
4. '•

Macintosh Programmer's Workshop
AS Driver Runtime Library
Writing a Desk Accessory or Device Driver that Uses Global Data.

Steve Hartwell
June 12, 1986
Revised July 30, 1986

Notice:
This documents the ASDRVRRuntime.o library, which is not released with MPW 1.0.
For information about writing desk accessories or drivers which don't need global data,
use the DRVRRuntime.o library provided with the MPW 1.0 release, and see the MPW
manual section on " Writing a Desk Accessory or Other Driver Resource".

The A5DRVRRuntime.o library is available internally to Apple engineers; contact the
Development Systems Group for more information.

Overview.

Desk accessories and other drivers have traditionally been written in assembly language, partly
because of the peculiar format of the 'DRVR' resource needed for drivers. Setting up the DRVR
layout header, passing register-based procedure parameters, and coping with the nonstandard
exit conventions of the driver routines has made it fairly difficult to implement drivers in
higher-level languages like Pascal or C.

The library ASDRVRRuntime.o and the resource type 'DRVW' declared in MPWTypes.r
simplifies the task of writing a desk accessory or device driver in Pascal or C. Together they
compose the driver layout header and the five entry points which set up the open, prime, status,
control, and close functions of a driver.

The advantages of using A5DRVRRuntime.o are:

• No assembler source is required.

• The resource compiler is an integral step in the build process, permitting the
easy addition of a desk accessory menu or other owned resources.

• The programmer's interface to the open, prime, status, control, and close
routines use Pascal calling conventions. Since the C compiler can easily be
directed to declare functions which use Pascal calling conventions, the driver
header can by used by both languages without additional glue. Each function
returns a result code which is passed back to the system.

• Previously, desk accessories and drivers have been required to allocate their
own storage for global data. A5DRVRRuntime uses the new A5Lib routines
which allow access to initialized global data as the languages and assembler
support them.

• Because access to global data is available, drivers may link with the language
libraries, including routines which reference global data (but see note below}.

A5DRVRRuntime Library Internal Release Only Page 2

• Drivers have peculiar exit conventions, requiring immediate calls to exit via an
RTS instruction, but non-immediate calls to JMP to the IODone routine. The
ASDRVRRuntime glue handles the proper exit conventions.

Some programming restrictions still apply to non-application code resources such as drivers.
Most notably is the restriction against the use of one variety of global data -- global variables
which are initialized to procedure pointers. Unfortunately, the 1/0 portions of the language
libraries and the Integrated Environment functions use initialized tables of procedure pointers,
and therefore cannot be called from drivers (this is an ex post facto design flaw). The generic
portions of the language libraries can be used with no difficulty.

For more information about this and other global data allocation considerations (and its impact
on the Macintosh runtime environment), refer to the document "The MPW Global Data Allocation
(AS) Library", dated July 28, 1986, available in the Software Library.

The Structure of an MPW driver.

Putting together a desk accessory or driver requires two parts:

(1] Linked object code, put together from the ASDRVRRuntime library and
your driver code. The object code is linked into a code resouce type DRVW,
which (roughly) stands for the "MPW DRVR" intermediate form of the DRVR resource.

(2) A resource compiler source file using the DRVW type declared in MPWTypes.r.
This enables you to set the driver flags, event mask, menu ID, driver name, etc.

Building the DRVW code resource.

The ASDRVRRuntime library consists of a main entry point which should override or replace the
usual language runtime main entry point. This main entry point contains driver "glue" which
sets up the driver runtime environment for you, calls one of your driver routines, and restores
the application runtime environment when your driver routine returns. Generally, the driver
glue code performs the following when executing one of the driver entry points:

[1] Saves the application register AS on the stack
[2] Sets up the driver's global data area
[3] Pushes the register parameters AO and A 1 onto the stack for your routine to use
[4] Calls your routine with Pascal calling conventions
[5] Restore the caller's global area
[6] Stores your routine's result code in register DO
[7] Returns to the caller appropriately

What your routines need to perform.

The ASDRVRRuntime library can be used for drivers written in either Pascal, C, or assembler.
In Pascal, you need to declare a UNIT which declares these 5 functions in your interface:
DRVROpen, DRVRPrime, DRVRStatus, DRVRControl, and DRVRC/ose. The calling
sequence for all functions is the same: the parameter ioPB is the pointer the driver's 1/0
parameter block (from register AO) and dCtl is the pointer to the driver's device control entry
(from register A 1). The function result is an integer which is the routine's result code, which
is returned to the ROM in register DO.

A5DRVRRuntime Library Internal Release Only

,, ASDRVRRuntime Library Internal Release Only Page 3

To illustrate, the declaration for your open routine written in Pascal must be:

FUNCTION DRVROpen(ioPB: IOParamBlk; dCtl: DCtlEntryPtr): INTEGER;

In C, you need to write 5 global-scope functions with the same names as above. Since the
ASDRVRRuntime library uses Pascal calling conventions, you need to declare the functions with
the pascal keyword, and match the Pascal datatypes like this:

pascal short
DRVROpen(ioPB, dCtl)

CntrlParam *ioPB;
DCtlPtr *dCtl;

In all, the following 5 functions must be declared:

FUNCTION DRVROpen (ioPB: IOParamBlk;
FUNCTION DRVRPrime (ioPB: IOParamBlk;
FUNCTION DRVRStatus (ioPB: IOParamBlk;
FUNCTION DRVRControl (ioPB: IOParamBlk;
FUNCTION DRVRClose (ioPB: IOParamBlk;

dCtl: DCtlEntryPtr) : INTEGER;
dCtl: DCtlEntryPtr) : INTEGER;
dCtl: DCtlEntryPtr) : INTEGER;
dCtl: DCtlEntryPtr) : INTEGER;
dCtl: DCtlEntryPtr) : INTEGER;

The C equivalents should be declared as in the C example illustrated above. Driver routines
written in assembler should be written to expect Pascal calling conventions.

WARNING:
Your driver must NOT store into the Device Control Entry field dCt/Storage. This field
was typically used in the past to store the handle to the driver's globals allocated as a
record on the heap. Since ASDRVRRuntime allows access to "real" program globals, you
don't need this any longer; you can just allocate UNIT globals in the VAR section of your
unit (or C globals, as appropriate). The ASDRVRuntime glue uses the driver's
dCt/Storage field to save the desk accessory's global data area pointer (register AS).
Using it is not optional -- whether or not your driver actually uses globals or not, if the
value of dCt/Storage is changed, your driver will crash. You can get at your global data
pointer this way if you want to use it with any of the AS routines; there are cases
where you may wish to do this. The discussion below illustrates some of them.

The A5DRVRRuntime glue.

The following explains in detail what happens before and after your DRVR routines are called:

The Open glue:
The global data refe.renced by the driver will be allocated from the current heap and

initialized by the ASDRVRRuntime entry point open glue before your function DRVROpen is
called. The pointer to Quickdraw's globals and the rest of the Application Parameters area is
copied to your driver's global area, duplicating the application environment for the driver. Just
before calling your DRVROpen routine, register AS is set up to point to the driver's global
area. After your DRVROpen routine returns, the caller's global area is restored.

Subseqent calls to the driver open routine will call your DRVROpen routine again but skip
over initializing the global area (which is done only once). Your DRVROpen routine will
probably use some heuristic to detect a re-entrant open (such as checking dCtlWindow to see if

ASDRVRRuntime Library Internal Release Only

ASDRVRRuntime Library Internal Release Only Page 4

you already have a window), and only execute the relevant portions of your open code as
necessary. If you want to handle multiple opens specially (multiple opens can only happen with
desk accessories), you can set global variables, and arrange for your DRVRC/ose routine to
prevent your global area from being released after the driver is closed (see below).

Note:
Because the open glue calls ASAlloc, which uses NewPtrto allocate the global area from

the current heap zone, globals typically end up being allocated in the application heap. If you
need your globals to be allocated on the system heap, perhaps setting the SysHeap bit in the DRVR
resource will put the code in the system heap and also leave the current zone set to the system
heap as the open glue executes. If this is true, NewPtrwill allocate the globals from the system
heap as desired. I haven't checked this out, so the only reliable way to do this is to have your
DRVROpen routine redo some of the work of the ASDRVRRuntime open glue. This is a pain, but
it's still easier than doing without ASDRVRRuntime altogether. In C, your DRVROpen routine
would do this as a first-open preamble:

ASDispose(dCtl->dCtlStorage);
GetZone(&curZone);
SetZone(SysZone);
ASinit(rnySysAS = A5Alloc());
SetZone(curZone);
dCtl->dCtlStorage = rnySysAS;
(void) ASSwap(rnySysAS);
/* ... continue with DRVROpen

/* Dispose of our old AS area
I* Save this to restore later
/* Switch to the System heap
/* Get & Init a new AS area

*I
*I
*I
*I

I*
I*
I*

Restore the current zone */
Set the sysHeap global area */
and switch to it. */

code ... *I

If it's OK to have your globals allocated on the application heap (as is the case for desk
accessories), then you won't need to do any of this shuffling global areas around. Refer to The
MPW Global Data Allocation (AS) Library document for details on the AS routines.

The Prime, Status, and Control glue:
The AS world is set up and restored around these calls, as with the Open glue. For desk

accessories only, DRVRPrime and DRVRStatus must do nothing and return a result code of O
(they can not be simply omitted). Device drivers may have special returnCode values; if they
do, they are faithfully returned to the system in register DO. The proper exit conventions are
handled (JMP to ioDone or RTS, depending on whether it is an IMMED call or not), and the
caller's AS is restored upon return.

Note:
If your DRVRPrime, DRVRStatus, or DRVRControl routines want to do asynchronous

1/0, your completion routines can set up their global data pointer by retrieving their AS value
which is stored in the dCtlStorage field of the device control entry. By bracketing their code
with calls to oldAS = AS Swap (dCtl->dCtlStorage) on entry, and (void) AS Swap (oldAS) on
exit, global data can be used from the body of completion routines. Refer to The MPW Global Data
Allocation (AS) Library document for details on the AS routines.

The Close glue:
The AS world is set up and then the DRVRC/ose routine is called. If the resultCode it

returns is 0, the global data area is permanently released. If the resultCode is non-zero, the
global data area is preserved. A non-zero resultCode will allow the programmer to "fake" a
close call, closing its windows but leaving its data around so that if it's re-opened, the previous
data values are still retained. An example of this behavior is the Calculator desk accessory,

ASDRVRRuntime Library Internal Release Only

A5DRVRRuntime Library Internal Release Only Page 5

which puts away the calculator window when closed, but when it's re-opened, it still has the
same number in its display that it had when it was closed. Regardless of your DRVRC/ose
resultCode, the Close glue always returns a 0 to the system.

A Desk Accessory Example.

Appendix A is the Pascal source for an example desk accessory using UNIT globals. The source
demonstrates the calling sequences of the ASDRVRRuntime routines.

The sample desk accessory provided in the document"The MPW Global Data Allocation (AS)
Library" demonstrates how you would have to use the DRVRRuntime.o library to get the same
features that the ASDRVRRuntime.o library already provides. This example is identical, except
the explicit calls to the AS routines are removed.

Warning:
Use of the ASDRVRRuntime library in desk accessories cause some applications to crash
when the desk accessories are used. This is because these applications patch traps or use
low-memory hooks which assume that AS is always the application's AS. Until the
technical problems with the AS architecture have been worked out, you should not expect
desk accessories which use ASDRVRRuntime to run without crashing such applications.

If you compile the source supplied in Appendix A, you can use this Link command to create the
intermediate DRVW resource:

Link -rt DRVW=O d
"{Libraries}"ASDRVRRuntime.o
"{Libraries}"Runtime.o
MyDeskAcc.p.o
"{Libraries}"Interface.o
"{PLibraries}"PasLib.o
-sg "MyDeskAcc=Main,%A5Init"
-o MyDeskAcc.DRVW

This must be first d
This contains A5Lib d
This is your compiled object code d
You might need this d * and/or this a
f This maps all segments into MyDeskAcc d

The Link command will generate two warnings about lnterface.o and Paslib.o not being needed;
the Appendix A example doesn't use them, but your own desk accessory might. You might also use
other libraries, such as {Libraries}AppleTalk.o, or {PLibraries}SANELib.o.

Appendix Bis the Rez source to build this example desk accessory. If you place this in the file
"MyDeskAcc.r", you can use this Rez command to build the DRVR resource:

Rez -c DMOV -t DFIL MyDeskAcc.r -o MyDeskAcc

To try out the desk accessory, use the Font/DA Mover to install it in your System file:

"Font/DA Mover" MyDeskAcc

Finder S.3 provides its own DeskHook procedure which assumes that AS is its own. If you run
MyDeskAcc under this Finder, it will crash when you close the window. This has been fixed in
the next release of the Finder. It will work with most other applications, such as the MPW
Shell. We would be interested in hearing which other applications crash with this desk
accessory; please contact the Development Systems group if you find any.

A5DRVRRuntime Library Internal Release Only

ASDRVRRuntime Library Internal Release Only Page

Appendix A. Pascal Source for a Desk Accessory using Global Data.

Desk accessory with UNIT globals. Doesn't do much,
serves as an example of the layout of ASDRVRRuntime calls.
Notice how much simpler (and shorter) it is than the example
in the Global Data Allocation Library document.

Steve Hartwell, July, 1986.
Copyright Apple Computer, 1986. All rights reserved.

}
UNIT MyDeskAccessory;

INTERFACE
USES MemTypes, QuickDraw, OSintf, Toolintf, Packintf;

VAR { Our UNIT Globals

MyWindow:
MyLastCommand:

WindowPtr;
INTEGER;

{ The desk accessory's window }
{ Used for UNDO }

Standard UNIT interface for ASDRVRRuntime.o (Same as DRVRRuntime.o) }

FUNCTION DRVROpen
FUNCTION DRVRControl
FUNCTION DRVRStatus
FUNCTION DRVRPrime
FUNCTION DRVRClose

IMPLEMENTATION

FUNCTION DRVROpen;

(ctlPB: ParmBlkPtr; dCtl: DCtlPtr): OSErr;
(ctlPB: ParmBlkPtr; dCtl: DCtlPtr): OSErr;
(ctlPB: ParmBlkPtr; dCtl: DCtlPtr): OSErr;
(ctlPB: ParmBlkPtr; dCtl: DCtlPtr): OSErr;
(ctlPB: ParmBlkPtr; dCtl: DCtlPtr): OSErr;

VAR savePort: GrafPtr;
wRect: Rect;

CONST
wName 'Desk Accessory with UNIT Globals';

BEGIN

{ If we already have a window then we're already open
{ so there's nothing else for us to do, just return.

IF (dCtlA.dCtlWindow <>NIL) THEN BEGIN
DRVROpen := NOErr;
EXIT (DRVROpen)

END;
{ Otherwise, get ourselves a window }

GetPort(savePort);
SetRect(wRect, 10, 322, 500, 338);

Store the NindowPtr in the global MyWindow }

END;

MyWindow := NewWindow(NIL, wRect, wName, TRUE, 0, NIL, TRUE, 0);
WindowPeek(MyWindow)A.WindowKind := dCtlA.dCtlRefNum;
dCtlA.dCtlWindow := Ptr(MyWindow);
SetPort(savePort);

DRVROpen := NOErr;

ASDRVRRuntime Library Internal Release Only

6

ASDRVRRuntime Library

FUNCTION DRVRPrime;
BEGIN

DRVRPrime := NOErr;
END;
FUNCTION DRVRStatus;
BEGIN

DRVRStatus := NOErr;
END;

FUNCTION DRVRControl;
BEGIN

Internal Release Only

{ Not used in a desk accessory }

{ Not used in a desk accessory }

Use our global data, such as MyLastCommand }

CASE ctlPBA.csCode OF
accUndo: IF MyLastCommand = accPaste THEN BEGIN

{ Execute undo Paste }
END;

accEvent:

Page 7

BEGIN { The only accEvent is update, no need to check csParam }
BeginUpdate(MyWindow);
SetPort(MyWindow);
TextMode(SrcCopy);
TextFont(Monaco);
TextSize(9);
MoveTo(6,10);
DrawString('This wouldn''t work without globals!');
EndUpdate(MyWindow);

END;
accCursor: { Ignore cursor change requests }
OTHERWISE

SysBeep(30);
END;

DRVRControl := NOErr;
END;

FUNCTION DRVRClose;
BEGIN

{ Throw away our window on close

DisposeWindow(MyWindow);
dCtlA.dCtlWindow :=NIL;

{ Ne return NOErr . (0), so ASDRVRRuntime will dispose of our }
{ global data area for us. If we wanted to, we could return }
{ a nonzero value, and it would .keep our global area around for }
{ us. rhis would retain the value of our global variables, }
{ such as MyLastCommand, etc. }

DRVRClose := NOErr;
END;

END. { of UNIT MyDeskAccessory }

ASDRVRRuntime Library Internal Release Only

A5DRVRRuntime Library Internal Release Only

Appendix B. Rez source for a Desk Accessory with Global Data.

/*
* Resource compiler input for MyDeskAcc.
*
* Steve Hartwell, July, 1986
* Copyright Apple Computer, Inc. 1986.
* All rights reserved.
*/

#include "MPWTypes.r" /* To get 'DRVW' type */

type 'DRVR' as 'DRVW'; /* Map 'DRVW' => 'DRVR' */

resource 'DRVR' (12, "\OxOOMyDeskAcc", purgeable) {

Page 8

dontNeedLock, /* OK to float around, not saving ProcPtrs */
dontNeedTime, /* No need for periodic Control calls */
dontNeedGoodbye, /* No special requirements */
noStatusEnable,
ctlEnable, /* Desk accessories only do Control calls */
noWriteEnable,
noReadEnable,
0, /* drvrDelay tick count, not used */
updateMask, /* This DA only handles update events */
0, /* This DA has no menu */
"MyDeskAcc" , I* DRVR name i sn 't used by the DA *I
$$resource("MyDeskAcc.DRVW", 'DRVW', 0)

} ;

A5DRVRRuntime Library Internal Release Only

