
(ti Macintosh®

MacApp
Cookbook

Apple Programmer's and Developer's Association

MacApp Cookbook Draft 1

Contents

Figures and tables ii

Preface About the Cookbook 1
About this book 1
Other materials you'll need 1
How to use this book 2
What it contains 2
Visual cues 2
Roadmap to the MacApp documentation suite 3

Chapter 1 Introduction to the Cookbook 5
A MacApp translation guide 5

Chapter 2 The Apple Menu 6
2.1 Creating an "About Your Application" entry 6
2.2 Creating a separate "About ... " resource 6
2 .3 Animating the "About ... " entry 6

Chapter 3 AppleTalk, Multiuser, and Network Considerations 7
Using IO completion routines 8
Leaving files open for other users 8

Chapter 4 Applications 9
3 .1 Creating objects: an overview 9
3.2 Creating an application 10

1/26189

i

MacApp Cookbook Draft 1 1/26189

Step 1 Initializing the Toolbox 11
Step 2 Initializing printing 12
Step 3 Assigning the application signature and the main file type 13
Step 4 Declaring a subclass of !Application 13
Step 5 Defining your application initialization method 14
Step 6 Instantiating your application class 14
Step 7 Calling your initialization method 15
Step 8 Calling the Run method 15
Continuing from here 15

3.3 Opening an application without opening a document 16

Chapter 5 Browser 17

Chapter 6 The Clipboard and Cut, Copy, and Paste 19
Creating a Clipboard view 20

Run-time summary of creating a clipboard view 20
Overview of your responsibilities 21
Step 1 Define a handle type 21
Step 2 Define a resource type 22
Step 3. Override MakeViewForAlienClipboard 22
Step 4. Override methods for your Clipboard view type 23
Step 5. Override the ContainsClipType method 23
Step 6. Override the GivePasteData method 23
Step 7. Override 'IView.WriteToDeskScrap for your Clipboard view
Step 8. Create a Clipboard document, if desired 25
Step 9. Add a Show Clipboard menu item to your resource file 25
Continuing from here 27

Supporting Cut and Copy commands 28
Supporting the Paste command 29

Step 1 Call the global procedure CanPaste 29
Step 2 Define and create a paste command object 29
Step 3 Retrieve the data to be pasted 30
Continuing from here 30

Supporting a private scrap type 31

ii MACAPP COOKBOOK

25

MacAppCookbook Draft 1 1/26189

(
Chapter 7 Collections 33

Chapter 8 Color 35

Chapter 9 Compatibility 37
Checking system software 38
Checking hardware 38
Future compatibility rules 38
Converting from MacApp 1.1 to MacApp 2.0 38

Unit dependencies 40
Debugging 40
Document changes 41
View changes 42
Windows 43
Your views 43
TEViews and Dialog Boxes 44
Command objects 44

(!Command 44
Tracking methods 44
Editing commands 45

Chapter 10 Controls and Control Views 47

Chapter 11 Cursors 49
Changing the Cursor Shape 50
Cursor region 50

Chapter 12 Debugging in MacApp 51
Writing a Fields Method 52

Step 1 Declare a Fields method for your document class 52
Step 2 Define the Fields method 52

CONTENTS ill

Mac.App Cookbook

Step 3
Step 4

Draft 1

Call Inherited DoToFields 53
Conditionally compile the Fields method 54

Chapter 13 Dialogs 55
Creating a modeless dialog 56

Run-time summary of creating a modeless dialog 56
Overview of your responsibilities 57
Step 1 Include l)Dialog 58
Step 2 Call InitUDialog 58
Step 3 Define your dialog view as a subclass of IDialogView
Step 4 Create the dialog view and the dialog window 59
Step 5 Install the controls. 59
Step 6 Set the window title 59
Step 7 launch the window 59
Step 8 Override the DoChoice method 60
Step 9 Implement a command object, if desired 60

Closing a modeless dialog 60
Creating a modal dialog 62

Run-time summary of creating a modal dialog 63
Overview of your responsibilities 63
Step 1 Include UDialog 64
Step 2 Define a method that displays the dialog 64
Step 3 Implement PoseModalDialog 64

Using dialog items 65
Creating buttons 66
Creating radio buttons 67
Making a default button 67
Creating check boxes 67
Handling scroll bars 67
Handling double clicks in scrolling list in a modal dialog 67

Continuing from here 68

Chapter 14 Documents and Files 69
Creating a document 71

iv MACAPP COOKBOOK

1126189

59

MacApp Cookbook Draft 1 1/26189

(
Run-time summary of creating a document 71
Overview of your responsibilities 73
Step 1 Declare the file type as a constant 74
Step 2 Overriding DoMakeDocuments 74
Step 3 Declaring a subclass of IDocument 76
Step 4 Defining your document initialization method 77
Step 5 Defining your DolnitialState method 78
Step 5 Defining your Free method 79
Step 7 Defining your Fields method 80
Continuing from here 81
Run-time summary of saving and restoring data 83
Overview of your responsibilities 84
Step 1 If desired, change the value of fSavePrintlnfo 85
Step 2 If desired, change the value of fSavelnPlace 85
Step 3 Override DoNeedDiskSpace 86
Step 4 Override DoWrite 88
Step 5 Override DoRead 89

Saving different typs of items 90

(·· Opening an existing document 91

, ,•
Closing a document 91
Saving the display state 91
Importing and exporting data 95
Caching data 95
Handling multiple file types 95

Chapter 15 Drawing and Highlighting 97
Optimizing drawing 98

Chapter 16 Error and Failure Handling 103
Checking for failures 104

Step 2 Post your exception handler 106
Step 3 Call FailNil, FailOSErr, FailMemErr, or FailResERr 106
Step 4 Set the error message in your exception handler 107
Step 5 Handle errors during the creation and initialization of objects 108

CONTENTS V

MacApp Cookbook Draft 1

Chapter 17 Event Handling 109
The event-handling classes 110
The Command Chain 110
Changing the command chain 111
Is this important? Does it belong here or in menus? 113

Chapter 18 Gri~, Lists, and Palettes 115

Chapter 19 Icons · 117
Creating an icon resource 118
Retrieving an icon resource into memory 118

Chapter 20 Keyboard Handling 119
Handling DoKeyCommand 120

Chapter 21 Languages 121

Chapter 22 Localization 123

Chapter 23 Memory Management 125
Permanent and temporary memory 126
Allocating both permanent and temporary memory 127
Reserving temporary memory 127
Using the debugger's high water mark 128
Using the low space reserve 130
Using the seg! and meml resource types 131
MacApp resource lists 132
Segmenting Your Application 133

Using the res! resource type 134

vi MACAPP COOKBOOK

1/26/89

(

(::

MacApp Cookbook Draft 1 1/26/89

Chapter 24 Menus and Menu Commands 135
Implementing simple menu commands 136

Run-time summary of implementing simple menu commands 136
Step 1 Add the menu items and the command numbers to your resource file

137
Decide which object should handle the command 139 Step 2

Step 3
139

Implement the DoMenuCommand method for the appropriate object

Step 4 Override DoSetupMenus to enable the new menu items 141
Maintaining the menu bar and enabling your menu items 14 2

Step 1 Enable appropriate commands 143
Step 2 Override DoMenuCommand to check for the new menu items
Step 3 Override Dolt 145

Changing menu appearance and function 146
Step 1 Changing the text of a menu item 146
Step 2 Changing the font style of a menu item 147
Step 3 Displaying an icon in a menu item 147

Handling negative command numbers 147
Step 1 Implement DoMenuCommand 148
Step 2 Implement DoSetupMenus 148
Step 3 Implement a Font menu, if desired

Dynamically changing a popup or pulldown menu
Creating menus outside of MacApp 150
Continuing from here 151

Chapter 25 Mouse Operations 153
Command objects and mouse tracking 155
Tracking the Mouse 155

Run-time summary of tracking the mouse 156
Overview of your responsibilities 156
Create a subclass of !Command 157
Initialize the command object 157
Override DoMouseCommand 158
Change the visual feedback, if desired 159

149
150

CONTENTS vii

144

MacApp Cookbook Draft 1 1/26189

Providing visual feedback 160
Constrain the activity of the mouse, if desired 161
Override TrackMouse 162
Tracking the mouse 164

Selecting 165
Step 3. Record what objects (or parts of objects) are selected. 167
Writer's .note: page numbers are off from here on. I have fixed the first page
of the remaining chapters for ease of use.
Step 4 Define and implement a command object to handle selection. 168

Dragging 171
Step 1 Create a dragger object in DoMouseCommand 171
Step 2 Implement the dragger object 171
Step 3 Add a dragging field to your view 172
Step 4 Define a command constant for the dragging command 173
Step 5 Test whether the dragging field is TRUE and the item is currently selected

173
Step 6 Implement !Dragger 173
Step 7 Implement TrackFeedback 173
Step 8 Add a prepare-to-drag method to the view 17 4
Step 9 Implement TrackMouse 174
Step 10 Implement the Dolt, Undolt, and Redolt methods 175

Drawing with the mouse 178
Step 1 Create a sketcher command object in DoMouseCommand 179
Step 2 Use the sketcher object to track the mouse 179
Step 3 Override TrackFeedback, if desired 180

Handling several types of mouse events 181

Chapter 26 MPW and MacApp 187
Creating a MakeFile for applications 188
Creating a MakeFile for libraries 188
Using MABuild 188
Building a separate utility library 188
Using creator types 188

viii MACAPP COOKBOOK

MacApp Cookbook Draft 1 1/26189

(
Chapter 27 Multifmder and Background Operations 189

Running in the background 188
Creating a background application 189
Communicating with other processes 189
Creating an idle time sorter 189
Monitoring events during batch processing 190
Finding out if MultiFinder is running 190
Testing for command-period 191

Chapter 28 Performance Tips 195
Optimizing compiling 194
Optimizing linking 194

Chapter 29 Printing 197
Enabling printing 196

Standard print handling 196

('
Changing the margins 198

Chapter 30 Resources 203

Chapter 31 Scrolling 205
Scroller views 204
Creating a scroller 204

Step 1 Add a scroller view to your view template hierarchy. 205
Handling scrolling in lists 209

CONTENTS ix

MacApp Cookbook Draft 1

Chapter 32 Sound 213

Chapter 33 Text Editing 215

Chapter 34 Toolbox and MacApp 221

Chapter 35 Undo 223
Implementing undoable menu commands 222

Run-time summary of implementing Undo 222
Overview of your responsibilities 222

1/26189

Step 1 Define and initialize a command object as a subclass of TCommand
223

Step 2 Return that command object in response to a menu command 224
Step 3 Override the Dolt method 224
Step 4 Override the Undoit method 224
Step 5 Override the Redolt method 224

Creating filtered commands 225
Step 1 Record which items in the document's data set were changed by the ', ./
command 225
Step 2 Mark the changed items and invalidate the images of the items 225
Step 3 Check the changed items and alter the way the data is displayed 226
Step 4 Make the actual changes in the Commit method 226

Chapter 36 Views 231
Creating a view by using view templates 233

Run-time summary of creating a view using templates 23 3
Overview of your responsibilities 234
Step 1 Define a specialized view class 234
Step 1 Define the new view class 236
Step 2 Implement the IRes method 237
Step 2 Implement the IRes method 237
Step 3 Implement your Draw method 238

X MACAPPCOOKBOOK

(

(
~ ..

:

MacApp Cookbook Draft 1

Step 4 Implement the CalcMinSize method 239
Step 5 Add the view to your view template hierarchy 241
Initializing views from templates 242

Reading a specialized view 243
Creating a view 244

Initializing a view 246
Creating view templates 247
Creating and initializing a view using templates 25 2

Focusing a view 254
Showing a reduced view 254
Changing the size of a view 255
Forcing a view to redraw 255
Freeing reuseable views 256

1/26189

Chapter 37 Windows 261
Creating a window procedurally 260

Creating a scrolling window 263
Creating a palette window 263
Creating a window with two or more main views 267
Creating a document with two or more windows 270

Creating a window with multiple scrollable views that resize with the window

CONTENTS xi

271

MacApp Cookbook Draft 1 1/26189

Figures and tables

C H A P T E R X Writer's notes: these are accurate, but are included for place-holding
purposes I nn

Figure X-X figtitle_c9 I nn
Table X-X tabletitle_c9 I nn

P R E F A C E About the Cookbook I 1

Table P-1 Answers to questions in the MacApp suite I 3

C H A PT E R 1 Introduction to the Cookbook 5

Table 1-1 MacApp Cookbook topic guide 5

C H A P T E R 6 The Clipboard and Cut, Copy, and Paste 19

CHAPTER 13

Figure 6-1 MacApp's actions in relationship to this recipe 20

Dialogs

Figure 13-1 MacApp's actions when creating a modeless dialog 56
Figure 13-2 MacApp's actions when creating a modal dialog 63

C H A PT E R 14 Documents and Files 6<J

Figure 15-1 MacApp's actions in relationship to this recipe 72
Figure 15-2 MacApp's actions when saving or restoring a document 83

CHAPTER 24 Menus and Menu Commands 135

Figure X-1 MacApp's actions in relationship to this recipe 136

CHAPTER 25 Mouse Operations 153

12 MACAPP COOKBOOK

MacAppCookbook Draft 1 1/26189

(
Figure 27-1 MacApp's actions in relationship to this recipe 156

CHAPTER 35 Undo 221

Figure X-1 MacApp's actions in relationship to this recipe 222

CHAPTER 36 Views 229

Figure 36-1 MacApp's actions in relationship to this recipe 233

CONTENTS 13

(

MacApp Cookbook Draft 1 1126/89

Preface About the Cookbook

••*J write this after I know what I have written•••

About this book

The MacApp Cookbook is a manual for programmerswho wish to develop Macintosh applications
using MacApp. (and so on)

Other materials you'll need

The software described in this book is part of MacApp, version 2.0, and requires Object Pascal,
version X.X, and MPW, version 3.0. MacApp, MPW, and Object Pascal are available from APDA
(Apple Programmer's and Developer's Association).

1

MacAppCookbook Draft 1 1/26189

How to use this book

This book shows.you how to accomplish certain programming tasks using MacApp. As its name
implies, the book has been conceived of as a cookbook, which is usually a collection of step­
by-step procedures that show you how to accomplish the task of cooking a certain food. The
MacApp Cookbook thus also uses the term recipe to describe the set of actions necessary to
accomplish a given task.

The recipes are described in a conceptual order, which of course is not the only possible order­
you can actually write the steps in any order-but does give you a step-by-step way of
approaching the task.

What it contains

mini-description of chapters

Visual cues

Certain conventions in this manual provide visual cues alerting you, for example, to the
introduction of a new term or to especially important information.

When a new term is introduced, it is printed in boldface the first time it is used. This lets you
know that the term has not been defined earlier and that there is an entry for it in the glossary.

Special messages of note are marked as follows:

+ Note: Text set off in this manner-with the word Note-presents extra information or
points to remember.

2 MACAPP COOKBOOK

(

MacApp Cookbook Draft 1 1/26/89

6. Important Text set off in this manner-with the word Important-presents vital
information or instructions. e:. ·

· Roadmap to the MacApp documentation suite

Essentially, the books in the MacApp suite divide themselves based on how much of the object­
oriented/Macintosh/MacApp language you know, as follows:.

• If you don't know anything about object-oriented languages, read Introduction to Object­
Oriented Programming. This book contains Tutorial introduces object-oriented
programming concepts in the context of a sample application. This book answers most of
your questions that begin with "What are they talking about, anyway ... "

• If you know something about object-oriented languages, but don't know MacApp, read
Introduction to MacApp. This bookintroduces object-oriented programming concepts in
the context of a sample application. This book answers most of your questions that begin
with "What is whatchamacallit ... ", where whatchamacallit is replaced with any term from
the MacApp world -Ay, and there's the rub-how does the programmer know which
book to look in for what?

• If you have some experience with MacApp, but need help with a specific procedure, read
the Cookbook. The Cookbook will answer most of your questions that begin with "How do
I. .. "

• If you're looking up a method, see the Method reference and the MacApp source code.

Some examples of the questions that the books answer are shown in Table P-1.

• Table P-1 Answers to questions in the MacApp suite

Question Book

What is an object class? Or an object instance? Introduction to OOP

p RE FA c E About the Cookbook 3

MacApp Cookbook

What are the most important classes that I
absolutely have to know about?
What methods are available in the X:XXX unit?
How do I debug my application?

How do I use the View Editor?
How do I install MacApp?

How do I find out about MPW?

What parameters does the :XXX method have?

••etc.•••

4 MACAPP COOKBOOK

Draft 1 1126189

Introduction to MacApp?

Method Reference
Some specific techniques in the Cookbook; the
Debugger is described more completely in the General
Reference Manual.
1BD
Step-by-step in Tutorial; brief overview in Cookbook,
complete information where?
specific techniques in Cookbook, complete
information in MP.W Reference suite
Some in Cookbook, complete information in
Encyclopedic reference

(

MacAppCookbook Draft 1

Chapter 1 Introduction to the Cookbook

•••1 write this after I know what the book contains•••

A MacApp translation guide

The following table attempts to answer the question "What concepts do I need to understand
in order to accomplish a Macintosh programming task, what does MacApp call that concept,
and where is it documented?"

1/26189

Possibly combine this table and the
one in the Preface??

• Table 1-1

Macintosh terms

Controls
Dialogs
Events
Windows

Undo
etc.

MacApp Cookbook topic guide

MacApp terms

Specialized types of views
Same as a window

Documented in:

Dialog chapter in MacApp Cookbook
Dialog chapter in Cookbook

Applications, Mouse operations, Keyboard Handling
Windows and Views Windows and Views chapters in

Cookbook
Undo, command objects Undo chapter, Menu chapter

5

MacApp Cookbook Draft 1 1/26/89

Chapter 2 The Apple Menu

"*No recipes yet"•

2.1 Creating an "About Your Application" entry

2.2 Creating a separate "About ... " resource

2.3 Animating the "About ..• " entry

6

MacAppCookbook

(

Chapter 3

(

Draft 1

AppleTalk, Multiuser, and Network
Considerations

No recipes yet

1/26189

7

MacApp Cookbook Draft 1

Using IO completion routines

(MacApp$, 5-27-88)Does this belong here?

Leaving files open for other users

8 MACAPP COOKBOOK

1/26189

(or maybe in a chapter called
Multifinder and Multiuser

considerations?)

/(~',

'--/

(,

MacApp Cookbook

Chapter 4

Draft 1 1126189

Applications

definition of an application-explanation of application object

basic getting started sectionTo build a MacApp program, you need the following five
files:

Mappname.p Pascal source to main program.

Uappname.p Interface to the unit that will contain the object definitions.

Uappname.incl.p Contains the implementation of the objects defined in
Uappname.p.

appname.r The Rez ftle defining the resources of the· application.

appname.make Contains the build rules used by Make.

MacApp includes object classes with methods that handle events in a simple, general
way. Your job when you are creating a MacApp application is to create new classes that
override the methods you want to implement differently. In order to create a working
MacApp application, you must override some classes and methods, and may override
others if you desire to change the way that they function.

3.1 Creating objects: an overview

Should this section go here? Or
maybe in "Object-Oriented

Concepts?"

Whenever you create an object in MacApp, you must make an actual object instance of an
object class. The object instance then exists in memory until you remove it. In order to create
an object instance, you generally take the following steps:

9

Mar.App Cookbook Draft 1

1. Declare a variable that will reference the object the object reference variable. (Remember
that in MacApp object references are actually handles pointing to the object)

2. Use the Object Pascal procedure New to allocate an object for it to reference. This works
much the same way as using New to allocate memory for a pointer to reference. The New
routine, however, can fail. For example, there might not be enough memory to allocate for
your object In this case, New returns nil as the value in your object reference variable.

1/26/89

3. After you have attempted to instantiate your application object using the New procedure,
you should check to see whether it worked, or whether nil was returned. If nil was returned,
then your application should fail gracefully. MacApp provides all of this functionality in the
routine FailNil. You should call FailNil every time you use the New procedure. If the New
procedure failed, your application has run out of memory and your request cannot be
satisfied.

Chapter X examines some methods of memory management to avoid rurining out of memory.

3.2 Creating an application

When you create an application in MacApp, you fill in the main routine in which you intialize
MacApp, create an application object, and then call that object's Run method. The Run
method then calls MacApp's code, which receives and analyzes events, such as mouse clicks and
key presses. After each event has been analyzed, MacApp's code selects a particular object to
handle the event, and then sends that object a message requesting that it handle the event.

What MacApp provides for you for at each step, the actions you must take, and when MacApp
will call the methods you define or override are summarized in Table X-1. Each of the steps is
explained in detail in the recipes that follow.

10 MACAPP COOKBOOK

(~

MacApp Cookbook Draft 1 1/26189

'I ,
V,c: -,

• Table 15-1 Overview: creating a t .

Step Your action: Because:

1. In your Main routine, call Iniff oolbox and MacApp provides routines that initialize the
supply the number of master pointers your Macintosh toolbox.
application needs.

2. If your application supports printing, call MacApp provides routines that initialize printing.
InitPrinting in your main routine.

3. Assign an appropriate value to the kSignature MacApp provides methods that call for a string
constant in your interface file. copstant to determine the application signature for

an application object.

4. Declare your own subclass of TApplication. MacApp provides a TApplication class tha~ as a
subclass of TEvtHandler, assigns events to the
instances that need to handle them.

5. Define your own initialization method as part MacApp provides a TApplication .!Application
of your TApplication subclass. Normally, your initialization method that initializes the fields of
initialization should also call the !Application application objects inherited from TApplication.
method.

6. Instantiate your application class by declaring MacApp provides a FailNil procedure that checks if
a global reference variable, calling the Object memory was allocated for the instance of an object.
Pascal New procedure, and calling the MacApp
FailNil procedure.

7. Initialize your application object by calling MacApp provides (anything here???)
your initialization method.

8. Call the TApplication Run method. MacApp provides a TApplication Run method that
starts the main event processing loop.

Step 1 Initializing the Toolbox

Iniff oolbox initializes the Macintosh Toolbox, and many parts of MacApp, including support
for the debugger and memory management. You must call this procedure (it is a standard Pascal
procedure, not a method) at the beginning of your application's main routine.

c HA p TE R 4 Applications 11

MacApp Cookbook Draft 1 1126189

InitToolbox also calls the Macintosh Memory Manager routine MoreMasters to ensure that
enough master pointers have been allocated. MoreMasters allocates space for an extra forty (]??)
master pointers. InitToolbox calls MoreMasters as many times as you specify in the parameter
callsToMoreMasters. For more details about the MoreMasters routine, see Chapter X, "Memory
Management."
PROGRAM IconEdit;

USES
{$LOAD Macintf. LOAD}

MemTypes, QuickDraw, OSintf, Toolintf, Packintf,

{$LOAD UMacApp. LOAD}

UMAUtil, UViewCoords, UFailure, UMemory, UMenuSetup, UObject, UList,

UAssociation, UMacApp,

{$LOAD}

UPrinting,

UiconEdit;

VAR

giconEditApplication: TiconEditApplication;

BEGIN
InitToolbox(8);

InitPiinting;

{ Initialize ToolBox & MacApp with 8 calls to MoreMasters. }

Initialize printing. }

New (giconEditApplication); Create a new TiconEditApplication object. }

FailNIL (giconEditApplication); { Make sure it didn't fail. }

giconEqitApplication.IIconEditApplication(kFileType);

giconEditApplication.Run;

END.

Step 2 InJtializtng printing

{ Run the application. When it's done, exit. }

Since not all MacApp applications print, InitToolbox doesn't initialize the MacApp printing
facilities. If you want to use these printing facilities, take the following steps:

1. Include MacApp's UPrintlng unit.

2. Call the InitPrinting routine, which initializes the MacApp printing facilities.

12 MACAPP COOKBOOK

.. /

(

MacApp Cookbook Draft 1 1/26189

Step 3 Assigning the application signature and the main file type

The !Application method takes one parameter: an OSType named itsMainFileType. OSType is
a type defined by the Macintosh toolbox as:
TYPE OSType = PACKED ARRAY [1. , 4] OF CHAR;

OSType is the Pascal type for application signatures and file types. Some examples of valid
OSTypes are 'MyAp' and 'docu'. To ensure that the Finder properly recognizes your
application's documents, you must specify an OSType when you call !Application. MacApp
handles the rest. For example, if you call
IApplication('myfl');

then your application's main ftle type would be 'myfl'. Using this identifier, MacApp ensures
that the Finder can now keep track of your application's documents. Under normal
circumstances, you declare this identifier as the kFileType constant in your interface file.

You will send this constant as the parameter to !Application. MacApp then ensures that your
application and its documents are properly identified for the Finder.

Another important identifier that the Finder requires is the application signature. Like
kFileType, you will also make this identifier a constant in your program, this time called
kSignature. kSignature should also be an OSType; that is, shoudl also be a packed array of four
characters, such as 'ICED'.

Step 4 Declaring a subclass of TAppllcation

MacApp provides the predefined application class TApplication. You must define your own
subclass of TApplication, and use that subclass to create your application object instance.

+ Note: Defining a subclass in this way allows your application object to inherit all of the
functionality that comes with the TApplication class, but also allows you to alter that
functionality to suit the purposes of your specific application. For more information on
subclasses and overrides, see Chapter X, "Object-Oriented Concepts," and Introduction to
MacApp.

c HA p TE R 4 Applications 13

MacApp Cookbook Draft 1

To define a subclass of TApplication, called TiconEditApplication, for example, you must at
least include lines like the following in your interface ftle:
TiconEditApplication • OBJECT (TApplication)

END;

Step 5 Defining your application initlallzation method

To create an initialization routine for your application, take the following steps:

1. Declare your own initialization method

2. Define the behavior of your initialization method. Normally, you will call the initialization
method for !Application, to initialize the fields for that object.

The following sample code from UiconEdit.incl.p illustrates these steps.
{--}
{, •.• in the interface unit}
TiconEditApplication = OBJECT (TApplication)

procedure TiconEditApplication.IApplication(itsMainFileType OSType);

{ .•.• in the implementation unit}

1/26189

PROCEDURE TiconEditApplication.IIconEditApplication(itsMainFileType: OSType);
BEGIN

IApplication(itsMainFileType);
END;

{--------------------------·--}

Step 6 Instantiating your application class

In your main program, you must make an actual object instance of the application. To do so,
take the following steps:

1. Declare an object reference variable. Since this variable needs to be accessed in the main
routine, it must be a global variable.

2. Allocate an object for the variable to reference by using the Object Pascal procedure New.

3. Call the MacApp FailNil procedure to check if the New routine worked.

14 MACAPP COOKBOOK

r'r,-~ ..
·~,;

MacAppCookbook Draft 1 1/26189

For more information about making an actual object instance, see Chapter X, "Where in heck
do we want to put this information?"

Step 7 Calling your initialization method

Should this information be included in defining?

Step 8 Calling the Run method

When you call this method, you hand control of your program over to MacApp. The Run method
basically checks for a few strange situations and then calls TApplication.MainEventLoop. From
there, MacApp code takes over, polling for events, analyzing what type of event was found,
determining which object should handle the even~ and then passing the event to that object.
This pattern then repeats until the Quit command is received.

You call the Run method of your application object as the last thing in your main routine.
MacApp handles the flow of control after that. After you call Run, MacApp handles most events
for you, and you only have to create objects to handle the events that MacApp's code cannot
handle alone.

Continuing from here

Forward references to the rest of the chapter.

Define your menu resources.see Chapter X, "Menus,"

Create your documents and display views of those documents; see Chapter X, "Documents,"
Chapter X, "Views," and Chapter X, "Windows."

Building your application; see Chapter X, "MPW and MacApp," and what other ***MacApp
documents?***

c HA p TE R 4 Applications 15

MacApp Cookbook Draft 1 1/26189

3.3 Opening an application without opening a document

MacApp's default behavior is to open a document named "Untitled" whenever an application is
opened. To change this default behavior, you need to override
TApplication.HandleFinderRequest ***and do what????'"

16 MACAPP COOKBOOK

MacApp Cookbook

(

Chapter 5

(---...,

/
/

Draft 1 1/26189

Browser

Left just in case, or Js it legitimate to recommend MacApp Developer's
association, or can I give tips for using MPW as a browser?

17

(~/.

MacApp Cookbook Draft 1 1/26189

Chapter 6 The Clipboard and Cut, Copy, and Paste

The Clipboard and the desk scrap are the Macintosh computer's standard mechanisms
for copying and pasting selections within or between applications and desk
accessories.

When your application begins running, the desk scrap contains data from the last cut or
copy operation. (The desk scrap will be empty if there has been no cut or copy
operation since the Macintosh started up.) This is the public scrap, and the data it
contains is in one or both of two forms common to most Macintosh applications:
TEXT (ASCII strings) or PICT (a QuickDraw picture).

Your application may also contain data in the form preferred by your application, if
that data was cut or copied from a previous instance of your application or another
application that uses compatible data types. When it is time to display the Clipboard
and the desk scrap contains no private scrap yet, you can create a view of one of your
application's types (typically because there is data in a form used by your application),
or you can allow MacApp to create a view that will display the common data types.

When the user cuts or copies data from your application, your application creates a
view to display and possibly otherwise handle the data. Normally, that view is of the
same view type as the one that originally displayed the data. The data local to your
application (and typically stored in objects) is in your application's private scrap, so
when you cut or copy information from a document, the information is placed in the
Clipboard in a form particular to the application. The Clipboard window is represented
by the 1Window object referred to by gClipWindow.

When you leave the application, it gets a chance to convert the information in your
private scrap to the two common forms of the desk scrap. (Leaving the application
can mean quitting, switching to another application with MultiFinder™ using the
Switcher™, or starting a desk accessory.)

See the Scrap Manager chapter of Inside Macintosh for more information on the desk
scrap and the Clipboard.

19

MacApp Cookbook Draft 1 1/26189

Creating a Clipboard view

definition of Clipboard view

Clipboard views commonly have documents to handle the data they show. However, that is not
required. (cross-refer to views). A view showing the desk scrap, for example, may simply read
and display the desk scrap directly. In implementing Cut and Copy, however, the most common
situation is that the data the user has cut or copied is handled by instances of the same objects
that handled them in the application itself: doc:Ument, view, and data objects. The methods
described here are typically implemented for any view types that can have data cut or copied,
because instances of these view types may be Clipboard views.

Run-time summary of creating a clipboard view

You create a Clipboard view in one of two ways. Firs~ when the application starts up, a view is
created to handle the initial contents of the Clipboard, as taken from the public scrap. Second,
when data is cut or copied from your application, a view of some type originating in your
application must be created. In either case, the view must be able to handle certain calls from
other methods.

Figure 6-1 provides a summary of MacApp's actions at runtime when a new document is to be
created.

• Figure 6-1 MacApp's actions in relationship to this recipe

Figure TBD; for example see Chapter 14, "Documents"

20 MACAPP COOKBOOK

(

('

MacApp Cookbook Draft 1

overview of your responsibllities

The actions you must take, the reasons you must take those actions, and what MacApp can
provide to help you take those actions are summarized in Table 6-X. Each of the steps is
explained in detail in the recipes that follow.

This section also assumes that you have already created an instance of an application object.
For more information, see Chapter X, "Applications."

• Table 6-1 Overview: creating a document

Step Your action: Because:

1. Define a handle type.

2. Define a resource type.

3. etc.

???

???

etc.

Table TBD; for example see Chapter 14, "Documents"

Step 1 Define a handle type

To define a handle type for your Clipboard data type, declare two pointers in your ? file. For
example:

YourTypeOnClipboard = "PYourTypeOnClipboard;

PYourTypeOnClipboard = "YourClipType;

1/26189

As with the data structure created to save your data in a file, the details of your Clipboard
structure depend entirely on your application. (You can use a common structure to save data in
a file and to write to the desk scrap, although you'll probably want to add fields when saving to
a file so you can save state information.)

c H A p TE R 6 The Clipboard and Cu~ Copy, and Paste 21

MacApp Cookbook Draft 1 1/26189

Step 2 Define a resource type

Define a resource type for your Clipboard data type. The value is an arbitrary four-letter string,
usually stored in a constant (kClipDataType in the template). Unless your information is of the
same type used by other applications, you should make this string unique, as it is used to
identify data in the public scrap as data your application can understand. If the Clipboard
information is simply a sequence of ASCTI characters, kClipDataType should be 'TEXT'; if the
Clipboard information is a QuickDraw picture (a saved sequence of drawing commands),
kClipDataType should be 'PICT'.

If you have a number of different possible Clipboard data types, define several constants. You
should register the type identifiers you've chosen with Apple Developer Technical Support to
prevent duplication.

Step 3. Override MakeViewForAlienClipboard

If you want to be able to display the public scrap data in your own type of view (usually
because the data is of some type preferred by your application), override
MakeViewForAlienClipboard for your application type.

+ Note: You don't have to do anything to display PICT or TEXT data from the public scrap.
MacApp automatically creates an object of type TDeskScrap View when necessary.

The interface for the MakeViewForAlienClipboard method is

FUNCTION TYourApplication.MakeViewForAlienClipboard: TView; OVERRIDE;

In the implementation of this method, call GetScrap (a Scrap Manager routine) once for each
Clipboard data type you can handle. (GetScrap takes a handle for the data. Pass NIL in this
case, because you don't need to actually read the data now.) If you find data of one of your
types, create an appropriate view object, and return it. If you don't find one of your types, you
should call INHERITED MakeViewForAlienClipboard so that the MacApp method can create
and return a TDeskScrap View object.

You need to override this method to create views for your application's scrap types.

22 MACAPP COOKBOOK

(

MacApp Cookbook Draft 1 1/26189

A sample implementation is given in the templates for this recipe. The sample begins .with a call
to GetScrap. The first parameter of GetScrap is ordinarily a handle used as the destination of
the scrap data. In the templates, the destination is NIL, so nothing is passed to the application.

Step 4. Override methods for your Clipboard view type

Override the necessary methods for your Clipboard view type as shown:
FUNCTION TYourView.ContainsClipType(aType: ResType): BOOLEAN; OVERRIDE;
FUNCTION TYourView.GivePasteData(aDataHandle: Handle; dataType: ResType):

LONGINT;
OVERRIDE;

PROCEDURE TYourView.WriteToDeskScrap; OVERRIDE;

The implementations are discussed in the following steps.

Step 5. Override the ContainsClipType method

ContainsClipType is called by other methods to find out whether the Clipboard contains a
particular type of data. The default implementation (as defined in TView) calls GetScrap to
find out if the requested type is in the public scrap.

You should override this method for a view that can display a private scrap. (Note that this is
always the case when the data in the Clipboard got there through a cut or copy in this instance
of your application.)

The interface of this method is

TYourView.ContainsClipType(dataType: ResType): BOOLEAN; OVERRIDE;

A sample is given in the templates.

Step 6. Override the GivePasteData method

GivePasteData is called to get data from the Clipboard. If the data to be pasted is in your
application's private scrap, you need to override this method.

c H APT E R 6 The Clipboard and Cut, Copy, and Paste 23

MacApp Cookbook Draft 1 1/26189

+ If you want to get data from the public scrap, you don't have to override this method, since
it is declared and implemented for 1View.

Its interface is
TYourView.GivePasteData(aDataHandle: Handle; dataType: ResType): LONGINT;

GivePasteData has two purposes. First, it returns the length of the data of the given resource
type in bytes (or, if there is some problem, returns a negative number, which is an error code).
Second, if aDataHandle is not NIL, the method places the data in the space referred to by the
handle.

Your version of GivePasteData should follow this logic:
• Check whether the data type requested matches the data types your program can handle.

This should always be TRUE (because the request comes from one of your paste methods).
If it is not TRUE, return noTypeErr, a predefined constant

• If the data has been written to the desk scrap, call INHERITED GivePasteData.
1View.GivePasteData uses GetScrap to put the information in the handle.

• Otherwise, the data in the Clipboard originated from your application, and you must
extract the required information.

The following sample code from UiconEdit.incl.p illustrates these steps.
{--}
BEGIN

IF gGotClipType THEN

BEGIN

dataType := gPrefClipType;

err : = gClipView. Gi vePasteData (aDataHandle, dataType) ;

IF err < 0 THEN

Failure (err, 0);

END

ELSE

BEGIN

{ $ IFC qDebug}

ProgramBreak (• GetDataToPaste called when gGotClipType was FALSE•) ;

($ENDC}

END;

GetDataToPaste : = err;

END;

24 MACAPP COOKBOOK

(

MacAppCookbook Draft 1

(--)

Step 7. Override TView.WriteToDeskScrap for your Clipboard view

To enable other programs to receive Clipboard data from your application, override
TView.WriteToDeskScrap (which has no parameters) for your Clipboard view.

+ Note: Generally, the Clipboard view is the same type as your ordinary application view; it
becomes a Clipboard view when an instance is created to display the Clipboard. Therefore,
you usually need to override WriteToDeskScrap for every customization of TView in your
application that allows a cut or copy operation.

1/26189

When your application terminates or the user uses MultiFinder™ or starts a desk accessory,
MacApp ****right?*** calls WriteToDeskScrap to convert the Clipboard's contents to the desk
scrap. See the "Scrap Manager'' chapter of Inside Macintosh for details of writing data to the
scrap.

After you write the data in your application's preferred type, you should, if possible, write it as
PICT or TEXT data or both.

Step 8. Create a Clipboard document, if desired

If you want to have a Clipboard document, create it before making the Clipboard view. When
you call TYourDocument.IYourDocument, you can pass in TRUE to indicate to IYourDocument
that you are creating a Clipboard document, although that may not matter to IY ourDocument.
(You do not have to have a Clipboard document, although applications usually do.)

Step 9. Add a Show Clipboard menu item to your resource ftle

You need to have one item for the Clipboard in the resource file: the Show Clipboard menu
item. ***Cross-reference to correct place?•••

c H APT E R 6 The Clipboard and Cut, Copy, and Paste 25

MacApp Cookbook Draft 1

following code will be cut back into the individual steps
FUNCTION TYourApplication.MakeViewForAlienClipboard: TView;

VAR offset: LONGINT;

clipYourView: TYourView;

aHandle: Handle;

clipDoc: TYourDocument;

BEGIN

Test whether your preferred data type is in the scrap.

If you can understand other types, test for them here.

IF Get Scrap (NIL, kClipDocType, offset) > 0 THEN BEGIN

New(clipDoc);

1/26189

clipDoc.IYourDocument(TRUE);

cares

The TRUE is only needed if IYourDocument

if this is a Clipboard document. }
New(clipYourView);

clipYourView.IYourView(clipDoc);

WITH clipYourView DO BEGIN

finformBeforeDraw := TRUE;

fWrittenToDeskScrap := TRUE; { Tells MacApp it is not necessary to

write this view to the desk scrap if the

application quits because the Clipboard

view was derived from data in the
desk scrap. }

END;

MakeViewForAlienClipboard : = clipYourView;

END

ELSE

MakeViewForAlienClipboard : = INHERITED MakeViewForAlienClipboard;
END;

FUNCTION TYourView.ContainsClipType(aType: ResType): BOOLEAN;

BEGIN

ContainsClipType := (aType = kYourClipType);
END;

26 MACAPP COOKBOOK

(

MacAppCookbook Draft 1 1/26189

FUNCTION TYourView.GivePasteData(aDataHandle: Handle; dataType: ResType): LONGINT;

VAR aSize: LONG INT;
err: OSErr;

BEGIN
{The following test checks whether the requested data type is your program's
type. You may have several types, in which case this would be a multiple test.}
IF dataType <> kYourClipDataType THEN

GivePasteData := noTypeErr
ELSE

IF fWrittenToDeskScrap THEN
GivePasteData := INHERITED GivePasteData(aDataHandle,

data Type)

END;

ELSE BEGIN

END;

{Copy the data in the Clipboard and accumulate the size in aSize.
If aDataHandle is not NIL, then by exit time its size must be
equal to the ultimate value of aSize, and the Clipboard data must
be in the data area referred to by aDataHandle. }

GivePasteData := aSize;

Continuing from here

You will usually want to implement the Cut, Copy, and Paste commands in your application to
allow the user to use the clipboard to transfer data from and to applications and desk
accessories. The following sections discuss how you support the Cut, Copy, and Paste
commands.

c HAP TE R 6 The Clipboard and Cut, Copy, and Paste 27

MacAppCookbook Draft 1

Supporting Cut and Copy commands

Cut and Copy commands are generally handled by a single type of command object. The next
section deals with the Paste command.

1/26189

The Cut command removes the selected information from the view (and generally also from the
document) and places the information in the Clipboard. The Copy command copies the
selected information to the Clipboard but does not remove the original.

To support the Cut and Copy commands, take the following steps:

1. In the appropriate DoMenuCommand method (usually belonging to the view but possibly to
the document), create a cut/copy command object of a type that is a descendant of
TCommand. (Some programs may need separate command objects for cut and copy,
although generally a copy is identical to a cut except that the information is not removed
from the document.)

2. In the IYourCommand method of your cut/copy command object, set the
fChangesClipboard field to TRUE after calling !Command.

3. In the Dolt method of your cut/copy command object, create a view for the cut or copied
data. The view is typically of the same type as the one holding the selection and, again
typically (but not universally), you must create a document object to go with the view
object.

4. After you initialize this view, call TApplication.ClaimClipboard to install the view in the
Clipboard. The interface for that method is

PROCEDURE TApplication.ClaimClipboard(clipView: TView);

ClaimClipboard automatically preserves a reference to the old Clipboard view, in case this
command is undone.

If this is a Cut command, cut the data from your document and invalidate the
representation of the data in the view.

You must not call ClaimClipboard in your Undolt or Redolt methods. MacApp automatically
replaces the old Clipboard contents when Undo is picked and automatically replaces the
new Clipboard when Redo is picked.

In the case of a Copy command, Undolt need do nothing except, if you wish, restore the
selection state at the time the command was originally executed (MacApp restores the old
Clipboard view for you). Redolt needs to do everything Dolt does, except create the
Clipboard view and call ClaimClipboard. It may also restore the last selection.

28 MACAPP COOKBOOK

(

MacApp Cookbook Draft 1

Supporting the Paste command

The Paste command pastes data from the Clipboard into the application's document. The
Clipboard may contain data cut or copied from your application or from another application.
In the second case, the data is usually available as TEXT data (a string of ASCII characters)
and/or PICT data (PICT is a QuickDraw picture).

To support the Paste commands, take the following steps:

Step 1 Call the global procedure CanPaste

In the DoSetupMenus method for the object whose DoMenuCommand method handles Paste
(usually the view but possibly the document), tell MacApp what kind of data you can paste.
You do this by calling the global procedure CanPaste. The interface of that routine is

PROCEDURE CanPaste(aDataType: ResType);

1/26189

Call this procedure once for each Clipboard data type you can handle. (See the "The Clipboard"
recipe for more about Clipboard data types.) If you can paste more than one kind of data (you
should, ideally, be able to handle PICT and TEXT data as well as your own types), make the calls
in inverse order of preference: from the least preferred to the most preferred.

Note that you never call Enable or EnableCheck for the Paste command. MacApp tests the
contents of the Clipboard for the Clipboard data types you specify in your CanPaste calls (by
calling clipboardView.ContainsClipType) and enables or disables the command accordingly.

Step 2 Define and create a paste command object

Define a paste command object type that is a descendant of TCommand. The object should be
created and initialized in DoMenuCommand when a cPaste command number is received. The
action of the command is carried out in the pasteCommand.Dolt and Redolt methods.

When your DoMenuCommand method finds the command number cPasteCreate, create a paste
command object . Given the CanPaste calls made in DoSetupMenus, you can be certain that
information of some type you can handle is present in the Clipboard any time you get a cPaste
command number.

c H APT E R 6 The Clipboard and Cu~ Copy, and Paste 29

MacApp Cookbook Draft 1 1/26189

Step 3 Retrieve the data to be pasted

To get the data to be pasted, allocate an empty handle and pass the handle to the application's
GetDataToPaste method. The interface of this method is

FUNCTION TApplication.GetDataToPaste(aDataHandle: Handle;
VAR dataType: ResType): LONGINT;

If you only want to find out the size of the data (probably to determine whether there is enough
memory to carry out the requested paste operation), pass NIL as aDataHandle. When the data
is in the public scrap (also called the desk scrap), this call is equivalent to the Scrap Manager
routine GetScrap. Do not call GetScrap directly, because the data may be in the private
(application) scrap.

You do not choose the data type here; that is determined by your CanPaste calls in
DoSetupMenus. The data type passed to you is the most preferred type available. If you can
paste more than one type, you probably need to use IF statements to branch according to the
type; note that MPW Pascal does not allow CASE statement branches on four-byte quantities.

The data referred to by the handle is a copy of the data in the Clipboard. You can do anything
you want with that data or the handle.

GetDataToPaste (which you rarely need to override) calls the method
gClipView.GivePasteData. See "Supporting The Clipboard" earlier in this chapter for details on
implementing that method.

Continuing from here

Cut, Copy, and Paste operations should almost always be undoable. See Chapter X, "Undoing"
for more information.

See Chapter X, "Menus," for more information on commands.

30 MACAPP COOKBOOK

(

MacAppCookbook

Supporting a private scrap type

Anything for here?

Draft 1 1/26189

c HAP TE R 6 The Clipboard and Cut, Copy, and Paste 31

MacAppCookbook

(

Chapter 7

(

(.

Draft 1 1/26/89

Collections

Invented terminology; premise is that tagging items to be operated on as a
collection is an important part of the capabilities of MacApp.

No recipes yet

33

MacAppCookbook Draft 1 1/26189

Chapter 8 Color

"*No recipes yet***

35

(

MacApp Cookbook Draft 1 1/26189

Chapter 9 Compatibility

MacApp 2.0 does not support the Macintosh XL, but does support 64K ROMs and all
Macintosh models from 512K on up through SE, II, and IIx.

37

MacAppCookbook Draft 1

Checking system software

Checking hardware

Future compatibility rules

Converting from MacApp 1.1 to MacApp 2.0

MacApp 2.0 has changed significantly since MacApp 1.1. The display architecture has been
reorganized. The implementation of dialogs has been completely rewritten. Debugging
facilities have been greatly enhanced. The text edit views have been modified for the new
display architecture and to support styled TextEdit. New building blocks (like UGridView)
have been added. New enhancements Oike large views, view resource templates, and
MultiFinder support) have been added.

1126189

With all of these changes, from enhancements to underlying architecture changes, you might
think that converting your MacApp 1.1 application would be laborious. Certainly, recoding a
substantial MacApp 1.1 application to take full advantage of MacApp 2.0 is quite a task.
However, making only the changes to a MacApp 1.1 application necessary for it to run correctly
·with MacApp 2.0 is not so bad. In fact, you should be able to convert even relatively large
applications in only a day or so.

38 MACAPP COOKBOOK

(

(

MacAppCookbook Draft 1

The reason for this ease of conversion is that most of the commonly used procedures and
methods have not changed their interface or function, and some of those that have changed
have done so only slightly. Of course, some have changed significantly-those relating to
dialogs, for example. These you are better off reimplementing entirely. This chapter steps
through each of necessary changes, detailing them where appropriate, and pointing to sources
for more information for the others.

1/26189

c HA p TE R 9 Compatibility 39

MacApp Cookbook Draft 1 1/26189

40 MACAPP COOKBOOK

c

MacApp Cookbook Draft 1 1/26189

Global changes

Much of the global level of your application will stay the same. For example, you probably
needn't touch your application objec~ or any of its methods. There are,.however, two changes
that affect your program globally.

Unit dependencies

.i.converting MacApp 1.1 applications: unit dependencies;

MacApp 2.0 brings with it a whole new set of units. In your main program, as well as in your
interface file, you will need a USES statement similar to the following:
USES {$LOAD Macintf.LOAD}

MemTypes, QuickDraw, OSintf, Toolintf, Packintf,

{$LOAD UMacApp, LOAD}

UMAUtil, UViewCoords, UFailure, UMemory, UMenuSetup, UObject, UList,

UAssociation, UMacApp,

{$LOAD}

UPrinting,

UYourUnit;

Debugging

The debugging facilities of MacApp have also changed. The Inspect method used to be the way
that your code communicated with the Interactive Debugger. This has been replaced by the
Fields method and the Inspector window. For a more complete discussion of the new
debugging facilities, see the MacApp General Reference.

You should override the Fields method for every object class that you might want information
about while debugging, or in other words for all your object classes. You should replace all of
your Inspect methods with Fields methods. For more information on the Fields method, see
Chapter X, "Debugging."

c HA p TE R 9 Compatibility 41

MacApp Cookbook Draft 1

As an example, imagine that you've defined a TShape class like this:

TShape = OBJECT (TObject)
fRect: rect;
fColor: RGBColor;

{ $ IFC qDebug}
TShape.Fields(PROCEDURE DoToField(fieldName: Str255;

field.Addr: Ptr;

{$ENDC}
END;

fieldType: integer); OVERRIDE;

You should implement the corresponding Fields method like this:

PROCEDURE TShape. Fields (PROCEDURE DoToField (f ieldName: Str255;

field.Addr: Ptr;

fieldType: integer);

BEGIN

1126/89

DoToField('TShape', NIL, bClass);

DoToField('fRect•, @fRect, bRect);

DoToField ('fColor', @fColor, bRGBColor);

First report the class name.

Then report the fields. }

INHERITED Fields(DoToField); { Finally report the inherited fields. }

END;

Document changes

.i.documents: changes from MacApp 1.l;For most applications, the document instances and
their methods will remain largely unchanged. The most significant exceptions to this are the
DoMakeWindows and DoMakeViews methods. If you are not using a simple or a palette
window, then your DoMakeWindows will probably have to be rewritten to include Scroller
views. See the "Creating a Window" section of Chapter X. If you want to use the new view
templates, you can use DoMakeViews to create a hierarchy of views. See the "Creating Views
with Templates" section of Chapter X.

42 MACAPP COOKBOOK

(

MacApp Cookbook Draft 1

For simple windows and palette windows, the code in DoMakeViews will remain the same.
DoMakeWindows will change slightly, as windows are now considered more like real object
classes than in MacApp 1.1. For example, some routines that used to be global procedures are
now methods belonging to window objects, such as ForceOnScreen, AdaptToScreen,
SetResizeLimits, and SimpleStagger.

1/26189

You can now use the function NewTemplateWindow to create your windows from resource
templates. See the sample prograps and the view and dialog ERS documentation for examples.

View changes

.i.views: changes from MacApp 1.l;The view architecture has changed radically. Yet you can get
by with only a minimum number of changes to your old code if you were using fairly standard
views before.

One significant change to TView is that it no longer has an fCanSelect field, which you might
have used in TYourApplication.MakeViewForAlienClipboard, TYourView.DoMouseCommand,
or TYourCutCopyCommand.Dolt. References to TYourView.fCanSelect can usually be replaced
by
(TYourView <> gClipView)

depending on the circumstances.

You will have to replace globally the Focus method. Focus used to be a procedure method of the
TFrame class, which is now gone. Focus is now a function method of theTView class. You can
usually replace calls to focus by
IF yourView.Focus THEN ;

if nothing else seems appropriate. Focus returns FALSE if it is not possible to focus the view.
See the sample programs for examples.

Finally, the call to Niew has changed significantly. The new Niew interface is:
PROCEDURE TView. IView (it sDocument: TDocument;

itsSuperView: TView;

itsLocation, itsSize: VPoint;

itsHSizeDet, itsVSizeDet: sizeDeterminer);

c HA p TE R 9 Compatibility 43

Mac.App Cookbook Draft 1 1126189

This procedure initializes the view by calling IEvtHandle(itsSuperView), setting its fSuperView,
tLocation, £Size, fSizeDeterminer fields, initializing its flil..Desired fields to hlOff, and adding
the view to its superview by calling its superview's AddSubView method.

For further discussion of the new view implementation or a description of the new VPoint type,
see the "MacApp 2.0 Display Architecture ERS." ·

Windows

As before, window methods are rarely overridden. If you used simple or palette windows, you
will probably not have to make any window-related changes other than calling the routines listed
earlier as methods instead of as global procedures.

Your views

. How you should change views specific to your application depends strongly on how you used
them. If you had multiple scrolling views per window, you will have to rewrite a bit of your
code using the new Scroller architecture. See Chapter X, "Scrolling," for more information. \ 7

If you used fairly standard views and windows, yourjob will be much easier. Among the
things to look out for are: ·

• The CalcMinExtent has been replaced by CalcMinSize. CalcMinExtent dealt with
rect types. CalcMinSize uses the new VPoint type. You will need to do the proper
translation before you change the call.

PROCEDURE TView.CalcMinSize (VAR minSize: VPoint);

• The intetface to DoMouseCommand has changed slightly. (Of course, this will
apply to all event handlers-so check your application's and document's
DoMouseCommand methods if you have them.) The only difference is the first
parameter. Here is the new declaration:

PROCEDURE TView.DoMouseCommand (VAR theMouse: Point; VAR info: Eventinfo;
VAR hysteresis: Point): TCommand;

44 MACAPP COOKBOOK

(

MacApp Cookbook Draft 1 1/26189

TEViews and DJalog Boxes

Both TIEView and IDialogView have been substantially rewritten. You will probably have to
rewrite any code using TDialogView. If you do not want to add support for style TextEdit, you
can probably leave your TIEView code alone. For examples of how to use them now, see
Chapter X, "Dialogs", and the sample programs.

Command objects

You will probably not have to alter your command objects much, as this part of MacApp was
not extensively rewritten.

I Command

The parameters of !Command have changed. !Command used to be declared:

PROCEDURE TCommand.ICommand(itsCmdNumber: CmdNumber);

but now a !Command sets the command's fView to the view in which the command is taking
place, and also sets the scroller used for automatic scrolling during the command:

PROCEDURE TCommand. !Command (itsCmdNumber: CmdNumber;
itsView: TView;
itsScroller: TScroller);

Tracking methods

The point parameters of the tracking methods TrackMouse, TrackConstrain, and TrackFeedback
are now VPoints. You will have to do the necessary conversions before storing these points in
rects, and so forth.

Also, now that frames are gone, you may have to replace calls to UpdateEvent with something
like this:

fYourView.GetWindow.DrawContents;

c HA p TE R 9 . Compatibility 45

MacApp Cookbook Draft 1 1126189

Editing commands

Editing commands also stay the same for the most part. The only differences will occur as they
reference views. For example, your Cut/Copy command might have referenced the fCanSelect
field of gClipView. For a list of possible problems, see the "View Changes" section, above.

46 MACAPP COOKBOOK

·~.

MacApp Cookbook Draft 1 1/26189

(

Chapter 10 Controls and Control Views

"*No recipes yet***

47

MacAppCookbook Draft 1 1/26/89

(

Chapter 11 Cursors

No recipes yet

49

MacApp Cookbook Draft 1 1126189

Changing the Cursor Shape

Cursor region

From Curt, what about the cursor region?

50 MACAPP COOKBOOK

Mar.App Cookbook

Chapter 12

(

J?raft 1 1/26189

Debugging in MacApp

This chapter describes some specific MacApp debugging techniques. For more
complete description of how to to use the Debugger, see the MacApp General
Reference.

When an application is running, an application object and any number of document
objects exist in memory. MacApp also includes a facility called the Inspector that you
can use to examine the contents of these objects as the application is running. The
Inspector is described in the MacApp General Reference.

This chapter describes some specific MacApp debugging techniques. For more
complete description of how to to use the Debugger, see the MacApp General
Reference.

Is that where it is?

51

Mar.App Cookbook Draft 1 1/26189

Writing a Fields Method

When the Inspector is listing the fields of an object instance, it does so by calling that object's
Fields method. The classes that come with MacApp have Fields methods defined for them, and
that is why the Inspector works for all MacApp-defmed fields. If you want todefine your own
classes (or subclasses like TiconEditApplication and TiconDocument) then ·

Important

Whenever you create an object class, you should always include a Fields method. This way, you
will always be able to inspect all of the fields of your object instances.

Step 1 Declare a Fields method for your document class

In your interface file, declare a Fields method as one of the methods in your document class.
Since it is an override method, you must use the predefmed interface:
PROCEDURE TiconDocument .Fields (PROCEDURE DoToField (fieldname : Str255;

fieldAddr: Ptr;

fieldType: integer)); OVERRIDE;

Step 2 Define the Fields method

In your implementation ftle, defme the Fields method by taking the following steps.

1. Using the DoToField routine, display the name of the class.

2. Then, also using the DoToField routine, display the name of each field unique to
TiconDocument.

3. Call the inherited version of Fields.

When the Inspector calls the Fields method of an object, it sends one parameter-a routine that
you can use to print the value of the fields. This routine is called DoToField.

52 MACAPP COOKBOOK

(

c:

(

MacAppCookbook Draft 1 1/26189

When the Inspector window calls this Fields method for some particular document instance, it
will send a DoToField routine as the parameter. It is your job to call this DoToField routine,
which takes three parameters as follows:

• The name of the field. This is a Pascal string representing the name of the field. You can
actually use any string that you like.

• The address of the field. You can find this by using the Pascal@ operator. DoToField uses
this parameter to find the value of the field

• An integer representing the type of the field. DoToField uses this to decide how to display
the contents of the field (for example, whether to display an integer or an address).

The body of your method should make these calls:
DoToField ('TiconDocument', NIL, bClass);

DoToField('ficonBitMap', @ficonBitMap, bHandle);

INHERITED Fields(DoToField) ;;

Step 3 Call Inherited DoToFields

This method should always call the inherited Fields method to be sure that any inherited fields
are displayed as well.
PROCEDURE TiconDocument .Fields (PROCEDURE DoToField (fieldname : Str255;

fieldAddr: Ptr;

fieldType: integer)); OVERRIDE;

BEGIN

DoToField ('ficonBitMap', @ficonBitmap, bHandle);

INHERITED Fields(DoToField);

END;

MacApp has many predefined constants that you can use for this parameter: binteger, bRect,
???. Each of these integers instructs the DoToField routine to display the value in a slightly
different way. For example, rectangles are displayed like this: (12, 12, 40, 50), while integers are
displayed like this: 57. In the first line of your fields method, you can display the class name of
the object. For instance:
DoToField ('TiconDocument', NIL, bClass);

Notice that the "field name" parameter is actually the name of the class, the address parameter
is NIL, and the type parameter is bClass.

CHAPTER 12 Debugging 53

MacApp Cookbook Draft 1

Step 4 Conditionally compile the Fields method

Surrround both the Fields decJaration (in the interface file) and the Fields definition (in the
implementation ftle) with the conditional compiJation flags:
{$IFC qDebug}

{ code to be conditionally compiled... }

{$ENDC}

;4 MACAPP COOKBOOK

1126189

Heading sounds funny-any
suggestions?!

(

('

MacApp Cookbook Draft 1 1/26189

Chapter 13 Dialogs

A dialog box in the traditional Macintosh sense is a specialized type of window
designed to display information to and take input from the user. Such boxes can be
modeless, meaning that the user does not have to respond to the box to continue, or
modal, meaning that the user must respond to continue.

In MacApp 2.0, there is no distinction between dialog boxes and windows, and you
construct a dialog box in the same way as you do any other MacApp window-by
constructing a hierarchy of views. The UDialog unit provides a set of predefined view
classes that can be used in any window. To create the illusion of a dialog box using
MacApp, you use the UDialog unit to create objects that can request information from
the user. Some of the elements traditionally found in dialog boxes and supported by
the UDialog unit are as follows:

• modeless dialog boxes

• modal dialog boxes, including the features of tabbing between text fields and
implementing default and cancel buttons

• views that can take in text and validate the text

• views that can take in numbers and validate the numbers, called number text
items

• radio buttons, push buttons, and check boxes; that is, views that represent the
Macintosh Toobox Control Manager controls

• views that represent pictures, icons, and static text-all of which can behave like
buttons, if desired

• groups of radio buttons, called radio clusters, which define dependencies among
the controls

• pop-up menus

• scrollable lists

To handle your application's dialogs, you can:

55

MacApp Cookbook Draft 1 1/26189

• Create a modeless dialog

• Create a modal dialog
• etc. c-on through all the recipes provided by the chapter'"'•)

Creating a modeless dialog

A modeless dialog is similar to an ordinary window, except that the dialog's main view object is
an instance of IDialogView and its view is an instance of a IDialogView. Modeless dialog boxes
usually exist to request some sort of information from the user, and any information they
convey to the user is generally simple. Modeless dialog boxes can be deactivated just like
ordinary windows, so the user does not have to respond to them before continuing work with
the application.

Run-tlme summary of creating a modeless dlalog

MacApp asks your application to create a modeless dialog by ... doing what•-

Figure 13-1 provides a summary of MacApp's actions at runtime when a modeless dialog is to be
created.

• Figure 13-1 MacApp's actions when creating a modeless dialog

Figure TBD; for example see Chapter 14, "Documents"

MACAPP COOKBOOK

MacApp Cookbook Draft 1 1/26189

Overview of your responsibilities

The actions you must take, the reasons you must take those actions, and what MacApp can
provide to help you take those actions are summarized in Table 13-1. Each of the steps is
explained in detail in the recipes that follow.

This section also assumes that you have already created an instance of an application object.
For more information, see Chapter X, "Applications."

Table 13-1 Overview: creating a modeless dialog

Step Your action: Because:

1. Include UDialog in the USES statement of your
main unit.

2. Call InitUDialog.

3. Define your dialog view as a subclass of
TDialogView.

4. Create the dialog view and the dialog window

5. Install the controls.

6. Set the window title

7. Launch the window

8. Override the DoChoice method and provide
the identity of the item selected by the user.

9 Implement a command object to take the
action, if desired.

MacApp provides the special UDialog unit that
contains the user interface objects.

MacApp provides the initialization method for the
UDialog unit.

MacApp provides the TDialogView class to serve as a
superview for dialog items.
... Need more help in this step .. •

• .. Need more help in this step .. •

-Need more help in this step .. •
... Need more help in this step .. •

MacApp uses a parameter of DoChoice to find out
which dialog item has been selected.

If you implement a command object that will take
the desired action, the action the user takes can be
undoable.

CHAPTER 13 Dialogs 57

Mar.App Cookbook Draft 1

Step 1 Include UDialog

MacApp provides a special UDialog unit that contains the user interface objects. To take
advantage of those objects, include UDialog in the USES statement of your main unit.

The following sample code from MDemoDialogs. p includes UDialog, among others

1126189

{--}
USES

{$LOAD Macintf.LOAD}
MemTypes, QuickDraw, OSintf, Toolintf, Packintf,

{$LOAD UMacApp.LOAD}
UMAUtil, UViewCoords, UFailure, UMemory, UMenuSetup, UObject, UList,
UAssociation, UMacApp,

{$LOAD}
UTEView,
UDialog,
UGridView,
UDemoDialogs;

{--}

Step 2 Call InitUDialog

You must initialize the UDialog objects before you use them by calling InitUDialog first.

The following sample code from UDemoDialogs.incl.p initializes UDialog:

Any rules about where this call must
bemadef

{--}
BEGIN

IApplication(itsMainFileType);
InitUDialog;
{other initialization methods}

END;

{--}

58 MACAPP COOKBOOK

(

(

(~\

j

MacApp Cookbook Draft 1 1/26189

Step 3 Define your dialog view as a subclass of TDialogView

For some types of modeless dialogs, you may need to create your own descendant of
1DialogView. You need to do this if you want to override one of the standard dialog methods.
For example, if you want to save some information pertaining to your dialog after it is closed,
you can override 1DialogView.DismissDialog. The interface of your new object type might be
TYourModelessDialogView = OBJECT (TDialogView)

FUNCTION TYourModelessDialogView.DismissDialog(dismisser: IDType); OVERRIDE;

END;

The dismisser parameter contains the four-character identifier of the item that actually
dismissed the dialog. You do not have to override any other methods of 1DialogView.

Step 4 Create the dialog view and the dialog window

Step 5 Install the controls.

Step 6 Set the window title

Step 7 Launch the window

... Need more help in this step•••

... Need more help in this step•••

*"Need more help in this step***

... Need more help in this step•••

Couldn't find an example in
UDemoDialogsJncl.p. Is there one

someplace?

{--}

CHAPTER 13 Dialogs 59

MacApp Cookbook Draft 1

PROCEDURE TYourType.PoseModelessDialog;
VAR aDialogView: TDialogView;

aWindow: TWindow;
BEGIN

{Use this approach when using view resources.}
aWindow := NewTemplateWindow(aRsrcID, NIL);

1126189

{ 'DLOG' is an arbitrary identifier you define in your resource file}
aDialogView := TDialogView(aWindow.FindSubView('DLOG'));
aWindow.Open;

END.

{--}
For a discussion of dialog items see the "Using Dialog Items" section.

Notice that the PoseModelessDialog method opens the dialog window and then returns without
waiting for a response from the user.

Step 8 Override the DoChoice method

MacApp uses a parameter of DoChoice to find out which dialog item has been selected. Your
job is to set the XXXX parameter to the identity of the item selected by the user.

Step 9 Implement a command object, if desired

If you implement a command object that will take the desired action, the action the user takes
can be undoable. For more information on command objects, see Chapter X, "Undoing."

Closing a modeless dialog

6o MACAPP COOKBOOK

-rs this recipe needed? There was
some debate on MacApp.Tech$,

followed by suggestions from Curt,
Russ Wetmore, and Mike Cremer.
What of the following should I

(

MacApp Cookbook Draft 1 1/26/89

include? (the stuff hasn't been
rewritten very much)•••

(from CUrt Bianchi)

MacApp automatically closes windows when the window's CloseByUser method is called. If you
wanted to do this in your application, you can call CloseByUser in·the appropriate DoChoice to
close the window in response to clicking a button. When CloseByUser returns, the window and
its subviews are free'd but the methods are not. Thus, you can't refer to any of the fields or
instance variables of any of the views after the CloseByUser call but the code will still execute
and DoChoice will return to its caller and so on. The important point is to not refer to any fields
of objects that will have been free'd as a result of calling CloseByUser.

Another thing you may want to do is call the dialog view's CanDismiss method firs~ and call
CloseByUser if CanDismiss returns true.

(from Russ Wetmore)

It's up to the method that opens the dialog to close it (that is, close the dialog window). In
most cases, the sequence usually looks something like: ·

aWindow := NewTemplateWindow(aRsrcID, NIL);
dismisser := TDialogView(aWindow.FindSubView('DLOG')) .PoseModally;
CASE dismisser OF

{ handle dismisser here
END; { CASE }
aWindow.Close;

Now, if you want a button to dismiss a dialog (in other words, end a PoseModally session) then
all you have to do is call TDialogView.DismissDialog in the button's DoChoice method. The
next time PoseModally tries to field an even~ it will then exit back to its caller.

The reason the window is not closed automatically is in case you want to be able to re-enter the
dialog, based on the dismisser or on actions you take based on a dismissal.

from Mike Cremer

Another solution is to not actually close the window at all. Specify "dontFreeOnClosing" in the
Rez template of the window (or in ViewEdit, leave the "Free on closing" checkbox empty). The
DialogView in the window should have an "ok" and "cancel" option, both of which dismiss the
dialog. And the DismissDialog method should call GetWindow.Close. If you look at the
TWindow.Close method, you'll note that it does the following: ...

CHAPTER 13 Dialogs 61

MacApp Cookbook

Show(FALSE, kRedraw);
Activate(FALSE);
IF fFreeOnClosing THEN

FREE;

Draft 1 1126189

So as long as your window is not "freeOnClosing," MacApp won't attempt to free all the
subviews, including the TDialogView where you are handling the mousedown. So, make sure you
keep an application-level or global-level reference to the dialog (say, gFindDialog). Initialize it
to NIL, then whenever the user selects a command that causes the dialog to pop into existence,
check the global objRef to see if it is NIL. If it is, create the object. If it isn'~ perform and
cleanups (clearing out dialog edit text fields, resetting controls, etc.) and Select/Show the
window (both are necessary).

In this case, the object still exists even when it may no longer be needed. However, the window
appears exactly where the user put it last. So, If you are using modeless dialogs for such things
as find/ replace type commands, this may be worth trying.

Creating a modal dialog

A modal dialog requires a response before the user can continue with the application. As with modeless
dialogs, a modal dialog view is an instance of a TDialogView. Modal dialogs usually exist to alert the user to
some condition and force the user to make some sort of response. Modal dialogs cannot be deactivated,
but can only be dismissed.

Does this mean the user or the
application,can't deactivate the

dialog?.

+ Note: Because modal dialogs force the user to take a specific action, you should use them
sparingly in your application. See Human Interface Guidelines: the Apple Desktop Interface,
for more information.

62 MACAPP COOKBOOK

(

(

MacApp Cookbook Draft 1 1/26189

Run-time summary of creating a modal dialog

MacApp asks your application to create a modal dialog by •••doing what* ...

Figure 13-2 provides a summary of MacApp's actions at runtime when a modeless dialog is to be
created.

• Figure 13-2 MacApp's actions when creating a modal dialog

figure TBD

Overview of your responsibilities

The actions you must take, the reasons you must take those actions, and what MacApp can
provide to help you take those actions are summarized in Table 13-2. Each of the steps is
explained in detail in the recipes that follow.

This section also assumes that you have already created an instance of an application object.
For more information, see Chapter X, "Applications."

TableX-1 Overview: creating a modal dialog

Step Your action: Because:

1. Include UDialog in the USES statement of your
main unit.

2. Call InitUDialog.

3. Define your dialog view as a subclass of
TDialogView.

MacApp provides the special UDialog unit that
contains the user interface objects.

MacApp provides the initialization method for the
UDialog unit.

MacApp provides the TDialogView class to serve as a
superview for dialog items.

CHAPTER 13 Dialogs 63

MacApp Cookbook Draft 1

Step 1 Include UDialog

The dialog-handling capabilities of MacApp or in the UDialog uni~ so include UDialog in the
USES statement of your main unit.

Step 2 Define a method that displays the dJalog

1/26/89

This display method should be for the object type that issues the command. If the dialog has to
do with the operation of the application as a whole, the method should belong to
TY our,\pplication, and similarly with your document or view.

+ Note: Because you rarely customize 1Wmdow, the display method is rarely a window
method.

The interface to the display method can be something like:
PROCEDURE TYourType.PoseModalDialog;

The details of the method's interface depend entirely on the use your application makes of the
dialog.

Step 3 Implement PoseModalDialog

.After you set up the dialog, you call its PoseModally method. That method requires a response
from the user before continuing. TDialogView.PoseModally processes events until selecting one
of the dialogs items causes the dialog to be dismissed. When one of the items returns the value
TRUE for the done parameter, PoseModally returns with a message from the item that returned
TRUE. You should then interpret the value of this return value and take appropriate action
(which might, if the user chose Cancel, mean taking no action).

The following sample code from UDemoDialogs.incl.p illustrates this step:
{--}

PROCEDURE MakeSaveDialog;

VAR

64 MACAPP COOKBOOK

,/

(

MacApp Cookbook

aWindow:
dismisser:

BEGIN

TWindow;
IDType;

Draft 1

aWindow := NewTemplateWindow(aCmd.Number, NIL);

1/26189

dismisser := TDialogView(aWindow.FindSubView('DLOG')) .PoseModally;

{$IFC qDebug}
IF dismisser = 'yes ' THEN

WRITELN('The user said yes.')
ELSE IF dismisser = 'no ' THEN

WRITELN('The user said no.')
ELSE IF dismisser = 'encl' THEN

WRITELN('The user cancelled the dialog.')
ELSE

·WRITELN('I don' 't know how the user responded');
{$ENDC}

aWindow.Close;
END;

{--}

Using dialog items

Every dialog view is made up of a list of dialog items

•"'fhe items don't have to
completely make up the view, do

they? That is, can the view contain
other things?***

Dialog items are objects of type TControl or its descendants TStaticText, TCtlMgr, TCluster,
Ticon, TPopup, and TPicture. Descendants of TCtlMgr include TScrollBar, TButton,
TCheckBox, TRadio, TEditText, and TNumberText. You may also define your own
descendants of any of these types or of TControl itself.

The predefined dialog item types from UDialog are as follows:

• TButton implements a simple Control Manager button.

• TCheckBox implements a simple Control Manager check box control.

CHAPTER 13 Dialogs 65

MacApp Cookbook Draft1 1/26189

• TRadio implements a simple Control Manager radio button control.

• TCluster implements a "holding" view for radio buttons or other objects. It has two intrinsic
functions-it understands an mRadioHit message from a subview, and can be used to
contain other controls with a ~phic label.

• Ticon implements an icon item that can serve as a basic 1orm of button if enabled.

• TPicture implements a picture itein that can also serve aAa basic form of button if enabled.

• TPopup implements a simpllpop-up menu selector, following the guidelines for pop-up
menus established by the Apple Human Interface Group.

• TScrollBar implements scroll bars as simple dials not associated with any scroller object

• TStaticText implements a static text item that can serve as a basic form of button if
enabled. The text cannot I?e edited.

• TEdiff ext implements a sidiple editable text item. It is implemented as a subclass of
TStaticText. When the item needs to be edited, the parent DialogView places a floating
TEView over the view.

• 1NumberText can take in numbers. (Any characters other than 0 through 9 are ignored.) It
can validate the numbers tO make certain they are within a given range, after the tab key is
pressed or another control is selected.

The number and position of dialog items in the dialog view is defmed in the dialog's template in
the resource ftle. Controls are now views which can be subviews of any views, not just dialog
views. However, using dialog views does ensure that tabbing and editing of editable text items
works properly.

\,

Is there an algorithm that can be
presented?

Creating buttons

MACAPP COOKBOOK

Samples needed from DemoDialogs
or IconEdit.

•"Recipe needed?•••

(

(

MacAppCookbook Draft 1

Creating radio buttons

Making a default button

Creating check boxes

Handling scroll bars

Scroll bars and scrolling views in dialogs are no different than any other scroll bars or scrolling
views. For more information, see Chapter X, "Scrolling."

Handling double clicks in scrolling list in a modal dialog

from Richard Rodseth, in response to a MacAppTech$ question

If you subclass TTextListView and override DoMouseCommand, you can detect the double
click by looking at info.theClickCount. I would then call SELF.DoChoice with some constant
you define, eg. mDoubleClicklnLlst. This message will get forwarded to your DialogView's
DoChoice method, which can respond appropriately. I'm not sure what that is in this case. You
might just call FlashControl to highlight the button, and DismissDialog, as is done in
TDialogView.HandleCR.

1/26189

•••Recipe needed?•••

•••Recipe needed?***

•••Recipe needed?•••

***Recipe needed?•••

CHAPTER 13 Dialogs 67

MacApp Cookbook Draft 1 1/26189

In any case, I think it's good style to isolate the interaction between controls/views in a dialog
in the DialogView's DoChoice method. You could argue that all views should call DoChoice, with
special constants for things like single and double clicks, perhaps even passing the event info.
This could function sort of like Smalltalk's dependency/self-changed mechanism. Packages of
reusable dialog elements could be produced, which coul4 be used in composing dialogs,
without any subclassing necessary, other than DoChoice, to manage the side-effects. In your
case, you wouldn't have to subclass TfextLlstView. On the other hand, views would always pay
the price, even when they didn't have a side-effec~ or weren't even in a dialog. Comments
anyone?

Continuing from here

Because MacApp 2.0 treats a dialog exactly as a window, you can use any of the techniques
desciribed in Chapter X, "Views," and Chapter X, "Windows."

(iS MACAPP COOKBOOK

MacAppCookbook Draft 1 1/26189

Chapter 14 Documents and Files

In the MacApp world, a document is used to store any sort of data For instance, in a
graphics program it could store shapes; in a word processor it could store text and
formatting information; in a spreadsheet application it could store numeric
information; or in a music program it could store data concerning pitch, timbre, and
rhythm. This data is stored on disk in the form of files.

In MacApp applications, this data is read from disk and stored in memory by a
particular instance of a document object. To help you create that document object,
MacApp provides a class called TDocument, which is an immediate descendant of
TEvtHandler. As a descendant of that class, TDocument can respond to all events that
affect the entire document, such as Save, Save as, Save a copy, and Revert to saved. In
addition to inherited event-handler fields, it has fields that record the title, creator,
type, and date of the document.

Your application can have two (or more) different types of documents, can allow more
than one document to be open at a time, and can allow documents of different types
to be open at the same time.

Exactly how each sort of document stores information is up to you. It could be in
memory or on disk. Applications often start by reading a document off the disk,
keeping as much of it in memory as RAM allows, and then writing it back to the disk at
the user's request. When you design your application, you must choose how you want
to represent your data and where you want to store it.

Since most applications require documents to be read from and written to the disk,
the TDocument class also has fields for storing information about the file associated
with a particular document and methods for determining the necessary disk space, and
reading and writing them. Again, since MacApp cannot determine what sort of
information you will be writing to the disk, many of these methods require you to
override them and provide the actual code yourself.

To handle your application's documents, you can:

MacApp Cookbook Draft 1 1126189

• Create a new document

• Save the data into a disk file and read it back

• Open an existing document

• Close a document
• etc. (***on through all the recipes provided by the: section***)

This chapter describes in detail the steps you need to take.:to accomplish these tasks.

-~.

/

70 MACAPP COOKBOOK

(

(

MacApp Cookbook Draft 1

Creating a document

To create a document, you never instantiate the TDocument class directly. Instead you create
one descendant of TDocument for each different type of document that your application can
handle. You can then customize each descendant class with fields for the data structures you
need to keep the data in memory while the application is running and implement methods to
maintain those fields. You might also add fields that reference related documents and views;
and you might override and customize all the empty methods responsible for reading, writing,
and so on. Then, whenever the user opens an old or creates a new document, the MacApp code
you have customized dynamically creates new instances of these classes.

Run-time summary of creating a document

MacApp asks your application to create a new document by sending a message to the
TApplication.DoMakeDocuments method in the specific instance of your application. As
default behavior, this happens when the user double-clicks on the application's icon or gives a
New command.

• Note: To change MacApp's default behavior when the user double-clicks on an icon, you
need to override TApplication.HandleFinderRequest. See the "Opening an Application
Without Opening a Document" section in Chapter X, "Applications" for more information.

Figure 15-X provides a summary of MacApp's actions at runtime when a new document is to be
created.

1/26189

c HAP TE R 14 Documents and Files .71

MacApp Cookbook Draft 1

• Figure 15-1 MacApp's actions in relationship to this recipe

User
Event Application

Startup
New .•.

·menu item
Open file
fromFmder

Open ...
menu item

1/26189

Print
from Finder =::- --

Your
code fits
here

gYourApp. gYourApp gYourApp
OpenNew OpenOld PrintDocument

gYourApp.
DoMakeDocument

gYourApp.

'\Yo~)
DolnitialState

gYourDoc.
IY ourDocument

---·-···-··--··· ·-·------··--·--·--··-·····---·--------1------------····-·····--·····-----·-·-----------------··
MacApp' s gYourDoc.
code !Document

72 MACAPP COOKBOOK

(

(

MacAppCookbook Draft 1 1/26189

Overview of your responsibilities

The actions you must take, the reasons you must take those actions, and what MacApp can
provide to help you take those actions are summarized in Table 15-X. Each of the steps is
explained in detail in the recipes that follow.

This section also assumes that you have already created an instance of an application object.
For more information, see Chapter X, "Applications."

• Table 15-1 Overview: creating a document

Step Your action: Because:

1. Override TApplication.DoMakeDocuments MacApp calls this method whenever the application
and supply a method to create a document creates a new object, and the default
object. TApplication.DoMakeDocuments method is empty.

2. Declare a subclass of TDocument. MacApp provides a TDocument class that handles the
invocation of the New, Open, Close, Save, Save as,
Save a copy, and Revert to saved commands.

3. Define your own initialization method for your MacApp doesn't know about your subclass and
subclass. Your application object must call this therefore can't initialize it. MacApp does provide a
method whenever the application creates a TDocument.IDocument initialization method that
new document or opens an existing document. initializes the fields of document objects inherited
Normally, your initialization should call the from TDocument.
!Document method to initialize the inherited
data.

4. Override the Free method to free any allocated MacApp calls the document object's Free method
data belonging to your document. Include a whenever a document is to be closed. MacApp
call to the inherited Free method. provides a TDocument.Free method that closes any

disk files and sends messages to associated window
objects to free themselves.

5. Override the DolnitialState method and MacApp calls that method whenever the application
supply the methods necessary to set the state object creates a new, unsaved document, and the
of the new, "blank" document. default TDocument.DolnitialState method is empty.

c H APT E R 14 Documents and Files 73

MacApp Cookbook Draft 1 1126189

6. Provide a Fields method that is conditionally
compiled and calls the DoToField routine for
each field in the document object.

You can then use the Inspector debugging tool to
show the names and values of the fields of an object
instance.

Step 1 Declare the me type as a constant

MacApp determines the file type for each different type of document for your application by
examining a constant you declare in the interface part of your object unit. The file type is
generally stored as a constant kYoUtFileType, is always a four-character string, and should be of
type OSType, which is a packed array of four characters.

• .. How and when does MacApp
examine this constant???? ... *

For example, you might define kYou1FileType to be 'TEXT. If you use an existing file forma~
use the predefined ftle type. A file made up of strings of characters, where each line or
paragraph is terminated by a return, is of type TEXT. A file consisting of QuickDraw pictures is
of type PICT.

If you have your own file forma~ the file type is an arbitrary four-character string. File types
should be registered with Apple Computer Developer Technical Support to·ensure that they are
unique.

Step 2 Overriding DoMakeDocuments

MacApp calls your application's DoMakeDocument method whenever a new document needs to
be created (typically when the user double-clicks on the application icon or gives a New or
Open command). Because MacApp cannot know what kind of document object is to be
created, the default DoMakeDocument method is empty. Therefore, for your application to
respond to the request for a new document, it must create a document object and return a
reference to it.

+ Note: The DoMakeDocument method belongs to the application object because, when
DoMakeDocument is called, no document object exists.

74 MACAPP COOKBOOK

(

MacApp Cookbook Draft 1 1/26189

To override the DoMakeDocuments method, take the following steps:

1. In the interface file, declare a function method for the appropriate document type.

If the documents for the application are all of one type, you can ignore the cmclNumber
parameter. If the application has more than one document type, you can use the command
number to indicate which type of document needs to be createq. See "Creating Documents
of More Than One Type" in this chapter.

2. In the implementation file, for the function method, define a variable to serve as a
reference to the document object.

3. Create an instance of a TYou1Document object by calling the New routine with the
document reference as the parameter.

4. Use the global FailNil procedure to check for errors (see method [7.llD.

5. Initialize the instance of the document object using your own initialization method. For the
details on how to write that initialization method, see "Defining your document
initialization method" later in this section.

6. Return a reference handle to the object.

7. Save the reference in a global variable called gDocList, which is a list of all the open
document objects. That way, at any point in the future, your application object can send
messages to any document object.

The following sample code from UlconEdit.incl.p creates and initializes an instance of a
document object named aniconDocument:
{--}
FUNCTION TiconEditApplication.DoMakeDocument

(it sCmdNumber: CmdNumber) : TDocument; OVERRIDE;
VAR

aniconDocument: TiconDocument;

BEGIN
New (aniconDocument) ; { Create a TiconDcoument object }

FailNIL(aniconDocument); { Make sure it succeeds }
aniconDocument. IIconDocument; { Initialize the document }

DoMakeDocument := aniconDocument;
END;

{ Return a reference to it }

{--}

c HAP TE R 14 Documents and Files 75

MacAppCookbook Draft 1 1/26189

Step 3 Declaring a subclass of mocument

To help you build your specific document objects, MacApp provides a general '!Document class
that automatically handles the New command. To take advantage of that capability, but still
allow the flexibility to add your document's unique behavior, you inust declare your document
as a subclass of '!Document. MacApp can then provide the capabilities of '!Document and add
your methods to the behavior of TYourDocument.

To declare TYourDocument as a subclass of '!Document, take the following steps:

1. In your interface file, declare each of your document classes as a subclass of '!Document, .
and add any fields that you need to access the data of each documen~ such as a handle to
the data.

2. In the declaration of each document class, declare four methods: your initialization
method, an override of the DolnitialState method, an override of the Free method, and a
Fields method.

The following sample code from UiconEdit.incl.p illustrates these steps:
{--}

TiconDocument = OBJECT (TDocument)

ficonBitMap: Handle; {A handle to the icon's bit map. }

PROCEDURE TiconDocument. IIconDocument; { Initializes the document.)

PROCEDURE TiconDocument, Free; OVERRIDE; { Frees the ficonBitMap handle.

PROCEDURE TiconDocument.DoinitialState; OVERRIDE;

{ Sets the document• s data to represent a "new" document. }

(Other methods for the document}

{ $ IFC qDebug}

PROCEDURE TiconDocument. Fields (PROCEDURE DoToField (fieldName: Str255;

fieldAddr: Ptr;

fieldType: INTEGER)); OVERRIDE;

{$ENDC}

(Other methods for the document}

END;

{--}
The definition of the initialization method, the override definitions of the DolnitialState and
Free methods, the definition of the Fields method are discussed in the following steps.

76 MACAPP COOKBOOK

(

MacAppCookbook Draft 1 1126189

Step 4 Defining your document initialization method

Like most objects, documents should always be initialized before being used. You must define
your document initialization method that your application object calls ***correct?••• whenever
your DoMakeDocuments method creates a new document or open5 an existing one (typically
when the user has given a New or Open command).

• Note: See "Opening an Existing Document" later in this chapter for more details about that
process. ***if that reference Is there***

You define your own initialization method, instead of overriding !Document, so that you can
initialize anything else the document needs. To do so, take the following steps:

1. Initialize the state of any fields required to free the object, which usually means setting
handles to NIL or ***what else***

2. Initialize the inherited data by calling IDocument and supplying the appropriate constants.
The values you can supply for the constants are as follows:

kFileType

kSignature

kUsesDataFork

NOT kUsesDataFork

kUsesRsrcFork

NOT kUsesRsrcFork

kDataOpen

NOT kDataOpen

kRsrcOpen

NOT kRsrcOpen

???????
Already determined in the application object's methods

Document uses the data fork

Document doesn't use the data fork
Document uses the resource fork

Document doesn't use the resource fork

Document keeps the data fork open; that is, the
document is disk-based and does not keep the entire file
in memory

Document doesn't keep the data fork open; that is, the
document is not disk-based and keeps the entire file in
memory
Document keeps the resource fork open

Document doesn't keep the resource fork open

3. Perform any initialization that may fail, so that you can fail gracefully if it doesn't succeed.

The following sample code from UlconEdit.incl.p illustrates these steps.

c HAP TE R 14 Documents and Files 77

MacApp COokbook Draft 1

{--}
PROCEDURE TiconDocument.IIconDocument;

BEGIN

ficonBitMap: = NIL;

!Document(kFileType,

kSignature,

kUsesDataFork,

NOT kUsesRsrcFork,

NOT kDataOpen,

NOT kRsrcOpen) ;

In case !Document fails}

TiconDcoument .Free will ·work OK.

Dcoument uses the data fork, } •

but does not use the resource fork.}
Don't keep the data fork open.}

nor the resource fork. }

1/26189

ficonBitMap:= NewPermHandle (kiconSizeinBytes); { Allocate handle for bitmap}

FailNil (ficonBitMap) { Fail if the handle won't allocate}

END;

{--}
Note the use of the MacApp utility call FailNil, which fails if the specified handle cannot be
allocated, and the use of the MacApp memory management call NewPermHandle to allocate the
ficonBitMap handle instead of NewHandle. NewPermHandle is part of MacApp's memory­
management support and differs from NewHandle in that it attempts to ensure that there is
enough space for code resources and so on before allocating the handle. For more information
about memory management, see Chapter X, "Memory Management" in this book.

Step 5 Defining your DolnitialState method

MacApp calls your DoinitialState method whenever a document is created with a New
command. In your implementation file, override the DoinitialState method and supply any
methods necessary to set the state of the document to be an unsaved, "blank" document.

Note that blank does not necessarily mean "empty'', but rather means that the document comes
up in a reasonable blank state. For example, in the case of an icon editor, you'll have to decide
what a "new'' icon means; that is, should the screen be blank or should a basic icon be given as a
template.

The following sample code from UlconEdit.incl.p sets the value of the document's icon bit
map to that of a seed icon in a resource file.
{--}
PROCEDURE TiconDocument. DoinitialState; OVERRIDE;

78 MACAPP COOKBOOK

(

(

MacAppCookbook Draft 1 1/26189

{ This method is called to set the document's data to the "new" state, as when the

user}

{ chooses to open a new document instead of an existing one. We set the value of

the

{ document's icon bit map to that of a "seed" icon in our resource file.

VAR
seedicon: Handle;

BEGIN
seedicon : = Get Icon (kSeediconid); { Get the seed icon resource.}

IF seedicon <> NIL THEN { If we got the seed icon resource}

BlockMove (seedicon", ficonBitMap", {then copy it into the document's

kiconSizeinBytes) { ... icon bitmap.

ELSE

BEGIN { Else report error to the debugger. }

{ $ IFC qDebug}

ProgramBreak (•Unable to get the seed icon resource. ') ;

{$ENDC}

END;

END;

{--}
By placing the initial state of the document in a resource, your application can change that
state simply by changing the resource. For more infonnation about usi!lg resources in MacApp,
see Chapter X, "Resources," and Chapter X, "ViewEdit."

Step 5 Defining your Free method

Whenever a document is closed, such as when the user clicks in the close box or quits from the
application when a document is open, MacApp calls the document object's own Free method.
The TDocument.Free method knows how to close disk files and send a message to the
associated windows to free themselves, but the method cannot know what memory you have
allocated for the document. Therefore, you must take the following steps:

1. Set up your Free method to dispose of any memory that the document itself has allocated.
For example, the following code fragment disposes of a handle to the ficonBitMap if the
handle is not a nil object

2. Call the inherited Free method to allow MacApp to free up other resources.

The following sample code from UiconEditincl.p illustrates these steps.

c HAP TE R 14 Documents and Files 79

Mar.App Cookbook Draft 1

{--}
PROCEDURE TiconDocument. Free; OVERRIDE;
BEGIN ,.

DisposifHandle(ficonBitMap};

INHERITED Free;

END;

{ Dispose of the bitmap if non-Nil. }

{--}

1/26189

Note the use of the MacApp utility call DisposifHandle. That call checks if the specified handle
is NIL before disposing of it. For more information about memory management, see Chapter X
in this book.

Step 7 Defining your Fields method

When the Inspector is listing the fields of an object instance, it does so by calling that object's
Fields method. Whenever you create an object class, you should always include a Fields method
that will be conditionally compiled in debug versions of your application. This way, you can
inspect all of the fields of your object instances when debugging.

+ Note: This step quickly reviews the Fields method. For more information, see the section
"Writing a Fields Method" in Chapter X, "Debugging."

When the Inspector window calls this Fields method for some particular document instance, it
sends a DoToField routine as the parameter. Your method call this DoToField routine for each
field in the TiconDocument object, and then call the inherited version of the Fields method.

To add a Fields method to your document class, take the following steps:

1. Declare a Fields method for your document class.

In your interface file, declare a Fields method as one of the methods in your document class.

2; Define your Fields method.

In your implementation file, define the Fields method.First, using the DoToField routine,
supply the following parameters for each field unique to TiconDocument:

• The name of the field. This is a Pascal string representing the name of the field. You can
use any string that you like.

80 MACAPP COOKBOOK

(

(

MacAppCookbook Draft 1

• The address of the field. You can find this by using the Pascal@ operator. DoToField
uses this parameter to find the value of the field.

• An integer representing the type of the field. DoToField uses this to decide how to
display the contents of the field (for example, whether to display an integer or an
address).

Then, call the inherited version of Fields.

3. Make sure that the Fields method is conditionally compiled.

Surrround both the Fields 'declaration (in the interface file) and the Fields definition (in the
implementation file) with the conditional compilation flags.

The following sample code from UiconEdit.incl.p illustrates these steps.
{--}
{ $ IFC qDebug}

PROCEDURE TiconDocument.Fields (PROCEDURE DoToField (fieldName: Str255;

fieldAddr: Ptr;

1/26189

fieldType: INTEGER)); OVERRIDE;

BEGIN

DoToField ('TiconDocument', NIL, bClass);

DoToField ('ficonBitMap', @ficonBitMap, bHandle);

INHERITED Fields (DoToField) ;

END;

{$ENDC)

{--)

Continuing from here

Other recipes later in this chapter give you the capabilities to deal with the rest of the
documents things, such as saving and restoring data.

MacApp's design requires each document instance to take initiative for getting itself
displayed. Thus, it has methods that create the views through which it will be displayed and
fields that keep track of all the views associated with the document. Since MacApp cannot
anticipate how you want to display the data or what sorts of windows and views you might
want, these methods are empty in the MacApp library. You must override them to provide your
own custom definitions. For more information on those definitions, see Chapter XX, "View,"
and Chapter XX, "Windows."

c HAP r E R 14 Documents and Files 81

MacApp Cookbook Draft 1 1/26189

In addition to reading and writing the disk ftles and creating and maintaining the views and
windows associated with them, each document type's methods are responsible for handling any
requests from the user that affect the document. Every event-handler class has a method called
DoMenuCommand. The document's DoMenuCommand method will call the appropriate
methods in response to the user's choice of commands such as Save, Save As, and Revert to
Saved. By overriding this method, you can allow your documents to handle other commands
you might care to implement.

For each document type, if you have menu commands other than the standard File menu
commands (New, Open, Save, Save As, Save Copy, or Revert) that apply to the document or its
contents (regardless of which window is active or which view is selected), you need to override
TDocument.DoMenuCommand and IDocument.DoSetUpMenus .. For more information about
menu commands, see Chapter XX, "Menus,n and Ch3pter X "Undoing" recipe for details on
DoMenuCommand. ·

MACAPP COOKBOOK

MacAppCookbook Draft 1 1/26189

(

c HAP TE R 14 Documents and Files 83

MacAppCookbook Draft 1

Saving and restoring data

You save and restore data to and from files so that the user can save documents, open
document icons, and open documents using the Open command and the directory dialog box.

Objects contain data and also have pointers to methods. You save only the data, not the
method pointers, in your document file. The way you do this depends on how your
application's data is organized.

1126189

MacApp provides a general 1Document class that implements a framework for saving files and
opening those files to read their contents . What 1Document doesn't implement is the code to
read and write the data unique to a particular document. You do that by overriding TDocument
methods.

In addition, you can save the print state and the display state so the user does not have to
reestablish them each time the document is opened.

Following from Interim cookbr
still t.

The recipe assumes your data consists of a list of objects of a single type. In such a case, you ·
generally create records that are equivalent to the data parts of the objects you want to save,
and you save those records in the file. In the templates, the record type is called TFiledltem.
When you want to restore that document file (that is, when the user opens that document), you
create a new set of objects, reading data from the file and transferring it from the filed records
to the objects.

Run-time summary of saving and restoring data

Figure 15-X provides a summary of MacApp's actions at runtime when data is to be saved or
restored.

84 MACAPP COOKBOOK

(

(

MacApp Cookbook Draft 1

• Figure 15-2 MacApp's actions when saving or restoring a document

TBD

Overview of your responsibilities

The actions you must take, the reasons you must take those actions, and what MacApp can
· provide to help you take those actions are summarized in Table 15-2. Each of the steps is
explained in detail in the recipes that follow.

This recipe also assumes that you have already successfully created a document object For
more information, see the section "Creating a Document" earlier in this chapter.

• Table 15-2 Overview: saving and restoring data

Step Your action: Because1

1/26/89

1. If desired, change the value of fSavePrintlnfo. MacApp checks fSavePrintlnfo to determine whether
to include space for the print record in its disk space
calculations. By default, MacApp does not include
space for the print record.

2. If desired, change the value of fSavelnPlace. MacApp checks the value of the fSavelnPlace field to
decide whether or not to overwrite the original file
when there isn't enough space for a copy. By default,
MacApp doesn't overwrite the file if either the
keepSDataOpen or the keepSRsrcOpen flags are
true; otherwise it asks the user whether or not to
overwrite the file.

c HAP TE R 14 Documents and Files 85

MacApp Cookbook Draft 1 1126189

3. Override DoNeedDiskSpace. You will usually
call inherited DoNeedDiskSpace to save any
information from the parent of your
1Document subclass.

4. Override DoWrite for your document object.

5. Override DoRead for your document object.

MacApp uses DoNeedDiskSpace to estimate the
amount of disk space required to save a document's
data. MacApp calls •••correct!*"* DoNeedDiskSpace
just before a document is saved and uses the value
returned by that method to check whether there is
room on the disk to save the new me.

MacApp calls document.Do Write whenever the data
needs to be saved.

An empty IDocument.DoRead method. MacApp
calls1this method whenevet

Step 1 If desired, change the value of fSavePrintlnfo

By default, MacApp does not calculate the space needed for the print information record in its
calculations for the amount of space needed for the document If you want DoNeedDiskSpace
to allow space for that record in its calculations, set the fSavePrintlnfo field to TRUE in the
I YoUtflocument method.

Step 2 If desired, change the value of fSavelnPlace

Is this the style we want to use\, /
"your" methodSf

MacApp also checks the value of the fSavelnPlace field to decide whether or not to overwrite
the original file when there isn't enough space for a copy. By default, MacApp doesn't overwrite
the file if either the keepSDataOpen or the keepSRsrcOpen flags are true; otherwise it asks
the user whether or not to overwrite the file.

MacApp uses the IDocument method to set the value of fSavelnPlace as follows:

86 MACAPP COOKBOOK

In the preceding paragraph, should
the flags be replaced with English

equivalents?

Rather than text, should we use the
following code fragment?

(

MacAppCookbook Draft 1

IF keepSDataOpen OR keepSRsrcOpen THEN

fSaveinPlace := sipNever

ELSE
fSaveinPlace := sipAskUser;

To change that default behavior, set the value of the document's fSaveinPlace field in the
/YourDocument method to one of the following

sipNever don't overwrite original file

sipAlways always overwrite original filethere is not enough space for a copy

sipAskUser ask user whether to overwrite the original file when there is not enough space
for a copy

Step 3 Override DoNeedDiskSpace

1/26189

MacApp uses the DoNeedDiskSpace method to allow it to estimate the amount of disk space
required to save a document's data. MacApp calls •••correctr"* DoNeedDiskSpace just before
a document is saved and uses the value returned by that method to check whether there is room
on the disk to save the new file without first deleting the old. Therefore, your override of the
DoNeedDiskSpace method must return the total amount of disk space, in byres, needed to
store the data and resources for the document. . MacApp will add the number of
dataForkBytes and rsrcForkBytes. to the number of bytes rretumed to determine the total
number of bytes needed to store the document.

6Important Take care that your DoNeedDiskSpace method returns the correct value or
overestimates slightly; if DoNeedDiskSpace returns too large a value, the
old file may be deleted unnecessarily, or DoNeedDiskSpace may
erroneously inform the user that the file cannot be saved; if
DoNeedDiskSpace returns too small a value, you may get an I/0 error when
the application tries to save the documen~ which could be particularly
serious if MacApp has deleted the old file .. f::..

To override the document's DoNeedDiskSpace method, take the following steps:

c HAP TE R 14 Documents and Files

MacApp Cookbook Draft 1 1/26189

1. In your override of DoNeedDiskSpace, call the document's inherited DoNeedDiskSpace so
that MacApp can calculate the space needed to save the print state (if fSavePrintlnfo is
true), the overhead for the file, and, if you are using the resource fork, the overhead for the
resource fork.

2. Include the necessary methods to calculate the disk space needed to store the number of
bytes in the data fork and the resource fork of the document.

The following sample code from UiconEdit.incl.p illustrates a typical DoNeedDiskSpace
method

{--}

PROCEDURE TiconDocument.DoNeedDiskSpace (VAR dataForkBytes. rsrcForkBytes: LONGINT);
OVERRIDE;

BEGIN
INHERITED DoNeedDiskSpace(dataForkBytes,

rsrcForkBytes);
{ In case parent class saves data.}

dataForkBytes := dataForkBytes +
kiconSizeinBytes;

{ Add the size of the icon in bytes to }
{ the number of bytes in the data fork.}

END;

{--}
Notice that this method adds to the initial value of dataForkBytes. MacApp sets the initial
values of the dataForkBytes and rsrcForkBytes parameters, and you should not reset them to 0.

6Important

Old interim Cookbook had following
paragraph. Is it still valid? If so,

does it go here?

Although, for simplicity, this recipe assumes that all the application's
objects are of one class, that is relatively unlikely. If your file contains
several classes of objects, you need to create a record type for each object
class you want to save. In the file, each record should be preceded by a
"identifier" value that indicates what type of record follows. You first read.
the identifier value and then read a record of the type indicated by the
identifier value. You may read the record into a variable of the record type
and then copy fields into the object or, if the field structure of the record
and the object are identical, you can read directly into the object from the
file .. c.

88 MACAPP COOKBOOK

(

(

Mac.App Cookbook Draft 1 1/26189

Step 4 Override DoWrite

When MacApp calls Do Write, the data me has already been opened, so all you need to do is
write the data. To write data to a file, override Do Write for your document object and take the
following steps:

1. Call inherited DoWrite to ensure that the print information is read if necessary, and pass the
following:

• The me reference number ···had thJs already been provided, and, if so, where?*"

• The rnakingCopy parameter, which is primarily for disk-based documents and indicates
that Do Write is being called to make a new copy of the file.•••need more explanation
of makingCopy ...

2. Use the Macintosh File System routine FSWrite, which is passed a me reference number, the
number of bytes to write, and a pointer to the buffer to be written.

Preceding adapted from DoRead;
please check.

The following sample code from UiconEdit.incl.p calls the inherited DoWrite method and sets
the numberof bytes to be equal to the size of the icon in bytes:
{--)
PROCEDURE TiconDocument.DoWrite (aRefNum: INTEGER; makingCopy: BOOLEAN); OVERRIDE;

VAR

numberOfBytes:

BEGIN

LONGINT;

INHERITED DoWrite (aRefNum, makingCopy); { In case parent class writes data.}

numberOfBytes := kiconSizeinBytes;

FailOSErr (FSWrite (aRefNum, numberOfBytes, (Use Mac File System to write data }

ficonBitMap") l; { ... directly from the bitmap handle,}

{ ... fail if FSWrite returns an error}

END;

{--)
OJd interim Cookbook had following
paragraph. Is it still valid?

The sample begins by saving the print state. MacApp does that for you when you call
INHERITED DoWrite. (You need to set document.fSavePrintlnfo to TRUE in IYourDocument
or TDocument.DoWrite won't save the print state.) Finally, the data is saved.

c HAP TE R 14 Documents and Files 89

MacApp Cookbook Draft 1 1126189

Step 5 Override DoRead

When MacApp calls DoRead, the data file has already been opened, so all you need to do is read
the data. To read data from a ftle, override DoRead for your document object and take the
following steps:

1. Call inherited DoReadto ensure that the print information is read if necessary, and pass the
following:

• The file reference number.
• The rsrcExists parameter, which indicates***need more explanation of rsrcExists

• The forPrintlng parameter, which indicates***need more explanation of forPrintlng
•••

2. Use the Macintosh File System routine FSRead and pass the following:

• The file reference number.

• The number of bytes to read.
• A pointer to the buffer in which to place the bytes.

The following sample code from UiconEdit.incl.p calls the inherited DoRead method and sets
the numberof bytes to be equal to the size of the icon in bytes:
{--------------------------------------~---}
PROCEDURE TlconDocument.DoRead (aRefNum: INTEGER; rsrcExists, forPrinting: BOOLEAN);
OVERRIDE;

VAR
numberOfBytes:

BEGIN

LONG INT;

INHERITED DoRead(aRefNum, rsrcExists, { In case parent class reads data.}
for Printing);

numberOffiytes := klconSizelnBytes;
FailOSErr(FSRead(aRefNum, numberOffiytes,{ Use Mac File System to read data}

END;

flconBitMapA)); { ... directly into the bitmap handle,}
{ •.. fail if FSRead returns an error.}

{--}

90 MACAPP COOKBOOK

/

(

(

MacApp Cookbook Draft 1 1/26/89

Notice that this case dereferences the pointer once, which results in a pointer to the 128 bytes
reserved for the icon's bit map. This is a safe dereference of a handle because FSRead does not
cause heap object relocation.

Is there a list somewhere of calls
that don't cause heap object

relocation?

Old interim Cookbook had followin:g
paragraph. Is it still valid and/or

relevant?

Notice that the display state is not restored at this time. That is done when the window is
created, with DoMakeWindows, or DoMakeViews. See "Saving the Display State" later in this
chapter.

Saving different typs of items

Assuming you have several different types of items, each a descendant of Tltem and
differentiated by a value that indicates the kind of item, take the following steps:

1. Add the following method to your document
FUNCTION TYourDocument .Make Item (kind: ItemKind) : Titem;

2. Define a set of constants for the different kinds of items.

3. Give each object type in your document's data set a WriteTo method for the
TYou7Document.WriteTo method and a ReadFrom method for the
TYou7Document.ReadFrom method. The interfaces for Tltem.WriteTo and
Tltem.ReadFrom could be as follows:

FUNCTION Titem.WriteTo(aRefNum: INTEGER): OsErr;

FUNCTION Titem. ReadFrom (aRefNum: INTEGER) : Os Err;

All the following stuff is from old
cookbook. Still valid?

Salvaged from old Cookbook. Is it
still valid?

4. Assign an identifier value to each item, and create a method for each item class that returns
the identifier value for the item. Before you write each item's data, write its identifier value
into the file.

c HAP TE R 14 Documents and Files 91

MacApp Cookbook Draft 1 1/26189

5. If your different item classes have different sizes, you may also want to add a method to
your item classes that calculates the size of the item. You'll need to call this method when
you are calculating the amount of disk space you need to save a document to disk.

Opening an existing document

•••Js a recipe needed, given the
.information 1n Saving and Restoring

Data?•••

Closing a document

Saving the display state

When opening an old document, the user usually likes to find the window and view the way they
were left when the document was saved; that is, with the window in the same position and at
the same size and displaying the view in the same scroll position. This recipe shows how to
implement that capability for a single window with one view.

This recipe assumes that you only have one window per document. See the Puzzle sample
program for an example of saving the states of more than one window per document.

1. Construct a data type to save the state information. Define this as a global data type, so
you can refer to it in different methods.

The following example defines a record called DisplayState.
{--}

92 MACAPP COOKBOOK

*"Recipe needed?"•

\,. /

(

(

MacAppCookbook Draft 1 1126189

{Add as a global type definition:}

DisplayState = RECORD

theWindowRect: Rect;

theScrollPosition: VPoint;

{ If you want to save the print record for each view add a field here. }

{ (Normally, you save one for the entire document. i }
END;

{--}
The leading between the steps is not

big enough in the following steps.

2. You need a place to save display-state data read from a document file and a Boolean
variable that indicates whether or not the display state has been read from a document file.

In the following example, both are fields of the document. The Boolean field
fUseDisplayState is set to FALSE for a new documen~ or set to TRUE when a document is
read from a file. When the document is read from a ftle, the saved display state is read and
stored in IDisplayState. Otherwise, that field has no meaning. (Both fields are only used
immediately after a document object is created.)

{--}
{Add as fields of your document:}

fDisplayState: DisplayState;

fUseDisplayState: BOOLEAN;

{--}

3. In TYourDocument.IYourDocument, set fUseDisplayState to FALSE. (This value is reset to
TRUE in DoRead.) You also may need to initialize IDisplayState to the default arrangement.
(That is not done in the template, because the items stored in the display state already have
default values.)

The following example sets fUseDisplayState to FALSE:
{--}
{Add to TYourDocument. IYourDocument:}
fUseDisplayState := FALSE; Always set to FALSE here. If you are now }

{ restoring a saved document, set this to }

{ TRUE in DoRead }

{------------~---}

4. In the DoWrite method for the document, load the display state into a display-state record,
and then write the record to the document file.

{--}
{Add to TYourDocument .DoWrite:}

VAR

How should it look?

c HAP TE R 14 Documents and Files 93

Mar.App Cookbook

aDisplayState: DisplayState;

theWindow: TYourWindow;

theScroller: TScroller;

Draft 1

To save the state of the first window created for a document,

add this to the block, between saving the print state

{(the call to INHERITED DoWrite) and saving the datai }

theWindow := TWindow(fWindowList.First);

theScroller := fMainView,GetScroller(FALSE);

WITH aDisplayState DO BEGIN

theWindow.GetGlobalBounds(theWindowRect);

IF theScroller <> NIL THEN

theScrollPosition :• theScroller. fTr~nslation;
END;

count := Sizeof (DisplayState);
FailOSErr(FSWrite(aRefNum, COUPt, @aDisplayState));

{--}
5. In TYourDocument.DoRead, read the display state (if there is one) into a display state

record, transfer the data to fDispla)rstate, and set fUseDisplayState to TRUE if there was a
display state.

{--}
{ Add to TYourDocument.DoRead: }

VAR count: LONGINT;

aDisplayState: DisplayState;

aScroller: TScroller;

In the block after calling INHERITED Do Read: }
count :== Sizeof (DisplayState);

FailOSErr(FSRead(aRefNum, count, @aDisplayState));
fDisplayState : = aDisplayState;

fUseDisplayState := TRUE;

{--}
6. In TYourDocument.DoMakeWindows, if fUseDisplayState is set, use fDisplayState to

position the scroll bars and size and position the window.
{--·--------------}
{ Add to TYourDocument. DoMakeWindows: }

VAR vhs: VHSelect;

aDisplayState: DisplayState;

{ In the block, after you've created the window: }

IF fUseDisplayState THEN BEGIN

aDisplayState : = fDisplayState;

WITH aDisplayState, theWindowRect DO BEGIN

aWindow. Resize (right-left, bottom-top, FALSE)

aWindow.Locate (left, top, FALSE);

END;

94 MACAPP COOKBOOK

1/26189

(

MacAppCookbook Draft 1

aWindow.ForceOnScreen;

aScroller : = fMainView .GetScroller (FALSE);

IF aScroller <> NIL THEN

aScroller.ScrollTo(aDisplayState.theScrollPosition, FALSE);

END;

{--}
7. In TY ourDocument.DoNeedDiskSpace, add in the amount of space needed to save the

display state.
{--}
{ Add to TYourDocument. DoNeedDiskSpace: }

dataForkBytes := dataForkBytes + Sizeof (DisplayState);

1/26189

c HAP TE R 14 Documents and Files 95

MacApp Cookbook Draft 1

•· .

{--}

Importing and exporting data

Caching data

Handling multiple file types

96 MACAPP COOKBOOK

1/26189

•••Recipe needed?•**

•••Recipe needed?•**

Recipe needed?

(

(

MacApp Cookbook Draft 1 1/26189

Chapter 15 Drawing and Highlighting

Whenever you call QuickDraw routines, usually in your view's Draw method, you must tell
QuickDraw where you want the drawing to occur. Before MacApp calls your view's Draw
routine, it first tells QuickDraw that all subsequent drawing should be done relative to the
upper-left corner of your view. This is called focusing the view. This way, when you call
QuickDraw routines in your Draw method, the drawing always happens at the right place within
your view. When a window needs to be redrawn, MacApp starts by focussing on the view
instance at the top of the hierarchy-the window object, and then calling its Draw method.
When the window has drawn itself, it in turn focusses and then draws each of its subviews. This
process recurses until every view in the hierarcy has been drawn.

97

MacApp Cookbook Draft 1 1/26189

98 MACAPP COOKBOOK

(

(

MacAppCookbook Draft 1

Drawing an object in a view

MacApp calls TY ourView.Draw when drawing is required. You often pass the actual drawing on
to the objects that make up your view. You generally do that so that the view has no need to
know the form of the objects.

1. Implement TYourView.Draw as described in the "Drawing a View'' recipe.

2. Draw the object in your view's coordinate system. MacApp has already set up the drawing
environment so that drawing takes place in your view.

3. If you want to optimize drawing by only drawing what has changed and is visible, see the
"Optimizing Drawing" recipe.

1/26189

Because drawing is so application-specific, no template is given for this recipe, but it might be
helpful to look at the Draw methods in the Nothing, DrawShapes and Cale sample programs.

Optimizing drawing

When MacApp calls TYourView.Draw, it passes a rectangle (the area parameter) that gives the
invalid area of the view, which is the only part that needs to be redrawn. Whenever you call one
of the invalidating routines, the rectangle you give is added to the invalid area. In addition,
whenever the user scrolls the frame, the strip that appears is added to the invalid area. MacApp
automatically adjusts the invalid area so that only parts actually displayed in the frame are
included. Therefore, the maximum invalid area is the size of the content rectangle of the frame,
even if you have invalidated other areas.

Note that moving a window does not invalidate its contents, unless it was partly off the. screen,
because the system automatically moves the window's contents along with its borders. Also,
covering a window does not invalidate the contents of the covered window. Uncovering a
window invalidates the newly revealed parts. Similarly, when a view is scrolled, only the part that
newly appears in the frame is invalidated. The part that was already displayed in the view but
has now been moved is not invalidated.

c HA p TE R 15 Drawing and Highlighting 99

Mac.App Cookbook Draft 1 1/26189

The area parameter is always the smallest displayed rectangle that encloses all invalidated areas.

This recipe describes how to use the invalid area so that you only draw the part of the view that
needs to be drawn.
If your data set consists of separate objects that are not spatially ordered, you must check each
object to see if ~t is in the invalid area. There are two places in which you can check: in
TYourView.Draw, before calling item.Draw, or in Tltem.Draw. The templates section of this
recipe shows examples of both.

You need a way of identifying the rectangle containing a particular item. In the template
methods, there is a field of Tltem called :fExtentRect that is a Rect with the bounds of the item.
You could replace :fExtentRect with a functional method that returns the same value. Note that
using a rect for :fExtentRect works only for views no larger than 30,000 pixels. For larger
. views, or views located in a larger space, you would use a VRect for :fExtentRect

(The methods in the template call RectlsVisible. If you look at th(f MacApp source code, you'll
find that RectlsVisible tests whether the given Rect is in the window's visRgn. The Window
Manager sets the visRgn to the intersection of the visRgn and the update region before the
update cycle begins.)

If your data set is organized spatially (for example, in rows and columns or in paragraphs) you
can avoid exainining parts that are definitely not in the invalid area. You can do this in an
application displaying rows and columns, for example, by finding the first and last row and the
first and last column that intersect the invalid area. Then, only the rows and columns between
those limits need to be drawn. The templates contain an example.

100 MACAPP COOKBOOK

(

MacApp Cookbook Draft 1

Templates

{ The following procedure shows how you can optimize TYourView. Draw.

PROCEDURE TYourView. Draw (area: Re ct) ;

PROCEDURE Drawitem (item.: Titem) ;

BEGIN
IF RectisVisible(item.fExtentRect) THEN

item.Draw; {See the "Drawing an Object in a View" recipe.}

END;

BEGIN

fitemList.Each(Drawitem);

END;

{ The following procedure shows how you can optimize Titem.Draw.
PROCEDURE Titem.Draw(area: Rect);

BEGIN

IF RectisVisible (fExtentRect) THEN

{Draw the object}

END;

1/26189

{ The following procedure shows how you can optimize drawing in spatially organized

views.

PROCEDURE TYourView.Draw(area: Rect);

VAR firstRow, firstCol,. lastRow, lastCol: INTEGER;

rowindex, colindex: INTEGER;

BEGIN
GetDrawLimits (area, firstRow, firstCol, lastRow, lastCol);

FOR r.owindex := firstRow TO 1.astRow DO

FOR colindex := firstCol TO lastCol DO
DrawitemAt(rowindex, colindex);

{ The method DrawitemAt is not specified here. Its implementation

depends on how you structure your data. }

END;

PROCEDURE TYourView.GetDrawLimits (area: Rect;

VAR firstRow, firstCol, lastRow, lastCol: INTEGER);

PROCEDURE PtToRowCol (aPoint: Point; VAR row, column: INTEGER);

BEGIN
row := aPoint.v DIV cRowHeight;

column := aPoint.h DIV cColWidth;

END;

BEGIN

PtToRowCol(area.topLeft,
PtToRowCol(area.botRight,

lastRow := Min (lastRow,

firstRow,

lastRow,

fNumRows);

You define cRowHeight.

You define cColWidth.

firstCol);

lastCol);

c HA p TE R 15 Drawing and Highlighting 101

MacApp Cookbook Draft 1 1/26189

lastCol := Min(lastCol, fNumCols);
{ The preceding two statements assume that you maintain the current number of rows

and columns in fields of the view. }
END;

102 MACAPP COOKBOOK

MacApp Cookbook

(

Chapter 16

(

Draft 1 1/26/89

Error and Failure Handling

Any time you access devices, failures may occur. In addition, unanticipated code
problems may cause failures. MacApp includes a failure-handling mechanism that is
intended to allow applications to clean up debris left by the failure and continue
running from the point. The failure-handling mechanism is built around exception
handlers. An exception handler is a routine, generally local to some method, that is
called when a failure occurs and takes action to handle the failure. See the sample
programs for examples of exception handlers.

References to exception handlers are kept on a stack. When an error is likely to occur
(generally because of VO or memory allocation) and cleanup needs to be done,
MacApp posts exception handlers to the stack; application routines should post
exception handlers when an error the application should handle might occur.
(Applications post exception handlers sometimes because an error MacApp can't
anticipate may occur. Other times exception handlers are used to supplement the
MacApp exception handler with application-specific action.)

103

MacApp Cookbook Draft 1

Checking for failures

Whenever a failure occurs, the Failure global procedure is called. Failure is never called
automatically. You must check for a failure, and call Failure when you fmd that it is needed.
That check is most often done by calling the MacApp global procedures FailNIL, FailOSErr,
FailMemError, or FailResError, which check for specific kinds of errors. Here is the interface to
Failure:
PROCEDURE Failure (error: INTEGER; message: LONGINT);

Failure pops the handler at the top of the stack and calls il That handler generally does any
cleaning up it can do (such as freeing temporary objects or handles), possibly sets up the error
alert box, and sometimes calls Failure again to invoke the next handler on the stack with a new
error. Returning from the handler automatically passes the same error to the next handler on the
stack.

1/26189

,/

The exception handlers that MacApp posts handle errors in a generalized way, usually by
displaying an alert box telling the user what happened (to the best of MacApp's ability to tell)
and then branching around the code that caused the error. (That generally means abandoning
the command that resulted in the error.) When an error that MacApp can anticipate may occur,
you may want to post your own exception handler to set up your own alert box or to handle the
failure in your own way. The mechanism allows you to take the action you want, set up certain
values to produce a useful message, and then invoke MacApp's exception handler. You should
always post your own exception handler when a failure that MacApp can't anticipate is possible.

J.ul',<:' /IVC­

There'S more algorithms hmng in
here somewhere!

An important part of the failure-handling mechanism is the ability to give the user a useful alert
message. MacApp provides several ways to do that, all working through the same routines.
When a failure occurs, the exception handler that is initially called (which may be a MacApp or
an application handler) usually calls Failure (directly or by returning) to invoke another failure
handler. Failure's error and message parameters are used to build the alert box that informs the
user of the error. Handlers usually set those values only if the method that called Failure hasn't
set them (In other words, handlers should assume that the routine that called Failure has more
specific knowledge about the error, and thus, if it gave values for error and message, those are
the most appropriate values.)

104 MACAPP COOKBOOK

(

MacApp Cookbook Draft 1

Typically, there is a chain of Failure calls that leads to an exception handler (defined by
MacApp) that calls TApplication.ShowErrors. (If you want to change what happens nex~ you
can override ShowErrors.) ShowErrors calls the global routine ErrorAlert. ErrorAlert builds the
alert message in different ways depending on the message value that you passed. The standard
alert strings defined in the standard resource files are

could not "2, because "O. "l.

1126189

phGenError
phCmdErr
phUnknownErr

could not complete the ""2" command because "0. "1.
could not complete your request because "O. "1.

The alert string is chosen and the placeholders AO, Al, and A2 are filled by ErrorAlert based on
the error and message values that are passed to Failure. MacApp uses the error parameter to
Failure to find a string to replace AO. That string identifies the kind of error that occurred. It
also uses the error value to find a string to replace Al, if appropriate. Al is used for a string that
gives the user advice on what to do, and is only given if that isn't clear from the error identifier.

The message parameter of Failure determines what replaces A2 and what alert message is used.
The message parameter is a LONGINT that is treated as a pair of numbers. The first integer, or
high word, of a message determines how the second integer, or low word, is interpreted. There
are five possibilities:

• If the high word is equal to msgCmdErr, the low word is a command number. ErrorAlert
translates that command number into a command name, and substitutes it for A2. The
phCmdErr alert is used.

• If the high word is equal to msgAlert, the low word is an alert number (that is, a resource
number). This generally is an alert that you have defmed. That alert message is then
displayed.

• If the high word is equal to msgLookup, the low word is a positive integer that is an index
into an operation table in the resource file. This is rarely used.

• If the high word is not any of those values, it is a resource ID for a string list and the low
word is an index into that list. This string is then substituted for A2. The phGenErr alert is
used.

• If message is equal to zero, the phUnknownErr alert is used.

c HAP TE R 16 Error and Failure Handling 105

MacApp Cookbook Draft 1

Step 2 Ppst your exception handler

There are two global routines provided to post exception handlers to the stack and remove
them when the chance for failure is past: CatchFailures and Success. The intetface to
CatchFailures is

1126189

PROCEDURE CatchFailures(VAR fi: Failinfo; PROCEDURE Handler(e: INTEGER; m:

LONGINT));

The fl parameter is a variable of type Failinfo that you must provide. You don't have to set it to
anything.

Call CatchFailures to set up an exception handler. This pushes your handler onto a stack of
exception handlers. If MacApp has already pushed a handler on the stack, yours is above it, so a
call to Failure results in a call to your handler.

The intetface to Success is
PROCEDURE Success(VAR fi: Failinfo);

The fl parameter is a variable of type Faillnfo that you must provide. You don't have to set it to
anything.

Success removes your handler from the stack.

Any calls to Failure within the limits of the CatchFailures and subsequent Success calls result in
the execution of your exception handler. If a routine calls CatchFailures, it must call Success
(unless there was an error). Also, you must not call Success unless you called CatchFailures earlier
in the same routine.

Step 3 call FailNll, FallOSErr, FailMemErr, or FailResERr

You usually don't call Failure directly. Instead, you use one of the four global routines that are
provided to test for different kinds of errors: FailNIL, FailOSErr, FailMemErr, or FailResErr. In
each case, they call Failure with appropriate error and message values if a failure occurred. If a
failure did not occur, they simply return.

The global routines are as follows:
• FailNIL: This procedure tests whether the given pointer (or handle) is NIL and, if it is, calls

Failure(memFullErr, 0). The intetface is as follows:
PROCEDURE FailNIL(p: UNIV Ptr);

lo6 MACAPP COOKBOOK

(

MacAppCookbook Draft 1

The p parameter is any pointer or handle (including object references).

• FailOSErr : This procedure checks whether the given OS error code signals an error and, if it
does, calls Failure. The interface is as follows:

PROCEDURE FailOSErr(error: INTEGER);

The error parameter is an OS error code, presumably returned by an Inside Macintosh or
language routine.

The FailOSErr procedure is most often used with functions whose return value is an error
code, and you use it with a statement such as

FailOSErr(functionCall(parameters));

• FailMem.Error : This procedure checks whether there was a memory error and, if there was,
calls Failure. The interface is as follows:

PROCEDURE FailMemError;

You generally call FailMem.Error after you attempt to allocate a new pointer or handle. It
tests the value of Mem.Error. If Mem.Error <> noErr, it calls Failure(Mem.Error, 0).

Step 4 Set the error message in your exception handler

In your exception handler, you usually want to set the message parameter only if it has not
already been set. To do that, you can use the global procedure FailNewMessage in place of
Failure.

1/26189

PROCEDURE FailNewMessage(error: INTEGER; oldMessage, newMessage: LONGINT);

This procedure calls Failure and passes the error and newMessage or oldMessage parameters.
FailNewMessage passes the oldMessage parameter to Failure unless it is 0, in which case
newMessage is passed. This is used in an error handler so that the error handler can provide a
message (newMessage) only if a message was not provided already. You would use this routine
instead of calling Failure when you want to set the message value but do not want to override a
message value established by a lower-level handler.

c HAP TE R 16 Error and Failure Handling 107

MacApp Cookbook Draft 1

Step 5 Handle errors during the creation and initialization of objects

You must take special care to handle failures carefully during creation and initialization of
objects. You should always call FailNIL after calling New. However, it is also possible to
encounter failures when calling the initialization method of an object that you have just
successfully created. This case occurs frequently, so all MacApp code follows a helpful
convention: if the initiali1.ation method for an object fails, the method frees the partially
initialized object. This convention, which relieves you from freeing the objec~ makes it easier
to write code that creates new objects.

1/26189

Although convenien~ this scheme has a potentially damaging side effect: when you call the
initiali1.ation method of an object and it fails, your reference to the object may become
invalid. If the code calling the initialization method has a failure handler, the handler must be
prepared for this situation. Because most MacApp objects (such as views and windows) will be
freed automatically if they are successfully initialized, you normally don't need to have a failure
handler.

Initialization methods that can signal failure (or that call ancestral methods that do so) must be
written carefully. Because its Free method may be called, the object must be put into a state
that allows Free to succeed before any action that can fail is taken. Thus, the sequence of
actions in your initialization method should be:

1. Initialize any variables that your Free method needs to operate successfully. No action that
can fail may be taken in this step.

2. Call the immediate ancestor's initialization method (if any). This may fail, in which case
your Free method will be called. ·

3. If you do any initialization that can fail, set up a failure handler, do the initialization, and
then remove the failure handler. The failure handler should do any specific cleaning up you
need done, and then call Free.

108 MACAPP COOKBOOK

,/

(

Mac:AppCookbook Draft 1 1/26/89

Chapter 17 . Event Handling

Translation from Macintosh events to MacApp events, and that MacApp takes
care of low-level events for you

Every menu command is handled by some object. For example, the application object
generally handles the Quit command, document objects handle the Save, Save As and
Revert to Saved commands, and view objects handle commands such as Zoom In and
Zoom Out. This set of objects, those that are eligible to handle menu commands, are
called event handlers. The application object, document objects, and view and
window objects are all event handlers-that is, they can respond to menu commands.

For further information on mouse-down events, see Chapter X, "Mouse operations." For
further information on key-down events, see Chapter X, "Keyboard handling."

109

Mac.App Cookbook Draft 1 1126189

The event-handli~g classes
All of the event-handling classes O'Application, IDocument and 1View) are descendant classes of
TEvtHancller. The TEvtHandler class defmes the fields and methods necessary for an object to handle
menu commands. Therefore, application, document, and view objects all inherit these fields and methods.
A much-reduced view of the TEvtHandler class is given here:
TEvtHandler ... OBJECT(TObject)

fNextHandler : TEvtHandler;
... {other fields} ...

FUNCTION TEvtHandler.DoMenuCommand(aCmdNumber: CmdNumber) : TCommand;

END;

PROCEDURE TEvtHandler.DoSetupMenus;
... {other methods} ...

Therefore, all application; document, and view objects have an fNextHandler field and a
DoMenuCommand method. This chapter discusses the significance of the fNextHandler field; for the
significance of the DoMenuCommand method, see Chapter X, "Menus."

The Command Chain

Following two sections need to be
combined

The command chain is the list of event handlers starting with the current target object and
following the fNextHandler field of that current target object until you reach NIL . Since the
target object changes as the user activates and deactivates windows, the command chain also
changes. MacApp maintains the fNextHandler field for you in most cases. For view objects, the
fNextHandler is usually the view's superview. For windows, this field is usually the window's
associated document object. For documents, this field normally references the application
object. The application object normally stores a NIL in this field.

110 MACAPP COOKBOOK

(

(

MacAppCookbook Draft 1 ·

When a MacApp application is running, there are usually many event-handling objects. For
example, there is always an application object, and there could be a number of open

1/26189

documents, open windows and displayed views. Theoretically, however, the user's attention is
focused on only of these event handlers at a time. This event handler is called the target object.
MacApp keeps track of the target object by storing a reference to it in the global variable gTarget:
VAR gTarget : TEvtHandler;

MacApp defines a global variable, gTarget, that refers to the event handler that initially receives
menu commands and keystrokes. MacApp also defines a field of TWindow calledff arget.
MacApp automatically sets gTarget to window.ff arget whenever the window is activated. The
window's ffarget is set to itself in !Window. NewSimpleWindow and NewTemplateWindow set
ffarget to the window's main view.

In addition, MacApp defines a field TEvtHandler.fNextHandler, which puts the event handlers
in an application in a linked lis~ called the command chain

When MacApp receives a menu event, it passes it to gTarget.DoMenuCommand. If the target
cannot handle the command, it calls INHERITED DoMenuCommand. That method, usually part
of MacApp, first checks whether the command is one it can handle, and then again calls
INHERITED DoMenuCommand. This chain eventually leads to TEvtHandler.DoMenuCommand.
That method calls fNextHandler.DoMenuCommand. The chain continues through the list until
the application object is reached. At that point, there is no next event handler, and
TEvtHandler.DoMenuCommand reports an error.

See "The Command Chain" in Introduction to MacApp for a more complete description of how
the command chain works.

Changing the command chain

By default, MacApp always makes gTarget reference the frontmost window object. If no
windows are open, MacApp makes the application object the target object.

In many MacApp applications, however, it isn't necessarily the entire active window that is the
focus of the µser's attention, but rather the main view of that window. You can override this
behavior to specify a different target object.

c HA p TE R 17 Event Handling 111

Mar.App Cookbook Draft 1

When a window has an important view, for example, you generally want to tell MacApp not to
set gTarget to reference the window object when it is active, but rather to reference the main
view inside the window-in this case, the TiconEditView view. This main view is called the
target view of a window. .

The following sample code· from the IconEdit resqurce ftle illustrates this step
{ }
resource 'view' (kSampleWfudowID, purgable) {
{

root, 'WIND', {50, 20}, {100, 100}, sizeVariable, sizeVariable, shown, enabled,

1/26189

Window {"TWindow", zoomDocProc, goAwayBox, resizable, modeless, ignoreFirstClick,

};

freeOnClosing, disposeOnFree, closesDocuemnt, open WithDocument,
dontAdaptToScreen, stagger, forceOnScreen, dontCenter,
noID, /• The target view field. •I

""};

'WIND', 'SMPL', {0, 0} {100, 100}, sizeVariable, sizeVariable, shown, enabled,
View {"TSample View"}
}

{~~~~~~~~~~~~~~~-

This view template defines a window object with one subview of class TSampleView. The view
ID of the window is 'WIND' and the view ID of the subview is 'SMPL'. Notice that the target
view field is set to noID, a predefined MacApp constant meaning no view-in this case
specifying no target view.

When the window object described by the above template becomes the active window,
MacApp looks at the contents of this field, and finds noID. Since there is no target view
specified, MacApp will set gTarget to reference the window object. However, you can set this
field to the ID of some subveiw of the window, for example 'SMPL':
resource 'view' (kSampleWindowID, purgable) {
{

root, 'WIND', {50, 20}, {100, 100}, sizeVariable, sizeVariable, shown, enabled,
Window {"TWindow'', zoomDocProc, goAwayBox, resizable, modeless, ignoreFirstClick,

freeOnClosing, disposeOnFree, closesDocument, open WithDocument,
dontAdaptToScreen, stagger, forceOnScreen, dontCenter,
'SMPL', ""}; /* Notice the target view field. •I

112 MACAPP COOKBOOK

(

(

MacApp Cookbook Draft 1 1/26/89

'WIND', 'SMPL', {O, O} {100, 100}, sizeVariable, sizeVariable, shown, enabled,
View {"TSampleView"}
}

};

When the window object defined by this template becomes the active window, MacApp again
examines the contents of this target view field. Since MacApp finds the value 'SMPL' in this
field, it sets gTarget to reference the subview of this window with view ID 'SMPL', which in this
case is the TSampleView subview. In the example above, the window object will become the
second object in the command chain, since MacApp initializes the fNextHandler field of views
to reference their superviews. In this manner, you can exert some control over which object
becomes the target object. Of course, when no windows are open, MacApp will still
automatically make the target object be the application object.

Is this important? Does it belong here or in menus?

(Answer from Curt Bianchi on MacAppTech$)

In MacApp 2.0 we got rid of the global variable gEventlnfo in order to better support nested
event handling. Unfortunately this exposed the fact that the event info isn't parametrically
passed to all the methods that may need it (e.g. DoMenuCommand). We'll add the parameter to
the next release of MacApp. · ·

In the meantime you can override a TApplication method like DispatchEvent and record the
info in your own global variable. Another possibility, depending on what you're doing, would be
to override DoCommandKey, which is a TEvtHandler method that handles keystrokes when the
command key is down.

c HA p TE R 17 Event Handling 113

MacApp Cookbook Draft 1 1/26189

(

Chapter 18 Grids, Lists, and Palettes

translation from MacApp-speak about Grids and Lists into Macintosh terms

(

115

MacApp Cookbook Draft 1 1/26189

Chapter 19 Icons

No recipes yet

117

MacApp Cookbook Draft 1 1/26/89

Creating an icon resource

Retrieving an icon resource into memory

118 MACAPP COOKBOOK

Mac.App Cookbook Draft 1 1/26189

(

Chapter 20 Keyboard Handling

No recipes yet

Refer different language keyboards to localization.

(

119

MacApp Cookbook Draft 1 1126189

Handling DoKeyCommand

Recipe needed!

*"*Because of following type of question on MacAppTech$, obviously must include ,
this reclpe.-

Ihave a window containing a view that itself contains subviews subclassed from 1View. The
topmost view gets a DoKeyCornmand message, but its subviews dont seem to get the message.
The window & views are created from a resource. Should I be doing something to add the
subviews of the main view to the linked list ofTEvtHandlers 7?, or do I use the main views'
DoKeyCommand method to call a 'DoKey' method of the subviews so that they get a chance to
handle the keypress themselves, which is the object of the exercise.

From: SCHMUCKERl Schmucker, Kurt

The view that gets the keystrokes first is the one pointed to by gTarget. Certain subviews (like
TEViews) make themselves the target when they are clicked upon. They then get the first crack
at processing the keystrokes. You might want to put such a DoMouseCommand method in your
subview.

120 MACAPP COOKBOOK

MacApp Cookbook

Chapter 21

(

Draft 1

Languages

***No recipes yett••

Object Pascal and its unit dependencies?

Anything about TML or Lightspeed Pascal?

Cross-reference to C++ if timing appropriate?

1/26189

121

Mac.App Cookbook Draft 1 1/26189

(

Chapter 22 Localization

"*No recipes yet***

123

:'?,;

MacApp Cookbook

(

Chapter 23

(

Draft 1 1/26/89

Memory Management

The Macintosh memory management system uses handles instead of pointers, so that
dynamically allocated blocks of memory can be relocated without dangling pointers.
In order to implement this, each dynamically allocated block has exactly one non­
relocatable master pointer that references it. Any number of handles can then reference
the master pointer.

Since master pointers can never be relocated, a Macintosh application should allocate
plenty of space for master pointers immediately after startup. Allocating space for
master pointers later may result in a fragmented heap.

The Macintosh Toolbox routine MoreMasters allocates space for an extra forty (???)
master pointers. For example, the MacApp InitToolbox routine calls MoreMasters as
many times as you specify in the parameter callsToMoreMasters.

Any of the following situations can cause an application to stop with a System Error
alert, without any chance for that application to gain control:

• Not enough memory to load a code segment.

• Not enough memory to load a PACK resource.

• Not enough memory to save the bits under a menu which is pulled down.

• Not enough memory to load a defproc (WDEF, MDEF, CDEF, LDEF).

• Not enough memory for Standard File to create its file list.

• Add your personal favorite here.

Not all commercial Macintosh applications deal correctly with these issues, in large part
because doing so involves some rather complicated code. MacApp provides a memory
management mechanism that helps keep a MacApp application from getting into these
critical memory situations.

125

MacApp Cookbook Draft 1 1/26189

Permanent and temporary memory

MacApp divides available heap space into permanent memory and temporary memory (also
. known as code reserve). Permanent memory is the space occupied by data which your

application allocates: objects and any subsidiary data structures you may create. Temporary
memory is reserved for your code segments plus any resources and/or memory needed by the
Macintosh Toolbox for a short period of time.

MacApp always reserves enough space for temporary memory requests to be satisfied. You tell
MacApp how much memory needs to be reserved, and it does the rest. It only needs to know
whether a given memory request is permanent or temporary. Objects created via New (as well
as TObject.ShallowClone and all other MacApp methods which allocate memory) are
automatically taken from permanent memory~ You can ask for a new handle from permanent
memory by calling NewPermHandle instead of NewHandle; for other kinds of requests you set
the "permanent" flag by calling PermAllocation(TRUE), make the reques~ then set the flag back
(PermAllocation returns the previous value of the flag as its result). Any other requests (such as
those made by the ROM) default to temporary memory.

It is dangerous to have the permanent flag TRUE for any length of time, as any toolbox call
which allocates memory or any procedure call which could load a segment will then operate just
as it would with no memory management mechanism. For example, calling a procedure in
another segment which isn't loaded when the flag is TRUE and there is no permanent memory
available will cause a segment loader bomb, even if plenty of temporary memory is available.
When debugging is on, MacApp checks for the flag being TRUE in the main event loop or when a
segment is loaded and drops into the debugger if it is.

126 MACAPP COOKBOOK

(

MacApp Cookbook Draft 1

Allocating both permanent and temporary memory

If you need to call a routine which allocates both pennanent and temporary memory (such as
TextEdit, which allocates permanent data structures and which also loads temporary resources
such as fonts), take the following steps:

1. Set the pernnanent flag to F AL5E

1/26189

Do you set the flag, or does
somebody else do it?

2. Call CheckReserve. CheckReserve is a BOOLEAN function which returns TRUE if there is still
enough temporary memory. If CheckReserve returns FALSE, you should undo the memory
allocation. For convenience, there is also a procedure named FailNoReserve, which calls
Failure(memFullErr, O) if CheckReserve returns F AL5E.

Reserving temporary memory

To reserve the correct amount of temporary memory, you need to know the sum of the sizes of
these items at the point in your application where the largest number of them are in use
simultaneously. Some of the Toolbox items mentioned above usually need not be considered in
this calculation. For example, the saved bits underneath a menu are only allocated when
MacApp calls MenuSelect, which is only done in the main event loop, at which·time all the non­
resident code segments are unloaded. This is also the case for MDEFs. These will seldom be
larger than the code segments which you can load.

There are some situations you do have to watch out for. For example, putting up a standard
Open or Save dialog can use up quite a bit of memory: PACK 3 (Standard File), PACK 2 (Disk
Initialization), plus the list of files in the current folder which Standard File creates. Also,
although the Font Manager will not fail if there is insufficient memory to load a desired font, it
will substitute a less suitable font, and your program's screen appearance will degrade. Thus,
you should include enough memory to load the largest font you will use in your temporary
memory figure. Remember, it will only be used when your Draw method is called, or when you
perform text measurement.

c HAP TE R 23 Memory Management 127

MacApp Cookbook Draft 1 1/26189

Printing is another situation where you can run low on memory. Strictly speaking, it's OK to run
out of memory while printing: an alert will come up saying the document could not be printed
because there was not enough memory. However, users can find it frustrating if they create a
document which is too large to print. If you want to make sure that any document a user can
create can be printed, you should factor in the memory taken up by the Print Manager while
printing-along with any of your code segments which may be present-when calculating the
amount of memory to reserve for temporary allocations.

It is usually easier to split your temporary memory size up into several pieces which you
calculate independently. For your code, you may want to use the MacApp 'seg!' resources, which
let you list the code segments you want considered (see below). That way, you can just
detennine which segments are loaded at the time of maximum temporary memory use, and let
MacApp figure out their size at execution time. For Toolbox use, you can use some fixed
constants. For variable resources like fonts, you can actually alter the temporary reserve size
while your application is running.

Depending on how careful you want to be about your application's memory use, you can just
pick a comfortably large number (which wastes memory), or you can watch your program in
action using the MacApp debugger and MacsBug and figure out the smallest safe number (which
is a fair amount of work but gives the best use of available memory).

Using the debugger's high water mark

The MacApp debugger helps you figure out which set of resources takes the most room by
keeping a high water mark for loaded resources. Under the heap & stack command (H), the I
subcommand now gives the maximum amount of memory used by loaded code segments,
PACKs, defprocs, and so forth, and the R subcommand resets this number to zero. Under the
toggle flags command (X), the R flag reports whenever a new high water mark is reached, and if
the B (memory management break) flag is set, MacApp will enter the debugger. In calculating
this number, MacApp only considers resources on its resource lists (see below).

Note that this won't take into account memory allocated by such things as Standard File or the
Print Manager. You should always check the amount of memory used in these situations and any
other situation where the Toolbox can allocate large amounts of memory. The best way to do
that is to

128 MACAPP COOKBOOK

(

MacApp Cookbook Draft 1 1/26189

1. Break before and during such a situation

2. use the M subcommand of the H command to see how much permanent memory is available
(the number labelled "(permanent) FreeMem"). The difference (call it "extra") will be the
sum of the sizes of objects you've allocated and those that the toolbox has allocated but
which MacApp doesn't track specifically (see "MacApp Resource Lists," below).

3. Note the set of segments loaded. The sum of "extra" and the "locked resources" number
displayed in the debugger, minus any permanent memory you allocated, is the actual
amount of temporary memory in use. You can use "extra" to reserve more temporary
memory with a mem! resource (see below).

Remember, though, that you are only observing the memory in use at one point in time; memory
usage can be greater for a brief period of time, and you won't necessarily catch it in the
debugger. Sometimes a trial and error approach is necessary to determine the exact amount of
memory being used.

Currently, the most space intensive print driver is the LaserWriter driver. For version 3.1 of the
IaserWriter driver, we have empirically determined that "extra" is about 40K. In release 4.0 of
the IaserWriter driver, this amount varies, and can be as high as 56K. Moreover, this may well
increase in future releases. Fortunately, recent releases of the IaserWriter driver recover
gracefully from out of memory conditions, giving the appropriate error message. If you do not
need to insure that it is always possible to print, you can eliminate this from your permanent
memory reserve.

There is a sporadic bug in LaserWriter driver 3.1 which can cause heap space to be permanently
lost. This only occurs when a bitmap font is downloaded to the IaserWriter. Bitmap fonts are
only downloaded when font substitution is off in Page Setup (font substitution is always off if
you set FractEnable to TRUE or turn off the driver's line layout algorithm) and the user selects
Geneva, New York, or Monaco, or if the user selects any other font which is not available in
PostScript form (such as Athens or Mobile). The driver finds the largest available size of that
font, makes it unpurgeable, then downloads it. Occasionally the driver will not make the font
purgeable again, and it remains in memory until the application quits. Since the font is the
largest size the driver could find, it takes a significant amount of space (8K for Geneva 24).
This bug was fixed in release 3.3 of the IaserWriter driver.

c HAP TE R 23 Memory Management 129

MQf.App Cookbook Draft 1 1/26189

Using the low space reserve

MacApp keeps a special handle around which it will dispose of in order to satisfy a permanent
memory request. This handle is called the low space reserve (it's- also sometimes called the
permanent memory reserve). You can test if your application is running low on memory by
calling the BOOLEAN function MemSpaceisl.ow. MacApp makes this test periodically and will
call the method TApplication.SpaceisLow, which you can override to take any action you want.
The default version will periodically put up an alert advising the user that Jllfmory is low.

Another important issue which the reserve handle helps with is making sure that users don't lose
data. The Macintosh Memory Manager does not guarantee that a particular set of objects which
was once allocated in a heap of a given size can again be allocated in a heap of the same size
(although it will come pretty close). As a resul~ do not allow user documents to grow until they
fill the entire heap, since it is possible that you would not be able to read them back in again.
Also, if space becomes so scarce that there is no room to create a new command object, users
won't be able to decrease their document size, even with a command like Clear.

You can use the low space reserve to handle these problems, as follows:

1. If MemSpaceisl.ow returns TRUE, don't enable any commands that increase document size,
such as Paste, drawing, typing, and so on.

2. Always enable commands which allow the user to decrease document size (such as Clear,
backspace, and so on).

3. Commands such as Cut and Copy require more thought. On the one hand, they can increase
memory use, which can result in a situation where command objects can't be created. On
the other hand, if a user wants to decrease a document's size, having Cut and Copy available
prevents having to simply throw data away. What you do here depends on your application.
For example, UTEView allows Cut when space is low, but not Copy.

4. If you have a command which allocates additional memory, you should check for space
being low at the end of your Dolt method, since otherwise it's possible for the reserve to be
in place at the start of the command and completely gone by the end. You should treat
running out of low space reserve the same as running out of memory. You can call
FailSpaceisl.ow, which calls Failure with an error of mern.FullErr if MemSpaceisl.ow returns
TRUE. Your command's failure handler should back out any changes it made. Only
commands which decrease or don't change memory use should be allowed to eat into the
low space reserve.

130 MACAPP COOKBOOK

MacApp Cookbook Draft 1 1/26189

MacApp itself calls FailSpacelsLow in several places, including the end of
TApplication.OpenNew and TApplication.OpenOld to make sure that a new document doesn't
decrease available free space too much. For TApplication.OpenOld, however, MacApp
temporarily halves the low space reserve so that existing documents have a little "breathing
room" to deal with the nondeterministic behavior of the Memory Manager.

Using the seg! and mem! resource types

MacApp initially sets the size of the temporary memory reserve by looking at all resources of
type seg! and type mem!. The sizes of all code segments whose names are listed in any seg!
resource are added up as part of the temporary memory reserve. Note that the segment names
are the those generated after segment mapping. Each mem! resource has three long integer
quantities, as follows:

• An amount to add to the temporary memory (code) reserve

• An amount to add to the low space reserve

• An amount to add to the size of the stack.

MacApp calculates the size of the temporary memory reserve by adding up the sizes of all
segments in all seg! resources and the first number from all mem! resources. It calculates the low
space reserve by adding up the second number from all mem! resources, and it calculates the size
of the stack by adding up the third number from all mem! resources.

This approach allows a great deal of flexibility. For example, the Debug.r file adds the
debugging segments to the list of segments, so that if debugging is turned on there will be room
to load them. MacApp defines an initial set of segments, reserves SK of stack space, reserves
4K of low space reserve, and reserves 4K extra of temporary memory. You can easily add to (or
even subtract from, except for the stack) MacApp's values by supplying your own mem! and seg!
resources. Remember, however, that these resources only govern the initial value of these
numbers. If you wish to change any of them while your program is running (except the stack
size, which can't be changed), you will have to call the routine SetMemReserve (see the MacApp
source code for details).

c HAP TE R 23 Memory Management 131

MacApp Cookbook Draft 1

Remember to factor in temporary memory taken up by things other than resources (such as the
memory taken by the Print Manager while printing). For example, the MacApp debugger may
tell you that the largest set of resources loaded at one time occurs when opening a document
and totals, for example, 130K. When printing, your resources may only total 11 OK. However,
the LaserWriter driver uses another 40K of temporary memory, so your maximum temporary
memory use is lSOK while printing. In that case you would list the segments you use during
printing in your seg! resource, and use a mem! resource to reserve an additional 40K for the Print
Manager.

MacApp resource lists .

MacApp keeps a list (actually several) of the resources which it considers "temporary:" that is,
they are considered as not taking up permanent memory. It constructs this list at application
startup time, and uses it whenever it calculates how much temporary memory is in use and how
much more to reserve. These resources are the ones that the MacApp debugger describes in the
H command. MacApp will also purge these resources when trying to satisfy a temporary
memory request unless they are locked.

By default, this list contains all resources of type CODE, PACK, LDEF, CDEF, WDEF, and MDEF
(except those which come from ROM, or reside in the System heap). Normally, you don't need
to worry about this list at all. It's OK for temporary resources to not be on the lis~ although
they will be purged frequently when space is low, and they won't be figured into the resource
statistics in the debugger. If you have such resources (fonts, for example), and if you want to
reserve some memory for them, you may want to consider adding them to the list. Look at the
UMemory unit to see how the lists are managed.

1/26189

If you do put fonts on the list, you should move them high (with MoveHHi) and lock them when
you do so to prevent MacApp from purging them; the ***Macintosh, I assume••• Font
Manager expects that fonts marked nonpurgeable won't be purged.

132 MACAPP COOKBOOK

(

(

MacApp Cookbook Draft 1

Segmenting Your Application

In order for the memory management mechanism to work properly, your application must be
segmented properly. The more code which is unnecessarily dragged into memory, the larger
your temporary memory reserve must be, and the less space is available for your users data in
any given memory configuration. MacApp defines the following code segments for your
application:

AR es

ADebug

AFields

AI nit

ATerminate

ASelCommand

ADoCommand

AClipboard

A Open

A Close

Resident application code. Anything that gets called frequently in the main
event loop (such as your DoSetupMenus methods), drawing, or typing.

Your debugging code; that is, any procedures or methods only present when
debugging is on.

All of your Fields methods should go here.

Code which you only use at application start-up time (IYourApplication).

Code which you only use at application shut-down time.

Code used to select the next command (DoMenuCommand,
DoMouseCommand, DoKeyCommand, and IYourCommand methods).

Code used for executing commands (all other 1Y ourCommand methods
except IY ourCommand).

Clipboard code that is not part of a command (MakeViewForAlienClipboard,
GivePasteData, WriteToDeskScrap, but NOT 1YourPasteCommand).

Code used when opening (DoMakeViews, DoMakeWindows, IDocumen~
DoMakeDocument, !Document, Niew).

Code used when closing (IYourDocument.Free, FreeData).

1/26189

AReadFile

AWriteFile
Code used when reading or reverting (DoRead, ShowReverted, DolnitialState).

Code used when writing (DoWrite, DoNeedDiskSpace, SavedOn).
AFile

ANonRes

Code used when reading or writing (typically you won't have anything in this
segment).

Catch-all non-resident segment, fo~ infrequently used methods (e.g.
Resize Window).

c HAP TE R 23 Memory Management 133

Mar.App Cookbook Draft 1 1/26189

The default segment mapping established by MacApp combines these segments (except for
ARes) with the corresponding ones for MacApp. You can override some of MacApp's mappings
by specifying your own mappings in your make file, and you can override MacApp's mappings
entirely by placing a definition for the Make variable SegmentMappings in your make file (Make
will issue a warning, but your definition will override MacApp's). Look at MacApp.makel for
guidance.

Even using the suggested segment mappings, you may overflow the 32K bytes limit on the size
of a segment. You can override MacApp's segment mappings in your application's .make file by
providing your own -sn mappings; the Linker gives your segment mappings priority over the
ones MacApp speciftes.

Generally, there is a trade-off involved in segmentation. A few large segments make your
program run faster, but increase its memory requirements .. More, smaller segments decrease
memory requirements (and are a necessity to run in a small Switcher partition), but make your
program slower to start up. This latter problem can be alleviated by using the JumpStart utility
included in the Macintosh Development Utilities product, available from APDA.

If you're really desperate to decrease segment sizes, you can change MacApp's segmentation by
editing the source code and increasing the number of segments. This is not recommended. Be
extremely careful about which segments are resident if you do this.

Using the rest resource type

I don't think this last suggestiQ / ··.,
a good idea. can I delet~'-- .,;

The 'res!' resource type is used to identify code segments that are to be made resident (that is,
never unloaded). Its format is similar to the 'seg!' resources in that each 'res!' resource consists
of a list of segment names. When MacApp initializes the application it makes resident any
segment listed in any 'res!' resource found. 'res!' resources are already included for MacApp's
resident segments. You can add a 'res!' resource to your application's resource file to list
resident segments you've defined. Note that as with 'seg!' resources the segment names in the
'res!' resources are the names after segment mapping.

134 MACAPP COOKBOOK

Mac.App Cookbook

(

_Chapter 24

(

Draft 1 1/26189

Menus and Menu Commands

A menu command on the Macintosh occurs whenever the user chooses a menu item. In
MacApp, any class that descends from TEvtHandler can handle menu commands. If
your objects don't override the TEvtHandler method, then they inherit the default
behavior, which is simply to pass the DoMenuCommand message to the next event
handler in the command chain. TApplication, 'IDocumen~ 1View, and 1Window all
descend from TEvtHandler, so it follows that the application or any documen~
window, or view can handle menu commands.

In fa~ these classes are implemented such that they already handle some standard
Macintosh commands. For example, TApplication handles the desk accessories, the
About command, New, Open and Quit in the File menu, and the Show/Hide Clipboard
command. 'IDocument handles Save, Save As,. Save A Copy In, and Revert. In most
applications your application, documen~ and view classes will handle menu commands
specific to your application, document, or view.

To handle your application's documents, you can:

• Implement simple menu commands

• Maintain the menu bar and enable your menu items

• Change menu appearance and function

• Handle negative command numbers

This chapter discusses only those features that deal with how your code should handle
the command when it is invoked, and those commands that are classified as simple
commands. For the details on complex commands, see Chapter X, "Undoing." For the
details on mouse tracking, see Chapter X, "Mouse Operations."

135

MacApp Cookbook Draft 1 1126189

Implementing simple menu commands

The particular manner in which the DoMenuCommand does its work depends on whether the
user chooses a simple command or a complex one. The terms simple and complex.i.commands:
complex; have a specific meaning in this case. Simple commands are the commands that do
not change a document's data nor require the mouse to be tracked. This type of menu
commands should not be undoable. Complex commands are either undoable or require
mouse tracking. Most commands change the document in one way or another, and thus they
should be undoable. Many others require the mouse to be tracked.

Run-time summary of implementing simple menu commands

The application object sends .. •automatically, or do you make your application object
do this?*** a DoMenuCommand message to the target object. This allows the target object a
chance to handle the command, if it can. If not, the target object sends the DoMenuCommand
message to the next handler in the command chain. This process continues until each event
handler in the command chain has a chance to handle the menu command.

Figure X-X provides a summary of MacApp's actions at runtime when a new document is to be
created.

• Figure X-1 MacApp's actions in relationship to this recipe

Figure TBD; for example see Chapter 14, "Documents"

136 MACAPP COOKBOOK

(

MacAppCookbook Draft 1 1/26189

The actions you must take, the reasons you must take those actions, and what MacApp can
provide to help you take those actions are summarized in Table 24-1. Each of the steps is
explained in detail in the recipes that follow.

This section also assumes that you have already created an instance of an application object.
For more information, see Chapter X, "Applications."

Table 24-1 Overview: implementing a simple menu command

Step Your action:

1. Add the menu items to your 'cmnu' menus in
your resource file and define command
numbers and constants for the items.

2. Decide which object should handle the
command

3. Implement the DoMenuCommand method for
the appropriate object. If the object cannot
handle the current command, it must call the
inherited version of DoMenuCommand.

4. Override DoSetupMenus to enable the new
menu items.

Because:

MacApp constructs the menu items from the
resource file, and uses the command numbers
and constants to link menu items

Many classes descend from TEvtHandler, and
thus can handle menu commands.

Whenever the application object receives a
menu command, it sends a DoMenuCommand
message to the current target object.

Whenever a mouse-down event is detected in
the menu bar, ***MacApp?*** calls
DoSetupMenus for the application, document,
window, and view before the menus are
displayed.

Step 1 Add the menu items and the command numbers to your resource file

MacApp menu resources are defined as cmnu resources in the resource input flle. The Build
command file that builds MacApp programs runs the PostRez tool to convert the cmnu
resources to MENU resources plus the additional information MacApp needs. Therefore, you
cannot use a resource editor to add menus or menu items and you cannot use DeRez to
decompile your menus.

CHAPTER 24 Menus 137

MacApp Cookbook Draft 1 1/26189

To start the menu process, you add the menu items as a 'cmnu' resource in your application's
resource compiler input file and give the commands a command number. Also, In the
implementation of your uni~ define a constant for the command number you gave for the menu
command in the resource file; by convention, such constants start with a lowercase "c".

You can make a new menu for commands specific to your application, or you can add
commands to existing menus. The following example from UiconEdit.p adds a new menu with a
Zoom In and a Zoom Out command:
{--}
/* new command constants */
Jtdefine cZoomin 1000

Jtdefine cZoomOut 1001

/* the view template resources *I

I* the icon resource */

I* other 'cmnu' resources */

/* the new Icon menu resource */
resource 'cmnu • (4) {

4,

textMenuProc,
allEnabled,
enabled,
"Icon",

I* [l] */ "Zoom In", no Icon,

I* [2] */ "Zoom Out", no Icon,

/* [3] */ "Zoom Out", no Icon,
/* [4] */ "Zoom Out", no Icon,

} ;

"M", noMark, plain, cZoomin;

"L", noMark, plain, cZoomOut
"L", noMark, plain, cZoomOut

"L", noMark, plain, cZoomOut

/* the 'MBAR' resource must be changed to include the new menu */

resource 'MBAR' (128) { {l; 2; 3; 4) };

{--}
In this example, the Zoom In and Zoom Out commands are placed in a new Icon menu
Therefore, this menu must be defined in a 'cmnu' resource, and included in the 'MBAR' resource.

138 MACAPP COOKBOOK

(

(

MacApp Cookbook Draft 1 1/26189

Step 2 Decide which object should handle the command

When you add a menu command, you must decide which object should handle it. Sometimes it
is difficult to decide whether a command should be implemented by a view or a document.
There is no strict rule for this, but a general heuristic is this: if the command changes the
document's data, then the command should be handled by the document; if the command only
changes the appearance of that data in some view, then the command should be handled by a
view.

can this section become more
general, or do I only need to deal

with views and windows?

Step 3 Implement the DoMenuCommand method for the appropriate object

The DoMenuCommand method is the center of focus when MacApp applications respond to
menu commands. Whenever the application object receives a menu command, it sends the
DoMenuCommand message to the current target object. The whichCommand parameter is the
command number corresponding tO the menu item chosen (which the application object finds
in the command number table.)

When one of your event-handling objects receives a DoMenuCommand message, it should take
the following steps:

1. In response to simple commands, your objects should always return the predefined MacApp
global variable gNoChanges. This result informs the application object that the command
was a simple command-basically letting the application object know not to worry about
enabling and renaming the Undo menu item in the Edit menu.

+ Note: The return value will be important for implementing undoable commands. See
Chapter X, "Undo, 0 for more information.

2. Decide whether or not the object can respond to the command by examining the
whichCommand parameter. If it can respond to the command, it should take the
appropriate action.

CHAPTER 24 Menus 139

MacApp Cookbook Draft 1

+ Note: To prevent your DoMenuCommand overrides from growing too large become
enormous, it is often best to have have them call other methods of your object to
actually handle the command.

If the object cannot handle the command, it must call the inherited version of
DoMenuCommand, so that the next event handler in the command chain gets a chance to
handle the command.

1/26/89

The following example from UiconEdit.incl.p implements the DoMenuCommand to trap a
Zoom In and a Zoom Out command, and then passes the command back to the event-handling
chain:
{ --.--------------}

FUNCTION TlconEditView.DoMenuCommand (aCmdNumber: CmdNumber): TCommand; OVERRIDE;

VAR
anlconEditCommand:
anlconPasteCommand:

BEG JN

TlconEditCommand;
TlconPasteCommand;

DoMenuCommand := gNoCbanges; (Prime result of DoMenuCommand.

CASE aCmdNum.ber OF (Decide if this command is ours ...

cZoomln:
SetMagnification(fMagnification + 2); (Increase size of each bit by 2 pixels.}

cZoomOut:
SetMagnification(fMagnification - 2); { Decrease size of each bit by 2 pixels.}

... {Other commands that the object can handle}
OTHERWISE { Otherwise, let someone else handle it.}

DoMenuCommand := INHERITED DoMenuCommand(aCmdNumber);
END;

END;

{--}
The DoZoornin method will be called when the user selects the Zoom In menu command. In your
DoZoomin method you will actually have to get the icon to appear to grow in the window,
which changes the size of the icon edit view, and then you will have to tell that view to redraw
itself.

140 MACAPP COOKBOOK

(

(

MacApp Cookbook Draft 1 1/26189

Step 4 Override DoSetupMenus to enable the new menu items

can this step be included in the next
major section?

Every application that defines its own menu commands must override DoSetupMenus.
Whenever a mouse-down event is detected in the menu bar, .. *MacApp? .. * calls DoSetupMenus
for the application, documen~ window, and view before the menus are displayed. You can
override the DoSetupMenus methods for any of these to change the text for any menu item or
to enable, disable, or check menu items. You must override DoSetupMenus for any object type
for which you override DoMenuCommand.

• Note: MacApp actually calls DoSetupMenus only when some change has occurred. MacApp
calls it after processing all available events, so it is usually not called when the user clicks in
the menu bar. Therefore, the user usually does not have to wait for DoSetupMenus to
execute before seeing a menu.

Override the appropriate DoSetupMenus method to enable the new menu items by taking the
following steps:

1. Add the interface line for the appropriate object to your interface file.

2. Define your override method of DoSetupMenus in your implementation files.The
implementation of DoSetupMenus consists of the following:

• A call to INHERITED DoSetupMenus.

does the first step have to be
included in every step?.

• A series of calls to the Enable routine followed by a call to the inherited version of
DoSetupMenus. Enable takes two parameters: the command number corresponding to
the menu item to be enabled, and a Boolean parameter specifying whether to enable
the item, or leave it disabled.

• Calls to the MacApp and Menu Manager routines described in the rest of this chapter to
change the appearance of the menus.

CHAPTER 24 Menus 141

MacApp Cookbook Draft 1

Although MacApp has global procedures for the most common menu operations, you must use
Menu Manager routines for much of what is described in the following sections. Menu Manager
routines use menu handles, menu ID's, and item ID's to refer to menus and commands. Convert
the command number to a menu handle and item number using the following MacApp global
procedure:
PROCEDURE CmdToMenuitem(aCmd: CmdNumber; VAR menu, item: "INTEGER);

1/26189

This procedure returns the Menu Manager menu and item ID associated with the given command
number. If you need a menu handle (which you generally need for Menu Manager routines) use
the following MacApp global function:
FUNCTION GetResMenu (menu ID: INTEGER) : MenuHandle;

The Menu Manager contains routines that are not discussed here because they are rarely used in
MacApp programs. See the "Menu Manager" chapter of Inside Macintosh for complete
information.

Maintaining the menu bar and enabling your menu items

Whenever any event occurs, MacApp disables every menu item in every menu. Then, MacApp
sends a DoSetupMenus message to the target objec~ requesting that it enable the menu items
that it handles. When one of your event handling objects receives the DoSetupMenus message,
it should enable the menu items that it handles in its DoMenuCommand method and then pass
the message on to the next event handler in the command chain. Eventually, each object in the
command chain receives the chance to re-enable the menu items that it can handle.

+ Note: MacApp enables the menu items that it can handle. You only need to enable the menu
items specifically handled by your objects and then call the inherited DoSetUpMenus so that
the rest of the command chain objects can enable their menu items.

When this process is finished, MacApp redraws the menu bar if necessary. This way, at any
point during the execution of the application, only those menu items that can be handled by an
object currently in the command chain are enabled.

142 MACAPP COOKBOOK

\ . ./

(

MacAppCookbook Draft 1 1/26189

Step 1 Enable appropriate commands

For each command number you handle in DoMenuCommand, call either Enable or EnableCheck
in a version of DoSetupMenus defined for the same object type. You must enable all commands
that you want the user to be able to choose, even if the status of the command hasn't changed
since the last time DoSetupMenus was called, because all menu items start out unchecked and
disabled.

Enabling a command draws the command name in black; disabling it draws the name in gray.
You enable and disable commands that never have check marks with this procedure:
PROCEDURE Enable (aCmd: CmdNumber; canDo: BOOLEAN)

Enable takes two parameters: the command number corresponding to the menu item you want
to enable, and a Boolean parameter specifying whether to enable or disable the item.

Is the Boolean always canDo, or is
defined by the programmer?

This procedure enables or disables the given command depending on the value of the parameter
canDo. If canDo is FAL5E, the command is disabled and is displayed in gray. Since commands
are always disabled before calling DoSetUpMenus, it is only necessary to enable commands.

If a command may have a check mark, use this procedure:
PROCEDURE EnableCheck (aCmd: CmdNumber; canDo: BOOLEAN; check It: BOOLEAN)

EnableCheck places or removes a check mark next to the menu item, depending on the value of
checkit. It also draws the text in gray or black, depending on the value of canDo.

You do not use Enable or EnableCheck to enable the Paste command. Instead, use
PROCEDURE CanPaste(aDataType: ResType)

This procedure tells MacApp what data types you can paste at this point. Call it once for each
data type you can handle, in inverse order of preference. MacApp checks the contents of the
Clipboard and enables the Paste command if pasting is possible. See Chapter X, "The Clipboard
and Cut, Copy, and Paste" for more information.

CHAPTER 24 Menus 143

MacApp Cookbook Draft 1

Step 2 Override DoMenuCommand to check for the new menu items

Override the appropriate DoMenuCommand method. If the command has the same effect
regardless of which view of the document is active or which view contains the selection, then
override IDocumentDoMenuCommand for your document. If the command is view-specific,
override 1View.DoMenuCommand for your view. Similarly, if the command applies to a
particular window or the application as a whole, override the DoMenuCommand for your
descendants of 1Wmdow or TApplication.

To override DoMenuCommand, take the following steps:

1. Include the interface line in your interface file.

2. Define your override method of DoSetupMenus in your implementation files.

1/26189

In the implementation of DoMenuCommand, remember these points:If the command changes
the document, create a command object and pass the command object to MacApp as the
return value of DoMenuCommand. If the command does not change the document, perform the
command immediately and return gNoChanges.

Call another method to actually implement the commands this object handles

Call the inherited version of DoMenuCommand for commands this object doesn't handle.
{--}
FUNCTION TiconEditView.DoMenucommand (aCmdNumber: CmdNumber): TCommand; OVERRIDE;

VAR
aniconEditCommand:
aniconPasteCommand:

BEGIN

TiconEditCommand;
TiconPasteCommand;

DoMenuCommand := 9N0Chan9es; Prime result of DoMenuCommand.

CASE aCmdNumber OF { Decide if this command is ours ...

cZoomin:
SetMagnification (fMagnification + 2);

pixels.}

cZoomOut:
SetMagnification (fMagnification - 2);

pixels.}

144 MACAPP COOKBOOK

{ Increase size of each bit by 2

{ Decrease size of each bit by 2

(

MacAppCookbook Draft 1

cCut,
cCopy,
cClear:

BEGIN { Return a TiconEditCommand object.
NEW(aniconEditCommand);
FailNIL(aniconEditCommand);
aniconEditCommand.IIconEditCommand(aCmdNumber, SELF);
DoMenuCommand := aniconEditCommand;

END;

cPaste:
BEGIN { Return a TiconPasteCommand object.
NEW(aniconPasteCommand):
FailNIL(aniconPasteCommand);
aniconPasteCommand.IIconPasteCommand(SELF):
DoMenuCommand : = aniconPasteCommand;
END;

OTHERWISE { Otherwise, let someone else handle it.)
DoMenuCommand := INHERITED DoMenuCommand(aCmdNumber);

END;
END;

1/26189

{--­
--------)
In this example, DoMenuCommand sorts commands into two major kinds: those this view
handles, and those it doesn't. For those commands that it does handle, another method,
SetMagnification, is called to actually handle the command.

what does it do for cut and paste?

Step 3 Override Dolt

Is there a reason to return a
command object if you are not

Undoing?
If you return a command object, MacApp calls command.Dolt using the command object you return. You
should override TCommand.Dolt to execute your command. If the command can be undone, you should
also override TCommand.Undoit and TCommand.Redolt (see Chapter x, "Undoing").

CHAPTER 24 Menus 145

MacA.pp Cookbook Draft 1

Template
FUNCTION TY ourType.DoMenuCommand(aCmdNurnber: CmdNurnber): TCommand;
BEGIN

CASE aCmdNumber OF
{ Here give one of your command numbers. }: BEGIN

{ Here create and initialize an appropriate command object or,
if there are no changes to the documen~ do the command. }

DoMenuCommand := { your command object or gNoChanges };
END;
OTHERWISE

1/26189

DoMenuCommand := INHERITED DoMenuCommand(aCmdNumber)
END;

END;

Changing menu appearance and function

You need to change menu appearance and function to

• add or remove a check mark (usually for a toggle command)

• change the text of a command (either for a toggle command such as Undo/Redo, or for a
more variable command)

• add or remove a menu

• add or remove a menu command

• change the font style of a menu command

Step 1 Changing the text of a menu item

If you want to change the text of a menu item, you should use the following routine:
PROCEDURE SetCmdName(aCmd: CmdNumber; menuText: Str255);

This routine changes the text of the menu item with command number aCmd to menuText.

146 MACAPP COOKBOOK

(

MacAppCookbook Draft 1

6 Important Never use Menu Manager routines directly in DoSetupMenus to take
which? actions.. D.

Step 2 Changing the font style of a menu item

If you want to change the font style of a menu command, printing it in bold, italic, subscript,
superscript, condensed, or expanded, or returning it to plain text, use the following MacApp
global procedure:
PROCEDURE SetStyle(aCmd: CmdNumber; aStyle: Style)

This is typically used only for the menu items that change font style.

Step 3 Displaying an icon in a menu item

Some menus have icons displayed to the left of the item text. If you want to set such an icon,
use the following MacApp global procedure:
PROCEDURE SetCmdicon(aCmd: CmdNumber; menuicon: Byte);

This procedure changes the icon shown in the menu for the menu item with command number
aCmd to the icon represented by menulcon.

Handling negative command numbers

When you have a menu command that cannot be assigned a command number when you write
your application or that does not fit into the normal menu structure, your DoMenuCommand
method receives a negative command number. This happens if you have a custom menu with
commands depicted as icons, if you add menu items using Menu Manager routines, or if menu
items cannot be determined until runtime. It happens most commonly with the Font menu,
which always returns negative command numbers because the number of fonts cannot be
predetermined.

1/26189

CHAPTER 24 Menus 147

MacApp Cookbook Draft 1

To handle negative command numbers, take the following steps:

Step 1 Implement DoMenuCommand

Implement DoMenuCommand for the appropriate targe~ which depends on whether you want
the command to affect one view, one window, one documen~ or the entire application. When
you have a negative command number, you have two choices:

1/26/89

• Make a case statement directly on the negative values. The values are equal to -(256 • menu
+ item).

• Call CmdToMenuitem to convert the number to the menu ID and item ID for the item the
user picked. Then take action depending on those values.

A sample DoMenuCommand is shown in the templates for this recipe. Note that the sample
handles only negative command numbers. See the "Creating Menu Commands" recipe for more
general information about DoMenuCommand.

Step 2 Implement DoSetupMenus

Implement DoSetupMenus for the same target so that it handles the menus and menu items that
return negative command numbers. As with ordinary menu items, you must explicitly enable all
enabled items and check items that have checks. (All items start out disabled and unchecked.)
There are several possibilities, depending on your application. You can use Menu Manager
routines to enable or check these custom menu items. However, to change the tex~ style, or
icon of a custom menu item you must call the routines discussed in the previous section,
passing the appropriate negative command number.

If you have menus (such as the Font menu) in which all items return negative numbers, use code
that follows the pattern shown in the templates.

If you have menus that may include negative command numbers because menu items are added
by calls to Menu Manager routines while the application is running, use the Menu Manager
function Countltems (used in the template for DoSetupMenus in this recipe) to find out how
many items are actually in the menu. Then, if there are menu items that return negative numbers,
set up those items in DoSetupMenus and handle those items in DoMenuCommand the same way
as shown in the template.

148 MAcAPP COOKBOOK

,/.

(

MacAppCookbook Draft 1

Step 3 Implement a Font menu, if desired

If you are implementing a Font menu, you need to use the menu ID and item ID in
DoMenuCommand to get the font number. The font number is used in calls to SetFon~ a
QuickDraw procedure. To find the font number, use the following code sequence:
CmdToMenuitem(aCmdNumber, menu, item);

IF menu = mFont THEN BEGIN

{ MacApp global procedure

Getitem(GetResMenu (menu), item, aName); { Menu Manager procedure

GetFNum(aName, theFontNumber);

END;

{ Font Manager procedure

The value of mFont (a constant you should define) depends on the order of your menus. The
variable aName, returned by Getltem, is a value of type Str255. The font number is an

1/26/89

INTEGER. You should store the number somewhere and use it to set the font whenever you draw
text in that font Also store the menu item corresponding to the currently selected font, for use
in DoSetUpMenus. Note that your drawing methods should never assume that the font (or any
other characteristic, for that matter) has been set. If you care what the font is, always set it
yourself.
FUNCTION TTarget.DoMenuCommand(aCmdNumber: INTEGER) :TCommand;

VAR menu, item: INTEGER;

BEGIN.

IF aCmdNumber < 0 THEN BEGIN

CmdToMenuitem(aCmdNumber, menu, item);

{ Take action depending on the menu and item values.

DoMenuCommand : = {a command object or gNoChanges }

END

ELSE

DoMenuCommand := INHERITED DoMenuCommand(aCmdNumber);

END;

PROCEDURE TTarget.DoSetupMenus;

VAR item: INTEGER;

aMenuHandle: MenuHandle; { a Menu Manager type

BEGIN

{ All procedure and function calls are to Menu Manager routines. }

INHERITED DoSetupMenus;

aMenuHandle : = GetMHandle (mNumberl);

{ mNumberl is a constant you define. It is the menu ID for a menu that

only returns negative command numbers. }

IF aMenuHandle <> NIL THEN

FOR item := 1 TO CountMitems (aMenuHandle) DO BEGIN

Enableitem(aMenuHandle, item); { or use Disableitem

CHAPTER 24 Menus 149

Mar.A.pp Cookbook Draft 1 1126189

{ If this is a font menu, and the menu item corresponding
to the currently selected font is stored in fCurrFontitem, add: }

Checkitem(aMenuHandle, item, item .. fCurrFontitem);
END;

aMenuHandle := GetMHandle (mNumber2);
mNumber2 is a constant you define. It is the menu ID for a menu that may have
menu items added. The constant cRegularitems, used below, is another constant
you define which defines the number of permanent items in this menu. It is
assumed here that those menu items are handled by ordinary command numbers.
Handle the setup for the ordinary menu items in the menu here or elsewhere in
this method. See the "Changing Menu Appearance and Function" recipe for more
information. }

IF CountMitems (aMenuHandle) > cRegularitems THEN

END;

FOR item := (cRegularitems + 1) TO CountMitems (aMenuHandle) DO BEGIN
Enableitem (aMenuHandle, item); (or use Disable Item }

END;

Dynamically changing a popup or pulldown me~u
j

•"Recipe needed?"*
(from Larry Rosenstein, in a response to MacApp.Tech$ question)

There are traps InsMenultem and DelMenultem, as well as Setltem to simply change the text.
(Note that inserting or deleting items from the middle of a menu means that experienced users
won't be able to predict where an item will appear on the screen, which is sometimes a useful
shortcut.) •**•

Creating menus outside of MacApp

-An idea from Andy Swartz, as follows:-

150 MACAPP COOKBOOK

•••Recipe needed?***

,,,-- '',,,
('

',
\;,,,",/

("

(

MacApp Cookbook Draft 1 1/26189

There is a way to create your own menus outside of MacApp's structure. The main thing you
have to do (besides providing your own menu support) is set gRedrawMenuBar to TRUE in your
DoMenuCommand override.

Continuing from here

This chapter has discussed how to implement simple commands; that is, those commands that
do not require command objects (and are therefore not undoable) and do not require mouse­
tracking commands. For more information on those subjects, see Chapter X, "Undoing" and
Chapter X, "Mouse Operations."

You can also change the order in which events are handled in the command chain (see Chapter X,
"Event Handling").

I moved that topic, and also moved
the target view topic to "Creating a

Window", since that is where you
specify it. Is that OK?

CHAPTER 24 Menus 151

(

(

MacApp Cookbook Draft 1 1/26189

Chapter 25 Mouse Operations

The user can click the mouse in a variety of situations: in a desk accessory window, in
the window of another application under MultiFinder, in the title bar of a window, in
the grow box of a window, or in the content area of a window. MacApp handles most
of these for you. Only when the click is in the content area of a window, that is, in one
of your special views, do you have to handle it

You often need to track the pointer after the mouse button goes down and take some
action while the mouse moves or when the mouse button comes up. (You also
occasionally need to track the mouse when the button is up and take action when the
button goes down.) Mouse actions normally fall into four groups:

• selecting

• manipulating buttons and other controls

• dragging

• drawing

When MacApp detects a mouse-down event, it first checks the location of the mouse
when the button was pressed. If the mouse button was pressed when the pointer was
not in one of the window's subviews, the event is handled by MacApp, which may call
your code. For example, the user may choose a menu item, which results in a call to
yourView.DoMenuCommand. If the pointer was in a scroll bar, it causes scrolling to
take place, which results in a call to yourView.Draw.

However, if the pointer was in one of your views when the mouse button was pressed,
TYourView.DoMouseCommand is called.

The DoMouseCommand method is a function that returns either a handle to a
command object or the global variable gNoChanges. If the mouse event requires
tracking or indicates that the user is beginning an undoable command,
DoMouseCommand will create a command object; otherwise, if there is a command, it
will execute the command and return gNoChanges.

153

MacApp Cookbook Draft 1 1126189

This chapter includes a recipe for handling each of the four general types of mouse
actions. Each recipe assumes that only that type of action can occur. These four
recipes are followed by a recipe for tracking the mouse, which contains detailed
information about the mouse trackers used for the preceding four recipes. Then there
is a recipe that shows how to differentiate among several possible mouse actions.

154 MACAPP COOKBOOK

("'',,,

\..,,,,j

MacAppCookbook Draft 1

Command objects and mouse tracking

If you want the mouse click to be followed by some action while the mouse is being dragged,
create and return a command object. MacApp then handles mouse-tracking by calling the
appropriate methods of the mouse command object.

Command objects have three methods that are useful for implementing mouse tracking.
TCommand has a few fields that will be important for mouse tracking, as follows:

1/26189

• The fView field contains a reference to the view in which the mouse-tracking is taking
place-this should be the view that created the command object (in its DoMouseCommand
method). If that view is in a scroller, then the fScroller field of the command object will
reference the that scroller. This allows MacApp to auto-scroll the view when tracking the
mouse

• The fConstrainsMouse field is explained in the section on TrackConstrain, below. Also, the
three new methods of TCommand are presented: TrackConstrain, TrackFeedback, and

(TrackMouse. These methods are called by MacApp to implement mouse-tracking.

Tracking the Mouse

In response to a mouse click, MacApp sends a DoMouseCommand to the frontmost view in
which the mouse was clicked. (Remember that subviews lie in front of superviews, so the
DoMouseCommand message is always sent to the view lowest in the view hierarchy.).

The standard DoMouseCommand that comes with all 1View objects simply ignores the mouse
click altogether. When you have a view subclass that should respond to mouse clicks, you will
need to override DoMouseCommand for that class. In your DoMouseCommand override, you
will typically respond to the mouse click in one of three ways:

Ignore the mouse click

Handle the mouse click immediately, and then return to MacApp

c HA p TE R 25 Mouse Operations 155

Mar.App Cookbook Draft 1 1/26189

Create a command object to handle the mouse command. As with DoMenuCommand, your
DoMouseCommand method would then return a reference to this command object MacApp is
responsible for calling the appropriate methods of this command object.

Run-time summary of tracking the mouse

When the mouse is clicked in your view, MacApp calls the DoMouseCommand of that view. In
your DoMouseCommand override, you should create a command object, and return a reference
to it. As long as the mouse button is held down, MacApp will repeatedly call the TrackConstrain,
TrackFeedback, and TrackMouse methods of that command object.

Figure 27-1 provides a summary of MacApp's actions at runtime when the mouse is to be traked.

• Figure 27-1 MacApp's actions in relationship to this recipe

Overview of your responsibilities

The actions you must take, the reasons you must take those actions, and what MacApp can
provide to help you take those actions are summarized in Table 27-1. Each of the steps is
explained in detail in the recipes that follow.

This section also assumes that you have already created an instance of an ~plic;atiqn obje~
For more information, see Chapter X, "Applications."

• Table 27-1 Overview: tracking the mouse

Step Your action: Because:

1. tcolltext tcol2text

156 MACAPP COOKBOOK

(

MacApp Cookbook Draft 1

Create a subclass of TCommand

In your interface file, define a new object class as a subclass of TComrnand. The class should
have a field referencing the related document object and a field referencing the related view
object: You must also override three methods of that class, as described in the following
sections.

The following sample code from UiconEdit.shows the definition of a TiconDrawComrnand
class and the two fields that should exist
{--}

TiconDrawCommand = OBJECT (TCommand)

1/26189

ficonDocument: TiconDocument; { The document affected by this command.}

ficonEditView: TiconEditView; { The view in which this command draws.}

{--}
To implement drawing, you must define a drawing command object class, and
instantiate

(that class when a mouseclick is received in a TiconView object

Initialize the command object

This method should call
the !Command
method to initialize inherited fields, and then initialize the fields unique to
TiconDrawCommand. This method has one parameter: a reference to the related view
object, itsiconView.
The call to !Command must give the following:
the command number
a reference to the related document

a reference to the related view
a reference to the related scroller, if any

These values can all be found using the

c HAP TE R 25 Mouse Operations 157

MacApp Cookbook Draft 1 1/26189

itslcon View parameter:
ICommand(cDrawCommand, { the command number}

itsiconView.tlconDocumen~ {the related document object}
itslcon View, { the related view object }

itsiconView.GetScroller(true)); {a method which returns the related scroller}
In this example, notice that drawing has been given a command number constant,
cDrawCommand. You should declare this constant with your other command constants in
your implementation file.
Next, IIconDrawCommand must initialize the fields unique to TiconDrawCommand:
flcon View := itslcon View;
ficonDocument :• itsiconView.ficonDocument;

Finally, you must reinitialize any inherited fields that !Command doesn't initialize in the way
you want. In this case, fConstrainsMouse and fCanUndo are both initialized incorrectly by
!Command. You can change their initialization here:
fConstrainsMouse :• true;
fCanUndo :• false;
PROCEDURE TiconDrawCommand.IlconDrawCommand(itslconView:TiconView);

BEGIN
ICommand(cDrawCommand,

itslcon View.ficonDocumen~
itslcon View,

{ Initialize the command ...
{ Associate it with a document. }

itslcon View.GetScroller(TRUE);
{ Associate it with a view. }
{ Associate it wiht a scroller. }

END;

fConstrainsMouse :• TRUE;
fCanUndo := FALSE;

flcon View :• itslcon View;
ficonDocument := itslconView.flconDocument;

Override DoMouseCommand

{ Track:Constrain will be called. }
{ Can't undo drawing yet.

{ Initialize the new fiels... }

The general purpose of DoMouseCommand is to create a command object and return a
reference to it. MacApp can then call the mouse-tracking methods of that command object.

158 MACAPP COOKBOOK

(

MacAppCookbook Draft 1 1/26189

. 1. Create a command object

2. Return a reference to that object
FUNCTION TiconView.DoMouseCommand (VAR theMouse: Point; VAR info: Eventinfo;

VAR hysteresis: Point): TCommand; OVERRIDE;
NEW(aniconDrawCommand);
FailNil(aniconDrawCommand);
aniconDrawCommand. IIconDrawcommand (SELF); { In this case, SELF is the related view.

DoMouseCommand := aniconDrawCommand;

Change the visual feedback, if desired

The TrackFeedback method allows you to give simple feedback while the mouse is being
dragged. The default version of TrackFeedback draws a grey rectangle from the point where
the mouse was clicked to the current mouse location. This is similar to the feedback for the
selection rectangle tool in MacPaint. You can override that behavior in your mouse-tracking
command objects to provide different types of feedback.
PROCEDURE TCommand.TrackFeedback(anchorPoint, nextPoint: VPoint;

turnitOn, mouseDidMove : BOOLEAN);

If your view creates a command object in response to a mouse click, then MacApp will
repeatedly call the TrackFeedback method of that command object while the mouse button is
still down.

MacApp updates the four TrackFeedback parameters to let TrackFeedback know the state of
the mouse, as follows:

• The anchorPoint parameter is always set to be the point where the mouse button was
originally pressed. This parameter is a VPoint in the local coordinates of the view. VPoint is
a special point type declared to allow views to be larger than the QuickDraw point system
allows. For small views, you can always convert between VPoints and QuickDraw points
using the MacApp utility ???VPtToQDPoint.

What about for large views?

• The nextPoint parameter is always set to be the point where the mouse is currently. Again, it
is as VPoint in the local coordinate system of the view. The anchorPoint and nextPoint
parameters can be used to give feedback similar to the selection rectangle tool-that is,
feedback that relies only on the initial point and the current point.

c HA p TE R 25 Mouse Operations 159

MacApp Cookbook Draft 1

• The turnitOn parameter is set to be true every time TrackFeedback is called, except the
final time after the mouse button is released. (J?? What can this be used for ???)

• The mouseDidMove parameter is true if the mouse has moved since the last time
TrackFeedback is called. Normally,you won't have to worry about this parameter because
MacApp won't even call TrackFeedback unless the mouse has moved.

1126189

+ Note: You can request that MacApp call TrackFeedback regardless of whether the
mouse has moved by setting the ITrackNonMovement field of the command object to
true. Typically you would do this in your command object's initialization method

Providing visual feedback

Where to give feedback varies from application to application . In IconEdit, the appropriate
feedback is to draw "fatbits" in the icon as the mouse is being dragged. If the mouse was
originally pressed over a white bi~ then subsequent bits should be drawn in black as the mouse
is dragged. If the mouse was originally pressed over a black fatbit, then subsequent bits should
be drawn in white (erased) as the mouse is dragged. All of this processing can be done simply in
your TrackMouse override, using the aTrackPhase parameter.

One important point to note is that as dragging is taking place, you want to give immediate
visual feedback to the user. This means drawing in the view directly as the mouse is being
dragged.

Remember for normal drawing, this is not the case. Normally, you would alter the data in the
document, and then force the entire view to redraw itself. This approach to drawing is usually
not fast enough for visual feedback while the mouse is being dragged. In each call to
TrackMouse, you must immediately draw the appropriate "fatbit" in the view. Therefore, your
view object will now have two drawing methods: Draw, which draws the entire view when
MacApp tells it, and DrawBit, which immediately draws a specified "fatbit'' in the view.

TrackMouse can call DrawBit, then, to give immediate visual feedback. Of course, the result of
the drawing should do more than change the appearance of the view. It should also change the
data in the document. Normally, this will be done in the Dolt, Undo!~ and Redolt methods of
the command object. However, since the drawing command is not undoable in this case,
TrackMouse has to alter the document's data itself as the mouse is being dragged.

16o MACAPP COOKBOOK

(

MacAppCookbook Draft 1 1/26189

3. MacApp calls the method yourMouseCommand.TrackFeedback as the mouse moves.
TCommand.TrackFeedback produces a shadowy (black pen, XOR mode) box between the
point where the mouse button was pressed and the current mouse position. If you want
different feedback, add the following to your definition of 1Y ourMouseCommand:

PROCEDURE TYourMouseCommand.TrackFeedback(anchorPoint, nextPoint: VPoint;

turnitOn, mouseDidMove: BOOLEAN);

OVERRIDE;

You can, for example, change the pen state or mode and then call INHERITED TrackFeedback, or
you can provide completely different feedback.

Constrain the activity of the mouse, if desired

MacApp calls TrackConstrain before calling TrackFeedback and TrackMouse.

The TrackConstrain method allows you to constrain the activity of the mouse to a certain
region. By default, MacApp constrains the mouse activity to the bounds of the view. On the
Macintosh, you can't actually constrain the movement of the mouse pointer. Macintosh users
are always free to move the pointer anywhere they like. However, you can constrain the
feedback as if the pointer to were constrained to a particular area.

For example, in IconEdit the icon edit view has a border area (of five pixels) where no drawing
is done. If the user moves the mouse into this border area while drawing, you'd like the
application to respond as if the mouse hadn't left the drawable area of the view. You can do
this with the TrackConstrain method.

The mechanism behind TrackConstrain is fairly simple. MacApp sends TrackConstrain the
anchorPoint, previousPoin~ and nextPoint of the mouse. If the actual nextPoint of the mouse
isn't in your constraining area, then TrackConstrain can change the value of nextPoint.

This new value of nextPoint is the value that will actually be sent to TrackFeedback and
TrackMouse. This way, TrackConstrain can ensure that TrackFeedback and TrackMouse never
receive a nextPoint out of the constraining area.

Set yourMouseCommand.fConstrainsMouse to TRUE. (You can do that in

Next statement is from Interim
cookbook. Still true?

IY ourMouseCommand.) fConstrainsMouse is a field of TCommand. fConstrainsMouse defaults
to FALSE. When that field is TRUE, MacApp calls yourMouseCommand.TrackConstrain.

c H A p TE R 25 Mouse Operations 161

MacApp Cookbook Draft 1

PROCEDURE TCommand. TrackConstrain (anchorPoint, previousPoint: VPoint;

VAR nextPoint : VPoint) ;

The parameters to TrackConstrain are as follows;

• anchorPoint

• previousPoint

• nextPoint. You can alter nextPoint so that your feedback acts as if the mouse was
constrained to a certain area.

1126189

The purpose of TrackConstrain is to examine the nextPoint parameter. If it has gone out of the
constraining region, then TrackConstrain should change nextPoint to bring it back in the proper
area. This can be done by ensuring that the horizontal and vertical coordinates of nextPoint are
always greater than the border size, but less than the size of the view less the border size:
nextPoint.h := Max(kBorder, Min(nextPoint.h, flconView.fSize.h - kBorder - 1));
nextPoint.v := Max(kBorder, Min(nextPoint.v, flconView.fSize.v - kBorder - 1));

Override TrackMouse

If you do not want to take any action depending on the track phase, and the action of the
mouse command changes the document, you do not have to override TrackMouse. The default
version of TrackMouse returns the command object itself as the function return value, which
results in always marking the document as changed after the mouse button is released.

However, if you want to take some other action depending on the trackPhase or the mouse
location, override TrackMouse. In addition, if the command may not change the document,
override TrackMouse.

The TrackMouse method allows you to give more complicated feedback and do other
processing while the mouse is being dragged. Often it is more convenient to do all feedback in
the TrackMouse method, leaving the TrackFeedback method empty.
FUNCTION TCommand.TrackMouse(aTrackPhase : TrackPhase;

162 MACAPP COOKBOOK

VAR anchorPoint, previousPoint, next Point: VPoint;

mouseDidMove : BOOLEAN) : TCommand;

(

(

MacApp Cookbook Draft 1 1/26189

If your view creates a command object in response to a mouse click, then MacApp repeatedly
calls the TrackMouse method of that command object while the mouse button is still down.
TrackMouse is very similar to TrackFeedback, except that MacApp provides TrackMouse more
information, and more control. The parameters for the TrackMouse method are as follows:

• The aTrackPhase parameter tells TrackMouse specifically what the current phase of mouse­
tracking is. This parameter is always one of three predefmed MacApp values, as follows:

trackPress

trackMove

trackRelease

The mouse has just been pressed-this is the first call to TrackMouse.

The mouse is currently being dragged.

The mouse has just been released-this is the last call to TrackMouse.

• The anchorPoint parameter represents the point where the mouse button was pressed.

• The previousPoint parameter represents the point where TrackMouse was called previously.

• The ne:xtPoint parameter represents the current location of the mouse.

• The mouseDidMove parameter indicates whether the mouse has moved since the last call to
TrackMouse (that is, if the previousPoint and ne:xtPoint parameters have different values).

If the track phase is trackPress, the anchorPoint, previousPoint, and ne:xtPoint parameters are
all the same. If the track phase is trackRelease, then the nextPoint parameter gives the
location of where the mouse was released.

Because the previous point is sent to TrackMouse as well as the nextPoint, that TrackMouse
can do more complex feedback than TrackFeedback-by tracking the mouse point by point.

Because the points are VAR parameters, your TrackMouse override can alter these values. (!!?
When is this useful 7{!) If you alter anchorPoint, for example, the new value of anchorPoint will
be sent to TrackMouse (as well as TrackFeedback) the next time through MacApp's loop. If
you alter ne:xtPoint, its new value will become the value of previousPoint the next time through
the loop.

TrackMouse is a function returning a command object. Your command object should always
return a reference to itself in its TrackMouse method, like this:
TrackMouse :• SELF;

This tells MacApp to continue using this command object. (You could create and return a new
command object here, and MacApp would continue as if that had been the command object all
along. You probably won't need to use this functionality often.)
If the mouseDidMove parameter is false, then Track:Mouse doesn't do anything.
If the mouse did move, then you must first figure out which bit of the icon
was clicked over.

c HA p TE R 25 Mouse Operations 163

Mac.App Cookbook Draft 1 1/26189

The nextPoint
parameter of TrackMouse is given in View coordinates. However, PointToBit expects
QuickDraw coordinates. For small views, you can use the TView utility method ViewToQDPoint to do the
conversion.
The next thing that TrackMouse must do is check to see if the track phase
is TrackPress. If
so, then it must determine if the bits should be turned on or off, depending on the state of
the bit clicked over. Using the GeticonBit utility routine defined in this chapter, you can
store this information in the ffurnBitsOn field:
IF aTrackPhase • TrackPress TIIEN

ffurnBitsOn :• NOT GetlconBit(ficonDocument.ficonBitMap, whichBit);
Of course, if you use GeticonBit, you must define it somewhere in your implementation
file.
Finally, TrackMouse must actually invert the bit that the mouse is currently
over. You do this
in two steps. First, you must change the actual data in the document, using the SetlconBit
utility routine. Then, you must give immediate visual feedback using the DrawBit method of
TiconView:
SetlconBit(ficonDocument.ficonBitMap, whichBit, ffurnBitsOn);
ficon View .Draw Bit(whichBit, ffurnBitsOn);
As always, TrackMouse should return SELF as its result, so that MacApp will
continue to send
mouse-tracking messages to this command object.

Tracking the mouse

If you want to give nonstandard feedback as the mouse moves, override TrackFeedback, as
described below. If you want to constrain mouse movement in some way, override
TrackConstrain, also described below.
1. Add the following to your mouse command object type definition:

FUNCTION TYourMouseCommand.TrackMouse(aTrackPhase: TrackPhase;

164 MACAPP COOKBOOK

VAR anchorPoint, previousPoint, nextPoint: VPoint;

mouseDidMove: BOOLEAN): TCommand; OVERRIDE;

(

(

MacAppCookbook Draft 1

In your implementation of TrackMouse, you should return SELF so that MacApp continues to
call yourMouseCommand.TrackMouse. You can also return another command object, in which
case that command object takes over tracking the object. (MacApp frees the old command
object for you.)

1/26189

On trackRelease, if no changes have been made to the document, you can return gNoChanges,
which tells MacApp to free the command object. It also tells MacApp to not commit and free
the last command object. (If gNoChanges is not returned, MacApp automatically calls Commit
for the last command and frees that command. The result is that the last command can no longer
be undone, which may not be appropriate.)

2. If you return a command object, MacApp calls yourMouseCommand.Dolt when the
mouse is released. If the command can be undone, or if it changes the document, you normally
perform the action of the mouse command in Dolt. If the command cannot be undone, and if
it does not change the document, you can perform the action in TrackMouse when the track
phase is trackRelease. In that case, return gNoChanges instead of your own command object.

Selecting

The user can select all or part of an object displayed in your view in preparation for performing
some action. You need to detect when the user is attempting to select something, figure out
what was selected, and mark it as selected in your data set and also in the view by highlighting it
in someway.

For simplicity, this recipe assumes that a mouse-down event indicates either a selection or
nothing. In general, a mouse-down event indicates the beginning of one of a number of possible
actions, and your program uses a number of criteria to figure out which action the user wants.
See the "Handling Several Types of Mouse Events" recipe for an example of integrating
different types of mouse actions.
1. Write TYourView.DoMouseCommand so that it detects selections. The user should be able to
select a single item and should be able to make multiple selections.

There are several ways to handle multiple selections, generally depending on the kind of data being
selected.

Applications generally handle selections in one of two ways:

c HA P TE R 25 Mouse Operations 165

MacApp Cookbook Draft 1 1/26189

• If your application, like the sample program DrawShapes, has discrete independent objects
scattered around the view, the user should be able to select individual objects by clicking them. The user
should also be able to make multiple selections by drawing a selection rectangle around several objects,
and add objects to the group of selected objects by holding down the Shift key and clicking a new object.
(Similarly, the user should be able to remove selections from the group by holding the Shift key and clicking
a selected object.) Selections don't have to be contiguous-selecting two objects using Shift-click does
not automatically select everything between the two objects.
• If your application, as text or spreadsheet applications do, has data organized in a contiguous

' list, selections should be contiguous arbitrary' portions of the data. If the application deals with text, the
amount selected usually depends on the number of clicks (that is, a single click places an insertion point, a
double click selects a word, and a triple click selects a paragraph). In addition, the user should be able to
select blocks of text by holding the mouse button down and dragging the pointer across the text, as well as
by holding the Shift key down and clicking to extend the selection. Extending the selection generally
selects everything up to the new selection. Selection in cell-based applications, such as spreadsheet
programs, are similar. ·

Some applications (such as MacDraw) fall partially into both categories, depending on the mode
chosen by the user.

Text selections are usually handled by UTEView (see the "Using UTEView" recipe). If you need to
handle text selections yourself, see the UTEView source code.
If you have discrete objects displayed in your view, DoMouseCommand can follow this plan:

• Scan through your set of objects and check each to see whether the mouse pointer was within its \.
area. If you find the mouse pointer was over an object, check whether the Shift key was down. If it wasn't,
mark the identified object as selected and deselect the previous selection. If the Shift key was down,
toggle the selection status of the identified object. See step 2 of this recipe for a discussion of how the
selection status of objects may be stored.
• If the pointer was not over any object, the user may have been trying to select or deselect a group
of objects. Create a selector object, which is a type of mouse tracker. (See the "Tracking the Mouse"
recipe for a description of mouse trackers and their methods.) MacApp calls the methods
command.TrackMouse, command.TrackFeedback, and command.TrackConstrain while the button is
down. You can find all the selected objects and mark them in TrackMouse when the trackPhase is
trackRelease. (See step 2 of this recipe for a discussion of marking selections.)

A sample of a TrackMouse method for a selector object is given in the templates for this recipe.
A template for DoMouseCommand is also given in the templates for this recipe.

166 MACAPP COOKBOOK

MacApp Cookbook Draft 1 1/26189

(

(

c HA PT E R 25 Mouse Operations 167

Mac.App Cookbook Draft 1

Step 2 Create a DoWghllghtSelection method for your view

MacApp calls yourView.DoHighlightSelection after it calls yourView.Draw. The interface for
DoHighlightSelection is

1/26/89

PROCEDURE TYourView.DoHighlightSelection (fromHL, toHL: HLState); OVERRIDE;

IIIState is an enumerated type with values hlOff, hlDim, and hlOn. The value hlOff indicates that
no highlighting should take place; hlOn indicates that the selection should be highlighted when the window
is active; hlDim indicates that the selection should be also highlighted when the window is inactive. Dim
highlighting (which is not part of the user interface standard and is an optional enhancement) can be used
instead of no highlighting when the window is not active. If your application doesn't do highlighting you
can treat hlDim and hlOff as the same thing.

DoHighlightSelection finds all selections and turns highlighting on, off, or to dim. MacApp calls it
when the window showing the view is activated or deactivated or when the view is updated. The values of
the parameters are as follows:
• Updating the active window: hlFrom is hlOff and hlTo is hlOn.
• Updating an inactive window: hlFrom is hlOff and hlTo is hlDim.
• Activating a window: hlFrom is hlDim and hrro is hlOn.
• Inactivating a window: hlFrom is hlOn and hrro is hlDim.

You call DoHighlightSelection yourself when the selection changes. A sample implementation is · .. " /,
given in the templates for this section. The template allows multiple selections, with each object marked as
selected or not selected.

Unlike most methods that draw in the view, DoHighlightSelection can be called from other
methods. When the selection changes, you can remove highlighting from the old selection by calling
DoHighlightSelection(hlOn, hlOff) and then calling DoHighlightSelection(hlOff, hlOn) to highlight the new
selection. Note that your view must be focused before calling DoHighlightSelection. If you're not sure if
it's focused you can insert code to say

IF yourView .Focus THEN ••••

When MacApp calls your Draw, DoHilightSelection, or DoMouseCommand methods, your view has
been focused.

Step 3. Record what objects (or parts of objects) are selected.

There are many ways you could record this information. Some common ways are listed here:

168 MACAPP COOKBOOK

MacAppCookbook Draft 1 1/26/89

• If there is always only one selection, the selection is somehow indicated separately from the list of
objects (probably stored in a field of the document, or if that is not meaningful, of the view), and
DoHighlightSelection simply highlights the current selection.
• The document (or view, if necessary) has a list of selected objects separate from the list of all
objects. DoHighlightSelection scans through that list and highlights all of them
• Each object is marked as selected or not selected. One way to mark them is to have a Boolean
field, flsSelected, in each object. When the object is initialized, you set that field to F AL5E.
DoHighlightSelection scans through the list of objects and highlights any that have flsSelected TRUE.
• There is a Boolean function that decides whether or not an object is selected.
DoHighlightSelection can scan through the list of all objects and highlight those for which this function
returns TRUE.

Step 4 Define and implement a command object to handle selection.

Templates

TYourSelector = OBJECT (TCommand);

fYourDocument: TYourDocument;
fYourView: TYourView;
fDeltaH: INTEGER;
fDeltaV: INTEGER;

PROCEDURE TYourSelector.IDragger(view: TYourView);
FUNCTION TYourSelector.TrackMouse(aTrackPhase: TrackPhase;

VAR anchorPoint, previousPoint, nextPoint: VPoint;

mouseDidMove: BOOLEAN): TCommand; OVERRIDE;
PROCEDURE TYourSelector.Doit; OVERRIDE;

PROCEDURE TYourSelector. Undo It; OVERRIDE;
PROCEDURE TYourSelector. Redo It; OVERRIDE;

PROCEDURE TYourSelector. TrackFeedback (anchorPoint, nextPoint: VPoint;

turnitOn, mouseDidMove: BOOLEAN); OVERRIDE;
PROCEDURE TYourSelector.FixSelection;
PROCEDURE TYourSelector .MoveBy (move It: BOOLEAN);

END;

FUNCTION TYourView.DoMouseCommand(VAR theMouse: Point; VAR info: Eventinfo;

VAR hysteresis: Point): TCommand;
VAR hititem: Titem;

aSelector: TYourSelector;

c HA PT E R 25 Mouse Operations 169

MacApp Cookbook

PROCEDURE CheckHit (item: Titem);

BEGIN

Draft 1

IF {for example} PtinRect (theMouse, item, fBoundsRect) THEN

hititem : .. item;

END;

BEGIN

hititem := NIL;

IF NOT info. theShiftKey THEN

Deselect;

1/26189

This is a method you must design and add to your view to remove marking

from the current selection or selections. }

fitemList.Each(CheckHit);

{ This TList-type field of the view holds all the application's items. The code

here assumes that the list is ordered back-to-front and the frontmost object

is the one the user selects. }

IF hititem == NIL THEN BEGIN { begin a selection rectangle

New(aSelector);

FailNIL(aSelector);
aSelector.ISelector(fYourDocument, SELF, info.theShiftKey);

DoMouseCommand := aSelector;

END
ELSE BEGIN { one object selected or toggled }

DoMouseCommand := gNoChanges;
hititem. fisSelected := NOT hititem. fisSelected;

END;

END;

170 MACAPP COOKBOOK

(

MacAppCookbook Draft 1

PROCEDURE TYourSelector.ISelector(ItsDocument: TYourDocument;
itsView: TYourView; shiftKey: BOOLEAN);

BEGIN

1/26189

Call !Command to set the command's fView to the view in which tracking
takes place and to set the scroller used for automatic scrolling during
selection. cSelect is command number constant for this command that can
be used to distinguish one kind of selection from another. After calling
!Command it is necessary to set fCausesChange and fCanUndo to false, as
a selection neither changes a document or is undoable.

itsView, itsView.GetScroller(TRUE));
fCausesChange := FALSE;
fCanUndo := FALSE;
fYourDocument := itsDocument;

END;

FUNCTION TYourSelector.TrackMouse(aTrackPhase: TrackPhase;

ICommand(cSelect,

VAR anchorPoint, previousPoint, nextPoint: VPoint;
mouseDidMove: BOOLEAN): TCommand;

PROCEDURE CheckHit(item: Titem);
BEGIN

Here check if the item is in the rectangle marked by the mouse between
anchorPoint and nextPoint. If it is, mark it selected or deselected or
add it to the list or remove it from the list of selected items, depending
on the state of the Shift key stored in the selector object.

END;
BEGIN

TrackMouse := SELF;
IF aTrackPhase : = trackRelease THEN
BEGIN

fView.DoHighlightSelection(hlOn, hlOff);
fYourDocument.Each(CheckHit); {assumes items are in a TList list}
fView.DoHighlightSelection(hlOff, hlOn);
TrackMouse : = gNoChanges;

END;
END;

PROCEDURE TYourView. DoHighlightSelect ion (fromHL, toHL: HLState) ;
PROCEDURE Highlightitem(item:Titem);
BEGIN

IF item.fisSelected THEN
item.Highlight(fromHL, toHL);

END;

c HAP TE R 25 Mouse Operations 171

MacApp Cookbook

BEGIN
fitemList.Each(Hiqhlightitem);

END;

Dragging

Draft 1

Many applications have discrete objects that can be moved around the view. They are often
moved by the user who can drag such objects with the mouse.

For simplicity, this recipe assumes that a mouse press indicates that the user wants to drag an
object or has no meaning. In general, a mouse press may indicate a number of possible actions,
and your program uses a number of criteria to figure out which action the user wants. See the
"Handling Several Types of Mouse Eventsn recipe for an example of integrating different types
of mouse actions.

Step 1 Create a dragger object in DoMouseCommand

1/26189

Implement DoMouseCommand so that it creates a dragger object if the mouse has been clicked
on an object Of the mouse has not been clicked on an object, nothing should be done and
DoMouseCommand should return gNoChanges to indicate that no valid action has occurred.)
The next step discusses dragger objects.

This recipe assumes that the object located under the mouse pointer need not be marked as
selected and any previous selection should not be deselected, a choice of action that is rarely
appropriate but is used here for simplicity because this recipe ignores all selection issues. See
the "Selecting" recipe for a full discussion of selection.

Step 2 Implement the dragger object

2. Implement a dragger object Here is a sample interface of a dragger type:
TYourDraqqer = OBJECT (TCommand);

fYourDocument: TYourDocument;
fYourView: TYourView;

17l MACAPP COOKBOOK

(

(

MacAppCookbook

fDeltaH: INTEGER;

fDeltaV: INTEGER;

Draft 1

PROCEDURE TYourDragger.IDragger(view: TYourView);

FUNCTION TYourDragger.TrackMouse(aTrackPhase: TrackPhase;

VAR anchorPoint,

previousPoint, nextPoint: VPoint;

mouseDidMove: BOOLEAN) : TCommand; OVERRIDE;

PROCEDURE TYourDragger.Doit; OVERRIDE;

PROCEDURE TYourDragger.Undoit; OVERRIDE;

PROCEDURE TYourDragger.Redoit; OVERRIDE;

PROCEDURE TYourDragger.TrackFeedback(anchorPoint, nextPoint: VPoint;

turnitOn, mouseDidMove: BOOLEAN); OVERRIDE;

PROCEDURE TYourDragger.FixSelection;

PROCEDURE TYourDragger.MoveBy(moveit: BOOLEAN);

END;

1/26189

You need to override TrackFeedback because you generally need to give feedback other than
the standard flickering rectangle, which is only appropriate for making certain kinds of
selections If you want to constrain the mouse (for example, to conform to a grid), also override
TrackConstrain. TrackFeedback and TrackMouse are discussed later in this recipe.
TrackConstrain is discussed in the "Tracking the Mouse" recipe.

A dragger object is a type of mouse tracker. See the "Tracking the Mouse" recipe for details on
mouse trackers.

Step 3 Add a dragging .field to your view

Add the following field to your view:
!Dragging: BOOLEAN;

This field is used to determine if the mouse is actually moving. It is used for a number of
optimizations, but is primarily necessary so that TrackMouse can determine when the mouse
has first moved. See the discussion of TrackMouse later in this recipe for an explanation.

In your IYourView method, initialize fDragging to FAL.5E.

c HA p TE R 25 Mouse Operations 173

MacApp Cookbook Draft 1 1/26189

Step 4 Define a command constant for the dragging command

Deftne a command constant for the dragging command. Although dragging is not a menu command, it must
have its own unique constant, such as

cDragCommand - { Use numbers above 1000 for your. application's commands,
Building blocks can use numbers above 500. };

Step 5 Test whether the dragging field IS' TRUE and the item is currently selected

In your TYourView.Draw method, before drawing each item, you may want to test whether
fDragging is TRUE and the item is currently selected. If both conditions are TRUE, you might
not draw the item in Draw. Instead, you may draw it in its current position in TrackFeedback.
(Whether or not you do this depends on what you want the user to see during a dragging
operation.) Similarly, you may want to prevent highlighting in your DoHighlightSelection
method if the item is being dragged.

Step 6 Implement IDragger

Implement IDragger. Note that Niew.fDragging should be set to FALSE here because at the time the
dragger object is created, you cannot assume that dragging will actually occur, only that it is possible. Also,
you ordinarily call !Command to initialize the command. (In some cases, you may call another method
which itself calls !Command.)

Step 7 Implement TrackFeedback

Implement TrackFeedback so that it shows the dragged item or items as they move. The
feedback should, of course, be chosen as appropriate for your application, but to prevent
unnecessary drawing you should gate your feedback by checking whether Niew.fDragging is
TRUE and whether mouseDidMove is TRUE. (The parameter mouseDidMove is passed to your
TrackFeedback method by MacApp. It indicates whether or not the mouse moved since the
last time TrackFeedback was called.)

174 MACAPP COOKBOOK

(

MacApp Cookbook Draft 1 1/26189

Step 8 Add a prepare-to-drag method to the view

Add the following method to the interface of your view type:
PROCEDURE TYourView.PrepareToTrack;

This method prepares the view for dragging. To do so, it should erase any selected items (unless
you don't want your application to do that) and set Niew.fDragging to TRUE. If your view
contains items that might overlap-in which case, when you erase the selected items, you might
also erase unselected items that overlap the selected items-call DrawContents. A sample of
this method is shown in the templates for this recipe.

Step 9 Implement TrackMouse

When aTrackPhase is trackMove, check the value of fYourView.fDragging. If
fYourView.fDragging is FAL5E, this is the first time that TrackMouse has been called in the
trackMove phase, and it is time to prepare for tracking. First, call the view's
DoHighlightSelection(hlOn, hlOff) to remove highlighting from the selection. Then, call the
view's PrepareToTrack method. (See the previous step of this recipe.) Finally, focus on your
view, because PrepareToTrack may have changed the focus. If fYourView.fDragging is TRUE,
you don't have to do anything, unless your application has actions that should be performed at
this time.

When aTrackPhase is trackRelease, if fYourView.fDragging is still FAL5E, you should return
gNoChanges, because the user has done nothing. If fYourView.fDragging is TRUE, it is time to
set up for moving the items that were dragged. (If this drag doesn't change the document, you
can carry out the action of the command here, and then return gNoChanges. This recipe assumes
that a dragging action changes the document) To set up for moving, calculate the change in
position and store those values in fDeltaH and fDeltaV. Finally, reset fYourView.fDragging to
FALSE.

c HA p TE R 25 Mouse Operations 175

MacApp Cookbook Draft 1

Step 10 Implement the Dolt, Undolt, and Redolt methods

If a dragger changes the document, the action of the dragger is not performed in TrackMouse
(although TrackFeedback may make it appear to the user that the action of the dragger has
been carried out); instead, the action is performed by the Dolt method. MacApp calls Dolt
after the mouse button comes up.

1/26/89

You should also implement Undolt and Redolt for your dragger type. Using MoveBy rather than
actually moving the object in Dolt makes implementing Undolt and Redolt easier.The next
step of this recipe includes further discussion of what is necessary to properly undo and redo
this command.

Notice that MoveBy checks all objects and moves any that are selected. The sample assumes
that the objects are marked as selected or not selected. Your application may maintain its
selections differently or may allow only a single selection. See the "Selecting'' recipe for details
on marking selections.

MoveBy as shown in the templates invalidates the original position of the object. The
DrawShapes sample program handles that invalidation differently, and also generally handles
dragging items differently. You may want to examine DrawShapes to get a different
perspective on this operation.

When you undo and redo this command, you must be sure that the selections are set correctly.
Because selections do not change the document, the dragger command is not committed just
because the user changes the selection. Thus the user might change the selection before
choosing Undo. You must therefore have a record of what was selected when the dragger
command was executed, and you must restore the selection when Undo and Redo are chosen.

Implement TY ourDragger.FixSelection so that it restores the selections in effect when the
command was first executed. You can record the old selections in any of the ways that you can
record current selections. The sample in the templates gives a field fWasSelected to every
object, as well as a field fisSelected. The current selection is indicated in flsSelected; the
selection at the time of the command is in fWasSelected. When the command is undone or
redone, flsSelected has its value replaced by fWasSelected.

Have Undo and Redo call FixSelection before calling MoveBy.

Templates

FUNCTION TYourView.DoMouseCommand(VAR theMouse: Point; VAR info: Eventinfo;

VAR hysteresis: Point): TCommand;

176 MACAPP COOKBOOK

(

MacAppCookbook

VAR hititem: Titem;
dragger: TYourDragger;

Draft 1

FUNCTION CheckHit (item: Titem): BOOLEAN;
BEGIN

CheckHit := {test location for hit};
END;

BEGIN
hititem := fYourDocument.fitemList.FirstThat(CheckHit);
IF hititem <> NIL THEN BEGIN

{ You should mark the item as selected
{ Create a dragger command object }
New(dragger);
FailNIL(dragger);
dragger.IDragger(fYourDocument, SELF);
DoMouseCommand := dragger;

END
ELSE

DoMouseCommand ·= gNoChanges;
END;

PROCEDURE TYourView.PrepareToTrack;
PROCEDURE Prepareitem(item: Titem);
VAR r: Rect;
BEGIN

IF item. fisSelected THEN BEGIN
r := item.fExtentRect;
InsetRect (r, -2, -2);
fYourView.InvalidRect(r);

END;
WITH item DO

fWasSelected := fisSelected;
END;

BEGIN
fYourDocument.fitemList.Each(Prepareitem);
fDragging := TRUE;
fYourView.Update;

END;

PROCEDURE TYourDragger.IDragger(ItsDocument: TYourDocument;
itsView: TYourView; shiftKey: BOOLEAN);

BEGIN

1/26/89

Call ICommand to set the command's fView to the view in which tracking
takes place and to set the scroller used for automatic scrolling during
selection. cMoveitem is the command number constant for this command.

c HAP TE R 25 Mouse Operations 177

Mac.App Cookbook Draft 1 1/26189

After calling !Command it is nece~sary to set fCausesChange and fCanUndo

to true, as dragging an object both changes a document and is undoable. }

ICommand(cMoveitem, itsView, itsView.GetScroller(TRUE));

fCausesChange := TRUE;

fCanUndo :- TRUE;

fYourDocument := itsDocument;

END;

FUNCTION TYourDragger.TrackMouse(aTrackPhase: TrackPhase;

VAR anchorPoint, previousPoint, nextPoint: VPoint;

mouseDidMove: BOOLEAN): TCommand;

BEGIN

TrackMouse := SELF;

IF aTrackPhase = trackMove THEN BEGIN

IF NOT fYourView. fDragging THEN BEGIN

fYourView.DoHighlightSelection(hlOn,

fYourView.PrepareToTrack;

{ This is the first move.

hlOff);

IF fYourView. Focus THEN ; { PrepareToTrack changes the Focus }

END;

END

ELSE IF aTrackPhase .. trackRelease THEN BEGIN { Set up for moving the items (s). }

IF fYourView. fDragging THEN BEGIN { Actually did move. }

fDeltaH :• previousPoint .h - anchorPoint .h;

fDel taV : = previous Point. v - anchorPoint. v;

fYourView. fDragging : = FALSE;

END

ELSE

TrackMouse := gNoChanges;

END

END;

PROCEDURE TYourDragger.Doit;

BEGIN

MoveBy(TRUE);

END;

PROCEDURE TYourDragger.Undoit;

BEGIN

FixSelection;

MoveBy(FALSE);

END;

178 MACAPP COOKBOOK

(

MacAppCookbook

PROCEDURE TYourDragger.Redoit;
BEGIN

FixSelection;

MoveBy(TRUE);

END;

Draft 1

PROCEDURE TYourDragger.MoveBy(moveit: BOOLEAN);

PROCEDURE Move Item (item: Titem);

BEGIN
IF item. fisSelected THEN BEGIN

Invalidate the item's old image.
Move the item's definition. }

Invalidate the item's new position.

BEGIN
fYourDocument.fitemList.Each(Moveitem);

END;

PROCEDURE TYourDragger.FixSelection;
PROCEDURE Fixitem(item: Titem);
BEGIN

item. fisSelected := item. fWasSelected;
IF item. fisSelected THEN

END;

BEGIN

{ Invalidate the item in the view. }

1/26189

fYourDocument .Deselect; { This method removes the selection. You should implement
it so that it removes all selections and updates the
view, either by calling DoHighlightSelection(hlOn,hlOff)
or by invalidating the selected areas of the view. }

fYourDocument.fitemList.Each(Fixitem);
END;

Drawing with the mouse

Many applications allow the user to draw using the mouse. This recipe shows how to implement
that operation.

c HAP TE R · 25 Mouse Operations 179

Mac.App Cookbook Draft 1

For simplicity, this recipe assumes that a mouse press indicates the user wants to draw or the
mouse press has no meaning. In general, a mouse press may indicate a number of possible
actions, and your program uses a number of criteria to figure out which action the user wants.
See the "Handling Several Types of Mouse Events" recipe for an example of integrating
different types of mouse actions.

Step 1 Create a sketcher command object in DoMouseCommand

1/26189

When DoMouseCommand detects that a drawing operation has started, it should create a
sketcher object instance, because drawing changes the document. You should create command
object instances in two situations: when the command is undoable and when the command
requires abilities of command objects, such as mouse tracking. The templates give the structure
of DoMouseCommand.
FUNCTION TYourView.DoMouseCommand (VAR theMouse: Point; VAR info: Eventinfo;

VAR hysteresis: Point): TCommand;

VAR sketcher: TYourSketcher;
BEGIN

New (sketcher) ;
FailNil(sketcher);
sketcher.ISketcher(fYourDocument, SELF);
DoMouseCommand : = sketcher;

END;

Step 2 Use the sketcher object to track the mouse

Use a sketcher command object to track the mouse, to provide appropriate feedback as the
mouse moves, and when the mouse button comes up and a valid item has been drawn, to add
the new item to the document. Here is a sample interface for a sketcher type:

TYourSketcher = OBJECT (TCommand);
fYourView: TYourView;
fitem: Titem; (The new item. }

PROCEDURE TYourSketcher.IYourSketcher(document: TYourDocument;

view: TYourView);
FUNCTION TYourSketcher.TrackMouse(aTrackPhase: TrackPhase;

VAR anchorPoint,

180 MACAPP COOKBOOK

(

MacAppCookbook Draft 1

previousPoint, nextPoint: VPoint;
mouseDidMove: BOOLEAN): TCommand; OVERRIDE;

PROCEDURE TYourSketcher.Doit; OVERRIDE;
PROCEDURE TYourSketcher.Undoit; OVERRIDE;
PROCEDURE TYourSketcher.Redoit; OVERRIDE;

END;

Step 3 Override TrackFeedback, if desired

1/26/89

If you want to give feedback other than the standard flickering rectangle (which you will usually
want to do), also override TrackFeedback. If you want to constrain the mouse-to stay in the
bounds of the view, to draw a circle or a square, or to conform to a grid, for example-also
override TrackConstrain. TrackFeedback and TrackConstrain are discussed in the "Tracking the
Mouse" recipe.

PROCEDURE TYourSketcher.ISketcher(ItsDocument: TYourDocument;
itsView: TYourView);

BEGIN
Call ICommand to set the command's fView to the view in which tracking
takes place and to set the scroller used for automatic scrolling during
sketching. cNewitem is the command number constant for this command. After
calling ICommand it is necessary to set fCausesChange and fCanUndo to true,
as dragging an object both changes a document and is undoable.

ICommand(cNewitem, itsView, itsView.GetScroller(TRUE));
fCausesChange := TRUE;
fCanUndo : = TRUE;
fYourDocument := itsDocument;

END;

c HA p TE R 25 Mouse Operations 181

Mar.App Cookbook Draft 1

FUNCTION TYourSketcher.TrackMouse(aTrackPhase: TrackPhase;

VAR anchorPoint, previousPoint, nextPoint: VPoint;
mouseDid.Move: BOOLEAN): TCommand;

VAR anitem: Titem;

BEGIN
TrackMouse :• SELF;

IF aTrackPhase = trackRelease THEN
IF {not ~ legal item} THEN

TrackMouse := gNoChanges

END;

ELSE BEGIN
New (anitem);

fitem := anitem;
You can't use fitem in New because the heap might compact.

{ Extract the information you need from the anchorPoint
and nextPoint and initialize the new item. }

END;

PROCEDURE TYourSketcher. Do It
BEGIN

fYourDocument.fitemList.InsertFirst(fitem);
END;

PROCEDURE TYourSketcher.Undoit;
BEGIN

fYourDocument.fitemList.Delete(fitemList.First);
END;

PROCEDURE TYourSketcher .Redo!t;
BEGIN

fYourDocument.fitemList.InsertFirst(fitem);
END;

Handling several types of mouse events

1/26189

The preceding recipes in this chapter assume that only one type of mouse event is possible. Few
applications are so limited. In general, your aView.DoMouseCommand method must
differentiate between possible types of events and take appropriate action.

182 MACAPP COOKBOOK

MacAppCookbook Draft 1 1/26189

There are two basic ways to differentiate between possible mouse events: based on mode and
based on location. Programs generally use a combination of these methods. For example, the
DrawShapes sample program has two modes: when the arrow pointer is displayed and when a
drawing pointer is displayed. In the arrow pointer mode you can select individual shapes, select
an area, and drag shapes, and the program determines which you want to do basically by where
the mouse button went down.

When one of your application's view.DoMouseCommand methods is called, indicating a mouse­
down event in one of your application's views, the application must determine what kind of
action is beginning and (generally) it must create an appropriate type of command object,
which then tracks the mouse and carries out the action of the command. This recipe generally
covers the needed steps up to the point of creating a command object for the mouse
command. See the individual recipes in this section for details on implementing those
command objects.

1. Implement DoMouseCommand for each view type that needs to respond to a mouse-down
event. DoMouseCommand is a function that returns a TCommand-type object. The
interface for doMouseCommand is

FUNCTION TYourView.DoMouseCommand(VAR theMouse: Point; VAR info: Eventinfo;
VAR hysteresis: Point): TCommand; OVERRIDE;

A sample skeleton for DoMouseCommand is given in the template for this recipe. That
sample is very sketchy because the form of DoMouseCommand depends on what your
particular application does.

2. Your DoMouseCommand method must first determine if the user made a selection or is
indicating some other action.

YourView.DoMouseCommand often creates a mouse command object. There may be
several types of mouse command objects. If the event is handled entirely by
DoMouseCommand (which should be the case only for mouse events that do not change the
document), or if the event does not produce an action, your view's DoMouseCommand method
should return gNoChanges, a global variable of type TCommand that indicates no changes to
the document have occurred. (You can also return gNoChanges later, if it turns out that no
changes have been made. See the discussion of TrackMouse in the "Tracking the Mouse"
recipe.)

Command objects returned through DoMouseCommand are expected to have different
methods than other command objects. The "Tracking the Mouse" recipe explains what is
required of those methods.

c HA P TE R 25 Mouse Operations 183

Mar,App Cookbook Draft 1 1/26/89

FUNCTION TY'ourView.DoMouseCommand(VAR theMouse: Point; VAR info: Eventinfo;

VAR hysteresis: Point): TCommand;

VAR firstMouseCommand: TFirstMouseCommand;

secondMouseCommand: TSecondMouseCommand;

BEGIN

DoMouseCommand := gNoChanges; { in case no action found that changes the document

{ Check for selections here. See "Selections" in this chapter.

IF { the action indicates a firstMouseCommand } THEN BEGIN

New(firstMouseCommand);

FailNIL(firstMouseCommand);

firstMouseCommand.IFirstMouseCommand(SELF, theMouse);

{ Those parameters are only an example. }

DoMouseCommand := firstMouseCommand;

END

ELSE IF { the action indicates a secondMouseCommand } THEN BEGIN

New(secondMouseCommand);

FailNIL(secondMouseCommand);

secondMouseCommand.ISecondMouseCommand(SELF, theMouse);

{ parameters only examples }

DoMouseCommand : = secondMouseCommand;

END;

END;

184 MACAPP COOKBOOK

MacApp Cookbook Draft 1 1/26189

(

(

c HA p TE R 25 Mouse Operations 185

(:,

MacApp Cookbook Draft 1 1/26189

Tracking the mouse when the mouse button-is up

Some applications must occasionally track tl,ie mouse and possibly provide feedback when the
mouse button is up. An example of this occurs in MacDraw, when you draw a polygon: you mark
the end of the first side of the polygon by letting the mouse button up and draw the second
side with the button up. The second side is marked when the mouse button goes down again.

You track the mouse when the mouse button is down with DoMouseCommand and
TrackMouse, as described in the "Tracking the Mouse" recipe. MacApp does not call either of
these methods when the mouse button is up. This recipe describes what you have to do to track
the mouse with the button up.

1. Override DoSetCursor. The interface to DoSetCursor is
FUNCTION TYourView.DoSetCursor(localPoint: Point;

cursorRqn: RgnHandle): BOOLEAN; OVERRIDE;

DoSetCursor for the view that contains the mouse is called repeatedly during idle time, that
is, when the user is doing nothing but moving the mouse. The default version of DoSetCursor
contains only one line of code:

DoSetCursor := FALSE;

This line simply informs MacApp that the pointer should be the arrow pointer. To track the
mouse, you need to add your tracking and feedback functions to this method.

2. Implement DoMouseCommand so it recognizes that you were tracking the mouse while the
mouse button was up and takes appropriate action. You can add a field to your view that
keeps track of this. The interface of DoMouseCommand is

FUNCTION TYourView.DoMouseCommand(VAR theMouse: Point; VAR info: Eventinfo;

VAR hysteresis: Point): TCommand; OVERRIDE;

186 MACAPP COOKBOOK

MacAppCookbook Draft 1 1/26189

(_

Chapter 26 MPW and MacApp

•••No redpes yet•••

(

187

MacApp Cookbook Draft 1

Creating a MakeFile for applications

Creating a MakeFile for libraries

Using MABuild

Building a separate utility library

Using creator types

(MacApp$, 5-3-88)

(MacApp$, 6-1-88)

188 MACAPP COOKBOOK

1/26189

\ ...

MacApp Cookbook Draft 1 1/26189

Chapter 27 Multifinder and Background Operations

•••Ne recipes-yet*~

189

(

MacApp Cookbook Draft 1 1126189

Running in the background

190 MACAPP COOKBOOK

(

MacAppCookbook Draft 1

Creating a background application

Andy Swartz's suggestion; should it be here or in the Application chapter?

Communicating with other processes

***Is this still to far in the future, or do we want to publish any of the following
information, which was found on MacA.ppTech$?***

1/26189

Apple is investigating the proper interface for Macintosh IPC. In the meantime there are several ways to
accomplish the same effect, as follows:

• If one app launches another it can pass info in the AppParmHandle.

• The system heap is fair game for shared memory.

• You *can• use AppleTalk on the same node.

• You can write your own tiny IPC driver that basically does memory copying.

The only thing to definitely avoid is passing pointers to memory across application heaps.

Creating an idle time sorter

Possibly Joost Kemink's recipe from contest

c HA PT E R 27 Multifinder and Background Operations 191

MacApp Cookbook Draft 1

Monitoring events during batch processing

-MacAppTech$ questions; Js it worth a redpe?*"

What method in gApplication should be called regularly during batcli processing to ensure that
other events (such as a buttonDown in the Cancel button) are attended to? Or is I achieve this
my rearranging gTarget?

Joost Kemink's response, and possibly a redpe from contest

1/26/89

If your problem contains a repetition of smaller subproblems, you may want to create an event
handler which you then install in the idle chain. Every time the Doldle method of your event
handler is called, you calculate one of the subproblems, finally resulting in the complete problem
being solved. For example, a bubble sort can be arranged this way. I am working on an example,
which I will send you when finished. Essential is, that you save the state of your computation
from one invocation of Doldle to another.

Depending on the fidleFreq field in your event handler, more or less of the idle time is devoted
to calculating the solution.

Using this technique, you don't have to modify gTarget, and -more important- you don't put the
application in a modal state. It also allows you to do your calculations in the background under
MultiFinder. Cancellation of the task is simply done by removing your event handler from the
idle chain.

Finding out if MultiFinder is running

***Big philosophical debate on MacAppTech$; which way do we jump? Always with the
appropriate caveats, such as these gleaned from the debate•••

Appropriate questions are as follows:

• · Is WaitNextEvent implemented?

• Are the temporary memory calls available?

These questions can be answered by examining The Programmer's Guide to MultiFinder.

192 MACAPP COOKBOOK

MacApp Cookbook Draft 1

Testing for command-period

••*MacAppTech$ contribution to test for command period; could be the start of a
recipe•••

- gMultiFinder is set beforehand using one of several methods to know if waitNextEvent is
implemented. You can always get rid of it and call only getNextEvent.

- A consequence of calling waitNextEvent is that your application knows about MultiFinder
and viceversa, if the rest of the code is well-behaved and the Background bit is on in the SIZE
resource, then your application will fully interact with MF.

1/26/89

- It's not really needed to call ObeyEvent. If you do, be very careful to filter command-keys and
Menu-Clicks (as I do here, with over-kill), otherwise you may call your process from within itself,
and I don't think anybody writes reentrant MacApp code!

- This piece of code was taken out of an actual application.

gMultiFinder: boolean; {TRUE if the system supports multif inder}
btemp:boolean;

aEvent:EventRecord

aCommand:TCommand;

ch:char;

if gMultiFinder then l:itemp:= waitnextevent (everyevent, aEvent, 1, NIL)

else btemp:= getnextevent(everyevent,aEvent);
if btemp then

begin

if (aEvent.what=keyDown) or (aEvent.what=autoKey) then
begin

ch:=char(loWord(BitAnd(aEvent.message,charCodeMask)));

if ch='.' then

begin

{Clean Up and Exit the loop}

end;

end

else if (aEvent.what<>mouseDown) then

begin

gApplication.ObeyEvent(@aEvent,aCommand);

end;

c HA PT E R 27 Multiflnder and Background Operations 193

MacApp Cookbook Draft 1 1/26189

end;

194 MACAPP COOKBOOK

MacApp Cookbook Draft 1 1/26189

(

Chapter 28 Performance Tips

"*No recipes yet"*

(

195

C'
/

MacApp Cookbook Draft 1 1/26189

Optimizing compfilng

Optimizing linking

196 MACAPP COOKBOOK

(

(

MacApp Cookbook Draft 1 1/26/89

Chapter 29 Printing

The printing unit, UPrinting, provides standard printing capability that is sufficient for
most applications. MacApp handles printing through objects called print handlers.

197

MacApp Cookbook Draft 1 1/26189

Enabling printing

1. You need to include UPrinting in the USES statement at the beginning of your unit.

2. Define a new local variable, aStdHandler, of the type TStdPrintHandler, for your
TY ourDocument.DoMak:e Views method. (Alternatively, you can define this variable in
TY ourView.IY ourView.)

3. Insert the lines shown in the template at the end of TY ourDocument.DoMake Views. (You
can also do this in TYourView.IYourView.)

4. Insert the following line in your main program before calling application.Run:

InitPrinting;

That initializes UPrinting. ·

Template

{ The next two lines make the view printable. }

New(aStdHandler);

FailNIL(aStdHandler);

aStdHandler. IStdPrintHandler (SELF, a View, FALSE, TRUE, TRUE) ;

Standard print handling

MacApp provides two standard print handler classes: TPrintHandler is a "null" print handler that
isn't capable of printing, but simply defmes the minimal print handler interface.
TStdPrintHandler fully implements standard Macintosh printing, as well as handling printing­
related issues such as page setup and screen feedback.

198 MACAPP COOKBOOK

(Steve, should we change courier
font to normal font in the

following example?)

(

(

('

,./

MacApp Cookbook Draft 1

The print handlers cooperate with views to accomplish the printing. The, print handler deals
with the actual printing, while the view performs the actual page drawing. In most cases, you
will want to use an instance of a TStdP rintHandler objec~ in conjunction with your view,
to produce printed output.

Note: Custom printing is usually performed by overriding TStdPrintHandler methods,
although you could write your own print handler.

1/26189

MacApp manipulates several rectangles to determine the printable area of a page. These rectangles are
stored in the handler field fPageAreas, and are as follows:
the Ink A rectangle that defines the printable area of a page. The top-left coordinate is

always (0,0).

thePaper A rectangle that defines the entire physical page, in the coordinates of theink.
The physical page is usually larger than the printable area, so the top-left coordinate of
thePage is usually negative, and the bottom-right coordinate is greater than that of the Ink.

theMargins An offset rectangle that is used to determine the printing area of the page. The
coordinates of this rectangle specify how far the Interior is inset from thePaper.

the Interior A rectangle that defines the actual printing area; that is, the area where the view
can actually be drawn. The thelnteriorrectangle is computed by subtracting theMargins
from thePaper. the Interior can never be greater than theink.

MacApp automatically initializes the fPageAreas .theMargins of the TStdPrintHandler object to
1" (J2 Quickdraw pixels). This value is stored in the global variable gStdPageMargins. The relationship
of these rectangles to the printed page is shown in the following figure.

CHAPTER 29 Printing 199

Mar.App Cookbook

the-Paper

thelnk _

the Interior

Draft 1 1126189

Standard page rectangles.
Note that the value of the margin rectangle is not a real rectangle. This is because theMargins is an offset
rectangle, so that theinterior := thePaper - theMargins. Also, remember that theinterior can never be larger
than theink, so theMargins should never be less than the difference between thePaper and thelnk.
If you are changing the values of fPageAreas, you might wish to use the Inspector to check how the
rectangles relate. If TStdPrintHandler. fShowBreaks is TRUE, then MacApp will draw a two-pixel
gray line along the page breaks for your view (on-screen). Also, if gDebugP rinting is TRUE, then
TStdPrintHandler will also draw rectangles specified by the Ink and the Interior when printing.

Changing the margins

The margins for a printed page are by default in MacApp set to 1 inch or 72 pixels. In the
Uprinting uni~ MacApp provides an InstallMargins method in the TStdPrintHandler class. That
method provides parameters you can use to change the printing area.

If you want to print a view that uses margins other than the default, take the following steps:
1. Call the InstallMargins method of the TStdPrintHandler object InstallMargins

takes two parameters: newMargins is a rectangle specifying the new margins, and
areMinimalMargins is a boolean value stating whether custom or minimum margins should
be used.

200 MACAPP COOKBOOK

(

(

MacAppCookbook Draft 1 1/26189

2. Either tell MacApp to install the minimal margin possible for the printing device, or specify
the new margins, as follows:

If you want to install the minimal margin possible for the printing device, set
areMinimalMargins to TRUE. This technique allows your application to be as device­
independent as possible. The newMargins parameter is ignored in this case.

If you want to set the margins to a value other than the default or minimum settings, set
areMinimalMargins to FALSE and set the newMargins parameter to the value of the
desired rectangle. MacApp then sets the fPageAreas.theMargins field of the Std.PrintHandler
equal to that rectangle.

3. Call the DoPagination method of the view that is printing in order to recalculate the printable
area on the page, and therefore recalculate the page breaks in the view.

The easiest place to change the margin settings is when the view and its print handler are created, usually in
the TDocument. DoMakeViews method. The following code fragment is an example of how this might
be implemented:
{--}
PROCEDURE TMyDocument. DoMakeViews (forPrinting: BOOLEAN); OVERRIDE;

VAR
aWindow
myView

aHandler

TWindow;

TMyView;

TStdPrintHandler;

marginRect Rect;

BEGIN

IF forPrinting THEN

{ Don't need window when printing from Finder }
myView : = TMyView (DoCreateViews (SELF, NIL, kMyViewID))

ELSE
BEGIN

aWindow := NewTemplateWindow(kMyWindowID, SELF);

myView := TMyView (aWindow.FindSubView (•mine•));
END;

New(aHandler); create a StdPrintHandler

FailNIL(aHandler);

aHandler.IStdPrintHandler(SELF, { its document
myView, { its view }

FALSE, { does not have square dots

CHAPTER 29 Printing 201

MacApp Cookbook Draft 1

TRUE,
TRUE);

horizontal page size is fixed
vertical page size is fixed

marginRect.bottom := -31;
marginRect. right : .. -30;
marginRect.top := 31;
marginRect.left :• 30;

{ (31, 30)/(-31, -30) is the same }
{ as setting minimal margins

for printing on a LaserWriter }
or ImageWriter

aHandler.InstallMargins(marginRect, TRUE); set minimal margins

aMyView.DoPagination;
END;

{ force recalc of page print area }

{--}

1/26189

In this example, the value of marginRect is arbitrary. Since areMinimalMargins was set to TRUE in the call to
InstallMargins, the value of marginRect is ignored.

202 MACAPP COOKBOOK

,/

MacAppCookbook

Chapter 30

Draft 1 1/26189

Resources

•*No recipes yet"•

Short definition of resources and MacApp's relationship to Toolbox Resource
Manager. X-Ref to menus, views by template, etc., and ViewEdit manual if the
schedules fall into place.

203

(

(

MacApp Cookbook Draft 1 1/26189

Chapter 31 Scrolling

•••Definition of scrolling•••

MacApp handles most of the job of scrolling for you, including creating the scroll bars,
responding to scrolling events, and ensuring that your view draws its contents in the
right place. Your part of the job is to implement a new, invisible, view to the view
hierarchy between the window and the view that you want to scroll .

To handle scrolling, you can:

• Create a scroller
• etc. (•••on through all the recipes provided by the chapter***)

205

Mac.App Cookbook Draft 1 1126189

Scroller views

A scroller view is a subclass of '!View with a few extra scrolling-related fields and methods. One
of these fields is ff ranslation. In this field the scroller stores a value specifying how much its
subviews should be scrolled. Thus, by changing the coordinate translation of a scroller, MacApp
in effect scrolls all of the views it contains.

When a window that contains a scrolling view needs to be redrawn, MacApp first focuses on the
window, and then sends the window the Draw message. In turn, the window focuses on the
scroller, and then sends the scroller the Draw message. Since scrollers are invisible, nothing is
drawn.

The scroller then focuses on its subview. However, the scroller actually doesn't actually focus
directly on its subview. Instead, it focuses on the location of its subview, offset by the value in
its ffranslation field. Only then does the scroller tell its subview to Draw.

Drawing is still clipped to the superview, so even if the drawing would have been relocated
outside the boundaries of the scroller, only that part of the drawing inside those boundaries
would actually be drawn.

Creating a scroller

•••Material needs extensive work to fit into proposed format"*

The NewTemplateWindow routine, called in your document's DoMakeViews method, creates
whatever view instance hierarchy is specified by the corresponding view template. Therefore, in
order to add a scroller to the view instance hierarchy in your application, all you need to do is
add a scroller to the view template in your rez file.

This recipe shows you how to implement scrolling in IconEdit. All you need to do is add a
scroller view to the view hierarchy specified in your view templates. MacApp then uses the
scroller view to provide scrolling to the user on command.

2o6 MACAPP COOKBOOK

/

(

(

MacApp Cookbook Draft 1 1/26189

Step 1 Add a scroller view to your view template hierarchy.

Following material needs to be
broken up

When you add a scroller view to your view hierarchy, the window view needs to be large enough
to store the initial view and scrollbars. MacApp provides a constant kSBarSizeMinusl to make
this sizing easier.

Here is the standard form for a scroller template:
/* fields for all view objects */

'WIND• , /* ID of the view• s superview *I
'SCLR', /* ID of this particular view */

{0, O}, /* location of this view in superview */
{kheight, kwidth}, /* size of this view in pixels */
sizeRelSuperView,
sizeRelSuperView,

shown, enabled,

Scroller

/* horizontal size determiner */

I* vertical size determiner */

/* whether view is shown and enabled */
/* what type of view this is--a scroller */

/* fields specially for scrollers */
{ "TScroller", /* class of this scroller--TScroller

vertScrollBar, /* is there a vertical scroll bar
horzScrollBar,

0,0,

16, 16,

vertConstrain,

horzConstrain,
{0, 0, 0, 0} };

/* is there a horizontal scroll bar

/* initial value of fTranslation

/* how big can translation movement be?

/* is scrolling vertically constrained?

/* is it horizontally constrained?

/* I forgot this one ???

*I
*/

*/

*/

*/
*/
*/

*/

Notice that this view template has the same format as other view templates-the first nine
fields apply to all view objects. The ninth field specifies what pattjcular class of view object is
being described further-in this case, a Scroller. The next fields are all contained in a pair of
curly braces. These fields further describe the scroller.

In the above example, the scroller has the view ID 'SCLR'. It is a subview of the view with ID
'WIND'. It is located at point {0,0} in that window, and its initial size is determined by the
constants kheight and kwidth.

CHAPTER 31 Scrolling 207

MacApp Cookbook Draft 1 1/26189

The next two fields are the size determiners. These determine how MacApp maintains the fSize
field of this view. If these are sizeRelSuperView, as they are in this case, then MacApp will
automatically resize the scroller as its superview is resized. This is norrnally what you want for
scrollers. (In the case of the TiconEditView from last chapter, the size determiners were
sizeVariable. This meant MacApp always set the fSize field to be the result of the CalcMinSize
method. This is usually what you want for view that can change size independently of their
superview, like IconEditViews will be able to.)

The next two fields determine whether the view is initially shown and enabled. For all the views
encountered so far, this has been the case. The next field, the ninth field, tells MacApp which
type of view template is coming up. In this case, it is a Scroller. Therefore, MacApp knows that
the next set of fields all deal specifically with a scroller view. In previou5 view templates, you've
seen Window and View. Windows have even more fields than scrollers, while views have
considerably fewer.

The next ten fields all appear within curly braces, and apply to scrollers in particular. The first is
the class name, in this case "TScroller". You could put the name of any subclass ofTScroller here,
and MacApp would still fill in the inherited fields correctly. Of course, you would have to fill in
any new fields in an IR.es method. However, since the generic TScroller class does enough
anyway, you can just put TScroller here.

The next two fields allow you to specify whether or not you want the scroller to have associated
vertical and horizontal scrollbars. In the above example, both have been requested. When this
scroller is created (by NewTemplateWindow, for example), it will automatically create two
scrollbars, and they will be fully functional-you don't have to do anything more than specify
that you want them in this view template.

The next two values specify how much the scroller should be scrolled initially. In this case the
value is (0,0), which means that the scroller is initially set to not be scrolled at all-the subviews
will all be in their initial position. The next two values specify the scroll unit-the minimum
number of pixels that the subviews are scrolled by at once. In this case the value (for both the
horizontal and vertical directions) is 16. In other words, whenever the user is scrolling the view
in the window, it will actually make many little jumps of 16 pixels each time.

The last three fields I don't know.????? ???

Here are the new values for constants in your view template hierarchy, followed by the hierarchy
itself.
I* the view stays the same initial size */

!define kiconViewHeiqht 32 * 7 + 10 /* 7 times actual size, 5 pixel
borders */

208 MACAPPCOOKBOOK

(

Mar.App Cookbook Draft 1 1/26/89

fdefine kiconViewWidth 32 * 7 + 10 /* 7 times actual size, 5 pixel

borders */
/* the window must be large enough for the view and scrollbars */
#define kiconWindowHeight kiconViewHeight + kSBarSizeMinusl

fdefine kiconWindowWidth kiconViewWidth + kSBarSizeMinusl

/* the scroller is the same size as the window, less the scrollbars */
#define kScrollerHeight kiconWindowHeight - kSBarSizeMinusl

#define kScrollerWidth kiconWindowWidth - kSBarSizeMinusl

/* ============================= Icon Window =============================== */

resource •view• (kiconWindowid, purgeable)

} ;

root, 'WIND',

sizeVariable,

Window

{ 50, 20 } , { kiconWindowHeight, kiconWindowWidth } ,

sizeVariable, shown, enabled,

"TWindow", zoomDocProc, goAwayBox, resizable, mode less,

ignoreFirstClick, freeOnClosing, disposeOnFree, closesDocument,

openWithDocument, dontAdapt To Screen, stagger, f orceOnScreen,

dontCenter, 'ICON', "" } ;

/* here is the new template--for the scroller. *I
'WIND ' , ' SCLR' , { 0, 0 } ,

kiconWindowHeight-kSBarSizeMinusl, kiconWindowWidth-kSBarSizeMinusl },

sizeRelSuperView, sizeRelSuperView, shown, enabled,

Scroller { "TScroller", vertScrollBar, horzScrollBar, O, O, 16, 16,

vertConstrain, horzConstrain, { O, O, O, O } } ;

'SCLR'; IncludeViews { kiconEditViewid }

resource 'view• (kiconEditViewid, purgeable)

};

root, 'ICON' ,
sizeVariable,

View

{ O, O } , { kiconViewHeight, kiconViewWidth } ,
sizeVariable, shown, enabled,

"TiconEditView"}

Notice that the 'SCLR' scroller view is a subview of the 'WIND' view. Also, the 'ICON' view is now a subview
of the 'SCLR' view.
I* the view stays the same initial size */

CHAPTER 31 Scrolling 209

MacApp Cookbook Draft 1

#define kiconViewHeight 32 * 7 + 10 I* 7 times actual
borders *I
#define kiconViewWidth 32 * 7 + 10 I* 7 times actual
borders */

/* the window must be large enough for the view and ·scrollbars */
#define kiconWindowHeight kiconViewHeight + kSBarSizeMinusl
#define kiconWindowWidth kiconViewWidth + kSBarSizeMinusl

size,

size,

/* the scroller is the same size as the window, less the scrollbars */
tdefine kScrollerHeight kiconWindowHeight - kSBarSizeMinusl
#define kScrollerWidth kiconWindowWidth - kSBarSizeMinusl

1/26189

5 pixel

5 pixel

/* ===========================-~ Icon Window =============================== *I

resource •view• (kiconWindowid, purgeable)

};

root, 'WIND',
sizeVariable,
Window

{ SO, 20 }, { kiconWindowHeight, kiconWindowWidth },
sizeVariable, shown, enabled,

{ "TWindow", zoomDocProc, goAwayBox, re sizable, modeless,
ignoreFirstClick, freeOnClosing, disposeOnFree, closesDocument,
openWithDocument, dontAdaptToScreen, stagger, forceOnScreen,

dontCenter, 'ICON' , "" } ;

/* here is the new template--for the scroller. */
'WIND' , ' SCLR' , { 0, 0 } ,

kiconWindowHeight-kSBarSizeMinusl, kiconWindowWidth-kSBarSizeMinusl },
sizeRelSuperView, sizeRelSuperView, shown, enabled,
Scroller { "TScroller", vertScrollBar, horzScrollBar, 0, 0, 16, 16,

vertConstrain, horzConstrain, { O, O, O, O } } ;

'SCLR', IncludeViews { kiconEditViewid }

resource 'view• (kiconEditViewid, purgeable)

};

root, ' ICON' ,
sizeVariable,
View

{ 0, O } , { kiconViewHeight, kiconViewWidth } ,
sizeVariable, shown, enabled,

"TiconView"}

210 MACAPP COOKBOOK

/

(

(

Mac.App Cookbook Draft 1 1/26189

/* the icon resource *I

/* the menu resources *I

Notice that the view hierarchy is split into two resources. The first resource includes the window and the
scroller, and also includes (through an IncludeViews directive) the icon view. The other resource includes
only the icon view. The reason for dividing the hierarchy into two resources is explained in the printing
chapter ???.

Handling scrolling in lists

(Deb Orton's response to a question on MacAppTech$)

It sounds like the sizeDeterminer for your TextListView is set incorrectly. This is a field of
TView used to determine how much information needs to be passed between views and sub­
views with regard to size changes. Your scroller view should probably be "sizeFixed" for both
horizontal and vertical and your TTextListView (which should be a sub-view of the scroller view)
should be "sizeSuperView" (or "sizeRelSuperView") so that when rows or columns are added to
the view, the scroller will respond properly.

... Recipe needed?•••

CHAPTER 31 Scrolling 211

MacApp Cookbook Draft 1 1/26189

(

Chapter 32 Sound

No recipes yet

MacApp's relationship to Toolbox Sound Manager

(

213

(

/

(

(

()

Mar.App Cookbook Draft 1 1/26/89

Chapter 33 Text Editing

The text-editing uni~ UTEView, implements more than the text-editing features of the
toolbox TextEdit package. Using this unit, you can have simple text editing of series as
long as 32,767 characters. TextEdit capabilities include the following:

• inserting new text

• Deleting characters that are erased with backspacing

• translating mouse activity into text selection

• implementing the Cut, Copy, Clear and Paste commands and Clipboard support

• ability to undo typing and the Cu~ Copy, Clear and Paste commands

See the "TextEdit "chapter of Inside Macintosh for details of TextEdit's actions.

This recipe shows essentially how to implement a limited version of the DemoText sample program. You
may want to build and run that program to get a better idea of what UTEView can do for you.
1. Include UTEView in the USES statement at the beginning of your unit.
2. As with any application, you must create your own descendant of TApplication and override
DoMakeDocument for that type. Here is a sample interface:

TYourApplication = OBJECT(TApplication)

FUNCT10N TYourApp.DoMakeDocument(itsCmdNumber: CmdNumber): TDocument;
OVERRIDE;

END;
The implementation of DoMakeDocument is similar to any DoMakeDocument method. A sample

is in the template for this recipe.
3. Create your own document type. It must have certain fields to hook into TextEdit. Here is a
sample interface:

TiextDocument = OBJECT(TDocument)
ff ext: Handle; {handle to the actual text belonging to the document}
ffEView: TIEView; {the TEView object that manages the text}
PROCEDURE TTextDocument.ITextDocument;

215

MacApp Cookbook Draft 1

PROCEDURE TTextDocument.Free; OVERRIDE;
PROCEDURE TTe:xtDocument.FreeData; OVERRIDE;
PROCEDURE TTe:xtDocument.DoNeedDiskSpace(V AR dataForkBytes,

rsrcForkBytes: LONGINI'); OVERRIDE;
PROCEDURE TTextDocument.DoRead(aRefNum: INTEGER;

1/26189

rsrcExists, forPrinting: BOOLEAN); OVERRIDE;
PROCEDURE TTextDocument.DoWrite(aRefNum: INTEGER; rnakingCopy: BOOLEAN);

OVERRIDE;

END;

PROCEDURE TTe:xtDocument.DoMakeViews(forPrinting: BOOLEAN); OVERRIDE;
PROCEDURE TTextDocument.DoMakeWindows; OVERRIDE;

The implementation of these methods is discussed in the rest of this recipe.
4. Create a new handle for the text with the !Document method. You do that with the MPW Pascal
function NewHandle. At this time, ffEView, which will later hold a reference to the mView object that
handles the text, is set to NIL.
5. Provide a FreeData method to get rid of the document's data when the document is reinitialized.
You can do that by just setting the handle size
to 0.
6.
7.

Provide a Free method. Call DisposHandle(ff e:xt) and then call INHERITED Free.
Implement DoMake Views so that it makes a mview object.
The view object is central to a UTEView application, because the text-edit view is what handles

the text by communicating with the toolbox TextEdit package. The method's implementation in the
templates is self-explanatory.

Notice that DoMakeViews creates a print handler and thus can be printed. (UPrinting must also be
in a ·usES statement for printing to work. See the "Using UPrinting" recipe in this chapter.)
8. Implement DoMakeWindows. The implementation is shown in the template.
9. Implement DoNeedDiskSpace, DoRead, and DoWrite so that you can save and restore
documents. See the sample implementations in the template. Notice the failure handler used, HdlDoRead.
See the "Failure Handling" recipe for more information .
. c4.Templates
FUNCTION 1YourApplication.DoMakeDocument(itsCmdNumber: CmdNumber): TDocument;
VAR aTextDocument: TTextDocument;
BEGIN

New(aTextDocument);
FailNIL(aTextDocument);
aTextDocument.ITextDocument;
DoMakeDocument :• aTextDocument;

216 MACAPP COOKBOOK

(

(

MacApp Cookbook Draft 1

END;

PROCEDURE TiextDocument.ITextDocument;
BEGIN

END;

ff ext :• NIL;
IDocument(kFileType, kSignature, kUsesDataFork, NOT kUsesRsrcFork,

NOT kDataOpen, NOT kRsrcOpen);
ff ext := NewPerrnHandle(O);
FailNIL(frext);
frEView :== NIL;

PROCEDURE TTextDocument.Free; OVERRIDE;
BEGIN

END;

IF frext <>NIL THEN
DisposHandle(frext);

INHERITED Free;

PROCEDURE TTextDocument.FreeData; OVERRIDE;
BEGIN

SetHandleSize(frext, O);
END;

PROCEDURE TiextDocument.DoMakeViews(forPrinting: BOOLEAN); OVERRIDE;
VAR a Window: TWindow;

aHandler: TStdPrintHandler;
aTEView; TTEView;

BEGIN
aWindow :• NewTemplateWindow(kWindowRstcID, SELF);

aTEView :• TTEView(aWindow.FindSubView('TEVW');
frEView :• aTEView;
New(aStdHandler);
FailNIL(aStdHandler);
aStdHandler.IStdPrintHandler(SELF, aTEView, FALSE, TRUE, TRUE);

1/26/89

CH APTER 33 Text Editing 217

MacApp Cookbook Draft 1 1/26189

ITEView .StufIText(IText); { Put in the text. }
END;

PROCEDURE TTextDocument.DoNeedDiskSpace(VAR dataForkBytes, rsrcForkBytes: LONGINT);
BEGIN

END;

INHERITED DoNeedDiskSpace(dataForkBytes, rsrcForkBytes);
dataForkBytes :• dataForkBytes + GetHandleSize(IText);

PROCEDURE TTextDocument.DoRead(aRefNum: INTEGER; rsrcExists, forPrinting: BOOLEAN);
VAR numChars: LONG INT;

fi: Faillnfo;
PROCEDURE HdlDoRead(error: INTEGER; message: LONGINT);
BEGIN

SetHandleSize(IText, O);
Failure(error, message);

END;
BEGIN

END;

CatchFailures(fi, HdlDoRead);
FailOSErr(GetEOF(aRefNum, numChars));
SetHandleSize(ff ext, numChars);
FailMemError;
FailOSErr(FSRead(aRefNum, numChars, ff extA));
Success(fi);

218 MACAPP COOKBOOK

(

MacApp Cookbook Draft 1

PROCEDURE TiextDocument.DoWrite(aRefNum: INTEGER; makingCopy: BOOLEAN);
VAR numChars: LONG INT;
BEGIN

END;

numChars := GetHandleSize(ff ext);
FailOSErr(FSWrite(aRefNum, numChars, ITextA));

Creating a TextEdit view by procedure
1. Obtain handle for the text
2. Fill in parameters for TextEdit records
3. Associate TextEdit records with documents
Creating a TextEdit view by template
1. Register the type by calling InitUTEView
Displaying and manipulating text
Assigning text attributes
(Fonts, text colors, etc. Also relationship with Macintosh Font Manager)

1/26/89

c HA p TE R 33 Text Editing 219

MacApp Cookbook Draft 1 1/26189

(

Chapter 34. Toolbox and MacApp

...No recipes yet•••

MacA.pp's relationship to Toolbox; e.g. MacA.pp takes care of initialization

(

221

(

MacAppCookbook Draft 1 1/26189

Chapter 35 Undo

To undo, in the Macintosh world, is to reverse the effects of a command that
somehow changes a document. An important part of the Macintosh user interface, you
should implement an Undo menu command for any user action that changes the
document. In other words, it is not usually desirable to implement Undo for actions like
scrolling or selections that do not actually change the data, but you should implement
Undo for actions like adding or deleting objects from the document's data set.

To use MacApp to implement Undo, you will create a command object that contains at
least Dolt, Undolt, and Redolt methods. MacApp then automatically enables the
Undo menu command when all of the following conditions are true:

• A command object has had its Dolt method executed

• The fCanUndo field of that command object is set to TRUE

• The command object has not been superceded by another command object.
(MacApp cannot tell if the command object actually has an implemented Undolt or
Redolt method)

As long as you return gNoChanges from DoMenuCommand and from TrackMouse when
the track phase is trackRelease, the Undo command remains enabled for the last
undoable command. When a different type of command object is returned, MacApp
calls command.Commit for the previous command object (unless that command was
undone and not redone) and enables or disables Undo depending on whether the new
command object can be undone. If, however, the new command object has both
fCanUndo and fChangesDocument equal to F AI.SE, MacApp does not commit the
previous command. Instead, it simply calls the Dolt method of the new command.

223

MacApp Cookbook Draft 1

Implementing undoable menu commands

The Undo command is handled by the current command object

If the command is simple, you normally change the document's data with Dolt, Undolt, and
Redolt, and these methods invalidate any affected portions of the view or views.

1/26189

who does the invalidation, MacApp
or the application programmer?

If the command has results that are too complicated to undo directly, Dolt and Redolt can
apply a filter that makes the view appear as if the data had actually been changed, but do not
actually change the data. Undolt simply removes the filter. For more information on filtering,
see "Creating Filtered Commands" later in this chapter.

Run-time summary of Implementing Undo

When the command is initially executed, MacApp calls the command object's Dolt method.
When the user chooses Undo the ft.rat time (or any odd number of times), MacApp calls the
command object's Undolt method. When Undo is chosen a second time (or any even number of
times), MacApp calls the command object's Redolt method. The user can thus choose Undo,
Redo, Undo, Redo indefinitely.

Figure 15-X provides a summary of MacApp's actions at runtime when the Undo capability is
implemented.

• Figure X-1 MacApp's actions in relationship to this recipe

Overview of your responsibilltles

The actions you must take, the reasons you must take those actions, and what MacApp can
provide to help you take those actions are summarized in Table 15-X. Each of the steps is
explained in detail in the recipes that follow.

224 MACAPP COOKBOOK

MacApp Cookbook Draft 1 1/26189

This section also assumes that you already know the techniques for implementing simple menu
commands. For more information, see Chapter X, "Menus."

• Table X-1 Overview: Undoing

Step Your action: Because:

1. Define a command object as a subclass of
TCommand.

2. Return that command object in response to a
menu command.

3. Override the Dolt method for the command
object.

The TCommand class provides •••what relevant
abilities?

MacApp calls this method whenever the application
creates a new objec~ and the default
TApplication.DoMakeDocuments method is empty.

MacApp calls this method whenever the appropriate
command object is returned, and the default
TCommand.Dolt method is empty.

4. Override the Undolt method for the command MacApp calls this method whenever the user chooses
object. the Undo menu item, and the default

TCommand.Undoit method is empty.

5. Override the Redolt method for the command MacApp calls this method whenever the user chooses
object. the Redo menu item, and the default

TCommand.Redolt method is empty.

Step 1 Define and initialize a command object as a subclass of TCommand

The TCommand class is used by MacApp to embody undoable commands, as well as commands
that require mouse-tracking. Among others, TCommand defines three methods, Dolt, Undoit,
and Redolt, all of which must be overridden to implement an undoable command.

Try not to allocate any memory in your IYourCommand method. There is nothing actually wrong
with this, but since the previous command has not yet been committed and freed, and the
Undo Clipboard might still be around, it's more likely to fail. If you allocate your memory in
your Dolt method, more space will be available.

CHAPTEr 35 Undo 225

MacApp Cookbook Draft 1 1/26/89

;:-·- ·.,

"v"-'"
Step 2 Return that command object in response to ·a menu command

How is this done?

Step 3 Override the Dolt method

When you return a command object when executing a command, MacApp calls command.Dolt
using the command object you return. You then override TCommand.Doit to execute your
comm.and.

Step 4 Override the Undolt method

What else can be said that is general
enough and not tied to a specific

example?

MacApp calls the Undolt method for the command object if the user chooses the Undo menu
command.

Step 5 Override the Redolt method

Redolt is called if the user chooses the Redo menu command.

226 MACAPP COOKBOOK

What else can be said that is gener'ar1

enough and not tied to a specific
example?

What else can be said that is general
enough and not tied to a specific

example?

(

MacAppCookbook Draft 1 1/26/89

Creating filtered commands

.i.commands: undoable;.i.commands: filtered;.i.commands: hard-to-undo;

(All three methods must still invalidate the changed parts of the view. When a filter is applied, it
is usually implemented with a flag that indicates a filtering method should be called from the
drawing methods, which are themselves called during the update cycle.) To change the
document's data, override TCommand.Commit so that Commit changes the data. Commit is
called before the command is freed, usually just before another command object is created or
when the document is saved. (Note that Commit is not called if the command was in undo
phase.)

With commands that make large or complex changes to a document, it may be inefficient to
actually make the changes when you may have to undo them later. Instead, you may apply a
filter to the view. Conceptually, a filter makes the view appear as if the data has actually
changed, when in reality the data set remains as it was. That way, if the user chooses Undo you
simply remove the filter, and if the user chooses Redo you apply the filter again. You don't
actually change the data (commit the command) until the command can no longer be undone.

Step 1 Record which items in the document's data set were changed by the
command

If the items are separate objects, this is usually done with a Boolean flag in each object,
although some applications maintain a separate list of changed items, probably as part of the
view or in the command object. In addition, you need a flag that tells whether or not the
command is currently in effect.

Step 2 Mark the changed items and invalidate the images of the items

In Dolt, mark the changed items and set the flag indicating that the changes are in effect. Then
invalidate the images of the changed items in the view. In the Undolt and Redolt methods, set
the flag that indicates whether or not the command is in effect and invalidate the items'
images.

CHAPTEr 35 Undo 2T'/

•••need example***

MacApp Cookbook Draft 1 1/26189

Step 3 Check the changed items and alter the way the data is displayed

In the Draw and DoHighlightSelection methods, check the flags (or list of changed items) and
appropriately alter the way the data is displayed. It is easiest to see how this is done if the
command deletes selected items. In that case, you can simply not draw any items that were
selected when the command was initially executed. In more complex cases, you may call a
separate drawing method, possibly part of the command object, that draws the changed items.

Step 4 Make the actual changes in the Commit method

In Commit, make the actual changes to your document's data set. In the example of deleting
selected items, you can actually delete the corresponding objects.

If your command object overrides the Commit method, it is vital that it not cause a Failure.
MacApp must call the Commit method of the most recent command (if it has not been undone)
in order to save the document or quit the application; if Commit fails, your user will be really
stuck, unable even to exit the application. The MacApp command architecture assumes that by
the time Commit is called, the command was successful. There are three ways of dealing with
this problem, as follows:

• The first and best way is to set up your data structures in such a way that your Commit
method doesn't need to allocate any memory (or increase net memory use).

• Preallocate the memory which your command needs to Commit in your Dolt method. Then,
when Commit is called, free this memory and proceed.

• Allocate the memory you need to Commit from the temporary memory pool instead of the
permanent memory pool. Do this only if your Commit method's memory use has an upper
bound, and if the memory will be disposed of by the end of the Commit method. If you use
this technique, you must make sure that your temporary memory reserve is big enough to
accommodate this memory use (you can use a mem! resource to do this).

228 MACAPP COOKBOOK

•••need example***

(

MacApp Cookbook Draft 1 1/26189

For an example of how subtle these considerations can be, look at the Paste command in the
DrawShapes sample application, whose Commit method can actually fail under certain
circumstances. The Commit method moves the shapes which have been pasted from the list of
"virtual" shapes associated with the command onto the actual list of shapes for the document.
It does this by repeatedly deleting a shape from the virtual list, then inserting it into the actual
list. Although this seems safe because it does not cause net memory usage to increase, it can
still fail, because it may not be possible to grow the actual list's handle by four bytes even
though another handle has just shrunk by four bytes and the heap may be completely
unfragmented. This is just a consequence of the way the Macintosh Memory Manager works.

Two possible solutions to this problem: grow the actual list in the Dolt method so that the
memory is already allocated, or perform the transfer of shapes with the permanent allocation
flag off (currently this is not possible without overriding Tiist). Note that this latter option is
safe because net memory utilization is not increasing; by allowing the Commit method to
briefly eat into temporary space, we are just giving the Memory Manager a little more "breathing
room" in which to rearrange the heap.

You should also make sure that your Undolt and Redolt methods can't fail either. A less
desirable alternative is to detect in your IMyCommand or Dolt method that Undo won't work
and put up an alert that the command will not be undoable. Do this before your command
makes any changes, and give the user a chance to cancel the command.

If the user says OK, remember to set fCanUndo to FALSE in your command so Undo will be
disabled. If the user says Cancel, you can cause your command to fail without putting up an
error message by calling Failure(O, 0). MacApp uses this technique itself to handle Cancel
choices in dialogs.

CHAPTEr 35 Undo 229

(

(

MacAppCookbook Draft 1 1/26189

Chapter 36 Views

Views are a MacApp concept, and do not have a counterpart in the Macintosh
environment. Everything displayed in a MacApp program is displayed in a view object.
Among other things, views have a visual representation (that is, they can draw
themselves), they have a size in pixels and a location relative to its background view
(superview), and they can respond to events such as mouse clicks, keystrokes, and
menu commands. and are part of a view object hierarchy.

The ancestor class of all view objects is called TView. MacApp provides predefined
subclasses of TView for many view objects, among them the following:

• '!Window. This class represents Macintosh windows. and inherits fields and
methods from TView for drawing on the Macintosh screen. TWindow overrides
some of these, and has extra attributes that allow it to store and display a title and
the other parts of a window.

• TScroller. This class calculates coordinate translations to create the illusion of
scrolling through a document.

• TDialogView. This class duplicates some of the Dialog Manager's functions,
creating the illusion (with the help of some other classes) that a MacApp window is
a Dialog Manager dialog.

• TfEView. This class displays and manipulates text.

• TControl. This class provides subclasses that contain methods to deal with
traditional Macintosh controls, such as scroll bars, push buttons, radio buttons,
and check boxes, and other types of controls, such as pop-up menus, pictures, and
icons

• TGridView. This class provides methods to deal with rows and columns.

• TDeskScrapView. IDeskScrapView provides methods to allow your application
to show the Clipboard.

231

Mar.App Cookbook Draft 1 1126189

This chapter provides a general overview on how you can create a view using templates
or procedures. Details on each of the predefined classes are available in appropriate
chapters in this manual. If the predefined view classes do not provide the objects you
wan~ you can create your own subclass of TView, instantiate it, and add the instance
to your view hierarchy.

In any case, you are responsible for defining the methods that draw and that calculate
the content area of your views.

To handle your application's views, you can:

• Create a view using a template
• etc. (***on through all the recipes provided by the section*")

This chapter describes in detail the steps you need to take to accomplish these tasks.

232 MACAPP COOKBOOK

MacAppCookbook Draft 1 1/26189

(

CHAPTER 36 Views 233

MacApp Cookbook Draft 1 1/26189

TView and view hierarchies

'!View is the ancestor class of all view objects, including windows, dialog boxes, dialog controls, and even
your specialized view classes. The class '!View is defined as follows:
TView = OBJECT (TEvtHandler)

fSuperView: TView;

fSubViews: TList;

fDocument: TDocument;
fLocation: VPoint;

fSize: VPoint;

{ a few more fields ••• }

PROCEDURE TView.IRes (itsDocument: TDocument; itsSuperView: TView; VAR itsParams:
Ptr);

PROCEDURE TView. CalcMinSi ze (VAR min Size: VPoint) ;

PROCEDURE TView. Draw (area: Re ct) ;

{ many more methods, • • }

END;

The fSuperView and fSubviews fields are used to create view instance hierarchies. For window
objects the fSuperview field is always empty, while the fSubviews field is. usually filled with a list
of one or more views.

The IDocument field is a reference to the view's related document. When you call
NewTemplateWindow you supply a reference to the correct document. This reference is stored
in the IDocument field of the window the view created.

The fLocation field represents the offset of the upper-left comer of a view from the upper-left
comer of its superview.

The fSize field is the current size of the view, in pixels.

The three methods, IRes, CalcMinSize, and Draw, are explained later in the chapter.

234 MACAPP COOKBOOK

(

c

MacAppCookbook Draft 1 1126189

View hierarchies have the following important characteristics:

All of the view objects that comprise a single window are organized in a view instance hierarchy.
The view object representing the window frame is the top of this hierarchy.

• The window view (the view responsible for the window frame) is at the top of the view
instance hierarchy and has no superview.

• Each view may have one superview and a list of subviews.

• Each view displayed within a window is a subview of the window view.

• A view is drawn on top of its superview. Thus, for a superview with a specialized view, the
window will first draw the blank, white content area, and then your specialized view on top
of that.

• A view is drawn clipped to its superview. This way all subviews are clipped to their window,
so that no drawing is done outside the region of the window. For example, even if a main
content view was larger than the window frame view, only that portion of the main content
that fits inside the window frame would be displayed.

• Each view has its own coordinate system; that is, each view has a point (0,0) in its upper left
hand comer. Even if the view is offset from its superview, it has its own coordinate system.
Thus, when a view draws inside its own boundaries, it draws assuming that it is drawing into
its own local coordinate system. For example, if your content view draws a line from the
point (5,5) to (20,30), you know that that line is drawn from the fifth pixel down and over
from the upper left comer of this particular view. Even if the view is offset from its window
by many pixels, the drawing always occurs in the view's local coordinate system.

The view instance hierarchy is important for several reasons-drawing, for example. When a
window object receives a Draw message, it first draws itself (the window frame and the empty
window content), and then sends the Draw message along to each of its subviews. Each
subview, in tum, draws its part of the window's contents over the blank window view.

Is the following statement still
true?

If your view hierarchy is going to include scroller views and scroll bar views, and if you are not
overriding MacApp's scroll bar methods, you do not need to include scroll bar views in your view
templates. MacApp will create those for you automatically.

CHAPTER 36 Views 235

MacApp Cookbook Draft 1 1/26189

Creating a view by using view templates

Since your application may require windows and views in complex hierarchies, you may want to
design and correct your view hierarchies many times. View templates allow you to design your
views and their hierarchical relationship in a file separate from the rest of your code. The
resource compiler will make your view templates become resources that your program can
access during runtime to create actual view instances. This gives MacApp's views the same
flexibility that other Macintosh resources have.

View resources can be used to create a single window object or can be used to create an entire
view hierarchy.

Run-time summary of creating a view using templates

MacApp asks your application to create a new view by ... doing what'* .. * As default behavior,
this happens when the .. *what'"*

• Note: To change MacApp's default behavior in this instance, you need to override
what*. See Chapter X, "'f!??" for more information.

Figure 36-X provides a summary of MacApp's actions at runtime when a new view is to be
created from a template

• Figure 36-1 MacApp's actions in relationship to this recipe

Figure TBD; for example see Chapter 14, "Documents"

236 MACAPP COOKBOOK

---i' '

(

(

MacAppCookbook Draft 1

Overview of your responsibilities

The actions you must take, the reasons you must take those actions, and what MacApp can
provide to help you take those actions are summarized in Table 36-1. Each of the steps is
explained in detail in the recipes that follow.

This section also assumes that you have already taken preliminary actions. For more
information, see Chapter X, "XXXXX."

***Please note: all of the following material has to be combined and significantly
reworked•••

• Table 36-1 Overview: creating a view using templates

Step Your action: Because:

1. Define a specialized view class. MacApp provides a general TView class.

etc. 2. etc.

Table TBD; for example see Chapter 14, "Documents"

Step 1 Define a specialized view class

1/26189

In your interface file, define the interface for your new view class. This class should be a
descendant of the class TView, should declare two new fiel~, and should override four methods
of TView:

When you define a specialized view subclass, you will typically add many fields. For example,
you generally want to add a field to your view class that reference the related document object.

Where Js the relationship between
views, windows, and documents

explained?

CHAPTER 36 Views 237

MacApp Cookbook Draft 1

All TView objects come with an fDocument field, which NewTemplateWindow initializes for
you. However, this field is declared to be a reference to the generic class IDocument. Since
your document objects are usually subclasses of IDocument (TiconDocument, for example),
when you want to access a field or method of the TiconDocument object, you will almost
always have to typecast the fDocument field:
TiconDocument(fDocument).DoSomething;

Since this continual casting can be tedious, you usually add another field to your view
objects-another field that references the same document object, but doesn't require casting.
For instance, if you added the following field:
ficonDocument : TiconDocument;

to your view class, you could use the flconDocument field without casting to access the fields
and methods of the document. In addition to this field, which you generally add to all of your
view classes that display a document's data, you need to add any fields containing specific
data about that view.

1/26189

Although frequently you will add many new methods and override many others for your view
objects, you must override at least three methods to create a functional view class: IRes, Draw,
and calcMinSize. These three methods, and how to override them, are explained in the next
three sections.

The following sample code from UlconEdit.incl.p illustrates these steps.
{------~---}
TiconView = OBJECT (TView)

ficonDocument : TiconDocument; {reference to related document
fMagnification : integer; { current magnification of the icon

PROCEDURE TiconView. !Res (itsDocument: TDocument;

itsSuperView: TView;

itsParams: Ptr); OVERRIDE;
{ initializes the view from a resource }

PROCEDURE TiconView.CalcMinSize (VAR minSize: VPoint); OVERRIDE;

{ Returns the view's current "minimum" size. }

PROCEDURE TiconView.Draw (area: Rect); OVERRIDE;

Draws the document's icon in this view }

{ $ IFC qDebug}

PROCEDURE TI con View. Fields (PROCEDURE DoToField (fieldName: Str2 55;

fieldAddr: Ptr;

238 MACAPP COOKBOOK

(

(-

MacApp Cookbook Draft 1 1/26189

fieldType: INTEGER));

OVERRIDE;
{$ENDC}

END;

{--}

Step 1 Define the new view class

In your interface file, define the interface for your new view class. This class should be a descendant of the
class TView, should declare two new fields, and should override four methods of TView:
TlconView = OBJECT(TView)

flconDocument : TlconDocument; { a reference to the related document
fMagnification : integer; { the current magnification of the icon }

PROCEDURE TlconView.IRes (itsDocument: TDocument;
itsSuperView: TView;
itsParams: Ptr); OVERRIDE;

{ initializes the view from a resource }

PROCEDURE TlconView.CalcMinSize (VAR minSize: VPoint); OVERRIDE;
{ Returns the views current "minimum" size. }

PROCEDURE TlconView.Draw (area: Rect); OVERRIDE;
{ Draws the document's icon in this view }

{$IFC qDebug}
PROCEDURE TlconView.Fields (PROCEDURE DoToField (fieldName: Str255;

Ptr;

INTEGER)); OVERRIDE;
{$ENDC}
END;

fieldAddr:

fieldType:

CHAPTER 36 Views 239

MacApp Cookbook Draft 1 1/26189

Step 2 Implement the IRes method

The purpose of the IRes method is to call the inherited version of IRes to initialize the inherited
fields of 1View from a resource, and then toinitialize the new fields unique to TiconView.

To initialize the flconDocument field of TiconView, you can use the itsDocument parameter of
IRes. Unfortunately, this parameter is a reference to class TDocument, so you must cast it
before you make the assignment:
ficonDocument := TiconDocument(itsDocument);

The other unique field of TiconView is the fMagnification field. This field should initially be set
to the initial magnification of the icon. In the previous chapter you made the default window
large enough to hold an icon magnified 7 times. It's a good idea to define this as a constant in
the constant declaration part of the implementation file:
CONST kDefaultMagnification = 7;

and then use this constant to initialize the fMagnification field:
£Magnification := kDefaultMagnification;

Step 2 Implement the IRes method

When creating a specialized view instance, MacApp does as much initializiation as possible
from the view template. However, since your view class is specialized, this means you've
probably added fields to your class that MacApp doesn't already know about and thus can't
initialize. Instead, when you create a view from a template, MacApp calls the IRes method of
that view.

Therefore, it is your job to create an IRes method for your new view class that initializes your
view class's unique fields.
PROCEDURE TView. !Res (itsDocument: TDocument; itsSuperView: TView;

VAR itsParams: Ptr);

In your override of IRes, you want to first call the inherited version of IRes. This allows MacApp
to initialize its parts of your view from the view template. Then you want to initialize any new
fields you declared for your view class.

240 MACAPP COOKBOOK

f

MacApp Cookbook Draft 1

MacApp calls your view's !Res method when creating a view from a resource, typically in
response to NewTemplateWindow. In general, you can ignore the parameters to IRes. The one
you might find useful is the itsDocument parameter. For example, you can use this to initialize
the flconDocument field of your icon-editting view.

Step 3 Implement your Draw method

1/26189

When one of your application's windows needs to be updated, MacApp calls the DrawContents method for
the view representing the window. DrawContents sends a DrawContents message to each subview, and
then calls the window's Draw method. (Draw is defined for 1View; the default method, 1View.Draw, does
nothing.) 1YourView.Draw translates between the data stored in the document and the screen (or printed
page).

The Draw method that comes with 1View is empty. If you want your view objects to draw
anything, you must override the Draw method to draw the contents of the view. MacApp calls
the Draw method whenever the view needs to be redrawn. This includes when the view is first
shown and when the view has been covered and is uncovered by some user action. MacApp
specifies which portion of the view in the area parameter.

When MacApp calls your view's Draw method, drawing has already been focused on your view.
In other words, you call drawing routines using your view's local coordinate system, and the
drawing will take place in the correct location. Also, all drawing that you do will be clipped to
the view's fSize, and to the superview of the view.

You will often do the actual drawing by using QuickDraw commands. A complete list of these
drawing routimes is available in the QuickDraw chapter of Inside Macintosh.

• Note: MacApp programmers can ignore the discussion of GrafPorts and GrafPort routines.
MacApp handles those for you. You can concentrate on the drawing routines, a complete
list of which is given in Appendix m. (in which book???)

If your data consists of objects organized into a list of instances that draw
themselves(generally stored in an object of class Tiist), and each object type has a Titem.Draw
method. Titem.Draw actually draws the object. "'What message is sent??***

Any other options to drawing

If your application cannot be organized like tha~ have 1YourView.Draw do the drawing itself.

CHAPTER 36 Views 241

MacApp Cookbook Draft 1 1/26189

You rarely, if ever, call any Draw method yourself; you call TView.Invalid.Rect to invalidate the
part of your view that has changed or call TView.DrawContents if you need to redraw the view
and its subviews immediately. When there is nothing else for the application to do, MacApp
calls the Draw methods for all views that have invalidated areas that are actually displayed in the
window.

2. Implement 'IYourView.Draw. The interface of that method is
PROCEDURE 'IYourView.Draw(area: Rect);

That sample assumes your objects draw themselves and their Draw methods take no
parameters. The sample also makes no use of the area parameter, which is a rectangle containing
all invalid areas. You can use the area parameter to optimize your drawing. See the "Optimizing
Drawing" recipe.

Where would optimizing drawing
go?

If you use filtered commands, this method is often coded so it draws items that are not in the
document or skips some items that are in the document. See the "Creating Filtered Commands"
recipe in Chapter X, "Undoing" for more information.

The following sample code from UiconEdit.incl.p illustrates these steps.
{--}
CONST kBorder = 5; { Constant to set border of 5 pixels around icon }

Set Re ct (destRect, kBorder, kBorder,
kBorder + (32 * fMagnification),
kBorder + (32 * fMagnification));

Location where icon should appear
Current magnification of the icon }

ploticon(destRect, ficonDocument.ficonBitMap); { Draw icon at the set location}

{--}
Notice that this code tells the Macintosh ROM to draw the icon reference by the flconBitMap
field of this view's document object in the rectangle specified by destRect. This works only if
you initialized the ficonDocument field correctly in your !Res method.

Step 4 Implement the CalcMinSize method

The purpose of CalcMinSize is to calculate the current size of the view. MacApp uses this value
when drawing and printing the view, and eventually when calculating th~ position of scrollbars.

242 MACAPP COOKBOOK

MacApp Cookbook Draft 1

For example, for an icon view, you want the view to be large enough to hold the entire icon, at
its current level of magnification, plus borders on both size. You return the value of this
calculation in the VAR parameter minSize:

The following sample code from UiconEditincl.p illustrates these steps.
{--}
PROCEDURE TiconView .CalcMinSize (VAR minSize: VPoint); OVERRIDE;

BEGIN
minSize.h := (32 * fMagnification) + (2 * kBorder);
minSize.v ·= (32 * fMagnification) + (2 * kBorder);

END;

{--}
The VAR parameter minSize is a VPoint record-it has an h vield for the horizontal size and a v
field fot the vertical size. For the displayed icons, these values are the same.

1/26/89

Sometimes MacApp needs to know the current size of your view. For example, when printing,
or when your view has changed size and scrollbars need to be reset In these cases, MacApp calls
your view's CalcMinSize method. MacApp then takes the result of this method, uses i~ and
stores that value in your view's fSize field. Therefore, you never need to change the fSize fields
of your view yourself. MacApp does it for you, as long as your CalcMinSize method calculates
the correct current size of the view.

The 1View version of CalcMinSize always returns (in the VAR parameter) the current fSize of the
view. Your override version should calculate the current size of the view, and return that in the
minSize parameter. MacApp will call CalcMinSize when it needs to know the size of the view,
and will automatically update the fSize field for you (you never need to set the fSize field
yourself???)

MacApp calls your view's Draw methods whenever it needs to know the size of a view. It uses
this information for drawing, scrolling a printing. The reason that this method is called
CalcMinSize, instead of simply CalcSize, is that for special types of printable views, MacApp
will round the result of this method up to the nearest page size-therefore you've calculated the
minimum acceptable size, and MacApp calculates the actual size. For more information, see
Chapter X, "Printing."

Typically in your CalcMinSize procedure you analyze the fields of the view instance, and
calculate its current size based on them.

That section does not yet exist!

CHAPTER 36 Views 243

MacApp Cookbook Draft 1

Step 5 Add the view to your view template hierarchy

Now that you've defined a view for your class, you need to create an instance of that class for
every window.

1/26189

For the icon example, you add a TiconView template to your view template hierarchy. The
NewTemplateWindow routine (that you called in DoMakeViews) then creates the view instance
for you. The view template you can use should look like the template presented in this chapter.

The following sample code from UiconEdit.incl.p illustrates these steps.
{--}
fdefine kiconWindowID 1000

fdefine kiconWindowHeight 32 * 7 + 10
fdefine kiconWindowWidth 32 * 7 + 10

fdefine kiconViewID 1001

fdefine kiconViewHeight 32 * 7 + 10

fdefine kiconViewWidth 32 * 7 + 10

resource 'view' (kWiridowRsrcID, purgeable)

};

{50, 20}, {70, 70},

sizeVariable, shown, enabled,
root, 'WIND',
sizeVariable,

Window "TWindow", zoomDocProc, goAwayBox, resizable, modeless,

ignoreFirstClick, freeOnClosing, disposeOnFree, closesDocument,

openWithDocument, dontAdaptToScreen, stagger, forceonScreen,

dontCenter, no Id, "''};

'WIND', IncludeViews { kYourViewID

resource •view• (kiconViewID, purgeable) {

};

root, 'SUBV', { O, O}, {kiconViewHeight, k!conViewWidth},

sizeVariable, sizeVariable, shown, enabled,

View { "TI con View" } ;

{--}
Notice that the TWindow view and the TiconView view have different view ID numbers, but at
this poin~ they have the same size.

244 MACAPP COOKBOOK

(

MacApp Cookbook Draft 1 1/26189

Initializing views from templates

For example, the following view template defines a view hierarchy of two views: a window view with one
subview.
resource •view• (kWindowRsrcID, purgeable)

{50, 20}, {70, 70},

sizeVariable, shown, enabled,
root, 'WIND',

sizeVariable,

Window "TWindow", zoomDocProc, goAwayBox, resizable, modeless,
ignoreFirstClick, freeOnClosing, disposeOnFree, closesDocument,

openWi thDocument, dontAdapt To Screen, stagger, f orceonScreen,

dontCenter, noid, ""};

/* Here is the new view */

'WIND',

'SUBV',
{0, O},

{ kHeight, kWidth},

sizeVariable, sizeVariable,

shown, enabled,

View

"TYourView" } ;

/* ID of its superview

/* ID of this view
*/
*/

/* location in its superview

I* size of this view
/* size determiners of this view */
I* other attributes of this view */

*/
*/

/* the type of the view resource */

/* the class of this view */

(~ };

This definition specifies a view instance hierarchy. The window view (with view ID 'WIND') is
the root of the hierarchy. The view (with view ID 'SUBV') is a subview of the window view. The
first field of the template for the new view is 'WIND'. This specifies that the superview (of this
new view) is to be the 'WIND' view, or the window view defined above. The second field is
'SUBV'. This is the view ID of the new view.

The next field is the location of the new view in its superview. In this case, the upper-left corner
of this view is located exactly at the upper-left corner of its superview (the upper-left corner of
the content region of the window.) The value of {O, O} specifies this. The next field is the initial
height and width of the view. Typically you will make these constants in your rez file.

The next four fields are other (attributes of the view-the view's size determiners, and whether
the view is shown and enabled Need to describe these here• ..

CHAPTER 36 Views 245

MacApp Cookbook Draft 1 1126/89

Specify the type of the view resource. In the case of the window object, you put the word
Window, and then followed it by a set of parameters specific to windows. Since this new view
is a special class defined by you ('IYourView), MacApp doesn't know ~ything about it.
Therefore, you put the keyword View in this field. This specifies to MacApp that this is a
specialized view class, not a predefmed one.

Give the specific class name of the view. This allows MacApp to create the correct type of view
object in response to NewTemplateWindow.

Notice that the window template had many more fields than the new view template does. This
is because MacApp knows about windows, and can do a lot of initialization for you.
Unfortunately, MacApp doesn't know about your specially-defmed views. So, instead of
completely initializing them from templates, you have to initialize your view object's special
fields in its IRes method.

Reading a specialized view

Sometimes you will want to read a specialized view in separately from its window superview
(normally for printing reasons, explained in chapter ???)

You can split the view resource out of the view hierarchy resource using the IncludeViews
directive, like this:
resource •view• (kWindowRsrcID, purgeable)

} ;

{50, 20}, {70, 70},

sizeVariable, shown, enabled,

root, 'WIND',

sizeVariable,
Window "TWindow", zoomDocProc, goAwayBox, resizable, mode less,

ignoreFirstClick, freeOnClosing, disposeOnFree, closesDocument,

openWithDocument, dontAdaptToScreen, stagger, forceonScreen,
dontcenter, noid, ""};

'WIND', IncludeViews { kYourViewID

resource •view• (kYourViewID, purgeable) {

root, 'SUBV', {0, 0}, {kYourViewHeight, kYourViewWidth},

. 24.6 MACAPP COOKBOOK

/,---,"

\,.__j

(

Mac;AppCookbook Draft 1 1/26189

sizeVariable, sizeVariable, shown, enabled,

View { "TYourView" } ;

};

Because the 'SUBV' subview has its own resource number-kYourViewID-the subview can be
created separately from the window. However, since the window resouri:e has an IncludeViews
.directive, whenever the window is created, the subview will automatically be created too.
Creating your view instance

Once your view class is defined, you need to actually create your view instance. This is done in
the DoMakeViews method of your document objec~ just as your window object was.
Remember in your document's DoMakeViews method that you made the call
aWindow : = NewTemplateWindow (kiconWindowID, SELF);

Since NewTemplateWindow can read in and create an entire view hierarchy, all you need to do is
add the new view to your view template. NewTemplateWmdow will do the rest. Therefore, you
don't have to change the implementation of DoMakeViews at all to create the entire view
hierarchy-only the view template is changed.

Creating a view

Views are usually used to display data associated with documents, although it is possible to
have a view that has no associated document. However, everything displayed by a document
must displayed in a view. MacApp translates between the view and the screen or a printer. All
you have to do is create the view and provide it with certain methods. Applications can offer
one or more views of each document.
Howtodoit

1. Define a view type that is a descendant of TView. Your view type must have the following
methods:

PROCEDURE TYourView.Draw(area: Rect); OVERRIDE;
{ Called by MacApp to draw the view. See the "Drawing a View'' recipe. }
PROCEDURE TYourView.IYourView;
{ Usually called from DoMakeViews or DoMakeWindows after creating a view.

See the "Initializing a View" recipe. }
If you have more than one view type, create equivalent methods for each type.

CHAPTER 36 Views 247

Mar.A.pp Cookbook Draft 1 1126189

If a mouse click, press, or drag in the view can do something, you must also implement the
following method:

FUNCTION TYourView.DoMouseCommand(V AR theMouse: Point;
VAR Info: Eventlnfo;

{See "Handling Mouse Events."}

VAR hysteresis: Point): TCommand;
OVERRIDE;

If parts of the view can be selected by the user, you usually also override
TView.DoHighlightSelection. See the "Selecting" recipe.

If there are menu commands that apply to the view (such as the "Reduce to Fit" command in
MacDraw®), override TView.DoMenuCommand and TView.DoSetUpMenus. See "Menus and
Commands" in this chapter.

If the view can be a Clipboard view, you need additional methods. See "Supporting The
Clipboard" Chapter X.
2. Declare a field for each view in your subclass of TDocument. For example:

fYourView: TYourView;

The fields referencing your views will be used by your methods, not by MacApp, so you are free to
organize them as you wish. If it makes sense in your document, you may want to use a list instead of
individual fields. The object type 1list provides a convenient list type (actually, it implements a dynamic
array).
3. Override TDocument.DoMakeViews to create your views. The interface is

PROCEDURE TYourDocument. DoMakeViews (forPrinting: BOOLEAN) ; OVERRIDE;

The parameter forPrinting is TRUE when the user is printing the document from the Finder™. In
that case, you may not need to create all your document's views.

The template in this recipe shows a sample implementation of DoMakeViews.

248 MACAPP COOKBOOK

(

MacAppCookbook Draft 1

Template
FUNCTION TYourDocument.DoMakeViews(forPrinting: BOOLEAN);
VAR yourView: TY ourView;
BEGIN

END;

{ The forPrinting parameter is TRUE only when printing from the Finder.
You can use this value to optimize performance by creating only views
that need to be printed. }

New(yourView);
FailNIL(yourView); { See the "Failure Handling" recipe. }
{ Send SELF to IY ourView so that the view can reference the document. }
yourView.IYourView(FALSE {means not for Clipboard}, SELF);
fYourView := yourView;

{ If you have more views, create, initialize, and install them
into fields of your document here. }

1/26189

(Initializing a view

After you create a view, you call IYourView to initialize it. The initialization routine sets the initial size for
the view and, if the view is printable, creates a print handler for the view.
How to do it
Implement TYourView.IYourView, as shown in the template for this section. Call IYourView from
TYourDocument.DoMakeViews after you create your view.

CHAPTER 36 Views 249

MacApp Cookbook Draft 1 1/26189

Template
PROCEDURE TYourView.IYourView(forClipboard: BOOLEAN; itsYourDocument: TYourDocument);
{ In this case, you don't need the forClipboard parameter. It is used so that a print

handler object is not created for a Clipboard view. }

VAR viewSize: VPoint;
BEGIN

SetVPt(viewSize, 1000, 1000);
{ The size of the view. Set to values appropriate for your view.

These values can be changed later. }

END;

fYourDocument :• itsYourDocumen~
{ Most views have documents, but some may not. }

IView(itsYourDocumen~ NIL, gZeroVP~ viewSize, sizeFixed, sizeFixed);
{ The enumerated constant value sizeFixed is from the predefmed SizeDeterminer

enumerated type. The significance of these parameters can be found in the
"Creation/Destruction Methods" under "The TView Class" section of the

"Display Architecture ERS." }

{ If the view can be printed, more is included.
See "Using UPrinting" in this chapter for more information. }

{ See "Constants" in Chapter 9, for the other possible values. For
the significance of the other parameters, see the description of IView under

"TView" in Chapter 10.}

Creating view templates

2. Add a view resource for each view hierarchy (usually one per window) to your .r file. The view
resource forrnat is defined in the file MacAppTypes.r, and you might want to examine that definition for
details later. For now, this recipe will give you the necessary details to create simple view resource
templates.

Let's take an example view resource:

250 MACAPP COOKBOOK

(

MacApp Cookbook

resource 'view' (1001, purgeable) {
{

Draft 1

root, 'WIND', {50, 20}, (260, 430},
sizeVariable, sizeVariable, shown, enabled,
Window { "class name", <fields specific to window views go here> };
'WIND', 'MAIN', {O, O}, (140, 240},
sizeFixed, sizeFixed, shown, enabled,
View { "class name", <fields specific to views go here> }
/*Note there is no';' after the right brace above.*/
}

};
Each view entry in the resource file has a fonnat like this:

ParentViewsID, ThisViewsID, LocationlnParentView, SizeOfView,
VerticalSizeDeterminer, HorizontalSizeDeterminer, ShownDeterrniner, EnabledDeterrniner,

TypeOfView { "class name", <more fields depending on type of view> }
These fields are as follows:

• ParentViewsID. This field contains the ID of the parent view. You can use the word root
(with no quotes) to specify that this view has no parent view. You will always want to
specify root for your window views; otherwise you must use a four character string that is
the ID of the parent view ..

1/26189

• ThisViewsID. The identifier of this view. Identifiers are four-character strings, such as
'WIND', 'MAIN', 'SCRL' ,or 'MYVW'. You create this identifier to use in theParentViewsID
field of any view that is a subview of this view. You can also use this identifier in your
program to obtain a reference to a subview in a view hierearchy. View identifiers do not
have to be unique, and not all views need an identifier For example, if you have a view that
has no subviews, and that you won't need a reference ro in your prograrn,you can use the
constant noID (with no quotes) for its identifier.

• LocationlnParentView. This specifies the offset of the upper left-hand comer of this view
from its parent view, in pixels.

• SizeOtView. This field specifies the initial size of the view.

• VerticalSizeDeterminer and HorizontalSJzeDeterminer. These fields determine how the
view is to be sized. The possible values are: sizeSuperView, sizeRelSuperView, sizePage,
siieFillPages, sizeVariable, sizeFixed.

• ShownDeterminer. This determines whether the view is displayed initially. The value
choices are: shown and notShown.

CHAPTER 36 Views 251

MacApp Cookbook Draft 1

• EnabledDeterminer. This detennines whether the view is enabled (whether it responds to
mouse clicks). The possible values are: disabled and enabled.

1126189

• TypeOtView. This detennines the format of the rest of the view's data. You can think of
this as indicating the type of view to create, though it doesn't actually indicate a view's
class. (See the "Class Name" entry below.) This field is followed- by the view's class name and
a list of fields specific to the class of the view instance. The predefined choices for this
field are: View, Window, Scroller, DialogView, Control, Button, CheckBox, Radio, ScrollBar,
Cluster, Icon, Picture, Popup, StaticText, EditText, Numbeff ext, TEView, GridView,
TextGridView, TextLlstView. You can define your own view types to have resource entries,
if you like, by either changing the View'fypes.r Rez file or creating your own view types Rez
file. However, because your views will probably be descendants of one of these classes of
views, you will most likely be able to use the ancestor class for your template, and do any
extra initialization in your own code.

• Oass Name. This detennines what class the view instance belongs to. It is the name of the
class, in double quotes, as defined the program. For instance, if the view is an instance of a
standard MacApp window then the class name would be "TWindow". However, if the view
is an instance of a subclass of TWindow, for example TY ourWmdow, then the class name
would be "TYourWindow."

Each of these view class entries has its own list of fields. If you want a complete enumeration of
these fields, see the ViewTypes.r rez file.

Here is an example of a complete view resource:
resource 'view' (1001, purgeable) {

{
root, 'WIND', {50, 20}, (260, 430},
sizeVariable, sizeVariable, shown, enabled,
Window { "TWindow", zoornDocProc, goAwayBox, resizeable, modeless,

ignoreFirstClick, freeOnClosing, disposeOnFree, closesDocument,
openWithDocument, dontAdaptToScreen, stagger, forceOnScreen,
dontCenter 'NOID' '"' }· ' ' '

'WIND', 'SCLR', {O, 0}, {260-kSBarSizeMinusl, 430-kSBarSizeMinusl},
sizeRelSuperView, sizeRelSuperView, shown, enabled,
Scroller { "TScroller", vertScrollBar, horzScrollBar, 0, 0, 16, 16,

vertConstrain, horzConstrain, {O, 0, 0, O} };
'SCLR', 'NOTII', {O, O}, (140, 240},
sizeFixed, sizeFixed, shown, enabled,
View { ''TNothingView" }

252 MACAPP COOKBOOK

MacAppCookbook Draft 1 1/26189

};
This view template defines a window view with one immediate subview, a scroller, which, in tum,

has its own subview. The size of the scroller is relative to the size of the window-it leaves space for the
horizontal and vertical scroll bars. The 'NOTH' view is of a fixed size, and is not offset from the scroller.

CHAPTER 36 Views 253

MacApp Cookbook Draft 1

3. It is possible to divide a view hierarchy into several view resources. For example,
resource 'view' (1001, purgeable) {

{

};

root, 'WIND', {50, 20}, (260, 430},
sizeVariable, sizeVariable, shown, enabled,
Window { "TWmdow", zoom.OocProc, goAwayBox, resizeable, modeless,

openWithDocument, freeOnClosing, disposeOnFree, closesDocument,
openWithDocument, dontAdaptroScreen, stagger, forceOnScreen,
dontCenter, 'NOTII', "" };

WIND, 'SCLR', {O, O}, {260-kSBarSizeMinusl, 430-kSBarSizeMinusl},
sizeRelSuperView, sizeRelSuperView, shown, enabled,
Scroller { "TScroller", vertScrollBar, horzScrollBar, 0, 0, 16, 16,

vertConstrain, horzConstrain, {O, 0, 0, O} };
'SCLR', IncludeViews {1002}
}

resource 'view' (1002, purgeable) {
{
root, 'NOTII', {O, 0}, (140, 240},
sizeFixed, sizeFixed, shown, enabled,
View { "TNothingView"}
}

};

Template
/• A complete view hierarchy in one resource. •I

resource 'view' (1001, purgeable) {
{

root, 'WIND', {50, 20}, (260, 430},
sizeVariable, sizeVariable, shown, enabled,

1/26189

Window { "TWindow", zoom.DocProc, goAwayBox, resizeable, modeless,
openWithDocument, freeOnClosing, disposeOnFree, closesDocument,
openWithDocument, dontAdaptToScreen, stagger, forceOnScreen,
dontCenter 'MAIN' "" }· I I I

'WIND', 'SCLR', {O, 0}, {260-kSBarSizeMinusl, 430-kSBarSizeMinusl},
sizeRelSuperView, sizeRelSuperView, shown, enabled,
Scroller { "TScroller", vertScrollBar, horzScrollBar, 0, 0, 16, 16,

vertConstrain, horzConstrain, {O, 0, 0, O} };

2S4 MACAPP COOKBOOK

;<'~"
l
.,,,..,,..,._,..-!

MacAppCookbook

};

Draft 1

'SCLR', 'MAIN', {O, O}, (140, 240},
sizeFixed, sizeFixed, shown, enabled,
View { "1Y ourView" }
}

1/26189

- /•A view hierarchy spread out over two resources.•;
resource 'view' (1001, purgeable) {

{

};

roo~ 'WIND', {50, 20}, (260, 430},
sizeVariable, sizeVariable, shown, enabled,
Window { "TWindow", zoomDocProc, goAwayBox, resizeable, modeless,

openWithDocument, freeOnClosing, disposeOnFree, closesDocument,
openWithDocument, dontAdaptToScreen, stagger, forceOnScreen,
dontCenter 'MAIN' "" }· I I I

WIND, 'SCLR', {O, 0}, {260-kSBarSizeMinusl, 430-kSBarSizeMinusl},
sizeRelSuperView, sizeRelSuperView, shown, enabled,
Scroller { ''TScroller", vertScrollBar, horzScrollBar, 0, 0, 16, 16,

vertConstrain, horzConstrain, {O, 0, 0, O} };
'SCLR', IncludeViews {1002}
}

resource 'view' (1002, purgeable) {
{

};

roo~ 'MAIN', {O, O}, (140, 240},
sizeFixed, sizeFixed, shown, enabled,
View { "1Y ourView'' }
}

Creating and initializing a view using templates

Once you've created your view resources, you must ·still call the correct routines to create the actual view
instances.
How to do it

CHAPTER 36 Views 255

MacApp Cookbook Draft 1 1126189

2. In the DoMake Views method of your document class, you can create your view hierarchy using the
global function NewTemplateWindow. For example:

aWindow := NewTemplateWinclow(k:YourWindowID, SELF);
In this example, kYourWindowID should be defined to be 1001 to match the resource definition

given in the last section.
To get a reference to your TYourView instance in the view hierarchy, you can use the FindSub View

method. FindSubView will return a reference to a particular view type in a view hierarchy, given that
subview's four-character identifier. For instance,

a YourView :• TYourView(aWindow.FindSubView('MAIN'));
will put a reference to the 'NOTII' subview instance of a Window into aYourView. If more than one

subview of a Window was given 'NOTII' as an identifier in the resource file, then a reference to the first
'NOTII' subview found will be returned-so be careful if you don't use unique identifiers in your view
templates.

Since FindSubView returns a reference to the generic TView class, you will need to cast the result to
the class of your view.

If you want to create a view hierarchy that does not have a window as the root, you can call the
TEvtHandler method DoCreateViews. For example,

aYourView := TYourView(DoCreateViews(SELF, NIL, kYourViewID));
If kYourView has been defined to be 1002 (to correspond to our resource template in the previous

section), then aYourView will now reference the view at the top of the view hierarchy defined in view
resource 1002.
3. Initialize your views. MacApp calls the IRes initialization method of view objects created from
resources. If you have created a descendant class of a MacApp-defined view class, you may want to do
some specialized initialization of your own. To do this, you must override IRes to initialize your
descendant class's fields. However, remember that you cannot add any parameters to an override method,·
so you may still wish to create your own initialization method, and ensure that it is called.
Template
PROCEDURE TY ourApplication.IY ourApplication(itsMainFileType: OSType);
VAR aYourView: TYourView;
BEGIN

END;

IApplicaiton(itsMainFileType);

NEW(aYourView);
FailNil(a YourView);
RegisterType('TY ourView', a YourView);

PROCEDURE TYourDocument.DoMakeViews(forPrinting: BOOLEAN);

256 MACAPP COOKBOOK

MacApp Cookbook Draft 1

VAR

BEGIN

aView: 1View;
aWtndow: TWindow;

{ The forPrinting parameter is set to TRUE when the user has requested }
{ printing from the Finder. In this case, you only need to create the }
{ view that is actually being printed. }
IF forPrinting TilEN BEGIN {You don't need the whole window. }

END

aYourView :• lYourView(DoCreateViews(SELF, NIL, kYourViewID));
fYourView :• aYourView;

1/26189

ELSE BEGIN {You do need the whole window. }
aWindow :• NewTemplateWindow(kYourWindowID, SELF);
fYourView := lYourView(aWindow.FindSubView('MAIN'));

END;

(Focusing a view

new B7 stuff about asserting the focus for a view

Showing a reduced view

Suggestion on MacAppTech$

There must be a simple way to show reduced view like MacDraw's "Reduce to Fir'. However, we
don't know how to do it It would be great to be able to draw and handle mouse commands in
the reduced view without having to define another object type or create an instance of it.

CHAPTER 36 Views 257

MacApp Cookbook Draft 1 1/26189

Changing the size of a view

You should call the AdjustSize method of your view whenever you change its size. AdjustSize
figures out the new size of the view (by calling your CalcMinSize method), and does the
necessary calculations to ensure that the view continues to be refreshed correctly, and aJso that
the scroll bars are in synch with the new view size.

AdjustSize takes no parameters; simply make the call, which informs MacApp that the size of
your view needs to be adjusted, and MacApp takes care of the rest.

The following sample code from UiconEdit.incl.p illustrates this step.
{--}
PROCEDURE TiconEditView.SetMagnification (magnification: INTEGER);

BEGIN
fMagnification :=
AdjustSize;
ForceRedraw;

END;

Max(l, magnification); { Set the new magnification.
{ Magnification affects the view's size.}

{ Force the view to be entirely redrawn.}

{--}

Forcing a view t~ redraw

MacApp normally redraws your view whenever necessary (for example, when the view's window
has been covered but then is brought to the front). However, when you change the appearance
of a view you should call the ForceRedraw method of your view. ForceRedraw takes no
parameters; simply make the call, which informs MacApp that your view needs to be redrawn,
and MacApp takes care of the rest.

The following sample code from UiconEdit.incl.p illustrates this step.
{--}
PROCEDURE TiconEditView.SetMagnification (magnification: INTEGER);

BEGIN
fMagnification :=
AdjustSize;
ForceRedraw;

Max(l, magnification); { Set the new magnification. }
{ Magnification affects the view's size.}

{ Force the view to be entirely redrawn.)

258 MACAPP COOKBOOK

(

t

'

MacAppCookbook Draft 1 1/26189

END;
{--}

Freeing reuseable views

***Suggestion on MacAppTech$. Will it be implemented, or is there a workaround? Please note
that the "I" is the original author of the suggestion, and not the manual writer***

I am writing a very large application that will have lots of views. If I free each one after closing,
then there is a performance penalty if the user wants to open it again. In tight memory
situations or under multi-finder, there won't be enough room to keep them all open.

I have a general idea for a solution that would become part of MacApp.

When running low on memory (when printing, attempting to open a new view, etc.), the
application would look at the list of windows for the document and would free windows
according to several criteria. Windows would have an fLowMemoryCanFree, fLastOpened, and
an fFreePriority. The routine would use these (an maybe some others) in a intelligent fashion
when deciding which to free.

MacApp might also call a user method to free any non essential stuff determined by the user.

I don't know how MacApp is used by most users, but in an accounting application such as mine,
each window roughly corresponds to an accounting module that the user may wish to use again
shortly after closing. It sometimes takes many windows to complete one module.

I create all of the windows for a module at once when requested. Some windows are reused
throughout the program and would have a very high priority. Other windows are only useful
when the "Main window" for the module exists so it would not be a good idea to free some of a
"Main window's" subsidiary windows and not others. Have all of them exist or none of them.

This would be accomplished with by setting the fLowMemoryCanFree to false for the subsidiary
windows and having the main window free them if called (or use some sort of a flsSubsidary
variable?). If a two "Main" windows had the same priority, it would be useful to have an
fLastOpened variable so as to free the oldest.

CHAPTER 36 Views 259

MacApp Cookbook Draft 1

Freeing windows this way would also take care of the problem with freeing a Modeless dialog
window from a button or such. (BTW, the oct 31 suggestion of using CloseByUser to do solve
this problem will crash the program).

Because the "Main" window may not be visible or a target (one of its sub windows may be in
front obscuring it), there should probably be a variable to prevent ·this "main" window from
being freed while it (the module) is in use or being opened.

26o MACAPP COOKBOOK

1/26/89

.!"·~,,

' ~j

(

(

(
~,

~,-''

MacApp Cookbook Draft 1 1/26189

Chapter 37 Windows

Should this chapter be combined
with the View chapter?

Macintosh applications display the data for a document in windows. Each window
consists of many different parts. For example, a window can have a window frame
(which may include a title bar, grow box, zoom box, and close box), scroll bars, and the
main content of the window. In MacApp, each part of the window is represented by a
view object.

In other words, one view object represents the window frame, another represents each
scroll bar, and yet another represents the main content of the window. Each view
object can draw the part of the window it represents, and each view object can
respond to events relating specifically to its part.

For example, the view object representing the window frame is responsible for drawing
the window frame and the blank white background of the window, as well as
responding to mouse clicks in the window frame, which may signify dragging, resizing,
zooming, or closing the window. The view object representing a scrollbar is responsible
for drawing the scrollbar, as well as responding to mouse clicks in the scrollbar.
Typically these mouse clicks cause the scrollbar to be redrawn, and a message to be
sent to the main content view of the window telling it to scroll itself.

The view object representing the main content of the window varies widely from
application to application. Each window on the Macintosh screen is actually
represented by a number of view objects, each representing some part of the window.

To handle your application's documents, you can:

• Create a new window procedurally

• etc. (•••on through all the recipes provided by the chapter***)

This chapter describes in detail the steps you need to take to accomplish these tasks.

261

MacApp Cookbook Draft 1 1/26189

262 MACAPP COOKBOOK

(

(''-,

___ ,

MacApp Cookbook Draft 1

The view instance hierarchy

All of the view objects that comprise a single window are organized in a view instance
hierarchy. The view object representing the window frame is the top of this hierarchy. Each
view displayed within the window is a subview of the window view.

1/26189

Subviews are drawn on top of their superviews. In other words, the main content view and the
scrollbar views are all drawn on top of the blank window view. However, subviews are also
clipped to the boundary of their superview. In other words, even though the main content view
is larger than the window frame view, only that portion of the main content that fits inside the
window frame is displayed.

This hierarchy is important for several reasons-drawing, for example. When a window object
receives a Draw message, it first draws itself (the window frame and the empty window
content), and then sends the Draw message along to each of its subviews. Each subview, in
turn, draws its part of the window's contents over the blank window view.

First, there aren't any scroll bars. In MacApp, scroll bars are not a property of a window.
Second, we got the zoom box, grow box and close box because the window's 'view' resource
indicates that they be included. This behavior is built into the TWindow class. The windows
are also staggered when created. Staggering is also built into the TWindow class, and is
controlled in the window's resource.

explain difference between
procedures and templates?

CHAPTER 37 Windows ' 263

MacApp Cookbook Draft 1 1/26/89

Creating a window procedurally

***Please note: the rest of the stuff in this chapter is grabbed from the Interim

cookbook and hardly edited at all. It needs extensive rework to fit into the

proposed format***

This and the next few entries of this section explain how to create windows with procedures
instead of templates. To create windows from view resource templates, see the "Creating View
Templates" and "Creating and Initializing Views with Templates" entries in Chapter X, "Views".

The 1Window class, a descendant of TView, represents a Window Manager window. It
responds to mouse clicks outside the window's content region, draws the window's size box,
and overrides other view methods where appropriate. Since 1Window objects represent
windows, they never have superviews, but they must have subviews or nothing will be drawn in
the window's content region.

Windows allow a portion of their subviews to be seen-the portion that lies within the content
region of the window. If any of these subviews is scrollable, that subview must have a scroller
object as its superview. Scrollers (riot windows) are scrollable, but windows can be resized,
opened, closed, and moved around the screen.

This recipe deals with creating a simple resizable window that contains a single view, which may
or may not be scrollable. If you want a window with more views, read this recipe and then
proceed to the "Creating a Palette Window" and "Creating a Window With Two or More Main
Views" recipes.

1. In your resource ftle, you define a resource for your window. The way you define it depends
entirely on the resource compiler you use. Here is an example of one for the MPW Resource
Compiler, Rez:

resource 'WIND' (1005) {

{50, 40, 250, 450},

zoomDocProc,

invisible,

goAway,

264 MACAPP COOKBOOK

)
/

(

MacAppcookbook

} ;

OxO,

"<<<Untitled>>>"

Draft 1 1/26189

The first line has the required resource type WIND and an arbitrary resource number (1005 in this
case).

The second line defines the default initial size of the window, in screen coordinates. (Note that
you often modify these values before displaying the window.)

The third line indicates that this window should have a zoom icon. (If you don't want a zoom
icon, use documentProc here. The constant documentProc is defined in the standard MPW Rez
types file.)

The fourth line tells the Window Manager that this window should be initially invisible. You
always tell the Window Manager not to display MacApp windows, even if you want them to be
initially visible, because they are displayed (if appropriate) by TApplication.ShowWindows.

The fifth line indicates that the window is to have a close box. The alternative is noGoAway.

The sixth line is the window refCon. It doesn't matter what you put here, because MacApp
always replaces it.

Finally, the last line defines the initial window title. Note that the triple brackets shown here are
not displayed. When an existing document is opened, the text enclosed in brackets is replaced
by the document name. When a new document is opened, the text is replaced by the word
Untitled, followed by a number. If you want the window to have a fixed title, don't use the
brackets. You can also give text outside the brackets, and that text is concatenated to the
document name.

See the sample programs' resource files for more examples. See the "Window Manager''
chapter of Inside Macintosh for complete information.

2. In your unit interface file, define a constant for the resource number of your window
resource. For example:

kIDYourWindow = 1005;
3. Implement DoMakeViews, as described in the "Creating a View" recipe. MacApp calls
DoMakeViews immediately before DoMakeWindows, and DoMakeWindows needs to have
the view object available. This recipe assumes that the view is stored in
yourDocument.fView.

CHAPTER 37 Windows 265

MacApp Cookbook Draft 1

4. Override TDocument.DoMakeWindows for your document type. The interface of this
method is

PROCEDURE TYourDocument. DoMakeWindows; OVERRIDE;
The implementation is discussed in the rest of this recipe.

5. The window objec~ along with the required Window Manager structure, is created by the
MacApp global function NewSimpleWindow. The interface of that method is

FUNCTION NewSimpleWindow(itsRsrcID: INTEGER;
wantHScrollBar, wantVScrollBar: BOOLEAN;
itsDocument: TDocument; itsView: TView): TWindow;

The itsRsrdD parameter gives the ID of the window resource.

The next two parameters, wantHScrollBar and wantVScrollBar indicate whether or not you
want scroll bars for the frame in this window. Use the kWantHScrollBar and
kWantVScrollBar predefined constants here, preceded by NOT if you don't want the scroll
bars.

The itsDocument parameter is the document whose data is displayed in this window.

The itsView parameter is the view shown in the window.

The template shows NewSimpleWindow called with parameter values that result in a
scrollable window.

PROCEDURE TYourDocument.DoMakeWindows; OVERRIDE;
VAR a Window: TWindow;
BEGIN

aWindow := NewSimpleWindow(kIDYourWindow, kWantHScrollBar);

1/26189

{ If you want a non scrollable window, precede kWantHScrollBar and kWantVScrollBar
with NOT. You can keep one scroll bar and not the other, if you want to.

aWindow.AdaptToScreen;
{ This adapts the window size to a different screen size if necessary.

aWindow.SimpleStagger(kHStagger, kVStagger, gStaggerCount);

END;

SimpleStagger is a TWindow method that staggers the application's windows
so they do not completely cover each other. If you use this, you must define
constants such as kHStagger and kVStagger, which are the number of pixels the
window should be staggered in the horizontal and vertical dimensions, and
gStagger, which is an INTEGER global variable used by SimpleStagger to keep
track of how many windows have been staggered. Initialize gStagger to 0 in
IYourApplication. If you have multiple windows· per document, you may want to
have multiple global variables like gStagger so the windows can be staggered
in groups. }

266 MACAPP COOKBOOK

(

(

MacApp Cookbook Draft 1 1126189

Creating a scrolling window

cross-reference to scrolling chapter

Creating a palette window

Some applications require a window that contains two views. The DrawShapes sample program
is an example; the palette is one view and the drawing area is another. Other applications
require windows with two equal areas or with three or more areas.

The areas within windows that allow subviews to be scrolled are called scrollers and are objects
of type TScroller. In general, a simple palette window will have two subviews not counting scroll
bars: the palette view and a scroller view. The scroller view will have one subview-the view that
contains the picture that the scroller will scroll. However, you can have as many subviews as you
wish within a window, of class scroller or not, and these may each hav~ their own subviews.
Typically, all the views in a window share the same document object.

If you want a simple window with a palette (or any nonscrollable and noilresizable area) and a
display area, follow the directions in this recipe.

The characteristics of a window created using the NewPaletteWindow global function used in
this recipe are as follows:

• The window contains two subviews: a main view and a palette view.

• The main view may be scrollable, depending on the values passed. (In the template version,
the main frame is scrollable.) It is resized along with the window.

• The palette view is not scrollable and is of a fixed size in one direction, while it takes up the
width or height of the window in the other direction.

• The palette can be vertically or horizontally oriented, depending on the value of the last
parameter of NewPaletteWindow. If you need to create a window of a different form, see
the "Creating a Window With Two or More Main Views" recipe.

+ Note: You need to have a window resource in your resource file. See the sample program's
resource files for examples of window resources.

CHAPTER 37 Wmdows 267

MacApp Cookbook Draft 1 1/26189

1. Create a view object type for the main view and the palette view as described in the
"Creating a View" recipe. You do not have to worry about creating the scroller superview of
your main view or the scroll bar views if your main view is to be scrollable-MacApp does
that for you.

2. Add two fields to your document object type to store references to the view objects for
the document. The template for this recipe assumes the fields are fMainView and
fllaletteView. (If you have additional views, you may want to store them in a list object
instead of individual fields.)

3. Define a constant for the fixed dimension of the palette. In the template, it is called
kPalette Width.

4. Override TY ourDocument.DoMake Views to create your views. In that method, create and
initialize the views, and then store them in the fields you've added to your document. (See
the "Creating a View" recipe.) This method is called by MacApp just before it calls
DoMakeWindows.

268 MACAPP COOKBOOK

/ "',

(·.

MacApp Cookbook Draft 1

5. Override DoMake Windows for your document. The interface of this method is
TYourDocument.DoMakeWindows; OVERRIDE;

In your implementation, you first call NewPaletteWindow, the MacApp global function that is
the key part of this method. NewPaletteWindow creates a Window Manager window with the
requested characteristics, creates two frames, installs your views in the frames, and installs the
window object in the document.

The interface of NewPaletteWindow is
FUNCTION NewPaletteWindow(itsRsrcID: INTEGER;

wantHScrollBar, wantVScrollBar: BOOLEAN;
itsDocument: TDocument
itsMainView: TView; itsPaletteView: TView;
sizePalette: INTEGER;
whichWay: VHSelect) : TWindow;

1/26189

The itsRsrcID parameter gives the resource ID used to determine the window template for the
window. O'he window template defines the window's general appearance, including whether or
not the window has a size icon, a close box, and a zoom box, and the appearance of the title
buJ ·

The next two parameters, wantHScrollBar and wantVScrollBar, tell whether or not you want
scroll bars for the main part of the window. The palette portion never gets scroll bars. Use the
kWantHScrollBar and kWantVScrollBar predefined constants· here, preceded by NOT if you
don't want the scroll bars.

The itsDocument, itsMainView and itsPaletteView parameters are self-explanatory.

The sizePalette parameter gives the size of the palette view (not counting borders) in the
direction specified by the which Way parameter (see the next paragraph). In other words, if the
palette is at the left of the window, this is the width of the view; if the palette is at the top of
the window, this is the height of the view. This size is fixed. (If the window is made smaller or
larger in the specified direction, only the main view gets larger.) The size of the palette in the
other direction is the full size of the window and can vary.

The which Way parameter tells where in the window the palette frame is located. There are two
choices: kLeftPalette and kTopPalette.

CHAPTER 37 Windows 269

MacApp Cookbook Draft 1

PROCEDURE TShapeDocument .DoMakeWindows; OVERRIDE;

VAR aWindow: TWindow;

BEGIN

a Window : = NewPaletteWindow (kIDStdWindow,

kWantHScrollBar, kWantVScrollBar,

SELF, fMainView, fPaletteView,

kPaletteWidth, kLeftPalette);

END;

Creating a window with two or more main views

Some applications require a window that contains two main views. The DrawShapes sample
program is an example; the palette is one view and the drawing area is another. Other
applications require windows with two equal areas or with three or more areas.

If you want a simple window with a palette (or, more precisely, with any nonscrollable and
nonresizable area) and a display area (which may or may not be scrollable and resizable), you
can probably use the NewPaletteWmdow global function provided by MacApp. See the.
"Creating a Palette Window" recipe for details on creating a window us~g that function. This
recipe describes how to create a window with two views in a more general way that can be
adapted to any number of views, any of which may be scrollable and resizable.

+ Note: You need to have a window resource in your resource ftle. See the sample program's
resource files for examples of wiridow resources.

1/26/89

You know how to create a simple window that contains a single main view before you use this recipe. See
the "Creating a Wmdow'' recipe.

1. To create more than one view, you usually have a view object type for each kind of view.
See the "Creating a View" recipe.

2. Create a field or a number of fields in your document to store references to the view objects
for the document. The templates for this recipe assume that there are two views, stored in
the document fields fFirstView and fSecondView.

3. Implement the lYourDocument.DoMakeViews method to create your views. In that
method, create and initialize the views, and then store them in the fields you've added to
your document. See the "Creating a View" recipe. This method is called by MacApp
immediately before it calls DoMakeWmdows.

270 MACAPP COOKBOOK

\.'". ,./

(

MacAppCookbook Draft 1

4. Implement DoMakeWindows for your document. The interface of this method is

TYourDocument.DoMakeWindows; OVERRIDE;

In this method, you will need to create scroller views to be superviews of any scrollable
views, but subviews of the window. The scroll bars will be created by MacApp when you
create the scrollers. The example in the template shows how to implement this method.

1/26189

5. To implement this method, you must create the window you need. For every scrollable view
in a window, you need to create a scroller and associate each view with its scroller. (You can
also associate different views with a single scroller at different times.) When you initialize
each scroller, you give a point that defines the initial size of the scroller. Depending on the
size determiners passed to IScroller, the scroller may automatically change size when the
window changes size. (You can have views that do not have associated scrollers, but they
cannot be scrolled.)

The example in the template shows how to implement this method.

Your resource file must contain a window template for use by this method. See the "Creating
a Window'' recipe for a discussion of window resources.

6. Though MacApp may change the size of scrollers automatically (when one of its size
determiners is sizeSuperView or sizeRelSuperView), MacApp never changes the location of a
view automatically. If you want the top-left comer of a scroller to move when the window is
resized, you must override the scroller's SuperViewChangedSize method. There you would
compute the scroller's new location and size and call its Locate and Resize methods to move
the scroller and set its size. See the MacApp source code and the Display Architecture ERS
for further details.

CHAPTER 37 Windows 271

Mar.App Cookbook

FUNCTION TYourDocument.DoMakeWindows;
VAR aWmgrWindow: WindowPtr;

aWindow: TWindow;
firstScroller,
secondScroller: TScroller;
canResize: BOOLEAN:
canClose: BOOLEAN;
tempLocation: VPoint;
tempSize: VPoint;

BEGIN

Draft 1

aWmgrWindow : = gApplication. GetRsrcWindow (NIL, kYourWindowRsrcID,
canResize, canClose);

FailNIL(aWmgrWindow);
{ The NIL is in place of a pointer to a space to hold the Window Manager

window definition. When a NIL is passed, MacApp uses a pointer to
a heap block it has allocated. canResize and canClose are returned by
GetRsrcWindow according to the specifications of the window resource.}

New(aWindow);
FailNIL(aWindow);
aWindow.IWindow(SELF, aWmgrWindow, canResize, canClose, TRUE);
{Among other actions, installs window in the document.}

{ Create the first scroller. }
SetVPt (tempLocation, left, top); {upper left corner of first view}
SetVPt (tempSize, width, height); {dimensions of first view}

New(firstScroller);
FailNIL(firstScroller);

{you should supply width and hieght}

firstScroller.IScroller(aWindow, tempLocation, tempSize,
sizeFixed, sizeFixed, O, O,

kWantHScrollBar, kWantVScrollBar);

1/26189

{If you don't want scrolling or resizing, precede the constants with NOTs.}
firstScroller .AddSubView(fFirstView.);

{ Create the second scroller. }
SetVPt (tempLocation, left, top); {upper left corner of second view}
SetVPt (tempSize width, height); {dimensions of second view}

{you should supply width and hieght}
New(secondScroller);
FailNIL(secondScroller);
secondScroller.IScroller(aWindow, tempLocation, tempSize,

sizeFixed, sizeFixed, 0, O,
kWantHScrollBar, kWantVScrollBar);

{If you don't want scrolling or resizing, precede the constants with NOTs.}

'Z72 MACAPP COOKBOOK

/
I

(

Mac.App Cookbook Draft 1

secondScroller.AddSubView(fSecondView);
{Follow the same pattern for each view.}
aWindow.SetTarget (fFirstView); {The target might be a different view.}

1/26/89

{ You may have additional code here to restore a saved window state. See the

"Creating a Window" recipe. }
END;

Creating a document with two or more windows

Some applications display two or more views of a document's data at one time. When you want
to display two separate views, whether of a single set of data or of separate data sets, you can
display them in two subviews of a single window or in two separate windows. This recipe
describes how to display two different views of the same data in separate windows. (If you
want to display two or more main subviews in a single window, see the "Creating a Window With
Two or More Main Views" recipe.)

You should be familiar with the "Creating a Window" recipe, which describes how to create the
simplest kind of window.

1. You must have at least one view for each window. The views are normally of different types,
although they can be of the same type. See the "Creating a View'' recipe in Chapter X,
"Views".

2. Create a field or a number of fields in your document to store references to the view objects
for the document. You may want to use individual fields for each view, or use a list object
to hold all the views. The template for this recipe assumes that there are two views stored in
the document, named fFirstView and fSecondView.

3. Implement a TYourDocument.DoMakeViews method to create your views. In that method,
create and initialize the views, and then store them in the fields you've added to your
document. See the "Creating a View" recipe.

4. If you want the windows to be spread evenly around the screen, create a window resource
for each of your windows and define a constant for each resource. In the template, the
constants are kWindowlKind and kWindow2Kind. Part of the window resource definition
defines the four comers of the window in screen coordinates. After you create the window,
you can move it around the screen using the Window Manager procedure MoveWindow;
similarly, you can resize the window using the TWindow.Resize method. You may also want
to use SimpleStagger and AdaptToScreen. See the template for the "Creating a Window"
recipe for more information.

CHA.PTER 37 Windows T!3

Mac.App Cookbook Draft 1

5. Override TDocument.DoMakeW111dows for your document. The interface is
PROCEDURE TYourDocument.DoMakeWindows; OVERRIDE;

1/26189

In your implementation, begin by creating a window for each view. In the template code for
this method, this is done with calls to NewSimpleW111dow.

PROCEDURE TYourDocument. DoMakeWindows; OVERRIDE;

VAR windowl, window2: TWindow;

BEGIN
windowl : = NewSimpleWindow (kWindowlKind,

kWantHScrollBar, kWantVScrollBar,
fFirstView);

{ See the "Creating a Window" recipe for details on this call.}
window2 : = NewSimpleWindow (kWindow2Kind,

kWantHScrollBar, kWantVScrollBar,
fSecondView);

{ You may have additional code here to restore a saved window state.

See the "Creating a Window" recipe. }
END;

Creating a window with multiple scrollable views that resize with the

window

-Possible submission from the recipe contest-

?74 MACAPP COOKBOOK

