example, to display
a description of the Files (list files) command and its options, type the command

Help Files

and press the Enter key. You'll see the following syntax description:

Files (option.])
-C creator
-d
-£
-i
-1
-m columns
-n
-0
-q
-z
-3
-t type
-x format

(name...]

M N Mk ME N N Nk Nk Nk M e N M

> filelist

list only files with this creator
list only directories

list full pathnames

treat all arguments as files

long format (type, creator, size, dates, etc.)

n column format, where n = columns

don't print header in long or extended format

omit directory headers

don't quote filenames with special characters

recursively list subdirectories

suppress the listing of directories

list only files of this type

extended format--fields specified by format

CHAPTER 4 Using MPW: The Basics

93

. Note: The following characters can specify the format
Flag attributes ‘

Logical size, in bytes, of the datafork
Logical size, in bytes, of the resource fork
Creator of File ("Fldr" for folders)

Creation date

Physical size, in kilobytes, of both forks
Modification date

Type

Owner (only for folders on a file server)
Group (only for folders on a file server)
Privileges (only for folders on a file server)

TQodEAAONO W

& Note: In Help texts, the brackets are a syntax element indicating that a parameter is
optional. An ellipsis (...) indicates that the preceding item may be repeated. (Note
that this use of the ellipsis is a syntax conveation only for Help text and
documentation; an ellipsis character (Option-Semicolon) in an actual command line
invokes the command’s Commando dialog.) See the section “Syntax Notation” at the
end of the Introduction to this reference. The number sign (¥) is the MPW comment
character.

You can directly edit and execute the text on the screen. For example, assuming that your
current directory is (MPW], you can edit the above text as follows:
1. Use the mouse to select [option...] and [name...]; replace them with
the option -1 and the directory name Scripts.
2. Remove the output specification > fileList.

The result is 2 command that will list the files in directory Scripts, in long format:
Files -1 Scripts
(Scripts is the directory containing various MPW scripts; the -1 option generates *long”

output.) Press Enter to execute the command. Directory information appears
immediately following the command.

You can also use the Help command to display additional summary information, including
an annotated list of all MPW commands

an annotated list of the characters that have special meanings to the MPW Shell
descriptions of the syntax of expressions, selections, and text paterns

a summary of MPW Shell shortcuts

a summary of predefined MPW Shell variables

a summary of Projector, the project management system

<

o4 MPW 3.0 Reference

For general information about Help, execute the Help command with no parameters:
Help
This command displays the information shown in Figure 4-2.

s Figure 42 Help summaries

peed HO:MPW:Workshest

Help
U 3.0 Help Sumearies

Help suanaries are ovailablie for sach of the MPY cosmands.

To sea tha |ist of commarcs enter “Haip Comsarxis®. In aoadition,
brief descriptions of Expressions, Patterrs, Selections, Charoctars,
Shortouts, Uariadies, and Projector are aise inciuded.

To see Haip sumsaries, Enter a comsarnd such as

Meip commandiiame ® inforsation about coasarciiome

Healp Commarvis 8 a list of comsarxis

Halp Dxpressions ¢ susmary of eopressions

Heip Patierns S ssmary of patterns (reQuiaor oPressions)
Halp Selections ® susmary of salections

Help Characters ® susmary of P Sheil special charoctlers
Haip Shortcuts ® suamary of P Sheill shortcuts

Haip Uariadies * samary of the standard IPU shall voriables i3
Haip Projector. ® samary of Projeclor, a project/source control system b

Copyright fppie Computar, Inc. 1906~ 1908
All rights reserved.

MPY Shefl

You can directly execute the Help commands given in the “Help Summaries” list.

Note: The MPW Help file should be in the same directory as the MPW Shell or in the
System folder.

File-management commands

The MPW Shell lets you manipulate files without returning to the Finder. Table 4-1
introduces the most commonly used file-management commands.

Note: The descriptions in the table omit some of the command options that are
available. For complete descriptions, see Part II.

CHAPTER 4 Using MPW: The Basics

95

= Table 41 Basic file-management commands

Command

Description

Backup [optiord -from folder -to folder (file..)

Catenate | file...]

Close (option] [-a| window...]
Delete name...

Directory directory .

Duplicate name... targetName

Exists’ name...
Files (name...]

GetFileName (option...] [pathname)
Mount drive...

Move name... targetName

New [name... |

Newer [qtion..| name... target

NewFolder name...
Open (optiord (names...]
Rename namel name2
Revert

Save [-a | window...]
SetDirectory directory
SetFile [option... | file...

% MPW 3.0 Reference

Copy files in source folder to destination folder

based on modification date. This is useful when you

gm;mm an identical backup folder on a separate
isk.

Read the data fork of each file and write it t0
standard output. (By default, standard output is to
the active window, immediately after the
command.)

Close windows,

Delete file or directory name. If name is a directory,
all of its contents are deleted.

Set the default directory to directory. Directory
with no parameters writes the pathname of the
current directory.

Duplicate file or directory name to file or directory
targetName.

Determine the existence of file or directory name.

List names of directories and files. Options allow
you 10 include various auributes in the listing.

Display a standard file dialog box.

Mount volumes.

Move file or directory name to targetName.
Open a new window. ’

Compare modification dates between files name
and farget. List files newer than target.

Create the new directory name.

Open 2 window.

Rename File or Directory namel to name2.
Revert window to previous saved state.
Save windows.

Set the default directory.

Set file attributes.

-

(Continued)

;é,.%

s Table 41 (Continued) Basic file-management commands

Command

Description

SetPrivilege (option..] folder...

SetVersion [option ...] file

Target name
Volumes (name...]
Wherels [option... | pastern

Which [command]

Windows

Set access privileges for fclders on the file server

Independently maintain the version and revision
numbers as a resource in the application or tool.
Optionally, update a version and revision string in a
source file

Make a window the target window.
List mounted volumes.

Find all files that have a partial pathname pattern, in
any level of any directories.

Determine, for the specified command, which
existing aliases, Shell buiit-in commands, and
commands accessed via the Shell variable
{C’omrend!ands} will be executed when command is
ente

List open wmdows.

File and window names

In the MPW, files and windows are specified in the same way. When a name is passed as a
parameter to a command, the system looks first for an open window with that name; if no
window is found, it looks for a file on the disk.

The following rules apply to naming:
s Names are not case seasitive.

= A single component (file or directory name) of an HFS pathname is limited to 31

characters.

m Any character except a colon (:) may be used in a file or directory name. (Colons
separate elements in 2 pathname.)

CHAPTER 4 Using MPW: The Basics

It's best to avoid using spaces and special characters in filenames. When using filenames
that contain spaces, you'll need to quote them so that they won't be interpreted as
individual words in the command language—for example, you would need to specify the
name “System Folder” as follows:

Files “HD:System Folder™
For the rules conceming quoting, see “Quoting Special Characters” in Chapter 5.

Selection specifications

Commands that take filenames for parameters can also act on the current selection in a
window. The current selection character, § (Option-6), represents the currenty selected
text in 2 window. There are two ways t0 use this character:

§ Currenty selected text in the target window. (The target window is the
second window from the front, as explained in Chapter 1.)

name.$ Currendy selected text in window name.

For example, the Count command counts lines and/or charactess in a file. The command
Count -1 Sample.a.$§

counts the lines within the current selection in the window Sample.a.

The current selection is explained more fully in “Editing With the Command Language” in
Chapter 5.

& Note: The MPW Shell uses a number of special characters (like §) from the extended
character set. These characters are fully listed in Appendix C.

Directories and pathnames

With the hierarchical file system (HFS), specifying a filename alone is often not enough to
identify a file—you frequently need to specify a pathname. (See Figure 4-3 for a sample
HFS structure.) A full pathname is specified as follows:

volume :(directory : ...] filename

4

-

9% MPW 3.0 Reference

A full pathname contains at least one colon (), but cannot begin with a colon. An example
of a full pathname is

"HD:MPW:MPW Shell"
(The quotation marks are required because the filename *MPW Shell” contains a space.)

s Figure 43 Hierarchical directory structure

% DR

| |
B E
A partial pathname is usually all you'll need to specify. Whea HFS encounters a partial
pathname, it begins the path at the current default directory. Any name that contains no
colons or begins with a colon is considered a partial pathname. A partial pathname that

contains no colons is a leafname. For example, the name
:AExamples

-is taken as 2 partial pathname. However, the name

MPW:

is taken to be a full pathname (that is, a volume name only), rather than meaning the
directory HD:MPW. (When in doubt, you can always specify the full pathname for a file ot
command.) «

<

CHAPTER 4 Using MPW: The Basics

"y s
Double colons (::) in a pathname specify the current directory’s parent directory; triple
colons specify the “grandparent” directory (two levels up), and so on. See the chapter
“File Manager” in Volume IV of Inside Macintosh for more information on HFS

conventions.

& Note: Notice that there’s no single “root” directory—each volume name (that is, disk
name) is 2 separate starting point for a directory tree.

You can use the Files command t list the names of files and directories. For example, the
- command

Files HD:MPW:
might display the following:

:Examples:

:Interfaces:

:Libraries:

:ROM Maps:

:Scripts:

:Tools:

‘MPW Shell'

MPW.Help Ly
Quit ‘
- Resume ‘ S
Startup

Suspend

SysErrs.Err

UserStartup

Worksheet

...and so on

In the output of the Files command, the names that begin and end with colons are
directory names, and the other names are filenames. All of these names are partial
pathnames—in this case, “HD:MPW" forms the beginning of each pathname. Also note
that filenames containing special characters are quoted.

100 MPW 3.0 Reference -

Command search path

When you enter a command name (that is, a leafname), the Shell searches for the
command in the directories listed in the Shell variable {Commands}. As described in
Chapter 5, this search path is initially set to

: (the current directory)
HD:MPW:Tools:,
HD:MPW:Scripts:,
HD:MPW:Applications:,

This means that when you type any command the Shell first assumes that you want to
execute 2 wol; if it can’t find the tool, it then assumes that you want a script; if it can't
find the script, it then assumes that you want an application. If your frequency of use is
different, you can change the search path to improve the Shell's performance. (See
Chapter 5.)

Changing directories

You can change the default directory with the Directory command. Assuming you have a
hard disk named HD, you could change the default directory to the directory Examples in
the MPW folder with the command

Directory HD:MPW:Examples
Like most commands, Directory runs silently—that is, it generates output only if an error

occurs. To verify that you have set the appropriate directory, enter the Directory
command with no parameters:

Directory

This command displays the curreat or default directory.

Remember that to specify a pathname containing spaces or other special characters, you
must surround it with single or double quotation marks. (See Chapter 5 for rules on
quotation.)-

If you specify a directory whose name is a leafname, the Directory command searches the

~ directories listed in the Shell variable {DirectoryPathl. If the variable is undefined, then

the command looks in the current directory.

CHAPTER 4 Using MPW: The Basics

101

¢ Using the {DirectoryPath}

Here's an easy way to move quickly between directories on different branches.
Suppose you have a directory structure like that shown in Figure 4-3, with a
DirectoryPath of

":,HD:MPW:"

Now, if you happened to be in the System folder, you could set your directory to
Tools with this command:

directory Tools

Becausae this command spacifies only a leafname, the Tools directory is looked
for first in ** (where it is not found) and then in HD:MPW (where it is found).
The directory is then sat to HD:MPW:Tools. ¢

Pathname variables

One way of specifying a pathname is by using Shell variables. For example, the Shell
variable (MPW}, defined in the Startup file, expands to form the full pathname for the
MPW folder, in this case “HD:MPW:” (assuming that the MPW folder is at the top level).
Thus, the Directory command could be entered as

Directory "{MPW}Examples"”

In this particular case, the quotation marks aren’t necessary. If you adopt the practice of
never using spaces or other special characters in a pathname, you don't need to bother
with quotation marks. On the other hand, if you sometimes use spaces or other special
characters in a pathname, it would be a good idea to use quotation marks whenever
variables are included in a pathname.

You can use the Set command to define and redefine variables, as described in Chapter 5.
“To see the values of all currently defined variables, enter the Set command with no
parameters:

Set

102 MPW 3.0 Reference

Wildcards (filename generation)

You can specify a number of files at once by using the wildcard characters ? and =
(Option-x). The ? character matches any single character (except a colon or Return); =
matches any string of zero or more characters (other than colon or Retum). For example,
the command

Files =.a
lists all filenames in the current directory that end with the suffix *.a". (Several other

wildcard characters can also be used to generate filenames—see “Filename Generation” in
Chapter 5.)

Locked and read-only files

If you open a file that is locked, or located on a locked disk, the stats pane! displays a
lock icon, as shown in Figure 44. When you open a read-only file, the stats panel displays
a read-only icon, as shown in Figure 4-5. No editing or command execution is allowed in
these windows. '

s Figure 44 A locked file with the Lock icon in the Status panel

[el HD:MPW:work:lockadFile o Trar o

Vad
® This Is a lockad file
*/

ity Pty Ii s darde B4 w v o d
) w it et I)

S,

)
] W Lkiss (S0 bbb HRTRH $1545% (s

4] revsen

When you check out a read-only copy of a file from a project, this file will always open in
read-only mode. The read-only icon is displayed in the status panel, as shown in Figure 4-5.

CHAPTER 4 Using MPW: The Basics

103

s Figure 45 A read-only file wuh the Read-Only icon in the Status panel R

/e
* This is a read-aniy file.
./

‘I‘E
=
<

reysen Kl R s SRR S O O

Commando dialogs

The Commando user interface lets you operate any properly configured MPW command

by means of a special Macintosh dialog, rather than the traditional command line

interface. Commando dialogs may consist of several dialog boxes containing a variety of)
controls. You can choose options, select filenames, pick directories, and access help [
information for each option. Commando lets you operate MPW commands in 2 more e
intuitive format. All options are visible, and help text for each option can be instandy

displayed.

Because of the complexity of many MPW commands, several specialized controls and
nested dialog boxes have been implemented for them. The various types of controls and
dialog boxes are introduced below. Other dialog boxes, specific to a particular
command, appear together with the command in PartI. -

PaEN

=

104 MPW 3.0 Reference

Invoking Commando

There are three ways you can invoke a Commando dialog from the Worksheet:

a Option-Enter: Typc the ccmmand name and then press Option-Enter. This is the
easiest method for routine interactive use.

m Ellipsis: Type the command name followed by an ellipsis character (...) and press
Enter. You can also use this expression in a script.

The ellipsis may appear anywhere in a2 command line (except with quotes or after 9)
and is considered a word-break character. Although the ellipsis may be situated
anywhere within the command line, only the first word of the line is actually processed.
For example, in the command line

addmenu asm alert..

only the AddMenu dialog will appear. This results with or without Exit set to 0 or 1.

The ellipsis invokes the Commando user interface after the Shell has carried out all alias
and variable substitutions. The entire command line is passed to Commando and the
output of Commando is then executed by the Shell.

& [mportant Note: To obuin the ellipsis character, hold down the Option key while
simuitaneously typing the semicolon (;) character. Although three periods closely
resemble an ellipsis character, Commando won't be fooled; you must use Option-
semicolon to get the true ellipsis character that invokes Commando.

s Type Commando: Type the word Commando in front of the command line and press
Enter. This method of invoking Commando only outputs the command line; the
command is not executed. You can also use this expression in a script. For example, if
you don't want the resulting command line to be immediately executed, you can type
commando commandname
The tool’s frontmost Commando dialog box is displayed. Clicking the Do It button
writes the command line to standard output (that is, the window in which you typed
the command) instead of executing it immediately. This second method of using
dialog boxes is useful for building command lines that are to be cut and pasted into
scripts. In this case, Commando will not find 2 command if the command has been
aliased to a different name.

See *Invoking Commando” in Chapter 13 for more information.

CHAPTER 4 Using MPW: The Basics 105

e

Using Commando dialogs
The function and appearance of Commando dialog boxes may vary widely according to
the syntax and semantics of the particular command or too! selected. The basic dialog
box is typical of a simple command such as Date, the first example used in this chapter.
~ Type
Date ..
Be sure to use Option-semicolon to get the ellipsis. Then press Enter. Figure 4-6 shows the
resulting Commando dialog box for Date.
~® Figure46 The Date dialog box
~0ate Options
i-—not-/‘nmo ,—nmount of uuall-—l rnate Input
{ @ Both date and time !! @ Fuil date ; Date in Seconds
i O Date oniy | O Abbreviated date ||]
| O Time oniy O shart date |
[O In Seconds !
OQutput Error
L L |
~Command Line)
date
e —— e
Most dialog boxes share the basic structure shown in Figure 4. Various controls for
options and parameters appear in the largest, upper area of the box. Date has three
parameters:
Date/Time radio button control)
Amount of Detail radio button control
Date Input editable field
The default settings for Date appear preselected as the topmost radio button for each
parameter.
Clicking and holding down the mouse button on any control or option displays Help
information in the standard Help window at the bottom of every Commando dialog box.
Clicking on the title of a control also displays the Help information.
Use the pop-up menu of the Qutput box‘to redirect output. See the section “Redirecting
Output” later in this chapter.
)
4
L

106 MPW 3.0 Reference

The Command Line window displays the command line resulting from the options you
select from the dialog box. As you select options or change parameters, this Command
Line box is continuously updated. You can then copy all or any part of the command line
using Command-C or the Edit menu.

Clicking the Do It button (the buton: labelled “Date” in Figure 4-6) passes the completed
command line back to the Shell for execution. Alternatively, you can press the Enter key.
If you change your mind and decide to exit from the dialog, you can click the Cancel
buton, which has the same effect as pressing Command-Period.

You can get these special results by holding down the Option and/or Command keys while
clicking a Do It button:

Option key (or pressing Enter) ~ The command line is also written to standard error.
This means that the command is executed and is
echoed to the active window.

Command key The command line is not passed to the Shell; that s,
nothing is executed.

Option key and Command key = The command line is written to the active window
without being executed.

Standard dialog box controls

This section describes the most frequently encountered Commando dialog box controls.

Generic text parameters

Not only do tools have options, they also have parameters. Nonspecific parameters,
where the parameter can be just about any string, are simply entered in an editable text
field. For items where text is required, the text is quoted by Commando before being
passed to the Shell. You can scroll the line right and left (by dragging) if the text in the box
is longer than the text box. Here's an example of an editable text field:

Mark the seiection with what name?

L l

CHAPTER 4 Using MPW: The Basics

107

o
N
Repeatable options. ‘

Various text field options, such as the -dlefine] option in Rez and Asm, may be specified
more than once. The control below shows an option of this type. The number of lines
displayed is controllable by the tool’s builder. The small window is basically ar. area where
text can be entered, very much like the Notepad desk accessory. This window does not
automatically wrap around lines larger than the window area. Instead, it scrolls left and
right. You create 2 new line by pressing the Return key. Scroll the window horizonally by
dragging. You can scroll the window’s contents vertically either by dragging or by using the
scroll bar control.

Prsprocessor defines:

Language=engiish O
size=height*200
A
Radio buttons

Some options are mutually exclusive and are therefore available as a set of radio buttons.
The default setting of the button comresponds to the default state of the option. Groups
of mutually exclusive items are often surrounded with a labeled perimeter:

Print Quailty

Q High . N
@ Standerd /

Q Draft N

Check boxes

An option, such as the Assembler's -print option, may have many simultaneous settings.
Options like this are implemented with check boxes (versus on/off radio buttons). Most
of the MPW tool's options are Boolean flags. Check boxes are also used for these types of
options, and are usually surrounded by a labeled perimeter:

~ Listing Centrol
& shew macre expaasions

X fllow autematic pags ¢ jects
& shew wearning messages

X Shew mecre call stataments
X show gensrated ob ject cade
(] Shew wp te 253 dbgtes of dets
X shew macre directive lines
& shew header linss

X show generuted litaratls

O Shew assembiy status

108 MPW 3.0 Reference

Shadow pop-up menus

Some options require the name of 2 window, alias, font, or Shell variable. Commando will
display a field of this type as a shadowed box:

Window | HO:0S:Worksheet]

When you click inside the shadowed box, a pop-up menu displays all the choices for that
particular field (that is, windows, aliases, fonts, or Shell variables). The menu box is
aligned around the current selection. The current selection is checked in the menu box. As
long as the mouse button is held down, the menu behaves like a standard pull-down menu.
If necessary, the pop-up menu will scroll vertically. When the mouse is released within a
menu item, that item then appears in the shadowed box.

Window |[vHD:05:Workshest |
HO:MPW:MyCroft:test.c |
HO:MPW:MyCroft:getopt.c

Other pop-up variations

Some options are similar to the pop-up menus above but also allow a little more
flexibility. The Menu Name box in AddMenu allows you to type in the name of 2 new menu
or select an existing menu name from a list of names:

Menu Name |

Click the menu icon at the right of the box to display a pop-up menu containing the
existing choices: v

Menu Neme|| .
file

Find
Windows
Mark
Birectory
Suild

Drag down the pop-up menu until the item you want is highlighted and then release the
mouse button. The selected item will appear in the text edit box. If you type an item into
the text-edit box, any identical item in the pop-up menu will be automatically checked.

CHAPTER 4 Using MPW: The Basics

109

Multiple inputv files

When a tool can handle multiple input files of the same type (C, ASM, Rez, and so on), only
a single button is displayed.

[Source Files |

Clicking on the button displays a modified standard file dialog box. Commando adds
some functionality to the standard file package (SFGetFile) to let you select multiple files
in different directories. Another scrollable list appears under the file list. Use the standard
file controls to select files and click the Add button to add the selected file to the

. scrollable list under the SFGetFile. After doing so the dialog box does not disappear.
Instead, the file is added to the lower list. (Alternatively, you can just double-click a
filename to add it to the lower list) You can delete a file from the list by selecting it (in
the lower list) and clicking Remove. You can select several files at once by holding down
the Command key while you click their filenames. When all desired files have beea
selected, click Done or Cancel to return to Commando’s first dialog box.

A tool may tell Commando that the tool requires files with a particular extension. A radio
button lets you display and select any text file (or whatever type of file the tool wants).
When you select a folder, the Open button reads “Open.” Whean a file is selected, this
same button is labeled “Add.” If you select a file that has already been added to the lower
list, then that file is selected (and scrolled into view if necessary), and the Remove button
. undimmed.

110 MPW 3.0 Reference

e

< HD
0 Mcmorg < -
O Stubs. c GEITES
0 testpert.c _
@ Flles ending in .c Cau tout fMles
Saurca:

U RTRTIITIT LT 2y (O TTTTT T S 2 EY RN e

Muitiple directories

Some tools, such as C and Asm, have options that let you specify directories to search
when looking for various files. Clicking a single button, like this one, will disptay a
modified standard file dialog box:

[inciude Directories|

The selection of multiple directories works in the same way as the selection of multiple
files. In this example, however, only folders are visible. Because a selected directory has
the potential for being both opened and added to the lower list, there must be two
controls for both operations. Clicking the Add button adds the directory selected in the
upper list to the lower list. The Open button operates in its normal manner: Clicking it
opens the selected folder. You can delete a directory from the lower list by selecting it (in
the lower list) and clicking Remove. Finally, clicking Continue or Cancel returns control to
Commando.

| 7/
I~/

CHAPTER 4 Using MPW: The Basics 111

| Add Current mruto@:]
3 Interfaces

2 Alnciudes

O AStruct™Macs

Q Cincludes

Q) Pinterfaces)
LI i e nete sadoiesiob e [o1

ve

#include Search Paths:

Ententoae s REne DI soyvsidiea

Multiple files and/or directories

For MPW tools or built-in commands that can deal with both multiple files and directories,
this dialog box, almost the same as the one shown above, lets you select files and
directories. The model is almost the same as the one above, except that both files and .
folders are visible. Selecting anything in the upper scroll window highlights the lower Add ‘
button. The controls work as shown in the example above.

Singie input or output file

You select options or parameters that require a single file (whether for input or output)
with a control similar to the example below. Clicking in the shadowed rectangle displays a
pop-up menu with choices depending upon the tool. The first choice can be either
Defautt Output or No Output (or, if the file is an input file, Default Input or No Input).
The Default Qutput is used for tools that write to a default output file if one is not
specified. Link and Rez, for example, write to link.out and rez.out, respectively, if no
explicit output file is specified. If Input File or Output File is selected, SFGetFile (for
input files), or SFPutFile (for output files) is displayed so that a file can be chosen. If the
filename selected is too long to fit in the space provided, the middle of the path is
annotated with “...°. An ellipsis (typographical; not 2 Commando invocation) is added to
the end of the end if the full filename does no fit within the confines of the box.

Resource Sutput Fite [raz.ewt B

112 MPW 3.0 Reference

Here's an example of an output file pop-up menu:

Y I U A (1L T oA U skt
Select an enisting sutput flle...
Write output to a new Mie...

Output file where a file or directory may be specified

The various compilers have options to specify the cbject filename or the object file
directory. Comrmando displays a pop-up menu similar to this one:

Flla/Diractory By L ey N P e e e ‘
Specify object flla name or seiect alncton;...

except that the standard dialog box that appears when you select the Output File or
Directory item looks like this one:

Seject Cun'am Oirecto
KO HD
S -
0b ject File/Dirsctory E
“ J ("Cancsi)

The OK button is dimmed when the text-edit box is empty. After entering text into the
text-edit box, the OK button is highlighted. Clicking the OK button specifies the file as
the output. Clicking the Directory button specifies a directory as output.

CHAPTER 4 Using MPW: The

New directories

The NewFolder command lets you specify the creation of multiple directories. The
example below (based upon SFPutFile) is used to create multiple directories. When you
type a directory name in the middle text-edit area and click the Add button (or press
Return), a pathname is added to the lower list. The root of the new directory is the same
as that displayed in the upper scroll list. You can continue to add more directories. Click
the Done button to close the dialog box and retum to the first, or *main” dialog box.

X AEusmples
X Caunt.a : <= HD
S Count.y |

2 tnstructians
> Mgk efile

2 Memary.d
A Sampie

New directories:
(cancei)

[|

~

Special dialog box controls

Commando uses standard Macintosh text-edit boxes, radio buttons, and check boxes. In
addition to these, you'll encounter some specialized controis because of the variety of
options and parameters and certain dependencies between them. These various types of
specialized controls are introduced below.

Nested dialog boxes

Some tools, such as Rez and PasMat, have more options and parameters than can fit into
one dialog box. The additional options are grouped into nested dialog boxes that are
available from the first dialog box. Figure 4-7 below shows, as an example, the first dialog
box of Rez.

114 MPW 3.0 Reference

P
&

A

s Figure 47 Rez: the first dialog box

~Rez Options

- Resource Qutput File

Type
Creator

@ Rewrite resourcs file
[Make resourcs flie read-oniy
~Resgurce Alignment ——
. @8yte QO Word O LongWord

O Merge resources into resaurce file

|[Rez.out |

bk ta replace peotectied raspures |

(O progress information
C Redeciared types ok
C Modification cate

(Description Files...)
(#inciude Patns... |
(Include Patns... |
)
)

(Preprocassor...

(Redirection...

Command Line
[;"

Help
[ﬂu 13 a tool used to compiie resources.

Note the five control burtons at the right side of the “Rez Options® window. When you
click one of these buttons, a nested dialog box appears with the title of the selected
button. For example, selecting the button labeled “Preprocessor...” displays the nested

dialog box shown in Figure 4-8.

s Figure 48 Rez: nested preprocessor dialog box

~Preprecessor..

Defines: Undefines:

~Comenaad Line
e

~Help

Prepressesur varubivs san be OO MK ¢ and POT MU'¢ 0 Wi dlaing.

CHAPTER 4 Using MPW: The Basics

115

As you type in the preprocessor defines and undefines, the command line you began in the
first dialog box is further updated in the Command Line window of the nested dialog box.
The lower-right Do It button in a nested dialog box is always labeled “Continue.” Clicking
Continue closes the nested dialog box, and again displays the first dialog box with the
command line updated to show the options and parameters selected in the nested dialog
box. (This is always the case, except for the C compiler dialog, which has a third level of
dialog boxes.) If you click Cancel, changes from nested dialog boxes are not recorded and
you retum to the first dialog box. From there you can then select another nested dialog
box.

Redirecting output

" Every tool that can write information to standard output o to standard error has controls
to assign destinations for this output. Consider the Error Output window in the
Redirection nested dialog box of Rez, shown in Figure 4-9.

s Figure 49 Rez: nested Redirection dialog box

~Redirsction..

Input Ervor

{ |]

~Command Line
Reyf

Rex san read standard Tont and send varnings o ¢lagestie autput.

memuwammummh.

116 MPW 3.0 Reference

Clicking inside the Error window (and holding the mouse button down) displays this pop-

up menu:

Error
7 Ne Quipwl Aedirect/on
New Flle..
Existing File...
Windew ...
Current Seiection in Window ...
Current sSelection In Target Window
Standard Output
Standard Dlagnastic
S NS [T e qone eamtidrgtidiiA 3 T pat A
Console

Here Null Device has been selected. When the mouse is released, the filename dev:null
appears in the Error window. Whenever you select an output redirection, the two invisible
radio buttons directly above the error pop-up are activated.

Selecting “Existing File..." in the pop-up menu displays the standard file dialog box.
Selecting “New File” brings up the standard output file dialog box and lets you create 2
new file. Selecting “Window...” brings up a list of the active windows to choose from.
Because a window is a file, you could also choose a window with the Existing File

command.

Selecting Current Selection in Window also brings up a list of windows to choose from.
When you select Current Selection in Target Window, output is redirected to §. When you
choose a window, output is redirected to window.§. When you choose any file other than
2 new file, the Overwrite and Append radio buttons are activated. These buttons
correspond to the functions of the > 2 and >>, 22 redirection operators, respectively.
Selecting No Qutput Redirection clears the pop-up menu so that no redirection occuss.

After you release the mouse over Null Device, the command window looks like this:

Error @: O

The Diagnostic Qutput windows and Standard Input windows (in the case of tools that

read standard input) work in a similar fashion.

CHAPTEZR 4 CUsing MPW: The Basics

/

/

117

Options dependent on other options

Some options may be dependent on other options. For example, the -hf (header font) and
-hs (header size) options of the print tool don't mean anything unless the -h (header)
option is specified. Commando implements this model by disabling all controls
dependent upon some other control. When you check (or otherwise activate) the main
control, the dependent controls are enabled. Another example is the AddMenu command.
The syntax of this command is

AddMenu [menuName (itemName [command..]]]

An itemName cannot be entered until 2 menuName is entered. Likewise, a command
cannot be entered until an itemName is entered.

Menu Name || B
item Name [=3
Cammands

Here is the s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>