
C: 'ti. Macintosh'

SADE Refereaee

c

9 APPLE COMPum, INC.

~ manual and the software
described in it are copyrighted, with
all rights reserved. Under the
copyright laws, this manual or the
software may not be copied, in whole
or in part, Whout written consent of
Apple, except in the normal use of the
softwue a' to make a backup copy of
the software. The same proprietary
and copyright notices must be affixed
to any permilled copies as were
aff'ixed to the orisiml· 'Ibis exception
does not allow copies to be made for
others, whether or not sold, but all of
the material pwchased (with all
backup copies) may be sold, given, or
loaned to another person. Under the
law, copying includes trarulating into
another language or fonnat.

You may use the software on any
computer owned by you, but
extra copies cannot be made for
this purpose.

The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the "keyboard• logo (Option­
Shift.K) for commercial purposes
with:>ut the prior written consent of
Apple may constitute trademark
infringement and unfair competition
in viciati>n of federal and state laws.

C 1988 Apple Computer, Inc.
20525 Mariani A venue
Cuperuoo, CA 95014
(408) 996-1010

Apple, the Apple logo, WerWriter,
Macintosh, APDA, MPW and SADE
ue registered trademarlcs of
Apple Computer, Inc.

ITC Garamond and ITC Zapf Dingbats
are registered trademarks of
International Typeface Corporation.

Mi:rosoft is a registered trademark of
Microsoft Corporation.

POSTSCRIPT and Adobe filustrator are
registered trademarks of Adobe
Systems Incorporated.

Adobe Illustrator is a rndemark of
Adobe Systems Incorporated.

ImageStudh is a rndema.rk of ~te
Pendaflex Corporation in the United
States, of tetra.Set Canada Limited in
Canada, and of Esselte LetraSet
Limited elsewhere.

QMS is a registered trademark of
QMS, Inc.

Llnotronic is a registered trademark of
Linotype company.

Smalltallc-80 is a registered trademark
of the Xerox Corporation.

Simultaneously publishe-;i in the
United States and Canada.

·• Ill

)

(·.~. \
. ",.--"

Contents

Preface About This Manual v
Notation conventions vii
Aim to understanding vii

For more information viii

Part I SADE Reference 1

1 SADE Overview 3
AboutSADE 5
Loading SADE 5
Getting started 6
Entering commands 7
Identifying your program to SADE 8

2 Debugging With SADE 9
Starting and stopping 11
Controlling program execution 13
More SADE commands 14
Programming in SADE 15

Break actions 16
SADE procedures and functions 16

The SADEStartup file 18

3 Symbols, Constants, and Expressions 21
About symbols 23

Program symbols 24
Predefined SADE variables 27
Register names 28

•'

iii

Expressions 29
Numeric constants 29
Strings 30
Built-in SADE functions 31
Operator precedence 34
Expression operand base types 35
Expression evaluation 36

The assignment operator 37
The pointer operator 38
The address operator 39
The trap operator 39

Type coercion 39
Ranges 40

A Coaunand Sununary 41

B Program Symbols 45

Part D Command Reference 53

Index 127

Iv SADE Reference

•

\)

..

0

c

Preface About This Manual · ·

WELCOME TO SADEN, the Symbolic Application Debugging Environment. Part of
the Macintosh' Programmer's Workshop 3.0 (MPwn'), SADE is an interactive
debugger for programmers writing in high-level languages like Pascal or C.

II you're already writing a program with MPW, you'll have little trouble learning to
use SADE. It's a stand-alone application, but the way it runs is very similar to the
MPW Shell. As always, you'll need Inside Macintosh as a reference.

Part I of this manual introduces SADE's interface, features, and
command language.

Chapter 1 gives an overview of SADE. This includes a description of the hardware
and software configurations SADE works with, how to install SADE and identify
your application, and a tour of the SADE interl'ace.

Chapter 2 describes how to use SADE to debug your application.

Chapter 3 gives a complete description of the various objects used in SADE: how
to specify them, and how to create expressions by combining them.

Appendix A contains a summary of all .SADE comman~.

Appendix B gives examples of program symbols and how to reference them.

Part II provides a complete specification of the SADE command language,
including command syntax, operation, and examples. (You can also get the
syntax of any SADE command by using the Help command.) •

PREFACE v

• •

)

c

Notation conventions

The following notation conventions are used to describe SADE commands:
literal Plain text indicates a word that must appear in the command exactly as

shown. Special symbols(·,§,&, and so on) must also be entered exactly
as shown.

variable

[optional 1
either I or

!term in italics can be replaced by anything that matches their
definition.

Square brackets mean that the enclosed elements are optional.
A vertical bar (I) indicates an either/or choice.

, ... A comma followed by an ellipsis indicates that the preceding item can be
repeated one or more times, separated by commas.

Command names are not sensitive to case.

Aids to understanding

Look for these visual cues throughout the manual:

.A Warning Warnings like this indicate potential problems. •

l:::. Important Text set off in this manner presents important information. .o.

• Note: Text set off in this manner presents notes, reminders, and hints.

PREFACE vii

For more information

APDA''" provides a wide range of technical products and documentation, from Apple and
other suppliers, for programmers and developers who work on Apple equipment. (MPW is
disttibuted through APDA.) For information about APDA, contact the

APDA
Apple Computer, Inc.
20525 Mariani Avenue, Mailstop 33-G
Cupertino, CA 95014-6299

1-800-282-APDA, or 1-800-282-2732
Fax: 408-562-3971
Telex: 171-576
Applellnk: DEV.CHANNEL.5

If you plan to develop hardware or software products for sale through retail channels, you
can get valuable support from Apple Developer Programs. Write to

Apple Developer Programs
Apple Computer, Inc.
20525 Mariani Avenue, Mailstop 51-W
Cupertino, CA 95014-6299

viH SADE Reference

Part I SADE Reference

(

•

)

:(.·.··
" '

~·/

(

Chapter 1 SADE Overview

THis CHAmR INTRODUCES SADE. IT INCLUDES A DESCRIPTION of the hardware and
software configurations SADE works with, how to install SADE and identify your
application, and a tour of the SADE interface. •

Contents

About SADE 5
Loading SADE 5
Getting started 6
Entering commands 7
"Identifying your program to SADE 8

3

..

About SADE

SADE™ is a debugger for MPW"" programmers working in C and Pascal. SADE is a stand­
alone application that runs under MultiFinderTM along with the program you want to
debug. If you're not familiar with debuggers, SADE is a program that lets you run the
application you've written, stop it, slow it down, and watch it in action.

For instance, if your program just crashes, you can use SADE to see where it was in your
code that something went wrong. If you suspect a culprit, you can have SADE interrupt
your program when it reaches a certain point. Then you can run one step at a time, or one
statement of code at a time, and see what happens. You can watch the values of your
program's variables change, or give them different values to see what happens. Or you can
look at what values you're passing to toolbox routines.

SADE also lets you examine the state of the system. You can look at the stack to see what
procedures have been called. You can display information about the heap and check
whether it's in good shape. And you can examine the resource maps of your resources.

These interesting fearures are all provided by a program that's extremely similar to MPW.
SADE is also notable for being a "high-level" debugger. This is not intended as a slight to
programmers who like languages like C and Pascal. It simply means that, unlike debuggers
that make you understand assembly language and map object code back to your source
code, SADE lets you debug in your native language. If you need to look at system things,
like actual RAM addresses or what's being put into which register, SADE lets you do that
too.

MacsBug users are still included. You can leave MacsBug in the System Folder where it
belongs. When SADE is launched, it notifies MultiFinder that it is acting as the debugger
for the system. Whenever the System Error Handler is called, or when a 68000 exception
occurs, MultiFinder passes control to SADE. Pressing the interrupt switch will still enter
MacsBug but it's recommended that you use only one debugger at a time.

Loading SADE

SADE runs on the Macintosh® Plus, Macintosh SE, and Macintosh II computers, and will
support furure members of the 68000 family. SADE does not run on the Macintosh 128K,
Macintosh 512K, Macintosh 512K enhanced, or Macintosh XI..

SADE handles the MC68881 floating-point coprocessor. It does not handle the MC68851
Memory Management Unit (MMU) or the corresponding MMU registers on the MC68030.

CHAPTER 1 SADE Overview 5

Depending on the size of your program, you'll probably want to have at least 2 megabytes
of RAM. (It's possible to work with less, but space does get tight) And if you want to run
MPW as wel~ you'll most likely need a Macintosh with 4 megabytes of RAM.

You may dr.ig the SADE folder from the release disk to anywhere you like on your system;
it does not need to be associated with the MPW folder. Note that the SADE application
has auxiliary files that should be kept in the same folder as SADE: SADEStartup,
SADEUserStartup, SADE.Help, SADE Worksheet, and SADE New User Worksheet

The file SysErrs.Err is also provided and should be kept in either the SADE folder or in the
System Folder so that SADE can report system-related errors. The SADEScriptS folder
contains examples and can be kept anywhere or omitted altogether.

-The SADE release disk also includes a special version of MultiFinder, compatible with
System 6.0, that's used to control and access processes. The additional code to support
debugging will not affect your normal use of MultiFinder. To install this special version,
move your current MultiFinder out of the System Folder, copy the new version in, and
reboot. If you already have version 6.1 or greater of MultiFinder, you don't need to bother
with this step.

Getting started

. To launch SADE, double<liclc the SADE application icon or a SADE document icon. If you
have MPW ruMing, you can also launch SADE from the Shell.

The SADE interface is extremely similar to that of MPW. The F'tle, Edit, Find, Mark, and
Window menus are almost identical to those in MPW 3.0. SADE has two additional menus
that provide the basic source-level debugging functions.

Once launched, SADE opens the SADE Worksheet file. As in MPW, you can enter SADE
commands from the SADE Worksheet, using the standard MPW editing, selecting, and
executing conventions.

To get the synru d any command, type help and press Enter. To see some example
commands and how to use them, type open •SADE: New Oser worksheet• and
press Enter. To find a complete description of every single command, look at Part II of
this manual.

6 SADE Reference
r(\
YI :
"-j

.)

Entering commands

A SADE command line 1$ very similar to an MPW command line, but there's one major
difference. SADE provides full expression evaluation. In order to distinguish strings from
other types of expressions, you need to enclose them in quotation marks. For instance, to
open a file, type open 'filename'. Pathnames, directory names, filenames, menu
names-all must be enclosed by quotation marks.

You can enter multiple commands on the same line, separated by semicolons (;). If you
want to continue a line, precede the carriage return with the escape character (d). You can
put comments anywhere in the command line, except within strings. Comments are
delimited by a number sign(#) and by the end of the line.

Command output, also known as standard output, is displayed just below the command
that was exea.ited. If you want, you can direct output to a different window, or file, with
the Redirect command. For instance, enter the following three lines on the SADE
Worksheet:

open 'new'
redirect 'new'

tremember the quotes

'hello'; version; help version

You should see SADE create a window called New, and display the string •hello" and the
SADE version information in the new window.

For SADE's purpo.ses, a window and a file are synonymous. All SADE windows are opened
as text files.

To undo redirection, simply type redirect without parameters.

• Note: If a run-time error occurs while SADE commands are executing, the commands
are aborted, and error messages are written to the command window; that is, the
window from which you enter the command. If output was redirected to another
window, that redirection is undone.

Command output can be as complex as the application you're debugging. The Printf
command gives you the ability to convert, format, and display almost any type of value in
whatever way you like. ·

CHAPTER 1 SADE Overview 7

Identifying your program to SADE

For SADE to work, it needs to have symbolic information about your application. When
you compile and link your program, use the -sym on option; this generates a file called
"YourProgName.SYM." The linker puts this file in the same directory as your application.

Your ftles can be anywhere on the system, but you need to tell SADE where they are. The
Directory command specifies the default directory for all SADE file-oriented commands;
using it relieves you from having to specify full pathnames all the time:

directory 'VolName:path:to:MyAppDir'

The SourcePath command tells SADE which directory your source files are in; if they're in
the default directory, you don't need to use SourcePath. If your source files are in another
directory, or if you want to keep them in more than one directory, use SourcePath:

sourcepath 'VolName:path:to:MySourcesDir'

The Target command tells SADE which application you want to debug:
target 'MyAppName'

The next chapter describes how to use SADE to debug your program.

8 SADE Reference

c /
Chapter 2 Debugging With SADE

THIS CHAPI'ER DF.sCRIBES HOW TO USE SAD E's menus and commands in the context
of typical debugging situations. •

Contents

Starting and stopping 11
Controlling program execution 13
More SADE commands 14
Programming in SADE 15

Break actions 16
SADE procedures and functions 16

The SADEStartup file 18

9

Starting and stopping

You can launch your application from the Finder, or from SADE by using the Launch
command: launch • MyApp •.When both SADE and your application are running, bring
your application up to the front and press the key combination "Command-Option-."
using the period key on the numeric keypad. (Don't press the interrupt switch unless you
want to enter MacsBug.) This key combination is known as the SADEKey.

If you don't like the Command-Option-. key combination, you can define another
Command-Option key combination with the SADEKey command.

When the SADEKey is pressed, MultiFinder calls SADE the next time your application calls
the WaitNextEvent, GetNextEvent, or EventAvail routines. SADE looks at the stack for
the location from which you called the event trap, sets a breakpoint at the next
instruction, and restarts your program. As soon as the event trap returns, the breakpoint is
hit, and SADE takes over.

• Note: If your program happens to be stuck in a loop from which it does not call one of
the event tra~. you'll need to press the SADEKey a second time. At this point, SADE is
entered immediately. In most cases, the state of the system is reliable, though
occasionally the system may be in a state in which SADE cannot run.

SADE opens your source file in front as a read-only window, highlights the statement from
which the event call was made, and displays a dialog box describing the nature and
location of the exception.

A. Warning If you are running both SADE and MPW, it's important that, when in
SADE, you always open your source files read-only.•

• Note: You'll notice that SADE sometimes selects several source statements as if they
were a single statement This occurs with statements for which no code is generated,
resulting in several statements that map to the same address.

If SADE can't find your source files, or if you didn't use the -sym option when you
compiled and linked your program, it displays a message on the SADE Worksheet,
including a disassembly of the instruction at the program counter. SADE also displays such
a message when the routine that was executing isn't pare of your program (ROM code, for
instance).

CHAPTER 2 Debugging With SADE 11

To set your program running again, choose Go from the SourceCmds menu.

More times than not, you'll want to suspend your program at a particular place by setting a
breakpoint You can set a breakpoint either while your program is intemipted or before it
is launched. To set a breakpoint, just click in the source statement you want to stop at
and choose Break from the SourceCmds menu. The next time your program runs, SADE
interrupts it just before the statement with the breakpoint is executed.

Another way to interrupt your program is to have it call the toblbox routine SysErr with an
unused system error ID in the range 129 to 32,511.

The Break If menu item lets you specify a condition for breaking; for instance, when a
variable has a particular value.

· • Note: In a C function, to set a breakpoint that's hit each time through a While loop,
put the cursor in the condition part of the While statement (rather than in the word
"While•) and choose Break from the SourceCmds menu. (The C compiler generates
two statements for a While statement-one that executes the first time only and
another that executes each time the controlling condition is evaluated.)

Breakpoints remain set after you resume execution; to remove a breakpoint, choose the
Unbreak from the SourceCmds menu while the statement with the break is selected.

After your program has been suspended, you can move around SADE as you like. You may
want to move to the SADE Worksheet window and execute a command. For instance, if
you want to see what routine called the procedure that was intemipted, you can use the
Stack command. Stack displays a list of current stack frames, letting you examine the
procedure calling chain.

If you want to get back to the source statement at which your program. was interrupted,
you can choo.se In What Statement from the SourceCmds menu. This menu item displays
and highlights the statement that corresponds to the instruction in the program counter;
it's handy for bringing back the source file and finding the current execution point.

The Statement Selected Is? menu item displays a dialog box giving the procedure name
and offset of the statement that's selected in ihe active window. You can use this
information when entering commands (to set a breakpoin~ for instance) from the
Worksheet.

The Show Selected Routine menu item displays the source for the routine whose name is
selected. You can use this menu item in conjunction with the Stack command to see the
source for a particular.point in the calling chain.

12 SADE Reference

c If your program is hopelessly fouled up, you can use the Kill command to terminate it. You
can also use' Kill to tenninate a perfectly healthy application. Be aware, though, that Kill is
dangerous, because it doesn't give the application a chance to perform its usual exit
routines (like saving data). Kill does perform some cleanup activities like freeing the
MultiFinder memory occupied by the application and removing its trap patches.

To quit SADE, use the Quit conunand. To shut down the system from within SADE, use the
Shutdown conunand; it terminates SADE and calls the Shutdown Manager. Shutdown lets
you specify a restart as well. ·

Controlling program execution

Breakpoints require several operations: You need to set them, go, and then remove them.
If your program is interrupted and you just want to move a bit further, select the
statement you want to stop at and choose Go Ttl from the SourceCmds menu.

You can also step through your program, watching statements execute one at a time.
There are two ways of stepping, depending on whether you're interested in stepping
through subroutines when they're encountered If you want SADE to step over procedure
calls (treating BSRs and JSRs as single instructions), choose Step from the SourceCmds
menu. Step executes the statement that's selected in the source window, suspends
execution, and highlights the next statement to be executed.

If you want to step into subroutines as well, choose Step Into. SADE then steps in,·.
stopping at the fust instruction of the called procedure. If you choose Step Into and then
find you don't want to be there, choose Step Out This menu item makes SADE move
through the subroutine and stop at the first statement following its reruni.

Toolbox traps are always treated as single instructions; SADE steps over them, stopping at
the fust instruction following the trap. ·

You will also probably want to watch the values of your program's variables. For instance,
you may suspect that a loop using a count variable has a problem. There are two ways of
looking at 'Y2riables. If you select a variable and choose Show Value from the Variables
menu, SADE aeates a ftle called "Values" and puts the current value of that variable in it If
you choose Show Value for another variable, its value is added to the file. To have a value
displayed in hexadecimal, choose Show Value in Hex.

CHAPTER 2 Debugging With SADE 13

The "Values" file isn't updated to reflect changes in the value of a variable as you continue
to run your program. If you want to look at the different values a variable rakes on, select
the variable and choose Add Watch Variable. SADE creates a different file, called
"Variable Watch.• Each time control returns to SADE, the fde is updated to show the
latest values.

To remove a watch vaciable, select the variable and choose Delete Watch Variable. To ·
delete all watch variables, simply choose the Delete All Watch Variables menu item. (Note
that the infonnation in the "Variable Watch• file is preserved.) ·

The final SourceCm menu item, Source [vs. Asm] Debugging lets you use the Step, Step
Into, and Step Out menu items at the assembly-language level as well. When you choose
assembly-language debugging, Step and Step Into execute a single assembly-language
instruction at a time.

• Note: The SourceCm and Variables menu are implemented in the SADEStartup file
and can be modified to suit your needs. For details, see the section ·nie SADEStartup
File" later in this chapter.

More SADE commands .

All of the operations implemented by the SourteCm and Variables menus can also be
performed by entering SADE commands. When working with source files, you'll probably
find it easier to use the mouse and the menus. In some cases, though, the equivalent
command provides further options. And there are many additional SADE commands that
perform functions not provided by the menus. ·

For instance, the Break command lets you set multiple breakpoints with a single
command, and you can set breakpoints on traps as well as on program statements. Break
also lets you specify a break action to be performed when the breakpoint is reached.
(Break actions are described below.) To remove breakpoints, use the Unbreak
command.

If you ~t to monitor addresses or traps without suspending your program, you can use
the Trace command. After setting a tracepoint, resume execution by executing the Go
command (or by choosing the Go menu item). When the tracepoint is reached, a message
is written to standard output reporting the address or trap being traced. To remove
tracepoints, use the Untrace command.

14 SADE Reference

If you want to see what breakpoints and tracepoints are set, you can use the List
command to display a list. You can also use Llst to see what MultiFinder processes are
active.

Debugging often involves going below the symbolic level and looking at the state of the
system You may, for instance, need to look at the contents of a specific RAM address or
range; you can do this with the Dump conunand To find a value or string in memory, use
the Find command.

If you're familiar with assembly language, it's sometimes useful to look at your program, or
at code other than your own, from the objea-code level. You can use the Disasm
command to disassemble assembly-language instructions. You might use Disasm to
investigate how your source statements map into object code. Or you could use Disasm
to look closely at how parameters are passed to toolbox routines.

Three commands let you examine and check the heap. The Heap command displays
information about the current heap. By examining the different types of blocks and how
they're allocated, you can detea problems like heap fragmentation. You can use the Heap
Check command to verify the consistency of the heap if you think it might be corrupted.
Finally, the Heap Totals command gives you a summary of the heap allocation.

For looking at resources, the Resource conunand displays resource maps and the Resource
Check command checks them for consistency.

SADE lets you define macros to use in place of just about anything you might type on the
command line. You can define a simpler name for a conunand, or create a macro for a long
string of characters. To simplify the specification of a long directory path, for instance,
you could enter the following commands:

macro dir 'directory'
macro path 'VolName:very:lonq:path:to:default:directory'
dir path #quick way to specify default directory

Programming in SADE

The real power of SADE is that, in addition to using commands interactively, you can
write your own programs, using SADE commands, to automate repetitive tasks, perform
complex debugging operations, or even customize the SADE interface itself.

The simplest SADE program is a group of commands enclosed by the Begin ... End
construct. One common use of this construct is with the Break command to group a
sequence of commands to be performed when the breakpoint is encountered.

CHAPTER 2 Debugging With SADE 15

Break actions

A break action can be a single command, a procedure or function, or a group of
comrnands delimited by the Begin ... End construct

If you don't specify a break action, SADE simply stops when the breakpoint is reached.
When you do specify a break action, SADE resumes execution after performing the
action.

You can suspend execution as part of a break action by using either the Abort or the Stop
commands. The Stop command suspends execution, but first executes any pending
commands. That is, if the most recent execution statement was in a structured statement,
or if multiple commands were selected, these commands are executed before you enter
SADE. The Abort command suspends execution, but cancels any pending comrnands.

The Alert command displays a message; you might use Alert as part of a break action.

SADE procedures and functions

You can write SADE procedures and functions using familiar programming constructs like
If ... Else ... End and While ... End. You can also define SADE variables with the Define
command.

SADE provides a set of built-in functions, as well as a number of predefined variables;
they're described in Chapter 3. The SADEScripts folder contains many examples of useful
procedures and functions.

To use a procedure or function, you first need to execute the file containing the routine
by using the Execute command. Once the script has been executed, you can invoke the
routines defined within it by name.

For instance, the procedure displayWindowList, used below as an example, is
contained in the script MiscProcs (found in the SADEScripts fofder). To use this
procedure, you first need to execute the script:
execute 'VolName:path:to:SADEScripts:MiscProcs'

Procedures are delimited by the Proc ... End construct, and functions are delimited by the
Func ... End construct

16 SADE Reference

)

(

The If ... Else ... End construct lets you specify conditional execution of a number of
different actions. You can loop with a conditional test at the beginning of the loop with
the While ... End construct, or with a test at the end of the loop with the Repeat.. Until
construct Or you can use the Loop command with the I.eave command providing a
conditional exit wherever you like. The I.eave command can be used with any of the other
looping commands as well.

The displayWindowListprocedure displays the window titles for all the
current windows:
proc displayWindowList;
define awindow;
awindow :• AWindowRecord(windowlist);
while (awindow <> 0) do

printf ("Window Title• \"%P\"\n",ApString(awindowA.titleHandleA)A);
awindow :• AWindowRecord(awindova.nextWindow);

end;
end;

The Define command defines a variable called awindow. SADE variables are dynamically
typed; that is, their type is determined on assignment (and may be changed by new
assignmenrs). Awindow is used here to contain a pointer to a window record.

A pointer to the window list is maintained in the low-memory global variable Windowlist.
The pointer to the window record for the first window in the list is assigned to a window.
The commands within the While ... End consuuct are executed as long as a window does
not equal Nil.. The window list is null-terminated, so when the entire list has been
processed, the While condition is no longer true and the procedure returns. Each time
through the While loop, the Prinlf command prints out the title (using the titleHandle
field of the window record) and the next window record pointer is assigned to awindow.

The Return command returns from a procedure or function. Return is optional for
procedures, but functions must use a Return command to pass the function result

To remove the definition of a SADE variable, procedure, function, or macro, use the
Undefine command.

CHAPTER 2 Debugging With SADE 17

The SADEStartup file

Each time you launch SADE, it executes the SADEStartup file. This file contaim SADE
commands, functions, procedures, and variable definitions that configure SADE for
source-level debugging. In particular, tfie SADEStartup file creates the SourceCmds and
Variables menus. If you study the way each of the features is implemented, you can
change them to suit your own needs.

For instance, when you interrupt your program, SADE bring5 the source window up as the
frontmost window, and displays an alert. These actions are controlled by definitions in
SADEStartup:
define SourceinFront :• l
define BreakAlert :• l

#source brought up as f rontmost window
#display an alert at break

You can change the values of these variables from the SADE Worksheet if you like by
entering:
SourceinFront :• O
BreakAlert :• 0

#source brought up behind command window
tdon't display an alert at break

The new values remain in effect for that debugging session only. The next time SADE is
launched, the definitions in SADEStartup are executed again, restoring the
default display.

If you want to redefine a certain feature indefinitely, or to add new features, you can put
new definitions into the SADEUserStartup file. Initially empty, SADEUserStartup is
executed by SADEStartup. You can change the definitions in SADEStartup directly, but
it's safer to change SADEUserStartup so you don't accidentally edit something useful in
SADEStartup.

You can enter SADE commands and define your own procedures and functions in
SADEUserStartup. For instance, you can create new menus for executing commands by
using ~ddMenu corrunands.

If you have routines in other files, you can execute the file from the SADE Worksheet, or
you can put the Execute command in SADEUserStartup and have the file executed
automatically at stanup.

The OnEntry oommand specifies what to do each time SADE is entered. OnEntry can take
a single command, a group of commands, a procedure, or a function as an argument.

18 SADE Reference

c In SADEStartup, the procedure StandardEntry is passed to the OnEnuy command.
standardEntry perfonm a number of useful actions. It identifies where your program
code is interrupted. It also provides for source display of the current program counter
(PC) on entry into SADE. If the source caMot be displayed, it executes a Printf command
that shows the cause of the interruption, the location of the program counter at the time
the enor occurred, and the name of the program that ~ halted The numeric codes listed
in this procedure correspond to the different typeS of interrupts and sysr.em errors that
could occur.

You can use the OnEnuy command to specify additional or different actions, but you
need to know what you're doing. Each time the OnEntry command is entered, the actions
specified by the previous OnEnuy command are replaced. You'll probably want to use the
StandardEntry procedure as a model, modify it to suit youF needs, and pass it to
OnEntry in the SADEUsetStartup me.

The •show Value• and •Add Watch Variable• menu items create mes in the current
directory and redirect output to them. If you prefer to have these files created in a
different directory, you can modify the procedures that implement the menu items. For
instance, you could modify the Open command in the ShowVal ue procedure:

open behind "VolName:path:to:values"

A set of Macro commands define macros with MacsBug-like syntax for certain operations.
For instance, the td macro executes the DisplayReqs procedure. DisplayReqs opens
a window called "register display" and displays the current values of registers
00-07, A~A7, and the program count.er. (The Open command in this procedure can also
be modified if you want the •register display" file created in a different directory.)

The setSourceBreak, unSetSourceBreak, and sourceStep procedures support
source-level breakpoints, allowing you to identify code locations by pointing at your
program source. You probably won't need to modify the behavior of these procedures.

CHAPTER 2 Debugging With SADE 19

c:;

Chapter 3 Symbols, Constants, and Expressions

THis CHAPTER GIVES A COMPLETE DESCRIPTION of the various objecrs used in SADE:
how to specify them, and how to create expressions by combining them. •

Contents

About symbols 23
Program symbols 24
Predefined SADE variables 27
Register names 28

Expressions 29
Numeric constanrs 29
Strings 30
Built-in SADE functions 31
Operator precedence 34
Expression operand base types 35
Expression evaluation 36

The assignment operator 37
The pointer operator 38
The address operator 39
The trap operator 39

Type coercion 39
Ranges 40

21

·.)

(

(·.

About symbols

This chapter discus.5es everything you could possibly put on the command line, and
describes the rules SADE uses in interpreting this information.

To display the value of a symbol, simply enter the name. SADE evaluates the symbol and
automatically displays it according to its type. The default radix for numeric types is
decimal. Address values (pointers) are displayed in hexadecimal.

In a SADE debugging session, a variety of different symbols are used. Your program has
compilation units that contain procedures and functions, as well as global and local
variables. There are Macintosh system symbols like toolbox traps, registers, and low­
memory global variables. Finally, SADE itself defines, and lets you define, commands,
procedures, functions, mac~. and variables.

When executing the command line, SADE takes the first symbol and tries to identify it
first as a debugger symbo~a command, a procedure or function, or a variable. It then
tries to identify it as a program symbol, and finally as a system symbol.

It's possible for symbols in different clas.5es to have the same name. A reference to a
system symbol, for instance, could be masked out if SADE finds a debugger or program
symbol with the same name. For this reason, SADE provides two operators to specify
program and system symbols:

• The backquote character (') indicates a program symbol.

• The delta character (A) indicates a system symbol.

For example, if you have a program symbol whose name is pc just like the system symbol
for the program counter, you could use ~pc to refer to the system symbol. In addition to
avoiding masking, these operators speed up the search process.

Another operator, the µ (Option-m) character, indicates a MacsBug symbol that's
embedded in a program object. You can use this operator to specify a MacsBug symbol
for a module with no symbol information, without slowing the search process. Conversely,
whenever SADE displays a MacsBug symbol, it precedes the symbol with this character.

The first character of a symbol identifier must be an uppercase or lowercase letter (A-Z,
a-z), an underscore (_), or a percent sign (%). Subsequent characters can be letters, digits
(0-9), underscores (_), dollar signs ($), number signs (11), pertent signs (%), or "at"
symbols (0). Other characters may be made a part of an identifier by preceding them with
an escape symbol (a) or backslash character(\) and enclosing them in double quotes. A
name may be any length, but only the first 63 characters are significant

CHAPTER 3 Symbols, Constants and Expressions 23

When looking up symbols, SADE first performs a lookup being sensitive to case. If the
symbol isn't found, SADE converts all the characters to uppercase and looks again. Pascal
programmers may want to use the Case command to tum case sensitivity off; SADE will
then convert all symbols to uppercase before any lookup, speeding up the search process.

A symbol is meaningful only within the scope for which it is defined. For instance, local
variable references are meaningful only within the procedure or function in which they are
defined. SADE can't interpret a symbol until a memory location has been allocated for it
If a program is interrupted before a procedure containing symbol definitions has a chance
to exe01te, SADE can't find the symbols within that procedure.

A symbol's memory location may also become inaccessible during exe01tion. For example,
Pascal and C will place a procedure's variables into registers. If one procedure calls
another, the calling procedure's variables are no longer available.

Debugger and system symbols exist in flat namespaces. Program symbols, on the other
hand, exist in a hierarchical namespace that begins with the level of your program as a
whole, and can end with the fields of complex data structures defined within nested
procedures. For this reason, it's important to understand and be aware of how program
symbols are specified. (Appendix B gives examples, in both C and Pascal, of how to
specify program symbols.)

Program symbols

It's possible to give a fully qualified reference for any program symbol that starts with the
program's global scope and continues down the hierarchy through the name of the
particular symbol:

\unit [.procedure]* .variable

The components of such a reference are as follows:

\

unit

24

The backslash character is the program-level, or unit qualifier, and should precede
the unit name.

When referring to the main program's variables, the unit name is the program
name. For Pascal, it's the given unit name or the name on the PROGRAM
statement if it's the main program unit For assembly language or C, it's the name
of the compilation uni~ in other words, the filename without the extemion (.c or
.a). Special characters in the filename must be quoted with the escape character
ca). .

SADE Reference

•

I(· ..

I . ..
-~-·

•

(

[...]•

procedure

The [.. .]• construct indicates that zero or more levels of procedure name
qualification may be used: zero when accessing unit level variables, one when
accessing first/level procedures, and more when accessing nested procedures.
(This is possible in Pascal but not in C.)

The period character (.) is the procedure and variable name delimiter.

A procedure (or function) reference refers to the srarting code location of
procedures (or functions). Among other things, a procedure reference may be
used in setting breakpoints.

variable This can be constructed according to the rules for simple and strucrured variable
references, as described below.

A reference that begins with the program-level qualifier (the "\ • back.slash character) is
essentially fully qualified. SADE treats the identifier following the backslash as a global,
and runs through the remaining qualifications. To specify correctly a procedure starting ac
the compilation unit level, you must precede the compilation unit name with a backslash.
Otherwise, SADE can't determine whether the name refers to a compilation unit, a
procedure, or a variable.

SADE allows partially qualified references if the omitted information can be deduced
from the current execution point. That is, if program execution is currently suspended at
some point, that point identifies a program, compilation uni~ and perhaps procedure
from which to begin looking up variable references.

A procedure reference refers to the srarting code location of a procedure (or function).
Procedure references are used, for instance, in setting breakpoints. The first, or 0th,
statement of a procedure or function corresponds to the entry point to that routine
before the LINK instruction has been executed. At this time, the stack frame has not been
set up and the local variables and parameters do not yet have meaningful values. If you
wish to check the value of a parameter you should go to statement 1, in other words
foo. (l l instead of foo or foo. < o), before checking the value.

Procedure and function names, as well as statement references relative to procedures, can
be used as arguments to commands, such as in break foo. If you wish to assign the
address of a procedure to a register, you should precede the name with the @ operator, as
in pc : - @f oo. In the former case, the name or sratement reference is a special code
reference that includes information about resources and offsets, while the latter case is a
simple address at a specific point in time.

CHAPTER 3 Symbols, Constants and Expressions 25

Source program statements are identified by indices relative to a procedure. These
indices are identified by the compiler and are mociated with locations in the text in
source windows. A statement reference consists of a procedure reference followed by a
reference of the form . (expr>, which refeis to a particular statement index relative to
the specified procedure. If the procedure reference is omitted and the . <expr> form is
used by itself, it is taken to refer to the current procedure at the time execution
was suspended.

Reference to symbols outside the current stack activation is supported by an array-like · ·
specification. An expression within square brackets is inserted between the last
procedure name and the beginning of a variable reference, to indicate the 74h activation
of that procedure from the top of the stack. For instance myproc C 3 J • varname refers

. to the variable vamame belonging to the third most recursive call to the procedure
myproc.

A simple variable reference consists of a single identifier, such as myvar, and can be of
any type supported in your program. SADE also supports structured typeS conunon in
high-level programming languages, using the following operators:
.name or ->name record or structure member selection
A or * pointer dereference
[n, ..•] or (n)... array access

Variable references can be as complex as nec~ary (keeping in mind, of course, that each
type supports the operator applied to it). For instance, myRecord.myArrayVar Cl J
references the first element of the array myArrayVar which is an element of the structure
myRecord. Note that in SADE, array variables are 1-based.

In SADE, a variable reference always refers to its value, and not its address. For instance,
foo refers to the value of the variable •foo" and @foo (or &foo, in C) refers to its
address.

Symbolic information from the Pascal compiler does not include information about the
use of WITH statements· so SADE cannot deal with unqualified field references. To access
the fields of a record that has been identified with a WITH statement, you need to
include the name of the record variable (as you would were the WITH statement
not present).

Variables that are defined as extern in a C soun:e ftle, but whose defming file was not
compiled with the -sym option, are not known to SADE.

SADE Reference

•

\)

0

•

Predefined SADE variables

A number of predefined SADE variables provide access to state information, such as
exceptions, date, and process ID. Many of these variables are read-0nly and cannot be
assigned values. The predefined SADE variables are as follows:

Active Window

Arg[n]

Date

DisAsmFormat

A string containing the name of the frontrnost (active) SADE window.
This is a read-only variable.

The nth parameter of the current SADE procedure. This variable is used
like an array variable to access the parameters of the currenc SADE
procedure numerically rather than by name. Note that this array variable
is 1-based.

A string containing the the current date in the form "dd-mm-}')'." This is
a read-only variable.

A string used to format the output of the Disasm command. Each line
of the output is divided into four fields. The presence, order, and
format of the four fields are controlled by "flag" letters in this variable.
The initial value is OAXC, which specifies offset, address, hex
representation, and finally the assembly code. You can change the
output by using the following flags:

o Display off set field in decimal.
0 Display offset field in hexadecimal.
a, A Display the address (case is not significant).
x, X Display the hex code representation (case is

not significant)
c Truncate the assembly code if necessary to

a uniform length
C Show entire assembly code no matter how long.
S Prefix offset and/or address with a S

(allowed only before 0, a, and A flags).

Blanks and tabs are ignored in the string. A flag specifying the presence
of a field may not be repeated. At least one of the two flags x/X or c/C
must be specified. If the assembly code field is specified as the last
field, then c has the same meaning as C-the entire assembly code field
is displayed. If the assembly code field is to be displayed before one
of the other fields, you then have the option of either truncating tfie
assembly field to a uniform length (c) or showing it completely (C).

CHAPTER 3 Symbols, Constants and Expressions

Exception

Inf

NArp

Process Id

TargctWilldow

WorkshcctWilldow

Register names

The DisAsmFormat variable may also contain a$ flag in front of the 0,
a, or A flags to generate a $ character in front of the offset and/ or
~ field values.

The exception number of the roost recently encountered exception.
This is a read-only variable. Possible values include the standard system
error IDs (listed in the MPW file SysErr.a), error IDs that you define, as
well as the following special SADE exception numbers:

50 A-trap break
51 Instruction trace
55 User interrupt (SADEKey pressed)
58 Address break
63 Nonfatal internal error
64 Fatal internal error

Always equal to a SANE infinity. Inf is a read-only variable.

The number of actual parameters specified for the current SADE
procedure or function. NArgs is undefined when no procedure is in use.
NArgs is a read-only variable.

The process identifier for the current target program. It identifies the
process that was suspended when SADE was entered. ProcesslD ~
updated when the Target command is executed. (ProcesslD has a
negative value if the target has not been launched.) This is a read-only
variable.

A string containing the pathname of the ftle open just behind the
current window. This is a read-only variable.

A string containing the pathname of the SADE Worksheet window. This
is a read-only variable.

Register names are system symbols. SADE uses these names to display the data your
program places into the registers provided by the 68000 family of miaoprocessors. When
you disassemble instructiom, you can see what registers were used by a particular
instruction.

SADE Reference

•

~))

c

(_

(

These register names may be used from SADE:

D0 ... 07
AO ... A7
CCR
SR
SP
PC
FPCR
FPSR
FPIAR
FPO ... FP7

Expressions

Data registers
Address registers
Condition code register
Status register
Stack pointer
Program counter
Floating-point control register
Floating-point status register
Floating-point instruction address register
Floating-point data registers

Expressions are composed of either a single term or an arithmetic combination of terms.
A term is either a named symbol, a constant, or a function call. Teml.5 are combined by
arithmetic, logical, shift, and relational operators. String teml.5 may be combined only
with relational operators or string functions.

Numeric constants

Numeric constants take the form of decimaL hexadecimal, binary, and floating-point
numbers.

Dedmal: Decimal numbers are formed as a string of decimal digits (~9). Values are treated
as 32-bit (signed long word) quantities. Decimal values that exceed 32 bits are
treated as floating-point values. To enter an unsigned value, you must_ coerce the
right side: ·

x :• UnsignedLonq(value)

Huadedmal: Hexadecimal numbers are specified by a dollar sign ($) followed by a sequence of
hexadecimal digits (0-9, A-F, or a-f). Hexadecimal numbers are treated as 32-bit
quantities and are left-padded with zeros if necessary; in other words, SFF is
treated as $000000FF. For convenience, you can use periods to separate digits.

CHAPTER 3 Symbols, Constants and Expressions 29

Binary: Binary numbers are specified by a percent sign (%) followed by a sequence of
binary digits (0-1). Binary numbers are treated as 32-bit quantities and are left­
padded with zero.5 if necessary. For convenience, you can use periods to separate
digits.

Floating-point: Floating-point numbers are specified with a decimal point or exponent as
described in the Apple Numerics Manual. Within SADE, floating-point. numbers
are represented as SANE 10-byte extended values.

Hexadecimal and binary numbers that are longer than 32-bits are treated as strings; this is
useful for arbitrary assignment of values. (If these strings are used in an expression, they're
treated as SANE extended numbers.)

Strings

Many of the SADE commands take a string as a parameter. A string is defined as a sequence of one or
more ASCII characters (including blank.5) enclosed in single(') or double(') quotation marks. Strings
are limited to a length of 254 characters.

Escaped characters may be specified in double-quoted strings. An escaped character is represented
by an escape character (C1) or backslash(\) immediately followed by one to three decimal digits, or
by a 1- or 2-0igit hexadecimal number (\$xx), or by one of the following single character reserved to
represent certain nongraphic characters: \n (newline, \$00); \ t (tab, \$09); and\ f (formfeed,
\SOC). Any other character immediately following the backslash represents just that character, for
example, \ \ (backslash); ,·, (single quote); and so on. You can also delineate the string with single
quotation marks and use the double quotation marks as literals, or vice versa. Note that this special
character processing does not occur when single quotes are used as delimiters.

Here are some examples of strings:

'Hello'
"Hello"
"'"

'don'' t'
"don't"
r 1 I 1 (single quote)

"hello\ 0 n (null-terminated)
"don""t"
"-" (one double quote)

String constants used in arithmetic expressions are limited to four characters. Such strings
are treated as right-justified)2-bit signed values. F.ach of the characters in such a string is
assigned its ASCII value, and the overall value of the string represents the concatenation
of values of its elements. For instance, the string "my" has the value: $60 • 256 + $79.

• Note: When executing a file, each command line is limited to a maximum of 254
characters. A maximum-length string of 254 characters is too long when executed from
a file, because the quotation marks used as delimiters are counted as part of the line
length. ·

30 SADE Reference

;(·~,,)
\,_/,,.

(

(

SADE treats C strings, which are null-terminated arrays of characters, as arrays of unsigned
bytes. It does, however, attempt to display arrays of 1-byte values, as well as pointers and
handles to such values, as either C or Pascal strings.

Built-in SADE functions

SADE provides a set of built-in functions that perform useful operations. Each of these
built-in functions may be used as part of an expression.

AddrToSource (address(, Boolean J l

AddrToSource displays and selects the source statement corresponding to the specified
address. If the source file isn't already open, it's brought up as a read-only window. If the
source file is already open as a read/write window, AddrToSource changes the window to
read-only.

If the optional Boolean is omitted or is false, the soun:e window is displayed behind the
frontmost window (from which AddrToSoun:e was likely to have issued). If the Boolean is
nonzero, the window is brought up as the frontmost window.

AddrToSoun:e returns a Boolean value indicating whether it was able to display the source
(true) or not (false).

Concat ([String, ...]

Concat returns the concatenation of the specified string expressions. If given nonstring
arguments, Concat tries to coerce them to strings. If no arguments are specified, Concat
returns a null string.

Confirm (message [,Boolean J

Confirm presents a dialog box containing the specified message and returns a number
indicating the response. When the optional Boolean is omitted or is false, Confirm
presents OK and Cancel buttons, and returns 1 or 0 respectively. If the Boolean is nonzero,
Yes, No, and Cancel buttons return 1, 0, and -1 respectively.

CHAPTER 3 Symbols, Constants and Expressions 31

Copy < string, character/ndex, length >

Copy can be used to copy all or part of the specified string. Characterlndu specifies the
first character to copy; to start with the third character of the string, for instance, you
would specify 3 (it's 1-based). The length of the substring is determined by the optional
length or by the end of the string.

Ev al (le%t, [message l >

EvaJ evaluates the text of a string argument as an expression. The function result can be of
any type, depending on what the expression evaluates to. You can optionally supply a
message; if an error occurs, this message is returned as the function result If no message is
supplied and an error occurs, Eva! is aborted and the error is reported.

Find < target, address, length (,count l >

Find looks for a target pattern in the memory range specified by a starting address and
length. If you pass zero for count, Find returns the number of occurrences of the pattern.
You can use the count parameter to specify which occurrence of the pattern you want; for
instance, if you specify 3 for count, Find retums the address of the third occurrence of the
pattern. If you omit count, Find returns the address of the first occurrence. If the target is
not found, Find returns 0.

Remember that expression values in SADE are long words by default; to specify another
size, use a type coercion. For instance, Find <SABCD, PC, 20 > looks for a long value, and
Find <word< SABCD > , PC, 2 o > looks for a word value.

Length < string >

length returns the length in bytes of the specified string.

NaN < expression >

The NaN function converts the specified expression into a SANE 10-byte extended value.

Request <string [,string])

Request returns a string after displaying a request dialog box. The first string argument is
displayed in the dialog box as the request message. The second, optional string argument
specifies a default string to present in the request box.

When you click cancel, the string "_CANCEL_" is returned. Otherwise, the string specified
is returned.

32 SADE Reference

f~)
~,.1·

(
Selection (windowName)

Selection returns the text of the current selection in the specified window. The value
returned is of type PString. To get the value of the string if it contains a name or
expression (for instance, to set a breakpoint), apply the Eval function on the string.

Sizeof <variable I type I mgument l

SizeOf returns the number of bytes occupied by a variable or type. You can also use
SizeOf to determine the size of an argument to a SADE procedure or function. SizeOf
cannot be used with SADE array variables.

SourceToAddr (windowName [, errorFFag l

SourceToAddr function returns the address corresponding to the statement selected in
the specified window. The window need not be active. The address is displayed
symbolically; if the address cannot be determined, SourceToAddr rerurns zero.

If you pass a nonzero value in the optional errorFlag, SourceToAddr returns a string
describing why the address could not be found.

Example.
foo :• SourceToAddr(targetWindow,l)
if TypeOf(foo) • 'PString' then
#report error in foo
else
#foo has address
Timer ((value (, Boolean]J)

T irne r c (value (, Boolean J J >

Timer uses the global variable TickCount to provide timing-related functions. If you pass
no arguments, Timer returns the current TickCounc. If you specify a value (typically a
previous value of TickCounc), Timer returns the difference between that value and the
current value of TickCount (that is, TickCount-value). If you also specify a nonzero
Boolean value, the difference is returned as a string of the fonn "sss.hh", representing
seconds and hundreths of a second. (If the Boolean is zero, it's ignored.)

Typeo f c expression)

TypeOf returns a string containing the name of the type of the given expression. If SADE
doesn't know the name of the type, it returns a string of the fonn "Type in", where n is
SADE's internal index for the type.

CHAPTER 3 Symbols, Constants and Expressions 33

Undef (parameter I variable >

Undef determines whether the given SADE parameter or variable has been initialized. If
the parameter or variable is uninitialized, UnDef rerurnsl; if it's not initialized, Undef
rerurns zero. If you pass an undefined identifier to Undef, an error results.

Where (addtess)

Where rerurns a string containing a symbolic representation of the given address.

Operator precedence

This section describes the operators used to form expressions within SADE. These
operators are listed in precedence from highest to lowest. Groupings within the table
show operators of the same precedence.

()

->

++

• I
@

/\

.,

•

+

&

NOT

SADE Reference

Grouping by parentheses (includes casting,
argument lists)

Qualifier by pointer (C)
Qualifier

Increment (C)
Decrement (C)

Trap
Address of (Pascal)

Pointer to (Pascal)

Logical NOT
Bitwise one's complement

Pointer to (C)

Unary positive
Unary negation

Address of (C)

\ __ /I

0

(

I
II

+

>>
<<

-
<>
<
>
<•
>•

&
&&

I
II

DIV +
MOD

. -
¢ !•

s
~

AND

OR

XOR EOR

,,
:•
<-
<op>•

Multi plication
Division
Remainder

Addition
Subtraction

Shift right
Shift left

Equal
Not equal
Less than
Greater than
Less than or equal
Greater than or equal

Bitwise AND
Logical AND

Bitwise OR
Logical OR
Bitwise exclusive OR

Condition (C)
Size-compatible assignment
Arbitrary assignment
Assignment with operation (C)

Range

+ Note: The range operator(..) may only appear once in an expression.

Expression operand base types

SADE provides a number of basic types; you can define additional types as well. The
SADE base types are:

Boolean A 1-byte Pascal Boolean

UnsignedByte, UnsignedChar A byte in the value range 0- 255

CHAPTER 3 Symbols, Constants and Expressions 35

Byte, Char

CChar

A byte in the value range-128-127

A byte in the value range 0 - 25?

PChar, PascalChar A word in the range 0 - 255 (Pascal Char)

UnsignedWord, UnsignedShort A word in the range 0- 65,535

Word, Shon, Integer A word in the range -32, 768 - 32, 767

UnsignedLong, Unsignedlnt,
Unsigned, Unsignedl.onglnt

Long, Int, Longlnt,
Signedl..ong, SignedLonglnt

Single, Float, Real

Double

Extended

Extended12

Comp[utational]

CString

PString, String, Str255

A long word in the range 0- 4,294,967,295

A long word in the range -2,147,483,648- 2,147,483,647

An IEEE floating-point single-precision value (4 bytes)

An IEEE floating-point double-precision value (8 bytes)

An IEEE floating-point extended-precision value (10 bytes)

An IEEE floating-point extended-precision value (12 bytes)

A SANE signed 8-byte integer

Up to 254 characters terminated by null byte

A length byte followed by up to 254 characters

A Warning The SADE basic type Byte is frequently overriden by the Pascal type
Byte (which is two bytes long). You can use SizeOf(byte) to tell if this
has happened, or you can use the SADE type UnsignedByte instead. •

Expression evaluation

This section desaibes how a single-term or rnUlti-term expression is evaluated by SADE. A
single-term expression is represented by a single symbol, and takes on the value
represented by the symbol (the value associated with the name, constant, or string). If a
symbol represents an array or record strucrure, the "value" of the expression is the entire
array or record structure.

A multi-term expression consists of two or more operands. Multi-term expressions are
reduced to a single value according to the following set of rules:

• Each signed integer operand is converted to a 32-bit signed value.

SADE Reference

r;)
~/

• Each unsigned integer operand is converted to a 32-bit unsigned value.

• Each .floating-point and computational value is converted to a 10-byte extended
value.

• When a binary operator combines two integer operands, both operands are treated as
unsigned if either is unsigned. The result is then treated as a 32-bit unsigned value.

• If both integer operands combined with a binary operator are signed, then the result is
a signed 32-bit value.

• If either operand is a floating-point value, then the other operand is converted to
floating-point extended and the result is extended.

• Integer division by zero yields zero as the result Floating-point division by zero yields
infinity, except for zero divided by zero, which yields a NaN.

• Operations are performed from left to right, following the precedence indicated
earlier in the chapter. Assignment operators are performed from right to left.

• A parenthesized subexpression is reduced to a single value. The resulting value is then
med in computing the final value of the expression.

• When parenthesized subexpressions are nested, the innermost subexpression is
evaluated first.

• Integer division always yields an integer result; any fractional portion of the result is
dropped.

• The logical operators NOT h !), • (••), <> (:o*, !•), >, <, <• (S), >• (~). &&, 11
evaluate to the value 1 (true), and the value 0 (false). Comparison is algebraic, except
when character strings are compared.

• The « operator shifts zeros in; bits shifted out are lost. The » operator maintains
the sign of the expression--0 if positive, 1 if negative.

• C programmers should note that pointer arithmetic using the(+),(-), and (<op>•)
operators works as in Pascal. Pointer arithmetic using the (++) and (- -) operators
works as expected.

• The assignment (: - , <-, <op>•), pointer ("', *), trap (t), and address (@ , &)

operators are special operators with rtieanings unique to SADE. They're discussed
separately in the sections that follow.

The usigoment operator

The assignment operator in SADE is treated as a binary operator. As such it may be
embedded in a more complex expression to capture intermediate results. The assignment·
operator is the only operator that evaluates from right to left Thus an expression of
the fonn

a:• b :• c :• d

CHAPTER 3 Symbols, Constants and Expressions 37

is evaluated as if it had been written like this:

a :• (b :• (c :• d))

The left operand of an assignment must be a variable reference. For an integer reference,
the right operand is saved in the specified variable. For a floating-point assignment, the
right operand is converted to extended before the assignment, if necessary. For string,
record, or array assignments, the left variable must be compatible with the right operand,
and no other operators may be combined with the assignment

The above rules also hold for the <op> fonm of operators.

Compatibility between operands in SADE is defined as it is in Pascal for real and integer.
For structured data, compatible operands are defined as having the same aggregate size.
A second operator is provided for arbitrary assignment, namely <-. Using this assignment
operator, you may assign any type to any other type, regardless of size. For arbitrary
assignments, the size of the operand on the right side of the operator is used to detennine
the number of bytes to move. This operator may be used, for example, to patch memory.

• Note: The above restrictions, as well as the discussion of the <- operator, do not apply
to SADE variable assignment SADE variables are dynamically typed, automatically
taking on the type of the value assigned to them.

The pointer operator

There are two fonm of pointer operators, one following Pascal conventions and another
following C conventions. When the Pascal pointer symbol (") is used as an operator, it
follows an expression term, for example myWindowPtr". In the C convention, the
pointer symbol(•) precedes the variable reference; for example *myWindowPtr.

When the term is a vanable reference, the pointer operator indicates an indirect reference
through the variable, and the type of the tenn is determined by the type associated with
the pointer variable reference. When the term is a subexpression, the pointer operator
indicates an indirect reference through the address represented by that subexpression.
The type in din case is assumed to be a pointer to a long integer. Type coercion
(described below) may be used to treat the reference as some other type.

38 SADE Reference c

(The address operator

A pointer to a variable (an address) can be generated with the address operators(@) and
(&). Address operators are unary operators taking a variable or procedure reference as the
operand. The type of the value is considered as a pointer to the type of the variable. The
address operators cannot be applied to SADE variables.

The trap operator

An expression who.5e value is a trap can be created by using the trap operator (t). The trap
operator ~ a unary operator taking an expression element or a parenthesized expression
as the operand. Such trap expressions are used with breakpoint commands to distinguish
trap breakpoints from address breakpoints.

Type coercion

Names of known r:ypes may be used in a function-like notation to perform type coercions
on expressions. The names of typeS may be predefined base type names or types defined
in your program. The type of the object being coerced will be changed as long as there is a
reasonable way to interpret and perform the coercion.

Additionally, the type specification may be preceded by the pointer operator (") to
indicate coercion to a pointer to the specified type. This is an extension of the Pascal
notation which allows type declarations such as "integer. (In fact, you may precede a
type name by up to three pointer operators to construct new pointer types.)

CHAPTER 3 Symbols, constants and expressions 39

The following examples illustrate how the type coercion mechanism works in conjunction
with indirect memory references.

Pascal c Result

comp (10) (comp) 10 Converts the number 10 to the comp
(computational) type

comp(l0") (comp) *10 Converts the long at location 10 to
the comp type

"comp(l0) (comp*) 10 Identifies 10 as a pointer to a comp

"comp(l0)" *(comp*)lO Returns the comp at location 10

Ranges

Certain SADE commands take ranges as arguments. Ranges of addresses or values can be
expressed by a pair of expressions (the low and high ends of the range), separated by the
range operator (••). The syntax ~ as follows:

expr •• e:ipr

Neither expression used to designate a range can be a floating-point value. If one end of
the range expression ~ a trap number, both must be; for example, t $AO o o •. t SAFFF.

40 SADE Reference

.('\,
I,

\,~_,.i

(- ..
'· \

.,,.,,.,,,-

Appendix A Command Summary

File commands

Close
Open
Redirect
Save

Clo.se a file
Open a file
Redirect standard output
Save a file

Application control commands

Directory
Kill
Launch
SADEKey
Source Path
Target

Display or change the current directory
Kill an application
Launch an application
Define a key for entering SADE
Set search path for source files
Select target program for debugging

Menu and Alert commands

Addmenu
Alert
Beep
Delete.menu

Heap commands

Heap
Heap check
Heap totals

Create a menu or add menu item.5
Display an alert box
Specify tones for Alert command
Delete menus or menu item.5

Display heap information
Check heap consistency
Display heap summary

Resource commands

Resource
Resource check

Display the resource map
Check the resource map

41

r~~)
\') .
~

0

(

(-·-"

.,._,''

SADE execution com.manm

Abort
Execute
Quit
Shutdown
Stop

Stop break action and cancel pending commands
Execute a script
Quit SADE
Shut down (with restart option)
Stop break action execution and execute pending commands

Breakpoint and tracepoint commanm

Break
List
Trace
Unbreak
Untrace

Set breakpoints
List processes, breakpoints, tracepoints
Set tracepoints
Remove breakpoints
Remove tracepoints

Program tlow conttol commanm

Go
Step

Start execution
Step through code

SADE programming commanm

Begin ... End
Cycle

For ... End
Func ... End
If... End
Leave
Proc ... End
Repeat .. Until
Return
While ... End

Group commands
Continue execution at conditional test of current looping
construct
Loop with a control variable
Define a SADE function
Conditionally execute commands
Leave current looping construct
Def111e a SADE procedure
Conditionally loop with end test
Rerum from a SADE procedure or function
Conditionally loop with beginning test

SADE wriable commanm

Define
Undefine

Declare a SADE variable
Remove a SADE variable, macro, function, or procedure

APPENDIX A Command Summary

Spedal-purpose display commands

Disasm
Dump
Stack

Disassemble code
Display unstructured memory in hexadecimal
Display stack frames

MfsccJlaneous commands

Case
Find
Help
Macro
Printf
Version

44 SADE Reference

Change case sensitivity
Sean:h for a target
Display help information
Create a maao
Send formatted output to file or window
Display SADE ve~ion number

0 '

c

(·~·.·.·
)

Appendix B Program Symbols

THis APPENDIX GIVES EXAMPLP.S OP SCOPING for program symbols. Sample program
units, in both C and Pascal, define procedures, functions, and variables. These
symbol names are then entered from within various scopes, showing when symbol
names need qualification and when they don't •

45

/* file MoreStuff.h */

extern int qlobalint;

extern int qlobalfunc ();

*/

/* file MoreStuff.c */

tinclude "MoreStuff.h"

int qlobalint • 4;

static int localfunc ()

int localint • 3;

return localint;

int qlobalfunc ()

int localint • 3;

localint • localfunc();

return localint;

I* file Stuff.c */

#include "MoreStuff.h"

static int anotherqlobalint - 2:

int main ()

anotherqlobalint • qlobalfunc();

I*

APPENDIX B Program Symbols 47

target 'CStuff'
break main. (1)
break globalfunc. Cl)
break localfunc. (1)

ttt Could not find "localfunc"
break \MoreStuff.localfunc. (l)

launch 'CStuff'

t broke at main. Cl)
globalint

4

as

t breaks on main
t breaks at globalfunc

a program symbol
t breaks at localfunc

t cause stuff to execute

t IF MoreStuff.c built with sym on

globalint f IF Stuff.c only built with sym on
tit Could not find "globalint" as a program symbol

anotherglobalint
2

localint
##t Could not find "localint" as a program symbol

globalfunc.localint
ttt The variable, "localint", is in a register and cannot be
#t# referenced except in its own frame

localfunc.localint
#ft Could not find "localfunc" as a program symbol

\MoreStuff.localfunc.localint
#ft The variable, "l~calint", is in a register and cannot be
##f referenced except in its own frame

continue executing
go

f broke at globalfunc. (1)
localint

3
globalint

4
anotherglobalint

fft Could not find "anotherglobalint" as a program symbol
\Stuff.anotherglobalint

2
t continue executing
go

t broke at localfunc. (1)
localint

4
globalfunc.localint

tit The variable, "localint", is in a register and cannot be
referenced except in its own frame

SADE Reference

\)

{ file MoreStuff.p

UNIT MoreStuff;

INTERFACE

VAR
globalint: Longint;

FUNCTION globalfunc: Longint;

IMPLEMENTATION

FUNCTION localfunc: Longint;

VAR
localint: Longint;
conflicted: Boolean;

FUNCTION Nested.Function: Longint;

VAR
conflicted: Boolean;

BEGIN
conflicted :• True;

END;

BEGIN
localint :• 5;
conflicted :• False;
localint :• Nested.Function;
localfunc :• localint;

END;

FUNCTION globalfunc: Longint;

END.

VAR
localint: Longint;

BEGIN
localint :• 3;
localint :• localfunc;
globalfunc :• localint;
END;

APPENDIX B Program Symbols 49

(file Stuff.p

PROGRAM Stuff;

Uses MoreStuff;

VAR
anotherqlobalint: Lonqint;

BEGIN
anotherglobalint :• 2;
globalint :• 4;
anotherglobalint :• globalfunc;
END.

target 'Stuff'
break Stuff. (3)
break globalfunc. (2)
break localfunc. (2)

t breaks on 3rd statement in Stuff
t breaks at qlobalfunc

ttt Could not find "localfunc" as a program symbol
break \MoreStuff.localfunc. (2) t breaks at localfunc
break \MoreStuff.NestedFunction. (2)

ttt Could not find "NestedFunction" as a proqram symbol
break \MoreStuff.localfunc.NestedFunction. (2)

launch 'Stuff'

t broke at Stuff. (3)
qlobalint

4
anotherglobalint

2
localint

t cause stuff to execute

t#t Could not find "localint" as a program symbol
qlobalfunc.localint

ttt The variable, "localint", is in a register and cannot be
ttt referenced except in its own frame

localfunc.localint
ttt Could not find "localfunc" as a program symbol

\MoreStuff.localfunc.localint

50

ttt The variable, "localint", is A6 based and its procedure is not
ttt in the call chain

SADE Reference

11\)
_.,/

(

(

t continue executing.
go

t broke at globalfunc.(2)
localint

3
globalint

4
anotherglobalint

2 # Pascal main globals are really global
\Stuff.anotherglobalint t in fact, you can't use unit qualifiers
#ff Could not find "anotherglobalint" as a program symbol

\MoreStuff.globalint f in globals defined in main or unit interface
ftf Could not find "globalint" as a program symbol

t continue executing
go

#broke at localfunc. (2)
localint

5
globalfunc.localint

ttt The variable, "localint", is in a register and cannot be
#ff referenced except in its own frame

conflicted
FALSE

t continue executing
go

broke at NestedFunction. (2)
conflicted

TRUE
localfunc.conflicted t because localfunc is a function, refere~ces

t to localfunc refer to the result of the
t function, not its code

No field named "conflicted" in the_ record

\morestuff.localfunc.conflicted
FALSE

so you must use fully qualified na~e

localint
5

t no problem, l~calfunc.localint is in scope

APPENDIX B Program Symbols 51

.;<~'\)
'0

.)

Part II Command Reference

o>

0

Abort-stop break action, and cancel pending commands

Syn tu

Dcsaiption

Example

abort

The Abon corrunand terminates the current break action and rerums you to
SADE, canceling all pending corrunands. This means that if current executio.n is
within a structured statement (Begin ... End, for instance), or if multiple
commands are selected, these pending corrunands are not executed. To
terminate a break action without canceling pending commands, see the Stop
command.

J-- Establish target, suspending application
t-- and re-entering SADE at main. (l)

directory 'VolName:some:path:toProg:'
target 'MyProg'
break \MyProg.main. (l)
launch 'MyProg'

t-- Break action examines the current event type
J-- (assumes the event record is named myEvent)
t-- For rnouseDown, show co-ordinates of mouseDown and stop.
t-- (Quitting break action but executing rest of pending SADE comI!'.mandsl
t-- For keyDown, abort. (Quitting break action AND rest of commands)
#-- For any other event, show event type and continue executing
t-- (By default, break actions end with an implicit go)

proc EventFilter
define global mouseAt;
if myEvent.what • l then # mouseDown event

mouseAt :• myEvent.where;
stop;

elseif myEvent.what • 3 # keyDown event
"keyDown"; abort;

else
printf "Event type %d: \n", myEvent.what;
printf;

end
end

Begin
break _getNextEvent from applzone .. applzoneA EventFilter
go
printf "Mouse down at H: %d\n V: %d\n", mouseAt.h, mouseAt.v;

end

PART II: Command Reference 5;

t-- output

Event type 0:.
Event type 8:
Event type 6:
Mouse down at H: 208

V: 144

t-- with same break action in place, resta~t tarqet.

qo

t-- output

Event type 6:
key Down

See also Break, Stop

SADE Reference

c~,,
\,...._ __ /

r'-..,
'(j

AddMenu-create a menu or add menu items

Syntax

Description

Examples

addmenu [menuname [itemname [command l l l

The AddMenu command lets you create menus and add menu items to execute
SADE commands. Menuname, itemname, and command are all string expressions
and must be enclosed in quotation marks if they are string constants.

If a menu of menuname does not exist, a new menu is created. If a menu item
with the specified itemname already exists, it's replaced~ otherwise a new menu
item is created. You can include a Command-key equivalent for the item by
listing the command key after a slash (/) at the end of the string.

If itemname or command are not specified, AddMenu returns the current value
from the specified level down. For instance, if itemname is specified without any
commands, Add.Menu displays the command that's currently defined for that
menu item. If menuname is omitted as well, SADE returns the current values for all
user-defined menus and menu items.

addmenu 'Debug' 'Disasm/l' 'disasm'
addmenu 'Debug' 'Code Resources' 'heap restype "CODE"'

Sec also DeleteMenu

PART II: Command Reference 57

Alert-display an alert box

Syntax

Desaipdon

Example

alert [beep 1 message

The Alen command displays an alert box containing the specified message.
Message is a string expression and must be enclosed in quotes if i(s a string
constant The alert is displayed until the OK button is clicked If beep is
specified, a sound is generated when the alert box appears.

if length(str) > 64 then
alert "string longer than expected"

end·

See also Beep

SADE Reference 0

•

Beep-generate tones

Syn tu

Description

Example

beep [notespecs l
where
notespecs is a string of the form

[note[,duration[,level]] ...]

For each notespec, the Beep command produces the given note for the specified
duration and sound level. Multiple notespecs are separated by blanks or tabs. If no
notespecs are given, a simple beep is produced.

Note is one of the following:

• A number indicating the count field for the square wave generator, as
described· in the Summary of the Sound Driver chapter of Inside Macintosh.

• A string in the following format:

[n] letter[1 I bl where n is an optional number indicating the octaves below
or above middle C, followed by a letter indicating the note (A-G) and an
optional sharp (1) or flat (b) character.

The optional duration is given in sixtieths of a second. The defualt duration is 15
(one-quarter second).

The optional sound level is given as a number from 0 to 255.
The default level is 128.

beep "2C,20 '2Ct,40' 2D,60"

t-- Play the 3 notes specified: C, C sharp, and D, all two octaves above
t-- middle C, for one-third, two-thirds, and one full second,
t-- respectively. Note that the second parameter must be quoted;
t-- otherwise,the sharp character would indicate a comment. ·

Sec also Alert

PART II: Command Reference 59

Begin ... End-group commands

Syntax begin
commands

end

Description The Begin ... End construct allows a sequence of commands to be grouped
together or bracketed. One use of this construct is to specify a breakpoint
action consisting of multiple commands or procedure calls.

Example

break OisplayString. (4) begin
str :• theStrA t save value of parameter
if str - '***' then

stop
end

end

SADE Reference

in variable str

•

(

(

Break-set breakpoints

Syn tu

Desaiption

break addr _ [break-action]
or

break trap [from addr-range] , ... [break-action]
or

break trap-range [from addr-range I , ... [break-action 1
or

break all traps [from addr-range] [break-aaion J

The Break command sets one or more breakpoints within a target program's
code. There are two types of breakpoints: address breakpoints and trap
breakpoints. Both kinds of breakpoints may be followed by a break action, a
command (or series of commands) that's executed when the breakpoint is
reached.

You can set an address breakpoint anywhere within your program by specifying a
RAM address. You can also use symbolic references, in which case the code need
not be in memory at the time the breakpoint is set

Trap breakpoints can be set on a single trap, a range of traps, or on all traps. Traps
can be specified by either trap name or trap number. Trap numbers must be
prefixed with the trap character Ct) and trap names must be preceded by an
underscore linitGraf, for example). You can also specify a memory range, in
which case SADE breaks only when the trap is called from the specified range.

The same trap may be specified in multiple break commands; you can use ~le Llst
command to see what breakpoints have been set. When implementing trap
breakpoints, SADE first looks for a call that matches a specified trap name,
checking the address range if one was given. If no match is found, SADE then
looks for trap ranges containing the trap. SADE rakes the most recently defined
range containing the trap, again checking the address range if one was specified.

• Note: If you set an address break on an instruction that is a trap
call for which a trap break has already been set, the address break
is recognized and the trap break is not

PART II: Command Reference 61

If a break action is specified, SADE resumes program execution after executing
the command(s). There are two ways to suspend program execution as part of a
break action. The Abort command returns to SADE immediately, canceling any
pending commands. The Stop command executes any pending commands and
then returns to SADE.

A Warning The commands specified in the breakpoint action are saved and
are not interpreted until the breakpoint is reached. You should be
sure that program symbol references will be correctly interpreted at
the time the breakpoint is reached. In other words, a reference may
be fine at the time you defme a break action, but be ouc of scope
when the action is actually executed . .a.

Examples

• Note: If no break action is specified and the execution command
(Go, for instance) just prior to hitting a breakpoint is part of a
structured statement (such as While ... End), or if multiple
commands were selected, the remaining coffiffi?.nds are executed
after hitting the breakpoint and re-entering SADE.

You can specify multiple breakpoints, separated by commas, with a single Break
command. If this command includes a break action at the end, the action is
applied to all breaks on the list

break _GetResource
break tSA997 •• tSA9AO
break all traps from myproc.(l) •• myproc.(5)
break all traps from applZone •• applZone~

t-- The following example sets multiple breakpoints.,

Break procB. Ill, _LineTo from procA. tll •• procA. <1000), _setPort Beqin;"hit one"; end

list break
procB.Cll I $586398 I processID •S t has break action
_LineTo I processID •5 I tSA891 t called from procA. Cll •• procA. (83) i ha.s break ac:ion
_setPort I processID •S t tSA873 t has break action

t-- A break set on top of a matching brea)point replaces the older one.
t-- Breakpoints match if they are set on the same address or trap and
t-- the called from address range, if there is one, matches.

Break procB. Cll
break _lineTo
list break

procB. Cll I $586398 t processID •S

SADE Reference

,.
-Line To • processIO •S • t$A891

-Line To • processIO •S • t$A891 • called from procA.(1) . . procA. (83 l • has ere.ale act.lo:!' .

-SetPort • processIO •S t t$A873 t has break action

See also Abort, List, Stop, Trace, Unbreak

f.·.·.

(··~.
-· PART II: Command Reference

Case-change case sensitivity

Syntax

Description

Examples

case on I off

By default, case sensitivity is on, which means that when looking up symbols,
SADE first performs a case-sensitive lookup. If the symbol isn't found, SADE
convertS all the characters to uppercase and looks again.

C programmers will want case sensitivity turned on. Pascal programmers, however,
may want to set case sensitivity off; SADE then convertS all symbols to uppercase
before any lookup, speeding up the search process.

#-- C progranuners

case on

CFunction
CFunction. C 0)

CFUNCTION
Could not find "CFUNCTION" as a program symbol

case off

CFunction
Could not find "CFunction" as a program symbol

#-- Pascal programmers

case on

PascalProc
PASCALPROC. (0)

PASCALPROC
PASCALPROC. (0)

case off

PascalProc
PASCALPROC. (0)

64 SADE Reference

)

Close--close a ftle

Syntax

Dcsaiptlon

Examples

close 'myFile'

close [all I wtndowName]

The Close command doses the specified file or all files. WindowName is a string
expression and must be enclosed in quotation marks if it's a string constant.

If no parameters are given, Close closes the target window. Note, however, that
the SADE Worksheet file cannot be closed. If the contents of a file have not been
saved, a dialog box asks whether they should be.

close targetWindow #no quotes needed--uses SADE variable TargetWindow

PART II: Command Reference 65

Cycle-continue execution within construct

Syntax

Desaiptlon

Example

cycle [if Boolean 1

The Cycle command causes execution to continue from the conditional test of a
While, Repeat, or For construct, or from the beginning of a Loop construct. If a
Boolean expression is specified, Cycle executes only if the expression is nonzero;
otherwise execution continues immediately following the Cycle command.

·define testnwn :• 0
define endnwn :• 6
define cycleMax :• 4

repeat
printf "testNwn • %d\n", testNum
testNwn :• testNwn + l
cycle if testNum < cycleMax
"\nDidn't cycle"

until testNwn • endNum

#-- output

testNum • 0
testNum • l
testNum • 2
testNum • 3

Didn't cycle
testNum • 4

Didn't cycle
testNum • 5

Didn't cycle

See also Leave

66 SADE Reference

)

(

Defme-declare a SADE variable

Syntax

Dcsaiption

define [global] declaralion [, .. .]

where declaration has the fonn

name [dimension l [:• inil-vaJue I • init-value]

where

name must be unique in the current scope unless declared global.

dimension is an e%pr enclosed in brackets []

tnit-vaiue is either an exprfor the initial value of simple types, or a
list of the following fonn for strucrured types:

([exprof J init-value, ..)

where the optional of clause allows for replication of a value.

The Define command defines one or more SADE variables. A variable must be
defmed before ic's used. The variable declaration identifies the name, scope, and
(optionally) the initial value of the variable. Multiple declarations must be
separated by commas.

SADE variables are dynamically typed; that is, their type is determined on
assignment (and may be changed by new assignments). SADE variables defined as
arrays require an index. SADE array variables may contain a heterogeneous set of
values; that is, the elements may contain values of different types.

An initial value for simple types may optionally be specified by an expr following
the assignment operator(:•) or, in this case only,(•). If the declared item is an
array, a list of initial values may be specified as the values of the array elements.

The scope of a variable can be either global or local. If a variable is defined
outside a procedure (or function), its scope is automatically global. In ocher
words, it is known both inside and outside of any procedures. If a variable is
declared inside a procedure, its scope is local unless the keyword global is given.
If a global and a local variable exist with the same name, the local symbol
overrides the global symbol.

PART II: Command Reference 67

Examples

Redefining global variables replaces the previous definition, with one exception:
If the definition is within a procedure, and the new definition matches the
existing definition, then the existing definition is retafoed. For example, when a
global variable is defined within a procedure or function and is given an initial
value, the initialization occurs only when the variable is actually created.
Subsequent invocations of the procedure do not affect the current value of the
global variable, and can make use of the value left in the variable by the preceding
invocation.

The Define command may not be used within any structured statement. To
remove a variable definition, use the Undefine command.

t-- define a five element array, with the first four elements true
t-- and the last element false

define global test[SJ :• (4 of 1,0)

t-- define a 30 element array, with the first 29 elements true
t-- and the last element false

define arraysize :• 30
define myArray[arraysize] :• (arraysize-1 of 1,0]

t-- In the next example, note that the definition of INDEX in
t-- RotateLeftOneWCarry() is local to that procedure; otherwise it
t-- would be attemptinq to redefine the qlobal INDEX that's used
t-- as a FOR loop counter when RotateLeftOneWCarry<l is called.

proc RotateLeftOneWCarry()
define global SADEArray[4] :• ("indexed by one", 2, 3.33, "fourth and last")
define index
define holder
for index :• l to 4 do

if index • l then
holder :• SADEArray[index]

else
SADEArray[index~ll :• SADEArray[index]
if index • 4 then

SADEArray[indexJ :• holder
end

end
end

end

define index
define holder
for index :• l to 4 do

RotateLeftOneWCarry()
for holder :• l to 4 do

SADEArray[holder]
end
printf "\n"

end
undefine RotateLeftOneWCarry

SADE Reference

)

0

(t-- output

2
3.33
fourth and last
indexed by one

3.33
fourth and last
indexed by one
2

fourth and last
indexed by one
2
3.33

indexed by one
2
3.33
fourth and last

Sec also Undefine

(

PART II: Command Reference

DeleteMenu--delete menus or menu items

Syntax

Description

Example

deletemenu [menuname [ilemname 1]

The OeleteMenu command deletes menus and/or menu items. Menuname and
itemname are string expressions and must be enclosed in quotation !l'l.lrks if they
are string constants. If only menuname is specified, the entire menu is deleted. If
a user-defined menu item with the specified name exists, it is deleted. The
standard SADE menus and menu items cannot be deleted.

A Warning If both menuname and itemname are omitted, all user-defined
items are deleted. •

deletemenu "Special" "Launchapp"

See also AddMenu

70 SADE Reference c

(

Directory-set or write the default directory

Syn tu

Desaiption

Examples

directory [directoryname l

When you first enter SADE, the default directory is the directory where SADE
resides. The Directory command sets the defauit directory for all SADE file­
oriented operations to the specified directory. Directoryname is a string
expression and must be enclosed in quotation marks if it's a string constant. If
directoryname isn't specified, the current default directory is displayed.

macro here "volume:very:long:directory:path" ·
directory here

macro RootPath "volume:very:"
directory concat(RootPath, "long">

Sec also Sourcepath

PART II: Command Reference 71

Disasm-disassemble code

Syntax

Description

Example

disasm [addr [count J J
or

disasm [addr-range l

The Disasm conunand disassembles instructions starting at the location specified
by addror addr-range. The default behavior when no address is specified is to
begin disassembling at the end of the last disassembly. If the value of the
program counter has changed since the last disassembly, the program counter
(PC) is used as the default starting address. If no range or count is specified, the
number of instructions (not lines) disassembled defaults to 20.

Each line of the disassembly output is divided into four fields: the module
offset, the address of the instruction, the hexadecimal encoding for the
instruction, and the assembly code (opcode, operand, and comment). You can
modify the presence, order, and format of these fields by changing the value of
the built-in variable DisA5mFormat (described in Chapter 3).

t-- diassemble 5 instructions in standard format, starting at
t-- the eighth statementof the DisplayText routine.

disasm DisplayText. (8) 5

t-- output

DisplayText
+0040 003l9lA8
+0044 003l9lAC
+0048 003l9lBO
+004C 003l9lB4
+0050 003l9lB8

2F2D FE64
2F2D FE78
4EBA FE26
4860 FE48
4EBA OOCO

See also Dump

72 SADE Reference

MOVE.L -SOl9C(A5),-(A7)
MOVE.L -SOl88(A5),-(A7)
JSR FlushDWindow ; 00318FD8
PEA -S01B8(A5)
JSR DisplayString 0031927A

)

(

<~

Dump-display memory

Syntax dump [byte I word I long J [addr [count 11
or

dump [byte I word I long 1 · [addr-range]

Description The Dump command displays memory at the location specified by addr or
addr-range. If no parameter is given, the memory starting at the program counter
is displayed. The memory is displayed in hexadecimal and ASCII characters
according to the specified format, which may be byte, word, or long. The default
format is word.

Examples

dump byte as

Remember that to dump the value of a variable "foo", you must specify dump
Uoo (since dump foo would take foo's value and use it as an address).

S00146A8E 00 14 68 74 FF FF FF FF 00 00 00 00 00 00 00 00 .. ht ...•.•.•....
dump word aS 40

$00146A8E 0014 6874 FFFF FFFF 0000 0000 0000 0000 .. ht •••..•.•...•
$00146A9E OOOE 6C66 0000 FFFF FFFF FFFF FFFF FFFF •• lf •••••.•....•
$00146AAE 0001 4EF9 OOOE 6EOO •• N ••. n.

dump long aS .• aS+40

$00146A8E 001468?4 FFFFFFFF 00000000 00000000 .• ht •.•.•...•.•.
S00146A9E OOOE6C66 OOOOFFFF FFFFFFFF FFFFFFFF .. lf
$00146AAE 00014EF9 OOOE6EOO 00 .. N ... n .•

See also Disasm

PART II: Command Reference 73

Execute-execute commands in a ftle

Syntax

Desaiption

execute filename

The Execute command executes the commands and definitions contained in the
specified file. Filename is a string expression and must be enclosed in quotation
marks if it's a string constant. The Execute command can't be used within a
structured statement.

Example

t-- In this example, the Redirect command creates a file to hold
t-- output from SADE. Entering a string echos the string. That
t-- output is redirected to the file, becoming the file's contents.
t-- Here the string is a comment and a SADE command to execute
t-- the contents of the next file in the chain.

open 'execl'
redirect 'execl'

'"\n executing execl now"'
"execute 'exec2'"

open "exec2"
redirect 'exec2 •

"'now executing exec2'"
"execute 'exec3'"

open "exec3"
redirect 'exec3'

'"Done in exec3"'

redirect pop all
execute "execl"

Alert "Try a tile windows here\no
Then look at the worksheet for output"

t-- output

executing execl now
now executing exec2
Done in exec3

74 SADE Reference

Find-search for a target

Syn tu

Descripdon

Examples

find [count l target [, n l [addr-range [mask mask J l
or

find [count] target [, n J [addr [count l [mask mask l]

The Find command searches memory for a target pattern, which can be either a
numeric or string expression. If you specify the count keyword, Find tells you
how many occurences of the target it found. If you omit the count keyword,
Find displays the address of the first occurrence of the pattern. You can use the
n parameter to specify which occurrence of the pattern you wan~ for instance, if
you specify 3 for n, Find returns the address of the third occurrence of the
pattern.

You may start the search at a specified addrand look up to count bytes beyond,
or you may limit the search to addr-range. The default range is the MultiFinder
block containing the application's heap and stack (in other words, all of the
memory that belongs to the application).

The mask parameter (prefaced by the mask keyword) is an optional numeric or
string expression that is logically ANDed with the contents of each memory
location before the comparison is done.

6. Important Remember that expression values in SADE are long words by
defaul~ to specify another size, use typecasting, as shown
below.~

dump $20 $40
$00000020 0027 A002 0027 AOOA 0040 1F52 0027 A012
$00000030 0027 AOlA 0027 A032 0040 ll3C 0027 A02A
$00000040 0040 113C 0040 113C 0040 ll3C 0040 113C
$00000050 0040 l13C 0040 113C 0040 ll3C 0040 ll3C

t-- Looking for the number of occurances of target,
t-- from start address, for number of bytes.

• ' ••• , ••• @ .R., ..
. ' ... '. 2 .@. <.' ...
.@.<.@.<.@.<.@.<
.@.<.@.<.@.<.@.<

f-- Target is cast to word size. The default size would
t-- be long and nothing in this range matches $0000113C.

find COUNT (word)$113C $20 $40
9

PART II: Command Reference

t-- Looking for first occurance of target, in address range.
t-- C style type cast to limit the target to word size.

find (word)$113C $20 .. $96
$0000003A

t-- Looking for second occurance of target.
t-- Using Pascal style typecast on target.

find word($113C), 2 $20 $40
$00000042

t-- Looking for a long.
t-- Masking the memory searched prior to the compare.

find $0000113C $20 •• $96 MASK $0000ffff
$00000038

t-- Match same last target with same last mask.
t-- Just change the address range to search.

find SAME $40 .. $50
$00000040

76 SADE Reference

)

(

For ... End-loop with a control variable

Syntax

Description

for clause [do J
commands

end

where clause may have one of the following forms:

var:• exprto e::r:pr
var :• e::r:pr downto e:rpr
var :• expr, ...

The For ... End construct provides looping with a control variable. The enclosed
commands are executed until the control variable has taken on each successive
value in the range expressed by clause.

The control variable var must be declared before it can be used, and array
variables are not allowed. For the clause exprto expr, the commands are executed
and the control value incremented once for every integer value in the range. For
the clause exprdownto e:rpr, the control value is decremented. The third clause is
a list of expressions; execution continues until the control variable has ta.ken the
value of each of the listed expressions.

For ... End constructs may be nested; they may also be used within other flow­
control constucts, as well as in break actions. The control variable may be
modified within the body of the loop (but cannot, of course, be shared berween
nested constructs).

PART II: Command Reference

Example

define var :• 0
define outerLooper, syncopation
for outerLooper :• 3 downto l do

"\n"
for syncopation :• "one","two","three", var

printf "td -- " , outerLooper
syncopation
var :• var + l

end
end
f-- output

3 one
3 two
3 three
3 0

2 one
2 two
2 three
2 4

l one
l two
l three
1 8

78 SADE Reference 0

Func •.. End-define a SADE function

Syn tu

Dcsaipdon

Example

func fact(n)

func name [(arg-name , ...)]
commands

end

SADE functions are delimited by the Func ... End construct The last statement to
be executed must be a Rerum command specifying a return. value. The type of a
function is not specified in the definition but rather takes on the type of the
value returned. (Thus functions are not limited to reruming results of a single
type.)

SADE functions use conventional calling notation, with the function name
followed by a list of parameters enclosed by parentheses. Function parameters
are handled in the same fashion as procedure parameters, and the predefined
SADE variables Arg and NArgs may be used (See the description of the Proc
command for an example using these variables.) User-defined functions may be
called anywhere an expression is allowed.

if n <• 1.0 then
return l. 0

else
return n * fact(n-1)

end
end

See also Proc, Return

PART II: Command Reference i'9

Go-resume execution

Syntax

Description

Examples

go[til addr , ...]
or

go [while e:x:pr]
or

go [until apr]

The Go corrunand resumes program execution at the current program counter. If
you specify the keyword til, SADE sets a temporary breakpoint at the specified
address(es). When the breakpoint is encountered, SADE is reentered and the
breakpoint is removed. Note that if multiple breakpoints are specified with the
keyword tll, all breakpoints are rem>ved when any of them is reached.

If the address is in ROM, SADE infonns you that it can't set a breakpoint in ROM.
If a conditional expression is specified, SADE uses trace mode until the
condition is met (for the keyword until) or broken (for the keyword while).

qo til \OtherCompilationUnit.myProc.(l)
qo while particularVar < 2
qo until ProqVar{l] • 3

See also Stop

SADE Reference

/
j

•

(.·.

Heap-display heap information

Syn tu

Daaiption

Example

heap [display] [addr] [blocla}pe]

The Heap command displays information about the specified heap. You can
specify a heap that starts at addr; if no address is specified, the heap point~d to
by the global variable theZone is displayed. By default, this information is
displayed:

• a dot if the object is locked or nonrelocatable
• the block length
• the block type (relocatable, nonrelocamble, free)
• the address of the beginning of the block
• block attributes (locked, resource, purgeable)
• the address of the master pointer if it's a relocatable block
• for standard toolbox data suuctures, a description of the structure
• for a resource, the resource type and ID, and the reference number of

the file it's in

You can specify one of the following blocletypes to limit the display co a particular
type of block:

•
•
•
•
•
•
•

purgc{able) limits the display to purgeable blocks.
nonrcloc[atablc] limits the display to nonrelocatable blocks .
reloc[atable] limits the display to relocatable blocks .
free limits the display to free blocks .
lock(cd] limits the display to locked blocks .
res[ourceJ limits the display to resources .
restype type limits the display to the specified resource type .

Note that type is case-sensitive and should be enclosed in single quotation marks
('MENU', for example). ·

Heap restype 'MENU'

t-- output

BlkAddr BlkLenqth Typ MasterPtr Flags RType
$00316590 $00000098 H $0031452C R MENU
$00316838 $00000050 H $00314528 R MENU
$00316888 $000000F4 H $00314524 R MENU

Sec also Heap Check

Rid RFRef RName
1000 $0584 "File"
1001 $0584 "Edit"
1002 $0584 "Log"

PART II: Command Reference 81

Heap Check-check heap consistency

Syntax

Description

Examples

heap check [addr J

ihe Heap Check command checks the consistency of the current application
heap, which is by default the heap referenced by the global variable theZone. You
can specify another heap, but addr must be the address of the heap zone header.
(In other words, you can't check part of a heap.)

Heap Check performs range checking to make sure all pointers are even and non­
NIL, and that block sizes are within the range of the heap. It verifies that the self­
relative handle points to a master pointer referring to the same block. For
nonrelocatable blocks, it checks if the heap zone pointer points to the zone
where the block exists. Heap Check also verifies that the total amount of free
space is equal to the amount specified in the header, and that ail pointers in the
free master pointer list are in the heap.

Printf "Checking %P's heap at $%.08X\n", APstring($910)A, TheZone
Heap Check TheZone

Printf "Checking the System heap at $%.08x\n", SysZone
Heap Check SysZone

Printf "Checking the Multifinder heap at $%.8x\n", **$2a6+Sc
Heap Check $2a6AA+$c

J-- output

Checking SADE's heap at $00146EF2
The heap is okay.

Checking the System heap at $00001400
The heap is okay.

Checking the Multifinder heap at $00023d64
The heap is ok'ay.

See also Heap, Heap Totals

82 SADE Reference

-)

(

(

Heap Totals-display heap summary

heap totals [addr 1 [blocktype 1 Syntax

Dcscripdon The Heap Tor.als command summarizes the state of the current application heap,
which is by default the heap referenced by the global variable theZone. You can
specify another heap that starts at addr.

Information is given for free, nonrelocatable, and relocatable objects. If you wish
to restrict the display to a partirular type of block, you can specify one of the
following blocktjpeS:
• purgc{able] lirnirs the display to purgeable blocks.
• nonreloc{atablc] limits the display to nonrelocatable blocks.
• rcloc{atable] limits the display to relocatable blocks.
• free limits the display to free blocks.
• lock{cd] limits the display to locked blocks.
• rcs[ourcc] limits the display to resources.
• rcstype type limits the display to the specified resource type.

Note that type is case-sensitive and should be enclosed in single quotation marks
('CODE', for example).

Example

heap totals

t-- output
Total Blks

Free 23
Nonrelocatable 7
Relocatable 89

Locked & NonPurgeable 2
Locked & Purgeable 2
UnLocked & Purgeable 6
UnLocked & NonPurgeable 79

Heap (total) 119

Sec also Heap, Heap Check

Total Size
49080

1348
21232

5796
8136

680
6620

71660

PART II: Command Reference 83

Help-display help information

Syntax

Description

help [identifier, ...]

The Help command displays infonnation about using SADE, including the syntax
of all SADE commands. To see what values identifier can have, just enter help.

84 SADE Reference

If ... End-conditional execution of commands

Syn tu

Desaiption

if Boolean [then]
commands

[elseif Boolean { then]
commands] ...

[else
commands]

end

The IL.End construct allows for conditional execution of sequences of SADE
commands. Each if must be concluded by a corresponding end. Elseif and else
are optional, but must appear between the if and end in the order indicated
above. More than one elseif may appear, but at most one else may appear.

The commands controlled by an if extend to the corresponding end, or to the
first corresponding elsdf or else. The commands controlled by an elseif extend
to the next corresponding elseif, else, or end. The commands controlled by an
else extend to the corresponding end.

When an IL.End construa is evaluated, if the if Boolean is true, the statements
controlled by the if are executed and the remainder of the construct to the end is
skipped. If the Boolean is false, the statements controlled by the if are skipped
and the next (elseif) condition is checked, if present. If an elscif condition is
evaluated and is true, the commands it controls are executed and the remainder
of the construct is skipped. If no conditions are evaluated as true, when the else
command is reached (if present), the commands controlled by the else are
executed (otherwise, they're skipped).

If ... End constructs may be nested.

PART II: Command Reference 85

Example

I-- Steps through a five element array using a low to hiqh index,
I-- looking for first true element, and resetting it to false.
t-- Done S times, starting with the first four elements true
I-- and the last element false.

define global test[S] :• (4 of l,0)

proc IfOemo
define whichtest
define showMe
for whichtest :• l TO S do

printf "\n"
for showMe :• l to S do

printf "\t", test[showMe]
end
printf " - "
if test[l]

"test[l] true"
elseif test(2]
"test[2] true"

elseif test[3]
"test(3] true"

elseif test[4]
"test(4] true"

elseif test[S]
"test[SJ true"

else
"all tests false"

end
test(whichtest] :• 0

end
end

IfDemo

#-- output

llllO - test[l] true

OlllO - test[2] true

00110 - test[3] true

00010 - test[4] true

00000 - all tests false

SADE Reference

r~'.
'-'-._ __ ,,/

Kill-kill an application or tool

Syntax

Description

Examples

kill .filename

If you want to terminate an application, (whether it's suspended or not), use the
Kill conunand. Be aware, though, that Kill is dAngerous, since it doesn't giYe the
unlucky application a chance to perform its usual exit routines (like saving data).
Kill does perform cleanup activities like freeing the MultiFinder memory occupied
by the application and removing its trap patches.

Filename is a sting expression and must be enclosed in quotation marks if it's a
string constant

kill 'VolName:full:path:to:targetProg'

define RootPath :• "VolName:full:"
kill Concat(RootPath, "path:to:targetProg"J

directory 'VolName:full:path:to:'
kill "targetProg"

PART II: Command Reference

Launch-launch an application

Syntax

Description

Examples

launch jilename

The launch command launches the specified application or tool. Filename is a
string expression and must be enclosed in quotation marks if it's a string
constant Launch does nothing if the file type of the specified ftle is not 'APPL'.

t-- define directory location for tarqet proqram sources
t-- (if not in the same directory as the proqram file)

sourcepath 'VolName:path:tarqetProq:sources:'

#-- define directory location of target program executable file
#-- and, if different, the location of its .sym file

target 'VolName:path:targetProg' using 'VolName:path:targetProg.sym'

#--- then launch the tarqet progam, as in the examples below,
t--- SAOEKey to suspend and begin debugqing it.

launch 'VolName:path:targetProg'

t-- or

define RootPath :• "VolName:"
launch Concat(RootPath, "path:tarqetProq")

t-- or

directory 'VolName:path:'
launch "targetProg"

88 SADE Reference 0

(

(

Leave-exit from a looping construct

leave [if Boolean l Syntax

Dcscripdon The Leave conunand lets you exit from a Loop, While, Repeat, or For construct
You can specify a condition for leaving with the if keyword.

Example

define testnum :• 0
repeat

Printf "testNum - %d\n", testNum
leave if testNum • 3
testNum :• testNum + 1

until testNum • 6
Printf "after leaving Repeat loop - testNum • %d\n", testNum

f-- output

testNum - 0
testNum - 1
testNwn - 2
testNum • 3
after leaving Repeat loop - testNum • 3

Sec also Cycle, For, Loop, Repeat, While

PART II: Command Ref ere nee 89

List-list processes, tracepoints, and breakpoints

Syntax

Description

Examples

list break

list process
or

list trace [traps I addrs J
or

list break [traps I addrs l

The List command lets you see what processes, breakpoints, and tracepoints are
around.

For processes, the display includes the following infonnation: a process number, a
"loaded" or "not-loaded" designation, and the filename and symbol filename
(typically the filename followed by . SYM) for the process.

For breakpoints and tracepoints, List displays the location along with its
symbolic representation. The optional traps or addrs keywords limit the display
to trap or address breakpoints (or tracepoints) respectively.

list all breakpoints set

#-- output

EVENTLOOP. (5)
EVENTLOOP . (l l)
EVENT LOOP . (2)

t $2lA4E2 # processID •10 # has break action
S2lA500 # processID =10
S2lA4C4 # processID =10

list process

t-- output

Process# Loaded?
6 Loaded.
2 Loaded

See also Trace, Break

90 SADE Reference

FileName, SymbolFile
SADE, SADE.SYM
Finder, Finder.SYM

(

(.

Loop ... End-repeat commands until Leave

Syntax loop
commands

end

Desaiptlon The Loop ... End construct provides unconditional looping. The enclosed
commands are executed repeatedly. To exit the loop, use the Leave command.

Loop constructs may be nested.

Example

define Inner :• 0
define Outer :• 0
loop

loop
Inner :• Inner + l
printf "Inner: %d " , Inner
leave if Inner > Outer

end
Inner :- 0
Outer :- Outer + l
printf "Outer: %d\n", Outer
leave if Outer > 4

end

#-- output

Inner: l Outer: 1
Inner: l Inner: 2 Outer: 2
Inner: l Inner: 2 Inner: 3 Outer:
Inner: l Inner: 2 Inner: 3 Inner:
Inner: l Inner: 2 Inner: 3 Inner:

See also Leave

3
4 Outer:
4 Inner:

4
5 Outer: 5

PART II: Command Reference 91

Macro-define a macro

Syntax

Description

Examples

macro name string-expr

The Macro command associates a string of characters with a name. ~facros let you
define shon, familiar names to use instead of long, unfamiliar strings. For
instance, the SADEStartup file defines macros that let you use MacsBug-like
syntax for cenain SADE commands.

Macro definitions can be nested; that is, they can contain references to other
macros. Macro definitions cannot be recursive, however; in other words, a macro
definition can't reference itself. Macro definitions are not allowed in strucrured
statements. Macros may be redefined. Macro definitions are limited to a length
of 254 characters.

macro br 'break'
macro clr 'unbreak all'

macro dir "volwne:very:long:directory:path"
directory dir

92 SADE Reference
'(1··'.·····,·

:,,"'!

(

OnEntry-set commands for SADE entry

Syntax

Desaiption

See also

onEntry [break-action J

The OnEntry comrnand supplies comrnands that are co be executed each time
SADE is entered. Each OnEntry comrnand replaces the comrnand.s speciried by
the previous OnEntry command. In the SADEStanup file, the StandardEnt ry

procedure is specified as an OnEntry break action. You can define your own
OnEntry actions in the SADEUserStanup file, but you'll probably want to use the
one· in SADEStartup as a model (so as not to lose the operations it performs).

The OnEntry comrnand accepts only one command or procedure invocation. If
you want co execute multiple commands and/or procedures upon entry, use the
Begin .. End construct to group them.

Break, Begin

PART II: Command Reference 93

Open-open a file

Syntax

DC5".rlption

Example

open 'myFile'

See also

open [source 1 [behind] .filename

The Open command opens the specified file. Filename is a string expression and
must be enclosed in quotation marks if it's a string constant. The file must be of
type 'TEXT'. The source keyword opens the window read-only. If you specify
behind, the window is opened just behind the f ronanost SADE window,
otherwise, it's opened as the fronanost window.

Close, Save

SADE Reference
.(.···.·.~·
I", '·

7,/

(Printf-print formatted output

Syntax

Dcsaiption

printf [format [, atgument l ... l
or

printf [(/ormat [, atgument l ...) l

The Printf command is the most complicated of the SADE commands. If you find its
myriad options intimidating, remember that Printf has one simple and important use:
printing anything you wane to a SADE window or file. You can also use Printf to convert
and format values in just about any vny you might vnnt.

Format is a string containing characters to print, as well as format specifications for
arguments that follow. Format specifications are preceded by the % character. For
instance, to print the value of the variable myVar as a decimal number, along with a
message, enter:

printf "The value of myVar is %d" myVar

Each format specification applies to zero or more arguments. When the format
specifications are exhausted, any remaining arguments are ignored. Llkewise, when the
specified arguments are exhausted, any remaining format specifications are ignored.

The following fields are used in the format specification:

% [flags] [width] [precision] op

flags An optional sequence of characters which modify the meaning of the main
(op) conversion specification:

Left-justify within the field width rather than right-justify if the
converted value has fewer characters than the specified
minimum field width.

+ Always generate a •+• or•.• sign when converting signed
arguments. Note, that negative values are always preceded by a
"·" regardless of whether the •+• flag is specified.

space Generate a space for positive values and •.• for negative values.
This space is independent of any padding used to left or right­
justify the value. The •+• flag has precedence over the space
flag.

Modify the main conversion operation. The modifications
performed are described in conjunction with the relevant main
conversion operations discussed later.

PART II: Command Reference 95

width An optional minimum field width, specified as a decimal integer
constant (that doesn't begin with a •o•) or an •••. In the latter case a
corresponding argument specifies the minimum field width. If the
converted value has fewer characters than the width, it is padded to the
width on the left (default) or right (if the •-•flag is specified) with spaces
(default). If the converted value has more characters than the width, the
width is increased to accommodate ·it For %t conversions, the width
specifies the minimum width to reserve for RECORD type field names.

precision The optional precision is specified as a •." followed by an optional
decimal integer or as an In the latter case a corresponding argument
specifies the repetition count. If the decimal integer or ... following the
•." is omitted, the precision is assumed to be 0. Precision is used to
control the number of digits to be output for numeric conversions or
characters for string conversions. Omitting the precision has a default
value which is a function of the main conversion to be performed.

op The required main conversion operation specified as one of the following
single characters:

SADE Reference

d The corresponding parameter is convened to a signed decimal
value (floating point values are truncated).

precision The precision specifies the minimum number of digits
to appear. If the value can be represented with fewer
digits, leading zeros are added up to the specified
precision. The result of convening a 0 value with a
precision of 0 is a null. The default precision is 1.

flags
+
space ,

left-justify
explicit •+11 or 11- 11

space for positive value
ignored

u The corresponding parameter is convened to an unsigned decimal
value (floating point values are truncated).

precision The precision specifies the minimum number of digits
to appear. If the value can be represented with fewer
digits, leading zeros are added up to the specified
precision. The result of convening a a value with a
precision of 0 is a null. The default precision is 1.

)

()

(

flags
+
space
I

left-justify
ignored
ignored
ignored

X The corresponding argument is converted to an unsigned
hexadecimal value. The nwnber of bytes converted is a function of
the arg's type. The letters abcdef are used for x conversion and
ABCOEF are used for X conversion.

b

precision The precision specifies the minimum number of digits
to appear. If the value can be represented with fewer
digirs, leading zeros are added up to the specified
precision. The result of converting a 0 value with a
precision of 0 is a null. The default precision is 1.

flags
+
space
I

left-justify
ignored
ignored
prefix converted value with a "S"

The corresponding argument is converted to an unsigned binary
value. The number of bytes converted is a function of the arg's
type.

precision The precision specifies the minimum number of digits
to appear. If the value can be represented with fewer
digirs, leading zeros are added up to the specified
precision. The result of converting a 0 value with a
precision of 0 is a null. The default precision is 1.

flags
+
space
I

left-justify
ignored
,ignored
ignored

o The corresponding argument is converted to an unsigned octai
value. The number of bytes converted is a function of the
argument's type.

precision The precision specifies the minimum number of digits
to appear. If the value can be represented with fewer
digirs, leading zeros are added up to the specified
precision. The result of converting a 0 value with a
precision of 0 is a null. The default precision is 1.

PART II: Command Reference

98 SADE Reference

flags
+
space ,

lefc.justify
ignored
ignored
prefJX converted value with a "0"

f The corresponding argument is converted to a signed decimal
floating point value. The value is conver~d to the form
11(-Jddd.ddd", "[-lINP', or •[-]NAN(ddd)" (where ddd is the NAl'l
code) depending on the value.

precision The precision specifies the number of digits after the
decimal point If the precision is 0, no decimal point
appears (which can be overridden with the "'" flag).
The default precision is 6.

flags
+
space

left-justify
explicit "+" or •.•
space for positive value
force decimal point in the case where no
digits follow it

E The corresponding argument is converted to a signed decimal
jloaling pointvalue. The value is converted to the form ~r­
ld.ddde±dd" (for e conversion), •[-Jd.dddE±dd" (for E
conversion), "{-]INF", or "[-]NAN(ddd)" (where ddd is the NA."1
code) depending on the value. The exponent always contains at
least two digits.

precision The precision specifies the number of digits after the
decimal point. If the precision is 0, no decimal point
appears (which can be· overridden with the "#" flag).
The default precision is 6.

flags
+
space ,

left-justify
explicit "+" or •.•
space for positive value
force decimal point in the case where no·
digits follow it

r·~'l
·~.;?'

0

(

G The corresponding argument is convened to a signed decimal
floating point value. The value is converted using fore conversion
(or in the style for E conversion when G is specified). The form
of conversion depends on the value being converted; e or E
conversion is performed only if the exponent resulting from
the conversion is less than -4 or greater than the precision. Trailing
ze~ are removed from the result (which can be overridden with
the 111 flag). A decimal point appears only if it is followed by a
digit (which can be overridden with the •11• flag)

precision The precision specifies the total number of significant
digits. If the precision is less than 1, then 1 is assumed.
The default precision is 6.

flags
+
space

left-justify
explicit •+• or •.•
space for positive value
force decimal point in the case where no
digits follow it and keep trailing zeros

c The corresponding argument is converted to a character (the value
mod 256 is used).

precision ignored

flags ignored
+ ignored
space ignored
ignored

s Unless the "If' flag is used, the corresponding argument must be a
string type (or a pointer) and the value is copied to the output as
is. C strings and as is (Pascal packed array of char) strings are
copied until a null is encountered (for C strings) or the number of
characters specified at the precision is reached. Pascal strings may
be processed if the type of the argument is a Pascal string. When
the "If' flag is used, the corresponding parameter is treated as an
unsigned long, and printed as if it contains 4 characters.

precision The precision specifies the maximum number of
characters to output. The default precision is assumed
to be infinite. In that case a C and as is strings are
output up to but not including a terminating null
character and entire Pascal strings are output.

PART II: Command Reference 99

100 SADE Reference

flags
+
space

left-justify
ignored
ignored
the corresponding parameter is treated as
an unsigned long, and printed as if it
contains 4 · characters

P Unless the •r flag is used, the corresponding argument must be a
Pascal string type (or a pointer) and the value is copied to the
output as is. When the •r flag is used, the corresponding
parameter is treated as an unsigned long, and printed as if it
contains 4 characters.

You must use an upper-case %P as shown to output a Pascal string
type. If you use a lower-case %p argument, the value displayed is
output as a pointer type, which is a hexadecimal number optionally
preceded by OX.

precision The precision specifies the maximum number of
characters to output The default precision is assumed
to be infinite. In that case the entire Pascal string is
output.

flags
+
space

left-justify
ignored
ignored
the corresponding parameter is treated as
an unsigned long, and printed as if it
contains 4 characters

t The corresponding argument is converted as a function of its type
as follows:

a base type u, d, g; p, or s as appropriate to the type with the
precision and flags interpreted as a function of
these format codes.

non-base type The value(s) are displayed using a pseudo-Pascal
type specification format appropriate to the
type of the parameter (for example, a
RECORD/struct type is displayed using a Pascal­
like RECORD notation). The flags control some of
the aspects of the formatted output.

c)

.)

0

(The corresponding argument need not specify a value and instead
may specify only a type. In this case, the type definition is
displayed, again using the same pseudo-Pascal type specification
format.

flags

+

space

display only the type even if corresponding
parameter specifies a value. The type is to
be displayed exhaustively, in other words,
display every type down to its base type.
display only the type even if corresponding
parameter specifies a value.
ignored
show ail values and offsets in hexadecimal

% A single "%' is outpu~ no parameter is used.

precision ignored

flags left-justify
+ ignored
space ignored
ignored

PART II: Command Reference 101

Examples

t-- Displays record definition of system type EventRecord.
t-- Notice how EventRecord.Where, which is of type Point, has been
t-- expanded to show its definition too.

printf ".%P", "pstring ($910)"
myProg

printf "%P", *(pstring*) $910
myProg

printf "%-t", EventRecord
RECORD

WHAT: Word;
MESSAGE: Long;
WHEN: Long;
WHERE: RECORD

CASE Word OF
(1) :

(RECORD
V: Word;
H: Word;

END);

(2) :
(RECORD

VH: ARRAY [(0, 1) J OF
Word;

END);
END;

MODIFIERS: Word;
END

#--Doing the-same thing with a target program variable
t-- of type EventRecord. The %t format specifier lets
#-- the Printf display format be controlled by the
#-- type of the variable displayed.

typeof(myEvent)
EVENTRECORD

printf "%t", myEvent
RECORD ·

WHAT: 3; .
MESSAGE: 16686;
WHEN: 284053;
WHERE: RECORD

CASE Word OF
(1) :

(RECORD
V: 272;
H: 267;

END)
(- - -);

END;
MODIFIERS: 2432;

END

102 SADE Reference

1··".) '..(. ··\

"-J

Proc ... Encl-define a SADE procedure

Syntax

Description

proc name [arg-name , ••• J
commands

end
or

proc name [(arg-name , •••) l
commands

end

SADE procedures are delimited by the Proc ... End construct. The procedure name
is followed by an optional parameter list; if presen~ the list identifies parameters
by name only. Parameters are not assigned a type but instead take on the types
of the actual parameter values when the procedure is called.

The parameter list may optionally be enclosed in parentheses. If the parentheses
are included in the definition, they must also be used when the procedure is called
(and vice versa).

The number of actual parameters need not match the number of formal
parameters in the definition. If too few actual parameters are specified, the
formal parameters for which there were no corresponding actual parameters are
assigned a special undefined value. Extra actual parameters have no
corresponding formal name but can be referenced through the predefined SADE
variable Arg, which lets you access the parameters of a procedure with references
of the form a rg [n J • The number of the last actual parameter specified is
contained in the predefined SADE variable NArgs. Note that the values of these
variables represent the parameter state of the currently active procedure and are
not defined outside it.

Procedures may be redefined. A procedure must be defined before a call to it can
be processed. If you -wane mutually recursive procedures, a "dummy" procedure
(similar to a Pascal FORWARD definition) must first be defined. A second
procedure can then redefine the first one, referencing the second procedure. The
minimal dummy procedure definition is: proc foo; end;.

Procedure calls may be nested.

PART II: Command Reference 103

Example

#-- This procedure illustrates the use of the
#-- Arg(n) and Nargs built-in SADE variables

proc myProc (argl, arg2, arg3, arg4)
define looper

"in myproc"
printf("called with nargs: %d \n", nargs)
for looper :• l to nargs

printf ("arg %d: %d \n", looper, arg(looper])
end
"\n"

end

"call myproc with 1 arg"
myproc(l)
"call myproc with 2 args"
myproc(l,2)
"call myproc with 3 args"
myproc(l,2,3)
"call myproc with 4 args"
myproc(l,2,3,4)

#-- output

call myproc with l arg
in myproc
called with nargs: l
arg l: l

call myproc with 2 args
in myproc
called with nargs: 2
arg l: 1
arg 2: 2

call myproc with 3 args
in myproc
called with nargs: ·3
arg 1: l
arg 2: 2
arg 3: 3

call myproc with 4 args
in myproc
called with nargs: 4
arg 1: 1
arg 2: 2
arg 3: 3
arg 4: 4

See also Fune

104 SADE Reference

)

(,

Quit-quit SADE

Syntax

Description

See also

quit

The Quit command tenninates SADE and passes control to another process as
detennined by MultiFinder. Be aware that Quit kills any suspended applications.

Shutdown

PART II: Command Reference 105

Redirect-redirect output

Syntax

Description

redirect [append J filename
or

redirect [pop] [all]

The Redirect command redirects the output from SADE commands to the
specified file. The simplest way to use redirection is to replace the contents of
the named file. If you specify the append keyword, the output is appended to
the end of !he file. You can also use the S character (Option-6) to replace or
append to the selection in an open window (see the example below).

A. Warning Be aware that if you use use Redirect to replace the contents of a
file that's not open, there's no way to undo it (If the file is open,
you can close it and respond •No" when the dialog asks whether to
save changes.) •

You can nest Redirect corrunands to as many as 10 different files; SADE maintains
the names of these files as a last-in, first-out queue. If you use the pop keyword,
or if you use no parameters at all, the output from SADE commands is redirected
to the file at the head of the queue. If all or pop all is specified, standard output
is redirected to the current command window.

+Note: Any error conditions cause SADE to perform an implicit
pop all for any redirected files; this ensures that output rerurns to
the current command window.

106 SADE Reference

(

Examples

redirect "whyNot.§" # Replace the current selection

t-- In the next example, the Redirect command creates a file to hold
t-- output from SADE. Entering a string echos the string.
t-- That output is redirected to the file, becoming
t-- the file's contents.
t-- Here the string is a comment and a SADE command to execute
t-- the contents of the next file in the chain.

open 'execl'
redirect 'execl'

'"\n executing execl now"'
"execute 'exec2'"

open "exec2"
redirect 'exec2'

"'now executing exec2'"
"execute 'exec3'"

open "exec3"
redirect 'exec3'

'"Done in exec3"'

redirect pop all
execute ~execl"

Alert "Try a tile windows here\no
Then look at the worksheet for output"

t-- output

executing execl now
now executing exec2
Done in exec3

PART II: Command Reference 107

Repeat ... Until-conditionally repeat commands

Syntax

Desaiption

Example

repeat
commands

until Boolean

The Repeat ... Until construct provides conditional looping with a test at the end
of the loop. The enclo.5ed commands are executed until Boolean is true. The
enclo.5ed commands are executed at least once.

Repeat constructs may be nested.

target 'MyProg'
break \MyProg.MainEventLoop. (1)
launch 'MyProg'
t-- hasEvent is a global variable in MyProg initialized to 0
printf "Pc at %t \nEventReceived? \t \n", where (pc), hasEvent

define dummy
repeat

step
dummy :• addrtosource(pc, 1)

until hasEvent

printf "\nPc at %t \nEventReceived? %t \n", where (pc), hasEvent

#-- output

Pc at MAINEVENTLOOP. (1)
EventReceived? FALSE

Pc at MAINEVENTLOOP. (32)
EventReceived? TRUE

See also Leave

1~ SADE Reference

(ir\}
\~

(

(

Resource-display the resource map

Syntax

Description

Example

resource [display J [addr J [restype 't;pe']

The Resource command displays the contents of your application's resource
maps and the system resource map. If you want to display oniy a particular map,
addr should be the address of the map. The information displayed for each map
includes: its location, the resource ID, the resource type, the value of the master
pointer, whether the resource is locked or unlocked, and the resource name. 1f a
resource isn't loaded, the master pointer field says •not loaded."

You can also restrict the display to a particular resource type by using the restype
keyword with the desired type. Note that type is case-sensitive and should be
enclosed in single quotation marks ('WIND', for example).

resource res type 'WIND'

t-- output

Resource Map at $00316EF8
Res Id RType MasterPtr Locked? Name

1000 WIND $00316BE4 Unlocked
1001 WIND $00316C08 Unlocked
1002 WIND $00316484 Unlocked
1003 WIND $00316488 Unlocked
1004 WIND $00316408 Unlocked

Resource Map at S0002Bl9C
Redd RType MasterPtr Locked? Name

-16000 WIND Not Loaded
-15968 WIND Not Loaded
-15840 WIND Not Loaded

Sec also Resource Check

PART II: Command Reference 109

Resource Check-check the resource map

Syntax

Dcscrlption

See also

resource check [addr J

The Resource Check command checks the target application's iesource maps for
consistency. If you want to check a particular map, addr should point to the
address of the map. If an inconsistency is found, the command displays a
diagnostic message specifying the problem. ·

Resource

110 SADE Reference
C ...

•.· ' ' ' j

(
Return-return from a procedure or function

rerum [resull l Syn tu

Description The Rerum command returns you from a procedure or function currently in
execution. When returning from a function, the fanction result must be specified.
(When returning from a procedure, there is no rerurn value.)

Example

func MiscTypes (index)
define global SadeArray[4J :• (l, "this is two", 3.3, 4)
return SadeArray[indexJ

end

define selector
for selector :• l to 4 do

printf "%t \n", MiscTypes(selector)
end

#-- output

l
this is two
3.3
4

See also Fune, Proc

PART II: Command Reference 111

SADEKey-defme a key for entering SADE

Syntax

Dcsaiption

Example

sadekey 33

sadekey [keycode l

The SADEKey command let.5 you specify a different Command-Option key
combination for entering SADE. A complete list of keycodes can be found in the
Toolbox Event Manager chapter of Inside Macintosh Volume V. To see what key is
specified as the SADEKey, just type sadekey.

t-- define Command-Option-Delete combination as SADEKey

112 SADE Reference

)

(

Save-save a file

Syn tu:

Description

Example

save 'myFile'

Sec also

save [all I filename l

The Save command saves the specified file or, if all is specified, saves all files.
Filename is a suing expression and must be enclosed in quotation marks if it's a
string constant If the specified file wasn't modified since the last time it was
saved, Save does nothing.

If no parameters are given. Save saves the target window.

Open, Close

PART II: Command Reference 113

Shutdown-shut down or restart the machine

Syntax

Description

shutdown [restart]

The Shutdown command tenninates SADE and calls the Shutdown Manager. If
restart is specified, the Macintosh is restarted. Be aware that all unsaved work is
lost.

114 SADE Reference
·o.··· '\ .. ' .

SourcePath-tell SADE where your source files are

Syntax

Dc:saiption

Examples

sourcepath [[add I del[etel J directoryname, ... J

The SourcePath command tells SADE what directory your source files are in. If
your source files are in more than one directory, you can give the SourcePath
command a list If you're unsure which directories you've specified, simply enter
sourcepath and the current search path is displayed.

If you want to add a directory to, or delete a directory from, the previously
specified directories in the search path, you can use the add or delete ker;vords.
Note that if you specify a directory without using the add keyword, any
directories previously specified are replaced.

sourcepath 'srcdir', ':myotherdir' t sources in more than one direc~ory

sourcepath add ":samples"
path

See also Directory

add directory Samples to search

PART II: Command Reference 115

Stack--<lisplay stack frames

Syntax

Desaiption

Example

stack [count] [at addr J

The Stack command displays a list of the stack frames for the target application.
The stack frames displayed are based on register A6 or addr if at is specified.

For each entry, Staclc gives the address of the stack frame, the name of the
procedure or function that allocated the frame, and the name and offset (if
available) of the parent procedure.

If an explicit count is specified, then at most that many stack frames (counting
back from the current frame) are displayed.

stack at DisplayText. (6)
stack

Frame Addr Frame Owner
<main>
$0032BC24
$0032BB2C
$0032BBOC
$0032BADC
$0032BACC

CMain
main
SkelMain
LogEvent
ReportUpdate
DisplayText

116 SADE Reference

Called From

CMain+S0028
main. (51)
SkelMain. (13)+$0012
LogEvent. (50)+$0004
ReportUpdate. (1)+$0004

)

•

()

Step-single step execution

Syn tu

Desaipdon

Enmple

step [asm l line J [into J

The Step corrunand lets you execute your program one step at a time, from either
the source code level or the object code level. If line (the default) is specified,
execution proceeds one source statement at a time. If the source window
containing the current line can be found, the next line to be executed is
indicated.

If asm is specified, execution proceeds one instruction at a time; the instruction
at the program counter is executed and SADE is re~ntered. Traps are always
treated as single instructions; SADE steps over them, stopping at the first
instruction following the trap. Subroutines called by JSR and BSR instructions can
either be stepped over or stepped into. If into is specified, SADE steps in,
stopping at the first instruction of the subroutine. If into is omitted, BSRs and
JSRs are treated as single instructions.

A Warning Don't try to step over a routine that does not rerum to the caller;
for instance, a call to lonqjmp <>.SADE steps over procedure and
function calls by setting the trace bit until after the JSR or BSR is
executed, and then replaces the return address with the address of a
SADE routine. Since lonqjmp c > restores a previously saved
register set, including a new stack pointer, SADE's rerum is lost. If
you want to go to the routine restored by longjumpO, execute step
asm into until the registers have been modified and then do a
source step. Or better still, if you know where the jump will go, set a
breakpoint in that routine. •

proc stepProc
"\ncurrent pc"
disasm pc 4

"\nstep by instruction twice•
step asm
disasm pc l
step asm
disasm pc l

"\nstep into a procedure call"
step into
disasm pc 4

PART II: Command Reference 117

"\nstep by statement line twice"
step line
disasm pc 4
step
disasm pc 4

stop
end

kill 'events'

tarqet 'myl?roq'
break \myProq.MAINEVENTLOOI?. (ll) stepProc
launch 'myProq'
qo

t-- output

current pc
MAINEVENTLOOP

+004C 00llF706 4860 FFBE •*PEA
+0050 0011F70A 2FOE MOVE.L
+0052 0011F70C 4EBA FE94 JSR

0011F5A2
+0056 0011F710 42A7 CLR.L

step by instruction twice
MAINEVENTLOOP

+0050 0011F70A 2FOE *MOVE.L
MAINEVENTLOOP

+0052 0011F70C 4EBA FE94 *JSR
0011F5A2

step into a procedure call
CALLEDPROC

+0000 0011FSA2 4ES6 FFFC *LINK
+0004 0011F5A6 2F2D FFEO MOVE.L
+0008 OOllFSAA A873 SetPort -A873
+OOOA OOllFSAC 42A7 CLR.L

step by statement line twice
CALLEOPROC

+0004 0011F5A6 2F2D FFEO *MOVE.L
+0008 0011F5AA A873 _setl?oJrt

A873
+OOOA 0011F5AC 42A7 CLR.L
+oooc 0011!'5AE A975 TickCount

A975
CALLEDPROC

+OOOA OOllFSAC 42A7 *CLR.L
+OOOC 0011F5AE

A975
A975 _TickCount

+OOOE OOllFSBO 2DSF FFFC MOVE.L
+0012 0011F5B4 42A7 CLR.L

118 SADE Reference

' 0

-$0042(A5)
A6,-(A7)
CALLEDl?ROC ;

-(A7)

A6,-(A7)

CALLEDl?ROC

.)

A6,t$FFFC
-$0020(A5),-(A7)

-(A7)

-$0020(A5),-(A7)

-(A7)

-(A7)

(A7)+,-$0004(A6)
-(A7)

0

..

Stop-terminate break action

stop Syn tu

Dacrlption The Stop conunand terminates the current break action and returns you to SADE.
If the current execution was within a structured statement (Begin ... End, for
imtance), or if multiple commands were selected, the pending commands are
executed. To terminate a break action and cancel pending commands, see the
Abon command.

Example

directory 'VolName:Path:toMyProg:'
launch 'myProg'

proc WhichEvent(stopType)
define global EventType[l6] :• <'null',
•mouse-down•,•mouse-up',
'key-down', 'key-up','auto-key',
'update', 'disk-inserted','activate',
'network', 'device driver', 'appl',' app2', 'app3', 'app4')

if theEvent.what • stopType then
printf "%P received, stopping\n", EventType(stopType+lJ
stop

else
EventType[theEvent.what+l]
printf

end
end

break _waitNextEvent from applzone .. applzoneA whichEvent(l)
qo

t-- output

key-down
update
key-down
mouse-down received, stopping

Sec also Abort, Break, Quit

PART II: Command Reference 119

Target-tell SADE about your application

Syntax

Description

Example

target [progname [using symbolfliename 1 J

The Target command tells SADE the name of the application you want to debug
and identifies the symbol file (the .SYM file generated by the linker). If the .SYM
file is already in the same directory as the application and is called progname.SYM
(which it usually is), you don't need to bother with the using keyword.

Progname and symbolfllename are suing exp~ion.s and must be enclo.sed in
quotes if they are string constants.

To find out what the current target is, just type target.

target "VolName:MPW:MPW Shell" using "VolName:MPW:ToolStuff:tool.sym"
sourcePath add "VolName:MPW:ToolStuff:"
break \ToolMain.main. (1)
launch "mpw shell"

t-- Run tool to break to SADE with tool as target
t-- and pc at main. Cl)

120 SADE Reference

)

0
I

..

(

Trace-set tracepoints

Syn tu

Dcsaiption

Example

trace addr , •••
or

trace trap [from addr-range l ,. ..
or

trace trap-range (from addr-range] ,_.
or

trace all tra~ [from addr-range l

The Trace command sets tracepoints on the specified address or traps within the
target program. Tracepoints can be set on a single trap, a range of traps, or on all
tra~. Tra~ can be specified by either trap name or trap number. Trap numbers
must be prefixed with the ·r character and trap names must be preceded by an
underscore.

After setting the tracepoints, you can resume program execution. When the
tracepoint is encountered, a message is displayed on standard output, reporting
the address or trap being traced, with a symbolic representation of the address if
possible. If addr-range is specified, the message is displayed only if the trap was
called from the specified memory range. In any case, program execution resumes
after the message is displayed.

You can specify multiple tracepoints, separated by commas, with a single Trace
command.

To remove a tracepoint, use the Untrace command.

trace _OpenResFile .. _GetResource
trace tSA997 .. tSA9AO

fuse a trap range
fuse a trap range

Sec also Untrace

PART II: Command Reference 121

Unbreak-remove breakpoints

Syntax

Description

Example

unbreak addr , ...
or

unbreak trap , ...
or

unbreak trap-range, ...
or

unbreak all [traps I addrs 1

The Unbreak command clears the breakpoint, as well as any associated break
action, for the specified addresses or traps. The all keyword clears all breaks set
in the target program. The all keyword can optionally be followed by traps or
addrs to restrict the command to traps or addresses respectively.

unbreak _GetResource tundo break on GetResource trap

Sec also Break

122 SADE Reference

•

0 '

0

(Undefine-remove definitions

undefine name , ••• Syntax

Description The Undefine command removes the definition of the specified global SADE
variable, procedure, function, or macro. You can supply a list of names to remove
multiple definitions. Note that Undefine does not remove local variables defined
within SADE procedures or functions.

If you want to redefine an item, you don't need to use Undefine; you can just
assign a new value to the existing name using the Define command.

Example

proc ControlledProc
printf "\d ", ControllerGlobal

end

proc Controller
define global ControllerGlobal
define max :• 7

for ControllerGlobal :• l to max
ControlledProc

end
Undefine ControllerGlobal
Undefine ControlledProc

end

t-- output

Controller
l 2 3 4

ControllerGlobal

5 6 7

ft# Could not find "ControllerGlobal" as a program symbol

Controlled.Pree
ft# Could not find "Controlled.Proc" as a program symbol

Sec also Proc, Fune, Macro, Define

PART II: Command Reference 123

Untrace-remove tracepoints

Syntax

Description

Example

untrace addr , •••
or

untrace trap , •••
or

untrace trap-range , ...
or

untrace all [traps I add.rs 1 ·

The Untrace command clears the tracepoint at the specified addresses or traps.
The all keyword clears all tracepoints within the target program. The all keyword
can optionally be followed by the traps or addrs keywords to restrict the
command to traps or addresses respectively.

untrace _GetResource #undo trace on _GetResource trap

See also Trace

124 SADE Reference

' .

)

I I ..

(<

c::

Version-display SADE version information

Syntax

Description

version

The Version command displays the current SADE version number.

PART II: Command Reference 125

•

While ••. End-conditionally repeat commands

Syntax while Boolean [do 1
commands

end

Dcsaiptlon The While ... End comauct provides conditional looping with a test at the
beginning of the loop. The enclosed commancb are executed as long as Boolean is
aue. If the condition is false at the outse~ the enclosed commands are never
executed.

While comtructs may be nested.

Example

define qoSmall :• 10
while qoSmall > -2 do

while qoSmall > 4 do
while qoSmall > 7 do

printf " Inner loop - qoSmall • %d\n", qoSmall
qoSmall :• goSmall -1

end
printf " Middle loop - goSmall • %d\n", goSmall
goSmall :• goSmall - 1

end
printf "Outer loop - goSmall • %d\n", goSmall
goSmall :• goSmall 1

end

t-- output

Inner loop - goSmall • 10
Inner loop - qoSmall • 9
Inner loop - goSmall • 8

Middle loop - qoSmall • 7
Middle loop - goSmall • 6
Middle loop - goSmall • 5

Outer loop - goSmall • 4
Outer loop - goSmall • 3
Outer loop - goSmall • 2
Outer loop - goSmall • 1
Outer loop - goSmall • O

See also Leave

126 SADE Reference

I •

r\ l
\)

-.,/

• 1

Index

Cast of charactcts Break 12, 14, 61 Delete All Watch Variables 14

, character 7 break aaioo 14, 16 Delete Watch Variable 14

s character 29 Break lf12 DclcteMcnu 70

96 character 30 BreakAlert 18 Dc!ta chmacr ~) 23

• charaacr 23 breakpoints 12-13, 61 Directory 8, 71

J1 operator 23 in C funai>ns 12 Disasm 15, rl, 72

~ character 23 BSR instruaions 13 DisAsmFormat 27

a character'· 24, 30 c DisplayReqs 19

A opmtor 34, 39 Casc24, 64
display

• opctator 34, 39 we sensitivity 24, 64
heaps 15, 81

a: opmtor 34, 39 characters
~ges 16,58

t opc?2lCX 34, 39 escaping 30
symbol values 23

A nongraphic 30
resource maps 15, 110

A-trip lrC2.k 28 checking
d.isplayWindowListl7

Abort 16, 55 heaps 15, 111
Dump 15, 73

<~''
Acti veWindow 27 resources 15, 110 E

Add Watch Variable 14, 19 Oosc65 csapc character ca> 7, 24, 30

AddMcnu 18, 57 command line 7, 23 Eval32

address break 28 commands EvcntAwil 11

address operator 39 entering 7 examining

addrcs.5e5 executing ina file 16, 74 heaps 15, 81

assianin8 to~ 25 Command-Option-. 11, 112 resources 15, 110

mapping to source swemem.s 33 comments 7 Exception 28

AcldrToSource 31 compilation unit 23-25 exceptions 11, 28

Alert 16, 58 compiling your program 8 Execute 74

appliation Concat 31 exp~ion evaluaoon i, 36-39

temllnating 13, 87 conaienating string cxp~ions 31 expressions 29

symbols 23-26 Confi:rm31 base types 35

launchinl 11, 88 conuolling program execution 13 evaluation 36
Arq [n] 27 Copy32 getting the type of 33

assisnmertt opmtors 37 Cyde66 F
Awindow17 D &ta1 internal error 28
B Date27 Find32

Beep59 Decimal numbers 29 rind 15, 75

Bcgin. .. End 15, 6o Dehult directcxy 8, 71 finding the cunent execution point 12

binary numbers 30 Define 16, 67 tloating-poinl numbers 30
For ... End 77

c 127

f •.

formfeed 30 MacsBug 5, 11, 19, 23 Q \
Func ... End 16, 79 MC68851 Memory Management Unit

Quit 13, 105 functions (MMU) 5
built-in 31 Mc68881 floating-point coprocessor 5

quocation marks 7, 30

writing your own 16, 79 memory R

G examining 15, 73 ranges 40

GetNextEvent 11
requirements 6 Redirect 7, 106

Go 12, 80
menus 6 tegister cmplay window 19

GoTd 13, 80
adding 18, 57 iegSers 19, 28
deleting 70 removing

H MiscProcs 16 breakpoints 12, 122
Heap 15, 81 monitoring addresses or tr.lps 14, 121 SADE defirWOns17, 123
Heap Cleek 15, 82 MultiFinder 5, 6, 11, 15 tr.lCepOints 14, 124
Heap Tota.ls 15, 83 N watch V2riables 14
Help6, 84

NaN32
Repeat. •• Until 17, 1C6

Hexadecimal numbers 29
NArgs 28

Request 32

I newline 30
Resource 15, 109

If...End 17, 85 nonfatal internal emr 28
Resource Oleck 15, 110

In What Statement 12 nongraphic c:ha.racters 30
restarting 13, 114

Inf 28 numeric constants 29
resuming program execution 12, 80
Return 17, 111

iMtruam tr.lee 28 0
instructions s

disassembling 15, 72
object code 15

SADE
interrupt switch 11

On.Entry 18, 19, 93
base typeS 35) Open 7, 94

interrupts 19
opentors 34, 35

command line 7, 23

J customizing 17
p hardware requiremenls 5

JSR instructions 13
PC 19, 23 irlerbce 6

K pointer opentots 38 loading 5
Kill 13, 87 Printf 7, 17, 19, 95 procedures and functions 16

L Proc ... End 16, 103-104 symbols 23

launching
procedures V2riables 27

calling chain 12, 116 windows 7
SADE6 references 25 SADE New User Worksheet 6
your application 11, 88 stepping into 13, 117 SADE Worlcsheet 6, 28

Launch 11, 88 stepping out 13 SADE.Help 6
leave 17,89 stepping over 13, 117 SADEKey 11, 28, 112
Lenqth32 writing your own 16-17 SADEScripts folder 6, 16
UNK instruction 25

Process Id 28 SADP.Swtup 6, 18
linking your program 8 program counter (PC) 19, 23 SADEUserSwtup 6, 18
LS 15,90 PROGRAM statement 24 SANE30,32
Loop 17, 91 program statements 26 Save 113
M program symbols 24 Selection 33
Macro 19, 92 program v:uiables 13, 26 SetSourceBreakl9

macros 15, 19, 92 Show Selected Routine 12

()
)

128 SADE Reference

Show Value 13
ShowValue 19
Show Value in Henaecimal l3
Shutdown 13, 114
siie of an argument 33
SizeOf 33
sowte files, identifying 8, 115
sowte swcments 11
mapto~33

sou.rte windows 11
Source !vs. Asml Debugging 14
SourceCrnds menu 12, 18
SourceinFront 18
SourcePath 8, 115
sourceStep19
SourceToAddr 33
Stack 12, 116
sack frames 12, 116
standatd output 7

redirecting 7, 106
Standard.Entry 19
SWtUp 18
Statement Selected Is? 12
Step 13, 117
Step Into 13, 117
&epOut 13
Stop 16, 119
suing COllSWltS 30
strings 30

getting the length ci 32
concatenating 31

subroutines
stepping into 13, 117 .
stepping over 13, 117
stepping out 13

suspend propm execution 11, 12, 16
-sym option 8, 11
symbol idenlifiers 23
symbolic infonnation 8, 11
symbolic representation
ofan~34

Sysl!rr 12

SysEm.Err 6
System Error Handler 5
system errtn 12, 19, 28
system symbols 23

T
tab 30
Target 8, 28, 120
TarqetWindow 28
td maao 19

terms 29
text, curren1 selea.iat 33
TickCount 33
Timer33
toolbox traps, stepping 13
Tl2Ce 14, 121
uacepoinis 14, 121
trap oper21or 39
type coercion 39
TypeOf 33

u
Untx'eak 12, 122
Undef 34
Undefme 17, 123
unit names 24
UnSetSourceBreakl9
Unuace 14, 124

v
values

finding 15, 32, 75
Values file 13
viriable references 13, 26
Variable Watch file 14
variables

predefined SADE TJ
progrm. 13, 26

Variables menu 13, 18
verify

hea~ 15,82
resources 15, 11 o

Version 7, 125

w
WaitNextEvent 11
Where 34
While .. .P.nd 17, 126
Windowlist17
WorksheetWindow 28

INDEX 129

THE APPLE PUBLISHING SYSTEM

This Apple• manual was written,
edited, and composed on a
desktoo publishing system using
Apple• Macintosh* computers and
Miaosoft• Word software. Proof and
fir.al pages were created on the
Apple La.serWrile~ t1NTX printer.
POSTSCII~. the La.serWrwt page­
description Jansuaae wa.s developed
by Adobe System Incorporated. The
illustr1tions were cre2ted using
Adobe musuacor and some were
output to a Lmronic 300.

The illustr2tion on the cover was
senmted using Adobe Illustrator 88
on a Macintosh* II computer. Some
of the images were sanned using an
Appl~ Sanner and then
manipulated in lmageStudio. Initial
proofing was done using a QMS color
printer. Color separations were done
using Adobe separator and output to
a Linotronic 300 at standard
resolution.

Text type is Apple's corporate font, a
condensed veision of Garamond.
Bullets a.re ITC Zapf Dingbats•. Some
elements, such as programs listings,
are set in Apple Courier, a f oced-
wiclth font.

.... I' ... ,

