
ti. Macintosh. HyperCardTll Script
Language Guide
The HyperTalkm Language

Addison-Wesley Publlshina Company, Inc.
Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid Sanjuan

S APPLE COMPUTER, INC.

Copyright C 1988 by-Apple
Computer, Inc.

All rights reserved. No part of
this publication may be repro­
duced, stored in a retrieval
system, or transmitted, in any
form or by any means, mechan­
ical, electronic, photocopying,
recording. or otherwise, without
prior written permission of
Apple Computer, Inc. Printed in
the United States Qf America,

Apple, the Apple logo,
LaserWriter, Macintosh, and
SANE are registered trademarks
of Apple Computer, Inc.

APOA, Finder, HyperCard,
Hypetl'alk, MultiFinder, and
Stackware are trademarks of
Apple Computer, Inc.

· MacPaint is a registered trade­
mark of CLARIS Corporation.

ITC Avant Garde Gothic, ITC
Garamond, and ITC Zapf
Dingbats are registered trade­
marks of International Typeface
Corporation.

Microsoft is a registered trade­
mark of Miamoft Corporation.

POSTSCRIPT •is a registered
trademark, and Illustrator is a
trademark of Adobe Systems
·incorporated.

Varityper is a registered trade­
mark, and vr(i()() is a trademark,
of AM International, Inc.

Simultaneously published in the
United Stares and Canada.

ISBN 0-201-17632-7
ABCDEFGHIJ-00-898
Fitst printing. July 1988

··~

Contents

Flgur• and tabi.t xv

Preface About This Gulde xix

What's in th1' book? n
Notation conventions nil

Chapt.- 1 HyperTalk 8mlcl 1

What is HyperTalk? 2
Objects 2

Buttons and fields 2
Cards, backgrounds, and stacks 3

Mes..ages 4
Saipts 4

Handlers 4
Message handlers 5
Function handlers 5

Where's the script? 6
The script editor 1

Manipulating text 8
Searching and printing 8
Formatting scripts 9
Unelengrh 9

Chapter summary 10

ill

Iv Contents

..

Chapter 2 Handling Meaag• 11

The HypetCard environment 12
Sending meMages 12

System meMages 13
Statements as messages 13
Message box messages 14
Messages resulting from commands 14

Receiving meMages 15
Object hierarchy 16

Where messages go 16
Messages to buttons and fields 17
The current hierarchy 18
The target 20

The dynamic path 21
The go command and the dynamic path 22
The send keyword and the dynamic path · 23

Handlers calling handlers 25
Subroutine calls 25
Recursion 26

Using the hierarchy 27
Sharing handlers 27
Intercepting messages 29

Parameter passing 30
Chapter summary 32

Chapter 3 Naming Obf4tcls 33

Object descriptors 34
Object names 35
Object ID numbers 35
Object numbers 36

Special ordinals 37
Object numbers and tab order 37

Special objea descriptors 37
Stack descriptors 38

Naming a stack 39
Combining object descriptors 40
Chapter. summary 40

(

(

Chapter 4 Values 41

Chapt•5

Soura:!S of values 42
Constants 42
Literals 42
Functions 43
Properties 43
Numbers 44

Standard Apple Numerics Environment 44
Precision 44
Number handling 45

Containers 45
Fields 45
Variables 46
The selection 47
The Message box 48

Complex expressions 48
Factors 49
HyperTalk operators 50

Operator precedence 50
Operators and exp~ion type 51

Chunk exp~ons 53
Syntax 53
Characters 54
Words 54
Items 55
Lines 55
Ranges S6
Chunks and containers 57

Chunks and destinations as well as sowces 57
N~ntchunks 57

Chapter summary 58

Keywords 59

Keywords in message handlers (,()
On 61
End 61
F.xit 61
Pass 62
ReUJm 62
Message handler example 62

Contents v

vi Contents

Keywords in function handlers 63
Function 64
End 64
Exit 64
Pa§ 65
Retum 65
Function handler example 66

Repeat 66
Repeat 66

Repeat forever 67
Repeat for 67
Repeat until 67
Repeat while 68
Repeat with 68

Exit 69
Next 69
End 70

If 70
Single-statement If strucrure 70
Multiple-statement If structure 71
Nested If struaures 72

Do 72
Global 73
Send 73

Chapter 6 System Meuage1 75

Messages and commands 76
Messages sent to a button 77
Messages sent to a field 78
Messages sent to the current card ~

Chapter 7 Commands as
Redefining commands 86
Syntax desaiption notation 87
Add 88
Answer.89
ArrowKey 90
&1<9'2
Beep 93
Choose 94

(

..

Oick 95
Close file 97
Close printing 98
Convert 98
Delete 100
Dial 101
Divide 102
DoMenu 102
Drag 104
Edit script 105
EnterKey 105
F"md lo6
FunctionKey 108
Get 1()1)

Go 110
Help 111
Hide 111
Multiply 113
Open 115
Openflle 115
Open printing 116
Play 117
Popcard 118
Print card 119
Print 120
Push 121
Put 122
Read 123
Reset paint 125
RetumKey 125
Set 126
Show cards 127
Show 128
Sort 130
Subtract 131
TabKey 131
Type 132
VISUal 1~3
Wait 135·
Write 136

Contents vii

viii Contents

Chapter 8 Function• 137

Punaion calls 138
Syntax desaiption notation 139
Abs 140
Annuity 140
Aran 141
Average 142
CharToNum 142
Clicld.oc 143
CommandKey 143
Compound 144
Cos 145
Date 145
DiskSpace 146
Exp 147
Expl 147
Exp2 148
Length 148
Ln 149
Lnl 149
Log2 150
Max 150
Min 151
Mouse 151
MouseClick 152
MouseH 153
MouseLoc 153
MouseV 154
Number 154
NumToChar 156
Offset 157
OptionKey 158
Par.am 158
ParamCount 159
Params 160
Random 160
Resull 161
Round·t63

(

Seconds 163
ShiftKey 164
Sin 164
Sound 165
Sqrt 1(>6
Tan 1(>6
Target 167
Ticks 168
Time 169
Tool 170
Trunc 171
Value 172
Version 172

Chapter 9 Propertl• 173

Retrieving and setting properties 174
Object properties 174

Name property 175
ID property 175

Environmental properties 176
Global properties 176

BlindTyping 176
Cursor 177
Drag.5peed 177
EditBkgnd 177
Language 178
LockMessages 178
LockRecent 178
LockScreen 179
NumberFormat 179
PowerKeys 180
TextArrows 180
UserLevel 181

Wmdow properties 181
Location 182
Rectangle 182
Visible 182

Contents Ix

x Contents

..

Painting properties 183
Brush 183
Centered 184
Filled 185
Grid 185
LlneSize 185
Multiple 186
MultiSpac.e 186
Pattern 186
PolySicles 187
TextAlign 188
TextFont 188
TextHeight 188
TextSize 189
TextStyle 189

Staclc properties 190
FreeSize 190
Name 190
Script 191
Size 191

Baclcground properties 192
ID 192
Name 192
Number 192
Script 193

Card properties 193
ID 193
Name 194
Number 194
Script 194

(
Field properties 195

ID 195
Location 196
LockText 196
Name 197
Number 197
Rectangle 197
Script 198
Saeli 198
ShowLines 199
Style 199
TextAlign 200
TextFont 200
TextHeight 201
Tex1Si2.e 201
TextStyle 202
Visible 202
WideMargiM 202

Button properties 203
AutoHilite 203
Hilite 204
Icon 204
ID 205
Location 205
Name 205
Number 206
Rectangle 206
Script 207
ShowName 207
Style 207
TextAlign 208
TextFont 208
TextHeight 208
Tex1Si2.e 209
TextStyle 2()C)
Visible 209

Constants 211

Contents xi

..

Appendix A External Commands 217

Definitions, uses, and examples 217
XCMD and XPCN resources 217
Uses for XCMDs and XFCNs 218
Guidelines for writing XCMDs and XPCNs 219
Flash: an example XCMD 220

Flash listing in MPW Pascal 220
Flash listing in MPW C 222
Flash listing in 680oo as..embly language 224

Peek: an example XFCN 225 · _
Peek listing in MPW Pascal 225
Peek listing in MPW C 228

Accessing an XCMD or XFCN 230
Invoking XCMDs and XFCNs 230
Object hierarchy 231

Parameter block data structure 232
Passing parainetets to XCMDs and XPCNs 233

ParamCount 233
Params 233

Passing back .results to HyperCard 233
RetumValue 233
PassFlag 233

Callbacks 234
EntryPoint 234
Request 234
Result 234
InArp 234
OutAqp 234

Callback procedures and functions 235
Definition interface fdes 235

Definition fde in MPW Pascal 235
Definition fde in MPW C 237

Glue routines 241
Glue routines in MPW Pascal 241
Glue routines in MPW C 250

Attaching an XCMD or XFCN 260
H~rd Developer's Toolkit 260

Appendix 8 ControlKey Parameters 261

Appendx C Ext~cad ASCII Table 263

xii Contents

(
Appendix D Operator Precedence Table 266

-.
Appendix E HyperCard Umlls 267

Appendix F HyperTalk Chang .. In HyperCard Version 1.2 269

New and enhanced commands 269
Lock screen and unlock saeen 270
Select 270
Find 271
Hide and show m

New and enhanced functions 273
Number 273
Functions for found text 273
Functions for selected text 274

New properties 274
AutoTab 274
CantDelete 275
CantModify 275
ShowPict 275
UserModify 276

New synoo~ 276

(~'
New shortallS 277

Command-Option 277
Shift-Command-Option 277
Other Command-Option key combinations 277

Appendix G HyperTalk Syntax Summary 278

Syntax desaiption notation 278

Appendix H HyperTalk Vocabulary 283

Glouary 297

Index. 303

Contents xii I

.•

Figures and tables

Chapter 1 HyP«Talk Basics 1

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Table 1-1

HyperCard objects 3
The Objects menu 6
Button Info dialog 7
Script editor dialog box 8
Nested control structures 9
Script editor command summary 10

Chapter 2 Handling Meuag• 11

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 2-11
Figure 2-12
Figure 2-13

Matching messages with handlers 15
Object hierarchy 16
layered buttons and fields 17
Message traversing current hierarchy 18
Command is sent as a message 19
The target 20
Static path before the go command executes 22
Dynamic path after the go command executes 23
Using the send keyword 24
Handler in card script 28
Handler in stack script 28
Intercepting a message 29
Parameter passing 31

Chapter 3 Naming Oblecls 33

x Iv Figures and tables

Figure 3-1
Figure 3-2
Figure 3-3

Card info dialog and descriptions for same card 35
A pathname 38
New Staclc dialog box '?!)

(

Chapter4 Valu• 41

Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Table 4-1
Table 4-2

Manipulating the selection 47
The Message box 48
Lines in a field 55
Chunk expressiom 56
Combining chunks and objects 58
Operator precedence SO
Hypetralk operators 51

Chapter 6 System Messages 75

Table 6-1 Messages sent to a button 77
Table 6-2 Messages sent to a field 79
Table 6-3 Messages sent to the current card 80

Chapter 7 Commands as

Chapter9

Figure 7-1 Answer command dialog boxes 89
Figure 7-2 .Mk conunand dialog box 92
Figure 7-3 Tools palette 94
Table 7-1 Effects of the arrowKey command 91

Propertl•

Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4

173

An object info dialog box 175
Brush shape dialog and property values 184
Patte~ palette and property values 187
The saoll property 199

Chapter 10 Constants 211

Table 10-1 Hypetralk constants 213

Appendix A Extemal Commands 217

Figure A-1 Message-passing hierarchy, including XCMDs
andXFCNs

Appendix B ControlKey Parameters 261

Table B-1 ControlKey message parameter values 262

Figures and tables xv

Appendix C Extended ASCII Table 263

Table C-1
Table C-2

Control character assignments 264
Character assignments in Macintosh Courier
font 265

Appendix D Operator Precedence Table 266

Table 0-1 Operator precedence 266

Appendix E HyperCard Umlta 267

Table E-1 HyperCard limits 267

Appendix F HyperTalk chang .. In HyperCard Version 1.2 269

Table P-1 New HyperTalk synonyms 276
Table P-2 New shortcuts 275

Appendix G HyperTalk Syntax Summary 277

Table G-1 Hypeffalk command syntax 278
Table G-2 HyperTalk function syntax 280

Appendix H HyperTalk Vocabulary 283

Table H-1 Hypetralk vocabulary 283

xvi Figures and tables

(

Preface

About This Guide

This book provides detailed information about HyperTalkTll, the scripting language of
HyperCardTll. Even a small knowledge of HyperTalk enables you to customi7.e buttons
andand other parts of HyperCard stacks for your own purpo.!eS, and you can use
HyperTalk to make the stacks that you create act the way you want.

To get the most out of this book, you should have read the Hyper<:ard Users Guide,
and you should have used HyperCard enough to be familiar with its basic features.
While you're using HyperCard, you can find information about HyperTalk in the
HyperCard Help system. The Help system makes use of some of HyperCard's best
features, such as computer-supported cross-referencing and fast text searching.

Some of the concepts in this book, such as message handling and objects, may be new
to you. Use this guide as it suits your own style of learning: you might be the kind of
person who understands best by thoroughly studying the explanations, or you might
be the kind who learns by skimming the material and then playing with
HyperTalk-writing scripts or copying the examples and trying them oul

xvii

What's in this book?
Here's a brief description of the contents of this guide:

Chapter 1, "HyperTalk Basics," introduces the basic conceptS of HyperTalk, showing
how it is used in the HyperCard environment. ~ chapter also explains how to create
and modify scripts in HyperCard objects.

Chapter 2, "Handling Messages," ciescribes how HyperTalk works, how it carries out
actions, and how it responds to events in the HyperCard environment .

Chapter 3, •Naming Objects," explains how to refer to objectS-dle parts of
HyperCard that contain HyperTalk scripts and that respond to and initiate actions.

Chapter 4, "Values: explains how to create and refer to HyperTalk's values-the
information it acts upon. It also describes HyperTalk's operators and explains how
HyperTalk evaluates expressions.

Chapter 5, "Keywords,• describes the handlers within which you write all HyperTalk
scripts, to enable objects to respond to messages and function calls. It also describes
the control structures of HyperTalk that let you specify how and when sections of
scripts execute, and it describes ocher keywords: do, qlobal, and send.

Chapter 6, "System Messages,• describes the messages that HyperCard generates in
. response to events (such as mouse clicks) that happen in its environment.

Chapter 7, "Commands: describes each of HyperTalk's built-in comman~
action statements that make HyperCard do thin&'.

Chapter 8, "Functions,• describes Hyper'I'alk's built-in functions-named values that
reflect conditions in the HyperCard environment.

Chapter 9, "Properties," describes the properties of HyperCard
objects-characteristics that detennine how objects look and act.

Chapter 10, "Constants,• describes HyperTalk's built-in constants-named values
that don't change.

xviii Preface: About This Gulde

(

(

Appendix A, •External Commands and Functions," contains general information
about XCMDs and XF.CNs, extensions to HyperTalk that can be written by expert
programmers to increase the power of HyperCard

Appendix B, "ControlKey Parameters,• lists the values generated by various
keystrokes in combination with the Control key.

Appendix C, "Extended ASCII Table,• lists the decimal values of the standard
Macintosh character set used by HyperCard.

Appendix D, "Operator Precedence Table,• summarizes the order in which
HyperTalk performs operations when it evaluates expressions.

Appendix E, "HyperCard Limits,• lists various minimum and maximum sizes and
numbers of elements defined in HyperCard

Appendix F, "HyperTalk Changes in HyperCard Version 1.2, • explains the
differences in the language appearing with version 1.2.

Appendix G, "HyperTalk Syntax Summary," shows the syntax of HyperTalk's
command and function parameters in abbreviated form.

Appendix H, "HyperTalk Vocabulary," lists alphabetically every term that HyperTalk
understands along with its category, a page reference to where it is explained in this
guide, and a brief description of its meaning.

What's in this book? xix

Notation conventions
Before you read this guide, you should know about a few typographic conventions.
Words or phrases in typewriter type are Hypertalk language elements or are
those that you type to the computer literally, exactly as shown. New t.erms are shown in
boJdface type when first used or defined.

. In descriptions of HyperTalk syntax for commands and other language elements,
words in Italic type describe general elements, not specific names-you must
substitute the actual instances. Square brackets ([1) enclose optional elements which
may be included if you need them. (Don't type the square brackets.) In some cases,
optional elements change what the message does; in other cases they are helper words
that have no effea except to make the message more readable. Syntax descriptions for
some language elements have particular formats shown at the beginning of their
chapters.

It doesn't matter whether you use uppercase or lowercase Jettem in commands or
variable names; message names that are formed from two words are shown in small
letters with a capital in the middle (likeThis) merely to make them more readable.
The keywords · of and in are interchangeable-the syntax descriptions use the one
that sounds more natural.

x x Preface: About lhls Gulde

/

(

••

Chapter 1

HyperTalk Basics

•

This chapter explaiN Hypetralk's place in the HyperCard system, describes some of
Hypetralk's characteristics, and shows how to create and edit the scripts of HyperCard
objects.

Most concepts are discussed only briefly in this chapter, with more detailed discussion
left for later chapters

What is HyperTalk?
Hypetralk is the scripting language of the HyperCard environment. It allows you to
perform actions on HyperCard objects: buttons, fields, cards, backgrounds, and
stacks.

You use Hypetralk to send messages to and from HyperCard objects. You generate a
message by (among other means) clicking the mouse, opening a card, or typing a
statement into the Message box. How a given object responds to a particular message
depends on the objects's script. All HyperCard scripts are written in Hypetralk.

Objects

There are five kinds of objects in HyperCard: buttons, fields, cards, backgrounds, and
stacks. (See Figure 1-1.)

Buttons and fields

Buttons are action objects or •hot spots• on the screen. For example, clicking a
button with the Browse tool can take you to the next card in a stack.

Fields contain editable text. The Browse tool hand pointer changes to an I-beam
when it's over an unlocked field ('The card or background might also contain Paint
text characters. Such characters are not editable once they are placed; they become
part of the picture on the card or background)

2 Chapter 1: HyperTalk Basics

(

(

..

Background ---------t--r-

Field -----------------"t=

card ---------------------r

Figure 1-1
HyperCard objects

Cards, backgrounds, and stacks

The basic unit of information is the card: when you look at the screen of a Macintosh18

computer running HyperCard, what you see foremost is a card Each card is
associated with one background, and a background may be (and usually is) shared by
more than one card The card overlays the background; both are the size of the card
window, which is the size of the original Macintosh screen (512 by 342 pixels). What
you see in the card window belongs to the card, or, if an area of the card is
transparent, to the background 1be card and background both can contain pictures,
which are bitmaps, and buttons and fields. Cards are grouped in stacks; ea.ch stack is a
Macintosh file.

The card that is currently displayed, the background associated with it, and the stack
they are in are termed the current card, background, and stack. The concept of being
current doesn't apply to buttons or fields.

Chapter 3 contains details about referring to objeas.

What Is HyperTalk? 3

Messages
HyperCard objects interact with each other, with the user, with HyperCard, and with
the Macintosh environment by sending messages. Some messages are descriptions of
thinS' th.at happen in the environment, such as th.at the mouse has been clicked or a
card opened: these are system messages. They are like news flashes announced to
the community of objects. For example, if you click the mouse button down,
HyperCard sends the message mouseDown; when you let the mouse button up,
HyperCard sends the message mouseUp.

Messages are sent to various objects in a particular order. For example; system
messages generated by the mouse go first to the topmost button or field (if any) under
the pointer on the screen. Next those messages go to the card, then to the background,
then the stack, then the Home stack, and finally to HyperCard itself. (You'll fmd a
detailed discussion of this hierarchical sequence in Chapter 2.)

HyperTalk commands are also messages-orders to do some particular thing, like
add two numbers or go to another card A command, whether executed in a script or
typed into the Message box, is sent as a message.

Scripts
Every HyperCard object has a script (although the script can be completely empty). A
script is a collection of any number of handlers. The lines inside a handler are
HyperTalk statements; each statement ends with a return character. Statements always
appear within handlers in a script Any part of a statement following HyperTalk's
double-hyphen comment character(--) is ignored by HyperCard

Handlers
A handler is a collection of HyperTalk statements; a handler is invoked when a
particular message is received by the object whose script contains the handler. A
simple handler looks like this:

on mouseUp
go to next card

end mouseUp

The first line of a handler always begins with one of two words-either on (which
begins a message handler) or function (which begins a function handler). The last
statement of a handler always begins with the keyword end All HyperTalk statements
always appear within handlers in a script

4 Chapter l: HyperTalk Basics

(

C'

You must place handlers in the saipts of objects that will receive the messages you
want the handlers to ~pond to. The message-passing hierarchy, which determines
where messages are sent, is described in Chapter 2.

Message handlers

The example shown above is a message handler. This particular message handler is
in the script of a button; it handles the message mouseUp, and goes to the next care!.

The message to which a handler responds begins with the word following the word on.
In this case, the message is mouseUp. When you release the mouse button while the
Browse tool is inside a button's rectangle on the screen, HyperCard sends the message
mouseUp to the button. HyperCard looks in the button's script for a handler
matching the mouseUp message. If it finds a match, it executes the HyperTalk
statements between on mouseUp and end mouseUp-in this case, qo to next
card

Function handlers

In addition to message handlers, scripts can contain user-defined function
handlers. Function handlers begin with the word function in place of the word
on; the name of the function they handle is the second word. A function handler looks
like this:

function day
return first item of the long date

end day

This function handler responds to a HyperTalk statement containing the function's
name followed by parentheses-a function call. Here's an example:

put day() into message box

The function call is day () -dJe rest of the line and the function call together form a
statement. When the function call is made, HyperCard looks for the matching
function handler. If it finds one, it executes the lines between function day and
end day. The value derived from the expression first item of the long
date is returned to the put statement in place of day ().In the example, the value
returned by the function {Friday, for example) is put into the Message box.

Function calls use the same objea hierarchy as messages; it's described in Chapter 2.
Message and funaion handler structures a.re desaibed in detail in Chapter 5.

Scripts 5

..

Where's the script?
You get acces,, to an object's script by choosing the object from the Objects menu.
The Objects menu has five object Info items, one for each of the five types of objects:
the current card, its background, the stack it belongs to, and the buttom and fields
belonging to the card and background.

euuon Info ...
field Into •••
Cerd Info •••
Bkgnd Info •••
stect Info •••

D11ng Clo~er >l!C•
send Fa11her #-

New Button
New Field
New lack round

Figure 1-2
The Objects menu

+ You mu.st be at level 5: The user level must be set to 5 (click the Scripting button on
the User Preferences card in the Home stack) for you to be able to look at scripts.

To edit the script of the current card, background, or stack, choose the appropriate
Info menu item for the object whose script you want. This action brings up information
about the object in a dialog box (see Figure 1-3). To open the object's script, click the
Script button.

To get to the script of a button or field, fltSt select the button or field (with the Button
tool or Field tool), then choose the appropriate Info item from the Objects menu. It is
not necessary to be in Edit Background mode to open the script of an existing
background button or field You must be in Edit Background mode, however, to
create new background buttons and fields. Ot may also help you to select background
buttom and fields, because when you're in Edit Background mode, HypeiCard
doesn't display card buttons and fields.)

6 Chapter 1: HyperTalk Basics

(

Button N.eme:I F_IY,..._ _____ __.

Cerd button number: t

Cerd button ID: 5

181 Show neme

~ Auto hlllte

Style:

O trensperent
O opaque
O rectengl•
O shadow
@round rect

[Icon... J O check boa
· O radio button

[LlnlcTo ...)

(Script...] .. I _o_IC_"I (Cencel

Rgure 1-3
Button Info dialog box

+ Shortcuts: To get to the Info dialog box of a button or field quickly, double-click the
button or field with the Button or Field tool chosen. To open the script directly,
hold down the Shift key while you double-dick the objea or choose its Info menu
item from the Objects menu.

f The script editor

(:

..

The HyperCard script editor lets you create and modify handlers in an object's script
(although you can't use it to change the font, sire, or style in which the script is
displayed). You don't have access to the menu bar while you're editing.

You have to fmish editing the script and close the dialog box by clicking its OK or
Cancel button before you can do anything else. Closing the script editor box with the
OK button or pressing Enter saves the script with its object; closing it with the Cancel
button leaves the script the way it was when you opened it

+ SbortcUJs: To save and close a script quickly, press the Enter key. To close the script
quickly without saving changes, press Command-period. To choose the Browse
tool, press Command-Tab.

You can use the arrow keys to move the text insertion point around in the script.

Scripts 7

Script of stec:t Pnjna:ilgperCerd Stects:lletU
on st•tUp

goutoeolnfo
encl str\Up

on getltoeelnfo
9lolMll stacks,appl lntl-,.-0-ts,_..... ••t lock$- to ""-
Ht I~ to \r\'9

90 • c: ~~.!!!!.!!!!-~~. ~.~toc:ll.-111
1Nt ccrd field •u..r ,._. Into _.....
Mt ~I to _.. field "llAr i.-1 •
Ht PH• K4111111 to U. hi 11 to of tiutton .,._ IC9111J"
Mtl:lllnd'f toU.hllltooftlutton"811ndT I "

(find) (Print) OK

Figure 1-.t
Script editor box

Manipulating text

[cancel)

The script editor works in the standard Macintosh text edit manner. The mouse
manipulates an I-beam pointer with which you can place an insertion point or select
text. You perform cut, copy, and paste operations using Command-X. Command-C,
and Command-V, respectively. The selection that you've cut or copied remains in the
Clipboard until you cut or copy again, in case you want to paste the material more than
once. It remains after you close the script, so you can open another script and paste
the material in. You can also paste it into a field as regular text or on a card or
background as Paint text.

Searching and printing

Clicking the Find button in the dialog box (or pressing Command-F'.) brings up a
search dialog box. The script editor locates and selects the first occurrence, following
the current insertion point, of a string you type into the find window. Searching is not
sensitive to uppercase and lowercase distinctions. Here are additional commands you
can evoke for searching and printing in the Script editor:

o To go to the next occurrence of the same string, press Command-G.

o To copy the current selection from the script into the find window and to locate its
next occurrence, press Command-H.

o To print the ·current selection of the script (or, if nothing is selected, the entire
script), press Comrnand-P or click the Print button.

o To select the entire script, press Command-A.

8 Chapter 1: HyperTalk Basics

(

(

Formatting scripts

The HyperCard script editor indents nested control structures for you. It automatically
indents all of the lines inside a handler structure when you press the Tab key or close its
dialog box. (See Figure 1-5.) When if and repeat structures are nested inside
each other or within handlers, the lines are indented further. (You can't nest handler
structures inside each other or any other structure.)

+ Error cbecktng: Automatic formatting provides some degree of error checking
while you write a script: if you press the Tab key and the last line isn't flush with the
left margin of the script editor dialog box, you probably left something out or made
a syntax error in a Hypeffalk command

scrtpt of steclc Slle:Help Steclcs:Help
If H Is MPtll U.., put "the l•t CGl"d has PIO 11GP -=-*"
if H < 310 U.. - left col...,

lfH>230U..,
If U > 120
u-. 'JO era ID I~ - lt,jprtalk
else 'JO era ID II~ - ... to UH Help

else
If H > 160 U..,

If U < 150 ti-.
If U < IS U.. 'JO c:crd ID 24361 - "'-1"9
else 'JO crd ID 1100 - l'aln\1"9

else
I f U < HID U.. 'JO c:crd ID 39991 - COIMj 11'19
else If U < 230 ti-. 90 crd ID 122182 - .,.,_
else 90 crd ID 10271 - Ref-

..... if
.1 ..

if H < 50 Uwt 'JO HoM

(Prtnt J

Rgure 1·6
Nested control structures

Unelength

(Cancel)

1be script editor doesn't wrap lines too long to fit in its dialog box. There is no specific
restriction on the length of lines in scripts (although any single script cannot exceed
32,000 characters, including spaces, returns, and other invisible characters). Lines
too long to fit in the dialog box simply extend out of sight

You can break a single statement into multiple lines by pressing Option-Return where
you want a line to break. This •soft• return appears in HyperCard scripts as a logical
NOT symbol (-.). HyperCard treats lines broken in this way as single Hypeff alk
statements continuing to the next actual return character.

+ You can't break a literal: You can't put a •sofi- return inside a quoted literal
expression. (Literals are described in Chapter 4.)

Scripts 9

Table 1-1 is a summary of the script editor commands you can evoke from the
keyboard

Table 1·1
Script editor command summary

Key preu

Command-X
Command-C
Command-V
Command-F
Command-G
Command-H
Command-P
Command-A
Tab
Option-Return
Enter
Command-period

Ac Hon

Cut selection to Clipboard
Copy selection to Clipboard
Paste Clipboard contents at insertion point .
Find text string
Find next occurrence of same text string
Find current selection
Print selection or (if no selection) entire script
Select entire script
format script
Carry command onto new line C-soft• return)
Save changes and close script
Close script without saving changes

Chapter summary
Here is a summary of the material covered in this Chapter:

o Hypetralk controls the properties of HyperCard objects: buttons, fields, cards,
backgrounds, and stacks.

o HyperCard objects interact by sending and receiving messages.

o How an object responds to a message is specified by its script, which is written in
Hypetralk.

o Scripts are collections of message handlers and function handlers.

o You can create and edit scripts with the HyperCard script editor.

10 Chapter 1: HyperTalk Basics

(

Chapter 2

Handling Messages

11

•

This chapter explains how HyperCard objects send and receive messages and how
HyperCard executes scripts.

The HyperCard environment
HyperCard provides the environment in which Hypetralk scripts execute. The
HyperCard environment consists of objects connected by a message-paS5ing
hierarchy and the HyperTalk language through which they communicate.

Although you could write a stand-alone program in a single HypeflaJk,script, you
would not be making use of the power and flexibility of the HyperCard environment.
Instead, you use Hypetralk to define the ways in which objects interact with each other
and with the user.

HyperCard is user oriented. When using HyperCard, the user opens and closes cards,
reads and changes text in fields, draws pictures on cards, and so on. HyperCard
constantly sends meS5ages to objects in response to these actions (and the user's
inactivity when doing nothing), and the objects in tum respond with other messages
and other actions. The basic purpose of Hypetralk scripts is to enable objects to
handle those messages and to specify succeeding actions by sending further messages.

Most of the time, scripts carry out specific actions for the user: setting properties of
objects, going to other cards, and so on. Hypetralk can do automatically everything
the user can do manually with the mouse and keyboard.

Sending messages
All HyperCard actions are initiated by meS5ages sent to objects. Messages are sent to
objects in four ways:

o An event (such as a mouse click) can cause HyperCard to send a system meS5age.

o Handler statements (other than keywords) are sent as messages when a handler
executes.

o HyperCard sends the contents of the Message box as a message when the user
presses Return or Enter.

o HyperCard sometimes sends a message when it executes a command

12 Chapter 2: Handling Messages

(

••

System messages
HyperCard sends system messages constantly in response to events in the Macintosh
environment. For example, if you move the pointer so that it's over a button on the
screen, as soon as the pointer enters the button's rectangle, HyperCard sends the
message rnouseEnter to the button. As long as the pointer remains inside the
button rectangle, HyperCard continuously sends the message rnouseWithin to the
button. As soon as you move the pointer outside the button area, HyperCard sends the
message rnouseLeave to the button.

HyperCard sends other system messages when you press certain keys on the keyboard,
close a field, selea a menu item, or when you quit HyperCard. When you open a card,
HyperCard sends the message openCard to the card itself; when you leave the card
it sends closeCard Similar messages are sent to cards when their backgrounds and
stacks are opened and closed. If nothing at all is happening, HyperCard continuously
sends the message idle to the current card.

One of the most commonly used messages is mouse Up. Buttons often contain
handlers that respond to the mouseUp message; the mouseUp message is sent to a
particular button when you click it (HyperCard aaually sends two messages to a
button when it is clicked: mouseoown and mouseup. 'The mouseUp message is
sent only if you release the mouse button with the pointer over the same saeen button
it was over when yoo pressed it down.)

HyperCard also sends mouse messages to a locked field when you click it If the field
isn't locked, rnouseDown and mouseUp aren't sent--the click opens the field for
text editing and HyperCard sends the message openField to the field. (You can
send mouse messages to an unlocked field, however, by holding down the Command
key while you click the field.)

Clicking outside all buttons and fields sends mouseDown and mouseUp directly to
the current card.

Chapter 6 describes all of HyperCard's system messages.

Statements as messages
When a handler eJEeCUtes, its statements are sent as messages, first to the objea that
contains the currently exeruting handler, thCn to succeeding objects in the object
hierarchy (descnbed larer in this chapter). When an objea gets a message it can
handle-that is, for which it has a handler in its script-the statements contained in
the handler are in tum sent as messages. When all statements in the handler (and in
any other handlers invoked along the way) have exeruted, the action stops.

Sending messages 13

Message box -messages
When you type something into the Message box and press Return or Enter, HyperCard
does one of two thin&': either it sends what you typed as a message to the current card,
or, if what you typed is a valid expression, HyperCard evaluates it and puts the result
into the Message box. (See Chapter 4 for an explanation of values.)

If you try to use a keyword other than send in the Message box, HyperCard displays
an error dialog box. A keyword is a word whose meaning is predefined in HyperTalk;
keywords are never sent as messages from scripts but are interpreted directly. The
following list contains all of HyperTalk's keywords:

do next
else on
end pass
exit repeat
function return
global send
if then

Send works in the Message box; you use it to direct a message to a specific object
rather than sending it to the current card. Chapter 5 explains HyperTalk's keywords.

Messages resulting from commands
HyperCard sometimes sends a system message to the current card while it is executing
a command For example, when you create a card with the New Card menu command,
HyperCard sends the message newCard to the card as soon as it's created; when you
delete a card it sends deleteCard Similar messages are sent when other objects are
created and deleted. These messages are among the results of commands executing.
rather than commands themselves-they are like announcements of what is
happening.

+ F.xtemal commands can send messages: Expert programmers can write definitions
for new commands in development languages such as Pascal, C, and 680oO
assembly language. Such external commands act much like built-in HyperTalk
commands. External commands can send messages to the current card when they
execute. See Appendix A for general information about external commands.

14 Chapter 2: Handllng Messcges

(

(

..

Receiving messages
As senders and receivers of messages, objects all work exactly the same way. Every
object has a script, and the type of object makes no difference to the exerution of its
handlers.

+ How objects differ: As elements of the HyperCard user interface, objects differ
according to their function: buttons share a set of properties or characteristics that
determine how they look and act; fields also share a set of properties, but it is
different from the set of button properties.

When a message is sent to an object, HyperCard checks the object's script for a
handler whose name-the second word on the first line of the handler-matches the
message name-the first word of the message. If it finds a match, it exerutes each
statement in the handler. (See Figure 2-1.) After the handler has run, the message is
sent no further, unless it is explicitly passed with the pass keyword (discussed in
Chapter 5).

~~-:°~~~ame ---------;--0n-.;:i,-
handler name... :.@tl!!(iff

:······.····

... then execute -----------1---;,1f:H:fi
the lines In
that handler.

Figure 2-1
Matching messages with handlers

end openStack

If the object has no handler for the message, the message passes to the next object in
the hierarchy, and the process repeats.

If no object in the hierarchy has a handler matching a message name, HyperCard
looks for a command by that name. Commands are like built-in handlers that cause
some action to take place; mouseUp and mo,,t other system messages have no built­
in handlers and cause QO action. If a message that gets all the way through the
hierarchy and is not a system message or a.command, HyperCard displays an error
dialog box with the words Can't understand followed by the name of the
message.

+ External commandf can be In stacks: External commands can exist in stack files,
as well as in the HyperCard application itself. See Appendix A for general
information about external commands.

Receiving messages 15

Object hierarchy
The objects in HyperCard have an object hierarchy. The object hierarchy
determines the path by which messages are p~d from one object to another:
buttons and fields are at the same level, followed (in order) by card, background,
stack, and the Home stack (the one stack that HyperCard requires). Any message that
traverses the entire hierarchy goes to HyperCard itself.

Where messages go
The position of an object in the hierarchy derennines whether or not the object will
receive a given message, and where subsequent messages that the object sends will go.
Most system messages are initially sent by HyperCard to the current card, as shown in
Figure 2-2.

r----~~--------------~-----~ OpenCordand
other events

.------------------------~ Menu
.------------------Messagebox

.------------- Keyboard

~
I "----------- NewButtonand
. other events

'------------------------------~Mouee

Figure 2-2
Object hierarchy

16 Chapter 2: Handling Messages

(
Messages to bUltons and ftelds

Any mouse message {for example, mouseEnter) is sent inititally to the topmost
button or field, if there are any, under the pointer. Any buttons or fields that are
layered farther under the one initially receiving the message are ignored Figure 2-3
shows layered buttons and fields. If the topmost button or field doesn't have a handler
for the mouse message, the message is passed to the current card

Cord butto

Cord tleld

n

Bockgroun

Backgroun

d tleld

d button

Figure 2-3

Farther

Layered buttorw and ftetds

]
l

l
""L

_/ Closer) \.

l
]

+ Bac/fground buttons and jfeld.s cams bejote cards: HyperCatd first sends mouse
messages to the topmost button or field under the poinrer, whedler the button or
field belonp to the card or the background, before passing the message on to the
card Background buttons and fields, however, are always farther away than card
buaons and rielc1s.

Other than mouse messages, the only system messages that are sent first to buttons are
newButton and deleteButton; for rields they are new!'ield, deletel!'ield,
openField, and closeField. The entry point in the hierarchy for all other system
messages is the cummt card

Por a complete list of all system messages. see Qaprer 6.

Object hierarchy 17

1he current hierarchy

The current hierarchy_ consists of the buttons and fields belonging to the current card
and its background, the card and background themselves, and their stack. System
messages and those typed direaly into the Message box always traverse the current
hierarchy. Messages sent from executing handlen1 traverse the hierarchy to which
their containing objea belonp-in most cases, the current one. Figure 2-4 shows how

. a message traveISeS the current hierarchy.

Buttons
andftelds

Cards

Backgrounds

Stocki

Home stack

HyperCard

Flgure2·A

MouseUp ma.age~
by mouse to button.

Message traversing current hierarchy

When a handler executes, HyperCard sends each statement as a message, unless it
begins with a keyword. It sends the message first to the objea containing the executing
handler, as shown in Figure 2-5. If that objea doesn't have a handler for the message,
the message is passed down the object hierarchy; if none of the succeeding objects has
a handler for it, the me8sage ends up at HyperCard itself.

18 Chapter 2: Handllng Messages

••

Buttons
andftelds

Cards

Backgrounds

Stacks

Home stack

HyperCard

Figure 2-5
Command sent as a message

+ Function calls use tbe message-passing blerarcby: Function calls work like
mes.sages in the way they traverse the object hierarchy. When you make a function
call with the syntax that uses parentheses, HyperCard looks in the script of each
object in the hierarchy for a matching function handler. If none is found, the
function call is passed to HyperCard itself.

Object hierarchy 19

The target

The object to which tbe message is first sent is the target. If HyperCard finds a handler
in the target that matches the message name, the handler's statements start executing.
If, however, the target has no matching handler, the message is passed down the
hierarchy. HyperCard may find a matching handler in another object, which then
begins exeruting as shown in Figure 2-6.

Buttons
andnelds

Cards

Backgrounds

stacks

Home stack

Hypereard

Figure 2-6
The target

on newButton
... •utoHIUt• of ara•t to true

end newButlan

The function the target returns the value of the original target, so that handlers in
succeeding objects can determine where a message was originally sent In Figure 2-6,
although the executing handler is in the background script, the target, used in the
background handler, identifies the button that originally received the message.

20 Chapter 2: Handling Messages

(

••

The dynamic path
When a message is traversing the hierarchy of a card different from the current one,
HyperCard inserts a dynamic path into the static path the message normally follows.
The static path is the route defined by an object's own hierarchy. For example, a card
passes messages to its own background, the background passes them to its own stack,
and so on. When that hierarchy is not the one stemming from the current card (the
one currently visible), HyperCard passes messages through the current card's
hierarchy as well--that's the dynamic path.

Examples of situations in which a message tr3.verses a hierarchy different from the
current one, invoking the dynamic path, are

o when an executing handler contains a command that takes you to another card
(such as go or a command to create or delete the current card)

o when you use the send keyword to send a message to an object not in the current
hierarchy

When any message that has not been received by a handler reaches the stack,
HyperCard checks to see if the current card is in a different hierarchy. If so,
HyperCard pa.sses the message to the current card, and it traverses the current card,
background, and stack, before it passes to the Home stack.

If any handler receives the message and passes it explicitly with the pas~ keyword,
HyperCard does not invoke the dynamic path unless the current hierarchy is in a
different stack from the static path. If either of the hierarchies is in the Home stack, the
message is not~ again to the Home stack.

Object hierarchy 21

The go command and the dynamic path

Figures 2-7 and 2-8 show how a handler containing a go command invokes the
dynamic;: path.

Buttons
ondftelds

Cords

Backgrounds

Stocks

Home stock

HyperCord

Figure 2·7
Static path before the go command executes

In Figure 2-7, the mouseUp handler exerutes the statement beep 2, which is sent as
a message along the current hierarchy beginning with the button containing the
handler. After the go exerutes, the current card has changed. Nonetheless, the
button handler continues to exerute, sending subsequent statements as messages
through its own hierarchy. In addition, however, HyperCard now sends messages to
the card, background, and stack of the new current hierarchy, as shown in Figure 2-8.

22 Chapter 2: Handling Messages

(

••

Buttons
and11elds

Cards

Backgrounds

Stacks

Home stack

HyperCard

Figure 2-1

onmou•Up ·
beep2
go ID card 3 of stack •a• ---~ncfmo'Useup

Dynamic path after the go command executes

The send keyword and the dynamic path

It's possible to send a message direaly to an objea, whether or not it's in the current
hierarchy, by using the send keyword. For example, you can type the following
statement into the Message box:

send "qreetinqs" to stack "a"

HyperCard looks in the saipt of the object to which the message m sent (ln this case,
stack "a") for a matching handler, just as if it were in the current hierarchy. If the
matching handler isn't found (1n this case, a handler named qreetinqs), the
message goes down the-hierarchy stemming from the object to which it was sent (that
is, from stack "a"). If the target of the send is a stack other than the aurent one,
HyperCard invokes the dynamic path.

Object hierarchy 23

..

Figure 2-9 shows the path of a message directed with the send keyword.

Cards

Backgrounds

stacks

Home stack

HyperCard

Ffgww 2·9
Using the send keyword

So the exe01ting handler, the one currently in conuol, need not belong to any
partiOllar object. It doesn't need to be in the hierarchy belonging to the current a.rd
Which handler has conuol is determined solely by which object receives a message.

You can use the send keyword to direa a message to

o any object in the current stack

o any other stack on any disk or rtle server accessible to your Macintosh (but not any
individual object in those stacks)

o HyperCard itself

For details about the send keyword, see Chapter 5.

24 Chapter 2: Handling Messages

(

••

Handlers calling handlers
When a handler executes, HyperCard sen~ each statement as a message first to the
object containing the executing handler. So other handlers in the same script, as well
as those in any other script lower in the hierarchy, can be used as subroutines. A
handler can also call itself, which is known as reausfon.

Subroutine calls
You can use handlers in HyperCard the way you use procedures or subroutines in other
languages. You invoke a subroutine call in HyperTalk by executing a statement that
begins with the name of a handler. That name is sent as a message, first to the object
that contains the executing handler, then along the current object hierarchy.

You can include a subroutine in a script by writing a handler in the same script (or any
other script lower in the object hierarchy) with whatever name you'd like to call it by.
In the following example, the handler greetings is defined in the same script as
the one from which the message greetings is sent:

on mouseCJp
greetings

end mouse\Jp

on greetings
Put "You've just been drafted!" into the Message 'box

end greetings

When HyperCard executes the statement consisting of the subroutine handler name,
and a match is found between the name and its handler, control passes to the
subroutine handler. After it has finished executing, control passes back to the calling
handler. But it's entirely possible for the subroutine handler to issue a similar
message, beginning execution of a third handler. The third handler must finish
executing before control passes back to the second handler, which must finish
executing before passing control back to the first. The execution of a handler that has
invoked another handler is suspended until the handler it has called finishes
executing.

+ Stopping executton: ~ handler can avoid giving control back to pending handlers
by executing the exit to HyperCard· keyword statement. You can interrupt an
executing handlet at any time (and bypass ·pending handlers) by pressing
Command-period.

Handlers cclllng handlers 25

••

Any handler can act as a subroutine for any other handler. The called handler either
has to be in the same saipt or in a saipt lower in the object hierarchy. However, you
can also use the send keyword to send the mes.uge (the subroutine handler name)
directly to the object ihat contains the handler. (See Chapter 5 for details on using
send) Generally, handlers that act as subroutines are placed in the same script as the
handlers that call them.

+Handlers can't be. nested: Handlers can't be defined with one inside another-a
handler definition must not appear between the on statement and the end
statement of another handler.

Recursion
The term for a handler calling itself is rvcumon. In the following example, the
handler decrement subtracts 1 from a number in the Message box until the number
is reduced to 1 (a number must be in the Message box before you call the handler). To
do the subtraction, the handler summons itself:

on decrement
subtract l from the messaqe box
if the value of the message box > 1 then decrement

end decrement

Generally, subroutine calls and recursion don't cause any problems. In fact, they are
natwal consequences of the good programming technique of separating saipr.s into
functional unir.s. However, Hype.rCard has a limit on the number of pending handlers.
The actual number depends on the complexity of the handlers and other factors. It
doesn't matter whether a handler is invoking ir.self or another handler-either type of
invocation causes another level of pending execution.

In particular, watch out for endless recursion as in the following handler (if it were in a
stack saipt or the saipt of every card):

on openCard
qo to next card

end openCard

The go next card command results in an openCard message, so the handler
recurses again and again, and you get an error dialog box. Keep control in a single
handler instead, as with.the following script (if it were in the first card's script):

on openCard
repeat for the. number of cards -1

qo to next card
end repeat

end openCard

26 Chapter 2: Handling Messages

/(~,,

'~J

(

C;

Using the hierarchy
Where you place a handler in the hierarchy determines when it will be called All
objects that are higher in the hierarchy can call handlers in objects lower in the
hierarchy. Lower objects can't call handlers in higher objects unless they use the
send keyword Messages that are sent when a statement in a handler executes always
go first to the object containing the executing handler. Then they traverse the
hierarchy stemming from that object until they find a matching handler or reach
HyperCard itself. Therefore, the farther down the hierarchy a handler is placed, the
greater the number of objects that can pass messages to iL

Sharing handlers
In effect, every object has a~ to the handlers of all the objects lower than it in the
hierarchy. If you want every card in a stack to have a certain capability (that is, to
respond to a certain message), you put the appropriate handler in the stack saipL
Every card can use the handler by pas&ng the message down to the stack.

Figures 2-10 and 2-11 show the effect of placing a handler at different positions in the
hierarchy. The example handler responds to the message moveon (the message
name is for example only). The handler takes you to the next card:

on moveon
go to next card

end moveOn

You can place the handler in the saipt of the current card, as in Figure 2-10. Then, if
you send moveon from the Message box, you invoke the handler and go to the next
card From any other card, however, the moveon message has no effect.

In Figure 2-11, the handler is invoked by sending moveOn to any card in the stack
(because the handler is in the saipt of the stack).

Using the hierarchy 27

Cards

Backgrounds

Stacks

Home stack

HyperCard

Rgure2·10
Handler In card script

Cards

BackgrOU'ldl

Stacks

Home stack

HyperCard

Rgure 2·11
Handler In stack script

28 Chapter 2: Handllng Messages

..

onmoveOn
go ID next card

endmoWOn

\"·

(
Intercepting messages
You can also make my card you want an exception in the way it responds to a given
me~age, without affecting the other cards in the stack, by putting a special handler for
the message in that card's script: you write two different handlers with the same
message name-one in the stack script and one in the card script. Then, for that same
message, if the message comes through that particular card, the card's handler runs;
from any other card, the stack's handler runs.

For instance, in the previous example, putting the handler in the stack script caused
the message moveon to take you to the next card from any card in the stack:

on moveOn
go to next card

end moveOn

But if you want the last card in the stack to be an exception, from which the message
moveon takes you back to the Home card, put the following handler in the last card's
script:

on moveon
go to stack "home"

end moveon

Figure 2-12 illustrates this example of one object intercepting a message.

Cards

Backgrounds

Stacks

Home stack

HyperCard

Figure 2-12
Intercepting a message

Using the hierarchy 29

+ A bandier can tntercept a HyperTalk command: In the same way that you can give
one card a unique way of handling a message that would ordinarily be handled in
the background ontack script, you can write a handler with the same name as a
HyperTalk command and place it anywhere in the hierarchy. But remember that
your handler is the one that will ordinarily run in response to the command
message, not HyperCard's built-in one. HyperTalk functions can be redefined in a
similar manner, and the same warning applies.

Parameter passing
When a HyperTalk message is sent, the first word is the message name. For example,
in the message

searchScript "WildCard","Help"

the message name is searchScript. Any other words (or characters) are the
parameters. In the example, the parameters are "WildCard" and "Help". Each
receiving object in the hierarchy looks for a message handler with a matching name. If
the object finds a matching handler, the parameters are passed into the handler.

Parameters are passed into handlers as a list of comma-separated expressions.
(Chapter 4 describes expressions.) These expressions are evaluated before the
message is sent and, when the message is received, placed into a list of comma­
separated parameter 'Variables appearing on the first line of the matching handler
definition. (See Figure 2-13.) That is, parameters are passed by value into handlers.

Parameter variables are local variables of the handler in which they appear.
Parameter variables are also called formal parameters, to contrast them to the
actual parameters which are the parameter values passed to them.

+ Functton bandier parameters: HyperCard passes parameters into function
handlers and message handlers in the same way, except that the syntax of the
function call requires the parameters to be placed between parentheses. Placement
of the parameter variables on the first line of function handlers is identical to that of
message handlers.

30 Chapter 2: Handling Messages

(

: c
..

r IBllJ
~~chscnpt :mm.;e. :~lf.i:tll ------·---

It I
It I
It I

on seerchScrfpt !~. :Ri.11-- -.rch an scripts ofa stack
~t lockMeaa•IJ'S to true
1f stack Name 1s not empt1,1 then CJO to stack stackName

ff the serf pt of thfa stack contaf na pattern
then edit script of this stack
• • •

Figure 2·13
Parameter passing

II
II
II

1be value of the rust expression in the megage is placed into the rust parameter
variable in the handler, the value of the second expression into the second parameter
variable, and so on. If there are more expressions in the message's parameter list than
there are parameter variables in the rust line of the handler, the extra parameters are
ignored. If there are more parameter variables than parameters, the extra parameter
variables are given an empty value (equal to a string of :zero length).

+ Passing parametef'S to red6ftned commands: HyperTalk command parameters are
often more complex than a comma-separated list of expressions. Some built-in
commands take parameters to which user-written handlers have no access. So, if
you redefine a command, you may not be able to pass all of the parametets to your
handler.

Chapter summary 31

Chapter summary
Here is a summary of the material covered in this chapter:

o The HyperCard environment consisis of objects related to each other in a
hierarchy using HyperTalk as the means of communicating.

o Messages sent to objects initiate all HyperCard actions.

o Messages are generated by system events, executing handlers, sta~ typed
into the Message box, and the execution of some commands.

o When an object receives a message, HyperCard tries to match the message name
with a handler in the objea's script; if it finds a match, it executes the handler;
otherwise it passes the message to the next objea.

o The object hierarchy determines how messages are passed from one object to
another.

o You can send a message directly to any objea in the current stack, to another stack,
or to HyperCard using the send keyword.

o A handler can initiate execution of another handler as a subroutine call.

o Every objea can use the handlers of objedS lower than it in the hierarchy by
passing messages; conversely, an objea can intercept a message to perform a
different action.

o The values of a series of expressions following the first word of a mes,,age statement
are passed to variables in the fll'St line of the receiving handler.

32 Chapter 2: Handllng Messages

(

c/
..

Chapter 3

Naming Objects

33

This chapter explains how to refer to HyperCard's objects.

A HyperCard object !t?S three characteristics:

o It can send and receive messages.

o It has properties, which are its defllling characterstics, and one of those
properties is its scripL

o It has a visible representation on the Macintosh screen (although the object need
not always be visible).

You refer to an object when you use the go keyword (to go to a partirular card,
background, or stack) or the send command (to send a message to a particular
object), and when you want to manipulate an object's properties. Field,, are unique
because they are HyperCard objects and are also sources of values (described in
Chapter 4).

You can think of HyperCard itself as an object, because it can send and receive
messages and it has global properties, including a •scnpt• of built-in handlers or
commands. When this guide talks about objects, however, it usually refers to buttons,
fields, card,,, background,,, and stacks.

Object descriptors
You refer to objects using object descriptors. An object descriptor is formed by
combining a generic name with its specific designation. Generic names are stack,
card, background (abbreviated bkgnd.), button (abbreviated btn), or
field.

To refer to background buttons, you must include that designation with the generic
name (background button "buttonName"), and you must do the same for card
fields (card field "fieldName"). You can also include the default designation,
but it's not required (card button "buttonName" refers to the same button as
button "buttonName" and background field "fieldName" referstothe
same field as field "fieldName").

The only specific designation of a stack is its name. (See •stack Descriptors,• later in
this chapter.) The specific designation of all other objects (buttons, fields,
backgrounds, and cari:ls) can be the objects's name, number, or ID number. The
unambiguous form of a designation begins with an object's generic name,
immediately followed by its particular name, number, or ID number. (See Figure 3-1.)

34 Chapter 3: Naming Objects

(

(

(/

••

Card Name: l._r_n_1e _______ _.
card Number. 9 out of 40
Card ID: 5754

Card9

Contains 0 card fields. Nlntt'I card
Card nine
card •table·

Contains o card buttons.

O Can't delete card. Cardig~

Script ... t l OK J (Cancel)

Figure 3-1
Card Info dlalog box and descriptors for the same card

Object names
Names are optional for cards, backgrounds, buttons, and fields. You assign a name
for any of these objects by typing into the Name box in the objea Info dialog box,
which appears when you choose the object's Info item from the Objects menu. Objea
names can include any characters, even spaces. It's safest to put quotation marks
around an objea name when you use it in a statement (background button
"belly") to ensure that HyperCard recognizes it literally and doesn't look for a
variable or stack by that name.

+ Be careful w1tb names: It's difficult to manipulate a name that extends out of the
naming window although you can scroll it left and right (and up and down if it has
more than one line) by dragging. It's also difficult to refer by name to an object if
you put a double quotation mark in its name. Also, if you use numbers for an
object's name, HypetCard gets confused: it takes card "1812" to mean a card
whose number, rather than name, is 1812.

Object ID numbers
HypetCard generates an object ID number for each objea within a stack. This number
is unique for that type of object within its enclosing object. For example, each button
(the type of objecl:) on a card (the enclosing object) has a different ID number. Object
ID numbers never cbanse and, if an object is deleted, are not reassigned to newly
created objects (until the Hype.rCard object limit, listed in Appendix E, has been
reached). An object's ID number is its generic name, followed by the word ID (in
uppercase or lowercase), followed by an integer (for example, card id 5734).

Object descriptors 35

+ Tbe ID number of a copted object 1s different: If you copy an object and paste it
into a different enclosing object, the copy is then a different object from the
original, and it has a different ID number. For example, if you copy a card and
paste it into a different stack, the ID number of the pasted card is different from the
ID number of the card you copied. Therefore, you can't assume that you have
"moved"' the card when you copy it, paste it, and delete the original-a button that
took you to the original will probably not take you to the copy.

Because ID numbers are unique and unchanging for all objects within a stack,
HyperCard uses them internally to identify objects (for example, to identify the target
of a go command generated with the LlnkTo feature in the Button Info dialog box).
HyperCard can generally find objects faster if they are identified by ID number. Also,
if you ask for the name of an object that has no name (put the name of last
card), HyperCard returns its ID number. (See Chapter 9 for information about the
name object property.)

Object numbers
Buttons, fields, cards, and backgrounds always have numbers by which you can refer
to them An object's number represents its position within its containing object:
buttons and fields are ordered within a card or background; cards and backgrounds
are ordered within their stack. There are three ways to express an object's number: use
an integer following its generic name (card 2),_use one of the numeric constants
one through ten following its generic name (card two), or use one of the ordinal
constants first through tenth preceding its generic name (second card).

+ Descriptor phrasing: Be careful to phrase desaiptors so that they mean what you
intend. For example, using a field descriptor such as card field id 7, you
could mean that the name of the card is in the background field with ID number 7,
or you could be referring to the card field with ID number 7. HyperCard assumes
that you're referring to the card field If you want HyperCard to get the card name
from background field, enclose its desaiptor in parentheses:

card (field id 7).

Object numbers are contiguous from 1 through the number of currently existing
objects within the enclosing object: card buttons and card fields within their card;
background buttons and background fields within their background; cards within their
stack (not their background); and backgrounds within their stack. If you delete an
object, its number ii reassigned to the object following it in order, and so on for the
succeeding objeas as well.

36 Chapter 3: Naming Objects

(
Special ordnals

In addition to the ordinal constants first through tenth, HyperTalk has three
special ordinals: middle, last, and any. The values of the special ordinals are
resolved according to the number of objects in the set Middle resolves to half the
number of objects plus 1. Last resolves to the number of objects. Any resolves to
a random number between 1 and the number of objects. (The special ordinals also
work with chunk expressions, which are described in Chapter 4.)

Object numbers and tab order

The sequence of object numbers determines tab order for fields: you can move from
field to field within a background and card using the Tab key-it moves from the lowest
number field to the highest through the background fields first, then the card fields.
1be sequence also determines which button or field gets a meMage when several are
layered on top of each other (the highest numbered one is closest and gets the
message), and it determines which card or background is next or previous
within a stack.

+ Reass1gn1ng object numbers: You can reassign object numbers of buttons and
fields with the Bring Ooser and Send Farther menu commands. See the Hypercard
User's Gu1de for details.

Special object descriptors

You can use the special descriptor this to refer to the current card, background, or
stack. For example:

put the id of this card into whereFound

You can't use this with buttons or fields.

You can refer to the card or background preceding the current one, within the stack, as
previous, which can be abbreviated prev. Similarly, you can refer to the card or
background following the current one as next .. For example:

go to next background

You can refer to the card that was 01rrent immediately prior to the current one as
recent.

You use me within a script to specify the object containing the currently executing
handler. For example:

put the textHeight of me into height -- in a field's script

Object descriptors 37

..

+ Using specUll descrlptors WUb fields as contafnef'S: In all versions of HyperCard,
you can use a special object desaiptor (other than thia) to identify a field as an
object: to get or ~t its properties, or as the target of send. For example, the
following statements always work:

put the name of me into myName
send mouseUp to me

A field, however, is both an object and a container. In versions of HyperCard prior
to version 1.2, you can't use a special object desaiptor to refer to a field as a
container into which to put a value. For example, the following statement in a field
script would work only Ui HyperCard versions 1.2 and larer: ·

put "*" before line 1 of me

See Chapter 4, "Values,• for information about containers.

Stack descriptors
A stack is a HyperCard doOlment. In some cases when you're writing a saipt or using
the Me§age box, you can refer to a stack by its name alone. To do that, the stack must
be in the cunent folder, in the folder containing the Help stacks, or in the current disk
or server (and not in a folder). When the stack is located anywhere else, you must let
HyperCard know the full pathname by which it can find the stack.

A· full pathname is a concatenation of the volume name, directory name(s), and
filename, separated by colons. 1be volume name is the name of the disk or server
containing the stack. 1be directory names are the names of all the folders, if any, that
HyperCard has to open to get to the stack. (HypeiCard sometimes might have to open
several folders because folders may contain other folders to any depth.) The filename
is the stack name .

. mnemosynf:?:.61 g Al :f'ypestuf!:.d1egnost1 c~
I I I I

volume directory directory ftle

I I I
Disk or server Folder at
name; desktop disk level
level

Inner folder: Stack name
1here can be ·
any number
of levels of
folders Inside
o1her folders

Figure 3·2
A pathname

38 Chapter 3: Naming Objects

(

1be only unambiguous way to refer to a stack in a script or in the Message box is the
word stack followed by its name in quotation marks. When you refer to a stack you
can use the full pathname to specify the stack's exact location: qo to stack
"myDiak :myFolcter :mystack". You can also type the full pathname on the stack
search path card in the Home stack. If HyperCard can't find a stack you request, it
displays a dialog box that allows you to click yoor way through the direaories until you
reach the stack. HyperCard notes your path and, once you've found the stack,
automatically records its full pathname on the stack search path card in the Home
stack.

+ Amtrlguous stack descriptors: HyperCard will try to derive a proper stack name
from an ambiguous expression in a place where it expeas a stack descriptor, but it
cannot always succeed In that case, HyperCard displays the direaory dialog box to
allow the user to find the stack file.

Naming a stack
You must name a stack when you create it. (For all other objects, names are optional.)
You create a stack with the New Stack command in the File menu. A dialog box appears
in which you type the name for the new stack. (See Figure 3-3.)

lo 81en's stects I
D 06 ~ymbol teblt Q ~Prajna

Q Beta tymbols
D tymbol tebl• E,jec1
D 1ett Drlue

0
New stack name: New

I short Cancel

181 CGPt curnnt background

Figure 3-3
New Stack dialog box

Combining object descriptors 39

Combining object descriptors
To refer to objects within a stack, you combine object descriptors using either of the
prepositions of or in between an object descriptor and that of its enclosing
object. Combined object descriptors proceed left-to-right from the smaller to the
larger:

first field of last card of this background

nus syntax lets you refer directly to any object within the current stack-you don't
have to go to the card containing a particular field to get its contents or put something
into it For example, if the current card were the first in the stack, you could still
execute the following command:

put the selection into field "undoHolder" of last card

You cannot refer to an object within another stack. You have to go to the stack before
you can address its objects directly.

You can further combine field descriptors with chunk expressions, which are
described in Chapter 4, •values.•

Chapter summary
Here is a summary of the material covered in this chapter:

o You refer to a HyperCard object using an object descriptor-its generic name and
its specific designation.

o Cards, backgrounds, buttons, and fields always have unique ID numbers that never
change, they always have object numbers that may change, and they may
optionally be given names~

o You can use special ordinals-middle, last, and any-ta refer to objects by
their position within their enclosing object

o You can refer to the current card, background, or stack with this. You can refer to
the card or background preceding the current one with previous, and to the one
following the current one with next • You can refer to the card that was current
prior to the cunent one with recent. .

o The term me, in a saipt, refers to the object containing the script

o The only unambiguous object descriptor for a stack is the word stack followed by
the stack's filename within quotation marks.

o You can combine object descriptors to refer directly to any object in the current
stack. ·

40 Chapter 3: Naming Objects

(

Chapter 4

Values

41

..

•

This chapter describes the expressions you use to refer to values: the information on
which HyperCard operates. It aJso describes HyperTalk's operators, the elements of
the language that you use in expressions to manipulate and calrulate values.

HyperCard does not have data types: values are stored simply as sb'infP of characters.
(Numbers a.re sometimes represented internally in a mo.re efficient format, as
described later in this chapter.)

An apression is a description of how to get a value. It may be as simple as a single
source of a value, or it can be a ·complex expression built with operators.

Sources of values
The sources of values in HyperTalk are

o constants

0 literals

o functions

o properties

o numbers

o containers

These sources of values a.re the m~ basic expressions.

Constants
A constant is a named value that never changes. It's different from a variable in that
you can't change it, and it's different from a literal in that its value is not always the
string of characters making up the name. For example, the constant empty is the
same as the null string (the literal ""), and the constant space is the same as the
literal " ". All HyperTalk constants a.re described in Chapter 10.

Literals
A literal is a text SUing whose value 1s the string, exactly as it appears. Literals a.re
denoted by double quoration marks at both ends of the string. (You must use the
straight double quoWion mark, not the printer's double quotation marks typed with
the Option-left bracket and Option-Shift-left bracket keys.) Any character except
double quotation mark, return, or •soft• return (generated by pressing Option­
Return) can be part of a literal string. A literal can be of any length. For example,
"This is a literal string" is a literal.

42 Chapter 4: Values

(
+ Unquoted luerals are not recommended: In some places you can use an unquoted

single word as an unquoted literal (as long as the word doesn't begin with a digit).
The value of an UJKiUOted literal is the literal of itself-as though you had entered
put "fred" into fred. Butunquotedliteralsarenotallowedincomplex
expressions (those built with operators). It's always safer to put double quotation
marks around a word you want HyperCard to take as a literal.

Functions
A function is a named value that HypeiCard calculates when the swement in which
the function is used executes. The value of a function varies according to conditions of
the system or according to the value of parameters you pass to the function when you
use it

For example, the built-in function named the time returns the current time in
place of itself in a Hypetralk statement:

put the time into msq

If the current time were 5:12 P.M., the above example would put 5: 12 PM into the
Message box.

You can also define your own functions in saipts using the function handler structure
desaibed in Chapter 5. .

All built-in Hypetralk functions are described in Chapter 8.

Properties
A property is a named value representing one of the defining characteristics of a
HypeICard objea or the HypeiCard environment Different types of objects have
different properties, according to their purpose. For example, fields share a set of
properties, many of which are different from the set shared by buttons.

You get the value of mmt properties by using the property name as a function in a
script or in the Message box. For example, the following statement retrieves the
location property (two integen separated by a comma) of button 1, and it puts the
value into the Message box:

put the location of button 1 into msq

You can also chanee most properties with the set command. All HypeICard
properties are desaibed in Chapter 9.

Sources of values 43

Numbers
A number in HypeiCard is a character string consisting of any combination of the
numerals 0 through 9, representing a decimal value. A number can include one period
(.) representing the decimal point, but it can have no other punctuation nor a space
character. A number can be preceded by a hyphen or minus sign to represent a
negative value (HyperCard doesn't recognize a plus sign as part of a number).
Numbers that consist only of numerals are integers. Numbers that include a period are
real, and, when used with mathematical operators, are manipulated with floating­
point operations.

Standmd Apple Numerics Environment

HyperCard performs mathematical operations with Standard Apple Numerics
Environment (SANEl'I) routines, but you don't have to worry about how to represent
the values. You always enter numbers into HyperCard containers as numeric strings.

When performing a mathematical operation, HyperCard automatically converts the
strings representing the numbers to SANE numeric values. If you put the result of the
operation into a variable, it's stored as a SANE numeric value; if you put it into a field
or the Message box, HyperCard automatically converts it back to a string with a
precision of up to 19 decimal places. The same conversion takes place if you put the
variable into a field or the Message box at a la~ time, or if you use it in a way that
implies a string (character 2 of varName). So although SANE values are used
internally for handling numbers with speed and precision, you can always think of
Hypetralk numbers as strings.

Precision

The precision of the decimal string. resulting from putting a SANE numeric value into
a field or the Message box, is controlled by the numberFormat global property (see
Chapter 9 for a detailed description). For example, the command

set numberFormat to 0.00

would result in a string with at least one digit to the left of the decimal point and exactly
two digits to the right of the decimal point

The numberFo.r:mat ·property does not affect the precision with which mathematical
operations are exea1red, only the precision with which the results are displayed When
you put a number faro a field or the Message box to display it, however, HyperCard
converts it to a dedmtl Sb'ing. So any extra precision it may have had (beyond the
numberFormat specification in effea at the time) is l~L

44 Chapter 4: Values

Nt.mber handing

The following example shows how number handling works. These three Hypeffalk
statements put the constant pi into a variable, set the numberFormat property,
and put the value of the variable into the Message box, respectively:

put pi into joe
set numberFormat to 0.00
put joe into msg

The result shown in the Message box is 3.14159265358979323846. In this case, pi is
entered into the variable joe as a string, and it remains a string, so numberFormat
has no effect. If, however, you perfonn a mathematical operation on the variable,
HyperCard converts it to a SANE numeric value:

put pi into joe
add o to joe
set numberFormat to 0.00
put joe into msg

The result shown in the Message box is 3.14. In this case, numberFormat takes effect
when j oe is converted from a SANE numeric value to a string as it's put into the
Message box.

(Containers
A oontaJner in HyperCard is a place where you can store a value. Containers include
fields, variables, the current selection, and the Message box. Containers other than
fields can store values of any length, including 7.ero length. Containers other than the
Message box can have more than one line in them; each line ends with a return
character (which can be the only character in the line).

Fields

A field is a HyperCard object for holding and displaying editable text. Fields are
unique objects because they are also containers-a field's value is the text string it
contains.

You can refer to fields· directly by name, number, or ID number. (See Chapter 3,
"Naming Objects,• for more description ofhow to refer to fields.)

Fields belong to cards or to backgrounds; the text held by a field, however, always
remains with the card, even if the field belonS' to the background A field can contain
up to 32,000 characters, including spaces, return characters, and other invisible
characters. If you put more than that many characters into a field, the extras are
ignored.

Sources of values 45

••

Text in fields always remains editable-you can search through it with the find
command, and you can change it with the I-beam pointer of the Browse tool
(assuming the field isn't locked).

+ About Patnt text: You can also put text onto cards and backgrounds as PaJnt
text-pictures that look like characters. Paint text can't be edited once it has been
fixed onto the card or background (although you can paint over it or erase it as you
can any part of a picture). See the HyperCard User's Gutde for more information on
Paint text.

Variables

A variable is a named container that has no visible representation other than its
name. Its value is a character string of any length. The variable name is a Hypeflalk
identifier. An identifier can be of any length, it always begins with an alphabetic
character, and it can contain any alphanumeric character plus the underscore
character (_).

You assign a value to a variable with the put command It is illegal to read from a
nonexistent variable-you must create it by putting something into it before you use it.
The constant empty, the null string, counts as something to put into a variable.

Hype!Card assumes that an unquoted word used in an expression .is a variable when it
can't interpret the word as some other source of value (the string is not a function,
constant, property, or other container name). If you haven't put a value into a
variable by that name, Hype!Card treats it as an unquoted literal.

Scope of vartables: Hype!Card has both local and global variables. A local variable
is valid only during the current invocation of the currently executing handler. You
don't need to declare a local variable before you use it-just put something into it. A
global variable is valid for all handlers. You must declare a variable as global by using
the global keyword in each handler before you use the variable:

global useMeEverywhere,useMeToo

HyperTalk assumes a variable to be local unless you specifically use the global
keyword

For more details on the global keyword, see Chapter 5.

Parameter vClltables: You create parameter variables when you put their names after
the message name in a handler:

on messageName firstParam,secondParam

When the handler is called, these variables are assigned the values, if any, of the items
in a comma-separated list of expressions following the message name in the calling
statement. Parameter variables are local to their handler. Chapter 2, •Handling
Messages,• gives more explanation of parameter passing.

46 Chapter 4: Values

(

..

Th• variable It: The local variable named It is the destination of the commands
get, ask, answer, and read For example, get the name of field 1 puts
the value of that bac;kground field's name into It. Convert puts its results into It
if another destination isn't specified

For information on commands, see Chapter 7.

The selection

The selection is a container that holds the currently selected area of text You can put
values into, before, or after the selection or put the selection (or any chunk of the
selection) into another container.

Starting with this selection ...

-··-··---·· .. -··-·-···-·-··-··-·-··-··-··-··-

... the HyperTalk command ...

i-----·--·---------·
... produces this result. IJ.b!..lll.lli.1.2.nl!..M.Y.Wi.lJto.m.li!.-

µnmg.e,..YlJ.ng_.$.K1..u.:iOt..x.:OS'"""h . .._ ___ ,

Figure •-1
Manipulating the selectfon

For example, if the phrase I 'm the selected text is selected, and you issue the
command

put the selection into the Message box

then I'm the selected text appears in the Message box. (Both instances of
the word the in the example are optional.)

Sources of values 47

+ Found te:x:t Lm't selscted: Text found by the find command is indicared by a.box
around it-it is not placed into the selection. HyperTalk doesn't have a construct to
indicate directly where the text was found, but you can use contains and other
operators to locate the text. The find command is descnbed in Chapter 7;
operators are described later in this chapter.

You must select some text with the mouse or the click or draq coinmand before ,
you can manipulate the selection container.

The Message box

The Message box is a special container. Typically, you use the Message box to send a
HyperTalk message directly to an object or to HyperCard The Message box is a
single-line· container. If you put more than one line from a multiple-line container
into the Message box (put card field 2 into msq), only the first line is copied
into the Message box.

....,
Rgure.&·2
The Message box

The Message box is the default destination for the put command

If you put something into the Message box when it's hidden, HypeiCard shows it
automatically. You can toggle the Message box between being hidden or shown by
pressing Command-M.

The Message box can be specified by just the word messaqe or its abbreviation
msq. Optionally, you can follow either of theise with either box or window, and you
can precede either with the word the.

Complex expressions
You can build complez expressions using viaiues and operators. As a complex
expression is evnnied, the values of its basic components are manipulated to derive a
final value in place of the entire expression. Cibe original values are not changed in
the process.) Complex expressions are evaluared according to rules of precedence,
and restrictions apply to the values that can be used, depending on their operators.

48 Chapter 4: Values

/ "' I

~

(

+ Chunk expressions are dijferent: Chunk expressions are a different type of
expression: they designate pieces of the strings representing values. Chunk
expressions are described in the last section of this chapter.

Factors
A factor is a single element of value in an expression. 'The following constructs are
factors:

o a simple source of value

o an expression enclosed in parentheses

o a factor (which must evaluate to a number) with a hyphen or a minus sign in front of it

o a factor (which must evaluate to true or false) with the word not in front of it

An expression can be just a factor, or it can be any two expressions with an operator
between them.

'Ibe difference between a factor and an expression is important to the syntax of
HyperTalk commands and functions. Where a built-in HyperTalk command
parameter permits an expression, you can specify as complex an expression as you
wish. HyperCard derives the final value before passing the parameter to the
command. For example, the add command accepts a complex expression as its fust
parameter:

add 46+12*monthlyRate to total

In contrast, where a built-in HyperTalk function requires a factor, HyperCard will take
the value of the fust factor as the parameter to pass to the function. For example, the
sqrt function takes the fust factor following its name as its parameter. This is
illustrated by the following expression, which you can type into the Message box or use
in a command:

the sqrt of 4 + 12

In the example, the sqrt function takes the factor 4 as its parameter, rather than
the value of the expression 4 + 12. So the entire expression evaluates to 14, rather
than 4, which would be the value if sqrt accepted an entire expression. (To specify
the entire expression -4 + 12 as the parameter, you can enclose it in parentheses,
which turns it inro a faaor.)

+ nuo hyphens.-,. Indicate a comment: You can put a hyphen in front of a
factor to aeare another factor, and you can put another hyphen in front of that and
still have a factor. However, two hyphens in sequence indicate a comment, so you
must separate the hyphens with a space or enclose the inner factor in parentheses
for HyperCard to recognize the construct as a factor.

HyperTalk's built-in commands and functions are described in Chapters 7 and 8,
respectively.

Complex expre§lons 49

••

HyperTalk operators
Operators a.re used in complex expressions to derive values from other values.
Operators fall into several categories:

o Arithmetic operators work on numbers and result in numbers.

o Comparison operators work on numbers, text, and Boolean values (true or
fa.lse) and result in Boolean values.

o Logical operators work on Boolean values and result in Boolean values.

o Text operators manipulate text strings and result in text strings.

Parentheses alter the order of expression evaluation.

Operator precedence

Different operators have different orders of precedence that determine how things get
evaluated. The order in which HypetCard performs operations is shown in Table 4-1.

Table •·1
Operator precedence

Order Operators

1
2

not
3 "'
4 * I div mod
5 +-

6 & &&

7 > < <• >• s Ci!:
is in contains
is not in

8 - is is not <>
9 and
10 or

-

Type of opetator

Grouping
Minus sign for numbeis
Logical negation for Boolean values
Exponentiation for numbeis
Multiplication and division for numbers
Addition and subtraction for numbeis
Concatenation of text
Comparison for numbers or text
Comparison for text
Comparison for text
Comparison for numbers or text
Logical for Boolean values
Logical for Boolean values

Operators of equal pieeedence are evaluated left to right, except for exponentiation,
which goes right to left. Por example, 2 "'3"' • means •3 raised to the fourth power,
then 2 raised to th.a power,• wheleu 1-2-3 means •2 subtracted from 1, then 3
subtracted from that.• If you use parentheses, HyperCard evaluates the parenthetical
expression first.

so Chapter 4: Values

K

_~>"'

/
!

(

(~

Operators and expression type

The operator you use must match the values you're using it with: "tom" + "cat n

would cause an error, because numeric values are required for addition. On the other
hand, tom + cat would be acceptable if tom and cat were names of containers
with numbers in them, and "tom" & "cat" would be acceptable because the &

operator works on text strin~ (the result of this operation would be the text string
tome at). Text operators work on any value, because any value in HyperTalk can be
treated as a text string; they always yield text stein~.

Because numeric values are automatically converted to strin~ when necessary (see
•Numbers• earlier in this chapter), they can be manipulated by both text operators
and arithmetic operators. For example, 5 & 78 yields 578, and 5 + 78
yields 83.

Comparison operators try to treat both of their operands as numbers; if they can't be
regarded as numbers, HypetCard treats them as text and does a lexical comparison.
For example, 9 < 10 results in true, because 9 is less than 10 arithmetically.
But, "9x" < "10x" results in false, because the operands can't be regarded as
numbers and 9 is greater than 10 lexically.

Table 4-2 is a list of all the operators in HyperTalk.

Table A·2
HyperTalk operators

Operator

()

+

*

I

div

Description

Grouping: Expressions within the innermost pair of parentheses are
evaluated first. Parentheses don't force a new level of evaluation; they
change the sequence in which the current level of evaluation
proceeds.

Minus: Arithmetic operator that makes negative the number to its
right, or, if it is between two numbers, subtracts the one on the right
from the one on the le~

Plus: Arithmetic operator that adds two numbers it appears between.

Multiply: Arithmetic operator that multiplies two numbers it appears
betM:en.

Divide: Arithmetic operator that divides the number to its left by the
number to its right.

Divide and truncate: Arithmetic operator that divides a number to its
left: by a number to its right, ignoring any remainder, resulting in just
the whole part.

Complex expressions 51

Table 4-2 (continued)
HyperTalk operato"- _

mod

not

and

or

-
is

<>

is not

<

>

Modulo: Arithmetic operator that divides the number to its left by the
number to its right, ignoring the whole part, resulting in just the
remainder.

Exponent: Arithmetic operator that raises the number to its left to the
power of the number to its righL

NOT: Logical operator that results in true if the expression on its
right is false, and false if the expression on its right is true.

AND: Logical operator that results in true if both the expression to
its left and the expression to its right are true.

OR: Logical operator that results in true if either the expression to
its left or the expression to its right is true.

Equal: Comparison operator that results in true if the expression
to its left and the expression to its right have the same value. 'Ibe
expressions can be arithmetic, text string, or logical.

Is: Same as •.

Not equal: Comparison operator that results in true if the
expression to its left and the expression to its right have different
values. The expressions can be arithmetic, text, or logical.

Not equal: Same as <>. The * character is obtained on the
Macintosh keyboard by pressing Option-equal (•).

Is not: Same as <>.

Less than: Comparison operator that results in true if the
expression to its left has ~ value than the one to its righL 'Ibe
expressions can be both arithmetic or both text.

Greater than: Comparison operator that results in true if the
expression to its left has greater value than the one to its righL 'Ibe
expressions can be both arithmetic or both text.

Lesuhan or equal to: Comparison operator that results in true if
the expression to its left has less value than the one to its right or the
same value. 1be expressions can be both arithmetic or both text.

Leu than or equal to: Same as <•. 1be S character is obtained on
the Macintosh keyboard by pressing Option-comma (,).

>• Greater than or equal to: Comparison operator that results in true
if the expression to its left has greater value than the one to its right or
the same value. The expressions can be both arithmetic or both text.

52 Chapter 4: Values

(

(

Table 4-2 (continued)
HyperTalk operators_.

contains

is in

is not in

&

&&

Greater than or equal to: Same as >•. The ~ character is obtained
on the Macintosh keyboard by pressing Option-period (.).

Contains: Comparison operator that results in true if the text
string yielded by the expression on its right is found in the text string
yielded by the expression on its left

Is in: Converse of contains; comparison operator that results in
true if the text string yielded by the expression on its. left is found in
the text string yielded by the expression on its right

Is not in: Opposite of is in; comparison operator that results in
true if the text string yielded by the exprssion on its left is not found
in the text string yielded by the expression on its right

Concatenate: Text string operator that joins the text string yielded by
the expression on its left to the text string yielded by the expression
on its right

Concatenate with space: Text string operator that joins the text string
yielded by the expression on its left to the text string yielded by the
expression on its right, with a space between them.

Chunk expressions
You use a chunk expression to specify a particular piece-a cln1nk of the value of any
source of value: constant, literal, function, property, number, or container. Chunk
expressions can specify any character, word, item, or line in the source.

Syntax
The form of a chunk expression designates the smallest part of the chunk first, then
specifies each larger, enclosing part You separate each part of the expression with the
preposition of or its synonym in. For example,

first character of second word of third line of field l

specifies a single c:bar.acter in the field.

You modify the specification of the kind of chunk-character, word, item, or line-­
with the number of the particular one you want 1be number can be an ordinal constant
preceding the kind (tenth word) or an integer following the kind (line 2). You
can also use a numeric constant in place of the integer (line two), or any numeric
expression that resolves to an integer.

Chunk expressions 53

You can use the special ordinals middle, last, and any to specify a chunk within
its enclosing part. HyperCard resolves a special ordinal to a number using the total
number of chunks onhe spec:llied type within its enclosing part: middle resolves to
one more than half the total, last resolves to the total, and any resolves to a
random number between 1 and the total. For example,

put "Joe" into any word of line 2 of field 1

replaces a random word in the line with Joe.

It isn't necessary to spetjfy the enclosing parts of the source in strict, hierarchical
order. You can designate any smaller part within any larger part:

character 35 of field 1

And, although you must go left-to-right from smaller to larger, you don't have to
specify any smaller part than you want:

third item of It

Characters
Characters are designated by the chunk name character (or char). Spaces count
as characters in any part of a source except words. (Words are delimited by spaces.)
Commas count as characters except in items. Otems are delimited by commas.)
Return characters count as characters in whole sources and items. (A return character
delimits the last word on the line as well as the line irself.)

For example, if field 6 contains the phrase

It was the turtle, not I, who spilled the beans.

the chunk expression

character 25 of field 6

yields a comma (the one after not I).

Words
Words are compoeed of any characters, intjuding punauation, delimited by spaces,
and are designalld by the chunk name word:

word 2 of "Where's my cubicle?"

yields my.

54 Chapter 4: Values

11~',,,

~;

(

c::

Items·
Items are composed of any characters, including punctuation, delimited by commas,
and are designated by the chunk name item:

item three of "cat's, rat's, bat's, qnat's"

yields• bat's• (including the space character in front).

Lines
Lines are composed of any characters, including punctuation, delimited by return
characters, and are designated by the chunk name line.

The chunk name line strictly denotes text between the beginning of a container and
the first return character, between two return characters, or between the last rerum
character and the end of the container.

It doesn't matter how many display lines it takes to display one container line. For
example, a single line in a field might ocaipy several lines on the display if the text
wraps around (which it does if the field isn't wide enough to accommodate the whole
line).

Rgure.a-3
Liiee In a ftek:I

Chunk expressions 55

Ranges
The preposition to in a chunk expression specifies a range of a chunk within the
larger chunk:

word 1 to S of line 2 of field "fred"

The numbers given in a range are inclusive. For example:

char 2 to S of "HyperTalk"

yields yper.

You specify the range with integers (or with comtanrs or numeric expressiom that
resolve t6 integers) following the chunk name, rather than with ordinal numbers
preceding the chunk name. That is, you must say char 1 to 3 of "qeorqe"; you
can'tsay first to third char of "qeorqe".

When the first number in a ranee is greater than the second, you get the first chunk
only. For example, char S to 3 of "HyperTalk" yields the character r.

Figure 4-4 shows some chunk expressiom, labeled in various valid forms of chunk
expression syntax, in a hypoc:hetical card field 1.

lhlrdword
of llne 1 of
card fteld 1 --.... ---_-_-:..-:..-:..~-------...._

Char4to6
of llne 3of
cardfteld 1

Tenth word of
third llne of
card fteld 1

Figure•-•

This is Mi line.
--------· ~ ----------------And here is ~ ,:, 21JJJWLQfJ.....,_...I- Character 2
----~-·'::t!iiir! :~'iJt..tt~f! ill. ----- of word 4 of

... 3:id!Y.9!1,_HIJ!.<!1!1.!t.~L---- ~':J~ 1 .1ila.hctt ytr~_ctrs>Y.rtct __
in the field.

--A&rei;. ·1in&'Wiiii 1t&n:.;;-----
---h~-h----,~1~--------__ VJ_~--~,.i~'MI\.-------
--~!Qi~l!tltC! ~-Ci9M~JS.: ------

Item 2of
fourth line of
card fteld 1

Chunk expralllcrw

56 Chapter 4: Values

~/

(

(

..

Chunks and containers
Combining a chunk -expression with the objea descriptor of a field lets you refer
directly to any piece of text down to a single charaelet within the current stack:

put char 2 of line 2 of field 1 of last card

+ You can't specify chunks in another stack: You can't combine a stack name with a
chunk expression; you must go to the stack first

Chunks as destinations as well as sources

Chunk expressions can be used to specify a part of the value in a container wherever a
container name is used. So, the chunk can specify the destination of a value-where
you're putting it-as well as the source of a value-where you're getting iL For example,

put "George" into word 3 of field 1

replaces only the third word in the field with the value George, leaving the rest of the
field's former contents intact

Nonexistent chunks

If you specify chunks that don't exist as sources of values, you get nothing. That is,

put char 5 of "hey" into msg

puts empty into the Message box.

If you specify a nonexistent chunk as the destination of a put command, the outcome
depend,, on the kind of chunk. If you put a value into a character or a word that doesn't
exist in a container, you put just the value. That is, if field 1 is empty, the statement:

put "hey" into word 5 of field 1

puts hey (with no characters before it) into background field 1.

If you put a value into a nonexistent line, however, HyperCard puts in a retum
charaaer, and if you put a value into a nonexistent item, HyperCard puts in a comma.
On both cases, you put a null chunk delimited by its particular delimiting character.)
For example, if field 1 is empty, the statement:

put "hey" into line 5 of field 1

puts four return characrers (four null lines) followed by hey into background field 1.
Similarly,

put "hey" into item 5 of field 1

puts four commas (four null items) followed by hey into the first line of background
field 1.

Chunk expressions 57

Third character of second word of 1hlrd tine ...

a
Character

is is line one • _
is is line two .

word ..--T-ha-t-•s'""':;a.m,...·:·:~.,+-:,~:-~~.·-, -th-o-u-gh-t-.
..
:.2~·:::~1ltll~M~l!f-.~

Line

--- ---------------
... of ftrst fteld of fourth card.

Card stack

Flgunt A-I
Combining chl.nlcs and objec1I

Chapter summary
Here is a summary of the material covered in this chapter:

o HyperTaJk's values can always be treared as strings of characters.

o The most basic expressions in HyperTalk are constants, literals, functions,
properties, numbem, and contamers. .

o Containers- fleldl. variables, the selection, and the Message box-are places to
store values.

o Complex expressions are built with values and operators.

o Operators are used to manipulate and calculate values.

o Chunk expressions can specify any chunk-character, word, item, or line-either
in a source of value or as the destination of a put command

58 Chapter 4: Values

!~-----'\

\~

(

Chapter 5

Keywords

59

This chapter desaibes all of HyperTalk's keywords.

A keyword is a wo~_whose meaning is predefined in HyperTalk. You cannot redefine
keywords as variable names. Keywords are not sent as messages when they exerute in
scripts, nor can they be used in the Message box (except for send). Some keywords
provide the structure for handlers; others conuol the flow of exerution within
handlers.

HyperTalk has two kinds of handlers: message and function handlers, denoted by the
initial keywords on and function, respectively. Message and function handlers
are defined in the same way (except for the initial keyword), but they differ in how they
are invoked and in how they return values.

In this chapter, the heading for each keyword is followed by a syntax statement Words
in italic are general elements. Square brackets (I J) denote optional elements (don't
type the square brackets).

Keywords in message handlers
The on keyword identifies a HyperCard message handler. Message handlers are
written to define your own messages, or to modify or redefme what happens in
response to any message (including a HyperTalk command). The general syntax ofa
message handler looks like this:

on messageName [parameterList]
[statementList]

end messageName

MessageNa1M is an identifier: a string starting with a letter and containing no spaces
or punctuation marks except underscore; parameterlist is a series of 7.e1'0 or more
parameter variables (separated by commas if more than one); and statementlist is
zero or more HyperTalk statements.

The handler dictates the method by which its object responds to messageName. When
somebody sends a message called messageName to an object, Hype!Card checks all
of that object's message handlers to see if it has one named messageName. If so, the
object responds according to that handler, and the message is sent no further
(assuming the saipt has no pass statement, desaibed later in this chapter). If the
object has no haodler to match messageNa""1, HypeICard passes the message to the
next object in the bier:archy. -

+ You can ~ Hypeflalll.: If you name a message handler the same as a built-in
command, yours ovenides the built-in one if yours is anywhere along the object
hierarchy between the object sending the message and HyperCard.

Program flow runs through the handler until it encounters an end, exit, pass, or
return statement (discussed later in this section). A message handler can return a
value through the built-in function the result (discussed in Chapter 8).

60 Chapter 5: Keywords

(

..

On
on messageName [parameterlistl

The on keyword marks the beginning of a message handler and connects the handler
with a particular message. MessageName is the first word of the message to which the
handler responds, and it is the name of the handler.

The optional parameterlist allows the message handler to receive some values sent
along with the message. This list is a series of local variable names, called parameter
variables or formal parameters, separated by commas. When the message is sent,
each source following the message name is evaluated; when the handler receives the
message, each value is plugged into the parameter variable that appears in the
corresponding position following on messageName, the first value in the list going
into the first parameter variable, and so on.

Chapter 2, •Handling Messages,• explains more about parameter passing. See also
the pa ram, params, and paramCount functions in Chapter 8, •Functions.•

End
end messageName

The end keyword begins the last line of a handler- it is reached when all of the
handler's statements have been executed (except for any bypassed conditional
blocks). When the end statement is reached, the message that initiated execution of
the handler is sent no further. If the message that initiated this handler's execution was
part of some other handler, control passes back to the other handler.

Exit

exit messageName
exit to HyperCard

The exit messageName statement ends execution of the handler.

The exit to Hypezj:ard form makes program flow return directly to HypeJCard,
bypassing any pending handlers that have not finished executing.

Keywords In message handlers 61

..

Pass
pass messageName

The pass statement ends execution of the handler and sends the entire message that
initiated execution of the handler to the next object in the hierarchy. (Ordinarily, a
message is sent no further than the object containing the executing handler.)

Re tum
return expression

The return statement ends execution of the handler and, when it appears within a
message handler structure, places the value of expression into the HyperTalk function
the result.

The value of the result set by the return statement is valid only immediately
after it executes; each new statement resets the result. (See "Result• in Chapter 8,
"Functions,• for examples.)

Message handler example
The following example shows a handler that originates a message which in tum
initiates execution of a second handler. (The second handler could be in the same
script as the first or anywhere farther along the object hierarchy.)

on mouse!Jp
heyNow 5,10 -- heyNow is the message name that's sent

end mouse!Jp

on heyNow timeVar,timeVar2 --Handler name is heyNow, matching message name
play "boing" tempo 200 "c4e c dq c f eh" -- Happy Birthday
wait timeVar seconds
play stop
play "harpsichord" "ch d e f g a b c5w"
wait timeVar2 seconds
play stop

end heyNow

Execution of the ttr. handler is initiated when its object receives a mouse Up
message. The ma\laeUp could be generated by the user clicking the mouse or typing
mouseUp in the Message box and pressing Return. It could also originate from
another handler executing the statement mouseUp or could be sent explicitly to the
handler's object with a send command.

62 Chapter 5: Keywords

(

When the mouseUp handler executes, it sen<b its one command statement (heyNow
5, 1 O) as a me,,sage, fll3t to its own objea. The message name (the fust word of the
message) matches the handler name (the word following on in the fust line of the
handler), so the statements in the second handler begin executing. (If the current
object had no heyNow message handler, that object would pass the entire message
on to the next object in the hierarchy.)

The values of the parameters following heyNow in the first handler are p~d into
the. parameter variables following heyNow in the second handler. So when the
second handler is executing, timeVar has the value 5, and timeVar2 has the
value 10.

Keywords in function handlers
The function keyword identifies a HyperCard function handler. You can use this
structure to define your own functions, which then can be called from any place in a
statement where their values are needed. (User-defined functions are called like built­
in HyperCard functions except that you must always use parentheses-see •Return,•
later in this section.)

Llke message handlers, function handlers cannot be nested inside each other (or
inside message handlers). The general syntax of a function handler looks like this:

function functtonName [parameterLlst]
statementLlst

end functtonName

Funct1onName is an identifier: a string starting with a letter and containing no spaces
or punauation marks except underscore; parameterl.lst is a series of zero or more
parameter variables separated by commas; and statemenll.lst is zero or more
Hypetralk statements.

User-defined function handlers use the objea hierarchy in the same way as do
message handlers. That is, when the function name appears in a statement or in the
Message box, HyperCard searches through all of the scripts along the current object
hierarchy for a matching function handler. If a match is found, the function handler
executes. If none is found, the function call is passed to HyperCard; if there is no built­
in function of that name, HyperCard displays an error dialog box.

+ You can OWf'9'fde Hyper'I'alll: If you name a function handler the same as a built-in
function, yow:a overrides the built-in one if it's called with the function call syntax
that uses parenlbeses. Of cowse, your function handler must also be in the script of
an object lower in the hierarchy than the originator of the function call. You can
make calls to built-in functions using the function call syntax with the preceding
the function name, which bypasses any function handlers and always invokes the
built-in function. ·

Keywords In function handlers 63

Program flow runs through the function handler until it encounters an end, exit,
pass, or return statement (discussed later in this section). A function handler
returns a value directly into the statement in which its name was used

Function
fun ct ion juncttonName [parameterllst]

The function keyword marks the beginning of a function handler~ connects the
handler with a particular function call. FunctilmName is the function call to which the
handler responds, and it is the name of the handler.

The optional parameterllst allows the function handler to receive some values sent
along with the function call. This list is a series of local variable names, called
parameter variables, separated by commas. When the function call is made, each
source appearing between parentheses following the function name is evaluated; when
the handler begins to execute, each value i5 plugged into the parameter variable that ·
appears in the corresponding position following function functionName, the first
value in the list going into the first parameter variable, and so on.

For more details on passing parameters to function handlers, see •Return• later in this
section.

End
end juncttonName

The end statement is the last line of the handler, reached when all of the handler's
statements have been executed (except for any bypassed conditional blocks).

When the end statement is reached, control passes back to the handler containing
the function call that originated the function handler's execution.

exit junctfonNtlflw
exit to HypezCard

'The exit jimclloflName statement ends execution of the handler.

The exit to HyperCard fonn makes program flow return directly to Hype!Card,
bypassing any pending hanc:Uers that have not finished executing, including the
handler containing the function call.

64 Chapter 5: Keywords

0

(

Pass
pass functtonName

The pass statement ends execution of the handler and sends the entire function call
that initiated execution of the handler to the next object in the hierarchy. (Ordinarily,
a function call is sent no further than the object containing the executing handler.)

Return
return expression

The return statement ends execution of the handler and, when it appears within a
function handler structure, dictates the ren.imed value of the function.

The value of expression replaces the function in the calling statemenL

The function appears in the calling statement in the form
functtonName < expresstonList) :

put square(l?) into card field 1

Expresstonltst is a series of 7.eto or more exp.res,,ions separated by commas whose
values are assigned to the parameter variables in the parameteri.tst of the function
handler. In the above example, the e:x:presstonLtst comprises only the number 17.

A user-defined function handler that would respond to the function call example
square (1 7) , shown above, is

function square x
return x * x

end square

In the example, the function handler has one parameter variable to receive one value
passed to it by the calling statemenL The value 17 is passed to the function handler
where it is assigned to the parameter variable x; the value of x * x is returned by
the return statement, replacing square (1 7) in the calling statemenL So, the
effect of the calling statement is to put the value 289 into card field 1.

+ Panmtbeses f8tlU"'8d: User-defined functions are always followed by parentheses
(which are empty if there are no parameters to pass). Unlike built-in functions
(explained in derail in Chapf.Cr 8), user-defined functions can't be called with the
or of.

Keywords In function handlers 65

Function handler example
The following function handler detennines whether a number pas.!Cd to it as a
parameter is even or odd, reruming the constant true if it's even or false if it's
odd:

function evenNumber numberPassed
return numberPassed mod 2 is 0

end evenNumber

A calling statement that would invoke the evenNumber function handler could be
one like the following:

if evenNumber(numberVariable) then add l to evenNumberCount

In the calling statement, numberVariable can be the name of any variable or
other source of value (including an acrual number). HypeiCard evaluates
numberVariable before it passes the function call along the hierarchy, and its value
is given to the parameter variable numberPassed when the evenNumber function
handler is found. The part of the calling statement following then is arbitrary-the
point of the example is to show how the funaion handler receives a value, examines it,
and returns another value into the calling statement, based on the result of its
execution.

Repeat
The repeat structure causes all of the HyperTalk statements between its first and last
lines to execute in a loop until some condition is met or until an exit statement is
encountered. The general syntax of a repeat structure looks like this:

repeat controlForm
statementLtst

end repeat

ControlForm is one of the forms of the repeat statement desaibed below, and
statemenll.1st is any number of HyperTalk statements. Repeat strucrures can be used
only within message handlers or function handlers.

+ Note: If you Waal to try the examples in Chis chapter, be sure to put them within handlers.

Repeat
The repeat statement is the first line of a repeat structure. It has five fonns
differentiated by the second word of the statement Additionally, the repeat with
form has two variations.

66 Chapter 5: Keywords

Repeat forever

repeat [forever)"

The loop repeats forever, or until an exit statement is encountered (whichever
comes first):

put 1 into Message box
repeat

add 1 to Message box
if Message box contains 6 then exit repeat

end repeat

The example ends with 6 in the Message box.

For information on exit repeat, see •Exit Repeat• later in this chapter.

For information on if, see •If Structure• later in this chapter.

Repeat for

repeat [for] number [times]

Number is a sOW'Ce that yields a number specifying how many times the loop is
executed:

put 1 into Message box
repeat for 5 times

add 1 to Message box
end repeat

The example ends with 6 in the Message box.

Repeat until

repeat until condtffon

CondU1cn is an expression that evaluates to true or false. The loop is repeated as
long as the condition is false. The condition is checked prior to the first and any
subsequent executions of the loop:

put 1 into Message box
repeat until Measage Box contains 6

add 1 to M•••ati• box
end repeat

The example enda with 6 in the Message box.

Repeat 67

RepeatwhUe

repeat while conaU1on

Condit1on is an expression that evaluates to true or false. The loop is repeated as
long as the condition is true. The condition is checked prior to the first and any
subsequent executions of the loop:

put l into Message box
repeat while Message Box < 6

add l to Message box
end repeat

The example ends with 6 in the Message box.

Repeat with

There are two variations of the repeat with form: one that incremenr.s a variable
and one that deaemenr.s.

repeat with variable • start to ftn1sb

Variable is a local or global variable name, and stanandftn1sb are sources of
integers. The value of start is assigned to variable at the beginning of the loop, and is·
incremented by 1 with each pass through the loop. Execution ends when the value of
variable equaJs the value of ftn1sb. ·

repeat with increment • l to 6
put increment into the Message box

end repeat

The example ends with 6 in the Message box. (This structure works much like a
FOR ••• NEXT loop in BASIC.) -

repeat with variable • start down to ftn1sb

The down to form is the same as the to form above, except that the value of
variable is decremenred by 1 with each pass through the loop. Execution ends when
the value of variable equals the value of ftn1sb.

repeat with decrement • 6 down to l
put decrement int~ the Message box

end repeat

The example ends widl 1 in the .Message box

68 Chapter 5: Keywords

(

Exit
exit repeat

The exit statement sends control to the end of the repeat structure, ending
execution of the loop regardless of the state of the controlling conditions specified in
the repeat statemenL

put 1 into the Message box
repeat with increment • 1 to 100

add increment to the Message box
if Message box > 20 then

beep 5
exit repeat

end if
end repeat

The example ends with 22 in the MCMage box.

An exit statement can appear anywhere within the structure.

For information on if, see "If Structure• later in this chapter.

f Next
next repeat

When a next statement is encountered, control returns immediately to the top of
structure. (Usually, flow doesn't return to the top of the structure until an end
statement is encountered.)

repeat 20
put random(9) into tempVar
if tempVar mod 2 • 0 then next repeat
put tempVar after field "oddNumbers"

end repeat

The example appends only the odd random numbers to the field, skipping any even
ones.

A next statemeat can appear anywhere within the structure.

For information GD- i:f, see •If Structure• later in this chapter.

Repeat 69

End
end repeat

The end statement marks the end of the loop; it's the last line of a repeat control
structure. When the controlling conditions specified in the repeat statement have
been satisfied or an exit statement encountered, control goes beyond the end
statement:

repeat for 5 times ·
beep

end repeat

If
The if structure tests for the specified condition and executes the following
statement or series of statements if the condition is true. If structures can be used
only within message handlers or function handlers. The if struaure has several
fonns, described below.

+ Note: If you want to try the examples in this chaprer, be sure to put them within handlers.

Single-statement If structure
A single-statement if structure can occupy only one line as shown below:

if conditfon then statement C else statement]

A single-statement if structure can also occupy more than one line, but only one
statement can follow then or else:

if condition
then statement
[else statement]

Conduton is an eJqXellion that evaluates to true or false, and statement is a single
Hypeflalk command statement.

In the single-st~ if structure, only one command statement can follow either then or
else (if presenO, and the command statement must be on the same line with then or else.

If the condition between if and then is true, HyperCard executes the statement between
then and else if else is present, or between then and the end of the line if else is not
present following the statement, either on the same line or on the next line.

70 Chapter 5: Keywords

,J

(

(~-

If the condition between if and then is false, HyperCard executes the statement between
else and the end of.the line if else is present, or it ignores the rest of the line if else is not
present:

if Message box > 10 then beep 5 else beep 15

In this example, if the Message box holds a value greater than 10, the Macintosh beeps 5 times; if
the value in the Message box is 10 or less, the Macintosh beeps 15 times.

Multiple-statement If structure
A multiple-statement if structure accommodates more than one executable statement
following then and, optionally, more than one statement following else:

if condition then
statementlist

[else
statementlist]

end if

You can also end a multiple-statement then clause with a single-line else, in which case no
end if statement is needed:

if condition then
statementlist

else statement

Condition is an expression that evaluates to true or false, and statementl.tst is any number of
HypetTalk statements.

In the multiple-statement if structure, more than one command statement can follow either
then or else (if present), and the first command statement must be on the line following
then or else. That is, if you want to have more than one statement in a block following then
or else, put a return character after the respective then or else. Such a multiple-statement
block must be ended explicitly: a then block can be ended with either end if or else; an
else block must be ended with end if.

If the condition between if and then is true, HyperCard executes the statement(s) between
then and else if else is present, or between then and end if if else is not
presenL

If 71

If the condition between if and then is false, HyperCard executes the statement(s) between
else and end if _if else is present, or it ignores what's between then. and end if if
else is not present:

if number of this card is 10 then
put "We're done!" into msg
go Home

else
put "And the next question is:" into msg
go next card

end if

Nested If structures
If structures can be nested; that is, statements following a then or an else can include
more if structures. Each nested multiple-line if structure must have its own end if, and
an else always goes with the closest preceding if clause.

repeat
ask "Guess a random number between 1 and 10:" with empty
if it is empty then

exit repeat
else

if it is random(lO) then
put "You guessed it!"

else
put "Sorry, try again."

end if
end if

end repeat

Do
do expression

1be do keyword caUBCS HyperCard to get the value of expression, then send it as a
message. If more than one line is in the sou!c:e, only the first one is sent.

on getFromlist ~ create 3 card fields putting data into the first 2
put "card field 1• ' return ' "card field 2" into list
do "put" '' line 1 of list '' "into card field 3"
-- try this with: put line 1 of list into card field 3
-- commenting out the do "put" ••• line before running it

end getFromlist

72 Chapter 5: Keywords

Global
global varlablellst

Vartablellst is one or more HyperCard variable names separated by commas.

The global keyword makes a variable name known and its contents available to any
script of any object in HyperCard The following two lines are individual examples of
global statements:

global myVar
global pages,sections,chapters

The following example handlers show a global variable being used for two handlers to
access the same value:

on mouseUp
global myVariable -- load the global here
put 3 into myVariable
writeResult

end mouseup

on writeResult
global myVariable -- can use the global as lonq as we define it here
put myVariable -- the value remains 3

end writeResult

Changing the value of a global variable in any script changes its value everywhere. The
global keyword must be used in each handler in which the global variable is used.

Global variables are not saved in between sessions of HyperCard or when HyperCard
is suspended by launching another application with the open command

Send
send "messageName [parameterllst] " [to object]

MessageName is a string beginning with a letter and containing no spaces or
punctuation madca other than underscore;_pammetenlst is one or more expressions
(separated by awunu if more than one); and object is a HyperCard object descriptor
or HyperCard itaelf. If no object is specified, HyperCard is the object.

The send keyword sen<b a message directly to a particular object, bypassing any
handlers in the intervening object hierarchy th.at might otherwise intercept the
message.

Send 73

send "hid.eit" to tield 3
send "addSum·s trave-l, food, hotel" to stack "expenseAccount"
send mouseUp to button "pushMe"
send "doMenu print card" to HyperCard

You can send a message directly to any object in the current stack or to another stack,
but not to a specific object in another stack.

If the object has no message handler for messageName, the ~age is passed along
the object hierarchy stemming from the object to which the message was sent If the
object does have a matching handler, the handler executes, but the card to which it
belon!J.' does not necessarily open. Messages sent by executing the statements of the
object's handler are sent along the receiving object's hierarchy.

Chapter 2, •Handling Messages,• has more information about how the send
command interacts with the object hierarchy.

Quotation marks around the message are not required if the message is a single word
Parameter expressions are evaluated before they are sent, even though the entire
mes,,age has quotation marks around it.

+ You can use It tn the Message box: The send keyword, unlike all other keywords,
works in the Message box.

7 4 Chapter 5: Keywords

(

Chapter 6

System Messages

75

••

This chapter desaibes the messages HyperCard sends in respome to events, such as
mouse clicks, that Y~- initiate in its environment

Most system messages are sent by HyperCard to the current card, but those having to
do with a specific button or field are sent to that objea. The receiving object has the
first chance to respond to the message before it goes on to the next encompassing
object, as described in Chapter 2, •Handling Messages." The receiving object can
respond to the system message with a handler that begins

on messageName

where messageName is one of the system messages in the following 11sts.

The tables in this chapter correspond to the type of object to which the listed system
messages are sent initially. If that object has no handler with a name matching the
system message, it passes the message on to succeeding objects in the hierarchy. So,
for example, a card can have a handler for a message sent initially to a button.

Messages and commands
Most system messages are informational-they cause no action if passed all the way to
HyperCard, although they may be a result of a HyperTalk command executing. Por
example, HyperCard sends deleteButton to a button while it is executing either a
Cut Button or Clear Button menu command The deleteButton message is a result
of a command, not the command itself. (Consequently, you can't prevent the
deletion of buttons by intercepting the deleteButton message with a handler
named deleteButton).

Other system messages, however, are commands if passed to HyperCard. For
example, all menu commands are passed to HyperCard as parameters of the doMenu
message. (So you can prevent deletion of buttons by intercepting doMenu. But see
the section •Redefining Commands" at the beginning of Chapter 7 before trying it)
All system messages that are HyperTalk commands are noted as such in this chapter
and are also listed in Chapter 7. If a message that reaches HyperCard is neither a
system message nor a command; HyperCard displays a •can't undetstand" error
dialog box.

Although system messaaes are usually sent by HyperCard, they can be sent by other
objects as well. Par example, a handler ~ invoke a mouseUp handler in another
object by execu-a statenent such as ·

send "mouseUp• to button 1 of card 1

76 Chapter 6: System Messages

(

-·
Messages sent to a button
'The only messages that are sent initially to buttons are those having to do with a
specific button. 'They are of two types: those announcing the button's aeation or
deletion, and mouse messages.

When buttons and fields are layered on top of each other, mouse messages are sent
only to the closest one. (But background buttons and fields can never overlay those
belonging to the card.) Whether a button or field belonp to the card or the
background, however, makes no difference regarding where a message is sent initially:
all buttons and fields precede the card

Table 6-1 shows the system messages HyperCard sends initially to buttons.

Table 6·1
Messages sent to a button

Meaage

newButton

deleteButton

mouseDown

mouseStillDown

mouseUp

Sent to a button as soon as it has been created Although the
new button can have no script with which to respond to this
message (unless it was created by pasting), the message will
pass to objects lower in the hierarchy which can respond with
handlem such as

on newButton
set autoHilite of the tarqet to true

end newButton

Sent to a button that is being deleted, just before it
disappears.

Sent to a button when the mouse button is pressed down while
the pointer is inside its rectangle. (This message may also be
sent to a field or card; see Tables 6-2 and 6-3.)

Sent to a button repeatedly while the mouse button is held
down and the pointer is inside its rectangle. ("Ibis message
may also be sent to a field or card; see Tables 6-2 and 6-3.)

Sent to a button When the mouse button is released while the
pointer is inside its rectangle. The pointer must be in the
same button .rectangle it was in when the mouse button was
pressed down for the message to be sent. (This message may
also be sent to a field or card; see Tables 6-2 and 6-3.)

Messages sent to a button 77

Table 6-1 (continued)
Messages sent to a button

mouseEnter

mouseWithin

mouseLeave

Sent to a button as soon as the pointer is moved within its
rectangle. ('Ibis message may also be sent to a field; see
Table 6-2.)

Sent to a button repeatedly while the pointer is inside its
rectangle. ('Ibis message may also be sent to a field; see
Table6-2.)

Sent to a button as soon as the pointer is moved outside its
rectangle. ('Ibis message· may also be sent to~ field; see
Table 6-2.)

Messages sent to a field
The only messages that are sent initially to fields are those having to do with a specific
field They are of three types: those announcing the field's aeation or deletion, those
announcing its opening for text entry or closing afterwards, and mouse messages.

When buttons and fields are layered on top of each odler, mouse messages are sent
only to the closest one. {But background buttons and fields can never overlay those
belonging to the carcl.) Whether a button or field belongs to the card or the
background, however, makes no diffetence regarding where a message is sent initially:
all buttons and fields precede the card

Table 6-2 shows the system messages HyperCard sends initially to fields.

78 Chapter 6: System Messages

_j

(

(

Table 6-2
Messages sent to a fteld

Message

newField

deleteField

openField

closeField

mouseDown

mouseStillDown

mouse Up

rnouseEnter

mouseWithin

mouseLeave

Meaning

Sent to a field as soon as it has been created

Sent to a field that is being deleted, just before it disappears.

Sent to an unlocked field when it is opened for text editing, by
clicking in the field or moving the text insertion point from
the previous field with the Tab key.

Sent to an unlocked field when it is closed after text editing by
clicking outside the field, moving the text insertion point to
the next field with the Tab key, preMing the Enta' key, going
to another card, or quitting HyperCard. The meMage is not
sent unless some text was actually changed

Sent to a locked field when the mouse button is pressed down
while the pointer is inside it MouseDown is not sent to a
scrolling field when the mouse is clicked in the scroll bar. You
can send mouseOown to an unlocked field by holding down
the Command key while clicking the mouse in the field (This
message may also be sent to a button or card; see Tables 6-1
and6-3.)

Sent to a locked field repeatedly while the mouse button is
held down and the mouse pointer is inside it (This message
may also be sent to a button or card; see Tables 6-1 and 6-3.)

Sent to a locked field when the mouse button is released while
the pointer is inside it The pointer must be in the same field
it was in when the moose button was pressed down for the
message to be sent (This message may also be sent to a
button or card; see Tables 6-1and6-3.)

Sent to a field as soon as the pointer is moved into it (This
message may also be sent to a button; see Table 6-1.)

Sent to a field repeatedly while the pointer is inside it (This
message may also be sent to a button; see Table 6-1.)

Sent to a field as Soon as the pointer is moved outside it (This
message may also be sent to a button; see Table 6-1.)

Messages sent to a field 79

Messages sent to the current card
System messages not sent to buttons or fields are sent initially to the current card, even
when they concern the background or the srack.

Mouse messages are sent to the card only when there is no button or field, belonging
to either the card or the background, under the pointer.

Table 6-3 shows the system messages HypetCard sends initially to the current card

Table 6·3
Messages sent to the current card

Message

newCard

deleteCard

openCard

closeCard

mouseDown

mouseStillDown

mouse Up

startup

Meaning

Sent to a card as soon as it has been created

Sent to a card that is being deleted, just before it disappears.

Sent to a card when you go to it

Sent to a card when you leave it

Sent to the current card when the mouse button is pressed
down and the pointer is not in the current button rectangle or
field (ihis message may also be sent to a button or field; see
Tables 6-1 and 6-2.)

Sent to the current card repeatedly while the mouse button is
held down. (ihis message may also be sent to a button or
field; see Tables 6-1 and 6-2.)

Sent to the current card when the mouse button is released.
(ihis message may also be sent to a button or field; see Tables
6-1 and 6-2.)

Sent to the first card displayed when HyperCard is fust
started.

80 Chapter 6: System Messages

(

Table 6-3 (continued)
Messages sent to th& current card

idle Sent to the current card repeatedly when nothing else is
happening and the Browse tool is current

returnKey

enterKey

tabKey

An idle handler can interfere with typing. For example, if
you have an idle handler that puts text into a field, it can
remove the insertion point from another field while the user
is typing. An example of such a handler is

on idle
put the time into card field "Time"
pass idle

end idle

If this handler were to execute during typing into another field
(idle is sent during a typing pause), and if the time had
changed, HyperCard would remove the insertion point from
the user's field The user would have to dick in the field or
press Tab to replace the insertion point after every pause,
which would be annoying and tedious.

Sent to the ament card when the Return key is pressed, unless
the text insertion point is in a field (1his message is also a
HyperTalk command See Chapter 7.)

Sent to the current card when the Enter key is pressed, unless
the text insertion point is in a field. (1his message is also a
HyperTalk command See Chapter 7.)

Sent to the current card when the Tab key is pressed ('This
message is also a HyperTalk command See Chapter 7.)

Messages sent to the current card 81

Table 6-3 (continued)
Messages sent to ~ current card

arrowKey var Sent to the a.urent card when an arrow key is p~ (and the
textArrows property is false; see Chapter 9). The value
paMed into the parameter variable var can be left,

functionKey var

controlKey var

right, up, or down, depending on which arrow key is
pressed The beginning of a handler for this message could
read:

on arrowKey whichKey
if whichKey .. "left" then go previous· card

(Th.is message is also a HyperTalk command See Chapter 7.)

Sent to the current card when a function key on the Apple
Extended Keyboard is pressed. The parameter variable var
can range from 1 to 15. Function keys 1 through 4 are
preprogrammed for the Undo, Cut, Copy, and Paste
commands, respectively. The beginning of a handler for this
message could read:

on functionKey whichKey
if whichKey < 5 then pass functionKey
else if whichKey is 5 then doMenu "New Card"
else if whichKey is 6 then choose browse tool
else if whichKey is 7 then choose button tool

You can override the preprogrammed functions of keys 1
through 4 in a functionKey message handler. (Th.is
message is also a HyperTalk command See Chapter 7.)

Sent to the current card when a combination of the Control
key and another key is pressed The parameter variable var
can range from 0 to 255. The parameter variable values
generated by different keystrokes on the Apple Extended
Keyboard are shown in Appendix B. The beginning of a
handler for this message could read:

on controlKey wbichKey
if whichKey - 16 then

doMenu "Print Card"

82 Chapter 6: System Messages

(

(

Table 6-3 (continued)
Messages sent to th$ current card

doMenu var Sent to the current card when a menu item is selected The
parameter variable var has the exact name of the menu item
selected, including the three periods following menu items
that invoke dialog boxes. Uppercase and lowercase don't
matter, but you must type the three periods-don't use the
Option-semicolon ellipsis character. (This message is also a
Hypetralk command, which is listed in Chapter 7. An
example handler to intercept the doMenu message is shown
in the section •Redefining Commands• at the beginning of
Chapter7.)

newBackground Sent to the current card as soon as a background has been
created.

deleteBackground Sent to the current card when a background is deleted, just
before it disappears.

openBackground Sent to the current card when a background is first opened by
going to a card whose background is different than that of the
previous card.

closeBackground Sent to the current card when a background is closed by going
to another card that has a different background

newStack Sent to the current card when a stack is created.

deleteStack

openStack

closeStack

help

suspend

resume

Sent to the current card when a stack is deleted, just before it
disappears.

Sent to the aurent card when a stack is opened by going to a
card in a different stack than that of the previous card In this
case the following three messages are sent, in order:
openCard., openBackground., and openStack.

Sent to the current card when a stack is closed by opening
another stack.

Sent to the current card when Help is chosen from the Go
menu (or Command-? is pressed). You can intercept this
message if you want to provide your own Help system for your
stack. (This message is also a Hypetralk command See
Chaprer7.)

Sent to the current card when HyperCard is suspended, when
you launch another application with the open command,
just before the other application is launched

Sent to the current card when HyperCard resumes running
after having been suspended.

Messages sent to the current card 83

Tabl• 6·3 (continued)
Messages sent to ~- current card

quit

hide var

show var

Sent to the current card when you choose Quit Hype!Card
from the File menu (or press Command-Q), just before
Hype!Card quits.

Sent to the current card when the menu bar is visible and you
press Command-Space bar. The parameter variable var has
only one value for the hide system message: menubar.
(This message is also a HyperTalk command; the command
accepts other parameter variable values in addition to
menubar. See Chapter 7.)

Sent to the current card when the menu bar is hidden and you
press Command-Space bar. The parameter variable var has
only one value for the show system messsage: menuBar.
(Th.is message is also a HyperTalk command; the command
accepts other parameter variable values in addition to
menuBar. See Chapter 7.)

84 Chapter 6: System Messages

\ .
' /

(

Chapter 7

. Commands

(

85

This chapter desaibes all the commands in Hypeflalk, showing their syntax and
meaning.

HyperTalk commands are built-in message handlers that reside in HyperCard itself.
When you issue a Hypeflalk command, it's passed along the object hierarchy as a
message to HyperCard. In most cases there's no handler in any saipt along the way to
intercept the message, so HyperCard receives the message and acts on it.

Some commands (such as arrowKey) are system messages as well as commands.
This means two things: a system event generates the message (pressing an aaow key
generates the arrowKey message), and HyperCard has a built-in response to the
message (arrowKey takes you to another card). ·

Redefining commands
You can write a message handler that redefmes a built-in command (for example, on
doMenu menuitem.). This is especially useful for trapping menu commands you want
to modify or that you want to prevent a user from issuing. ·

Be wary, however: once a command-or any message-has been intercepted by a
handler, it's sent no further along the hierarchy; so your newly defined command
replaces HypeiCard's built-in one. If, for example, you write a handler for the
doMenu command, be sure to pass the message if you don't want to prevent every
instance of it from reaching HyperCard:

on doMenu menuitem
if menuitem is "Delete Card" then

answer "Are you sure?" with "Delete" or "Cancel"
if It is not "Delete" then exit doMenu

end if
pass doMenu

end doMenu

If you inadvertently fail to pass doMenu, you may find yourself apparently unable to
use any menu command, even to fJX the doMenu handler. (In that case, execute the
command edit script, for the object containing the handler, from the Message
box. If the Message box is hidden and blind typing is false, to go to the last card of the
Home st.ack and tum blind typing on.)

86 Chapter 7: Commands

I

~

(

Syntax description notation
The synr.ax descriptions use the following typographic conventions. Words or phrases
in typewriter type are Hypertalk language elemenrs or are thme that you type to
the computer literally, exactly as shown. Words in Ual1c type describe general
elemenrs, not specific names-you must sumtitute the actual instances. Square
brackets ([]) enclose optional elements which may be included if you need them.

· (Don't type the square brackets.) In some cases, optional elements change what the
message does; in other cases they are helper words that have no effect except to make
the message more readable.

It doesn't matter whether you use uppercase or lowercase letters; names that are
formed from two Words are shown in small letters with a capital in the middle
(likeThis) merely to make them more readable. The HyperTalk prepositions of
and in are interchangeable-the synr.ax descriptions use the one that sounds more
natural.

The terms factor and e:x:pressi<m are defined in Chapter 4. Briefly, a factor can be a
constant, literal, funetion, property, number, or container, and an expression can be
a factor or a complex expression built with factors and operators. Also, a factor can be
an expression within parentheses. The term y1elds indicates a specific kind of value,
such as a number or a text string that must result from evaluation of a factor or
expression when a restriction applies (for example, the expression and the destination
in an add command must yield numbers). However, any Hypefl'alk value can be
treated as a text string.

Syntax description notation 87

Syntax

Examples

DescripHon

Script

Notes

Add

add expresston to desttnatton

Expresston yiel~ an arithmetic value and desttnatton is a container.

add 3 to It
add field Amount to field Total

The add command ad~ the value of e:xpresston to the value of desttnatton, and
leaves the result in desttnatton.

The following example handler sums numbers in a field, if each line of the field
contains one number, and puts the result into the Message box. The name of the field
is passed to the handler as a parameter.

on sumField whichField
put O into total
repeat with count • 1 to the number of lines in whichField

add line count of whichField to total
end repeat
put total into msq

end sumField

The value previously in the destination must be a number; it is replaced with the new
value.

88 Chapter 7: Commands

Syntax

Examples

Description

Script

(

Answer

answer quesllon [with reply [or reply2 [or replyj] J J

Question and reply are expres..ions that yield text strinp.

answer "Which is the way the world ends?" with "Bang• or "Whimper"
answer myQuastion with myAnswar or f iald 7 · .

The answer command displays a dialog box with a question and up to three
buttons, each representing a different reply.

The dialog box stays on the saeen until one of the buttons is clicked; p~ing Return
or Enter has the same effea as clicking the button .farthest to the right, which
correlates to the last reply specified with the answer command.

The following example handler produces the dialog boxes in Figure 7-1 (the second
one depenm on which button you click in the first one):

on chooseColor
answer "Which color do you prefer?• with "Rad" or "Blue• or "Yellow•
if It is "Rad" than answer "You picked Rad."
else if It is "Blue• then answer "You picked Blue.•
else if It is "Yellow" then answer "You picked Yellow.•

and choosaColor

IUNCll coler do ... 11Afor1

Rod ~) (lluo

Yta plcleod llod.

Flgwe 7-1

(Yellow J

I OIC I
' F

Anfll#ler command dialog boxes

Answer 89

Notes

Syntax

Examples

Description

There is no way for a script to reply to a dialog box by itself, so it's important that a
saipt meant to run unattended not use answer.

The text of the button clicked goes into the local variable It. If no reply is specified,
HypetCard displays one button containing OK.

Neither the question nor any of the replies can have more than one line. If you use a
container that has more than one line of text in it for the question, only the ft.est line
appears. If you use a container with more than one line for a reply, the last line is
displayed in the button. (Only the center portion shows if the line is too long to fit in
the button.) However, all lines go into the local variable It when the button is
clicked

Unless you're using container names, put the question and the replies inside
quotation marks if they contain any spaces.

Each reply can be up to 13 characters long (depending on the width of the
characters).

See also the ask command.

ArrowKey

arrowKey lleyName

KeyName desaibes one of the arrow keys: left, right, up, or down.

arrowKey left
arrowKey down

The arrowKey command takes you to another card The effects of the arrowKey
command are shown in Table 7-1.

Table 7·1
Effec11 of 1he arrowKey command

left
riqht
up
down

Effect

Go to previous card in current stack
Go to next card in current stack
Go forward through recent ca.rm
Go back through recent carm

90 Chapter 7: Commands

(

Script

Notes

(

The arrowKey message, which invokes the arrowKey command if it reaches
HypetCard, is normally generated by pressing any of the arrow keys on the keyboard.
(Which arrow key you press determines the message's parameter value.) You can also
send arrowKey from the Message box or execute it as a line in a script

The following example handler makes function keys 9, 10, 11, and 12 send the
arrowKey message with parameters of left, right, up, and down,
respectively:

on functionKey whichKey -- map function keys· to arrow keys
if whichKey is 9 then arrowKey left
else if whichKey is 10 then arrowKey right
else if whichKey is 11 then arrowKey up
else if whichKey is 12 then arrowKey down

end functionKey

The textArrows property, available only in HypetCard versions 1.1 and later,
alters the effect of pressing the arrow keys (see .,.extArrows• in Chapter 9), but it does
not affect the arrowKey command.

See also the arrowKey message in Chapter 6.

Arrow Key 91

Syntax

Examples

Description

Script

ask question [with defaultAnswer]
ask password questton [with defaultAnswer]

Question and defaultAnswerare expressions that yield text strinp.

ask "Who needs this kind of qrief?" with "Not' me."
ask field 1 with line 1 of field 2
ask password "Please enter your password:"

The ask command displays a dialog box containing a question with a text window
into which the user can type an answer. The optional defaultAnswerstring specifies
an answer which appears inititally in the window, highlighted so it can be easily
replaced. The dialog box appears with OK and Cancel buttom.

The following example handler produces the dialog box in Figure 7-2:

on phone
ask "Dial what number:" with "555-1212"
if It is not empty then dial It

end phone

Diet wll•t numlt...:

Figure 7-2
NII.. command dialog box

92 Chapter 7: Commands

f~

\cj

(

Notes

(
Syntax

Examples

Description

Script

The answer goes into the local variable It, either when the OK button is clicked or
when Return or Enter is pres.5ed If the Cancel button is clicked, the dialog box goes
away, but the answer is not placed into It.

The ask password form causes the answer to be encrypted as a number (which is
placed into the local variable It). The encrypted answer can be stored in a field to
be compared to a later answer to ask password if, for example, you want the user
to be able to protect data he or she enters into the stack. Password protection built
into a stack in this manner is separate from that set up by the Protect Stack menu
command.

Neither the question nor the default answer can have more than one line; if you use a
container that has more than one line in it, only the first line appears.

Unless you're using container names, put the question and the default answer inside
quotation marks if they contain any spaces (or if, as in the example, they are
telephone numbers containing a hyphen-to prevent HyperCard from doing
subtraction).

See also the answer command, earlier in this chapter.

Beep

beep count

Count is an expression that yields an integer.

beep 5

beep line 3 of field 1

The beep command causes the Macintosh speaker to make a beep sound count
times. If no count is given, the speaker beeps once.

The following example handler uses the beep command to alert the user that an
answer dialog box, to which the user must reply, is being displayed:

on openStack
beep 2
answer "Do you need instructions?" with "Yes" or "No"
if It is "Yes" then go to stack "Instructions"

end openStack

Beep 93

Syntax

Examples

Description

c110ose

choose toolName tool

ToolName is the name of any one of the tools from the HypeJCard Tools palette "hown in Figure 7-2).

choose browse tool
choose eraser tool

The choose command changes the current tool to toolName as though you had
selected it from the Tools palette. Valid tool names are

browse
brush
bucket
button
curve
eraser
field
lasso
line

J!, "' :i·~ DO

~OC'
oa

.... 7.3
Tools palette

oval
pencil
poly[qon)
rect[anqle]
req[ular) poly[qon)
round rect[anqle]
select
spray [can]
text

94 Chapter 7: Commands

(
Script

Notes

Syntax

(

Examples

••

The following example shows a typical use of the choose command in a handler:

on drawBox
··reset paint
choose rectangle tool
set lineSize to 2
drag from 50,50 to 200,200
choose browse tool

end drawBox

You must have HyperCard's user level set to Paintiilg, Authoring, or Scripting to use
the choose command, but the Tools palette need not be visible. Setting user levels
is described in the HyperCard User's Gutde and in the user Level global property
description in Chapter 9.

Cick

click at location [with key[, key2[, key3]] J

Location is an exp~ion yielding a point: two integers separated by a comma,
representing horizontal and vertical pixel offsets (respectively) from the top-left
corner of the card window. Key, ltley2, and ltley3 are one or more of the following key
names, separated by commas: shiftKey, optionKey, or command.Key (or
cmd.Key).

click at 100,100
click at the loc of button "Press me" with optionKey

Cilek 95

Description

Script

Notes

1be click command causes the same actions as though you had clicked with the
po~ter at the specified location on the screen: the system messages mouseDown
and mouseUp are sent to the objects under the pointer (but the visible pointer is not
moved from irs current location).

Using the with key form produces the same result as clicking the mouse button
while holding down the specified key (or keys).

If location is within an unlocked field, the insertion point is. set: if there is text at or
past locat1on, the insertion point is set at locatton; if there is text on the same line as
locat1on but ~is beyond the end of text, the insertion point is set at the end of
text on that line; if there is no text at locat1on, the insertion point is set at the start of
the line.

You can select a word by double-clicking it (that is, by executing the click
command twice in succession at the location of the word). You can select any string of
text by clicking at the beginning then clicking with shiftKey at the end of the
string.

1be following example handler selects and displays a word from a locked field when
you click on the word (.mouseUp is not~ to unlocked fields when you click them):

on mousaDp
sat lockTaxt of ma to false
click at the clickLoc
click at the clickLoc
9et the selection
put It into the Messa9e box
set lockText of ma to true

end mouseDp

The pixel offset values of location are not restricted to the size of the screen, but are
misinterpreted if greater than 327 67.

See also the draq command, later in this chapter.

96 Chapter 7: Commands

./

Syntax

Examples

Description

Script

(

Notes

..

Close file

close file ftleName

FtleName is the expression of a text string that is a valid filename.

close file myData
close file "myDisk:myFolder:myFile"

The close command closes a disk file previously opened with the open file
conunand to import or export ASCII text. The expressionftleName must yield a valid
Macintosh filename, including pathname if required

The following example handler reads any si7.e text file into a global variable named
temp:

on importText
global temp
put "MyFilename" into filename
open file filename
repeat

read from file filename for 16384
if it is empty then exit repeat
put it after temp

end repeat
close file filename

end importText

If the specified ftle is not open, you get an error message. Use the close file
command to close files explicitly after you use them. HyperCard automatically closes
all open ftles when an exit to HyperCard statement is executed, when you press
Conunand-period, or when you quit HyperCard

You OlUSt provide the full pathname of the file if it's not at the same directory level as
HyperCard. (See •stack 0e:5mptors• in Chapter 3 for an explanation of pathnames.)

See also the open file, read, and write commands, later in this chapter.

Close flle 97

Syntax

Description

Script

Notes

Close printing

close printing

The close printing command ends a print job previously begun with the open
printing command.

The following example handler executes a printing job, printing a specified number
of cards, beginning on a specified card:

on printRange low,high
push card
open printing
go to card low
print (high-low) + 1 cards
close printing
pop card

end printRange

Also see the open printing command, larer in this chapter.

Convert

Syntax convert container to format [and format]

Container is a container name and jomull is a format specification.

Examples convert timeVariable to seconds
convert line l of second card field to long date and short time

98 Chapter 7: Commands

Description

Script

(

Notes

The convert command converts a date or time in the specified container to the
format specified. The optional second format specification is used when a date and
time are both included. Valid format specifications and their meanings are

seconds Seconds since midnight, January 1, 1904.

date Items A comma-separated list of numbers representing (in order):
year, month, day, hour, minute, second, and day of week.

long date Thedateintextform: Tuesday, June 30, 1987.

short date The date in slash-separated numeric form: 6/30/87.

abbreviated date The date in text form with abbreviated day of week: Tue,
June 30, 1987.

long time The time in colon-separated form including seconds:
11:15:15 AM.

short time The time in colon-separated form without seconds:
11: 15 AM.

abbreviated time same form as short: 11: 15 AM.

The following example handler counts the seconds elapsed while a command in the
Message box executes:

on mouseUp
put the lonq time into startTime
convert startTime to seconds
if msq is not empty then do msq
put the lonq time into endTime
convert endTime to seconds
answer "That took" '' endTime - startTime '' "seconds."

end mouseUp

The modifier abbreviated can be shortened to abbrev or abbr.

Convert 99

•

Syntax

Examples

Description

Script

Notes

Delete

delete cbunll [of contatner]

Cbunll is a chunk expression referring to some text in a specified field and container
specifies a container.

delete line l of field l
delete char l to 5 of line 4 of field "Charlie" of second card

The delete command removes specified text from the designated container in the
current stack.

The following example handler finds and deletes a name from a list with one name
per line:

on zapaName
put "Spraqens" & return & "Kamins" & return & "Bond" into list
ask "Delete which name from the list?" with empty -- enter a name
repeat with co~nt • the number of lines in list down to l

if it is in line count of list then delete line count of list
end repeat

end zapaName

Using the delete command is not the same as using put empty into with the
same chunk of text specified. For example, if you delete a line in a field with a
statement like

delete line 4 of field 7

you delete the return character as well as the text; what was previwsly the fifth line
becomes the fourth. The following star.ement leaves the return characr.er in line 4:

put empty into line 4 of field 7

Even-if you delere all of the text in a field, the field remains defined on the card or
bacJraround, unlike selecting the field and choosing Cut Field or Clear Field from the
P.lltinenu.

When you delete text in a field on a card other than the current one, the current card
does not change.

Chapter 3 describes how to designate a carci. Chunk expressions are described in
Chapter 4. See also the put command, later in this chapter.

100 Chapter 7: Commands

(

Syntax

Examples

Description

(

Dial

dial expression (with modem (modemCommands]]

.Expresston yields an arithmetic value and modemCommands are commands for your
modem.

dial charli~ -- if charlie is a variable containing a number

dial "415-555-1212"
dial "407-996-1010" with modem "ATSO•OS7•1DT"
dial "407-973-6000" with modem

The dial command, wilhout me with modem option, generates the touch-tone
sounds for the digits in expression through me Macint~h speaker. Holding the
telephone handset up to the speaker works on some phones; for others you need a
device that feeds the Macint~h audio output to the telephone.

If you use the with modem option, the dial command sets up telephone calls
using me Apple Modem 300/1200, the Apple Personal Modem, or any Hayes­
compatible modem attached to the Macint~h serial port. The modemCommands
parameters are those described in the manual for your modem. Their default value is
"ATSO•ODT".

If expression yields a number including a hyphen (as in 555-1212), enclose it within
quotation marks to prevent Hype.rCard from doing subtraction wilh lhe hyphen
before passing the number to me dial command (which ignores characters other
than numbers). Similarly, it's a good idea to enclose me modemCommands within
quotation marks.

Dial 101

..

Syntax

Examples

Description

Script

Notes

Divide

divide destination by e:qmJSSl/Jn ,

.Destination is a container and e:x:presston yields an arithmetic value.

divide field "total" by 3
divide farenheit by celsius -- if farenheit.and celsius are variables

The di vi de command divides the value of destination by the value of e:qwesslon
and puts the result into destination.

The following example handler figures the percentage represented by a fraction of two
numbers specified as parameters:

on percent varl,var2
divide varl by var2
put trunc(varl * 100) ' "'"

end percent

The value previously in the destinalion must be a number; it is replaced with the new
value.

Division by 0 puts the result INF into destination. Division is carried out to a
precision of up to 19 decimal places.

See also the numberFormat global property in Chapr.er 9, and the discussion of
numbers in Chapter 4.

102 Chapter 7: Commands

f,' '" {'' '

\, __ _./

(

Syntax

Examples

Description

Script

Notes

DoMenu

doMenu menultem

Menultem is an expression that yields a menu command.

doMenu "open stack .•. "
doMenu thisCommand -- thisCommand is a variable containing a command
doMenu calculator -- desk accessory from the Apple menu

The doMenu command performs the specified menu command specified by
expression as though you had chosen the item directly from the appropriate
HyperCard menu.

If you choose the Finder menu item while running HyperCard under MultiFinder, you
could leave a stack that's on a file server open and inaccessible to other users. The
following example handler cl~ the current stack and goes to the Home stack:

on doMenu menuChoice
if menuChoice is "Finder" then go to "Home"
pass doMenu

end doMenu

Both the specified command and the menu in which it resides must be available at the
current user level (as described in the HyperCard User's Gulde). If there are periods
following the menu command, you must include them in menultem (you can't use
the elli~is character in their place).

You don't have to specify which menu the command comes from. But be aware that
some menu commands change with conditions (for example, Paste Card can change
to Paste Button, depending on the contents of the Clipboard).

+ Don't lock yourself out: If you write a handler to intercept doMenu, be sure to
pass the message after examining the new menu item. Otherwise, you may find
yourself apparently wiable to use any menu command, even to fix the doMenu
handler or to quit HyperCard (In that case, execute the command edit
script, for the object containing the handler, from the Message box. If the
Message box is hidden and blind typing is false, go to the last card of the Home
stack and turn blind typing on.)

DoMenu 103

..

Syntax

Examples

Description

Script

Notes

draq from start to flntsb [with key{, key2(,key3]]]

Start and ftn1sb are expressions, each of which yields a point: two integers separated
by a comma, representing horizontal and vertical pixel offsets (respectively) from the
top left of the Macinte»h saeen. Key, key2, and key3 are one or more of the
following key names, separated by commas: shiftKey, optionKey, or
commandKey (or cmdKey).

drag from 100,100 to 200,200

drag from the loc of button 1 to the mouseLoc with commandKey,shiftKey

The drag command performs the same action as though you had dragged
manually, except that in order to select text in a field using the drag command, you
must use with shiftKey.

The following example handler draws random-sized ovals filled with random patterns
on a new card:

on mouseUp
doMenu "New Card" so we don't draw on the current card
choose oval tool
set filled to true
repeat until the mouseclick

set pattern to random(40)
drag from random(512),random(342) to random(512),random(342)

end repeat
choose browse tool
doMenu "Delete Card" -- get rid of the card we just made
go previous card -- take us back to the card we started from

end mouseUp

tJain8 the with Arey form produces the same result as dragging while holding down
me specified key.

Yau can use draq with any tool selected, but it has no effect with some Paint tools.

'Ibe location of the actual pointer doesn't change from where it was before the
command was issued

See alSo the click command earlier in th.is chapter, and the draqSpeed
property (used with the set command) in Chapter 9.

104 Chapter 7: Commands

Syntax

Examples

Description

Script

(
Notes

Syntax

Description

Notes

..

Ealt script

edit script of object

Object is a factor that yields a designator of an object: a stack, card, background,
field, or button.

edit script of button 1

edit script of this stack

The edit script command opens the script of the specified object with the
HyperCard script editor as though you had clicked the Script button in the object's
Wo dialog box.

The following example handler enables you to edit the script of any button or field
merely by positioning the pointer over it and pressing the Option key:

on mouseWithin
if the optionKey is down then edit script of the target

end mouseWithin

If the edit script command is issued from a script, execution of the current
handler is suspended until the script editor dialog box is closed

Refer to Chapter 1, •HyperTalk Basics,• for an explanation of how the script editor
works.

EnterKey

enter Key

The .enterKey command sends a statement typed into the Message box to the
a.ment card or, if a field is_ open for text editing, enterKey closes the field

The enterKey message, which invokes the enterKey command if it reaches
HyperCard, is normally sent by pres.sing the Enter key on the keyboard But you can
also execute it as a line in a script

Closing a field with enterKey doesn't send the closeField system message.

See also the enterKey message in Chapter 6.

EnterKey 105

..

Syntax

Examples

Description

· Script

Find

find expression [in field fteld.Destgnator]
find chars expresswn [in field fteldDestgnator]
find word expresston [in field fleldDestgnator]

F.xpressron yields a series of one or more text strings separated by spaces, and
.fteldDestgnatoris a background field name, number, or ID number.

find "money" in field SofPlenty

find chars "Wild" in field 1
find word msq in second field

The find command searches through all the card and background fields (visible or
not) in the stack for the text strings yielded by exptess1on. The search begins on the
current card and continues through the last card, the first card, and on to the card
previous to the current card. Choosing Find from the Edit menu (or pressing
Command-F) puts the find command in the Message box with the text insertion
point after it between double quotation marks.

+ Use at least tbree cbaracum: 1be find command executes faster if you use as
many three-character combinations as possible in the search string. That is, three
characters are fast, six are faster than three, nine are faster than six, and so on.

The following example handler queries the user for search criteria, then executes the
find command:

on doMenu var
global f indStrinq
if var is "Find ••• " then

ask "Find what strinq:" with findStrinq
if it is not empty then

put it into findStrinq
answer "Match" && findStrinq && "how:" with "Chars" or "Word" or "All"

-if it is "Chars" then find chars findStrinq
else if it is •word" then find word f indString
else find findStrinq

end if
else pass doMenu

end doMenu

106 Chapter 7: Commands

(
Notes

..

If you include in field fleldDes1gnator, you restrict the search to the specified
background field. You can't restrict the search to a card field.

The find form finds the match only at the beginninp of words. The find chars
form finds the match anywhere within words. The find word form matches only
complete words.

If the match is on a different card, it becomes the current card; otherwise the current
card doesn't change and HyperCard sounds a beep. If it finds a match, HyperCard
puts a box around the word containing the found string, if the field containing the
string is visible. If a match is found in a hidden field, the field's card becomes the
current card, but the field remains hidden.

As the find command evaluates the expression passed to it, it places the resulting
values internally between quotation marks as a single parameter string. The following
examples show text expressions on the left and the resulting parameter string on the
right:

find "my" '' "word" find "my word"
find "my" & "word" find "myword"
find a & b & c find "xyz" -- if a • "x", b • "y", c • "z"
find a " b '' c find "x y z"

If more than one search string (separated from each other by spaces) is included in
the parameter string, all of them must be on a single card or its background for a
successful search. However, they. can be in any order on the card and only the fll'St ls
shown with a box around it.

Press Command-F to display the parameter string from the most recently executed
find command in the Message box.

An unsuccessful search sets HyperTalk's the result function to not found.
After a successful search the result is empty. (See "Resuk• in Chapter 8.)

Find 107

Syntax

Examples

Description

Script

Notes

FunctlonKey

functionKey leeyNumber

KeyNumberis an expression that yields an integer between 1 and 15.

functionKey 1
functionKey 15

The functionKey command has built-in Undo, Cut, Copy, and Paste functions
for leeyNumbervalues 1 through 4, respectively. Any other value of /eeyNumberhas
no built-in etrea.

The following example handler uses the functionKey command to implement the
message undo as a command:

on undo
functionKey 1 -- preproqrammed as undo in HyperCard

end undo

The functionKey message, which invokes the functionKey command if it
reaches Hype!Card, is normally generated by pressing one of the function keys on the
Apple Extended Keyboard. But you can also send it from the Message box or execute
it as a line in a saipt.

You can program function keys 5 through 15, or reprogram keys 1 through 4, by
writing an on functionKey handler in the saipt of any object in the hierarchy
between the current card and HyperCard

See also the functionKey system message in Chapter 6.

108 Chapter 7: Commands

(

Syntax

Examples

Description

Script

(

••

Get

get expression

F.xpn!SSion yields any value.

get the long name of field

get the location of button
get 2+3 -- puts 5 into It
get the date

1

"newButton"

The get command puts the value of any expression into the local variable It. That
is, get expression is the same as put expresston into . It.

11le following example handler saves the current user level, sets the user level to 5,
then restores the saved level:

on doMything
get userLevel -- get the current userLevel
put It into savedLevel -- save userlevel before changing it
set userLevel to 5 -- set userlevel for my button or script
-- (put my script here)
set userLevel to savedLevel -- restore userLevel when leaving

end doMything

Get 109

Syntax

Examples

Description

Script

Go
go [to] [stack] stackName
go [to] bkgndDescrlptor [of [stack] stackName]
go [to] card.Descriptor [of bkgnd.Descrlptor] [of [stack] stackName]

Card.Descriptor is the word card followed by the name, number, ID number, or
ordinal of a card (as described in Chapter 3), or it's.the name of a container holding
one of those things. StackName is the name of a stack or a container holding a stack
name. BlegndDescriptor is the word background (or bkgnd) followed by its
descriptor, or it's a container holding a background descriptor.

go card 23

go to art ideas
go field 1 -- if bkgnd field 1 contains a stack name
go home
go mid card of clip art -- middle card of stack "clip art"
go next
go to first card of second background of "home"
go "hd:biqFolder:innerFolder:myStack" -- full pathname

1be go command takes you to the specified card or stack. If you name a stack without
specifying a card, you go to the first card in the stack. If you don't name a stack, you go
to the specified card in the current stack. You can specify a visual effect to be used on
opening the card by issuing the visual effect command before you use the go
command.

The following example handler queries the user for a destination, then executes a go
command with a visual effect:

on mouseOp
ask "Where to?" with "This card"
if It is empty then put "this card" into It
put It into goWher&
visual effect dissolve to black
go to goWhere

end mouseOp

110 Chapter 7: Commands

(

Syntax

Description

Notes

Syntax

(

Examples

Help

help

The help command takes you to the first card of the stack named Help.

See also the help system message in Chapter 6.

Hide

hide menuBar
hide window
hide part

Window can be one of the following:

card window
tool window
pattern window
[the] message [window]
[the] message [box]

Part is the descriptor of a button or field. The part descriptor can be:

[card] button descriptor
background button descriptor
[background] field descriptor
card field descriptor

Descriptor is the name, number, or ID of the button or field, or a factor yielding one
of those.

hide message

hide bkqnd button "goHome"
hide field id 1

Hide 111

Description

Script

Notes

The hide command removes the specified window or object from view. Its effect is
the same as setting the visible property of the specified window or object to
false, or dicking a window's dose box.

The following example handler hides a field or button when the user purs the pointer
over the button or field: ·

on mouseNithin
hide the tarqet

end mouseNithin

Messaqe can be abbreviated msq. Backqround can be abbreviated bkqnd
Button can be abbreviated btn.

The hide command does not affea the location property of an object or
window.

Hidden fields aren't in the tab order. (They are skipped when you move the text
insertion cursor from one visible Beld to the next by pressing the Tab key.) The find
command does search through them, however, and you can put values into them and
put their values elsewhere.

The card window pa~ter works with the hide command only in HyperCard
versions 1.1 and later.

See also the show command, later in this chapter.

112 Chapter 7: Commands

''--.- .. ,.1

(

Syntax

Examples

Description

Script

Notes

{

·•

M_ultlply

multiply desttnatlon by expresston

Desttnatton is a container and expresston yield,, a number.

multiply Subtotal by Tax

multiply field 1 by field 3

multiply It by 2 -- puts result into It, replacing old value

The multiply command multiplies the value in destlnattonby the
value of expresston and puts the result in dest1natton. ·

The following example handler add,, 6 percent to the value of items in a list:

on taxMe
put n12.45,15.00,150.00,76.95,10.00,14.95" into taxables
repeat with count • 1 to the number of items in taxables

multiply item count of taxables by 1.06
endrepeat -- the new values are stored in taxables

end taxMe

The value previously in the destination must be a number; it is replaced
with the new value.

The result is calculated to a precision of up to 19 decimal places and, if
put into a field or the Message box, is displayed according to the
numberFormat global property.

See also the numberFormat global property in Chapter 9.

Multiply 113

••

Syntax

Examples

Description

Script

Notes

Open

open [document with] appltcatton

Appltcatton is the name of any application and document is the name of
any document on your Macintosh. Either one can be an expression that
yiel~ such a name.

open "MacWrite"
open "Letter" with "MacWrite"
open Field 3
open FavoriteApp

The open command launches the named application A specific document may be
opened with its own creator or a compatible application by using with application.

The following example handler queries the user for a document and application
before executing the open command:

on mouseOp
ask "Open what document?" with empty
if it is not empty then

put it into doc
ask "Ose what application?" with empty
if it is not empty then open doc with it

end if
end mouseOp

If the document or application you specify isn't at the top level of the file hierarchy
(the •disk• level), then the path to it must be specified on the appropriate search path
card of the Home stack (use the card titled •took for documents in" for documents
and the card titled •took for applications in• for applications). Alternatively, you can
specify the full pathname with the open command:

open "My Hard Disk..:.Applications :Words :MacWrite"

If HypetCard can't find the requested document or application, it displays the
dhectory dialog box to the user.

When you quit the application, you go to the card you were on in HyperCard when
you executed the open command. However, any global variables you had
previously dedared are now gone, and any portions of handlers that remained
unfinished when you executed the open command do not finish.

114 Chapter 7: Commands

Syntax

Examples

Description

Script

(

Notes

Open file

open file flleName

FUeName is the name of any file on your Macintosh, or an expression that yields such
a name.

open file "textOnly"
open file field 1

The open file command opens the data fork of the named file. Usually, the file is
an ASCII text file opened in preparation for importing or exporting text. If the
specified file doesn't exist, HypeICard creates it

The following example handler detennines if a given file exists by trying to read
from it:

on checkFile
put "~yFilename" into filename
open file filename
read from file filename for 16384
if it is empty then answer "File does not exist" with "OK"
close file filename

end checkFile

If the specified file is already open, you get an error message. Use the close file
command to close files explicitly after you use them. HypeICard automatically closes
all open files when an exit to HyperCard statement is executed, when you press
Command-period, or when you quit HypeICard

You must provide the full pathname of the file if it's not at the same directory level as
HypeICard (See •stack Descriptors• in Chapter 3 for an explanation of pathnames.)

See also read, write, and close file, in this chapter.

Open flle 115

••

Syntax

Description

Script

Notes

<:?pen printing

open printing [with dialog]

The open printing command starts a print job to be ended later by a close
printing command.

The settings specified in the Print Staclc dialog box are used unless with dialog is
specified, in which case the dialog box is displayed and new settings can be chosen.

The following example handler prints a selection of cards:

on printSelection
put "1,3,8,15,21" into myCards
open printinq with dialoq
repeat with count • 1 to the number of items in myCards

qo card item count of myCards
print. this card

end repeat
close printinq

end printSelection

Printing cards with open printing is similar to printing with the Print Staclc
command in the File menu, except that Print Staclc prints all cards in the staclc, while
open printing prints only the ones you specify with the print card
command, described later in this chapter.

You must use the close printing command to end a print job begun with open
printing. Don't use the print [document with] application command
while a print job is active.

See also close printing and print card, in this chapter.

116 Chapter 7: Commands

(

Syntax

Examples

Description

(Script

Notes

••

PJay

play "voice" [tempo] ["notes"]
play stop

Vol'.ce is the name of a digiti7.ed sound (boinq and harpsichord are included
with HyperCard), tempo is the speed at which the sound plays, and notes is a list of
one or more notes representing the pitch at which the sound plays and the duration of
the notes. The quotation marks around voice and notes are required

play "boing" tempo 200 "c4e c dq c f eh" -- Happy Birthday

play "harpsichord" "ch d e f g a b c5w"

The play command makes the Macintosh play notes through its speaker (or
through the audio jack if it's plugged in). You can write a song by specifying a series of
notes after the play command The play stop form stops the current sound
immediately; otherwise it plays until it's done and stops by itself. HyperCard
continues to execute handlers and perform other actions while a sound plays.

The following example handler goes to each card in a stack and synchroni7.CS playing
the specified notes with each card change:

on tour
repeat the number of cards

play "harpsichord" tempo 200 "ce4 fe ae c5q ae4 cq5"
go next card
wait until the sound is "done"

end repeat
end tour

The tempo is a number specifying the speed at which the group of notes is played (100
is a medium tempo; higher numbers are faster). Voice and tempo are specified once
for ~ch play command

11le notes are specified in·the following form:

noteName acctdentaJ octave duration

Play 117

Syntax

Example

Description

NOl8Namll is the name of the note played CA through G); accutental is t or b
specifying sharp or flat, respectively; octave is a number specifying the pitch of the
scale (4 is the •middle c• scale); and duratton specifies the relative time value of the
note played:

w whole note
h half note
q quarter note
e eighth note
s 16th note
t 32ndnote
x 64thnote

You can use a period (.) or numeral 3 following duratton to specify a dotted or triplet
note, respectively.

Octave and duratton may be changed for each note played; if they are not changed,
sumequent notes are in the same oaave and have the same duration as the previous
note.

HypeiCard can also play digitized music or voice samples which are stored on disk as
format 2 ' snd ' resources-the resource name is the voice-in the current stack
fde, the Home stack, the HyperCard application, or the System fde. Ins1de
Maclntosb, Volume V, desaibes format 2 'snd ' resources.

See also the sound function in Chapter 8.

Pop card

pop card [prepos#1on destlnatton]

Pn!posuton is into, before, or after, and destlnatton is a container or any
chunk of a container.

pop card into field 3 of card Whereibeen

The pop card command retrieves the identification (full ID and stack pathname)
ol a card previously saved with the push card command If you don't provide a
destination for the identification, you go directly to the card whose address is
popped

118 Chapter 7: Commands

!"'\,_
''(__/

Script

Notes

(Syntax

Examples

Description

'The following example handJer pushes whatever card you're on, goes to another
staCK, gets the value of a field property, then returns to the original card:

on getTheFont
global myStack,theFont
push card
go myStack
put textFont of field 1 into theFont
pop card -- goes to the card formerly pushed

end getTheFont

If you don't specify a destination, after the card has been popped, its identification is
removed from the memory stack-it can't be popped again. If a destination is given,
however, the card's identification is put into the destination container, but you don't
go anywhere.

See also the push card command, in this chapter.

Print card

print card
print expression cards
print cardDescrlptor

F.xpresston yields an integer or the word all, and cardDescrlptoris ~card
· descriptor of a card in the current stack.

print card
pr int last card
print card id 3011
print all cards
print howMany cards -- howMany contains a number or "all"

'Ibe print card command makes HyperCard print the current card, the same as
the Print Card command in the File menu (Command-P). The print expression
cards form prints the number of cards specified by e:xpresston, or all the cards in
the stack, beginning with the current card The print card.Descrtptor fonn makes
HyperCard go to the specified card, print it, and return to the current card.

Print card 119

Script

Notes

Syntax

Examples

Description

The following example handler queries the user for a number of cards to print
whenever Print Card is chosen from the File menu:

on doMenu var
if var is "print card" then

ask "Print how many cards?" with one
open printinq
print It cards
close printinq

else pass doMenu -- make sure other menu choices continue to work
end doMenu

You don't need to use the open printinq command before using the print
card command. If nothing is printing, the print card command prints the
specified card or cards immediately; if an open printinq command is in effect,
no cards are printed until a page is full (depending on how many cards per page are
specified in the printing dialog box) or the close printinq command is given.

Chapter 3, •Naming Objects,• defines card desaiptors.

Print

print document with application

Document is an expression that yields the name of any document on your Macintosh,
and applicatfon is an expression that yields the name of the application to which it
belongs (or with which it is compauble).

print "memo" with "MacNrite"
print field 1 with field "Proqram"
print "hd:Mac docs:letter• with "hd:utilities:MacNrite"

The_ print command suspends HyperCard, launches the named application,
opena the named docu~nt, prints the document, then resumes running HyperCard.
1he speci&ecl application inust support printing.

120 Chapter 7: Commands

rf' "\

~-j

(

Script

Notes

(
Syntax

Examples

Description

Script

'Tbe following example handler queries the user for the name of a document to print
and an application with which to print it:

on mouseOp
ask "Print what document?" with empty
if It is not empty then

put It into doc
ask "Use what application?" with empty
if It is not empty then print doc with It

end if
end mouseUp

If the document or application you specify isn't at the top level of the file hierarchy
(the •disk" level), then the path to it must be specified on the· appropnate search path
card of the Home stack (use the card titled •took for documents in" for documents
and the card titled •took for applications in" for applications). Alternatively, you can
specify the full pathname with the print command.

Don't use the print command while the open printing command is active.

Push

push cardDescrlptor

CardDescrlptoris a factor that yields the descriptor of any card in the current stack.

push recent card
push first card
push card

'Tbe push command saves the identification of the specified card in a LIFO Oast-in,
first-out.) memory stack (an area of memory, not a HyperCard stack).

1he following example handler saves the current card, goes to a random card, then
returns to the original card:

on nonsense
push card -- save current card
qo any card
pop card -- restore current card

end nonsense

Push card 121

..

Notes.

Syntax

Examples

Description

Script

The card identification can be retrieved later with the pop card command (usually
so ·that you can go direaly back to the pushed card). The card identification that's
saved is the full card ID and stack path name.

Card desaiptors are described in Chapter 3.

See also the pop card command, earlier in this chapter.

Put

put expresston [preposmon desttnatlon]

Expresston yields a text string or number, preposition is into, before, or after,
and desttnatton is a container.

put "Hello" into field 1
put "go " before field "WhereTo"
put empty into It
put It -- puts contents of It into Msg
put "Tom" into first word of field "Name"
put "·" after first character of last word of field 3
put field 2 + field 3 into field 4 -- adds numbers in fields
put the date into varName

The put command causes HyperCard to evaluate expression and copy the result
into desttnatton.

The following example handler initializ.es three global variables when the stack it's in
is opened:

on openStack
global varl,var2,var3
put O into varl
put empty into var2
put empty into var3

end openStack

122 Chapter 7: Commands

(

Notes

Synta~

Examples

Description

If you don't specify the destination, the value is copied into the Message box.
(HyperCard shows the Message box if it's hidden.) If you specify a destination that
HyperCard doesn't recogni7.e, it creates a new local variable of that name and puts the
value into the variable.

Using into with put replaces the contents of the destination, before places
the source value at the beginning of the previous contents, and after appends the
source value to the end of the previous contents.

If e:x:p"1SS1on is a container holding an arithmetic expression, the expression is not
evaluated but is copied literally into the destination: Use the value function with
the container name to have HyperCard evaluate its contents.

You can delete the contents of a container by putting the constant empty or ""
into it (but this doesn't delete the container). You can specify a chunk expression
before the destination to insert, replace, or delete a portion of the contents.

See also the delete command, earlier in this chapter.

Read

read from file flkName until character
read from file jfkName fQr numbef'OjCbaractets

FlkName is an expression yielding the name of any file on your Macintosh,
cbaracteris an expression yielding a character, and numbel'OfCbtwacten is an
expression yielding an integer.

read from file "import" until tab
read from file "File Names" until return -- reads one line
read from file "someText" for 16384 --maximum block size

The read command reads from the data fork of the specified ftle, previously
opened with the open file command, into the local variable It. Reading starts
at the beginning of a newly opened file and continues from the last point read with
each read command. - -

1be until cbaJUCterform causes reading to stop when the specified character has
been read; the for numbel'OjCbaracters form causes reading to stop when the
specified number of characters (or bytes) have been read Return characters at the
end of lines count, as do space and tab characters.

Read 123

Script

Notes

1be following example handler opens a file, reads to the end of the file while placing
its contents into a global variable, and closes the file:

on mouseOp
global f ileName, textHolder
open file fileName
repeat

read from file f ileName for 16834
if It is empty then exit repeat
put It after textHolder

end repeat
close file fileName

end mouseOp

You can read only up to 16,384 characters at a time. If you try to read more characters
than that, all but the last 16,384 that you read are ignored The read command puts
the characters into the local variable It, replacing its previous contents. So, you
must put each block of text that you read into another container (use after with the
put command to append each new block of text to the end of the previous contents).
Containers other than fields have no practical size limit (they're limited by available
memory). If you try to put more than 32,000 characters into a field, the extra
characters are ignored.

+ Hypercard removes tab characters from fields: HyperCard reads tab characters
from a file into It, and the tab characters remain when you put the text into
another variable or a field (where they are displayed as spaces). If you alter any text
in the field, however, HyperCard removes the tab characters.

If you specify more than one character with the until cbaracterform, HyperCard
stops reading when it matches the first character specified

Use the close file command to close files explicitly after you use them.
Hype.rCard automatically closes all open files when an exit to HyperCard
statement is executed, when you press Command-period, or when you quit
HyperCard.

You must provide the full pathname of the ftle if it's not at the same directory level as
HyperCard. (See •stack Descriptors• in Chapter 3 for an explanation of pathnames.)

See also the close fil:e, open file, and write commands in this chapter.

124 Chapter 7: Commands

Syntax

Description

Notes

Syntax

Description

Notes

Reset paint

reset paint

The reset paint command reinstares the default values of all the painting
properties. The painting properties and their default values are

grid false
·1ineSize 1
filled false
centered false
multiple false
multiSpace 1
pattern 12
brush 8
polySides 4
textAliqn left
textFont geneva
text Size 12
textStyle plain
textHeight 16

The painting properties are described in Chapter 9, •properties.•

Return Key

returnKey

1be returnKey command sends a statement typed into the Message box to the
current card. Of a rieJ.d is open for text editing, pressing the Return key enteis a return
cbancter.)

1be return.Key message, whichinVokes the return.Key command if it reaches
HypeJCard, is nonnally generated by pressing the Rerum key on the keyboard But
you can also send it from the Message box or execute it as a line in a script.

See also the return.Key system message in Chapter 6.

Return Key 125

Syntax

Examples

Description

Script

Notes

Set

set (the] property [of object] to value

Properly is a characteristic of a HyperCard object, object is an object descriptor or
window name, and value is a valid setting for the partiwlar property.

set name of field l to "Soccer"
set location of button "newButton" to the mouseLoc
set the visible of field l to "false" -- hide the field
set userLevel to 5 -- scripting

The set command changes the state of a specified global, painting, window, or
object property. If the object to which the property belongs is not specified, the
property must be a global or painting property.

The following example handler automatically draws a circle on the wrrent card:

on mouseOp
choose oval tool
set linesize to 2
set centered to true
set dragspeed to 75 -- this changes the speed of expansion
drag from 255,170 to 385,300
choose browse tool

end mouseOp

The properties of objects depend on the type of object. Generally, they are the
characteristics shown in the Info dialog boxes under the Objects menu.

All of the HyperCard global, painting, window, and object properties are described
in detail in Chapter 9, •properties." See also the show command, later in this
chapter.

126 Chapter 7: Commands

(

Syntax

Examples

Description

Script

Notes

Show cards

show number cards

Number is an expression yielding an integer or the word all.

show all cards

show ten cards
show 26 cards
show howMany cards -- howMany is a variable containing a number

The show cards command displays the specified number of cards in the current
stack in tum, beginning with the next card

The following example handler •pre-warms• the stack when you open it, so that going
to cards in the stack subsequently will be faster, by caching the cards in RAM:

on openStack
set lockScreen to true
show all cards
set lockScreen to false

end openStack

The show all cards form shows all cards in the stack. HyperCard doesn't send
the openCard system message when a card is displayed by show cards, nor do
visual effects occur. After the cards are shown, the last one shown (where you began in
the case of show all cards) is the current card

Show cards 127

Syntax

Examples

Description

Show

show menuBar
show window [at b, V]
show part [at b, v]

Window can be one of the following:

card window
tool window
pattern window
[the] message [window]
[the] message [box]

Part is the descriptor of a button or field The part desaiptor can be

[card] but ton descriptor
background button descriptor
[background] field descriptor
card field descrtptor

Descriptor is an expres&on yielding the name, number, or ID of the button or field;
b and v are expressions yielding integers representing horizontal and vertical pixel
offsets, respectively, on the saeen.

show msq at 100,200

show tool window
show field nNames" at 1,1

The show command displays a specified window or object at a specified location on
the screen. If positioning offsets aren't given, the window or object is displayed at its
previous location.

128 Chapter 7: Commands

(
Script

Notes

(

..

1be following example handler displays the palettes and the Message box at their
default locations when HyperCard first starts running:

on startup
show tool window
show pattern window
show msq

end startup

If they have not been previously tom off the menu bar, the Tools palette appears at
200,70 and the Patterns palette at 300,70. The Message box appears at 22,300. The
menu bar always appears at the top of the screen. In effect, the show command sets
the visible and, optionally, location properties of the window or objea.
(See Chapter 9 for a description of the visible and location properties.)

On the original Macintosh screen, visible horizontal offsets range from 0 to 511, and
visible vertical offsets range from 0 to 341.

Messaqe can be abbreviated msq. Background can be abbreviated bkqnd
Button can be abbreviated btn.

Card window refers to the position of the entire HyperCard display on the screen;
the band v offsets specify the distance from the top-left comer of the screen to the
top-left comer of the card window, disregarding the title bar at the top of the window.
For the other windows, band v specify the distance from the top-left comer of the
card window to the top-left comer of the other window, disregarding the drag bar at
the top of the window.

For buttons and fields, b and v specify the distance from the top-left comer of the
card window to the center of the button or field The menu bar always shows at the top
of the screen. The tool window is the Tools palette, pat tern is the Patterns
palette, and m.essaqe or msq is the Message box.

See also the hide and set commands, earlier in this chapter.

Show 129

Syntax

Examples

Description

Script

Notes

Sort

sort [direction] [style] by expression

Direction is ascendinq or descendinq, styleis text, numeric, dateTirne,
or international, and e:qJ"1SS10n is any expression.

sort numeric by second word of field 1
sort descendinq text by last word of field "Names"
sort by field 2

The sort command orders all the cards in a stack according to the value of
expresSton, which is evaluated individually for each card in the stack.

The default dtrectfon is ascendinq, and the default style is text.

The following example handler shuffles the cards in a stack randomly when the user
goes to it from another stack:

on openStaclc
sort numeric by random(the number of cards)

end openStaclc

1be dateTime style sorts the stack using one of the forms of date or time (shown
with the convert command, in this chapter), with earliest placed first in the
ascending direction. The international style assures correa sorting of non­
English text containing diaaitical marks and special characters, depending on the
international resources in your System file, your version of HyperCard, the Home
stack, and the current stack. 1be dateTime style also works correctly with non­
English forms of date and time modified by international resources in the System file.

130 Chapter 7: Commands

(

Syntax

Examples

Description

Notes

(
Syntax

Description

Examples

Notes

(--,,_
;

........ ~,/ .

Subtract

subtract expression from des"natton

E:x:presston yields a number, and destinatton is a container.

subtract 2 from It

subtract field 1 from field 2

The subtract command subtracts the value of expression from the value of
destlnatton, leaving the result in the destination.

The value previously in the destination must be a number; it is replaced with the new
value.

tabKey

The tabKey command opens the first unlocked field on the ament background or
card (placing the text insertion point in the field) and seleaing its entire contents. If a
field is already open, tabKey closes it and opens the next field, selecting its
contents.

The following example handler sets the insertion point in the first field, so that the
user can type something, when the card is opened:

on openCard

t~Key
and openCard

1be tabKey message, which invokes the tabKey command if it reaches
HyperCard, is normally generated by pressing the Tab key on the keyboard. But you
can also send it from the Message box or execute it as a line in a script.

The tabKey command opens fields in the following order: from the lowest number
to the highest, through the background fields first, then through the card fields.

See also the tabKey message in Chapter 6.

TabKey 131

Syntax

Examples

Description

Script

Notes

Type

type expression [with key[, key2[, key3]]]

Expression yields a text string, and key, key2, and key3 are one or more of the
following key names, separated by commas: shiftKey, optionKey, or
commandKey (or cmdKey).

type "Now is the time for all good persons."
type "P" with command.Key -- print card

The type command enters the value of e:x:presslon at the text insertion point, as
though you had typed it manually.

The following example handler chooses the Browse tool, clicks at the center of the
specified f'ield, and types a literal string:

on autoType
choose browse tool
click at the loc of field "whereToType"
type "Automatic writing apppears before your eyes ••• "

end autoType

The text insertion point is placed by clicking in an unlocked field with the Browse tool
or by sending the tabKey mes.uge. Manipulating the text insertion point is
desaibed in the HyperCard User's Guide. Paint text can be typed at the text insertion
point on a card or background with the Paint Text tool selected

132 Chapter 7: Commands

rr .,"'
v

(

Vasual

Syntax visual [effect] effectName [speed] [to tmage]

E/fectName is one of the following:

barn door close scroll up
barn door open venetian blinds
checkerboard wipe down
dissolve wipe left
iris close wipe right
iris open wipe up
plain zoom close
scroll down zoom in
scroll left zoom open
scroll right zoom out

Speed is one of the following:

fast very fast
slow[ly] very slow[ly]

(Image is one of the following:

black inverse
card white
gray

Examples visual effect barn door open

visual dissolve slowly to white
visual checkerboard

Visual 133

Description

Script

Notes

1be visual command specifies a visual transition for Hype.rCard to use the next
~it opens a card, as the current card is closed. The default plain visual effect
causes all of the current image to be replaced immediately by the image of the next
carci. If you use the to tmage form, the visual effect occurs as a transition from the
current card to a completely white, gray, or black screen image, to the inverted image
of the current card, or to the image of the next card; to card is the default.

The following example handler stacks two visual effects, which occur in succession, so
that the transition appears as a fade to black, then to the next card:

on fadeout
visual effect dissolve to black
visual effect dissolve to card
go next card

end fadeout

VlSUal effects don't happen when you use the arrow keys or the show cards
command to change cards; they must be set up in a handler that also contains a qo
command, and they occur when the qo is executed. If a qo conunand is not
executed, visual effects set up in the handler are canceled when the handler fmishes
executing. You can stack up several visual effects that will occur one after the other
when you go to the next card.

On a Macintosh II you must use one-bit display mode (choose •2 colors• or •2 grays•
on the monitor setup of the Control Panel) to see visual effects.

134 Chapter 7: Commands

(

Syntax

Examples

Description

Script

(

Note

Wait

wait [for] Nme [seconds]
wait until condlt1on
wait while condition

T!me is an expression that yields an integer and condmon is an expression that yields
true or false.

wait 60 seconds
wait until the mouse is down

The wait command causes HypetCard to pause before executing the rest of the
handler, either for a specific length of time, until a specified condition becomes true,
or while a specified condition remains true. _

The following example handler allows time to view each card:

on slideshow
repeat the number of cards

visual effect dissolve slowly
go next card
wait 2 seconds

end repeat
end slideshow

If seconds is not specified for Nme, HypetCard uses ticks (%0 second), which
can also be specified explicitly.

Walt 135

Syntax

Examples

Description

Script

Notes

Write

write source to file ftleName

Source is an expression that yields text, and ftleName is an expression that yields a
fllename.

write field "address" to file "myDisk:myFile"

write "first line" & return & "second line" to file "two liner"

The write command causes HyperCard to copy the specified text into the
specified disk file.

The following example handler opens a file specified in a global variable, writes the
entire contents of the specified field to the file, the closes the file:

on writeFile
global filename
open file filename
write background field 1 to file filename
close file filename

end writeFile

The file must have been opened previously with the open file command and
should be closed, when copying is completed, with the clo5e file command

The fll'St write command that you execute after opening the me replaces any
previous contents. Subsequent write commands append to the file's contents.

You must provide the full pathname of the file if it's not at the same directory level as
HyperCard (See •stack Desaiptors• in Chapter 3 for an explanation of pathnames.)

If the file is locked or its disk is full, HyperCard displays an error dialog box and clooes
the file. HyperCatd automatically closes all open files when an exit to
HyperCard statement is executed, when you press Command-period, or when you
quit HyperCard.

See also the open file, clo5e file, and read commands, in this chapter.

136 Chapter 7: Commands

(

Chapter 8

Functions

(

137

Th.is chapter describes HypetTalk's built-in functions.

A function is a named value that is calculated by HyperCard when a statement in
which it's used executes. The value of a function changes according to conditions of
the system or according to values of parameters that you pass to the function when you
use it. When HyperCard reads a function name in a line ofHypel'I'alk, it places the
function's current value-its result-in that location before completing other actions.

Function calls
To make a function call, that is, to use it in a Hypeflalk statement, you must either use
the word the before the function name or append parentheses after it. If a single
parameter is passed to a function, the parameter can be enclosed in the parentheses
or can follow the word of. (When of is used in this way to indicate the function call,
the word the preceding the function name is optional.) If more than one parameter
is passed to a function, all parameters must be enclosed in the parentheses and
separated from each other by commas. Some examples of function calls are

put the time into msq
put time() into background field "Time"
put the length of myVariable into card field "howLonq"
put averaqe(total_l,total_2,total_3l into Projection

You can deftne your own functions in Hypeflalk using the function handler structure
desaibed in Chapter 5.

+ Defined junctions ouemde built-In ones w1tb same name: If you define your own
function having the same name as a built-in one, yours will override the built-in one
if the function call is made with the parentheses syntax (unless the function call is
made farther along the hierarchy than the handler's saipl). Users can call
HyperCard's built-in functions directly by using the words the or of, rather than
using the parentheses syntax; however, functions having more than one parameter
always require parentheses.

138 Chapter 8: Functtons

/

."

r-"',
'"__j

(

Syntax description notation
The syntax descriptions use the following typographic conventions. Words or phrases
in typewriter type are Hypertalk language elements or are those that you type to
the computer literally, exactly as shown. Words in Uallc type describe general
elements, not specific names--you must substitute the actual instances. Square
brackets ([I) enclose optional elements which may be included if you need them.
(Don't type the square brackets.)

It doesn't matter whether you use uppercase or lowercase letters; names that are
formed from two words are shown in small letters with a capital in the middle
(likeThis) merely to make them more readable. The HyperTalk prepositions of
and in are interchangeable-the syntax descriptions use the one that sounds more
natural.

The tenns/actorand e:x:presston are defined in Olaprer 4. Briefly, a factor can be a
constant, lireral, function, property, number, or container, and an expression can be
a factor or a complex expression built with factors and operators. Also, a factor can be
an expression within parentheses. 1be tenn yields indicates a specific kind of value,
such as a number or a text string, that must result from evaluation of a factor or
expression when a restriction applies (for example, the factor or expression used with
the abs function must yield a number). However, any HyperTalk value can be
treated as a text string.

Syntax description notation 139

Syntax

Example

Description

Syntax

Examples

Description

Notes

Abs

the abs of factor
abs (exjmmlon)

Factor and e:x:presnon yield numbers.

put abs(a-bl into field "theOffset"

The abs function returns the absolute value (makes the sign positive) of the number
passed toil

Annuity

annuity (tr#e, periods)

Rate and periods are expressions that yield numbers

put myPayment*annuity(.015,12) into presentValue
put myPayment*annuity(.015,12)*compound(.01S,12l into futureValue

1be annuity function is used to compute the present or future value of an ordinary
annuity. Rate is the interest rat.e per period, and periods is the number of periods
over which the value is calwlat.ed The formula for annuity is

annuity(tr#e, periods) - (1-(l+rate)-~ /rate

The annuity function is more accurate than computing the expression above using
basic arithmetic operations and exponentiation, especially when rate is small.

See aJao the compound. function, lat.er in this chapter.

140 Chapter 8: FlllCtlons

(:~

< ... __ ,/

\" ./

(

Syntax

Example

Description

Script

(

..

At an

the atan of factor
atan (e.xp~ton)

Factor and ~Ion yield numbers.

put atan(l.0) into field "arcTan" -- yields.0.785398

The atan function returns the trigonometric arc tangent (inverse tangent) of the
number p:wed to it; that is, the angle whose tangent is equal to the given value. The
result is exp~d in radians.

Radians can be converted to degrees by multiplying by 180 and dividing the result by
the value of the constant pi.

The following example handler converts a value in radians to degrees and puts the
result into the Message box:

on radiansToOegrees var
put round((atan(var)*l80)/pi) into msg

end radiansToDegrees

A tan 141

Syntax

E~ample

Description

Script

Syntax

Example

DescripHon

Notes

Average

averaqe (II.st)

LI.st is a sequence of comma-separated expressions that yield numbers, or it is a single
container that contains such a sequence.

put average(l,2,3) into field "avq"

The averaqe function returns the average of the numbers passed to it.

The following example handler displays the average of a list of numbers contained in
one line of a field:

on avgSupplyPrice
put "12.95,10.50,14.75,15.00,9.95" into line 3 of field "suppliers"
answer "Average widqet cost:" " average (line 3 of field "suppliers")

end avgSupplyPrice

CharToNum

the charToNum of factor
charToNum (e:ii:pnPSSt<>n)

Factor and e:ii:pnPSSt<>n yield a character.

put the charToNum of "a" into It -- yields 97

The charToNum function returns an unsigned integer representing the ASCil
equivalent value of the character passed to iL

11 moie than one character is passed, charToNum returns the ASCll value of the first
character. If soun:e is a literal, it must appear within quotation marks.

142 Chapter 8: Functions

::f:.r~"""\

~/

Syntax

Example

Description

Script

Syntax

Example

Description

Note

Click Loe

the clickLoc
clickLoc ()

put the clickLoc into card field "firstClick"

The clickLoc function returns the point on the screen where the user most
recently clicked before the handler started executing. The location is determined at
the time the message is fust sent-the mouse could be elsewhere by the time the
message is received. The location point is returned as two integers separated by a
comma, representing horizontal and vertical pixel offsets measuring from the top-left
comer of the card window.

The following example handler, when it is in the script of a locked field, selects a word
in the field when the user clicks the WO.rd:

on mouseOp
set locktext of me to false --·field must be locked
click at the clickloc
click at the clickloc
put "You clicked on the word:" '' the selection
set locktext of me to true -- must lock it again when we leave

end mouseOp

Command Key

the command.Key
command.Key ()

if the commandKey is up then put "Wow" into the Message box

1be commandKey function returns the constant up if the Command key is not
pressed or down if il is pressed

The command.Key function~ can be abbreviated cmd.Key.

CommandKey 143

Syntax

Examples

Description

Script

Note

Compound

compound (rate, periods)

Rate and periods are expressions that yield numbers.

put futureValue/compound(.10,12) into presentValue
put presentValue*compound(.10,12) into futuraValue

The compound function is used to compute the prE".Sent or future value of a
compound interest-bearing account Rate represents the interest rate per period,
and periods is the number of periods over which the value is calculated The formula
for compound is

compound(rate, periods> • (l+rate)~

The compound function is more accurate than computing the expression above
using standard arithmetic operations and exponentiation, especially when rate is
small.

The following example handler calculates the value in one year of an account earning
7% percent interest compounded monthly:

on calcinterest
ask "Enter the beqinninq balance:" with empty

set numberformat to ".00" -- dollars and cents format
put "Value in 1 year$" & it* compound(.075/12,12)

end calcinterest

See also the annuity function, earlier in this chapter.

144 Chapter 8: Functions

(

Syntax

Example

Description

Note

(
Syntax

Example

Description

Script

Cos

the cos of factor
cos < exprasston)

Factor and e:JCPreSSlon yield numbers.

put the cos of 2 -- puts -.416147 into the Message box

The cos function returns the cosine of the angle which is passed to it The angle
must be expressed in radians.

Radiam can be converted to degrees by multiplying by 180 and dividing the result by
the value of the constant pi.

Date

the [modifier] date

Mod'lfteris lonq, short, or abbreviated (or abbrev or abbr).

put last word of the long date into background field "Year"

1be date function returns a string representing the current dare set in your
Macintosh. The various forms return strings exemplified by

the short date 7/5/87
the lonq date Sunday, July S, 1987
th~ abbrev date Sun, Jul S, 1987

'Witbout a modifier the date function returns the short date .

..
1be following example handler puts the current dare into a field when another field
(whose saipt contains the handler) is changed:

on closeField
put the long date into field "lastOpdate"

end closeField

Date 145

Syntax

Example

Description

Script

DfskSpace

the diskSpace
diskSpace ()

if the diskSpace < 100000 then answer "Your disk is qettinq full."

The diskSpace function returns an inreger representing the.number of bytes of
free space on the disk that contains the cwrent stack.

The following function handler is used by the second handler (for the writeFile
message) to ensure that there is enough space on a disk to wrire to a file on that disk:

function checkSpaca var
if the diskSpace > var then return "OK" else return "FOLL"

end checkSpace

on writeFile
qlobal var
put "MyFilename" into filename
if checkSpace(card field 1) is "OK" then

open file filename
write var to file filename
close file filename

else answer "Can't write that file; the disk is full."
end writeFile

146 Chapter 8: Functions

Syntax

Example

Description

Syntax

Example

Description

c~,

the exp of factor
exp cexpremon)

Factor and expresston yield numbers.

put the exp of 2 -- puts 7.389056 into the Message box

The exp function rerurns the mathematical exponential of its argument (the
constant e, which equals 2.7182818, raised to the power specified by the argument).

Expl

the expl of factor
expl (expresswn>
Factor and expresston yield numbers.

put the expl of 2 -- puts 6.389056 into the Message box

The expl function returns 1 less than the mathematical exponential of its argument
(1 less than the result of the constant e raised to the power specified by the argument).
That is, it computes:

exp (number) - 1

Expl 147

Syntax

Example

Description

Syntax

Examples

Description

Notes

Exp2

the exp2 of factor
exp2 (&XJ>t'eS.Slon)

Factor and expression yield numbers.

put the exp2 of 16 -- puts 65536 into the Mes5aqe box

'The exp2 function returns the value of 2 raised to the power specified by the
argument.

Length

the lenqth of factor
lenqth(~n)

Factor and e:x:pressum yield text· strings.

put lenqth("tail") into It -- yields 4
if the lenqth of word n of field 5 > 25 then add 1 to foqindex

'The lenqth function returns the number of characters (including spaces, tabs, and
return characters) in the text string passed to il

If e:x:presswn is a literal, it must appear within quotation marks. 'The lenqth
function is identical in effect to the following form of the number function:

the number of characters in factor

148 Chapter 8: Functions

(

(

Syntax

Example

Description

Syntax

(
Example

Description

Ln-·

the ln of factor
ln (expresston)

Factor and expression yield numbers.

put the ln of 10 -- puts 2.302585 into the Message box

The ln function returns the base-e (natural) logarithm of the number passed to it

Lnl

the lnl of factor
lnl (expression)

Factor and expression yield numbers.

put the lnl of 10 -- puts 2.397895 into the Message box

The lnl function returns the base-e (natural) logarithm of the sum of 1 plus the
number passed to it 'That is, it computes

ln (!+number)

If number is small, the result is more accurate than using standard arithmetic
operations.

Lnl 149

Syntax

Example

Description

Syntax

Example

Description

Script

Log2

the loq2 of factor
loq2 (expression)

Factor and expresston yield numbers.

put the 1092 of 10 -- puts 3.321928 into the.Messaqe box

The loq2 function returns the base-2 logarithm of the number passed to it.

Max

max (list)

List is a sequence of comma-separated expressions rhat yield numbers, or it is a single
container rhat contains such a sequence.

put max(5,10,7.3) -- puts 10 into the Messaqe box

The max function returns the highest-value number from a list of numbers passed to
iL If the source of the list is a container with more rhan one line in it, only the first line
is used.

The following example handler displays the highest number in a list contained in a
variable:

on hiqhStock
put "12.50,10,7.95,14.76,13.70" into stockPrices
answer "The hiqhest_price for the month is:"'' max(stockPrices)

end hiqhStock ·

150 Chapter 8: Functions

(

Syntax

Example

Description

Script

Syntax

Example

Description

Min

min (list)

Lt.st is a sequence of comma-separated expressions that yield numbers, or it is a single
container that contains such a sequence.

put min(5,10,7.3l -- puts 5 into the Message box

The min function returns the lowest-value number from a list of numbers passed to
it If the source of the list is a container with more than one line in it, only the first line
is used

The following example handler displays the lowest number in a list contained in a
variable:

on lowStock
put "12.50,10,7.95,14.76,13.70" into stockPrices
put "The lowest price for the month is:" && min(stockPrices)

end lowstock

Mouse

the mouse
mouse()

if the mouse is up put "Press the mouse button" into msg

The" mou~e function returns the constant up if the mouse button is not pressed,
down if it is pressed

Mouse 151

Script

Syntax

Example

Description

Script

The following example handler determines whether the user has single-clicked or
double-clicked the button whose script contains the handler:

on mouseOp
put the ticks into start
repeat until the ticks-start > 4 -- adjust for comfortable click

if the mouse is "down" then
qo last card -- put your double-click action here
exit mouseOp

end repeat
qo next card -- put your sinqle-click action here

end mouseOp

MouseClick

the mouseClick
mouseClick ()

if the mouseClick ~hen put the mouseLoc

1be mouseClick function determines if the mouse button is down. If it is not down,
the mouseClick immediately returns the constant false. If the mouse button is
down, the mouseClick waits until the mouse button is up, then returns the
constant true.

The following example handler demonstrates operation of the mouseClick
function by informing the user whether or not it sensed a click during its execution:

on mouseOp
put "Click or don't click ••• "
wait 5 seconds
if the mouseClick then

put "You clicked.~

el••
put "You didn't click."

end if
end mouseOp

152 Chapter 8: Functions

1(

\\.. .. ~_,,/

Syntax

Example

Description

(Syntax

Examples

Description

Script

MouseH

the mouseH
mouseH ()

if mouseH > 512 put "Stop" into msg

The mouseH function returns an integer representing the number of horizontal
pixels from the left side of the card window to the current location of the mouse
pointer. When this number is negative, the mouse has been clicked to the left of the
left edge of the card window (possible when you're using a display larger than the
original Macintosh display, or if you set the location of the card window different
fromO,o).

Mouse Loe

the mouseLoc
mouseLoc ()

show button "everReady" at the mouseLoc

1be mouseLoc function returns the point on the saeen where the pointer is
rurrently located. This point is returned as two integers separated by a comma,
representing horizontal and vertical pixel offsets from the top-left comer of the card
window.

1be following example handler, in a button script, allows the user to drag the button
a.roUnd the saeen:

on mouseDown
repeat until the mouse is up

show the name of me at the mouseloc
end repeat

end mouseoown

Mouse Loe 153

Syntax

Example

Description

Syntax

Examples

Description

MouseV

the mouseV
mouseV()

if mouseV > 342 put "Stop" into msg

The mouseV function retumS an integer representing the number of vertical pixels
from the top of the card window, disregarding the title bar, to the current location of
the pointer.

Number

[the] number of objects
[the] number of chunks in factor

Objects i3 [background] buttons, [card] fields, backgrounds, or
cards. Chunks i3 characters (or chars), words, item5, or lines, and
/actoryields a text string.

put the number of buttons into It
put number of items of line 1 of field 2 into listSize
put the number of chars in msg into line 3 of field 2
if the number of chars in myVar > 10 then put "Big" into msg·

The number function retumS the number of buttons or fields on the current card or
on its background, the number of backgrounds or cards in the current stack, or the
~ of chunks of a specified kind in a designated text string.

154 Chapter 8: Functions

(

Script

Notes

The following example handler uses the number function to delete all the card fields
on a-card, regardless of how many there are:

on deleteFields
put the tool into oldTool
choose field tool
repeat with whichField • the number of card fields down to 1

-- you must count down like this, not up
click at the loc of card field whichField
doMenu clear field

end repeat
choose oldTool

end deleteFields

If backgrounds is not specified wilh buttons, the number of card buttons is
returned; if card is not specified wilh fields, the number of background fields is
returned If the number function is used wilh a chunk name, it returns the number of
chunks of that kind wilhin the designated container or olher factor yielding a text
string.

The factor can be a chunk expreuion, so you can get the number of chunks of one kind
wilhin another chunk:

the number of chars in first word of field l

You can also use the fonnat that uses parentheses wilh the number function:

number(cards)

Backgrounds can be specified wilh the abbreviation bkgnds.

See also the number property for backrounds, cards, fields, and buttons, in
Chapter9.

Number 155

Syntax

Example

Description

Script

Notes

NuinToChar

the numToChar of factor
numToChar (apm.s1on)

Factor and e:x:presston yield positive integers.

put numToChar(67) into word 4 of line 9 of field "ASCII Chart" -- yieids C

1be numToChar function returns the character whose ASCU equivalent value is that
of the integer passed to iL

1be following example handler turns all of the lowercase letters in a field into
uppercase letters:

on uppercase
put card field 4 into temp -- variables are faster than fields
repeat with count • 1 to the lenqth of temp

qet character count of temp
if charToNum of it > 96 and charToNum of it < 123 then

put numToChar(charToNum(itJ-32) into character count of temp
end it

end repeat
put temp into card field 4

end uppercase

See also the charToNum function, earlier in this chapter.

156 Chapter 8: Functions

(

Syntax

Examples

Description

Script

(

Note

Offset

offset (string!, strlng2)

String! and strlng2 are both expressions yielding text strings.

put offset("hay",field l) into the Message box
offset("a","abc") -- typed in msg, returns l

The off set function returns the number of characters from the beginning of the
strlng2 string at which string! begins. If string! doesn't appear within strlng2, 0 is
returned

The following function handler finds every occurrence of a string within a container,
and it replaces every occurrence with a second string:

function searchAndReplace container,original,replacement
repeat until original is not in container --
loop until all are replaced

put offset(original,container) into start
-- set start to location of original
put replacement into char start to start + ~

(the length of original - l) of container
end repeat
return container

end searchAndReplace

The parameters passed to the offset function can both be arithmetic or logical
(as well as text) expressions; after evaluation, the results are treated as strings.

Offset 157

Syntax

Example

Description

Syntax

Example

Description

Script

Notes

OptionKey

the optionKey
optionKey ()

if the optionKey is down then choose button tool

1be optionKey function returns the constant up if the Option key is not pressed,
down if it is pressed

Param

the param -of factor
param(~)

Factorand expresston yield integers.

if param(l) is empty then answer "Messaqe has no parameters."

The param funaion returns a parameter value from the parameter list passed to the
currently executing handler. The parameter returned is the nth parameter where n is
the integer derived from/actoror expression. The value of param(O) is the
message name.

The following example handler sums the numeric argumenrs passed to it, regardless
of how many there are:

on ~ddOp -- adds a variable number of arquments
put 0 into total
repeat with i • 1 to· the paramcount

add param(i) to total
end repeat
put total

end addOp

See also the paramCount and params funaions, in this chapter, and the
discussion of parameter passing in Chapter 2, •Handling Messages.•

158 Chapter 8: Functions -

(

Syntax

Example

Description

Script

(

Notes

ParamCount

the paramCount
paramCount ()

if the paramcount < 3 then put "I need at least three arguments."

The paramCount function returns the number of parameters passed to the
currently executing handler.

The following example handler draws an oval differently depending on the number of
parameters passed to it:

on drawOval
if the paramcount is 1 then
-- if 1 param use it as oval size and use default line size

choose oval tool
drag from 30,30 to 30 + param(l),30 + param(l)

else if the paramcount is 2 then
-- if 2 params use the second as line size

choose oval tool
set linesize to param(2l
drag from 30,30 to 30 + param(l),30 + param(l)

end if
choose browse tool
reset paint

end drawOval

See also the param and params functions, in this chapter, and the discussion of
parameter passing in Chapter 2, •Handling Messages.•

ParamCount 159

Syntax

Example

Description

Script

Notes

Syntax

Example

Description

Para ms

the params
params()

put the params into field "messageReceived"

The parama function returns the entire para.merer list, including the message
name, passed to the currently executing handler.

The following example handler is useful primarily for debugging. to see if the
paramer.ers passed to a handler are correa:

on myMessage
put the params
--rest of myMessage handler goes here

end myMessage

See also the param and paramCount functions, in this chapter, and the
discussion of parameter passing in Chapter 2, •Handling Messages.•

Random

the random of factor
random (expression)

Factor and expression yield positive integers.

set the loc of button "jumpy• to random(512),random(342)

1be random function returns a random integer between 1 and the integer derived
from the /actor or soutU, inclusive.

160 Chapter 8: Functions

(

Script

Syntax

Example

Description

The following example handler draws 10 unique random numbers from a list of 100:

on mouseUp
global randomList
put empty into randomList
repeat until the number of items in randomList is 10

get random(lOO) & empty
'empty• is necessary to turn the random number into a string

if it is not in randomList then put it & n,n after last item~
of randomList

end repeat
delete last character of randomList -- get rid of the last comma
put randomList into msg

end mouseUp

Result

the result
result()

if the result is not empty then answer nTry again."

The result function reb.lms an explanatory text string if an immediately preceding
find or go command was unsuccessful. The result is empty if the command
executed successfully. The result can also be set by a return statement in a
message handler or by an external command The result is reset by execution of
another command and at the end of the handler.

Result 161

Script

Notes

1be following example handler searches for a string and displays either the string or
the" error message if it doesn't find the string:

on doMenu var
if var is "Find ••. " then

global findMe
repeat

ask "Find what string:" with findMe
if it is not empty then find it
else exit doMenu -- cancel clicked

if the result is not empty then -- there's an error message
put the result into f indMe -- display the error

next repeat
else

put it into findMe -- otherwise display the string
exit repeat

end if
end repeat

else pass doMenu
end doMenu

It is safer to depend on the empty result of a successful execution, rather than the
particular value of some error message, because those values could be dift'.erent in
future versions of HyperCard.

Chapter 5 discusses the return statement Appendix A contains general
infonnation about external commands.

162 Chapter 8: Functions

(

Syntax

Example

Description

Script

Syntax

Example

Description

Round

the round of factor
round (expression)

Factor and expression yield numbers.

put round(resultVariable) into field 1

The round function returns the source number rounded off to the nearest integer.

Any odd integer plus exaaly 0.5 rounds up; any even integer (or O) plus exaaly 0. 5
rounds down. If the source number is negative, HypelCard internally removes the
negative sign, rounds its absolute value, then puts the negative sign back on.

1be following function handler rounds off an amount to the nearest dollar:

function roundToDollar amount
.set nurnberformat to ".00" -- sets dollar format
return round(amount)

end roundToDollar

Seconds

the seconds
seconds()

put (the seconds-startTime) into runTime

The seconds function returns an integer showing the number of seconds between
midnight, January 1, 1904, and the current time set in your Macintosh. The seconds
funaion can be abbreviated secs.

Seconds 163

Script

Notes

Syntax

Example

Description

Syntax

Example

Description

Note

The following example handler counrs the number of seconds the user holds down the
mouse button:

on stopNatch
put the lonq time into now -- what time is it now?
convert now to seconds
wait while the mouse is down -- wait until mouse is released
put the seconds-now into msq -- how many seconds have elapsed?

end stopNatch

See also the convert command in Chapter 7, •commands.•

ShiftKey

the shif tKey
shiftKey()

if th• shiftXey is down then put nwaToChar(charToHwn<msq)-32) into msq

The shiftKey funaion iea.uns the constant up if the Shift: key is not pressed,
down if it is pressed.

Sin

the sin of factor
sin(~)

FactJJr and e:x:press1on yield numbers.

put the sin ot 2 -- ~t.s O. 909297 into the Messaqe aox

The sin funaion returns the sine of the angle which is passed to iL The angle must
be expressed in radians.

Radians can be converted to degrees by multiplying by 180 and dividing the result by
the value of the constant pi.

164 Chapter 8: Functtons

(

Syntax

Example

Description

Script

Notes

Sound

the sound
sound()

wait until the sound is •done•

The sound funaion retwns the name of the sound resource cwrendy playing (such
as "boinq•) or the string '"done" if no sound is cunendy playing. The sound
function enables you to sync:hroni1Je sounds with other aaiom, because saiprs
continue to run while sounds play.

The following example handler repears a series of visual effeas until a tune specified
by the play command finishes:

on booqie
play •harpsichord'" tempo 200 -.

"c• qq fe .. de ce qq fe .. ce qq fe .. ce•
repeat until the sound is •done•

visual ettact: dissolve to black
visual affect zoom open to white
visual affect barn door close to card
qo this card

end repeat
end booqie

The "done" string is returned as a literal; it's not a Hypetralk constant like up or
true. See also the play command, in Chap<er 7, ·commands.•

Sound 165

Syntax

Example

Description

Syntax

Example

Description

Note

Sqrt

the sqrt of factor
sqrt (expresston)

Factor and expresston yield numbeis.

put the sqrt of msq -- converts the number in msq to its square root

The sqrt function retwm the square root of the positive number passed to it If you
pass a negative number, you get the result NAN (001) , which means •not a number.•

Tan

the tan of factor
tan (e:rpnsston)

Factor and expresston yield numbeis.

put the tan of 2 -- puts -2.18504 into the Messaqe box

The tan function returns the tangent of the angle which is passed to it The angle
must be ex~ in radians.

Radians can be converted to degrees by multiplying by 180 and dividing the result by
the value of the constant pi.

166 Chapter 8: Functions

/:··-~- .. ,\

! '

~

Syntax

Example

Description

(

Target

the target
target()

if the tarqet is "card id 2875" then pass mouseUp

The target function returns a string indicating the original recipient of the
message. The string returned is one of the following:

stack "stacllNa""1"
bkgnd of card id number
card id number
bkgnd field id number
card field id number
bkgnd button id number
card button id number

For example, the target funaion enables you to tell, in a mouseUp handler in a
background, whether

CJ the mouse was clicked over a field or button (which either would have had no
mouseUp handler or would have passed the message on explicitly): the target
would return the button or field ID

CJ the mouse was clicked outside the area of all buttons and fields: the target
would return the card m

CJ the message was sent direcdy to the background with the send command: the
target would return the background m

You can use the target in place of an object descriptor to determine any of the
target's properties:

get the short name of the target

Target 167

Script

Note

Syntax

Example

Description

Script

'lbe following example handler can be placed lower in the hierarchy than any field to
display the number of the line clicked (regardless of which field was clicked):

on openField
if style of the tarqet is "scrollinq"
then put scroll of the tarqet into scrollAmount
else put O into scrollAmount
put (trunc(((item 2 of the clickloc) - (item 2 of the rect of...,
the tarqet) + scrollAmount))/(textheiqht of the tarqet)) + l) into msq

end openField

See a1so Chapter 9, •Properties.•

Ticks

the ticks
ticks()

put the ticks into doq

The ticks function returns an integer representing the number of ticks (Y., second)
since the Macintosh was turned on or restarted.

The following example handler measures how long it takes to go to the Help stack and
find the word ticks:

on mouseOp
put the ticks into startTicks
qo help
find "ticks"
put (the ticks - startTicks) into howLonq
answer "It took" '' howLonq div 60 '' "second(s) to find Help."

end mouseOp

168 Chapter 8: Func11ons

Syntax

Example

Description

Script

Note

()

Time

the [adjecttveJ time
time()

Adjecttve can be lonq, short, or abbreviated, (or abbrev, or abbr).

put the time into the Messaqe box

The time function returns the time as a text string. All forms are the same, returning
the hour and minutes, such as 8: 55 AM, except the. lonq time form which
returns seconds as well, such as 8 : 55 : 23 AM.

The following example records the time at which a field is updated:

on closeField
put return ' the time after card field "updateList"

end closeField

An adjective can't be used to modify the form of the time function that uses
parentheses.

Time 169

Syntax

Example

Description

Script

Notes

Tool

the tool
tool ()

if the tool is "field tool" then choose browse tool

The tool function returns the name of the currently chosen tool. Possible values
returned by the tool function are

browse tool oval tool·
brush tool pencil tool
bucket tool polyqon tool
button tool rectanqle tool
curve tool regular polygon tool
eraser tool round rect tool
field tool select tool
lasso tool spray tool
line tool text tool

The following example handler chooses the proper tool to manipulate a button or
field when you move the pointer over either object:

on mouseWithin -- put this in the card, backqround, or stack script
if "button" is in the tarqet and the optionKey is down
then choose button tool
else if "field" is in the tarqet and the optionKey is down
then choose field tool

end mouseWithin

See also the choose command, in Chapter 7, ·commands.•

170 Chapter 8: Functions

(,

Syntax

Example

Description

Script

(""
"

/

Trunc

the trunc of /actJJr
trunc (&qml.SSton)

Factor and expression yield numbers.

put the trunc of someNuml:>er into msq

The trunc function returns the integer part of the number passed to il Any
fractional part is disregarded, regardless of sign.

The following example handler draws rectangles in increasing sizes, using the trunc
function to ensure that the computed values used with the draq command are
inregeis:

on mouseUp
reset paint
choose rectanqle tool
put 50 into left
put 150 into riqht
put 50 into top
put 150 into bottom
repeat 5 -- the draq command only takes inteqers

draq from left,top to riqht,bottom
put trunc(left/1.2) into left
put trunc(riqht/1.2) into riqht
put trunc(top/1.2) into top
put trunc(bottom/1.2) into bottom

end repeat
choose browse tool

end mouseUp

""'"

Trunc 171

Syntax

Example

Description

Script

Syntax

Example

Description

Value

the value of factor
value (e:x:presston)

Factor and e:xpresston yield any values.

put the value of field "formula" into field "result"

The value function evaluatesthe string derived from factor or e:x:/)t'eSSton as an
expression.

The following example handler demonstrates the value function by forcing a
second level of evaluation of a variable:

on mouseUp -- see also the HyperCalc background script
put "3 + 4" into expression
put expression -- yields "3 + 4"
wait 2 seconds
put value of expression -- yields 7

end mouseUp

Version

the version
version()

if the version>l.O then set textArrows to true

The version function returns the version number of the HyperCard application
cunendy running.

172 Chapter 8: Functions

(

Chapter 9

Properties

(

173

(/

•

This chapter describes HyperCard properties. Properties are the defining
characteristics of objects and the HypeiCard environmenL

Object properties.determine how objects look and aa. Global properties control
aspects of the overall HyperCard environmenL Pafnd.ag properties control aspects
of the Hype.rCard painting environment, which is invoked wheri you choose a Paint
tool. Window properties determine how the Message box and the Tools and Patterns
palettes are displayed

Retrieving and setting properties
HyperTalk lets you get most properties by using the property name as a function in a
script or the Message box. You must precede the property name with the word the
or follow it with of if it's an object or window property. You can't use parentheses
after the property name, as you do with built-in functions. The following example
retrieves the location property of button 1 and puts it into the Message box:

\

put the loc of button 1 into msq

You set properties with the set command:

set loc of button 1 to 100,100

Some properties can't be set, although other actions affect them. For example, the
size of a stack can be changed by compacting it and by adding objects.

Object properties
You can see the value of many object properties by looking at an object's Info dialog
box, an example of which is shown in Figure 9-1. (You bring up an object's Info dialog
box by choosing the appropriate item from the Objects menu.)

You can also set many properties for the current object from the Info dialog boxes. To
set the properties of any object in the current stack, including the current ones, you use
the set command, either in a script or in the Message box.

Different Hype.rCard objects have different properties. For example, fields have a
property determining their t.ext style, but cards do noL This chapr.er has a section
desaibing the p~ of each of the five types of Hype.rCard objects.

17 4 Chapter 9: Properties

(

Card Name:

Card Number: 1 out of 6
Card ID: 5341

Contains 2 card flelds.
Contains 22 card buttons.

181 Cen't -...e cerd.

(Script.- J l OK J (Cancel J

F1gur• 9-1
An Object Info dialog box

Name propelfy

The name property of an object has three forms-long, abbreviated, and
short. The long name of an object includes the type of object, its name, and the full
pathname of its stack:

card button "Rolo" of card "Home" of stack "MyHardDisk:Home"

(The abbreviated form includes the type of object arid its name:

card button "Rolo"

The short form includes just the name:

"Rolo"

If you try to retrieve an object's name when it has none, HyperCard returns its ID
number.

ID property

The ID property of an object has three forms which are similar to the three forms of
the name, and which are differentiated by the same adjectives-long,
abbreviated, and short. The long ID of an object includes the type of object, its
ID number, and the full pathname of its sta~

card id 2590 of stack "Sila:HyperCard Stacks:Home"

The abbreviated f'orm includes the type of object and its ID number:

card id 2590

The short form includes just the ID number:

2590

All objects except stacks always have ID numbers; stacks never have ID numbers.

Retrieving and setting properties 175

Environmental properties
Some of the global properties, such as the userLevel property, can be set on the
User Preferences card of the Home stack; others, such as the loclcMessaqes
property, can be retrieved and set only through HyperTalk. (However, the User
Preferences card uses HyperTalk to set properties, and it could be extended to set any
others.) The window properties, which pertain to the Message box and the tear-off
menus, can be set by clicking and dragging on the windows themselves, as well as
through HyperTalk. Painting properties, which pertain to the painting environment,
can be controlled with the menus and palettes that appear when a Paint tool is
selected, as well as through Hypeflalk.

Global properties
You use global properties to choose how particular aspects of the HypetCard
environment will perform You set global properties from any script or from the
Message box, and their settinp pertain to all objects-if you set userLevel to 3, for
example, it remains .3 until you reset it (although a pl'Ofeeted stack might impose some
other user level while you are in that stack).

The global properties, descn'bed in this section, are

blindTypinq
cursor
draqSpeed
editBkqnd
lanquaqe
lockMessaqes

BllndTyplng

lockRecent
lockScreen
numberFormat
power Keys
textArrows
user Level

set blindTypinq to true

You use the blindTypinq property to type messages into the Message box and send
them (execute t1-) wilhout having the Message box visible. Blind typing is available
only if the user Jelllllill set to Saipting. and is"usually set with a check box on the User
Preferences carct(Hcme stack;).

The value of the blind'?ypinq property can be true or false; the default
setting is detennined at start up and resume time by the setting chosen on the User
Preferences card of the Home stack.

If you try to type into the Message box when it's hidden and blindTypinq is false,
HyperCard beeps.

176 Chapter 9: ProperHes

(

Cursor
set cursor to 4

The cursor property determines the image that appears at the pointer location on
the screen. The cursor setting is the ID number or name of a Macintosh "CURS"
resource, which must be available in the HypeiCard fJle itself or in the current stack
file. "CURS" resources can be installed, removed, and created with a Macintosh
resource editor.

HypeiCard resets the cursor to the one for the current tool at idle, when no other
action is happening. The cursors available by default are ·

1 I-beam
2 crossbar
3 thick crossbar
4 watch indicating "wait•

You can't get the cursor property or use it as a function; you can only set it

DragSpeed

set draqSpeed to 144

The draqSpeed property determines how many pixels per second the pointer will
move when manipulated by all subsequent draq commands. There are 72 pixels per
inch on the Macintosh screen.

At idle time, HyperCard resets the draqSpeed property to 0, representing the
maximum speed (virtually instantaneous).

EdltBkgnd
set editBkqnd to true

The editBkqnd property determines where any painting or creating of buttons or
fields happens-on the ament card or on its background It's usually set with the Edit
menu and is available.only when the user level is Painting (3) or higher.

The value of the editBkqnd property can be true or false; the default setting
is false.

Global properties 177

Language·
if the languaqe is not "Enqlish" then sort international by ...,
field l

You use the languaqe property to choose the language in which scripts are written
and displayed.

The languages available depend on the translator resources available in your
application, Home stack, and stack. 1be default setting is Enqlish, and it's always
available.

LockMessages
set lockMessaqes to true

You use the lockMessaqes property to prevent HyperCard from sending all
automatic messages such as openCard, closeCard, newCard, and
deleteCard

The value of the lockMessaqes property can be true or false; the default
setting is false. HyperCard resets lockMessaqes to false at idle time (in
effect, at the end of all pending handlers).

Setting the lockMessaqes property to true speeds up execution of saipts in
which you go to cards, and those in which you aeare and delete objects. It also
prevents execution of handlers invoked by automatic messages, which may be used to
set up an environment-hiding the Message box, and so on. It's particularly useful
when you want to go to a card momentarily to retrieve or deposit some information,
but you don't want to stay there.

LockRecent
set lockRecent to true

You use the lockllecent property to prevent HyperCard from adding miniature
representations to the Recent card. (The Recent card is invoked by Command-R or by
choosing Rec:enlflom the Go menu). ·

The value of the lockRecent property can be true or false; the default setting
is false. HypeaCard resets lockRecent to false at idle time (in effect, at the
end of all pending handlers).

Setting the lockRecent property to true speeds up execution of saipts in which
you go to cards.

178 Chapter 9: Properties

(

LockScreen
set lockScreen to true

You use the lockScreen property to prevent HyperCard from updating the screen
when you go to another card.

The value of the lockScreen property can be true or false; the default setting
is false. HyperCard resets lockScreen to false at idle time (in effect, at the
end of all pending handlers).

Setting the lockScreen property to true enables you to open different cards
without displaying them on the screen, and it speeds up execution of saipr.s in which
you go to cards. For example, you can lock the screen, then go to another card to read
information out of a field, then return to the fust card without having the second card
appear to the user.

NumberFormat
set numberFormat to "00.00"-- displayinq 02.20, for example
set numberFormat to "0" displayinq 2,
for same value
set numberFormat to "0. ftffff "
the default

displayinq 2.2;

The numberFormat property determines the precision with which the results of
mathematical operations are displayed in fields and the Message box. Use zeros to
show how many digits you want to appear, a period to show whete you wmt the
decimal point (if at all), and number signs (I) to the right of the decimal point in
places where you want a trailing digit to appear, but only if it has value.

HyperCard resets the numberFormat property to its default value, "0. HHH",
at idle time (in effect, at the end of all pending handlers).

When you set the numberFormat property, you must enclose the value within
double quotation marks if it coritains a number sign (t). 1be numberFormat
property has no effect on how a number is displayed unless you perfonn a
mathematical operation on it rust (for details, see Chapter 4).

Global properttes 179

PowerKeys
set powerKeys to true ·

You use the powerKeys property to provide a shortmt for painting. Power keys let
you accomp!Uh certain painting actions with single keystrokes. The power key setting is
usually done on the User Preferences card of the Home srack. It's available only if the
user level is set to Painting (3) or above.

The value of the powerKeys property can be true or false; the default setting
is determined at startUp and resume time by the setting on the User Preferences card of
the Home srack.

TextArrows
set textArrows to true

The textArrows property alters the function of the Right Arrow, Left Arrow, Up
Arrow, and DownArrow keys.

The value of the textArrows property can be true or false; by default it's
false.

When the textArrows property is false, the Right Arrow and Left Arrow keys
take you to the next and previous cards in the stack, respectively, and the Up Arrow
and Down Arrow keys take you forward and backward, respectively, through the cards
you've already viewed.

When the textArrows property is true, the arrow keys move the text insertion
point around in a field that you've opened for text editing or in the Message box if
you've clicked in il In the Message box, the Up Arrow and Down Arrow keys move the
insertion point to the beginning and end of the line of text, respectively.

When the textArrows property is true, holding down the Option key while you
press the arrow keys produces the same effect as pressing them alone when
textArrows is false.

+ A feature of HyperCard uerston 1.1: The textArrows property is available only
in Hype!Card ftlSiOns 1.1 and later.

180 Chapter 9: Properttee

(

(

Userlevel
set userLevel to 5

HypetCard's user levels give progressively more power to the user. The levels are
Browsing, Typing, Painting, Authoring, and Scripting, as explained in the HyperCard
User's Gulde.

The userLevel property can have a value from 1to5, with 5 (scripting) providing
the most power; the values correlate respectively to the levels listed above. The default
setting is determined at start up and resume time by the setting on the User Preferences
card of the Home stack.

A script writer can invoke the Protect Stack dialog box from the File menu to impose a
limit on the user level available in a stack. In that case, setting the user level higher
than the Protect Stack limit has no effect, although it generates no error message. On
leaving the protected stack, the user level in effect when the stack was entered is
restored.

Window properties
W'mdow properties let you find out about and change the way that the Message box, the
card window, the Tools palette, and the Patterns palette are displayed. The names you
can use are

card window
message [box]
message [window]

msg
pattern window
tool window

(Message, messaqe box, messaqe window, and mag are synonyms for the
Message box.)

The window properties, descnbed in this section, are

loc[ation]
rect[anqle]
visible

Window properties 181

Location
set loc of tool window to 100,100

The location property is the location at which the window is displayed. The
location is a point, reported as two integers separated by a comma.

The point represents the horizontal and vertical offsets in pixels, respectively, from
the top-left comer of the card window to the top-left comer of the specified other
window, disregarding the drag bar at the top of the window. The location of the card
window is measured from the top-left comer of the saeen to the top-left comer of the
card window, disregarding the title bar at the top of the card window. On the original
Macintosh saeen, visible horizontal offsets range from 0 to 511, and visible vertical
offsets range fromO to 341.

The location property can be abbreviated loc.

Rectangle

qet the rect of messaqe box -- puts h,v,h,v into It

The rectanqle property is two points, reported as four integers separated by
commas.

The points represent the rectangle's top-left (horizontal and vertical) and bottom­
right (horizontal and vertical) comer offsets in pixels, respectively, from the top-left
comer of the card window. This property can't be set. because the windows are faxed
size, but it can be read to determine the exact area of the saeen covered by the
window.

The rectanqle property can be abbreviated rect.

Visible
set the visible of tool window to false

The visible propeity determines whether a window is shown or hidden on the
screen.

The value of the viaible property can be true or false. The Tools and
Patterns palettes become visible when you tear them off the menu bar; the Message
box can be toggled between being visible and hidden by pressing Command-M.

Setting a window's visible property to false is the same as clicking its dose box
or hiding it with the hide command.

182 Chapter 9: Properties

Painting properties
Painting properties are aspects of the painting environment invoked when you choose
a Paint tool from the Tools palette. Ma..t of these properties are usually manipulated
from the Options and Patterns menus that appear when a Paint tool is selected The
text attributes pertain to Paint text; they are usually manipulated from the dialog box
that appears when you double-click the Paint Text tool in the Tools palette or when you
choose Text Style from the Edit menu. Changes to the settin&' made from HyperTalk
are reflected on their respective palettes and menus. The painting properties are
described more fully in the HyperCard User's Gulde.

All of the painting properties can be restored to their default values simultaneously
with the reset paint command, described in Chapter 7, •commands.•

The painting properties, described in this section, are

brush
centered
filled

· qrid

lineSize
multiple
multiSpace

Brush
set brush to 6

pattern
polySides
textAliqn
te:xtFont
te:xtHeiqht
text Size
te:xtStyle

You use the brush property to determine or to change the current brush shape used
by the Brush tool. It's nonnally manipulated from the Brush Shape dialog box invoked
by choa..ing Brush Shape from the Options menu or by double-clicking the Brush.

The value of the brush property can be any integer from 1to32, each representing a
brush shape from the Brush Shape dialog box. The default brush setting is 8.

Painting properties 183

1 5 9 13 17 21 25 29

II e / " I - .. ··· ..
2 6 10 14 18 22 26 30 • • / ' I - ..
3 7 11 15 19 23 27 31

• • / ' I ... : ·
4 8 12 16 20 24 28 32
• • ,

' •

Figure 9·2
Brush Shape dialog box and property values

Centered

set centered to true

You use the centered property to determine or to change the Draw Centered
setting. When centered is true, shapes are drawn from the center, rather than
the corner.

The value of the centered property can be true or false; by default it's
false.

You can also set the centered property by cho<:.ing Draw Centered on the Options
menu.

184 Chapter 9: Properttes

f \
~-/

(

(

(/

Filled
set filled to true

You use the filled property to determine or to change the Draw Filled setting.
When filled is true, the current pattern on the Patterns palette is used to fill
shapes as they are drawn.

Thevalueofthe filled propertycanbe true or false;bydefaultit's false.

You can also set the filled property by choosing Draw Filled on the Options
menu.

Grid

set grid to true

You use the grid property to determine or to change the painting Grid setting.
When grid is true, movement of many Paint tools is constrained to eight-pixel
intervals (JUSl under ~ inch).

The value of the grid property can be true or false; by default it's false.

You can also set the grid property by choosing Grid on the Options menu.

LineSlze
set lineSize to 8

You use the lineSize property to determine or to change the thickness of the lines
drawn by the line and shape tools.

The value of the lineSize property correlates to pixels on the screen and can be 1,
2, 3, 4, 6, or 8; by default it's 1.

You can also set the lineSize property by choosing Line Siz.e on the Options
menu.

Painting properties 185

Mumple
set multiple to true

You use the multiple property to determine or to change the Draw Multiple
setting. When multiple is true, multiple images are drawn as you drag a shape
tool.

The value of the multiple property can be true or false; by default it's
false.

You can also set the multiple property by choosing Draw Multiple on the Options
menu.

MulHSpace -

set multiSpace to 6

You use the multiSpace property to determine or to change the amount of space
left between edges of the multiple images drawn by the shape tools when the
multiple property is true.

The value of the multiSpace property can be an integer ranging from 1 to 9,
inclusive; by default it's 1.

Pattem
set pattern to 8

You use the pattern property to determine or to change the aurent pattern used to
fill shapes and to paint with the Brush tool

The value of the pattern property can be any integer from 1to40, each
representing a pattern on the Patterns palette. The default pattern setting is 12.

The pattern numbers correspond to the 40 positions in the Patterns palette, not to a
specific pattern.

186 Chapter 9: Properties

()

1 11 21 31
2 12 22 32
3 13 23 33
4 14 24 34
5 15 25 35
6 16 26 36
7 17 27 37
8 18 28 38
9 19 29 39
10 20 30 40

Figure 9-3
Patterns palette and properly valuee

You normally set the pattern property from the Patterns palette. You can edit a
pattern by double-clicking it on the Patterns palette. Each stack has its own Patterns
palette, so when you edit a pattern you change the palette only for the current stack.

PolySldes
set polySides to 3

You use the polySides property to determine or to change the number of sides of
the polygon created by the Regular Polygon tool.

Th.e value of the polySides property can be any integer between 3 and 50. This
number correlates to the number of sides in the polygon; its default value is 4. If you
set it to a number lower than 3 or higher than 50, it automatically reverts to 3 or 50,
respectively. If you choa,,e the circle in the Polygon Sides dialog box, the setting
becomes 0 (although you can't set it to 0 using a saipt).

You normally choose the Polygon Sides setting from a dialog box invoked by
choosing Polygon Sides from the Options menu or by double-clicking the Regular
Polygon tool.

Painting properties 187

TextAlgn·

set textAlign to center

You use the textA.lign property to determine or to change the way characters are
aligned around the .insertion point as you type them with the Paint Text tool.

The value of the textAlign property can be left, right, or center; its
default value is left.

You can also set the textAlign property from the Text Style dialog box, which is
invoked by choosing Text Style from the Edit menu or by double-clickirig the Paint
Text tool

TextFont
set textFont to Geneva

You use the textFont property to determine or to change the font in which Paint
text appears.

1be value which the textFont property can have depend,, on the font resources
that you have available in your System file, the HyperCard application, the Home
stack, and the current stack. The default value of the textFont property is geneva.

You can also set the textFont property from the Text Style dialog box, which is
invoked by choosing Text Style from the Edit menu or by double-clicking the Paint
Text tool If you try to set it to a font that doesn't exist, HypetCard sets it to chicago.

TextHeight

set textHeight to 20

You use the textHeight property to determine or to change the space between
baselines of Paint text.

The value of the textHeight property can be any integer, corresponding to a like
number of pixel& By default, the textHeight property is set to the value of the
text Size property plus one-third ofthat·value.

The size of a pixel on the Macintosh screen is about !ha inch, the approximate size of a
printer's point.

You can also set the textHeight property with the Line Height window of the Text
Style dialog box, which is invoked by choosing Text Style from the Edit menu or by
double-clicking the Paint Text tool.

188 Chapter 9: Propertfes

(

(

TextSlze

set textSize to 18

You use the text Size property to d.etennine or to change the font siz.e in which
Paint text appears.

The value of the textSize property can be any integer, corresponding to a like
number of pixels. The default value of the textSize property is 12.

The size of a pixel on the Macintosh screen is about ~ inch, the approximate su.e of a
printer's point. Although you can use any integer for textSize, exact si7.es of fonts
available look best. Fonts available can be in your System file, the HyperCard
application, the Home stack, or the current stack.

You can also set the text Size property from the Text Style dialog box, which is
invoked by choosing Text Style from the Edit menu or by double-clicking the Paint
Text tool.

TextStyle

set textStyle to plain
set textStyle to bold,italic,underline

You use the textStyle property to detennine or to change the style in which Paint
text appears.

The text Style property can have a value of plain or any combination of the
following: bold, italic, underline, outline, shadow, condensed, and
extend (separated by commas). Its default value is plain. If you use plain in
combination with any of the other values, the others override it.

You can also set the textStyle property from the Text Style dialog box, which is
invoked by choosing Text Style from the Edit menu or by double-clicking the Paint
Text tool.

Painting properties 189

Stack properties
Stack properties pertain to any stack on any disk or file server currently accessible to
your Macintosh" Settable properties of the current stack can be manipulated from a
script or through the Stack Info dialog box invoked from the Objects menu.

The stack properties, described in this section, are

freeSize
name

FreeSlze

script
size

put the freeSize of stack "addresses" into field "extraSpace"

You use the freeSize property to determine the amount of free space of the
specified stack in bytes. (Free space is created in a stack each time you delete an
object.)

The freeSize property can be changed only by selecting Compact Stael< from the
File menu (or executing the HypetTalk command doMenu compact stack), which
changes its value to 0.

Name
set name of this stack to "Robert"

You use the name property to determine or to change the name of the specified
stack, which is its Macintosh file name. The modifiers lonq, short, and
abbreviated can be used with the name property as described at the beginning of
this chapter.

The value of the name property can be any stacl< name (as desaibed in Chapter 3).

190 Chapter 9: Properties

(

Script
put the script of stack "home" into field "Home Script"

You use the script property to retrieve or to replace the script of the specified
stack.

The value of the script property is the text string composing the script of the
specified stack.

When you set the script property using the set command, you.replace it
entirely.

Scripts are normally edited using the HyperCard script editor described in Chapter 1,
"HyperCard Basics.•

Size
get the size of stack "home"

You use the size property to determine the size of the specified stack in bytes.

The minimum stack size is 4096 bytes; the theoretical maximum is 512 megabytes.

The size property can't be changed with the' set command; it's changed only by
adding things to and deleting things from the stack (you must then compact the stack
for the deletions to affect its size).

Stack properties 191

Background properties
Background properties pertain to any background in the current stack. They can be
manipulated from a saipt or from the Message box. Properties of the current
background can also be manipulated through the Bkgnd Info dialog box invoked from
the Objects menu.

The background properties, described in this section, are

ID number
name script

ID
if the ID of backqround 1 is 2282 then answer "You're Home"

You use the ID property to determine the permanent ID number of any background
in the current stack.

You can't change the ID of any object

The adjectives lonq, short, and abbreviated can be used with the ID
property as described at the beginning of this chapt.er.

Name
if the name of this backqround is "plain• then qo home

You use the name property to determine or to change the name of any background in
the current stack.

The value of the name property can be any object name (as described in Chapter 3).

The adjectives lonq, short, and abbreviated can be used with the name
property as described at the beginning of this chapter.

Number
if the number of this backqround is 2 then qo next card

You use the nWllbe~ property to determine the number of any background in the
current stack.

You can't set the number of the background; it changes when you add or delete
backgrounds from the stack.

See also the number function in Chapter 8.

192 Chapter 9: Properties

,,,.,- "-,
' <, ' .
\~~,/

(

Script
set the script of second background to empty
put the script of this background into field 1

You use the script property to retrieve or to replace the saipt of any background
in the current stack.

The value of the script property is the text string composing the script of the
specified background.

When you set the script property using the set command, you replace it
entirely.

Scripts are normally edited using the HyperCard script editor described in Chapter 1,
"HyperCard Basics.•

Card properties
Card properties pertain to any card in the current stack. The card is specified as
explained in Chapter 3, "Naming Objects.• You can manipulate card properties from
a script, in the Message box, or through the Card Wo dialog invoked from the
Objects menu.

Card properties are explained in more detail in the HyperCard User's Gutde section
about the Card Info dialog. The card properties, described in this section, are

ID number
name script

ID

get the ID of card 35

You use the ID property to determine the pennanent ID number of any card in the
current stack.

You can't change the ID number of any object.

The adjectives lonq, short, and abbreviated can be used with the ID
property as described at the beginning of this chapter.

Card properties 193

Name
set name of this card to "Shark"
if the name of card 1 of next background is "Begin" then qo home

You use the name property to determine or to change the name of any card in the
current stack.

The value of the name property can be any object name (as desaibed in Chapter 3).

The adjectives lonq, short, and abbreviated can be used with the name
property as desaibed at the beginning of this chapter.

Number
put the number of last card into msq
qet the number of this card

You use the number property to delermine the number of any card in the current
stack.

You can't set the number of a card with the set command; it changes when you add,
delete, or sort cards in a stack.

See also the number function in Chapter 8.

Script

set the script of this card to field 3

You use the script property to retrieve or to replace the script of any card in the
current stack.

The value of the script property is the text string composing the script of the
specified card.

When you set the script property using the set command, you replace it
entirely.

Scripts are normallJ edited using the HyperCard script editor desaibed in Chapter 1,
•HyperCard Basics.•

194 Chapter 9: Properties

(

Field properties
Field properties pertain to any card field or background field in the current stack. The
field is specified as explained in Chapter 3, •Naming Objects." You can manipulate
field properties from a script or from the Message box, or through the Field Info
dialog box invoked from the Objects menu. (You must have the Field tool chosen and
a specific card or background field selected to activate the Field Info dialog box.)

Field properties are explained in more detail in the HyperCard User's GuUle section
about the Field Info dialog box. The field properties, described in this section, are

ID
loc[ation]
lockText
name
number
rect[anqle]
script
scroll
showLines

ID

style
textAliqn
text Font
textHeight
text Size
textStyle
visible
wideMargins

put the id of field 1 into 1?18q

You use the ID property to find out the permanent ID number of any card or
background field in the current stack.

You can't change the ID number of any object

The adjectives long, short, and abbreviated can be used with the ID
property as described at the beginning of this chapter.

Field properties 195

Location ·

set loc of field 1 to 100,100

You u8e the location property to determine or to change the location of a card
field or background field in the card window.

The location is a point, reported as two integers separated by a comma. The point
represents the horizontal and vertical offsets in pixels, respectively, from the top-left
comer of the card window to the center of the specified field.

You can also change the field location property by dragging the center of the field
with the Field tool

+ Offtcreen fields: You can set the location of the field beyond the boundaries of the
card window reaangle, putting the field out of reach until you reset its coordinates
through HypetTalk.

The location property can be abbreviated loc.

LockText
·set lockText of field "safe• to true

You use the lockText property to prevent or allow editing of text within a field.

When the Browse tool is selected and the pointer is moved over an unlocked field, the
pointer changes to an I-beam; clicking then lets you edit the text in the field. If the fJeld
is locked, the cursor doesn't change, and the text cannot be edited.

The value of the lockText property can be true or false; by default it's
false.

You can also change this property by clicking the Lock Text check box in the Field Info
dialog box.

196 Chapter 9: Properties

,,..~ ..•.

'~

(

(\
/

Name

set name of field 1 to "wheat"

You use the name property to determine or to change the name of any field in the
current stack.

The value of the name property can be any object name (as described in Chapter 3).

The modifiers lonq, short, and abbreviated can be used with the name
property as described at the beginning of this chapter.

You cari also edit the field name by typing in the Field Name box in the Field Info
dialog.

Number

put the number of field "barley"

You use the number property to determine the number of a specified field.

You can't change the number with the set command; it changes according to the
position of the field among the other fields on its card or background To manipulate
the field's position, use the Send Farther and Bring Closer menu commands.

See also the number function in Chapter 8.

Rectangle

put the rect of field 1 into msq

You use the rectanqle property to determine or to change the location and si7.e of
the rectangle occupied by the specified field on its card or background

The value of the field rectangle is two points, reported as four integers separated by
commas. The points represent the rectangle's top-left (horizontal and vertical) and
bottom-right (horizontal and vertical) comer offsets in pixels, respectively, from the
top-left comer of the Gard window.

+ Ojfscreen jlekla You can sel either of th8 rectangle points of the field beyond the
boundaries of the card window rectangle, putting the field out of reach until you
reset its coordfmres through HyperTalk.

Fleld properties 197

You can set the bottom-right corner location to a value smaller than the top-left
corner location, effect!yely causing the field to disappear. If you set the field to a size
smaller than the minimum (12 by 12 pixels) but large enough to see, HyperCard resets
it to the minimum size when you click it

You can also change the field rectangle by dragging the top-left or bottom-right
comer of the field with the Field tool.

The rectangle property can be abbreviated rect.

Script

set script of field "Effect" of first card to empty

You use the script property to retrieve or to replace the script of any field in the
current stack.

The value of the script property is the text string composing the script of the
specified field

When you set the script property using the set command, you replace it
entirely.

Scripts are normally edited using the HyperCard script editor desaibed in Chapter 1,
•HyperCard Basics.•

Scroll

put the scroll of field 1 div the textHeight of field 1 into ~
lines Above

You use the scroll property to determine or to change how much material is
hidden above the top of a scrolling field's rectangle. Figure 9-4 shows the scroll
property.

The value of the scroll property is an integer representing the number of pixels
that have scrolled above the top of the field rectangle; it's O if the top of the field is
visible. The number of text lines to which the scroll property correlates depends
on the textHeiqht property of the field

You normally coallo1 how much material is above the top of the rectangle by clicking
or dragging in the IO'Oll bar at the right side of the field

If you try to get or set the scroll property of a nonscrolling field, you get an error.

198 Chapter 9: Properties

(

(

Figure 9-•
The scroll property

Showlines
set showLines of field three to true

You use the showLines property to determine or to change whether the text
baselines in the field appear or are invisible.

The value of the showLines property can be true or false; by default it's
false.

You can also change showLines by clicking in the Show tines check box in the Field
Info dialog box.

Style
set style of field 1 of card 3 to transparent

You use the sty le property to determine or to change the style of any field in the
current stack.

The value of the field style can be transparent, opaque, rectangle, shadow,
or scrollinq. -

You can also chanee the field style by clickiitg one of the Style radio buttons in the
Field Info dialas bm.

Fleld properties 199

TextAllgn
set textAlign of field 1 to left

You use the textAlign property to determine or to change the way lines of text are
aligned in the specified field.

The value of the textAlign property can be left, right, or center; by
default it's left.

You can also set this property by clicking one of the Align radio buttons in the Text
Style dialog box. You click the Font button in the Field Info dialog box to invoke the
Text Style dialog box, which is described in the HyperCard User's GuUle.

TextFont
set textFont of field 1 to garamond

You use the textFont property to detennine or to change the font in which text in
the specified field appears.

The value that the textFont property can have is the name of any of the fonts
available as font resources in your System file, the HyperCard application, the Home
stack, or the current stack. The default value of the textFont property is geneva.

You can also set this property by selecting one of the font names in the Text Style
dialog box. You click the Font button in the Field Info dialog box to invoke the Text
Style dialog box, which is described in the HyperCard User's GuUle. If you try to set the
textFont property to a font that doesn't exist, HyperCard sets it to chicago.

200 Chapter 9: Properties

(

(

TextHelght ·

set textHeight of field 1 to 20

You use the textHeight property to determine or to change the space between
baselines of text in the specified field

The value of the textHeight property can be any integer, corresponding to a like
number of pixels. By default, the textHeight property is set to the value of the
text Size property plus one-third of that value. ('The text Size property is
described later in this section.) ·

The size of a pixel on the Macinta,,h saeen is about Yn inch, the approximate size of a
printer's point.

You can also set this property by typing in the Line Height box in the Text Style dialog
box. You click the Font button in the Field Info dialog box to invoke the Text Style
dialog box, which is described in the HyperCard User's GuU/8.

TextSlze
set textSize of field 1 to 18

You use the text Size property to determine or to change the type size in which text
in the specified field appears.

The value of the textSize property can be any integer, corresponding to a like
number of pixels. The default value of the text Size property is 12.

The size of a pixel on the Macinta,,h saeen is about Yn inch, the approximate size of a
printer's point. Although you can use any integer for text Size, exact sizes of fonts
available look best Fonts available can be in your System file, the HyperCard
application, the Home stack, or the current stack.

You can also set this property by selecting one of the font sizes shown or typing
directly in the size window in the Text Style dialog box. You dick the Font button in the
Field Info dialog box to invoke the Text Style dialog box, which is described in the
HyperCard USer's Gulde.

Field properties 201

TextStyle
set textStyle of field l to plain
set textStyle of first card field to bold,underline, italic

You use the textStyle property to determine or to change the style in which text in
the specified field appears.

The textStyle property can have a value of plain or any combination of the
following: bold, italic, underline, outline, shadow, condensed, and
extend (separated by commas). Its default value is plain. If you wie. plain in
combination with any of the other values, the ochers override it.

You can also set this property by clicking one of the Style check boxes in the Text Style
dialog box. You click the Font button in the Field Info dialog box to invoke the Text
Style dialog box, which is described in the HyperCMd User's Gukle.

Visible
set visible of field "whereDiditGo" to false

You use the visible property to detennine or to change whether a field is shown or
hidden.

The value of the visible property can be true or false; by default it's true.­

You can also set this property with the show and hide commands.

Wide Margins
set wideMarqins of field "nicer• to true

You use the wideMarqins property to specify whether some extra space is included
at the left and right side of each line in the field (to make the text easier to read).

The value of the wideMarqins property can be true or false; by default it's
false.

You can also dwJae this property by clicking the Wide Margins check box in the Field
Info dialog box. ·

202 Chapter 9: Properties

(

Button properties
Button properties pertain to any card button or background button in the current
stack. The button is specified as explained in Chapter 3, •Naming Objects.•

You can manipulate the properties of any button in the current stack from a script or
from the Message box. Additionally, you can manipulate the properties of a button on
the current card or background through the Button Info dialog box invoked from the
Objects menu. (You must have the Button tool and a specific card or background
button selected to activate the Button Info dialog.) ·

The button properties, descnbed in this section, are

autoHilite
hilite
icon
ID
loc[ation]
name
number
rect[angle]
script

showName
style
textAlign
textFont
textHeight
text Size
textStyle
visible

Button properties are explained in more detail in the HyperCarr:l User's GuU/8 section
about the Button Info dialog.

AutoHilite

set autoHilite of the target to true

You use the autoHilite property to determine or to change whether the specified
button's hilite property is affected by the message mouseDown.

The value of the autoHilite property can be true or false; by default it's
false.

When autoHilite is true, mouseDown changes the button's hilite property
to true, and mous~Up sets its hilite property to false. The effect is that the
button is momenrarily highlighted (display~d in inverse video) when the user clicks it,
giving visual feedback. for the click action. ·

The autoHilit.e property can also be changed by clicking the •Auto hilite• check
box in the Button Info dialog box.

See also the description of the hilite property, which follows.

Button properties 203

Hilite
set hilite of button 1 to true

You use the hi lite property to determine or to change whether the specified
button is highlighted (displayed in inverse video). To see what highlighting for the
various button styles looks like, see the HyperCard User's Gu'kie.

The value oft.he hilite property can be true or false; by default it's false.

The hilite property can be changed using the set command, either from a
script or from the Message box, or, if the autoHilite property is true, by
sending the message mouseDown to the button. In that case, for all styles of buttons
except check boxes and radio buttons, the hilite property becomes true when
the button receives mouseDown, and it becomes false when the button receives
mouse Up.

For check boxes and radio buttons with their autoHilite property set true, the
hili te property toggles to its opposite state on mouseDown and stays that way
until it receives another mouseDown. That is, when a check box is highlighted, it
appears with an "X" check mark in its box; when it's not highlighted, the check mark
does not appear. If autoHilite is true, an unselected check box displays an "X"
when you click it; if you click it again, the "X" disappears. 1be appearance of the check

, mark correlates to the state of the button's hilite property. 1be situation is similar
for radio buttons, except that the true highlighted state is indicated by a solid dot
inside the button's circle.

See also the description of the autoHilite property, immediately preceding.

Icon
set icon of button "Bill" to 2002
set icon of button "Bill" to "Bill"

You use the icon property to determine or to change the icon, if any, that is
displayed with the specified button (described in the •Button Info• section of the
HyperCard User's Guide).

Icons are small imap that exist as Macintosh resources and are editable with a
Macintosh resource editor. For an icon to be displayed on a button, its resource must
be available in dMtament stack, the Home stack, or the HyperCard application.

The value of the icon property is an integer correlating with the ID number of an
available icon resource. If a button has no icon. the icon property is 0.

The icon property can be changed with the set command, and it can be set to
either the icon's ID number or to its name (if it has one).

The icon can also be changed by clicking the Icon button in the Button Info dialog
box, which brings up another dialog box that displays the available icons graphically.

204 Chapter 9: Properties

(

ID

put the ID of button 1 into msq

The ID property lets you determine the permanent ID number of a specified button.

You can't change the ID of any object.

The adjectives long, short, and abbreviated can be used with the ID
property as described at the beginning of th.is chapter.

Location
set loc of button 1 to 100,100

You use the location property to determine or to change the location of the
specified card button or background button in the card window.

The location ~ a point, reported as two integers separated by a comma. The point
represents the horizontal and vertical offsets in pixels, respectively, from the top-left
corner of the card window to the center of the specified button.

You can also change the button location property by dragging the center of the
button with the Button tool

+ Of/screen buttons: You can set the location of the button beyond the boundaries of
the card window reaangle, putting the button out of reach until you reset ir.s
coordinates through HyperTalk.

The location property can be abbreviated loc.

Name
set name of button id 1 of last card to "hole"

You use the name property to determine or to change the name of the specified
button.

The value of the name property can be any object name (as desm"bed in Chapter 3).

The modilieis lOlllJ, short, and abbreviated can be used with the name
property as desaft>ed at the beginning of th.is chapter.

The button name can also be edited in the Button Name box in the Button Info dialog
box.

Button properties 205

Number

put the number of button "hole"

You use the number property to determine the number of the specified button.

1be value of the number property is an integer.

You can't change the number with the set command. The number changes
according to the position of the button among the other buttons on its card or
background, and that position is manipulated with the Send Farther and Bring Ooser
menu commands.

See also the number function in Chapter 8.

Rectangle

put the rect of button 1 into msq

You use the rectanqle property to determine or to change the location and si7.e of
the bounding reaangle occupied by the specified button on its card or background.

The value of the button rectangle is two points, reported as four integers separated by
commas. The points represent the rectangle's top-left (horizontal and vertical) and
bottom-right (horizontal and vertical) comer offsets in pixels, respectively, from the
top-left comer of the card window.

+ Ojftcreen bu#ons: You can set either of the rectangle points of the button beyond
the boundaries of the card window rectangle, putting the button out of reach until
you reset its coordinares through Hypeflalk.

You can set the bottom-right comer location to a value smaller than the top-left
comer location, effectively causing the button to disappear. If you set the button
rectangle to a si7.e smaller than the minimum (12 by 12 pixels) but large enough to see,
HypeiCard resets it to the minimum si7.e when you dick it.

You can also change the button rectangle by dragging the top-left or bottom-right
comer of the button with the Button tool

The rectanqle property can be abbreviated rect.

206 Chapter 9: Properties

Script

set script of button "red" of first card to empty

You use the script property to retrieve or to replace the script of the specified
button.

The value of the script property is the text string composing the saipt of the
specified button.

When you set the script property using the set command, you replace it
entirely.

Scripts are normally edited using the HyperCard script editor described in Chapter 1,
"Hype!Card Basics.•

ShowName

set showName of button "Hair" to true

You use the showName property to determine or to change whether the name of the
specified button (if it has one) is displayed in its rectangle on the saeen.

The value of the ShowName property can be ·true or false; by default it's false.

You can also change this property by clicking the •show name• check box in the
Button Info dialog box.

Style

set style of button 1 to transparent

You use the sty le property to detennine or to change the style of the specified
button.

The value of the style property can be transparent, opaque, rectangle,
roundRect, checkBox, or radioButton.

Some useful peailiarities of radio buttons and check box buttons are desaibed under
the hilite pmpaty, earlier in this chapter. You can also srudy the button and card
scripts of the User Pteferences card in the Home stack.

You can also set this property by clicking one of the Style buttons in the Button Info
dialog box.

Button properties 207

TextADgn

set textAliqn of button 1 to left

You use the textAliqn property to detennine or to change the alignment of the
button name in the button rectangle. To see its effect, the button must have a name
and its showName property must be true.

The value of the textAliqn property can be left, riqht, or center; by
default it's left.

Using the set command is the only way to change the alignment of the button name
in the button rectangle.

TextFont

set textFont of button l to Monaco

You use the textFont property to determine or to change the font in which the
name of the specified button appears.-To see the effect of textFont, the button must
have a name and its showName property must be true.

1be value of the text Font property can be the name of any of the fonts available as
font resources in your System file, the current stack, the Home stack, or the HyperCard
application; by default it's qeneva.

Using the set command is the only way to change a button name's typeface. If you
set the TextFont property to a font that doesn't exist, HypeiCard sets it to chicaqo.

TextHelght
The textHeiqht property determines the amount of space between lines of text.
Although you can set this property for a button, it is meaningless because button name
text has only one line.

208 Chapter 9: Propert1es

(

(

TextSlze

set textSize of button 1 to 18

You use the text Size property to determine or to change the type siz.e in which the
specified button's name appears. To see the effect of textSize, the button must
have a name and its showName property must be true.

The value of the textSize property can be any integer, corresponding to a like
number of pixels. The default value of the text Size property is 12 ..

The siz.e of a pixel on the Macinto.m saeen is about ~ inch, the approximate si7.e of a
printer's poinL Although you can use any integer for textSize, exactsi:zes of fonts
available look best. Fonts available can be in your System file, the Hype.rCard
application, the Home stack, or the current stack.

Using the set command is the only way to set a button name's type siz.e.

TextStyle

set textStyle of button 1 to plain
set the textStyle of button "Fancy• to
bold,italic,underline,outline

You use the textStyle property to determine or to change the style in which the
specified button's name appears. To see the effect of text Style, the button must
have a name and its showName property must be true.

The textStyle property can have a value of plain or any combination of the
following: bold, italic, underline, outline, shadow, condense, and
extend (separated by commas). By default it's plain. If you use plain in
combination with any of the other values, the others override iL

Using the set command is the only way to set a button name's style.

Visible
set visible of button "it's qon.e" to false

You use the viaible property to determine or to change whether the specified
button is shown m bidden.

The value of the visible property can be true or false; by default it's true.

You can also change this property with the show and hide commands.

Button properties 209

Chapter 10

Constants

(

211

Th.is chapter desaibes HypetTalk's built-in constanrs. A coastant is a named value
that never changes. It's dilfeient from a variable because you can't change it, and it's
different from a literal because it does not require quotation marks.

The values of some constants are the string of characte1's making up the name, while
others are different. In some cases, it's more convenient to use a constant <such as
pi) in place of a long string (sUch as 3.14159265358979323846>. In other cases, it's
more convenient to use a constant (sUch as foz:ml'eed) because the only other way
to enter that character is with the numToChar function, requiring that you kr.~-;.- =~­
ASCII number of the character (as in the num'l'oChar of 12).

You can't name a v:uiabJe the same as any built-in constant; if you try, HypeiCard
displays an error dialog box. ·

Table 10-1 is a list of all the built-in constants in HyperTalk.

212 Chapter 10: Constann

(

(

Table 10·1
HyperTalk constan~.

Constant name

down

empty

false

formFe.-ad

lineFeed

pi

quote

return

space

tab

true

up

zero •. ten

DetcrlpHon

The value returned by the command.Key, mouse,
optionKey, or shiftKey funaion when the named key
(Qr button, in the case of mou.se), is currently pressed. Its
value is the same as the 1..it.era1 "down".

The null string, the same as the literal "".

The oppa,,ite of true; one of the states tested by the if
control structure and one of the possible results of evaluation
of a logical expression. Its value is the same as the literal
"false".

The form feed character (ASCII 12), which starts a new page in
some file formats.

The line feed character (ASCII 10), which starts a new line in
some file formats.

The mathematical value pi to 20 decimal places, denoting the
ratio of the circumference of a circle to its diameter,
represented by the number 3.14159265358979323846.

The double quotation mark character. It is needed to build a
string containing quotation marks because they are stripped
out of the string when literals are evaluated:

put "qaorqa• into It -- quotation marks are not in It
put quota ' •qaorqa" ' quota into It -- quotation marks in

1be return character (A.SOI 13), which signifies the end of a
HypetTalk statement.

The space character (A.SOI 32), the same as the literal " "

The horizontal tab character (ASCII 9).

The opposite of false; one of the states tested by the if
conuol structure and one of the possible results of evaluation
of a logical ~ion. Its value is the same as the literal
"true•.

1be value returned by the command.Key, mouse,
optionKey, and shiftKey funaion.s when the named key
(or button, in the case of mouse), is not currendy pressed
Its value is the same as the literal "up".

The numbers 0 through 10.

Chapter 10: Constants 213

(

Appendixes

(

215

(

(

Appendix A

External Commands
and Functions

This appendix desaibes HypetCard's extemal command and funaion interface. In
addition to general information about external commands and funaiona, thia
appendix contains specific information that requiles a readins knowledge of Pascal or
C to be understood. 'Ibis appendix does not include information about how to wrir.e
code, nor does it explain how to use a compiler or assembler to create an executable
resource.

Deflniflons, uses, and examples
External commands and functions are extensions to the HyperTalk built-in command
and funaion seL HypeiCard includes interface proc:edures that make extendins
HyperTalk in tlUs way convenient and practical for expert prosr211U11e!S.

XCMD and XFCN resourc•
External commaade ma func:rions are executable Macintosh code resources, written
in a Macintosh ~ lansuage (suCh u Pascal, C, or 68000 assembly
lansuage), w*rim • Cld1ed to the HypeiCard application or a stack with a resource
editor such u PnB< 'Ibe resource type of an external command ia 'XCMD' and the
resource type of an e:m:mal function ia 'XFCN'. 'Ibey are often named by their
resource types: external commands are termed •ex-commands• (written XCMDs),
and external funaiom are •ex-functions• (written XPCNs).

217

XCMDs and XFCNa are handled in much the same way by HyperCard: they are
separately comPiled and attached by a .resource mover to stacks or the HyperCard
application; they~ object hierarchy in the same way; and they communicate
with HyperCard throug& the same parameter block data structure.

A Macintosh code resource is a compiled (or assembled) executable code module. An
'XCMD' or 'XFCN' resource has no header bytes; it is invoked by a jump instruction to
its entry point 1bese resources are simpler than Macintosh drivers: they can't have
any global (or static) data, and they can't be larger than 32K byteS in siz. (For more
details about these restrictions, see •Guidelines for Writing XCMOs and XFCNs, • later
in this appendix.)

After they have been created and attached to HyperCard or a stack, extetna1
commands and functions are called from HyperTalk in much the same way that built­
in commands or user-defmed message and function handle!s are called.

For detailed information on Macintosh resources,_ see In.s1de Mactntosb, published
by Addison-Wesley.

Uses for XCMDs and XFCNs
External commands and functions can provide ac:cesa to the Macintosh Toolbox and
to some of HyperCard's own inremal routines; they can provide fast processing speed
for time-critical operations; and they can override built-in HypetTalk commands to
provide custom solutions. XCMDs or XFCNs can be used for serial port input and
output routines, custom search-and-replace routines, color graphics display routines,
me input and output routines, and so on.

A typical use for an XCMO would be as an interface for a driver, allowing HyperCard
to control an external device such as a videodi.sc player. Such an interface would have
three parts: the driver, the XCMO, and a HyperTalk handler. 1be driver would be
completely separate from HyperCard. (See Volume II of Inside MactnlOSb for
information about writing driven.) The XCMO would be small; its pwpoae would be
to convert Hypeflalk messages to the appropriate driver calls. 1be HyperTalk handler
would call the XCMO with various parameters directing it to open or close the driver
or to perform a specific control call.

218 Appendix A: External Commands and Functions

(

Guidelines for wdfJ"g XCMDs and XFCNs
XCMDs and XFCNs can call most of the Macintosh Toolbox uaps and routines, but
they have certain limitations and restrictions. They can't do everything that an
application can do because they are guests in HyperCard's heap. In that regard they
are more like desk accessories than applications. Here are some guidelines for writing
XCMDs and XFCNs:

o Do not initialize the various Macintosh managers by calling their initialization
routines.1bat is, don't call InitGraf, Init!'onts, InitWindows, and so on.

o Do not rely upon having lots of RAM available for your XCMD. niem iS some extra
space in HyperCard's heap, but if HypelCard is running in 750K under
MultiFinder111, for example, an XCMD should not be bigger than about 32K.

o Do not use regi.srer A5 of the 68>oo-family pfOCCSM)I'. The value in A5 belongs to
HyperCard, and it points to HyperCard's global data, jump table, and other thinp
that constitute an •A5 world.• XCMDs do not currently have their own A5 world.

o XCMDs cannot have global data.

CJ Because they cannot have global data, XCMDs cannot use string lir.erala with MPW
C (.MPW C makes string literals into global data). To ciralmvent this resttiction, use
• STR • resources or put the strings in a short assembly-langua&e glue file.

o XCMDs cannot have a jump table, so they cannot have code segmenr.s. This
restriction imposes a 32K limit on the si2e of XCMDs for 68000-based machines
(the 68020 supports lonter branches).

CJ XCMDs can, however, allocate small chunks of memory by standard NevRanclle
calls. (You can also allocate memory with NevPtr alls, but they should be used
sparingly to avoid heap fragmentation.)

o If your XCMD allocates some memory in the heap, it should also deallocate the
memory.

CJ If an XCMD allocates a handle to save state information between invocations of the
XCMD, then you must pass the handle back to HyperCard to be stoled somewhere
in the current stack, such as in a hidden field. You must to convett the handle from
a long inre&er to a string, because all values are treated as strinp by Hypetralk.

o Since HyperCard jumps blindly to the srart of an XCMD's code, it is important that
the main roudae aclUally en.cit up at the start of the XCMD. In other words, the
XCMD glue ... fODow the main routine,~ the link order is vitally important.

o If, as you wr-. lbe ae of your XCMD begins to approach 321<, consider
converting it 111ta cflnao.

Oetlnltlonl. U181. and exampl• 219

Flash: an examQle XCMD

An example external command included with HyperCard is flash, which inverts the
saeen display (changes the black pixels to white and vice versa) a specified·number of
times. A version of flash written and compiled in MPW Pascal has already been
attached to the HyperCard application file (that is, to HyperCard itself).

Flash is invoked from HyperCard just like a HyperTalk command. That is, you send
the message flash to HyperCard from the Message box or from an executing saipt.
The flash message takes one parameter: an integer. The flash XCMD inverts the
saeen display twice that many times. For example, the following handler, in response
to a mouseUp message, sends the flash message and its parameter. When the
message reaches HyperCard, it invokes the flash external command, which inverts
the saeen display 20 times:

on mouseUp
flash 10

end mouseUp

The saeen display flashes (is inverted and inverted back again) 10 times.

Flash llltlng In MPW Pascal

Here's the Pascal listing for flash:

(*

* Flash.p - A sample RyperCard XCMD to hiqhliqht the screen
* - Copyriqht Apple Computer, Inc. 1987-1988.
* - All Riqhts Reserved.

*
* Build instructions:

*Pascal Flash.p -o Flash.p.o
* Link Flash.p.o -sq Flash -rt XCMD•O -m ENTRYPOINT -o StackName ..
*)

{$R-}

($5 Flash > ·C leipent name must be same as command name

220 Appendix A: Extemot Commands and Functtona

(

(

(*
* DummyCnit is what HyperTalk jumps to when running the XCMD.
*Also note thst"-XCMDs do not currently support their own AS World.
*thus NO GLOBAL VARIABLES are allowed. If the link tails then that
*means the Pascal compiler generated AS-relative code. (This may
* happen it you try to use the Pascal libraries. tor example.)
*
*)

ONIT OummyCnit;

INTERFACE

USES MemTypes. QuickDraw. HyperXCmd;

PROCEDURE EntryPoint(paramPtr: XCmdPtr);

IMPLEMENTATION

TYPE Str31 • String[31];

PROCEDURE Flash (paramPtr: XCmdPtr) ; FORNARO;

PROCEDURE EntryPoint(paramPtr: XCmdPtr);
BEGIN

Flash(paraml'tr);
END;

PROCEDURE FlashCparamPtr: XCmdPtr);
VAR tlashCount: INTEGER;

aqain: INTEGER;
port: GrafPtr;
str: Str2S5;
when: Longint;
ticksPtr: "Longint;

($I XCmdGlue.inc >

Detlnlttona. usa1. and examples 221

BEGIN
ZeroToPaa(paramPtrA.params[l]A,str); { first param is flash count l
flashCount :• StrToNum(str);
GetPort<pore);
ticksPtr :• Pointer($16A);

IF (paramPtrA.paramCount <> 1) OR (flashCount < ll
THEN flashCount :• 3;

FOR aqain :• 1 TO 2 * flashCount DO
BEGIN

when :• ticksPtrA + 4;
InvertRect(portA.portRect);
REPEAT UNTIL ticksPtrA >• when;

END;
END;

END.

Flash Dstmg In MPW C

Here's a version of flash written in MPW C:

/*
* Flash.c - A sample HyperCard XCHD to hiqhliqht the screen
* Copyriqht Apple Computer, Inc. 1987-1988.
* All Riqhts Reserved.
*
* Build instructions:

*
* c Flash.c -o Flash.c.o
* Link Flash.c.o -sq CFlaah -rt XCHD•5 -o StackName

*
*/

tdefin• _SEG_ C!'laah /* Seqment name must ea the same as command name */

tinclude <HyperXCmd.h> /* BT interface and tincludes Typea.h, Memory.h */
tinclude <QllickDraw.h>

pascal voi, 8U9() extern OxA9!'F;· /* useful for debuqqinq */

222 Appendix A: Extemal Commands and Functions

(
/*

*
*
*
*
*
*
*
*
*
*/

Your routine MOST be the first code that is generated in the file, as
HyperTalk Slmply JSRs to the start of the XCMD seqment in memory.

Therefore the XCmdGlue.c file must be included after the main routine,
being CFlash in this sample XCMD. Also note that XCMDs do not currently
support their own AS World, thus NO GLOBAL VARIABLES are allowed.

If the link fails then that means the C compiler generated AS-relative
code. (This happens if you try to use the C libraries or use strings
in the code. Use a STR resource instead.)

pascal void CFlash(paramPtr)
XCmdBlockPtr paramPtr;

short flashCount,again;
GrafPtr port;
Str2SS str;

ZeroToPas(paramPtr,*(paramPtr->params[OJ),,str); /*get flash count*/
flashCount • StrToNum(paramPtr, 'str)-; /* convert to num */
if (paramPtr->paramCount !• 11 tlashCount • 3; /*default if no param */
if (flashCount < 11 flashCount • 3; /* must be positive */
GetPort ('port);
for (again • l; again <• flashCount; again++)

InvertRect(,port->portRect);
InvertRect(,port->portRect);

tinclude <XCmdGlue.c> /* c routines for HyperCard callbacks */

Deflnlttona. uses, and examples 223

Flash 1st1ng 1n aaao Qll8ld)ly language

Here's the 68000 ·asseml?!Y language listing for flash:

*
* Flash.a - A sample HyperCard XCMD in 68000 Assembly

* - Copyriqht Apple Computer, Inc. 1988.

* - All Riqhts Reserved.
*
* Build Instructions:
*
*
*
*
*

AF lash

@2

@3

Asm Flash.a -o Flash.a.o
Link Flash.a.o -sq AFlash -rt XCMD•7 -o StackName

INCLUDE 'QuickEqu.a•
INCLUDE 'Traps.a•

SEG 'AFlash'

PROC
link a6,t-4
move.l d4,-(spl
move.l 8(a6) ,ao
move.l 2(.aO),al
move.l (al), al
move.v t3,d4

move.b (al)+,dl
cmp.b f'O',dl
blt.s @2

cmp.b f'9',dl
bqt.s @2

and.v t$000F,dl
move.v dl,d4

pea -4 (&6)

_GetPort
bra.a.. 14

..... 1 -4Ca6),a0
,.. porta.c:t: (aO)
_Imrera.c:t:
llOV9.l -4Ca6),a0
pea portRect(aO)
_InverRect

; Seqname must be sue as command name ·

; uses aO,al,dl

; save
; qet paramPtr in a temp req
; qet handle to flashCount (as c strinql

deref
; StrToNum default result

qet a char
; test for a number
; less than valid

qreater than valid

; mask to value of leqal char
; stick value into result

; var result of GetPort

qet into DBRA loop

qet port
; address of portRect

qet port
address of portRect

224 Appendix A: External Commands and Func1tonl

(

(

(!4 clbra d4. (!3

moV..1 (sp)+.d4 restore
unlk a6

move.l (sp)+,ao rts Pascal style
add.l t4,a7
jmp (aO)

END

Peek: an example XFCN
An example external funaion is peek, which returns the contents of a memory
location whose address is passed with the function call. Peek is not already attached
to the Hypei<:ard application like the flash XCMD; you must compile it yowself
and attach it to Hype!Card or a stack with a resource editor like ResEdit (see •Attaching
an XCMD or XFCN" later in this appendix).

Peek llstlng In MPW Pascal

Here's the Pascal listing for peek:

(*

* Peek. p - A sample Hypercard XFCN to return the contents ot memory
* - Copyriqht Apple Computer, Inc. 1987,1988.
* - All Riqhts Reserved.

*
* Build instructions:

*
*Pascal Peek.p -o Peek.p.o
*Link Peek.p.o -sq Paek -rt XFCN•l -m ENTRYPOINT -o StackName

*
*)

{$R-}

{$5 Peek } (seqMnt n- must be same as command name l

(*

* DllllllDylJnit J.a what HyperTalk jumps to vhen runninq the XCFN.
* Also note that xcnrs do not currently support their own A5 World.
* thus NO GLOBAL VARIABLES are allowed. Ir the link tails then that
* means the Pascal compiler qenerated AS-relative code. (This may
*happen if you try to use the Pascal liararies, for example.)

*
*)

Deftnltlonl. ueee. and examples 225

UNIT DummyOnit;

INTERFACE .

USES MemTypes, HyperXCmd;

PROCEDURE EntryPoint(paramPtr: XCmdPtr);

IMPLEMENTATION

TYPE Str31 • Strinq[Jl);
WordPtr - ~INTEGER;

LonqPtr • ~Lonqint;

PROCEDURE Peek(paramPtr: XCmdPtr); FORWARD;

PROCEDURE EntryPoint(paramPtr: XCmdPtr);
BEGIN

Peek(param.Ptr);
END;

PROCEDURE Peek(paramPtr: XCmdl>tr);
VAR peekAddr,peekSize,peekVal: Lonqint;

str: Str255;

{$I XCmdGlue.inc }

226 Appendix A: Extemal Commands and Funcflonl

(

BEGIN
WITH paramPtrA DO

END;

END.

BEGIN
(first param is addr }
ZeroToPas(params[l]",str);
peekAddr :• StrToNum(str);

{ second param, if given, is size }
peekSize :• l;
IF paramCount • 2 THEN

BEGIN
ZeroToPas(params[2J",str);
peekSize :• StrToNum(str);

END;

CASE peekSize OF
1: peekVal :• BAN0($000000FF,Ptr(peekAddr)");
2: peekVal :• BAN0($0000FFFF,WordPtr(BAN0($FFFFFFFE,peekAddr))");
4: peekVal :• LonqPtr(BAND($FFFFFFFE,peekAddr))";
OTHERWISE peekVal :- O;

END;

str :• NumToStr(peekVall;
returnValue :• PasToZero(str);

,END;

Oeflnltlons. uses, and examples 227

Peek llstlng In MPW C

Here's the MPW C code &ting for peek:

I*
* Peek.c - A sample HyperCard XFCN to return the contents of memory
* Copyriqht Apple Computer, Inc. 1987,1988.
* All Riqhts Reserved.

* Build instructions:

*
* c Peek.c -o Peek.c.o
* Link Peek.c.o -sq CPeek -rt XFCN•6 -o StackName

*
*I

tdefine _SEG_ CPeelc /* Se<J111ent name must be the same as command name */

tinclude <HyperXCmd.h> /* HT interface and tincludas Types.h, Hamory.h */

pascal voidMacsBuq() extern OxA9FF; /*useful for debuqqin9 */

tdefine PEEKBYTE(addreas> *((char*) address)
tdefine PEEKWORD(address) *((short *) address)
tdefine PEEKLONG(address) *l(lon9 *) address)

I*
* Your routine MUST be the first code that is qenerated in the file, as
* HyperTalk simply JSRs to the start of the XFCN aaqment in memory.
* Therefore the XCmdGlue.c file must be included after the main routine,
* beinq CPeelc in this sample XFCN. Also note that XFCNs do not currently
* support their own AS World, thus NO GLOBAL VARIABLES are allowed.
* I! the linlc fails then that means the C compiler qenerated AS-relative
* code. (This happens if you try to use the C libraries or use strinqs
* in the code. Use a STR resource instead.)

*
*/

228 Appendix A: External Commands and Func:::tlonl

~··

pascal void CPeek(paramPtr)
XCmdBlock~ paramPtr;

char str(255);
short argc;
long peekAddr, peekSize, peekVal;
Handle argvl, argv2;

arqc - paramPtr->paramCount;
argvl • paramPtr->params(O];
arqv2 - paramPtr->params[l);

ZeroToPas(paramPtr, *arqvl, str); /* CtoP string*/
peekAddr - StrToNum(paramPtr, str); /*get address */

if (argc - 2) {

else

ZeroToPas(paramPtr, *arqv2, str); /* CtoP strinq */
peekSize • StrToNum(paramPtr, str); /*get size */

peekSize • 1;

switch!peekSize) {
case 1: peekVal • PEEKBYTE!peekAddr); break;
case 2: peekVal • PEE!<WORD(peekAddr); break;
case 4: peekVal • PEEKLONG(peekAddr); break;
default: peekVal • O;

NumToStr<paramPtr, peekVal, str);

I* XFCN: make sure to return a result, the only chanqa from an XCMD */
paramPtr->returnValua • PasToZero(paramPtr, str);

tinclude <XCmdGlua.c>

Peek is invokedjul&Uke a user-defined function handler. That is, you put the function
name in a Hypea'alt •"""""' followed by ·one argument within paientheses-an
integer rep~ die memory location whose contents you want HypeiCard to
return. For example

on mou.seOp
put peek!Ol into msq

end mouseOp

The current contents of memory address 0 are displayed in the Meaage box.

Oeftnltlonl, usee, and examples 229

Accessing an-XCMD or XFCN
You access XCMDs and XFCNs from HyperTalk using the regular message syntax and
user-defined function call syntax. The message or function call is passed through the
HyperCard object hierarchy.

Invoking XCMDs and XFCNs
You invoke an XCMD as you do a message handler. That is, you type the name of the
XCMD followed by its parameters in a HyperTalk script or in the Message box.
Separate the parameters (if there aie more than one) with commas, and put quotation
marks around parameters of more than one word. When the script executes or when
you send the Mes.use box contents by picssing RebJm or Enter, HyperCard sends the
message through the normal object hierarchy. For external commanm, the
Macintosh resource name correlates to the message name-the first word in the
message.

Similarly, you call an XPCN in a Hypefl'alk statement in the same way you would a
user-<iefined function (use parentheses rather than the word the), which c:a.Us a
function handler somewhere farther along the hierarchy. Enclose any parameters
within parentheses, separate them (if more than one) with commas, and put quotation
marks around parameters of more than one word. If the function takes no parameters,
append empty parentheses after iL For external functions, the Macintosh resource
name correlates to the function name-the word preceding parentheses in the
function call.

You can pass a maximum of 16 parameters to an XCMD or XFCN.

230 Appendix A: External Commands and Functlonl

(

Object hierarchy_

External commands and functions use the objea hierarchy in the same way as message
and function handlers and built-in commands and functions. External commands
and functions can be attached to any stack or to the HyperCard application.

If a stack receives a message or function call for which it has no handler, then before
passing the message or function call to the next object, it checks to see if it has an
external command or function of the same name. When HyperCard receives a
message or function call, it checks to see if it has and external command or function
before it looks for a built-in command or function.

That is, HyperCard searches for message and function handlers, XCMDs and XFCNs,
and built-in commands and functions through the hierarchy shown in Figure A-1.

Chapter 2 discusses the message-passing hierarchy, including the dynamic path, in
detail.

Accessing an XCMD or XFCN 231

Reid handlers Button hand•

Card
handlell

Background
handlers

Stack
handlers

Stack
XCMDa and XFCNa --I

I
Home stack I

XCMDa and XFCNs I
I
I

Home stack I
XCMDa aid XFCNa

~•card
XCM aid XFCNa

~1118
XCM dXFCNa

I
I
I
I
I
I
I
I
I Current card

handlers

Current background
Dynamic handlerl

path

Current stack
handlers

-- Current stack
XCMOI aid XFCNI

FlgureA-1
Message-passing hierarchy, Including XCMOs and XFCNs

232 Appendix A: Extemal Commands and Func1tons

(

Parameter blOck data structure
If HyperCard matches a message or function call with an external command or
function, it passes a single argument to the XCMD or XFCN: a pointer to a parameter
block called an XCmd.Block. All communication between HyperCard and the XCMO
or XFCN passes through the parameter block. In Pascal, the parameter block data
structure is a record; in C it's a struct.

HyperCard uses the fltSt two fields of the parameter block to pass information to the
XCMD or XFCN before invoking its execution. The XCMD or XFCN uses the ocher data
fields in the XCmd.Block to pass back results and to communicate with HyperCard
during execution.

The parameter block is listed in both Pascal and C in the respective definition
interface files later in this appendix. The Pascal parameter block is also shown here for
convenience:

TYPE

XCmdPtr • AXCmdBlock;
XCmdBlock ..

RECORD
paramCount: INTEGER;
params: ARRAY[l •. 16] OF Handle;
returnValue: Handle;
passFlag: BOOLEAN;

entryPoint: ProcPtr; to call back to HyperCard }

END;

request: INTEGER;
result:
inArgs:
outArgs:

END;

INTEGER;
ARRAY[l •• B) OF Longint;
ARRAY[l •• 4) OF Longint;

Parameter block data structure 233

Passing parameters to XCMDs and XFCNs

Before calling the XCMD or XFCN, HyperCard places the number of parameters and
handles to the paramer.er strings in two fields of the XCmdBlock: paramCount and
pa rams.

PararnCount

HyperCard puts an integer representing the paramer.er count in f.teld paramCount.
You can pass a maximum of 16 paramer.er strings. · ·

Params

HyperCard evaluates the paramer.ers and puts their values into memory as 7ero­

r.erminated ASCII strings. Before it invokes the XCMD or XFCN, HyperCard puts the
handles to the paramer.er strings into the params array.

Passing back results to HyperCard

When an XCMD or XFCN finishes executing, HyperCard examines two fields of the
XCmdBlock: returnValue and pass!'laq.

RetumValue

An XCMD or XFCN can optionally store one :r.ero-r.erminated string to communicate
the result of its exeaition. HyperCard will look for a handle to the result string in the
return Value field of the XCmdBlock. Storing a result string is optional for an
XCMD; it is expected of an XFCN, but it's not required. If you store a result string
handle into returnValue in an XCMD, the user can get it by using the Hypetralk
function the result (useful for explaining why there was an error). For an XFCN,
HyperCard uses the returnValue string to replace the function call itself in the
Hyper'falk statement containing the call. If you don't store anything, the result is the
empty string.

PassFlag

When an XCMD or XPCN terminates, HyperCard examines the Boolean value of the
pass!'laq field. If passFlaq is false (the normal case), control passes back to the
previously executing hancller (or to HyperCard's idle stare if no handler was
executing). If passFlaq is true, HyperCard passes the message or function call to
the next object in the hierarchy. This has the same effect as the pass control
star.ement in a saipt.

234 Appendix A: External Commands and Functions

(

Callbacks.
The remaining five fields of the Xc::mciBlock record have to do with calling
HyperCard back in the middle of execution of an XCMO or XFCN. You use the
callback mechanism to obtain data or request HypelCard to perform an action.
HypelCard has 29 callback requests (see •Request Codes• later in this appendix). The
five XCmd.Block fields that compose the callback interface are entryPoint,
request, result, inArqs, and outArgs.

EntryPoint

When HyperCard sets up the XCmd.Block data struaure before passing control to an
XCMD or XFCN, it places an address in entryPoint. The XCMO or XFCN uses this
address to execute a jump instruction to pass control to HypelCard for the callback.

Request

Before executing the jump instruction, the XCMO or XFCN puts an integer
representing the callback request it's making into the request field. The request
codes are listed in •callback Procedures and Functions• later in this appendix.

Result

After it completes the callback request, HypelCard places an integer result code in the
result field. The result code can be 0, 1, or 2. If the callback executed successfully,
the result is O; if it failed, the result is 1; if the callback request is not implemented in
HypelCard, the result is 2.

lnArgs

The XCMO or XFCN sends up to eight arguments to HypelCard as long integers in the
inArqs array. Depending on the callback request, HypelCard expects arguments in
certain elements of the inArqs array. In many callbacks, the arguments are pointers
to zero-terminated strinp. The callback arguments are shown in Pascal in •Callback
Procedures and Punciio~ later in this appendix.

OutArgs

After it exeaites the callback request, HypelCard returns up to four long integers (or
other types, such as handles) to the XCMD or XFCN as elements of the outArqs
array. The arguments HypetCard returns from callbacks are shown in Pascal in
•callback Procedures and Functions• later in this appendix.

Parameter block data structure 235

Callback proc8dures and funcflons
If you want to manage a callback to HyperCard yourself, you can define the
Xcmd.Block data structure in yow XCMD or XFCN. Then you can put values you wane
to send to HyperCard in inArqs, put a request code in request, and execute a
jump instruction to the address HypetCard places in entryPoint. HypetCard
returns values in outArqs and a resuk code in result.

However, if you use MPW Pascal or C, you can take advantage of interface definition
and •glue" files. (1be def.tnition and glue files are listed later in this appendix and are
also available on disk from APDA, the Apple Programmer's and Developer's
Association. Information about APDA is listed at the end of this appendix.) The
def.tnition and glue files provide simple procedure and function calls that you can use
inside your XCMD or XFCN to handle callback requests more easily. Include them
when you compile yow XCMD or XFCN.

The Pascal code for an XCMD or XFCN should include the defanition file
HyperXCmd.p at the beginning of the USES clause and the glue file
XCmdGlue. inc at the end with the $I directive. There must be an argument of type
XCmd.Ptr passed by HypetCard to the XCMD or XFCN. In the glue routines, all
strings are Pascal strings unless noted as 7.el'O-terrninated strings (which have no length
byte; the end of the string is indicated by a null byte). In general, if a handle is
returned, the XCMD or XFCN is respoilSlble for disposing of it.

Definition Interface flies
The MPW Pascal definition interface file is HyperXCmd. p. The MPW C definition
interface file is HyperXCmd. h. These files define the XCmd.Block parameter block
described earlier in this appendix. They also define the constants representing the
callback result codes and request codes.

DefinHlon file In MPW Pascal

The interface defmition file in MPW Pascal is as follows:

(*

* HyperXCmd .. p - Interface to HyperTalk callback routines

* - Copyright Apple Computer, Inc. 1987,1988,

* - All Rights Reserved.

*
*)

ONIT HyperXCmd;

236 Appendix A: Extemal Commands and Functions

,/

(

INTERFACE

CONST

{ result codes)
xresSucc = O;
xresFail l;
xresNotimp 2;

{ request codes
xreqSendCard.Message = l;
xreqEvalExpr = 2;
xreqStringLength = 3;
xreqStringMatch - 4;
xreqSendHCMessage - 5;
xreqZeroBytes =- 6.;

xreqPasToZero = 7;

xreqZeroToPas =- 8;
xreqStrToLong - 9;
xreqStrToNum .. 10;

xreqStrToBool - 11;
xreqStrToExt - 12;
xreqLongToStr .. 13;

(
xreqNumToStr - 14;
xreqNumToHex - 15;
xreqBoolToStr - 16;
xreqExtToStr - 17;
xreqGetGlobal "' 18;
xreqSetGlobal - 19;

xreqGetFieldByName "' 20;
xreqGetFieldByNum "' 21;
xreqGetFieldByID = 22;
xreqSetFieldByName "' 23;
xreqSetFieldByNum - 24;

xreqSetFieldByID - 25;
xreqStringEqual - 26;
xreqReturnToPas "' 27;
xreqScanToReturn - 28;
xreqScanToZer~ - 39;

Deftnltlon file In MPW Pascal 237

TYPE

XCmdPtr • AXCmdBlock;
XCmdBlock •

END;

RECORD
paramCount:
params:
returnValue:
passFlag:

entryPoint:
request:
result:
inArgs:
outArgs:

END;

Definition ftle In MPW C

INTEGER;
ARRAY[l •• 16] OF Handle;
Handle;
BOOLEAN;

ProcPtr; { to call back to HyperCard.}
INTEGER;
INTEGER;
ARRAY[l •• 8) OF Longint;
ARRAY[l •• 4] OF Longint;

The inrerface definition file in MPW C includes the parameter block definition, the
result and request code constants, and forward definitions for the glue routines. The
definition fde is as follows:

I*
* HyperXCmd.h - Interfaces for HyperTalk callback routines

* - Copyright Apple Computer, Inc. 1987,1988.

* - All Rights Reserved.

*
* tinclude this file before your program.
* tinclude "XCmdGlue.c" after your code.

*
*/

tinclude <Type~.Jl>
tinclude <Mmlory.h>

pascal void Debuqqer() extern OxA9FF;

238 Appendix A: Extemal Commands and Functions

(

(

typedef struct XCmdBlock {
short

Handle
Handle
Boolean

t>a.ramcount;
par ams [16];
returnValue;
passFlag;

void
short
short
long
long

(*entryPoint) ();
request;
result;
in.Args[8];
out.Args[4];

XCmdBlock, *XCmdBlockPtr;

typedef struct Str31 {
char guts[32];

} Str31, *Str31Ptr;

/* result codes */
idefine xresSucc O
idefine xresFail
tdef ine xresNotimp

1

2

/* request codes */
idefine xreqSendCard.Message
idefine xreqEvalExpr
idefine xreqStringLength
tdefine xreqStringMatch
idefine xreqSendHCMessage
idefine xreqZeroBytes
idefine xreqPasToZero
tdefine xreqZeroToPas
tdefine xreqStrToLong
idefine xreqStrToNum
tdefine xreqStrToBool
tdefine xreqS!:l:ToExt
idefine xreqLonqToStr
tdefine iu:eqllumToStr
idefine xreqtlumToHex
idefine xreqBoolToStr
idefine xreqExtToStr
idefine xreqGetGlobal

/* to call back to HyperCard */

1
2
3
4
5
6
7
8
9

10
11

12
13
14

15
16
17
18

Deftnltlon ftle In MPW C 239

tdefine .xreqSetGlobal 19
tdefine xreqGetFieldByName 20
tdefine xreqGetFieldByNum 21
tdefine xreqGetFieldByID 22
tdefine xreqSetFieldByName 23
tdefine xreqSetFieldByNum 24
tdefine xreqSetFieldByID 25
tdefine xreqStrinqEqual 26
tdefine xreqReturnToPas 27
tdefine xreqScanToReturn 28
tdefine xreqScanToZero 39 /* was supposed to be 29! Oops! *I

/* Forward definitions of qlue routines. Main proqram
must include XCmdGlue.c after its routines. */

pascal void SendCardMessaqe(paramPtr,msq)
XCmdBloclcPtr paramPtr; StrinqPtr msq; extern;

pascal Handle EvalExpr(paramPtr,expr)
XCmdBloclcPtr paramPtr; StrinqPtr expr; extern;

pascal lonq StrinqLenqth(paramPtr,strPtr)
XCmdBloclcPtr paramPtr; StringPtr strPtr; extern;

pascal Ptr StringMatch(paramPtr,pattern,tarqet)
XCmdBloclcPtr paramPtr; StringPtr pattern;
Ptr tarqet; extern;

pascal void SendHCMessage(paramPtr,msg)
XCmdBloclcPtr paramPtr; StrinqPtr msg; extern;

pascal void ZeroBytes(paramPtr,dstPtr,lonqCount)
XCmdBloclcPtr paramPtr; Ptr dstPtr;
long lonqCount; extern;

pascal Handle PasToZero(paramPtr,pasStr)
XCmdBloclcPtr paramPtr; StringPtr pasStr; extern;

pascal void ZeroToPas(paramPtr,zeroStr,pasStr)
XCmdBloclcPtr paramPtr; char *zerostr;
StringPtr pasStr; extern;

pascal long StrToLong(paramPtr,strPtr)
XCmdBlockiltr paramPtr; Str31 * strPtr; extern;

pascal lonq StrToNum (paramPtr, str).
XCmdBl.ackPt.r paramPtr; str31 * str; extern;

pascal Bool•.n StrToBool(paramPtr,str)
XCmdBlockPtr paramPtr; Str31 * str; extern;

pascal void StrToExt(paramPtr,str,myext)
XCmdBloclcPtr paramPtr; Str31 * str;
extended * myext; extern;

240 Appendix A: Extemol Commands and Functions

(

pascal void LonqToStr(paramPtr,posNum,mystr)

XCmdBloc~t paramPtr; long posNum;

Str31 * mystr; extern;

pascal void NumToStr(paramPtr,num,mystr)

XCmdBlockPtr paramPtr; long num;
Str31 * mystr; extern;

pascal void NumToHex(paramPtr,num,nDigits,mystr)
XCmdBlockPtr paramPtr; long num;
short nDigits; Str31 "'mystr; extern;

pascal void BoolToStr(paramPtr,bool,mystr)
XCmdBlockPtr paramPtr; Boolean bool;
Str31 * mystr; extern;

pascal void ExtToStr(paramPtr,myext,mystrl
XCmdBlockPtr paramPtr; extended "! myext;
Str31 * mystr; extern;

pascal Handle GetGlobal(paramPtr,globName)
XCmdBlockPtr paramPtr; StringPtr globName; extern;

pascal void SetGlobal(paramPtr,globName,globValue)
XCmdBlockPtr paramPtr; StringPtr globName;
Handle globValue; extern;

pascal Handle GetFieldByName(paramPtr,card.FieldFlag,fieldNamel

(
XCmdBlockPtr paramPtr; Boolean card.Field.Flag;
StringPtr fieldName; extern;

pascal Handle GetFieldByNum(paramPtr,cardFieldFlaq,fieldNum)
XCmdBlockPtr paramPtr; Boolean card.FieldFlag;
short fieldNum; extern;

pascal Handle GetFieldByID(paramPtr,card.FieldFlaq,fieldID)
XCmdBlockPtr paramPtr; Boolean cardFieldFlag;
short fieldID; extern;

pascal void SetFieldByName(paramPtr,cardField.Flag,fieldName,fieldVal)
XCmdBlockPtr paramPtr; Boolean cardFieldFlaq;
StringPtr fieldName; Handle fieldVal; extern;

pascal void SetFieldByNum(paramPtr,card.FieldFlag,fieldNum,fieldVal)
XCmdBlockPtr paramPtr; Boolean cardFieldFlaq;
short fieldNum; Handle fieldVal; extern;

pascal void Se~~ieldByID(paramPtr,cardFieldFlag,fieldID,fieldVal)
XCmdBlockPtr paramPtr; Boolean cardFieldFlag;
short f ieldID; Handle fieldVal; extern;

Deftnl11on ftle In MPW C 241

pascal Boolean StringEqual(paramPtr,strl,str2)
XCmdBloclcPtr paramPtr; Str31 * strl;
Str31 * str2; extern;

pascal void ReturnToPas(paramPtr,zeroStr,pasStr)
XCmdBlockPtr paramPtr; Ptr zeroStr;
StringPtr pasStr; extern;

pascal void ScanToReturn(paramPtr,scanHndl)
XCmdBlockPtr paramPtr; Ptr * scanHndl; extern;

pascal void ScanToZero(paramPtr,scanHndl)
XCmdBlockPtr paramPtr; Ptr * scanHndl;. extern;

Glue routines
The MPW Pascal callback glue routines flle is XCmdGlue. inc. The MPW C definition
ftle is XCmdGlue. c. These files define the interface procedures and functions that
handle callback requests for XCMDs and XFCNs written in the same language. The first
line of each procedure or function defmition shows the name and parameters that you
use to call il

Glue routines In MPW Pascal

The first procedure defines the jump instruction with which the XCMD or XFCN passes
control to HyperCard to carry out its callback request The MPW Pascal glue routines
are as follows:

(*

* XCMDGlue. inc - Implementation of HyperTalk callback routines
* - Copyright Apple Computer, Inc. 1987, 1988'.
* - All Rights Reserved.

*
*)

Assumes the XCMD has included this file and
has named it~· argument "paramPtr" I

242 Appendix A: External Commands and Functions

(

PROCEDURE DoJsr(addr: ProcPtr); INLINE $205F,$4E90;

FUNCTION StringMatch(pattern: Str255; target: Ptr): Ptr;
BEGIN

WITH paramPtrA DO

END;

BEGIN
inArgs(l] :• ORD(@pattern);
inArgs(2] := ORD(target);
request :• xreqStringMatch;
DoJsr(entryPoint);
StringMatch :• Ptr(outArgs(l]);

END;

FUNCTION PasToZero(str: Str255): Handle;
BEGIN

WITH paramPtrA DO

END;

BEGIN
inArgs(l] :• ORD(@strl;
request :• xreqPasToZero;
DoJsr(entryPoint);
PasToZero :• Handle(outArgs(l]);

END;

PROCEDURE ZeroToPas(zeroStr: Ptr; VAR pasStr: Str255);
BEGIN

WITH paramPtrA DO

END;

BEGIN
inArgs(l] :• ORD(zeroStr);
inArgs[2] :• ORD(@pasStr);
request := xreqZeroToPas;
DoJsr(entryPoint);

END;

Glue routines In MPW Pascal 243

FUNCTION StrToLong(str: Str31): Longint;
BEGIN

WITH paranlPtrA DO

END;

BEGIN
inArgs[l] :• ORO(@str);
request :• xreqStrToLong;
DoJsr(entryPoint);
StrToLong :• outArgs[l];

END;

FUNCTION StrToNum(str: Str31): Longint;
BEGIN

WITH paramPtrA DO

END;

BEGIN
inArgs[l] :• ORD(@strl;
request :• xreqStrToNum;
DoJsr(entryPoint);
StrToNum :• outArgs[l];

END;

FUNCTION StrToBool(str: Str31): BOOLEAN;
BEGIN

WITH paramPtrA DO

END;

BEGIN
inArgs[l) :• ORD(@str);
request :• xreqStrToBool;
DoJsr(entryPoint);
StrToBool :• BOOLEAN(outArgs[l]);

END;

FUNCTION StrToExt(str: Str31): Extended;
VAR x: Extended;
BEGIN

WITH paramPtr~ DO

END;

BEGIN
inArtJ•(l) :• ORD(@str);
inAEf)•[2) :• ORD(@x);
request :• xreqStrToExt;
DoJsr(antryPoint);
StrToExt :• x;

'END;

244 Appendix A: Extemal Commands and Functions

(

(

FUNCTION LongToStr(posNum: Longintl: Str31;
VAR str: Str31T'°"
BEGIN

WITH paramPtrA DO

END;

BEGIN
inArgs[l] := posNum;
inArgs[2] :• ORO(@str);
request := xreqLongToStr;
DoJsr(entryPoint);
LongToStr ·= str;

END;

FUNCTION NumToStr(num: Longint): Str31;
VAR str: Str31;
BEGIN

WITH paramPtrA DO

END;

BEGIN
inArgs[l] :• num;
inArgs[2] :• ORD(@str);
request :• xreqNumToStr;
DoJsr(entryPoint);
NumToStr :• str;

END;

FUNCTION NumToHex(num: Longint; nDigits: INTEGER): Str31;
VAR str: Str31;
BEGIN

WITH paramPtrA DO

END;

BEGIN
inArgs [11 ·- num;
inArgs[2] :• nDigits;
inArgs[3] ·- ORD (@strl;
request :• xreqNumToHex;
DoJsr(entryPoint);
NumToHex_ :• str;

END;

Glue rouftnes In MPW Pascal 245

FUNCTION ExtToStr(num: Extended): Str31;
VAR str: StrJ:J.+.-·
BEGIN

WITH paramPtrA DO

END;

BEGIN
inArgs [11 : • ORD (@numl ;
inArgs[2] :• ORD(@str);
request :• xreqExtToStr;
DoJsr(entryPoint);
ExtToStr : =- str;

END;

FUNCTION BoolToStr(bool: BOOLEAN): Str31;
VAR str: Str31;
BEGIN

WITH paramPtrA DO

END;

BEGIN
inArgs(l] :• Longint(bool);
inArgs[2J :• ORD(@strl;
request :• xreqBoolToStr;
DoJsr(entryPoint);
BoolToStr :• str;

END;

PROCEDURE SendCardMessage(msg: Str255);
BEGIN

WITH paramPtrA DO

END;

BEGIN
inArgs[l] :• ORD(@msg);
request :• xreqSendCardMessage;
DoJsr(entryPointl;

END;

PROCEDURE SendHCMessage(msg: Str255);
BEGIN

WITH parllllftrA DO

END;

BEGIN
inArgs(l] :• ORD(@msg);
request :• xreqSendHCMessage;
DoJsr(entryPoint);

END;

246 Appendix A: External Commands and Functions

(

FUNCTION ~valExpr(expr: Str255): Handle;
BEGIN

WITH paramPtrA DO

END;

BEGIN
inArqs[lJ :• ORD(@expr);
request :• xreqEvalExpr;
DoJsr(entryPoint);
EvalExpr ·- Handle(outArqs[lJ);

END;

FUNCTION StrinqLenqth(strPtr: Ptr): Lonqint;
BEGIN

WITH paramPtrA DO

END;

BEGIN
inArqs[lJ :• ORD(strPtr);
request :• xreqStrinqLenqth;
DoJsr(entryPoint);
StrinqLenqth :• outArqs[lJ;

END;

FUNCTION GetGlobal(qlobName: Str255): Handle;
BEGIN

WITH paramPtrA DO

END;

BEGIN
inArqs[l] :• ORD(@qlobName);
request :- xreqGetGlobal;
DoJsr(entryPoint);
GetGlobal :- Handle(outArqs[lJ);

END;

PROCEDURE SetGlobal(qlobName: Str255; qlobValue: Handle);
BEGIN

WITH paramPt~~ DO

END;

BEGIN
inAr9a[l] :• ORD(@qlobName)';
inArqa[2] :• ORD(qlobValue);
request :• xraqSetGlobal;
DoJsr(entryPoint);

END;

Glue routines In MPW Pascal 247

FUNCTION GetFieldByName(cardFieldFlag: BOOLEAN; fieldName: Str255): Handle;
BEGIN

WITH paramPtrA DO

END;

BEGIN
inArgs[l) :• ORO(cardFieldFlag);
inArgs[2) :• ORD(@fieldName);
request :• xreqGetFieldByName;
DoJsr(entryPointl;
GetFieldByName :m Handle(outArgs[l]);

END;

FUNCTION GetFieldByNum(cardFieldFlag: BOOLEAN; fieldNum: INTEGER): Handle;
BEGIN

WITH paramPtrA DO

END;

BEGIN
inArgs[l) :• ORD(cardFieldFlag);
inArgs[2) :• fieldNum;
request :• xreqGetFieldByNum;
DoJsr(entryPoint);
GetFieldByNum :• Handle(outArgs[l]);

END;

FUNCTION GetFieldByID(cardFieldFlag: BOOLEAN; fieldID: INTEGER): Handle;
BEGIN

WITH paramPtrA DO

END;

BEGIN
inArgs[l) :• ORO(cardFieldFlag);
inArgs[2) :• fieldID;
request :• xreqGetFieldByID;
DoJsr(entryPointl;
GetFieldByID :• Handle(outArgs[l));

END;

248 Appendix A: Extemal Commands and Func1tons

(

(

PROCEDURE SetFieldByName(cardField.Flag: BOOLEAN; fieldName: Str255; fieldVal: Handle);
BEGIN

WITH paramPtrA DO

END;

BEGIN
inArgs[l) ·= ORD(card.FieldFlag);
inArgs[2] := ORD(@fieldName);
inArgs[3) ·- ORD(fieldVal);
request := xreqSetFieldByName;
DoJsr(entryPoint);

END;

PROCEDURE SetFieldByNum(card.FieldFlag: BOOLEAN; fieldNum: INTEGER; fieldVal: Handle);
BEGIN

WITH paramPtr" DO

END;

BEGIN
inArgs[lJ ·- ORD(card.FieldFlag);
inArgs(2] ·- fieldNum;
inArgs[3J :- ORD(fieldVal);
request :• xreqSetFieldByNum;
DoJsr(entryPoint);

END;

PROCEDURE SetFieldByID(cardField.Flag: BOOLEAN; fieldID: INTEGER; fieldVal: Handle);
BEGIN

WITH paramPtr" DO

END;

BEGIN
inArgs[lJ ·- ORD(card.FieldFlag);
inArgs [2] :• fieldID;
inArgs[3] :• ORD(fieldVal);
request :• xreqSetFieldByID;
DoJsr(entryPoint);

END;

FUNCTION StrinqEqual(strl,str2: Str255): BOOLEAN;
BEGIN

WITH par..i>trA DO

END;

BEGIN
inArqs(l] :• ORD(@strl);
inArqs[2J :• ORD(@str2l;
request :• xreqStringEqual;
DoJsr(entryPoint);
StringEqual :• BOOLEAN(outArgs(l]);

END;

Glue routines In MPW Pascal 249

PROCEDURE ReturnToPas(zeroStr: Ptr; VAR pasStr: Str255);
BEGIN

WITH paramPtrA DO

END;

BEGIN
inArgs [l J : .. ORD (zerostrl ;
inArgs[2J := ORD(@pasStr);
request :s xreqReturnToPas;
DoJsr(entryPoint);

END;

PROCEDURE ScanToReturn(VAR scanPtr: Ptr);
BEGIN

WITH paramPtrA DO

END;

BEGIN
inArgs[lJ :• ORD(@scanPtr);
request :• xreqScanToReturn;
DoJsr(entryPoint);

END;

PROCEDURE ScanToZero(VAR scanPtr: Ptr);
BEGIN

WITH paramPtrA DO

END;

BEGIN
inArgs[lJ :- ORD(@scanPtr);
request :• xreqScanToZero;
DoJsr(entryPoint);

END;

PROCEDURE ZeroBytes(dstPtr: Ptr; longCount: Longint);
BEGIN

WITH paramPtrA DO

END;

BEGIN
inArga[l-J :• ORD(dstPtr);
inArga[2) :• longCount;
reque9t :• xreqZeroBytes; ·
DoJar(.. tryPoint);

END1

250 Appendix A: External Commands and Functions

(

Glue routines In MPW C

The glue routines in MPW C follow:

/*

XCmdGlue.c - Implementation of HyperTalk callback routines
- Copyright Apple Computer, Inc. 1987,1988.
- All Rights Reserved.

* tinclude "HyperXCmd.h" before your program.
* tinclude this file after your code.

*/

pascal void SendCardMessage(paramPtr,msg)
XCmdBlockPtr paramPtr; StringPtr msg;
/* Send a HyperCard message (a command with arguments) to the current card.

msg is a pointer to a Pascal format string. */

paramPtr->inArgs[O] • (long)msg;
paramPtr->request • x·reqSendCardMessage;
paramPtr->entryPoint();

pascal Handle EvalExpr(paramPtr,expr)
XCmdBlockPtr paramPtr; StringPtr expr;
/* Evaluate a HyperCard expression and return the answer. The answer is

a handle to a zero-terminated string. */

paramPtr->inArgs[O] • (long)expr;
paramPtr->request • xreqEvalExpr;

paramPtr->entryPoint();
return (Handle)paramPtr->outArgs(O];

Glue routines In MPW C 251

252

pascal lonq StrinqLength(paramPtr,strPtr)
XCmdBlockPt"r paramPtr; StringPtr strPtr;

/* Count the characters from where strPtr points until the next zero byte.
Does not count the zero itself. strPtr must be a zer.o-terminated string. *I

paramPtr->inArqs[O) • (lonq)strPtr;
paramPtr->request • xreqStringLength;

paramPtr->entryPoint();
return (long)paramPtr->outArgs[O);

pascal Ptr StringMatch(paramPtr,pattern,target)
XCmd.BlockPtr paramPtr; StringPtr pattern; Ptr target;

/* Perform case-insensitive match looking for pattern anywhere in
target, returning a pointer to first character of the first match,
in target or NIL if no match found. pattern is a Pascal string,
and target is a zero-terminated string. */

paramPtr->inArgs[OJ • (lonq)pattern;
paramPtr->inArgs[l) • (long)target;
paramPtr->request • xreqStringMatch;

paramPtr->entryPoint();
return (Ptr)paramPtr->outArgs[O];

pascal void SendHCMessage(paramPtr,msg)
XCmd.BlockPtr paramPtr; StringPtr msg;
/* Send a HyperCard message (a command with arguments)

msq is a pointer to a Pascal format strinq. */

paramPtr->inArqs[O] • (loriq)msq;
paramPtr->request • xreqSendHCMessage;

paramPtr->entryPoint();

Appendix A: External Commands and Functions

to HyperCard. ·

\ I

~

;!~'-

'0

(

pascal void Zer~~ytes(paramPtr,dstPtr,longCount)
XCmd.Block"Ptr paramPtr; Ptr dstPtr; long longCount;

/* Write zeros into memory starting at destPtr and going for longCount
number of bytes. */

paramPtr->inArgs[OJ • (long)dstPtr;
paramPtr->inArgs[l] • longCount;
paramPtr->request = xreqZeroBytes;

paramPtr->entryPoint();

pascal Handle PasToZero(paramPtr,pasStr)
XCmd.BlockPtr paramPtr; StringPtr pasStr;

/* Convert a Pascal string to a zero-terminated string. Returns a handle
to a new zero-terminated string. The caller must dispose the handle.
You'll need to do this for any result or argument you send from
your XCMD to HyperTalk. */

paramPtr->inArgs[O] • (long)pasStr;
paramPtr->request • xreqPasToZero;

paramPtr->entryPoint();
return (Handle)paramPtr->outArgs[OJ;

pascal void ZeroToPas(paramPtr,zerostr,pasStr)
XCmd.BlockPtr paramPtr; char *zerostr; StringPtr

/* Fill the Pascal string with the contents of the zero-terminated
string. You create the Pascal string and pass it in as a VAR
parameter. Useful for converting the arguments of any XCMD to
Pascal strings. */

paramPtr->inArgs[OJ - (long)zeroStr;
paramPtr->inArgs(lJ • (long)pasStr;
paramPtr-~request - xreqZeroToPas;

paramPtr->entryPoint();

pasStr;

Glue routines In MPW C 253

pascal long StrToLong(paramPtr,strPtr)
XCmdBlocltlM:.r paramPtr; Str31 *

/* Convert a string of ASCII decimal digits

paramPtr->inArqs(OJ • (long)strPtr;
paramPtr->request • xreqStrToLong;

paramPtr->entryPoint();
return (long)paramPtr->outArgs(OJ;

pascal long StrToNum(paramPtr,str)

strPtr;
to an unsigned long integer. */

XCmdBlockPtr paramPtr; Str31 * str;
/* Convert a string of ASCII decimal digits to a signed long integer.

Negative sign is allowed. */

paramPtr->inArgs(OJ • (long)str;
paramPtr->request • xreqStrToNum;

paramPtr->entryPoint();
return paramPtr->outArgs(O];

pascal Boolean StrToBool(paramPtr,str)
XCmdBlockPtr paramPtr; Str31 * str;

I* Convert the Pascal strings 'true• and 'false• to booleans. */

paramPtr->inArgs(OJ • (long)str;
paramPtr->request • xreqStrToBool;

paramPtr->entryPoint();
return (Boolean)paramPtr->outArgs(O];

pascal void StrToExt(paramPtr,str,myext)
XCmdBlock~tF paramPtr; Str31 *

/* Convert a string of ASCII decimal digits
str; extended * myext;

to an extended long integer.
Instead-of returning a new extended, as Pascal does, it expects you
to create myext and pass it in to be filled. */

paramPtr->inArgs(OJ • (long)str;
paramPtr->inArgs(lJ • (long)myext;
paramPtr->request • xreqStrToExt;

paramPtr->entryPoint();

254 Appendix A: Extemal Commands and Functions

(

(

pascal void Lon~~oStr(paramPtr,posNum,mystr)
XCmdBloclCPtr paramPtr; long posNum; Str31 * mystr;

/* Convert an unsigned long integer to a Pascal string. Instead of
returning a new string, as Pascal does, it expects you to
create mystr and pass it in to be filled. */

paramPtr->inArgs[OJ • (long)posNum;
paramPtr->inArgs(l] • (long)mystr;
paramPtr->request • xreqLongToStr;

paramPtr->entryPoint();

pascal void NumToStr(paramPtr,num,mystr)
XCmdBlockPtr paramPtr; long num;

/* Convert a signed long integer to a Pascal string.
Str31 * mystr;

Instead of
returning a new string, as Pascal does, it expects you to
create mystr and pass it in to be filled. */

paramPtr->inArgs(O] • num;
paramPtr->inArgs[l] • (long)mystr;
paramPtr->request • xreqNumToStr;

paramPtr->entryPoint();

pascal void NumToHex(paramPtr,num,nDigits,mystr)
XCmdBlockPtr paramPtr; long num;
short nDigits; Str31 * mystr;

/* Convert an unsigned long integer to a hexadecimal number and put it
into a Pascal string. Instead of returning a new string, as
Pascal does, it expects you to create mystr and pass it in to be filled. */

paramPtr->inArgs[OJ • num;
paramPtr->inArgs(lJ • nDigits;
paramPtr->.inArgs[2J • (long)mystr;
paramPtr->request • xreqNumTaHex;

paramPtr->entryPoint();

Glue routines In MPW C 255

pascal void BoolToStr(paramPtr,bool,mystrl
XCmdBl·oclcPtl:. paramPtr; Boolean bool; Str31 * mystr;

/*Convert a boolean to 'true' or •false•. Instead of returning
a new string, as Pascal does, it expects you to create mystr

and pass it in to be filled. */

paramPtr->inArqs(OJ • <lonq)bool;
paramPtr->inArgs(l] • (long)mystr;
paramPtr->request • xreqBoolToStr;

paramPtr->entryPoint();

pascal void ExtToStr(paramPtr,myext,mystr)
XCmdBloc:kPtr paramPtr; extended * myext; Str31 * mystr;

/* Convert an extended long integer to decimal digits in a string.
Instead of returning a new string, as Pascal does, it expects

you to create mystr and pass it in to be filled. */

paramPtr->inArgs(OJ • (long)myext;
paramPtr->inArgs[l] • (long)mystr;
paramPtr->request • xreqExtToStr;

paramPtr->entryPoint();

pascal Handle GetGlobal(paramPtr,globName)
XCmdBloc:kPtr paramPtr; StringPtr globName;

/* Return a handle to a zero-terminated string containing the value of
the specified HyperTal:k global variable. */

paramPtr->inArgs[O] • (long)globName;
paramPtr->request • xreqGetGlobal;

paramPtr->entryPoint();
return (HandlelparamPtr->outArgs[OJ;

256 Appendix A: Extemal Commands and Func1tonl

(

pascal void SetGlobal(paramPtr,globName,globValue)
XCmd.Bloclc'Ptr- · paramPtr; StringPtr globName; Handle

/* Set the value of the specified HyperTalk global variable to be
the zero-terminated string in globValue. The contents of the
Handle are copied, so you must still dispose it afterwards. */

paramPtr->inArgs[O) • <long)globName;
paramPtr->inArgs[lJ • (long)globValue;
paramPtr->request • xreqSetGlobal;

paramPtr->entryPoint();

pascal Handle GetFieldByName(paramPtr,cardFieldFlag,fieldName)
XCmd.BlockPtr paramPtr; Boolean cardField.Flag;
StrinqPtr fieldName;

/* Return a handle to a zero-terminated string containing the value of
field fieldName on the current card. You must dispose the handle. */

paramPtr->inArqs[O] • (long)card.Field.Flaq;
paramPtr->inArgs[l] • (long)fieldName;
paramPtr->request • xreqGetFieldByName;

paramPtr->entryPoint();
return (HandlelparamPtr->outArqs(O];

pascal Handle GetFieldByNum(parilmPtr,card.Field.Flag,fieldNuml
XCmd.BlockPtr paramPtr; Boolean cardFieldFlag;
short f ieldNum;

/* Return a handle to a zero-terminated string containing the value of
field fieldNum on the current card. You must dispose the handle. */

paramPtr->inArgs(O] • (long)cardFieldFlag;
paramPtr->inArgs(lJ • fieldNum;
paramPtr-~c.equest • xreqGetFieldByNum;

paramPtr->entryPoint();
retura.(8-ldlelparamPtr->outArqs[O];

globValue;

Glue rquttnes In MPW c 257

pascal Handle GetFieldByIO(paramPtr,cardFieldFlag,fieldIDl
i<cindBloclcftr- · paramPtr; Boolean cardFieldFlaq;
short fieldID;

/* Return a handle to a zero-terminated string containing the value of
the field whise ID is fieldIO. You must dispose the handle. */

paramPtr->inArqs[OJ • (long)c~rdFieldFlag;
paramPtr->inArgs(ll • fieldID;
paramPtr->request • xreqGetFieldByID;

paramPtr->entryPoint();
return (Handle)paramPtr->outArqs[OJ;

pascal void SetFieldByName(paramPtr,cardFieldFlag,fieldName,fieldVal)
XCmdBlockPtr paramPtr;
StrinqPtr fieldName;

Boolean cardFieldFlag;
Handle fieldVal;

I* Set the value of field fieldName to be the zero-terminated string
in fieldVal. The contents of the Handle are copied, so you must
still dispose it afterwards. */

paramPtr->inArgs[OJ • (long)cardFieldFlaq;
paramPtr->inArqs[lJ • (lonq)fieldName;
paramPtr->inArgs[2J - (long)fieldVal;
paramPtr->request • xreqSetFieldByName;

paramPtr->entryPoint();

pascal void SetFieldByNum(paramPtr,cardFieldFlag,fieldNum,fieldVal)
XCmdBlockPtr paramPtr; Boolean cardFieldFlaq;
short fieldNum; Handle fieldVal;

I* Set the value of field fieldNum to be the zero-terminated string
in fieldVal. The contents of the Handle are copied, so you must
still dispose it afterwards. */

paramPtr->inArqs(OJ • Clong)cardFieldFlaq;
paraml't:c->inArgs(ll - fieldNum;
parilll1't:->1nArga[2] • (long)fieldVal;
parillll'tr->requeat • xreqSetFieldByNum;

paramPtr->entryPoint();

258 Appendix A: External Commands and Functtona

' ' ~-----/

(

pascal void SetFieldByID(paramPtr,cardFieldFlaq,fieldID,fieldVal)
XCmdBlock~r-- paramPtr; Boolean cardFieldFlaq;
short f ieldID; Handle f ieldVal;

/* Set the value of the field whose ID is fieldID to be the zero­
terminated strinq in fieldVal. The contents of the Handle are
copied, so you must still dispose it afterwards. */

paramPtr->inArqs(O] - (lonq)cardFieldFlaq;
paramPtr->inArgs(l] - fieldID;
paramPtr->inArqs(2] • (lonq)fieldVal;
paramPtr->request • xreqSetFieldByID;

paramPtr->entryPoint();

pascal Boolean StrinqEqual(paramPtr,strl,str2l
XCmdBloclcl?tr paramPtr; Str31 * strl; Str31 *

/* Return true if the two strinqs have the same characters.
Case insensitive compare of the strinqs. */

paramPtr->inArqs[OJ • (lonq)strl;
paramPtr->inArqs[lJ • (lonq)str2;
paraml?tr->request • xreqStrinqEqual;

paramPtr->entryl?oint();
return (Boolean)paramPtr->outArqs(OJ;

str2;

Glue routines In MPW C 259

pascal void ReturriToPas(paramPtr,zeroStr,pasStr)
XCmdBloc~. paramPtr; Ptr zeroStr; StrinqPtr

I* zeroStr ·point.1. into a zero-terminated strinq. Collect th•
character.s from there to the next carriaqe Return and return
them in the Pascal strinq pasStr. If a Return is not found,
collect chars until the end of the strinq. */

paramPtr->inArqs{OJ • (lonq)zeroStr;
paramPtr->inArqs[lJ • (lonq)pasStr;
paramPtr->request • xreqReturnToPas;

paramPtr->entryPoint();

pascal void ScanToReturn(paramPtr,scanHndl)
XCmdBlockPtr paramPtr; Ptr * scanHndl;

/* Move th• pointer scanPtr alonq a zero-terminated
string until it points at a Return character
or a zero byte. */

paramPtr->inArgs[OJ • (long)scanHndl;
paramPtr->request • xreqscanToReturn;

paramPtr->entryPoint();

pascal void ScanToZero(paramPtr,scanHndl)
XCmdBlockPtr paramPtr; Ptr * scanHndl;

/* Move the pointer scanPtr along a zero-terminated
string until it points at a zero byte. */

paramPtr->inArqs(O) • Clonq)scanHndl;
paramPtr->request • xreqScanToZero;

paramPtr->entryPoint();

260 Appendix A: Extemat Commands and Functions

passtr;

(

Attaching an-XCMD or XFCN
To attach an existing XCMD or XFCN (one that has already been compiled or
assembled into a resource) to one of your stacks, use a resource editor such as ResEdiL
The following steps describe the procedure using ResEdit:

1 . Launch ResEdiL

2.

3.
4.

5.

6.
7.

8.

9.

10.

Select an9 open the stack containing the 'XCMD' or 'XFCN' resource you wanL

Select and open the resource type of 'XCMD' or 'XFCN'.

Select and open the particular resource you want by name.

Press Command-C to copy the resource.

Select and open the stack you want to paste the resource into.

If your stack has no resource fork, ResEdit will display a dialog box asking if yoo
want to open one. Click OK. ResEdit will open a window.

Press Command-V to paste the resource into your stack.

Click the close box on the window. When ResEdit asks if you want to save the file,
click Yes.

Quit ResEdiL

HyperCard Developer's Toolkit
A disk containing the MPW Pascal and C definition and glue files desaibed in this
appendix is available from APDA, the Apple Programmer's and Developer's
association, exclusively to APDA members. You can order the disk and preliminary
documentation in a package called the HypetCard Developer's ToolkiL

For membership and ordering information contact:

Apple Programmer's and Developer's Association
290 SW 43rd Street
Renton, WA ~55
Telephone: (206) 251-6548

HyperCord Developer's Toolkit 261

Appendix B

ControlKey Parameters

Th.is appendix lists the parameter variable values generated by HyperCard in response
to different keys pressed in combination with !:he Control key.

When you press the Control key in combination with another key, HyperCard sends
the system rnes,,age controlKey to the current card with one inreger parameter
value:

controlKey var

The message can be intercepted by a handler placed anywhere in the object hierarchy
between the current card and HyperCard. For example, the following handler causes
the Control-P key combination to print the current card:

on controlKey whichKey
if whichKey • 16 then

doMenu "Print Card"
exit controlKey

end if
pass controlKey

end controlKey

The controlKey sys~ rnesgge is listed in Chaprer 6.

Table B-1 lists the parameter values generated by various keys of the Apple Extended
Keyboard presserl in combinati.on with the. Control key. Parameter values 1 through 31
represent Americ:aa SCandard Code for Information Interchange (ASCll) character
code values for combinations of the Control key and letter keys. Some of the
parameter values can be generated by more than one key. The parameter value is not
affected by pressing the Shift key along with the Control key and the odler key.

(
Table 1-1
ControlKey messag§ parameter values

Parameter value IC"ey(I) Parameter value Key(I)

1 a, Home 27 Esc, Clear, Left-bracket ([)
2 b 28 Backslash(\), Left Arrow
3 c, Enter 29 Right bracket (I), Right Arrow
4 d, End 30 Up Arrow
5 e, Help 31 Hyphen (-), Down Arrow
6 f 39 Single Quo<ation Mark (')
7 g 42 Asterisk (•)
8 h, Delete 43 Plus(+)
9 i, Tab 44 Comma(,)
10 j 45 Minus(-)
11 k, Page Up 46 Period(.)
12 l, Page Down 47 Slash(!)
13 m, Return 48 0
14 n 49 1
15 0 50 2
16 p, all function keys 51 3
17 q 52 4
18 r 53 5
19 s 54 6
20 t 55 7

(21 u 56 8
22 v 57 9
23 w 59 Semicolon (;)
24 x 61 F.qual(..)
25 y 96 Tilde(-)
26 z 127 Forward Delete

Appendix 8: ControlKey Parameters 263

..

Appendix C

Extended ASCII Table

This appendix lists the character assignments for the 256 single-byte character values
used by Macintosh.

There are 256 posslble 8-bit binary values, from 00000000 to 11111111. Of these, the
f.trSt 11.8 (from 00000000 to 01111111) have been assigned to a standard set of
characters and commands used in data processing and communication. These
assignments form the ASCII character seL (ASCII stands for Amerlcan Standard Code
for Information Intercbange.)

The remaining 11.8 binary values, those for which the most significant bit (first digit) is
1 instead of 0, are not assigned in the ASClI standard. Because they have higher
numerical values that the first 11.8 characters, they are often referred to as high-ASCil
characters.

This appendix lists all character values by their decimal equivalenL

Table C-1 lists the first 32 characters, the Control characters, which have no printable­
character representation, with the standard abbreviation for each and its meaning.

\,, _,./

(
Table C·l
Control character ~lgnments

Value Name Meaning Value Name Meaning

0 NUL Null 16 OLE Data link escape
1 SCH Start of heading 17 DCl Device control 1
2 STX Start of text 18 DC2 Device control 2
3 ETX End of text 19 DC3 Device control 3
4 EQT End of transmission 20 DC4 Device control 4
5 ENQ Enquiry 21 NAK Negative acknowledge
6 ACK Acknowledge 22 SYN Synchronous idle
7 BEL Bell 23 ETB End of transmission block
8 BS Backspace 24 CAN Cancel
9 HT Horizontal tab 25 EM End of medium
10 LF Line feed 26 SUB Substitute
11 VT Vertical tab 27 ESC Escape
12 FF Form feed 28 FS File separator
13 CR Carriage return 29 GS Group separator
14 so Shift out 30 RS Record separator
15 SI Shift in 31 us Unit separator

(Table C-2 lists the remaining 224 character values wich the characters to which they are
assigned in che Macintosh Courier font

Appendix C: Extended ASCII Table 265

~/
Table C·2
Character asslgnmaots In Macintosh Courier font

Value Character Value Character Value Character Value Character Value Character

32 space 77 M 122 z 167 A 212
33 ! 78 N 123 (168 ~ 213
34 .. 79 0 124 I 169 c 214 +
35 • 80 p 125 } 170 '1111 215 0
36 $ 81 Q 126 171 216 9
37 ' 82 R 127 DEL 172 217 'l
38 ' 83 s 128 A 173 . "' 218 ,...
39 84 T 129 A 174 .£ 219 a
40 (85 u 130 c 175 '1J 220
41) 86 v 131 t 176 - 221)

42 * 87 N 132 R 177 :t 222 fi
43 + 88 x 133 0 178 ~ 223 fl
44 89 '! 134 0 179 ~ 224 * 45 90 z 135 a 180 y 225
46 91 [136 a 181 ... 226
47 I 92 \ 137 i 182 a 227 ,.
48 0 93 1 138 l 183 I 228 ' 49 1 94 139 I 184 n 229 A
50 2 95 140 l 185 " 230 t
51 3 96 -:- 141 c;: 186 I 231 A
52 4 97 a 142 e 187 • 232 !
53 5 98 b 143 e 188 I 233 t
54 6 99 c 144 e 189 n 234 t

t
/

55 7 100 d 145 • 190 • 235
56 8 101 e 146 i 191 • 236 I
57 9 102 f 147 i 192 (. 237 t
58 103 q 148 1 193 238 0
59 104 h 149 l 194 .., 239 0
60 < 105 i 150 l\ 195 " 240 '* 61 106 j 151 6 196 f 241 0
62 > 107 k 152 6 197 • 242 0
63 ? 108 l 153 a 198 A 243 0
64 (! 109 m 154 0 199 « 244 0

.. ------.
65 A 110 n 155 0 200 ,. 245 l.

c;;~::t(f··· 66 B 111 0 156 u 201
~

246
67 c 112 p 157 u 202 247
68 D 113 q 158 Q 203 A 248
69 E .U4 r 159 u 204 A 249
70 F 115 s 160 t 205 0 250
71 G 116 t . 161 0 206 CE 251
72 H 117 u 162 ¢ 207 at 252
73 I 118 v 163 £ 208 253
74 J 119 w 164 s 209 254
75 K 120 x 165 210 255
76 L 121 y 166 ! 211

,.
e Stands for a nonbreaking space

~
266 Appendix C: Extended ASCII Tobie

.rt'""··,~

~---'/

(

Appendix D

Operator Precedence Table

This appendix shows the order of precedence of Hypeffalk's operators. In a complex
expression containing more than one operator, HyperCard performs the operation
indicated by operators with lower-numbered precedence before those with higher­
numbered precedence. Operators of equal precedence are evaluated left-to-right,
except for exponentiation, which goes right-to-left. If you use parentheses,
HyperCard evaluates the innerm°"t parenthetical expression first.

Chapter 4 discusses expression evaluation.

Table D-1
Operator precedence

Order Operators

1
2

not
3
4 * I div mod
5 +-

6 & &&
7 > < <• >- s ~

is in contains
is not in

8 is is not <>
9 and
10 or

.,,

Type of operator

Grouping
Minus sign for numbers
Logical negation for Boolean values
Exponentiation for numbers
Multiplication and division for numbers
Addition and subtraction for numbers
Concatenation of text
Comparison for numbers or text
Comparison for text
Comparison for text
Comparison for numbers or text
Logical for Boolean values
Logical for Boolean values

267

Appendix E

HyperCard Limits

1his appendix lists various minimum and maximum si7.es and numbers of elements
clef.med in HyperCa:rd.

The maximum limits shown in this appendix are theoretical. Some of them are lower
in practice. Por example, HypeiCard currently brings an entire card into memory at
once, so the maximum si7.e of a card is limited by available memory. It's possible that
a card with a lot of text and long scripts, aeared while running HyperCard on a
Macintosh with 2 megabytes of RAM, would not be able to be opened on a Macintosh
with 1 megabyte. The cunent useful si2.e of a card (or background) is therefore between
so and 100 kilobyres.

The term part, in this appendix and internally in HyperCard, refers to buttons or
fields. The value represented by Lonqint is 2,147,483,647; the value represented by
Inteqer is 32,767.

The figures listed in this appendix pertain to version 1.2 of HypeiCard; some of them
may change in future versions.

Table E·l
HyperCord llml11

Item

Stack limb
Stack size
Minimum stack ..

..

Maximum total number of bitmaps, cards and
backgrounds per stack

Maximum stack name si:ze
Maximum stack script si7.e

Umlt

512 megabytes
4&6byres

16,777,216
31 characters
30,000 characters

(

Background limits
Background size (b~)
Minimum background size
Maximum parts per background
Maximum total part size per background (bytes)
Maximum background name size
Maximum background script size

card limits
Card size (bytes)
Minimum card size
Maximum parts per card
Maximum total part size per card (bytes)
Maximum total text size per card (bytes)
Maximum card name size
Maximum card script size

Bitmap limit
Largest possible bitmap size

Part (button or field) limits
Part size (bytes)
Minimum overhead per part
Maximum part name size
Maximum part text size
Maximum part script size

Hypeflalk limits

Lonqint*
64bytes
Integer
Lonqint
31 characters
30,000 characters

Longint*
64bytes
Integer
Lonqint
Long Int
31 characters
30,000 characters

44 kilobytes

Integer**
30bytes
31 characters
30,000 characters
30,000 characters

Maximum nested repeat structures 32
Maximum active variables (all pending handlers) 512
Maximum size card name with go command 31 characters
Maximum variable name size 31 characters
Maximum number format size 31 characters
Maximum size of command with arguments 254 characters
Maximum handler name size 254 characters
Maximum file VO buffer size 16,384 bytes
Maximum script me 30,000 characters
Maximum variable value size Limited by available memory
• Limited by HyperOud ltaCk si7.e; less than 100 kilobytes for practk:al use.
• • The sum of the ocher elements in the button or field must be less than the part size.

Appendix E: HyperCard Limits 269

Appendix F

HyperTalk Changes in
HyperCard Version 1.2

This appendix explains the differences in HyperTalk introduced with HyperCard
version 1.2. There may be some features of version 1.2 chat were not known when this
appendix was written; consult the •HypetCard Version 1.2 Update Stack,• available
from your authorized Apple dealer or user group, for complete information.

All versions of HypetCard are backward compatible; chat is, scripts written for any
version of HypetCard will continue to work with later versions. You can ensure that
your scriprs are using the version of HyperCard they require by including a check of
the value returned by the version function, described in Chapter 8.

New and enhanced commands
HypetCard version 1.2 includes three new HyperTalk commands: lock screen,
unlock screen, and select. In addition, three HyperTalk commands have been
enhanced: the find command has two new options, and the hide and show
commands can operate on the card or background picture.

(

Lock screen and unlock screen
The lock screen and unlock screen commands have the following syntax:

lock screen
unlock screen (with vtsualE.ffect]

VtsualE.ffect is any of the forms of the visual command described in Chapter 7.

The lock screen command sets the lockScreen global property to true,
preventing HyperCard from updating the screen. If you go to another. card or do other
actions that change the appearance of the screen, those changes are not displayed
until the lockScreen property becomes false.

The unlock screen command sets the lockScreen property to false,
allowing HyperCard to update the screen. In addition, the with visua/.Effect
option specifies a single visual transition that occurs as the screen is updated

Visual effects can't be compounded using unlock screen, as they can be using the
visual command Visual effects compounded by the visual command are not
executed until a qo command is encountered. HyperCard flushes unexecuted visual
effects and sets lockScreen to false at idle time (in effect, at the end of all
pending handlers).

Select

select partDescrlptor
select [prepostt1on] cbunkE:cpresston of fleldDescrlptor
select [p1f!jJOstNon] text of fleldDescrlptor

PartDescrlptor is the descriptor of a button or field; prepasmon is before or
after; and.fteldDescrlptoris the descriptor of a field. (Button and field descriptors
are explained in Chapter 3, •Naming Objects.->

The select partDescrlptor form chooses the button or field tool and selects the
object specified, as though you had chosen the appropriate tool and clicked the object
manually with the mouse. 'The other forms select text in the specified field Before
and after can be tised to place the insertion point relative to the specified text or
chunk of text. Using a chunk expression wi_thout a preposition selects the entire chunk,
highlighting the c:bancters in the chunk. The following lines are examples of the
select commuid:

select button 1 -- chooses button tool and selects card button 1
select before char l of field 2 -- places insertion point at start of field
select after text of field 2 -- places insertion point at end of field
select char 1 to 5 of card field 2 -- selects first five characters of field

New and enhanced commands 271

Find
The new options for the find command are invoked by the following forms of
syntax in addition to those shown in Chapter 7:

find whole expresswn [in field fteld.Destgnatot'J
find strinq expression [in field fteldDeslgnator]

P.xpression yields any string of characters, and jfeldDesfgnator is a background field
name, number, or ID number.

The find whole form (also invoked by pressing Shift-Command-F) lets you search
for a specific word or phrase, including spaces. For HyperCard to fmd a match, all the
characters must be in the same field, and they must be in the same consecutive order
as they appear in the string derived from e:qwessWn.

In the following example, e:x:presston is a literal, yielding the string of characters
between the double quotation marks:

find whole "Apple Computer"

The example f111ds a card with a field that has the phrase Appl8 Computer in it; it won't
find App/IJ Computers or 71:Ju apple Is a computer. ('Ibe find command without
whole would fmd a match in all three cases.) Find whole won't fllld partial-word
matches, and it pays no attention to case or diacritical marks: app/IJ Cf1m/1'11terand
aPP/IJ cOmputerare seen as the same.
When you use find without whole, HyperCard f111ds a card that conrains every
word in the string derived from expteSSion, but the words can appear in different order
or in different fields. That is, with find whole, interword spaces are part of the
search string; without whole the spaces delimit separate search strinp. With every
form of find, you can limit the search to a sped.fie background field.

The find string form lets you search for a contiguous string of characters,
including spaces, regardless of word boundaries. (Find whole searches for
characters at the beginninp of words.) For HyperCard to fllld a match, all the
characters must be in the same field, and they must be in the same order as in the
string derived from expression. For strinp without spaces, find strinq works the
same as find chars.

In this example:

find string "Pl• Computer"

HyperCard finds the string in Apple computers but not in computers, not apples. (The
find command without string would not fmd a match in either case.)

272 Appendix F: HyperTalk Changes In HyperCard Version 1.2

!''''
:~;

(

Hide and shoW-- -
The hide and show commands in version 1.2 operate on the bitmap pictures on
cards and backgrounds, as well as the menu bar, card window, Message box, Tools
and Patterns palettes, and buttons and fields, as described in Chapter 7. The syntax
for the new forms is:

hide card picture
hide picture of cardDescriptor

hide background picture
hide picture of backgroundDescriptor

show card picture
show picture of cardDescriptor

show background picture
show picture of backgroundDescrtptor

CantDescriptoryields the descriptor of a card in the current stack, and
backgroundDescriptoryields the descriptor of a background in the current stack, as
described in Chapter 3, •Naming Objects.•

The picture form of the hide command removes from view the graphic bitmap
on the card or background, and the picture form of the show command displays
iL

Hidden card and background pictures are not displayed when the Browse, Button, or
Field tools are chosen, but if you attempt to use a Paint tool manually, a dialog box
appears asking if you want to make the picture visible; clicking OK displays the picture.
(You can draw on hidden pictures from a scripL) Whether or not you are in Edit
background mode determines whether your actions pertain to the card or background
picture.

The following example,

show picture of card 3

makes the graphic bitmap of the third card in the current stack visible, setting the
card's showPict property to true. If the picture were visible before you issued the
show picture coihmand, of course, there would be no effect.

New and enhanced commands 273

New and ennanced functions
HyperCard version 1.2 has eight new functions and one enhancement to the existing
number function.

Number
the number of cards of backgroundDescriptor

BackgroundDescriptoryields the descriptor of a background in the current stack, as
described in Chapter 3, •Naming Objects.•

This form of the number function returns the number of cards that are associated
with the specified background. For example,

get the number of cards of background 3

Functions for found text
the foundText
the f oundChunk
the foundLine
the foundField

These functions return information about text found by the find command. The
f oundText function returns the characters that are enclosed in the box after the
find command has executed successfully; for example, the commands

find "Hyper"
put the foundText

would put HyperCard in the Message box if it were the word containing the
matching string. The foundChunk function returns a chunk expression describing
the location of the text in the box; for example, if field 1 contained Now is tbe time,
the commands

find "Now"
put the f oundChunk

would put char 1 to 3 of bkqnd field 1 into the Message box. The
foundLine function returns a chunk expres,,ion describing the line in which the
beginning of the text was found, in a form such as line 1 of card field 2. The
f oundF ield function returns the descriptor of the field in which the text was found,
in a form such as card field 2.

274 Appendix F: HyperTolk Changes In HyperCord Version 1.2

(

Functions for selected text
the selectedText
the selectedChunk
the selectedLine
the selectedField

These functions return information about text that is a.irrently selected. The
selectedText function returns the selected text itself. The se.lectedChunk
function returns a chunk expression desaibing the location of the selected text, the
selectedLine returns a chunk expression desaibing the line containing the
selected text, and the se.lectedField returns the desaiptor of the field containing
the selected text The fomJS of the expressions returned by these functions are like
those returned by the functions for foµnd text, desaibed in the previous section.

New properties
HyperCard version 1.2 has five new Hypeflalk properties: autoTab, cantDelete,
cantModify, showPict, and userModify. All five properties can have values of
true or false.

Auto Tab
set autoTab of field 3 to true

The autoTab property pertains to any nonscrolling field in the ament stack. When
autoTab is true, pressing Return with the insertion point in the last line of that field
moves the insertion point to the next field on that card by sending the tabKey
message to the current card.

(Normal tabbing order is followed: if the field you're leaving is a card field, the
insertion point moves to the next higher-numbered card field or to the lowest­
numbered background field if no higher-numbered card field exists; if the field you're
leaving is a background field, the insertion point moves to the next higher-numbered
background field or to the lowest-numbered card field if no higher-numbered
backgiound field afars.) · ·

The autoTab property can also be set by clicking the Auto Tab check box in the
Field Info dialog box of the nonsaolling field.

New properties 275

cantDelete
set cantDelete of this card to true

The cantDelete property pertains to any card or background in the current stack,
or to any stack accessible to your Macintosh. It controls whether or not the user can
delete the specified card, background, or stack. This property chedcs or unchecks the
•Can't delete" option in the object Info dialog box of the specified object.

The cantDelete property is also automatically set when the user sets
cantModify, as described in the following section.

CantMocllfy
set cantModify of this stack to true

The cantModify property pertains to any stack accessible to your Macintosh. It
controls whether or not the stack can be changed in any way. This property checks or
unchecks both the •ean•t modify" stack option and the •can't delete stack• option in
the Protect Stack dialog box. Of the user has checked •ean•t delete stack,• however,
and a script sets cantModify to true and then false, •ean•t delete stack" is left
checked.)

When you set cantModify from a saipt, you override whatever the user has set by
hand in the Protect Stack dialog box. Setting cantModify to false does not,
however, override protection provided by media that are write-protected in other
ways.

See also the userModify property, later in this appendix.

ShowPlct
set showPict of this card to false

The showP ict property pertains to a card or a background in the current stack. It
controls whether or nOt the specified card or background picture is displayed. Setting
the showP ict property of a card or ba~ground to false is the same as hiding it
with the pictlHe form of the hide command, desaibed in this appendix; setting
it to true is tbeame as showing it with the picture form of the show
command.

When the showP ict property of the current card or background is false and you
attempt to use a Paint tool on it manually, a dialog box appeais asking if you want to
make the picture visible; clicking OK sets the showP ict property to true and the
picture appears. (You can draw on hidden pictures from a script.)

276 Appendix F: HyperTalk Changes In HyperCard Version 1.2

(

UserModlfy
set userModif y to true

The userModify property is a global property pertaining to HypetCard itself. It
controls whether or not a user can type into fields or use Paint tools on a card that has
been write-proteaed. A card is write-proteaed under the following circumstances:

o The stack is on a CD-ROM.

o The stack is on a file server in a folder whose access privileges are set to Read Only.

o The •Locked• box is checked in the stack's Get Info dialog box in the Finder's File
menu.

o The stack is on a locked 3.5-inch disk

o •ean•t modify stack• is checked in the stack's Prorect Stack dialog box.

New synonyms
HypetCard version 1.2 has four new synonyms, or abbreviations, for HypetTalk
terms, which are shown in Table F-1.

Table F·l
New HyperTalk synonyms

Term

background
card
field
picture

Synonym

bg
cd
fld
pi ct

New synonyms 277

New shortcuts
HypeiCard version 1.2 has several new keyboard shortcuts that allow you to edit scripts
of objects more easily.

Command-Option
While using the Browse tool, you can press the Command and Option keys
simultaneously to display the outline of all visible buttons (those whose visible
property is true). While the buttons are displayed this way, you can click one to edit
irs script.

While using the Button tool, you can use the Command-Option combination to
display all buttons (visible and hidden). However, the click-to-edit shortcut works for
the visible buttons only.

Shift-Command-Option
While using the Browse tool, you can press the Shift, Command, and Option keys
simultaneously to display the outline of all visible fielcb (those whose visible property
is true). While the fielcb are displayed this way, you can click one to edit its script.

While using the Field tool, you can use the Shift-Command-Option combination to
display all fielcb (visible and hidden). However, the click-to-edit shortcut works for
the visible fielcb only.

Other Command-Option key combinations
When you're using any tool, Command-Option-C edits (invokes the script editor for)
the saipt of the current card, Command-Option-B edirs the script of current
background, and Command-Option-S edits the script of the current stack.

The shortcuts inuoduced with HypeiCard version 1.2 are summari7.ed in Table P-2.

Table F·2
New shom:u11

Key Pf9l8

Command-Opdoa
Shift-Command-Option
Command-Option-C
Command-Option-B
Command-Option-S

Effect

Display buttons; click to edit script
Display fields; click to edit script
Edit script of current card
Edit script of current bakcground
Edit script of ament stack

278 Appendix F: HyperTalk Changes In HyperCard Version 1.2

(

Appendix G

HyperTalk Syntax Summary

This appendix lists HyperTalk's built-in commands and functions, showing the syntax
of their parameters.

HyperTalk's built-in commands and functions are described in more detail in
Chapters 7 and 8, respectively. A brief description and page reference for each is
included in Appendix G.

Syntax description notation
The syntax descriptions use the following typographic conventions. Words or phrases
in typewriter type are Hypertalk language elements or are those that you type to
the computer literally, exactly as shown. Words in Italic type descnbe general
elements, not specific names-you must substitute the actual instances. Square
brackets ([]) enclose optional elements which may be included if you need them.
(Don't type the square brackets.) In some cases, optional elements change what the
message does; in other cases they are helper words that have no effect except to make
the message more readable.

It doesn't matter whether you use uppercase or lowercase letters; names that are
formed from two wolds are shown in small letters with a capital in the middle
(likeThis) maely to make them more readable. The HyperTalk prepositions of
and in are i.nteicbangeable-the syntax descriptions use the one that sounds more
natural.

The terms /actor and e:xpresslon are defined in Chapter 4. Briefly, a factor can be a
constant, literal, function, property, number, or container, and an expression can be
a factor or a complex expression built with factors and operators. Also, a factor can be
an expression within parentheses.

279

Table G-1
HyperTalk comma!Xl syntax

add expmsion to destination
answer question [with reply [or reply2 [or reply3]]] ·
arrowKey keyName
ask [password] question [with defaultAnswer]
beep count
choose toolName tool
click at location [with key[, key2[, key3]))
close file ftleName
close printing
convert container to format [and format]
delete cbunk [of container]
dial expression [with modem [modemCommands]]
divide destination by expression
doMenu menultem
drag from start to finish [with key[, key2[, key3J)]
edit script of object
enterKey
find [chars] expression [in field field.Designator]
find [word] expression [in field fteldDesignatorJ
functionKey keyNumber
get expression
go [to] [stack] stackName
go [to] bltgndDescriptor [of [stack] stacltName]
go [to] card.Descriptor [of bkgndDescrtptor] [of [stack] stacltName]
help
hide menuBar
hide window
hide part
multiply destination by expression
open [document with] application
open file ftleName
open printing (with dialog]
play "votce" [tempo] ["notes"]

play stop
pop card [prtrposUlon destfnation]
print card
pr int expr.,.,..,,...ress-m"- cards
print cardDescrlplOr
print document with application

. push card.Descriptor
put expression [preposition destination]
read from file ftleName until cbaracter
read from file ftleName for numberOfCbaracters

280 Appendix G: HyperTalk Syntax Summary

(

reset paint
returnKey
set [the] property [of object] to value
show number cards
show rnenuBar
show wtndow [at b, V]
show pan [at b, v]
sort [dtrectton] [style] by expresston
subtract expresston from desttnatton
tab Key
type expresston [with key[, key2[, key3] l l
visual [effect] effectName [speed] [to tmage]
wait [for] ttme [seconds]
wait until condttton
wait while condttton
write source to file .ftleName

Table G-2
HyperTalk functton syntax

the abs of factor
abs < expresston)
annuity (rate, periods)
the atan of factor
atan (ex/}resston)
average (/1st)

the charToNum of factor
charToNum (e:xpresston)
the clickLoc
clickLoc ()
the commandKey
command.Key ()
compound (rate, periods)
the cos of factor
cos< expresston>
the CmodljlerJ date
the diskSpace
diskSpace ()
the exp of /tllCIOr
exp (expresston)
the expl of factor
exp 1 (expresston>
the exp2 of factor
exp2 (expresston)
the length of factor

Appendix G: HyperTalk Syntax summary 281

length (express1/m)
the ln of factor--·
ln (e:tpresslon)
the lnl of factor
lnl (expression)
the loq2 of factor
loq2 (expression)
max (/I.st)
min (list)

the mouse
mouse()
the mouseClick
mouseClick ()
the mouseH
mouseH ()
the mouseLoc
mouseLoc ()
the mouseV
mouseV()
[the] number of objects
[the] number of cbunlls in factor
the numToChar of factor
numToChar (&q.>res.slon)
offset (strlng1, strlng2)
the optionKey
optionKey ()
the param of factor
pa ram (expression)
the paramCount
paramCount ()
the params
params ()
the random of factor
random (expression)
the result
result()
the round of fil&IOr
round (e::qmmlofl)
the seconds
seconds()
the shiftKey
shiftKey()
the sin of factor
sin (expression)
the sound

282 Appendix G: HyperTalk Syntax Summary

;{ .. '",
I .

\"_j

(

(

sound()
the sqrt of factor
sqrt <expression~ .
the tan of facto'r
tan (expresston>
the target
target ()
the ticks
ticks()
the [adjecttve] time
time()
the tool
tool()
the trunc of factor
trunc cexpresston)
the value of factor
value (expresston)
the version
version()

Appendix G: HyperTalk Syntax summary 283

(

Appendix H

HyperTalk Vocabulary

This appendix lists, in alphabetical order, HyperTalk's native vocabulary-the names
of its built-in commands and functions, its system messages, keywords, the names of
objects and their properties, and various adjectives, constants, ordinals, and other
terms.

This list is not exhaustive-lhere are other terms with specific meanings recogni:zed by
HypeICard in particular contexts, and they are described with the primary term to
which they relate. For example, the names of the various visual effects are listed with
the viaual command in Chapter 7.

The parameter syntax of HyperTalk's built-in commands and functions is shown in
AppendixG.

Table H-1
HyperTalk vocabulary

Term category Page Mear*1g

abbr[ev[iated]] Adjective 145, 175 Modifies the value returned by the date
function or the name or ID properties.

aba Function 140 Returns absolute value of a number.
add "Command S8 Adds the value of an expression to a value in a

container.
after Preposition 122 Used with put command, directing

Hype!Card to append a new value following
any preexisting value in a container.

all Adjective 127 Specifies total number of cards in stack to
show cards command

annuity Function 140 . Computes present or future value of an
ordinary annuity.

I, I

~,/

(

Table H-1 (continued)
HyperTalk vocablJlaLV _

Term category Page Meaning

answer Command W) Displays a dialog with a question and reply
buttons.

any Ordinal 37 Special ordinal used with object or chunk to
specify a random element within its enclosing
set

arrowKey Command 5X> Takes you to another card
arrowKey System mes.uge 82 Sent to cwient card when an arrow key is

pressed
ask Command 92 Displays a dialog box with a question and

default answer.
a tan Function 141 Returns trigonometric arc tangent of a

number.
autoHilite Property m Determines whether or not the specified

button' hilite property is affected by the
message mou:seDown.

average Function 142 Returns the average value of numbers in a list
background Object 3,34 Generic name of background object; used

with specific designation (go to next

(background). Also used to specify
containing object for buttons and,
optionally, fields (background button
2).

backgrounds Object type 154 Specifies backgrounds as type of object to the
number function.

beep Command 93 Causes Macintom to make a beep sound
before Preposition 122 Used with put command, directing

HyperCard to place a new value at the
beginning of any preexisting value in a
container.

bkgnd Object 34 Abbreviation for background
bkgnds Object type 155 Specifies backgrounds as type of object to the

number function.
blindTypinq Property 176 Allows typing into Message box when hidden.
browse Tool . 94, 170 Name of tool from Tools palette; used with

choo:se command or rerumed by the tool
function.

brush Property 183 Determines the current brush shape.
brush Tool 94, 170 Name of tool from Tools palette; used with

choo:se command or rerumed by the tool
function.

btn Object 34 Abbreviation for button.

(/ Appendix H: HyperTalk Vocabulary 285

Table H· 1 (continued)
HyperTalk vocabutcx.y_

Tenn category Page Meaning

bucket Tool 94, 170 Name of tool from Tools palette; used with
choose command or returned by the tool
function.

button Object 34 Generic name of button object; used with a
specific designation (hide button one).

button Tool 94, 170 Name of tool from Tools palette; used with
choose command or returned by the tool
function.

buttons Object type 154 Specifies buttons as type of object to the
number function.

card Object 34 Generic name of a card object; used with a
specific designation (qo to card
"fred"). Also used to specify containing
object for fields and, optionally, buttons
(card field "date").

cards Object type 154 Specifies cards as type of object to the
number function.

centered Property 184 Determines the Draw Centered setting.
char [acter] <hlnk 54 A character of text in any container or

expression.
char[acter]s Orunktype 154 Specifies characters as type of chunk to the

number function. ·-'"' ~/

charToNum Function 142 Returns ASCil value of a character.
choose Command 94 Changes the current tool.
click Command 95 Causes same actions as clicking at a specified

location.
clickLoc Function 143 Returns location of most recent click.
closeBackqround System message 183 Sent to current card just before you leave the

current background.
closeCard System message a> Sent to current card just before you leave it
closeField System message 79 Sent to unlocked field when it's closed.
close Stack System message 83 Sent to current card just before you leave the

current stack.
close file Command . 97 Closes a previously opened disk file.
close printing Command ~ Ends a print job.
co1m1andKey Function 143 Returns state of the Command key: up or

down.
compoWld Function 144 Computes present or future value of a

compound interest-bearing account.
controlKey System message 82 Sent to current card when a combination of

the Control key and another key is pressed
convert Command ~ Converts a date or time to specified format.

286 Appendix H: HyperTalk Vocabulary

('

Table H-1 (continued)
HyperTalk vocabulaly_

Term category Page Meaning

cos Function 145 Returns the cmine of the angle that is passed
toil

cursor Property 177 Sets image appearing at pointer location on
saeen. You can only set cursor; you can't get
iL

curve Tool 94, 170 Name of to_ol from Tools palette; used with
choose command or returned by the tool
function.

date Function 145 Returns a string representing the current date.
delete Command 100 Removes a chunk of text from a container.
deleteBackground System message 83 Sent to current card just before the

background is deleted.
deleteButton System message 77 Sent to a button just before it is deleted
deleteCard System message 00 Sent to current card just before it is deleted.
deleteField System message 79 Sent to a field just before it is deleted.
deleteStack System message 83 Sent to the current card just before a stack is

deleted
dial Command 101 Generates touch-tone sounds through audio

(output or modem attached to serial port.
diskSpace Function 146 Displays the amount of free space available

on the disk containing the current stack.
divide Command 102 Divides the value in a container by the value

of an expression.
do Keyword 72 Sends the value of an expres&on as a message

to the current card
doMenu Command 103 Performs a specified menu command.
doMenu System message 83 Sent to current card when any menu item is

chosen.
down Constant 213 Value returned by various functiom to

desaibe the state of a key or the mouse
button.

drag Command 104 Performs same action as a manual drag.
dragSpeed Property 177 Sets pixels-per-second speed at which pointer

moves with drag command
editBkgnd Property 177 Determines whether manipulation of buttons,

fields or paintings occurs on current card or
background

edit script Command 105 Opens the saipt of a specified object.
eight Constant 213 String representation of the numerical value

a
eighth Ordinal 36 Designates object or chunk number eight

within its enclming set

(Appendix H: HyperTalk Vocabulary 287

Table H-1 (continued)
HyperTalk vocobUQiy

Tenn category Page Meaning

else Keyword iU Optionally follows then clause in an if
structure to introduce an alternative action
clause.

empty Constant 213 The null string; same as the literal " ".
end Keyword 61, 64, Marks the end of a message handler, function

70, 71 handler, +epeat loop, or multiple-
statement then or else clause of an if
structure.

enterKey Command 105 Sends contents of Message box to the current
card.

eraser Tool 94, 170 Name of tool from Tools palette; used with
choose command or returned by the tool
function.

exit 61,64,69 Immediately ends execution of a message
handler, function handler, or repeat
loop.

exp Function 147 Returns the mathematical exponential of its
argument.

expl Function 147 Returns one less than the mathematical
exponential of its argument

exp2 Function 148 Returns the value of 2 raised to the power ''',_

specifled by the argument.
false Constant 213 Boolean value resulting from evaluation of a

comparative expression and returned from
some functions.

field Container 45 Generic name of field container; used with
specific designation (put the time into
card field "time").

field Object 2, 34 Generic name of field objea; used with
specific designation (get name of first
field).

field Tool 94, 170 Name of tool from Tools palette; used with
choose command or relllmed by the tool
function.

fields Object type 154 Specifies fields as type of object to the
number function.

fifth Ordinal 36 Designates object or chunk number five
within its enclosing set

filled Property 185 Determines the Draw Filled setting.
find Command 1~ Searches card and background fields for text

strings derived from an expression.

288 Appendix H: HyperTalk Vocabulary

(

Table H-1 (conffnued)
HyperTalk vocabulary.

Term category Page Meaning

first Ordinal 36 Designates object or chunk number one
within its enclosing sel

five Constant 213 String representation of the numerical value
5.

fo:rmFeed Constant 213 The form feed character (ASCII 12), which
starts a new page in some file formats.

four Constant 213 String representation of the numerical value
4.

fourth Ordinal 36 Designates object or chunk number four
within its enclosing sel

free Size Property 1ro Determines the amount of free space
available in a specified stack.

functionKey Command 1~ Performs Undo, Cut, Copy, or Paste
operations with parameter values of 1, 2, 3, or
4, respectively.

functionKey System message 8Z Sent to current card when any function key on
the Apple Extended Keyboard is pressed

get Command 10') Puts the value of an expres,,ion nto the local

(variable It.
global Keyword ~ Declares specified variables to be valid

beyond current execution of current handler.
go Command 110 Takes you to a specified card or stack.
grid Property 185 Determines the Grid setting.
help Command 111 Takes you to the first card in the stack named

Help.
hide Command 111 Hides the specified window from view.
hilite Property :D4 Determines whether a specified button is

highlighted.
icon Property :D4 Determines the icon that is displayed with a

specified button.
m Property 35, 192 Determines the permanent ID number of a

specified background, card, field, or button.
(See also pages 193, 195, and 205.)

idle System message 81 Sent to. the current card repeatedly whenever
nothing else is happening.

if Keywad iU Introduces a conditional structure containing
statements to be executed only if a specified
condition is true.

into Preposition 122 Used with put command, directing
HyperCard to replace any preexisting value in
a container with a new value.

(~ Appendix H: HyperTalk Vocabulary 289

-~
(,,

Table H·l (conttnued)
HyperTalk vocabulc:llV.

Tenn Category Page Meaning

it Container .fl Local variable that is the default destination
for get, ask, answer, read, and
convert commands.

item Chink 55 A piece of text delimired by commas in any
container or expression.

items <lnmktype 154 Spedfies i~ as type of chunk to rhe
number function.

language Property 178 Used to cOOo..e language in which saipts are
displayed

lasso Tool 94, 170 Name of tool from Tools palette; used with
choose command or returned by the tool
function.

last Ordinal Special ordinal used with object or chunk to
specify the element whose number is equal to
the total number of elements in its enclosing
set.

length Punaion 148 . Returm the number of characters in the text
string derived from an expression.

line Chink 55 A piece of text delimited by retum characters
in any container.

line Tool 94, 170 Name of tool from Tools palette; used with
choose command or returned by the tool
function.

linel!'eed Constant 213 The line feed character (ASCII 10), which
swts a new line in some file formats.

lines <lnmktype 154 Specifies lines as type of chunk to the
number function.

lineSize Property 185 Determines the thickness of lines drawn with
. line and shape tools.

ln Punaion 149 Returns the base-e (natural logarithm) of the
number passed to it

lnl Punaion 149 Returns the base-e (nalW'21 logarithm) of the
sum of the number passed to it plus 1.

loc[ation] Property . • 182 Determines the location at which a window,
field, or button is displayed (See also pages
196 and 205.)

lockMessages Property 178 Prevents HypeiCard from sending all
automatic messages such as openCard.

lockRecent Property 178 Prevents HyperCard from adding miniature
representations to the Recent card.

lockScreen Property 179 Prevents updating of the screen from card to
card

290 Appendix H: HyperTalk Vocabulary
;r·~.

:~

(

Table H·l (continued)
HyperTalk · vocabulaty.

Tenn category Page Meaning

lock Text Property 1~ Allows or prevents text editing in a specified
field

log2 Function 150 Returns the base-2 logarithm of the number
passed to it

long Adjective 145, 175 Modifies value returned by date function
and by name and ID properties.

max Function 150 Returns the highest-value number from a list
of numbers.

me Object 37 Specifies object containing the executing
handler.

message [box] Container 48 The Mesage box.
rnid[dle] Ordinal 37 Special ordinal used with object or chunk to

specify the element whose number is equal to
one more than half the total number of
elements in its enclosing set.

min Function 151 Returns the lowest-value number from a list of
numbers.

(
mouse Function 151 Returns state of the mouse button: up or

down.
mouseClick Function 152 Determines whether the mouse button has

been clicked.
mouseDown System~ge 77, 79, 00 Sent to a button, unlocked field, or the

current card when the mouse button is
pressed down.

rnouseEnter Systemm~ge 78, 79 Sent to a button or field when the pointer is
rU"St moved inside its rectangle.

mouseH Function 153 Returns the horizontal offset in pixels of the
pointer from the left edge of the card window.

mouser.eave System~ge 78, 79 Sent to a button or field when the pointer is
first removed from its rectangle.

mouseLoc Function 153 Returns the point on the screen where the
pointer is currently located

mouseStillDovn System message 77, 79, 00 Sent to a button, unlocked field, or the
current card repeatedly when the mouse
button is held down.

mouse Up System message 77, 79,00 Sent to a button, unlocked field, or the
current card when the mouse button is
released after having been previously pressed
down within the same object's rectangle.

mouseV Function 154 Returns the vertical offset in pixels of the
pointer from the top of the screen.

(Appendix H: HyperTalk Vocabulary 291

/,.-----.~,,

(
'~i

Table H-1 (continued)
HyperTolk vocob\Jlat'(.

Term category Page Meaning

mouseWithin System message 78, 79 Sent to a button or field repeatedly while the
pointer remains inside its rectangle.

msq [box] Container 48 The Message box.
multiple Property 186 Determines the Draw Multiple setting for

drawing multiple shapes.
multiply Command 113 Multiplies rpe value in a container by the

value derived from an expression.
multi Space Property 186 Derermines the space between objects drawn

with the Draw Multiple setting activared.
name Property 35, 190 Determines the name of a stack, background,

card, field, or button. (See also pages 192,
194, 197, and 205.)

next Keyword (9 Ends e2Clltion of current iteration of a
repeat loop, beginning next iteration.

next Object modifier 37 Used with card or background to refer
to the one following the current one.

newBackqround svsr.em message 8Z Sent to the ament card as soon as a
background has been creared.

newButton svsr.em message 77 Sent to a button as soon as it has been
creared.

newCard Sysrem message 8) Sent to a card as soon as it has been aeared.
newField System message 79 Sent to a field as soon as it has been aeared.
newStack svsr.em message IB Sent to the current card as soon as a stack has

been aeared.
nine Constant 213 String representation of the numerical value

9.
ninth Ordinal 36 Designates object or chunk number nine

within its enclosing set
number Function 154 Returns the number of buttons or fields on the

current card or background, or the number of
a specified type of dnmk within a value.

number Property 36. 192 Determines the number of a background,
card, field, or button. (See also pages 194,
197, and 206.)

numberFo:cmat Property 44, 179 Determines the precision with which results of
mathematical operations are displayed.

numToChar Punc:don 156 Returns the characrer whose ASCII equivalent
value is that of the integer passed to it.

off set Function 157 Returns the number of characrem from the
beginning of the source string.

one Constant 213 String representation of the numerical value
1.

292 Appendix H: HyperTalk Vocabulary

.!'!'

~/

(_

Table H·l (continued)
HyperTalk vocabuay.

Tenn category Page Meaning

open Command 114 Launches the specified application.
openBackqround System message 83 Sent to a card when you go to it and its

background is different from the one you were
formerly on.

openCard System message 8) Sent to a card when you go to it.
openField System message 79 Sent to a field when you place the insertion

point in it for text editing.
open file Command 115 Opens the data fork of the specified file.
open printinq Command 116 Begins a print job.
openStack System message 83 Sent to a card when you go to it and it's in a

stack different from the one containing the
card you were formerly on.

optionKey Function 158 Returns the state of the Option key: up or
down.

oval Tool 94, 170 Name of tool from TooJs palette; used with
choose command or returned by the tool
function.

(
par am Function 158 Returns a parameter value from the parameter

list passed to the currently executing handler.
paranCount Function 159 Returns the number of parameters p:wed to

the currently executing handler.
par ams Function 1(,() Returns the entire parameter list passed to the

currently exe01ting handler.
pass Keyword 62,65 Ends execution of a message handler or

function handler and sends the invoking
message or function call to the next object in
the hierarchy.

pattern Property 186 Determines the Paint pattern.
pencil Tool 94, 170 Name of tool from TooJs palette; used with

choose command or returned by the tool
function.

pi Consranc 213 The mathematical value pi to 20 decimal
places, equal to the number
3.14159265358979323846.

play Command 117 Starts HyperCard's sound-playing feature.
browse Tool 94, 190 Name of tool from TooJs palette; used with

choose command or returned by the tool
function.

poly[qon] Tool 94, 170 Name of tool from TooJs palette; used with
choose command or returned by the tool
function.

(''~, Appendix H: HyperTalk Vocabulary 293
/

,_,,/

Table H-1 (continued)
HyperTalk vocabulalY.

Tenn category Page Meaning

polySides Property 187 Determines the number of sides created by
the Regular Polygon tool.

pop card Command 118 Returns you to last caid saved with the push
card Command

power Keys Property 18> Keyboard equivalents of commonly used
painting a~ons.

prev[ious] Object modifier '57 Used with card or background to refer
to the one preceding the current one.

print card Command 119 Prints the the current card or a specified
number of cards beginning with the current
card

print Command 13) Prints the specified document
push Command 121 Saves the identification of a specified caid in

a UFO memory stack for later retrieval.
put Command 122 Copies the value of an expression into a

container.
quit System message 84 Sent to the cunent caid when you choose Quit

HypetCard from the Pile menu (or press
Command-Q), just before HyperCard goes
away. /

quote Constant 213 1be straight double quotation mark '· /

charaaer.
random Punction 160 RelUmS a random inreger between 1 and the

inreger derived from a specified expres,,ion.
read Command 123 Reads a 6le previously opened with the open

file command into the local variable It.
rect[anqle] Property 182 Determines the rectangle oc01pied by a

specified window, field, or button. (See also
pases 197 and 206.)

rect[anqle] Tool 94, 170 Name of tool from Tools palette; used with
choose command or returned by the tool
function.

req[ular]
poly[qon] Tool .. 94, 170 Name of tool from Tools palette; used with

choose command or returned by the tool
function.

repeat Introduces a repeat loop, an iterative
structwe conta.i.ning a block of one or more
statements exemred multiple times.

reset paint Command Reinstates the default values of all the painting
properties.

294 Appendix H: HyperTalk Vocabulary
,,/"''·\

~/

(

Table H-1 (continued)
HyperTalk vocabulg[y.

Term Category Page Meaning

result Function 161 Rerurns the status of find or go
command previously executed in current
handler.

resume System message 83 Sent to the current card when HyperCard
resumes running after having been
suspended

return Keyword 62,65 Returns a value from a function handler or
message handler.

returnKey Command 125 Sends any statement in the Message box to the
current card

returnKey System message 81 Sent to current card when Rerum key is
pressed

round Function 163 Returns the number derived from an
expression, rounded off to the nearest
integer.

round
rect[angle] Tool 94, 170 Name of tool from Tools palette; used with

choose command or rerumed by the tool

c function.
script Property 191 Retrieves or replaces the script of the

specified stack, background, card, field, or
button. (See also pages 193, 194, 198, and
'1Jl7.)

scroll Property 198 Detennines the amount of material that is
hidden above the top of the specified
saolling field's rectangle.

second Ordinal 36 Designates object or chunk number two within
its encl@.ng seL

seconds Function 163 Rerurns the number of seconds between
midnight, January 1, 1904, and the current
time.

select Tool 94, 170 Name of tool from Tools palette; used with
choose command or rerumed by the tool
function.

selection Container 47 Currently selected area of text in a field
send Keyword 73 Sends a specified message directly to a

specified object.
set Command 126 Changes the state of a specified global,

painting, window, or object property.
seven Constant 213 String representation of the numerical value

7.

(" Appendix H: HyperTalk Vocabulary 295

\

Table H-1 (continued)
HyperTalk vocabulClly-

Tenn category Page Meaning

seventh Ordinal 36 DesignateS objea or chunk number seven
within its enclosing set

shiftKey Function 164 Returns the state of the Shift key: up or
down.

short Adjective 145, 175 Modifies value returned by date function
and by name and ID properties.

show cards ·Command 127 Displays a specified number of cards in the
current stack.

showLines Property 199 Determines whether or not the text baselines
are \'WibJe in a fJeld.

showName Property '}lJ7 Determines whether or not the name of a
specified button is displayed in its reaangle
on the screen.

show Command 128 Displays a specified window or object
sin Function 164 Returns the sine of the angle that is passed to

it
six Constant 213 String represenwion of the numerical value

6.
sixth Ordinal 36 Designates objea or chunk number six within

its enclosing set. \

size Property 191 Returns the me of a specified stack. ,,
sort Command 130 Puts all of the cards in a specified stack in

order, according to a specified key
expression.

sound Function 165 Returns the name of the sound that is
currently playing.

space Constant 213 The space character (ASCII 32); same as the
literal .. ".

spray (can] Tool 94, 170 Name of tool from Tools palette; used with
choose command or returned by the tool
function.

Sqrt -- Puncdon 1(,6 Returns the square root of a number.
stack Objea 38 Generic name of stack objea; used with

specific name (go to stack "help").
start Up System message 8) Sent to the current card (fust card of the

Home stack) when HypelCard first begins
running.

style Property 199 Determines the style of a specified field or
button. (See also page 207.)

subtract Command 131 Subtracts the value of an expres&on from the
value in a container.

296 Appendix H: HyperTalk Vocabulary

(

Table H· 1 (continued)
HyperTalk vocabulaty.

Tenn category Page Meaning

suspend System message as Sent to the current card when HyperCard is
suspended by launching another application
with the open command.

tab Constant 213 The horizontal tab character (ASCil 9).
tabKey Command 131 Places the insertion point in the next

unlocked ~ield on the current background and
card

tab Key System message 81 Sent to current card when Tab key is pressed.
tan Function 1(,6 Returns the tangent of an angle.
target Function 167 Indicates the object that initially received the

message that initiated execution of the current
handler.

ten Constant 213 String representation of the numerical value
10.

tenth Ordinal - 36 Designates object or chunk number ten within
irs enclosing set

text Tool 94, 170 Name of tool from Tools palette; used with

(~-
choose command or returned by the tool
function.

textAlign Property 188 Determines the alignment of characters
aeated with the Paint Text tool, or those in a
field, or th09e in the name of a button. (See
also pages 200 and D.)

textArrows Property 18) Determines the functions of the aaow keys.
textFont Property 188 Determines the font of characters created

with the Paint Text tool, or those in a field, or
those in the name of a button. (See also pages
200 and 208.)

textHeiqht Property 188 Determines the space between ~ baseline
and characters created With the Paint Text
tool or th09e in a field (See also page 201.)

text Size Property 189 Determines the siz of Paint text or text in a
field or in the name of a button. (See also
pages 201 and 209.)

textStyle Property 189 Determines the style of Paint text or the text in
a field or in the name of a button. (See also
pages 202 and 209.)

Appendbc H: HyperTalk Vocabulary 297

Table H·l (continued)
HyperTalk vocabulQ!y.

Tenn category Paa- Meaning

the Special 138 Precedes a function name to indicate a
function call to one of HypetCard's built-in
functions. You can't call a user-defined
function with the. Also allowed, but not
required, preceding special container names
(the Message box) and properties.

then Keyword ~ Follows the conditional expression in an if
structure to introduce the action clause.

third Ordinal 36 Designates object or chunk number three
within its encl<»ing set

this Object modifier '51 Used with card, background, or stack
to refer to the current one.

three Constant 213 String representation of the numerical value
3.

ticks Function 168 Determines the number of ticks since the
Macintosh was turned on or restarted.

time Function 1$ Returns the current time as a text string.
tool Function 170 Returns the name of the currently chosen

tool
true Constant 213 Boolean value resulting from evaluation of a

comparative expression and returned from
some functions.

trunc Function 171 Determines the integer part of a number.
two Constant 213 String representation of the numerical value

2.
type Command 132 Inserts the specified text at the imertion

point.
up Constant 213 Value returned by various functions to

describe the state of a key or the mouse
button.

user Level. Property 181 Determines the user level from 1 to 5.
value Function 172 Evaluates an expre.ion.
version Function 172 Returns the version number of the currently

running HyperCard application.
visible Property 182 Der.ermines whether or not a window, field,

or button appears on the saeen. (See also
pages 202 and 209.)

visual Command 133 Sets up a specified visual transition to the next
card opened

wait Command 135 Causes HypetCard. to pause before executing
the rest of the airrent handler.

298 Appendix H: HyperTalk Vocabulary

(

(

(/

Table H-1 (continued)
HyperTalk vocabulaly

Tenn

wideMargins

word

words

write
zero

Property

<lrunktype

Command
Constant

54

154

136
213

Detennines whether or not additional space
is displayed in the margins of a specified
field
Piece of text in delimited by spaces in any
container or expression.
Specifies worcb as type of chunk to the
number funaion.
Copies specified text into a specified disk file.
String representation of the numerical value
0.

Appendix H: HyperTalk Vocabulary 299

(

(

Glossary

actual parameters: See parameters.

background: A type of HyperCard object; a basic
template which is shared by a number of cards.
The background is composed of the background
picture, background field, and background
button.

background button: A button that belongs to a
background; it appears on, and its actions are the
same for, all cards with the same background
Contrast with card button.

background field: A field that belongs to a
background; its size, position, and text attributes
remain constant on all cards associated with that
particular background, but its text changes from
card to card. Contrast with card field.

background picture: A picture that belongs to a
background; it applies to a series of cards. You see
the Background picture by choosing Background
from the Edit menu. Contrast with card picture.

browse: To wander through HyperCard's stacks.

Browse tool: The tool you use to click buttons and
to set the insertion point in fields.

button: A type of HyperCard object; an action
object or "hot spot• on the screen. For example,
clicking a button with the Browse tool can take you
to the next card. See also background button,
card button.

Button tool: The tool you use to create, change,
and select buttons.

card: A type of HyperCard object; HyperCard's
basic unit of information.

card button: A button that belongs to a card; it
appears on, and its actions apply to, a single card.
Contrast with background button.

card field: A field that belongs to a card; its size,
position, text attributes, and contents are limited
to the card on which the field is created. Contrast
with background field.

card picture: A picture that belongs to and which
applies only to a specific card Contrast with
background picture.

chunk: A piece of the character string
representing a value. Valid chunks are characters,
words, items, and lines.

C.Ommand key: The key at the lower-left side of
the keyboard that has a propeller-shaped symbol.
On some keyboards this key also has an Apple
symbol and might be called the Apple lzey.

command: A response to a particular message; a
command is a built-in message handler residing in
HyperCard. See also external command.

constant: A named value that never changes. For
example, the constant empty stands for the null
string, a value that can also be represented by the
literal expression " ".

container: A place where you can store a value.
Containers are: fields, the Message box, the
selection, and variables.

301

control structure: A block of Hypetralk
statements defined wi1th keywords that enables you
to control the order-or the conditions under which
it executes.

current: (adj.) The card, background, or stack
you're using now. For example, the current card· is
the one you can see on your screen.

dynamic path: A series of extra objects inserted
into the path through which a message passes when
its static path does not include the curren~ card
The dynamic path comprises the current card,
current background, and current stack.

expression: A description of how to get a value; a
source of value or complex expression built from
sources and operators.

external command: A command written by a
programmer to extend HyperCard's built-in
command set, attached to a stack or in
HyperCard.

factor: A single element of value in an expression.
See also wlue.

field: A container in which you type regular (as
opposed to Paint) text. Also, the tool you use to
create a field HyperCard has two kinds of
fields-card fields and background fields.

Field tool: The tool you use to create, change, and
select fields.

formal parameters: See parameter variables.

function: A named value that HyperCard
calrulates each time it is used The way in which
the value is calculated is dermed internally for
Hypetralk's built-in functions, and you can define
your own functions wilh function handlers.

funcdon call: The use of a function name in a
Hypetralk statement or in the Message box,
invoking either a function handler or a built-in
function. ·

function handler: A handler that executes in
response to a function call matching its name.

302 Glossary

General tool: Any HyperCard tool that isn't a
Paint tool. The General tools are Browse, Button,
and Field

global properties: The properties that determine
aspects of the overall HyperCard environment.
For example, userLevel is a global property
which determines the current user level setting.

global variable: A variable that is valid for all
handlers in which it is declared with the qlobal
keyword Contrast with local '93riable.

bandier: A block of Hypetralk statements
contained in the script of an object that executes in
response to a message or a function call matching
the handler's name. HyperTalk has message
handlers and function handlen.

hierarchy: See object hierarchy.

Home card: The first card in the Home stack; it is
generally used as a pictorial index to stacks.
Choose Home from the Go menu to get to Home
(or press Command-H). You can also type qo
home in the Message box or include it as a
statement in a handler.

Hyper'l'alk: HyperCard's built-in script language
for HyperCard users.

identifier: A character string of any length,
beginning with an alphabetic character,
containing any alphanumeric character and,
optionally, the underscore character. Identifiers
are used for variable and handler names.

keyboard equiwlent key: A key you press
together with the Command key to issue a menu
command.

layer: The order of a button or field relative to
other buttons or fields on the same card or
background The object created most recently is
ordinarily the topmost object (that is on the front
layer).

(

(

local variable: A variable that is valid only within
the handler in which it is used (local variables
need not be declared). Contrast with global
variable.

literal: An expression denoted by double
quotation marks at either end of a character string;
its value is the string itself.

message: A character string you send to an object
from a script or the Message box, or which
HyperCard sends in response to an event Some
examples of Hypetfalk messages are rnouseUp,
go, and push card.

Message box: a container that you use t<? send
messages to objects or to evaluate expressions.

message handler: A handler that executes in
response to a message matching its name.

number: a character string consisting of any
combination of the numerals 0 through 9,
optionally including one period (.) representing a
decimal value. A number can be preceded by a
hyphen or a minus sign to represent a negative
value.

object: An element of the HyperCard
environment that sends and receives messages.
There are five kinds of HyperCard objects:
buttons, fields, cards, backgrounds, and
stacks.

object descriptor: Designation used to refer to
an object. An object descriptor is formed by
combining the name of the type of object with a
specific name, number, or ID number. For
example, background button 3 is an object
descriptor.

object hierarchr. The ordering of HyperCard
objects that determines the path through which
messages pass.

object properties: The properties that determine
how HyperCard objects look and act. For
example, the location property of a button
determines where it appears on the screen.

on-line help: assistance you can get from an
application program while it's running. In this
guide, on-line help refers to HyperCard's disk­
based Help system.

operator: a Hypetfalk language element that you
use in an expregion to manipulate or calculate
values.

Paint text: Text you type using the Paint Text tool.
Paint text can appear anywhere, while regular
text must appear in a field created with the Field
tool. When you finalize Paint text by clicking, it
becomes part of a card or background picture.

Paint tool: Any HyperCard tool you use to make
pictures. Tools include Lasso, Brush, Spray,
Eraser, and many others.

painting properties: The properties that control
aspects of HyperCard's painting environment,
which is invoked when you choose a Paint tool. For
example, the brush property determines the
shape of the Brush tool.

palette: The name for.a tear-off menu when it's
been tom off. A palette remains visible on the
screen so you can use it without having to pull
down the menu. HyperCard has two palettes-­
Tools and Patterns.

parameters: Values passed to a handler by a
message or function call. Any expressions after the
first word in a messa&--c are evaluated to yield the
parameters; the parameters to a function call are
enclosed in parentheses or, if there is only one, it
can follow of.

parameter variables: Local variables in a
handler which receive the values of parameters
passed with the message or function call initiating
the handler's execution.

picture: Any graphic or part of a graphic, created
with a Paint tool or imported from an external file,
which is part of a card or background.

Glossary 303

point: In printing, the unit of measurement of the
height of a text character; one point is about ~ of
an inch. When you select a font, you can also
select a point size, such as 10-point, 12-point, and
so on. Also, a location on the screen described by
two integers, separated by a comma, representing
horizontal and vertical offsets, measured in pixels
from the top-left comer of the card window or (in
the case of the card window itself) of the screen.

power key: One of a number of keys on the
Macintosh keyboard you can press to initiate a
menu action when a Paint tool is active. Power keys
are enabled when you choose Power Keys from the
Options menu or you check Power Keys in the User
Preferences card in the Home stack.

properties: The defining characteristics of any
HyperCard object and of HyperCard's
environment. See also global properties, object
properties, painting properties, and window
properties.

Recent: A special dialog box that holds pictorial
representations of the last 42 unique cards viewed.
Choose Recent from the Go menu to get the dialog
box. Also, as in recent card, an adjective
describing the card you were on immediately prior
to the current card.

regular text: Text you type in a field. You use the
Browse tool to set an insertion point in a field and
then type. Regular text is editable and searchable,
while Paint text is not.

script: A collection of handlers written in
HyperTalk and associated with a particular object.

search path: The route the computer must follow
to retrieve a file you ask for.

selection: A container that holds the currently
selected area of text. Note that text found by the
find command is not selected See also
container.

304 Glossary

source of value: HyperTalk's most basic
expressions; the language elements from which
values can be derived: constants, containers,
functions, literals, and properties.

stack: A type ofHyperCard object which is a
collection of cards; a HyperCard document. See
also card.

static path: The message-passing route defined by
an object's own hierarchy. For example, the static
path followed by a message sent to (but not
handled by) a button would include the card to
which the button belon~, the background
associated with that card, and the stack containing
them. Contrast with dynamic path.

System file: Software your computer uses to
perform its basic operations.

system message: Message sent to an object by
HyperCard in response to an event such as a
mouse click or the creation or deletion of an
object

target:.The object which first receives a message.

tear-off menu: A menu that you can convert to a
palette by dragging the pointer beyond the
menu's edge. HyperCard has two tear-off menus-­
Tools and Patterns.

text field: See field.

text property: A quality or attribute of a
character's appearance. Properties include style,
font, and size.

tool: An implement you use to do work.
HyperCard has tools for browsing through cards
and stacks, creating text fields, editing text,
making buttons, and creating and editing pictures.

user level: The property of HyperCard ranging
from 1 to 5, usually chosen on the User
Preferences card in the Home stack, that lets you
use HyperCard's tools and abilities. The five user
levels are: Browsing, Typing, Painting,
Authoring, and Scripting.

('

(

value: The information on which HyperCard
operates. All HyperCard values can be treated as
strings as characters.

variable: A named container that can hold a value
consisting of a character string of any length.
HyperCard has local variables and global
variables. See also container.

window properties: The properties that
determine how the Message box and the Tool and
Pattern palettes are displayed. For example, the
visible property determines whether or not the
specified window is displayed on the screen.

Glossary 305

IBE APPLE PUBLISHING SYSTEM

This Apple manual was written,
edited, and composed on a
desktop publishinl system using
Apple Macintosh computers
and Microsoft• Word. Proof
pages were created on the Apple
LaserWrite~ Plus. Final pages
were created on the Varitype~
Vf600TM. POSTSCRIPT•, the
LaserWriter page-description
language, was developed by
Adobe Systems Incorporated.
Some of the illustrations were
created using Adobe
IllustratorTM.

Text type is ITC Garamond•
Ca downloadable font distributed
by Adobe Systems). Display type
is ITC Avant Garde Gothic9.
Bullets are ITC Zapf Dingbats•.
Some elements, such as program
listings, are set in Apple Courier,
a fixed-width font

/

