Macintosh. HyperCard. Script

Language Guide
The HyperTalk~ Language

Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San juan

& APPLE COMPUTER, INC.

Copyright © 1988 by-Apple
Computer, Inc.

All rights reserved. No part of
this publication may be repro-
duced, stored in a retrieval
system, or transmitted, in any
form or by any means, mechan-
ical, electronic, photocopying,
recording, or otherwise, without
prior written permission of
Apple Computer, Inc. Printed in
the United States of America.

Apple, the Apple logo,
LaserWriter, Macintosh, and
SANE are registered trademarks
of Apple Computer, Inc.

APDA, Finder, HyperCard,
HyperTalk, MultiFinder, and
Stackware are trademarks of
Apple Computer, Inc.

MacPaint is a registered trade-
mark of CLARIS Corporation.

ITC Avant Garde Gothic, ITC
Garamond, and ITC Zapf
Dingbats are registered trade-
marks of International Typeface
Corporation.

Microsoft is a registered trade-
mark of Microsoft Corporation.

POSTSCRIPT is a registered
trademark, and Illustrator is a
trademark of Adobe Systems
‘Incorporated.

Varityper is a registered trade-
mark, and VT600 is a trademark,
of AM Intemational, Inc.

Simultaneously published in the
United States and Canada.

ISBN 0-201-17632-7
ABCDEFGHIJ-DO-898
First printing, July 1988

>

Preface

Chapter 1

Contents

Figures and tables xv

About This Guide xix
What'’s in this book? xx
Notation conventions xxii

HyperTalk Basics 1

What is HyperTalk? 2
Objects 2
Buttons and fields 2
Cards, backgrounds, and stacks 3
Messages 4
Scripts 4
Handlers 4
Message handlers 5
Function handlers 5
Where'’s the scrip? 6
The script editor 7
Manipulating text 8
Searching and printing 8
Formatting scripts 9
Line length 9
Chapter summary 10

Chapierz Handling Messages 11

Chapter 3

Contents

The HyperCard environment 12
Sending messages 12
System messages 13
Statements as messages 13
Message box messages 14
Messages resulting from commands 14
Receiving messages 15
Object hierarchy 16
Where messages go 16 ‘
Messages to buttons and fields 17
The current hierarchy 18
The target 20
The dynamic path 21
The go command and the dynamic path 22
The send keyword and the dynamic path 23
Handlers calling handlers 25
Subroutine calls 25
Recursion 26
Using the hierarchy 27
Sharing handlers 27
Intercepting messages 29
Parameter passing 30
Chapter summary 32

Naming Objects 33

Object descriptors 34
Object names 35
Object ID numbers 35
- Object numbers 36
Special ordinals 37
Object numbers and tab order 37
Special object descriptors 37
Stack descriptors 38
Naming a stack 39
Combining object descriptors 40
Chapter. summary 40

Chapter4 Values 41

Sources of values 42
Constants 42
Literals 42
Functions 43
Properties 43
Numbers 44
Standard Apple Numerics Environment 44
Precision 44
Number handling 45
Containers 45
Fields 45
Variables 46
The selection 47
The Message box 48
Complex expressions 48
Factors 49 _
HyperTalk operators 50
Operator precedence 50
Operators and expression type 51
Chunk expressions 53
Syntax 53
Characters 54
Words 54
Items 55
Lines 55
Ranges 56
Chunks and containers 57
Chunks and destinations as well as sources 57
Nonexistent chunks 57

Chapter summary 58

Chapter5 Keywords 59

Keywords in message handlers 60
On 61
End 61
Exit 61
Pass 62
Remm 62
Message handler example 62

Contents

vi

Contents

Chapter 6

Chapter 7

Keywords in function handlers 63
Function 64
End 64
Exit 64
Pass 65
Rewumn 65
Function handler example 66
Repeat 66
Repeat 66
Repeat forever 67
Repeat for 67
Repeat until 67
Repeat while 68
Repeat with 68
Exit 69
Next 69
End 70
If 70
Single-statement If structure 70
Multiple-statement If structure 71
Nested If structures 72
Do 72
Global 73
Send 73

System Messages 75

Messages and commands 76
Messages sent to a button 77
Messages sent to a field 78

Messages sent to the current card 80

Commands 85

Redefining commands 86
Syntax description notation 87
Add 88

Answer 89

ArrowKey 90

Ask 92

Beep 93

Choose 94

Click 95

Close file 97
Close printing 98
Convert 98
Delete 100
Dial 101
Divide 102
DoMenu 102
Drag 104

Edit script 105
EnterKey 105
Find 106
FunctionKey 108
Get 109

Go 110

Help 111

Hide 111
Multiply 113
Open 115
Open file 115
Open printing 116
- Play 117

Pop card 118
Print card 119
Print 120
Push 121

Put 122

Read 123
Reset paint 125
ReturnKey 125
Set 126

Show cards 127
Show 128

Sort 130
Subtract 131
TabKey 131
Type 132
Visual 133
Wait 135-
Write 136

Contents

vii

Chapter8 Functions 137

Function calls 138
Syntax description notation 139
Abs 140

Annuity 140

Atan 141

Average 142
CharToNum 142
ClickLoc 143
CommandKey 143
Compound 144
Cos 145

Date 145
DiskSpace 146
Exp 147

Expl 147

Exp2 148

Length 148

Ln 149

Lnl 149

Log2 150

Max 150

Min 151
Mouse 151 : ;o
MouseClick 152
MouseH 153
MouseLoc 153
MouseV 154
Number 154
NumToChar 156
Offset 157
OptionKey 158
Param 158
ParamCount 159
Params 160
Random 160
Result. 161

Round '163

viil Contents

Seconds 163
Shiftkey 164
Sin 164
Sound 165
Sqrt 166
Tan 166
Target 167
Ticks 168
Time 169
Tool 170
Trunc 171
Value 172
Version 172

Chapter 9 Properties 173

Retrieving and setting properties 174

Object properties 174
Name property 175
ID property 175

Environmental properties 176

Global properties 176
BlindTyping 176
Cursor 177
DragSpeed 177
BditBkgnd 177
Language 178
LockMessages 178
LockRecent 178
LockScreen 179
NumberFormat 179
PowerKeys 180
TextArrows 180
UserLevel 181

Window properties 181
Location 182
Rectangle 182
Visible 182

Contents

Contents

Painting properties 183
Brush 183
Centered 184
Filled 185
Grid 185
LineSize 185
Multiple 186
MultiSpace 186
Pattern 186
PolySides 187
TextAlign 188
TextFont 188
TextHeight 188
TextSize 189
TextStyle 189

Stack properties 190
FreeSize 190
Name 190
Script 191
Size 191

Background properties 192
ID 192
Name 192
Number 192
Script 193

Card properties 193
ID 193
Name 194
Number 194
Script 194

M

Field properties 195
ID 195
Location 196
LockText 196
Name 197
Number 197
Rectangle 197
Script 198
Scroll 198
ShowlLines 199
Style 199
TextAlign 200
TextFont 200
TextHeight 201
TextSize 201
TextStyle 202
Visible 202
WideMargins 202

Button properties 203
AutoHilite 203
Hilite 204
Icon 204
ID 205
Location 205
Name 205
Number 206
Rectangle 206
Script 207
ShowName 207
Style 207
TextAlign 208
TextFont 208
TextHeight 208
TextSize 209
TextStyle 209
Visible 209

Chapter 10 Constants 211

Contents

Appendix A External Commands 217

Definitions, uses, and examples 217
XCMD and XFCN resources 217
Uses for XCMDs and XFCNs 218
Guidelines for writing XCMDs and XFCNs 219
Flash: an example XCMD 220
Flash listing in MPW Pascal 220
Flash listing in MPW C 222
Flash listing in 68000 assembly language 224
Peek: an example XFCN 225"
Peek listing in MPW Pascal 225
Peek listing in MPW C 228
Accessing an XCMD or XFCN 230
Invoking XCMDs and XFCNs 230
Object hierarchy 231
Parameter block data structure 232
Passing parameters to XCMDs and XFCNs 233
ParamCount 233
Params 233
Passing back results to HyperCard 233
ReturnValue 233
PassFlag 233
Callbacks 234
EntryPoint 234
Request 234
Result 234
InArgs 234
OutArgs 234
Callback procedures and functions 235
Definition interface files 235
Definition file in MPW Pascal 235
Definition file in MPW C 237
Glue routines 241
Glue routines in MPW Pascal 241
Glue routines in MPW C 250
Ataching an XCMD or XFCN 260
HyperCard Developer’s Toolkit 260

Appendix B ConftrolKey Parameters 261

Appendix C Extended ASCIl Table 263

xil Contents

L ;
\‘&\ S
i

Appendix D
prendix E

Appendix F

Appendix G

Appendix H

Operator Precedence Table 266

HyperCard Limits 267

HyperTalk Changes in HyperCard Version 1.2 269

New and enhanced commands 269
Lock screen and unlock screen 270
Select 270 :
Find 271
Hide and show 272

New and enhanced functions 273
Number 273
Functions for found text 273
Functions for selected text 274

New properties 274
AutoTab 274
CantDelete 275
CantModify 275
ShowPict 275
UserModify 276

New synonyms 276

New shortauts 277
Command-Option 277
Shift-Command-Option 277
Other Command-Option key combinations 277

HypetTalk Syntax Summary 278
Syntax description notation 278

HyperTalk Vocabulary 283

Glossary 297
Index- 303

Contents

xiil

xlv

Chapter 1

Chapter 2

Chapter 3

Figures and tables

Figures and tables

HyperTalk Basics 1

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Table 1-1

HyperCard objects 3

The Objects menu 6

Button Info dialog 7

Script editor dialog box 8

Nested control structures 9

Script editor command summary 10

Handling Messages 11

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 29
Figure 2-10
Figure 2-11
Figure 2-12
Figure 2-13

Matching messages with handlers 15

Object hierarchy 16

Layered buttons and fields 17

Message traversing current hierarchy 18
Command is sent as a2 message 19

The target 20

Static path before the go command executes 22
Dynamic path after the go command executes 23
Using the send keyword 24

Handler in card script 28

Handler in stack script 28

Intercepting a message 29

Parameter passing 31

Naming Objects 33

Figure 3-1
Figure 3-2
Figure 3-3

~ Card info dialog and descriptions for same card 35

A pathname 38
New Stack dialog box 39

Chapter 4

Chapter 6

Chapter 7

Chapter 9

Chapter 10

Appendix A

Appendix B

Values 41

Figure 4-1 Manipulating the selection 47
Figure 4-2 The Message box 48

Figure 4-3 Lines in a field 55

Figure 4-4 Chunk expressions 56

Figure 4-5 Combining chunks and objects 58
Table 4-1 Operator precedence 50

Table 4-2 HyperTalk operators 51

System Messages 75

Table 6-1 Messages sent to a button 77
Table 6-2 Messages sent to a field 79
Table 6-3 Messages sent to the current card 80

Commands 88

Figure 7-1 Answer command dialog boxes 89
Figure 7-2 Ask command dialog box 92

Figure 7-3 Tools palette 94

Table 7-1 Effects of the arrowKey command 91

Properties 173

Figure 9-1 An object info dialog box 175

Figure 9-2 Brush shape dialog and property values 184
Figure 9-3 Patterns palette and property values 187
Figure 9-4 The scroll property 199

Constants 211
Table 10-1 HyperTalk constants 213

External Commands 217
Figure A-1 Message-passing hierarchy, including XCMDs
and XFCNs

ControlKey Parameters 261
Table B-1 ControlKey message parameter values 262

Figures and tables XV

Xvi

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

Figures and tables

Extended ASCIl Table 263

Table C-1 Control character assignments 264
Table C-2 Character assignments in Macintosh Courier
font 265

Operator Precedence Table 266
Table D-1 Operator precedence 266

HyperCard Limits 267
Table E-1 HyperCard limits 267

HyperTalk changes In HyperCard Version 1.2 269

Table F-1 New HyperTalk synonyms 276
Table F-2 New shortcuts 275

HyperTalk Syntax Summary 277

Table G-1 HyperTalk command syntax 278
Table G-2 HyperTalk function syntax 280

HyperTalk Vocabulary 283 v .
Table H-1 HyperTalk vocabulary 283 .

Preface

About This Guide

This book provides detailed information about HyperTalk™, the scripting language of
HyperCard™. Even a small knowledge of HyperTalk enables you to customize buttons
and and other parts of HyperCard stacks for your own purposes, and you can use
HyperTalk to make the stacks that you create act the way you want.

To get the most out of this book, you should have read the HyperCard User’s Guide,
and you should have used HyperCard enough to be familiar with its basic features.
While you're using HyperCard, you can find information about HyperTalk in the
HyperCard Help system. The Help system makes use of some of HyperCard’s best
features, such as computer-supported cross-referencing and fast text searching.

Some of the concepts in this book, such as message handling and objects, may be new
to you. Use this guide as it suits your own style of learning: you might be the kind of
person who understands best by thoroughly studying the explanations, or you might
be the kind who learns by skimming the material and then playing with
HyperTalk—writing scripts or copying the examples and trying them out

xvil

What's in this book?
Here’s a brief description of the contents of this guide:

Chapter 1, “HyperTalk Basics,” introduces the basic concepts of HyperTalk, showing
how it is used in the HyperCard environment. This chapter also explains how to create
and modify scripts in HyperCard objects.

Chapter 2, “Handling Messages,” describes how HyperTalk works, how it carries out
actions, and how it responds to events in the HyperCard environment. .

Chapter 3, “Naming Objects,” explains how to refer to objects—the parts of
HyperCard that contain HyperTalk scripts and that respond to and initiate actions.

Chapter 4, “Values,” explains how to create and refer to HyperTalk’s values—the
information it acts upon. It also describes HyperTalk’s operators and explains how
HyperTalk evaluates expressions.

Chapter 5, “Keywords,” describes the handlers within which you write all HyperTalk
scripts, to enable objects to respond to messages and function calls. It also describes

the control structures of HyperTalk that let you specify how and when sections of
scripts execute, and it describes other keywords: do, global, and send.

~ Chapter 6, “System Messages," describes the messages that HyperCard generates in
_response to events (such as mouse clicks) that happen in its environment.

Chapter 7, “Commands,” describes each of HyperTalk’s built-in commands—the
action statements that make HyperCard do things.

Chapter 8, “Functions,” describes HyperTalk’s built-in functions—named values that
reflect conditions in the HyperCard environment.

‘Chapter 9, “Properties,” describes the properties of HyperCard
objects—characteristics that determine how objects look and act.

Chapter 10, “Constants,” describes HyperTalk’s built-in constants—named values
- that don't change.

xviil Preface: About This Guide

Appendix A, “External Commands and Functions,” contains general information
about XCMDs and XFGNs, extensions to HyperTalk that can be written by expert
programmers to increase the power of HyperCard.

Appendix B, “ControlKey Parametess,” lists the values generated by various
keystrokes in combination with the Control key.

Appendix C, “Extended ASCII Table,” lists the decimal values of the standard
Macintosh character set used by HyperCard.

Appendix D, “Operator Precedence Table,” summarizes the order in which
HyperTalk performs operations when it evaluates expressions. ~

Appendix E, “HyperCard Limits,” lists various minimum and maximum sizes and
numbers of elements defined in HyperCard.

Appendix F, “HyperTalk Changes in HyperCard Version 1.2,” explains the
differences in the language appearing with version 1.2

Appendix G, “HyperTalk Syntax Summary,” shows the syntax of HyperTalk’s
command and function parameters in abbreviated form.

Appendix H, “HyperTalk Vocabulary,” lists alphabetically every term that HyperTalk

understands along with its category, a page reference to where it is explained in this
guide, and a brief description of its meaning,

What's in this book?

xix

Notation conventions

Before you read this guide, you should know about a few typographic conventions.
Words or phrases in typewriter type are Hypertalk language elements or are
those that you type to the computer literally, exactly as shown. New terms are shown in
boldface type when first used or defined.

.In descriptions of HyperTalk syntax for commands and other language elements,
words in #talic type describe general elements, not specific names—you must
substitute the actual instances. Square brackets ([1) enclose optional elements which
may be included if you need them. (Don't type the square brackets.) In some cases,
optional elements change what the message does; in other cases they are helper words
that have no effect except to make the message more readable. Syntax descriptions for
some language elements have particular formats shown at the beginning of their
chapters.

It doesn’t matter whether you use uppercase or lowercase letters in commands or
variable names; message names that are formed from two words are shown in small
letters with a capital in the middle (1ikeThis) merely to make them more readable.
The keywords of and in are interchangeable—the syntax descriptions use the one
that sounds more natural.

X X Preface: About This Guide

Chapter 1

HyperTalk Basics

This chapter explains HyperTalk’s place in the HyperCard system, describes some of
HyperTalk’s characteristics, and shows how to create and edit the scripts of HyperCard
objects.

Most concepts are discussed only briefly in this chapter, with more detailed discussion
left for later chapters

What is HyperTalk?

HyperTalk is the scripting language of the HyperCard environment. It allows you to
perform actions on HyperCard objects: buttons, fields, cards, backgrounds, and
stacks.

You use HyperTalk to send messages to and from HyperCard objects. You generate a
message by (among other means) clicking the mouse, opening a card, or typing a
statement into the Message box. How a given object responds to a particular message
depends on the objects’s script. All HyperCard scripts are written in HyperTalk.

Objects

There are five kinds of objects in HyperCard: buttons, fields, cards, backgrounds, and
stacks. (See Figure 1-1.)

Buttons and fieids

Buttons are action objects or “hot spots” on the screen. For example, clicking a
button with the Browse tool can take you to the next card in a stack.

Fields contain editable text. The Browse tool hand pointer changes to an I-beam
when it's over an unlocked field. (The card or background might also contain Paint
text characters. Such characters are not editable once they are placed; they become
part of the picture on the card or background.)

2 Chapter 1: HyperTalk Basics

Stack

Push

Button

Background

Fleld

Card

Figure 1-1
HyperCard objects

Cards, backgrounds, and stacks

The basic unit of information is the card: when you look at the screen of a Macintosh®
computer running HyperCard, what you see foremost is a card. Each card is
associated with one background, and a background may be (and usually is) shared by
more than one card. The card overlays the background; both are the size of the card
window, which is the size of the original Macintosh screen (512 by 342 pixels). What
you see in the card window belongs to the card, or, if an area of the card is

transparent, to the background The card and background both can contain pictures,
which are bitmaps, and buttons and fields. Cards are grouped in stacks; each stack is a
Macintosh file. :

The card that is currently displayed, the background associated with it, and the stack
they are in are termed the current card, background, and stack. The concept of being
current doesn’t apply to buttons or fields.

Chapter 3 contains details about referring to objects.

What is HyperTalk?

Messages

HyperCard objects interact with each other, with the user, with HyperCard, and with
the Macintosh environment by sending messages. Some messages are descriptions of
things that happen in the environment, such as that the mouse has been clicked or a
card opened: these are system messages. They are like news flashes announced to
the community of objects. For example, if you click the mouse button down,
HyperCard sends the message mouseDown; when you let the mouse button up,
HyperCard sends the message mouseUp.

Messages are sent to various objects in a particular order. For example, system
messages generated by the mouse go first to the topmost button or field (if any) under
the pointer on the screen. Next those messages go to the card, then to the background,
then the stack, then the Home stack, and finally to HyperCard itself. (You'll finda -
detailed discussion of this hierarchical sequence in Chapter 2.)

HyperTalk commands are also messages—orders to do some particular thing, like
add two numbers or go to another card. A command, whether executed in a script or
typed into the Message box, is sent as a message.

Scripts .
Every HyperCard object has a script (although the script can be completely empty). A TN
script is a collection of any number of handlers. The lines inside a handler are N

HyperTalk statements; each statement ends with a return character. Statements always
appear within handlers in a script. Any part of a statement following HyperTalk’s
double-hyphen comment character (--) is ignored by HyperCard.

Handlers

A handler is a collection of HyperTalk statements; a handler is invoked when a
particular message is received by the object whose script contains the handler. A
simple handler looks like this:

on mouseUp
go to next card
end mouseUp

The first line of a handler always begins with one of two words—either on (which
begins a message handler) or function (which begins a function handler). The last
statement of a handler always begins with the keyword end. All HyperTalk statements
always appear within handlers in a script

4 Chapter 1: HyperTalk Basics

You must place handlers in the scripts of objects that will receive the messages you
want the handlers to respond to. The message-passing hierarchy, which determines
where messages are sent, is described in Chapter 2.

Message handlers

The example shown above is 2 message handler. This particular message handler is
in the script of a button; it handles the message mouseUp, and goes to the next card.

The message to which 2 handler responds begins with the word following the word on.
In this case, the message is mouseUp. When you release the mouse button while the
Browse tool is inside a button’s rectangle on the screen, HyperCard sends the message
mouseUp to the button. HyperCard looks in the button’s script for a handler
matching the mouseUp message. If it finds a match, it executes the HyperTalk
statements between on mouseUp and end mouseUp—in this case, go to next
card.

Function handlers

In addition to message handlers, scripts can contain user-defined function
handlers. Function handlers begin with the word function in place of the word
on; the name of the function they handle is the second word. A function handler looks
like this:

function day

return first item of the long date
end day

This function handler responds to a HyperTalk statement containing the function’s
name followed by parentheses—a function call. Here's an example:

put day() into message box

The function call is day () —the rest of the line and the function call together form a
statement. When the function call is made, HyperCard looks for the matching
function handler. If it finds one, it executes the lines between function day and
end day. The value derived from the expression first item of the long
date isreturned to the put statement in place of day (). In the example, the value
returned by the function (Friday, for example) is put into the Message box.

Function calls use the same object hierarchy as messages; it's described in Chapter 2.
Message and function handler structures are described in detail in Chapter 5.

Scripts

Where’s the script?

You get access to an object’s script by choosing the object from the Objects menu.
The Objects menu has five object Info items, one for each of the five types of objects:
the current card, its background, the stack it belongs to, and the buttons and fields
belonging to the card and background.

Button (nfa...
Field Info...
Card Info...
Bkgnd Info...
Stack info...

Bring Claser ke
send Farther k-

New Button
New Field
New aack!round

Figure 1-2
The Objects menu

¥ You must be at level 5: The user level must be set to 5 (click the Scripting button on
the User Preferences card in the Home stack) for you to be able to look at scripts.

To edit the script of the current card, background, or stack, choose the appropriate
Info menu item for the object whose script you want. This action brings up information
about the object in a dialog box (see Figure 1-3). To open the object’s script, click the
Script button.

- To get to the script of a button or field, first select the button or field (with the Button
tool or Field toob), then choose the appropriate Info item from the Objects menu. It is
not necessary to be in Edit Background mode to open the script of an existing
background button or field. You must be in Edit Background mode, however, to
create new background buttons and fields. (It may also help you to select background
buttons and fields, because when you're in Edit Background mode, HyperCard
doesn’t display card buttons and fields.)

6 Chapter 1: HyperTalk Basics

\\ S

Button Name: | Fiy

Card button number: 1 style:
Card button 1D: 3 O transparent
X Show name Q opaque
hilit Q rectangle
53 Auto hilite 3 shadow
@ round rect
Q check box

Q radio button

Figure 1-3
Button Info dialog box

% Shortcuts: To get to the Info dialog box of a button or field quickly, double-click the
button or field with the Button or Field tool chosen. To open the script directly,
hold down the Shift key while you double-click the object or choose its Info menu
item from the Objects menu.

The script editor

The HyperCard script editor lets you create and modify handlers in an object’s script
(although you can't use it to change the font, size, or style in which the script is
displayed). You don’t have access to the menu bar while you’re editing.

You have to finish editing the script and close the dialog box by clicking its OK or
Cancel button before you can do anything else. Closing the script editor box with the
OK button or pressing Enter saves the script with its object; closing it with the Cancel
button leaves the script the way it was when you opened it

~ ¥ Shortcuss: To save and close a script quickly, press the Enter key. To close the script

quickly without saving changes, press Command-period. To choose the Browse
tool, press Command-Tab.

You can use the arrow keys to move the text insertion point around in the script.

Scripts

Script of stack l'njn- ilgporCorc Stacks:Home

on startUp
gethoneinfo
end stortUp

on resune
getHoaseinfo
ond resune

on getHomeinfo
globa! stacks,applications,documents, usarane
set lockSereen to trus

go 3 earences Mo
put cod ﬂold “User Name“ Into usertane
ut userLevel (o card field “Usar Lavel”

poverKeys to the hilite of button “Power Keys”
nt bll_nd_‘l‘um 0 the hilite of button "8iind T!lng

{ Find] [Print] [ox) (Cam:ol]

Figure 1-4
Script editor box

Manipulating text

The script editor works in the standard Macintosh text edit manner. The mouse
manipulates an I-beam pointer with which you can place an insertion point or select
text. You perform cut, copy, and paste operations using Command-X, Command-C,
and Command-V, respectively. The selection that you've cut or copied remains in the
Clipboard until you cut or copy again, in case you want to paste the material more than
once. It remains after you close the script, so you can open another script and paste
the material in. You can also paste it into a field as regular text or on a card or
background as Paint text.

Searching and printing

Clicking the Find button in the dialog box (or pressing Command-F) brings up a
search dialog box. The script editor locates and selects the first occurrence, following
the current insertion point, of a string you type into the find window. Searching is not
sensitive to uppercase and lowercase distinctions. Here are additional commands you
can evoke for searching and printing in the Script editor:

0 To go to the next occurrence of the same string, press Command-G.

O To copy the current selection from the script into the find window and to locate its
next occurrence, press Command-H.

O To print the ‘current selection of the script (or, if nothing is selected, the entire
script), press Command-P or click the Print button.

O To select the entire script, press Command-A.

8 Chapter 1: HyperTalk Basics

Formatting scripls

The HyperCard script editor indents nested control structures for you. It automatically
indents all of the lines inside a handler structure when you press the Tab key or close its
dialog box. (See Figure 1-5.) When if and repeat structures are nested inside
each other or within handlers, the lines are indented further. (You can't nest handler
structures inside each other or any other structure.)

% Ervor checking: Automatic formatting provides some degree of error checking
while you write a script: if you press the Tab key and the last line isn't flush with the
left margin of the script editor dialog box, you probably left somethmg out or made
a syntax error in a HyperTalk command.

Script of stack Sila:Help Stacks:Heip

if H is empty then put “the last card has no sap coords”
ifH <310 than — laft coluan

if H> 230 then

ifV> 120

then go card 1D 105486 — Hypertalk

eise go card 10 81958 — How to use Help

ifV <95 then go card 1D 24361 — Browsing
eise go card 1D 8100 - Painting

elise
if VU ¢ 190 then go card ID 30897 — Copying
else If UV < 230 then 9o card 1D 122082 — Merus
eise go card 1D 10271 — Reference

end if

else

if H ¢ SO than go Hose

(Find] { print)

Figure 1-5
Nested control structures

Line length

The script editor doesn't wrap lines too long to fit in its dialog box. There is no specific
restriction on the length of lines in scripts (although any single script cannot exceed
32,000 characters, including spaces, returns, and other invisible characters). Lines
too long to fit in the dialog box simply extend out of sight.

You can break a single statement into multiple lines by pressing Option-Return where
you want a line to break. This “soft” return appears in HyperCard scripts as a logical
NOT symbol (-). HyperCard treats lines broken in this way as single HyperTalk
statements continuing to the next actual return character.

¥ You can'’t break a literal: You can’t put a “soft” return inside a quoted literal
expression. (Literals are described in Chapter 4.)

Scripts

Table 1-1 is 2 summary of the script editor commands you can evoke from the
keyboard.

Table 1-1

Script editor command summary

Key press Action

Command-X Cut selection to Clipboard

Command-C Copy selection to Clipboard

Command-V Paste Clipboard contents at insertion point .
Command-F Find text string

Command-G Find next occurrence of same text string
Command-H Find current selection

Command-P Print selection or (if no selection) entire script
Command-A Select entire script

Tab Format script

Option-Return Carry command onto new line (*soft® return)
Enter Save changes and close script
Command-period Close script without saving changes
Chapter summary

Here is a summary of the material covered in this Chapter:

O HyperTalk controls the properties of HyperCard objects: buttons, fields, cards,
backgrounds, and stacks.

O HyperCard objects interact by sending and receiving messages.

O How an object responds to a message is specified by its script, which is written in
HyperTalk.

O Scripts are collections of message handlers and function handlers.

O You can create and edit scripts with the HyperCard script editor.

10 Chapter 1: HyperTalk Basics

Chapter 2

Handling Messages

1

This chapter explains how HyperCard objects send and receive messages and how
HyperCard executes scripts.

The HyperCard environment

HyperCard provides the environment in which HyperTalk scripts execute. The
HyperCard environment consists of objects connected by a message-passing
hierarchy and the HyperTalk language through which they communicate.

Although you could write a stand-alone program in a single HyperTalk script, you
would not be making use of the power and flexibility of the HyperCard environment.
Instead, you use HyperTalk to define the ways in which objects interact with each other
and with the user.

HyperCard is user oriented. When using HyperCard, the user opens and closes cards,
reads and changes text in fields, draws pictures on cards, and so on. HyperCard
constantly sends messages to objects in response to these actions (and the user’s
inactivity when doing nothing), and the objects in turn respond with other messages
and other actions. The basic purpose of HyperTalk scripts is to enable objects to
handle those messages and to specify succeeding actions by sending further messages.

Most of the time, scripts carry out specific actions for the user: setting properties of
objects, going to other cards, and so on. HyperTalk can do automatically everything
the user can do manually with the mouse and keyboard.

Sending messages

All HyperCard actions are initiated by messages sent to objects. Messages are sent to
objects in four ways:

O Anevent (such as a2 mouse click) can cause HyperCard to send a system message.

O Handler statements (other than keywords) are sent as messages when a handler
executes.

O HyperCard sends the contents of the Message box as a message when the user
presses Return or Enter.

O HyperCard sometimes sends a message when it executes a command.

12 Chapter 2: Handling Messages

System messages

HyperCard sends system messages constantly in response to events in the Macintosh
environment. For example, if you move the pointer so that it's over a button on the
screen, as soon as the pointer enters the button’s rectangle, HyperCard sends the
message mouseEnter to the button. As long as the pointer remains inside the
button rectangle, HyperCard continuously sends the message mouseWithin to the
button. As soon as you move the pointer outside the button area, HyperCard sends the
message mouseLeave to the button.

HyperCard sends other system messages when you press certain keys on the keyboard,
close 2 field, select a menu item, or when you quit HyperCard. When you open a card,
HyperCard sends the message openCard to the card itself; when you leave the card
itsends closeCard. Similar messages are sent to cards when their backgrounds and
stacks are opened and closed. If nothing at all is happening, HyperCard continuously
sends the message idle to the current card.

One of the most commonly used messages is mouseUp. Buttons often contain
handlers that respond to the mouseUp message; the mouseUp message is sentto a
particular button when you dlick it. (HyperCard actually sends two messages to a
button when it is clicked: mouseDown and mouseUp. The mouseUp message is
sent only if you release the mouse button with the pointer over the same screen button
it was over when you pressed it down.)

HyperCard also sends mouse messages to a locked field when you dlick it. If the field
isn't locked, mouseDown and mouseUp aren't sent—the click opens the field for
text editing and HyperCard sends the message openField to the field. (You can
send mouse messages to an unlocked field, however, by holding down the Command
key while you click the field.)

Clicking outside all buttons and fields sends mouseDown and mouseUp directly to
the current card.

Chapter 6 describes all of HyperCard’s system messages.

Statements as messages

When a handler executes, its statements are sent as messages, first to the object that
contains the currently executing handler, then to succeeding objects in the object
hierarchy (described later in this chapter). When an object gets 2 message it can
handle—that is, for which it has a handler in its script—the statements contained in
the handler are in turn sent as messages. When all statements in the handler (and in
any other handlers invoked along the way) have executed, the action stops.

Sending messages

13

Message box -messages

When you type something into the Message box and press Return or Enter, HyperCard
does one of two things: either it sends what you typed as a message to the current card,
or, if what you typed is a valid expression, HyperCard evaluates it and puts the result
into the Message box. (See Chapter 4 for an explanation of values.)

If you try to use a keyword other than send in the Message box, HyperCard displays
an error dialog box. A keyword is 2 word whose meaning is predefined in HyperTalk;
keywords are never sent as messages from scripts but are interpreted directly. The
following list contains all of HyperTalk’s keywords:

do next
else on

end pass
exit repeat
function return
global send
if then

Send works in the Message box; you use it to direct a message to a specific object
rather than sending it to the current card. Chapter 5 explains HyperTalk’s keywords.

Messages resulting from commands

HyperCard sometimes sends a system message to the current card while it is executing
a command. For example, when you create a card with the New Card menu command,
HyperCard sends the message newCard to the card as soon as it's created; when you
delete a card it sends deleteCard. Similar messages are sent when other objects are
created and deleted. These messages are among the results of commands executing,
rather than commands themselves—they are like announcements of what is
happening.
® External commands can send messages: Expert programmers can write definitions
for new commands in development languages such as Pascal, C, and 68000
assembly language. Such external commands act much like built-in HyperTalk
commands. External commands can send messages to the current card when they
execute. See Appendix A for general information about external commands.

14 Chapter 2: Handling Messages

Receiving messages

As senders and receivers of messages, objects all work exactly the same way. Every
object has a script, and the type of object makes no difference to the execution of its
handlers.

© How objects differ: As elements of the HyperCard user interface, objects differ
according to their function: buttons share a set of properties or characteristics that
determine how they look and act; fields also share a set of properties, but it is
different from the set of button properties.

When a message is sent to an object, HyperCard checks the object’s script for a
handler whose name—the second word on the first line of the handler—matches the
message name—the first word of the message. If it finds a match, it executes each
statement in the handler. (See Figure 2-1.) After the handler has run, the message is
sent no further, unless it is explicitly passed with the pass keyword (discussed in
Chapter 5).

If message name
matches any
handler name...

...then execute
the iines in
that handler.

FAgure 2-1
Matching messages with handlers

If the object has no handler for the message, the message passes to the next object in
the hierarchy, and the process repeats.

If no object in the hierarchy has a handler matching a message name, HyperCard
looks for a command by that name. Commands are like built-in handlers that cause
some action to take place; mouseUp and most other system messages have no built-
in handlers and cause no action. If a2 message that gets all the way through the
hierarchy and is not a system message or a.command, HyperCard displays an error
dialog box with the words Can't understand followed by the name of the
message.

© Extermal commands can be in stacks: External commands can exist in stack files,
as well as in the HyperCard application itself. See Appendnx A for general
information about external commands.

Recelving messages

15

Obiject hierarchy

The objects in HyperCard have an object hierarchy. The object hierarchy
determines the path by which messages are passed from one object to another:
buttons and fields are at the same level, followed (in order) by card, background,
stack, and the Home stack (the one stack that HyperCard requires). Any message that
traverses the entire hierarchy goes to HyperCard itself.

Where messages go

The position of an object in the hierarchy determines whether or not the object will
receive a given message, and where subsequent messages that the object sends will go.
Most system messages are initially sent by HyperCard to the current card, as shown in
Figure 2-2.

OpenCard and
other events

other events

Figure 2-2
Object hierarchy

16 Chapter 2: Handling Messages

Mouse

Messages to buttons and fieids

Any mouse message for example, mouseEnter) is sent inititally to the topmost
button or field, if there are any, under the pointer. Any buttons or fields that are
layered farther under the one initially receiving the message are ignored. Figure 2-3
shows layered buttons and fields. If the topmost button or field doesn't have a handler
for the mouse message, the message is passed to the current card.

Card button
Card field

Background fleld ————

|
Background button Farther r____l.
L———— CIoser:)

[h

Figure 2-3
Layered buttons and fleids

® Background buttons and flelds come before cards: HyperCard first sends mouse
T messages to the topmost button or field under the pointer, whether the button or
‘ field belongs to the card or the background, before passing the message on to the

card. Background buttons and fields, however, are always farther away than card
buttons and fields.

Orther than mouse messages, the only system messages that are sent first to buttons are
newButton and deleteButton; for fields they are newField, deleteField,

openField, and closeField. The entry point in the hierarchy for all other system
messages is the current card.

For a complete list of all system messages, see Chapter 6.

Object hlerarchy

C

17

The current hierarchy

The current hierarchy consists of the buttons and fields belonging to the current card

and its background, the card and background themselves, and their stack. System

messages and those typed directly into the Message box always traverse the current

hierarchy. Messages sent from executing handlers traverse the hierarchy to which

their containing object belongs—in most cases, the current one. Figure 2-4 shows how
_a message traverses the current hierarchy.

MouseUp message sent
by mouse to button.

PN
<
\ ‘

Buttons
and fleids

Carcs m

Backgrounds

Stacks

Home stack

HyperCard

Figure 2-4
Message traversing current hierarchy

When a handler executes, HyperCard sends each statement as a message, unless it
begins with a keyword. It sends the message first to the object containing the executing
handler, as shown in Figure 2-5. If that object doesn’t have a handler for the message,
the message is passed down the object hierarchy; if none of the succeeding objects has
a handler for it, the message ends up at HyperCard itself.

18 Chapter 2: Handling Messages

Buttons
and flelds

Cards

Backgrounds |
Stacks I

Home stack

HyperCard

Figure 2-5
Command sent as a message

© Function calls use the message-passing hierarchy: Function calls work like
messages in the way they traverse the object hierarchy. When you make a function
call with the syntax that uses parentheses, HyperCard looks in the script of each
object in the hierarchy for a matching function handler. If none is found, the
function call is passed to HyperCard itself.

Object hlerarchy

19

The target

The object to which the message is first sent is the target. If HyperCard finds a handler
in the target that matches the message name, the handler’s statements start executing.
If, however, the target has no matching handler, the message is passed down the
hierarchy. HyperCard may find a matching handler in another object, which then
begins executing as shown in Figure 2-6.

1

Buttons
and fleics

on newButton
set autoHilite of target to true
end newButton

Cards

Backgrounds

Stacks

Home stack

HyperCard L

Figure 2-6
The target

The function the target returns the value of the original target, so that handlers in
succeeding objects can determine where a message was originally sent. In Figure 2-6,
although the executing handler is in the background script, the target, used in the
background handler, identifies the button that originally received the message.

20 Chapter 2: Handling Messages

The dynamic path

When a message is traversing the hierarchy of a card different from the current one,

HyperCard inserts a dynamic path into the static path the message normally follows.
The static path is the route defined by an object’s own hierarchy. For example, a card

passes messages to its own background, the background passes them to its own stack,
and so on. When that hierarchy is not the one stemming from the current card (the
one currently visible), HyperCard passes messages through the current card’s
hierarchy as well—that’s the dynamic path.

Examples of situations in which a message traverses a hierarchy different from the
current one, invoking the dynamic path, are

O when an executing handler contains a command that takes you to another card
(such as go or a command to create or delete the current card)

0O when you use the send keyword to send a message to an object not in the current
hierarchy

When any message that has not been received by a handler reaches the stack,
HyperCard checks to see if the current card is in a different hierarchy. If so,
HyperCard passes the message to the current card, and it traverses the current card,
background, and stack, before it passes to the Home stack.

If any handler receives the message and passes it explicitly with the pass keyword,
HyperCard does not invoke the dynamic path unless the current hierarchy isin a
different stack from the static path. If either of the hierarchies is in the Home stack, the
message is not passed again to the Home stack.

Object hlerarchy

21

The go command and the dynamic path

Figures 2-7 and 2-8 show how a handler conuaininga go command invokes the
dynamic path.

Buttons
and fields
|
Cards
1] L_|__I
]
Backgrounds
Stacks
' 1]
Home stack
]
HyperCard
Figure 2-7

Static path before the go command executes

In Figure 2-7, the mouseUp handler executes the statement beep 2, which is sent as
a message along the current hierarchy beginning with the button containing the
handler. After the go executes, the current card has changed. Nonetheless, the
button handler continues to execute, sending subsequent statements as messages
through its own hierarchy. In addition, however, HyperCard now sends messages to
the card, background, and stack of the new current hierarchy, as shown in Figure 2-8.

2 Chapter 2: Handling Messages

\‘k Y,

on mouseUp
beep 2
gomea:dSofstack a”
- Dlepg

Buttons
and flelds

Cards card
')
'] o

Backgrounds P

Sacks =

Home stack

HyperCard

Figure 2-8
Dynamic path after the go command executes

The send keyword and the dynamic path

It's possible to send a message directly to an object, whether or not it's in the current
hierarchy, by using the send keyword. For example, you can type the following
statement into the Message box:

send "greetings" to stack "a"

HyperCard looks in the script of the object to which the message is sent (in this case,
stack "a") for a matching handler, just as if it were in the current hierarchy. If the
matching handler isn’t found (in this case, a handler named greetings), the
message goes down the hierarchy stemming from the object to which it was sent (that
is, from stack ™a"). If the target of the send is a stack other than the current one,
HyperCard invokes the dynamic path.

Object hlerarchy

23

Figuré 29 shows the path of a message directed with the send keyword.

Cards
1] |]
L
Backgrounds
| |

acl
Stacks o
Home stack

]

HyperCard
Figure 2-9

Using the send keyword

So the executing handler, the one currently in control, need not belong to any
particular object. It doesn’t need to be in the hierarchy belonging to the current card.
Which handler has control is determined solely by which object receives a message.

You can use the send keyword to direct 2 message to

O any object in the current stack

O any other stack on any disk or file server accessible to your Macintosh (but not any
individual object in those stacks)

O HyperCard itself _

For details about the send keyword, see Chapter 5.

24 Chapter 2: Handling Messages

Handlers calling handlers

When a handler executes, HyperCard sends each statement as a message first to the
object containing the executing handler. So other handlers in the same script, as well
as those in any other script lower in the hierarchy, can be used as subroutines. A
handler can also call itself, which is known as recursion.

Subroutine calls

You can use handlers in HyperCard the way you use procedures or subroutines in other
languages. You invoke a subroutine call in HyperTalk by executing a statement that
begins with the name of a handler. That name is sent as 2 message, first to the object
that contains the executing handler, then along the current object hierarchy.

You can include a subroutine in a script by writing a handler in the same script (or any
other script lower in the object hierarchy) with whatever name you’d like to call it by.
In the following example, the handler greetings is defined in the same script as
the one from which the message greetings is sent:

on mouseUp
greetings
end mouseUp

on greetings
Put "You've just been drafted!"™ into the Message box
end greetings

When HyperCard executes the statement consisting of the subroutine handler name,
and a match is found between the name and its handler, control passes to the
subroutine handler. After it has finished executing, control passes back to the calling
handler. But it’s entirely possible for the subroutine handler to issue a similar
message, beginning execution of a third handler. The third handler must finish
executing before control passes back to the second handler, which must finish
executing before passing control back to the first. The execution of a handler that has
invoked another handler is suspended until the handler it has called finishes
executing.

@ Stopping execution: A handler can avoid giving control back to pending handlers
by executing the exit to HyperCard keyword statement. You can interrupt an
executing handler at any time (and bypass pending handlers) by pressing
Command-period.

Handlers calling handlers

25

Any handler can act as a subroutine for any other handler. The called handler either -
has to be in the same script or in a script lower in the object hierarchy. However, you

can also use the send keyword to send the message (the subroutine handler name)

directly to the object that contains the handler. (See Chapter 5 for details on using

send.) Generally, handlers that act as subroutines are placed in the same script as the

handlers that call them.

& Handlers can’t be nested: Handlers can'’t be defined with one inside another—a
handler definition must not appear between the on statement and the end
statement of another handler.

Recursion

The term for a handler calling itself is recursion. In the following example, the
handler decrement subtracts 1 from a number in the Message box until the number
is reduced to 1 (a number must be in the Message box before you call the handler). To
do the subtraction, the handler summons itself:

on decrement

subtract 1 from the message box

if the value of the message box > 1 then decrement
end decrement

Generally, subroutine calls and recursion don’t cause any problems. In fact, they are

natural consequences of the good programming technique of separating scripts into

functional units. However, HyperCard has a limit on the number of pending handlers. ‘
The actual number depends on the complexity of the handlers and other factors. It : o
doesn't matter whether a handler is invoking itself or another handler—either type of

invocation causes another level of pending execution.

In particular, watch out for endless recursion as in the following handler Gf it were in a
stack script or the script of every card):

on openCard
go to next card
end openCard

The go next card command results in an openCard message, so the handler
recurses again and again, and you get an error dialog box. Keep control in a single
handler instead, as with the following script (if it were in the first card’s script):
on openCard)

repeat for the number of cards -1

go to next card

end repeat

end openCard

26 Chapter 2: Handling Messages

.

C

Using the hierarchy

Where you place a handler in the hierarchy determines when it will be called. All
objects that are higher in the hierarchy can call handlers in objects lower in the
hierarchy. Lower objects can't call handlers in higher objects unless they use the
send keyword. Messages that are sent when a statement in a handler executes always
go first to the object containing the executing handler. Then they traverse the
hierarchy stemming from that object until they find a matching handler or reach
HyperCard itself. Therefore, the farther down the hierarchy a handler is placed, the
greater the number of objects that can pass messages to it

Sharing handlers

In effect, every object has access to the handlers of all the objects lower than it in the
hierarchy. If you want every card in a stack to have a certain capability (that is, to
respond to a certain message), you put the appropriate handler in the stack script.
Every card can use the handler by passing the message down to the stack.

Figures 2-10 and 2-11 show the effect of placing a handler at different positions in the
hierarchy. The example handler responds to the message moveOn (the message
name is for example only). The handler takes you to the next card:

on moveOn
go to next card
end moveOn

You can place the handler in the script of the current card, as in Figure 2-10. Then, if
you send moveOn from the Message box, you invoke the handler and go to the next
card. From any other card, however, the moveOn message has no effect

In Figure 2-11, the handler is invoked by sending moveOn to any card in the stack
(because the handler is in the script of the stack).

Using the hierarchy

27

- \'u_//“
on moveOn

go to next card
end moveOn

Cards

Backgrounds

Stacks

Home stack

HyperCard

Figure 2-10

Handler In card script

Backgrounds

Stacks

Home stack

HyperCard

Figure 2-11
Handler in stack script

28 Chapter 2: Handling Messages

Intercepting messages

You can also make any card you want an exception in the way it responds to a given

message, without affecting the other cards in the stack, by putting a special handler for

the message in that card’s script: you write two different handlers with the same
message name—one in the stack script and one in the card script. Then, for that same
message, if the message comes through that particular card, the card’s handler runs;
from any other card, the stack’s handler runs.

For instance, in the previous example, putting the handler in the stack script caused
the message moveOn to take you to the next card from any card in the stack:

on moveOn
go to next card
end moveOn

But if you want the last card in the stack to be an exception, from which the message
moveOn takes you back to the Home card, put the following handler in the last card’s
script:

on moveOn
go to stack "home"
end moveOn

Pigure 2-12 illustrates this example of one object intercepting a message.

on moveOn
go to stack "Home"
end moveOn

Backgrounds

Stacks

Home stack

HyperCard

Figure 2-12
Intercepting a message

Using the hierarchy

29

& A handler can intercept a HyperTalk command: In the same way that you can give
one card 2 unique way of handling a message that would ordinarily be handled in
the background or stack script, you can write a handler with the same name as a
HyperTalk command and place it anywhere in the hierarchy. But remember that
your handler is the one that will ordinarily run in response to the command
message, not HyperCard's built-in one. HyperTalk functions can be redefined in a
similar manner, and the same warning applies.

Parameter passing

When a HyperTalk message is sent, the first word is the message name. For example,
in the message

searchScript "WildCard", "Help"

the message name is searchScript. Any other words (or characters) are the
parameters. In the example, the parameters are "WildCard™ and "Help™. Each
receiving object in the hierarchy looks for a message handler with a matching name. If
the object finds a matching handler, the parameters are passed into the handler.

Parameters are passed into handlers as a list of comma-separated expressions.
(Chapter 4 describes expressions.) These expressions are evaluated before the
message is sent and, when the message is received, placed into a list of comma-
separated parameter variables appearing on the first line of the matching handler
definition. (See Figure 2-13.) That is, parameters are passed by value into handlers.

Parameter variables are local variables of the handler in which they appear.
Parameter variables are also called formal parameters, to contrast them to the
actual parameters which are the parameter values passed to them.

¥ Function handler parameters: HyperCard passes parameters into function
handlers and message handlers in the same way, except that the syntax of the
function call requires the parameters to be placed between parentheses. Placement
of the parameter variables on the first line of function handlers is identical to that of
message handlers.

30 Chapter 2: Handling Messages

'\,g_&\ P

on searchScript | - - search all scripts of 8 stack
set lockMessages to true
if stackName is not empty then go to stack stackName

if the script of this stack contains pattern
then edit script of this stack
L]

Figure 2-13
Parameter passing

The value of the first expression in the message is placed into the first parameter
variable in the handler, the value of the second expression into the second parameter
variable, and so on. If there are more expressions in the message’s parameter list than
there are parameter variables in the first line of the handler, the extra parameters are
ignored. If there are more parameter variables than parameters, the extra parameter
variables are given an empty value (equal to a string of zero length).

© Passing parameters to redefined commands: HyperTalk command parameters are
often more complex than a comma-separated list of expressions. Some built-in
commands take parameters to which user-written handlers have no access. So, if

you redefine a command, you may not be able to pass all of the parameters to your
handler.

Chapter summary

31

Chapter summary
Here is a summary of the material covered in this chapter:

a

The HyperCard environment consists of objects related to each other in a
hierarchy using HyperTalk as the means of communicating.

O Messages sent to objects initiate all HyperCard actions.

O Messages are generated by system events, executing handlers, statements typed

into the Message box, and the execution of some commands.

When an object receives 2 message, HyperCard tries to match the message name
with a handler in the object’s script; if it finds a match, it executes the handler;
otherwise it passes the message to the next object.

The object hierarchy determines how messages are passed from one object to
another. :

You can send a message directly to any object in the current stack, to another stack,
or to HyperCard using the send keyword.

O A handler can initiate execution of another handler as a subroutine call.
O Every object can use the handlers of objects lower than it in the hierarchy by

32

passing messages; conversely, an object can intercept a message to perform a
different action.

The values of a series of expressions following the first word of a message statement
are passed to variables in the first line of the receiving handler.

Chapter 2: Handling Messages

Chapter 3

Naming Objects

33

This chapter explains how to refer to HyperCard's objects. N
A HyperCard object has three characteristics:
O It can send and receive messages.

O It has properties, which are its defining characterstics, and one of those
properties is its script.

O It has a visible representation on the Macintosh screen (although the object need
not always be visible).

You refer to an object when you use the go keyword (to go to a particular card,
background, or stack) or the send command (to send a2 message to a particular
object), and when you want to manipulate an object’s properties. Fields are unique
because they are HyperCard objects and are also sources of values (described in
Chapter 4).

You can think of HyperCard itself as an object, because it can send and receive
messages and it has global properties, including a “script” of built-in handlers or
commands. When this guide talks about objects, however, it usually refers to buttons,
fields, cards, backgrounds, and stacks.

Object descriptors

You refer to objects using object descriptors. An object descriptor is formed by
combining a generic name with its specific designation. Generic names are stack,
card, background (abbreviated bkgnd), button (abbreviated btn), or
field. .

To refer to background buttons, you must include that designation with the generic
name (background button "buttonName™), and you must do the same for card
fields (card field "fieldName"). You can also include the default designation,
but it’s not required (card button "buttonName" refers to the same button as
button "buttonName" and background field "fieldName" refers to the
same fieldas field "fieldName™).

The only specific designation of a stack is its name. (See “Stack Descriptors,” later in
this chapter.) The specific designation of all other objects (buttons, fields,
backgrounds, and cards) can be the objects’s name, number, or ID number. The
unambiguous form of a designation begins with an object’s generic name,
immediately followed by its particular name, number, or ID number. (See Figure 3-1.)

34 Chapter 3: Naming Objects

Card Name: |Table

Card Number: 9 out of 40

Card 1D: 5734 Sl:": 9
Contains 0 card fields. cord
Contains 0 card buttons Card nine .
’ Card “table”
CICan't delete card. Caald _5_71._————@

Figure 3-1
Card Info dialog box and descriptors for the same card

Object names

Names are optional for cards, backgrounds, buttons, and fields. You assign 2 name
for any of these objects by typing into the Name box in the object Info dialog box,
which appears when you choose the object’s Info item from the Objects menu. Object
names can include any characters, even spaces. It’s safest to put quotation marks
around an object name when you use it in a statement (background button
"belly"™) to ensure that HyperCard recognizes it literally and doesn’t look for a
variable or stack by that name.

® Be careful with names: 1t's difficult to manipulate a name that extends out of the
naming window although you can scroll it left and right (and up and down if it has
more than one line) by dragging. It's also difficult to refer by name to an object if
you put a double quotation mark in its name. Also, if you use numbers for an
object’s name, HyperCard gets confused: it takes card "1812" to mean a card
whose number, rather than name, is 1812.

Object ID numbers

HyperCard generates an object ID number for each object within a stack. This number
is unique for that type of object within its enclosing object. For example, each button
(the type of objecty on a card (the enclosing object) has a different ID number. Object
ID numbers never change and, if an object is deleted, are not reassigned to newly
created objects (until the HyperCard object limit, listed in Appendix E, has been
reached). An object’s ID number is its generic name, followed by the word ID (in
uppercase or lowercase), followed by an integer (for example, card id 5734).

Object descriptors

35

% The ID number of a copied object is differens: If you copy an object and paste it
into a different enclosing object, the copy is then a different object from the
original, and it has a different ID number. For example, if you copy a card and
paste it into a different stack, the ID number of the pasted card is different from the
ID number of the card you copied. Therefore, you can't assume that you have
“moved” the card when you copy it, paste it, and delete the original—a button that
took you to the original will probably not take you to the copy.

Because ID numbers are unique and unchanging for all objects within a stack,
HyperCard uses them internally to identify objects (for example, to identify the target
of a go command generated with the LinkTo feature in the Button Info dialog box).
HyperCard can generally find objects faster if they are identified by ID number. Also,
if you ask for the name of an object that has no name (put the name of last
card), HyperCard returns its ID number. (See Chapter 9 for information about the
name object property.)

Object numbers

Buttons, fields, cards, and backgrounds always have numbers by which you can refer
to them. An object's number represents its position within its containing object:
buttons and fields are ordered within a card or background; cards and backgrounds
are ordered within their stack. There are three ways to express an object’s number: use
an integer following its generic name (card 2), use one of the numeric constants
one through ten following its generic name (card two), or use one of the ordinal
constants first through tenth preceding its generic name (second card).

© Descriptor phrasing: Be careful to phrase descriptors so that they mean what you
intend. For example, using a field descriptor such 23 card field id 7,you
could mean that the name of the card is in the background field with ID number 7,
or you could be referring to the card field with ID number 7. HyperCard assumes
that you're referring to the card field. If you want HyperCard to get the card name
from background field, enclose its descriptor in parentheses:

card (field id 7).

Object numbers are contiguous from 1 through the number of currently existing
objects within the enclosing object: card buttons and card fields within their card;
background buttons and background fields within their background; cards within their
stack (not their background); and backgrounds within their stack. If you delete an
object, its number is reassigned to the object following it in order, and so on for the
succeeding objects as well.

36 Chapter 3: Naming Objects

=

Special ordinals

In addition to the ordinal constants first through tenth, HyperTalk has three
special ordinals: middle, last, and any. The values of the special ordinals are
resolved according to the number of objects in the set. Middle resolves to half the
number of objects plus 1. Last resolves to the number of objects. Any resolves to
a random number between 1 and the number of objects. (The special ordinals also
work with chunk expressions, which are described in Chapter 4.)

Object numbers and tab order

The sequence of object numbers determines tab order for fields: you can move from
field to field within a background and card using the Tab key—it moves from the lowest
number field to the highest through the background fields first, then the card fields.
The sequence also determines which button or field gets a message when several are
layered on top of each other (the highest numbered one is closest and gets the
message), and it determines which card or background is next or previous
within a stack.

© Reassigning objfect numbers: You can reassign object numbers of buttons and
fields with the Bring Closer and Send Farther menu commands. See the HyperCard
User’s Guide for details.

Special object descriptors

You can use the special descriptor this to refer to the current card, background, or
stack. For example:

put the id of this card into whereFound
You can'tuse this with buttons or fields.

You can refer to the card or background preceding the current one, within the stack, as
previous, which can be abbreviated prev. Similarly, you can refer to the card or
background following the current one as next. For example:

go to next background

You can refer to the card that was current immediately prior to the current one as

.recent.

You use me within a script to specify the object containing the currently executing
handler. For example:

put the textHeight of me into height -- in a field's script

Object descriptors

37

& Using special descriptors with flelds as containers: In all versions of HyperCard,
you can use a special object descriptor (other than this) to identify a field as an
object: to get or set its properties, or as the target of send. For example, the
following statements always work:

put the name of me into myName
send mouseUp to me

A field, however, is both an object and a container. In versions of HyperCard prior
to version 1.2, you can’t use a special object descriptor to refer to a field as a
container into which to put a value. For example, the following statement in a field
script would work only in HyperCard versions 1.2 and later: '

put "*" before line 1 of me
See Chapter 4, “Values,” for information about containers.

Stack descriptors

A stack is a HyperCard document. In some cases when you're writing a script or using
the Message box, you can refer to a stack by its name alone. To do that, the stack must
be in the current folder, in the folder containing the Help stacks, or in the current disk
or server (and not in a folder). When the stack is located anywhere else, you must let
HyperCard know the full pathname by which it can find the stack.

A full pathname is a concatenation of the volume name, directory name(s), and
filename, separated by colons. The volume name is the name of the disk or server
containing the stack. The directory names are the names of all the folders, if any, that
HyperCard has to open to get to the stack. (HyperCard sometimes might have to open
several folders because folders may contain other folders to any depth.) The filename
is the stack name.

mnemosyne:Big Al:hypestuff.diagnostics
] !]]

volume directory directory fle

L

Disk or server Folder at Inner folder; Stack name
name; desktop disk level there can be -

level any number
of levels of
folders inside
other folders

Figure 3-2

A pathname

38 Chapter 3: Naming Objects

The only unambiguous way to refer to a stack in a script or in the Message box is the
word stack followed by its name in quotation marks. When you refer to a stack you
can use the full pathname to specify the stack’s exact location: go to stack
"myDisk :myFolder :mystack™. You can also type the full pathname on the stack
search path card in the Home stack. If HyperCard can't find a stack you request, it
displays a dialog box that allows you to click your way through the directories until you
reach the stack. HyperCard notes your path and, once you've found the stack,
automatically records its full pathname on the stack search path card in the Home
stack.

& Ambiguous stack descriptors: HyperCard will try to derive a proper stack name
from an ambiguous expression in a place where it expects a stack descriptor, but it
cannot always succeed. In that case, HyperCard displays the directory dialog box to
allow the user to find the stack file.

Naming a stack

You must name a stack when you create it. (For all other objects, names are optional.)
You create a stack with the New Stack command in the File menu. A dialog box appears
in which you type the name for the new stack. (See Figure 3-3.)

[0 86 symboi table
D Bata symbols

0 symbol table

QO test

0

New stack name:

]

[X Copy current background

Figure 3-3
New Stack dialog box

Combining object descriptors

39

Combining object descriptors

To refer to objects within a stack, you combine object descriptors using either of the
prepositions of or in between an object descriptor and that of its enclosing
object. Combined object descriptors proceed left-to-right from the smaller to the
larger:

first field of last card of this background

This syntax lets you refer directly to any object within the current stack—you don't
have to go to the card containing a particular field to get its contents or put something
into it. For example, if the current card were the first in the stack, you could still
execute the following command:

put the selection into field "undoHolder™ of last card

You cannot refer to an object within another stack. You have to go to the stack before
you can address its objects directly.

You can further combine field descriptors with chunk expressions, which are
described in Chapter 4, “Values.”

Chapter summary
Here is a summary of the material covered in this chapter:

a

You refer to a HyperCard object using an object descriptor—its generic name and
its specific designation.

Cards, backgrounds, buttons, and fields always have unique ID numbers that never
change, they always have object numbers that may change, and they may
optionally be given names.

You can use special ordinals—middle, last, and any—to refer to objects by
their position within their enclosing object.

You can refer to the current card, background, or stack with this. You can refer to
the card or background preceding the current one with previous, and to the one

following the current one with next . You can refer to the card that was current
prior to the current one with recent.

The term me, in a script, refers to the obiect containing the script.

The only unambiguous object descriptor for a stack is the word stack followed by
the stack’s filename within quotation marks.

(u]

0

0

0O 0o

0

You can combine object descriptors to refer directly to any object in the current
stack.

40 Chapter 3: Naming Objects

Chapter 4

Values

41

This chapter describes the expressions you use to refer to values: the information on
which HyperCard operates. It also describes HyperTalk's operators, the elements of
the language that you use in expressions to manipulate and calculate values.

HyperCard does not have data types: values are stored simply as strings of characters.
(Numbers are sometimes represented internally in a more efficient format, as
described later in this chapter.)

An expression is a description of how to get a value. It may be as simple as a single
source of a value, or it can be a complex expression built with operators.

Sources of values

The sources of values in HyperTalk are
constants

literals

functions

properties

numbers

containers

OO0 o0oooao

These sources of values are the most basic expressions.

Constants

A constant is a named value that never changes. It's different from a variable in that
you can’t change it, and it's different from a literal in that its value is not always the
string of characters making up the name. For example, the constant empty is the
same as the null string (the literal "*), and the constant space is the same as the
literal » . All HyperTalk constants are described in Chapter 10.

Literals

A literal is a text string whose value fs the string, exactly as it appears. Literals are
denoted by double quotation marks at both ends of the string. (You must use the
straight double quotation mark, not the printer’s double quotation marks typed with
the Option-left bracket and Option-Shift-left bracket keys.) Any character except
double quotation mark, return, or “soft” return (generated by pressing Option-
Return) can be part of a literal string. A literal can be of any length. For example,
"This is a literal string"™ is a literal.

42 Chapter 4: Values

® Unquoted literals are not recommended: In some places you can use an unquoted
single word as an unquoted literal (as long as the word doesn’t begin with a digit).
The value of an unquoted literal is the literal of itself—as though you had entered
put "fred" into fred. Butunquoted literals are not allowed in complex
expressions (those built with operators). It’s always safer to put double quotation
marks around a word you want HyperCard to take as a literal.

Functions

A function is a named value that HyperCard calculates when the statement in which
the function is used executes. The value of a function varies according to conditions of
the system or according to the value of parameters you pass to the function when you
use it.

For example, the built-in function named the time returns the current time in
place of itself in a HyperTalk statement:

put the time into msg

If the current time were 5:12 P.M., the above example would put 5:12 PM into the
Message box.

You can also define your own functions in scripts using the function handler structure
described in Chapter 5. '

All built-in HyperTalk functions are described in Chapter 8.

Properties

A property is a named value representing one of the defining characteristics of a
HyperCard object or the HyperCard environment. Different types of objects have
different properties, according to their purpose. For example, fields share a set of
properties, many of which are different from the set shared by buttons.

You get the value of most properties by using the property name as a function in a
script or in the Message box. For example, the following statement retrieves the
location property (two integers separated by a comma) of button 1, and it puts the
value into the Message box:

put the location of button 1 into msg

You can also change most properties with the set command. All HyperCard
properties are described in Chapter 9.

Sources of values

43

Numbers

A number in HyperCard is a character string consisting of any combination of the
numerals 0 through 9, representing a decimal value. A number can include one period
(.) representing the decimal point, but it can have no other punctuation nor a space
character. A number can be preceded by a hyphen or minus sign to represent a
negative value (HyperCard doesn’t recognize a plus sign as part of a number).
Numbers that consist only of numerals are integers. Numbers that include a period are
real, and, when used with mathematical operators, are manipulated with floating-
point operations. .

Standard Apple Numerics Environment

HyperCard performs mathematical operations with Standard Apple Numerics
Environment (SANE®) routines, but you don’t have to worry about how to represent
the values. You always enter numbers into HyperCard containers as numeric strings.

When performing a mathematical operation, HyperCard automatically converts the
strings representing the numbers to SANE numeric values. If you put the result of the
operation into a variable, it's stored as a SANE numeric value; if you put it into a field
or the Message box, HyperCard automatically converts it back to a string with a
precision of up to 19 decimal places. The same conversion takes place if you put the
variable into a field or the Message box at a later time, or if you use it in 2 way that
implies a string (character 2 of varName). So although SANE values are used
internally for handling numbers with speed and precision, you can always think of
HyperTalk numbers as strings.

Precision

The precision of the decimal string, resulting from putting a SANE numeric value into
a field or the Message box, is controlled by the numberFormat global property (see
Chapter 9 for a detailed description). For example, the command

set numberFormat to 0.00
would result in a string with at least one digit to the left of the decimal point and exactly
two digits to the right of the decimal point.

The numberFormat property does not affect the precision with which mathematical
operations are executed, only the precision with which the results are displayed. When
you put a number into a field or the Message box to display it, however, HyperCard
converts it to a2 decimal string. So any extra precision it may have had (beyond the
numberFormat specification in effect at the time) is lost.

- 44 Chapter 4: Values

N

Number handiing

The following example shows how number handling works. These three HyperTalk
statements put the constant pi into a variable, set the numberFormat property,
and put the value of the variable into the Message box, respectively:

put pi into joe
set numberFormat to 0.00
put joe into msg

The result shown in the Message box is 3.14159265358979323846. In this case, pi is
entered into the variable joe as a string, and it remains a string, so numberFormat
has no effect. If, however, you perform a mathematical operation on the variable,
HyperCard converts it to a SANE numeric value:

put pl into joe

add 0 to joe

set numberFormat to 0.00
put joe into msg

The result shown in the Message box is 3.14. In this case, numberFormat takes effect
when joe is converted from a SANE numeric value to a string as it’s put into the

- Message box.

Containers

A container in HyperCard is a place where you can store a value. Containers include
fields, variables, the current selection, and the Message box. Containers other than
fields can store values of any length, including zero length. Containers other than the
Message box can have more than one line in them; each line ends with a return
character (which can be the only character in the line).

Flekis

A field is a2 HyperCard object for holding and displaying editable text. Fields are
unique objects because they are also containers—a field's value is the text string it
contains.

You can refer to fields directly by name, number, or ID number. (See Chapter 3,
“Naming Objects,” for more description of how to refer to fields.)

Fields belong to cards or to backgrounds; the text held by a field, however, always
remains with the card, even if the field belongs to the background. A field can contain
up to 32,000 characters, including spaces, return characters, and other invisible
characters. If you put more than that many characters into a field, the extras are
ignored.

Sources of values

45

Text in fields always remains editable—you can search through it with the find
command, and you can change it with the I-beam pointer of the Browse tool
(assuming the field isn’t locked).

© About Paint text: You can also put text onto cards and backgrounds as Paint
text—opictures that look like characters. Paint text can’t be edited once it has been
fixed onto the card or background (although you can paint over it or erase it as you
can any part of a picture). See the HyperCard User's Guide for more information on
Paint text.

Variables

A variable is a named container that has no visible representation other than its
name. Its value is a character string of any length. The variable name is a HyperTalk
identifier. An identifier can be of any length, it always begins with an alphabetic
character, and it can contain any alphanumeric character plus the underscore
character (_). ‘

You assign a value to a variable with the put command. It is illegal to read from a
nonexistent variable—you must create it by putting something into it before you use it.
The constant empty, the null string, counts as something to put into a variable.

HyperCard assumes that an unquoted word used in an expression is a variable when it
can't interpret the word as some other source of value (the string is not a function,
constant, property, or other container name). If you haven't put a value into a
variable by that name, HyperCard treats it as an unquoted literal.

Scope of variables: HyperCard has both local and global variables. A local variable
is valid only during the current invocation of the currently executing handler. You
don't need to declare a local variable before you use it—just put something into it. A
global variable is valid for all handlers. You must declare a variable as global by using
the global keyword in each handler before you use the variable:

global useMeEverywhere,useMeToo

HyperTalk assumes a variable to be local unless you specifically use the global
keyword.

For more details on the global keyword, see Chapter 5.

Parameter variables: You create parameter variables when you put their names after
the message name in a handler: .

on messageName firstParam,secondParam

When the handler is called, these variables are assigned the values, if any, of the items
in a comma-separated list of expressions following the message name in the calling
statement. Parameter variables are local to their handler. Chapter 2, “Handling
Messages,” gives more explanation of parameter passing.

46 Chapter 4: Values

’\i\w/

The variable It: The local variable named It is the destination of the commands
get, ask, answer, and read. For example, get the name of field 1 puts
the value of that background field’s name into It. Convert puts its results into It

if another destination isn't specified.

For information on commands, see Chapter 7.

The selection

The selection is a container that holds the currently selected area of text. You can put
values into, before, or after the selection or put the selection (or any chunk of the
selection) into another container.

starting with this selection...

...the HyperTalk command... : -usin

...producses this result.

Figure 4-1
Manipulating the selection

For example, if the phrase I'm the selected text is selected, and you issue the
command

put the selection into the Message box

then I'm the selected text appears in the Message box. (Both instances of
the word the in the example are optional.)

Sources of values

47

® Found text isn't selected: Text found by the find command is indicated by a box
around it—it is not placed into the selection. HyperTalk doesn't have a construct to
indicate directly where the text was found, but you canuse contains and other
operators to locate the text. The find command is described in Chapter 7;
operators are described later in this chapter.

You must select some text with the mouse or the click or drag command before
you can manipulate the selection container.

The Message box

The Message box is a special container. Typically, you use the Message box to send a
HyperTalk message directly to an object or to HyperCard. The Message box is a
single-line container. If you put more than one line from a multiple-line container
into the Message box (put card field 2 into msgq), only the first line is copied
into the Message box.

e B R s e e B o e i

go to stack “Lissy's songs”

Figure 4-2
The Message box

The Message box is the default destination for the put command.

If you put something into the Message box when it’s hidden, HyperCard shows it
automatically. You can toggle the Message box between being hidden or shown by
pressing Command-M.

The Message box can be specified by just the word message or its abbreviation
msg. Optionally, you can follow either of those with either box or window, and you
can precede either with the word the.

Complex expressions

You can build complex expressions using values and operators. As a complex
expression is evaluated, the values of its basic components are manipulated to derive a
final value in place of the entire expression. (The original values are not changed in
the process.) Complex expressions are evaluated according to rules of precedence,
and restrictions apply to the values that can be used, depending on their operators.

48 Chapter 4: Values

W

@ Chunk expressions are different: Chunk expressions are a different type of
expression: they designate pieces of the strings representing values. Chunk
expressions are described in the last section of this chapter.

Factors

A factor is a single element of value in an expression. The following constructs are
factors:

O a simple source of value

O an expression enclosed in parentheses

O a factor (which must evaluate to a number) with a hyphen or a minus sign in front of it
a a factor (which must evaluate to true or false) with the word not in front of it

An expression can be just a factor, or it can be any two expressions with an operator
between them.

The difference between a factor and an expression is important to the syntax of
HyperTalk commands and functions. Where a built-in HyperTalk command
parameter permits an expression, you can specify as complex an expression as you
wish. HyperCard derives the final value before passing the parameter to the

command. For example, the add command accepts a complex expression as its first
parameter:

add 46+12*monthlyRate to total

In contrast, where a built-in HyperTalk function requires a factor, HyperCard will take
the value of the first factor as the parameter to pass to the function. For example, the
sqrt function takes the first factor following its name as its parameter. This is
illustrated by the following expression, which you can type into the Message box or use
in a command:

the sqgrt of 4 + 12

In the example, the sgrt function takes the factor 4 as its parameter, rather than
the value of the expression 4 + 12. So the entire expression evaluates to 14, rather
than 4, which would be the value if sqrt accepted an entire expression. (To specify
the entire expression -4 + 12 asthe parameter you can enclose it in parentheses,
which tumns it into a factor.)

® Two hyphens always indicate a comment: You can put a hyphen in front of a
factor to create another factor, and you can put another hyphen in front of that and
still have a factor. However, two hyphens in sequence indicate a comment, so you
must separate the hyphens with a space or enclose the inner factor in parentheses
for HyperCard to recognize the construct as a factor.

HyperTalk’s built-in commands and functions are described in Chapters 7 and 8,
respectively.

Complex expressions

49

HyperTalk operators

Operators are used in complex expressions to derive values from other values.
Operators fall into several categories:

O Arithmetic operators work on numbers and result in numbers.

0 Comparison operators work on numbers, text, and Boolean values (true or
false) and result in Boolean values.

O Logical operators work on Boolean values and result in Boolean values.
O Text operators manipulate text strings and result in text strings.

Parentheses alter the order of expression evaluation.

Operator precedence

Different operators have different orders of precedence that determine how things get
evaluated. The order in which HyperCard performs operations is shown in Table 4-1.

Table 4-1
Operator precedence
Order Operators Type of operator
1 «) Grouping
2 - Minus sign for numbers
not Logical negation for Boolean values
3 ~ Exponentiation for numbers
4 * [/ div mod Multiplication and division for numbers
5 + - Addition and subtraction for numbers
6 & && Concatenation of text
7 > < <= >m £ 2 Comparison for numbers or text
is in contains Comparison for text
is not in Comparison for text
8 = is is not <> # Comparison for numbers or text
9 and Logical for Boolean values
10 or Logical for Boolean values

Operators of equal preeedence are evaluated left to right, except for exponentiation,
which goes right to left. For example, 2~3%4 means *3 raised to the fourth power,
then 2 raised to that power,” whereas 1-2-3 means “2 subtracted from 1, then 3
subtracted from that.” If you use parentheses, HyperCard evaluates the parenthetical
expression first.

50 Chapter 4: Values

Operators and expression type

The operator you use must match the values you're using it with: "tom™ + "cat"
would cause an error, because numeric values are required for addition. On the other
hand, tom + cat would be acceptable if tom and cat were names of containers
with numbers in them, and "tom"™ & "cat" would be acceptable because the &
operator works on text strings (the result of this operation would be the text string
tomcat). Text operators work on any value, because any value in HyperTalk can be
treated as a text string; they always yield text strings.

Because numeric values are automatically converted to strings when necessary (see
“Numbers” earlier in this chapter), they can be manipulated by both text operators
and arithmetic operators. For example, 5 & 78 yields 578,and 5 + 78
yields 83. '

Comparison operators try to treat both of their operands as numbers; if they can't be
regarded as numbers, HyperCard treats them as text and does a lexical comparison.
For example, 9 < 10 resultsin true, because 9 islessthan 10 arithmetically.
But, "9x" < "10x" resultsin false, because the operands can't be regarded as
numbers and 9 is greater than 10 lexically.

Table 4-2 is a list of all the operators in HyperTalk.

Table 4-2

HyperTalk operators

Operator Description

O Grouping: Expressions within the innermost pair of parentheses are

evaluated first. Parentheses don't force a new level of evaluation; they
change the sequence in which the current level of evaluation
proceeds.

- Minus: Arithmetic operator that makes negative the number to its
right, or, if it is between two numbers, subtracts the one on the right
from the one on the left.

+ Plus: Arithmetic operator that adds two numbers it appears between.

* Multiply: Arithmetic operator that multiplies two numbers it appears
between.

/ Divide: Arithmetic operator that divides the number to its left by the
number to its right.
div Divide and truncate: Arithmetic operator that divides a number to its

left by a number to its right, ignoring any remainder, resulting in just
the whole part.

Complex expressions

51

Table 4-2 (continued)
HyperTalk operators .

mod

not

and

or

is

<>

is not

<=

>m=

52

Modulo: Arithmetic operator that divides the number to its left by the
number to its right, ignoring the whole part, resulting in just the
remainder.

Exponent: Arithmetic operator that raises the number to its left to the
power of the number to its right.

NOT: Logical operator that results in true if the expression on its
rightis false, and false if the expression onits rightis true.

AND: Logical operator that results in true if both the expression to
its left and the expression to its right are true.

OR: Logical operator that results in true if either the expression to
its left or the expression to its right is true.

Equal: Comparison operator that results in true if the expression
to its left and the expression to its right have the same value. The
expressions can be arithmetic, text string, or logical.

Is: Same as =,

Not equal: Comparison operator that results in true if the
expression to its left and the expression to its right have different
values. The expressions can be arithmetic, text, or logical.

Not equal: Same as <>. The # character is obtained on the
Macintosh keyboard by pressing Option-equal (=).

Is not: Same as <>.

Less than: Comparison operator that results in true if the
expression to its left has less value than the one to its right. The
expressions can be both arithmetic or both text.

Greater than: Comparison operator that results in true if the
expression to its left has greater value than the one to its right. The
expressions can be both arithmetic or both text.

Less than or equal to: Comparison operator that results in true if
the expression to its left has less value than the one to its right or the
same value. The expressions can be both arithmetic or both text.

Less than or equal to: Same as <=. The < character is obtained on
the Macintosh keyboard by pressing Option-comma (,).

Greater than or equal to: Comparison operator that results in true
if the expression to its left has greater value than the one to its right or
the same value. The expressions can be both arithmetic or both text.

Chapter 4: Vaiues

Table 4-2 (continued)
HyperTalk operators__

2 Greater than or equal to: Same as >=. The 2 character is obtained
on the Macintosh keyboard by pressing Option-period (.).

contains Contains: Comparison operator that results in true if the text
string yielded by the expression on its right is found in the text string
yielded by the expression on its left.

is in Is in: Converse of contains; comparison operator that results in
true if the text string yielded by the expression on its left is found in
the text string yielded by the expression on its right.

is not in Is notin: Opposite of is in; comparison operator that results in
true if the text string yielded by the exprssion on its left is not found
in the text string yielded by the expression on its right.

& Concatenate: Text string operator that joins the text string yielded by
the expression on its left to the text string yielded by the expression
on its right.

&& Concatenate with space: Text string operator that joins the text string

yielded by the expression on its left to the text string yielded by the
expression on its right, with a space between them.

Chunk expressions

You use a chunk expression to specify a particular piece—a chunk—of the value of any
source of value: constant, literal, function, property, number, or container. Chunk
expressions can specify any character, word, item, or line in the source.

Syntax

The form of a chunk expression designates the smallest part of the chunk first, then
specifies each larger, enclosing part. You separate each part of the expression with the
preposition of or its synonym in. For example,

first character of second word of third line of field 1
specifies a single character in the field.

You modify the specification of the kind of chunk—character, word, item, or line—
with the number of the particular one you want. The number can be an ordinal constant
preceding the kind (tenth word) or an integer following the kind (1ine 2). You

can also use a numeric constant in place of the integer (Line two), or any numeric
expression that resolves to an integer.

Chunk expressions

You can use the special ordinals middle, last,and any to specify a chunk within
its enclosing part. HyperCard resolves a special ordinal to a2 number using the total
number of chunks of the specified type within its enclosing part: middle resolves to
one more than half the total, last resolves to the total, and any resolves to a
random number between 1 and the total. For example,

put "Joe" into any word of line 2 of field 1
replaces a random word in the line with Joe.

It isn’t necessary to specify the enclosing parts of the source in strict, hierarchical
order. You can designate any smaller part within any larger part:

character 35 of field 1

And, although you must go left-to-right from smaller to larger, you don’t have to
specify any smaller part than you want:

third item of It

Characters

Characters are designated by the chunk name character (or char). Spaces count
as characters in any part of a source except words. (Words are delimited by spaces.)
Commas count as characters except in items. (Items are delimited by commas.)
Return characters count as characters in whole sources and items. (A return character
delimits the last word on the line as well as the line itseif.)

For example, if field 6 contains the phrase

It was the turtle, not I, who spilled the beans.
the chunk expression

character 25 of field 6

yields a comma (the one after not I).

Words

Words are composed of any characters, including punctuation, delimited by spaces,
and are designated by the chunk name word:

word 2 of "Where's my cubicle?"

yields my.

54 Chapter 4: Values

B

items -

Items are composed of any characters, including punctuation, delimited by commas,
and are designated by the chunk name item:

item three of "cat's, rat's, bat's, gnat's"

yields * bat 's” (including the space character in front).

Lines

Lines are composed of any characters, including punctuation, delimited by return
characters, and are designated by the chunk name line.

The chunk name line strictly denotes text between the beginning of a container and
the first return character, between two return characters, or between the last return
character and the end of the container.

It doesn’t matter how many display lines it takes to display one container line. For
example, a single line in a field might occupy several lines on the display if the text
wraps around (which it does if the field isn’t wide enough to accommodate the whole
line).

_ _ T
This s line two | [Andhers’slinethres. |

FAgure 4-3
Lines in a fleid

Chunk expressions

Ranges .

The preposition to in a chunk expression specifies a range of a chunk within the
larger chunk:

word 1 to 5 of line 2 of field "fred"

The numbers given in a range are inclusive. For example:

char 2 to 5 of "HyperTalk"

yields yper.

You specify the range with integers (or with constants or numeric expressions that
resolve to integers) following the chunk name, rather than with ordinal numbers
preceding the chunk name. That is, you must say char 1 to 3 of "george"; you
can'tsay first to third char of "george™.

When the first number in a range is greater than the second, you get the first chunk
only. For example, char 5 to 3 of "HyperTalk" yields the character r.

Figure 4-4 shows some chunk expressions, labeled in various valid forms of chunk
expression syntax, in a hypothetical card field 1.

Third word
ofline 1 of
card fled | —————

Sﬂ%’:; ?)t? Character 2
card fleld 1 — of word 4 of
line 2 of
card fleid 1
Tenth word of —
third line of
card fleid 1
tem 2 of
fourth line of
card fleld 1
Figure 4-4

Chunk expressions

56 Chapter 4: Values

Chunks and containers

Combining a chunk expression with the object descriptor of a field lets you refer
directly to any piece of text down to a single character within the current stack:

put char 2 of line 2 of field 1 of last card

& You can'’t spectfy chunks in another stack: You can't combine a stack name with a
chunk expression; you must go to the stack first.

Chunks as destinations as well as sources

Chunk expressions can be used to specify a part of the value in a container wherever a
container name is used. So, the chunk can specify the destination of a value—where
you're putting it—as well as the source of a value—where you're getting it. For example,

put "George" into word 3 of field 1

replaces only the third word in the field with the value George, leaving the rest of the
field's former contents intact.

Nonexistent chunks

If you specify chunks that don’t exist as sources of values, you get nothing. That is,
put char 5 of "hey" into msg

puts empty into the Message box.

If you specify a nonexistent chunk as the destination ofa put command, the outcome
depends on the kind of chunk. If you put a value into a character or a word that doesn't
exist in a container, you put just the value. That is, if field 1 is empty, the statement:

put "hey" into word 5 of field 1
puts hey (with no characters before it) into background field 1.

If you put a value into a nonexistent line, however, HyperCard puts in a return
character, and if you put a value into a nonexistent item, HyperCard puts in a2 comma.
(In both cases, you put a null chunk delimited by its particular delimiting character.)
For example, if field 1 is empty, the statement:

put "hey" into line 5 of field 1

puts four return characters (four null lines) followed by hey into background field 1.
Similarly,

put "hey” into item S5 of field 1

puts four commas (four null items) followed by hey into the first line of background
field 1.

Chunk expressions

57

Third character of second word of third line...

d
Character

whlat This is line one.
: This is line two.
Weord MThat's wiiat | thought. |
Une
...of first fleld of fourth card.

Figure 4-5
Combining chunks and objects

Chapter summary

Here is a summary of the material covered in this chapter:
O HyperTalk’s values can always be treated as strings of characters.

O The most basic expressions in HyperTalk are constants, literals, functions,
properties, numbers, and containers.

O Containers—fields, variables, the select.ibn, and the Message box—are places to
store values.

0 Complex expressions are built with values and operators.
Operators are used to manipulate and calculate values.

0 Chunk expressions can specify any chunk—character, word, item, or line—either
in a source of value or as the destination of a put command.

(u]

58 Chapter 4: Values

Chapter 5

Keywords

59

This chapter describes all of HyperTalk’s keywords.

A keyword is 2 word whose meaning is predefined in HyperTalk. You cannot redefine
keywords as variable names. Keywords are not sent as messages when they execute in
scripts, nor can they be used in the Message box (except for send). Some keywords
provide the structure for handlers; others control the flow of execution within
handlers.

HyperTalk has two kinds of handlers: message and function handlers, denoted by the
initial keywords on and function, respectively. Message and function handlers
are defined in the same way (except for the initial keyword), but they dxﬂ'er in how they
are invoked and in how they return values.

In this chapter, the heading for each keyword is followed by a syntax statement. Words
in italic are general elements. Square brackets ([1) denote optional elements (don’t
type the square brackets).

Keywords in message handlers

The on keyword identifies a HyperCard message handler. Message handlers are
written to define your own messages, or to modify or redefine what happens in
response to any message (including a HyperTalk command). The general syntax of a
message handler looks like this:

on messageName [parameterList]
[statementList]
end messageName

MessageName is an identifier: a string starting with a letter and containing no spaces
or punctuation marks except underscore; parameterlList is a series of zero or more
parameter variables (separated by commas if more than one); and statementList is
zero or more HyperTalk statements.

The handler dictates the method by which its object responds to messageName. When

somebody sends a message called messageName to an object, HyperCard checks all

of that object’s message handlers to see if it has one named messageName. If so, the

object responds according to that handler, and the message is sent no further

(assuming the script has no pass statement, described later in this chapter). If the

object has no handler fo match masageName HyperCard passes the message to the

next object in the hierarchy.

¥ You can override HyperTalk: If you name a message handler the same as a built-in
command, yours overrides the built-in one if yours is anywhere along the object
hierarchy between the object sending the message and HyperCard.

Program flow runs through the handler until it encounters an end, exit, pass, or

return statement (discussed later in this section). A message handler can return a
value through the built-in function the result (discussed in Chapter 8).

60 Chapter S: Keywords

A

On

on messageName [parameterList]

The on keyword marks the beginning of a message handler and connects the handler
with a particular message. MessageName is the first word of the message to which the
handler responds, and it is the name of the handler.

The optional parameterList allows the message handler to receive some values sent
along with the message. This list is a series of local variable names, called parameter
variables or formal parameters, separated by commas. When the message is sent,
each source following the message name is evaluated; when the handler receives the
message, each value is plugged into the parameter variable that appears in the
corresponding position following on messageName, the first value in the list going
into the first parameter variable, and so on.

Chapter 2, “Handling Messages,” explains more about parameter passing. See also
the param, params,and paramCount functions in Chapter 8, “Functions.”

End

end messageName

The end keyword begins the last line of 2 handler— it is reached when all of the
handler’s statements have been executed (except for any bypassed conditional
blocks). When the end statement is reached, the message that initiated execution of
the handler is sent no further. If the message that initiated this handler’s execution was
part of some other handler, control passes back to the other handler.

Exit

exit messageName
exit to HyperCard

The exit messageName statement ends execution of the handler.

The exit to HyperCard form makes program flow return directly to HyperCard,
bypassing any pending handlers that have not finished executing.

Keywords in message handlers

61

Pass '
pass messageName

The pass statement ends execution of the handler and sends the entire message that
initiated execution of the handler to the next object in the hierarchy. (Ordinarily, a
message is sent no further than the object containing the executing handler.)

Retum

return expression

The return statement ends execution of the handler and, when it appears within a

message handler structure, places the value of expression into the HyperTalk function
the result.

The value of the result setbythe return statement is valid only immediately
after it executes; each new statement resets the result. (See “Result” in Chapter 8,
“Functions,” for examples.)

Message handler exampie

The following example shows a handler that originates a message which in turn
initiates execution of a second handler. (The second handler could be in the same
script as the first or anywhere farther along the object hierarchy.)

on mouseUp

heyNow 5,10 -- heyNow is the message name that's sent
end mouseUp

on heyNow timeVar,timeVar2 --Handler name is heyNow, matching message name
play "boing" tempc 200 "c4e c dq c¢c f eh™ -- Happy Birthday
wait timeVar seconds
play stop
play "“harpsichord"” "ch d e f g a b c5w"
wait timeVar2 seconds
play stop
end heyNow

Execution of the first handler is initiated when its object receives 2 mouseUp
message. The mouseUp could be generated by the user clicking the mouse or typing
mouseUp in the Message box and pressing Retumn. It could also originate from
another handler executing the statement mouseUp or could be sent explicitly to the
handler’s object with 2 send command.

62 Chapter §: Keywords

When the mouseUp handler executes, it sends its one command statement (heyNow
5, 10) as a message, first to its own object. The message name (the first word of the
message) matches the handler name (the word following on in the first line of the
handler), so the statements in the second handler begin executing. (If the current
object had no heyNow message handler, that object would pass the entire message
on to the next object in the hierarchy.)

The values of the parameters following heyNow in the first handler are passed into
the parameter variables following heyNow in the second handler. So when the
second handler is executing, timevar has the value 5, and timevar2 has the
value 10. -

Keywords in function handlers

The function keyword identifies a HyperCard function handler. You can use this
structure to define your own functions, which then can be called from any place ina
statement where their values are needed. (User-defined functions are called like built-
in HyperCard functions except that you must always use parentheses—see “Return,”
later in this section.)

Like message handlers, function handlers cannot be nested inside each other (or
inside message handlers). The general syntax of a function handler looks like this:

function functionName [parameterList]
statementList
end functionName

FunctionName is an identifier: a string starting with a letter and containing no spaces
or punctuation marks except underscore; parameterList is a series of zero or more
parameter variables separated by commas; and statementList is zero or more
HyperTalk statements. :

User-defined function handlers use the object hierarchy in the same way as do
message handlers. That is, when the function name appears in a statement or in the
Message box, HyperCard searches through all of the scripts along the current object
hierarchy for a matching function handler. If a match is found, the function handler
executes. If none is found, the function call is passed to HyperCard; if there is no built-
in function of that name, HyperCard displays an error dialog box.

» You can overvide HyperTalk: 1f you name a function handler the same as a built-in
function, yours overrides the built-in one if it's called with the function call syntax
that uses parentheses. Of course, your function handler must also be in the script of
an object lower in the hierarchy than the originator of the function call. You can
make calls to built-in functions using the function call syntax with the preceding
the function name, which bypasses any function handlers and always invokes the
built-in function.

Keywords In function handlers

Program flow runs through the function handler until it encounters an end, exit,
pass, or return statement (discussed later in this section). A function hzndler
returns a value directly into the statement in which its name was used.

Function
function functionName [parameterList]

The function keyword marks the beginning of a function handler and connects the
handler with a particular function call. FunctionName is the function call to which the
handler responds, and it is the name of the handler.

The optional parameterList allows the function handler to receive some values sent
along with the function call. This list is a series of local variable names, called
parameter variables, separated by commas. When the function call is made, each
source appearing between parentheses following the function name is evaluated; when
the handler begins to execute, each value is plugged into the parameter variable that
appears in the corresponding position following function functionName, the first
value in the list going into the first parameter variable, and so on.

For more details on passing parameters to function handlers, see “Return” later in this
section.

End
end functionName

The end statement is the last line of the handler, reached when all of the handler’s
statements have been executed (except for any bypassed conditional blocks).

When the end statement is reached, control passes back to the handler containing
the function call that originated the function handler’s execution.

Exit)

exit functionName

exit to HyperCard

The exit functionName statement ends execution of the handler.

The exit to HyperCard form makes program flow return directly to HyperCard,
bypassing any pending handlers that have not finished executing, including the
handler containing the function call.

64 Chapter 5: Keywords

Pass
pass functionName

The pass statement ends execution of the handler and sends the entire function call
that initiated execution of the handler to the next object in the hierarchy. (Ordinarily,
a function call is sent no further than the object containing the executing handler.)

Return

return expression

The return statement ends execution of the handler and, when it appears within a
function handler structure, dictates the returned value of the function.

The value of expression replaces the function in the calling statement.

The function appears in the calling statement in the form
SunctionName (expressionList) :

put square(l7) into card field 1

ExpressionList is a series of zero or more expressions separated by commas whose
values are assigned to the parameter variables in the pgrameterList of the function
handler. In the above example, the expressionList comprises only the number 17.

A user-defined function handler that would respond to the function call example
square (17), shown above, is

function square x
return x * x
end square

In the example, the function handler has one parameter variable to receive one value
passed to it by the calling statement. The value 17 is passed to the function handler
where it is assigned to the parameter variable x; the valueof x * x is returned by
the return statement, replacing square(17) in the calling statement. So, the
effect of the calling statement is to put the value 289 into card field 1.

% Parentheses required: User-defined functions are always followed by parentheses
(which are empty if there are no parameters to pass). Unlike built-in functions
(explained in detail in Chapter 8), user-defined functions can’t be called with the
or of.

Keywords In function handlers

Function handler example

The following function handler determines whether a number passedtoitas a
parameter is even or odd, returning the constant true ifit'sevenor false ifit's
odd:

function evenNumber numberPassed
return numberPassed mod 2 is 0O
end evenNumber

A calling statement that would invoke the evenNumber function hax;udler could be
one like the following:

if evenNumber (numberVariable) then add 1 to evenNumberCount

In the calling statement, numberVariable can be the name of any variable or

other source of value (including an actual number). HyperCard evaluates
numberVariable before it passes the function call along the hierarchy, and its value
is given to the parameter variable numberPassed whenthe evenNumber function
handler is found. The part of the calling statement following then is arbitrary—the
point of the example is to show how the function handler receives a value, examines it,
and returns another value into the calling statement, based on the result of its
execution.

Repeat

The repeat structure causes all of the HyperTalk statements between its first and last
lines to execute in 2 loop until some condition is met or until an exit statementis
encountered. The general syntax of a repeat structure looks like this:

repeat controlForm
StatementList
end repeat

ControlForm is one of the forms of the repeat statement described below, and
statementList is any number of HyperTalk statements. Repeat structures can be used
only within message handlers or function handlers.

% Note: If you want to try the examples in this chapter, be sure to put them within handlers.

Repeat

The repeat statement is the firstline of a repeat structure. It has five forms
differentiated by the second word of the statement. Additionally, the repeat with
form has two variations.

66 Chapter S: Keywords

(

Repeat forever
repeat [forever] .

The loop repeats forever, or until an exit statement is encountered (whichever
comes first):

put 1 into Message box
repeat

add 1 to Message box

if Message box contains 6 then exit repeat
end repeat

The example ends with 6 in the Message box.
For information on exit repeat, see “Exit Repeat” later in this chapter.
For information on if, see “If Structure” later in this chapter.

Repedat for
repeat [for] number [times]

Number is a source that yields a number specifying how many times the loop is
executed:

put 1 into Message box
repeat for 5 times

add 1 to Message box
end repeat

The example ends with 6 in the Message box.

Repeat until
repeat until condition

Condition is an expression that evaluates to true or false. The loop is repeated as
long as the condition is false. The condition is checked prior to the first and any
subsequent executions of the loop:

put 1 into Message box

repeat until Mcssade Box contains 6
add 1 to Message box ’

end repeat

The example ends with 6 in the Message box.

Repeat

67

Repeat while
repeat while condition

Condition is an expression that evaluates to true or false. The loop is repeated as
long as the condition is true. The condition is checked prior to the first and any
subsequent executions of the loop:

put 1 into Message box

repeat while Message Box < 6
add 1 to Message box

end repeat

The example ends with 6 in the Message box.

Repedat with

There are two variations of the repeat with form: one that increments a variable
and one that decrements.

repeat with vgriable = stant to finish

Variable is a local or global variable name, and start and finish are sources of
integers. The value of start is assigned to variable at the beginning of the loop, and is
incremented by 1 with each pass through the loop. Execution ends when the value of
variable equals the value of finish. ’

repeat with increment = 1 to 6
put increment into the Message box
end repeat

The example ends with 6 in the Message box. (This structure works much like a
FOR. . .NEXT loop in BASIC.)

repeat with wvarigble = start down to finish

The down to form is the same as the to form above, except that the value of
variable is decremented by 1 with each pass through the loop. Execution ends when
the value of variable equals the value of finish.

repeat with decrement = 6 down to 1
put decrement into the Message box
end repeat

The example ends with 1 in the Message box.

68 Chapter 5: Keywords

Exit o
exit repeat

The exit statement sends control to the end of the repeat structure, ending
execution of the loop regardless of the state of the controlling conditions specified in
the repeat statement

put 1 into the Message box
repeat with increment = 1 to 100
add increment to the Message box
if Message box > 20 then
beep 5
exit repeat
end if
end repeat

The example ends with 22 in the Message box.
An exit statement can appear anywhere within the structure.
For information on 1if, see “If Structure” later in this chapter.

Next

next repeat

When a2 next statement is encountered, control returns immediately to the top of
structure. (Usually, flow doesn't return to the top of the structure until an end
statement is encountered.)

repeat 20
put random(9) into tempVar
if tempVar mod 2 = 0 then next repeat
put tempVar after field "oddNumbers"®
end repeat

The example appends only the odd random numbers to the field, skipping any even
ones. ;

A next statement can appear anywhere within the structure.
For information on- 1 £, see “If Structure” later in this chapter.

Repeat

&9

End

end repeat

The end statement marks the end of the loop; it’s the last line of 2 repeat control
structure. When the controlling conditions specified in the repeat statement have
been satisfied or an exit statement encountered, control goes beyond the end
statement:

repeat for 5 times -
beep
end repeat

The if structure tests for the specified condition and executes the following
statement or series of statements if the condition is true. If structures can be used
only within message handlers or function handlers. The if structure has several
forms, described below.

% Note: If you want to try the examples in this chapter, be sure to put them within handlers.

Single-statement If structure
Assingle-statement if structure can occupy only one line as shown below:
if condition then statement [else statement]

A single-statement if structure can also occupy more than one line, but only one
statement can follow then or else:

if condition
then statement
[else statement]

Condition is an expression that evaluates to true or false, and statement is a single
HyperTalk command statement.

In the single-statement if structure, only' one command statement can follow either then or
else (if presenf), and the command statement must be on the same line with then or else.

If the condition between if and then is true, HyperCard executes the statement between
then and else if else is present, or between then and the end of the line if else is not
present following the statement, either on the same line or on the next line.

70 Chapter 5: Keywords

If the condition between if and then is false, HyperCard executes the statement between
else and the end ofthe line if else is present, or it ignores the rest of the line if else isnot
present:

if Message box > 10 then beep 5 else beep 15

In this example, if the Message box holds a value greater than 10, the Macintosh beeps S times; if
the value in the Message box is 10 or less, the Macintosh beeps 15 times.

Multiple-statement If structure

A multiple-statement if structure accommodates more than one executable statement
following then and, optionally, more than one statement following else:

if condition then
statementlList
[else
StatementlList]
end if

You can alsoend a multiple-statement then clause with a single-line else, in which case no
end if statement is needed:

if condition then
StatementList
else statement

Condition is an expression that evaluates to true or false, and statementList is any number of
HyperTalk statements.

In the multiple-statement if structure, more than one command statement can follow either
then or else (if present), and the first command statement must be on the line following
then or else. Thatis, if you want to have more than one statement in a block following then
or else, put a return character after the respective then or else. Such a multiple-statement
block must be ended explicitly: a then block can be ended with either end if or else;an
else block must be ended with end if.

If the condition between if and then is true, HyperCard executes the statement(s) between
then and else if else is present, or between then and end if if else is not
present. i

71

If the condition between if and then is false, HyperCard executes the statement(s) between
else and end if .if else is present, or it ignores what's between then and end if if
else is not present: ‘

if number of this card is 10 then
put "We're done!"™ into msg
go Home
else
put "And the next question is:" into msg
go next card
end if

Nested If structures

If structures can be nested; that is, statements followinga then oran else caninclude
more if structures. Each nested multiple-line if structure must have its own end if, and
an else always goes with the closest preceding if clause. ‘

repeat
ask "Guess a random number between 1 and 10:™ with empty
if it is empty then
exit repeat
else
if it is random(10) then
put "You guessed it!"™
else
put "Sorry, try again."™
end if
end if
end repeat

Do
do expression

The do keyword causes HyperCard to get the value of expression, then send it as a
message. If more than one line is in the source, only the first one is sent.

on getFromlist -- create 3 card fields putting data into the first 2
put "card field 1™ & return & “"card field 2" into list
do "put"™ && line 1 of list && "into card field 3"
-- try this with: put line 1 of list into card field 3
-- commenting out the do "put"... line before running it
end getFromlist ’

72 Chapter S: Keywords

Global
global variabieList

VariableList is one or more HyperCard variable names separated by commas.

The global keyword makes a variable name known and its contents available to any
script of any object in HyperCard. The following two lines are individual examples of
global statements:

global myVar
global pages, sections,chapters

The following example handlers show a global variable being used for two handlers to
access the same value:

on mouseUp
global myVariable -- load the global here
put 3 into myVariable
writeResult

end mouseup

on writeResult
global myVariable -- can use the global as long as we define it here
put myVariable -- the value remains 3

end writeResult

Changing the value of a global variable in any script changes its value evek'ywhere. The
global keyword must be used in each handler in which the global variable is used.

Global variables are not saved in between sessions of HyperCard or when HyperCard
is suspended by launching another application with the open command.

Send

send "messageName [parameterList 1™ (to object]

MessageName is a string beginning with a letter and containing no spaces or
punctuation marks other than underscore; pgrameterlist is one or more expressions
(separated by if more than one); and object is a HyperCard object descriptor
or HyperCard itself. If no object is specified, HyperCard is the object.

The send keyword sends a message directly to a particular object, bypassing any
handlers in the intervening object hierarchy that might otherwise intercept the
message.

Send

73

send "hideIt™ to field 3

send "addSums travel, food, hotel™ to stack "expenseAccount”
send mouseUp to button "pushMe™

send "doMenu print card®™ to HyperCard

You can send a message directly to any object in the current stack or to another stack,
but not to a specific object in another stack.

If the object has no message handler for messageName, the message is passed along
the object hierarchy stemming from the object to which the message was sent. If the
object does have a matching handler, the handler executes, but the card to which it
belongs does not necessarily open. Messages sent by executing the statements of the
object’s handler are sent along the receiving object’s hierarchy.

Chapter 2, “Handling Messages,” has more information about how the send
command interacts with the object hierarchy.

Quotation marks around the message are not required if the message is a single word.
Parameter expressions are evaluated before they are sent, even though the entire
message has quotation marks around it.

© You can use it in the Message box: The send keyword, unlike all other keywords,
works in the Message box.

74 Chapter 5: Keywords

Chapter 6

System Messages

75

This chapter describes the messages HyperCard sends in response to events, such as
mouse clicks, that you initiate in its environment.

Most system messages are sent by HyperCard to the current card, but those having to
do with a specific button or field are sent to that object. The receiving object has the
first chance to respond to the message before it goes on to the next encompassing
object, as described in Chapter 2, “Handling Messages.” The receiving object can
respond to the system message with a handler that begins

on messageName
where messageName is one of the system messages in the following lists.

The tables in this chapter correspond to the type of object to which the listed system
messages are sent initially. If that object has no handler with a name matching the
system message, it passes the message on to succeeding objects in the hierarchy. So,
for example, a card can have a handler for a message sent initially to a button.

Messages and commands

Most system messages are informational—they cause no action if passed all the way to

HyperCard, although they may be a result of 2 HyperTalk command executing. For
example, HyperCard sends deleteButton to a button while it is executing either a
Cut Button or Clear Button menu command. The deleteButton message is a result
of a command, not the command itself. (Consequently, you can't prevent the
deletion of buttons by intercepting the deleteButton message with a handler
named deleteButton).

Other system messages, however, are commands if passed to HyperCard. For
example, all menu commands are passed to HyperCard as parameters of the doMenu
message. (So you can prevent deletion of buttons by intercepting doMenu. But see
the section “Redefining Commands” at the beginning of Chapter 7 before trying it.)
All system messages that are HyperTalk commands are noted as such in this chapter
and are also listed in Chapter 7. If a2 message that reaches HyperCard is neither a
system message nor a command, HyperCard displays a “Can’t understand” error
dialog box.

Although system messages are usually sent by HyperCard, they can be sent by other
objects as well. For example, 2 handler could invoke 2 mouseUp handler in another
object by executing a statement such as '

send "mouseUp”® to button 1 of card 1

76 Chapter 6: System Messages

Messages sent to a button

The only messages that are sent initially to buttons are those having to do with a
specific button. They are of two types: those announcing the button'’s creation or
deletion, and mouse messages.

When buttons and fields are layered on top of each other, mouse messages are sent
only to the closest one. (But background buttons and fields can never overlay those
belonging to the card.) Whether a button or field belongs to the card or the
background, however, makes no difference regarding where a message is sent initially:
all buttons and fields precede the card.

Table 6-1 shows the system messages HyperCard sends initially to buttons.

Table 6-1

Messages sent to a button

Moquo Meaning

newButton Sent to a button as soon as it has been created. Although the
new button can have no script with which to respond to this
message (unless it was created by pasting), the message will
pass to objects lower in the hierarchy which can respond with
handlers such as
on newButton

set autoHilite of the target to true

end newButton

deleteButton Sent to a button that is being deleted, just before it
disappears.

mouseDown Sent to a button when the mouse button is pressed down while

the pointer is inside its rectangle. (This message may also be
sent to a field or card; see Tables 6-2 and 6-3.)

mouseStillDown Sent to a button repeatedly while the mouse button is held
down and the pointer is inside its rectangle. (This message
may also be sent to a field or card; see Tables 6-2 and 6-3.)

mouseUp Sent t0 a button when the mouse button is released while the
pointer is inside its rectangle. The pointer must be in the
same button rectangle it was in when the mouse button was
pressed down for the message to be sent. (This message may
also be sent to a field or card; see Tables 6-2 and 6-3.)

Messages sent to a button

77

Table é-1 (continued)
Messages sent to a button

mouseEnter -- Sentto a button as soon as the pointer is moved within its
rectangle. (This message may also be sent to a field; see
Table 6-2.)

mouseWithin Sent to a button repeatedly while the pointer is inside its
rectangle. (This message may also be sent to a field; see
Table 6-2.)

mouseLeave Sent to a button as soon as the pointer is moved outside its
' rectangle. (This message may also be sent to a field; see
Table 6-2.)

Messages sent to a field

The only messages that are sent initially to fields are those having to do with a specific
field. They are of three types: those announcing the field’s creation or deletion, those
announcing its opening for text entry or closing afterwards, and mouse messages.

When buttons and fields are layered on top of each other, mouse messages are sent
only to the closest one. (But background buttons and fields can never overlay those
belonging to the card.) Whether a button or field belongs to the card or the
background, however, makes no difference regarding where a message is sent initially:
all buttons and fields precede the card.

Table 6-2 shows the system messages HyperCard sends initially to fields.

78 Chapter 6: System Messages

Table 6-2

Messages sent to a fleid

Mecning

newField
deleteField
openField

closeField

mouseDown

mouseStillDown

mouseUp

mouseEnter

mouseWithin

mouseleave

Sent to a field as soon as it has been created.
Sent to a field that is being deleted, just before it disappears.

Sent to an unlocked field when it is opened for text editing, by
clicking in the field or moving the text insertion point from
the previous field with the Tab key.

Sent to an unlocked field when it is closed after text editing by
clicking outside the field, moving the text insertion point to
the next field with the Tab key, pressing the Enter key, going
to another card, or quitting HyperCard. The message is not
sent unless some text was actually changed.

Sent to a locked field when the mouse button is pressed down
while the pointer is inside it. MouseDown is not sentto a
scrolling field when the mouse is clicked in the scroll bar. You
can send mouseDown to an unlocked field by holding down
the Command key while clicking the mouse in the field. CThis
message may also be sent to a button or card; see Tables 6-1
and 6-3.)

Sent to a locked field repeatedly while the mouse button is
held down and the mouse pointer is inside it. CThis message
may also be sent to a button or card; see Tables 6-1 and 6-3.)

Sent to a locked field when the mouse button is released while
the pointer is inside it. The pointer must be in the same field
it was in when the mouse button was pressed down for the
message to be sent. (This message may also besenttoa
button or card; see Tables 6-1 and 6-3.)

Sent to a field as soon as the pointer is moved into it. (This
message may also be sent to a button; see Table 6-1.)

Sent to a field repeatedly while the pointer is inside it. (This
message may also be sent to a button; see Table 6-1.)

Sent to a field as soon as the pointer is moved outside it. (This
message may also be sent to a button; see Table 6-1.)

Messages sent to a fleld

79

Messages sent to the current card

System messages not sent to buttons or fields are sent initially to the current wd, even
when they concem the background or the stack.

Mouse messages are sent to the card only when there is no button or field, beIongmg
to either the card or the background, under the pointer.

Table 6-3 shows the system messages HyperCard sends initially to the current card.

Table 6-3

Messages sent to the cumrent card

Message Meaning

newCard Sent to a card as soon as it has been created.

deleteCard Sent to a card that is being deleted, just before it disappears.

openCard Sent to a card when you go to it

closeCard Sent to a card when you leave it.

mouseDown Sent to the current card when the mouse button is pressed
down and the pointer is not in the current button rectangle or
field. (This message may also be sent to a button or field; see
Tables 6-1 and 6-2.)

mouseStillDown Sent to the current card repeatedly while the mouse button is
held down. (This message may also be sent to a button or
field; see Tables 6-1 and 6-2.)

mouseUp Sent to the current card when the mouse button is released.
(This message may also be sent to a button or field; see Tables

© 6-1and 6-2)

startUp Sent to the first card displayed when HyperCard is first
started.

80 Chapter 6: System Messages

Table 6-3 (continued)

Messages sent to the cumrrent card

idle

returnKey

enterKey

tabKey

Sent to the current card repeatedly when nothing else is
happening and the Browse tool is current.

An idle handler can interfere with typing. For example, if
you have an idle handler that puts text into a field, it can
remove the insertion point from another field while the user
is typing. An example of such a handler is

on idle
put the time into card field "Time"
pass idle

end idle

If this handler were to execute during typing into another field
(idle is sent during a typing pause), and if the time had
changed, HyperCard would remove the insertion point from
the user’s field. The user would have to dick in the field or
press Tab to replace the insertion point after every pause,
which would be annoying and tedious.

Sent to the current card when the Return key is pressed, unless
the text insertion point is in a field. (This message is also a
HyperTalk command. See Chapter 7.)

Sent to the current card when the Enter key is pressed, unless
the text insertion point is in a field. (This message is also a
HyperTalk command. See Chapter 7.)

Sent to the current card when the Tab key is pressed. (This
message is also 2 HyperTalk command. See Chapter 7.)

Messages sent to the cumrrent card

81

Table 6-3 (continued)

Messages sent to the current card

arrowKey var

functionKey var

controlKey var

Sent to the current card when an arrow key is pressed (and the
textArrows property is false; see Chapter9). The value
passed into the parameter variable varcanbe left,
right, up, or down, depending on which arrow key is
pressed. The beginning of a handler for this message could
read:

on arrowKey whichKey ‘
if whichKey = "left"™ then go previous card

(This message is also a HyperTalk command. See Chapter 7.)

Sent to the current card when a function key on the Apple
Extended Keyboard is pressed. The parameter variable var
can range from 1 to 15. Function keys 1 through 4 are
preprogrammed for the Undo, Cut, Copy, and Paste
commands, respectively. The beginning of a handler for this
message could read:

on functionKey whichKey
if whichKey < 5 then pass functionKey
else if whichKey is 5 then doMenu "New Card"
else if whichKey is 6 then choose browse tool
else if whichKey is 7 then choose button tool

You can override the preprogrammed functions of keys 1
through 4ina functionKey message handler. (This
message is also a HyperTalk command. See Chapter 7.)

Sent to the current card when a combination of the Control
key and another key is pressed. The parameter variable var
can range from 0 to 255. The parameter variable values
generated by different keystrokes on the Apple Extended
Keyboard are shown in Appendix B. The beginning of a
handler for this message could read:

on controlKey whichKey
if whichKey = 16 then
doMenu "Print Card"®

82 Chapter 6: System Messages

Table 6-3 (continued)

Messages sent to the current card

doMenu var

newBackground

deleteBackground

openBackground

closeBackground

newStack

deleteStack

openStack

closeStack

help

suspend

resume

Sent to the current card when a menu item is selected. The
parameter variable var has the exact name of the menu item
selected, including the three periods following menu items
that invoke dialog boxes. Uppercase and lowercase don't
matter, but you must type the three periods—don't use the
Option-semicolon ellipsis character. (This message is also a
HyperTalk command, which is listed in Chapter 7. An
example handler to intercept the doMenu message is shown
in the section “Redefining Commands” at the beginning of
Chapter 7.)

Sent to the current card as soon as a background has been
created.

Sent to the current card when a background is deleted, just
before it disappears.

Sent to the current card when a background is first opened by
going to a card whose background is different than that of the
previous card.

Sent to the current card when a background is closed by going
to another card that has a different background.

Sent to the current card when a stack is created.

Sent to the current card when a stack is deleted, just before it
disappears.

Sent to the current card when a stack is opened by goingto a
card in a different stack than that of the previous card. In this
case the following three messages are sent, in order:
openCard, openBackground, and openStack.

Sent to the current card when a stack is closed by opening
another stack.

Sent to the current card when Help is chosen from the Go
menu (or Command-? is pressed). You can intercept this
message if you want to provide your own Help system for your
stack. (This message is also a HyperTalk command. See
Chapter 7.)

Sent to the current card when HyperCard is suspended, when
you launch another application with the open command,
just before the other application is launched.

Sent to the current card when HyperCard resumes running
after having been suspended.

Messages sent to the current card

83

Table 6-3 (continued)
Messages sent to the curent card

quit

hide var

show var

Sent to the current card when you choose Quit HyperCard
from the File menu (or press Command-Q), just before
HyperCard quits.

Sent to the current card when the menu bar is visible and you
press Command-Space bar. The parameter variable var has
only one value forthe hide system message: menubar.
(This message is also a HyperTalk command; the command
accepts other parameter variable values in addition to
menubar. See Chapter 7.)

Sent to the current card when the menu bar is hidden and you
press Command-Space bar. The parameter variable var has
only one value for the show system messsage: menuBar.
(This message is also a HyperTalk command; the command
accepts other parameter variable values in addition to
menuBar. See Chapter 7.)

Chapter 6: System Messages

Chapter 7

- Commands

85

This chapter describes all the commands in HyperTalk, showing their syntax and
meaning.

HyperTalk commands are built-in message handlers that reside in HyperCard itself.
When you issue a HyperTalk command, it's passed along the object hierarchy as a
message to HyperCard. In most cases there’s no handler in any script along the way to
intercept the message, so HyperCard receives the message and acts on it.

Some commands (such as arrowKey) are systemn messages as well as commands.

This means two things: a system event generates the message (pressing an arrow key
generates the arrowKey message), and HyperCard has a built-in response to the
message (arrowKey takes you to another card). "

Redefining commands

You can write a message handler that redefines a built-in command (for example, on
doMenu menulItem). This is especially useful for trapping menu commands you want
to modify or that you want to prevent a user from issuing. -

Be wary, however: once 2 command—or any message—has been intercepted by a
handler, it's sent no further along the hierarchy; so your newly defined command
replaces HyperCard's built-in one. If, for example, you write a handler for the
doMenu command, be sure to pass the message if you don’t want to prevent every
instance of it from reaching HyperCard:

on doMenu menultem
if menultem is "Delete Card"™ then
answer "Are you sure?" with "Delete™ or "Cancel"™
if It is not "Delete™ then exit doMenu
end if
pass doMenu
end doMenu

If you inadvertently fail to pass doMenu, you may find yourself apparently unable to

use any menu command, even to fix the doMenu handler. (In that case, execute the
command edit script, for the object containing the handler, from the Message
box. If the Message box is hidden and blind typing is false, to go to the last card of the

Home stack and tum blind typing on.)

86 Chapter 7. Commands

Syntax description notation

The syntax descriptions use the following typographic conventions. Words or phrases
in typewriter type are Hypertalk language elements or are those that you type to
the computer literally, exactly as shown. Words in #alic type describe general
elements, not specific names—you must substitute the actual instances. Square
brackets ([]) enclose optional elements which may be included if you need them.

- (Don't type the square brackets.) In some cases, optional elements change what the
message does; in other cases they are helper words that have no effect except to make
the message more readable.

It doesn’t matter whether you use uppercase or lowercase letters; names that are
formed from two words are shown in small letters with a capital in the middle
(1ikeThis) merely to make them more readable. The HyperTalk prepositions of
and in are interchangeable—the syntax descriptions use the one that sounds more
natural.

The terms factor and expression are defined in Chapter 4. Briefly, a factor can be a

constant, literal, function, property, number, or container, and an expression can be '

a factor or a complex expression built with factors and operators. Also, a factor can be
an expression within parentheses. The term yfelds indicates a specific kind of value,
such as a number or a text string, that must result from evaluation of a factor or
expression when a restriction applies (for example, the expression and the destination
inan add command must yield numbers). However, any HyperTalk value can be
treated as a text string.

Syntax description notation

87

Syntax

Examples

Description

Script

Notes

Add

add expression to destination
Expression yields an arithmetic value and destination is a container.

add 3 to It
add field Amount to field Total

The add command adds the value of expression to the value of destination, and
leaves the result in destination.

The following example handler sums numbers in a field, if each line of the field
contains one number, and puts the result into the Message box. The name of the field
is passed to the handler as a parameter.

on sumField whichField
put 0 into total
repeat with count = 1 to the number of lines in whichField
add line count of whichField to total
end repeat
put total into msg
end sumField

The value previously in the destination must be a number; it is replaced with the new
value.

a8 Chapter 7: Commands

Syntax

Examples

Description

Script

| Answer

answer question (with reply [or reply2 [or reply3]]])
Question and reply are expressions that yield text strings.

answer "Which is the way the world ends?®" with "Bang™ or "Whimper"
answer myQuestion with myAnswer or field 7

The answer command displays a dialog box with a question and up to three
buttons, each representing a different reply.

The dialog box stays on the screen until one of the buttons is clicked; pressing Return
or Enter has the same effect as clicking the button farthest to the right, which
correlates to the last reply specified with the answer command.

The following example handler produces the dialog boxes in Figure 7-1 (the second
one depends on which button you click in the first one):

on chooseColor
answer "Which éolor do you prefer?" with "Red™ or "Blue" or "Yellow"
if It is "Red" then answer "You picked Red."
else if It is "Blue™ then answer "You picked Blue."

else if It is "Yellow™ then answer "You picked Yellow."
end chooseColor

Which color de you prefer?

ied_y) (Cowe) (et |

You picked Red.

Rgure 7-1
Arswer command dialog boxes

Answer 89

Notes

Syntax

Examples

Description

There is no way for a script to reply to a dialog box by itself, so it's important that a
script meant to run unattended not use answer.

The text of the button clicked goes into the local variable Tt. If no repiyis specified,
HyperCard displays one button containing OK.

Neither the question nor any of the replies can have more than one line. If you use a
container that has more than one line of text in it for the question, only the first line
appears. If you use a container with more than one line for a reply, the last line is
displayed in the button. (Only the center portion shows if the line is too long to fit in
the button.) However, all lines go into the local variable It when the button is
clicked. : ,

Unless you’re using container names, put the question and the replies inside
quotation marks if they contain any spaces.

Each reply can be up to 13 characters long (depending on the width of the
characters).

See also the ask command.

ArrowKey

arrowKey keyName

KeyName describes one of the arrow keys: left, right, up, or down.

arrowKey left
arrowKey down

The arrowKey command takes you to another card. The effects of the arrowKey
command are shown in Table 7-1.

Table 7-1
Effects of the arrowkKey command

Parameter vaiue Eftect

left Go to previous card in current stack

right Go to next card in current stack
up Go forward through recent cards
down Go back through recent cards

90 Chapter 7: Commands

Script

Notes

The arrowKey message, which invokes the arrowKey command if it reaches
HyperCard, is normally generated by pressing any of the arrow keys on the keyboard.
(Which arrow key you press determines the message’s parameter value.) You can also
send arrowKey from the Message box or execute it as a line in a script.

The following example handler makes function keys 9, 10, 11, and 12 send the
arrowKey message with parameters of left, right, up, and down,
respectively:

on functionKey whichKey -- map function keys to arrow keys
if whichKey is 9 then arrowKey left
else if whichKey is 10 then arrowKey right
else if whichKey is 11 then arrowKey up
else if whichKey is 12 then arrowKey down
end functionKey

The textArrows property, available only in HyperCard versions 1.1 and later,
alters the effect of pressing the arrow keys (see “TextArrows” in Chapter 9), but it does
not affect the arrowKey command.

See also the arrowKey message in Chapter 6.

ArrowKey 1

e —————————————————————eee ettt S e e
e e
————— e e ——,———————— =

Syntax ask question [with defaultAnswer)

ask password question [with defaultAnswer)

Question and defaultAnswer are expressions that yield text strings.
Examples ask "Who needs this kind of grief?" with "Not me."

ask field 1 with line 1 of field 2
ask password "Please enter your password:"

‘Descripﬂon The ask command displays a dialog box containing a question with a text window

Script

into which the user can type an answer. The optional defauitAnswer string specifies
an answer which appears inititally in the window, highlighted so it can be easily
replaced. The dialog box appears with OK and Cancel buttons.

The following example handler produces the dialog box in Figure 7-2:

on phone .
ask "Dial what number:™ with "555-1212"
if It is not empty then dial It

end phone

Figure 7-2
Ask command dialog box

Chapter 7: Commands

Notes

Syntax

Examples

Description

Script

The answer goes into the local variable It, either when the OK button is clicked or
when Return or Enter is pressed. If the Cancel button is clicked, the dialog box goes
away, but the answer is not placed into It.

The ask password form causes the answer to be encrypted as a number (which is
placed into the local variable It). The encrypted answer can be stored in a field to
be compared to a later answer to ask password if, for example, you want the user
to be able to protect data he or she enters into the stack. Password protection built
into a stack in this manner is separate from that set up by the Protect Stack menu
command.

Neither the question nor the default answer can have more than one line; if you use a
container that has more than one line in it, only the first line appears.

Unless you're using container names, put the question and the default answer inside
quotation marks if they contain any spaces (or if, as in the example, they are
telephone numbers containing 2 hyphen—to prevent HyperCard from doing
subtraction).

See also the answer command, earlier in this chapter.

Beep

beep count

Count is an expression that yields an integer.

beep 5
beep line 3 of field 1

The beep command causes the Macintosh speaker to make a beep sound count
times. If no count s given, the speaker beeps once.

The following example handler uses the beep command to alert the user that an
answer dialog box, to which the user must reply, is being displayed:

on openStack
beep 2
answer "Do you need instructions?" with "Yes" or "No"
if It is "Yes™ then go to stack "Instructions”

end openStack

Beep 93

Choose

Syntax choose toolName tool
ToolName is the name of any one of the tools from the HyperCard Tools palette
(shown in Figure 7-2).
Examples choose browse tool
choose eraser tool
Description The choose command changes the current tool to toolVame as though you had
selected it from the Tools palette. Valid tool names are
browse oval
brush pencil
bucket poly(gon]
button rect (angle]
curve regular] poly(gon]
eraser round rect [angle]
field select
lasso spray [can]
line text
94 Chapter 7: Commands

Script

Notes

Syntax

Examples

The following example shows a typical use of the choose command in a handler:

on drawBox
-reset paint
choose rectangle tool
set lineSize to 2
drag from 50,50 to 200,200
choose browse tool
end drawBox

You must have HyperCard'’s user level set to Painting, Authoring, or Scripting to use
the choose command, but the Tools palette need not be visible. Setting user levels
is described in the HyperCard User’s Guide and in the userLevel global property
description in Chapter 9.

Click

click at location [with keyl, key2l, key311]

Location is an expression yielding a point: two integers separated by a comma,
representing horizontal and vertical pixel offsets (respectively) from the top-left
corner of the card window. Key, key2, and key3 are one or more of the following key

names, separated by commas: shiftKey, optionKey, or commandKey (or
crdKey).

click at 100,100
click at the loc of button "Press me"™ with optionKey

Click 95

hS /"

Description The click command causes the same actions as though you had clicked with the
pointer at the specified location on the screen: the system messages mouseDown
and mouseUp are sent to the objects under the pointer (but the visible pointer is not
moved from its current location).

Using the with key form produces the same result as dxckmg the mouse button
while holding down the specified key (or keys).

If location is within an unlocked field, the insertion point is set: if there is text at or
past location, the insertion point is set at location; if there is text on the same line as
location but location is beyond the end of text, the insertion point is set at the end of
text on that line; if there is no text at location, the insertion point is set at the start of
the line. .

You can select a word by double-clicking it (that is, by executing the click
command twice in succession at the location of the word). You can select any string of
text by clicking at the beginning then dlicking with shiftKey atthe end of the
string.

Script The following example handler selects and displays a word from a locked field when
you click on the word (mouseUp is not sent to uniocked fields when you dlick them):
on mouseUp

set lockText of me to false
click at the clickLoc
click at the clickLoc
get the selection RN
put It into the Message box
set lockText of me to true
end mouseUp

Notes The pixel offset values of location are not restricted to the size of the screen, but are
misinterpreted if greater than 32767.

See also the drag command, later in this chapter.

96 Chapter 7. Commands

Syntax

Examples

Description

Script

Notes

Close file

close file fileName
FileName is the expression of a text string that is a valid filename.

close file myData
close file "myDisk:myFolder:myFile"

The close command closes a disk file previously opened with the open file
command to import or export ASCII text. The expression fileName must yield a valid
Macintosh filename, including pathname if required.

The following example handler reads any size text file into a global variable named
temp:

on importText
global temp
put "MyFilename" into filename
open file filename
repeat
read from file filename for 16384
if it is empty then exit rep;at
put it after temp
end repeat
close file filename
end importText

If the specified file is not open, you get an error message. Use the close file
command to close files explicitly after you use them. HyperCard automatically closes
all open files when an exit to HyperCard statement is executed, when you press
Command-period, or when you quit HyperCard.

You must provide the full pathname of the file if it’s not at the same directory level as
HyperCard. (See “Stack Descriptors” in Chapter 3 for an explanation of pathnames.)

See also the open file, read, and write commands, later in this chapter.

Close flle 97

Close printing
Syntax close printing
Description The close printing command ends a print job previously begun with the open
printing command.
Script The following example handler executes a printing job, printing a specified number
of cards, beginning on a specified card:
on printRange low,high
push card
open printing
go to card low
print (high-low) + 1 cards
close printing
pop card
end printRange
Notes Also see the open printing command, later in this chapter.
Convert
Syntax convert container to format [and format]
Container is a container name and format is a format specification.
Examples convert timeVariable to seconds
convert line 1 of second card field to long date and short time
98 Chapter 7: Commands

Description The convert command converts a date or time in the specified container to the
format specified. The optional second format specification is used when a date and
time are both included. Valid format specifications and their meanings are

seconds Seconds since midnight, January 1, 1904.

dateItems A comma-separated list of numbers representing (in order):
year, month, day, hour, minute, second, and day of week.

long date The date in text form: Tuesday, June 30, 1987.

short date The date in slash-separated numeric form: 6/30/87.

abbreviated date The date in text form with abbreviated day of week: Tue,
June 30, 1987.

long time The time in colon-separated form including seconds:
11:15:15 AM.

short time The time in colon-separated form without seconds:
11:15 aM.

abbreviated time same form asshort: 11:15 AM.

Script The following example handler counts the seconds elapsed while 2 command in the
Message box executes: '

(on mouseUp
put the long time into startTime

convert startTime to seconds

if msg is not empty then do msg

put the long time into endTime

convert endTime to seconds

answer "That took"™ && endTime - startTime && "seconds.™
end mouseUp

Notes The modifier abbreviated can be shortened to abbrev or abbr.

Convert 99

Delete
Syntax delete chunk [of container)
Chunk is a chunk expression referring to some text in a specified field and container
specifies a container.
Examples delete line 1 of field 1 .
delete char 1 to 5 of line 4 of field "Charlie" of second card
Description The delete command removes specified text from the designated container in the
current stack.
Script The following example handler finds and deletes a name from a list with one name
per line:
on zapaName
put "Spragens®™ & return & "Kamins™ & return & "Bond"™ into list
ask "Delete which name from the list?" with empty -- enter a name
repeat with count = the number of lines in list down to 1
if it is in line count of list then delete line count of list
end repeat
end zapaName
Notes Using the delete command is not the same as using put empty into with the
same chunk of text spedified. For example, if you delete a line in a field with a
statement like
delete line 4 of field 7
you delete the return character as well as the text; what was previously the fifth line
becomes the fourth. The following statement leaves the return character in line 4:
put empty into line 4 of field 7
Even'if you delete all of the text in a field, the field remains defined on the card or
background, unlike selecting the field and choosing Cut Field or Clear Field from the
When you delete text in a field on a card other than the current one, the current card
does not change.
Chapter 3 describes how to designate a card. Chunk expressions are described in
Chapter 4. See also the put command, later in this chapter.
100 Chapter 7: Commands

Syntax

Examples

Description

Dial

dial expression [with modem [modemCommands]]

Expression yields an arithmetic value and modemCommands are commands for your
modem.

dial charlie -- if charlie is a variable containing a number
dial "415-555-1212"

dial "407-996-1010" with modem "ATS0=0S7=1DT"

dial "407-973-6000" with modem

The dial command, without the with modem option, generates the touch-tone
sounds for the digits in expression through the Macintosh speaker. Holding the
telephone handset up to the speaker works on some phones; for others you need a
device that feeds the Macintosh audio output to the telephone.

If you use the with modem option, the dial command sets up telephone calls
using the Apple Modem 300/1200, the Apple Personal Modem, or any Hayes-
compatible modem attached to the Macintosh serial port. The modemCommands
parameters are those described in the manual for your modem. Their default value is
"ATS0=0DT".

If expression yields a number including a hyphen (as in 555-1212), enclose it within
quotation marks to prevent HyperCard from doing subtraction with the hyphen
before passing the number to the dial command (which ignores characters other
than numbers). Similarly, it's a good idea to enclose the modemCommands within
quotation marks.

Dial 101

Syntax

Examples

Description

Script

Notes

Divide

divide destination by expression .
Destination is a container and expression yields an arithmetic value.

divide field "total"™ by 3

. divide farenheit by celsius -- if farenheit.and celsius are variables

The divide command divides the value of destination by the value of expression
and puts the result into destination.

The following example handler figures the percentage represented by a fraction of two
numbers specified as parameters:

on percent varl,var2

divide varl by var2

put trunc(varl * 100) & "s"
end percent

The value previously in the destination must be a number; it is replaced with the new
value.

Division by 0 puts the result INF into destination. Division is carried out to a
precision of up to 19 decimal places.

See also the numberFormat global property in Chapter 9, and the discussion of
numbers in Chapter 4.

102 Chapter 7: Commands

Syntax

Examples

Description

Script

Notes

DoMenu

doMenu menuliem

Menultem is an expression that yields a menu command.

doMenu "open stack..."
doMenu thisCommand -- thisCommand is a variable containing a command
doMenu calculator -- desk accessory from the Apple menu

The doMenu command performs the specified menu command specified by
expression as though you had chosen the item directly from the appropriate
HyperCard menu.

If you choose the Finder menu item while running HyperCard under MultiFinder, you
could leave a stack that’s on a file server open and inaccessible to other users. The
following example handler closes the current stack and goes to the Home stack:

on doMenu menuChoice
if menuChoice is "Finder" then go to "Home"
pass doMenu

end doMenu

Both the specified command and the menu in which it resides must be available at the
current user level (as described in the FyperCard User’s Guide). If there are periods
following the menu command, you must include them in menultem (you can't use
the ellipsis character in their place).

You don’t have to specify which menu the command comes from. But be aware that
some menu commands change with conditions (for example, Paste Card can change
to Paste Button, depending on the contents of the Clipboard).

@ Don’t lock yourself out: If you write a handler to intercept doMenu, be sure to
pass the message after examining the new menu item. Otherwise, you may find
yourself apparently unable to use any menu command, even to fix the doMenu
handler or to quit HyperCard. (In that case, execute the command edit
script, for the object containing the handler, from the Message box. If the
Message box is hidden and blind typing is false, go to the last card of the Home
stack and turn blind typing on.)

DoMenu 103

Drag
Syntax drag from start to finish [with keyl, key2[,key3111
Start and finish are expressions, each of which yields a point: two integers separated
by a comma, representing horizontal and vertical pixel offsets (respectively) from the
top left of the Macintosh screen. Key, key2, and key3 are one or more of the
following key names, separated by commas: shiftKey, optionKey, or
commandKey (or cmdKey). .
Examples drag from 100,100 to 200,200
drag from the loc of button 1 to the mouseloc with commandKey, shiftKey
Description The drag command performs the same action as though you had dragged
manually, except that in order to select text in a field using the drag command, you
must use with shiftKey.
Script The following example handler draws random-sized ovals filled with random patterns
on a new card:
on mouseUp
doMenu "New Card"” -- so we don’'t draw on the current card
choose oval tool
set filled to true
repeat until the mouseclick
set pattern to random(40)
drag from random(512),random(342) to random(512),random(342)
_end repeat
choose browse tool
doMenu "Delete Card"™ -- get rid of the card we just made
go previous card -- take us back to the card we started from
end mouseUp
Notes Usingthe with key form produces the same result as dragging while holding down
You can use drag with any tool selected, but it has no effect with some Paint tools.
The location of the actual pointer doesn’t change from where it was before the
command was issued.
See also the click command earlier in this chapter, and the dragSpeed
property (used with the set command) in Chapter9.
104 Chapter 7: Commands

\k %

Edit script

Syntax edit script of objfect
Obfect is a factor that yields a designator of an object: a stack, card, background,
field, or button.

Examples edit script of button 1

edit script of this stack

Description The edit script command opens the script of the specified object with the
HyperCard script editor as though you had clicked the Script button in the object’s
Info dialog box.

Script The following example handler enables you to edit the script of any button or field
merely by positioning the pointer over it and pressing the Option key:

on mouseWithin
if the optionKey is down then edit script of the target
end mouseWithin

Notes Ifthe edit script command is issued from a script, execution of the current
handler is suspended until the script editor dialog box is closed.

Refer to Chapter 1, “HyperTalk Basics,” for an explanation of how the script editor
works.

EnterKey
Syntax enterKey

Description The .enterKey command sends a statement typed into the Message box to the
current card or, if a field is open for text editing, enterKey closes the field.

Notes The enterKey message, which invokes the enterKey command if it reaches
HyperCard, is normally sent by pressing the Enter key on the keyboard. But you can
also execute it as a line in a script.

Closing a field with enterKey doesn't send the closeField system message.
See also the enterKey message in Chapter 6.

EnterKey 108

Syntax

Examples

Description

Script

Find

find expression [in field fleldDesignator]
find chars expression [in field fleldDesignator]
find word expression [in field fleldDesignator]

Expression yields a series of one or more text strings separated by spaces, and
fleldDestignator is a background field name, number, or ID number.

find "money"™ in field SofPlenty
find chars "Wild" in field 1
find word msg in second field

The find command searches through all the card and background fields (visible or
not) in the stack for the text strings yielded by expression. The search begins on the
current card and continues through the last card, the first card, and on to the card
previous to the current card. Choosing Find from the Edit menu (or pressing
Command-F) puts the £ind command in the Message box with the text insertion
point after it between double quotation marks.

& Use at least three characters: The £ind command executes faster if you use as
many three-character combinations as possible in the search string. That is, three
characters are fast, six are faster than three, nine are faster than six, and so on.

The following example handler queries the user for search criteria, then executes the
find command:

on doMenu var
global findString
if var is "Find...™ then
ask "Find what string:" with findString
if it is not empty then
put it into findString
answer "Match" && findstring && "how:"™ with "Chars"™ or "Word" or "All"
-if it is "Chars™ then find chars findString
else if it is "Word" then find word findString
else find findstring
end if
else pass doMenu
end doMenu

106 Chapter 7: Commands

Notes Ifyou include in field fleldDesignator, you restrict the search to the specified
background field. You can't restrict the search to a card field.

The find form finds the match only at the beginnings of words. The find chars
form finds the match anywhere within words. The find word form matches only
complete words.

If the match is on a different card, it becomes the current card; otherwise the current
card doesn’t change and HyperCard sounds a beep. If it finds a match, HyperCard
puts a box around the word containing the found string, if the field containing the
string is visible. If a2 match is found in a hidden field, the field’s card becomes the
current card, but the field remains hidden.

Asthe find command evaluates the expression passed to it, it places the resulting
values internally between quotation marks as a single parameter string. The following
examples show text expressions on the left and the resulting parameter string on the
right:

find "my" && "word" find "my word"

find "my" & "word" find "myword"

find a &§ b & ¢ find "xyz" -- if a = "x", b = "y", ¢c = "z"
find a && b && c find "x y 2"

If more than one search string (separated from each other by spaces) is included in
the parameter string, all of them must be on a single card or its background for a
successful search. However, they can be in any order on the card and only the first is
shown with 2 box around it.

Press Command-F to display the parameter string from the most recently executed
find command in the Message box.

An unsuccessful search sets HyperTalk's the result functionto not found.
After a successful search the result is empty. (See “Result” in Chapter 8.)

Find 107

FunctionKey

Syntax functionKey keyNumber
KeyNumberis an expression that yields an integer between 1 and 15.

Examples functionKey 1
functionKey 15

Description The functionKey command has built-in Undo, Cut, Copy, and Paste functions
for keyNumber values 1 through 4, respectively. Any other value of keyNumber has
no built-in effect.

Script The following example handler uses the functionKey command to implement the
message undo as a command:
on undo

functionKey 1 -- preprogrammed as undo in HyperCard

end undo :

Notes The funcf.ionxey message, which invokes the functionKey command if it
reaches HyperCard, is normally generated by pressing one of the function keys on the
Apple Extended Keyboard. But you can also send it from the Message box or execute
it as a line in a script.
You can program function keys 5 through 15, or reprogram keys 1 through 4, by
writing an on functionKey handler in the script of any object in the hierarchy
between the current card and HyperCard.
See also the functionKey system message in Chapter 6.

108 Chapter 7: Commands

Syntax

Examples

Description

Script

Get

get expression
Expression yields any value.

get the long name of field 1

get the location of button "newButton"
get 2+3 -- puts 5 into It

get the date

The get command puts the value of any expression into the local variable It.That
is, get expression is the same as put expressiom into . It.

The following example handler saves the current user level, sets the user level to 5,
then restores the saved level:

on doMything
get userlevel -- get the current userlevel
put It into savedLevel -- save userlevel before changing it
set userlevel to 5 —-- set userlevel for my button or script
-- (put my script here)

set userlevel to savedLevel -- restore userlevel when leaving
end doMything

Syntax

Examples

Description

Script

Go

go [to] [stack] stackName
go ([to] bkgndDescriptor [of [stack] stackName]
go (tol] cardDescriptor [of bkgndDescriptor] [of [stack] stackName]

CardDescriptor is the word card followed by the name, number, ID number, or
ordinal of a card (as described in Chapter 3), or it's.the name of a container holding
one of those things. StackName is the name of a stack or a container holding a stack
name. BkgndDescriptor is the word background (or bkgnd) followed by its
descriptor, or it's a container holding a background descriptor.

go card 23

go to art ideas

go field 1 -~ if bkgnd field 1 contains a stack name

go home

go mid card of clip art -- middle card of stack "clip art"
go next

go to first card of second background of "home"

go "hd:bigFolder:innerFolder:myStack"™ -- full pathname

The go command takes you to the specified card or stack. If you name a stack without
spedfying a card, you go to the first card in the stack. If you don’'t name a stack, you go
to the specified card in the current stack. You can specify a visual effect to be used on
opening the card by issuing the visual effect command before you use the go
command.

The following example handler queries the user for a destination, then executes a2 go
command with a visual effect:

on mouseUp
ask "wWhere to?" with "This card"
if It is empty then put "this card"™ into It
put It into goWhere
visual effect dis;oive to black
go to goWhere
end mouseUp

110 Chapter 7: Commands

N

R

Syntax

Description

Notes

Syntax

Examples

Help
help
The help command takes you to the first card of the stack named Help.

See also the help system message in Chapter 6.

Hide

hide menuBar
hide window
hide part

Window can be one of the following:

card window

tool window

pattern window

[the] message [window]
[the] message [box]

Part is the descriptor of a button or field. The part descriptor can be:

[card] button descriptor
background button descriptor
[background] field descriptor
card field descriptor

Descriptor is the name, number, or ID of the button or field, or a factor yielding one
of those.

hide message
hide bkgnd button "goHome"™
hide field id 1

Hide m

Description The hide command removes the specified window or object from view. Its effect is
" thesame as setting the visible property of the specified window or object to
false, or dicking a window’s close box.

Script The following example handler hides a field or button when the user puts the pointer
over the button or field: '

on mouseWithin

hide the target
end mouseWithin

Notes Message can be abbreviated msg. Background can be abbreviated bkgnd.
Button can be abbreviated btn.

The hide command does not affect the location propery of an object or
window.

Hidden fields aren't in the tab order. (They are skipped when you move the text
insertion cursor from one visible field to the next by pressing the Tab key.) The find
command does search through them, however, and you can put values into them and
put their values elsewhere.

The card window parameter works with the hide command only in HyperCard
versions 1.1 and later.

See also the show command, later in this chapter.

112 Chapter 7. Commands

Syntax

Examples

Description

Script

Notes

Multiply

multiply destination by expression
Destination is a container and expression yields a number.

multiply Subtotal by Tax
multiply field 1 by field 3 :
multiply It by 2 -- puts result into It, replacing old value

The multiply command multiplies the value in destination by the
value of expression and puts the result in destination. ’

The following example handler adds 6 percent to the value of items in a list:

on taxMe
put "12.45,15.00,150.00,76.95,10.00,14.95" into taxables
repeat with count = 1 to the number of items in taxables
multiply item count of taxables by 1.06

endrepeat -- the new values are stored in taxables
end taxMe

The value previously in the destination must be a number; it is replaced
with the new value.

The result is calculated to a precision of up to 19 decimal places and, if
put into a field or the Message box, is displayed according to the
numberFormat global property:

See also the numberFormat global property in Chapter 9.

Multiply

113

Syntax

Examples

Description

Script

Notes

Open

open [document with] application

Application is the name of any application and document is the name of
any document on your Macintosh. Either one can be an expression that
yields such a name.

open "MacWrite"

open "Letter" with "MacWrite”
open Field 3

open FavoriteApp

The open command launches the named application. A specific document may be
opened with its own creator or a compatible application by using with application.

The following example handler queries the user for a document and application
before executing the open command:

on mouseUp
ask "Open what document?" with empty
if it is not empty then
put it into doc
ask "Use what application?" with empty
if it is not empty then open doc with it
end if
end mouseUp

If the document or application you specify isn't at the top level of the file hierarchy
(the “disk” leveD), then the path to it must be specified on the appropriate search path
card of the Home stack (use the card titled “Look for documents in” for documents
and the card titled “Look for applications in” for applications). Alternatively, you can
specify the full pathname with the open command:

open "My Hard Disk:Applications:Words:MacWrite"

If HyperCard can't find the requested document or application, it displays the
directory dialog box to the user.

When you quit the application, you go to the card you were on in HyperCard when
you executed the open command. However, any global variables you had
previously declared are now gone, and any portions of handlers that remained
unfinished when you executed the open command do not finish.

114 . Chapter 7: Commands

\k»/,/

Syntax

Examples

Description

Script

Notes

Open file

open file fileName

FileName is the name of any file on your Macintosh, or an expression that yields such
a name.

open file "textOnly"
open file field 1

The open file command opens the data fork of the named file. Usually, the file is
an ASCII text file opened in preparation for importing or exporting text. If the
specified file doesn’t exist, HyperCard creates it

The following example handler determines if a given file exists by trying to read
from it:

on checkFile
put "MyFilename" into filename
open file filename
read from file filename for 16384)
if it is empty then answer "File does not exist™ with "OK"
close file filename
end checkFile

If the specified file is already open, you get an error message. Use the close file
command to close files explicitly after you use them. HyperCard automatically closes
all open files when an exit to HyperCard statement is executed, when you press
Command-period, or when you quit HyperCard.

You must provide the full pathname of the file if it's not at the same directory level as
HyperCard. (See “Stack Descriptors” in Chapter 3 for an explanation of pathnames.)

See also read, write, and close file, in this chapter.

Open file 115

Syntax

Description

Script

Notes

Open printing
open printing' [ivith dialog]

The open printing command starts a print job to be ended laterby a close
printing command.

The settings specified in the Print Stack dialog box are used unless with dialog is
specified, in which case the dialog box is displayed and new settings can be chosen.

The following example handler prints a selection of cards:

on printSelection
put "1,3,8,15,21" into myCards
open printing with dialog
repeat with count = 1 to the number of items in myCards
go card item count of myCards
print this card
end repeat
close printing
end printSelection

Printing cards with open printing is similar to printing with the Print Stack
command in the File menu, except that Print Stack prints all cards in the stack, while
open printing prints only the ones you specify with the print card
command, described later in this chapter.

You must use the close printing command to end a print job begun with open
printing. Don't use the print [document with] application command
while a print job is active.

See also close printing and print card, in this chapter.

116 Chapter 7: Commands

Syntax

Examples

Description

Script

Notes

Play

play "voice™ [tempo] ["notes"]
play stop

Voice is the name of a digitized sound (boing and harpsichord are included
with HyperCard), tempo is the speed at which the sound plays, and notes is a list of
one or more notes representing the pitch at which the sound plays and the duration of
the notes. The quotation marks around voice and notes are required.

play "boing™ tempo 200 "c4e c dq ¢ f eh™ -- Happy Birthday
play "harpsichord" "ch d e £ g a b c5w"

The play command makes the Macintosh play notes through its speaker (or
through the audio jack if it's plugged in). You can write a song by specifying a series of
notes after the play command. The play stop form stops the current sound
immediately; otherwise it plays until it's done and stops by itself. HyperCard
continues to execute handlers and perform other actions while a sound plays.

The following example handler goes to each card in a stack and synchronizes playing
the specified notes with each card change:

on tour
repeat the number of cards
play "harpsichord™ tempo 200 "ce4 fe ae c5q ae4 cq5"
go next card
wait until the sound is "done"
end repeat
end tour

The tempo is a number specifying the speed at which the group of notes is played (100
is a2 medium tempo; higher numbers are faster). Voice and tempo are specified once
for each play command.

The notes are specified in'the following form:
noteName accidental octave duration

Play nz

Syntax

Example

Description

NoteName is the name of the note played (A through G); accidental is # or b
specifying sharp or flat, respectively; octave is a number specifying the pitch of the
scale (4 is the “middle C” scale); and duration specifies the relative time value of the
note played:

whole note
half note
quarter note
eighth note
16th note
32nd note
64th note

You can use a period (.) or numeral 3 following duration to specify a dotted or triplet
note, respectively.

Octave and duration may be changed for each note played,; if they are not changed,
subsequent notes are in the same octave and have the same duration as the previous
note.

Xt o0o,Q D E

HyperCard can also play digitized music or voice samples which are stored on disk as
format2 'snd ' resources—the resource name is the voice—in the current stack
file, the Home stack, the HyperCard application, or the System file. Instde
Macintosh, Volume V, describes format 2 'snd ' resources.

See also the sound function in Chapter 8.

Pop card

pop card [preposition destination)

Preposition is into, before, or after, and destination is a container or any
chunk of a container.

pop card into field 3 of card Wherelbeen

The pop card commﬁnd retrieves the identification (full ID and stack pathname)
of a card previously saved with the push card command. If you don't provide a
destination for the identification, you go directly to the card whose address is

popped.

118 Chapter 7. Commands

Script The following example handler pushes whatever card you're on, goes to another
stack, gets the value of a field property, then returns to the original card:

on getTheFont
global myStack,theFont

push card

go myStack

put textFont of field 1 into theFont

pop card -- goes to the card formerly pushed

end getTheFont

Notes If you don’t specify a destination, after the card has been popped, its identification is
removed from the memory stack—it can’t be popped again. If a destination is given,
however, the card’s identification is put into the destination container, but you don't
80 anywhere.

See also the push card command, in this chapter.

Print card

Syntax print card
print expression cards
print cardDescriptor

Expression yields an integer or the word all, and cardDescriptoris a card
- descriptor of a card in the current stack.

Examples print card
print last card
print card id 3011
print all cards
print howMany cards -- howMany contains a number or "all"

Description The print card command makes HyperCard print the current card, the same as
the Print Card command in the File menu (Command-P). The print expression
cards form prints the number of cards specified by expression, or all the cards in
the stack, beginning with the current card. The print cardDescriptor form makes
HyperCard go to the specified card, print it, and return to the current card.

Print card 119

Script

Notes

Syntax

Examples

Description

The following example handler queries the user for a number of cards to print
whenever Print Card is chosen from the File menu:

on doMenu var
if var is "print card" then
ask "Print how many cards?"™ with one
open printing
print It cards
close printing

else pass doMenu -- make sure other menu qhoices continue to work
end doMenu

You don't need to use the open printing command before using the print
card command. If nothing is printing, the print card command prints the
specified card or cards immediately; if an open printing command is in effect,
no cards are printed until a page is full (depending on how many cards per page are
specified in the printing dialog box) or the close printing command is given.

Chapter 3, “Naming Objects,” defines card descriptors.

Print

print document with application

Document is an expression that yieldé the name of any document on your Macintosh,
and application is an expression that yields the name of the application to which it
belongs (or with which it is compatible).

print "memo"™ with "MacWrite™
print field 1 with field "Program"
print "hd:Mac docs:letter™ with "hd:utilities:MacWrite"

The. print command suspends HyperCard, launches the named application,
opens the named document, prints the document, then resumes running HyperCard.
The specified application must support printing.

120 Chapter 7: Commands

Script

Notes

Syntax

Examples

Description

Script

The following example handler queries the user for the name of a document to print
and an application with which to print it:

on mouseUp
ask "Print what document?" with empty
if It is not empty then
put It into doc
ask "Use what application?"™ with empty
if It is not empty then print doc with It
end if
end mouseUp

If the document or application you specify isn't at the top level of the file hierarchy
(the “disk” leveD), then the path to it must be specified on the-appropriate search path
card of the Home stack (use the card titled “Look for documents in” for documents
and the card titled “Look for applications in” for applications). Alternatively, you can
specify the full pathname with the print command.

Don’t use the print command while the open printing command is active.

Push

push cardDescriptor
CardDescriptoris a factor that yields the descriptor of any card in the current stack.

push recent card

push first card
push card

The push command saves the identification of the specified card in a LIFO (last-in,
first-out) memory stack (an area of memory, not a HyperCard stack).

The following example handler saves the current card, goes to a random card, then
returns to the original card:

on nonSense

push card -- save current card
go any card
pop card -- restore current card

end nonSense

Push card 121

Notes

Syntax

Examples

Description

Script

The card identification can be retrieved later with the pop card command (usually
so that you can go directly back to the pushed card). The card identification that’s
saved is the full card ID and stack path name.

Card descriptors are described in Chapter 3.
See also the pop card command, earlier in this chapter.

Put

put expression ([preposition destma:ton;

Expression yields a text string or number, prepositionis into, before, or after,
and destination is a container.

put "Hello™ into field 1

put "go " before field "WhereTo"

put empty into It

put It -- puts contents of It into Msg

put "Tom" into first word of field "Name"

put "." after first character of last word of field 3

put field 2 + field 3 into field 4 -- adds numbers in fields
put the date into varName

The put command causes HyperCard to evaluate expression and copy the result
into destination.

The following example handler initializes three global variables when the stack it’s in
is opened:

on openStack
global varl,var2,var3
put 0 into varl
put empty into var2
put empty into var3
end openStack

122 Chapter 7: Commands

Notes If you don't specify the destination, the value is copied into the Message box.
(HyperCard shows the Message box if it's hidden.) If you specify a destination that
HyperCard doesn’t recognize, it creates a new local variable of that name and puts the
value into the variable.

Using into with put replaces the contents of the destination, before places
the source value at the beginning of the previous contents, and after appends the
source value to the end of the previous contents.

If expression is a container holding an arithmetic expression, the expression is not
evaluated but is copied literally into the destination: Use the value function with
the container name to have HyperCard evaluate its contents.

You can delete the contents of a container by putting the constant empty or ""
into it (but this doesn’t delete the container). You can specify a chunk expression
before the destination to insert, replace, or delete a portion of the contents.

See also the delete command, earlier in this chapter.

Read

Syntax read from file fileName until character
read from file fileName for numberOfCharacters

FileName is an expression yielding the name of any file on your Macintosh,
character is an expression yielding a character, and numberQfCharacters is an
expression yielding an integer.

Examples read from file "import™ until tab
) read from file "File Names™ until return -- reads one line
read from file "someText™ for 16384 --maximum block size

Description The read command reads from the data fork of the specified file, previously
opened with the open file command, into the local variable It.Reading starts
at the beginning of a newly opened file and continues from the last point read with
each read command. -

The until characterform causes reading to stop when the specified character has
been read; the for numberOfCharacters form causes reading to stop when the
specified number of characters (or bytes) have been read. Return characters at the
end of lines count, as do space and tab characters.

Read 123

Script

Notes

124

The following example handler opens a file, reads to the end of the file while placing
its contents into a global variable, and closes the file:

on mouseUp
global fileNémé, textHolder
open file fileName
repeat
read from file fileName for 16834
if It is empty then exit repeat
put It after textHolder
end repeat
close file fileName
end mouseUp

You can read only up to 16,384 characters at a time. If you try to read more characters
than that, all but the last 16,384 that you read are ignored. The read command puts
the characters into the local variable It, replacing its previous contents. So, you
must put each block of text that you read into another container (use after with the
put command to append each new block of text to the end of the previous contents).
Containers other than fields have no practical size limit (they’re limited by available
memory). If you try to put more than 32,000 characters into a field, the extra
characters are ignored.

& HyperCard removes tab characters from flelds: HyperCard reads tab characters
from a file into It, and the tab characters remain when you put the text into
another variable or a field (where they are displayed as spaces). If you alter any text
in the field, however, HyperCard removes the tab characters.

If you specify more than one character with the until characterform, HyperCard
stops reading when it matches the first character specified.

Usethe close file command to close files explicitly after you use them.
HyperCard automatically closes all open files when an exit to HyperCard
statement is executed, when you press Command-period, or when you quit
HyperCard. :

You must provide the full pathname of the file if it's not at the same directory level as
HyperCard. (See “Stack Descriptors” in Chapter 3 for an explanation of pathnames.)

See also the close file, open file,and write commands in this chapter.

Chapter 7: Commands

Syntax

Description

Notes

Syntax

Description

Notes

Reset paint

reset paint

The reset paint command reinstates the default values of all the painting
properties. The painting properties and their default values are

grid

"lineSize

filled
centered
multiple
multiSpace
pattern
brush
polySides
textAlign
textFont
textSize
textStyle
textHeight

false
1
false
false
false
1

12

8

4
left
geneva
12
plain
16

The painting properties are described in Chapter 9, “Properties.”

ReturnKey

returnKey

The returnKey command sends a statement typed into the Message box to the
current card. (If a field is open for text editing, pressing the Return key enters a return

character.)

The returnKey message, which invokes the returnKey command if it reaches
HyperCard, is normally generated by pressing the Return key on the keyboard. But
you can also send it from the Message box or execute it as a line in a script.

See also the returnKey system message in Chapter 6.

ReturnKey 125

Set

Syntax set [(thel property [of obfect] to value
Property is a characteristic of a HyperCard object, obfect is an object descriptor or
window name, and value is a valid setting for the particular property.
Examples set name of field 1 to "Soccer"
set location of button "newButton®™ to the mouseloc
set the visible of field 1 to "false"™ -- hide the field
set userlevel to 5 -- scripting
Description The set command changes the state of a specified global, painting, window, or
object property. If the object to which the property belongs is not specified, the
property must be a global or painting property.
Script The following example handler automatically draws a circle on the current card:
on mouseUp
choose oval tool
set linesize to 2
set centered to true
set dragspeed to 75 -=- this changes the speed of expansion
drag from 255,170 to 385,300
choose browse tool
end mouseUp
Notes The properties of objects depend on the type of object. Generally, they are the
characteristics shown in the Info dialog boxes under the Objects menu.
All of the HyperCard global, painting, window, and object properties are described
in detail in Chapter 9, “Properties.” See also the show command, later in this
chapter.
126 Chapter 7: Commands

Syntax

Examples

Description

Script

Notes

Show cards

show number cards

Number is an expression yielding an integer or the word all.

show all cards
show ten cards
show 26 cards
show howMany cards -- howMany is a variable containing a number

The show cards command displays the specified number of cards in the current
stack in turn, beginning with the next card.

The following example handler “pre-warms* the stack when you open it, so that going
to cards in the stack subsequently will be faster, by caching the cards in RAM:

on openStack
set lockScreen to true
show all cards
set lockScreen to false
end openStack

The show all cards form shows all cards in the stack. HyperCard doesn’t send
the openCard system message when a card is displayed by show cards, nordo
visual effects occur. After the cards are shown, the last one shown (where you began in
the case of show all cards) is the current card.

Show cards 127

Syntax

Examples

Description

Show

show menuBar
show window [at b, v]
show part [at b, v]

Window can be one of the following:

card window

tool window

pattern window

{the] message [window]
[the] message ([box]

Part is the descriptor of a button or field. The part descriptor can be

[card] button descriptor
background button descriptor
[background] field descriptor
card field descriptor

Descriptor is an expression yielding the name, number, or ID of the button or field;
b and v are expressions yielding integers representing horizontal and vertical pixel
offsets, respectively, on the screen.

show msg at 100,200
show tool window
show field "Names"™ at 1,1

The show command displays a specified window or object at a specified location on
the screen. If positioning offsets aren't given, the window or object is displayed at its
previous location.

128 Chapter 7. Commands

Script

Notes

The following example handler displays the palettes and the Message box at their
default locations when HyperCard first starts running:

on startUp
show tool window
show pattern window
show msg

end startUp

If they have not been previously torn off the menu bar, the Tools palette appears at
200,70 and the Patterns palette at 300,70. The Message box appears at 22,300. The
menu bar always appears at the top of the screen. In effect, the show command sets
the visible and, optionally, location properties of the window or object.
(See Chapter 9 for a description of the visible and location properties.)

On the original Macintosh screen, visible horizontal offsets range from 0 to 511, and
visible vertical offsets range from 0 to 341.

Message can be abbreviated msg. Background can be abbreviated bkgnd.
Button can be abbreviated btn.

Card window refers to the position of the entire HyperCard display on the screen;
the b and v offsets specify the distance from the top-left comer of the screen to the
top-left corner of the card window, disregarding the title bar at the top of the window.
For the other windows, b and v specify the distance from the top-left corner of the
card window to the top-left comer of the other window, disregarding the drag bar at
the top of the window.

For buttons and fields, b and v specify the distance from the top-left corner of the
card window to the center of the button or field. The menu bar always shows at the top
of the screen. The tool window is the Tools palette, pattern is the Patterns
palette, and message or msg is the Message box.

See also the hide and set commands, earlier in this chapter.

Show 129

Sort

Syntax sort [direction] [style] by expression
Directionis ascending or descending, styleis text, numeric, dateTime,
or international, and expression is any expression.

Examples sort numeric by second word of field 1
sort descending text by last word of field "Names"
sort by field 2

Description The sort command orders all the cards in a stack according to the value of
expression, which is evaluated individually for each card in the stack.
The default directionis ascending, and the default styleis text.

Script The following example handler shuffles the cards in a stack randomly when the user
goes to it from another stack:
on openStack

sort numeric by random(the number of cards)

end openStack

Notes The dateTime style sorts the stack using one of the forms of date or time (shown
with the convert command, in this chapter), with earliest placed first in the
ascending direction. The international style assures correct sorting of non-
English text containing diacritical marks and special characters, depending on the
international resources in your System file, your version of HyperCard, the Home
stack, and the current stack. The dateTime style also works correctly with non-
English forms of date and time modified by international resources in the System file.

130 Chapter 7: Commands

Syntax

Examples
Description

Notes

Synidx

Description

Examples

Notes

Subtract

subtract expression from destination
Expression yields a number, and destination is a container.

subtract 2 from It
subtract field 1 from field 2

The subtract command subtracts the value of expression from the value of
destination, leaving the result in the destination.

The value previously in the destination must be a number; it is replaced with the new
value.

TabKey
tabKey

The tabKey command opens the first unlocked field on the current background or
card (placing the text insertion point in the field) and selecting its entire contents. If a
field is already open, tabKey closes it and opens the next field, selecting its
contents.

The following example handler sets the insertion point in the first field, so that the
user can type something, when the card is opened:

on openCard
tgbKey
end openCard

The tabKey message, which invokes the tabKey command if it reaches
HyperCard, is normally generated by pressing the Tab key on the keyboard. But you
can also send it from the Message box or execute it as a line in a script.

The tabKey command opens fields in the following order: from the lowest number
to the highest, through the background fields first, then through the card fields.

See also the tabKey message in Chapter 6.

TabKey 131

Syntax

Examples

Description

Script

Notes

Type

type expression [with key[, key2(, key3]]]

Expression yields a text string, and key, key2, and key3 are one or more of the
following key names, separated by commas: shiftKey, optionKey, or
commandKey (or cmdKey).

type "Now is the time for all good persons."™
type "p" with commandKey -- print card

The type command enters the value of expression at the text insertion point, as
though you had typed it manually.

The following example handler chooses the Browse tool, clicks at the center of the
specified field, and types a literal string:

on autoType
choose browse tool
click at the loc of field "whereToType"

type "Automatic writing apppears before your eyes..."
end autoType

The text insertion point is placed by clicking in an unlocked field with the Browse tool
or by sending the tabKey message. Manipulating the text insertion point is
described in the HyperCard User's Guide. Paint text can be typed at the text insertion
point on a card or background with the Paint Text tool selected.

132 Chapter 7: Commands

W ¢
S

Syntax

Examples

Visual

visual [effect] effectName (speed] [to image]

EffectName is one of the following:

barn door close scroll up
barn door open venetian blinds
checkerboard wipe down
dissolve wipe left
iris close wipe right
iris open wipe up
plain zoom close
scroll down zoom in
scroll left zoom open
scroll right zoom out
Speed is one of the following:

fast very fast
slow(ly] very slow(ly]
Image is one of the following:

black inverse

card white

gray

visual effect barn door open
visual dissolve slowly to white
visual checkerboard

Visual

133

Description

Script

Notes

The visual command specifies a visual transition for HyperCard to use the next
time it opens a card, as the current card is closed. The default plain visual effect
causes all of the current image to be replaced immediately by the image of the next
card. If you use the to image form, the visual effect occurs as a transition from the
current card to a completely white, gray, or black screen image, to the inverted image
of the current card, or to the image of the next card; to card is the default.

The following example handler stacks two visual effects, which occur in succession, so
that the transition appears as a fade to black, then to the next card:

on fadeOut
visual effect dissolve to black
visual effect dissolve to card
go next card

end fadeOut

Visual effeats don’t happen when you use the arrow keys or the show cards
command to change cards; they must be set up in a handler that also contains a go
command, and they occur when the go is executed. Ifa go command is not
executed, visual effects set up in the handler are canceled when the handler finishes
executing. You can stack up several visual effects that will occur one after the other
when you go to the next card.

On a Macintosh II you must use one-bit display mode (choose “2 colors” or *“2 grays”
on the monitor setup of the Control Panel) to see visual effects. S

134 Chapter 7: Commands

Syntax

Examples

Description

Script

Note

Wait

wait [for] time [seconds]
wait until condition
wait while condition

Time is an expression that yields an integer and condition is an expression that yields
true or false.

wait 60 seconds
wait until the mouse is down

The wait command causes HyperCard to pause before executing the rest of the
handler, either for a specific length of time, until a specified condition becomes true,
or while a specified condition remains true.

The following example handler allows time to view each card:

on slideshow
repeat the number of cards
visual effect dissolve slowly
go next card
wait 2 seconds
end repeat
end slideshow

If seconds is not specified for tfme, HyperCard uses ticks (Y second), which
can also be specified explicitly.

Walit 135

Syntax

Examples

Description

Script

Notes

Write

write source to file fileName

Source is an expression that yields text, and flleName is an expression that yields a
file name.

write field "address" to file "myDisk:myFileﬁ.
write "first line™ & return & "second line™ to file "two liner"

The write command causes HyperCard to copy the specified text into the
specified disk file.

The following example handler opens a file specified in a global variable, writes the
entire contents of the specified field to the file, the closes the file:

on writeFile

global filename

open file filename

write background field 1 to file filename

close file filename . ,
end writeFile S

The file must have been opened previously with the open file command and
should be closed, when copying is completed, with the close file command.

The first write command that you execute after opening the file replaces any
previous contents. Subsequent write commands append to the file’s contents.

You must provide the full pathname of the file if it’s not at the same directory level as
HyperCard. (See “Stack Descriptors” in Chapter 3 for an explanation of pathnames.)
If the file is locked or its disk is full, HyperCard displays an error dialog box and closes
the file. HyperCard automatically closes all open files when an exit to
HyperCard statement is executed, when you press Command-period, or when you
quit HyperCard.

See also the open file, close file,and read commands, in this chapter.

136 Chapter 7: Commands

Chapter 8

Functions

137

This chapter describes HyperTalk’s built-in functions.

A function is a2 named value that is calculated by HyperCard when a statement in
which it’s used executes. The value of a function changes according to conditions of
the system or according to values of parameters that you pass to the function when you
use it. When HyperCard reads a function name in a line of HyperTalk, it places the
function’s current value—its result—in that location before completing other actions.

Function calls

To make a function call, that is, to use it in a HyperTalk statement, you must either use
the word the before the function name or append parentheses after it. If a single
parameter is passed to a function, the parameter can be enclosed in the parentheses
or can follow the word of. (When of is used in this way to indicate the function call,
the word the preceding the function name is optional.) If more than one parameter
is passed to a function, all parameters must be enclosed in the parentheses and
separated from each other by commas. Some examples of function calls are

put the time into msg

put time() into background field "Time"

put the length of myVariable into card field "howLong"
put average(total_l,total_2,total_3) into Projection

You can define your own functions in HyperTalk using the function handler structure
described in Chapter 5.

® Defined functions ocverride built-in ones with same name: If you define your own
function having the same name as a built-in one, yours will override the built-in one
if the function call is made with the parentheses syntax (unless the function call is
made farther along the hierarchy than the handler’s script). Users can call
HyperCard’s built-in functions directly by using the words the or of, rather than
using the parentheses syntax; however, functions having more than one parameter
always require parentheses.

138 Chapter 8: Functions

Syntax description notation

The syntax descriptions use the following typographic conventions. Words or phrases
in typewriter type are Hypertalk language elements or are those that you type to
the computer literally, exactly as shown. Words in #alic type describe general
elements, not specific names—you must substitute the actual instances. Square
brackets ([1) enclose optional elements which may be included if you need them.
(Don't type the square brackets.)

It doesn’t matter whether you use uppercase or lowercase letters; names that are
formed from two words are shown in small letters with a capital in the middle
(1ikeThis) merely to make them more readable. The HyperTalk prepositions of
and in are interchangeable—the syntax descriptions use the one that sounds more
natural.

The terms factor and expression are defined in Chapter 4. Briefly, a factor canbe a
constant, literal, function, property, number, or container, and an expression can be
a factor or a complex expression built with factors and operators. Also, a factor can be
an expression within parentheses. The term ylelds indicates a specific kind of value,
such as a number or a text string, that must result from evaluation of a factor or
expression when a restriction applies (for example, the factor or expression used with
the abs function must yield 2 number). However, any HyperTalk value can be
treated as a text string.

Syntax description notation

139

Syntax

Example

Description

Syntax

Examples

Description

Notes

Abs

the abs of factor
abs (expression)

Factor and expression yield numbers.
put abs(a-b) into field "theOffset"”

The abs function returns the absolute value (makes the sign positive) of the number
passed to it.

Annuity

annuity (rate, periods)
Rate and periods are expressions that yield numbers

put myPayment*annuity(.015,12) into presentValue
put myPayment*annuity(.015,12) *compound(.015,12) into futurevValue

The annuity function is used to compute the present or future value of an ordinary
annuity. Rate is the interest rate per period, and periods is the number of periods
over which the value is calculated. The formula for annuity is

annuity (rate, periods) = (1-(l+rate) ~Periods) /yrate

The annuity function is more accurate than computing the expression above using
basic arithmetic operations and exponentiation, especially when rate is small.

See also the compound - function, later in this chapter.

140 Chapter 8: Functions

Syntax

Example

Description

Script

Atan

the atan of factor
atan (expression)

Factor and expression yield numbers.
put atan(1.0) into field ™arcTan" -- yields . 0.785398

The atan function returns the trigonometric arc tangent (inverse tangent) of the
number passed to it; that is, the angle whose tangent is equal to the given value. The
result is expressed in radians.

Radians can be converted to degrees by multiplying by 180 and dividing the result by
the value of the constant pi.

The following example handler converts a value in radians to degrees and puts the
result into the Message box:

on radiansToDegrees var
put round((atan(var)*180) /pi) into msg
end radiansToDegrees

Atan 141

Average
Syntax average (list)
List is a sequence of comma-separated expressions that yield numbers, or it is a single
container that contains such a sequence.
Example put average(l,2,3) into field "avg"
Description The average function returns the average of the numbers passed to it.
Script The following example handler displays the average of a list of numbers contained in
one line of a field:
on avgSupplyPrice
put "12.95,10.50,14,75,15.00,9.95" into line 3 of field "suppliers"”
answer "Average widget cost:"™ && average (line 3 of field "suppliers"™)
end avgSupplyPrice
CharToNum L
Syntax the charToNum of factor
charToNum (expression)
Factor and expression yield a character.
Example put the charToNum of "a" into It -- yields 97
Description The charToNum function returns an unsigned integer representing the ASCII
equivalent value of the character passed to it.
Notes If more than one character is passed, charToNum returns the ASCII value of the first
character. If source is a literal, it must appear within quotation marks.
142 Chapter 8: Functions

Syntax

Example

Description

Script

Syntax

Example

Description

Note

ClicklLoc

the clickLoc
clickLoc ()

put the clickLoc into card field "firstClick"

The clickLoc function returns the point on the screen where the user most
recently clicked before the handler started executing. The location is determined at
the time the message is first sent—the mouse could be elsewhere by the time the
message is received. The location point is returned as two integers separated by a
comma, representing horizontal and vertical pixel offsets measuring from the top-left
corner of the card window.

The following example handler, when it is in the script of a locked field, selects a word
in the field when the user dlicks the word:

on mouseUp
set locktext of me to false --'field must be locked
click at the clickloc
click at the clickloc
put "You clicked on the word:™ && the selection

set locktext of me to true -- must lock it again when we leave
end mouseUp

CommandKey

the commandKey
commandKey ()

if the commandKey is ﬁp then put "Wow"™ into the Message box

The commandKey function returns the constant up if the Command key is not
pressed or down if it is pressed.

The commandKey function name can be abbreviated cmdKey.

CommandKey 143

Syntax

Examples

Description

Script

Note

Compound

compound (rate, periods)
Rate and periods are expressions that yield numbers.

put futureValue/compound(.10,12) into presentValue
put presentValue*compound(.10,12) into futureValue

The compound function is used to compute the present or future value of a
compound interest-bearing account. Rate represents the interest rate per period,
and perifods is the number of periods over which the value is calculated. The formula
for compound is

compound (rate, periods) = (l+rate)periods

The compound function is more accurate than computing the expression above
using standard arithmetic operations and exponentiation, especially when rate is
small.

The following exzmplé handler calculates the value in one year of an account earning
7% percent interest compounded monthly:

on calcInterest .
ask "Enter the beginning balance:" with empty
set numberformat to ".00" -- dollars and cents format
put "Value in 1 year $"™ & it * compound(.075/12,12)
end calclnterest

See also the annuity function, earlier in this chapter.

144 Chapter 8: Functions

Syntax

Example

Description

Note

Syntax

Example

Description

Script

Cos

the cos of factor
cos (expression)

Facstor and expression yield numbers.
put the cos of 2 -- puts =-.416147 into the Message box

The cos function returns the cosine of the angle which is passed to it. The angle
must be expressed in radians.

Radians can be converted to degrees by multiplying by 180 and dividing the result by
the value of the constant pi.

Date

the [modifier] date
Modifieris long, short,or abbreviated (or abbrev or abbr).

put last word of the long date into background field "Year"

The date function returns a string representing the current date set in your
Macintosh. The various forms return strings exemplified by

the short date 7/5/87
the long date Sunday, July 5, 1987
the abbrev date Sun, Jul 5, 1987

Without 2 modifier the date function returns the short date.

“The following example handler puts the current date into a field when another field

(whose script contains the handler) is changed:

on closeField
put the long date into field "lastUpdate"
end closeField

Date 145

Syntax

Example

Description

Script

DiskSpace

the diskSpace
diskSpace ()

if the diskSpace < 100000 then answer "Your disk is getting full.™

The diskSpace function remrns an integer representing the number of bytes of
free space on the disk that contains the current stack.

The following function handler is used by the second handler (for the writeFile
message) to ensure that there is enough space on a disk to write to a file on that disk:

function checkSpace var
if the diskSpace > var then return "OK" else return "FULL"
end checkSpace

on writeFile
global var
put "MyFilename™ into filename
if checkSpace(card field 1) is "OK" then
open file filename
write var to file filename
close file filename

else answer "Can't write that file; the disk is full."
end writeFile

¥

146 Chapter 8: Functions

Syntax

Example

Description

Syntax

Example

Description

the exp of factor
exp (expression)
Factor and expression yield numbers.

put the exp of 2 -- puts 7.389056 into the Méssaqe box

The exp function returns the mathematical exponential of its argument (the
constant e, which equals 2.7182818, raised to the power specified by the argument).

Expl

the expl of factor
expl (expression)

Factor and expression yield numbers.
put the expl of 2 -- puts 6.389056 into the Message box

The expl function returns 1 less than the mathematical exponential of its argument
(1 less than the result of the constant e raised to the power specified by the argument).
That is, it computes:

exp (number) - 1

Expl 147

Syntax

Example

Description

Syntax

Examples

Description

Notes

Exp2

the exp2 of factor
exp2 (expression)

Factor and expression yield numbers.
put the exp2 of 16 -- puts 65536 into the Message box

The exp2 function returns the value of 2 raised to the power specified by the
argument.

Length

the length of factor
length (expression)

Factor and expression yield text strings.

put length{("tail"™) into It -- yields 4
if the length of word n of field 5 > 25 then add 1 to foglndex

The length function returns the number of characters (including spaces, tabs, and
return characters) in the text string passed to it.

If expression is a literal, it must appear within quotation marks. The length
function is identical in effect to the following form of the number function:

the number of characters in factor

-

148 Chapter 8: Functions

N

Syntax

Example

Description

Syntax

Example

Description

ln

the 1ln of factor

1n (expression)

Factor and expression yield numbers.

put the ln of 10 -- puts 2.302585 into the Message box

The 1n function returns the base-e (natural) logarithm of the number passed to it.

Lnl

the 1lnl of factor
1n1 (expression)

Factor and expression yield numbers.
put the 1nl of 10 -- puts 2.397895 into the Message box

The 1nl function returns the base-e (natural) logarithm of the sum of 1 plus the
number passed to it. That is, it computes

1n (1+number)

If numberis small, the result is more accurate than using standard arithmetic
operations.

Ln1 149

Log2

Syntax the log2 of factor
log2 (expression)
Factor and expression yield numbers.
Example put the log2 of 10 -- puts 3.321928 into the’ Message box
Description The log2 function returns the base-2 logarithm of the number passed to it.
Max
Syntax max (/ist)
List is a sequence of comma-separated expressions that yield numbers, or it is a single
container that contains such a sequence.
Examplo put max(5,10,7.3) =-- puts 10 into the Message box
Description The max function returns the highest-value number from a list of numbers passed to
it. If the source of the list is a container with more than one line in it, only the first line
is used.
Script The following example handler displays the highest number in a list contained in a
variable:
on highStock
put "12.50,10,7.95,14.76,13.70" into stockPrices
answer "The highest price for the month is:"™ && max(stockPrices)
end highStock '
150 Chapter 8: Functions

Syntax

Example

Description

Script

Syntax

Example

Description

Min
min (ist)

List is a sequence of comma-separated expressions that yield numbers, or it is a single
container that contains such a sequence.

put min(5,10,7.3) -- puts 5 into the Messaqubox

The min function returns the lowest-value number from a list of numbers passed to
it. If the source of the list is a container with more than one line in it, only the first line
is used.

The following example handler displays the lowest number in a list contained in a
variable:

on lowStock
put "12.50,10,7.95,14.76,13.70" into stockPrices

put "The lowest price for the month is:™ && min(stockPrices)
end lowStock

Mouse

the mouse
mouse ()

if the mouse is up put "Press the mouse button" into msg

The mouse function returns the constant up if the mouse button is not pressed,
down if it is pressed.

Mouse 151

Script

Syntax

Example

The following example handler determines whether the user has single-clicked or
double-clicked the button whose script contains the handler:

on mouseUp
put the ticks into start
repeat until the ticks-start > 4 -- adjust for comfortable click
if the mouse is "down" then
go last card =-- put your double-click action here
exit mouseUp
end repeat

go next card -- put your single-click action here
end mouseUp

MouseClick

the mouseClick
mouseClick()

if the mouseClick then put the mouseLoc

Description The mouseClick function determines if the mouse button is down. If it is not down,

Script

152

the mouseClick immediately returns the constant false. If the mouse but<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>