& Macintosh®

MacApp
Cookbook

Apple Programmer’s and Developer's Association

MacApp Cookbook Draft 1 1/26/89

Contents

Figures and tables ii

Preface About the Cookbook 1

About this book 1

Other materials you'll need 1

How to use this book 2

What it contains 2

Visual cues 2

Roadmap to the MacApp documentation suite 3

Chapter 1 Introduction to the Cookbook 5
A MacApp translation guide 5

Chapter 2 The Apple Menu 6

2.1 Creating an “About Your Application” entry 6
2.2 Creating a separate “About ...” resource 6
2.3 Animating the “About ..” entry 6

Chapter 3 AppleTalk, Multiuser, and Network Considerations 7

Using 10 completion routines 8
Leaving files open for other users 8

Chapter 4 Applications 9

3.1 Creating objects: an overview 9
3.2 Creating an application 10

MacApp Cookbook

Draft 1 1/26/89

Step1 Initializing the Toolbox 11

Step 2 Initializing printing 12

Step 3 Assigning the application signature and the main file type 13
Step 4 Declaring a subclass of TApplication 13

Step 5 Defining your application initialization method 14

Step 6 Instantiating your application class 14

Step 7 Calling your initialization method 15

Step 8 Calling the Run method 15

Continuing from here 15

3 3 Opening an application without opening a document 16

Chapter 5 Browser

17

Chapter 6 The Clipboard and Cut, Copy, and Paste 19
Creating a Clipboard view 20
Run-time summary of creating a clipboard view 20
Overview of your responsibilities 21

Step 1
Step 2

Step 3.
Step 4.
Step 5.
Step 6.
Step 7.
Step 8.
Step 9.

Define a handle type 21

Define a resource type 22

Override MakeViewForAlienClipboard 22

Override methods for your Clipboard view type 23

Override the ContainsClipType method 23

Override the GivePasteData method 23

Override TView.WriteToDeskScrap for your Clipboard view 25
Create a Clipboard document, if desired 25

Add a Show Clipboard menu item to your resource file 25

Continuing from here 27
Supporting Cut and Copy commands 28

Supporting the Paste command 29
Step 1 Call the global procedure CanPaste 29
Step 2 Define and create a paste command object 29
Step 3 Retrieve the data to be pasted 30
Continuing from here 30

Supporting a private scrap type 31

ii MACAPP COOKBOOK

MacApp Cookbook

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Draft 1

Collections 33

Color 35

Compatibility 37

Checking system software 38

Checking hardware 38

Future compatibility rules 38

Converting from MacApp 1.1 to MacApp 2.0 38

Unit dependencies 40

Debugging 40

Document changes 41

View changes 42

Windows 43

Your views 43

TEViews and Dialog Boxes 44

Command objects 44
ICommand 44

Tracking methods 44
Editing commands 45

Controls and Control Views 47

Cursors 49

Changing the Cursor Shape 50
Cursor region 50

Debugging in MacApp 51

Writing a Fields Method 52
Step 1 Declare a Fields method for your document class 52
Step 2 Define the Fields method 52

CONTENTS

1/26/89

MacApp Cookbook

iv

Draft 1

Step 3 Call Inherited DoToFields 53
Step 4 Conditionally compile the Fields method 54

Chapter 13 Dialogs 55

Chapter 14

Creating a modeless dialog 56

Run-time summary of creating a modeless dialog 56
Overview of your responsibilities 57

Step 1 Include UDialog 58

Step 2 Call InitUDialog 58

1/26/89

Step 3 Define your dialog view as a subclass of TDialogView 59

Step 4 Create the dialog view and the dialog window

Step 5 Install the controls. 59

Step 6 Set the window title 59

Step 7 launch the window 59

Step 8 Override the DoChoice method 60
Step 9 Implement a command object, if desired

Closing a modeless dialog 60
Creating a modal dialog 62

Run-time summary of creating a modal dialog 63
Overview of your responsibilities 63

Step 1 Include UDialog 64

Step 2 Define a method that displays the dialog 64
Step 3 Implement PoseModalDialog 64

Using dialog items 65

Creating buttons 66

Creating radio buttons 67

Making a default button 67

Creating check boxes 67

Handling scroll bars 67

Handling double clicks in scrolling list in a modal dialog

Continuing from here 68

Documents and Files 69
Creating a document 71

MACAPP COOKBOOK

59

60

67

-

MacApp Cookbook

Draft 1 1/26/89

Run-time summary of creating a2 document 71
Overview of your responsibilities 73

Step 1
Step 2
Step 3
Step 4
Step 5
Step 5
Step 7

Declare the file type as a constant 74
Overriding DoMakeDocuments 74

Declaring a subclass of TDocument 76
Defining your document initialization method 77
Defining your DolnitialState method 78
Defining your Free method 79

Defining your Fields method 80

Continuing from here 81
Run-time summary of saving and restoring data 83
Overview of your responsibilities 84

Step 1 If desired, change the value of fSavePrintlnfo 85
Step 2 If desired, change the value of fSaveInPlace 85
Step 3 Override DoNeedDiskSpace 86
Step 4 Override DoWrite 88
Step 5 Override DoRead 89

Saving different typs of items 90

Opening an existing document 91

Closing a document 91
Saving the display state 91
Importing and exporting data 95

Caching data

95

Handling multiple file types 95

Chapter 15 Drawing and Highlighting 97
Optimizing drawing 98

Chapter 16

Error and Failure Handling 103
Checking for failures 104

Step 2
Step 3
Step 4
Step 5

Post your exception handler 106

Call FailNil, FailOSErr, FailMemEtr, or FailResERr 106

Set the error message in your exception handler 107
Handle errors during the creation and initialization of objects

CONTENTS

108

MacApp Cookbook

vi

Chapter 17

Chapter 18

Chapter 19

Chapter 20

Chapter 21

Chapter 22

Chapter 23

Draft 1 1/26/89

Event Handling 109

The event-handling classes 110

The Command Chain 110

Changing the command chain 111

Is this important? Does it belong here or in menus? 113

Grids, Lists, and Palettes 115

Icons " 117 ,

Creating an icon resource 118

Retrieving an icon resource into memory 118
Keyboard Handling 119

Handling DoKeyCommand 120

Languages 121
Localization 123

Memory Management 125

Permanent and temporary memory 126
Allocating both permanent and temporary memory 127
Reserving temporary memory 127
Using the debugger’s high water mark 128
Using the low space reserve 130
Using the seg! and mem! resource types 131
MacApp resource lists 132
Segmenting Your Application 133
Using the res! resource type 134

MACAPP COOKBOOK

MacApp Cookbook

Draft 1 1/26/89

Chapter 24 Menus and Menu Commands 135

Chapter 25

Implementing simple menu commands 136

Run-time summary of implementing simple menu commands 136

Step1 Add the menu items and the command numbers to your resource file
137 '

Step 2 Decide which object should handle the command 139

Step 3 Implement the DoMenuCommand method for the appropriate object
139

Step 4 Override DoSetupMenus to enable the new menu items 141

Maintaining the menu bar and enabling your menu items 142
Step 1 Enable appropriate commands 143
Step 2 Override DoMenuCommand to check for the new menu items 144
Step 3 Override Dolt 145
Changing menu appearance and function 146
Step1 Changing the text of a2 menu item 146
Step 2 Changing the font style of a menu item 147
Step 3 Displaying an icon in a menu item 147

Handling negative command numbers 147

Step1 Implement DoMenuCommand 148

Step 2 Implement DoSetupMenus 148

Step 3 Implement a Font menu, if desired 149
Dynamically changing a popup or pulldown menu 150
Creating menus outside of MacApp 150
Continuing from here 151

Mouse Operations 153

Command objects and mouse tracking 155
Tracking the Mouse 155
Run-time summary of tracking the mouse 156
Overview of your responsibilities 156
Create a subclass of TCommand 157
Initialize the command object 157
Override DoMouseCommand 158
Change the visual feedback, if desired 159

CONTENTS vii

MacApp Cookbook

Draft 1 1/26/89

Providing visual feedback 160

Constrain the activity of the mouse, if desired 161
Override TrackMouse 162

Tracking the mouse 164

Selecting
Step 3.

165 A
Record what objects (or parts of objects) are selected. 167

Writer's note: page numbers are off from here on. I have fixed the first page
of the remaining chapters for ease of use.

Step 4 Define and implement a command object to handle selection. 168
Dragging 171
Step 1 Create a dragger object in DoMouseCommand 171
Step 2 Implement the dragger object 171
Step3 Add a dragging field to your view 172
Step 4 Define a command constant for the dragging command 173
Step 5 Test whether the dragging field is TRUE and the item is currently selected
173
Step 6 Implement IDragger 173
Step 7 Implement TrackFeedback 173
Step 8 Add a prepare-to-drag method to the view 174
Step 9 Implement TrackMouse 174
Step 10 Implement the Dolt, Undolt, and Redolt methods 175
Drawing with the mouse 178
Step 1 Create a sketcher command object in DoMouseCommand 179
Step 2 Use the sketcher object to track the mouse 179
Step 3 Override TrackFeedback, if desired 180
Handling several types of mouse events 181
Chapter 26 MPW and MacApp 187
Creating a MakeFile for applications 188
Creating a MakeFile for libraries 188
Using MABuild 188

viii

Building a separate utility library 188
Using creator types 188

MACAPP COOKBOOK

MacApp Cookbook Draft 1 1/26/89

Chapter 27 Multifinder and Background Operations 189

Running in the background 188

Creating a background application 189

Communicating with other processes 189

Creating an idle time sorter 189

Monitoring events during batch processing 190

Finding out if MultiFinder is running 190

Testing for command-period 191

Chapter 28 Performance Tips 195
Optimizing compiling 194
Optimizing linking 194

Chapter 29 Printing 197
Enabling printing 196
Standard print handling 196
Changing the margins 198

Chapter 30 Resources 203

Chapter 31 Scrolling 205

Scroller views 204
Creating a scroller 204
Step 1 Add a scroller view to your view template hierarchy. 205

Handling scrolling in lists 209

CONTENTS ix

MacApp Cookbook

X

Chapter 32

Chapter 33

Chapter 34

Chapter 35

Draft 1 1/26/89

Sound 213
Text Editing 215
Toolbox and MacApp 221

Undo 223

Implementing undoable menu commands 222
Run-time summary of implementing Undo 222
Overview of your responsibilities 222

Step 1 Define and initialize a command object as a subclass of TCommand
223

Step 2 Return that command object in response to a menu command 224
Step3 Override the Dolt method 224
Step 4 Override the Undolt method 224
Step 5 Override the Redolt method 224
Creating filtered commands 225

Step 1 Record which items in the document’s data set were changed by the
command 225

Step 2 Mark the changed items and invalidate the images of the items 225
Step 3 Check the changed items and alter the way the data is displayed 226
Step 4 Make the actual changes in the Commit method 226

Chapter 36 Views 231

Creating a view by using view templates 233
Run-time summary of creating a view using templates 233
Overview of your responsibilities 234
Step1 Define a specialized view class 234
Step 1 Define the new view class 236
Step 2 Implement the IRes method 237
Step 2 Implement the IRes method 237
Step 3 Implement your Draw method 238

MACAPP COOKBOOK

e

MacApp Cookbook

Draft 1 1/26/89

Step 4 Implement the CalcMinSize method 239
Step 5 Add the view to your view template hierarchy 241
Initializing views from templates 242
Reading a specialized view 243
Creating a view 244
Initializing a view 246
Creating view templates 247
Creating and initializing a view using templates 252
Focusing a view 254

Showing a reduced view 254
Changing the size of a view 255
Forcing a view to redraw 255
Freeing reuseable views 256

Chapter 37 Windows 261

Creating a window procedurally 260
Creating a scrolling window 263
Creating a palette window 263

Creating a window with two or more main views 267
Creating a document with two or more windows 270
Creating a window with multiple scrollable views that resize with the window

CONTENTS

xi

271

MacApp Cookbook Draft 1

Figures and tables

1/26/89

CHAPTER X Writer's notes: these are accurate, but are included for place-holding

purposes / nn

Figure X-X figtitle_c9 / nn
Table X-X tabletitle_¢9 / nn

PREFACE About the Cookbook / 1
Table P-1 Answers to questions in the MacApp suite / 3

CHAPTER 1 Introduction to the Cookbook 5
Table 1-1 MacApp Cookbook topic guide 5

CHAPTER 6 The Clipboard and Cut, Copy, and Paste 19
Figure 6-1 MacApp’s actions in relationship to this recipe 20

CHAPTER 13 Dialogs 55

Figure 13-1 MacApp's actions when creating a modeless dialog 56
Figure 13-2 MacApp’s actions when creating a modal dialog 63

CHAPTER 14 Documents and Files 9

Figure 15-1 MacApp’s actions in relationship to this recipe 72
Figure 15-2 MacApp's actions when saving or restoring a document

CHAPTER 24 Menus and Menu Commands 135
Figure X-1 MacApp’s actions in relationship to this recipe 136

CHAPTER 25 Mouse Operations 153

12 MACAPP COOKBOOK

83

MacApp Cookbook Draft 1

Figure 27-1 MacApp’s actions in relationship to this recipe

CHAPTER 35 Undo 221
Figure X-1 MacApp’s actions in relationship to this recipe

CHAPTER 36 Views 229
Figure 36-1 MacApp’s actions in relationship to this recipe

156

222

233

CONTENTS

1/26/89

13

MacApp Cookbook Draft 1 1/26/89

Preface About the Cookbook

] write this after I know what I have written***

About this book

The MacApp Cookbook is a manual for programmerswho wish to develop Macintosh applications
using MacApp. (and so on)

Other materials you’ll need

The software described in this book is part of MacApp, version 2.0, and requires Object Pascal,
version X.X, and MPW, version 3.0. MacApp, MPW, and Object Pascal are available from APDA
(Apple Programmer’s and Developer’s Association).

MacApp Cookbook Draft 1 1/26/89

How to use this book

This book shows you how to accomplish certain programming tasks using MacApp. As its name
implies, the book has been conceived of as a cookbook, which is usually a collection of step-
by-step procedures that show you how to accomplish the task of cooking a certain food. The
MacApp Cookbook thus also uses the term recipe to describe the set of actions necessary to
accomplish a given task.

The recipes are described in a conceptual order, which of course is not the only possible order—
you can actually write the steps in any order—but does give you a step-by-step way of
- approaching the task.

What it contains

mini-description of chapters

Visual cues
Certain conventions in this manual provide visual cues alerting you, for example, to the
introduction of a new term or to especially important information.

When a new term is introduced, it is printed in boldface the first time it is used. This lets you
know that the term has not been defined earlier and that there is an entry for it in the glossary.

Special messages of note are marked as follows:
¢ Note: Text set off in this manner—with the word Note—presents extra information or

points to remember.

2 MACAPP COOKBOOK

MacApp Cookbook Draft 1 ’ 1/26/89

A Important Text set off in this manner—with the word Importani—presents vital
information or instructions. a

" Roadmap to the MacApp documentation suite

Essentially, the books in the MacApp suite divide themselves based on how much of the object-
oriented/Macintosh/MacApp language you know, as follows:-

= If you don't know anything about object-oriented languages, read Introduction to Object-
Oriented Programming. This book contains Tutorial introduces object-oriented
programming concepts in the context of a sample application. This book answers most of
your questions that begin with “What are they talking about, anyway. . .”

» If you know something about object-oriented languages, but don’t know MacApp, read
Introduction to MacApp. This bookintroduces object-oriented programming concepts in
the context of a sample application. This book answers most of your questions that begin
with “What is whatchamacallit. . ", where whatchamacallit is replaced with any term from
the MacApp world - Ay, and there’s the rub—how does the programmer know which
book to look in for what?

= If you have some experience with MacApp, but need help with a specific procedure, read
the Cookbook. The Cookbook will answer most of your questions that begin with “How do
L.”

» If you're looking up a method, see the Method reference and the MacApp source code.

Some examples of the questions that the books answer are shown in Table P-1.

n Table P-1 Answers to questions in the MacApp suite

Question Book

What is an object class? Or an object instance? Introduction to OOP

PREFACE About the Cookbook 3

MacApp Cookbook

What are the most important classes that I
absolutely have to know about?

What methods are available in the XXXX unit?
How do I debug my application?

How do I use the View Editor?
How do I install MacApp?

How do I find out about MPW?

What parameters does the XXX method have?

*‘etC.‘**

4 MACAPP COOKBOOK

Draft 1 1/26/89

Introduction to MacApp?

Method Reference

Some specific techniques in the Cookbook; the
Debugger is described more completely in the General
Reference Manual.

1BD

Step-by-step in Tutorial; brief overview in Cookbook,
complete information where?

Specific technigues in Cookbook, complete
information in MPW Reference suite

Some in Cookbook, complete information in
Encyclopedic reference

MacApp Cookbook Draft 1 1/26/89

Chapter 1 Introduction to the Cookbook

] write this after I know what the book contains***

A MacApp translation guide

The following table attempts to answer the question “What concepts do I need to understand
in order to accomplish a Macintosh programming task, what does MacApp call that concept,
and where is it documented?”

Possibly combine this table and the
one in the Preface??

= Table 1-1 MacApp Cookbook topic guide

Macintosh terms MacApp terms Documented in:

Controls Specialized types of views Dialog chapter in MacApp Cookbook

Dialogs Same as a window Dialog chapter in Cookbook

Events Applications, Mouse operations, Keyboard Handling

Windows Windows and Views Windows and Views chapters in
Cookbook

Undo Undo, command objects Undo chapter, Menu chapter

*#¥ateo ¥4 :

MacApp Cookbook Draft 1

Chapter 2 The Apple Menu

No recipes yet*

1/26/89

21 Creating an “About Your Application” entry

22 Creating a separate “About ...” resource

23 Animating the “About ...” entry

,.f M\‘
N/

MacApp Cookbook Draft 1 1/26/89

Chapter 3 AppleTalk, Multiuser, and Network
Considerations

No recipes yet

MacApp Cookbook Draft 1 1/26/89

Using I0 completion routines
(MacApp$, 5-27-88) Does this belong here?
Leaving files open for other users
(or maybe in a chapter called
Multifinder and Multiuser
considerations?)

8 MACAPP COOKBOOK

MacApp Cookbook

Chapter 4

Draft 1 1/26/89

Applications

definition of an application-explanation of application object

basic getting started sectionTo build a MacApp program, you need the following five

files:

Mappname.p Pascal source to main program.

Uappname.p Interface to the unit that will contain the object definitions.

Uappname.incl.p Contains the implementation of the objects defined in
Uappname.p.

appname.r The Rez file defining the resources of the application.

appname.make Contains the build rules used by Make.

MacApp includes object classes with methods that handle events in a simple, general
way. Your job when you are creating a MacApp application is to create new classes that
override the methods you want to implement differently. In order to create a working
MacApp application, you must override some classes and methods, and may override
others if you desire to change the way that they function.

3.1 Creating objects: an overview

Should this section go here? Or
maybe in “Object-Oriented
Concepts?”

Whenever you create an object in MacApp, you must make an actual object instance of an
object class. The object instance then exists in memory until you remove it. In order to create
an object instance, you generally take the following steps:

MacApp Cookbook Draft 1 1/26/89

e

1. Declare a variable that will reference the object. the object reference variable. (Remember
that in MacApp object references are actually handles pointing to the object.)

2. Use the Object Pascal procedure New to allocate an object for it to reference. This works
much the same way as using New to allocate memory for a pointer to reference. The New
routine, however, can fail. For example, there might not be enough memory to allocate for
your object. In this case, New returns nil as the value in your object reference variable.

3. After you have attempted to instantiate your application object using the New procedure,
you should check to see whether it worked or whether nil was returned. If nil was returned,
then your application should fail gracefully. MacApp provides all of this functionality in the
routine FailNil. You should call FailNil every time you use the New procedure. If the New
procedure failed, your application has run out of memory and your request cannot be
satisfied.

Chapter X examines some methods of memory management to avoid running out of memory.

3.2 Creating an application

When you create an application in MacApp, you fill in the main routine in which you intialize
MacApp, create an application object , and then call that object’s Run method. The Run
method then calls MacApp’s code, which receives and analyzes events, such as mouse clicks and
key presses. After each event has been analyzed, MacApp’s code selects a particular object to
handle the event, and then sends that object a message requesting that it handle the event.

What MacApp provides for you for at each step, the actions you must take, and when MacApp
will call the methods you define or override are summarized in Table X-1. Each of the steps is
explained in detail in the recipes that follow.

10 MACAPP COOKBOOK

MacApp Cookbook

a /(f Fon
s Table 15-1 Overview: creating a ef:;umen :

Draft 1

1/26/89

Step Your action:

Because:

1. In your Main routine, call InitToolbox and
supply the number of master pointers your
application needs.

2. If your application supports printing, call
InitPrinting in your main routine.

3. Assign an appropriate value to the kSignature
constant in your interface file.

4. Declare your own subclass of TApplication.

5. Define your own initialization method as part
of your TApplication subclass. Normally, your
initialization should also call the IApplication
method.

6. Instantiate your application class by declaring
a global reference variable, calling the Object
Pascal New procedure, and calling the MacApp
FailNil procedure.

7. Initialize your application object by calling
your initialization method.

8. Call the TApplication Run method.

MacApp provides routines that initialize the
Macintosh toolbox.

MacApp provides routines that initialize printing,

MacApp provides methods that call for a string
constant to determine the application signature for
an application object.

MacApp provides a TApplication class that, as a
subclass of TEvtHandler, assigns events to the
instances that need to handle them.

MacApp provides a TApplication .IApplication
initialization method that initializes the fields of
application objects inherited from TApplication.

MacApp provides a FailNil procedure that checks if
memory was allocated for the instance of an object.

MacApp provides (anything here???)

MacApp provides a TApplication Run method that
starts the main event processing loop.

Step 1 Initializing the Toolbox

InitToolbox initializes the Macintosh Toolbox, and many parts of MacApp, including support
for the debugger and memory management. You must call this procedure (it is a standard Pascal
procedure, not a method) at the beginning of your application’s main routine.

CHAPTER 4 Applications 11

MacApp Cookbook Draft 1 1/26/89

InitToolbox also calls the Macintosh Memory Manager routine MoreMasters to ensure that
enough master pointers have been allocated. MoreMasters allocates space for an extra forty (?77)
master pointers. InitToolbox calls MoreMasters as many times as you specify in the parameter
callsToMoreMasters. For more details about the MoreMasters routine, see Chapter X, “Memory
Management.” :

PROGRAM IconEdit;

USES
{$LOAD MacIntf.LOAD}
MemTypes, QuickDraw, OSIntf, ToolIntf, PackIntf,
{$LOAD UMacApp.LOAD}
UMAUtil, UViewCoords, UFailure, UMemory, UMenuSetup, UObject, UList,
UAssociation, UMacApp,

{SLOAD}
UPrinting,
UIconEdit;
VAR
gIconEditApplication: TIconEditApplication;
BEGIN
InitToolbox (8) ; { Initialize ToolBox & MacApp with 8 calls to MoreMasters. }
InitPrinting; : { Initialize printing. }
New(gIconEditApplication) ; { Create a new TIconEditApplication object. }

FailNIL(gIconEditApplication);{ Make sure it didn't fail. }
gIconEditApplication.IIconEditApplication(kFileType) ;

gIconEditApplication.Run; { Run the application. When it's done, exit. }
END.
Step 2 Initializing printing

Since not all MacApp applications print, InitToolbox doesn't initialize the MacApp printing
facilities. If you want to use these printing facilities, take the following steps:

1. Include MacApp’s UPrinting unit.
2. Call the InitPrinting routine, which initializes the MacApp printing facilities.

12 MACAPP COOKBOOK

MacApp Cookbook Draft 1 1/26/89

Step 3 Assigning the application signature and the main file type

The IApplication method takes one parameter: an OSType named itsMainFileType. OSType is
a type defined by the Macintosh toolbox as:
TYPE OSType = PACKED ARRAY[1..4] OF CHAR;

OSType is the Pascal type for application signatures and file types. Some examples of valid
OSTypes are 'MyAp' and 'docu'. To ensure that the Finder properly recognizes your
application’s documents, you must specify an OSType when you call IApplication. MacApp
handles the rest. For example, if you call

IApplication(‘myfl');

then your application’s main file type would be 'myfl'. Using this identifier, MacApp ensures
that the Finder can now keep track of your application’s documents. Under normal
circumstances, you declare this identifier as the kFileType constant in your interface file.

You will send this constant as the parameter to IApplication. MacApp then ensures that your
application and its documents are properly identified for the Finder.

Another important identifier that the Finder requires is the application signature. Like
kFileType, you will also make this identifier a constant in your program, this time called
kSignature. kSignature should also be an OSType; that is, shoud! also be a packed array of four
characters, such as 'ICED'.

Step 4 Declaring a subclass of TApplication

MacApp provides the predefined application class TApplication. You must define your own
subclass of TApplication, and use that subclass to create your application object instance.

+ Note: Defining a subclass in this way allows your application object to inherit all of the
functionality that comes with the TApplication class, but also allows you to alter that
functionality to suit the purposes of your specific application. For more information on
subclasses and overrides, see Chapter X, “Object-Oriented Concepts,” and Introduction to
MacApp.

CHAPTER 4 Applications 13

MacApp Cookbook Draft 1 , 1/26/89

To define a subclass of TApplication, called TIconEditApplication, for example, you must at
least include lines like the following in your interface file:
TIconEditApplication = OBJECT(TApplication)

END;

Step 5 Defining your application initialization method

To create an initialization routine for your application, take the following steps:
1. Declare your own initialization method

2. Define the behavior of your initialization method. Normally, you will call the initialization
method for IApplication, to initialize the fields for that object.

The following sample code from UlconEdit.inc1.p illustrates these steps.

{....1in the interface unit}
TIconEditApplication = OBJECT (TApplication)
procedure TIconEditApplication.IApplication(itsMainFileType : OSType):

{....in the implementation unit}
PROCEDURE TIconEditApplication.IIconEditApplication(itsMainFileType: OSType):
BEGIN
IApplication(itsMainFileType);
END;

Step 6 Instantiating your application class

In your main program, you must make an actual object instance of the application. To do so,
take the following steps:

1. Declare an object reference variable. Since this variable needs to be accessed in the main
routine, it must be a global variable. '

2. Allocate an object for the variable to reference by using the Object Pascal procedure New.
3. Call the MacApp FailNil procedure to check if the New routine worked.

14 MACAPP COOKBOOK

/("” T

\Y
N S

MacApp Cookbook Draft 1 1/26/89

For more information about making an actual object instance, see Chapter X, “Where in heck
do we want to put this information?”

Step 7 Calling your initialization method

Should this information be included in defining?

Step 8 Calling the Run method

When you call this method, you hand control of your program over to MacApp. The Run method
basically checks for a few strange situations and then calls TApplication.MainEventLoop. From
there, MacApp code takes over, polling for events, analyzing what type of event was found,
determining which object should handle the event, and then passing the event to that object.
This pattern then repeats until the Quit command is received.

You call the Run method of your application object as the last thing in your main routine.
MacApp handles the flow of control after that. After you call Run, MacApp handles most events
for you, and you only have to create objects to handle the events that MacApp’s code cannot
handle alone.

Continuing from here

Forward references to the rest of the chapter.*
Define your menu resources.see Chapter X, “Menus,”

Create your documents and display views of those documents; see Chapter X, “Documents,”
Chapter X, “Views,” and Chapter X, “Windows.” '

Building your application; see Chapter X, “MPW and MacApp,” and what other ***MacApp
documents?***

CHAPTER 4 Applications 15

MacApp Cookbook Draft 1 1/26/89

g\\wv
3.3 Opening an application without opening a document
MacApp’s default behavior is to open a document named “Untitled” whenever an application is
opened. To change this default behavior, you need to override
TApplication. HandleFinderRequest **and do what??22*+*
16 MACAPP COOKBOOK
=

MacApp Cookbook Draft 1 1/26/89

Chapter 5 Browser

Left just in case, or is it legitimate to recommend MacApp Developer’s
association, or can I give tips for using MPW as a browser?

17

N

A

MacApp Cookbook

Draf 1 1/26/89

Chapter 6 The Clipboard and Cut, Copy, and Paste

The Clipboard and the desk scrap are the Macintosh computer's standard mechanisms
for copying and pasting selections within or between applications and desk
accessories.

When your application begins running, the desk scrap contains data from the last cut or
copy operation. (The desk scrap will be empty if there has been no cut or copy
operation since the Macintosh started up.) This is the public scrap, and the data it
contains is in one or both of two forms common to most Macintosh applications:
TEXT (ASCII strings) or PICT (a QuickDraw picture).

Your application may also contain data in the form preferred by your application, if
that data was cut or copied from a previous instance of your application or another
application that uses compatible data types. When it is time to display the Clipboard
and the desk scrap contains no private scrap yet, you can create a view of one of your
application’s types (typically because there is data in a form used by your application),
or you can allow MacApp to create a view that will display the common data types.

When the user cuts or copies data from your application, your application creates a
view to display and possibly otherwise handle the data. Normally, that view is of the
same view type as the one that originally displayed the data. The data local to your
application (and typically stored in objects) is in your application’s private scrap, so
when you cut or copy information from a document, the information is placed in the
Clipboard in a form particular to the application. The Clipboard window is represented
by the TWindow object referred to by gClipWindow.

When you leave the application, it gets a chance to convert the information in your
private scrap to the two common forms of the desk scrap. (Leaving the application
can mean quitting, switching to another application with MultiFinder™ using the
Switcher™, or starting a desk accessory.)

See the Scrap Manager chapter of Inside Macintosh for more information on the desk
scrap and the Clipboard.

19

MacApp Cookbook Draft 1 | 1/26/89

Creating a Clipboard view

*+*definition of Clipboard view***

Clipboard views commonly have documents to handle the data they show. However, that is not
required. (cross-refer to views). A view showing the desk scrap, for example, may simply read
and display the desk scrap directly. In implementing Cut and Copy, however, the most common
situation is that the data the user has cut or copied is handled by instances of the same objects
that handled them in the application itself: document, view, and data objects. The methods
described here are typically implemented for any view types that can have data cut or copied,
because instances of these view types may be Clipboard views.

Run-time summary of creating a clipboard view

You create a Clipboard view in one of two ways. First, when the application starts up, a view is
created to handle the initial contents of the Clipboard, as taken from the public scrap. Second,
when data is cut or copied from your application, a view of some type originating in your
application must be created. In either case, the view must be able to handle certain calls from
other methods.

Figure 6-1 provides a summary of MacApp’s actions at runtime when a new document is to be
created.

n Figure 6-1 MacApp’s actions in relationship to this recipe

Figure TBD; for example see Chapter 14, “Documents”

20 MACAPP COOKBOOK

MacApp Cookbook Draft 1 1/26/89

Overview of your responsibilities

The actions you must take, the reasons you must take those actions, and what MacApp can
provide to help you take those actions are summarized in Table 6-X. Each of the steps is
explained in detail in the recipes that follow. '

This section also assumes that you have already created an instance of an application object.
For more information, see Chapter X, “Applications.”

m Table 6-1 Overview: creating a document

Step Your action: Because:
1. Define a handle type. ”

2. Define a resource type. m

3. etc. etc.

Table TBD; for example see Chapter 14, “Documents”

Step 1 Define a handle type

To define a handle type for your Clipboard data type, declare two pointers in your ? file. For
example:

YourTypeOnClipboard = “PYourTypeOnClipboard;
PYourTypeOnClipboard = “YourClipType;

As with the data structure created to save your data in a file, the details of your Clipboard
structure depend entirely on your application. (You can use a common structure to save data in
a file and to write to the desk scrap, although you’ll probably want to add fields when saving to
a file so you can save state information.)

CHAPTER 6 The Clipboard and Cut, Copy, and Paste 21

MacApp Cookbook Draft 1 1/26/89

Step 2 Define a resource type

Define a resource type for your Clipboard data type. The value is an arbitrary four-letter string,
usually stored in a constant (kClipDataType in the template). Unless your information is of the
same type used by other applications, you should make this string unique, as it is used to
identify data in the public scrap as data your application can understand. If the Clipboard
information is simply a sequence of ASCII characters, kClipDataType should be 'TEXT"; if the
Clipboard information is a QuickDraw picture (a saved sequence of drawing commands),
kClipDataType should be 'PICT".

If you have a number of different possible Clipboard data types, define several constants. You
should register the type identifiers you've chosen with Apple Developer Technical Support to
prevent duplication. '

Step 3. Override MakeViewForAlienClipboard

If you want to be able to display the public scrap data in your own type of view (usually
because the data is of some type preferred by your application), override
- MakeViewForAlienClipboard for your application type.

¢ Note: You don't have to do anything to display PICT or TEXT data from the public scrap.
MacApp automatically creates an object of type TDeskScrapView when necessary.

The interface for the MakeViewForAlienClipboard method is
FUNCTION TYourApplication.MakeViewForAlienClipboard: TView; OVERRIDE;

In the implementation of this method, call GetScrap (a Scrap Manager routine) once for each
Clipboard data type you can handle. (GetScrap takes a handle for the data. Pass NIL in this
case, because you don't need to actually read the data now.) If you find data of one of your
types, create an appropriate view object, and return it. If you don’t find one of your types, you
should call INHERITED MakeViewForAlienClipboard so that the MacApp method can create
and return a TDeskScrapView object.

You need to override this method to create views for your application’s scrap types.

22 MACAPP COOKBOOK

MacApp Cookbook Draft 1 1/26/89

A sample implementation is given in the templates for this recipe. The sample begins with a call
to GetScrap. The first parameter of GetScrap is ordinarily a handle used as the destination of
the scrap data. In the templates, the destination is NIL, so nothing is passed to the application.

Step 4. Override methods for your Clipboard view type

Override the necessary methods for your Clipboard view type as shown:
FUNCTION TYourView.ContainsClipType(aType: ResType): BOOLEAN; OVERRIDE;
FUNCTION TYourView.GivePasteData(aDataHandle: Handle; dataType: ResType):
LONGINT; '
OVERRIDE;
PROCEDURE TYourView.WriteToDeskScrap; OVERRIDE;

The implementations are discussed in the following steps.

Step 5. Override the ContainsClipType method

ContainsClipType is called by other methods to find out whether the Clipboard contains a
particular type of data. The default implementation (as defined in TView) calls GetScrap to
find out if the requested type is in the public scrap.

You should override this method for a view that can display a private scrap. (Note that this is
always the case when the data in the Clipboard got there through a cut or copy in this instance
of your application.)

The interface of this method is

TYourView.ContainsClipType(dataType: ResType): BOOLEAN; OVERRIDE;
A sample is given in the templates.

Step 6. Override the GivePasteData method

GivePasteData is called to get data from the Clipboard. If the data to be pasted is in your
application’s private scrap, you need to override this method.

CHAPTER 6 The Clipboard and Cut, Copy, and Paste 23

MacApp Cookbook Draft 1 ' 1/26/89

< If you want to get data from the public scrap, you don't have to override this method, since
it is declared and implemented for TView.

Its interface is
TYourView.GivePasteData({aDataHandle: Handle; dataType: ResType): LONGINT;

GivePasteData has two purposes. First, it returns the length of the data of the given resource
type in bytes (or, if there is some problem, returns a negative number, which is an etror code).
Second, if aDataHandle is not NIL, the method places the data in the space referred to by the
handle.

Your version of GivePasteData should follow this logic:

n Check whether the data type requested matches the data types your program can handle.
This should always be TRUE (because the request comes from one of your paste methods).
If it is not TRUE, return noTypeErr, a predefined constant.

n If the data has been written to the desk scrap, call INHERITED GivePasteData.
TView.GivePasteData uses GetScrap to put the information in the handle.

n Otherwise, the data in the Clipboard originated from your application, and you must
extract the required information.

The following sample code from UlconEdit.incl.p illustrates these steps.

IF gGotClipType THEN
BEGIN
dataType := gPrefClipType:;

err := gClipView.GivePasteData(aDataHandle, dataType):;

IF err < 0 THEN
Failure(err, 0);
END
ELSE
BEGIN
{SIFC gDebug} .
ProgramBreak ('GetDataToPaste called when gGotClipType was FALSE');
{SENDC}
END;

GetDataToPaste := err;
END;

24 MACAPP COOKBOOK

MacApp Cookbook Draft 1 1/26/89

Step 7. Override TView.WriteToDeskScrap for your Clipboard view

To enable other programs to receive Clipboard data from your application, override
TView.WriteToDeskScrap (which has no parameters) for your Clipboard view.

¢ Note: Generally, the Clipboard view is the same type as your ordinary application view; it
becomes a Clipboard view when an instance is created to display the Clipboard. Therefore,
you usually need to override WriteToDeskScrap for every customization of TView in your
application that allows a cut or copy operation.

When your application terminates or the user uses MultiFinder™ or starts a desk accessory,
MacApp ***right?*** calls WriteToDeskScrap to convert the Clipboard’s contents to the desk
scrap. See the “Scrap Manager” chapter of Inside Macintosh for details of writing data to the
scrap.

After you write the data in your application’s preferred type, you should, if possible, write it as
PICT or TEXT data or both.

Step 8. Create a Clipboard document, if desired

If you want to have a Clipboard document, create it before making the Clipboard view. When
you call TYourDocument.IYourDocument, you can pass in TRUE to indicate to [YourDocument
that you are creating a Clipboard document, although that may not matter to IYourDocument.
(You do not have to have a Clipboard document, although applications usually do.)

Step 9. Add a Show Clipboard menu item to your resource file

You need to have one item for the Clipboard in the resource file: the Show Clipboard menu
item, *Cross-reference to correct place?***

CHAPTER 6 The Clipboard and Cut, Copy, and Paste 25

MacApp Cookbook Draft 1

following code will be cut back into the individual steps
FUNCTION TYourApplication.MakeViewForAlienClipboard: TView;
VAR offset: LONGINT;

clipYourView: TYourView;

aHandle: Handle;

clipDoc: TYourDocument;
BEGIN

{ Test whether your preferred data type is in the scrap.
If you can understand other types, test for them here. }
IF GetScrap(NIL, kClipDocType, offset) > 0 THEN RBEGIN

New (clipDoc) ;

1/26/89

clipDoc.IYourDocument (TRUE); { The TRUE is only needed if IYourDocument

cares if this is a Clipboard document. }
New(clipYourView);
clipYourView.IYourView(clipDoc);
WITH clipYourView DO BEGIN
fInformBeforeDraw := TRUE;

fWrittenToDeskScrap := TRUE; { Tells MacApp it is not necessary to
write this view to the desk scrap if the
application quits because the Clipboard
view was derived from data in the
desk scrap. }
END;
MakeViewForAlienClipboard := clipYourView;

END
ELSE

END;

MakeViewForAlienClipboard := INHERITED MakeViewForAlienClipboard;

FUNCTION TYourView.ContainsClipType{(aType: ResType): BOOLEAN;

BEGIN

ContainsClipType := (aType = kYourClipType):
END;
26 MACAPP COOKBOOK

MacApp Cookbook Draft 1 1/26/89

FUNCTION TYourView.GivePasteData(aDataHandle: Handle; dataType: ResType): LONGINT;

VAR aSize: LONGINT;
err: OSErr;

BEGIN
{ The following test checks whether the requested data type is your program'’s
type. You may have several types, in which case this would be a multiple test. }
IF dataType <> kYourClipDataType THEN
GivePasteData := noTypeErr
ELSE
IF fWrittenToDeskScrap THEN
GivePasteData := INHERITED GivePasteData(aDataHandle,
dataType)
ELSE BEGIN
{ Copy the data in the Clipboard and accumulate the size in aSize.
If aDataHandle is not NIL, then by exit time its size must be
equal to the ultimate value of aSize, and the Clipboard data must
be in the data area referred to by aDataHandle. }
GivePasteData := aSize;
END;
END;

Continuing from here

You will usually want to implement the Cut, Copy, and Paste commands in your application to
allow the user to use the clipboard to transfer data from and to applications and desk
accessories. The following sections discuss how you support the Cut, Copy, and Paste
commands.

CHAPTER 6 The Clipboard and Cut, Copy, and Paste 27

MacApp Cookbook Draft 1 1/26/89

Supporting Cut and Copy commands

Cut and Copy commands are generally handled by a single type of command object. The next
section deals with the Paste command.

The Cut command removes the selected information from the view (and generally also from the
document) and places the information in the Clipboard. The Copy command copies the
selected information to the Clipboard but does not remove the original.

To support the Cut and Copy commands, take the following steps:

1. In the appropriate DoMenuCommand method (usually belonging to the view but possibly to
the document), create a cut/copy command object of a type that is a descendant of
TCommand. (Some programs may need separate command objects for cut and copy,
although generally a copy is identical to a cut except that the information is not removed
from the document.)

2. In the IYourCommand method of your cut/copy command object, set the
fChangesClipboard field to TRUE after calling ICommand.

3. In the Dolt method of your cut/copy command object, create a view for the cut or copied
data. The view is typically of the same type as the one holding the selection and, again
typically (but not universally), you must create a document object to go with the view
object.

4. After you initialize this view, call TApplication.ClaimClipboard to install the view in the
Clipboard. The interface for that method is
PROCEDURE TApplication.ClaimClipboard(clipView: TView); .
ClaimClipboard automatically preserves a reference to the old Clipboard view, in case this
command is undone.

If this is a Cut command, cut the data from your document and invalidate the
representation of the data in the view.

You must not call ClaimClipboard in your Undolt or Redolt methods. MacApp automatically
replaces the old Clipboard contents when Undo is picked and automatically replaces the
new Clipboard when Redo is picked.

In the case of a Copy command, Undolt need do nothing except, if you wish, restore the
selection state at the time the command was originally executed (MacApp restores the old
Clipboard view for you). Redolt needs to do everything Dolt does, except create the
Clipboard view and call ClaimClipboard. It may also restore the last selection.

28 MACAPP COOKBOOK

MacApp Cookbook Draft 1 1/26/89

Supporting the Paste command

The Paste command pastes data from the Clipboard into the application’s document. The
Clipboard may contain data cut or copied from your application or from another application.
In the second case, the data is usually available as TEXT data (a string of ASCII characters)
and/or PICT data (PICT is a QuickDraw picture).

To support the Paste commands, take the following steps:

Step 1 Call the global procedure CanPaste

In the DoSetupMenus method for the object whose DoMenuCommand method handles Paste

(usually the view but possibly the document), tell MacApp what kind of data you can paste.

You do this by calling the global procedure CanPaste. The interface of that routine is
PROCEDURE CanPaste(aDataType: ResType):;

Call this procedure once for each Clipboard data type you can handle. (See the “The Clipboard”

recipe for more about Clipboard data types.) If you can paste more than one kind of data (you
should, ideally, be able to handle PICT and TEXT data as well as your own types), make the calls

in inverse order of preference: from the least preferred to the most preferred.

Note that you never call Enable or EnableCheck for the Paste command. MacApp tests the
contents of the Clipboard for the Clipboard data types you specify in your CanPaste calls (by
calling clipboardView.ContainsClipType) and enables or disables the command accordingly.

Step 2 Define and create a paste command object

Define a paste command object type that is a descendant of TCommand. The object should be
created and initialized in DoMenuCommand when a cPaste command number is received. The
action of the command is carried out in the pasteCommand.Dolt and Redolt methods.

When your DoMenuCommand method finds the command number cPasteCreate, create a paste
command object . Given the CanPaste calls made in DoSetupMenus, you can be certain that
information of some type you can handle is present in the Clipboard any time you get a cPaste
command number.

CHAPTER 6 The Clipboard and Cut, Copy, and Paste 29

MacApp Cookbook Draft 1 1/26/89

Step 3 Retrieve the data to be pasted

To get the data to be pasted, allocate an empty handle and pass the handle to the application’s
GetDataToPaste method. The interface of this method is

FUNCTION TApplication.GetDataToPaste(aDataHandlei Handle;
VAR dataType: ResType): LONGINT;

If you only want to find out the size of the data (probably to determine whether there is enough
memory to carry out the requested paste operation), pass NIL as aDataHandle. When the data
is in the public scrap (also called the desk scrap), this call is equivalent to the Scrap Manager
routine GetScrap. Do not call GetScrap directly, because the data may be in the private
(application) scrap.

You do not choose the data type here; that is determined by your CanPaste calls in
DoSetupMenus. The data type passed to you is the most preferred type available. If you can
paste more than one type, you probably need to use IF statements to branch according to the
type; note that MPW Pascal does not allow CASE statement branches on four-byte quantities.

The data referred to by the handle is a copy of the data in the Clipboard. You can do anything
you want with that data or the handle.

GetDataToPaste (which you rarely need to override) calls the method
gClipView.GivePasteData. See “Supporting The Clipboard” earlier in this chapter for details on
implementing that method.

Continuing from here

Cut, Copy, and Paste operations should almost always be undoable. See Chapter X, “Undoing”
for more information,

See Chapter X, “Menus,” for more information on commands.

30 MACAPP COOKBOOK

e

MacApp Cookbook Draft 1 ' 1/26/89

Supporting a private scrap type
Anything for here?*

CHAPTER 6 The Clipboard and Cut, Copy, and Paste: 31

MacApp Cookbook Draft 1 1/26/89

Chapter 7 Collections

Invented terminology; premise is that tagging items to be operated on as a
collection is an important part of the capabilities of MacApp.

**No recipes yet™*

MacApp Cookbook

Chapter 8

Color

. **No recipes yet**

Draft 1

1/26/89

35

MacApp Cookbook Draft 1 1/26/89

Chapter 9 Compatibility

MacApp 2.0 does not support the Macintosh XL, but does support 64K ROMs and all
Macintosh models from 512K on up through SE, II, and IIx.

37

MacApp Cookbook ‘ Draft 1 1/26/89

Checking system software

Checking hardware

Future compatibility rules

Converting from MacApp 1.1 to MacApp 2.0

MacApp 2.0 has changed significantly since MacApp 1.1. The display architecture has been
reorganized. The implementation of dialogs has been completely rewritten. Debugging
facilities have been greatly enhanced. The text edit views have been modified for the new
display architecture and to support styled TextEdit. New building blocks (like UGridView)
have been added. New enhancements (like large views, view resource templates, and
MultiFinder support) have been added.

With all of these changes, from enhancements to underlying architecture changes, you might
think that converting your MacApp 1.1 application would be laborious. Certainly, recoding a
substantial MacApp 1.1 application to take full advantage of MacApp 2.0 is quite a task.
However, making only the changes to a MacApp 1.1 application necessary for it to run correctly
with MacApp 2.0 is not so bad. In fact, you should be able to convert even relatively large
applications in only a day or so.

38 MACAPP COOKBOOK

MacApp Cookbook Draft 1

The reason for this ease of conversion is that most of the commonly used procedures and
methods have not changed their interface or function, and some of those that have changed
have done so only slightly. Of course, some have changed significantly—those relating to
dialogs, for example. These you are better off reimplementing entirely. This chapter steps
through each of necessary changes, detailing them where appropriate, and pointing to sources
for more information for the others.

CHAPTER 9 Compatibility

1/26/89

39

MacApp Gookbook Draft 1 | 1/26/89

40 MACAPP COOKBOOK

MacApp Cookbook Draft 1 1/26/89

Global changes

Much of the global level of your application will stay the same. For example, you probably
needn’t touch your application object, or any of its methods. There are, however, two changes
that affect your program globally. ‘

Unit dependencies

Jd.converting MacApp 1.1 applications: unit dependencies;

MacApp 2.0 brings with it a whole new set of units. In your main program, as well as in your
interface file, you will need a USES statement similar to the following:
USES {SLOAD MacIntf.LOAD}
MemTypes, QuickDraw, OSIntf, ToolIntf, PackIntf,
{$LOAD UMacApp.LOAD} ,
UMAUtil, UViewCoords, UFailure, UMemory, UMenuSetup, UObject, UList,
UAssociation, UMacApp,
{SLOAD}
UPrinting,
UYourUnit;

Debugging

The debugging facilities of MacApp have also changed. The Inspect method used to be the way
that your code communicated with the Interactive Debugger. This has been replaced by the
Fields method and the Inspector window. For a more complete discussion of the new
debugging facilities, see the MacApp General Reference.

You should override the Fields method for every object class that you might want information
about while debugging, or in other words for all your object classes. You should replace all of
your Inspect methods with Fields methods. For more information on the Fields method, see
Chapter X, “Debugging.”

CHAPTER 9 Compatibility 41

MacApp Cookbook Draft 1 - 1/26/89

As an example, imagine that you’ve defined a TShape class like this:

TShape = OBJECT(TObject)
fRect: rect;
fColor: RGBColor;

{$SIFC gDebug}
TShape.Fields (PROCEDURE DoToField{(fieldName: Str255;
fieldAddr: Ptr;
fieldType: integer); OVERRIDE;
{SENDC}
END;

You should implement the corresponding Fields method like this:

PROCEDURE TShape.Fields (PROCEDURE DoToField(fieldName: Str255;
fieldAddr: Ptr;
fieldType: 1integer);

BEGIN
DoToField('TShape', NIL, bClass); { First report the class name. }
DoToField('fRect', Q@fRect, DbRect):; { Then report the fields. }
DoToField('fColor', @fColor, bRGBColor):; ’
INHERITED Fields(DoToField); { Finally report the inherited fields. }
END;

Document changes

.1.documents: changes from MacApp 1.1;For most applications, the document instances and
their methods will remain largely unchanged. The most significant exceptions to this are the
DoMakeWindows and DoMakeViews methods. If you are not using a simple or a palette
window, then your DoMakeWindows will probably have to be rewritten to include Scroller
views. See the “Creating a Window” section of Chapter X. If you want to use the new view
templates, you can use DoMakeViews to create a hierarchy of views. See the “Creating Views
with Templates” section of Chapter X.

£ MACAPP COOKBOOK

MacApp Cookbook ‘ Draft 1 1/26/89

For simple windows and palette windows, the code in DoMakeViews will remain the same.
DoMakeWindows will change slightly, as windows are now considered more like real object
classes than in MacApp 1.1. For example, some routines that used to be global procedures are
now methods belonging to window objects, such as ForceOnScreen, AdaptToScreen,
SetResizeLimits, and SimpleStagger. :

You can now use the function NewTemplateWindow to create your windows from resource
templates. See the sample programs and the view and dialog ERS documentation for examples.

H

View changes

dviews: changes from MacApp 1.1;The view architecture has changed radically. Yet you can get
by with only a minimum number of changes to your old code if you were using fairly standard
views before.

One significant change to TView is that it no longer has an fCanSelect field, which you might
have used in TYourApplication.MakeViewForAlienClipboard, TYourView.DoMouseCommand,
or TYourCutCopyCommand.Dolt. References to TYourView.fCanSelect can usually be replaced
by

(TYourView <> gClipView)

depending on the circumstances.

You will have to replace globally the Focus method. Focus used to be a procedure method of the
TFrame class, which is now gone. Focus is now a function method of theTView class. You can
usually replace calls to focus by

IF yourView.Focus THEN ;

if nothing else seems appropriate. Focus returns FALSE if it is not possible to focus the view<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>