&€. Macintosh®

Macintosh Programmer’s

Workshop 3.0 Assembler
Reference

& APPLE COMPUTER, INC.

This manual and the software
described in it are copyrighted, with
all rights reserved. Under the
copyright laws, this manual or the
softerare may not be copied, in whole
of part, without writien consent of
Apple, except in the normal use of the
software ar to make a backup copy of
the software. The same proprietary
and copyright notices must be affixed
to any permitted copies as were
affixed to the original. This exception
does not allow copies to be made for
others, whether or not sold, but all of
the material purchased (with all
backup copies) may be sold, given,
or loaned to another person. Under
the law, copying includes translating
into another language or format.

You may use the software on any
computer owned by you, but extra
copies cannot be made for

this purpose.

© 1985-88 Apple Computer, Inc.
20525 Mariani Ave.

Cupertino, California 95014

(408) 996-1010

Pascal Compiler © 1982-88
Apple Computer, Inc.
© 1981 §VS, Inc.

Apple, the Apple logo, AppleShare,
AppleTalk, A/UX, ImageWriter,
LaserWriter, Lisa, MacApp, Macintosh,
and SANE, are registered trademarks
of Apple Computer, Inc.

MPW, QuickDraw, ResEdit, APDA,
and SADE are trademarks of
Apple Computer, Inc.

MacDraw, MacPaint, and MacWrite
are registered trademarks of

Claris Corporation.

Microsoft Word is a trademark of
Microsoft Corporation.

ITC Garamond and ITC Zapf Dingbats

are registered trademarks of
International Typeface Corporation.

POSTSCRIPT is a registered trademark
of the Adobe Systems Incorporated.

Adobe Tllustrator 88 is a trademark of
Adobe Systems Incorporated.

ImageStudio is a trademark of Esselte
Pendaflex Corporation in the United
States, of LetraSet Canada Limited in
Canada, and of Esselte LetraSet
Limited elsewhere.

Motorola is a trademark of
Motorola, Inc.

MathType is a trademark of
Design Science, Inc.

QMS is a registered trademark of
QMS, Inc.

UNIX is a trademark of AT&T
Bell Laboratories.

Simultaneously published in the
United States and Canada.

MPW sample programs

Apple Computer, Inc. grants users of
the Macintashk Programmer’s Workshop
a royalty-free license to incorporate
Macintosh Programmer’s Workshop
sample programs into their own
programs, or to modify the sample
programs for use in their own
programs, provided such use is
exclusively on Apple computers. For

any modified Macintosh Programmer’s

Workshop sample program, you may
add your own copyright notice
alongside the Apple copyright notice.

why

Contents

Figures and tables xiii

Preface About This Manual xv

What this manual contains xvii
Other reference materials xviii
Notation conventions xix
Aids to understanding xix
Courier typeface xx
Ialic xx
Fields xxi
Delimiter symbols xxi
Braces xxii
Brackets xxii
Ellipses xxiii
Underlining xxiii
For more information xxiv

Part I Using the Assembler 1

1 About the Assembler 3

General characteristics 5

Overview of the assembly process 6

Assembly files 7

Programming for the Macintosh &
Macintosh libraries 9

2 Coding Conventions 11

Source text structure 13
Scope of definitions 15
Imported and exported objects 17
@-labels 17
Summary 18
Segmentation 18

iv

Machine instruction syntax 19
The label field 20
The operation field 21
The operand field 23
Comments 24
Symbols 25
Identifiers 25
Numeric constants 26
Strings 27
Expressions 28
Evaluation of expressions 30
Absolute and relocatable expressions 31
Absolute expressions 32
Relocatable expressions 33

3 Address Syntax 35

Addressing modes 37
Ambiguities and optimizations 41
Forward-reference addressing 43
Registers 44
Special address formats 46
MC68xxx instructions 46
MOVEM: Multiple moves 46
MC68020 instructions 47
MULS and MULU: Signed and unsigned multiplication 47
DIVS and DIVU: Signed and unsigned division 47
TDIVS and TDIVU: Truncated signed and unsigned division 47
PACK and UNPK: Packing and unpacking 48
CAS and CAS2: Comparing and swapping 48
Bit field instructions 49
Tcc and TPcc: Trap on condition 49
Assembler control 49
The MC68030 processor 49
Assembler control 50
MC68020 statements you can use 50
MC68851 instructions you can use 50

MPW 3.0 Assembler Reference

MC68881 and MC68882 instructions 52

FMOVEM with explicit register lists 52

FMOVE with packed BCD data 52

FSINCOS: Simultaneous sine and cosine 53

FTcc and FTPcc: Floating-point trap on condition 53

FTEST: Text operand and set floating-point condition codes 53
MC68851 instructions 53
Literals 55

4 Assembler Directives 57

Assembler directives 59
Code and data module definitions 59
Symbol definitions 59
Data definitions 59
Template definitions 59
Linker and scope controls 60
Assembly options 60
Location-counter controls 60
File controls 60
Listing controls 60
Directive formats 61
Code and data module definitions 62
PROC and ENDPROC: Define procedure code module 62
FUNC and ENDFUNC: Define function code module 63
MAIN and ENDMAIN: Define main program code module 63
RECORD and ENDR: Define a data module 64
INCREMENT and DECREMENT 65
MAIN 66
CODE and DATA: Switch between code and data 67
END: End the assembly 67
Symbol definitions 68
EQU and SET: Name constants and registers 68
REG and FREG: Name register list 70
OPWORD: Name machine instruction 71
Data definitions 72
DC and DCB: Place constants in code or data 73
DS: Define storage area 75

Table of Contents

Template definitions 76 S
RECORD and ENDR: Define a template 76 e
Using templates as data types 81
WITH and ENDWITH: Supply RECORD name qualification 82
Linker and scope controls 84
EXPORT and ENTRY: Expand scope of entry points 85
IMPORT: Identify external entry points 87
CODEREFS and DATAREFS: Control name linking 88
Code-to-code references 89
Code-to-data references 90
Data-to-code references 90
Data-to-data references 91
SEG: Specify current code segment 92
COMMENT: Place a comment in object file 93
Assembly options 93
MACHINE: Specify target machine 93
MC68881: Assemble MC68881/MC68882 coprocessor instructions 94
MC68851: Assemble MC68851 coprocessor instructions 95
STRING: Specify string format 95
BRANCH and FORWARD: Resolve forward branches 96
OPT: Specify level of code optimization 97
CASE: Specify treatment of lowercase letters 98
Writing register names 99
BLANKS: Control acceptance of blanks in operand field 99
Location-counter controls 100
ALIGN: Align location counter 100
Special cases 101
ORG: Set location counter 102
File controls 103
File search rules 104
INCLUDE: Take source text from another file 104
DUMP and LOAD: Write and read symbol table files 105
ERRLOG: Specify error log file 106
Listing controls 107
PAGESIZE: Specify listing page size 107
TITLE: Specify title line for listing 108
PRINT: Control listing information 108
EJECT: Start new listing page 111
SPACE: Insert blank line in listing 111

vi MPW 3.0 Assembler Reference

Part II

The Macro Processor and the Macro Language

Macros 115

Macro expansion 117
Scope of macro symbols 118
Defining macros 118
MACRO and ENDM or MEND: Delimit macro 119
The prototype statement 119
The macro body 120
Macro comments 121
Symbolic parameters 123
Concatenating symbolic parameters 124
Calling macros 125
The macro-qualifier 126
Macro call labels 127
Operand syntax 128
Paired single quotation marks 128
Paired parentheses and brackets 128
Ampersands 129
Commas 129
Blanks (spaces and tabs) 129
Backquotes 130
@-labels 130
Omitted or extra operands 130
Operand sublists 131
Accessing sublist elements 131
Parameter types and default values 132
Nesting macros 133
Keyword macros 135
Defining keyword macros 135 °
Calling keyword macros 136
Mixed-mode macros 138

Macro Variables and Functions 139

SET variables 141
SET variables and symbolic parameters 143

113

LCLA, LCLC, GBLA, and GBLC: Define SET variables 143

Table of Contents

vii

SETA and integer expressions 145 N
&ABS: Return absolute value 146 SN
&EVAL: Evaluate contents of string 147
&ISINT: Test string for integer content 147
&LEN: Measure string length 147
&LEX: Parse string lexically 148
&LIST: Divide string into list 150
&MAX: Find maximum in integer list 151
&MIN: Find minimum in integer list 151
&NBR: Count sublist elements 151
&ORD: Return integer value 152
&POS: Find position of substring in string 152
&SCANEQ and &SCANNE: Scan string 153
&STRTOINT or &S2I: Convert string to integer 154

Symbol table functions 154
&NEWSYMTBL: Create new symbol table 154
&ENTERSYM: Enter or update symbol in able 155
&FINDSYM: Find symbol in table 156
&DELSYMTBL: Delete symbol table 157

SETC and string expressions 157
Accessing substrings of string variables 158
&CHR: Convert integer to character 159
&CONCAT: Concatenate strings 160
&DEFAULT: Return string value or default 160
&GETENV: Return MPW Shell variable value 160
&INTTOSTR or &I2S: Convert integer to string 160
&LOWCASE or &LC: Convert string to lowercase 161
&SETTING: Return directive setting 161
&SUBSTR: Return substring of string 162
&TRIM: Trim spaces and tabs from string 163
&TYPE: Determine identifier type 163
&UPCASE or &UC: Convert string to uppercase 164

SET array variables 165
Defining SET array variables 165
Using SET array variables 166
Accessing substrings in SET array string elements 167

viii MPW 3.0 Assembler Reference

Part III

Assembler system variables 168
&SYSINDEX or &SYSNDX: Macro call index 168
&SYSLIST or &SYSLST: Macro operand list 169
&SYSSEG: Current segment identifier 170
&SYSMOD: Current module identifier 170
&SYSDATE: Current date 170
&SYSTIME: Current time 170
&SYSTOKEN and &SYSTOKSTR: Values set by &LEX 171
&SYSVALUE and &SYSFLAGS: Values set by &FINDSYM 171
&SYSLOCAL and &SYSGLOBAL: System symbol table ID’s 171

Macro and Conditional-Assembly Directives 173

Boolean control expressions 175

Comparing two integer expressions 175

Comparing two string expressions 175

Comparing integer and string expressions 176
GOTO, IF...GOTO, and macro labels: Branching 176
IF, ELSEIF, ELSE, and ENDIF: Conditional assembly 178
WHILE and ENDWHILE: Looping 179

CYCLE and LEAVE directives 180
ACTR: Limit looping 180
EXTTM or MEXIT: Exit macro 181
WRITE and WRITELN: Write to diagnostic output file 181
AERROR: Error generation 182
ANOP: Assembler NOP 182

Appendixes 183

Generic Instruction Formats 185

Syntax Diagrams 189

Assembly-language addresses 191
Addressing modes 191
Address optimizations 192

Table of Contents

ix

X

Special address formats 192
MC68000 instructions 192
MOVEM: Multiple moves 192
MC68020 instructions 192
MULS and MULU: Signed and unsigned multiplication 192
DIVS and DIVU: Signed and unsigned division 193
TDIVS and TDIVU: Truncated signed and unsigned division 195
PACK and UNPK: Packing and unpacking 193
CAS and CAS2: Comparing and swapping 193
Bit field instructions 193
Tcc and TPcc: Trap on condition 193
MC68881 and MC68882 instructions 194
FMOVEM with explicit register lists 194
FMOVE with packed BCD data 194
FSINCOS: Simultaneous sine and cosine 194
FTcc and FTPcc: Floating-point trap on condition 194
FTEST: Test operand and set floating-point condition codes 194
MC68851 instructions 195
Literals 195
General assembly directives 196
Macro and SET variable directives 200
SET variable functions 202

C Assembly Listing Format 205

D Other Assemblers 211

Syntax comparison 213
Writing identifiers 213
Writing numbers 214
Writing strings 214
Defining modules 215
Communicating between modules 215
Writing expressions 215 ‘
Location-counter reference 216
Addressing features 217
Writing macros 217

MPW 3.0 Assembler Reference

The Macintosh Character Set 219

Instruction Sets 223

Instruction evaluation 225
Listing conventions 225
Opcode 226
Operands 226
Opcode word 227
Cptype 228
Group 228
Flags 228
Range 229
Equivalent 229
Condition codes 229
Instruction set listings 233

Assembler Command Syatax 253
Assembler command syntax 255

Object Assembler Macros 261

InitObjects 263

ObjectDef 263

Objectint and the IMPL keyword 265
ObjectWith and EndObjectWith 266
ProcMethOf, FuncMethOf, and EndMethod 267
MethCall 268

. Inherited 268

NewObject 269

MoveSelf 269

Pascal and C Calling Conventions 271

Pascal calling conventions 273
Parameters 273
Real-type parameters 274
Structured-type parameters 275
Function results 275
Register conventions 277

Table of Contents

Xi

xii

C calling conventions 277
Parameters 278
Function results 278
Register conventions 278

J Structured Assembly Macros 279

Structured macro statements 281
Expressions 281
Flow-control macros 283
The If statement 283
The Switch statement 285
The Repeat statement 287
The While statement 287
The For statement 288
The Leave statement 290
The Cycle statement 291
The GoTo statement 292
Program structure macros 292
Sample code generation from program structure macros 294
Procedure and function header 295
Local variable declaration 298
Procedure or function start 299
Procedure or function secondary entry point 300
Procedure or function exit 301
Procedure, function, or trap invocation 303
Considerations for use 306
Why you should or should not use the structured assembly macros 307
Rules for using structured assembly macros 308
Syntax summary 309 '
Expressions 309
Flow-control macros 310
Program structure macros 311

Glossary 313

Index 319

MPW 3.0 Assembler Reference

Part 1

Part I

Figures and tables

Using the Assembler 1

About the Assembler 3
Table 1-1 Assembler status codes 7

Coding Conventions 11

Figure 2-1 Source text structure 14
Table 2-1 Data size qualifiers 22
Table 2-2 Operators 29

Address Syntax 35

Table 3-1 Address symbols 37

Table 3-2 Address syntax summary 38

Table 3-3 Effective address transformations 42

Table 34 Registers 44

Table 3-5 MC68851 registers in the MC68030 50

Table 36 MC68851 instructions valid for the MC68030 51
Table 3-7 Special MC68851 operand formats 54

Assembler Directives §7

Figure 4-1 Stack frame example 79

Figure 4-2 Sample template format 103

Table 41 DC and DCB data increments 73

Table 4-2 Effects of CODEREFS and DATAREFS 91
Table 4-3 PRINT directive parameters 109

The Macro Processor and the Macro Language 113

Macro Variables and Functions 139

Table 6-1 Values returned by &LEX 148
Table 6-2 &SETTING values 162
Table 6-3 Assembler system variables 168

CONTENTS

xiii

xiv

Part I Appendixes 183 R

A Generic Instruction Formats 185
~ Table A-1 Generic instruction conversions 187

C Assembly Listing Format 205
Figure C-1 Default assembly listing format 207

D Other Assemblers 211

Table D-1 Identifier syntax rules 213
Table D-2 Numbersyntax 214

Table D-3 String syntax 214

Table D4 Module definition 215

Table D-5 Communication directives 215
Table D6 Allowable operators 216

Table D-7 Addressing features 217

F Iostruction Sets 223

Table F-1 Instruction operands 227

Table F-2 MC68xxx condition codes 230

Table F-3 MC68881 IEEE nonaware tests 231

Table F4 MC68881 IEEE aware tests 231

Table F-5 MC68881 miscellaneous tests 232

Table F6 MC68851 PMMU condition codes 232

Table F-7 MC68000, MC68010, and MC68020/MC68030 instructions 233
Table F-8 MC68881 instructions 243 :

Table F-9 MC68851 instructions 249

I Pascal and C Calling Conventions 271

Table I-1 Parameter passing conventions 273
Table I-2 Function-result passing conventions 276

MPW 3.0 Assembler Reference

Preface About This Manual

THIS MANUAL TELLS YOU HOW TO PREPARE SOURCE FILES to be assembled by the
Macintosh® Programmer's Workshop Assembler (also called the MPW Assembler).

This manual assumes that you are generally familiar with assembly-language
programming, It also assumes that you understand and are able to write the
symbolic assembly language for the Motorola MC68xxxx instructions you want
ouse. = . .

Contents

What this manual contains xvii
Other reference materials xviii
Notation conventions xix
Aids to understanding xix
Courier typeface xx
Ialic xx
Fields xxi
Delimiter symbols xxi
Braces xxii
Brackets xxii
Ellipses xxiii
Underlining xxiii
For more information xxiv

Xv

N

RNV
;/» h
}
\-\M s

What this manual contains

This manual is divided into 7 chapters in two sections, and 10 appendixes. Here is a
summary of the information it contains:

Part1 is about using the Assembler. It contains 4 chapters.

=}

Chapter 1, “About the Assembler,” lists some characteristics of the Macintosh
Workshop Assembler and describes its general mode of operation. It also includes
a summary of file-naming conventions.

Chapter 2, “Coding Conventions,” discusses the overall structure of MPW
assembly-language source text. It includes information about statement and
directive formats, symbol formation, and the evaluation of expressions.

Chapter 3, “Address Syntax,” describes the ways you can address the Macintosh
memory and gives the syntax rules for writing addresses in your source text.
Chapter 4, “Assembler Directives,” provides detailed instructions for using most of

the MPW Assembler directives, grouped by the kinds of tasks the macros perform.
Macro-expansion directives are covered in Chapter 7.

Part II covers the Macro Processor and the Macro Language features that relate to it.
It contains 3 chapters.

=]

a

Chapter 5, “Macros,” tells you how to define and call macros in your source text.

Chapter 6, “Macro Variables and Functions,” tells you how to use SET variables to
program the expansion of your macros.

Chapter 7, “Macro and Conditional-Assembly Directives,” describes the directives
of the MPW Assembler macro language.

Part III contains the appendixes.

=]

Appendix A, “Generic Instruction Formats,” gives you the rules for writing the
generic forms of some assembly-language statements that the MPW Assembler
accepts and converts to specific instructions.

Appendix B, “Syntax Diagrams,” contains copies of all the syntax diagrams used in
this manual.

Appendix C, “Assembly Listing Format,” describes the way the Assembly listing is
constructed.

Appendix D, “Other Assemblers,” compares the MPW Assembler with other
assemblers available for the Macintosh and tells you how to use programs that
translate source text from other forms.

Appendix E, “The Macintosh Character Set,” shows the characters in the Macintosh
character set and gives their numeric values.

Preface

xvii

o Appendix F, “Instruction Sets,” lists the MC68000, MC68010, MC68020, MC68030,
MC68851, and MC68881/MC68882 machine instructions and condition codes
accepted by the Assembler.

o Appendix G, “Assembler Command Syntax,” defines the syntax for writing the
Assembler command line, including information about the Assembler options.

o Appendix H, “Object Assembler Macros,” describes the macros provided for
object-oriented programming in the MPW assembly language.

o Appendix I, *Pascal and C Calling Conventions,” gives the assembly-language
calling conventions for routines written in Pascal and C. '

o Appendix J, “Structured Assembly Macros,” explains how to use the structured
macros that provide MPW Assembler with many of the powerful commands usually
found only in the higher-level languages.

At the end of this manual you will find a glossary and an index.

Other reference materials

Before trying to write and assemble a Macintosh assembly-language program, you should

read and understand the following books:

» Apple® Computer. Macintosh Programmer's Workshop 3.0 Reference. A full
description of how to use the Workshop's program preparation tools, including the
Assembler.

s Motorola. M68000 8-/16-/32-Bit Microprocessors Programmer’s Reference Manual,
6th ed. Prentice-Hall, 1988. The latest comprehensive guide to the MC68000
microprocessor. -

In addition, you may find these books helpful:

s Apple Computer. Inside Macintosh. Vol. I-1II. Reading, Mass. Addison-Wesley, 1985.
The complete story of the architecture and operation of the 128K and 512K
Macintosh, including details on their ROM routines.

s Apple Computer. Inside Macintosh. Vol. IV. Reading, Mass. Addison-Wesley, 1986.
Additional and updated material covering the Macintosh and the Macintosh Plus.

s Apple Computer. /nside Macintosh. Vol. V. Reading, Mass. Addison-Wesley, 1988.
New material covering the Macintosh SE and the Macintosh II.

xviii MPW 3.0 Assembler Reference

s Apple Computer. Apple Numerics Manual. Second Edition. Reading, Mass. Addison-
Wesley, 1986. Describes the Standard Apple Numeric Environment (SANE), which
includes extended-precision floating-point arithmetic as specified by IEEE Standard
754. Describes each routine in detail,.including boundary conditions and exception
handling, and explains how to control the floating-point environment.

s Motorola. MC68020 32-Bit Microprocessor User’s Manual. Second Edition. A guide to
the MC68020 instructions and addressing modes.

s Motorola. MC68030 Enhanced 32-Bit Microprocessor User’s Manual. A guide to the
MC68030 instructions and addressing modes.

s Motorola. MC68851 Paged Memory Management Unit User's Manual. A guide to the
MC68851 coprocessor, with details of all its instructions.

s Motorola. MC68881/MCG68882 Floating-Point Coprocessor User's Manual. A guide to
the MC68881 and MC68882 coprocessors, with details of all their instructions.

Notation conventions

The discussions in this manual include a number of syntax diagrams and source text
examples, designed to help you understand exactly how to write source text structures.
Syntax diagrams appear as appropriate in the text and are also gathered together in
Appendix B. This section tells you how to interpret the symbols used in the syntax
diagrams and examples.

Aids to understanding

Look for these visual cues throughout the manual:

A Warning | Warnings like this indicate potential problems. a

A Important Text set off in this manner presents important information. a
@ Note: Text set off in this manner presents notes, reminders, and hints.

Computer words and phrases appear in boldface type when they are introduced. The
term is defined in the glossary.

Preface

xix

Courier typeface

Anything printed in the Courier typeface is 2 sample of actual source text, as it might be
processed by the Assembler. Where the Courier typeface occurs in syntax diagrams, it
indicates fixed symbols of the MPW assembly language. Such symbols, which must be
written in the source text as they are written in the syntax diagram, are sometimes called
terminal symbols.

& Note: To further distinguish them, directives and machine instructions are printed in
capital letters. However, you do not need to use capitals in your source text.

Italic

Generic terms that designate information to be supplied by the programmer are printed in
italic. They are sometimes called nonterminal symbols. Such terms may contain hyphens
instead of spaces. The most common ones are shown here:

abs-expr An absolute expression

arith-expr A numeric expression

rel-expr A relocatable expression

expr An absolute or relocatable expression

string A string constant

str-expr A string expression

name An identifier

label An identifier used as a label

macro-label A macro label

filename A string expression representing a filename
rlist A MOVEM register list .
reg Any MC68000, MC68010, MC68020, or MC68030 register

Nonterminal symbols not shown in this list are defined where they are used for specific
statements.

Where a nonterminal symbol is repeated in a syntax diagram, the repetitions are
sometimes distinguished by subscripts, as shown here:

abs-expr,, abs-expr,

You write two absolute expressions at this point, separated by a comma. The expressions
may be the same or different.

XX MPW 3.0 Assembler Reference

In some syntax diagrams, the connective ::= is used to show the possible values for a
nonterminal symbol. For example,

size::=W | L
indicates that you may write either Wor L for the nonterminal symbol size.

References to nonterminal symbols in explanatory text are printed in italic, so you won't
confuse them with ordinary words or phrases.

Fields

Syntax diagrams distinguish the fields into which source text lines are divided by
horizontal spacing, as shown here:

[macro-label) INCLUDE filename

The nonterminal symbol macro-label, enclosed in brackets, indicates that you may write
an optional macro label in the first field. The terminal symbol 1NcLUDE indicates that you
must write the word include in any combination of uppercase and lowercase in the second
field. The nonterminal symbol filename indicates that you must write a filename in the
third field. For further details about fields, see “Machine Instruction Syntax” in Chapter 2.

Delimiter symbols

You must write the following delimiter symbols in your source text exactly as they are
shown in the syntax diagrams:

, Comma .
@) Parentheses
. Period
¢ Asterisk

- Equal sign

Occasionally, required delimiters may look like part of the syntax diagram’s punctuation.
To prevent confusion in such cases, the required marks are enclosed in single quotation
marks. For instance, the expression ‘{’'origin'}’ means that the word origin, enclosed in
braces, is required.

Preface

xxi

Braces

Material within braces represents required items, one of which must be chosen.
For instance,

] LPHA ¢
Pgsm A

GAMMA |

indicates that you must write either aipha, beta, or gamma at that point in your
source text.

Notice that the alternatives are written on separate lines. Terms on separate lines always
represent expressions with distinct meanings. In some instances, alternate choices have
the same effect. Such alternatives that mean the same are separated by a vertical bar (1),
as shown:

PonlYES O
gm‘! No O
Because all the choices in this example are enclosed in braces, you must choose one line or

the other. If you choose the first line, you may write either on or yes; if you choose the
second line, you may write either off or no.

Brackets

Material within brackets represents optional items. Braces within brackets signify that
one of the alternatives must be chosen if the material is to be included at all. Here are
some examples:

[abs-expr] You may write an absolute expression at this point, or nothing.

INCR(EMENT] You may write either incror sncrement.

NTRY *
FEXPORT' You need not write anything, but if you do, it must be eithet entry
or export.

xxii MPW 3.0 Assembler Reference

Ellipses

An ellipsis containing three dots (...) indicates repetition of the preceding material. If the
material is enclosed in brackets, you don’t have to write it at all; if the material is not
enclosed in brackets, you must write it at least once. A comma before the ellipsis
indicates that repetitions must be separated by commas. You may repeat the material
indefinitely, subject to the general length limitation for that particular source text
structure. Here are two examples:

abs-expr,... Write one or more absolute expressions separated by commas.
[absexpr).. Write nothing, or write one or more absolute expressions separated
by commas.

Occasionally this notation can be ambiguous, in which case a longer form is used. For
example,

-dlefinel name[=valud [, name(=valud ...

indicates that you may write more name or name=value groups after the first one, with a
comma preceding each one.

An ellipsis containing two dots (..) indicates a scalar range. For example, 0..127 means “0
and 127 and all the intervening numbers.”

A sequence of three hyphens (- - -) in sample source text indicates lines of source text not
specified by the diagram.

Underlining

An underlined item indicates a default or preset value, which the Assembler will assume if

you omit an optional parameter. Here is an example:

[oerene
EXPORT You need not write anything, but if you write nothing, the

Assembler will act as if you had written entry.

Preface xxiii

For more information

APDA™ provides a wide range of technical products and documentation, from Apple and
other suppliers, for programmers and developers who work on Apple equipment. (MPW is
distributed through APDA.) For information about APDA, contact

APDA

Apple Computer, Inc.

20525 Mariani Avenue, Mailstop 33-G
Cupertino, CA 95014-6299

1-800-282-APDA, or 1-800-282-2732
Fax: 408-562-3971

Telex: 171-576

AppleLink: DEV.CHANNELS

If you plan to develop hardware or software products for sale through retail channels, you
can get valuable support from Apple Developer Programs. Write to

Apple Developer Programs

Apple Computer, Inc.

20525 Mariani Avenue, Mailstop 51-W
Cupertino, CA 95014-6299

xxiv MPW 3.0 Assembler Reference

\\\‘
L

PartI Using the Assembler

Chapter 1 About the Assembler

THE MPW ASSEMBLER IS CONTAINED IN A SINGLE FILE named Asm. This chapter
describes some of its general characteristics. For instruction on invoking the
Assembler, including further information about the environment in which it runs,
see the Macintash Programmer's Workshop 3.0 Reference. A summary of
Assembler command syntax and options is given in Appendix G. =

Contents

General characteristics 5

Overview of the assembly process 6

Assembly files 7

Programming for the Macintosh 8
Macintosh libraries 9

o

General characteristics

The MPW Assembler is a Macintosh program that reads your source text and creates a file

of linkable MC68xxx object code. It has the following principal features, which help you

build powerful assembly-language programs:

® It supports all the instructions and addressing modes for the MC68000, MC68010,
MC68020, and MC68030 microprocessors, the MC68851 Paged Memory Management
Unit (PMMU), and the MC68881 and MC68882 Floating-Point Coprocessors, in all
usable combinations.

s It has powerful macro capabilities, which handle both positional and keyword
macros. These capabilities resemble those of the macro facilities in the IBM 360/370
Assemblers.

s Its macro capabilities accept global and local variables (called SET variables) that
allow macros to communicate with one another. SET variables may contain numbers,
characters, strings, or arrays. You can use them with conditional and looping
statements to control the generation of complex structures of object code.

s It gives you the choice of creating either a single object module or a series of separate
object modules.

a It gives you full control over the generation of both code and data modules, including
AS-relative data. You can share global data between your assembly-language routines
and routines written in MPW Pascal and MPW C.

» It lets you specify the scope of all code and data definitions. You can make the
objects they define accessible only within modules, within files, or between files.

s It lets you define templates that determine the mapping of data in memory. Their
function is similar to that of Pascal records or C structures. You can use templates as
data types in much the same way as you use record types in Pascal.

a It lets you store its global symbol tables in files and then use these files for new
assemblies. This increases assembly speed and saves disk space.

» It can generate Pascal-formatted and C-formarted strings, as well as fixed-length
strings.

CHAPTER 1 About the Assembler

Overview of the assembly process

The MPW Assembler processes your source text in two passes. The first pass reads the
source text, defines and expands all macros, and defines all symbols. It determines the
length of the object code and resolves forward references. It also creates the following
symbol tables:

s 2 global symbol table for symbols defined outside code or data modules
s 2 macro symbol table for all macro symbols and definitions
s 2 local symbol table for each code or data module

These operations do not create any object code.

As it starts to read each code or data module on its first pass, the Assembler creates an
internal file in Macintosh memory containing a translation of your source text into postfix
notation. At the end of each module, the Assembler performs its second pass, converting
the postfix file into object code. The Assembler appends this code to the growing object
code file. After processing each module, it releases memory held for the internal postfix
file and the local symbol table.

Thus, the Assembler translates each module separately, releasing the memory used before o
the next module is started. Nevertheless, symbol tables, macro definitions, and the ‘
postfix file all compete for the Macintosh’s memory. To permit you to assemble large
programs with limited RAM space, the MPW Assembler lets the postfix file spill over onto
a disk. When this happens, the Assembler returns a2 waming message at the end of the
assembly process and assembly time increases by about 25 percent. Hence once there is
enough RAM space available for its basic operations (including maintaining all symbol
tables), the only memory limitation on the assembly process is the availability of

disk space.

If you are generating an assembly listing, the Assembler creates a scratch file on the disk,
in addition to the listing file. During the first pass, the Assembler writes source text lines
that occur outside modules to the listing file directly. The Assembler writes lines that
occur inside modules (including conditionally assembled lines and macro expansions) to
the scratch file during the first pass, and then from the scratch file to the listing file during
the second pass. To ensure that they appear in the correct location in the listing, the
Assembler generates additional postfix code. As a consequence, assemblies that create
listing files generate more postfix code.

6 MPW 3.0 Assembler Reference

During assembly, the Assembler sends errors and warnings to the diagnostic output file
(the active window, unless you specify otherwise). If you use the —p Assembler option,
described in Appendix G, the Assembler also writes progress and summary information to
the diagnostic output. Status codes that the Assembler may send to the MPW Shell are
listed in Table 1-1.

s Table 1-1 Assembler status codes

Code Status

0 No errors detected in any files assembled

1 Assembler command line parameter or option errors detected
2 Assembly processing errors detected

3 Assembly terminated before completion

Assembly files

By convention, you add the suffix .a to your assembly-language source text files. Object
code files created by the Assembler are normally named after your source text file with the
suffix .0 added. However, you can change the name that the Assembler assigns to your
object file by using the -0 Assembler option, described in Appendix G. If you tell the
Assembler to create a listing file, it will be named after your source text file with the suffix
st added.

For example, given an assembly-language source text file Name . a, the Assembler will
create an object code file Name . a. 0 and a listing file Name . a . Ist from it.

In addition to the Assembler itself, the MPW disks contain library files of useful routines,
together with the corresponding files of assembly-language interface statements, macros,
and equates that access them. Your program can use any of these files. Files whose names
end in .a contain assembly-language statements that you can include in your source text.
Files whose names end in . o must be linked to your assembly. They contain executable
code called by the assembly-language files. Most of the available libraries and their
interface files are described in the Macintosh Programmer’s Workshop 3.0 Reference; some
are described in this book, in Appendix J.

CHAPTER 1 About the Assembler

Programming for the Macintosh

There are four kinds of programs you can write for execution on the Macintosh:

applications
tools—programs that run under the MPW Shell
desk accessories and other drivers

'CODE' resources such as cdevs and INITs, which are used to customize the Macintosh
environment, and XCMDs for extending the HyperTalk language used in HyperCard.
(See the Macintosh Technical Notes for further information.)

_ General information about building and installing these kinds of programs is given in the
Macintosh Programmer’s Workshop 3.0 Reference. The following notes are specifically
applicable to assembly-language programs:

8

If an application contains one or more data modules containing DC or DCB directives,
it must be linked with the library Runtime.o, which contains the data initialization
routine _DataInit. Its first executable statement must be a call (3sR) to the entry
point _DataInit. This entry point must also be declared as tMPORT. After returning
from _pataInit, your program may unload the segment $a5Init that contains it,
by calling the Macintosh routine UnloadsSeg.

Routines you can use with tools that run under the MPW Integrated Environment are
described in Chapter 12 and Appendix F of the Macintosh Programmer’s Workshop 3.0
Reference.

Assembly-language desk accessories may not declare any global data. They must be
linked with the file DRVRRuntime.o, which contains the main code module for all desk
accessories. Use Create Build Commands... from the Build menu in MPW to help create
build files for desk accessories and other types of 'CODE' resource.

>3y

MPW 3.0 Assembler Reference

Macintosh libraries

Inside Macintosh describes an extensive group of Macintosh library routines, also called
operating-system routines and toolbox routines. They perfform jobs such as creating
menus, windows, and dialog boxes, providing simple text editing, and accessing files

and devices.

Many of the Macintosh library routines are implemented in the Macintosh ROM. You can
call them from an assembly-language program by using machine instructions whose high-
order four bits are %1010 (that is, whose opcodes begin with $A). Such machine
instructions are unimplemented, and using one of them invokes what is called an A-trap.
The Macintosh trap dispatcher determines which of the library routines to call by
examining the rest of the opcode. ‘

The opcodes for various Macintosh library routines are defined by opworp directives
contained in assembly-language files in the MPW folder {Alncludes}. If you include the
appropriate files in your assembly, you can call the routines they cover by writing the
routine identifiers (such as _Read instructions).

Certain Macintosh library routines are in library object files, instead of in ROM. They are
flagged in Inside Macintosh with the notation “{Not in ROM).” You call these routines with
JSR instructions. If you use any of them in your program, you must link your assembly
with the MPV file {Libraries}Interface.0, which contains their code.

Additional information about calling Macintosh operating-system and toolbox routines
from assembly-language programs is contained in the Using Assembly Language chapter of
Inside Macintosh. The include files and library files supplied with MPW are described in the
Macintosh Programmer’s Workshop 3.0 Reference.

CHAPTER 1 About the Assembler

Chapter 2 Coding Conventions

THIS CHAPTER DESCRIBES THE SYNTAX RULES AND OVERALL
form required for source text that is to be processed by the
MPW Assembler. »

Contents

Source text structure 13
Scope of definitions 15
Imported and exported objects 17
@-labels 17
Summary 18
Segmentation 18
Machine instruction syntax 19
The label field 20
The operation field 21
The operand field 23
Comments 24
Symbols 25
Identifiers 25
Numeric constants 26
Strings 27
Expressions 28
Evaluation of expressions 30
Absolute and relocatable expressions 31
Absolute expressions 32
Relocatable expressions 33

11

»

Source text structure

The source text formats for most higher-level programming languages are similar in
structure. They consist of related procedures and functions plus various forms of data.
The programs that interpret them differ mainly in the ways they support relationships
among the routines and data. The MPW assembly language, although not a higher-level
language, includes many of the programming facilities found in higher-level languages.

In order to understand the structure of MPW assembly-language source text, it is helpful to
understand the various components that make up a linked and executable program.
Therefore, this discussion begins by defining some terms that describe an executable
Macintosh program, together with how they relate 10 an assembly source text and the
environment in which the program is executed.

Each line of MPW Assembler source text is either a machine instruction statemeat or a
directive statement. Machine instruction statements generate executable code, using
MC68xxx instructions. Directive statements are commands to the Assembler to perform
cerain operations during assembly. The syntax rules for writing machine instruction
statements are given later in this chapter. The syntax rules for writing directive statements
are given in “Directive Formats” at the beginning of Chapter 4.

Every executable assembly-language program is built from a collection of object files.
Each object file corresponds to one assembly and is made up of a collection of code and
data modules. Each module contains one contiguous piece of code or data. Data
modules represent static data, because the data space is defined before the program
begins and the data remains accessible during the entire execution of the program.

When you link a program, the Linker groups all the code modules together and makes a
separate grouping of all the data modules. Thus a linked object file consists of two parts:
a collection of code modules and a collection of data modules.

In the Macintosh, the Segment Loader takes the collection of data modules and loads
them into an area called the application globals area. This area is just below the area
pointed to by register AS, called the application parameter area. Thus when the Linker
adjusts code references to data in the data modules, it does so by setting negative
offsets relative to A5, the assumed base register for data access.

References by code to other code are made by jumping indirectly through a structure
called the jump table, which is also built by the Linker and loaded by the Segment Loader
just above the application parameter area. So the jump table is accessed by positive
offsets from AS. A map of all these memory areas is included in Figure 9 of the Memory
Manager chapter of Inside Macintosh.

CHAPTER 2 Coding Conventions

Figure 2-1 is a syntax diagram that covers the overall structure of an assembly-language
source file. The modules and directive statements in such a source file may occur in any
order, subject only to the scope rules given later in “Scope of Definitions.”

= Figure 2-1 Source text structure

directive statement
data module
code module

END
Data module
name RECORD
(directive statement
[eNDR]
Code module

name { PROC | FUNC | MAIN }

[directive statement]
machine instruction statement

1 data section j
code section
[ENDP | ENDF | ENDMAIN]
Data section
DATA
(directive statement
Code section

CODE

" { directive statement H
machine instruction statement)|

14 MPW 3.0 Assembler Reference

=

Each module starts with 2 module directive (PROC, FUNC, MAIN, Of RECORD). Each
module terminates at the start of the next module directive, at the matching ENDx (ENDP,
ENDF, ENDMAIN, Of ENDR), Or at the end of the source text. The end of the source text is
indicated by an END directive.

Code modules are always introduced explicitly by either 2 ProC, FUNC, or MAIN directive.
There is no structural difference between proc and ¥ uNC directives; FUNC is used insteac:
of proc only for documentation purposes. MAIN is essentially the same as PROC of FUNC,
but has the additional function of indicating that this module is the main code module,
and that its first instruction is the execution starting point for the program. There must be
exactly one main code module in a linked program.

There are three ways to declare data in an assembly-language source file:

® As a data module introduced by the RECORD directive. Such a module generally
contains data-definition and storage-allocation statements. It may also contain
initialized values. All the data defined between the RECORD directive and its matching
ENDR (or the start of the next module) generates a single data module.

® As a data module corresponding to one data-definition statement. Before the first
module, or between explicitly declared modules, you may write directive statements.
Such statements outside of explicitly declared modules define their own data
modules, one corresponding to each statement.

® Asdata that is part of a code module. Although you use the pProc, FUNC, and MAIN
directives to indicate the start of a code module, you may generate an associated
data module inside the code module, using the copE and paTa directive. cope and
paTA may be used only inside a code module (PRroc, FUNC, or MAIN); they indicate a
switch from code to data (DaTa), and then back to code again (copE). Hence they
delimit sections of code or data within the code module. Code in the code sections is
generated contiguously—the first byte of one code section immediately follows the
last byte in the previous code section. Similarly, the data in the data sections is
contiguous.

Scope of definitions

The scope of a definition is the area of source text in which the code or data object it
defines is accessible—that is, the area in which the object can be accessed by code or
data statements. Scope rules permit you to restrict the scope of definitions. This lets you
allow communication among the various routines of your program, while at the same time
making selected objects inaccessible to other routines. Selectivity of scope promotes
structured programming and helps you avoid identifier conflicts.

CHAPTER 2 Coding Conventions

15

Here are the scope rules:

16

All code or data definitions in a source file have either global or local scope.
Local definitions override global definitions.

The scope of a global definition extends from the point at which it occurs in the
source file to the end of that file. Global definitions include those declared outside of
a code or data module as well as definitions of code and data module identifiess. All
identifiers assigned to global objects must be unique within the assembly.

All code or data labels must be declared or defined before they are used. In order to
access a label prior to its definition in the file, you must declare it with an 1MPORT of
EXPORT directive before the access.

The Assembler permits field identifiers within 2 data module (created by the directive
RECORD) t0 be accessed as qualified identifiers. Qualified identifiers are written in
the form modname . fieldname, where modname is the data module identifier and
fieldname is a data-definition field identifier, as defined within the data module.
Field identifiers accessed in this way have global scope.

A definition is considered to have local scope if it occurs inside a code or data
module. Local objects may be accessed only from within the module; you may use the
object’s identifier in different modules or outside the module without causing an
identifier conflict.

The global/local scope rules may be overridden with the ENTRY, EXPORT, and IMPORT
directives described in this chapter and in Chapter 4.

ENTRY forces specific identifiers to be global. An identifier that is to be declared as
ENTRY must be so declared before it is defined. From that point on, the identifier
follows the same rules as global identifiers. This means that ENTRY may be used to
access identifiers defined later in your source text, such as labels in subsequent PROC
directives.

Since all data objects outside of modules, as well as the module identifiers themselves,

have global scope, they are implicitly declared as ENTRY by the Assembler. For
documentation purposes, a module identifier may also be declared explicitly
as ENTRY.

MPW 3.0 Assembler Reference

Imported and exported objects

Local or global code or data objects may be made accessible to source text files other
than the file in which they are defined. Objects defined in a file, intended to be accessed
outside it, are said to be exported. Objects accessed from outside the file in which they
were defined are said to be imported. Thus an exported object in an object file can be
imported into any number of other object files. You export and import objects by using
the ExPORT and IMPORT directives.

Using EXPORT inside a code or data module declares specified local identifiers as
exported. You must use EXPORT before defining the specified identifiers. The identifiers
may then be accessed from other files that import those identifiers. Since an exported
local identifier is made accessible outside of the module in which it is defined, ExPORT
promotes local identifiers to global scope within the same source text file, just as ENTRY
does. Module identifiers, code or data labels, global data definitions, and storage-
allocation identifiers may be exported.

Once an object’s identifier is declared as ExPORT, other source text files may import the
identifier by using tMPORT. The 1MPORT directive declares specified identifiers as local

or global, depending on where the 1MPORT statement is used within the file. If IMPORT is
used inside a module, then the identifiers are local to that module. Using IMPORT outside
a module declares the identifiers as global to the rest of the file.

Since ExPORT identifiers are global to the file in which they are declared, the Assembler
treats references to such identifiers from modules other than the one that actually defines
the identifier as imports of those identifiers. For documentation purposes, however, you
can always import such identifiers explicitly by using tMPORT in the same file.

@-labels

Label identifiers that begin with an at symbol (@) are called @-labels. They have more
limited scope than other labels and can’t be used in directives or outside modules.
Specifically, the scope of an @-label extends through the source text, in both directions,
to the nearest label that doesn't begin with @. You may redefine an @-label, but not in the
scope of another instance of the same @-label. All @-labels defined or used inside macros
follow the same rules, but in addition their scope is limited to the body of the macro. Any
@-labels passed as macro parameters retain the scope they had when the macro was called,
with certain restrictions. For further information about passing @-labels to macros, see
“Operand Syntax” in Chapter 5.

CHAPTER 2 Coding Conventions

17

3(».

A
Summary
Here is a summary of the kinds of identifiers used in definitions of different scope.
m Temporary scope (can be accessed only within a part of a module)
o @-labels (beginning with @)
m Local scope (can be accessed only from within the module; overrides global
declarations) ’
o All identifiers defined within a code or data module
o ldentifiers imported by using tMPORT within a module
= Global scope (can be accessed from the point of definition to the end of
the file)
o Code and data module identifiers
o Al identifiers defined outside of code and data modules
o Identifiers imported by using 1MPORT outside of any module
o Identifiers declared as ENTRY
o Qualified data module identifiers
m Identifiers accessible between files
o Local identifiers declared as ExPORT (ExPORT used inside a module) y
o Global identifiers declared as ExPORT (EXPORT used outside any module) “
Segmentation
In addition to dividing your program into code modules, you can associate groups of one
or more code modules into segments. As your program is executed, the Macintosh
Segment Loader will load all the modules in each segment at the same time, whenever any
one module in the segment is called. This lets you use the same memory space for different
modules as long as they are in different segments. For example, you may have a collection
of modules needed only for initialization of your program. These modules could be in one
segment and the rest of your program in another segment. During initialization, only the
initialization segment need be loaded. After initialization, that segment can be unloaded
(by a call to unloadseg) and the same memory space reused by the remainder of your
program. Segments and the Segment Loader are further discussed in the Segment Loader
chapter of Inside Macintosh. Daa initialization is discussed in the Macintosh
Programmer’s Workshop 3.0Reference.
L

18 MPW 3.0 Assembler Reference

The seG directive, described in Chapter 4, lets you group a code module or a collection of
code modules into a particular segment. Only code modules may be placed in segments;
data modules are not affected by seG directives.

Each sEG directive specifies a name for the succeeding segment. All code modules up to
the next sEG directive are grouped in the specified segment, beginning at the next code-
module directive.

Code modules grouped in the same segment do not have to be contiguous in the source
file. Code modules belonging to different segments may be mixed in your source text as
long as they are covered by the appropriate SEG directives. The SEG directive is further
discussed in “Linker and Scope Controls” in Chapter 4.

¢ Note: Segment names are case-sensitive. Be careful to capitalize them consistently.

Machine instruction syntax

Machine instruction statements are written in four flelds—the label field, the operation
field, the operand field, and the comment field. These fields must be separated by one
or more spaces (ASCII code $20) or tabs (ASCII code $09), and must be written in the
order given. Total statement size is limited to 255 characters. You may continue writing a
statement on the next line if you follow these rules:

s The fields must remain in their proper sequence: label, operation, operand,
and comment.

s The fields must be separated by one or more spaces or tabs.

s Only the operand and comment fields may be continued. The label and operation
fields must be completed in the first line of the statement, including at least one space
following the operation entry.

Each continued line (after the first line) starts at the first character on that line that is not
a space or tab; leading spaces or tabs on continued lines are ignored. For further
information about continuing machine instruction statements, see “The Operand Field”
later in this chapter.

CHAPTER 2 Coding Conventions

19

The label field

The label field is the first field in a source text line. It may be empty or it may contain an
identifier. The syntax rules for identifiers are given in “Identifiers” later in this chapter.

If the label field contains an identifier, it need not begin in the first character position on
the line. However, if it contains an identifier that begins after the first character position
(that is, if the identifier is preceded by one or more spaces or tabs), the label field must
be terminated by a colon. Otherwise the label field may be terminated by either a colon, a
b, or one or more spaces. The colon, if used, is not part of the identifier.

Within code and data modules, the label field may be the sole field of a source text line, in
which case it terminates with the return character that ends the line. In code modules, the
Assembler always aligns such label positions to start on a word boundary. When a source
text line contains only the label field and the comment field, they must be separated by a
semicolon (;) preceded by at least one space character.

Here are some examples of valid label syntax:

label MOVE.W Do,D1
label: MOVE.W Do,D1
label
label ;Comment

The first line shows a label that begins in the first character position, and hence can be
terminated by tabs or spaces. The second line shows a label preceded by a space; it must
be terminated by a colon. The third line contains only a label. The last line contains a label
and a comment, which must be separated by a semicolon preceded by at least one space
or tab.

All Iabels that begin with an at symbol (@) are called @-labels. They can be used only inside
modules, as described in “Scope of Definitions,” given earlier in this chapter.

The Assembler allows labels for all instructions, macro calls, and directives that define data
structures or values. For instructions and data-definition directives, the label is given a
value equal to the location-counter value associated with the first byte of the instruction
or data. For macro calls and other directives, the label's value is defined as a function of
the macro call or directive.

20 MPW 3.0 Assembler Reference

The operation field

The operation field contains the mnemonic operation code specifying the desired
machine instruction or Assembler directive. Mnemonic operation codes conform to the
rules for identifiers given later in this chapter. Valid operation codes include the following:

s mnemonics for the MC68000 and MC68010 instructions described in the Motorola
M68000 8-/16-/32-Bit Microprocessors Programmer’s Reference Manual

= mnemonics for the MC68020 instructions described in the Motorola MC68020 32-Bit
Microprocessor User's Manual

s mnemonics for the MC68030 instructions described in the Motorola MC68030
Enhanced 32-Bit Microprocessor User's Manual

s mnemonics for the MC68851 PMMU coprocessor instructions described in the
Motorola MC68851 Paged Memory Management Unit User’s Manual

» mnemonics for the MC68881 and MC68882 floating-point coprocessor instructions
described in the Motorola MC68881/MC68882 Floating-Point Coprocessor User’s
Manual

n the Assembler directives, including macro instructions, described in this book

¢ Note: Some mnemonics have been changed to eliminate ambiguities and to conform
to the Motorola assembler forms. If in doubt, check your mnemonics with those listed
in Chapter 3 and Appendix F.

The opemtioh field must be preceded by at least one space or tab. The Assembler ignores
uppercase and lowercase distinctions when reading it.

Certain machine instruction mnemonics include condition codes, indicated by the symbol
cc. A list of the condition codes the MPW Assembler accepts is included in Appendix F.

Many instructions and directives can operate on more than one data size. For these
operations, the data size must be specified as part of the mnemonic; otherwise a default
size is assumed. The size is specified by appending to the mnemonic a period (.)
followed by one of the qualifier letters shown in Table 2-1.

CHAPTER 2 Coding Conventions

21

s Table 2-1 Data size qualifiers

Letter Name Data Size

Byte 8 bits
Word 16 bits
Long word 32 bits for data; signed offset for branch instructions
Short 8-bit signed offset, -128..127, for branch instructions
Double longword 64 bits; for certain MC68851 and MC68030 registers only
Single precision 32-bit IEEE format for binary reals: 8 exponent bits,
23 mantissa bits, 1 sign bit; MC68881 and MC68882 only
‘D Double precision 64-bit [EEE format for binary reals: 11 exponent bits,
52 mantissa bits, 1 sign bit; MC68881/MC68882 only
X Extended 96-bit IEEE format for binary reals: 15 exponent bits,
‘ 64 mantissa bits, 1 sign bit, 16 reserved bits;
MC68881/MC68882 only
P Packed BCD 96-bit packed BCD format for real strings: 3 decimal
digits exponent, 17 decimal digits mantissa, 4 bits sign
and range, 12 reserved bits; MC68881/MC68882 only

v U un 5w

In macro calls, the period may be followed by any sequence of characters, as long as none M
of them are spaces or tabs. The meaning of such a qualifier is a function of the macro
definition associated with the call. See “Defining Macros” in Chapter 5 for further details.

Ordinarily, the default data size qualifier is word (W) for MC680X0 and MC68851
instructions and extended (X) for MC68881/MC68882 instructions. Some instructions do
not permit a data size specification, since the size is implicit in their operation.

In some cases, the Assembler accepts a generic form for an instruction and assembles a

more appropriate form. The instruction ApD, for example, is translated into ADD, ADDA,

ADDQ, or aADD1, depending on context The generic instruction formats are listed in

Appendix A. The reasons for using them fall into three overlapping categories:

s Optimization

o Instructions can often be encoded into a more compact (and generally faster-

executing) form that is not the same as the original instruction. An example of such
an instruction is SUBA An, Anin place of MOVE #0, An. When an instruction is

optimized, the object code generated is different, but the mnemonics are not
changed in the listing.

L W

2 MPW 3.0 Assembler Reference

s Convenience
o Instructions may need to be encoded based on context, such as an ADDI in place

of an app. Also, alternate mnemonics may make coding easier and more readable.
For example, Bz (branch if zero) would replace BEQ.

s Compatibility
o Instructions may need to be translated for compatibility with the Lisa™
Workshop Assembler (TLA), the Macintosh 68000 Development System Assembler
(MDS), or the Motorola assembler. Examples here include BHs (branch on high or
same) for Bcc (branch on carry clear), and BLo (branch on low) for 8cs (branch on
carry set).

You can control whether the Assembler optimizes instructions by using the opT directive,
described under *Assembly Options” in Chapter 4.

The operand field

Many instructions and directives require operands as part of their specification. The
operand field follows the operation field and must be separated from it by at least one
space or tab. The operand field may be empty, or it may be composed of one or more
subfields separated by commas.

The BLANKS Assembler directive controls where tabs or spaces may be placed within the
operand field. With BLANKS OFF, they may occur only after commas separating operand
subfields and between paired parentheses, brackets, or braces. With BLANKS ON, tabs
and spaces may be placed anywhere in the operand field except within symbols. (Symbols
are discussed under “Symbols” later in this chapter). With BLANKS ©ON (the preset
condition), a semicolon is always required to separate the operand field from the
comment field. For further information, see the discussion of BLANKS under “Assembly
Options” in Chapter 4.

If you intend to continue an operand field on the next line, you must place the backslash
continuation character (\) in the operand field before any semicolon that precedes a
comment. The backslash character may not be used to continue a single symbol. This
means that line continuation can occur only between symbols. Furthermore, with BLANKS
OFF you must place the continuation character so that the Assembler treats it as part of
the operand field—that is, immediately before or after a symbol, or among tabs or spaces
that the Assembler will ignore because the operand field is not yet complete.

Here is an example of the correct way to continue an operand field:

EXPORT namel,name2, name3, \
name4, nameS:DATA : Looks good

CHAPTER 2 Coding Conventions

23

A

Here is an example of an incorrect operand continuation:

EXPORT namel, name2, na\
me3:DATA ; Broken symboel

Comments

You can insert a comment into your source text in two ways: as a comment field or as a
comment line. Comments are ignored by the Assembler and may contain any characters
except return (ASCII $0D). Comments are intended for your use in documenting your
program.

The comment field is the last field in a source text line; it must be separated from the
preceding field by at least one tab or space. As mentioned earlier in this chapter in “The
Operand Field,” the setting of the BLANKS directive influences whether or not comments
must be preceded by semicolons. In statements where an optional opcode, operand field,
or subfield is omitted but a comment is desired, the comment must always be separated
from the rest of the line by a semicolon preceded by one or more tabs or spaces, even with
BLANKS OFF.

An entire line may be used for a comment by placing an asterisk (*) or semicolon (;) in the
first character position of the line. On lines which contain only a label, the semicolon oo
convention must be used, even with BLANKS OFF. e

To continue a comment that began with an asterisk (*), enter a backslash continuation
character (\) and go immediately to the next line. Comments that begin with semicolon
(;) cannot be continued.

The Assembler ignores lines that contain no characters. They are treated like comment
lines and can be used to separate sections of code or comments.

Here are some examples.of valid comment syntax:

labell MOVE.W Do,D1 This is a comment with BLANKS CFF
labell MOVE.W Do,D1 ; This is a comment with BLANKS ON
label2 ; No opcode-- semicolon required
label3 PROC ; Semicolon required because

; PROC has optional parameters

* This is a whole-line comment.
; This is also a whole-line comment.
* This is a comment that is too long to fit entirely on one line \
and therefore is continued on a second line.
* However, you can also continue a comment on a second line without using the
* continuation character, by starting the second line with another asterisk.

24 MPW 3.0 Assembler Reference

Symbols

Except for comments, all fields of an Assembler statement are composed of symbols. A
symbol is a character or a combination of characters used to represent an identifier, a
numeric constant, or a character string. ‘

Different kinds of symbols are allowed in the different fields of assembly-language
source text:
s The label field may contain only a single identifier.

s The operation field must contain a single MC68xxx instruction mnemonic, a macro
call, a directive name, or an identifier defined by oPwoRrp.

s The operand field may contain one or more symbols or expressions composed of
symbols of any kind.

The following sections discuss the symbols accepted by the MPW Assembler.
“Expressions,” later in this chapter, discusses the expressions that you can form out of
symbols.

Identifiers

Names and labels are identifiers. The first character of an identifier must be an uppercase
or lowercase letter (A..Z, a..z), an underscore (_), or an at symbol (@). The Assembler
treats any label that begins with @ as an @-label.

Subsequent identifier characters can be letters, digits (0..9), underscores (_), dollar signs
(8), number signs (#), percent signs (%), or at symbols (). An identifier can be any length,
but only the first 63 characters are significant. By using the CASE directive, you can
specify whether uppercase and lowercase letters are to be treated as different or the
same. See “Assembly Options” in Chapter 4 for more information.

Some examples of valid identifiers are shown here:

BYTE NextChar ApplZone _trap X Q2 A_l A2
Start Next_Char inverseBit Num#65 as AS2 A@2

A special identifier symbol is used to refer to the current value of the location counter in
a module or template. This symbol is the asterisk (*). It may appear only in the operand
field. It stands for the address of the first byte of currently available storage after any
required boundary alignment. Using the asterisk in the operand field of a statement is the
same as placing a label in the label field of the statement and then using that label in the
operand field of the same statement.

CHAPTER 2 Coding Conventions

25

The Assembler uses the location counter referred to by the asterisk symbol to assign code
and data module addresses to statements. It is the Assembler’s equivalent to a computer's
instruction counter. Since all modules are relocatable, all modules are assembled with their
addresses relative to zero. Therefore the location counter is a zero-relative offset to the
address of the start of the current module. Since it is an offset, the location counter may
also be used in templates. Hence each module and template may be viewed as having its
own location counter.

Numeric constants

You can express numeric constants in your source text in either decimal, hexadecimal,
binary, or floating-point form.

These are the syntax rules for expressing numeric constants.

s A decimal number is formed as a string of decimal digits (0..9), as shown here:
123
5
32

s A hexadecimal number is specified by a dollar sign ($) followed by a sequence of
hexadecimal digits (0..9, A..F, or a..f), as shown here:
$123
$1a3C
SFFFF
salc2

s A binary number is specified by a percent sign (%) symbol followed by a sequence of
binary digits (0 or 1), as shown here:
£$1010
$101
$1011101

s A floating-point number is specified by enclosing a decimal or hexadecimal number in
quotation marks (", ASCII $22). Decimal numbers, for this purpose, may include any
of the forms listed in the Apple Numerics Manual, Second Edition, Table 3-2. A
hexadecimal floating-point number must begin with a dollar sign, following the format
given above. Here are some examples:

“123" "123.4E-12" "123." ".456" "nan”
"-g" "-INF" "NAN(12)" "-Nan()" "$3F800000"

The MPW Assembler interprets decimal, hexadecimal, and binary constants as signed
32-bit values. For example, $FFFF is interpreted as the value 65535, not -1. If you
want -1, you must write it in decimal as -1 or in hexadecimal as SFFFFFFFF. The

Assembler interprets floating-point numbers as required by the MC68881/MC68882
instruction that uses them—as single, double, extended, or packed BCD.

y. MPW 3.0 Assembler Reference

#

Note: The Assembler pads incomplete hexadecimal floating-point numbers with zeros
at the right end. For example, if you write $A123 as an operand for an
MC68881/MC68882 instruction that requires eight-byte data, the Assembler will
interpret it as the number $A1 23 00 00 00 00 00 00. (Spaces added for clarity.)

Strings

A string is a sequence of one or more ASCII characters (including spaces and tabs)
enclosed in single quotation marks (', ASCII $27). Within a string, two single quotation
marks in succession represent one single quotation mark. Some examples of strings are

'Hello"

1 don LN] t 1]

1oy (Generates one single quote)

There are restrictions on how long a string can be, as well as how it is interpreted by the
Assembler. These restrictions depend on its context and form, as explained here.

A string constant used to represent an integer value in an arithmetic expression is limited
to four characters. The Assembler evaluates each character as having the value of its ASCII
code. It treats such a string as a right-justified 32-bit value, padded on the left with zeros.
Here are some examples:

STB #’a’-'A’,D0 Constant represents the value 32
SUB #’a’-541,00 Same as the previous example
MOVE.B #1’,D0 Put $31 intc low byte of DO
MOVE.W #'1',D0 Put $0031 into low word of DO
MOVE.W #12’,00 Put $3132 into low word of DO
MOVE.L #1',D0 Put S00000031 into DO

MOVE.L #°12’,D0 Put $00003132 into DO

MOVE.L #7123’,D0 Put $00313233 into DO

MOVE.L $#71234’,0D0 Put '$31323334 into DO

MOVE.L #'12’+1,D0 Put $00003133 into DO

Strings used under any of the following conditions may be of any length up to the line-
length limit of 255 characters:

s Strings defined as data operands to pc and pcB directives.
s Strings used in relational expressions.

m Strings used to assign values to macro varables.

s

Strings used as source operands for PEA and LEA instructions. This is the only case
where an arbitrary-length (within the 255 character line-length limit) string may be used
in a machine instruction. It represents an instance of a literal. Literals are discussed in
Chapter 3 under “Special Address Formats.”

CHAPTER 2 Coding Conventions

Using the STRING directive, arbitrary-length string constants may be generated in any of s
three formats, depending on the option specified:

= As-is string: the string is generated as specified.

m C string: the string is generated with a zero-value byte following its last character. This
is the string format used by C. -

s Pascal string: the string is preceded by a length byte. This, the default setting, is the
format of strings used by Pascal and the Macintosh library routines. Pascal strings asre
limited to 255 characters.

For further information about the sTRING directive, see “Assembly Options” in
Chapter 4.

If a string variable appears as the value of a macro parameter, the Assembler interprets it
" as a string when it appears in a relation and as an integer when it appears in an arithmetic
expression. For example, suppose the string *123 " is the value of the macro parameter
&i. When used in the expression i = '123', it would appear as a string. In the
expression i + 10, it would yield the 32-bit value of the integer 133. This is different
from the case of a string constant *123*, which is treated as the value $00313233.

Declared macro string variables are always treated as strings and may be used only as
strings. Macros have typed variables, as described in Chapter 6. Such variables declared as
specific types may be used only in contexts appropriate to their type.

Expressions

Expressions are used either in the operand field of source text or as SET array variable
subscripts (defined in Chapter 6 under “SET Array Variables™). They may be composed of
a single term or a combination of terms, with each term being either an identifier, a
constant, the location-counter symbol (*), or a macro function call. Integer terms are
treated as 32-bit signed values, and are combined by arithmetic, logical, shift, and
relational operators. Macro string terms may be combined only with relational operators.

The MPW Assembler recognizes the operators shown in Table 2-2. They are listed from
highest precedence to lowest. Groupings indicate operators of the same precedence.

28 MPW 3.0 Assembler Reference

s Table 2-2 Operators

Precedence Symbols - Operation
Highest () Grouping by parentheses
- Ones complement
- NOT Logical not
= Unary negation
. ~ Multiplication
/ DIV - Division
/7 MOD Modulus division
+ Addition
- ‘ Subtraction
>> Shift right
<< Shift left
- Equal to
<> - Not equal to
< Less than
> Greater than
<= < Less than or equal to
>= 2 Greater than or equal to
- AND Logical and
- OR I Logical or
Lowest -- XOR Logical exclusive-or

The rules for writing expressions are as follows:

s Only parentheses and the +, -, ~, =, and NOT operators are allowed at the start of an
expression.

m Subexpressions are designated by enclosing the subexpression in parentheses.

m An expression may not contain two terms or two operators (other than parentheses) in
succession.

m Parentheses may be nested to a maximum depth of 9 pairs.
m Arithmetic expressions should contain 2 maximum of 20 terms.

m Ifan expression is enclosed in parentheses, the Assembler ignores blanks within the
expression regardless of the setting of the BLANKS directive.

CHAPTER 2 Coding Conventions

s The multicharacter operators DIV, MOD, AND, OR, XOR, and NOT must be separated ./
from identifiers by at least one space. Hence these operators may be combined with
identifiers only if the BLANKS directive is oN (the preset mode), or if the expression
containing them is enclosed in parentheses.

s Floating-point constants may be enclosed in parentheses but may not be combined
with any of the other vperators in Table 2-2.

Evaluation of expressions

A single symbol is a single-term expression with the value represented by the symbol. The
Assembler reduces multiterm expressions to single values, following these rules:

s Each numeric term is given a 32-bit value. Overflows are ignored.

s Operations are performed from left to right, following the precedence indicated in
the operator table above.

m A parenthesized subexpression is reduced to a single value. The resulting value is then
used in computing the final value of the expression.

s When parenthesized subexpressions are nested, the innermost subexpression is
evaluated first.

m Every expression is computed as a 32-bit signed value. The limits on the final value
depend on how the expression is used.

s Division always yields an integer result; any fractional portion of the result is dropped.
= Division by 0 yields 0 as the result.

s The relational operators assign the absolute value 1 when the relation is t rue, and the
absolute value 0 when the relation is £a1se. The comparison is algebraic, except when
two character strings are compared. See “Boolean Control Expressions” in Chapter 7
for a discussion of the rules governing string comparisons.

s The NOT operator is equivalent to an exclusive-or with 1—that is, —e is equivalent to
the expression exor 1. This lets you negate Boolean expressions containing
relational operators.

s The shifting operators << and >> shift the left operand by the number of bits
specified in the right operand. Zeros are shifted into vacated bit positions. Bits
shifted out are lost. Shifting by more than 32 bits does not generate an error.

30 MPW 3.0 Assembler Reference

Expressions used as operands for bc and e directives or as literal operands for PEA and
LEA statements may have either string or integer values. The Assembler decides which
type the expression has by checking its first symbol. If the first symbol can be interpreted
as a string, the Assembler assumes the whole expression is a string. Thus the Assembler may
fail to evaluate certain ambiguous expressions, such as 'a*' - 32, as you may expect,
because the first symbol is 2 string constant. To force the Assembler to evaluate an
expression arithmetically, enclose it in parentheses; for example, (*a* - 32).

Here are some examples of valid expressions:

. A* 10 (a AND b)

* + 100 Alpha + (1 > j)* 10 (a ** b) ++ (c ** d)
Rec.Field+10 -64 (a AND b) OR (c AND d)
Alpha - Beta (a - bl+(c - d) ~(x + 10)

(a - bl/(20 + (¢ - d)) NOT(a OR b) a> b

‘tat - 32 ‘ab' + $8000 10 + x.y

Absolute and relocatable expressions

When an identifier is used as a label, the Assembler assigns it a value. This value is absolute
or relocatable, depending on the kind of statement or directive being labeled. Absolute
values are unaffected by their code module’s location in memory and have the same values
at assembly time as they do at run time. Relocatable values represent addresses.

Code and data module identifiers and code or data labels are relocatable. All code
modules are relocatable and data modules are relocated relative to register AS. Template
identifiers and fields are absolute.

Using the location-counter symbol (*) in an Assembler statement is the same as placing a
label in the label field of the statement and then using that label in the operand field of the
same statement. Since using the location counter is equivalent to using the label, it may be
considered either relocatable or absolute—relocatable when used in a code or data
module, absolute when used in a template.

The use of absolute and relocatable values in expressions causes the expression and its
resulting value to be either absolute or relocatable. The following sections describe how to
create absolute and relocatable expressions.

CHAPTER 2 Coding Conventions

31

JU.

w

Absolute expressions

An absolute expression may be an absolute symbol representing an absolute value, or any
arithmetic combination of absolute symbols. The resulting value is an absolute value. All
operators are allowed in absolute expressions, subject to the rules given above under
“Evaluation of Expressions.”

An absolute expression may contain relocatable values, alone or in combination with
absolute terms. All terms in such an expression must already have a value; there may be no
forward references. If there are relocatable terms there must be exactly one pair of them,
and the relocatable terms

s may be used only in effective addresses of machine instructions and pc or pcB
directive statements

m must access the same segment
s must refer both to code or both to data
a must consist of terms with opposite signs (+ and -)

The pairing of relocatable terms of opposite sign is allowed in an absolute expression
because the subexpression involving the difference between the relocatable terms cancels
the effect of relocation, thus producing an absolute value.

The following examples illustrate absolute expressions. In these examples, 77 and r2are
relocatable symbols; a1 and a2 are absolute symbols.

al

al+ 100 - a2
al~a2

rl-r2

(ri=-r2y +al*10
rl+al* 10 -r2

32 MPW 3.0 Assembler Reference

Relocatable expressions

A relocatable expression may contin relocatable values, alone or in combination with
absolute terms, provided that it conforms to these rules:

= There must be either one or three relocatable terms.

m If there are three relocatable terms, two oi them must te paired, as described earlier in
this chapter in “Absolute Expressions.”

s Relocatable symbols may be combined only with the + and - operators.

A relocatable expression reduces to a single relocatable value. This value is derived from
the odd relocatable term, adjusted by the values of the absolute terms.

In effective addresses, the Assembler assumes that all imported code or data symbols and
all forward references to undefined symbols are relocatable.

The following examples illustrate relocatable expressions. In these examples, 77 and r2are
relocatable symbols; a7 is an absolute symbol; and $7 and 12 are imported symbols.

rl+ 10

rl+ (al* 10) -1r2
il

i1+ 10 -42

i1+ 10

CHAPTER 2 Coding Conventions

33

Chapter 3 Address Syntax

THIS CHAPTER COVERS THE SYNTAX RULES FOR writing
MC68000, MC68010, MC68020, and MC68030 addresses in
MPW assembly-language source text =

Contents

Addressing modes 37
Ambiguities and optimizations 41
Forward-reference addressing 43
Registers 44
Special address formats 46
MC68xxx instructions 46
MOVEM: Multiple moves 46
MC68020 instructions 47
MULS and MULU: Signed and unsigned multiplication 47
DIVS and DIVU: Signed and unsigned division 47
TDIVS and TDIVU: Truncated signed and unsigned division 47
PACK and UNPK: Packing and unpacking 48
CAS and CAS2: Comparing and swapping 48
Bit field instructions 49
Tcc and TPcc: Trap on condition 49
Assembler control 49
The MC68030 processor 49
Assembler control 50
MC68020 statements you can use 50
MC68851 instructions you can use 50

35

3%

MC68881 and MC68882 instructions 52 A

FMOVEM with explicit register lists 52 ot

FMOVE with packed BCD data 52

FSINCOS: Simultaneous sine and cosine 53

FTcc and FTPcc: Floating-point trap on condition 53

FTEST: Text operand anc set floating-point condition codes 53
MC68851 instructions 53
Literals 55

MPW 3.0 Assembler Reference

Addressing modes

The MC68000 effective addressing modes are fully discussed in the Motorola M68000
8-/16-/32-Bit Microprocessors Programmer’s Reference Manual. Additional addressing
modes are available for the MC68020/MC68030. Both th:e MC68000 and MC68020
addressing modes are discussed in the MC68020 32-Bit Microprocessor User’s Manual.
MC68030 extensions are discussed in the MC68030 Enhanced 32-Bit Microprocessor User’s
Manual. If you are not familiar with how the Motorola addressing modes work, you should
read one of these books hefore trying to understand this chapter. The symbols used in
MPW assembly-language addresses are listed in Table 3-1.

= Table 3-1 Address symbols

ID Meaning

an Address register n, where 7 is a number in the range 0..7
D7 Data register n, where nis a number in the range 0..7
Rn Register n, either address or data, where n is a number in the range 0..7
Xn Index register n, where nis a number in the range 0..7. An index register may be
a data register (Dn) or an address register (An), optionally followed by a period
and a w or L size designation (16 or 32 bits, respectively).
*s Scaling factor, where s is an absolute expression which must produce the value 1,
2,4, or 8. Values 2, 4, and 8 can be used only with the MC68020 and MC68030. The
default value for sis 1. If you omit 5, you must omit the asterisk also.
The program counter
An absolute expression
A relocatable expression
An absolute (ae) or relocatable (re) expression resolvmg to 8 or 16 bits,
depending on the addressing mode.
Base displacement that is added before indirection occurs (MC68020 and
MC68030 only). This is defined as an absolute expression for addressing mode 6
and a relocatable expression for addressing mode 73. A word or long word is
generated for the bd as a function of its value, or for forward references as
specified by the FORWARD directive, discussed in Chapter 4. You may, however,
explicitly control the generated size by using the syntax (bd) .w or (bd) .L.
(continued)

"I RY

o>
|

CHAPTER 3 Address Syntax 37

s Table 3-1 (continued) Address symbols

ID- Meaning

od Outer displacement that is added after indirection occurs (MC68020 and
MC68030 only). This is defined as an absolute expression. A word or long word is
generated for the od as a function of its value, or for forward references as
specified by the FORWARD directive. You may, however, explicitly control the
generated size by using the syntax (od) .w or(od) .L.

Table 3-2 defines the syntax accepted for each addressing mode. Not all addressing

modes are allowed for all machine instructions. The Motorola manuals cited at the

. beginning of this chapter tell you which addressing modes may be used with each

instruction. Some of the modes have alternate syntactic forms, as shown. These alternate

forms are discussed in “Ambiguities and Optimizations,” given later in this chapter.

s Table 3-2 Address syntax summary

Mode Addressing mode Effective address syntax

0 Data register direct Dn -

1 Address register direct an P

2 Address register indirect (an)

3 Postincrement address register indirect (an)+

4 Predecrement address register indirect ~ —(an)

5 Address register indirect with 16-bit
displacement d(an)

6 Indirect with indexing plus
8-bit displacement d(anXn)

6 Indirect with indexing plus base :
displacement (bdanXn*s) bdanXn*s)

6 Indirect with preindexing ((bdan Xn* 4, 0d)

6 Indirect with postindexing (bdan],Xn*s,0d)

70 Absolute word (16 bits) ae (ae).W

71 Absolute long (32 bits) ae (ae).L

72 PC-relative with
displacement re d(pc)

38 MPW 3.0 Assembler Reference

s Table 3-2 (continued) Address syntax summary

Mode Addressing mode Effective address syntax

72 Literal (PC-relative with

16-bit displacement)** tae Hae)Ww #ae).L
73 PC-relative, indexing, 8-bit
displacement d(on) d(pc,Xn)
73° PC-relative, indexing, base
displacement (bdpc,Xn*s) bdlpc,Xn*s)
' bd Xn*s)
73 PC-relative with preindexing (bdpc,Xn* s, 0d)
73 PC-relative with postindexing (bd,pcl,Xn*s,04)
74 Immediate #ae

* Modes usable only with the MC68020 and MC68030
** MPW Assembler only; not supported directly by the processor.

When writing the address forms shown in Table 3-2, you must follow these rules:
s You must write parameters in the order shown.

s The square brackets shown in Table 3-2 do not indicate optional parameters. You
must write the brackets as shown.

m Expressions that specify immediate operands, literals, or absolute addresses may not
contain any forward, undefined, or imported references.

s Expressions that specify immediate operands and literals, with the exception of
absolute addresses, may contain SET variables and functions. You may follow the rules
for absolute expressions in macro directives, explained in Chapter 5.

w Expressions that specify displacements may contain imported references but no SET
variable or function references.

® Any expression involving an unpaired data reference or a forward reference to an
undefined identifier is assumed to be relocatable.

s Wherever Xn is shown, it may be written as Xn. w or Xn. L to indicate either 16-bit or
32-bit indexing. If the size is omitted, 16-bit indexing (suffix w) is assumed.

m The scale factor *s may be omitted. If omitted, a scale factor of 1 is assumed. If it is
specified, s must be an absolute expression with the value 1, 2, 4, or 8. Values of 2, 4,
and 8 are allowed only with the MC68020 and MC68030.

CHAPTER 3 Address Syntax 39

40

The addressing form bd (an, Xn*s5 with a scale factor sof 1, 2, 4, or 8 generates a
brief MC68020 effective address format, while the form (bd, an, Xn*s) generates the
full format. Similarly for the PC-relative forms: bd (pc, Xn*s) attempts to generate
the brief format and (bd, pC, Xn*s) generates the full format. (Brief formats are
possible only if bd is 8 bits.)

‘The addressing form d(pm) is equivalent to 4(pc, Dm) and generates the effective
address d-* (pc, Dm) . Similarly, the form bd(Xn*s) generates the effective address
bd-* (pc, Xn*s).

When two registers appear in parentheses, if the leftmost could be either An or Xn
(that is, if no explicit scaling or size is specified), then the base register An is assumed
to be the leftmost and the second is assumed to be the index register Xn.

Parameters may be omitted in the six additional MC68020/MC68030 modes. If a
parameter is omitted, the comma preceding it, if any, must also be omitted. Omitted
registers take on suppressed register values (0). Omitted displacements or
displacements with the value 0 take on null values (also 0). Omitted parameters may
result in ambiguous addressing modes. These are discussed next, in “Ambiguities and
Optimizations.” You can resolve these ambiguities by using zero-suppressed registers
—registers whose values are treated as 0 during effective address calculations.

Register mnemonics zpC, 2a0..2a7, and 2D0..2D7 specify zero-suppressed registers.

These symbols may be used to specify any allowable register in the six additional .

MC68020/MC68030 addressing modes. Using such mnemonics also explicitly forces
one of the extended addressing modes, if omitting the specified registers would
cause the Assembler to substitute a simpler mode. For the rules covering such
substitutions, see the next section, “Ambiguities and Optimizations.”

Equates (Equ and SET directive statements) to absolute values (such as constants
and registers) must be written before the equated symbols are used in the source text.
When the Assembler encounters a symbol in an effective address, the Assembler first
looks for the symbol in the code module’s local symbol table. If it does net find the
symbol there, it searches for it in the global symbol table.

Displacements are always sign-extended to 32 bits by the processor. Because a
number like $FFF6 could be incorrectly interpreted by a human (as 65526), it has been
made illegal in the MPW Assembler. To specify an offset of -10, you must write either
-10 (AS5)Of —$A (AS). ’

MPW 3.0 Assembler Reference

S

m Addressing mode 71 (absolute long) may be optimized to addressing mode 70
(aboluste word), depending on the value of your operand. Because SFFFF in the upper
word of a 32-bit operand is equivalent to sign-extension of a lower word that is
between $8000 and $FFFF, and because the absolute word mode is more efficient than
the absolute long mode, the Assembler automatically optimizes when it can, even if
opT NONE is in effect. Thus, if your absolute expression is 32 bits long and has SFFFF
(or $0000) in its upper byte, matching the value of the high bit of the low word, the
Assembler automatically generates an instruction that uses the absolute word
addressing mode. If you want to force a specific size, use the alternate notation. For
example, by writing (SFEDC) .L you can force the value of $FEDC to 32 bits, padded
with zeros, and by writing (SOFEDC) . w you can force the value to 16 bits (in this
case, $FEDC). Remember that this truncation proceeds without notice or warning, and
produces SFFFFFEDC after the processor sign-extends it

» With the Macintosh, all global data references are relative to the address in register AS.
This means that mode 5 or 6 addresses referring to global data should specify AS as the
address register. With data record fields or imported templates, such a specification
takes the form record field (a5) or record field (as, Xn)y, where record is a data
module record identifier and field is a field identifier within the record. See the
discussion of the Memory Manager in Inside Macintosh, Volume I, for a description of
the use of register AS.

& Note: If you specify a data field reference without an explicit base register, the
Assembler will assume register A5 and will change the addressing mode to mode 5, as
appropriate.

Ambiguities and optimizations

Under certain conditions, the Macintosh Assembler will transform the address syntax you
write in your source text to a simpler form. It does this to remove ambiguities, reduce

object code, and improve execution speed. These automatic transformations are
summarized in Table 3-3.

CHAPTER 3 Address Svntax 41

s Table 33 Effective address transformations

Original form Condition for optimization Opdmized form
(bd,an, Xn*s) Size of bd < 8 bits bd(an, Xn*s)
(an, Xn*s) Omitted bd (od = 0) 0 (an, Xn*s)
(bd,pc, Xn*s) Size of bd < 8 bits bd(pc, Xn*s)
(bd, an) Size of bd < 16 bits bd (an)

(bd, pC) Size of bd < 16 bits bd(eC)
d(an) d=0 (an)

Here are the rules by which the Assembler performs automatic address transformation

during assembly:

s The syntax for the mode 6 MC68020 extended addressing form, (bd, AnXnxs) , is
identical to the mode 2 addressing mode, (an), if the displacement and index are
omitted. If just the index is omitted, and the displacement is 16 bits or less, then the
mode 6 form, (bd, an) , is identical to mode 5, 4(An) . Even when the index is
specified, if the displacement is eight bits or less then the mode 6 form,

(bd, an, Xn) , is identical to the form d (an, Xn) . The Assembler resolves these
ambiguities by selecting the more efficient forms.

» A similar situation exists for the mode 73 form, (bd, pc, Xn=*s) . It is identical to
mode 72, d(pC) , when the index is omitted and the displacement is 16 bits or less,
and to mode 73, d(pc, Xn) , when the displacement is eight bits or less. As in the
mode 6 cases, the Assembler chooses the more efficient mode 72 form.

s The Assembler optimizes each address before it checks to see if it is an MC68020
address. If an MC68020 address is optimized to an MC68000 form, the Assembler will
accept it even when the target microprocessor is not the MC68020. Hence you can use
MC68020 forms to write MC68000 addresses if you really want to, provided they meet
the criteria for optimization.

s Some optimizations are made by detecting when it is possible to use the brief format
extension word instead of the full format extension word in the extended addressing
modes of the MC68020 and MC68030. The full format extension word is always used
when OPT NONE is selected.

4 MPW 3.0 Assembler Reference

Normally, the Assembler tries to use the shorter and more efficient form when interpreting
the foregoing addressing modes. If you want to preserve the extended address form, use
the op directive described under “Assembly Options” in Chapter 4 to suppress
transformation. In this case, remember that preindexing is more efficient than
postindexing, and using an index register is more efficient than using a base register with
displacement for indirect modes.

If you want to override automatic mode transformations with an individual instruction
and explicitly force a specific mode, use zero-suppressed registers (ZPC, ZA0..ZA7,
ZD0..ZD7).

¢ Note: Remember that when the program counter is zero-suppressed (ZPC), its
displacement is assumed to be absolute and hence is not offset from the current
location-counter (PC) value.

Forward-reference addressing

The size of the displacement values in the various modes of effective addresses can be 8,
16, or 32 bits depending on the value, the mode, and the processor. When you use
imported or forward-referenced identifiers in addresses, and there is no other way to
determine their size, the Assembler assumes default sizes for the various displacements.
All such default actions may be overridden with the BRANCH and FORWARD assembly-
control directives.

The Bcc, BSR, BRA, FBc¢, and PBcc instructions contain 8-bit, 16-bit, and 32-bit PC-
relative displacements without any explicit mode indication in their syntax. The 32-bit
displacement is available only in the MC68020 and MC68030, and the rBccand pBCC
instructions are limited to 16-bit and 32-bit forms. The Assembler assumes a 16-bit
forward-referenced offset, unless a period and suffix s or v is written after the mnemonic.
The BRANCH directive allows you to change the default size.

The rForwARD directive controls the default size for all other forward-referenced
displacement encodings—offsets, base displacements, and outer displacements. The
default size is 16 bits; you can change this to 32 bits with the MC68020 and MC68030 only.

CHAPTER 3 Address Synax 43

Registers

The addressing modes defined in Table 3-2 use the standard MC68000 address registers
(A0 through A7), data registers (DO through D7), and program counter (PC). Besides these,
the other processors and coprocesscrs supported by the MPW Assembler contain
additional registers, which may be named in some instructions and not in others. Table 34
lists all the registers recognized by the Assembler, including those already discussed. Refer
to the appropriate Motorola manuals, listed in the preface of this manual, for the exact

formats and uses of these registers.

s Table 34 Registers

Designation Usage

MC68000, MC68010, MC68020 and MC68030

D0..D7 Data registers

A0..A7 Address registers

A7, SP The current stack pointer

SR Status register

USP User stack pointer

MSP, SSP Master stack pointer

PC Program counter

MC68010, MC68020, and MC68030 only

SFC Source function code register
DFC Destination function code register
VBR Vector base register

MC68020 and MC68030 only

ISP Interrupt stack pointer

CACR Cache control Condition code register
CAAR Cache address register

ZPC Zero-suppressed program counter

ZA0..ZA7 Zero-suppressed address registers
Z2D0..Z2D7 Zero-suppressed data registers

44 MPW 3.0 Assembler Reference

s Table 3-4 (continued) Registers

Designation Usage

MC68030 only :

TT0..TT1 Transparent translation control registers
MMUSR Memory Management Unit Status Register
CRP CPU root pointer register

SRP Supervisor root pointer register

TC Translation control register

MC68851 only

CRP CPU root pointer register

SRP Supervisor root pointer register

DRP DMA root pointer register

PCSR PMMU cache status register

TC Translation control register

AC Access control register

CAL Current access level register

VAL Validate access level register

SCC Stack change control register

PSR PMMU status register

BAC0..BAC7 Breakpoint acknowledge control registers
BADO..BAD7 Breakpoint acknowledge data registers

MC68881 and MC68882 only

FPO..FP7 Floating-point data registers

FPCR Floating-point control register

FPSR Floating-point status register

FPIAR Floating-point instruction address register

Any of the register names listed in Table 34 may be equated to other identifiers by using
the EQU and sET directives. If you do this, make sure that you write the equates before
you use the new symbols. When the Assembler encounters a symbol in an effective address
position that may be a register, it first looks for the symbol in the code module’s local
symbol table. If it doesn't find it there, it searches the global symbol table.

CHAPTER 3 Address Syntax 45

Special address formats

Most MC68xxx instructions contain two effective addresses separated by a comma. The
first address is called the source and the second the destination. The instructions
generally cause an operation to be performed on the source, possibly in combination witia
the destination, and place a result in the destination. However, there are some exceptions
to this format. This section gives the syntax rules for such exceptions.

In the following sections, ea represents any effective address format that may legally be
used with the instruction being discussed.

MC68xxx instructions

MOVEM: Multiple moves

MOVEM. size rlist, ea
MOVEM . size ea, riist
Size:= W | L

The MovEM instruction takes a register list, r/ist, as either a source or destination. The
register list syntax is as follows:

® Rm-Rndesignates registers Rm through Rn (where m < n, and Rmand Rn are both A
registers or both D registers).

m Ri/Rj/Rk... designates registers Ri, Rj, Rk... where each term is an A register, a D
register, or a range Km..Kn.

Here are two examples:

Example Meaning
DO-D1/A3 DO, D1, and A3
D2-D4/Al1-A2/D7 D2, D3, D4, Al, A2,and D7

46 MPW 3.0 Assembler Reference

MC68020 instructions

For details of the syntax of these instructions, see the Motorola MC68020 32-Bit
Microprocessor User's Manual.

MULS and MULU: Signed and unsigned multiplication

MULS.L ea, Dl 32x32->32
MULS.L ea,ph:pl 32x32->64
MULU.L ea,nl 32x32->32
MULU.L ea,ph:pl 32x32->64

In these syntax diagrams, b/ designates the low-order register (/= 0..7) and DA the high-
order register (h = 0..7). These instructions support 32-bit multipliers and a
32-bit or 64-bit product, as shown by the comments in the far right column.

DIVS and DIVU: Signed and unsigned division

DIVS.L ea,0q 32/32 -> 32q
DIVS.L ea,Dr:Dg 64/32 => 32r:32q
DIVU.L ea,nq 32/32 -> 32q
DIVU.L ea,pr:Dq 64/32 => 32r:32q

In these syntax diagrams, Dg designates the quotient register (4= 0..7) and Dr the
remainder register (r = 0..7). These instructions support a 64-bit dividend, a 32-bit
quotient, and a 32-bit remainder, as shown by the comments in the far right column.

TDIVS and TDIVU: Truncated signed and unsigned division

TDIVS.L ea,nq 32/32 -> 32q
TDIVS.L ea,pbr:Dq 32/32 => 32r:32q
TDIVU.L ea,nq 32/32 -> 32q
TDIVU.L ea,Dbr:nDq 32/32 -> 32r:32q

In these syntax diagtams, Dq designates the quotient register (¢ = 0..7) and pDrthe
remainder register (r =0..7). These instructions divide two 32-bit values and return either a
quotient and a remainder or just a quotient, as shown by the comments in the far right
column.

& Note: The current edition of the Motorola MC68020 user’s manual uses the mnemonic
DIVSL.L to refer to these instructions.

CHAPTER 3 Address Syntax 47

PACK and UNPK: Packing and unpacking 4\

S
PACK ~(ax) ,~(ay) , *adjustment
PACK DX, Dy, *adjustment
UNPK <(ax) ,<ay) , *adjustment
UNPK DX, Dy, #adjustment
These instructions pack and unpack BCD digit formats between the source (x) and
destination () registers. The adjustment is a 16-bit absolute expression added to the
source value to allow character translation. This expression follows the same rules as those
for immediate operands.
CAS and CAS2: Comparing and swapping
CAs. size D¢, Du, ea
CAS2. size pcl:pc2,pul:pu2, (Rnl) : (Rn2)
sizex=B | W | L
These instructions are most easily explained as if they were a sequence of pseudo-Pascal
statements:
CAS: IF Dc=ea”
THEN . {We have a match}
ea” := Du {Copy Du to ea”}
ELSE {No match}
Dc := ea”; {Copy ea” to Dc}
CAS2: IF (Dcl = Rnl”) AND (Dc2 = Rn2")
THEN {We have a match}
BEGIN . {Set destination}
Rnl” := Dul; {(Copy Dul to Rnl"}
Rn2~ := Du2 {Copy Du2 to Rn2*}
END
ELSE {No match}
BEGIN
Decl := Rnl”; ({Copy Rnl” to Dcl}
Dc2 := Rn2" {Copy Rn2” to Dc2}
END;
Both instructions operate the same way, except that CAS2 operates on two sets of
registers simultaneously while cas operates on only one set of registers.
L

48 MPW 3.0 Assembler Reference

Bit field instructions

BFCHG ed {'offset: width'}’
BFCLR ed {'offset: width' }'
BFEXTS ed {'offset: width'}’ ,on
BFEXTU ed {offset: width'}’ ,pn
BFFFO ed {'offset: width'}’ ,pn
BFINS Dn, ed {'offset: width'}’
BFSET ed {'offset: width' }'
BFTST ed {'offset: width' }'

These instructions operate on a string of consecutive bits in a bit array. In the syntax
given, the braces and colon must be included as shown. A comma may be used in place of
the colon. The offset and width parameters must be either data registers or absolute
expressions. If they are expressions, they must follow the same rules as those for
immediate operands.

Tcc and TPcc: Trap on condition

TCC
TPCC.51Ze *#ae
size:=W | L

These instructions are the same as described in the MC68020 user's manual except that the
single mnemonic, TRaPcc, has been changed to two mnemonics, Tcc and TPcc. Tec s
used for the parameterless form, while Tpcc is used when an immediate data operand is
specified.

Assembler control

Source text written for the MC68020 processor must contain the following directive
before any MC68020 operations:
[macro-label] MACHINE MC68020

This directive tells the Assembler to process all subsequent code to run on the MC68020.

The MC68030 processor

The MC68030 processor is a single chip that combines most of the capabilities of the
MC68020 processor with some, but not all, of the capabilities of the MC68851 Paged
Memory Management Unit coprocessor. It is discussed in full detail in the Motorola
MCG68030 Enhanced 32-Bit Microprocessor User's Manual.

CHAPTER 3 Address Syntax 49

LN

Nt
Assembler control

Source text written for the MC68030 processor must contain the following directive
before any MC68030 operations:

[macro-label] MACHINE MC68030

This directive tells the Assembler to process all subsequent code to run on the MC68030.

A Warning The source text must not contain an MC68851 directive as well; if it
does, the Assembler reports an error. However, the source text may
include an MC68881 directive. a

After a MACHINE MC68030 directive, the s SETTING function will retum a value of
MC68030 when its operand is MACHINE. The & SETTING function is described in
Chapter 5.

MC68020 statements you can use

In source text intended for the MC68030 processor, you may use any of the instructions
and directives valid for the MC68020 except the caLLM and RTM instructions. These two
instructions may be used only with the MC68020 processor.

MC68851 instructions you can use

The MC68030 processor contains only six of the MC68851 registers (in addition to the
MC68020 registers), and can execute only some of the MC68851 coprocessor instructions.
The registers are listed in Table 3-5; the valid coprocessor instructions are listed in

Table 3-6.

s Table 3-5 MC68851 registers in the MC68030

Designation Usage

CRP CPU root pointer register

SRP Supervisor root pointer register

MMUSR. PMMU status register (PSR in the MC68851)
TC Translation control register

TT0..TT1 Transparent translation control registers

50 MPW 3.0 Assembler Reference

s Table 3-6 MC68851 instructions valid for the MC68030

Opcode Operand format Sizes

PFLUSH ferad ed

PFLUSHA

PLOADR feea

PLOADW feea

PMOVE PMMU-regea depends on PMMU-reg

PMOVE ea,PMMU-reg depends on PMMU-reg

PTESTR Jfcea#ad An)

PTESTW feearad An

The MC68030 also allows one instruction that is not valid for the MC68851:
PMOVEFD ea, PMMU-reg depends on PMMU-reg ’

The mask, #ae in several of the instructions in Table 3-6, is a three-bit absolute expression
and is stored in the instruction. The function code, fc in several of the instructions, may
be specified as follows:

fecu= #ae (specified as three bits in the command word, absolute expression)
pn (contained in the lower three bits of pn)
sFC (contained in the processor's source function register)
prc (contained in the processor's destination function code register)

The PMMU registers, mentioned in the PMOVE instruction, are listed in Table 3-5.

The root pointer registers in the MC68030 contain double long words, 64 bits long. The
PMOVE instruction, which references these registers, accepts immediate effective
addresses; hence for ea you can use #ae (mode 74, Table 3-2). If you do this, however, the
Assembler will convert the 32-bit effective address to a 64-bit value by filling it on the left
with 32 zero bits. It will also issue a warning, because it does not support 64-bit values.
You can avoid this limitation by defining a constant with two DC. L directives, then
referencing them in your PMOVE instruction. .

CHAPTER 3 Address Svntax 51

MC68881 and MC68882 instructions W

For details of the syntax of these instructions, see the Motorola MC68881/MC68882
Floating-Point Coprocessor User's Manual,

FMOVEM with explicit register lists

FMOVEM. Size Jp-riist, ea .
FMOVEM . Size ea, [p-riist
sizex= L | X

The FMOVEM instruction takes a floating-point register list, fp-rfist, as either a source or a
. destination. Here are the rules of register list syntax:
s Fpm-FPn designates floating-point registers £¥pm through Fen where m < n.

s FP#/FPj/FPk.. designates registers Fpi, Fpj, FP k... Each term is either a single register
FP7Orarange FEm.FPN.

s FPCR/FPSR/FPIAR designates the floating-point control registers FPCR, FPSR, and
FPIAR, in any order. You cannot combine these registers with other registers in a
register list.

Here are two examples:

Example Meaning 7N
FPO-FP3/FP7 FPO, FP1, FP2, FP3, and FP7 N
FPCR/FPSR Control registers FPCR and FPSR ,
FMOVE with packed BCD data

FMOVE.P FPn, ea

FMOVE.P Fen, ed ('#k')’

FMOVE.P FPn,ed {'Dn'}’

When writing this instruction you must include the braces as shown. The numerical
expression inside the braces is the k-factor, which tells the MC68881 coprocessor in what
format to construct the resulting decimal string, It may be expressed either dynamically
(as the value in register D), as an absolute expression preceded by the pound sign (#), or
by default. For an explanation of k-factors, see the discussion of FMOVE in the Motorola
MC68881/MC68882 Floating-Point Coprocessor User’s Manua.

52 MPW 3.0 Assembler Reference

FSINCOS: Simultaneous sine and cosine

FSINCOS. size €a,FPCIFPS
FSINCOS .X FPm,FPCIFPS
Sizez=B | W | L | S|DIJ|X|P

Fpc is the floating-point register holding the cosine result. Fes is the floating-point
register holding the sine result. Fem is the floating-point register holding the source value.

FTcc and FTPcc: Floating-point trap on condition

FTCC

FTPCC.5ize #ae

sizex= W | L
These instructions are the same as FTRAP cc, described in the Motorola
MC68881/MC68882 user's manual, except that the two mnemonics FTcc and FTPCC have
been substituted for FTRAP cc. You write FTcc for the form without parameters and
FTrcc for the form with an operand.

FTEST: Test operand and set floating-point condition codes

FTEST. Size a
FTEST.X FPn
sizex=B | W I L| S| DI X | P

The FTEST instruction is the same as FTST, described in the Motorola
MC68881/MC68882 Floating-Point Coprocessor User’s Manual. The mnemonic was
changed to FTEST to avoid ambiguity with the FTcc instruction using a signaling true
(sT) conditional predicate.

MC68851 instructions

If your source text contains code for the MC68851 PMMU coprocessor, you may use
special operand formats with the instructions listed in Table 3-7. For details of the syntax
of these instructions, see the Motorola MCG68851 Paged Memory Management Unit

User's Manual.

CHAPTER 3 Address Svntax 53

&

s Table 3.7 Special MC68851 operand formats

Opcode Operand format Sizes Notes

PBCC.Size label WL

PDBCC.Size on, label W

PFLUSH Jo#ael, eal 1

PFLUSHA

PFLUSHS fo#ael, ea) 1

PFLUSHR ea D 4

PLOADR fc,ea 1

PLOADW fc,ea 1

PMOVE PMMU-reg, ea BIWILI|ID 2

PMOVE ea, PMMU-reg BIWI|L|D 24

PRESTCRE e

PSAVE ea

PScC e B

PTESTR fcrea, #ael, an) 1

PTESTW fc,ea, #ae[, an) 1

PTCC 3

PTPCC #ae AN 3

PVALID ~ VAL, ed L 2

PVALID An, ea L

1. The function code is defined as follows: —

fe:= #ae (specified as three bits in the command word)

bn (contained in the lower three bits of pn)
src (contained in the processor’s source function register)
prc (contained in the processor’s destination function code register)

2. The MC68851 registers are listed in Table 3-4.
3. The Assembler recognizes the instruction mnemonics pTcc and PTP cc in place of the

5

Motorola mnemonic pTrapcc. Use pTcc for the form without parameters and pTrcc
for the form with an immediate data operand.

The root pointer registers in the MC68851 contain double long words, 64 bits long. The
FLUSHR and PMOVE instructions, which reference these registers, accept immediate
effective addresses; hence for ea you can use #ae (mode 74, Table 3-2). If you do this,
however, the Assembler converts the 32-bit effective address to a 64-bit value by
filling it on the left with 32 zero bits. It also issues a warning, because it does not
support 64-bit values. You can avoid this limitation by defining a constant with two
pC. L directives, then referencing them in your FLUSHR of PMOVE instruction.

. The labelin the PBcc.size and PDBcc.size instructions must obey the rules for

relocatable expressions.

MPW 3.0 Assembler Reference

Literals

Frequently, it is necessary to push the address of a constant value onto the stack.
Unfortunately, in the MC68xxx instruction set, the effective addressing modes for the PEA
and LEA instructions do not permit immediate data. Nonetheless, these instructions are
used quite often for passing parameters to subroutines, particularly for passing string
addresses to Macintosh ROM routines. Hence the MPW Assembler allows you to specify
immediate data to PEA and LEA instructions. As used here, an absolute expression (with
no forward, imported, or undefined references) or a string is called a literal.

The syntax for writing PEA and LEA instructions with literals is as follows:

PEA #dawa Pushes address of data
LEA #data, an Loads address of data
PEA #'MyConstant' Pushes address of *MyConstant'

This is functionally equivalent to the following:

PEA L1

LEA Ll,Aan

PEA ConstAddr

ALIGN 2 ; Must be on word boundary
L1 DC. size
ConstAddr DC.size 'MyConstant’

The size qualifier is B or w or L, corresponding to the data size or to the explicit
specification of the literal.

The Assembler creates a PC-relative mode-72 address when processing p£a and Lza
instructions.

All literals encountered during the assembling of a code module are accumulated in an area
called the literal pooL Multiple references to the same literal address only generate one
instance of the literal in the literal pool; duplicate literals are not generated. The literal
pool is attached to the end of the code module as part of the code.

When a string literal is generated, it may be any one of the three formats for character
strings—an as-is string, a C string, or a Pascal string. The Assembler determines which
format to use by the current setting of the STRING directive at the time the literal is
placed in the literal pool by the PEA or LEA instruction. A STRING directive setting at the
end of the module has no effect on the format of strings in the literal pool.

CHAPTER 3 Address Syntax 55

If an absolute expression is used to generate a literal, the size of the literal depends on its

value, as follows:

m Values between -32767 and (unsigned) 65535 are created as word-size literals.
s All other integer values are created as long-word literals.

s Floating-point values are created as extended (12-byte) literals. You may use such
values only if the Mc68881 directive is in force.

Because both strings and absolute expressions may be used as literals, the Assembler may
interpret an absolute literal incorrectly if its first symbol is a string constant. To force the
Assembler to treat a literal as absolute, enclose it in parentheses.

The Assembler lets you override the implicit sizing of numeric literals by explicitly
specifying their size. This is done by extending the literal syntax, as follows:

PEA
PEA
PEA
PEA
PEA
PEA
LEA
LEA
LEA
LEA
LEA
LEA

#(ae) . w
#(ae).L
#(ae).s
#(ae).D
#(ae) . x
#(ae).p
#(ae) .W,An
#(ae).L,An
#(ae).s,an
#(ae).D,An
#(ae) .x,an
#(ae).p,An

Immediate word data for PEA

Immediate long-word data for PEA

Immediate single-precision data for PEA

Immediate double-precision data for PEA

Immediate extended data for PEA

Immediate packed BCD data for pEA

Immediate word data for LEA

Immediate long-word data for LEA

Immediate single-precision data for LEA

Immediate double-precision data for LEA -
Immediate extended data for LEA S
Immediate packed BCD data for LEA

¢ Note: Single, double, extended, and packed BCD data can be used only if the Mc68881

directive is in force.

Enclosing the literal in parentheses and following it with a size qualifier (such as w)
establishes its size. The value of the literal must always lie within the range specified. Size
qualifiers are described in Table 2-1.

56 MPW 3.0 Assembler Reference

Chapter 4 Assembler Directives

DIRECTIVES ARE INSTRUCTIONS TO THE MPW ASSEMBLER to perform
specific operations during assembly. =

Contents

Assembler directives 59
Code and data module definitions 59
Symbol definitions 59
Data definitions 59
Template definitions 59
Linker and scope controls 60
Assembly options 60
Location-counter controls 60
File controls 60
Listing controls 60
Directive formats 61
Code and data module definitions 62
PROC and ENDPROC: Define procedure code module 62
FUNC and ENDFUNC: Define function code module 63
MAIN and ENDMAIN: Define main program code module 63
RECORD and ENDR: Define a data module 64
INCREMENT and DECREMENT 65
MAIN 66
CODE and DATA: Switch between code and data 67
END: End the assembly 67
Symbol definitions 68
EQU and SET: Name constants and registers 68
REG and FREG: Name register list 70
OPWORD: Name machine instruction 71
Data definitions 72
DC and DCB: Place constants in code ordata 73
DS: Define storage atea 75

58

Template definitions 76
RECORD and ENDR: Define a template 76
Using templates as data types 81
WITH and ENDWITH: Supply RECORD name qualification 82
Linker and scope controls 84
EXPORT and ENTRY: Expand scope of entry points 85
IMPORT: Identify external entry points 87
CODEREFS and DATAREFS: Control name linking 88
Code-to-code references 89
Code-to-data references 90
Data-to-code references 90
Data-to-data references 91
SEG: Specify current code segment 92
COMMENT: Place a comment in object file 93
Assembly options 93
MACHINE: Specify target machine 93
MC68881: Assemble MC68881/MC68882 coprocessor instructions 94
MC68851: Assemble MC68851 coprocessor instructions 95
STRING: Specify string format 95
BRANCH and FORWARD: Resolve forward branches 9%
OPT: Specify level of code optimization 97
CASE: Specify treatment of lowercase letters 98
Writing register names 99
BLANKS: Control acceptance of blanks in operand field 99
Location-counter controls 100
ALIGN: Align location counter 100
Special cases 101
ORG: Set location counter 102
File controls 103
File search rules 104
INCLUDE: Take source text from another file 104
DUMP and LOAD: Write and read symbol table files 105
ERRLOG: Specify error log file 106
Listing controls 107
PAGESIZE: Specify listing page size 107
TITLE: Specify title line for listing 108
PRINT: Control listing information 108
EJECT: Start new listing page 111
SPACE: Insert blank line in listing 111

MPW 3.0 Assembler Reference

Assembler directives

A number of MPW Assembler directives (RECORD, PROC, EXPORT, SEG, and so on) were
mentioned in Chapter 2. This chapter covers them and others in detil. The discussion is
organized into these groups:

Code and data module definitions

PROC Begin a procedure code module
ENDPROC End a procedure code module
FUNC Begin a function code module
ENDFUNC End a function code module

MAIN Begin a main program code module
ENDMAIN End a main program code module
RECORD Begin a data module

ENDR End a data module

CODE Switch assembly from data to code
DATA Switch assembly from code to data
END End the whole assembly

Symbol definitions

EQU Assign a permanent value to a symbol

SET Assign a temporary value to a symbol

REG Assign an identifier to a processor register list
FREG Assign an identifier to an MC68881 register list
OPWORD Assign an identifier to an opcode

Data definitions

DC Place constants in a code or data module

DCB Place a block of constants in a code or data module
DS Define a storage area

Template definitions

RECORD Begin a record template definition

ENDR End a record template definition

WITH Begin default record identifier qualification

ENDWITH End default record identifier qualification

CHAPTER 4 Assembler Directives

5

‘m\\

Linker and scope controls

EXPORT Make entry points accessible in other assemblies
ENTRY Make local entry-points global

IMPORT Identify entrv points declared externally

copErers Control the linking of code-to-code references

paTAREFS Control the linking of data-to-code and data-to-data references
SEG Specify the current code segment

COMMENT Place a comment in the object file

Assembly options

MACHINE Identify the target microprocessor model
MC68881 Control the assembly of floating-point coprocessor instructions
MC68851 Control the assembly of PMMU coprocessor instructions

STRING Control the encoding of string constants

BRANCH Control the encoding of branch instructions

FORWARD Control the encoding of forward references

OPT Control the level of code optimization

CASE Control the treatment of lowercase lenters in identifiers
BLANKS Control the treatment of spaces and tabs in the operand field

Location-counter controls

ALIGN Advance the location counter to the next multiple of a value
ORG Set the value of the location counter

File controls

INCLUDE Insert source text from another file

DUMP Write the current global symbol table to a file

LoAD . Read afile into the current global symbol table

ERRLOG Create an error-listing file

Listing controls
PAGESIZE Specify the listing page size

TITLE Define a title for the listing header
PRINT Control miscellaneous listing options
EJECT Start a new page in the listing
SPACE Insert blank lines in the listing

In addition to the directives listed above, the MPW Assembler supports directives for
macro definition and expansion, macro variables, and conditional assembly. These are
described in Chapters 5, 6, and 7.

60 MPW 3.0 Assembler Reference

Directive formats

Macintosh directives follow the general format for Assembler statements. You write them
in four fields, separated by spaces or tabs, as described in Chapter 2 under “Machine
Instruction Syntax™:

Label fleid Operation fleid Operand fleid Comment fleid

(identifier] directive name [directive parametersy [comments)

The identifier in the label field may be required by the directive or may be an optional
macro label. If you include a macro label, you can reference the directive from macro
statements as described under “GOTO, IF...GOTO, and Macro Labels: Branching” in
Chapter 7.

If the directive does not require a label or allow an optional macro label, you cannot
include a label with it

The directive name specifies which directive the Assembler executes. It is always
required. The Assembler makes no distinction between uppercase and lowercase letters in
directive names.

The operand field contains the directive’s parametess, if any. Such parameters may be
either required or optional, depending on the directive.

You can include a comment with a directive, writing it after all the directive’s required
parameters (if any). With directives that have no parameters or have only optional
parameters, you can still include commeats even if you don't specify any parameters. Use
the standard convention of placing a semicolon in the operand field, following it with the
comment field. Directive comments are ignored by the Assembler.

& Note: In the remainder of this chapter and in Chapters 5, 6, and 7, directive syntax is
usually defined by means of syntax diagrams. You can find the rules for interpreting
these diagrams under “Notation Conventions” in the Preface.

CHAPTER 4 Assembler Directives

61

Code and data module definitions

*Source Text Structure” in Chapter 2 describes how Macintosh object files are built from
code and data modules. The directives described in this section delimit the code and
data parts of your source text and tell the Assembler how to apply the stateinents in each
part to specific modules. They are the following:

PROC Begin a procedure code module
ENDPROC End a procedure code module
FUNC Begin a function code module
eNDFUNC End a function code module

. MAIN Begin 2 main program code module

ENDMAIN End 2 main program code module
RECORD Begin a data module

ENDR End a data module

CODE Switch assembly from data to code
DATA Switch assembly from code to data
END End the whole assembly

PROC and ENDPROC: Define procedure code module

[name) PROC [{ENIB.I H
EXPORT

statements
[macro-label) ENDP[ROC]

A pRroc directive in your source text marks the beginning of a code module. The code
module extends from the proc directive until the next ENDPROC, or until the start of the
next code module (PROC, FUNC, or MAIN), the next data module (RECORD), or the end of
the assembly (END). You can write ENDPROC as ENDP. Code modules are the only places
where you can write machine instruction statements.

If you write a name in the label field of a PrRoC directive, it becomes the identifier of the
code module that begins there. The identifier is global to the assembly file. If you do not
provide an identifier, you must define entry points inside the module by using ENTRY or
EXPORT directives. ENTRY and EXPORT are described later in this chapter.

You can declare the code module itself as ExPORT in two ways: by specifying the module
identifier in an EXPORT directive before you define the module or by writing EXPORT as
an operand in the proc directive itself. In either case the proc directive that begins an
EXPORT code module must include an identifier in its label field.

62 MPW 3.0 Assembler Reference

If you do not declare a code module as ExpoRT, the Assembler declares it as ENTRY by
default. For clarity of documentation, you may explicitly declare it as ENTRY in the PROC
directive or specify its identifier in an ENTRY directive before defining the module. The
latter technique is useful if you need to make a forward reference to the module.

You can declare the identifier of a procedure code module as MAIN by using a previous
ENTRY Or EXPORT directive. This has the same effect as declaring it with the MAIN
directive described later in this chapter.

Labels defined inside a code module are local to that module. The only way to make these
labels accessible to other modules is to declare them as EXPORT or ENTRY inside the
module.

FUNC and ENDFUNC: Define function code module

Ferene]

[namel FUNC [{ EXPORT

statements
[macro-labe)l ENDF{UNC]
FUNC and ENDFUNC act exactly the same as PROC and ENDPROC. They are included for

documentation purposes only, so that you can indicate that the code module is a
function rather than a procedure. You can write ENDFUNC a5 ENDF.

MAIN and ENDMAIN: Define main program code module

[name) MAIN [{ENIBX }]
EXPORT

Statements
(macro-labe) ~ ENDMAIN
MAIN and ENDMAIN act exactly like PROC and ENDPROC, except that they declare the

code module that they define as the main program. The first executable statement of that
code module becomes the execution entry point for the whole program.

To declare a code module statement other than the first executable statement as a2 main
entry point, use a previous ENTRY Of EXPORT directive. ENTRY and EXPORT are
described later in this chapter.

An assembly, including all its linked parts, may have only one main program module or
main entry point.

CHAPTER 4 Assembler Directives

Note: If your program contains one or more data modules containing D¢ or DCB
directives, you must link it with the library file Runtime.o, which contains the data
initialization routine _DataInit. If your main code module is written in assembly
language, its first executable statement must be a call (gsR) to the entry point
_DataInit. This entry point must also be declared as 1MPORT. After returning from
_Datalnit,your program may unload the segment $ASInit that contains it by
calling the Macintosh routine Unloadseg. If your main program is written in C or
Pascal, no explicit call to _DatazInit is required, because the run-time libraries for C
and Pascal automatically take care of data initialization.

RECORD and ENDR: Define a data module

ENTRY IHCB[EMEM]H
[namq RECORD [{ sxpoar}] ['{DECR[EMENT]
directives
Imacro-label] ENDR

RECORD and ENDR let you delimit and name a data module. The data module extends
from the RECORD directive until the next ENDR or until the start of the next code module
(PROC, FUNC, MAIN), the next data module or template (RECORD), or the end of the
assembly (END). RECORD and ENDR act like PROC and ENDPROC, but define a data
module instead of a code module.

¢ Note: RECORD and ENDR are also used to define templates. This usage is described
below under “Template Definitions.”

Data modules may contain only directives. Some of these directives—ORG, ALIGN, DC,
pcB, and ps—define data fields. Others, such as symbol definitions, define data within
the fields.

Every data module must have an identifier. This is because the identifier is used to qualify
the module’s field identifiers when they are accessed from code modules. Unlike labels in
code modules, the field labels in data modules may be accessed by all code modules that
follow them in the source text file. You can also make them accessible to other files by
including ExPORT directives inside the module. Conversely, you must define a data
module before accessing any of its fields'in the same file.

You can access a field in a data module by an identifier of the form mod. field, where mod
is the identifier of the data module and field is a label inside the module.

64 MPW 3.0 Assembler Reference

Data modules may be declared as EXPORT or ENTRY just like code modules. You can
either specify the module identifier in an EXPORT or ENTRY directive before defining the
module, or include EXPORT or ENTRY as an operand in the RECORD directive itself. If you
do not specify one or the other, the Assembler declares the data module as ENTRY.

The MPW Linker collects all global data modules so that they may be loaded as a group by
the Segment Loader. It loads them just below the application parameters, pointed to by
AS. Thus all global data modules are accessed relative to A5, with negative offsets
determined by the Linker. The implied base register for qualified field references is AS; it
need not be specified in machine instructions unless indexing is used. See the discussion
of the Memory Manager in Inside Macintosh, Volume 11, for further details about AS.

As with code modules, data modules have their own location counter; it points to the next
available data location in the data module. In any data module, the value of this counter
may range from -32768 to +32767.

INCREMENT and DECREMENT

In code modules, each machine instruction is executed immediately after the one
preceding it. Thus the location counter for a code module is incremented for each
instruction. Data module location counters act similarly, except that you can choose
whether they increment or decrement.

INCREMENT is the default action for any data module location counter. If you specify it
in a RECORD directive or omit the parameter altogether, the Assembler increments the
resulting data module’s location counter by the size of each piece of data after that data
is allocated. The location counter therefore always points to the lowest address of the
next piece of data.

If you specify DECREMENT in a RECORD directive, the Assembler allocates data in the
data module in the reverse direction. This corresponds to the allocation algorithm of
Pascal. The location counter is first decremented by the size of each piece of data,
before it is allocated; hence, each piece of data starts at an address lower than the one
before it.

When the Assembler defines 2 DECREMENT data module, it locates the module’s identifier
at an entry point outside the module and at a higher address. Thus the actual module is
anonymous; you cannot access it directly. Further, since the Assembler gives the
module’s identifier an offset that is equal to the size of the module, the identifier remains
undefined until the completion of the module’s definition. This means it cannot be
accessed inside the module by expressions that require all identifiers to be previously
defined, such as equates.

CHAPTER 4 Assembler Directives

65

In terms of their actual structure in the object file, all code and data modules containing n
bytes are considered to have their bytes numbered positively from 0 to n - 1. With code
modules and incrementing data modules, their location-counter offsets correspond
directly to their object file numbering, With decrementing data modules, however, their
location-counter offsets and object file numbering are complementary. Byte 0 in the
object file corresponds to the end of the last byte of the !ast piece of data in the medule.

To illustrate this, suppose you defined a data module consisting of three long words:

Location Object file
counter bytes
Data RECORD , DECREMENT 2
—4 a DS.L 1 8
-8 b DS.L 1 4
-12 c DS.L 1 0
ENDR

The numbers on the left are the generated offsets as determined by the location counter.
The numbers on the right are the module offsets in the object file. Since the Assembler
generates references to the module as offsets from the module identifier, the Assembler’s
negative offsets will work only if we define the identifier as byte n of the module (not as
byte 0), where n is the size of the module—in the above example, 12. In this way the
identifier specifies an entry point in an anonymous module.

You can write INCREMENT as INCR and DECREMENT as DECR.

MAIN

The parameter value MAIN in 2 RECORD directive generates a special form of
decrementing data module, called the main data module. When it collects all the data
modules in your source text together, the Linker normally adjusts the A5 offsets in all code
statements that access data. This means that the Linker must retrieve all referenced data
locations from the object file. By declaring one data module as MAIN, you can shorten
this process.

A program can have only one main data module. The Segment Loader loads it first,
immediately below AS. Because the position of the main data module is unique, the
Assembler can adjust the code statement offsets that access it without relying on the
Linker. The Linker, in turn, does not retrieve the locations of data in the main data module
and no Linker records are generated for it in the object file. As a result, the unlinked

object file is smaller and the Linker runs faster.

Because the main data module is loaded below A5 and its offsets are generated by the
Assembler, the generated offsets are negative. Therefore the main data module is always a
decrementing data module.

[MPW 3.0 Assembler Reference

e

CODE and DATA: Switch between code and data

[macro-label | CODE

INCR[EMENT]
[macro-label DATA DECR[EMENT]
MAIN

You can define an associated data module during the definition of a code module,
without ending the current code module, by using cope and paTa. (This technique is
illustrated in Chapter 2 under “Source Text Structure.”)

copE and DATA may be used only inside a code module—a module defined by proc,
FUNC, or MAIN. The DATA directive switches the Assembler to defining a data module;
coDE switches it back to defining the original code module. The final result is one
contiguous code module and one contiguous data module, regardless of how many times
you use CODE and DATA. Remember that your source text may contain only directive
statements when DATA is in force; it may contain both machine instruction statements
and directive statements when CoDE is in force.

The parta directive can generate either an incrementing, decrementing, or main data
module, depending on the value of its parameter. With no parameter, it generates an
incrementing data module. A full explanation of these options is given under “RECORD and
ENDR” earlier in this chapter. The option you select the first time you use DATA in a given
code module governs all data generation within that module; the Assembler ignores
subsequent DATA parameters until the code module ends. You can generate different
kinds of data modules from different code modules, however. You can use MaIN, with
either RECORD Of DATA, only once in a program.

You can write INCREMENT as INCR and DECREMENT as DECR.

END: End the assembly

[macro-label END

The END directive marks the end of your assembly. The Assembler ignores any source text
after END.

END is a required directive. The Assembler generates a warning (not an error) if it is
omitted. You must not place END in a file called by an 1ncLUDE directive, unless you
intentionally want to terminate your assembly from the included file.

CHAPTER 4 Assembler Directives

67

Symbol definitions

The directives described in this section let you assign values to individual identifiers.
They let you name certain objects—numeric constants, individual registers, register lists,
and opcodes—so that you can use the identifiers instead of the original objects in your
source text. The directives are as follows:

EQU Assign a permanent value to a symbol

SET Assign a temporary value to a symbol

REG Assign an identifier to a processor register list
FREG Assign an identifier to an MC68881 register list
OPWORD Assign an identifier to an opcode

EQU and SET: Name constants and registers

arith-expr
name EQU reg
import-na

arith-expr
name SET reg
import-

EQU and SET assign the value in the operand field to the identifier in the label field. Both
fields are required. These directives are collectively called equates. The operand may be a
numeric expression, a register name, or an identifier imported from another module.

EQU assigns a permanent value; once an identifier has been used in an EQU directive it may
not be redefined in another Qu directive within its scope, with the one exception that an
EQU with the same value generates a warning. SET assigns a temporary value; the same
identifier may be redefined with another SET directive.

When you use EQuU or SET with a numeric expression, follow these rules:

s The numeric expression arith-expr must not contain any forward or undefined
references.

s Relocatable expressions are allowed only inside code modules and data modules.

Equates defined outside modules or inside code modules may take any value. If you
use an equate in a template or data module, its value must be in the range
~32768..+32767 (that is, a signed 16-bit value).

68 MPW 3.0 Assembler Reference

You can use EQU or SET with any of the register names listed in Table 34 or with any
identifier previously equated to one of those register names.

* You can equate an identifier to a floating-point constant or to any identifier previously
equated to a floating-point constant, but only if the MC68831 directive is in effect.
Because such constants are not evaluated until used (by a pc directive or an MC68881
machine instruction), EQU and SET store their values as strings and dc not valicate them.

Equates to absolute values (constants and registers) must appear in your source text
before you use the equated identifiers. When the Assembler encounters a symbol in an
effective address in a code module, it searches for its value first in the code module’s local
symbol table (if the symbol has been defined), then in the global symbol table. This means
that effective addresses may not contain forward references to equates defining absolute
values or registers. Forward references to relocatable equated values (for example,
equates to the location-counter value) are allowed, since the Assembler always assumes
that forward references refer to relocatable objects.

A Warning If you give the same identifier to a forward-referenced local label as
you give to a global absolute equate symbol, the Assembler uses the
value of the global symbol and issues a name conflict warning. This
occurs because the local identifier is not yet defined. Here is an
example:

Piotrus EQU 7
Alek PROC
MOVE #Piotrus,A2
Piotrus MOVE #0,Al
END
###%# Warning 233 ### Possible name conflict with
global symbol: PIOTRUS File "hd40:MPW:Worksheet";

line 4 a

Here are some examples of valid equates: .
Length EQU *-Start ; Define Length,

; Start to location counter
Cr EQU $0D ; Define the return character
X SET Y+10 ; Define X as the value of Y+10
X SET Y+20 ; Redefine X as the value of Y+20
StkPtr EQU A7 ; Define StkPtr as register A7
ProgCtr EQU PC ; Define ProgCtr as

; the program counter
SuppA2 SET ZA2 ; Define SuppA2 as a

zero-suppressed A2

CHAPTER 4 Assembler Directives

09

Alpha EQU (a+b)*10

Pi EQU "3.14159"

Ne v we w,

Define Alpha with the
expression’s value

Define Pi as a floating-point
constant

REG and FREG: Name register list

name REG rlist
name . FREG Jp-riist

The REG and FREG directives assign the register list rfist or f-rfist to the spedified name.
Lists named by REG are used with MOVEM instructions; lists named by FREG are used with
FMOVEN instructions. You can use FREG only if the Mc68881 directive is in force. Simple

register lists are composed as follows:

s Rm-Rn designates registers Rm through Rn (where m < n, and Rmand Rn are both A

registers or both D registers).

s RURj/Rk... designates registers Ri, Rj, Rk... where each term is an A register, a D

register, or a range Rm..Rn.

» Fpm~FPn designates floating-point registers Fpm through FPn (m < n).
s FPi/Fpj/FPk.. designates registers FP{, FPj, FPk.... Each term is either a single

register FP7 Of a range FPM..FPN.

s FPCR/FPSR/FPIAR designates the floating-point control registers FPCR, FPSR, and
FPIAR, inany order. You cannot combine these registers with other registers in a

register list.

Here are some examples:

Exampie Meaning

D0-D1/A3 DO, D1, and A3
D2-D4/A1-A2/D7 D2, D3, D4, Al, A2, and D7
FPO-FP3/FP7 FPQ, FP1, FP2, FP3, and FP7
FPCR/FPSR Control registers FPCR and FPSR

The scope and search rules for register-list identifiers are exactly the same as for equate

identifiers, as discussed earlier under “EQU and SET.”

You can use identifiers defined by REG and FREG to build up more complex register lists.
To do this, you concatenate them with register lists or other register-list identifiers, as

shown here:

VolatileDs REG DO-D2

VolatileAs REG A0-Al

VolatileRegs REG VolatileAs/VolatileDs
ActiveRegs REG VolatileRegs/D6-D7/A4

70 MPW 3.0 Assembler Reference

Volatile D registers
Volatile A registers
Volatile A and D registers
All required registers

i

i {
R

T

In this example, the register list ActiveRegs is defined so that it is equivalent to the
simple list D0-D2/D6-D7/A0-A1/A4.

Here is 2 sample program fragment that shows REG and FREG directives used with MOVEM
and FMOVEM statements:

PascalRegs RES D2-D7/A3-AS ; Names Pascal registercs
FPRegs FREG FPO-FP7 ; Names FP registers
P PROC EXPORT
LINK A6, #-LocalSize
MOVEM. L PascalRegs, - (A7) ; Save Pascal registers
FMOVEM. X FPRegs, - (A7) ; Save FP registers
FMOVEM. X (A7) +,FPRegs ; Restore FP registers
MOVEM.L (A7)+,PascalRegs ; Restore Pascal registers
RTS
ENDPROC

OPWORD: Name machine instruction

name OPWORD abs-expr

ORWORD is used to assign a numeric value to the identifier name so that it may
subsequently be used as a machine instruction. The expression abs-expr must have an
absolute value in the range 0..65535 ($0..$FFFF, hexadecimal) and may not contain any
forward, undefined, or imported references. Identifiers defined by opworD may be used
only inside code modules.

When the Assembler processes any mnemonic, it searches the following lists in the

order shown:

1. standard opcodes and directives, including coprocessor instructions

2. macro identifiers

3. opwoRD names in the code module’s local symbol table

4. OPWORD names in the global symboi table

Although the Assembler makes no assumptions about the use of opwoRD definitions, the
intent of 0PWORD is to allow you to define the Macintosh trap values. For example, you

could define _Read as an identifier for the Macintosh File Manager read trap ($A002)
as follows:

_Read OPWORD SAQ002 ; Define read trap call

CHAPTER 4 Assembler Directives

71

P ;’:3\

To generate the value represented by an oPwWORD name, use the name just like an
Assembler mnemonic or macro call. For example, after the opwoRrD directive just
illustrated, the following causes the Assembler to generate an opcode of value $a002:

_Read ; Generate $A002 trap call

Names defined by opworD may be used with parameters. The genera! syntax for the use of
an OPWORD Name is

[{label | macro-labell] opword-name (abs-expri,...

The expressions abs-expr must have absolute values in the range 0. 65535 ($0..$FFFF) and
must not contain any forward, undefined, or imported references. Each value is combined
under the rules governing logical or with the value of opword-name to produce the final
generated machine instruction code.

Hence the earlier example could be extended by means of the following equate:

Async EQU $400 ; Defines "async™ bit for
; File Manager traps

The original _Read statement with a parameter would then generate $a402:
_Read Async ; Generates $A402 trap call

OPWORD parameters must be separated by commas, but there need not be any expressions
between commas. Two adjacent commas delimit an expression that does not affect the
generated instruction. Hence the following statement also generates $a402:

_Read (Async,,, : Generates $Aa402

& Note: The standard Macintosh trap macros, discussed under “Macintosh Libraries” in
Chapter 1, consist largely of opwoRD directive statements.

Data definitions

The data-definition and storage-allocation directives described in this section let you
define constants, initialize data, and reserve storage areas in code modules, data
modules, and templates. They are the following:

DC Place constants in a code or data module
pcB Place a block of constants in a code or data module
DS Define a storage area

y2 MPW 3.0 Assembler Reference

DC and DCB: Place constants in code or data

({ label | macro-label)) pd].sizd {expr | string),...
[label | macro-label}} pce(.size] length, { expr | string}

pc and pcB place data in the current (code or data) module. When used outside an
existing module, they define a new data module containing the specified data. Thz
optional qualifier size, which is separated from the directive name by a period, consists of
a letter that indicates the size of each data increment. Word (w) is the default value if you
do not include the qualifier. Size also determines the size of the increments specified by
the integer expression length, as shown in Table 4-1.

s Table 41 DC and DCB data increments

Qualifier Name Length increments, in bytes
B Byte 1

W Word 2

L Long word 4

S Single precision 4

D Double precision 8

X Extended 12

P Packed BCD 12

The operand field of a pc directive statement may contain up to 25 values, numeric
expressions, and strings in any mixture, separated by commas.

The operand field of a pcs directive statement begins with a length expression that
specifies the number of data increments in the data block. The size of each increment is
determined by the size qualifier, as shown in Table 4-1. This is followed by a single value to
be placed in each such increment. Hence a pcs directive statement with a length of n acts
the same as n pc directives. The DCB length parameter must be an absolute expression
with a value greater than 0, and may not contain any forward, undefined, or imported
references.

All the values specified in a single bc or pcs directive statement make up one data
module if the statement is used outside a code or data module. All the values make up one
block of ascending bytes if it is used inside a code or data module. This is true even when
the data module is declared as having a decrementing location counter.

All data sizes except byte (8) are aligned to the next word boundary unless an ALIGN 0
directive is in force. The optional label is associated with the first byte of data after
alignment.

CHAPTER 4 Assembler Directives

Integer expressions must fit into the size specified by the pc or pcs size qualifier. For
example, a value of 1000 cannot be used with a pc . B directive. Strings are formatted
according to the current STRING directive setting. When used with a string value, the c
or pcB size qualifier affects alignment only.

Here are some examples of size qualifiers and data values:

DC.B ‘Nebur L. Ari' ; A l2-character string in

’

; current format
DC.L 1, 2, 3 ; Three long words containing 1, 2,

; and 3
DC.B T1-T2 ; A byte with two relocatable

; references
pC.B SFDF ; An error (SFDF is too big for a byte)
DC.W 1 ; A word constant containing integer 1
DC.X "1.234" ; A 12-byte extended constant
DC.D "Nan(l)" : An 8-byte double-precision constant
DC.L '1234° ; A 4-character string in current

; format
DC.L ('1234") ; A 4-byte constant $31323334

The last example is a four<character string enclosed in parentheses. Because both strings
and integer expressions may be used as pc or DCB operands, the Assembler decides the
operand’s type by examining its first symbol. The parentheses force the Assembler to type
the operand as an integer expression. As such, it can contain a string constant of up to
four characters without exceeding the long-word size set by the L qualifier; the Assembler
treats it as a right-justified 32-bit value padded on the left with zeros. In the next-to-last
example, the Assembler treats the operand as an ordinary string constant.

You must take care when using bc and pce with imported data parameters. If the current
DATAREFS setting is ABSOLUTE (the default value), then any imported data reference is
treated as a 32-bit absolute address, requiring a qualifier of L. Other situations require
different qualifiers. For further information see “Linker and Scope Controls,” later in this
chapter.

When you use DC or DCB to place data in a data module, you must link your finished
program with the library file Runtime.o, which contains the data initialization routine
_DataInit. If your main code module is written in assembly language, its first
executable statement must be a call (3sR) to the entry point_DataInit. This entry
point must also be declared as 1MPORT. After retuming from _DataInit, your program
may unload the segment $a5Init that contains it, by callmg the Macintosh routine
UnloadSeg. If your main program is written in C or Pascal, no explicit call to _patarnit
is required, because the run-time libraries for C and Pascal automatically take care of data
initialization.

74 MPW 3.0 Assembler Reference

DS: Define storage area

| a lergth
({ bel| macro-labelY) DSL.siz ename

The Ds directive allocates and defines an uninitialized storage area in a code module,
data module, or template. When used outside an existing module, it defines a new data
module of the specified length. The optional qualifier size, which is separated from the
directive name by a period, consists of a letter that indicates the size of each of the data
increments defined by length, as shown in Table 4-1. Word (w) is the default value if you
do not include the qualifier. Length must be an absolute expression with a value greater
than or equal to zero. It cannot contain any forward, undefined, or imported references.

All dana sizes except byte (B) are aligned to the next word boundary unless an ALIGN 0
directive is in force. The optional label is associated with the first byte of data after
alignment.

A Dps directive with a length of 0 aligns code or data to a word boundary. In this form, it
ignores any prior ALIGN 0 directive. ALIGN is discussed later in this chapter under
“Location-Counter Controls.”

The storage area allocated by ps can also be specified by a template identifier that has
been previously defined. Template definitions are discussed in the next section. In this
case, the length allocated is determined by the size of the template. If you use a label with
Ds and a template identifier, that label is given the type represented by the template. You
can then access the fields of the template by qualifying its field identifiers with the os
label instead of the template identifier, using the form DSlabe!. fieldname. You can also
use DS in the same way to type fields of templates and then access fields within them,
using the form DSlabel. fieldname . innerfield. You can create nested fields in this way to
any depth.

You can use template identifiers to-specify s data types in all cases except when Ds s
used in the code section of a code module or when there is no label specified. Although
the data area allocated by ps is not typed in these cases, its size is still determined by the
template’s size. When you use a template identifier to specify size or type in a DS
directive statement, that identifier must be the directive’s only operand. Using the
identifier any other way (such as by enclosing it in parentheses or including it in an
expression) refers to the identifier's offset value instead of to its type and size.

CHAPTER 4 Assembler Directives

75

N

Template definitions

A template describes the layout of a collection of data without actually allocating any
memory space. This section describes the following template definition directives:

RECORD Begin a recorc template definition

ENDR End a record template definition

WITH Begin default record identifier qualification
ENDWITH End default record identifier qualification

A template definition starts with a RECORD directive statement and ends with an ENDR
directive. In between are directives that describe the layout of the template, using Ds,
ORG, ALIGN, EQU, and SET. Sections of data within a template are catled fields. Fields are
referenced by the form record. field, where record is the template identifier. and field is
the label in the directive that defined the field. As a convenience, you may use the WITH
and ENDWITH directives to specify a template identifier over a section of your source
text, so you only have to specify the field name. This is like the Pascal wITH statement.

RECORD and ENDR: Define a template

offset []
name RECORD IMPORT [{ ANCR] EEENT }]
" origin'}’ DECR [EMENT]

DS, ORG, ALIGN, EQU, and SET directive statements
[macro-label) ENDR

RECORD and ENDR delimit the section of source text in which you define a template.
Notice that RECORD and ENDR are also used to define data modules, as described in
“Code and Data Module Definitions,” earlier in this chapter. The Assembler distinguishes
the two usages by the parameters in the RECORD directive statement. When used to
define a data module, RECORD has either no parameters or one of the terminal symbols
EXPORT Of ENTRY as its first parameter. When used to define a template, RECORD always
has at least one parameter—the absolute expression offset, the terminal symbol 1MPORT,
or the identifier origin enclosed in braces.

76 MPW 3.0 Assembler Reference

The definition of a template is equivalent to a sequence of equates. However, it is a more
natural way to specify a storage layout. Templates may be defined only outside modules
or as local definitions inside code modules.

As with code and data modules, templates have their own location counters
corresponding to the next available data location. As each data field is defined, the
location counter is incremented by the size of that data ficld. The next piece of data is
then placed at the next available location. Location-counter values must be in the
range -32768..+32767.

To define field locations in both positive and negative directions, you can include
INCREMENT Of DECREMENT in the RECORD directive, preceded by a comma.
INCREMENT is the default parameter; it makes Recorob allocate fields at ascending
locations, as just described. If you specify DECREMENT, fields are located at descending
locations, corresponding to Pascal memory layouts. Before defining each field, the
Assembler decrements the location counter by its size; hence each field starts at an
address lower than the one before it.

The parameter offset represents an initial offset for the template. It must be an absolute
expression without any forward, undefined, or imported references. Specifying a nonzero
offset is equivalent to specifying a zero offset and placing an orG directive at the start of
the template definition, as shown in these examples:

Name RECORD 100 Name RECORD 0
defines the same template as ORG *+100
ENDR ENDR

The main advantage of the specification on the left is that the template name takes the
value of the initial offset. The template name can then be used in place of the offset value
in arithmetic expressions.

You can specify a negative offset with RECORD. This is useful for mapping Macintosh
Pascal stack frames. Suppose, for example, you want to write an external Pascal
procedure Px with the following declaration:

PROCEDURE Px(a,b,c: INTEGER); EXTERNAL;

CHAPTER 4 Assembler Directives 77

If the Pascal program calls this procedure in the form px(a, b, c), then the following

equivalent code actions are generated by Pascal:

MOVE.W a(A6),-(a7)
MOVE.W b(a6),- (A7)
MOVE . W c(A6) ,~- (A7)
JSR Px

Push a
Push b
Push ¢
Call external procedure Px

~e Se e

~e

In assembly-language procedure px, you want to reserve stack space for local variables.
So, following the conventions used by the MPW Pascal Compiler, start the subroutine with
LINK A6 1o reserve the local stack space, as follows:

; Reserve space for locals on stack

You can now define the stack frame, using RECORD to delimit the following template

Px PROC EXPORT
WITH StackFrame
LINK A6,#LocalSize
RTS
ENDP

definition:

StackFrame RECORD -6

Local3l DS.W 1

Local2 DS.W 1

Locall DS.W 1

LocalSize EQU Local3-*

AéLink DS.L 1

Return DS.L 1

C DS.W 1

B DS.W 1

A DS.W 1

ENDR

e Se v N, we we

e Se Se N

Start at -6 for 3 local integers
Third local

Second local

First local

Local area (-6) used in LINK
0ld value of A6 set by LINK
Return address for RTS

Cc parameter

b parameter

a parameter

Figure 4-1 shows the stack frame after the LINK A€ instruction in the example has been
executed. It illustrates two ways to view the same template layout.

78

MPW 3.0 Assembler Reference

a Figure 41

High
Memory
4

Low
Memory

12

10

Stack frame example

4o {w {> -

Locai2 LocalSize

v
High
Memory

Local3 .T
4 Local2 LocalSize
Rp————
-2 Locall
0
A6Link
2
4
Retum
6
8 C
10 B
12 A

The low-to-high layout on the right matches the record template definition just given
because the RECORD directive assumed the default parameter INCREMENT, even though
it contained a negative initial offset. By specifying DECREMENT, you could equally well
define the template to match the high-to-low diagram on the left:

StackFrame

A
B
c
Return

AéLink
Locall

Local2
Local3

LocalSize

RECORD
DS.W
DS.W
DS.W
DS.L

DS.L

DS.W
DS.W
DS.W
EQU

ENDR

14,DECR

1

1
1
1

-

*

Start at 14 and decrement

a parameter (at location 12)
b parameter (at location 10)
c parameter (at location 8)
Return addr for RTS
(location 4)

O0ld A6 value set by LINK
(location 0)

First local (at location -2)
Second local (at location -4)
Third local (at location -6)
Local area (-6) used in LINK

W Se Ne Se Ne Se “e Se Se Se we N

CHAPTER 4 Assembler Directives 79

A
W

Notice that in both of the foregoing stack frame layouts the initial offset had to be given.
For most mappings the offset will be 0. However, for stack frames the initial offset must
be chosen so that the A6Link field will have an offset of 0. This is the reason that you
specified -6 in the sample incrementing layout and 14 in the sample decrementing layout.
It is not necessary, however, to compute the size of each template and enter it as an
absolute value. You can use the {origi:} parameier @0 make the Assembler do this
work for you. The template origin is defined as the field which is to have an offset of 0.
You specify a field identifier enclosed in braces to indicate that that field is to be the
template’s origin. The Assembler then reads in the the template definition as if the initial
offset was 0 (displaying these values in the Assembly listing) and subtracts the zero-
relative offset of the origin field from each field offset. The effect is to shift the
template’s origin from the start of the template to the field specified by the origin
parameter.

Hence in the preceding examples, you could have used simpler RECORD directive forms,
leaving the rest of the template definitions unchanged:

StackFrame RECORD {A6Link}
StackFrame RECORD {A6Link},DECR

Notice that shifting the origin of a template affects only the field offsets. Equates are not
changed. In origin-shifted templates, the Assembler distinguishes between equates to
absolute expressions (such as Local3-~ in the incrementing example) and equates to
other field identifiers.

Normally you define some dynamic data, such as the stack frame illustrated in Figure 4-1,
and then use a template to map over the data. However, you may also have static data,
defined somewhere else in your assembly-language program as a data module, that you
want to map. Because both templates and data modules are defined by RECorD
directives, they have the same underlying form. This lets you import an entire data module
and directly access its fields. You map a data module by specifying its identifier in an
1MPORT directive and then using that same identifier as a template label in 2 RECORD
directive. Alternatively, you can specify the 1MpORT directive identifier explicitly as the
RECORD template parameter. The base register for a data module imported as a template
is always AS.

In C programming, the situation just described corresponds to declaring a static structure
(struct) as extemnal, and then importing the entire structure (extern) from another file. The
struct declaration must appear in both files, just as the RECORD directive appears twice in
the assembly-language source text.

80 MPW 3.0 Assembler Reference

Using templates as data types

In higher-level languages, data types define the specific ways that data is stored in

memory. For example, a Pascal record type or a C struct type specifies the memory layout
and size of ail data items of that type. Fields within data structures also have types; hence
higher-level languages allow t*.e creation of complex structures of typed data. :

In the MPW assembly language, templates serve the same purpose. To create the
equivalent of a data type, you use the identifier of a template (the label you used in the
RECORD directive that created it) as the operand of a bs directive. Here is an example:

label DS template-name

Specifying a template identifier alone makes the s directive allocate an amount of
memory equal to the size of the template. If a label is also specified, that label acquires
the type represented by the specified template. You can then access fields of the
template by qualifying the field identifiers with the ps label instead of the template
identifier, in the form labe!. fieldname. Fields of templates can themselves be typed the
same way. You can identify them by a series of qualifications, in the form

label . fieldname . innername. Fields can be nested this way to any depth.

The following is an example of how template types are used. The example shows the
Macintosh QuickDraw definitions for points and rectangles. The corresponding Pascal
type declarations are shown as comments:

Point RECORD 0 Point = RECORD CASE INTEGER OF

v DS.W 1 0: (v: INTEGER:

h DS.W 1 h: INTEGER):;
ORG v

vh DS.W 2 1: (vh: ARRAY [2] OF INTEGER)
ENDR END;

Rect RECORD 0 Rect = RECORD CASE INTEGER OF

top DS.W 1 0: (top: INTEGER;

left DS.W 1 left: INTEGER;

bottom DS.W. 1 bottom: INTEGER;

right DS.W 1 right: INTEGER) ;
CRG top

topleft DS Point l: (topleft: Point;

botRight DS Point botRight: Point)
ENDR END:

In this example, both topLe£t and botRight are defined as having the type Point.
Point and Rect may now be used to allocate space in a data module. For example:

MyData RECORD ; Define a data module
MousePt DS Point
DragRect DS Rect

ENDR

CHAPTER 4 Assembler Directives

81

You can now access the various fields of Mousept and Dragrect by using the field R
identifiers established in the template definition. First, though, you must make these

field labels known to the code by bracketing them with a wITH MyData...ENDWITH pair
as described in the next section. Because these fields are in a data module, the base
register is AS. Here are some examples:

; Get v conponent
; Get full point

MOVE.W MousePt.v (AS),DO0 ;
’
; position

MOVE.L MousePt.vh(AS),DO

; Get left coordinate
; Get topleft of

: ; rectangle

MOVE.W DragRect.botRight.h(A5),D0 ; Get botRight h

; component

MOVE.W DragRect.left (AS),DO
MOVE.L DragRect.topleft (AS),DO

You can use templates as types in Ds directives any time except when you use Ds in the
code section of a code module, or when the ps directive has no label. Although the
Assembler does not establish a type in those cases, it still uses the template size to define
the space allocated by Ds. To use a template identifier as a size or type spedification,
you must supply it as the only operand in the s directive statement. Using the identifier
any other way (for instance, enclosing the identifier in parentheses or using the identifier
in an expression) makes DS use the template’s value instead of its identifier.

In the foregoing example, incrementing templates were used to define types.
Decrementing templates may also be used. If you use a decrementing template as a type,
its origin for data allocation purposes is shifted so that its lowest address corresponds to
a location-counter value of 0. You can freely mix incrementing and decrementing
templates to define complex data types.

WITH and ENDWITH: Supply RECORD name qualification

[macro-label) WITH name,...
Code-module statements
[macro-label) ENDWITH

The wrTH directive lets you access RECORD field identifiers without explicit
qualification. wxTH may only be used inside code modules (modules delimited by proc,
FUNC, or MAIN). You can write a series of identifiers, separated by commas, as
parameters; they all become field qualifiers. They may be the identifiers of data modules,
templates, or typed fields. For a description of field typing see “Using Templates as Data
Types,” earlier in this chapter. The implicit qualification established by w1 TH remains in
effect until a matching ENDWITH or the end of the code module.

\i'k”/
.44 MPW 3.0 Assembler Reference

Using the StackFrame RECORD template illustrated earlier, the following example shows
how WITH can be used to access a template’s fields:

WITH StackFrame
LINK A6, #StackFrame.LocalSize LINK A6, #LocalSize
MOVE StackFrame.A(A6),DO is MOVE A(A6),DO
MOVE StackFrame.B(A6),D1 equivalent MOVE B(A6),D1
MOVE StackFrame.C(A6),C2 to MOVE c(a6),D2
ENDWITH

WITH directives may be nested. Alternatively, more than one identifier may be specified
in a single w1 TH directive. The latter is equivalent to nesting wITH directives, with the last
parameter being considered the most deeply nested:

WITH alpha,beta, gamma WITH alpha
is WITH beta
equivalent WITH gamma
- - - to - - -
ENDWITH
ENDWITH
ENDWITH ENDWITH

You can nest field qualifications, using wITH directives in either form. Parameters
occurring earlier will qualify parameters occurring later. The Assembler searches for each
specified field identifier, starting with the most deeply nested wzTH, and attaches the
qualification when it finds it. If two fields have identical identifiers, it supplies the most
deeply nested qualification. Here is an example, based on the DragRrect definition given
in “Using Templates as Data Types” in the discussion of REC and ENDREC:

WITH DragRect, topleft Qualify with DragRect

; and DragRect.topleft
MOVE.W v (A5),DO0 ; DragRect.topleft.v
MOVE.W left (AS),D2 ; DragRect.left
MOVE.W botRight.h(AS),Dl1 ; DragRect.botRight.h
ENDWITH

Notice here that topLe£t is subject to the wITH qualification of DragRect, the WITH
directive’s first parameter. This is equivalent to the explicit qualification

DragRect . topleft. The v field reference is qualified by topLeft, so thatit is
equivalent to a reference to DragRect . topLeft . v. The left field is a field of
DragRect, 50 that it is equivalent to a reference to Dragrect . le£t. The last reference
is to the h field of botRight, which is itself a field of Dragrect. However, h also
occurs as a field identifier in topLeft. The explicit reference to botRight is required to
override the implicit qualification topLeft.

CHAPTER 4 Assembler Directives

As you can see from the last example, nested wITH directives can generate unintended
field identifier qualifications, leading to very subtle program bugs. (It would have been
simple, and incorrect, to refer to h without realizing it was the topLe £t when you meant
the botRight.) Use WITH only to cover short sections of source text, and avoid complex
nestings. If in doubt, replace wxTs directives with fully qualified field identifiers. Your
program will become easier to understand and maintain when the reader always knows to
which module or template every field belongs.

Linker and scope controls

The directives described in this section all pass information to the MPW Linker. They tell
the Linker how to associate identifiers between object files, how to group individual
modules into segments, and how to comment the object-code file. At the same time, they
give the Assembler information about the scope of objects named in the directives and
tell it whether they are code or data. They are the following:

EXPORT Make entry points accessible in other assemblies

ENTRY Make local entry-points global

IMPORT Identify entry points declared externally

CODEREFS Control the linking of code-to-code references

DATAREFS Control the linking of data-to-code ‘and data-to-data references
SEG Specify the current code segment

COMMENT Place a2 comment in the object file

ENTRY, EXPORT, and 1MPORT all affect the scope of code or data module identifiers.
ENTRY promotes an identifier to global scope within a file, so that it is accessible to all
references in the same file. ExPORT has the same effect as ENTRY; in addition, it makes
the identifier accessible to other files, or global to the assembly. 1MPORT provides a
reference in the current module or assembly for identifiers exported in another module,
assembly, or compilation.

CopEREFS and DATAREFS allow you to control some of the characteristics of the way the
Linker associates code and data references created by EXPORT, ENTRY, and IMPORT.

SEG specifies the code modules in a segment. For a discussion of code module segments,
see “Segmentation” in Chapter 2.

coMMENT tells the Linker to generate a comment record for your obiject file.

84 MPW 3.0 Assembler Reference

EXPORT and ENTRY: Expand scope of entry points

[) {conz }
(ame , name,,) *LpoaTa
{
[macro-labell ENTRY copE) P,
namel : DATA} PR
MAIN

' . {covs }’
(name, , name, ,) *LpaTa

[macro-label] ENTRY 4 CODE
namel :Y DATA |/ ...

MAIN

With the exception of local labels, all identifiers in a code or data module are
autormatically accessible throughout the module in which they are defined. ExPORT and
ENTRY extend the scope of specified identifiers by making them accessible in other
modules as well. ExPoRT makes them accessible in modules in all files linked with the file
containing it; ENTRY makes them accessible only in modules within the same assembly.

Identifiers listed with EXPORT are said to be exported. Each one must be designated as
code or data; one may be designated as MAIN. You can accept the default designations or
you can specify them explicitly. These rules govern how the Assembler treats the operands
of ExPORT and ENTRY directives by default:

s The default designation for identifiers listed inside a code module is coDE.
a The default designation for identifiers listed inside a data module is DaTA.
s The default designation for identifiers listed outside any module is CoDE.
You can override any of these default designations by writing explicit declarations. If you
specify CODE, DATA, or MAIN explicidy, you can write a series of identifiers separated by
commas and enclosed in parentheses, followed by a declaration:

EXPORT (name,,name,, name,) : DATA
Alternatively, you can write a separate declaration for each name, omitting the
parentheses:

ENTRY
name, : DATA, name, : CODE, name, : DATA

CHAPTER 4 Asscmb!erDirectives

85

Here are the rules for using EXPORT and ENTRY:

You must place each EXPORT or ENTRY directive in your source text befon: defining
any of the identifiers it affects.

The directive must be written within the existing scope of all identifiers it affects.
An exported identifier may not be identical to any other identifier within its new
scope.

You export a2 module identifier either by using EXPORT or ENTRY before the directive

that starts the module (PROC, FUNC, MAIN, or RECORD) or by including EXPORT or
ENTRY in the module directive’s parameter list.

You export identifiers occurring within a module by including an EXPORT Of ENTRY
directive inside the module, before they are defined.

An identifier may be mentioned in more than one EXPORT or ENTRY directive,
provided it is not listed as both code and data.

An ExPORT directive mentioning an identifier previously listed in an ENTRY directive
supersedes the ENTRY.

An ENTRY directive mentioning an identifier previously listed in an ExPORT directive
has no effect.

An identifier designated as CODE in an ENTRY or EXPORT directive may be later
designated as MAIN by an ENTRY, EXPORT, Of MAIN directive.

Only one identifier in an assembly may be designated as MAIN.

You cannot include a qualification when exporting a field identifier. Only the
unqualified field identifier will be exported.

The following example illustrates the placement of EXPORT statements in a file:

EXPORT X ; Export code module name X
EXPORT Y:DATA ; Export data module name Y

Y RECORD ; Could have exported from here
EXPORT Fieldl,Field2 ; Export inside module

Fieldl DS.W 1 '

Field2 DS.L 2
ENDR

X PROC : Could have exported from here
EXPORT 2 ; Declare secondary entry point
- - - ; Code for X

2 ; Secondary entry point 2
--- ; More code for X

86 MPW 3.0 Assembler Reference

IMPORT: Identify external eatry points

copE]]
(namg,nan%,..):{DATA

type
[macm-“~bell IMPOPT s o oee

CODE
nam91 :4DATA P, ...
\ bpe

The rMPORT directive makes specified identifiers accessible to the file or module in
which it occurs. Such identifiers are said to be *imported.” Every imported identifier
must be declared elsewhere in one of the following ways:

s aseither ENTRY or EXPORT in other modules of the same assembly
s 25 EXPORT in other assemblies
s as an exported procedure, function, or global variable in another language

In the syntax diagram given here, type is the identifier of a template used to define a
record structure, as explained in the discussion of RECORD and ENDR in “Template
Definitions,” earlier in this chapter. As explained there, the template itself may be
declared as TMPORT. Using an 1MPORT directive, however, lets you import several
templates under other identifiers without having to modify the original template
declarations.

Here are the principal rules governing the use of the TMPORT directive:

» The inclusion of an identifier in an IMPORT statement is treated as a definition of the
identifier with respect to identifier scope. This means that imported identifiers
follow the standard local/global scope rules covered in *Scope of Definitions” in
Chapter 2.

s Imported identifiers that are to be made accessible to more than one module in a file
must be imported before any modules that use the idgntiﬂers are defined.

s Imported identifiers local to a module must be listed in an 1MPORT directive inside
that module before they are mentioned in any other statement.

s The Assembler does not verify the cobE or DATA designation of imported identifiers.
Hence you should give them the same designation they had when they were exported.

s You can access fields of imported templates by qualifying the identifiers used in
1MPORT with the original field identifiers.

s Imported code identifiers may be used in all PC-relative effective address modes.
However, their use in short branches and in indexed modes with 8-bit displacements
may result in run-time errors.

CHAPTER 4 Assembler Directives

The Assembler gives default coDE or DaTa assignments to the operands of the IMPORT e
directive according to these rules:

s The default designation for identifiers listed inside a code module is code.

s The default designation for identifiers listed inside a data module is data.

a The default designation for identifiers listed outside ary mo-uie is code.

You can override any of these default designations by writing coDE or paTa explicitly, as
described in “EXPORT and ENTRY,” earlier in this chapter.

Referring to the example given in *EXPORT and ENTRY,” the following example shows how
the identifiers exported there could be imported into another file. It also illustrates the
identifier scope rules:

IMPORT X ; Import X as a code identifier
IMPORT (Fieldl,Y):DATA ; Import Fieldl and Y as data

W PROC
IMPORT (2,L1) :CODE ; Allow local access to Z and Ll
IMPORT Field2:DATA ; Allow local access to Field2

MOVE.L Field2,D1 Field2 accessible only

from module W

Call Ll in another module

Copy DO into Fieldl g

(in other file)

JSR Ll
MOVE.W D0,Fieldl (AS5)

Ne e %o e W

JSR X

ENDPROC

CODEREFS and DATAREFS: Control name linking

rFlorcelaT]]
[macro-label) CODEREFS Nor[orcE[27]]
FlorcEelec
rlEL[ATIVE]] }
[macro-iabel] DATAREFS { ales[oruTe]]

CODEREFS lets you control how the MPW Linker treats code-to-code identifier
references—that is, references from one code module to another. With NOFORCEJT,

a reference to an address in the same segment will cause the Linker to treat it as
PC-relative. References between segments will go through the jump table. With ForcEJT,

£
o

88 MPW 3.0 Assembler Reference

all references will go through the jump table even if they are in the same segment.
FORCEPC is the inverse of FORCEJT; it requires that all code-to-code references be
PC-relative and in the same segment, and causes a Linker error if any are not. CODEREF'S
NOFORCEJT is the preset condition.

DATAREFS lets you control how the Linker treats data-to-code and data-to-data
identifier references. With ABSOLUTE, ail references to code or darz arc 32-bit absolute
jump-table addresses and may be used only in DC . L statements. With RELATIVE, all
references 10 code are AS-relative jump-table offsets and all references to data are
A5-relative offsets. You may use pc.w and DC. L for RELATIVE references. DATAREFS
ABSOLUTE is the preset condition.

Code-to-data identifier references are always AS-relative; they are unaffected by
CODEREFS Of DATAREFS.

You can write operands for CODEREFS and DATAREF'S in any of the following alternate
forms:

s FORCEJT as FORCE Of F

® NCFORCEJT as NOFORCE Of NOF

s« FORCEP as FPC

s RELATIVE aSRELOIR

® ABSOLUTE 28SABSOfA

To understand the operation of CODEREFS and DATAREF'S fully, you must know their

effects on the linking process. The four passible identifier reference combinations
between code and data modules are discussed next in “Code-to-Code References.”

Code-to-code references

When a reference points from one code module to another and CODEREF'S NOFORCEJT is
in effect, the Linker checks to see whether both code modules belong to the same
segment. If so, it changes the addressing mode to PC-relative with a 16-bit displacement
and sets the appropriate displacement. If the reference is to a code location in a different
segment, the Linker converts the address to a location in the jump table (a positive offset
from A5). The Linker assumes that the word immediately before the 16-bit displacement
represents an instruction which has its destination mode and register fields in bits 0
through 5 (the 6 low-order bits).

A Warning The Linker does not support editing of the new addressing modes
with 32-bit displacements found in the MC68020/MC68030. a

CHAPTER 4 Assembler Directives

The Linker accepts all code references from one module to another. With instructions e
other than JSR, JMP, PEA, and LEA, however, the referenced identifiers must be in the
same segment.

To summarize, the Linker follows these rules when checking for illegal code-to-code
references:

s If the reference is to a module in the same segment, the Linker accepts it for any
instruction and any CoDEREF's setting. If the instruction being used is not ISR, JMP,
PEA, Of LEA, the referenced identifier must be in the same segment.

s If the reference is to 2 module in another segment, the Linker accepts it only for JsRr,
JMP, PEA, and LEA instructions, and only if CODEREFS FORCEPC is not in effect.

s If the reference is to a module in another segment and CODEREFS FORCEPC is in
effect, the Linker will not accept it.

You can use CODEREFS FORCEJT to forestall certain run-time problems. If, for example,
you want to save the PC-relative address of a procedure to call it later and that procedure
belongs to a segment that may become unloaded, then attempting to call the procedure
after the segment has been unloaded will not work. The solution is to use CODEREF'S
FORCEJT. It forces all code-to-code references to go through the jump table anyway, as if
the modules were in different segments. Saving a jump table address and using it to call a
procedure later guarantees that the corresponding segment will be loaded, even if it is
currently unloaded.

Code-to-data references

When a reference points from a code module to a data module, the Assembler always
generates an A5 offset. If you do not need indexing and the Assembler knows the
reference is to data for a machine instruction, you can omit the AS reference; the
Assembler will generate it for you. '

Data-to-code references

You can reference a code address from a data module only with a pc instruction. When
you do this, you can choose to make the Linker generate a jump table offset or let it
generate the actual run-time jump-table address. If you make the Linker generate an
offset, you can specify its size as a word or a long word by qualifying the pc instruction
(pc.worpc. 1). If you let the Linker generate the actual run-time jump-table address, you
must specify DC. L, because a 32-bit address will be added to the pc statement at load
time. But any D¢ reference to a local label in the same code module (or in a nested data
module) will always be treated as a module offset.

90 MPW 3.0 Assembler Reference

DATAREFS controls the two forms of data-to-code addressing. DATAREFS RELATIVE
indicates that offsets are to be used, while DATAREFS ABSOLUTE (or no directive at all)
indicates that AS-relative 32-bit absolute jump-table addresses are to be generated.

Data-to-data references

Data-to-data references are similar to data-to-code references. You can force the Linker
to generate an AS-relative offset to the data by using DATAREFS RELATIVE, Of you can
let it refer to the 32-bit absolute address created at run time by doing nothing or by using
DATAREFS ABSOLUTE.

Table 4-2 summarizes the effects of CODEREFS and DATAREFS in the four cases just
discussed.

& Note: If your program uses absolute data references, you must link it with the library
file Runtime.o, which contains the data initialization routine _DataInit. If your
main code module is written in assembly language, its first executable statement must
be a call (gsR) to the entry point _DatazInit. This entry point must also be declared
as IMPORT. After returning from _DataInit, your program may unload the segment
$AS5Init that contains it, by calling the Macintosh routine Unloadseg. If your main
program is written in C or Pascal, no explicit call to _DataInit is required, because
the run-time libraries for C and Pascal automatically take care of data initialization.
Also, in order to use Unloadseg, yOu must INCLUDE 'traps.a'.

s Table 42 Effects of CODEREFS and DATAREFS

From To Directive Effect

Code Code CODEREFS FORCEJT Always uses jump table

Code Code CODEREFS FORCEPC Always PC-relative

Code Code CODEREFS NOFORCEJT Uses jump table if across segments

Code Data Always generates A5 offset

Data Code DATAREFS RELATIVE Uses jump table (w or L) offset

Data Code DATAREFS ABSOLUTE Uses 32-bit absolute jump-table
addresses (1)

Data Data DATAREFS RELATIVE Generates A5 (w or L) offset

Data Data DATAREFS ABSOLUTE Uses 32-bit absolute addresses (L)

CHAPTER 4 Assembler Directives

91

SEG: Specify current code segment e

[macro-labell sEG (str-expr]

- All code modules are grouped into segments, as discussed in-Chapter 2 under “Source Text
Structure.” The SEG directive lets you control this grouping. It declares that all subsequent
code modules (ignoring any data modules) are to be placed in the segment named by the
expression str-expr. SEG takes effect at the next PrOC, FUNC, or MAIN directive. It
remains in effect until the next seG directive. The modules thus placed in one segment
need not be contiguous in the source text.

The default value of str-expris Main (uppercase M, the rest lowercase, as shown). If you
-do not use the SEG directive or use it without an operand, all subsequent code modules
will be placed in the Main segment.

& Note: Code segment names are case-sensitive. Be careful to use identical
capitalization when writing segment names that are to be treated as identical.

Code modules in the same segment do not have to be contiguous in the source file. Code
modules belonging to other segments may be mixed with them as long as they fall under
the appropriate SEG directive. Here’s an example:

SEG 'Namel' S
A PROC

ENDP .

SEG ‘Name2'
B PROC

ENDP
(o] PROC

ENDP

SEG ‘Namel'
D PROC

ENDP

SEG ‘Name2'
E PROC

ENDP

In this example, modules a and b belong to the segment 'Namel*; B, C, and E belong to
the segment *Name2"'.

R MPW 3.0 Assembler Reference

COMMENT: Place a comment in object file

(macro-labe] ~ coMMENT str-expr

The coMMENT directive lets you place a comment in your unlinked object file. It causes
the Assembler to generate an object file comment record contairing the value of the
COMMENT diszctive’s string expression operand.

Assembly options

The assembly option directives described in this section let you control certain
assumptions the Assembler makes about the program it is assembling. The assembly
option directives and the assumptions they control are as follows:

MACHINE Identify the target microprocessor model

Mc68881 Control the assembly of floating-point coprocessor instructions
Mc68851 Control the assembly of PMMU coprocessor instructions
STRING Control the encoding of string constants

BRANCH Control the encoding of branch instructions

FORWARD Control the encoding of forward references

OPT Control the level of code optimization

CASE Control the treatment of lowercase letters in identifiers

BLANKS Control the treatment of spaces and tabs in the operand field

MACHINE: Specify target machine

MC 68000
MC 68010
MC 68020
MC 68030

[macro-label] MACHINE

This directive tells the Assembler that the target microprocessor is an MC68000 (the preset
assumption), an MC68010, an MC68020, or an MC68030. The Assembler will accept only
those instructions and addressing forms supported by the target microprocessor. A
MACHINE directive has effect until the end of the source text file or until another
MACHINE directive is encountered.

CHAPTER 4 Assembler Directives

MC68881: Assemble MC68881/MC68882 coprocessor instructions

[macro-labe] Mc68881 (fp-option],...

This directive tells the Assembler that subsequent source text may contain instructions to
an MC68881 or MC68882 Floating-Point Coprocessor and specifies how the Assembler is
to interpret them.

Your source text must contain this directive before the first MC68881/MC68882
instruction. Each fp-option operand consists of a keyword, an equal sign, and an
expression. There are four possible options:

coID=expr

PREC[ISION]={ X | D | S }
ROUND[ING]={ N | U | D | 2 }
KFACTOR=2xpr

The numeric expression expr following co1D is the coprocessor ID number of the MC68881
coprocessor, in the range 1..7. It has a default value of 1.

The letter following PRECISION indicates how much precision and range the Assembler
should retain when converting floating-point constants in the source code into binary
values. The default value is extended (x); however, you may altematively specify double
precision (D) or single precision (s).

The letter following ROUNDING indicates how the Assembler should round floating-point
constants in the source code when converting them into binary values. The default value is
to round to the nearest representation (N); however, you may alternatively specify
rounding upward (v), downward (D), or toward zero (2).

The numeric expression expr following KFACTOR specifies the default k-factor that the
coprocessor uses when interpreting FMOVE . P instructions in which the k-factor is not
explicit. The k-factor tells the MC68881 coprocessor in what format to construct the
resuiting decimal string. The preset default value is =16, but you can specify any value in
the range —64..+63. For an explanation of k-factors, see the discussion of FMOVE in the
Motorola MCG8881 Floating-Point Coprocessor User’s Manual.

& Note: It is advisable to program for the MC68882 even if your target hardware currently
contains a MC68881, so that no program changes will be required if the hardware is
upgraded. The MC68882 offers all the features of the MC68881, as well as concurrent
execution of multiple floating-point instructions, some special-purpose hardware for
faster format conversions, simultaneous access to the floating-point registers by the
conversion and arithmetic processing units, and reduced coprocessor interface
overhead. All these contribute to increased throughput. Please see the Motorola
MC68881/MCG8882 Floating Point Coprocessor User’s Manual for details of the
programming differences (which are relatively minor).

% MPW 3.0 Assembler Reference

C

Here are some rules about writing the Mc68881 directive:

» If you include one or more operands, the Assembler will change only these
characteristics specified by those operands from their previous values.

s If you do not include any operands, the Assembler will reset all four characteristics to
their default values: COID=1, ROUNDING=N, PRECISION=X, and KFACTOR=-16.

s Operands may be written in any order.

< Note: The Macintosh ROM contains routines that perform a variety of fixed-point
mathematical operations. For information about these routines, see the Toolbox
Utilities. chapter of Inside Macsntosh.

MC68851: Assemble MC68851 coprocessor instructions

[macro-label] MC68851

This directive tells the Assembler that subsequent source text may contain instructions to
an MC68851 Paged Memory Management Unit coprocessor. Your source text must contain
this directive before the first such instruction.

A Warning You may not use an MC68851 directive in the same assembly with a
MACHINE MC68030 directive. a

STRING: Specify string format

ASIS
[macro-tabel STRING BASCAL
c

The sTRING directive tells the Assembler how to encode all string constants occurring in
the data-definition directives pc and pcB and in literals. The Assembler encodes strings as
specified until it processes the next STRING directive. STRING PASCAL is the preset
condition.

CHAPTER 4 Assembler Directives

You can supply any one of these three operands with STRING: w
Operand Effect
ASIS Strings are encoded exactly as specified; they contain just the

characters included between the single quotation marks.

PASCAL Pascal-formatied strings are generated. Each one is preceded by a
length byte, as if it were stored in a Pascal variable of the type STRING.

c C-formatted strings are generated. This format always contains at
least one 0 byte following the last character of the string.

The Assembler may add one or more 0 bytes after the last character of any string, to end it
on a word or long word boundary. Literals and strings defined by pc . w are filled to the
next word boundary; strings defined by pc. L are filled to the next long word boundary.

BRANCH and FORWARD: Resolve forward branches

s(HorTl | BlYTE]
[macro-label) BRANCH #[orp]
L[oNG]
[macro-abell FORWARD {ﬂ[m]}
L[ONG]

BRANCH and FORWARD tell the Assembler what size to assume for the displacement
encodings of forward-referenced identifiers. BRANCH covers the branch instructions Bcc,
BSR, and BRa, if no size specification (s or L) is given with the mnemonic. FORWARD
covers the base and outer displacements for the MC68020 extended addressing modes 6
and 73, shown in Table 3-2. Size specifications are discussed in Chapter 3 under “Forward-
Reference Addressing.” '

BRANCH WORD and FORWARD WORD are the preset conditions; they generate 16-bit
displacements. If you spedify s, SHORT, B, or BYTE, the Assembler generates 8-bit
displacements. If you specify L or LONG it generates 32-bit displacements. Each BrRaNCH
or FORWARD directive remains in effect until the next BRANCH or FORWARD. You can

specify FORWARD LONG with MC68020 instructions only.

% MPW 3.0 Assembler Reference

& Note: The Assembler will report an error on any forward-referencing instruction with
too small a displacement field. For example, if BRANCH s is specified but the
Assembler generates a displacement that is too great for eight bits, the Assembler will
feport an efror.

OPT: Specify level of code optimization

ALL
[macro-iabel] oPT NONE
NOCL

The Macintosh Workshop Assembler accepts generic forms for certain machine
instructions and addresses, converting them to other forms at run time. The instructions
for which it accepts generic forms are listed in Appendix A; the address formats are listed
in Table 3-2. There are three general reasons for making such conversions:

s Optimization: The Assembler converts instructions and addresses if they can be
encoded more efficiently. The result occupies less memory and often runs faster as
well. An example of an instruction conversion is SUBA an, Anin place of
MOVE #0,an. Examples of address conversions are bd(pc) for (bd, pC) and the
suppression of MC68020-addressing base displacements and outer displacements
when their values are 0.

= Convenience: The Assembler converts instructions on the basis of their context—for
example, ADDI in place of ADD. It also permits substituting instructions to make
coding easier and more readable—for example, by substituting B2 for BEQ.

s Compatibility: The MPW Assembler converts certain instructions to make them
compatible with other assemblers. Examples include substituting Brs for Bcc and
BLo for BCS.

The generic address forms listed in Table 3-2 are all converted for optimization. The
generic instruction forms listed in Appendix A are grouped by their reasons for conversion.

The op directive lets you control parts of this conversion process. You might want to
eliminate opfimization, for example, when writing a table of branch instructions or a
routine with a critical execution time.

CHAPTER 4 Assembler Directives

RN

You can specify one of three operands:
s arL allows all conversions. This is the preset case.

® NONE eliminates all optimizations; the Assembler will not accept generic instruction
forms and will not optimize addressing modes.

8 NOCLR is similir 0 ALL. On some hardware, a CLR ea instruction in place of »ovE
#0, ea is not exactly equivalent. NOCLR provides for this difference by allowing all
conversions except for the MOVE-tO-CLR substitution.

The current opT directive setting remains in effect until the next opT directive is
processed.

CASE: Specify treatment of lowercase letters

oN | YlEs]
[macro-label) CASE orr | N(a]
oBJ[ECT]

The cask directive lets you determine how the Assembler interprets lowercase letters in
identifiers.

The operand oN, ¥, or YES forces the Assembler to treat uppercase and lowercase letters
as distinct. For example, the Assembler treats abcd and Abcd as two different identifiers.
This is the way C treats uppercase and lowercase letters. ’

The operand OFF, N, or NO lets the Assembler treat uppercase and lowercase letters
identically. For example, the Assembler treats abcd and abcd as the same identifier. It is
the preset condition.

OBJECT or oBJ forces the Assembler to generate in the object file all module identifiers
and all exported and imported identifiers exactly as specified in the source text, retaining
uppercase and lowercase distinctions. It ignores uppercase and lowercase distinctions for
references within the source text, however. Hence CASE OBJECT has the same effect as
CaSE OFF within an assembly.

Note: The cask directive has no effect on segment names. They are always case-
sensitive except for macro variables, which are case-insensitive.

oY

%8 MPW 3.0 Assembler Reference

The MPW Linker always distinguishes between uppercase and lowercase when matching
exported entry-point identifiers with their imported references. Hence you must be
careful when linking an assembly-language program with programs written in C or Pascal.
When cASE OFF is in effect, the Assembler generates exported and imported identifiers
entirely in upper case. This matches the MPW Pascal Compiler, which also generates
uppercase identifiers. When case ow is in effect, the Assembler preszrves the
capitalization used in the source text. This matches the MPW C compiler, which maintains
case distinctions.

CASE OBJECT lets you communicate with C in uppercase and lowercase, without needing
to preserve case distinctions inside your program. Case distinctions can create a problem
when you are using large files of equates—for instance, the standard Macintosh equates.
CASE OBJECT lets you preserve case distinctions in your object file while ignoring them
in your source text. The CASE directive remains in force until the next caske directive is
processed. However, it is not a good idea to mix CASE modes within a single source file.
The cask value may be overridden from the Assembler’s command line with the -case flag.

Writing register names

The MPW Assembler predefines two sets of all the register names listed in Table 34: one
set all uppercase, one set all lowercase. With case ofF (the preset condition), the
lowercase set of names is superfluous. With CASE ON, you can use both sets
interchangeably. However, with CASE N, the Assembler does not accept register names
with any case combination except all uppercase or all lowercase; register names such as sp
and za7 are illegal. You can get around this by writing specific equates to legal predefined
register names.

BLANKS: Control acceptance of blanks in operand field
on | ¥[r.s]}

[name) BLANKS {
oFr | N[d]

The BLANKS directive controls where the Assembler will accept spaces and tabs within the
operand field. It is discussed in Chapter 2 under “Machine Instruction Syntax.”

An operand of oF F, N, or NO lets the Assembler accept spaces and tabs only in places
where the operand field is incomplete: following commas separating operand subfields
and between paired constructs such as parentheses, brackets and braces. Where the
operand field is complete, a space or a tab signals the beginning of the comment field.

CHAPTER 4 Assembler Directives

An operand of oN, ¥, or YES forces the Assembler to accept spaces and tabs anywhere in —
the operand field, except within single symbols (such as identifiers). With BLANKS ON,

you must write 2 semicolon at the end of the operand field to separate it from the

comment field. BLANKS ON is the preset condition.

The BLANKS directive remains in force until the next BLANKS directive is processed.

Location-counter controls

The two directives described in this section control the value of the current location
counter, represented in your source text by the asterisk (*) symbol. They are the following:

ALIGN Advance the location counter to the next multiple of a value
ORG Set the value of the location counter

ALIGN: Align location counter
[macro-labell aLIGN (epr

The ar1GN directive generally has only local effect: it forces the next code or data

statement to be assembled at a new location.

When the Assembler encounters an ALIGN statement, it increments the location counter
to the next multiple of the value of the AL1GN parameter expr (typically 2 or 4); it then
continues assembling instructions and data at the next valid location for the current code
or data statement. Since the Assembler aligns all instructions and any data larger than a
byte on even-byte boundaries, if the location counter is odd, the Assembler will assemble
the next instruction on the next even-byte boundary.

100 MPW 3.0 Assembler Reference

Special cases

ALIGN With no parameter specified, the Assembler assumes a value of 2.

ALIGN 0 Causes the Assembler to stop its default alignment of most data to even
byte boundaries until it encounters another ALIGN directive with a non-
zero operand. Data that are normally aligned to evzn byte bourdar:es
but that are assembled on odd-byte boundaries under an ALIGN 0
directive generate a warning.

While the Assembler is in this no-align state, the location counter can be
forced to the next even-byte boundary by a ds. size 0 directive, where
size is larger than B(yte). For further information, see the discussion of
the ps directive under “Data Definitions” earlier in this chapter.

ALIGN 1 Has no effect, except to start assembler default alignment again, if it has
been wurned off by aL1GN 0.

The statement ALIGN a-expracts the same as ORG ¢0-expr, where o-expr mod g-expr =0.
The parameter expr may not contain any forward, undefined, or imported references.
Except for the special case of an expr value of 0, ALIGN directives may appear only inside
code modules, data modules, or templates.

Remember these points when using ALIGN:

s When you use ALIGN in decrementing templates and data modules, the Assembler
decrements the location counter. In other words, it aligns in the same direction as the
prevailing counter direction.

s If you use AL1GN with no operand, the Assembler assumes a value for expr of 2,
thereby aligning the current location counter to the next word boundary.

CHAPTER 4 Assembler Directives

101

ORG: Set location counter o

[macro-label) ORG (expr

ORG sets the current module or template location counter to the value specified by the
expression expr. '

Remember these points when using ORG:

s You cannot use ORG to change the location counter from positive to negative (or vice
versa) in code modules, data modules, or imported templates. You can change the
sign of the location counter only in nonimported templates.

= You must be careful when using oRG to set the current location counter backward in a
decrementing template. Remember that in a decrementing template each label is
defined by first decrementing the location counter and then assigning its value to the
label. You must take this additional decrement into account.

s If you use orG with no operand, the Assembiler sets the current location counter to the
maximum positive or maximum negative location-counter value assigned to the
module up to this point. The Assembler sets the current location counter to the
maximum positive value for code modules and for incrementing templates and data
modules. It sets the current location counter to the maximum negative value for
decrementing templates and data modules.

The following example illustrates the use of orG in a template definition:

Region RECORD
rgnSize DS.W
rgnBBox EQU
Top DS.W
Left DS.W
Bottom DS.W
Right DS.W

ORG
topleft DsS.L
botRight DS.L

ORG ; Make sure of location counter
MyData DS.B 100 ; Reserve 100 bytes

ENDR

; Integer
; Rect

; Points mapped over Rect

i I i N e =
o
o)
.

The template just defined has the memory format shown in Figure 4-2.

102 MPW 3.0 Assembler Reference

» Figure 42 Sample template format

Region Template
L] 1
0 rgnSize 0 rgnSize
T N T
2 Top 2
T = TWI:& -
4 Left 4
rgnBBox = Y F Rect T
6 Bottorn 6
T — BotRight —
8 Right) 8
1 < 1
10 MyData 10 MyData
\AAAAAN
AAAAAAA AAAAAAA
1 1

In this example, the first ORG directive sets the location counter to Top, so that topLeft
and botRight map onto Top, Left, Bottom and Right. The second oRG directive has
no operand, so the Assembler sets the location counter to the highest value so far—in this
case, 10. Although the mapping is exact, using ORG guarantees a correct final value for the
location counter. This technique is particularly useful, for example, when a variant field
does not exactly map onto another variant.

File controls

The file control directives described in this section let you create and access files other
than the current source text files during assembly. The directives are as follows:

INCLUDE Insert source text from another file

DUMP Write the current global symbol table to a file
LOAD Read a file into the current global symbol table
ERRLOG Create an error-listing file

These directives are discussed in detail later in this chapter. An additional file control
directive, MACL1IB, is reserved for future implementation.

CHAPTER 4 Assembler Directives

103

File search rules e’

The Assembler searches in several directories for files specified in INCLUDE and LoaAD
directives. If the directive is given a full pathname (a name containing at least one colon
but not beginning with a colon), it opens the specified file. If the directive is given a
parual pathname (a name tha either starts with a colon or contains no coions), it searches
the accessible directories for the file in the following order:

1. The curent directory
2. The directory that contains the current input file

3. The directory or directories specified by the -1 Assembler option, in the order
specified. Assembler options are described in Appendix G.

4. The directory or directories specified in the {Alncludes} MPW Shell variable. Shell
variables are discussed in Macintosh Programmer’s Workshop Reference.

The foregoing search rules are implemented by prefixing the specified partial filename
with the name of the directory being searched.

INCLUDE: Take source text from another file

[macro-label INCLUDE filename

The 1NcLUDE directive causes the Assembler to accept source input from a specified file.
The value of filename, a quoted literal string, is the name of the file. The file is said to be
included. Here is an example:

INCLUDE ‘traps.a’

The Assembler takes input from the included file until it reaches the end of the file. It then
resumes taking input from the original file, starting with the line following the 1ncLUDE
directive. The only time the Assembler does not switch back to the original file is when it
encounters an END directive in the included file.

An included file may itself include another file. Included files may be nested in this way up
to five levels deep. When looking for included files the Assembler follows the .procedure
described above under “File Search Rules.”

INCLUDE directives are not permitted in macro definitions.

104 MPW 3.0 Assembler Reference

DUMP and LOAD: Write and read symbol table files

(macro-label] DUMP filename
[macro-label] LOAD Sfilename

The puMp and LoaD directives let you store and retrieve the Assembler’s global symbol
tables in external files. This capability helps speed assembly by letting the Assembier
access often-used symbol tables from a file instead of building them repeatedly. Symbol
tables stored in an external file are said to be “dumped.” When they are retrieved, they are
“loaded.”

The value of filename is the name of an external file. With the pump directive, the
Assembler creates a new file, or overwrites an old file, of that name. With the Loap
directive, the Assembler searches for the specified file according to the rules given earlier
in this chapter under “File Search Rules.”

Symbol tables are created by the Assembler from the source text. They are kept in memory
different lengths of time, depending on the scope of the symbols in the table. Local
symbol tables for code modules are purged at the end of the assembly of each module.
Global symbol tables—containing module identifiers, data module field identifiers, and
all symbols defined outside of code modules, including macro definitions—are kept for
the duration of the assembly process.

By using DUMP, you can tell the Assembler to write the following items from the current
global symbol table to the file named by filename.

s template definitions (including type information)

s absolute equates

= equates to imported identifiers

s register equates

s OPWORD definitions

s imported identifiers

s macro definitions

Remember that LoaD assumes the same envitonment as when DuMp was used. The
Assembler does no cross-checking to determine whether, for instance, register equates for

floating-point registers are defined even though Mc68881 is not tumned on in the
*loaded” file.

CHAPTER 4 Assembler Directives

105

puMp does not write these items:

s macro variables

s data module identifiers

» data module field definitions

s data type information

s code module identifiers

s code module labels

s information about exported identifiers

You use LOAD to read a previously dumped symbol table into current memory. When a
dumped symbol table is loaded, the loaded symbols are merged with the current global
symbol table. This means that there must not be duplicate definitions; the Assembler will
report, as an error, any conflict between a current symbol table entry and a loaded entry. A
symbol entry in a loaded table will not override an already existing symbol entry.You can
use the LoaD directive only outside modules and templates.

The Assembler writes files containing dumped symbol tables in a format that is more
compact than the original source files used to produce the symbol tables. Hence it is
advantageous to use DUMP and LOAD when you are using a large number of equates—for
example, with the standard Macintosh equates. If you do, your dumped files will require
substantially less disk space than the comresponding source files. The assembly process will
go faster as well, because the Assembler will not need to scan all the external equate source
files.

ERRLOG: Specify error log file

(macro-label ERRLOG filename

The ERRLOG directive lets you create a separate log file containing all the error messages
reported by the the Assembler. Its name will be the value of filename. All errors and
warnings reported in the listing file will also be copied to this error log file. At the start of
the assembly process, there is no preset error log file, unless one is specified by the -e
option in the Assembler command string. You specify one with the first ERRLOG directive
in your source text. However, the file is not actually created until there is an efror or
warning message to write into it.

& Note: If only warnings (no errors) are generated during assembly, the error log file is not
created.

106 MPW 3.0 Assembler Reference

You can also switch error log files by specifying another ERRLOG directive with a different
filename. You can terminate error logging by using ERRL0G with a null string for its
filename.

¢ Note: Use of this option under MPW is discouraged.

Listing controls

The listing control directives let you control the layout and content of the listing file that
the Assembler produces during the assembly process. They include the following
directives:

PAGESIZE Specify the listing page size

TITLE Define a title for the listing header
PRINT Control miscellaneous listing options
EJECT Start a new page in the listing
SPACE Insert blank lines in the listing

These directives are discussed in detail below. In addition, you can control the listing font
and font size by using the -font Assembler option described in Appendix G.

The assembly listing format is described in Appendix C.

PAGESIZE: Specify listing page size

(macro-label] PAGESIZE (lines{(, width]

The PAGES12E directive lets you specify the number of lines and the number of
characters per line that the Assembler sends for each page of the listing. Both the /ines and
width parameters must be absolute expressions; they cannot contain any forward,
undefined, or imported references.

CHAPTER 4 Assembler Directives

107

The lines parameter indicates how many text lines the Assembler sends to the listing file p—g
between successive form feed characters (ASCII $0C). Its value must be greater than 29.
Each page also contains six header lines; therefore the actual page length is lines + 6. If you
omit PAGESI2E in your source text or include PAGESI2E without 2 Jines value, the
Assembler will assume 2 default value of 75 text lines. With the six header lines, this makes
a default page length of 81 lires.The wid*h parameter indicates how many charscrers the
Assembler sends to the listing file between successive return characters (ASCII $0D). Its
value must lie in the range 70..160. The Assembler uses this number to right-justify the date
and page entries in the header and to truncate the source line display in the listing. If you
omit PAGESIZE in your source text or include PAGES1zE without a width value, the
Assembler will assume a default line width of 126 characters. The default values for fines
and width are based on printing listings in 7-point Courier on a LaserWriter® printer. On
screen, the listing is presented in 7-point Monaco.

TITLE: Specify title line for listing

(macro-labe] ~ TITLE str-expr

The T1TLE directive lets you specify a title line to be placed in the header information of
the listing file. This title remains in effect until the next T TLE directive. The text str-expr
may contain a maximum of 80 characters; the Assembler will truncate it if it is either longer
than 80 characters or too long to fit in the header.

When the Assembler encounters a TITLE directive in your source text, it performs an
EJECT action to terminate the current listing page. The new title appears on the next
page, with the TITLE directive listed first below the new page’s header.

PRINT: Control listing information

(macro-labell PRINT parameter,...

The pRINT directive lets you control whether or not the Assembler creates a listing, and if
so, what information it contains. It may contain from 1 to 13 parameters, separated by
commas, in the operand field. The parameters may appear in any order. The possible
parameters for any PRINT directive are shown in Table 4-3 and explained below; those
that are underlined in Table 4-3 are preset. Those values are in force unless you specifically
override them.

108 MPW 3.0 Assembler Reference

s Table 43

PRINT directive parameters

Parameter Action

ON Send lines to the assembly listing file
OFF Do not send lines to the assembly listing file
GEN Show macrc expansions

NOGEN Do not show macro expansions

BAGE Allow automatic page ejects

NOPAGE Suppress automatic page ejects
HARN Show warning messages

NOWARN Do not show waming messages
MCALL Show macro call statements

NOMCALL Do not show macro call statements
QBJ Show generated object code

NOOBJ Do not show generated object code
DATA Show up to 90 bytes of generated data
NODATA Show only the first line of generated object data
MDIR Show macro directive lines

NOMDIR Do not show macro directive lines
HDR Show header lines

NOHDR Do not show header lines

LITS Show generated literals

NOLITS Do not show generated literals

STAT Show assembly status

NOSTAT Do not show assembly status

SYM Show symbol tables

NOSYM Do not show symbol tables

PUSH Save current print status

POP Retrieve saved print status

oN allows a listing file only if you specified a listing filename when invoking the Assembler.
OFF suppresses listing until PRINT ON occurs. PRINT OFF directives are not listed in the
listing file, regardless of any other parameters they may contain.

GEN and NOGEN control the listing of macro expansion lines. Macro directives appear only
if PRINT MDIR is also in force.

PAGE and NOPAGE control whether or not the Assembler sends automatic form feed
characters to the listing file.

WARN and NowaRN control both the display and counting of warning messages.

CHAPTER 4 Assembler Directives

109

EN

MCALL and NOMCALL control the listing of macro call statements. S

oBJ lets the Assembler list the generated object code or data for each listed line.
Generated object code is always shown in full. Up to 18 lines (about 90 characters) of
generated object data are shown if PRINT DATA is also in force. If PRINT NODATA is in
force, only one line of generated object data is shown. NooBJ suppresses all listing of
object code and data. This results in a briefer listing that shows only source text lines and
their addresses. If you include PRINT NOOBJ in your source text it should be the first
line, to avoid changes in format after the listing has begun.

DATA and NODATA control whether object data is shown in full or limited to one line.
These parameter values are effective only if PRINT 0BJ is in force.

MDIR and NOMDIR control whether or not macro directives (including conditional-
assembly directives and SETA and SeTC directives) are shown in the listing.

PRINT GEN, NOMDIR lets you list macro expansions without listing any of the macro
control statements that produced them.

HDR and NOHDR control whether or not header lines are printed in the listing. HDR is
effective only if PRINT PAGE is in force.

p17s and NoL1TSs control the listing of literals produced by pEa and LEA machine
instructions. If LITs is in force, literals are printed at the end of the code module in which
they were produced.

STAT and NOSTAT control showing the assembly status in the listing. If PRINT STAT is in e
force, each module identifier is listed to the diagnostic output file when the Assembler
encounters it in the source text.

syMand NosYM control showing symbol tables in the listing, including local symbol tables
at the end of each module and the global symbol table at the end of the assembly.

PUSH saves the current PRINT parameter values before processing new ones. pop
retrieves the most recently saved values and places them in force. You can save up to five
different sets of values in this way. PRINT directives containing PUSH or POP are not
listed. A typical use of pusH and poP is to save the current listing format before listing a
macro in a different format, then restore it afterward. By using the & SETTING function
described in Chapter 6, you can access the listing format at any level on the stack.

110 MPW 3.0 Assembler Reference

To override the preset values of one or more parameters, write a PRINT directive in your
source text containing only the parameter values you want to change. Repeating a
parameter value already in force will not cause an assembly error.

@ Note: You can 2lso accomplish most of the PRINT directive actions by using the
-print Assembler optior: described in Appendix G. However, PRINT directives in your
source text override the —print Assembler option.

EJECT: Start new listing page

{macro-label) EJECT (lines

EJECT causes the next line of a listing to appear at the top of the next page. The EJECT
directive itself is not listed. If ETECT occurs when the next line would already be at the
top of the next page, it has no effect.

The parameter /ines is optional. If present, it must be an absolute expression without any
forward, undefined, or imported references, with a positive value greater than zero. Lines
makes EJECT conditional on whether the specified number of lines is available on the
current page. If the lines are available, the Assembler takes no action; if not, it ejects a
new page in the listing. Using this parameter lets you make sure that a section of your
source text is listed all on one page.

SPACE: Insert blank line in listing
(macro-label) SPACE [lineg

SPACE lets you insert one or more blank lines into your listing. The spACE directive itself

is not shown. The optional parameter /ines indicates how many blank lines to insert (from
one to the current page length). It must be an absolute expression without any forward,
undefined, or imported references. If the parameter is omitted, the Assembler inserts one
blank line. If the value of the /ines parameter exceeds the number of lines remaining on the |
page, sPACE has the same effect as EJECT.

CHAPTER 4 Assembler Directives

111

.,«{ \\7

P

‘\{w/'

PartII The Macro Processor and the
Macro Language

EVERY LINE OF YOUR SOURCE TEXT IS INTERPRETED BY THE Macro Processor before it
is handed to the rest of the Assembler. The Macro Processor operates on the
elements of the macro language: macro directives, macro variables, which may
be present within or outside of macros, and conditional assembly directives. The
next three chapters describe this macro language and its use in detail. »

s Chapter 5 tells you how to write macro definitions and macro calls. A
macro definition is 2 named section of source text containing the statements
or directives that constitute a2 macro. Macro definitions are set off by the
directives MACRO and ENDM or MEND. A macro call is a statement that invokes
a macro by name, causing the Macro Processor to expand the call. When the
Macro Processor expands a macro call, it replaces the macro call statement
with the contents of the macro definition, substituting actual values for
certain of its variables and parameters. Macro expansion makes it easy for
you to generate lengthy but repetitious source text sequences, by defining a
few macros and then calling them repeatedly.

s Chapter 6 discusses macro variables and the functions that operate on
them. A macro variable is a variable whose value is assigned by the macro
language. The macro language contains a set of functions that let you form
expressions out of constants and macro variables. When such expressions
occur in the body of a macro, they are replaced by their current values every
time the Macro Processor expands a call to that macro. You can use macro

variables outside of macros (if they were originally declared to be global) and
thereby access their current values outside or inside macros. There are three
kinds of macro variables: symbolic parameiers (discussed in Chapter 5),
SET variables, and Assembler system variables. These three types differ
in the ways they acquire values. Symbolic parameters acquire values when the
Macro Processor expands macro calls; Assembler system variables are
assigned values by the Assembler itself; and SET variables are assigned values
by explicit macro directives.

Chapter 7 describes the MPW Assembler macro directives, which are
instructions you give to the Macro Processor. Using the macro directives, you
can determine whether the Assembler will process or ignore sections of your
source text, based on the values of boolean control expressions. This facility
is called conditional assembly. It is a powerful tool for creating and
controlling source text structures.

,\\/,’

Chapter 5 Macros

A MACRO IS A PREVIOUSLY DEFINED SEQUENCE OF STATEMENTS, directives, or both
that the Assembler processes when it encounters a corresponding macro call.
During macro processing, the Assembler usually generates new source text. This
chapter describes the part of the macro language that is involved in defining and
using macros. s

Contents

Macro expansion 117
Scope of macro symbols 118
Defining macros 118
MACRO and ENDM or MEND: Delimit macro 119
The prototype statement 119
The macro body 120
Macro comments 121
Symbolic parameters 123
Concatenating symbolic parameters 124
Calling macros 125
The macro-qualifier 126
Macro call labels 127
Operand syntax 128
Paired single quotation marks 128
Paired parentheses and brackets 128
Ampersands 129
Commas 129
Blanks (spaces and tabs) 129
Backquotes 130
@-labels 130
Omitted or extra operands 130

115

116

Operand sublists 131
Accessing sublist elements 131
Parameter types and default values 132
Nesting macros 133
Keyword macros 135
Defining kevword macros 135
Calling keyword macros 136
Mixed-mode macros 138

MPW 3.0 Assembler Reference

~

A

Macro expansion

Each line of source text is handled by the Macro Processor as follows:

If the source text line does not contain any elements of the macro language, the Macro
Processor simply pacses it unaltered to the rest o the “ssembler for assembly-language
interpretation.

If the line contains any macro variables or functions but is not a2 macro directive
statement, the Macro Processor replaces the expressions with their current values. It
then passes the result to the rest of the Assembler for assembly-language
interpretation.

If the line is a macro directive statement, the Macro Processor handles it according to
the rules defined in Chapter 7. In this case it interprets and acts upon any macro
expressions that the line contains, instead of replacing them with their current values.

Thus macro directive statements are handled entirely by the Macro Processor; they are not
passed to the rest of the Assembler. Machine instruction statements and other directive
statements are handled by the rest of the Assembler, after the Macro Processor has
converted any macro expressions they might contain to actual values.

You should remember certain rules that the Macro Processor follows when preparing
statements to be passed to the rest of the Assembler:

An element to be replaced, such as a macro parameter or a variable reference, may not
be continued across a line boundary.

An element to be replaced may not contain another element (such as an array index or
function parameter) that must be replaced first.

All fields are expanded, including comments. If you want to refer to a macro variable
in a2 comment that is part of a macro call or prototype statement, you must precede it
by a backquote (*) to force the Macro Processor to treat it literally instead of
replacing it with its value. Similarly, the name of a macro function must be preceded
by an extra ampersand.

CHAPTER 5 Macros

117

Scope of macro symbols

As explained in Chapter 2 in “Scope of Definitions,” the scope of a definition is the range

of s

ource text in which the defined identifier can be accessed by code or data

statements. A variable is called “accessible” within the scope of its icentifier The lifetime
of a variable is the duration of the assembly process over which it is accessible. These rules
govern the scope of macro symbols and the lifetime of macro variables:

Variables declared within a macro, including all its parameters, are accessible only in
subsequent statements of that macro. Their lifetime is the duration of the current
expansion of the macro; they are not accessible in future or nested invocations of the
same macro. Local variables with the same identifier that are defined in other macros
or outside of macros are different variables.

Variables declared local outside of any macro definition are accessible only in
subsequent statements outside macros. You can think of them as program-level
variables. Their lifetime is the remainder of the assembly process after their
definition. Local variables of the same identifier defined inside macros are different
variables.

Variables declared global within a macro are accessible in all subsequent statements of
the program. Their lifetime is the remainder of the assembly process after their
definition.

When the lifetime of a local variable or the scope of its identifier overlaps that of a
global variable, the local variable takes precedence and the global variable becomes
temporarily inaccessible.

Defining macros

A macro definition is a sequence of statements that tells the Macro Processor the name of
a macro, the format of its call, and the source text to be generated when the macro is
called. It consists of four parts:

118

the header directive (MACRO)

the prototype statement

the macro body

the trailer directive (ENDM Or MEND)

MPW 3.0 Assembler Reference

AN

Here is the format and syntax of a macro definition:

MACRO
Header

(labe] name.macro-qualifier (parameter-list
' Prototype

machine instruction or directive stalements
Body

[macro-label] {ENDM | MEND)
Trailer
Here are some rules about macro definitions:

s Every macro must be defined before it can be used; that is, the definition must
precede any calls to the macro.

s You can write macro definitions anywhere in a program except within other macro
definitions.

s A macro whose definition appears within a conditional section of source text (for
example, within a section delimited by the 1¥ directive) will not be defined if the
conditional branch causes the Macro Processor to skip over its definition.

MACRO and ENDM or MEND: Delimit macro
The MACRO and EnDM directives begin and end the macro definition. In place of EnpM
yOu may write MEND.

MACRO takes no labels or operands. ENDM may be preceded by a macro label. but such a
label can be referred to only by a GoTo directive (described in Chapter 7).

The prototype statement

The macro prototype statement specifies the name of the macro being defined and the
format of calls to the macro. The prototype statement also establishes the identifiers of
the macro parameters, if any. The basic form of the macro prototype statement is as
follows:

Label field Operation field Operand fleld
(Label] name.macro-qualifien [parameter-list]

CHAPTER S Macros

119

For the full syntax of the macro prototype statement, including parameter types, default
values, and keywords, see “Parameter Types and Default Values” in “Calling Macros,” later o
in this chapter.

The only required part of the macro prototype statement is the macro’s name, which
identifies it for later calls. The macro name must follow the rules for identifiers given in
Chapter 2. It may not be the same as the name of any machine instruction, Assembler
directive, or other macro used in the same assembly.

In the other parts of the prototype statement—the label, the macro qualifier, and the
parameter list—you may write only symbolic parameter identifiers. These are valid
assembly-language identifiers preceded by an ampersand (&). They are described later in
this chapter, in “Symbolic Parametess.” For the parameter list, you may write a series of
symbolic parameter identifiers separated by commas. The macro qualifier, if present,
must follow the macro name with a period as a separator.

The label field in a macro prototype statement is discussed in “Macro Call Labels,” later in
this chapter.

You may continue a prototype statement on the next source text line at any point after
the macro name (or macro qualifier, if present). To continue a line, you must break it after
a comma and insert a backslash as a continuation character, as in the following:

MyMacro &parmi, sparmB, éparmC, \
&parmD, &éparmE

You can continue a prototype statement indefinitely.

The macro body

The macro body consists of the set of machine instruction or directive statements
between the macro’s prototype statement and its trailer. It may contain any or all of three
kinds of source lines:

= model statements, which the Macro Processor uses as a model to generate actual
Assembler statements or directives

s macro directives, which control the process of macro expansion but generate no
statements

= inner macro calls, which invoke other macros

< Note: You can nest macros recursively to a maximum depth of 512,

120 MPW 3.0 Assembler Reference

Just like other assembly-language statements, model statements consist of four fields,
some of which may be omitted: the label field, the operation field, the operand field, and
the comment field.

The label field may be omitted or may contain a symbol or symbolic parameter.

@& Note: A symbolic parameter in a macro label field whose value is an asierisk (*), period-
asterisk (.*), or semicolon (;) will not turn a mode! statement into a comment, since
the Macro Processor decides whether the statement is a comment before substituting
values for its macro variables.

The operation field may contain any MPW assembly-language instruction or directive,
including macro directives, or any variable symbol. It may not, however, contain an
INCLUDE directive. If it contains the word endm or mend, the macro will terminate at
that point.

The operand field within a model statement follows the same rules as in other statements
and directives. The operand fields of some macro directives, however, require embedded
keywords. In such cases the operand field terminates when the required syntax is
complete, rather than with the first space or tab.

Macro commeants

Several types of comments can be added to macros. Comments that appear on macro
prototype statements, macro model statements, and lines of their own are expanded with
the macro. Special macro comment statements, which are present only in the macro
definition, are also permitted.

You may add comments to macro prototype statements, subject to these rules:

s If your prototype statement has no parameters, you must begin your comment with a
semicolon.

s If a parameter list is present and you want to write a comment, you must separate your
comment from the end of the parameter list by at least one space or tab (with
BLANKS ON) Or 2 semicolon (with BLANKS OFF).

CHAPTER S Macros 121

s If the parameter list is continued 0a a second line, you may insert comments on
individual lines. Finish each line with a comma and a backslash continuation character.
The Macro Processor will treat all text remaining on the line after the continuation
character as a comment. Here is an example:

MyMacro &parma, \ Comment on Parma
sparmB, &ParmC, \ Comments on ParmB and ParmC
&parmD Comment on ParmD

You may add comments to macro model statements in the same way as you add them to
ordinary statements, but you must follow one additional rule. To refer to a macro variable
or function in a comment, you must precede it with an additional ampersand; otherwise
the Macro Processor will substitute its value during macro expansion.

You can write a line containing only a comment in a macro if it starts with an asterisk (*) or
a semicolon (;). Additionally, you may write a special variety of comment line beginning
with period-asterisk (.*), which is not stored in the macro definition. In an Assembler
listing, a comment beginning with a period-asterisk will be listed in the macro definition
but not in any macro expansion; comment lines that begin with a sole asterisk or a
semicolon will be listed both in the definition and in all expansions.

The following example demonstrates all the types of macro comment lines. The line
numbers are for reference only.

MACRO

DbgHead ; Macro DebugHead
.* Puts the Pascal entry code in front of a o
.* subroutine so MacsBug can identify it
* >>> Debug Header <<<

LINK A6, %0 ; Set up stack frame

ENDM

Soavbdwh e

The comment on line 2 is preceded by a semicolon because the prototype statement has
no parameters. The comments on lines 3 and 4 explain what the macro does. They are
intended to appear only in the listing of the definition, so they are preceded by period-
asterisks. The comment on line 5 is a note that appears in the expansion of each call, so it
is preceded by an asterisk alone. This causes the Macro Processor to list it both in the
definition and in all expansions. The comment on line 6 is a model statement comment.

A

122 MPW 3.0 Assembler Reference

Symbolic parameters

Symbolic parameters are a special type of variable symbol, to which the Macro Processor
assigns values when a macro is called. They are used to pass information to the macro from
macro call statements. Symbolic parameters must be defined in the prototype statement.
Only then can you refer to their in staiements in the macre body. The values of symboiic
parameters are assigned when a macro is called and cannot be subsequently changed
except by another call to the same macro.

. The following macro definition illustrates the use of symbolic parameters. The line
numbers are for reference only, they would not appear in an actual source text.

1 MACRO

2 Incz &src, &dest ; Get src, increment, move to dest
3 MOVE.W &src,DO ; Move &src to temp register

4 ADDQ.W #1,D0 ; Increment temp register

5 MOVE.W D0, &dest ; Move temp register to &é&dest

6 ENDM

When the macro Incr is called, the Macro Processor replaces all references to symbolic
parameters in the macro body by corresponding values in the macro call (except when the
reference is preceded by an additional ampersand). Thus when the Macro Processor
encounters the macro call

Incr Alpha,Beta

it replaces it with the following lines:

3 MOVE.W Alpha,DO ; Move Alpha to temp reg
4 ADDQ.W #1,D0 ; Increment temp reg
S MOVE.W DO, Beta ; Move temp reg to &&dest

Notice that the s src parameter defined on line 2 of the macro definition appears twice
on line 3 in the macro body. When the macro is expanded, both references to ¢ szc are
replaced with the parameter value alpha. In line 5, however, the second occurrence of
sdest is not replaced with the value Beta, because it is preceded by a second
ampersand. The process of macro expansion is explained in more detail later in this
chapter in “Calling Macros.”

CHAPTER S Macros 123

Pl

Concatenating symbolic parameters _ 2

S

When symbolic parameters occur outside macro directives, and are not part of SET

variable subscripts or function arguments, you can concatenate them with other

characters or symbols by simply putting the objects to be concatenated next to each

other, without any intervening spaces. Potential ambiguities arise when a character, a

number, a left square bracket, a period, or an ampersand is concatenated to the right of a

symbolic parameter reference, because the Macro Processor interprets these characters as

part of the parameter reference. In such cases you must terminate the parameter reference

with a period, to distinguish the end of the parameter identifier from the characters

concatenated to the right.

When a symbolic parameter or a variable reference is followed by a period, the Macro

Processor replaces the symbol and the period with the symbol’s value when the macro is

expanded. The period does not appear in the generated statement.

The following table shows some sample results from the concatenation of a parameter

with various combinations of text, other parameters, and special characters. The column

on the left contains examples of concatenation with the parameter ¢param. The column

on the right shows the result of macro expansion when the value of sparamis a:

Expression Result

¶m.B AB

¶m..B A.B

¶m. (B) A(B) N

B¶m BA

B, ¶m B,A

B2¶m B2A

¶m.2B A2ZB

¶m, .2B A,.2B

¶m¶m AA

&éparam. s¶m : AA

¶m. . ¶m A.A .

The following examples illustrate some variations that often cause problems:

Expression Resuit Notes

¶m.{1] A[1l] Period makes it not a sublist reference

gparam(1] ml Sublist reference, but parameter value is not a list,

yields null string

&§param.B AB

sparamB error If sparams is not defined
{\
A

124 MPW 3.0 Assembler Reference

The first two examples look like attempts to write parameter sublist references, as
described in “Calling Macros”; they also have the same form as subscripted SET variable
references, discussed in Chapter 6 in *Set Array Variables.” The final example represents
the common mistake of forgetting to terminate a parameter identifier with a period when
it is followed by other characters, causing the Assembler to read the string as one
parameter name, ¶ms.

Calling macros

A macro call is an instruction to the Macro Processor to insert at that point in the source
text, the statements or directives specified by the macro definition. The inserted source
text replaces the macro call statement.

The format and syntax of a macro call is as follows:

Label] feid Operation field Operand fieid Comment field
{label macro-name. macro-qualifien [parameter-list (commen]

The contents of the operation, operand, and comment fields of a macro call are
summarized in the next few paragraphs; the content of the label field is discussed in the
next section.

The operation field contains the name of the macro to be called. The macro being called
must have been defined previously in the assembly process.

The operand field contains information that the macro call passes to the body of the
macro. Thus the order of operands in a macro call statement must correspond to the order
of the symbolic parameters in the prototype statement of the corresponding macro
definition. Parameters of this type are called positional parameters. The parameters
defined in a macro definition are called formal parameters, while the comresponding
parameters specified in a macro call are called actual parameters. The Macro Processor
assigns the values of the actual parameters to the formal parameters when it calls a macro.

When BLANKS OFF is in effect, operands specified in 2 macro call must be separated by
commas, with no intervening spaces. The first space not embedded inside a quoted string
will terminate the operand field (as well as the parameter list) and begin the comment
field. With BLANKS oN in effect, leading and trailing blanks in the operand field are
ignored and comments must be preceded by semicolons. The form required for individual
operands in both cases is discussed in detail later in this chapter.

CHAPTER S5 Macros

125

The comment field is ignored by the Macro Processor. The operand and comment fields
of macro calls may be continued on more than one line, using the conventions applicable
to prototype statements. For details, see “The Prototype Statement” earlier in this
chapter.

The macro-qualifier

The macro-qualifier is a way to allow a macro to act as much as possible like a single
instruction. That is, just as certain instructions may be qualified with a size value (byte,
long, word, and so on), the macro-qualifier allows a macro to accept similar size
qualifications. It is the responsibility of the macro to check the information passed
through for correctness.

The following example illustrates a macro call with a macro-qualifier defined:

MACRO

BMOVE. &size &src, &dest,&len

ENDM

BMOVE source,destination, 12
BMOVE.B source,destination, 12
BMOVE.L source,destination, 3
END

When the BMOVE macro is invoked, the value of & size is undefined (blank) in the first
case. In the second case it is “B”, and in the third case, it is °L". (The period after the
macro name is stripped out by the preprocessor.)

Unlike other parameters, the macro-qualifier does not take default values. In the example

given here, the value of &size has to be tested explicitly against blank.

126 MPW 3.0 Assembler Reference

£

Macro call labels

The label field of the macro call may contain an identifier. The Macro Processor interprets
macro call labels according to these rules:

If the prototype statement of the macro being called does not contain a label, the
macro call label refers to the current location counter value at the point of the macro
all. In code modules, this is a reference to the first generated statement of the macro.
In data modules, however, the current location counter is not necessarily aligned with
the next defined data item.

If the prototype statement of the macro being called contains a label, the value of the
call's label is passed to the macro, as if the prototype's label were an operand.
However, the syntax of the label identifier is restricted to the rules covering other
identifiers; you cannot declare it as a sublist or keyword, type it, or give it a default
value, as you can with 2 normal operand.

When the value of the call’s label is passed to the macro as just described, it may be
used for any purpose—as a label on a statement in the body of the macro, or as a
variable.

For example, suppose a call to the macro Incr, described earlier in this chapter in
“Symbolic Parameters,” is contained in the following code fragment (the line numbers are
included for reference):

x1

BRA.S

Incr

x1

D2,D3

Because the macro definition of I1ncr does not contain a label in its prototype
statement, the branch to x1 will automatically be interpreted as a branch to the first
generated statement of Incr (line 3).

Now suppose the same call is used with a different definition of Incz:

w s W N+

6

&yl

&yl

MACRO
Incr
MOVE.W
ADDQ.W
MOVE.W
ENDM

&src, &dest
&src,DO
#1,D0

DO, &dest

.
’
.
4
.
’

.
’

Get src, increment, move to dest
Move &src to DO

Increment DO

Move DO to &é&dest

-In this case the branch will go to line 5, because the actual value x1 is now passed to the

formal label &y 1, which is a label on the third generated line of Incr.

CHAPTER S Macros 1

b
~

Operand syntax 7

The value of any macro call operand may be numeric or may be any sequence of up to 255
characters. In the latter case, you must observe these conventions:

Paired single quotation marks

A macro call operand may contain one or more strings enclosed by single quotation marks
("), called quoted strings. However, quoted strings may themselves contain single
quotation marks. Single quotation marks that are part of the string are written as two
adjacent single quotation marks. Thus, if the first single quotation mark of a quoted
string is numbered one, then the string ends with the first even-numbered single quotation
- mark that is not followed immediately by another. The first and last single quotation
marks of a quoted string are called paired single quotation marks.

The following sample operand consists of a sequence of characters that contains two
quoted strings:

':llo'cl 'C'S

The first and second single quotation marks are paired, as are the third and last. The
Macro Processor interprets the fourth and fifth single quotation marks as one embedded
single quotation mark. Note that this sample operand contains characters in addition to
those in the strings.

Paired parentheses and brackets

A macro call operand must be balanced with respect to parentheses and brackets; that is,
there must be an equal number of left and right parentheses and the nth left parenthesis
must appear to the left of the nth right parenthesis. The same is true for square brackets.

The simplest case of paired parentheses is a left parenthesis followed by a right
parenthesis without any intervening parentheses or brackets. Similarly, the simplest case
of paired brackets is a left bracket followed by a right bracket without any intervening
parentheses or brackets. If there is more than a single pair of parentheses or brackets, the
Macro Processor associates them by repeatedly recognizing and removing such simple
pairs.

This method is used because paired parentheses and brackets normally enclose lists, which
may be nested. Searching for the simplest pairs lets the Macro Processor recognize the list
structure, as well as determine whether any given comma is an interior part of a list or the
end of an operand in the parameter list.

128 MPW 3.0 Assembler Reference

The following example contains three sets of paired parentheses and one set of paired
brackets:

(READ, (srxc.text,EXT))inBufr(input{2,512])

The first and fourth parentheses are paired, as are the second and third and the fifth and
sixth. The two brackets are paired.

The Macro Processor ignores any parentheses or brackets appearing between paired single
quotation marks when associating paired parentheses, as in the following example:

(N'('closed)

Ampersands

To write a literal ampersand (&) in source text, you must write two consecutive
ampersands. The Macro Processor interprets any single ampersand as the beginning of a
reference to a symbolic parameter, a SET variable or function call, or a2 Macro Processor
system variable. In nested macro calls in which a symbolic parameter is concatenated to
one or more preceding ampersands, the Macro Processor interprets the concatenation as a
sequence of literal ampersands in which the final odd-numbered ampersand is the
beginning of a variable reference.

Commas

A comma delimits the end of every macro call operand unless the comma appears between
paired single quotation marks, parentheses, or brackets. For example, the following is a
single operand even though it contains several commas:

(DO0,D1,D2)delim', 'right

Blanks (spaces and tabs)

The effect of spaces and tabs in a macro call operand depends on the setting of the
BLANKS Assembler directive. If the current setting is BLANKS CFF, then any space or tab
terminates the operand field, unless the line is continued. The only exceptions are spaces
or tabs written between paired single quotation marks, as in the following example:

'Value too large' (&Count,10)

If the current setting is BLANKS ON, the Macro Processor will retain spaces and tabs if
they are followed by more valid operand characters. It will ignore trailing spaces and tabs
if they occur at the end of a line or before the comma delimiting the next operand.

CHAPTER S Macros 129

By

Backquotes L

The backquote () is used in macro prototype and call operands to indicate that the next
character should be passed through the Macro Processor without interpretation. Thus an
ampersand may be put into a call operand without the Macro Processor interpreting it as
the beginning of an & reference if it is preceded by a backquote. For example:

Bonanno' &Sons

A backquote can be used to literalize any character in a macro prototype or call operand,
including another backquote.

@-labels

When interpreting macro call operands, the Macro Processor assumes that any string
beginning with @ is an @-label, unless it is enclosed in single quotation marks or preceded
by a backquote. For example, when processing the sublist (a, @2, B) the Macro Processor
will treat the element @2 as an @-label. Implementation restrictions force it to make this
assumption in order to encode the scope of the caller's @-label inside the macro. If you
want to begin a call operand that is not an @-label with @, you must literalize it with a
backquote.

Omitted or extra operands

If you omit an actual parameter from a macro call, you must still include the comma that
would have separated the omitted actual parameter from the next parameter. This
preserves the positional comrespondence of parameters. The Macro Processor gives each
omitted actual parameter a value of 0 if the corresponding formal parameter has integer
type, or assigns it the null string if the corresponding formal parameter is type string.
Parameter types are discussed in Chapter 6.

If you omit one or more of the last operands from a macro call, you may also omit the
commas that would have separated these final operands. With macros that use the number
of actual parameters internally, the Assembler counts trailing commas when determining
the number.

These rules are demonstrated in the following sample macro prototype statement and its
subsequent macro call:

Prototype ExampleMac
&parml, éparm2, &parm3, &parmé4, &parmS, sparmé
Call ExampleMac DO,*+6,,'syntax error'

In this macro call, the third parameter has been omitted (nothing is between the second
and third commas), as have the fifth and sixth parameters; no final commas are required.

130 MPW 3.0 Assembler Reference

To avoid having the Macro Processor assign the null string as the value of an actual
parameter omitted from a macro call, you may write the prototype statement so that it
assigns default values to omitted parameters. “Parameter Types and Default Values,” later
in this chapter, tells you how to do this.

It is permissible in a macro call to specify more actual parameters than there are formal
parameters defined in the corresponding macro definition. There will, of course, be no
formal parameter identifiers by which you can refer to these extra operand values;
however, you can still access them by using & SYSLIST, as described in Chapter 6 in
*Assembler System Variables.”

Operand sublists

You can structure a macro call operand as a sublist. This lets you refer to a collection of
operands in the same way as you would refer to a single operand, while still being able to
refer to individual members of the collection. Each operand in a sublist is called an
element. Sublists are always string types.

A sublist may contain one or more operands, separated by commas and enclosed in paired
parentheses. The Macro Processor treats the entire sublist, along with the paired
parentheses, as a single operand (limited to 255 characters). Any element of a sublist may
itself be a sublist. Some examples are shown here:

(a)

(a,B,C)

(A, (8,C),D)
((@&a)),s,C)

A sublist may be continued on subsequent lines and may contain comments, following the
same conventions as macro prototype statements. However, it may not contain more

than 255 characters (excluding comments). These conventions are described in “The
Prototype Statement,” earlier in this chapter.

Accessing sublist elements

You can refer t0 an element of a macro sublist operand in the body of the macro. To do
this, you write a sublist as an absolute arithmetic expression enclosed in square brackets
immediately after the identifier of the sublist’s symbolic parameter. The expression in
brackets represents the index (position) of the desired element, with the first element
being 1. For example, if §abc is the identifier of a sublist parameter, then sabc{n] refers
to the nth element in the sublist. The index value n must be greater than zero.

CHAPTER 5 Macros

131

If the mth element of the sublist is omitted, or if there are fewer than » elements in the
sublist, then the value of sabc [n] will be the null string, If the nth element of the sublist
is itself a sublist, then sabc [n,m] refers to the mth element in the sublist which is the
nth element of sabe. You can create sublist references up to any depth by specifying as
many subscripts as necessary, separated by commas, between the brackets. You can use
the &NBR function, described in Chapter 6, to find out how many elerents a sublist has.

If you write a sublist reference to a parameter that is not a sublist, its value will always be
the null string.

Note that the left bracket that begins the index expression must follow the parameter
identifier without any intervening characters. You should not place a period between the
parameter identifier and the left bracket unless you want to concatenate the value of the
entire operand with a left bracket.

The following examples illustrate various references to sublist elements. They are based on
a parameter &p with the sublist (a, (8,¢), D) as its value. The left column shows sublist
element references; the right column shows their corresponding values.

Reference Value

&p (A, (8,8),D)
&pl(1] A

&p(2) (8,C)

&p (3] D

&pl4) mull

&pl2,1] B

&p(2,2) c

Parameter types and default values

The Macro Processor assumes that all macro parameters are strings. Sometimes, however,
it is necessary to declare a parameter as an integer type. You can assign a parameter a type
by following the parameter identifier in the prototype statement with a colon (:) followed
by sTr or ¢ for a character string parameter and INT or A for an integer (arithmetic)
parameter,

If you omit an actual parameter of type integer when calling a macro, the Macro Processor
gives it a value of 0. If you omit a string parameter, the Macro Processor assigns it the nuil
string.

The actual value passed to a parameter of integer type must be an integer constant,
because the Macro Processor interprets it using the & STRTOINT function. Values of
integer expressions must be passed as strings and then converted inside the macro, using
the sEVAL function. The functions & STRTOINT and &EVAL are described in Chapter 6.

132 MPW 3.0 Assembler Reference

You can assign default values to macro parameters by following their identifiers (or type
specifications) in the prototype statement with an equal sign (=) followed by the default
value. Each such parameter will take on the default value if it is omitted in a

macro aall.

The following example of a macro prototype statement defines two parameters of
ifferzat types with different default values; ssz is an integer with a default value of 4,
while & reg is a string with a default value of 'po .

MACRO
BumpSz &Sz:Int=4, ®=D0

ENDM
The full syntax of any macro prototype statement is therefore the following:

INT
[& namd namd . & namd & name : S.iB [{:_} opnd-value] e

o}

The double equal sign (==) preceding the default operand value opnd-value in this syntax
diagram identifies keyword parameters. Keyword parameters are discussed in “Keyword
Macros” in this chapter.

Nesting macros

Macros may be called from the bodies of other macro definitions. Such macro calls are
termed inner macro calls, because they are executed within 2 macro definition. They are
also termed “nested calls.” A macro call that is not within the body of a macro definition is
an outer macro calL

When the Macro Processor encounters an inner macro call during macro expansion, it
suspends processing the current macro and expands the inner macro. When it has finished
expanding the inner macro, it resumes expansion of the outer macro. The macros invoked
by inner macro calls may call other macros, so there may be any number of macros up to
511 (the maximum nesting depth is 512) suspended in midprocess while the current macro
is being expanded. The sequence of macros suspended in this way is called the current
macro call chain.

CHAPTER 5 Macros 133

The definition of a macro called by an outer macro call may contain any number of inner AN
macro calls. The outer call is termed the first-level call; all inner calls in a first-level macro N
are termed second-level calls; calls within second-level macros are third-level calls; and
50 on. The number of each such dynamic nesting level is available in the Assembler
listing if macro expansions are being listed.

Nesting levels refer only to the way the Macro Piocessor actually expands miacros in a given
assembly. Any particular inner macro call may have different nesting levels at different
points in an assembly, because the macro containing it may be called from a variety of
places, along a variety of call chains. The number of levels of nested macros that your
program can call depends only upon the complexity of your macro constructs and the
memory available.

The following example demonstrates how a macro may be called from within another
macro. This is the definition of Incz, the macro to be called:

MACRO

Incr &src, &dest
MOVE.W &src,DO
ADDQ.W #1,D0
MOVE.W DO, &édest
ENDM

Now here is the definition of a macro, Incr2, thatcalls Incr:

MACRO
Incr2 &a, &b, &c
.* Increment &a and &b, put sum in é&c
Incr &a, &a
MOVE.W &a,Dl1
Incr &b, &b
ADD.W &b,D1
MOVE.W D1, &c
ENDM

If 1ncr2 is called with x, ¥, and 2 as its three parameter values, the Macro Processor will
generate the statements shown in the following code segment by macro expansion. The
line numbers on the left are included only for reference to the example.

Incr2 X,Y,2 ; macro call

1 MOVE.W X,D0 ; macro expansion
2 ADDQ.W #1,D0

3 MOVE.W DO,X

4 MOVE.W X,D1

5 MOVE.W Y,DO

6 ADDQ.W #1,D0

7 MOVE.W Do,Y

8 ADD.W Y,D1

) MOVE.W D1,2

134 MPW 3.0 Assembler Reference A

Notice that lines 1 through 3 are generated by the first inner macro call to Inc=. Lines 5
through 7 are generated by the second inner macro call. The other lines are generated from
the Incr2 macro.

Keyword macros

Keyword macros provide an alternate way to pass parameter values during macro
expansion. In a keyword macro definition, you can specify parameters in any order and
give them default values. The Macro Processor identifies different parameters by their
keywords rather than by their position in the parameter list. As a result, when you call a
keyword macro, you need specify only those parameters that require values different
from their defauit values.

The different ways you can write macros are distinguished by this terminology:

s Positional macros are the kind discussed earlier in this chapter. Their parameters are
distinguished by their positions in the macro prototype statement.

s Keyword macros are the kind described in the section that follows this list.

s Mixed-mode macros contain both positional and keyword parameters. They are
described at the end of this chapter.

& Note: You cannot use & SYSLIST 10 access keyword parameters.

Defining keyword macros

The prototype statement that defines a keyword macro is like the prototype statement
for a positional macro (described at the beginning of this chapter in “Defining Macros™),
except that each parameter identifier in the parameter list is followed by two equal signs
(==). This tells the Macro Processor that the parameter identifiers are keywords.

The two equal signs may optionally be followed by an integer constant or string giving the
parameter’s default value. This constant must have the same type as the parameter.

The following are examples of valid keyword prototype operands:

&recSize==12
&recSize:INT==12
&dinline==

t&err==(12, 'syntax error')

CHAPTER S Macros 135

The following are examples of invalid keyword prototype operands:

InLine No & (not a parameter)

&recSize No equal signs

&blkSize ==512 Space before ==

&x=2 Single equal sign; interpreted as » positionz! operan:i with a defauls « 2iue

The following is an example of a keyword prototype statement with a symbolic parameter
in the label field and three keyword parameters in the operand field:
&§lab CopyBuff &src==InBuff, §dest==, scount==512

Note that the second parameter does not have a default value.

Calling keyword macros

Once you have defined a keyword macro, you can tell the Macro Processor to expand it
and insert it into your source text with 2 keyword macro call directive of the following
form:

[label) macro-name (keyword={valuel] ,...

The keyword operands are keywords without their & prefixes, each of which is followed
immediately by an equal sign (=). Each equal sign may optionally be followed by a value.
Such operand values must conform to the same rules as operand values in positional macro
calls (see “Calling Macros,” earlier in this chapter).

The keywords specified in the macro call must have the same identifiers as the keyword
parameters defined in the keyword macro definition (without initial ampersands). The
Macro Processor does not distinguish between uppercase and lowercase in keywords.

The following are examples of valid keyword macro call operands:

RecSize=1024
dest=printBufr
Count=

The following are examples of invalid keyword macro call operands:

&Err=(8, 'bad input') Starts with &
sysIn =fo00.text Space before =

dest No equal sign
=1024 No keyword

@

136 MPW 3.0 Assembler Reference

Here are some rules about writing keyword macro calls:
s You can write keyword operands in any order.

s You need specify only those operands whose values must be different from the default

values specified in the macro definition,
» You necd not write extra commas for omitted operands.

When the Macro Processor expands a keyword macro, it follows these rules:

s It processes identifiers in the label and operation fields in the same way that it
processes such identifiers in positional macro calls.

s In the operand field, it replaces all parameters mentioned in the call with their
specified values.

s It replaces all parameters not mentioned in the call with their default values, as
specified by the keyword macro prototype statement.

s If a parameter not mentioned in the call has no default value, the Macro Processor
replaces it with the null string (type string) or 0 (type integer).

s [f a parameter is mentioned in the call but is not followed by a value, the Macro
Processor replaces it with the null string (type string) or O (type integer).

The following example illustrates the use of keyword macros. It is the same as the example
given in *Symbolic Parameters” in this chapter but rewritten with keywords instead of
positional parameters. Using keywords improves the macro in four ways: it lets you
specify a default temporary register, it gives you the option of leaving the resuit in the
temporary register by simply not specifying a destination register when you call the
macro, makes it easy for you to specify an increment value other than 1, and makes the
macro call easier to understand. :

MACRO
&lbl Incr &src==,6 gdest==, §DReg==D0, sinc==1
&lbl MCVE.W &src,&DReg ’

ADD.W #&inc, &DReg

IF f&dest'<>'"' THEN

MOVE.W &DReg, &dest

ENDIF

ENDM

The following are examples of possible calls to this macro:

Incr src=D2,dest=D1
Incr src=D3,inc=4
Incr src=D0,dreg=D1

CHAPTER S Macros

Mixed-mode macros ' N

Mixed-mode macros are macros that contain a combination of positional and keyword
parameters.

The prototype statement of a mixed-mode macro resembles that of a positional macro
except for its parameter list. In a mixed-mode macro parameter list, you must write all the
keyword parameters after all the positional parameters. A positional parameter may not
follow a keyword parameter.

The operand lists of mixed-mode macro call directives may include zero or more
positional operands, plus zero or more keyword operands. All the actual positional
parameters must precede the first actual keyword parameter.

Remember these points when using mixed-mode macros:
» You treat positional operands as if they were in a positional macro and keyword
operands as if they were in a keyword macro.

s If you omit a positional parameter, you must insert a comma to indicate the missing
position; however, you may omit all trailing commas.

s You can nest all three kinds of macros—positional, keyword, and mixed-mode—in
macros of the other kinds. In other words, a macro of any kind may be called as an
inner macro from a macro of the same or any other kind.

s The Assembler system variable s sYsL1sT lists only the positional parameter values in
a mixed-mode macro call.

The example given earlier in “Calling Keyword Macros” could be changed to a mixed-mode
macro by removing the equal signs after the & src and sdest parameters in the
prototype statement. Then the keyword macro aall,

Incr src=A3,inc=4
could be replaced with this mixed-mode macro call:
Iner A3,inc=4

In this example, writing a mixed-mode macro definition lets you specify the frequently
used &src and edest parameters more conveniently in your macro calls, without having
to write out their keywords.

138 MPW 3.0 Assembler Reference

Chapter 6 Macro Variables and Functions

MACRO VARIABLES ARE VARIABLES OF THE MACRO LANGUAGE. You can combine them

with the functions described in this chapter and use them to control conditional

assembly plus certain features of macro expansion. They include the following:

s symbolic parameters, which acquire values when the Macro Processor
expands macro calls

s SET variables, which are assigned values by explicit macro directives
s assembler system variables, which are assigned values by the Assembler itself

Symbolic parameters were discussed in Chapter 5. SET variables and Assembler
system variables are discussed in this chapter. =

Contents

SET variables 141

SET variables and symbolic parameters 143

LCLA, LCLC, GBLA, and GBLC: Define SET variables 143
SETA and integer expressions 145

&ABS: Return absolute value 146

&EVAL: Evaluate contents of string 147

&ISINT: Test string for integer content 147

&LEN: Measure string length 147

&LEX: Parse string lexically 148

&LIST: Divide string into list 150

&MAX: Find maximum in integer fist 151

&MIN: Find minimum in integer list 151

&NBR: Count sublist elements 151

&ORD: Return integer value 152

&POS: Find position of substring in string 152

&SCANEQ and &SCANNE: Scan string 153

&STRTOINT or &S2I: Convert string to integer 154

139

140

Symbol table functions 154

&NEWSYMTBL: Create new symbol table 154
&ENTERSYM: Enter or update symbol in table 155
&FINDSYM: Find symbol in table 156
&DELSYMTBL: Delete symbol table 157

SETC and string expressions 157

Accessing substrings of string variables 158

&CHR: Convert integer to character 159
&CONCAT: Concatenate strings 160

&DEFAULT: Return string value or default 160
&GETENYV: Return MPW Shell variable value 160
&INTTOSTR or &I2S: Convert integer to string 160
&LOWCASE or &LC: Convert string to lowercase 161
&SETTING: Return directive setting 161
&SUBSTR: Return substring of string 162

&TRIM: Trim spaces and tabs from string 163
&TYPE: Determine identifier type 163

&UPCASE or &UC: Convert string to uppercase 164

SET array variables 165

Defining SET array variables 165
Using SET array variables 166
Accessing substrings in SET array string elements 167

Assembler system variables 168

&SYSINDEX or &SYSNDX: Macro call index 168

&SYSLIST or &SYSLST: Macro operand list 169

&SYSSEG: Current segment identifier 170

&SYSMOD: Current module identifier 170

&SYSDATE: Current date 170

&SYSTIME: Current time 170

&SYSTOKEN and &SYSTOKSTR: Values set by &LEX 171
&SYSVALUE and &SYSFLAGS: Values set by &FINDSYM 171
&SYSLOCAL and &SYSGLOBAL: System symbol table ID’s 171

MPW 3.0 Assembler Reference

SET variables

SET variables help you program the ways that the Macro Processo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>