
(
MPW 3.0A2 Document List

MPW Overview • MPW 3.0A2 Release Notes

Projector •Projector Apha 2 Release Notes
• Converting Your Projects
•Macintosh Programmers's Workshop Project Management

System ERS ''Projector"

SADE •Alpha 2 Release Notes
•Macintosh SADE Reference Manual Alpha Draft #2

Libraries • A2 Libraries
• Pre-A2 Libraries

Linker Tools •Release Notes for MPW 3.0A2 - Linker and related tools
(\

Interfaces •Converting Between pre-3.0 Str255's and 3.0 Str25S's

('"
•Interface Release Notes
• Pre-A2 Interfaces

_/'

•Macintosh Technical Notes: Setting and Restoring AS

MPW Shell •Macintosh Programmer's Workshop 3.0 Shell ERS

Commando •Commando's Built-In Editor and other new features

Set Version • SetVersion manual page

Choose • Choose manual page
• Changes to Choose

Dump File • DumpFile manual page

Where ls • Whereis manual page

Sort •Sort manual page

Resource Tools • Rez & DeRez ERS
•Macintosh ResEdit Reference Manual Beta Draft

Parser Generator • MPW LL(l) Parse Table Generator ERS

('\
/

Macs Bug •Macintosh MacsBug Reference APDA Final Draft
,.

/
)

Overview

(

Installation

MPW 3.0A2 Release Notes
July 14, 1988

This release note pertains to the following MPW products:

• MPW Development Environment
• MPWPascal
•MPWC
• MPW Assembler

MPW C++ has its own separate release note. This release note, the
MPW 3.0 ERS' s, and other tool-specific release notes are the
documentation for this release. Differences between the ERS,
previous 3.0 development releases, and this release are documented
below. If no release note exists for something that has an ERS, assume
that the piece has been implemented as documented in the ERS.

MPW 3.0A2 highlights include a symbolic debugger, project
management system, and new C compiler. All of the C pieces of
MPW, were compiled with this new C. Since MPW 2.0, the C header
files have three important changes: every function has a function
prototype, the capitalization for routines that pass strings and points
has changed, and the definition of Str255 has changed. The
capitalization and Str255 changes will require changes to your C
source. See the section below titled ''Interfaces."

Another change in MPW 3.0A2 may require a change to your
Makefiles. The Pascal compiler no longer uses the Load/Dump
mechanism. Instead, the compiled object code for each unit is saved
in the unit's resource fork. Therefore, dependency rules (in
Makefiles) upon Pascal dump files are obsolete. See the section below
titled "Pascal."

The A2 C compiler now has function prototype checking turned on.
Furthermore, the C compiler is very strict about type compatibility.
Be forewarned ...

• Installation from floppies - MPW 3.0 now includes an installer disk
for installing MPW from a set of floppy disks .. Here are the steps for
automatically installing MPW on your disk:

1) drag the ''Installation Folder" onto the hard disk where
you want MPWinstalled ·

2) launch the MPW Shell found in the ''Installation Folder"

Apple Computer, Inc. Confidential
Page 1

Reporting
Bugs

Getting the
Latest Stuff

Folder
Reorganization

(the one you just dragged onto your hard disk)
3) the installation script will run and will prompt you to

insert a disk in the internal drive. You can insert the MPW
disks in any order and it won't hurt to insert a disk more
than once.

4) once the installation is complete, throw away the
''Installation Folder," and launch the newly installed shell.

For those not using the installer script, you will notice that the
configuration of MPW on the floppies has changed. The files on the
disks are in folders that represent their final destination when
moved to a hard disk. Pascal, for example, used to be found at the
root level of the Pascal disk. Now, however, Pascal will be found in
a "Tools" folder on the Pascal disk. This means that there will be
duplicate folders across the set of floppies and you won't be able to
drag the contents of each floppy onto a hard disk without some
conflict.

• Installation from Spudsffaters - simply drag the MPW and SADE
folders onto your hard disk.

Please report any bugs you find to the BRC. Please use the latest
version of "Outside Bug Reporter," found on the Spuds/Taters
server. After completing the bug report, copy the report into the
folder ''Put New Bugs Here" which is found on:

Zone: Ether Knott
Server: BRC Central
Volume: Bug Jungle

As bugs are reported and fixed in A2, newer pre-beta versions of
MPW will be placed on:

Zone: Development Tools
Server: AlmostMPW
Volume: AlmostMPW

Note: this software is for Apple internal use only. Use Backup to
find out which pieces are new.

Examples - In order to reduce the propagation of example folders
within the MPW folder, all of the example folders have been placed
inside a single folder: Examples. This folder contains AExamples,
CExamples, CPlusExamples, Examples, LLlExamples, and
PExamples.

Interfaces- In order to reduce the propagation of interface folders
within the MPW folder, all of the interface folders have been placed

Apple Computer, Inc. Confidential
Page2

(

(
~PW Shell

inside a single folder: Interfaces. This folder contains the folders:
Alncludes, Clncludes, Plnterfaces, Rincludes, and AStructMacs. The
various interfaces Shell variables are, of course, set up correctly by
the Startup script. If you have any hardcoded paths in scripts, how­
ever, they will have to be changed.

Libraries- In order to reduce the propagation of library folders within
the l\1PW folder, all of the library folders have been placed inside a
single folder: Libraries. This folder contains the folders: CLibraries,
Libraries, and PLlbraries. The various libraries Shell variables are, of
course, set up correctly by the Startup script. If you have any hard­
coded paths in scripts, however, they will have to be changed.

Debuggers & ResEdit- Since MacsBug, SADE, and ResEdit are now
separate products from l\1PW, their folders are no longer found in
the l\1PW folder. In fact, the Debuggers and Applications folders no
longer exist. The SADE, MacsBug, and ResEdit folders can be
placed anywhere on your hard disk.

Release Notes

The Shell enhancements are documented fully in the Maintosh
Programmer's Workshop 3.0 Shell ERS.

3.0 A2 Enhancements Included:

The Shell variable {MPW} is now {ShellDirectory} rather than {Boot}MPW:. This
makes it easier to run MPW from a non-boot volume.

Tools are now opened read-only. They may be run in a shared environment (e.g.
from a file server).

The Startup script will now execute any file in the shell directory named
"UserStartup•=" (in addition to UserStartup).

The Files command has an extra option -h. This option is for not printing the di­
rectory headers when multiple directories are listed. This allows the output
of files to be used in pipe without worrying about a directory listed twice
(with the -r option) or worrying about blank lines or the directory name.

The MoveWindow command has a new option-i. This option is for ignoring
errors on the position of the window. This allows windows to be moved
completely off screen. Once a windows is moved off the screen, it can only
be moved, closed, or zoomed through commands.

Pre 3.0 A2 Enhancements Included:

Directory Pa th
Numeric Variables

Apple Computer, Inc. Confidential
Page3

Projector

Pascal

Background operation of Tools
Request-q
Close-c
F Access - Selection information
Read only check box in open dialog
Current window size and position information (SizeWindow, Move Window)
RotateWindows Command
Format Command
New shell variables: {Font), (FontSize}, {Tab}, {Autolndent}, (Search Wrap},

{SearchBackward}, {SearchType}
The tab limit l\as been increased to 80.
The line length limit has been increased to 256.
Horizontal scrolling goes faster.
Option-Enter will invoke Commando.
TileWindow~ and StackWindows have options for windows and area for

tile I stack.
The Date command has -n and -c options for date arithmetic.
Opening zoomed windows will zoom to current screen.
Locked and read-only will open without the dialog box. An icon in the bottom of

the window will display the locked or read-only status. ·
Selecting text by matching delimiters has changed: You may abort by pressing

crnd-., and if a matching delimiter is not found, the current delimiter will be
selected.

Zoom Window without any options will toggle the window size just like clicking
in the zoom box.

! (Option-W) will direct both stdout and stderr to the same place.
Evaluate supports decimal, hexadecimal, octal, and binary radices.
New windows will be opened according to rectangle {NewWindowSize}.
Zooming will be done according to rectangle {Zoom WindowSize}.
The Tile Windows and StackWindows menu commands may be customized with

{TileOptions} and {StackOptions} variables.
New Position command.
New Flush command. This command will clear any tools that are in the cache.

See the Shell ERS for more specific information.

Read the Projector ERS, release note, and manual pages for complete
details on how to use the new project management system. Projector,
by the way, is actually part of the MPW Shell.

Note: if you used projector in 3.0A1, you will need to convert your
project. Be sure to read the "Converting Your Projects" document.

• The 3.0 Pascal compiler no longer supports the '{$LOAD}' facility.
Instead, the compiler automatically builds a 'pre-compiled' version
of the symbol table for each unit and puts this into the resource fork
of the file containing the unit. On subsequent compilations, the
compiler will load this resource instead of compiling the unit. The
compiler will not use the resource if the modification date of the file
is later than the date stored when the resource was created, or if

Apple Computer, Inc. Confidential
Page4

(-

C Compiler

compile time options that were in effect when the resource was
created have changed in such a manner as to invalidate the resource.
The '{$LOAD}' syntax is still supported, but ignored - if compiler
progress information is requested, the compiler will state that the
use vf the feature is 'obsolete but harmless'.

Some users will have included dependencies for '{$LOAD}' files in
their makefiles. These can now be removed, but they are harmless
since they simply restate what the compiler does automatically.

There are three new command:.. line options that help support the
new feature :

-NoLoad don't use or create any symbol table resources
-Clean erase all symbol table resources
-Rebuild· rebuild all symbol table resources

• The following items have not yet been implemented or are under
construction:
- Global Data > 32k is not supported.
-Forward references for records and objects must still be resolved

within a single TYPE block. .
- The 'nolines', 'novars' and 'notypes' options for ·SADE do not

work.
• Chars can be used where strings used to be required (e.g.

· someString := CHR.($0D);)

• Assignment compatibility for pointers is strictly enforced.
• Type checking for function prototype argume.:i.ts is strictly enforced.
For example: ·

..

extern pascal short GetCtlValue(ControlHandle theControl);
Handle h; /* not a ControlHandle */
short val;

val • GetCtlValue(h); /*will generate a comp::er error */
val • GetCtl Value ((ControlHandle) h) ; /* ok *I

•Some of the compiler options are different than the Greenhills
compiler. See the "C Manual Page" (in the Release Notes folder) for
a complete list of the C compiler options. The C compiler's
Commando dialog now shows all of the compiler's available op­
tions.

•The volatile keyword has been implemented as meaning "riot
register."

•For 3.0, the C compiler's calling conventions are the same as the
Greenhills compiler with four exceptions:

1) the underlying mechanism for functions that return structures
or unions is incompatible between the two compilers (i.e.

Apple Computer, Inc. Confidential
Pages

Interfaces

Linker Tools

mixing object code in this case will break).
2) unlike the Greenhills compiler, no global variables are ever

generated by functions returning structures or by switch
statements. r\

3) functions that return results that are smaller than a longword '...._j
return the smallest possible result in DO {instead of extending
the result to a long).

4) the C compiler now considers D2 to be a scratch register.
• H at all possible, recompile all C source with this compiler to avoid
mixing pre-3.0 object code with 3.0 object code.

• H your C source is using pre-3.0 C header files, be sure to convert
your C source with the. CCvt script. There is more information
about the changed interfaces below.

• Here is a list of known bugs or features under construction:
- The 'U' and 'F' constant type modifiers are not completely

implemented.
- The 'nolines', 'novars' and 'notypes' options for SADE do not

work.
- SADE output is limited by static internal buffer size.

The major change to the interfaces for MPW 3.0 was to change
capitalization conventions in Cincludes· for those functions which use
Points or strings. This was a major change which was specified in the
MPW 3.0 ERS. Functions calling glue to convert C strings to Pascal
strings or dereference Points are now spelled with all lower case. The
inline versions of those function calls, which do no conversion, are
now spelled with mixed casespelling to match "Inside Mac". In order
to easily convert source code to these new conventions, we have
written a script, CCvt (in MPW:Scripts), which calls the Canon tool to
change the sources. CCvt first duplicates the original source as a
backup procedure. It then uses two canon dictionaries located in the
Tools folder, CCvtUMx.dict and CCvtMxL.dict, to first change mixed
case spellings to all lower case and then to change all upper case
spellings to mixed case conventions. Cinterface.o and other libraries
changed so the linker would find. the glue necessary for these lower
case C functions.

See the Interfaces release note and the Pre-A2 Interfaces note for much
more information.

See the Linker Tools release notes.

Apple Computer, Inc. Confidential
Page6

(Libraries

(

Choose Tool

Commando

Make

Also see the Libraries release notes.

•In the C librarys printf formatting string, the meaning of %p has
changed. Before this release, it meant read/print a pascal-style
string. In order to conform to the ANSI spec, howev"';, %pis now
used to print the value of a pointer. %Pis used to read/print pascal­
style strings.

•The library Stubs.o is new. MPW tools can save about 4300 bytes
each by linking with this library BEFORE linking with Runtime.a or
CRuntime.o; standalone applications should not link with this
library.

Pascal bugs fixed:
• Error message for set range checking is no longer garbled.
• IOResult no longer reports error -1025 (an AppleTalk error number)

when string overflow is detected, and when READ expects an
integer, but gets no numeric value. IOResult now reports error 34
in these circumstances.

Pascal changes:
• Added support for error manager in startup sequence.

C and Integrated Environment changes:
• Added support for error manager in startup sequence.
• F _GSELINFO and F _SSELINFO now supported in all languages.
• mktemp() is now implemented. To support mktemp(), we also have
getpid() and access(). These functions will all be documented once it
is clear how they fit into the ANSI environment.

Choose is a new MPW tool that allows you to mount servers and
select LaserWriters from the MPW environment. See the ERS for
more information. Choose now works with AppleShare version 1.1
and 2.x. Choose no longer complains about "no bridge found" if you
happen to be in a zone-less network.

Commando has a simple built-in editor that allows controls to be
moved around and resized and labels and help messages to be edited.
See the Commando release note.

Changes have been made to the way variables (macros) are treated:

•Exported shell variables are automatically expanded by Make so
that variables such as {Alncludes}, {MPW}, etc. can be used to
express file names. Recently, however, {Status} was made an

Apple Computer, Inc. Confidential
Page7

Print Tool

Rez
DeRez
Types.r
SysTypes.r

exported variable; which had the unfortunate side effect that if
{status} was referenced in Make build rules it would get emitted as
"O" (the value of status at the time of running Make). The 3.0 version
of Make will still automatically define exported variables for use in
dependency lines, but will now not expand exported variable
references when they appear in build rules.

•Variable references in variable"definitions were previously required
to refer to already-defined variables, since the variable references
were expanded at definition time. Variable references in variable
definitions are now not expanded until the time of use, which allows
some new behaviors which were not permitted before. (All old
makefiles will continue to behave as they used to.) Now variable
definitions can refer to dynamically defined variables such as {targ}
which don't take on values until build rule expansion time, allowing
some clever effects not possible previously.

None of these changes should change the behavior of any currently
working make files, although how errors are reported for bad variable
definitions has of necessity changed.

Although there is no ERS for the print tool, there is a new print
option:

-ps filename
This option allows one to include a file of postscript commands to be
sent to the laserwriter prior to printing the file. See print' s commando
help message for more information.

• All features have been implemented as documented in the Rez
Tools ERS (you will need WriteNow to open the ERS).

• In Types.r, the following type declarations have changed:
'den', 'ppat', 'crsr' - redefined to use labels (not changed since

D1)
'SIZE - now supports MultiFinder and Switcher

- two new flags have been added
•In SysTypes.r, the following type declarations have changed:

'scrn' - flags were in the wrong order
'FONT', 'FOND' -redefined to use labels
'snd ' - newly added

- added synth values
'vers' - newly added
KSWP' - added more specific bit information

•A new resource template, Pict.r, allows you to DeRez PICT's (both
types 1 &2)

Apple Computer, Inc. Confidential
Pages

(: LL1Generator

Dump File

CreateMake

Set Version

MPW 3.0 includes a parser generator tool (similar to YACC) called
LLlGenerator. See the ERS and the LLlExamples folder inside the
Examples folder.

See the DumpFile ERS.

Changes in this release from previous releases:
• The -c option has been renamed -w (for width).
• A -g nn option has been added to permit groupings other than the
default.

• Several changes have been made to CreateMake and to its
Commando window. To the existing options for program type:
Application, Tool, and DA, has been added a fourth option: CR,
which is an abbreviation for Stand-Alone Code Resource. If CR is
specified, the parameters -m mainEntryPoint and -rt resourceType
are mandatory. The commands -c creator and-t type (meaning file
type) are optional for CR and -c creator is optional for Application.

•Further changes are that the makefiles produced by CreateMake
now contain lines of the form:

SOURCES = <all source files>
OBJECTS = <all object files>

•The diagnostics for calls of CreateMake with improper parameters
have been improved.

• CreateMake does not yet support a 68881 code generation option.

SetVersion now supports the 'vers' resource as documented in
TechNote #189. See the new manual page in the release notes.

Apple Computer, Inc. Confidential
Page9

,.,,..-~'.,.

,''

i

\. .. /

i c

Which ERS To
Use

Performance

Projector Alpha 2 Release Notes

Authors: Jeff Parrish
Bob Etheredge
Peter Potrebic
John Dance

Date: July 6,1988

What is Projector, and how the heck do I use it
Projector is a collection of built-in MPW commands and windows that
help programmers (both individuals and teams) control and account for
changes to all the files (documentation, source, applications, etc.) associat­
ed with a sof twari:! project.

The exact definition of the built-in MPW commands and windows is
specified in the July 6, 1988 Projector ERS. This ERS is a complete, accu­
rate description of Projector, it is not just a list of the differences since the
Alpha 1 ERS - so throw away any old copies you might have lying
around. In addition, the ERS describes the Projector model for controlling
project files, and details many of the issues related to that model.

The Projector team strongly suggests that before you use Projector, you at
at least read the ERS overview and section dealing with the components of
a Project.

The Projector team, as well as other members of the Development Sys­
tems Group, have been using Projector for several months. Projector has
been used both as a network based project control system shared between
several people, and as a local HD based system used by single individuals.

Performance will continue to be one of our highest priorities between
alpha 2 and beta (assuming no one finds the bug we left in). Significant
performance enhancements have already been added between the alpha 1
and alpha 2 releases. Performance has remained essentially constant be­
tween alpha 1 and alpha 2 in spite of the fact that the data compaction that
was added for alpha 2 requires a considerable amount of processing and
I/0.
The sections below represent the accumulated wisdom of Projector's ini­
tial users; wh~ they found to be particularly useful, and what they could
easily do without. Since the Projector team would definitely like to im­
prove Projector(and this list), please let us know what you think we can
improve, as well as what we are doing right. If there is something you
don't like about Projector (I know it's hard to imagine), please help us out
by taking a minute to think of how it could be improved.

Comments and questions can be directed to: Jeff Parrish x2395, Bob
Etheredge x6250, or Peter Potrebic x6494.

Page 1

Important
Update Info

Modifying
Read-Only Files

What's new since Alpha 1
The Alpha 2 Projector is incompatible with Alpha 1 projects. The
"Convert" folder (which can be found on the AlmostMPW server in the
Development Tools zone, in the AlmostMPW volume) contains the scripts
and tools needed to make your existing projects compatible with the new
Projector (and save loads of disk space). The details of how to convert
your projects are in the release note titled "Converting your projects".

Projector now saves 'TEXT' files in compressed form.

A "Touch Mod Date" check box was added to the "Check In" and "Check
Out" windows. The default for the "Check In" window is to leave the
revision's modification date untouched. The default for the "Check Out"
window is to touch the revision's modification date.

The "-touch" and "-noTouch" options were also added to the "Checkln"
and "Check.Out" commands respectively.

The new Projector command "ModifyReadOnly", was added to allow
users to modify files that were checked out as read-only. The primary use
of this command is to allow users who don't have access to a project (e.g.
working at home), to edit the read-only files that were previously checked
out. Once this command has been run on a file, the user may treat the file
as though it were checked out for modification-with one exception: you
will not be able to check a modified read-only file into a project if some­
one else happened to have created a revision more recent than the revision
you modified. The syntax is:

ModifyReadOnly file.

The Shell now displays all the appropriate Projector icons in its editing
windows. The Shell used to display only the "read-only" and "locked"
icons for the files that belonged to Projector.

A "-cancel" option was added to the Checkln command to correspond to
the "Cancel Checkout" button in the "Check In" window.

Projector will automatically continue to try to open a project if the project
is currently being accessed by someone else. A "command-." will discon­
tinue the automatic retry.

Several changes have been made to the Projector windows to help differ­
entiate their various states. For example, the window titles change to indi­
cate when the window is displaying information.

A logging mechanism has been added to Projector to keep track of all the
commands which delete information from a project. The "-log" option to
the Projectlnfo command can be used to list a project's log.

The new options, "-newer" and "-update", have been added to the
CheckOut command. The "-newer" option will check out all read-only
files that you either don't currently have or are newer than your existing
files. The "-update" option will check out only the read-only files that are
newer than your existing files.

A "-m'' option has been added to the Projectlnfo command and can be
used to list information about all the revisions that are checked out for
modification.

Page 2

(

~ Jsefu I Scripts

Canceling
Checkouts

Two new scripts/commands have been added to make manipulating 'clcid'
resources a little bit easier: "OrphanFile" and "TransferCkid". It is impor­
tant to keep in mind that you will only need these scripts under exception­
al circumstances. For example, if you duplicate a file that has been
checked out from a project, you will end up with two files that both think
they have been checked out. OrphanFile can be used to clean up the dupli­
cate file.

An example of when you would use TransferCkid, would be if you were
using Projector to maintain the history of a file where each revision was
generated from scratch (e.g. most object files, Microsoft Word documents,
etc.). Since the new revision would not have a 'ckid' resource, you would
have to check out the latest revision of the file for modification, use
TransferCkid to move the 'ck:id' resource from the checked out revision to
the generated file (to make Projector think that the generated file was
checked out for modification), and then delete the revision you checked
out. What you are then left with, is a new revision of the file that can be
checked back into the project.

Two other utility scripts, CheckOutActive and ChecklnActive, have been
supplied in an example project in the MPW Examples folder. To access
these scripts, execute the following commands:

MountProject "{MPW}Exarnples:Projector"
CheckOutDir Projectorfutilities "{MPW} Scripts:"
CheckOutDir Projectorfcomrnands "{MPW) Scripts:"

and then use the "Check Out" window to look at the scripts in the example
projects and decide which ones to check out. Both CheckOutActive and
ChecklnActive are intended to be used as user-<iefined menu items. An
example of how you might set up your menus would be to execute the fol­
lowing commands:

AddMenu Project '(-' "
AddMenu Project 'Check Out Active' 'CheckOutActive'
AddMenu Project 'Check In Active' 'CheckinActive'

Special features that make life wonderful.
Holding the option key down while you choose the "Check Out" button in
the CheckOut window will open any TEXT files after they are checked
out.

Be sure to add a comment (or task) when you check a file out from the
CheckOut window. It gives other people the opponunity to find out what
changes you are currently making to the file.

If you check a file out by mistake, you can easily cancel the check out by
selecting the "Cancel Checkout" (of course) button in the Checkln win­
dow.

If you check out a file for modification and then lose it (delete it, send it to
your aunt Millie, etc.), you can canceVdelete the checkout by using the -
checkout option to the DeleteRevisions command. Think three or four
times about this before you actually do it though. If you canceVdelete the
checkout and then find the file, Projector will disavow any knowledge of

Page 3

CheckOutDir
Short Cuts

Adding To A
Symbolic Name

the file or any of its IM force.

If you find yourself working on a shared file, but doing something a little f- \

(or a lot) off the beaten path, create a branch! You can create a branch ei-
ther when you check a file out, or when you check a file in. To create a
branch when you check the file out, simply check the "branch" check box
before you check the file out. To create a branch when you check in the
file, select the "Revision ... " button in the Checkln window and then check
the "Create a Branch" checkbox. Branches allow you to work on a tangent
to the main development effon without affecting anybody else. For exam-
ple, if you wanted to add and test out a new source file, you might check
out the group's makefile on a branch in order to add the dependencies on
the new file.

The CheckOutDir command gives you the ability to have Projector auto­
matically direct files checked out from a project to any directory you
choose. If your directory structure (and names) match your project struc­
ture (and names), you can use the following handy CheckOutDir com­
mand to automatically map all your projects to their corresponding direc­
tories:

CneckOutdir -r -project TheRootProjectJ TheRootDir

The "Select Newer'' button in the CheckOut window is a great way of en­
suring that you have the latest copies of all the files in a project.

Changing the current project (whether by using the Check In or Check Out
windows, or by using the Project command) will cause the check out di­
rectory to be displayed in the Check In window. In the case of the Check
In wii;idow, this means that changing the current project will automatical­
ly adjust the list of files displayed according to the CheckOutDir you have
set for that project.

To add or delete a specific revision from an existing symbolic name, you
can get the current definition of the name (the -s option is helpful in that
each component of the name is listed on a separate line), and then edit the
specific entries you're interested in. Note: symbolic names are tied to
projects, not revisions. For example, the following three commands:

NameRevisions george file.c,3 file.h,5
NameRevisions george file.c,l
NameRevisions -s george

will print out

not

NameRevisions george -project MyProject -user Me o
file.c,l

NameRevisions george -project MyProject -user Me o
file.c,l a
file .h, 5

To delete symbolic names, use the DeleteNames command.

Special features that make life not so wonderful.
Think twice before you use the DeleteNames command with the -public

Page4

("

(

option. Once you have deleted a public name, it is gone for good-like to­
tally. If this happens to you, you can use the -log option to the Projectlnfo
command to find out what the name was, and then manually recreate it.

The NameRevisions command with the -public option is also dangerous
(for the same reason as above) because it will replace any previous defini­
tion for the same name.

There is no automatic merge for revisions. To merge two revisions, you
can check the revisions out to two different directories and then compare
and merge them the same as you would any two files today.

If you delete a project without deleting all the files checked out from it,
the files will continue to think that they belong to the project long after the
project is gone. A symptom of this is having files in the "Check In" win­
dow listed with an icon showing a document with a question mark (this
will also occur if the project isn't mounted). Files in this state cannot be
checked into any projects. A file with such an icon does not necessarily
mean that its associated project has been deleted. To find out if it has,
click the big question mark button to switch the window to an information
view, and then select the file in question. If the project listed for that file
does not exist, your file has been orphaned. If the project listed for that file
currently exists, make sure that the "current project" in the Check In win­
dow is the project listed for the file. If the file still shows the same icon,
you probably deleted the original project and then created a new one with
the same name.

If you find out that you either deleted a project or deleted a project and
then created a new one with the same name, you will need to disassociate
the file from the original project by using the "OrphanFile" script.
Caution: make sure that you only orphan the files associated with a
deleted project.

Page 5

~~ ,,
'·~,/

Projector Conversion Tool

Converting your projects

The following describes the process of converting projects created with the old Projector
(MPW 3.0 Alphal) into projects c;ompatible with the new Projector (MPW 3.0 Alpha2).
This conversion is necessary because the internal format of the project changed to sup­
port deltas and the logging mechanism.

Please read this entire document before proceeding with the conversion.

Steps to take:
1. Please read this entire document before proceeding with the conversion.
2. Make a backup of your projects.
3. All modifiable files must be checked in and all read-only copies must be deleted.

Before conversion takes place the tool makes sure that no files are checked out for
~ modification and conversion will terminate if any files are checked out.

Execute 'the following command (in the Alphal Shell) on each project tree:

projectlnfo -project Project -m -r -revisions

This command will list all revisions that are checked out for modification. The files
must be checked in before continuing.

Deleting all checked out files is necessary because the format of the ckid resource
changed, there by invalidating files checked out using the Alphal Projector. The
script "FindOldFiles" (in the "Convert "folder) will recursively search directories and
list Delete commands for all files that have a ckid resource.

4. Make a copy of the "Convert" folder on a local hard disk.
This disk will be the destination disk - the new projects will be created within the
"Convert" folder. You will need enough space on this disk to accommodate the new
projects. Previous conversion have reduced the size of projects from 2 to 5 fold de­
pending on several parameters. Remember that only TEXT files are compressed -
projects with non-TEXT files will not shrink as much as projects with only TEXT files.

5. Manually save all public names
This needs to be done because the conversion tool ignores names.

NameRevisions -project Project -r -public >> savedNamesFile

Execute the above command on every project tree. This will save the definition of all
public names. The names will be restored after the new projects are created.

6. Set the current directory to "Convert" on the destination disk.

7. The {User} variable must be set and exported, preferably to someone's name.

Peter J. Potrebic WI Friday, July 8, 1988

1

Projector Conversion Tool

8. Conven old projects by running the following command:

projectCvt Projects ...

The list of projects should contain the full HFS pathname of all your old root projects.
The conversion process will conven each of the project trees and when it finishes the
new project trees will be inside the "Conven" folder.

The first part of the conversion process is the validation stage where all the projects
are inspected to make sure that no file is checked out for modification. Depending
on the number and size of the projects this stage could take a few minutes. Please
wait until this stage is over (the conversion tool will print out an. appropriate message)
before leaving the machine because conversion will terminate if any files are checked
out.

9. After the conversion has successfully completed replace the old projects with the new
projects - Copy the projects out of the "Conven" folder to replace the old projects.

10. Mount all the new projects and execute the file savedNamesFile in order to restore
the public names.

Caveats and Notes:
1. Think about what Shell you a running. In order to checkin files into your existing

projects you must run the old Shell (pre Alpha2). The conversion process needs to be
run in the new Shell.

2. The conversion process adjusts your Mac's clock so don't be alarmed if you noticed
the time changing wildly. The script will restore the proper time when completed.
Unfonunately, if the script terminates because of some error (e.g. out of disk space)
the proper time will not be restored.

3. Be patient - the conversion process is slow. As a rough guideline it took 7.5 hours to
convert a 25 megabyte project tree on a local disk.

4. We recommend that the ~onversion place place locally rather than over the network.
Check to make sure that all files are checked in before copying the project off the
server. In this way people can easily check in the appropriate files. Then make sure
to change the access privileges so that people can't inadvenently modify the old
project because these ·changes won't be reflexed in the new project.

Peter J. Potrebic mJ Friday, July 8, 1988

2

((-,~ ,_/

('
\

/

Macintosh Programmer's Workshop
Project Management System ERS

"Projector"

Bob Etheredge, Jeff Parrish, Peter Potrebic
July 6, 1988

(" Changes (4/14/88):

(

• Added the modifyReadOnly command

• Updated the window pictures and descriptions

• Described the logging mechanism

Changes -(4/14/88):
• ObsoleteRevisions has been removed from the "will be done for l\1PW 3.0".

• Added Task and Comment fields to the 'ckid' resource and changed it to lower case. The
user can now add Task and Comment information to a file without requiring the file's
project to be currently mounted.

• Removed the Projectlnfo window as a separate entity, by integrating its functionality
into both the Checkln and CheckOut windows. To get project information, just press the
Question Marie button in the Checldn or CheckOut windows.

• Replaced the {Project} variable with the Project command.

• The project option, used in most of the command examples has been renamed from -p to
-project

• References to the ''Log" file have been removed.

• The new option in the Checldn command has been renamed from-n to -new.

Changes (1/25/88):
• The resource forks of all files are saved on a per revision basis. Previously, the resource

fork of text files was not saved.

• Updated the screen shots of the three projector windows (The "Project Info" window
has not been updated). The pictures are of the windows as they exist in l\1PW 3.0 03. In·
some places the descriptions of the windows refer to not yet implemented features.

• MergeRevisions has been removed from the "will be done for l\1PW 3.0" to the wish list
appendix.

(Table of Contents

Table of Contents .. 3
Introduction ... 2

Purpose of this Document ... 2
Product Definition .. 2
Hardware Compatibility .. 2
Software Compatibility .. 2
Syntax Notation ... 2

Overview .. 2
Features .. 3
Liinitations ... 4

Using Projector .. 4
Components of a Project ... 4

Projects .. 4
Files ... 7
Revisions ... 7
User N aines .. 9
Symbolic Naines ... 9

Working on a Project ... 11
Project Creation .. 11
Locating Projects ... 13
Checkout and Check:in .. 13
Branching ... 17
Merging Branches .. , 18

Project Administration .. 18
Moving & Renaining Projects .. 18

Project Information ... 18
Appendix .. 22

ckid' Resource .. 22
The Project Directory ... 23
Glossary of Terms .. 24
Wish-List for Future Releases .. 26

Naining Revisions ... 26
Preferences ... 26
Additional Windows ... 26
Project Path N 3.Illes .. 27
Merging Branches ..•.......... 27

Part II-Commands ... 28

Projector ERS

Introduction

Purpose of this Document

This document describes the Macintosh Programmer's Workshop (MPW) Project
Management System named "Projector".

Product Definition

Projector is a collection of built-in MPW commands and windows that help programmers
(both individuals and teams) control and account for changes to all the files
(documentation, source, applications, etc.) associated with a software project. Projector
can be used to coordinate changes among a team of programmers, and to maintain a history
of project revisions.

Hardware Compatibility

Projector will run on the same machines that are supported by MPW 3.0, i.e. the
Macintosh II, the Macintosh SE and the Macintosh Plus.

Software Compatibility

Projector requires.the presence of the Macintosh Programmer's Workshop 3.0. It will not
run outside MPW either as a Macintosh application or desk accessory.

Syntax Notation

The Projector ERS uses the same notation as used by the MPW 2.0 Reference manual (the
description can be found on page viii of the Preface). A glossary term appears in boldface
only the first time it is mentioned.

There are two types of special paragraphs in this document:

~ Paragraphs marked with a pointing finger explain design decisions or contain a
more in depth explanation for a point discussed in the.text.

0 Paragraphs marked with a stop sign raises an issue that has not been resolved.
The Authors would appreciate extra thought and comments on these areas.

Overview

During the evolution of a project each team member invariably makes numerous changes to
the source and documentation files that comprise the project. At present, MPW has no
integrated facilities to help teams manage the files comprising a programming project
Projector is designed to substantially ease this task .by providing an easy to use yet
powerful facility for file management that is useful to both the individual programmer

Apple Computer Inc. 2 Confidential

(

C)
.

Projector ERS

working on a small project and a team of programmers working on a large and complex set
of programming projects.

Projector organizes the programmer's files into projects which can either be stored locally
on a hard disk or floppy or remotely anywhere on the AppleTalk network. Each project
contains zero or more files. In addition, projects may contain other projects. This last fact is
of key importance, since it allows large projects to be broken down into subunits yet
accessed as a whole by those outside of the immediate programming team, e.g. testing,
software configuration management, etc.

When the programmer wishes to work on one or more files, he or she selects the
appropriate project and "checks out" the files needed in the same fashion that books are
checked out from the public library, although Projector distributes both read-only and
modifiable copies of the "books". This creates a copy of the file(s) that the programmer can
modify. Projector remembers the fact that the file is checked out and denies access to
anyone attempting to modify the checked out files. Of course, Projector has a mechanism
where more than one person can modify the same file simultaneously; this will be fully
discussed in a later section.

The programmer can check in the file at any time, although files are nonnally checked in
once mcxlifications are complete and tested. This new file is now available to anyone on the
team.

Each new copy of a file is referred to as a revision. All revisions to a particular file define
its history. Besides supporting a single sequence of revisions to each file, Projector also
allows alternative revisions to be created. This feature is called revision branching.
Branching allows:

• old revisions to be modified.
• several programmers to work on the same revision of a file simultaneously.
• parallel lines of development The alternate lines of development may be experimental

in nature.

As programmers iterate through the checkout - checkin process, they are encouraged to
document all the changes and the reasons for the particular changes. This allows the
project's current status and history to be easily retrieved by all team members.

Features

•

•

•

•

•

Projects can be organized into a hierarchy of projects .

All revisions to a file are saved. Each revision is uniquely identified by its file name
and revision number.

Allows non-text as well as text files to be stored in the project: e.g. Word, Paint, and
executable files.

Revisions made to text files are stored in a compact format

Access by multiple users is supported. AppleShare can also be used to assign and
control access privileges .

Apple Computer Inc. 3 Confidential

Projector ERS

• Flexible naming allows revisions to files to be identified by symbolic name as well as
by file name and revision number.

• The entire history and status of all of the files in the project can be conveniently and
accurately displayed. Comments can be saved with revisions, files, and projects.
Projector also associates a task with every revision of a file.

• A command line interface is supported. This allows project requests to be embedded in
MPW shell command files.

• A window-based interface is supported. This allows for convenient and easy browsing
and access to projects.

Limitations

• All files in a project must have unique names.

• Revisions to non-text files are not compressed.

• Commas are not allowed in file names.

Using Projector

Components of a Project

Projects

A project consists of a project name, an author, some text describing the project, a
project log, a set of files belonging to the project and zero or more subprojects which
also are projects in their own right The author is the person who created the project.
Projects can reside locally on a user's disk or can be placed on an AppleTalk file server to
facilitate access by more than one user. AppleShare can be used to assign privileges to
different users.

Projector has a Project command that determines the current project, i.e. the project the
user is currently working on. Projector assumes all Projector commands pertain to the
current project unless told otherwise.

The project log keeps a record of all actions that delete information from the project,
including deletion of revisions and creation and deletion of public symbolic names. The
record that is kept includes the name of the person who carried out the action, the date and
time, and exactly what was done.

The project directory of a project is the directory where the project resides, and it is
created when the project is created. This directory is the same for all users of the project.
All the revisions to all the files and all other Projector information is kept in the project
directory within the project file (called ProjectorDB). Nested projects are also kept in this
directory as subdirectories. Every user has a checkout directory for each project, this is
the directory where, by default, Projector will place checked out files. The checkout
directory can be changed with the "CheckOutDir'' command.

Apple Computer Inc. 4 Confidential

Projector ERS

Each user can select one or more projects to access by using the "MountProject" command.
Selecting a project makes it and all its nested projects accessible to the user (see the
following discussion on nested projects). Projects can also be removed from the list with
the "MountProject" command. Typically, the UserStartup file contains a series of
"MountProject" commands that connects the users to a set of projects. Simply mounting a
volume does not give a user access to the projects that are contained on that volume. This
would be undesirable since many projects may not be of interest to the user. The
"MountProject" and "CheckOutDir'' commands allow users to customize their own project
name space. The location of the project directory is the same for all users, but the checkout
directory cart be different for each user. For example, Bob and Peter both access the sort
project, but they have different checkout directories (see figure 1). When Peter checks out
files they go, by default, to Rambo:work:sort, where as Bob's files go to "hd:MPW:Tool
Projects:sort tool:".

project directories

Peter's System (hard disk)

Rambo:

CJ
work

I
CJ
sort+--

Peter's checkout
directory for the
Sort Project

FileServer:

Tools

6C50
Rez So rt Count

Peter's
project tree

0
Sort

Figure 1 - Example configuration.

Peter's UserStartup could contain the following commands:

MountProject FileServer:MPW:Tools:Sort
CheckOutDir -project Sortf Rambo:work:sort

Bob's could contain:

MountProject FileServer:MPW:Tools:

Global project tree

Rez So rt Count

Bob's System (hard disk)

hd:

CJ
MPW

~
Tool Projects Rez Count

I ~ 1' 1' CJ+- Bob's checkout
sort tool directories

CheckOutDir -project Toolsf "hd:MPW:Tools Projects"
CheckOutDir -project ToolsfSort "hd:MPW: Tools Projects: sort tool"
CheckOutDir -project ToolsfRez hd:MPW: Rez
CheckOutDir -project Toolsfcount hd:MPW:Count

Apple Computer Inc. 5 Confidential

Projector ERS

(See the MountProject and CheckOutDir manual pages for more information and
examples.)

Most Projector commands require a project name as a parameter. The command line
interface to Projector supports two ways to spCcify the project the command will affect.
The order of precedence (from greatest to least) is:

1. Use the project specified on the command line.
2. Use the current project as specified by the Project command By setting the current

project to the name of a particular project the user does not need to specify that project
with every command

If Projector cannot determine the project to access, an error is reported and the command is
aborted. When using Projector interactively the project is selected by selecting the desired
project in a manner that is.similar to opening a folder in Standard File.

Projector supports nested projects. A series of related projects, such as all the projects
within the MPW product can be configured as a hierarchy of projects. Team members can
then access the project structure on the level they choose, very similar to the way people
use HF'S. See figure 2 for a sample project hierarchy.

Figure 2 - Sample project hierarchy.

In Figure 2 the MPW project is a highest level project, since it does not have a parent
project. Projects are drawn as circles and files are smaller boxes. Just as a person can
mount several volumes, there can be several mounted projects. However, Projector does
not allow mounted projects to have identical names. The MountProject command is used to
add projects to the root project list (called "mounting" projects). In the figure above
mounting the MPW project gives the user access to all the projects in the tree.

Projects are named in a similar fashion to directories, only the integral character
('f', option-b) is used as the name separator. However, Projector requires full path names
at all times. Partial project path names will not be supported. Similar to HF'S, an integral
character ('f') at the end of a project path is optional.

Projector does not use colons as project pathname separators to avoid confusion
with HF'S pathnames. Some commands, NewProject for instance, accept both
HF'S and project paths as parameters. Since the separator is different there will
not be any confusion as to what the parameter represents.

Apple Computer Inc. 6 Confidential

(

Flies

Projector ERS

Integral characters are not allowed in Project names for the same reason that
colons are not allowed in HFS paths.

Each file in a project consists of a name, an author, text describing the file, a record
describing the current state of the file, i.e. who has checked out the file, etc., and all of its
revisions. The author of a file has no special privileges; this field is basically used for
accounting purposes - tracking and assigning portions of a project to different team
members.

Projector can be used on all types of files, i.e. TEXT, APPL, Word documents, etc. The
only difference between text files and non-text files is that revisions to non-text files are
saved, but are not compressed.

Apart from this difference there is no distinction between text and non-text files. Users can
check out read-only copies of non-text files, or check out such a file for modification and
then check in a new revision. Revisions of non-text files can also be named and deleted.

File names within a project must be unique. Also, commas are not allowed in file names
because commas are used to separate file names and revision numbers.

Revisions

Each time a programmer checks in an updated copy of a file a new revision is created. As
changes are made and the number of revisions grows a revision tree forms that' traces the
history of the file. By accessing various portions of this tree a user can retrieve, inspect,
and compare any of the previous revisions of a file. Projector also allows old revisions to
be deleted when the revisions are no longer of interest.

Once a revision is checked out for modification it is locked preventing a second modifiable
copy of that revision from being checked out. However, checking out a modifiable copy of
another revision is okie dokie, and so is checking out a read-only copy of the locked
revision. If a user needs to check out a revision that is already locked Projector can create a
new branch for this new copy. The user can then manually merge the changes to
synchronize the file.

Each revision of a file has a revision number, a creation date (i.e. when it was checked in to
the project), a comment describing the reason for the revision, a task, an author of the
revision, and a compacted copy of the file itself. The task is simply another place to record
information about the revision. The comment field is intended to document the specific
changes to a file while the task field could be used to tie different revisions, perhaps across
several files, together. For example, implementing a feature might require several changes
to each of three files. Each revision might have a different comment, but the tasks for all the
revision could say "enhancement X". The task makes it easier to look at the history of a
project and determine what changes were made to accomplish various tasks. Projector has
reserved the shell variable ''Task" as a place to maintain the current task. When using the
"Check In" and "Check Out" windows {Task} is placed in the "Task:" field by default
There is no default task when using the command line interface (see the Checkln and
CheckOut command pages to see how a task can be specified).

Apple Computer Inc. 7 Confidential

Projector ERS

file.c

1

3

ti tat

r:o~l
2

4

Figure 3 - Revision tree.

Revisions are normally numbered in order, i.e. 1, 2, 3, , 99, 100, 101, etc. However,
the user can use major/minor numbering instead, i.e. 1.1, 1.2, 1.3, ... , 1.99, 1.100,
1.101, ... 2.1, 2.2, etc. When a new revision of a file is checked in Projector will
automatically increase its revision number by one, i.e. 4 to S, or 4.9.2 to 4.9.3. The user
can override this action by specifying a different revision number. The only restriction is
that this new number must be greater than the revision that was checked out.

Revision Numbers: Major[. Minor]*

W Revision numbers of the form 3.0 are not allowed.

To specify a particular revision of a file append a comma followed by the desired revision
number to the end of the name, i.e. file.c,3 refers to revision 3 of file.c (commas are not
allowed in project file names). The first command in the following example checks out the
latest (current) revision of file.c. The second command checks out revision 3 of file.c
regardless of what the current revision is:

Checkout file.c
Checkout file.c,3

The following command checks in file.c changing the revision to 4.1: (Note: this is only
legal if the revision that was checked out was less than 4.1, e.g 4, 3.9, 4.0.9, or 2 etc.)

Checkin file.c,4.1

In addition to supporting a sequence of revisions to a file in a project, Projector also allows
users to create Qr3nches, alternative sequences of revisions that are parallel to the main
revision sequence. In figure 3 revisions l, 2, 3, and 4 form the main trunk of file.e's
revision tree. Revisions not on the main trunk form branches. These branches can be easily
identified by the alphabetic character embedded in the revision number. For example, the
user can checkout revision 2 of a file and check it back in as revision 2al, instead of
revision 3. This begins the new sequence, 2al, 2a2, 2a3, etc. A second branch off revision
2 would create revision 2bl. Revisions off branches follow the same default numbering
scheme as revision on the main trunk, i.e. l, 2~ 3, etc. However, the user can use
major/minor numbering, with an arbitrary number of minor components.
When specifying a revision, a name such as "file.c,2a" implies the latest revision on the "a"
branch off revision 2. If there are two revisions, 2al, and 2a2, then the revision 2a2 will be
used. ,~~~,

·,

_/

Apple Computer Inc. 8 Confidential

(

Projector ERS

To refer to particular revisions when using The "Check Out" window the user can double
click on a file to display its revision tree. The individual revisions can then be selected and
acted upon, such as checking out a particular revision of a file, or getting information about
that revision.

User Names

Most Projector commands requires a user name in order to keep track of who did what.
Projector hC1$_reserved the shell variable "User" as a place to maintain the current user.
When using Projector interactively, via its windows, the current value of {User} appears
in the "User." field. On the command line there are two ways to specify the current user,
the order of precedence (from greatest to least) is:

1. Use the name given on the command line (via the "-u" option)
2. Use the name given in the {User} variable. The {User} variable is a predefined

variable that the l\1PW Shell initialized at launch time. It is initialized to the value in the
User Name field in the Chooser.

If a name cannot be determined an error is reported and the command aborts. The above
description for determining the user applies to most Projector commands. Any exceptions
are noted on the command page for the appropriate command.

User privileges should be handled by AppleShare. Since AppleShare
determines privileges when a network volume is initially mounted changing the
{User} variable will not change the access privileges to those corresponding to
the new user.

Symbollc Names

Projector supports a general purpose naming facility that allows project users to easily
identify files, revisions and branches within a project. The first character of a symbolic
name (or 'Name') cannot be a digit (0-9). Also, commas, greater than or less than
symbols('<','>'), and dashes('-') are not allowed anywhere in a Name. Names are kept
on a per project basis, and can ref er to at most one revision per file in that project. A Name
can be used anywhere a list of files can be used, and finally, names are not case sensitive.
For example, the following commands check out three files.

NameRevisions Work file.c file.h library.c
Checkout Work

Projector needed its own naming facility rather then using the Set command and
the existing Shell variable mechanism for the following reasons:

• Names can only refer to one revision per file. Shell variables are arbitrary
text macros so this restriction could not be enforced.

• Names are kept on a per project basis. In Projector the "scope" is the
current project. In the Shell, scope is based on nested command files.

• Names do not need funny delimiters(' {' and '}')in order to be
recognized.

Of couse you can use shell variables if you'd like.

Apple Computer Inc. 9 Confidential

Projector ERS

By default, Names are expanded to the revision level when they are used, not when they
are defined. In the above example the Name "Work" will expand to the latest revisions of
the three files each time "Work" is used. This means the revisions that "Work" implies will
change as new revisions to those files are created. To explicitly bind a revision to a Name
the revision number must be included at the time of definition. The following example
illustrates the differences:

NameRevisions Work file.c,4 file.h,3 library.c

The Name ""'Nork" will expand to revision 4 of file.c and revision 3 of file.h. However,
library.c will always expand to the latest revision. The "-e" option will expand all files to
the revision level during definition, for example:

NameRevisions -e Work file.c file.h library.c

This is equivalent to:

NameRevisions Work file.c,6 file.h,3.5 library.c,7

Where the specified revisions are the latest revisions of the respective files. The "-e" option
saves the trouble of detennining the latest revision of each file.

Names are recursively expanded until no further expansion can occur or a comma is found.
For example, given the following Names:

NameRevisions defs.h defs.h,1.1
NameRevisions file.c file.c,2
NameRevisions Work file.c defs.h,2.1 library.c

The following CheckOut command:

Checkout Work

Expands to:

Checkout file.c,2 defs.h,2.1 library.c

Since an explicit revision was specified for "defs.h" in the definition of ''Work" the
expansion of "defs.h" to "defs.h, 1.1" did not occur.

Names are particularly,useful when working on a branch of a file. For example, suppose a
programmer is designing a new algorithm in file.c and wants to implement the algorithm on
branch 4a of file.c. By defining the following Name:

NameRevisions file.c file.c,4a

the programmer can automatically check out and check in the latest revisions on the 4a
branch.

Checkout -m file.c

The above command will check out a modifiable copy of the latest revision on the 4a
branch of file.c. The user can override the Name, simply by specifying a particular revision
along with the name.

Apple Computer Inc. 10 Confidential

(

(

Projector ERS

Checkout file.c,3

This will check out revision 3 of file.c, regardless of any Names. Because an explicit
revision was given no Name expansion occurs. A comma with no subsequent revision
number implies the latest revision on the main trunk of the file:

Checkout file.c,

This will check out the latest revision on the main trunk of file.c. If "file.c" had not been
defined as a Name (see a few examples above) then the comma at the end would not be
necessary.

Names can be defined recursively in a project tree. Going back to figure 1 as an example,
suppose Bob wanted to "freeze" the current state of his projects and name the current
version "Release l ":

NameRevisions -e -a -r -project Tools "Release l"

This would create a name "Release l" in each of the projects that would expand to the latest
revisions as of when the name was defined. The above command is equivalent to the
following:

NameRevisions -e -project Tools/ "Release l" -a
NameRevisions -e -project ToolsfSort "Release l" -a
NameRevisions -e -project ToolsfRez "Release l" -a
NameRevisions -e -project Tools/Count "Release l" -a

It is very important to understand the difference between the above commands and the
following command (notice that the "-e" option is missing):

NameRevisions -r -project Tools "Fred" -a

The Name "Fred" will be expanded to the latest revisions each time it is used. The Name
"Release 1" will always expand to the latest revisions that existed when the name was
defined.

Both public and private (the default) Names are supported. Public Names are visible to all
members of the project. Private Names are only visible to the individual who created them,
and can be declared in the UserStartup file using the NameRevisions command. Public
Names are stored in the project itself.

Working on a Project

Project Creation

The simplest way to create a project is to create it interactively using the "New Project"
window (see figure 4). The window can be displayed by using the -w option to
NewProject. The other Projector windows (Check In and Check Out) can be displayed in a
similar fashion. Once the windows are visible the standard Macintosh windowing
techniques apply.

Apple Computer Inc. 11 Confidential

Projector ERS

directory for the new project. If a project pathname is given the new project becomes a
subproject of its parent. For example:

NewPro ject MPW/Tools/Fortran

This creates a new project Fortran that is a subproject of the Tools project. If the project
directory of the Tools project is FS:Projects:MPW:Tools then the project directory of the
Fortran project would be FS:Projects:MPW:Tools:Fortran.

The following example is equivalent to the previous example:

Newl?roject FS:Projects:MPW:Tools:Fortran

Since the project directory of the Tools project is FS:Projects:MPW:Tools the Fortran
project automatically becomes a subproject of the Tools project.

When creating a project a descriptive comment can also be given. This is useful so no one
will forget why they keep coming to work every morning - if they forget they can look at
this comment to refresh their memory (see the Projectlnfo command).

Locating Projects

The set of mounted projects defines a set of project trees. This tells Projector both the
names of the mounted projects and where their project directories are located. If a project is
not in one of those trees the project cannot be accessed. If a project is moved or renamed
(changing its project directory) users must change their MountProject commands in order to
re-connect to the project.

Checkout and Checkln

The simplest way to check out a file is to use the "Check Out" window (see figure 5).
When browsing through the project hierarchy in this, or any other Projector window, the
following visual cues are used to convey file ownership:

D file is free, no own has the last revision checked out for modification
.JI the current user has the latest revision of this file checked out for modification
i some other user has the latest revision of this file checked out for modification

A checked out file matches its corresponding checked in file in all ways except
for the 'clcid' resource that Projector places in every file in the project to
correctly identify copies that the user has checked out ..

The following description refers to figure 5.

The two radio buttons at the bottom of the of the window specify read-only or write­
modify check out. The default is to check out read-only copies.

The "Checkout to:" field is a pop-up menu that allows the user to pick the checkout
directory (default), the current directory, or any other directory. Checked out files will be
placed in the this directory which defaults to the checkout directory.

Apple Computer Inc. 13 Confidential

e:> Nature
I esl Enuironments I
ClERS
Cl MPW Schedu ...
Ci MPIJJ_Stl<~ll
Cl Shell
C~ Stl<~ll Hug~
Cl Test Suites
•rheShell

(open)

Projector ERS

New Project

Project Name: ~IT_e_s~~--------__.
User: Peter J. Potrebic
Comment:
Testing tools for MP~ 3.0.

(--Dr-iu_e_J (-1:-j< .. -.< t-J n New Project J)

c' Figure 4 - "New Project" window.

The "New Project" window is fairly self explanatory. The left most pane of the window is
a standard file like control where the HFS file structure is shown. The difference between
this control and standard file is that projects are graphically indicated by a small icon
representing a project (see figure 4). This allows the user to create a project anywhere in the
file system, either under an existing project or in some other directory. In figure 4 the
directory ''TheShell" is listed and it happens to be the project directory (represented by the
multiple document icon) for the "TheShell" project

To create a new project via the command line requires a single two word command:

NewProject Test

This creates a project named Test whose project directory, created by Projector, is :Tesr..
Projector will maintain all information regarding this project in the project file within this
directory. Nested projects will appears as folders within this directory. The checkout
directory is set to· the current directory at the time of the check out Every user can have a
different checkout directory, and this directory can be set using the CheckOutDir command.

Test also becomes the current project and is automatically mounted for you. If the new
project does not have a parent project, a MountProject command should be added to your
UserStartup file, followed by a CheckOutDir command to specify where the files to be
checked out should go.

Test can actually be an HFS pathname or a Project pathname. In either case the project
name is the leaf of the path. If an HFS path is given, that directory becomes the project

Apple Computer Inc. 12 Confidential

Projector ERS

The "Select all" button will select all files whose most recent revisions are not checked out
for modification~

If the user is doing a read-only check out, the "Select newer" button will select all the files
the user doesn't already have checked out for modification by comparing each file in the
checkout directory with the latest revision of that file in the project This is a convenient
way of checking out the "latest" revisions in the project.

~ The two buttons "Select all" and "Select newer" do not actually check out files,
they simply make a selection in the Project list Only the "CheckOut" button (the
button in the lower right-hand comer of figure 5) actually checks out the
selected files.

ID --------------- Check Out

·Current Project : Checkout to: I HD:pjp:Headers:

I d1P Headers I ! User: Peter J. Potrebic
.... D....--c_h_a...::r:::a:::c::t::e::r::s::.=h=~--- ! Task: IF ix bug • 17 - window update prob I e~
D debug.h 1 Check Out comment:
. .P fimits1h
i strnrc~Il<-!f~.h

D shelllists.h

l Select Files in Nome: l __ N_o_n_e _____ _

! ·:
___________ !

(Select all) (Open) I
(S<~l<H t •u~uH:ir) l

1··-········-···-····--············· ! 0 Read-only l
l® Modifiable l
l D Branch l
?···-·-···········-··················-·····-

Figure S - "Check Out" window.

181 Touch mod date

K Check Out)J

When checking out a file for modification, the ''Task" and "Comment" fields allow the user
to specify the purpose of the check out This allows other users to determine the reason the
file(s) were checked out. Both fields are saved in the 'c.lcid' resource of file, and Projector
allows the owner to edit these fields in the Check In window.

In normal circumstances it is bad practice to check out a writeable copy of a file that already
is checked out for modification. To prevent this from happening Projector does not allow
users to select files that are already locked (names are dimmed). Since the default is to
check out the most recent revision on the main trunk, a file is considered locked when the
most recent revision is checked out for modification. However, checking the "Branch"
control will allow selection of locked files. Checking out a locked revision will
automatically create a branch off of that revision.

Apple Computer Inc. 14 Confidential

Projector ERS

Users can check.out a particular revision of a file by displaying the revision tree (double
click on the file) and selecting the revision they want.

Files can also be checked out using the "CheckOut" command:

Checkout file.c -m

This will place a modifiable copy of file.c in the checkout directory of the current project.
The checkout directory can be changed using the CheckOutDir command. If no project has
been mounted or if file.c does not exist in the current project an error is reported. Along
with giving the user a copy of the file several pieces of information will be saved in 'clcid'
resource of the file's resource fork:

• The project that the file came from.
• The name of the file itself.
• The revision of the file that was checked out
• Whether the file is.a read-only, modifiable, or modified read-only copy.
• The user that checked out this copy of the file.
• Date and time of the checkout
• The Task.
• The Comment

When a file is being checked out the default action is to place the file in the checkout
directory for the project However, a different directory can be used. The rules for the
determining the directory are as follows, from highest to lowest precedence:

1. The directory indicated if a non-leaf name is specified.
2. The directory specified with the "-d" option.
3. The checkout directory for the project (see CheckOutDir command).

For example:

Checkout -d hd:MPW: file.c hd:work:defines.h
Checkout hd:MPW:main.c library.h

This first CheckOut will place a copy of file.c in hd:MPW:file.c and a copy of defines.h in
hd:work:defines.h. In this case the checkout directory was not used. The second CheckOut
will place a copy of main.c in hd:MPW:main.c and a copy of library.h in the checkout
directory for the {Project} project

Checkln is used to create new revisions to files, implying that changes have been made and
the user wants to add the changes to the project. This means that checking in read-only files
does not make sense since read-only copies do not contain changes and therefore cannot
create new revisions. When the changes to modifiable copies are complete, the Checkln
command will submit the changes and create a new revision of the file:

Checkin file.c

The "Check In" window can be used (see figures 6) for the same purpose.

Apple Computer Inc. 15 Confidential

c:> HD

I a Headers I

(Select all) (OtH~n)

D Show all files

(Drive) (I: j<H t)

Check In

Project: I Headers

User: Peter J. Potreb1 c

Projector ERS

Task: jFix bug •17 - window update problem

Reu: 4 (Revision ...)
Check In comment:
Changed window defs for word al ignmen~

~··················••<>••••••······················-············' l ® Keep read-only l
!O Keep modifiable!

!.9 ... ~.~-~.~.!.~ ... ~.~.P..~l

D Touch mod date

(Cancel Checkout)

[?] ~Check In 1
Figure 6 - "Check In" window

When checking out a file the project to which the file belongs needs to be specified. Since
this project is "remembered" in the resource fork of the file it does not have to be specified
on check in. All Projector needs to know is what file to check in. When using the Checkln
command, files belonging to different projects may be specified at the same time.

In the "Check In" window (figure 6) the current project can be selected with a pop-up menu
in the "Project:" control. Only the files that belong to the current project are displayed in the
standard file control.

W If, for whatever reason, the 'clad' resource of the file is corrupted or removed
then Projector cannot identify the file and it becomes an orphaned file, and no
longer belongs to any project. If you still need to check the file in, then move or
rename your copy, check the file out again (you may need to cancel the
checkout using the "Cancel Checkout" button in the "Check In" window) and
use the transferCkid command as documented in its command page.

In the "Check In" window selecting a file that is not currently checked out is not allowed.
That is, only the file names in boldface can be selected. This is the restriction saying that
only files that have been checked out for modification can be checked in.

The standard action after checking in a file is to leave the user a read-only copy of the file.
The radio buttons at the bottom of the "Checkln" window have this and two other choices.
The "Keep read-only" radio button keeps a read-only copy in your directory. The "Keep
modifiable" radio button lets you check the file in and still retain a modifiable copy. The
"Delete Copy" radio button deletes your copy of the file once it is successfully checked in.
These last two radio buttons correspond to the "-m" and "-del'' options of the Checkln
command.

Apple Computer Inc. 16 Confidential

('

C" .-')

Projector ERS

To throw away any changes use the "Cancel Checkout" button located in the lower right­
hand comer of the windows - above to the "Checkln" button. This is especially useful
when if half the file was accidently deleted or you goofed and checked out a file for
modification when you really wanted a read-only copy.

The "select all" button selects all the files checked out for modification by the current user
in the directory listed in the Standard File list. The selected files can then be checked in by
clicking the "Check in" button.

New files can be added to projects with the "-new" option to the Checkln command, or by
checking the "Show all files" control in the "Check In" window. When that button is
checked all files in the current directory are shown. Files not belonging to any project can
be selected and checked in. The files will be added to the current project.

Below is a list and a short description of all the different icons that can appear in the Check
In window:

modifiable file from the current project owned by current user
Read-only file from current project
modified read-only file from current project
modifiable file from current project, owned by another user

modifiable file from another project ?nly appear if "show all files"
file not belonging to any project }

read-only file from another project ts selected
file with a corrupt or out-of-date ·~ckid" resource ·

Branching

A branch can be created during the checkout or checkin process. Checking out a modifiable
copy of an old revision automatically creates a new branch (see figure 7). When file.c is
checked back in it will automatically become revision 2al.

file.c file.c

10 i-- Checkout -m file.c,2 '9 -29 ... ;-
Checkin file.c

29-
: 6 =-·~~

o ········
3 I ' '
4 D current revision

Figure 7 - A changing revision tree.

The following command will create a branch when checking in a file:

Checkin rnain.c -b

Apple Computer Inc. 17

file.c

Confidential

Projector ERS

In the above example the user did not need to specify a revision number in order to create a
branch. The branch is automatically created off the revision that was checked out. When a
file is checked out Projector remembers the revision that was checked out When a file
(obtained from revision x) is checked back in it can create a revision in one of two places: \...___"

• The next revision after x, continuing on the same line.
• On a branch off revision x.

Looking at figure 7 _the user could not check in file.c as revision 3al or revision 6.

The following command will create a branch and number the first revision 1:

Checkin main.c,l -b

If revision 4 of main.c was initially checked out the above Checkln command would create
revision 4al (or 4bl if revision 4 already had one branch, etc.).

Merg Ing Branches

The initial release of Projector will not support automatic merging of files. The user can
manually merge two branches (revisions) by checking out one revision as a read-only copy
into a temporary directory and checking out the second revision for modification into a
different directory (e.g. the checkout directory). The user can then use the Compare tool to
find the differences and manually cut and paste the changes into the file checked out for
modification. This file can then be checked in and the read-only copy in the temporary
directory can be discarded.

Project Administration .

The administrative duties for projects under Projector are very simple. Anyone who has
write access to the project (under AppleShare) can administer the project. Responsibilities
include:

• deleting old revisions of files that are no longer needed. This can be done to reduce the
size of the project on disk.

• moving and renaming projects.

• Keeping track of the project log to ensure that the project is not being abused.

Moving & Renaming Projects

Projector was designed. in such a way that a project could be moved or renamed using the
Finder or the regular MPW commands. However, there are a few areas of concern. First of
all, when a project is moved or renamed the project hierarchy is changed; users of this
project must update their root project list to reflect the changes. Secondly, projects can be
moved or renamed only when there are no files checked out for modification, and that after
the Project has been changed all read-only copies be checked out again. This is because
Projector puts the full-path project name in the resource fork's of files during checkout;
once the project is moved or renamed the information is no longer valid

W No other Fi_nder or MPW operations are allowed on project directories.

Apple Computer Inc. 18 Confidential

(

Projector ERS

Project Information

Information retrieval is one of the most important aspects of any source control system.
There are several different ways to get information out of Projector: via the "Projectlnfo"
command (see the Projectlnfo command), or via the "CheckOut" and "Checkln" windows
using the Question mark button (see figures 8-11). The information that can be retrieved
from the project includes:

• Project. Information
• author - person responsible for the project
• last modification date of the project
• project comment
• project log

• File information
• author - person responsible for the file
• last modification date of the file
• file comment

• Revision Information
• author
• task
• date the revision was created
• revision comment

Check Out/ Information
current Project ! r-w"h·;~ ... Fi"i;··-s;·i e.ct.~d .. °S"h·~~·~ ... ~
I 0 Headers I · i i ® L8test Reuision 1.nfo O File Info j

.....,;,,,..--====~--... i : .. ~ ... ;
0 characters.h ==;= Name: shereDefs.h Reu: 5+
0 debug.h Owner: fred ·
. .P limits.h Cre8te Date: Fri, Jul 8, 1988, 9:35 AM

Ilia shareOefs.h -
0 shelllists.h

(Uiew by ...) (Open)

D ril h~rin•.J on

Figure 8 - Project information in the "CheckOut" window.

Apple Computer Inc. 19 Confidential

Projector ERS

Uiew by ...

I Reuision I Author: I John Dance

I Reuision I Date: 1-1
I Reuision I Comment:

:=:==============================:::::
Task:

(Clear Rll) (Cance I) [~iiiiiiiiiiiiiiOiiiiiiiKiiiiiiiiiiiiiiiitilJ

Figure 9 - View by ... filter.

The "CheckOut" window's information (see figures 8 thru 9) is oriented toward browsing
through the project to obtain information about individual files and revisions. The
command line interface can handle more complex batch type requests such as: list all the
revisions, including comments, that Bob made to file.c of the Sort project.

This can also be done with the "CheckOut" window, by selecting a subset of the project to
view via the "View by ... " dialog. The "View by ... " dialog provides different items with
which you may filter the files or revisions displayed in the list. Only files or revisions that
match the criteria you have chosen will be.displayed. To specify a filter, bring up the "View
by ... " dialog, and select the different items that are important to you. You may specify th~
following items:

• The author of a file or revision. All the authors known to the project will be listed in a
popup menu. Select the desired author from the list.

• The file modification date or revision creation date. Type in the starting and ending
dates. The format is diJ./mm/yy [hh:mm[:ss] [AMIPM]]. If you would like to specify
"on or since a date" enter the starting date in the first box, and leave the second box·
empty. If you would like to specify "before or on a date" enter the ending date in the
second box, and leave the first box empty.

• File or revision comments. Type in either a literal string, or a regular expression in
slashes (!regular expression/).

• Task comments. Type in either a literal string, or a regular expression in slashes
(/regular expression/).

• Name. The popup menu will contain all your private names followed by the project's
public names. Select the desired name from the list You may also specify a relation to
that name. (For example, to list all the revisions since "Alpha".) Select the desired
relation from the popup next to the Name.

Apple Computer Inc. 20 Confidential

(

(

Projector ERS

For the author, date, and comment items, you will need to specify if it should be applied to
files or revisions.

~ If you have specified a filter, and all the files or revisions are still being
displayed, check the revision/file setting on your selection criteria.

For example, in Figure 10, the user has specified a filter to list all revisions in "alpha",
created by JQhn Dance, on or after April 4, 1988, dealing with Bug #222.

Uiew by ...

I Reuision I Author: !John Dance

I Reuision J Date: 14/4/88 1-1
I Reuision I Comment:

:============================~
Task: I /bug .s 222/

Name: _I a_l_Ph_a ______ l I Reuisions in name

(Clear All) (cancel) CttoK

Figure 10 - View by ... dialog with selection criteria

Selecting a project will display the project information. Selecting a file will either display
the current state of the file, that is the status of the latest revision or it will display the file
information. Which is displayed depends on the radio buttons at the top of the window (see
figure 8). Double clicking on a file will display its revision tree. The latest revision will be
selected by default, with its information (status) displayed. Selecting another revision will
display its status. The comment and task fields are editable so changes or additions can be
made.

[go Deleting comments is not nice! Use Projector to record history - not destroy it.

Apple Computer Inc. 21 Confidential

c::::> HD
le Headers I

Projector ERS

Check In/Information

· Project: .. I _H_e_a_d_e_rs ________ __.I (_~/

Name: limits.h Heu: 3+
owner: Peter J. Potrebi c
Project: Heoders f
Checked Out: Thu, Jul 7, 1988, 2:57 PM

j Task: I Move I sLocked< > macro

l File's comment:
j I

t.o sharedefs.h

---~~~~~~~~ !
(DtH~n) j

(
D Sht;tw all files

Driue) (1: j<H t

!---~~~~~~~~~~~~~~~~
) I K Done J) (lh~ en~ r t) (S 1~ •H~)

Figure 11 - Project information in the "Checkln" window.

Apple Computer Inc. 22 Confidential

(

Projector ERS

Appendix

'ckid' Resource

The following describes the 'ckid' resource that Projector maintains in the resource fork of
all files that belong to a project

Resource Name

Resource Contents

Apple Computer Inc.

'ckid'

Project name
File name
Revision number
State
User name
Date-Tune
Task
Comment

CheckOut IDentification.

full project pathname of the project
name of the file
the revision that was checked out
read-only, modified read-only or modifiable
name of user who checked out the file
date and time of the checkout
contents of task field when checked out
contents of comment field when checked out

23 Confidential

Projector ERS

Appendix

The Project Directory

A project resides in an HF'S directory called the project directory. The name of this
directory is the name of the project. Users need not worry about what goes on inside the
project directory, and they are warned not to place their own files in these directories. The
following is just given for completeness.

Project file
The entire project, including all the files, revisions, comments, etc is kept in a
single HF'S file called "ProjectorDB" with the type 'MPSP'.

Apple Computer' Inc. 24 Confidential

(

Author

Branch

CheckOut Directory

'cl<ld' resource

Conment

Current Project

File Information

Locked Revision

Mounted Project

Naine

Orphaned file

Project

0 Project Directory

Apple Computer Inc.

Projector ERS

Appendix

Glossary of Terms

With respect to revision it is the naine of the person who made a
revision. For files and projects it is the person with primary
responsibility for that file or project.

An alternate sequence of revisions emanating from another
revision and running parallel to the main trunk.

This is the directory where, by default, Projector will place
checked out files. Each project has a corresponding CheckOut
directory which can be changed with the "CheckOutDir''
command. ·

A resource that Projector maintains in the resource fork of all files
belonging to a project in order for identification purposes.

Text describing the revision, file, or project.

The naine of the current project. Projector assumes all actions
pertain to this project unless a different project is specified with
the "-project" option.

Information maintained by Projector on a per file basis. Includes:
•Author
• Last modification date
•Comment

A revision that is currently checked out for modification.

A project that is not nested beneath another project. Similar to the
root directory on a volume. A user can mount several projects,
just as they may mount several volumes. All projects under the
mounted project can be accessed by the user.

An identifier that represents a set of files, revisions and branches,
with the restriction that a name can only ref er to one revision in
any one file.

A file that belongs to a project, but it resource fork no longer
contains the information that Projector needs to determine to
which project it belongs.

A set of files and zero or more projects.

The directory where Projector maintains all the information with
respect to a given project.

25 Confidential

Project File

Project Infonnation

Project Log

Project Name

Revision

Revision Information

Revision Number

Revision Tree

Task

{Task}

Trunk

User

{User}

Apple Computer Inc. - '

Projector ERS

The file (always named ProjectorDB) where an entire project is
maintained. There is one and only one project file within every
project directory.

Information maintained by Projector on a per project basis.
Includes:

•Author
• Last modification date
•Comment

The log that records all actions that delete information from the
project. Can be printed oput using the -log option to projectlnfo.

The name of the project also the name of the directory containing
the project.

An instance of a file in project. A new revision is created each
time a file is checked in.

Information maintained by Projector on a per revision basis. Also
known as the cUITCnt state of a revision. For unlocked revisions
this includes:

•Author
• Creation date
•Comment
•Task

For locked revisions the information is:
• Author (person who checked out the file)
• Check out date
•Task

A unique number identifying a revision within a file.

The composite history of a file, that is all the revisions and
branches made to a file. The revision tree for a file can be
displayed via the Status command or by double clicking a file
name in the Project hierarchy pane.

A short description of the task the person accomplished with a
revision.

The name of the cUITCnt task. It appears in the "Check Out'' and
"Check In" windows as the default task.

The main sequence of revisions to a file.

Each project has one or more users that are permitted to access
files in a project.

The name of the current user. Projector logs this name with all
transactions. This can be overridden by specifying a different
name with the "-u" option available in all Projector commands.

26 Confidential

(

Projector ERS

Wish-List for Future Releases

Naming Revisions

The initial release of Projector will only support revision naming of the form:

fileName,revNum

where the RevNum may include branches. Future releases will support of more powerful
naming mechanism where revisions could be named by date/time, or by a symbolic name:

Checkout file.c,9/8/87
Checkout file.c,Betal

The first command would checkout the latest revision of file.c that existed on the given day
(at 12pm). The second command would checkout the Betal revision of file.c, assuming the
file.c has a Beta! revision. A further extension would be to include ranges in order to
specify a set of revisions:

Projectinfo file.c,8etal-8eta2

This command would list all the revisions that were created between the Betal revision and
the Beta2 revision of file.c. Dates and times could also be used in place of or along with the
names.

Preferences

Configurable preferences would be a useful enhancement These preferences could be set
using the Set command. Commands could be added to the startup file in order to
automatically configure the preferences every time MPW is launched. Possible preferences
include:

• Open window on checkout (only applies to text files).
Open all files checked out
Only open files checked out for modification.

• Maintain menu of checked out files.
Display all files checked out.
Only display files checked out for modification.

• Multiple owners not allowed.

Addltlonal Windows

Projector could be made easier to use with the addition of several more windows:

"Name Revisions" Window
A window would allow users to interactive create new Names and modify
existing Names.

"Merge Revisions" Window
An interactive merge process could facilitate resolving conflicts that arise when
several users make modifications to the same file. In this window a user could

Apple Computer Inc. 27 Confidential

Projector ERS

interactively merge the files with Projector's help. When Projector detects a
conflict the associated text could be so marked. The user could then take the
necessary steps to resolve the conflict.

"Compare Revisions" Window
This window would be very similar to the MergeRevisions window.

Project Path Names

The first release of Projector will only support full project path names. Future releases
should support a naming mechanism that mimics HFS so that partial paths are allowed.
Setting the current project would then be equivalent to changing directories. (For the
following examples assume that the current project is set to "MPW''.)

Project shell

The above command would then set the current project to MPWf shell, that is the shell
project within the MPW project The first release of Projector only allows commands like
the following:

Project MPWfohell

Merging Branches

Revisions can either be merged automatically, or the user can get a copy of the revisions,
merge them himself, and then check in the merged file. Using Figure 8 as an example the
following command will merge revisions 2al and 4:

MergeRevisions file.c,2al file.c,4

This will give the user a modifiable copy (the target revision, 4, is implicitly checked out
for modification) of the file containing the merged text Or the user can check out a read­
only copy of revision 2al and a modifiable copy of revision 4 and then merge the files into
the copy of revision 4, either manually or with the Merge command. The merged file can
then be checked in creating a new revision to file.c.

Apple Computer Inc. 28 Confidential

(

Part II-Commands

(

Projector ERS

Projector Command Summary

Checkln -w I -close

Checkln [-u user] [-project project] [-t task] [-cs comment I -cf.file] [-n 1-y 1-c]
- [-del I -m] [-new 1-b I -cancel] [-touch] (-a I.file ...)

CheckOut -w I -close

CheckOut [-u user] [-project project] [[-m 1-b] [-t task] [-cs comment I -cf.file]]
[-d directory] [-n 1-y 1-c] [-r] [-open] [-noTouch]
(-update I -newer I -a I file ...)

CheckOutDir [-project project] 1-m] [-r] [-x I directory]

DeleteNames [-u user] [-project project] [-public] [-r] [names ... 1-a]

DeleteRevisions [-u user] [-project project] [-checkout] revision ...

ModifyReadOnly file

MountProject [-d] [project]

NameRevisions [-u user] [-project project] [-public 1-b] [-e] [-r] [-s]
[name [names ... I -a]]

NewProject -w I -close

NewProject [-u user] [-cs comment I -cf.file] project

OrphanFiles file ...

Projectlnfo [-p project] [-comments] [-revisions] [-f] [-r] [-s] [-only 1-m]
[-af autlwr] [-a autlwr] [-df dates] [-d dates] [-cf pattern] [-c pattern]
[-tpattern] [-n name] [object ...]

TransferCkid sourceFile destinationFle

Changes (7/5/88):
• Added the modifyReadOnly command

• Checkln:
New options: "-cancel" and "-touch"

Apple Computer Inc. 32 Confidential

• CheckOut: .
New options: "-update" and "-noTouch"

• Projectlnfo:
New option: "-log"

Chang~s (4/14/88):
• This is the alpha release.

• "-p projecf' option was renamed to "-project projecf'

• Checkln:
"-n" option renamed to "-new"
"-c" option renamed to "-cs"
New options: "-close'', "-y", "-n", "-c"
"-d directory" option was removed. It was deemed unnecessary.

• CheckOut:
"-c" option renamed to "-cs';
New options: "-close", "-y", "-n'', "-c"

• DeleteNames:
New command

• DeleteRevisions:
Deleted the "-n" and "-d" options (for names and dates)
Added the "-checkout" option to delete check outs.

Projector ERS

Changed the semantics to delete all revisions (on the same branch) previous to the
specfied revision.

• NameRevisions:
New options:. "-b'', "-s"

• Project:
New command

• Projectlnfo:
"-ap author'', "-dp dates", "-cp string", "-i", and "-w" options removed
Changed.syntax for specifying dates and names

Changes (1/25/88):
• Added the -w option to the Checkln, CheckOut, New Project, and Projectlnfo

commands. This option brings up the respective window.

• Changed -w option in CheckOut to -m (modification)

Apple Computer Inc. 33 Confidential

Projector ERS

• Changed def~ult behaviour of Checkin to leave a read-only copy of the file, rather then
delete the user's copy.

• Various other options have new names.

Apple Computer Inc. 34 Confidential

f~,..,

t•'• '
I

"~- _,/(

(

Projector ERS

Checkln - check in files to a project

Syntax Checkln -w
Checkln -close
Checkln [-u user] [-project project] [-t task] [-touch] [-n 1-y 1-c]

[-cs comment I -cf.file] [-del 1-m] [-new -b I -cancel] (-a I.file ...))

Description Check the specified files back into the project creating a new revision.

Input

Output

Diagnostics

Status

Options

After check in the file will be a read-only copy of the newly created
revisions.

Projector determines to which project the file belongs to looking for a
Projector identification resource in the resource fork of the file. The
identification resource is placed in the file during checkout. This allows
files belonging to different projects to be checked in with a single
command.

If the -a (all) option is used instead ofjile ... , Projector checks in all of the
files in the current directory that have been checked out for mcxlification.
The files are checked into their respective projects.

To add a new file to the project, use the "-new" option. The file will be
added to the current project.

When the file is checked in, Projector automatically increments the
revision number by one. For example, if revision 2.17 was checked out,
the new revision will be 2.18. This default numbering scheme can be
overriden by using the "filename.rev" notation. For example if file.c
revision 2.17 was checked out, then the user could check it in as file.c,3
to jump to the next major revision level.

If no comment is specified (-cs option) then the comments that are saved
with each file will be used. The same applies to the task.

None.

None.

Errors and warnings are written to diagnostic output.

The following status values are returned:

0 No Errors
1 Syntax Error
2 Error in Processing
3 System Error .

-u user Name of the current user. This overrides the {User}
shell variable ..

Apple Computer Inc. 35 Confidential

Examples

Projector ERS

. -project project Name of the project that contains the files. This
project becomes the current project for this
command.

-new Add a new file to the current project.

-cs comment A short description of what changes have been made
to the file(s) being checked in. This comment will be
associated with all the file(s) being checked in. This
overrides any comment saved with the file.

-cf file The comment is contained in the file file.

-t task A very short description of the task that was
accomplished by the changes made to the file(s).
This overrides any task saved with the file.

-touch Touch the modification date of the file after checking
it into the project This option does not do anything
when used with the "-del" option.

-a Check in all modifiable files in the current directory.
The files will be checked in to their respective
projects.

• b Check the file in as a branch off of the revision that
was checked out.

-cancel Discard any changes made to the files being checked
in. This is useful when the changes made should be
thrown away.

-del pelete the user's copy of the file after it is checked
m.

-m Keep a write-privileged copy of the file(s) for further
modification. This basically check points the file(s),
doing a checkin followed by a checkout for
modification of the new revision.

• w Open the "Check In" window. Bring it to the front if
it is already open.

-close Close the "Check In" window.

- y Answer "yes" to any confirmation dialog that occurs,
causing check in to proceed if any conflicts occur.

• n Answer "no" to any confirmation dialog that occurs,
skipping files that cause some type of conflict

-c Answer"cancel" to any confirmation dialog that
occurs, causing check in to stop if any conflicts
occur.

Checkin file.c -cs "added some comments"

Checkin the file.c to the current project A new revision of file.c will be
created and the user will be left with a read-only copy of the file. The
comment will be saved with the new revision. Since no revision number
was specified, Projector will simply increase the revision number by one.

Apple Computer Inc. 36 Confidential

(

Projector ERS

.Checkin file.c interface.c,5 -t "Added -x option" a
-cf commentFile -del

This command will check in two files reading the comment from the file
commentFile. The task will also be saved with the new revisions. The
user's copies of the files will be deleted. The new revision for interface.c
will be revision 5.

Checkin file.c :main.c -m

This command will check in two files using the comments that are saved
with each file (see the reference manual for further details on saving
comments with checked out files). After the command executes the user
will still have mcxlifiable copies of the files. This shows how files can be
check pointed, saving the changes to this point while allowing further
mcxlification to continue without needing to manually checkout the file.

Checkin -m -cancel file.c

The above command would be used if the user wanted to throw away any
changes and start over again. The "-cancel" option signals Projector to
cancel the previous checkout and the "-m" option means that the user
wants to check it out again. The result is that the user is given another ·
mcxlifiable copy of the file she originally checked out.

Checkin -new file.c

To check a new file into the project use the "-new" option. The above
command adds file.c the the current project.

Checkout -project MPWfToolsfSort file. c -m
... edit the file ...
Checkin -project MPW/Toolsfsort file. c -b

The above two commands illustrate the usefulness of the "-b" option. In
this example the user checked out a mcxlifiable copy of the latest revision
of file.c in the Sort project, edited the file, and then, using the branch
option, checked the file in as a branch off the revision that was initially
checked out

Apple Computer Inc. 37 Confidential

Projector ERS

CheckOut - check out file revisions from a project

Syntax CheckOut -w
Checkout -close
CheckOut [-u user] [-project project] [[-m 1-b] [-t task] [-n 1-y 1-c]

[-cs comment I -cf.file]] [-d directory] [-r] [-open] [-noTouch]
(-update I -newer 1-a I.file ...)

Description Obtain copies of a particular revision of a file from the current project
project; the default is to check out read-only copies. Unless otherwise
specified, copies will be placed in the checkout directory associated with
the project. The default behavior is to touch the modification date of the
checked out files ensuring that builds are triggered (using the Make tool).
This is especially imponant when getting read-only copies from the
project.

If.file is a leafname (e.g. file.c) then Projector will checkout the latest
revision of the file from the current project. If.file specifies a revision
(e.g. file.c,22) then that revision is checked out.

If.file is a partial or full HFS pathname (e.g. :work:file.c or
HD:work:file.c), the file will be placed in the specified directory,
overriding the checkout directory for the current proejct.

Ftnally,.file may be a Name. See the NameRevisions command for more
infonnation names. The Name .is expanded and the corresponding
revisions are checked out.

The "-m" and "-b" options check out the specified revisions for
modification. Projector marks that revisions as bing checked out and
excepts that file to be checked back in at some point in the future. (Note:
read-only files do not have to be checked back in, in fact they cannot be
checked in.)

When checking out files for modification a comment and task can be
specified to remind yourself and others why the files are being checked
out. If no task is specified the contents of the {Task} variable will be
used.

Input None.

Output None.

Diagnostics Errors and warnings are written to diagnostic output.

Status The following status values are returned:

0
1
2
3

Apple Computer Inc.

No Errors
Syntax Error
Error in Processing
System Error

38 Confidential

('''

("-._

Options . -u user

Projector ERS

N rune of the current user. This overrides the {User}
shell variable.

-project project Naine of the project that contains the files. This
project becomes the current project for this
command.

-d directory The directory where the checked out files should go.
This overrides the checkout directory for the current
project. See the CheckOutDir command.

-t task A very short description of the task to be
accomplished by checking out files for modification.

-a Check out all the files in the Project

-m Check out a modifiable copy of the file. This locks
the revision preventing other users from
inadvenently changing the revision.

-b Branch. A modifiable copy of the file is checked
out When the file is checked back in it will create a
branch off the revision that was checked out.

-cs comment A short description of what changes have been made·
to the file(s) being checked in. This comment will be
associated with all the file(s) being checked in.

-cf file

-update

-newer

-r

-open

-w

-noTouch

The comment is contained in the file file.

Find all read-only files on the main trunk from the
current project in the checkout directory (or the "-d"
directory) and update them to the latest revision if
they are older revisions. Files in the directory that
have been checked out for modification are not
affected. Files that are on branches are not affected.
Files in the project, but not in the checkout directory
are not checked out. This option cannot be used with
the options to check out files for modification.

For all files in the project make sure that the lastest
revision exists in the checkout directory (or the "-d"
directory). Files in the checkout directory that have
been checked out for modification or a on branches
are not affected.· This option cannot be used with the
options to check out files for modification.

Recursively execute the CheckOut command on the
current project and all of its subprojects.

Open the file after it is checked out This option only
works for files of type TEXT.

Open the "Check Out" window. Bring it to the front
if it is already open.

Do not touch the modification date of the checked out
files.

Apple Computer Inc. 39 Confidential

Examples

Projector ERS

. -close Close the "Check Out" window .

-y Answer "yes" to any confirmation dialog that occurs,
causing check out to proceed if any conflicts occur.

-n

-c

Answer "no" to any confirmation dialog that occurs,
skipping files that cause some type of conflict

Answer "cancel" to any confirmation dialog that
occurs, causing check out to stop if any conflicts
occur.

Checkout -m -project MPWfToolsfcount file. c

Checks out a modifiable copy of the latest revision of file.c from the
"MPWfToolsf Count" project The file is placed in the checkout directory
for the project.

Checkout -project MPWfToolsfcount file. c, 22

The above command checks out a read-0nly copy of revision 22 of file.c
from the "MPWf Toolsf Count" project The file is placed in the checkout
directory for the project

Checkout file.c -t "Fix Bug 7" -m -d "{MPW}ToolsSrc:Count"

This command will check out a modifiable copy of file.c. By setting the
task other users will be able to see why this user has checked out file.c.
The files are placed in {MPW}ToolsSrc:Count.

Checkout -a -d HD:Work:Count

The above example checks out read-only copies of all of the files in the
current project and places the copies in the directory HD:work:count.

Checkout -a -project MPWf -r

Checks out read-only copies of all of the files in the MPW project and all
of its subprojects. Its behavior is the same as if the user executed the
following commands individually:

Checkout -a -project MPWf
Checkout -a -project MPW/shell
Checkout -a -project MPwfTools
Checkout -a -project MPWfToolsfSort

To conveniently update the read-only files (from the current project)
without affecting any files checked out for modification use the "-newer"
option:

Checkout -update

Projector scans through the checkout directory of the current project and
finds all the read-only files that are out of date (i.e. they aren't the latest
revision on the main trunk). All such files are checked out.

Apple Computer Inc. 40 Confidential

Projector ERS

See Also CheckOutDir

Apple Computer Inc. 41 Confidential

Projector ERS

CheckOutDir • set checkout directory

Syntax CheckOutDir [-project project] l -m] [-r] [-x I directory]

Description Change the checkout directory associated with the current project to the
HF'S pathname directory. From this point on, files checked out of the
named project will be placed, by default, into this directory. When a new
project is created, the checkout directory is set":'', i.e. the current
directory.

It is recommended that you put CheckOutDir commands for projects in
UserStartup following the MountProject commands. This will
automatically configure the Projector environment each time MPW is
launched.

If directory is missing the checkout directory of the current project is
written to standard output in the form of a CheckOutDir command.

Note that this command has no -u (user) option. Since the checkout
directories are part of the MPW environment, which is not partitioned on a
per user basis, a user name is not required.

Input None.

Output If directory is missing the checkout directory of the current project is listed
in the form of a CheckOutDir command.

Diagnostics Errors and warnings are written to diagnostic output.

Status

Options

Examples

0
1
2
3

No Errors
Syntax Error
Error in Processing
System Error

-project project Name of the project to associate the checkout
directory with. It overrides the {Project} variable
and becomes the current project for this command.

-m

-r
-x

All "mounted" root projects. Display or set the
checkout directories for all root projects currently
mounted.

Recursively display or set checkout directories.

Reset the checkout directory back to the default, i.e.
the current directory":".

The following command causes subsequent files in the current project to
be checked out to the HD:work:sort directory.

CheckOutDir HD:work:sort

Apple Computer Inc. 42 Confidential

See Also

Projector ERS

_ The next command outputs the checkout directory of the current project in
the form of a CheckOutDir command.

CheckOutDir
CheckOutDir -project MPWfToolsfsort HD: work: sort

To -r option allows the user to display the checkout directory for the
current project and all subprojects. In this case only the sort project has a
checkout directory setting that differs from the default

CheckOutDir -project MPW/ -r
CheckOutDir -project MPW/ :
CheckOutDir -project MPW/Shell
CheckOutDir -project MPWfTools :
CheckOutDir -project MPWfTools/Sort HD: work: Sort

The -r option can also be used to set the checkout directories of a complex
project to mirror the projects own hierarchical structure. For example:

CheckOutDir -p MPWf -r HD:Work:

After executing the above command. listing the checkout directories for
the projects under MPW would yield:

CheckOutDir -project MPW/ -r
CheckOutDir -project MPW/ HD:work:
CheckOutDir -project MPW/Shell HD:Work:Shell
CheckOutDir -project MPWfTools HD:Work:Tools
CheckOutDir -project MPW/Toolsfsort HD: Work: Tools: Sort

Notice how the directory structure is similar to the project structure.

The "-m" option lists the checkout directories of the root projects. For
example:

CheckOutDir -m
CheckOutDir -project MPW/ HD:Work:MPW
CheckOutDir -project Testf HD:Test

MountProject

Apple Computer Inc. 43 Confidential

Projector ERS

DeleteNames • delete user-defined symbolic Names

Syntax DeleteNames [-u wer] [-project project] [-public] [-r] [names ... I -a]

Description Delete the specified Names from the cUITCnt project Names are spilt into
two categories, public or private. Either kind can be deleted with this
command. Special care should be used when deleting public names
because once deleted they cannot be recovered.

Input None.

Output None.

Diagnostics Errors and warnings arc written to diagnostic output.

Status The following status values are returned:

Options

Examples

See Also

0 No Errors
1 Syntax Error
2 Error in Processing
3 System Error

-u user

-project project

-public

-a

-r

Name of the current user. This overrides the {User}
shell variable.

The name will be deleted from this project

The specified names are public names

Delete all private names, or public names if "-public"
option is present.

Delete names recursively starting with the current
project

The following example deletes the name "workingSet" from the private
name space.

DeleteName5 -p MPWfToo,+5/Sort workingSet

This example deletes the same name recursively starting with the Tools
project

DeleteName5 -p MPWf Tool5 -r workingSet

NameRevisions

Apple Computer Inc. 44 Confidential

(

(

Projector ERS

DeleteRevisions • delete revisions and branches

Syn tax DeleteRevisions [-u user] [-project project] [-checkout] revision ...

Description For each specified revision delete all the previous revisions on that
branch. If a branch name is specified then the entire branch will be
deleted. It is an error to try to delete a revision that is currently checked
out for modification. It is also an error to attempt to delete a branch that
has one or more revisions checked out for modification.

Input

Output

Revision is either a Name, the name of a file in the current project, or a
filename followed by a comma and a revision number.

Checkouts (for modification) can also be canceled using this command
and the "-checkout" option. If a revision has been checked out for
modification and for some reason the file cannot be checked back in (the
file was lost) then use this option to cancel the checkout.

Warning! DeleteRevisions permanently removes the revisions and
branches specified. They cannot be recovered.

None.

None.

Diagnostics Errors and warnings are written to diagnostic output.

Status The following status values are returned:

Options

Examples

0 No Errors
1 Syntax Error
2 Error in Processing
3 System Error

-u user

-project project

-checkout

Name of the current user. This overrides the {User}
shell variable.

Name of the project that contains the files. This
overrides the {Project} variable and becomes the
current project for this command.

Cancel the checkout on the specified revisions.

The following example deletes all the revisions before the latest in file.c in
the named project.

DeleteRevisions -project MPW/Toolsfsort file. c

The following example deletes all the revisions on branch 22a in file.c of
the current project.

Apple Computer Inc. 45 Confidential

Projector ERS

DeleteRevisions file.c,22a

Suppose that revision 5 of interface.c (in project Sort) is checked out for
modification and somehow the file is lost The project expects the file to
be checked back in at some point creating revision 6. But since the file is
gone that will never happen. Work sould continue by making a branch
off revision 5 and working on the branch, but at some point you'd like to
get back on the main trunk. This can be done by the following command:

DeleteRevisions -checkout interface.c,5

Now work can procedd on the main trunk as if revision 5 was never
checked out.

Apple Computer Inc. 46 Confidential

(

(

Projector ERS

ModifyReadOnly - allow modifications to a read­
only file

Syntax ModifyReadOnly file

Description The ModifyReadOnly command allows read-only Projector files to be
subsequently modified. After executing this command on the desired file
any modifications can be made. The file can then be checked back into the
project.

Input

Output

This command is very useful when the project cannot be accessed in order
to check a file out for modification. One of the dangers is that several
people can then make changes to the same revision forcing someone to
merge together all the changes.

None.

None.

Diagnostics Errors and warnings are written to diagnostic output.

Status The following status values are returned:

Examples

0 No Errors
1 Syntax Error
2 Error in Processing
3 System Error

The following command allows the user to edit main.c

ModifyReadOnly FS:MPW:main.c

The next command makes the active window editable

ModifyReadOnly n{Active)"

After making the modifications to the active window it can be checked in
as follows

Checkin n{Active)n

When this file is checked in it trys to become the next revision on its
branch. If the file was revision 5 then the checkin attempts to create
revision 6. However, someone else may have already created revision 6
since revision 5 was not locked by the user. In this case the above
checkin will fail. A second alternative is to check the file in on a branch as
follows

Checkin -b " {Active}"

Apple Computer Inc. 47 Confidential

Projector ERS

. This will create a new branch off revision 5. Another possiblity is to
check out revision 6 for modification and merge the changes into revision
6 and check in this new file creating revision 7.

Apple Computer Inc. 48 Confidential

Projector ERS

("~ MountProject - mount an existing project

(

Syntax MountProject [-d] [project]

Description MountProject adds project to the root project list. Project is the HF'S path
of the project directory for the project. Once a project is added to the root
project list, it and all of its subprojects can be accessed.

Input

Output

MountProject commands typically appear in the UserStartup file in order
to automatically initialize the root project list.

If project is omin~ then the root project list is written to standard output
in the form of MountProject commands.

To remove a project from the root project list, use the "-d" option. To
permanently remove the project from the list delete the corresponding
MountProject command from the U serStartup file.

Note that this command has no-u (user) option. Since the root project list
is part of the MPW environment, which is not partitioned on a per user
basis, a user name is not required.

None.

If no parameters are given, MountProject outputs the list of root projects.

Diagnostics Errors and warnings are written to diagnostic output.

Status The following status values are returned:

Options

Examples

0 No Errors
1 Syntax Error
2 Error in Processing
3 System Error

-d Remove the named project from the project list. The
specified project must be a root project.
NOTE: The name should be a project path, not the
corresponding HF'S path. The next release will
support either.

The following MountProject commands add the projects MPW and sort to
the root project list

MountProject FS:MPW
MountProject HD:localProjects:sort

To obtain a list of the current root projects, execute the MountProject
command without parameters.

Apple Computer Inc. 49 Confidential

.MountProject
MountProject FS.:MPW
MountProject HD:localProjects:sort

Projector ERS

To remove the MPW project from the project list use the "-d" option.

MountProject -d MPW

The following will remove all projects from the project list:

MountProject -d

Suppose under the MPW project there is a subproject called Tools.
Mounting the MPW project gives access to all the subprojects simply by
specifying the full project path of the project. Mounting a project that is
already a subproject of a mounted project brings that project to the level of
a mounted project. For example:

MountProject FS:MPW:

The Tools project is named MPWfTools. But after executing:

MountProject FS:MPW:Tools

the Tools project can be accessed by the name Tools.

Apple Computer Inc. 50 Confidential

(

('

Projector ERS

N ameRevisions • name files and revisions

Syntax NameRevisons [-u user] [-project project] [-public 1-b] [-e] [-r] [-s]
[name [names ... 1-a]]

Description Create name to represent a set of revisions. Subsequently, when name is
used in Projector commands, its value, names, will be substituted in its
place. Names are kept on a per project basis and can be composed of file
names, revisions, branches and other defined Names. A Name can only
include one revision per file. The first character of a Name cannot be a
digit (0-9). Also, commas, greater than or less than symbols('<', '>'),
or dashes('-') are not allowed anywhere in a Name. Names are not case
senstive.

Input

Output

Diagnostics

Status

Options

The Names are partioned into two groups, public and private names. The
default is to create a private Name. Include the "-public" option to make
the Name available to all users. Definitions for private Names can be
added to UserStartup. Public Names are stored with the project so they
only need to be defined once. Do not put public Name definitions in
U serS tartup.

If names is missing then the definition for name is listed. If name is
missing then NameRevisions lists all of the Names in the project. In
either case, the output is in the form of NameRevisions commands. The
default behavior is to only list private names.

Projector checks for various errors both when a Name is defined and
when it is used. Errors include refering to a non-existent file or refering
to more than one revision in a file.

None.

When name or names are missing, the command writes Names and their
values to standard output

Errors and warnings are written to diagnostic output.

The following status values are returned:

0 No Errors
1 Syntax Error
2 Error in Processing
3 System Error

-u user Name of the current user. This overrides the {User}
shell variable.

-project project Name of the project in which to create this name.
This overrides the {Project} variable and becomes
the current project for this command.

Apple Computer Inc. 51 Confidential

Examples

. -public

-b

-a

-e

-r

•S

Projector ERS

Create a public Name. This lets all users in the
project have access to the name. Without this option
a private Name is defined. ·

Print both public and private names. The option is
only valid when listing name definitions as opposed
to defining a Name.

All the files in the project. The Name will expand to
all the files in the project.

Evaluate and expand Names and files to the revision
level before defining the Name or listing values if
name or names is missing.

Recursively execute the NameRevisions command
on the current project and all of its subprojects.

Print a single name per line.

The first example defines a Name "Work" that gets expanded to the files
file.c and interactive.c.

NameRevisions Work file.c interactive.c

The following command:

Checkout Work

Is equivalent to:

Checkout file.c interactive.c

By omitting the Names parameter, the next NameRevisions command will
output the current definition of Work.

NameRevisions -s Work
NameRevisions Work -u 'user name' -project 'name' a
file.c a
interactive.c

The next command creates the Name "file.c" that expands to the second
revision off the first branch off the 1.1 revision of file.c.

NameRevisions file.c file.c,l.la2

The following:

Checkout file.c

will now check out revision l.la2 of file.c.

The next example creates a Name "file.c" that expands to the the first
branch off the 1.1 revision of file.c.

NameRevisions file.c file.c,1.la

So the checkout command:

Apple Computer Inc. 52 Confidential

("-

See Also

Projector ERS

_Checkout file.c

will check out the latest revision on the first branch off revision 1.1 of
file.c.

The "-e" is an important option. The following two command illustrate its
function:

NameRevisions fred file.c
NameRevisions -e fred file.c

The first command defines a Name "fred" that always expands to the latest
revision of file.c. The second example expands to the latest revision at the
time of definition. If the latest revision of file.c is revision 9, the second
NameRevisions command is equivalent to:

NameRevisions fred file.c,9

No matter what new revisions are added to file.c "fred" will always
expand to revision 9 of file.c.

This next example will define all the latest revisions in the project Count to
be part of "vl.0 Bl". By making this a global name, all users accessing
the Count project will be able to use the name "v LO Bl".

NameRevisions -public "vBl 1.0" -p Count -e -a

The name "BetaRelease" is defined recursively for all projects within the
MPW project:

NameRevisions -project MPWf -r -e "BetaRelease" -a

Its behavior is the same as if the user executed the following commands
individually:

NameRevisions -project MPW -e "BetaRelease" -a
NameRevisions -project MPWfShell -e "BetaRelease" -a
NameRevisions -project MPWfTools -e "BetaRelease" -a
NameRevisions -project MPWfToolsfSort -e "BetaRelease" -a

Projectlnfo

Apple Computer Inc. 53 Confidential

Projector ERS

NewProject - create a project

Syntax

Descriptio~

NewProject -w
NewProject -close
NewProject [-u user] [-cs comment I-cf.file] project

Create a project under control of Projector. This project becomes the
current project. A project directory is created where the project database is
maintained. All files, comments, and other information related to the
project is stored within this database. The name of the directory is the
name of the project.

If project is a projectpath (e.,g. MPWfToolsfSon) then Projector creates
"Son" in the existing MPWJTools project. In this case MPWfTools must
be a mounted project (see the MountProject command).
NOTE (3.0 Alpha2): This doesn't quite work correctly. The project is
created but Projector doesn't realize that it should be a subproject

If project is a leafname (e.g. Sort) then project directory "Sort" is created
in the current directory.

Finally, if projectname is a partial or full HFS pathname (e.g. :Work:Son
or FS:Projects:Son) the "Son" project is created in the HFS location
specified.

If the new project is a root project, i.e. is not part of an existing project
tree, it is added to the root project list. The user should add a
MountProject command to the UserStartup file in order to permanently
add this project to the list

The checkout directory is initially set to the current directory(:). To
change the checkout directory, ref er to the CheckOutDir command.

Use the -new option to the Checkln command to add files to the new
project.

Input None.

Output None.

Diagnostics Errors and warnings are written to diagnostic output.

Status The following status values are returned:

0 No Errors
1 Syntax Error
2 Error in Processing
3 System Error

Options -u user- Name of the current user. This overrides the {User}
shell variable.

Apple Computer Inc. 54 Confidential

(

(

Examples

See Also

-cs comment

-cf file

-w

-close

Projector ERS

A short comment about the project

The comment is contained in the file.file.

Open the "New Project" window. Bring it to the
front if it is already open.

Close the "New Project" window.

The following command creates a project "count" in the current directory.
No comment is saved with the project. One can be added later using the
"Project Info" window. ·

NewProject count

The next example creates a count project in FS:work:count The -cf
option indicates that the comment for the new project is contained in the
file "info".

NewProject FS:work:count -cf info

Finally, given that the project MPWfTools exists and has been mounted
using the MountProject command, this command creates a "count" project
in the MPWfTools project. In this case you don't need to add a
MountProject command to UserStartup, but you may want to add a
CheckOutDir command to change the checkout directory for the new
project.

NewProject MPWfToolsfCount -c "MPW word count tool"

CheckOutDir
MountProject

Apple Computer Inc. 55 Confidential

Projector ERS

Project - set or write the current project

Syntax Project [-q I project]

Description If specified, project becomes the current project Otherwise the full
project name of the current project is written to standard output.

Input None.

Output If no project is specified, the full project name of the current project is
written to standard output.

Diagnostics Errors and warnings are written to diagnostic output.

Status The following status values are returned:

Options

Examples

0 No Errors
1 Syntax Error
2 Error in Processing
3 System Error

-q Don"t quote the project name the is written to
standard output Normally, a project name is quoted
if it contains spaces or other special characters.

The following Project commands set the current project to the Sort
project.

Project MPWfToolsfsort

The following command will write the name of the current project to
standard output.

Pro~ect
MPWJToolsf Sort

Apple Computer Inc. 56 Confidential

(

()

Projector ERS

OrphanFile - orphan files from a project
Syntax OrphanFile file ...

Description Remove any association between a file and the project from which it
was checked out File may be specified with a complete or partial
pathname.

Input

Output

None.

None.

Diagnostics Errors and warnings are written to diagnostic output

Status The following status values are returned:

0 No Errors
1 Syntax Error
2 Error in Processing
3 System Error

Options None.

Examples· OrphanFile HD:MPW:MyWork:file.c
HD:MPW:fileTypes.h

Disassociate the files: HD:MPW:MyWorlc:file.c and
HD:MPW:fileTypes.h, from their respective projects.

OrphanFile =. (ach]

Disassociate all the assembly, C, and C include files in the current
directory from their respective projects.

See Also TransferCkid

Apple Computer Inc. 57 Confidential

Projector ERS

Projectlnfo • list project information

Syntax Projectlnfo [-projectproject] [-comments] [-revisions] [-f] [-r] [-s]
[-only 1-m] [-af author] [-a author] [-df dates] [-d dates]
[-cfpattern][-cpattern] [-tpattern] [-n name] [-log] [object ...]

Description For each project, list the the cw:rent state of all the files within that project
(subprojects,by default, are ignored). For each file, list the current state
of the file. For each revision, list information on that revision. If no
objects are given, list the cw:rent state of all files within the current
project.

If object is a projectpath (e.g. MPWfSortffile.c or MPWf Sort) then
Projector lists information about file.c or the files in MPWf Sort,
respectively.

If object is a leafname (e.g. file.c), then Projector looks in the current
project for the file. If the file is not a member of that project, then
Projector looks for the file in the current directory. If the file exists and is
part of a project then the current state of that file is listed. Projector can
detennine if a file belongs to a project because that information is
maintained in the resource fork of all checked out files.

Finally, if object is .a valid partial or full HFS pathname of a file, and the
file is part of a project, then the current state of that file is listed.

To list the contents of a specific revision of a file, append a comma
followed by the revision number to the filename specified, e.g. revision

~ .. ·

22 of file.c is specified as file.c,22. \,

Input

Output

The -af, -a, -df, -d, -n, -cf, -c, -t options may be used to constrain the
information listed to specific authors, dates, names, or containing specific
comments or tasks.

None.

Information is written to standard output.

The following template shows the information listed in Projectlnfo.

Project Name
filename,revision
Author: author of current revision
Status: Date
Task:
Comment:

The first line lists the project name to which the file or revision belo~gs.
The project name is listed only at the beginning of the file or revisfon list
comsponding to that project. The filename is something like file;c. The
revision is the latest revision of filename by default. If the -revisions
option is used, then all revisions will be listed. A "+"on the revision

Apple Computer Inc. 58 Confidential

(

Status

Options

Projector ERS

. indicates that it is currently checked out The status will be either
"Checked in" or "Checked out". The date is the date and time
corresponding to the checkin or checkout of that revision. The task lists
the task associated with that file or revision, and the comment is an
optional field included with the -comments option.

No Errors
Syntax Error

0
1
2
3

Error in Processing
System Error

-u user Name of the current user. This overrides the {User}
shell variable.

-project project Name of the project that contains the files. This
overrides the {Project} variable and becomes the
current project for this command.

-revisions List the revision history for each file specified.

-r Recursively list all subprojects encountered, i.e. list
every file in every subproject.

• s Short listing.

• f List file names.

-comments

-m

-log

-only

-af author

-a author

-df dates

Include comments associated with each project, file
and revision listed. Normally, they will be
ommitted.

Only list modifiable files or revisions.

Print the log information for the current project. The
log contains information about the creation and
deletion of public names, and the deletion of
revisions.

Only list information about projects and subprojects
in the current or named project, i.e. not files.

Only list those files whose author is author.

Only list those revisions whose author is author.

Only list those files which were created during dates.
Dates can take the following forms:

Format
date
<date
~e
'>date
~e
datel -date2

Meaning
On date
Before but not including date
Before and including date.
After but not including date.
After and including date.
Between and including datel and
date2

A date is specifed as rnrn/dd/yy [[hh:mm[:ss]
AMIPM].

Apple Computer Inc. 59 Confidential

Examples

-d dates

-cf pattern .

-cpattern

-n name

-tpattern

Projector ERS

Note: Be sure and quote dates so that the MPW
Shell does not interprete any of the special
characters.

Only list those revisions which were created during
dates.

Only list those files whose comments contain
string. A string may be a literal string, or a regular
expression enclosed in slashes (/).

Only list those revisions whose comments contain
string.

Only list those files whose revisions have the Name
name. Names can take the following forms:

Format
name
<name
~
>name
~name

Meaning
With Name name
Before but not including name
Before and including name.
After but not including name.
After and including name.

Note: If any of the name relations are used (<, ~.
>, ~) quote name so that the MPW Shell does not
interprete the special characters.

Only list those revisions whose task fields contain
string.

In the example below, the current project has three files. The presence of
the plus (+) indicates that Bob currently has revision 22 of file.c checked
out for modification, and Peter has revision 33 of hdr.c checked out for
modification. The date field of these two files reflects the date-time they
were checked out Since no plus appears on the line for file.h it can be
checked out for modification. Its latest revision is 17 and the author of the
revision was Bob.

Projectinfo
Samplef
file.c,22+

Owner: Bob
Checked out: Fri, Apr 8, 1988, 3:45 PM
Task: Fixing bug t223

file.h,17
Author: Bob
Checked in: Mon, Apr 4, 1988, 10:10 AM
Task:

hdr.c,33+
Owner: Peter
Checked out: Tue, Apr 12, 1988, 5:58 PM
Task: Fixing bug t333

Apple Computer Inc. 60 Confidential

Projector ERS

. Using the -only option causes Projectlnfo to only list information about
the project itself.

Projectinfo -only
SampleJ

Author: Bob
Create date: Mon, Apr 4, 1988 8:20 AM
Mod date: Thu, Apr 14, 1988, 6:00 PM

Using the -f option causes Projectlnfo to list file names. Note that
revision numbers are absent and the file's author and last-mod-date are
listed. In the example below, file.c and hdr.c are cwrently checked out.

Projecf Info -f
Sample
file.c

Author: Bob
Create date: Mon, Apr 4, 1988, 10:00 AM
Mod date: Tue, Apr 5, 1988, 2:15 PM
Free: No

file.h
Author: Bob
Create date: Mon, Apr 4, 1988, 10:00 AM
Mod date: Mon, Apr 4, 1988, 10:00 AM
Free: Yes

hdr.c
Author: Peter
Create date: Mori, Apr 4, 1988,. 3:30 PM
Mod date: Mon, Apr 4, 1988, 6:00 PM
Free: No

Using the -f and -s options together cause Projectlnfo output the list of
files in the project.

Projectinfo -f -s
SampleJ
file.c
file.h
hdr.c

Using the -revisions option when naming a project or a file causes the
revision history of the file to be displayed. Note that the comment option
has been included here as well.

Projectinfo -revisions -comments file.c
file.c

Apple Computer Inc.

Revision 22+
Owner: Bob
Checked out: Fri, Apr 8, 1988, 3:45 PM
Task: Fixing bug #223
Comment: COMMENT ...

Revision 22
Author: Bob
Checked in: Thu, Apr 7, 1988, 1:10 PM
Task: Fixing bug #222
Comment: COMMENT ...

61 Confidential

Proj~ctor ERS

Revision 21
Author: Bob
Checked in: Mon, Apr 4, 1988, 9:25 PM
Task: Updating procedure comments
Comment: COMMENT ...

Information about HFS files may be displayed by specifying a partial or
full HFS pathname. This displays the information in the 'clcid' resource
of the file.

Projectinfo :file.c
:file.c,22+

Owner: Bob
·Project: Samplef
Checked out: Fri, Apr 8, 1988, 3:45 PM
Task: Fixing bug #223

In the example below, only revisions created by "Bob" and created on or
after April 4, 1988 are displayed.

Projectinfo -revisions -a Bob -d "~4/4/88"
Samplef
file.c

Revision 22+
Owner: Bob
Checked out: Fri, Apr 8, 1988, 3:45 PM
Task: Fixing bug #223

Revision 22
Author: Bob
Checked in: Thu, Apr 7, 1988, 1:10 PM
Task: Fixing bug t222

Revision 21
Author: Bob

file.h

Checked in: Mon, Apr 4, 1988, 9:25 PM
Task: Updating procedure comments

Revision 17
Author: Bob
Checked in: Mon, Apr 4, 1988, 10:10 AM
Task:

In the example below, only revisions that have a task dealing with "Bug
#222" are listed.

Projectinfo -revisions -t /bug=222/
Samplef
file.c

Revision 22
Author: Bob
Checked in: Thu, Apr 7, 1988, 1:10 PM
Task: Fixing bug t222

hdr.c
Revision 31

Author: Peter
Checked in: Fri, Apr 1, 1988, 3:50 PM

Apple Computer Inc. 62 Confidential

(

See Also

Task: Bug222 - Adding check procedure

The final example shows the log option.

Projectinfo -log
TheShell~rojector

Author: Peter J. Potrebic
Create date: Mon, Apr 4, 1988, 1:59 AM
Mod date: Wed, Jul 6, 1988, 10:35 AM

7/5/88 4:07 PM
Peter J. Potrebic
DeleteNames Work

7/2/88 1:37 PM
Peter J. Potrebic
NameRevisions Work bitmaps.a,2 ckid.c,3a2

Projector ERS

The log shows that Peter created a public name on July 2 and then deleted
it on July 5.

MountProject

Apple Computer Inc. 63 Confidential

TransferCkid • move a ckid from one file to
another

Syntax TransferCkid sourceFile destFile

Projector ERS

DescriptiO!J Move the Projector ckid associated with sourceFile into destFile, and
then remove the ckid from sourceFile. SourceFile and destFile may be
specified with a complete or partial pathnames.

Input

Output

None.

None.

Diagnostics Errors and warnings are written to diagnostic output

Status The following status values are returned:

0 No Errors
1 Syntax Error
2 Error in Processing
3 System Error

Options None.

Examples TransferCkid oldFile .c newFile. c

See Also

Move the ckid from oldFile. c to newFile.c. Once the transfer is
complete, Projector will only recognize newfile.c as belonging to a
project. In addition, Projector will consider newFile.c to be the same file
as oldFile.c.

OrphanFile

Apple Computer Inc. 64 Confidential

c·

SADE Symbolic Debugger Project

I Alpha 2 Release Notes July 8, 1988 Fred Forsman m/s 27-E]

Summary.

These notes provide information about how to use the MPW 3.0 Alpha 2 release of SADE (the
Symbolic Application Debugging Environment).

This is the first SADE release to include the manual (as opposed to the ERS). These release notes,
however, should definitely be read because they provide installation information and additional
tips and hints in the use of the debugger based on the problems our early users have experienced.
The section "How to Use SADE" below tells how to set up SADE and the section "More Information
on Using SADE" gives some pointers on where to find information on using SADE without going to
the manual. The command section of the manual, however, is up-to-date and can serve as a
reference on matters not covered in the builtin help.

Please direct your comments on this release to one of the debugger team: Fred Forsman (x2520),
Russ Daniels (x4568), John Paulson (x4163), Ira Ruben (x2002), or Burt Sloane (x6252). Feel
free to give us feedback on any and all aspects of SADE (e.g., user interface, command language,
command output formats, etc.).

How To Use SADE.

Installation. You may drag the SADE folder from the release disk to anywhere you like on your
system (it does not need to be associated with the MPW folders). Note that the SADE application
also has · auxiliary files which should be kept in the same folder as SADE itself; these are
SADEStartup, SADEUserStartup,· SADE.Help and the SADE Worksheet. A copy of the SysErrs.Err
file should be kept either in the SADE folder or else in your System Folder so that SADE can
report system-related errors with textual messages. The SADEScripts folder which is included m
the release is not essential to the operation of SADE and may be placed anywhere or omitted
altogether.

SADE requires a special version of MultiFinder in order to access and control processes. The
version of MultiFinder included with the SADE release is compatible with the latest System
release (6.0). The additional code to support debugging in this version of MultiFinder should not
affect your normal (non-debugging) use of MultiFinder. To install this new version of
MultiFinder, drag your current MultiFinder to some place other than your System Folder, then
copy this new MultiFinder into your System Folder, and then reboot.

If you do not install the special version of MultiFinder needed for SADE (or if you inadvertently
replace it by updating your system) SADE will crash into Macsbug when you launch it (we will be
trying to improve this graceless behavior). You can verify that your version of MultiFinder was
the problem if SADE crashed on invocation by switching back to the main screen and observing
whether there is a SADE window with a "TWRegisterDebugger failed!" message in it.

DO NOT run SADE on a system with QuickKeys installed. QuickKeys is known to hang the system
when tracing traps in SADE.

Launching and Entering SADE. SADE should be launched like any other application, i.e., by
double clicking on the application icon, by double clicking on a SADE document, or by launching
it from the MPW shell.

Page 1

SADE Alpha 2 Release Notes 7/11/88

You should be able to switch to SADE using the usual MultiFinder process switching mechanisms.
If you want to enter SADE from the context of another program, hitting the NMI button should
transfer you to SADE which will either display the program source or a message of the form
"Program interrupted at <location>".

The target application you wish to debug with SADE may be launched from the Finder or from
SADE via the "launch" command. In order to inspect the target application with SADE, the target
application must be suspended. The application can be suspended by being interrupted with the
NMI button, by hitting a breakpoint, or by raising an exception which SADE handles. In this
release of S~E. this means that you wiil typically first suspend your -application by hitting the
NMI button, and subsequently by setting breaks. (We hope to support setting breakpoints in code
segments applications which have not yet run shortly, which would eliminate the need for
initially breaking with an NMI.)

SADE and MacsBug. MacsBug is still available while SADE is present. While SADE will take
over the NMI button, MacsBug can be entered via any $A9FF or SABFF trap. .There is an F-Key
("DebugFKey .r") which can be easily installed with Rez into your System to generate one of these
traps.

Symbolic Information. The symbolic program information support fr: , release of SADE is
working well for C and Pascal programs. Symbolic debugging information can be generated by
using the "-sym on" compiler option and the "-sym on" linker option. The ".SYM" file generated
by the linker should be in the same directory as the target program; otherwise the symbol file can
be identified with the "Target" command.

SADE is also able to fall back to the MacsBug symbol mechanism which identifies the names of
loaded procedures and functions whose names are embedded in the code. SADE uses MacsBug
information for display purposes only; that is, Macsbug names may appear in the output of the
"disasm" and "stack" commands and in the string returned by the "where" function. However,

r·
~'

SADE does not use MacsBug information on command input, so you may not use a MacsBug name <_/
(unless the name is also defined in the ".SYM" file) to set a breakpoint or to request a
disassembly.

Symbolic information is available for most Mac system (ROM and low memory) symbols.

Note that Lib has been changed to support symbolic debugging information, so that object files
. passing through Lib will no longer lose their symbolic information.

Source Level Debugging. SADE now supports source display, allowing the current execution
point (PC) to be identified in your source, and permitting the setting and unsetting of breakpoints
by identifying points in the source. To allow this mechanism to work you should either keep a
copy of your sources in the current SADE directory or else use SADE's "SourcePath" command to
identify where your source files are located.

Source level debugging is provided through a "SourceCmds" menu which allows setting and
unsetting breakpoints, single stepping by source statement, "go til", display of variable values,
etc. The menu commands are also available through command keys. The "SourceCmds" menu
includes a final item which allows switching between source level (statement-oriented) and
assembly level (instruction-oriented) debugging. The "step" and "step into" menu items and
command keys will change their behavior depending on the setting of the debugging level, as will
the debugger displays when entering the debugger after program execution.

The "SourceCmds" menu includes "Break" and "Unbreak" commands which work on the current
selection in the active window. There are "Step" and "Step Into" commands which wa.rk either at r',
the source statement level or the assembly instruction level (depending on ihe setting of the final ____,;

Page 2

(

SADE Alpha 2 Release Notes 7/11/88

"SourceCmds" menu item). The "Go" menu command begins program execution, and the "Go Til"
command begins · program execution with a temporary break set at the statement indicated by the
current selection in the active window. The "Where PC?" item will bring up the source
corresponding to the current PC, while the "Show Where" item will put up an alert indicating the
procedure and statement (nwnber) of the selection in the active window. The "Show Value" menu
item allows you to select variable names in your source and then use the menu command to
display the variable value; the value will be displayed in a "Values" window which is opened in
the current directory.

The support Jor this source debugging capability is implemented in the SADEStartup file by
means of several procedures in the debugger's language and some AddMenu commands;
consequently, the source debugging mechanism can be modified to suit your own tastes if you
spend some time investigating how it is implemented in the SADEStartup file. It is easy, for
example, to disable the alert which identifies the procedure/function and statement number
where execution has been suspended. To change this behavior you need to modify the
"StandardEntry" proc definition which appears in the SADEStartup file. This debugger proc
handles all display upon entry into the debugger; it plays this role because it is the designated
action in the "onEntry" command in the startup file. (You do not need to restart SADE to have a
new "StandardEntry" proc definition take effect; just select your edited definition and hit Enter.)

Another characteristic of source display that can be changed easily, is whether source windows
will be brought up as the topmost window. The standard behavior in this regard has changed in
this release so that source windows are not brought up as the topmost windows so that you can
continue to issue commands conveniently from a worksheet window. If you want the source
windows to appear on top, all you need to do is enter an assignment of the form:

SourcelnFront := 1
If you want to change this behavior for future debugging sessions you can modify the definition of
"SourcelnFront" in the SADEStartup file. (Let us know if Y01:1 think that the default for this
behavior is set incorrectly.)

More Information on Using SADE.

The following are some places to look for information on how to use SADE:

The "Help" command works, providing on-line information about the command language.

The SADE Worksheet file contains a variety of commands which demonstrate aspects of the
command language which you may be likely to use. The Worksheet also contains a
sequence of commands outlining how to debug MPW tools.

The SADEStartup file contains a number of debugger Proc definitions and AddMenu
commands which implement a source level debugging_ interface.

The "SADEScrjpts" folder in this release contains some examples of the use of various
debugger language constructs. Some of the examples provide implementations of builtin
SADE commands using the SADE command language. Some information on these scripts is
provided in a following section of these notes.

The following points should be noted in using SADE:

All traps are identified in SADE by names beginning with underscores (as in Traps.a).
Trap names without the underscores represent either glue or ROM addresses. Thus

InitGraf represents the trap while InitGraf represents an address in the ROM.

Page 3

SADE Alpha 2 Release Notes 7/11/88

• SADE looks up symbol references based on the context in which program execution was
stopped. In the simplest case, if we have broken inside of procedure "foo", then the name
"foo" and the names of any variables declared within "foo" will be recognized in their
simple or unqualified form. The names of other procedures and globals in the compilation
unit containing "foo" will also be known. If you want to refer to something which is not
defined within the context of the point where execution was suspended you may have to
qualify the symbolic reference to allow SADE to find the symbol. For example, if you want
to refer to an embedded Pascal procedure "snuk" which is inside of procedure "bar", ·you
may _specify "bar.snuk". If it is necessary to identify the compilation unit that a
procedure is in then a reference of the form "\UnitOrFile.Procedure" is required. (The
''\" indicates that the following name will be a Pascal unit name or C compilation file
name, i.e., a "top level" name.) If you hit NMI and end up in ROM or other system code you
will have to make such a qualified reference to talk about objects in your program.

• If you hit NMI and end up in ROM or other system code and want to get back to your
program, you have several alternatives, some of which will take longer to execute than
others. The simplest is to use the "step" command to single step until it reaches the next
statement in your program -- which can take a while depending on how much and what
system code SADE must step through. Alternately, you can bring up one of your source
files, set a source break, and go, which should be a much faster operation. If you want to
get back to the next statement to be executed in your program, you should use the "stack"
command to see what the last program statement is in your call chain and set a break on
the next statement and go. (We are working on ways to speed up stepping in cases such as
these.)

• The first (O'th) statement of a procedure or function corresponds to the entry point to that
routine before the LINK instruction has been executed, at which time the stack frame has
not been set up and the variables and parameters do not have meaningful values.
Consequently, if you want to check the value of a parameter you should go to statement
(e.g., "foo.(l)", instead of "foo" or "foo.(0)") before inquiring about the value.

• Symbolic debugging information from the Pascal compiler does not include information
about the use of WITH statements, consequently, SADE does not know how to deal with
unqualified field references. To access a field of a record which has been identified with
a WITH statement you will need to include the name of the record variable (as you would if
the WITH were not present).

In SADE a variable reference always refers to its value, and not its address; thus, "foo"
refers to the value of the variable "foo" and "@foo" refers to its address. The "Dump"
command takes an expression argument to specify what address to dump from, thus, if you
want to dump the value of "foo" you should specify "dump @foo" (since "dump foo" will
interpret the value of foo as an address and display the memory at the address indicated
by foo's value).

The values of expressions in SADE are long values by default. If some other size is
desired a type coercion should be used. Thus the following "find" command will look for a
long value

FIND $ABCD PC 20
while

FIND word($ABCD) PC 20
will look for a word-sized value.

The names of procedures and functions (and statement references relative to procedures)
can be specified as arguments to the break and other commands, as in "break foo";

Page 4

(

(

SADE Alpha 2 Release Notes 7/11/88

however, if you wish to assign the address of a: procedure to a register you should precede
the procedure name with the @ operator, as in "pc := @foo". In the former case the
procedure name (or statement reference) represents a special code reference (with extra
information about resources and offsets), while in the latter it represents a simple
address (at a specific point in time).

Known Problems In This Release.

The followiris features described in the ERS are not yet implemented:

• PMMU registers are not supported (and perhaps never will be), and 68030 transpar'"nt
translation registers are also not supported.

• Setting breakpoints in unloaded code segments is now supported; however, you cannot
issue SADE commands which refer to programs which are not yet running.

• The "Call" command is not yet implemented. It is likely that "Call" will not be
implemented for the first release

• While structured program variables may be assigned to SADE variables, and the SADE
variables may be subsequently displayed as structured types, field dereferences may not
be applied to SADE variables with structured values.

• The two machine remote-debugging configuration is not supported (and won't be in this
release of SADE).

• Display of ·Pascal sets is not supported, but is handled better than in the Alpha 1 release.
Display of records containing sets will not terminate when the set is reached.

You may notice problems with the following:

• The definition of source statements is still evolving. E.g., a breakpoint set on a WHILE
will only be encountered once on entry (setup) into the WHILE. This and related problems
are being addressed by further refinement of the compilers' notion of statements. You
will also notice that SADE sometimes will select several statements as if they were a
single statement. This results from statements for which there was no generated code,
resulting in several statements which map to the same address. The statements grouped
together in such cases are not always intuitive, so steps are being taken to improve the
display.

• The display of your application's windows may look strange after transferring control to
SADE and back. Do not adjust your set; this is not actually a problem. Remember that
your applieation gets suspended and does not receive any update events for windows which
are obscured while you are in SADE. It is possible that this problem can be improved in
the future if we are able to get additional support from MultiFinder to save the window
bits for suspended applications.

• The "system symbol" information (i.e., ROM and low memory names) which are built into
the Alpha version of SADE are for the Mac Il. By Beta we will provide support for SE and
Mac Plus systems.

Variables which are declared as EXTERN in one file but whose defining file was not
compiled with symbol information will not be known to SADE. For a variety of reasons
(including the desire to reduce the proliferation of duplicate definitions in and resulting

Page 5

SADE Alpha 2 Release Notes 7/11/88

expansion of symbol information) EXTERN definitions do not produce symbolic
information for the debugger.

This Alpha 2 release has the following knoWD buas:

• The "Kill" command functions correctly by itself, but will terminate any other pending
SADE commands if issued from within a structured construct such as a begin ... end. If you
kill a target with breakpoints still in place and then relaunch it, SADE will report false
breaks in the new invocation of the application.

• Output redirection will be cancelled if SADE is reentered a second time after first
reentering via a "stop" command in a break action.

• "Unbreak all" on rare occasions leaves a functioning breakpoint around (visible with the
"List break" command). A second "unbreak all" command will remove the breakpoint.

We are working on the problems described above and expect to have versions of SADE shortly
which will remove some of the above limitations and problems. If you are interested in getting a
more current version of SADE or if you encounter a problem you can't work around using this
release of SADE. please contact one of the SADE team members.

SADE Scripts Included With This Release.

A number of SADE scripts defming procs and funcs (procedures and functions in the debugger's
language) have been provided in this release. These procedures and funct~ons can be loaded using
the "execute" command on the various script files. The new commands that will then be defined
provid!: a number of higher-level debugging functions which display information about system
and program structures. (Some of these were trial implementations of what are now builtin
commands in SADE.}

The following file.s are included:

• DisplayMemory has the definition of a "DM" command to display sections of memory in
hex and ASCII. This facility is now built into SADE as the "Dump" command.

• FCBCbecker has the definition of a "DisplayFCBs" command which provides a symbolic
display of all of the file control blocks in the system.

• HeapProcs has the definitions for "HeapDisplay", "ShowFreeMP", and "DisplayHeaplnfo"
commands which display the heap, show free master pointers, and display summary
information about the heap respectively.

• MiscFunctiOns has the definitions for "Max" and "Min" which show how to create
functions with an arbitrary number of arguments.

• MiscProcs has the definitions for "DisplayRegs" and "DisplayWindowList" which
display the machine register state and the system window list.

• ResMap_ has the def"mition of a "ResMap" command to display a resource map. The builtin
"Resourc~" command performs a similar function.

• ResVerify has the definition of a "ResVerify" command to validate resource maps.

Page 6

(

SADE Alpha 2 Release Notes 7/11/88

StackC raw I has the definition of a "StackCrawl" command to display the stack of the
program being debugged. This facility is now built into SADE as the "Stack" command.

Thanks to Jim Friedlander. Julia Menapace, Russ Daniels, and Fred Forsman for the above scripts.
If you develop any useful and/or fascinating debugger procs and funcs of your own, please send a
copy to one of the SADE team members so that it can be used as a manual example or as part of a
library of useful debugging functions.

Page 7

(

ti® Macintosh®
SADE Reference
Manual

ALPHA DRAFT #2.
(corrected version)

Writer: Catherine Lipson
Contact: x2755, LIPSON!
Date: July 8, 1988

NOTE: This draft contains preliminary
material only. It does not contain:

• final technical or editorial changes
• final art
• final program examples
• an index

APPLE CONFIDENTIAL

Draft History:

Working Draft 1: alpha draft
Working Draft 2: alpha draft #2
Working Draft 2: corrected version

April 15, 1988
June 17, 1988
July 8, 1988

9 APPLE COMPlITER, INC.

Copyright © 1988 by Apple
Computer, Inc.

All rights reserved. No part of
this publication may be repro­
duced, stored in a retrieval
system, or transmitted, in any
form or by any means, mechan­
ical, electrog!c, photocopying,
recording, or otherwise, without
prior written permission of
Apple Computer, Inc. Printed in
the United Scates of America.

Apple, the Apple logo,
LaserWriter, and Macintosh are
registered trademarks of Apple
Computer, Inc.

ITC Avant Garde Gothic, ITC
Garamond, and ITC Zapf
Dingbats are registered trade­
marks of International Typeface
Corporation.

Simultaneously published in the
United States and Canada.

ISBN 0-201-xxxxx-x
ABCDEFGHIJ-D0-898
First printing, Nnnn 1988

ii

,£'-'·,

\..__,,

Working Draft 2 7/8/88

Contents

Chapter 1 .. 1-1
About SADE .. : 1-2

SADE and the target application .. 1-3
The SADE User Interface .. 1-4

The SADE Worksheet ... 1-4
The SADE Menus .. 1-5
SADE Conunand-line Interface .. 1-6

SADE files and directories ... 1-9

Chapter 2 ... 2-1
Installing SADE ... 2-2
Launching SADE ... 2-3

Entering SADE from an application ... 2-4
The SADEStartup File ... 2-5

Entering and Editing Commands and Text ... 2-6
SADE File-Handling Operations .. 2-7

File Commands .. 2-8
Getting help in SADE .. 2-9

Debugging a program: an introduction .. 2-9

Chapter 3 .. 3-1
About Symbols .. 3-4

Debugger symbol seach path ... 3-4
Order of Symbol Lookup .. 3-5

Numeric Constants ... 3-5
Strings .. 3-6
Identifiers .. 3-7

Setting Case Sensitivity ... 3-8
Variable references ... 3-9
Predefined debugger variables ... 3-10
User-program variable references .. 3-12

Program procedure and statement reference 3-13
Referencing objects outside the stack activation 3-14

Register names ... 3-14
Expressions .. 3-15

Operator precedence ... 3-15

Contents Working Draft 2 ill

Expression operand base types .. .3-16
Evaluation of expressions .. .3-17

The Assignment operator .. 3-18
The Pointer operator .. 3-19
The Address operator ... 3-19
The Trap operator ... 3-19

Type coercion .. 3-19
Ranges .. 3-20
B uiltin Functions ... 3-21

AddrToSource ... 3-21
Concat .. 3-21
ConflIIll .. 3-22
Copy .. 3-22
Find ... 3-22
Length .. 3-22
NaN .. 3-23
Request ... 3-23
SizeOf .. ~•.. 3-23
SourceToAddr ... 3-23
Tuner ... 3-24
TypeOf•.....•...••......•.......................... 3-24
U ndef ... 3-24
Where .. 3-24

SADE Command Language ... 3-25
Command execution•................................ 3-26

Debugger Output Files ... 3-26
Debugger error output ... 3-27
Symbol Display .. 3-27

Debugger Variables ... 3-27
User-defined variable references ... 3-28

The Undefine Command ... 3-29

Chapter 4 .. 4-1
Locating and Controlling Program Files .. .4-3

Locating your Files .. 4-3
Directory Command .. 4-3
Target Command .. 4-4
SourcePath Command ~ 4-4

Basic Application Control.. ... 4-5
Launch Command .. 4-5
Kill Command •.. 4-5

Displaying Program Information4-6
Formatted Displays .. 4-7

Printf Optional Parameters ... 4-7
Listing Program Information ... 4-12
Special-purpose Displays .. .4-14

The Disasm Command ... 4-14
The Dump Command ... 4-14
The Stack Command ... 4-15

Displaying and Checking the Heap4-16
Displaying and Checking Resources4-18

Finding Program Locations .. 4-18
Setting Memory V~ues .. 4-19

iv Working Draft 2 Contents

I~~,

~-

(Chapter 5 .. "' .. 5-1
Resume Program Execution ... 5-2
Stepping Through a Program .. 5-3
Sus pending Program Execution ... 5-5

Address Breakpoints .. 5-5
Trap Breakpoints ... 5-5
Break Actions .. 5-7
U nbreak Command .. 5-7
Stop Command ... 5-8

- Abon Command ... 5-8
Monitoring Program Execution .. 5-8

Trace Command .. 5-8
U ntrace Command ... 5-9

Chapter 6 .. 6-1
Debugger Command Flow Control. .. · 6-1

Grouping Commands .. 6-2
Conditional Commands .. 6-4
Looping Commands .. 6-5

For Command .. 6-6
While Command ... 6-6
Repeat Command .. 6-7
Loop and Leave Commands .. 6-8
Cycle Command ; .. 6-9 .

Chapter 7 .. 7-1
Customizing the Debugging Environment .. 7-1

Executing a Debugger Command File .. .'.7-2
U ser-defmed Macros ... 7 -3
User-defined procedures ... 7 -4
User-defined Functions .. 7-5
Customizing your Startup File .. 7-7

The OnEntry Command ... 7-7
User-Defined Menus and Alens .. 7-8

Add.Menu Command ... 7 -8
DeleteMenu Command ... 7-8
Alen Command · .. 7 -8

Chapter 8 .. 8-1
Source-Level Debugging .. 8-1

To be supplied

Append.ix A ... 1
SADE Menus ... 1

Appendix B ... 1
Sample Program ... 1

Appendix C ... 1
Editing in SADE .. ; 1

(~. Appendix D ... 1
Symbol File Format ... 1

Contents Working Draft 2 v

Appendix E .. 1
Linker Output ... l

List of Figure and Tables ***for next draft***

Figure xx .. l

Table xx ... 1 -

vi Working Draft 2 Contents

,1
i

"-~- •'

(

Preface

About This Book

Hardware and Software Compatibility ... viii
About This Manual ... viii

Syntax Notation .. x
Bibliography ... x

Preface Working Draft 2 vii

The SADE Reference manual describes the functionality, user interface, and command
language of the Symbolic Application Debugging Environment (SADE™). This symbolic
debugger allows the developer to monitor the execution of a program at the symbolic
program source level and the processor level. SADE is intended primarily to debug
applications and tools created with the Macintosh Programmer's Workshop (11PW). It is
possible for other development systems to use SADE if they supply the required symbol
information~

Hardware and software compatibility
You can use SADE to debug application programs on the Apple® Macintosh II™
computer, the Macintosh SE computer, and the Macintosh Plus computer. The size of
SADE prohibits its use on the 128K and S 12K versions of the Macintosh. SADE supports
the Motorola MC68000 family of processors and coprocessors.

Generating program debug information during compiles and links using the MPW
development system (version 3.0) requires a minimum of 1 megabyte of memory.

SADE requires MultiFinder to be installed and active. The version of MultiFinder included
with the SADE release is compatible with System File 6.0. SADE supports only the
Macintosh Toolbox environment; there is no suppott for UNIX® or other operating
systems. Later versions of MultiFinder will include the needed support for SADE.

About this manual
The material in the SADE Reference Manual is aimed at readers who have a thorough
understanding of the compilers, linkers, and other programming tools they are currently
using. The "how to" information on writing, compiling, or linking your program is
covered in the manuals specific to the tools you are using.

The primary audience for this book consists of Macintosh application developers and other
professional programmers. The primary focus is on those users who are already familiar
with the MPW environment. You· should already be using a debugger or emulator to help
you in your program development work. The chapters in Part I describe SADE features,
and serve as a reference to commands and techniques you need to use often. The chapters
of Part I are as follows:

Chapter 1, "SADE Overview," provides general information on the SADE interface and its
many powerful features. The chapter presents the high-level interface first, with a
description of the SADE Worksheet and menus. This chapter also-contains a brief preview
of the command-line interface, which is described in more detaifin Chapter 3.

viii Working Draft 2 Preface

r-.
\'-._,/

c~

Chapter 2, "Getting Started," provides step-by-step instructions for installing the SADE
files on your system. The chapter then describes the various methods used to enter SADE.
The purpose of the SADEStartup file is defined here, and some simple SADE operations,
such as displaying help information, are demonstrated. This chapter also describes some of
the commands that you can use to control the high-level interface that SADE uses in dealing
with files, windows, and menus.

Chapter 3, "Debugger Symbols and Command Language Format," provides a reference for
all types of debugger symbols and expressions. This chapter focuses on the command-line
interface, and the rules and guidelines you must follow to enable SADE to properly
interpret symbol names. It also describes the proper format for SADE command usage, and
how the SADE command interpreter evaluates commands.

Chapter 4, "Basic Debugger Operations," includes examples from the program "Eventlog"
to illustrate particular commands. The chapter focuses on the commands that allow you to
locate, display, or alter selected places in in your program's memory. Heap and resource
commands for displaying and validating these system data stuctures are also included in
this chapter.

Chapter 5, "Program Control," describes how to use SADE commands to control a target
program's execution. These commands let you set breakpoints on one or more addresses,
on trap ranges, or on all traps. You can also step through a program, trace program
execution, or suspend execution.

Chapter 6, "Debugger Command Flow Control," contains information on the conditional,
looping, and grouping constructs used within the SADE command language. These
constrilcts are useful when you wish to automate your debugging session, because they
allow you to conditionally execute or repeat a series of commands.

Chapter 7, "Customizing the Debugging Environment," tells how to write your own SADE
procedures, functions, and macros. In addition, this chapter explains how you can use the
SADEStartup file, the Add.Menu command, and other SADE features to create a debugging
environment that suits your needs. This chapter also contains information on executing
debugger command files.

Chapter 8, "Source Level Debugging," describes the SADE source file interface. This
source level debugging functionality is implemented through use of SADE procs within the
SADEStartup file, which can be customized by the user to suit particular debugging needs.

Appendix A, "SADE Menus," illustrates the standard SADE menus, which are similar to
standard Macintosh menu types.

Appendix B, "Sample Program," lists the entire sample program used as an example in this
book. Appendix C, "Editing in SADE," provides an overview of the SADE editing
functions.

Appendix D, "Symbol File Format ,"contains a guide to the contents of a SADE symbol
file, which is produced by the Linker. Appendix E, "Object File Format," provides
information on the symbol output produced by the MPW compilers.

Preface Working Draft 2 ix

As you become familiar with the use of SADE, the introductory chapters will become less
important. The command summary in Part II is designed to be a useful quick reference for
experienced users. Part II contains command pages, arranged in alphabetical order.

Syntax notation

The following syntax notation is used to describe SADE commands:

terminal

nonterminal

[optional]

I repeated ...

alb

(grouping)

Plain text indicates a word that must appear in the command exactly as
shown. Special symbols(-,§,&, and so on) must also be entered exactly
as shown.

Items in italics can be replaced by anything that matches their definition.

Square brackets mean that the enclosed elements are optional.

An ellipsis (...), when it appears in the text of this reference only, indicates
that the preceding item can be repeated one or more times.

A vertical bar indicates that you can choose between the items on either side
of the bar.

Parentheses indicate grouping. Parentheses are useful with the vertical-bar
notation (I) and the ellipsis notation(...).

Filenames and command names are not sensitive to case. By convention, they are shown
with initial capital letters. Terms printed in boldface are defined in the text and appear in
the glossary.

Bibliography
Several of the chapters in this book assume you are familiar with the concepts explained in
Volumes I-IV of Inside Macintosh (published by Addison-Wesley, 1985). For instance,
you need to know how the heap and resources work on the Macintosh for the SADE heap
and resource commands to make sense. Additional features of the Macintosh SE and
Macintosh II computers are documented in Inside Macintosh Volume V (Addison-Wesley,
1988) .. Finally, you'll need the appropriate documentation for the programming
environment and languages you'll be using.

x Working Draft 2 Preface

Part I - SADE Reference
Manual

Working Draft 2 I- l

(

Chapter 1

SADE Overview

About SADE ... 1-2
SADE and the target application .. 1-3

The SADE User Interface .. 1-4
The SADE Worlcsheet ... 1-4
The SADE Menus .. 1-5
SADE Command-line Interface .. 1-6

SADE files and directories .. 1-9

SADE Overview Working Draft 3 1-1

Tiris chapter introduces the Standard. Application Debugging Environment (SADE), a
program designed for high-level language debugging. SADE works within the overall
program-development environment as a tool for detecting and correcting known program
errors. You can also use SADE to test a program to verify that it is functioning as expected.

SADE provides a standard. Macintosh window and menu interface, as well as a command­
line interface with its own command language. Using SADE, you can monitor program
execution at both the program-source level and at the processor level. SADE's intended
use is to debug applications and tools created with the Macintosh Programmer's
Workshop, but you can also use SADE independently of MPW.

This chapter first contains an overview of SADE features, and describes the relationship
between SADE and your application program. The rest of this chapter concentrates on the
SADE user interface, and gives you a preview of how you can use the SADE Worksheet,
menus, and commands together to accomplish debugging tasks. These topics are all
considered in greater detail in later chapters of the SADE Reference Manual.

About SADE
SADE, with its symbolic debugging capabilities, provides important advantages for
Macintosh programmers. Using symbolic debugging means that symbols within the target
application-procedure and function names, variables, and system objects such as Toolbox
trap names-can easily be located from within SADE. A complete description of how
SADE identifies symbolic information is contained in the Chapter 3, "Debugger Symbols
and Command Language Format"

Here are some of the other important SADE features:

•

•

•

•

1-2

A windowed display provides a familiar Macintosh interface for your debugging
session. SADE can also display your source files in read-only windows.

Debugging sessions are easy to start. because you can launch SADE like any other
application. While your system is running under Multi.Finder, you can easily switch to
SADE.

SADE commands can be saved to and loaded from disk, and debugger output can be
saved for use outside of SADE.

Source-level symbol references are fully supported, using symbolic program
information created by using symbol options with the compiler and linker. SADE can
display complex data types, listing all the fields in the structure.

SADE includes a powerful, programmable, and extensible command language with
structured control statements, user-defined procedures and functions, and full
expression evaluation.

Built-in debugger functions provide a way to perform operations such as displaying the
statement line that corresponds to an address.

Working Draft 2 SADE Overview

(• Program-control facilities such as breakpoints, single stepping, or suspended execution
let you see the effect of program execution on chosen program locations.

• SADE's flexible display-fonnatting capability allows you to choose how your
debugging information will appear.

• Macintosh-specific support lets you identify heap objects and verify the consistency of
heaps. Resource information and system objects, such as Toolbox trap names and
low-memory global variables, can be referenced symbolically.

• SADE is easy to customize.You can define an alias for a SADE command name, add
menus and menu commands, or perform other initialization routines each time you stan
the debugger.

These and other features are more fully described in various chapters of this manual. Many
commands described in this manual are used to control execution of the target program,
while other commands are used to control the workings of SADE itself. This division
between program control and debugger control is reflected in subsequent chapters.

SADE and the target application

SADE is a stand-alone application, and can operate on its own within the system
environment on your Macintosh. What SADE does require for any kind of meaningful use
is a target application-that is, a program that you wish to debug. SADE works with the
target program on two levels---on the source level, SADE can display source files, while
on the processor level, SADE can display infonnation about the program's execution.

To stan a debugging session, both SADE and your target program have to be launched.
You can launch first SADE, and then launch your target program, or you can launch the
target program first, and then launch SADE. Once both are launched, you can rerurn to
your target program and break into the debugger.

Each time a target application is compiled and linked, symbol information can be generated
in a format that SADE can interpret The MPW C and MPW Pascal compilers generate
symbolic information, controlled by qualifying options. The MPW Linker tool processes
and outputs this symbol information in the form of a symbol file. See the appropriate
language reference manual for information on compiler options, and the MPW Reference
Manual. Chapter xx, for information on linker options.

SADE can use symbol information generated by any compiler that produces the correct
object file fonnat. The linker must also support use of symbol information. Appendix D,
"Symbol File Format," and Appendix E, "Object File Format," provide a reference to the
required format for compiler and linker output. Typically, the compiler and linker would
include some kind of optional parameters to control symbol output. For example, a
compiler might include a option for full symbol information, including source-line,
variable, and type information. A compiler could also generate panial symbol information;
for example, a compiler might include options to omit all source line information, all
variable information, or all type information.

SADE Overview Working Draft 2 1-3

The SADE user interface
As you read in this manual, you '11 soon become aware of the dual nature of the SADE user
interface. Like almost every Macintosh application, SADE has windows, menus, and
dialogs. When you are operating within this graphic-oriented user interface, you can do
much of the work by pulling down menus, clicking the mouse, and pressing command
keys. However, SADE also includes another powerful component: the command-line
interface. In. many respects, the SADE command language is similar to a progamming
language. There are many SADE commands, each with its proper syntax. You type these
commands on the keyboard, and execute them through use of the Enter key.

The sections that follow first describe the graphic-oriented user interface-the SADE
Worksheet and the SADE menus. The description of the command-line interface is next,
and includes a comprehensive list of SADE commands grouped by function.

The SADE Worksheet
When launched, SADE opens its own text window, known as the SADE Worksheet.
Shown in Figure 1-1, this worksheet provides a place to enter SADE commands and
display debugger output. The worksheet includes a menu bar, scroll bars, and other
standard Macintosh window features. You'll see the SADE icon in the upper-right comer
of the menu bar. A blinking cursor shows where you can enter commands from the
keyboard. You execute the SADE commands by pressing the Enter key.

1-4 Working Draft 2 SADE Overview

" s File Edit Find Mark Window SourceCmds

amazing:MPW:SRDE ft I :SRDE Worksheet
• Standard Apple D•bu991n9 Envir..,,.ent 1 0 R1pha
•
• Ca~ignt Rppl• Co11PUter, Inc. 1987-1988
• Rll r1gnts r•serv•d .

...
llCITE: Vou cannot s•t br•akpoints in unl..-.:t code s~ts ••th this version.

SH below for !~ seqoanc:• to debug rl'\I tool .

This -ksn..t c~tains s-c~ you •ignt I ik• ta tl"\j .

...

Uersion

Help

SAO£

Figure 1-1

· • displav SADE's version inforeotion

• a '"Q\I to find out -t can b• done

~

The SADE Worksheet

At the window's lower-left comer, a status panel shows the name of the command
that's currently executing, or simply the word "SADE" when you 're not executing a
command. A mouse click on the status panel is equivalent to pressing the Enter key.

The first time you launch SADE, the debugger opens the SADE Worksheet file. This
worksheet is a text file which contains sample SADE commands and other useful
information. You can enter commands and text anywhere within this worksheet.

If you decide to stan debugging with a blank worksheet, you can clear the worksheet just
like any other text file. For example, you can choose "Select All" from the Edit menu, and
then use the Delete key to delete the contents of the current worksheet

The SADE menus
The standard SADE menu bar includes the Apple, File, Edit, Find, Mark, and Window
menus. In addition, the SourceCmds menu may appear in the menu bar, if it is generated
by your SADEStartup file. (If you watch carefully when SADE starts to run, you will see
that the SourceCmds menu appears just a few seconds later than the standard menu
commands.)

The SADE standard menus provide an easy way to open, save, and close files, perform
edit operations, and find text within files. These menus are described below.

SADE Overview Working Draft 2 1-5

IThe Apple menu includes an "About SADE" menu item, which displays the current SADE
version number.

The File menu allows you to open a new or existing file, close a file, or save a file. (You
can also enter several of these commands from the SADE command line: these commands
include the Open, Close, and Save.) The Quit command gets you out of SADE and back to
the Finder.

The Ed.it menu allows you to perform some of the standard edit operations on a selected
portion of text within a SADE Worksheet. This manual assumes that you are already
familiar with standard Macintosh editing commands, such as Cut, Paste, and Undo.

The Find menu can be used to search for a specified string. You can also perform search
and replace operations from this menu.

The Mark menu allows you to set markers within a file. These markers are simply text
selections identified by name, and can used to make selecting expressions easier.

The Window menu can be used to stack or tile windows. Your SADE Worksheet always
appears first in the lower section of the Window menu.

The SourceCmds menu is generated by commands within the SADEStartup file. The menu
includes commands to set or unset a breakpoint in the source program, clear breakpoints,
step through the source program, resume program execution, display variable values,
display the current program counter location, and switch between source level and
assembly level debugging. You can also enter these commands from the SADE command
line. You can alter or change the commands in the SADEStartup file, and add items to the
SourceCmds menu if you wish. See Chapter 2 for more information on the SADEStartup
file.

Many of the menu commands have Command-key equivalents, so you can speed through
these standard operations once you're familiar with them. Appendix A, "SADE Menus,"
contains detailed information on SADE menu commands and the dialog boxes that appear
when you select those commands.

You can further customize the SADE menus by placing additional AddMenu command
lines in the SADEUserStanup file. Each user-defined menu command specifies a list of
SADE commands that are executed when you select the menu command. See the section on
"User-Defined Menus" in Chapter 7 for more information on the AddMenu command.

SADE command-line interlace
The SADE command-line interface is similar to a high-level programming language. SADE
commands, listed in Table 1-1, allow you to create expressions, define procedures and
functions, control the flow of debugger execution, start and stop program execution, and
display various symbols within your program. Many of the commands have a number of
optional parameters that affect their operation. SADE also includes a number of built-in
debugger functions, which you can use to perform operations such as displaying the source
file that corresponds to an address. These features provide a great deal of flexibility in the
command language, as well as increased power.

1-6 Working Draft 2 SADE Overview

The rules for constructing a SADE command can be compared to the syntax requirements
of a programming language. Chapter 3, "Debugger Symbols and Command Language
Format," describes the components that make up SADE symbols and expressions, and
explains how the SADE command interpreter evaluates a command line.

When using the command-line interface, you type one or more commands into your current
SADE worksheet, and then execute the commands by pressing the Enter key. To execute
more than one line of commands from the worksheet, you can highlight as many lines as
you wish, and then execute the entire group of commands by _pressing Enter.

You can also save a group of SADE definitions, which you use to perform a specific task,
in a command file. You can then execute this file to invoke those definitions. This process
is similar to using an include file with a programming language: the definitions in the file
are executed once each time it is used. You can find more infonnation on this SADE feature
in Chapter 6, "Debugger Command Flow Control." The SADEScripts folder contains
many examples of command files that perf<?nn useful operations.

If you wish to repeat a group of SADE commands many times during your debugging
session, you can write a SADE procedure or function (hereafter known as aproc orfunc).
You can store this proc or func within a command file. After the command file is executed
for the first time, you can invoke the proc or func by name, as many times as needed. You
can find more information on this subject in Chapter 7, "Customizing the Debugging
Environment"

The SADE commands in Table 1-1 are grouped by function. This format reflects, to some
degree, their organization within the chaptel'.S of this manual. As you read Chapters 2
through 8, you will find these commands discussed, with examples of their use. Once you
reach Part II of this manual, you will find that the commands are arranged alphabetically.
This change in presentation gives you two ways to find the particular command you need­
by function or by name.

Table 1-1. SADE Commands

File commands

Open
Save
Close
Redirect

Opens a file
Saves a file
Closes a file
Redirects standard output

Debugger variable commands

(Chapter2)

(Chapter 3)

Define
Undefine

Defines a debugger variable
Removes a local debugger variable, proc, func, or macro

Symbol command (Chapter3)

Symbol Controls symbolic display in disassembly

Application control commands (Chapter4)

SADE Overview Working Drott 2 1-7

Directory
Target
Sowcepath
Launch
Kill

Changes the current directory
Selects program target
Sets search path for source files
Launches an application
Kills an application

General expression and display fonnatting

Printf __ Sends fonnatted output to file or
window

(Chapter4)

Special-purpose display commands (Chapter4)

Disassembles insttnctions Disasm
Dump
Stack
List

Dumps a range of memory in hex and characters
Displays stack frames
Lists address or ttap breakpoints. processes, symbols

Heap commands (Chapter4)

Heap [display] Displays the heap
Heap check Verifies the consistency of the

heap
Heap totals _ Displays summary infonnation for

the heap

Resource commands (Chapter 4)

Resource [display] Displays the· resource map
Resource check Checks the resource map

Searching command (Chapter 4)

Find Searches for a target in memory

Debugger execution control commands

Shutdown Shuts down (with restart
option)

Gets out of debugger

(ChapterS)

Quit
Stop
Sbon

Stops execution of debugger commands
Stops execution of debugger commands and pending commands

Execution commands

Go Stans execution
Step Single steps through code

Breakpoint and tracepoint commands

Break
Unbreak
Trace
Untrace

Sets address or trap breakpoints
Removes breakpoints.
Sets tracepoint
Clears tracepoints

Aow control commands

(Chapter 5)

(Chapter 5)

(Chapter6)

1-8 Working Draft 2 SADE Overview

I "--- .

(~'\

_/

(

(

lf..end -Conditionally executes commands
While .. end Conditionally loops with beginning test
Repeat .. until Conditionally loops with end

For .. end
Cycle
Leave

Begin .. end

test
Loops with a conrrol variable
Continues execution at top of current loop
Continues exection after the end of the
current-loop
Groups commands together

Execute debugger command file (Chapter?)

Execute Executes debugger commands
in a file

User-defined macros, procedures, and functions (Chapter?)

Macro Associates characters with an
identifier

Proc ... end Defines a procedure in the debugger
language

Func ... end Defines a function in the debugger
language

Return Returns from a function

Menu and Alen commands (Chapter?)

Addmenu Associates commands with menu
commands

Deletemenu Deletes menu items
Alen Displays an alen box

Miscellaneous commands

Help
Case
Version

Gets help on SADE.topics or commands
Sets the case of a variable lookup
Displays current SADE version

SADE files and directories

(Chapter2)
(Chapter3)
(Appendix C)

This section describes what you will find on the SADE release disk. For installation
instructions, see Chapter 2, "Getting Started."

The SADE application itself can be opened and executed just like any other application.
You can recognize SADE by its distinctive "insect" icon. When SADE is running, it uses a
number of other files, which are also included on the release disk. These files are as
follows:

SADE Overview Working Draft 2 1-9

SADE.Help This auxiliary file contains the online Help information for the SADE
language. You can get this information at any time from within SADE
simply by using the Help command. More information on the Help
command can be found in Chapter 2.

SADE Worksheet When you first open this file.you'll see more than an empty window.

SADEStartup

The Worksheet displays a number of typical uses for SADE commands,
to give you an idea of how SADE can be used. Also included in the
Worksheet is a sequence of commandS for debugging MPW tools.

This file contains debugger proc definitions and other commands that
set up the initial SADE configuration. More information on this file can
be found in Chaper 2.

ISADEUserStartup This file is initially an empy text tile. You can use the SADEUserStanup
file to customize SADE startup settings.

SADEScripts

Multi.Finder

SysErrs.Err

1-10

This folder contains a number of files that provide examples of
debugger command usage. More information on these scripts is
provided in Chapter 7.

The version of Multi.Finder on the SADE release disk is slightly
different than the previous versions of Multi.Finder. you may replace
this special version with an updated version of Multi.Finder sometime in
the future.

This file can be used for IO and system error messages.

Working Draft 2 SADE Overview

;<''
\;.___, ~'

(

Chapter 2

Getting Started

Installing SADE ... 2
Launching SADE ... 4

Entering SADE from an application .. .4
The SADEStanup file ... 5

Entering and editing commands and text ... 6
SADE file-handling operations .. 7

File commands ... 8
Getting help in SADE .. 9
An introduction to debugging a program ... 9

Quitting from SADE .. 10
Shutting down the system ... 11

Getting Started Working Draft 3 2-1

This chapter covers what you'll need to get started using SADE-how to install it, how to
launch the debugger from the Finder, and how to enter the debugger from your executing
application program. The SADEStartup file, which provides initialization infonnation each
time you launch SADE, is described in detail. After reading this chapter, you should be
ready to stan debugging with SADE.

In addition, this chapter provides a brief introduction to file-handling and command-line
editing within SADE. The basic file-handling tasks include opening, closing, and saving
the text files· created by SADE. This chapter briefly explains how to enter and edit
commands within a SADE worksheet. This part of SADE follows the standard Macintosh
text-editing conventions, so you'll find much that is familiar here.

The SADE Help command is introduced in this chapter, so that as you read the remainder
of this book, you '11 know how to .get online help. The last section in this chapter illustrates
how to start up with a sample debugging session.

Installing $ADE
SADE is distributed. on a disk as a stand-alone application, with its own help file and other
material. You can copy the SADE files into any convenient location on your hard disk. The

. files SADE.Help, SADE Worksheet, SADEStartup, and SADEUserStartup must be located
in the same directory as the SADE application; the guidelines for placing these files are
shown in Table 2-1. ·

Table 2-1. SADE Files

Same directory

SADE

SADE.Help

SADE Worksheet

SADEStartup

I SAD EU serStartup

Application

Auxiliary text file

Auxiliary text file

Auxiliary text file

Auxiliary text file

Other directory

S ysErrs.Err VO and system error
messages

SADEScripts Optional examples

MultiFinder Place in System folder

You can create a directory for your SADE files wherever it is convenient. For example, if
you want to create a folder called Debugger on your hard disk, you can simply copy the
contents of the SADE distribution disk into the Debugger folder.

The SADE.Help file is a text file that is called by SADE anytime you use the Help
command from your worksheet The SADE.Help file isn't designed to be accessed directly
by users.

2-2 Working Draft 3 Getting Started

{

A SADE Worksheet file is opened each time you launch SADE. Any commands you wish
to enter can put anywhere within this worksheet.

You can create any number of SADE files, place commands or text in them, and give them
names of your choosing. You can double-click on any SADE file to start up SADE. If you
move a SADE file to another directory, and then quit SADE, you should be aware of the
following behavior: when you double-click the SADE file in the other directory, SADE will
launch, but the SADEStartup file won't be executed.

The commafids in the SADEStartup file are executed automatically each time SADE is
launched. You can change the contents of this file if you choose; see "The SADEStarrup
File", later in this chapter, before you attempt any changes. Any changes you make will
take effect after you have quit SADE and relaunched, or after you have reexecuted the
SADEStartup file.

The SADEUserStartup is an empty text file that you can use for your own commands,
definitions, or procedures. This file is executed from the SADEStartup file.

You can place the SysErrs.Err and SADEScripts files in the same directory as SADE if you
choose. You could also put the SysErrs.Err file in the System Folder, it's used so SADE
can report system-related errors with textual messages. The SADEScripts folder contains
examples for SADE command files that perform a variety of useful functions. You can
move them anywhere you like, or omit them if you need extra space on your system.
However, since several of the command files are used as examples in this book, it's a good
idea to keep these samples around until you are well-acquainted with SADE.

The application that you are debugging can reside anywhere on the system. It's easiest to
keep the symbol file generated by the linker in the same directory as the application.

·However, you may keep the symbol file elsewhere if you properly identify its location
using the Target command.

To permit source file display, SADE must be able to find the source files for your
application. If the source files aren't in the current directory, you can use the Sourcepath
command to identify their location. This command is described in Chapter 4, "Basic
Debugger Operations".

Remove following paragraph after final version ships

Current versions of SADE must run under a special version of MultiFinder, known as
(version xxx?) To make sure that SADE will work correctly, you must first move your
current version of MultiFinder out of your System Folder. Then drag the SADE version of
MultiFinder into your System Folder. At this point, restart with the new version of
MultiFinder, you will then be ready to try SADE.

This new version of MultiFinder is compatible with the latest System release (6.0). The
code added to support debugging will not affect your normal use of MultiFinder.

Getting Started Working Draft 3 2-3

Launching SADE
Once you have installed SADE, you can launch it from the Finder as you would a.IJY other
application: by double-clicking on its icon, by double-clicking on any SADE document. or
by choosing Open from the File menu. You can also launch SADE from the MPW shell.
You can return to the Finder from your application window and launch SADE at any time.

Each time SADE is launched, it notifies Multi.Finder that it is acting as the debugger for the
system. MuitiFinder then passes exception handling and process inf9rmation to SADE.
When other applications run, SADE is suspended, but as soon as an exception occurs,
SADE will once again be in control. Exception handling passes back to the operating
system only when you explicitly quit from SADE by using the Quit command.

When you first start SADE, the commands within the SADEStartup file execute
automatically. This file contains the initialization information for your SADE debugging
session. The details of the default settings for the SADEStartup file are described in this
chapter. Keep in mind that these default settings may be changed if you wish to specify
some other set of SADE startup actions.

Once SADE has been launched, you can begin working in a SADE window right away, or
you can switch back to another application or the Finder with the usual Multi.Finder process
switching mechanisms. To return to SADE, just click any SADE window. The various
ways to enter SADE from your application are described next.

Entering SADE from an application

This section describes several methods you can use to go from SADE to your application
program, and back to SADE. The techniques described in this section assume that you have
already launched the SADE application.

After SADE has been started, you can easily return to your application by clicking its
window. You can then re-enter SADE from your executing application program. The most
common way to do this is by means of the NMI key located on the side of your Macintosh.
Also known as the programmer's switch, this key interrupts the foreground program as it's
running on your system, and causes control to be passed to SADE. The SADE worksheet
then comes to the foreground, and a message appears. (See the SADEStarrup file for the
default messages.)

If your program generates an exception due to some error, the program enters SADE when
the exception occurs. Again, a SADE worksheet comes to the foreground; the worksheet
may display a message indicating where the program counter was when the exception
occurred. (The message displayed depends on the argument used with the OnEntry
command in the startup file.)

The system error-handling routine, invoked by calling SysError, will also put you into
SADE. You can use this routine within your program as a test:

if (boolean expression) SysError();

2-4 Working Draft 3 Getting Started

(If the boolean expression becomes true while your program is executing, your
program will enter SADE. This error-handling routine allows you to enter SADE from the
point you choose, instead of waiting for an exception or interruption.

You can't use the debugger traps $ABFF and $A9FF for SADE, because they are reserved I
for MacsBug.

While you're working with SADE, you can set a breakpoint at one or more places in your
program ctvf..e. When you resume execution, your program will run until it reaches a
breakpoint, and then control returns to SADE. The commands used to set code breakpoints
are described in Chapter 5. You can also use the menu items in the SourceCmds menu to
set breakpoints in a source file. See Chapter 8 for more information on source breakpoints.

The SADESfartup file
Each time you start SADE, it searches for a file named SADEStartup, and executes the
commands in the file. If the SADEStartup file isn't in the same directory as SADE, it
won't be found when SADE is launched. However, you can delete the SADEStartup file,
or "hide" it in another directory, and SADE will still run.

You can change the commands within the SADEStartup file if you wish; however, you
should be familiar with the important functions provided by this file before you attempt to
modify it. This section describes the contents of the default SADES tartup file.

A debugger procedure, or proc, is the first thing you'll notice in the SADEStartup file.
After this S tandardEntry proc is defined, you'll see it used as the argument for the OnEntry
command. This command can be used with any break action; in the SADES tartup file
OnEntry provides a way for SADE to put a message in the worksheet when your program
code is interrupted.

The StandardEntry proc includes a Printf statement, which shows you the cause of the
interruption, the location of the Program Counter at the time the error occurred, and the
name of the application program that was halted. The numeric codes listed in this debugger
proc correspond to the different reasons that your program might stop executing. For
example, if you press the NMI key, you will get the message "Program Interrupted". If the
debugger generated an exception, as is the case in a break or trace operation, the
corresponding message is displayed. These messages are described more fully in Chapter
3.

If you change the StandardEntry proc definition, you don't have to restart SADE for the
new definition to take effect. You can simply select your edited definition and press Enter.

The RegisterDisplay proc causes SADE to open a window, which it places behind the
active window. This window then receives the output of a number of Printf statements that
display the current values of D0-07, AO-A 7, and the program counter.

The set of Macro declarations in the SADEStartup file provides a way to use MacsBug
equivalent names for some SADE commands. These deClarations are useful if you are
accustomed to using the MacsBug command language. For more information on the Macro
command, see Chapter 7.

Getting Started Working Draft 3 2-5

The procs SetSourceBreak, unSetSourceBreak, and sourceStep provide a way to work
back and fonh between a source location and the corresponding program code in memory.
These procs rely on the built in debugger functions sourceToAddr and addrToSource,
which are described in Chapter 3. The Add.Menu commands in the SADEStartup file cause
the SourceCmds menu to appear in the menu bar for SADE. This menu makes it possible to
pexform these source-level debugging operations from a menu. For more information on
the Add.Menu command, see Chapter 7.

If you want.to customiz.e SADE, you can use the SADEUserStartup file. An Execute
command in the SADEStartup file will run the SADEUserStartup file immediately after
running the SADEStartup file. The Execute command is described in Chapter 7.

Entering and editing commands and text
Once you are in SADE, you'll have a SADE worksheet for typing text and commands.
Each SADE worksheet is a text file, and the standard Macintosh text-editing procedures
will work as you expect. The worksheet has a blinking cursor, a scrollable window, and
menu names as shown in Figure 1-1.

You can edit any lines of text you typed into a worksheet When you press the Enter key,
SADE executes the current line as a command line. You can enter more than one command
line at a time by highlighting a series of lines, and then using the Enter key. Figure 2-1
provides an example of these two methods of command entry.

The top half of Figure 2-1 shows a worksheet with two lines of commands. The cursor is
positioned at the end of the first line. If you press the Enter key at this point, SADE
executes only the first line of commands.

The bottom half of Figure 2-1 shows another worksheet with the same two command lines,
but this time they are highlighted. You can highlight any portion of a SADE worksheet by
positioning the cursor and pressing the mouse button while you reposition the cursor at the
end of the selection. Once you have highlighted a line or lines, you can press the Enter key
and SADE executes all the highlighted command lines.

2-6 Working Draft 3 Getting Started

c

,. • File Edit Find Mark Window SourceCmds

90 ti I OisplayText. <2>\
I ist breol<

Rgure 2·1

amazing:MPW:Debuggers:SADE:SADE Worksheet

ers:SADE:another worksheet

SADE command lines

Basic editing functions are also available as menu commands. Editing within the SADE
worksheet is similar to the editing functions provided by the MPW Shell. You can select
and edit text with the usual Macintosh editing techniques, using menu commands to cut,
copy, and paste selected text. See Appendix C for a complete description of SADE editing
functions. The Edit menu commands are further described in Appendix A.

Most of the basic file-handling functions are also available as menu commands. You can
open a file by using the Open command, or by selecting its name within the worksheet and
choosing the Open Selection command (Comrnand-0) from the File menu. The file­
handling commands are described in the following section,

SADE file-handling operations
When using SADE, you have a choice between using the File menu or the command line
for opening, closing, and saving text files. The commands in the File menu provide the

. usual Macintosh interface for creating a new file, opening an existing file, closing a file, or
saving a file. ·

The command-line interface gives you the ability to perform file operations from within a
SADE command file. You can create a new text file and then redirect SADE output into it,
from a command line. For instance, in the SADEStartup file, a new file named register
display is created with the following command line:

open behind "register display"

The following section describes how to use the Open, Close, Save, and Redirect
commands from the SADE command line. Chapter 3 presents a complete and rigorous

Getting Started Working Draft 3 2-7

explanation of the rules for forming SADE commands. The file-handling commands are
simple enough that you will be able to use them even before you delve fully into SADE's
complexities.

File commands

All of the SADE file commands work on the frontmost SADE window, unless you specify
otherwise. All filenames used within a command line must be strings in quotation marks.
For SADE's purposes, a window and a file are synonymous. All the windows opened by
SADE function as text files (resource type 'TEXT).

When you use the Open command on a command line, its format is

open [source] [behind] filename

The optional source parameter indicates that the window to be opened is a read-only
source window, as opposed to a general-purpose text window. The optional behind
parameter causes the specified window to open behind the frontmost SADE window.
Without this parameter, the window opened will become the frontmost window.

You can use the Close command to close the file you specify, or to close all files. Its format
is

close [all I filename]

If you didn't save the contents of the window, SADE will ask you through a confinnation
dialog whether it should save them.

The Save command will save the file you specify or, alternatively, will save all files. Its
format is ·

save [all !filename]

The default file to be saved is the currently selected window. If you didn't modify the file
since the last time you saved it, no save operation is necessary.

To redirect output from the currently selected window to another file, use the Redirect
command. When you use the command on the command line, its syntax is either

redirect [append] filename

or

redirect [pop] [all]

If you used the append parameter, SADE appends the output from the commands entered
in the currently selected window to the end of the named file. If you specify all or pop
all, standard output is redirected to the SADE Worksheet. For more information on the
Redirect command, see the Redirect command page in Part II.

2-8 Working Draft 3 Getting Started

Getting .help in SADE
One of SADE's most useful features is the Help command, which provides online help.
Entering Help with no parameters will display a summary of the help available, as shown
here:

help

SADE 1.0 ~elp Summaries

Help summaries are available for each of the SADE commands.
To see the list of commands enter "Help Commands". In addition,
brief descriptions of Variables, Constants, Expressions, built
in functions, and Shortcuts are also included.

To see Help summaries, Enter a command such as

Help Built ins # a list of builtin {predefined) variables
and functions

Help commandName # information about commandName
Help Commands # a list of commands
Help Expressions # summary of expressions
Help Patterns # summary of patterns {regular expressions)
Help Shortcuts # summary of SADE shortcuts
Help Variables # summary of variable

Copyright Apple Computer, Inc. 1987-1988
All rights reserved.

references

You can get help information on particular topics by using the either Help command with
the name of a topic or a SADE command. For example, to get help on the List command,
you can enter

help list

List break [traps addrs]
List trace [traps addrs]
List process
List symbol

An introduction to debugging a program
This section describes how to get SADE and your application program started. A sample
program named Eventlog is used to show you how a source window looks once you have
halted an executing program. Your application program may not behave in the same way as
the sample program; however, the sample program will give you an idea of some possible
uses for SADE.

The first step is to start SADE. For this example, assume that you have already launched
SADE from the Finder by double-clicking the SADE icon.

Getting Started Working Drott 3 2-9

Once you are in a SADE worksheet. you must identify the files needed for debugging, if
they aren't in the current directory. The Directory, Target, and Sourcepath commands,
described in Chapter 4, identify the location of your application, symbol file, and source
files. The example shown in in Figure 2-2 assumes that these files are in the same directory
as SADE, or that this information was already supplied.

I You can launch your application from the Finder, or you can use the Launch command. In
Figure 2-2, you can see the following command line in a SADE worksheet window:

launch ":Eventloq"

This command line starts the application program Eventlog. (The windows created by the
running application aren't shown in this example: what you see in Figure 2-2 is a source
file.) The Launch command is described in Chapter 4. Remember that you must always use
quotation marks around filenames.

I The next command line will cause Eventlog to stop executing on the second statement in the
DisplayText procedure: ·

qo til DisplayText. (2)

Note that a partial pathname is used in this example, identifying only the procedure name.
In some cases, you '11 need to use the full pathname for the program, unit, and procedure
name. For this procedure, the full pathname is eventlog\TransDisplay.DisplayText(2). See
Chapter 3 for more information on pathnames for program variable references.

SADE displays an alert box that tells you that the Go Til statement worked-an address
break occurred at DisplayText.(2). The Go Til command is described in Chapter 5.

The source program is displayed in the window at the top of Figure 2-2. The particular
source file shown is TransDisplay.c. This file-contains just one part of the Eventlog
program. In the figure, the instructions on which the program stopped executing are
indicated by an outlined box. When you move the cursor back into the source window, the
area within the box will be highlighted.

You can now use the mouse to move the cursor between the source window and the SADE
window. You can also use the SourceCmds menu to step through code, place source
breakpoints, display variable values, or show the location of the program counter. These
topics are all discussed in greater detail in Chapter 8.

This sample program will appear throughout the manual. Always keep in mind that it is
only a sample: each of your applications will present its own unique debugging challenges.

Now that you've seen how to begin a debugging session, you're almost ready for the
material in the rest of this manual. There are just a few more things you need to know
about-how to quit SADE, and how to shutdown your system from SADE. These basic
operations are described below.

Quitting from SADE

2-10 Working Draft 3 Getting Started

(""

To exit from the SADE application, use the Quit command. This command should not be
confused with the Stop and Abort commands, which operate only on the current break
action. The command format is simply:

quit

The Quit command causes the SADE itself to quit. Quit will display a dialog asking the user
if it's all right to kill any suspended applications. MultiFinder is notified that SADE is no
longer there as a debugger, and control is passed to another process as determined by
MultiFinder.

Shutting down the system

To shut down the system from within SADE, use the Shutdown command. Its format is:

shutdown [restart] .

The Shutdown command causes SADE to be terminated. The Shutdown Manager is called
to perform the actual system shutdown. If restart is specified, the Macintosh will be
restarted.

' ti File Edit Find Marie Window SourceCmds

amazing:MPW:Oebug ers:SADE:TransDisplay.c
OisplQ\jT~xl <th•T•xl, 1.,,>
Ptr th•T•xl;
long '"";
(
r•9isl8r short nl.in•s;
r•9ist.,. short dispLinas;
r'"'iJiSt8r sharl topl..in•s;
r•9ist.,. short scrollLinas;
r•9ist.,. short IH•i<j\t;
R•ct r;
GrafPtr s'""aPort;
r'"'iJiSl8r TEHclndl• dTE;

Figure 2-2
SADE Source Display

Getting Started

1•0... of linas in TERac •/
1•,.,. of linas displCM,JQlll• in •indo• •/
1•0... of I inas c...,..,,tly scrol lad off top •/
1•0... of I inas lo scrol I up •/

Working Draft 3 2-11

(

Chapter 3

Debugger
Command
Format

Symbols and
Language

About Symbols .. 3-4
Debugger symbol seach path ... 3-4

Order of Symbol Lookup .. 3-5
Numeric Constants ... 3-5
Strings .. 3-6
Identifiers .. 3-7

Setting Case Sensitivity ... 3-8
Variable references ... 3-9
Predefined debugger variables ... 3-10
User-program variable references .. 3-12

Program procedure and statement reference 3-13
Referencing objects outside the stack activation 3-14

Register names ... ; 3-14
Expressions ... · 3-15

Operator precedence ... 3-15
Expression operand base types ... 3-16
Evaluation of expressions ... 3-17

The Assignment operator .. 3-18
The Pointer operator .. 3-19
The Address operator ... 3-19
The Trap operator ... 3-19

Type coercion .. 3-19
Ranges .. 3-20
Builtin Functions ... 3-21

AddrToSource ... -.... 3-21
Concat .. 3-21
Confirm .. 3-22
Copy .. 3-22
Find•... 3-22
l...ength , ~ 3-22
NaN ; ~ ... 3-23
Request. .. 3-23
SizeOf , ... 3-23
SourceToAddr ... 3-23
Tuner ... 3-24

Debugger Symbols and
Command Language Format

Working Draft 2 3-1

3-2

TypeOf ... 3-24
u ndef ... 3-24 r·,,
Where .. 3-24 \..~ /

SADE Command Language ... 3-25
Command execution ... 3-26

Debugger Output Files ... 3-26
Debugger error output ... 3-27
Symbol Display .. 3-27

Debugger Variables ... 3-27
- User-defined variable references ... 3-28

The Undefine Command ... 3-29

Working Draft 2 Debugger Symbols and
Command Language Format

;(~'y

!__/

(
This chapter provides a reference for all types of debugger symbols and the expressions
formed using them. These symbols are used within the context of the SADE command
format, which is also introduced in this chapter. Although you may already have looked at
some of the SADE commands, and figured out for yourself how to use a symbol or
expression with a command, the background information in this chapter may answer some
of your questions about how SADE interprets debugger symbols. Topics covered in this
chapter include:

• How SADE determines if a symbol is a debugger, program, or system symbol, and
how it detemines the proper scope for each symbol.

• The use of numeric constants, such as decimal, hexadecimal, binary, or floating­
point numbers, within SADE expressions.

• The rules for using string constants within SADE expressions. These guidelines tell
you what characters can be used in strings, and what the length of a string can be in
a particular context

• How to use the various types of identifiers, such as register names, predefined
debugger variables, and program variables. The guidelines for working with
identifiers include the distinction between a fully-qualified identifier and a partially­
qualified indentifier.

• The several classes of variable references--system, debugger, and user-program
variables. These variable types may be used with selector operators and escape
symbols to ensure that SADE can access each type properly.

• The guidelines for using SADE expressions, including the rules for operator
precedence, operand base types, expression evaluation, and type coercion.

• How SADE builtin functions such as AddrToSource and SourceToAddr can be
used w-ithin expressions.

This chapter also explains how the SADE command interpreter processes SADE
commands. The SADE command format sections build on the material about symbols and
expressions. Other topics relating to the command language include:

• Debugger output files, which display the result of SADE commands. SADE uses
one or more text files for standard output, and provides a way to redirect command
output from the default output file.

• Controlling symbol display using the Symbol command. By default, all debugger
output is displayed symbolically whenever possible.

• A description of how user-defined variables may be created in SADE. Debugger
variables are useful for capturing values generated during a debugging session,
evaluating expressions, and controlling debugger execution.

Debugger Symbols and
Command Language Format

Working Draft 2 3-3

• Case sensitivity during symbol lookup. By default, case sensitivity is turned on
when SADE performs symbol lookup.

As you read this chapter, keep in mind the distinction between those symbols "owned" by \"----,
the debugger, and those "owned" by the program being debugged. A debugger object is
either a command name, a predefined debugger variable, or a user-defined variable. These
debugger objects are used to control debugger execution, or, in the case of user-defined
variables, to save values during the debugging session. A program symbol refers to an
address or an offset within the program being debugged: this includes procedure and
function names as well as references to program variables. These program symbols refer to
data that is used or altered by an executing program. Program symbols may be used to
examine and modify program memory from within the debugger.

About Symbols
A symbol is a character or a combination of characters used to represent one of three things:
an identifier, a numeric constant, or a string. These basic building blocks can be used to
create all the various kinds of symbols known to the debugger. The SADE command
language contains a number of helpful clues that make it possible to correctly identify
symbols. These clues include the symbol search path, which is described in the following
section.

A symbolic debugger is able to interpret a symbol within a program in much the same way
that the Finder interprets an HF'S pathname. The debugger first determines the proper scope
for the symbol; that is, it determines where the symbol has meaning within the program.
The debugger must then find the symbol, whether it represents a pathname, a program
variable, or a register name. Some of the methods SADE uses to find symbols include the
escape characters described in the section "Variable References", and the procedure
qualifiers described in the section "Program Variable References".

Debugger symbol seach path

The concept of scope, which is imponant in programming languages, is just as imponant
within a debugging environment. A symbol is only meaningful within the scope for which
it is defined. For instance, local variable references are only meaningful within the
procedure or function where they are defined. In addition, a symbol can't be interpreted by
the debugger until a memory location has been allocated for it. This means that when a
program is interrupted before a procedure containing symbol definitions has a chance to
execute, the symbols within that procedure won't be usable by the debugger.

Within a command line, the first symbol found is evaluted to see if it is among the
command names recognized by SADE. In all other cases, the search path for a debugger
symbol can be summarized as shown below. If you don't explicitly state where to look for
a variable reference, SADE tries to find the variable first as a debugger symbol, then as a
user-program symbol, and finally as a system symbol.

3-4 Working Draft 2 Debugger Symbols and
, -Command Language Format

Order of Symbol Lookup

1. Is it a debugger symbol?

a. Is it a user-defined debugger variable parameter?

b. Is it a local variable in a debugger proc?

c. Is it a builtin SADE variable?

d. Is it a global user-defined debugger variable?

2. Is it a program symbol? The program symbols are provided by compiler output,
and are made accessible to SADE by using the Linker with the -SYM option.

Once SADE has determined that a symbol is a program symbol, it uses the current
name scope (CNS) information from within the program to ascenain:

a. Is it a local program symbol?

b. Is it a global program symbol?

3. Is it a system symbol, recognizable within the Macintosh Toolbox?

a. Is it a system global variable?

b. Is it a a toolbox routine name?

c. Is it a register name?

Numeric Constants
This section describes how numeric constants behave Within SADE. These constants may
take the form of decimal, hexadecimal, binary, and.floating-point numbers. They are
commonly used when specifying an integer value, an address location, or a range
expression. For more information on using numeric constants within expressions, see the
section titled "Expressions".

The following paragraphs define the syntax for using numeric constants within SADE. The
examples in this section show how each of the numeric types can be used.

Decimal Decimal numbers are formed as a string of decimal digits (0-9). Values are
treated as 32-bit (signed long word) quantities. Decimal values that exceed
32-bits are treated as floating point values.

Examples:
123
65535

5
123456

32
32768

Debugger Symbols and
Command Language Format

Working Draft 2 3-5

Hexadecimal Hexadecimal numbers are specified by a dollar sign ($) followed by a
sequence of hexadecimal digits (0-9, A-For a-t). A period may be used to
group components of a hexadecimal number. Hexadecimal numbers are
normally treated as 32-bit (left-padded with zeros if necessary) quantities.
If more than eight digits are specified, the hexadecimal number is
considered as a string (a zero will be padded on the right if there are an odd
number of digits in the string). In effect, when the supplied hexadecimal
value is too long, SADE petforms a type coercion to a string.

Binary

Examples:
$123 $1A3c
$00123 $0la3C
$1234.5678.9A.BC.DE
$1234567890abcDEF

$FFFF
$0FFFF
(equivalent to $123456789ABCDE)
(a string)

Binary numbers are specified by a percent sign(%) followed by a sequence
of binary digits (0-1). A period may be used to group components of a
binary number. Binary numbers are treated as 32-bit (left-padded with
zeros if necessary) quantities. If more than 32 digits are specified, the
binary number is considered as a string (up to 7 zeros will be padded on the
right to fill in the last byte in the string). In effect, when the supplied binary
value is too long, SADE petforms a type coercion to a string.

Examples:
%1010 %101 %011101
% 1010.0011.1100.1111

Floating-point Floating-point numbers are specified with a decimal point or exponent as
described in the Apple Numerics Manual . Within SADE, floating-point
numbers are represented as SANE I 0-byte extended values.

Examples:
123.
Nan()

123.4E-12 .123
NAN(12) INF

NaN

Both the hexadecimal and binary numeric constants may petform a type coercion to a string
if the supplied value is larger than 32 bits. The value of a string created in this manner will
depend on the context in which the resulting constant will be used The string could still be
evaluated, but each of the positions in the string would have an ASCII value, with the total
value of the string being equal to the concatenated values of all the string elements.

Strings
Many of the SADE commands take a string as a parameter. For instance, filenames are
always strings. Whenever you see that a command takes a name,filename, program name
or a str expression for an argument, the argument that you supply must follow the rules for
strings. These rules are described in this section.

3-6 Working Draft 2 Debugger Symbols and
Command Language Format

(A string is formally defined as a hexadecimal number consisting of more than 8 digits, a
binary number of more than 32 digits, or a sequence of one or more ASCII characters
(including blanks) enclosed in single(') or double(") quotation marks. You can also use
quotation marks as part of a string. When you do this, two quotation marks (with the same
value as the delimiting quotation marks) must be specified in the string for each quotation
mark (with the same value). Strings are limited to a length of 254 characters.

Escaped characters may be specified in double quoted strings. These are represented by "'('
or "o" imrr.ediately followed by one to three decimal digits, or a one or two-digit
hexadecimal number (\$xx), or one of the following single character reserved to represent
certain non-graphic characters: \n (newline, \$00), \t (tab, \$09), and \f (formfeed, \$0C).
Any other character immediately following the backslash represents just that character, for
example,\\ (backslash),\' (single quote), etc. You can also delineate the string with single
quotes and use the double quotes as literals, or vice versa. Note this substitution does not
occur when single quotes are used as delimiters.

Some examples of strings are:

'Hello'
"Hello"
'hello\O'

'don"t' "hello\{)" "" (one quote)
"don't" "don'"'t" ""' """"
(escape characters not processed)

Based on the context in which you use a string, there are restrictions on how long a string
can be and how it is treated. Strings fall into two categories:

A string constant used in an arithmetic expression (described later) which is to be
used as a numeric value (for example, when combined with arithmetic operators) is
limited to 4 characters. Such strings are treated as right-justified 32-bit signed
values. Each of the characters in such a string is assigned its ASCII value, and the
overall value of the string represents the concatenation of values of the string
elements. For instance, the string "my" has the value (6D + 79).

String (constants) used in logical expressions (in relations) and strings used as
search patterns may be up to 254 characters in length;

When executing a file, each command line is limited to a maximum of 254
characters. A maximum length string of 256 characters is too long when executed
from a file, because the quotation marks used as delimiters are counted as part of
the string length.

Identifiers
This section describes the various kinds of identifiers that can be used in SADE. These
include variable references, predefined debugger variables, and register names. Identifiers
are used by SADE as keywords in commands, labels, registers, and to reference program
variables.

Debugger Symbols and
Command Language Format

Working Draft 2 3-7

The first character of an identifier must be an uppercase or lowercase letter (A-Z, a-z), an
underscore (_), or a percent sign (%). Subsequent characters can be letters, digits (0-9),
underscores U. dollar signs($), number signs(#), percent signs(%), or "at" symbols
(@). Other characters may be made a part of an identifier by quoting them with a
preceeding "a". A name may be any length, but only the first 63 characters are significant.

One thing to keep in mind when worlcing with identifiers is the difference between qualified
identifiers and unqualified identifers. A fully-qualified identifer contains all information
needed for its use; SADE will not have to use the symbol search process, since the scope is
completely defined in the identifer name. A partially-qualified identifier contains only part
of the location information, and SADE deduces the rest from the current state of the
debugging session. An unqualified identifier provides no information about its scope, so
SADE assumes its proper place is in the first place it is found when searching.

To prevent ambiguity, you can use the following operators with identifiers:

D.identifier

'identifier

system symbol

program symbol

Use of these operators will keep SADE from having to go through the symbol search
process. These operators are also described in the section titled "Variable References",
since they are most useful for that class of identifiers.

Within the realm of identifiers, certain debugger symbols are predefined: these include
· command names and predefined debugger variables. Other symbols are created during the

debugging session, subject to the rules described within this chapter. Command keywords
are listed in Chapter 1. Register names, predefined debugger· variables, and variable
references are described in the sections below.

Setting Case Sensifivify
Identifiers corresponding to debugger objects are case-insensitive, whereas identifiers
corresponding to program symbols may or may not be case-sensitive, depending on the
conventions of the program source language. Each debugger window is either case
sensitive or case insensitive. Source display windows have the same behavior as the
source language displayed, using the filename conventions of MPW to determine the
source language. The window's setting can be changed by using the Case command.

Setting case sensitivity in SADE is only significant when SADE is loolcing for symbols.
The Case command works like a toggle switch to turn case sensitivity for symbol lookup
on or off. By default, the case sensitivity for symbol lookup is turned on. This means that
when SADE is presented with a symbol such as "ABC", it will use the lookup rules to find
the first occurence of the ASCII symbol "ABC" in the largest scope currently in effect for
the debugging session. If a lower-case symbol such as "abc" is found before "ABC",
SADE will still continue looking for "ABC".

The format for the Case command is:

case { on I off }

3-8 Working Drott 2 Debugger Symbols and
Command Language Format

(

(~\

In most cases, the default situation (case sensitivity is on), will provide the correct symbol
lookup. If case sensitivity is turned off, the symbol lookup will halt at the first occurence of
a selected string, whether the characters are upper or lower case. For instance, when
searching for the symbol "ABC", SADE will look for "ABC" in the largest current scope;
however, if it finds an "abc" first, the search will halt

Variable references

This section provides an overview of the different types of variable references. Simple and
structured variable reference types may be used within SADE using the guidelines
explained below. In addition, this section tells you how SADE distinguishes between
system, debugger, and system variables. Detailed information on predefined debugger
variable, user-program variables, and register names is provided in the sections that follow.

A simple variable reference consists of only a single identifier. This would be a
variable from within the program, such as "my Var". These variables may be of any type
supported in the program being debugged.

A structured variable reference allows a simple variable identifier to be followed by
the following selector operators:

.name record or structure field selection

pointer dereference

...] or [n] ... array access

This allows SADE to use the some of the structured types common in high-level
programming languages. For instance, you could use the array element "myArrayVar.[l]"
as a variable reference within SADE.

The selector operators are allowed only if the type of the variable to which they are applied
supports the specified selection operation. The result of such a structured variable
reference is, of course, itself a variable reference to which further structure selector
operators can be applied (if it refers to a variable of an appropriate structured type). This
means you can reference nested structured types.

Variable references may be made to three different classes of variables--system, debugger
or user-program variables. Each of these types are further described as follows:

• System variables refer to objects in the Macintosh ToolBox. These include
register names, system global variables, and toolbox routine names. All the global
variables and toolbox routines listed in Inside Macintosh can be accessed from
within SADE. Register names recognized by SADE are listed in a following
section.

• Debugger variables refer to either predefined debugger objects or user-defined
debugger objects (variables defined by the user in the debugging session). The
predefined debugger variables are listed below, while the user-defined variables are
described in the next chapter.

Debugger Symbols and
Command Language Format

Working Draft 2 3-9

• User-program variables refer to objects in the program being debugged. This
type of variable is described in one of the sections which follow.

If you don't explicitly state where to look for a variable reference, SADE tries to find the
variable first as a debugger symbol, then as a user-program symbol, and finally as a system
symbol, as described in the section "Debugger Symbol Sean::h Path". Since each of the
three classes of variables represents a namespace created independently of the others, name
collisions between the different classes of variables are possible. A variable in one
namespace.may "mask out" a variable with the same name in a namespace which is
sean::hed later.

To allow access to variables which might otherwise be "masked out", SADE supports two
special characters or operators which can be used to force the class of a variable identifier to
be either a system or user-program variable:

• the system symbol escape character ("6") may be prefixed to an identifier to
indicate that it refers to a system variable. This allows a faster lookup than the
normal symbol sean::h process.

• the user-program symbol escape character ("'", backquote) may be
prefixed to an identifier to indicate that it is a user-program variable

For example, assuming that there is a program symbol whose name is "pc" just like the
system symbol representing the program counter, "~pc" would refer to the debugger
symbol and "'pc" or "pc"would refer to the program symbol.

Simple and structured variable references, as described above, are sufficient to access .
debugger and system variables. Global debugger variables and system variables exist in flat
namespaces; that is, there are no hierarchical levels for these variables. User-program
variables, on the other hand, exist in a hierarchical scheme that includes a program name,
unit names, and procedure names. The methods for accessing user-program variable
references are described later in this chapter.

Predefined debugger variables

The predefined debugger variables used within SADE establish a set of parameters for each
debugging session. These debugging parameters influence how the debugger interprets a
command and how it displays the results of command execution. At startup, SADE sets a
default for each debugging parameter. The default values may be displayed by entering the
variable name.

Many of the predefined debugger variables are read-only variables; that is, you can't
change the value contained in the variable. The Arg and NArgs variables are used when
supplying parameters to the cunent debugger proc. If you need more information on how
to write a debugger proc, see Chapter 8, or the Proc command page in Part II.

The predefined debugger variables are described below with their default values:

Arg[n]

3-10

is the nth parameter of the cunent debugger proc. This is like an array
variable for the debugger proc.

Working Draft 2 Debugger Symbols and
Command Language Format

(

('
~,-' I

()

ActiveWindQw is a string containing the name of the topmost (i.e., active) SADE
window. This is a read-only variable; it cannot be assigned to.

Date is a string containing the the current date in the form "dd-mm-yy".
This is a read-only variable; it cannot be assigned to.

DisAsmFormat is a string which contains letter "flags" that control the formatting of
the Disasm command output. Each line of the disassembly output is
divided into four fields, as described by the Disasm command.

Exception

The order and presence of the four fields are controlled by the "flag"
letters in the DisasmFormat builtin variable. The initial value for
DisAsmFormat is "OAXC". This means that the initial order of the
fields shown during disassembly is offset, address, hex
representation, and finally the assembly code. The following flags are
allowed:

0

0
a, A
X, X
c

c
$

==>
==>
==>
==>
==>

==>
==>

display offset field in decimal.
display offset field in hexadecimal
display the address
display the hex code representation
truncate the assembly code if necessary to a uniform
length
show entire assembly code no matter how long
prefix offset and/or address with a"$" (allowed only
before O; a, and A flags)

The flags may be specified in any order, and blanks and tabs are
ignored in the string. A flag specifying the presence of a field may not
be repeated. Whenever the DisAsmFormat variable is used, at least
one of the two flags "x"t'X" or "c"t'C" must be specified. If the
assembly code field is specified as the last field, then "c" has the same
meaning as "C"-the entire assembly code field is displayed. If the
assembly code field is to be displayed before one of the other fields,
then you have the option of either truncating the assembly field to a
uniform length ("c'') or showing it completely ("C'').

The DisAsmFormat variable may also contain a "$" flag in front of the
''O", "a", or "A" flags to generate a"$" character in front of the offset
and/or address field values.

is the exception number of the most recently encountered exception.
This is a read-only variable; it cannot be assigned to. Some of its
values (***more to come***) include:

2
3
8
9

Address Error
Bus Error
Instruction trace
Trap Break

Debugger Symbols and
Command Language Format

Working Draft 2 3-11

Inf

NArgs

Processld-

13 Program interrupted at
14 Address Break

is always equal to a SANE infinity. This is a read-only variable; it
cannot be assigned to.

is the number of actual parameters specified for the current debugger
proc. This is undefined when no debugger proc is in use.

is the process identifier for the current target program. It marks the
process that was suspended when the debugger was entered. When an
exception occurs and SADE is entered, this variable is set to the
process identifier of the process in which the error occured. It also
changes when the Target command is used. This is a read-only
variable; it cannot be assigned to.

Worksheet Window is a string with the name of the SADE worksheet window This is
a read-only variable; it cannot be assigned to.

User-program variable references

Each user-program variable may be identified by its place in a hierarchy that includes a
program name, unit names, and procedure names. This hierarchical identification scheme is
described in this section. Variable references, like identifiers, may be fully or partially
qualified, depending on how much information is supplied in the variable name.

This section also describes the namespace for a program symbol. This namespace
represents the result of various separate compilations or units linked together, and thus
requires a means of identifying the program, unit and procedure where a variable may be
found. The methods for using procedure and statement references, and for referencing
variables outside the current procedure or function, are also described in this section.

A fully-qualified variable reference is one which identifies a variable with program
name, unit and, if necessary, procedure qualification, as below:

\ unit [• procedure] * . variable ref ere nee

These components can be interpreted as follows:

I backslash (\) The backslash is used as the program-level or unit qualifier character, and
should be used preceding the unit name.

[...] * The [...] * construct indicates that zero or more levels of procedure name
qualification may be used: zero when accessing unit level variables, one
when accessing first level procedures, and more when accessing nested
procedures. (This is possible in Pascal but not in C).

unit When referring to the main program's variables the unit should be the
program name (as opposed to the program file name). The unit names
follow the same rules as do variable identifiers.

3-12 Working Draft 2 Debugger Symbols and
Command Language Format

(- procedure

dot (.)

A procedure reference is used to refer to the starting code location of
procedures. Among other things, a procedure reference may be used as a
location for setting breakpoints. A procedure reference may be structured in
much the same way as a variabl~ reference, and may be fully-qualified or
partly-qualified, as described below.

The conventional dot is used as the unit and procedure level qualification
character.

variable reference This can be constructed according to the rules for simple and
structured variable references. (See the section "Variable References").

To correctly specify a procedure starting at the unit level, you must use the backslash
preceding the unit name. Otherwise, SADE can't determine if the name refers to a unit or a
procedure.

A program name surrounded by quotation marks, or a unit name preceded by a backslash,
is interpreted at the global program level. Since program names may contain invalid
identifier characters, such as spaces, they should be specified as a double-quoted string.
Special characters may be escaped with the character escape symbol (d).

A procedure reference is assumed to be local; if it can't be identified at the local level,
SADE checks the global level. Any variable reference in a fully-qualified variable reference
is interpreted at the local procedure level, unless explicitly specified otherwise. Fully­
qualified variable references are similar to directory-relative absolute pathnames under
HF'S; the debugger doesn't have to do any extra work to find these symbols.

SADE also allows partially-qualified variable references to facilitate access to
program symbols.This allows some or perhaps all of the initial qualification of a fully­
qualified variable reference to be omitted, if it can be deduced from the current state of the
debugging session. More specifically, if SADE is currently suspended in the middle of a
program execution at some breakpoint, that point (the current Program Counter) defines a
current name scope (referred to as CNS below), since the breakpoint identifies a
program, unit, and perhaps procedure from which to begin looking up variable references.

If a partially-qualified reference omits only the program name and begins with the program
level qualifier (the backslash), SADE treats the following identifier as the unit name,
followed by all of the intervening qualification up to the variable name. This implies a
straightforward lookup following the unit-procedure-variable hierarchy.

If a partially-qualified reference omits both the program name and the backslash (the
program level qualifier), then SADE has to resolve a partial reference whose first
component could be a unit, procedure, or variable name, depending on how much
qualification was omitted. This requires a lookup relative to the CNS as defined by the
current breakpoint. The first component of the variable reference (the leftmost identifier)
will be looked up within the symbol table for the procedure or unit corresponding to the
CNS. If the first component is found, then the remainder of the reference components are
checked to see if they identify a valid reference path to some variable. If so, the variable
reference has been resolved. If not, the initial match of the first component was invalid and
the search continues. If the first component is not found in the symbol table for current
procedure, the containing procedure's or unit's (if there is one) symbol table is searched.

Debugger Symbols and
Command Language Format

Working Draft 2 3-13

· If no match is found after reaching the unit level. the lookup in the user-program symbol
table fails. ·

Progra_m procedure and statement reference

A procedure reference can be used to refer to the starting code location of procedures.
Procedure references may be use~ for instance. in the setting of breakpoints. Procedure
references follow the form of the variable references as describe.d above. but omit the final
variable qualification. They consist of a program name. unit name and one or more levels
of procedure names (with some amount of the leading qualification omitted for partially
qualified references).

Source program statements are identified by indices relative to a procedure (or function).
These indices are identified by the compiler and are associated with locations in the text in
source windows. A statement ref ere nee consists of a procedure reference followed by
a dot delimiter followed by a reference of the form "(expr)". which refers to a particular
statement index relative to the specified procedure. If the procedure reference is omitted
and the "(expr)" form is used by itself. it is taken to refer to the current procedure (defined
by the CNS as the point where execution has been suspended).

Referencing objects outside the stack activation

The notation for referencing program objects described in the previous sections is extended
slightly to allow access to objects in other than the current stack activation--the current
procedure or function call An array-like specification (consisting of an expression in
square brackets) may be inserted between the last procedure name and the beginning of a
variable reference to indicate the n'th activation of that procedure from the top of the stack.

Register names

Register names are system symbols. and are not built into the SADE application. SADE
uses these names to display the data your program places into the registers provided by the
68000 family of microprocessors. When you disassemble instructions. you can see what
registers were used by a particular instruction. To use these register names from SADE,
you should use the "6." prefix to distinguish them from program symbols. For example, to
disassemble ten instructions starting at the program counter, use the PC register name as
shown below:

disasm 6.pc 10

The Disasm command is described in Chapter 5.

A list of th~ register names usable from SADE appears below:

3-14

D0 .. 07
AO .. A7
CCR
SR
USP

Data registers
Address registers
Condition code register
Status register
User stack pointer

Working Draft 2 Debugger Symbols and
Command Language Format

/fr-.F'-.-''-<.'

\.:;. / /

('

··c.·-, .. , - - >'

MSP
SP
SSP
SFC
DFC
CACR
VBR
CAAR
ISP
PC -
FPCR
FPSR
FPIAR
FPO .. FP7
TTO .. TTl

Expressions

Master stack pointer
Stack Pointer
System stack pointer
Source function code register
Destination function code register
Cache control register
Vector base register
Cache address register
lnteITUpt stack pointer
Program counter
Floating-point control register
Floating-point status register
Floating-point instruction address register
Floating-point data registers
MC68030 transparent translation registers

This section describes the guidelines for using expressions in SADE. The detailed rules for
operator precedence, expression operand base types, expression evaluation, type coercion,
and address ranges are all contained in subsections. Builtin functions may also be used as
expression elements; these are described in a following section.

Expressions are composed of either a single term or an arithmetic combination of terms. A
term is either a named symbol, a constant, or a function call. Terms are combined by
arithmetic, logical, shift, and relational operators. String terms may only be combined with
relational operators.

Operator precedence

This section describes the operators used to form expressions within SADE. These
operators are listed from highest precedence to lowest. Groupings within the table show
operators of the same precedence; for instance, multiplication, division, and remainder all
have the same precedence.

Highest
Precedence

()

@
t

/\

...., NOT

Debugger Symbols and
Command Language Format

Grouping by parentheses

Address of
Trap Expression

Pointer to
Qualifier

Bitwise ones complement
Logical not

Working Draft 2 3-15

*
I
II

DIV +
MOD

+

>>
<<

=
<>
<
>
<=
>=

& AND
&&

I OR
II
XOR EOR

·­.-
<-

Lowest
Precedence

,_ .-

Unary negation

Multiplication
Division
Remainder

Addition
Subtraction

Shift right
Shift left

Equal
Not equal
Less than
Greater than
Less than or equal
Greater than or equal

Bitwise and
1.-0gical and

Bitwise or
1.-0gical or
Bitwise exclusive or

Size compatible assignment
Arbitrary assignment

Range

The rules for coding expressions are as follows:

3-16

Only the+,-,-, and NOT (-i, !) operators are allowed at the start of an expression.

An expression may not contain two terms or operators in succession.

Subexpressions are designated by enclosing the subexpression in parentheses.

Parentheses may be nested to a maximum depth of 20.

An expression may not consist of more than 20 terms.

The keyword operators DIV, MOD, AND, OR, XOR, and NOT must be separated
from identifier operands by at least one space.

The range operator(..) may only appear once in an expression.

Working Draft 2 Debugger Symbols and
Command Language Format

(Expression -operand base types

This section describes the types of constants and variable references that may be used
within SADE expressions. Operands (constants and variable references) used in
expressions may only be combined with opera.tors if they are one of the base types allowed
by the debugger expressions. These base types are:

Boolean

Unsigned.Byte

Byte

CChar

PChar, PascalChar

UnsignedWord. UnsignedShort

Word, Short, Integer

Unsigned.Long, Unsignedlnt

Long, Int, Longlnt

Single, Float, Real

Double

Extended

Extended12

Comp[utational]

CString

PString,String,Str255

AsisString

. -

A one byte Pascal boolean.

A byte with the value range 0 to 255.

A byte with the value range -128 to 127.

A byte with the value.range 0 to 255.

A word with the range 0 to 255 (Pascal Char)

A word in the range 0 to 65,535.

A word in the range -32,768 to 32,767.

A long word in the range 0 to
4,294,967 ,295.

A long word in the range -2,147,483,648 to
2, 147 ,483,647.

A IEEE floating point single-precision value
(4 bytes).

A IEEE floating point double-precision value
(8 bytes).

A IEEE floating point extended-precision
value (10 bytes).

A IEEE floating point extended-precision
value (12 bytes).

A SANE signed 8-byte integer.

Up to 255 characters delimited by null byte.

A length byte followed by up to 255
characters.

A string with no length byte and no
delimiting null byte .

The rules· for how these types are evaluated within expressions are discussed in the next
section. · ··. ·

Debugger Symbols and
Command Language Format

Working Draft 2 3-17

Evaluation· of expressions

This section describes how a single-term or multi-term expression is evaluated by SADE. A
single-term expression is represented by a single symbol, and talc.es on the value ''-,, ·
represented by the symbol (the value associated with the name, the constant, or string). If
a symbol represents an aITay or record structure, the "value" of the expression is the entire
a.."Tay or record structure.

A multi-ter:n expression consists of two or more operands. Multi-term expressions are
reduced to a single value according to the following set of rules:

• Each signed integer operand is convened to a 32-bit signed value.

• Each unsigned integer operand is convened to a 32-bit unsigned value.

• Each floating point and computational value is converted to a 10-byte extended
value.

• When a binary operator combines two integer operands, both operands are treated
as unsigned if either is unsigned. The result is then treated as a 32-bit unsigned
value.

• If both integer operands combined with a binary operator are signed, then the
result is a signed 32-bit value.

• If either operand is a floating point value, then the other operand is convened to
floating point extended and the result is extended. /

• Integer division by zero yields zero as the result. Floating point division by zero
yields infinity, except for zero divided by zero, which yields a NaN.

• Operations are performed from left to right, following the precedence indicated in
the operator table above. Assignment operators are performed right to left.

• A parenthesized subexpression is reduced to a single value. The resulting value is
then used in computing the final value of the expression.

• When parenthesized subexpressions are nested, the innermost subexpression is
evaluated first

• Integer division always yields an integer result; any fractional portion of the result
is dropped.

• The logical operators NOT(-,, !), = (==),<>(;it, !=), >, <, <= (~). >= (~). &&,
II evaluate to the value 1 (true), and the value 0 (false). Comparison is algebraic,
except when two character strings are compared.

• The shifting operators << and>> shift the left operand by the number of bits
specified in the right operand. l.eros are shifted into vacated bit positions. Bits
shifted out are lost.

3-18 Working Draft 2 Debugger Symbols and
Command Language Format

• The assignment(:=,<-), pointer("), trap (t), and address(@) operators are special
operators with meanings unique to SADE. They are discussed separately in the
following sections.

The Assignment operator

The assignment operator in SADE is treated as a binary operator. As such it may be
embedded in a more complex expression to capture intermediate results. The assignment
operator is !_he only operator which evaluates right to left. Thus an expression of the form,

a :=b :=c :=d

is evaluated as if it had been written,

a:= (b := (c := d))

The left operand of an assignment must be a variable reference. For a integer reference, the
right operand is saved in the specified variable. For a floating point assignment, the right
operand is converted to extended before the assignment if necessary. For string, record, or
array assignments, the left variable must be compatible with the right operand, and no other
operators may be combined with the assignment

Compatibility between operands in SADE is defined as it is in Pascal for real and integer.
For structured data, compatible operands are defined as having the same aggregate size. A
second operator is provided for arbitrary assignment, namely<-. Using this assignment
operator, you may assign any rupe to any other type, regardless of size. For arbitrary
assignments, the size of the operand on the right hand side of the operator is used to
determine the number of bytes to move. This operator may be used, for example, to patch
memory. It may not be used to assign to debugger variables.

The Pointer operator

When the pointer symbol is used as an operator, it follows an expression term. When the
term is a variable reference(such as x"), the pointer operator indicates an indirect reference
through the variable, and the type of the term is determined by the type associated with the
pointer variable reference. When the tennis a (sub)expression, the pointer operator
indicates an indirect reference through the address represented by that (sub)expression.
The type in this case is assumed to be a pointer to a longint. Type coercion (described
below) may be used to treat the reference as.some other type. Note that (sub)expressions
used in conjunction with pointer operators frequently use the address operator. For
example, one may write WindowPtr((@X+Next+4)").

The Address operator

A pointer to a variable.(an address) can be generated with the address operator(@). The
address operator is a unary operator taking a variable reference as the operand. The type of
the value is considered as .a pointer to the type of the variable.

The Trap operator

Debugger Symbols and
Command Language Format

Working Draft 2 3-19

An expression whose value is a trap can be created using the trap operator (t). The trap
operator is a unary operator taking an expression element or a parenthesized expression as
the operand. Such trap expressions are used with breakpointing commands to distinguish
trap breakpoints from normal address breakpoints.

Type coercion

Names of known types may be used in a function-like notation (as in Pascal) to perform
type coercions on expressions. The type of the object being coerced will be changed as
long as there is a reasonable way to interpret and perform the coercion. The syntax is as
follows:

type (expr)

The names of types may be either simple type names, or may be qualified as described in
the section on program variable references. This allows SADE to distinguish type names
defined in more than one scope.

Additionally, the type specification may be preceeded by the pointer operator(""") to
indicate coercion to a pointer to the specified type. This is an extension of the Pascal
notation which allows type declarations such as ""integer''.

The following examples illustrate how the type coercion mechanism works in conjunction
with indirect memory references.

comp(lO) converts the number 10 to the comp (computational) type

comp(lO") converts the long at location 10 to the comp type

"comp(lO) identifies 10 as a pointer to a comp

"comp(lO)A returns the comp at location 10

Ranges

Ranges of addresses or values can be expressed by a pair of expressions (the low and high
ends of the range) separated by the range operator(" .. ", i.e., two dots). The syntax is as
follows: ·

expr •• expr

Neither expression used to designate a range can be a floating point value. If one end of
the range expression is a trap number, both must be. Trap ranges are expressed in a similar
fashion using trap expressions on both sides of the range operator, for example,
"t$AOOO .. t$AFFF".

3-20 Working Draft 2 Debugger Symbols and
Command Language Format

(Builtin Functions
Builtin SADE functions provide a wide range of useful services. These functions can be
used to return strings or numeric values, address information, or a TickCount value. The
AddrToSource and SourceToAddr functions provide support for source-level debugging,
while the Confirm and Request functions provide a way to communicate with user dialog

. boxes.

Each of these builtin functions may be used as part of an expression. For instance, you can
use the Concat function, which returns a string expression, in any SADE command that
takes a string as an argument. The builtin functions, their arguments, and the values they
return, are described individually in the sections which follow.

AddrToSource

The AddrToSource function is used to display a read-only source window. If you have
examined the contents of the initial SADEStartup file on the release disk, you'll see the
AddrToSource function used within the SetSourceDisplay debugger proc. To use the
AddrToSource function, supply an address expression and an optional boolean value as
arguments:

AddrToSource (addr-expr[, bool-expr])

The function returns a boolean value, which will be a "1" (true) or a "O" (false), to indicate
whether or not it was able to display the source window (a source file) corresponding to a
particular: code address. If the source file is displayed, the program statement
corresponding to that address will be highlighted in the source window.

The optional boolean expression controls whether the window is brought up as the topmost
(active) window. The default (when the boolean is false or omitted) is for the source
window to be displayed behind the topmost window (from which the command with the
AddrToSource function was likely to have been issued). Remember that the source
windows brought up by the AddrToSource function are read-only windows. These
windows have a "no-write" icon (a pencil with a slash through it) in the lower left corner of
the window.

Concat

The Concat function is used to concatenate a series of string expressions. To use this
function, supply the string expressions as arguments:

Concat ([string-expr, .. .])

The function returns a string whose value is the concatenation of the argument strings. If
no arguments are specified, a null string is returned.

Debugger Symbols and
Command Language Format

Working Draft 2 3-21

Confirm

The Confirm function is used to convey a user's response to the contents of a confirmation
dialog box. The first argument string passed to the Confirm function will be displayed in
the dialog box. To use the Confirm function, supply the display string and an optional
boolean expression as follows:

Confirm (string-expr [, bool-expr])

The function returns a numeric value indicating the user's response to a confirmation dialog
box. If the optional second boolean argument is omitted or equal to zero, an OK/Cancel
dialog is presented. A response of "1" (true) is returned when the user selects the OK
button, and a "O" (false) is returned is the user selects Cancel. If the boolean argument is
non-zero, a Yes/No/Cancel dialog is presented, and "l" (yes), "O" (No), and "-1" (Cancel)
are returned.

Copy

The Copy function can be used to copy all or a portion of a string. To use the Copy
function, supply the arguments described below:

Copy (string-expr, expr>, expr)

The function returns the substring of the first string argiiment, starting at the character
specified by the second argument. The length of the substring is supplied by the third
argument or by the end of ~e string.

Find

The Find function looks for a target pattern, and returns either an address, a number value,
or a zero, depending on what arguments are u~ To use the Find function, supply the
arguments as described below:

Find (target-expr, addr-expr, length-expr [, count-expr])

If the count argument is omitted. Find returns the address of the target pattern in the range
specified by the address and length expressions. It will return zero if the target pattern vas
not found. If the count is present and equal to zero, Find returns the number of occurences
of the target pattern in the specified range. If the count is non-zero, Find returns the
address of the count' th occurence of the pattern in the range.

Length

The Length function simply tells you the length of a string. To use it, supply the string as
an argument:

Length (string-expr)

The function returns· an numeric value indicating the length of the string you specified.

3-22 Working Draft 2 Debugger Symbols and
Command Language Format

(NaN

The NaN function is used to conven a specified value into a SANE NaN. Its format is:

NaN (expr)

The function returns a SANE NaN.

Request

The Request function returns a string after displaying a request dialog box. The first string
argument is displayed in the dialog box as the request message. The second, optional
string argument specifies a default string to present in the request box. To use the Request
function, specify these arguments as shown below:

Request (string-expr [, string-expr])

If the user cancels the dialog, the string '_CANCEL_' will be returned. Otherwise, the
request specified by the user is returned as a string.

SizeOf

The SizeOf function is used to calculate how many bytes of storage will be needed for a
parameter, variable, or type. To specify a particular parameter, variable, or type, use the
following fonriat:

SizeOf (parameter I variable I type)

The function returns a the number of bytes needed to store the specified parameter,
variable, or type.

SourceToAddr

To use the SourceToAddr function, you supply a string expression containing the name of
a window that currently displays a source file. This does not have to be the active window,
but can be any source window in which you have selected one or more statements. The
function will calculate the address of the instruction that corresponds to the selected source
statement, and displays the address location symbolically. The format of the function is:

SourceToAddr (string-expr [, expr])

Normally, SourceToAddr returns an symbolic expression for the address corresponding to
the selection from the source file. A value of zero is returned if SADE wasn't able to
determine what address the window selection represented. The optional parameter supplies
an error message telling you why SADE wasn't able to return the address. This message
will be displayed only if a value of zero is returned by the first parameter.

Debugger Symbols and
Command Language Format

Working Draft 2 3-23

Timer

The Timer function uses the global variable TickCount to provide timing-related functions.
To use this funtion, supply the following parameters:

Timer ([expr [, bool-expr]])

If you use the Timer function without any arguments, the current TickCount is returned. If
one argument is specified, the value (TickCount - n) will be returned; this is the difference
between the current TickCount and the value you specified (usually a previous value of
TickCount). If the second boolean argument is specified and is non-zero, this difference
will be returned as a string of the form "sss.hh", representing seconds and hundreths of a
second. If the boolean argument is zero, then the function returns the same value as in the

·· one-argument case.

TypeOf

·. When you need to return the type of an expression, you can use the TypeOf function. Its
format is:

TypeOf (expr)

The function returns a string containing the name of the type of the expression value. If
SADE does not know the name of the type, then a string of the form "Type #n" will be
returned, where "n" is SADE's internal index for the type.

Un def

The Undeffunction is used to determine if a SADE parameter or variable is initialized. Its
format is:

Undef (parameter I variable)

The function returns a "l" (true) if the parameter or variable is initialized, and returns a "O"
(false) if it is not

Where

The Where function is useful when you want to get a symbolic representation of an
address. Its format is:

. where (addr-expr)

The function returns a string expression.

3-24 Working Draft 2 Debugger Symbols and
Command Language Format

\(._j

SADE Command Language
An understanding of the SADE command language allows you to take advantage of
SADE's many powerful fearures. The SADE command language was designed to be
programmable and extensible. The debugger language itself uses English-like keywords so
that comm~d scripts and user-defined debugging procedures can be readable and
intelligible. This section describes how the SADE command interpreter processes
commands.

A command is the unit of execution for SADE's command interpreter. Each command is
composed of a sequence of keywords, names, expressions, operators, and other special
characters, terminated by the end of the line. Multiple commands may appear on the same
line by using a semicolon(";") as a command separator. If a command is incomplete by
the end of a line, the line can be continued by escaping the carriage return with the
character escape ("a").

A command that consists solely of an expression (other than an assignment) is evaluated
and the result is written to standard output For instance, if you enter the debugger variable
processID, SADE will return a value as shown below:

processID
3

This mechanism is equivalent to a Printf command with a default format specification. For
the example shown above, it is the same as entering:

printf "%t" processID

Since assignments are simply one form of expression, a command consisting only of an
assignment expression won't have its value written to standard out. For instance, if you
just assign processID to a variable as shown below, SADE won't immediately return the
value; you'd have to use a printf statement to print the value of x.

x := processID

All other commands begin with a command keyword. The syntax of keyword commands
is discussed throughout this manual; the command pages in Part II provide a handy way to
locate commands alphabetically if you need to quickly check command syntax.

Comments are allowed anywhere in debugger commands, except within strings, and are
delimited by "#" and the end of the line.

If you want to customize the SADE interface so that you can perform debugging tasks with
fewer keystrokes, the debugger language suppons a mechanism for abbreviations.
Through use of the Macro command, you can set up a terse, shon-named command set if
desired. The SADEStartup file contains a number of macros that allow you to use
Macsbug-style terminology for some SADE commands. You may want to design your own

Debugger Symbols and
Command Language Format

Working Draft 2 3-25

set of macros and place them in a U serStartup file; more infonnation on this topic is
contained in Chapter 7, "Customizing the Debugging Environment".

Command execution

This section briefly describes three of the ways to execute SADE commands: by pressing
the Enter key, by selecting a menu item, or by using the Execute command with the name
of a coillII1W1d file.

When a text window has been opened by SADE, any portion of text within the window can
be selected and highlighted. The selected text can then be executed by pressing the Enter
key. If no text is selected, the Enter key will execute any commands in the line containing
the insertion caret

Commands can also be associated with menu items in SADE's menus. Selecting such a
menu item causes the associated commands to be executed. If a command key is assocated
with a menu item, the command key will also cause the commands to be executed.

Finally, commands saved in a file can be executed using the Execute command, as
described in Chapter 7. The commands in a special file, named "SADE Startup", are
executed automatically when SADE is started.

Debugger Output Files
This section describes how SADE creates and manages debugger output-that is, the
output from debugger commands. Related topics include cjebugger error output and
symbolic display of command output; these are described in subsequent sections. Note that
in these sections, the terms "window" and "file" are often used interchangeably.

All debugger output is directed to a text file, designated as standard output, or to the SADE
WorkSheet window. The default standard output is the same window from which the
commands were entered-referred to here as the command window. When output is
written to the command window, the output immediately follows the currently selected text.
If no text was selected, the output will begin on the next available line.

Redirected command output from SADE can replace, or be appended to, the contents of a
window (file) using the Redirect command. The syntax of the Redirect command was
described in Chapter 2. The simplest way to use redirection is to replace the contents of the
named file. Using the append option adds command output to the end of the named file.

You may also nest Redirect commands, and send command output to as many as 10
different files. When output is redirected, SADE keeps a record of the name of the previous
output file, so that when the commands whose output was redirected are completed, output
can reven to the remembered file. Redirecting output to filename.§ will append the
command output to the currently highlighted selection in the specified file.

3-26 Working Drott 2 Debugger Symbols and
Command Language ·Format

(SADE maintains the names of output files used with the Redirect command as a last-in
first-out queue. If you use the pop parameter, or if you use no parameters at all with the
Redirect command. SADE redirects the command output to the file at the head of the
queue. If all or pop all is specified, standard output is redirected to the SADE
WorkSheet.

Debugger error output

SADE doesn't include any standard error or diagnostic files. Any errors generated in the
course of SADE command execution fall into one of two categories: parse-time errors,
generated when command syntax is incorrect. and run-time errors, which happen when the
commands are actually executed. Parse-time errors are typically written out to the same
worksheet window used to enter the commands.

If a run-time error occurs while SADE commands are executing, the commands will be
aboned. and any error messages will be written to the command window. If output was
redirected to another window, the redirection is undone; in these cases SADE performs an
implicit pop all for any redirected files.

Symbol Display

By default, a SADE window will display debugger command output symbolically. The
Symbols command can be used to change the default behavior; it works like a toggle
switch, turning symbol display off or on. Its format is:

symbols [(on lo ff}]

Specifying symbols off will disable attempts to display symbolic representations of
debugger command outputs. Turning off symbols might be desirable for speed, but in most
cases you will want to use the default setting of symbols on. If the Symbols command is
used with no argument, the current symbol setting is written to standard output

Debugger Variables
Variable references may be made to three different classes of variables--system, debugger
or user-program variables. The following section describes user-defined debugger
variables, which are variables defined by the user in the debugging session. Predefined
debugger variables are listed in a previous section. Rules which apply to all three types of
variables can also be found in the section "Variable References".

Debugger Symbols and
Command Language Format

Working Draft 2 3-27

User-defined variable ref er enc es

A user can define a debugger variable on one of two levels:

• If a variable is declared within the debugger, but outside of a user-defined proc or func,
then its scope is automatically global. This is known as the outer level.

• If a variable is declared at the inner level, inside of a user-defined proc or func, it is
usually a local variable for that proc or func.

Global variables are those known both at the outer level and inside of user-defined procs
and funcs. If a variable is declared at the outer level, the variable will be global in scope. If
a variable is declared inside a proc or func, then its scope is local unless the define
command is used with the global keyword. If a global and a local variable exist with the
same name, then the local symbol overrides the global.

If you redefine a global variable, the new definition replaces the previous definition with
one exception: If the definition is within a user-defined proc or func, and the new
definition matches the existing definition, the existing definition is retained. For example, a
global variable definition within a user-defined proc or func creates the variable the first
time the procedure is invoked; subsequent invocations can make use of the value left in the
variable by the preceding invocation.

The define command

The define command is used to create variables of arbitrary types for use in capturing
values, evaluating expressions, and in controlling debugger execution. Its command syntax
IS

define [global] var declaration , ...

where a var declaration has the form

name [[dimension]] [:= init value]

where dimension is an expr and init value is either an expr for the initial value of
simple types or a list of the following form for array variables:

([expr of] init value , ...)

where the optional of clause allows for replication of a value or set of values.

The define command may not appear inside a loop or conditional construct.

Debugger variables must be defined before they are used. A debugger variable declaration
identifies the name, scope, and (optionally) the initial value of the variable. One or more
variables may be declared in a single define command by having one or more var
declarations separated by commas.

The name in a var declaration must follow the rules for valid debugger identifiers, and must
be unique in the current debugger scope, such as a proc or func, unless declared global.

3-28 Working Draft 2 Debugger Symbols and
Command Language Format

('

The name may optionally be followed by an array specifier--a dimension expr enclosed in
brackets.

Debugger variables are dynamically typed, that is, their type is determined on assignment
(and may be changed by new assignments). The only type information supplied at
definition time is whether the variable is an array or a scalar. Debugger array variables may
contain a heterogeneous set of values; that is, the elements may contain values of different
types.

A initial value for simple types may optionally be specified by an expr following an
assignment operator. If the item being declared is an array the fields of the type being
initialized will control the assignment of the values from the list of initial values.

Debugger variables, once defined, may be referenced in expressions in debugger . The
value of a debugger variable can be modified using the assignment expression operator
(:=).If you wish, you can include the definition and the assignment on the same command
line, such as:

define X := 5

However, it is not necessary to assign a type to a debugger variable when it is defined. The
type of a debugger variable is set when a value is actually assigned. The debugger variable
must have the same dimension as the type assigned to it. Components of structured
debugger variables may be accessed using the selector operators described in the section on
"Variable References".

The Undefine Command

The Undefi.ne command simply removes a previously-declared variable. While the value of
a variable can be changed merely by reassigning it. there may be times when you will want
to completely remove the variable instead. This command may also be used with proc,
func, or macro definitions. Its format is:

undefine identifier,

The identifier used may be any valid SADE identifier.

Debugger Symbols and
Gommand Language Format

Working Draft 2 3-29

Chapter 4

Basic Debugger Operations

Locating and Controlling Program Files .. .4-3
Locating your Files .. 4-3

Directory Command .. 4-3
Target Command .. 4-4
SourcePath Command4-4

Basic Application Control.. ... 4-5
Launch Command , 4-5
Kill Command .. ; 4-5

Displaying Program Information :4-6
Formatted Displays .. 4-7

Printf Optional Parameters .. .4-7
Listing Program Information .. .4- 12
Special-purpose Displays .. .4-14

The Disasm Command ... 4-14
The Dump Command .. .4-14
The Stack Command ... 4- 15

Displaying and Checking the Heap .. 4-16
Displaying and Checking Resources4-18

Finding Program Locations4-18
Setting Memory Values .. 4-19

Basic Debugger Operations Working Draft 2 4-1

This chapter explains some of the most basic debugger operations available in SADE. After
you've begun a debugging session, you need to know how to locate and control your
application's files. The basic application control commands are included in this chapter,
while more complex commands for controlling program execution are described in Chapter
5, "Program Control."

Among the basic functions you expect from any debugger is the ability to display
information from within your program. You will often begin by displaying the last
intruction e~ecuted before you entered the debugger. You may also want to display areas
such as the application heap, which contains the bulk of your code, or the stack, which
contains information about procedures that were called. SADE gives you a wide variety of
ways to display program information; some of these display options include:

• produce formatted output to the current file or window. The· value to be displayed is
used with a type specifier, and the field width, justification, and precision are all
controllable.

• display the location of address or trap breakpoints, using a symbolic represention
when available

• display local symbols within a program, including the local procedure, parent
procedure, local variables, and type information

• display process information at the time the application was suspended

• disassemble instructions and display the offset, address, hex representation, and
assembly code for each instruction

• dump memory and display each instruction in hexadecimal and ASCII characters,
according to byte, word, or long grouping

• display stack frames for the current target application

• display the application heap zone, including information about block type, master
pointers, and whether the block is locked or nonrelocatable. The heap can also be
checked for consistency.

• display resource information, including the location of each resouce map, and a list
of the instances of each resource type. You can also check the resource map for
consistency.

• search through memory for a numeric or string expression, and display the result

The "Eventlog" sample program is used as a basis for the displays seen in this chapter. In
particular, the sample program was halted within a procedure named "DisplayText". See
Figure 2-2 to see the SADE window and source display for this sample.

4-2 Working Draft 2 Basic Debugger Operations

(

0

Locating and Controlling Program Files
This section deals with program files on the "outer'' level-the commands described here
deal with the application only as a filename. There are three kinds of files that are imponant
when you 're debugging. The first is the application itself, which is an executable file of
type 'APPL!:- The other important files are the symbol file and the source files for your
application. These files can reside anywhere on your system, so SADE needs a way to
locate them.

The sections that follow divide these application control commands into two groups-those
that locate application files, and those that control your application from this outer level.

Locating your Files

As described in Chapter 2, your SADE directory can be used to store files connected with
SADE's operations, such as the SADEStartup file, the Worksheet file, and any other files
you may create during a debugging session. However, you wouldn't normally place your
application files in the SADE directory. In most cases, you already have a one or more
directories for your source files, object files, symbol file, and the executable application.

To use SADE with your application files, you must provide enough information so the
debugger can locate them. The Directory, Target, and Sourcepath commands, described ·
below, allow SADE to locate application files within various directories.

Directory Command

When you first enter SADE, the default directory is the directory where SADE resides. The
Directory command sets the default directory for all SADE operations to the specified
directory. You can use this command to specify the directory where the application resides.
Its format is:

directory [directoryname]

The directory name is a string expression. For example, if you want to specify a directory
named "Samples", use the Directory command as follows:

directory ":Samples"

If you use the Directory command with no argument, the current default directory is written
to standard output

Basic Debugger Operations Working Draft 2 4-3

Target Command

When you are running an application program and then break to the debugger, the program "'-- ...
that was inteITUpted becomes the target program for subsequent SADE commands and
symbolic references. The target program and its symbol file may reside anywhere on your
system; on your system, you may have placed the target program and the symbol file in
separate directories. When using the name of the target program in SADE commands,
remember to use a filename relative to the current directory. If you need to change the
current directory, use the Directory commmand.

The Target command allows you to specify a target program and its associated symbol file.
The syntax for the Target command is:

target progname [using symbo/filename]

The selected target program will be used as the object for all following SADE commands
and symbolic references. The optional using parameter may be used if the name of the
symbol file for the program is not progname.sym in the same directory as the application.
This allows SADE to find the symbol file even if it's in another directory.

For instance, to specify the "Eventlog" program as the target program, and use a symbol
file that's in different directory, enter:

target ":Eventlog" using ":mysymboldir:eventlog.sym"·

If you don't include the using parameter, SADE will expect to find the symbol file
"Eventlog.SYM" in the same directory as the "Eventlog" program.

SourcePath Command

SADE permits source level debugging when the application's source files are available.
This capability is implemented through the AddrToSource function, described in Chapter 3.
To. allow SADE to access an application's source files, you must provide a search path so
that SADE can find them.

The SourcePath command is used to specify the search path used for source file display. Its
format is:

sourcepath [[add I del[ete]] directoryname, ...]

The specified directoryname indicates where the AddrToSource function should look to
find files for source dispfay. You can use a list of directory names to allow the use of
source files in more than one directory. The add and delete options allow particular
directories to be added (to the end) and removed from the search path

If you use the command with no arguments, the current search path of directories is written
to standard output

4-4 Working Draft 2 Basic Debugger Operations

(As an example,.let's assume that the source files for the Eventlog sample program reside in
two directories: srcdir and myotherdir. To ensure that these directories will be searched for
source file display, enter the SourcePath command with the following arguments:

sourcepath ":scrdir", ":myotherdir"

Additional examples of source level debugging techniques can be found in Chapter 8.

Basic Application Control

You can launch or kill an application program by name from a SADE worksheet, without
returning to the Finder. The Launch, and Kill commands are described below. Note that for
these commands, filenames must always be relative to the current directory.

The commands presented in this section deal with the application program as a filename
representing the progr3.:1:11 as a whole. The program control commands presented in Chapter
5 provide a means to get inside an executing application program, and control its execution
within SADE.

Launch Command

The Launch command launches the application you specify. The application will run
normally until interrupted by the NMI key, or·some other method. This command does
nothing if the filetype of the specified file is not 'APPL'. Its syntax is:

launch filename

where filename is a string expression. For instance, to launch the "Eventlog" program,
enter:

launch ":Eventlog"

Refer back to Figure 2-2 for an example of an application program that has been launched
and then halted.

Kill Command

The Kill command halts the execution of the application or tool you specify. You can only
kill processes that are already suspended. Its syntax is:

kill filename

where.filename is a string expression. For instance, to kill the program "Eventlog", enter:

kill ":Eventlog"

Caution: this command can be dangerous if your application is killed without having a
chance to perform its normal exit routines. It's generally preferable to resume execution and
then quit from the application in the usual way.

Basic Debugger Operations Working Draft 2 4-5

Displaying Program Information
This section provides a description of how to display a variety of information from your
program. The sample program shown in this section is the "Eventlog" program, which you
learned how to launch in the preceding section. The displays shown in the sections below
assume that the program was launched, and then halted at the beginning of the DisplayText
procedure.

The simplest way to display the value of a program symbol is to enter the symbol name in
the SADE worksheet. SADE will evaluate the symbol and display its type, if possible. The
debugger output is always in the same type as the symbol; the default radix for numeric
types is decimal. Address values (pointers) are displayed in hexadecimal. For example, to
display the local variable "len" (type long) from the DisplayText procedure, just enter:

len
3326014

The Where builtin function is useful for displaying the location of a program or system
symbol. For example, to display the cUITent location of the program counter, simply enter:

where(pc)

D isplayText . (0)

If you are familiar with window·records, you might like to display something a little more
complicated, as in this example from the SADE Worksheet:

~windowRecord(windowList)~

This will display the entire WindowRecord data structure for the cUITent FrontWindow
(pointed to by the windowList). Or you can display just a pan of the WindowRecord, as
shown below:

AWindowRecord.port:portBits.bounds(windowList)A
RECORD

top: 0:

left: -1648;

bottom: 32;

right: 128;

END

The List command can also be used to display program symbols, as well as other program
information pertaining to processes, breakpoints, and tracepoints. See the section titled
"Listing Program Information" later in this chapter. For other displays, such as code
diassembly, memory dumps, and stack frames, see the section on "Special-purpose
Displays".

Another way to display a program location is to use the Printf command with the symbol
for that location. The Printf command produces formatted output, and includes many

4-6 Working Draft 2 Basic Debugger Operqtions

(

(

optional parameters. A complete description of the Printf command is included in the
following section, with a few brief examples.

Formatted Displays

The Printf command places formatted output on the current output file or window. Its
rriany optional parameters can be used to specify what to display and how to format the
display. The value to be displayed is used with a type specifier, and the field width,
justification, and precision are all controllable. The Printf command syntax is:

printf rformat [, arg] ...]

or

printf (rformat [, arg] ...])

The format parameter is a string that specifies the format of the output The arg parameters
are used to specify the values to be output If no format and arg parameters are specified,
any buffered output is displayed.

The format string contains characters to be copied "as is" to the output and conversion
specifications. Each of the format string characters applies to zero or more arg parameters.
If the format is exhausted while arg parameters remain, the extra arg parameters are
ignored. If there are insufficient arg parameters called for by the format, then the rest of the
format string is ignored.

For example, to display in hexadecimal the address of the next instruction to be executed,
enter the Printf command with the name of the program counter register (PC) as a
parameter:

printf "%.SX\n",pc

$00378B7A

Here the format string is ""%.8X\n"", while the arg parameter is "pc".

To display the address of the current heap, use Printf with the global symbol theZone:

printf "$%.8X\n",theZone

$00378420

In this example, ""$%.8X\n"" is the format string, while the arg parameter is "theZone".

The optional parameters for Printf are described in the following section.

Printf Optional Parameters

The conversion specification is distinguished from characters to be copied as is in the
format string by preceding it with a% character followed by a sequence of fields which
describe how to format a arg value:

Basic Debugger Operations Working Draft 2 4-7

4-8

% [flags] [width] [precision] op

flags An optional sequence of characters which modify the meaning of the main
conversion specification:

Left-justify within the field width rather than right-justify if the
converted value has fewer characters than the specified minimum field
width.

+ Always generate a"+" or"-" sign when converting signed arg values.
Note, that negative values are always preceded by a"-" regardless of
whether the"+" flag is specified.

space Generate a space for positive values and "-" for negative values. This
space is independent of any padding used to left or right-justify the
value. The "+" flag has precedence over the space flag.

Modify the main conversion operation. The modifications performed
are described in conjunction with the relevant main conversion
operations discussed later.

width An optional minimum field width, specified as a decimal integer constant (that
doesn't begin with a "0") or an "*". In the latter case a corresponding arg
parameter specifies the minimum field width. If the convened value has fewer
characters than the width, it will be padded to the width on the left (default) or
right (if the"-" flag is specified) with spaces (default). If the converted value
has more characters than the width, the width is increased to accommodate it.
For %t conversions, the width specifies the minimum width to reserve for
RECORD type field names.

prec1s1on The optional precision is specified as a"." followed by an optional
decimal integer or as an "*". In the latter case a corresponding arg parameter
specifies the repetition count If the decimal integer or"*" following the"." is
omitted, the precision is assumed to be 0. Precision is used to control the
number of digits to be output for numeric conversions or characters for string
conversions. Omitting the precision has a default value· which is a function of
the main conversion to be performed.

op The required main conversion operation specified as one of the following single
characters:

d The corresponding arg parameter is converted to a signed decimal value
(floating point values will be truncated).

precision The precision specifies the minimum number of digits to
appear. If the value can be represented with fewer digits,
leading zeros are added up to the specified precision. The
result of converting a 0 value with a precision of 0 is a null.
The default precision is 1.

flags
+

left-justify
explicit "+" or "-"

Working Draft 2 Basic Debugger Operations _

(

space

space for positive value
ignored

u The corresponding arg parameter is converted to an unsigned decimal
value (floating point values will be truncated).

precision The precision specifies the minimum number of digits to
appear. If the value can be represented with fewer digits,
leading zeros are added up to the specified precision. The
result of converting a 0 value with a precision of 0 is a null.
The default precision is 1.

flags
+
space

left-justify
ignored
ignored
ignored

X The corresponding arg parameter is converted to an unsigned
hexadecimal value. The number of bytes converted is a function of the
arg's type. The letters abcdef are used for x conversion and ABCDEF
are used for X conversion.

precision The precision specifies the minimum number of digits to
appear. If the value can be represented with fewer digits,
leading zeros are added up to the specified precision. The
result of converting a 0 value with a precision of 0 is a null.
The default precision is 1.

flags
+
space

left-justify
ignored
ignored
prefix converted value with a "$"

b The corresponding arg parameter is convened to an unsigned binary
value. The number of bytes convened is a function of the arg's type.

0

precision The precision specifies the minimum number of digits to
appear. If the value can be represented with fewer digits,
leading zeros are added up to the specified precision. The
result of converting a 0 value with a precision of 0 is a null.
The default precision is 1.

flags
+
space

left-justify
ignored
ignored
ignored

The corresponding arg parameter is converted to an unsigned octal
value. The number of bytes convened is a function of the arg's type.

precision The precision specifies the minimum number of digits to
appear. If the value can be represented with fewer digits,
leading zeros are added up to the specified precision. The

Basic Debugger Operations Working Draft 2 4-9

4-10

flags

result of converting a 0 value with a precision of 0 is a null.
The default precision is 1.

+
space

left-justify
ignored
ignored
prefix converted value with a "O"

f The corresponding arg parameter is convened to a signed decimal
floating point value. The value is convened to the form "[-]ddd.ddd",
"[-]INF', or "[-]NAN(ddd)" (where ddd is the NAN code) depending
on the value.

precision The precision specifies the number of digits after the decimal
point If the precision is 0, no decimal point appears (which
can be overridden with the "tf' flag). The default precision
is 6.

flags
+
space

left-justify
explicit "+" or " -"
space for positive value
force decimal point in the case where no
digits follow it

E The corresponding arg parameter is convened to a signed decimal
floating point value. The value is convened to the form "[-]d.ddde±dd"
(fore conversion), "[-]d.dddE±dd" (for E conversion), "[-]INF", or"[­
]NAN(ddd)" (where ddd is the NAN code) depending on the value.
The exponent will always contain at least two digits.

precision The precision specifies the number of digits after the decimal
point If the precision is 0, no decimal point appears (which
can be overridden with the "tf' flag). The default precision
is 6.

flags
+
space

left-justify
explicit"+" or"-"
space for positive value
force decimal point in the case where no
digits follow it

Working Draft 2 Basic Debugger Operations

(.

f

C·.
)

The corresponding arg parameter is converted to a signed decimal
floating point value. The value is converted using fore conversion (or
in the style for E conversion when G is specified). The form of
conversion depends on the value being converted; e or E conversion is
performed only if the exponent resulting from the conversion is less
than -4 or greater than the precision. Trailing zeros are removed from
the result (which can be overridden .with the"#" flag). A decimal point
appears only if it is followed by a digit (which can be overridden with
the "#" flag)

precision The precision specifies the total number of significant digits.

flags

If the precision is less than 1, then 1 is assumed. The
default precision is 6.

+
space

left-justify
explicit "+" or " -"
space for positive value
force decimal point in the case where no digits
follow it and keep trailing zeros

c The corresponding arg parameter is converted to a character (the value
mod 256 is used).

precision ignored

flags . ignored
+ ignored
space ignored
ignored

s Unless the "#" flag is used, the corresponding arg parameter must
be a string type (or a pointer) and the value is copied to the output as
is. C strings and as is (Pascal packed array of char) strings are
copied until a null is encountered (for C strings) or the number of
characters specified at the precision is reached. Pascal strings may
be processed if the type of the arg is a Pascal string. When the "#"
flag is used, the corresponding parameter is treated as an unsigned
long, and printed as if it contains 4 characters.

precision The precision specifies the maximum number of characters
to output The default precision is assumed to be infinite. In
that case a C and as is strings will be output up to but not
including a terminating null character and entire Pascal
strings will be output.

flags

Basic Debugger Operations

+
space

left-justify
ignored
ignored
the corresponding parameter is treated as an
unsigned long, and printed as if it contains 4
characters

Working Draft 2 4-11

4-12

p Unless the "#" flag is used, the corresponding arg parameter must be a
Pascal string type (or a pointer) and the value is copied to the output as
is. When the "#'' flag is used, the corresponding parameter is treated as
an unsigned long, and printed as if it contains 4 characters.

precision The precision specifies the maximum number of characters
to output The default precision is assumed to be infinite. In
that case the entire Pascal string will be output.

flags
+
space

left-justify
ignored
ignored
the corresponding parameter is treated as an
unsigned long, and printed as if it contains 4
characters

Note: You must use an upper-case %P as shown to output a Pascal
string type. If you use a lower-case %p argument, the value displayed
will be a pointer type, which is a hexadecimal number optionally
preceded by OX.

t The corresponding arg parameter is converted as a function of its type as
follows:

a base type u, d, g, p, ors as appropriate to the type with the
precision and flags interpreted as a function of these format
codes.

non-base type The value(s) are displayed using a pseudo-Pascal type , ___

flags

specification format appropriate to the type of the parameter
(e.g. a RECORD/struct type is displayed using a Pascal-like
RECORD notation). The flags control some of the aspects
of the formatted output

Note that the corresponding arg parameter need not specify a
value and instead may specify only a type. In this case, the
type definition is displayed, again using the same pseudo­
Pascal type specification format

+

space

display only the type even if corresponding arg
parameter specifies a value. The type is to be
displayed exhaustively, i.e., display every type
down to its base type.
display only the type even if corresponding arg
parameter specifies a value.
show record/struct field offsets
show all values and offsets in hexadecimal

% A single"%" is output; no arg is used.

precision ignored

flags
+

left-justify
ignored

Working Draft 2 Basic Debugger Operations

;r·~,,,_

_j

(space

Listing Program Information

ignored
ignored

The List command can be used to display a list of current processes or local program
symbols, ~""'Well as to display a list of address and trap breakpoints (or tracepoints). The ·
format of the List command includes four different options: symbol, process, break, or
trace. These options are shown below:

list symbol

or

list process

or

list break [{traps I addrs}]

or

list trace [{traps I addrs}]

For program symbols, the display includes the local procedure, the parent procedure, the
locally-defined variables, any procedures called by the local procedure, and any types
defined in the local procedure. Note that in this display, the term "module" denotes a
procedure within a program.

For example, to list the local symbols for the DisplayText procedure, use List as follows:

Module DisplayText. (0)
l?arent Module

TransDisplay
Variables

the Text
len

Contained Modules
None.

Types
None.

For processes, the display includes the following information: a process number, a
"loaded" or "unloaded" designation, and the filename for the process. The process numbers
are incremented up to a value of 16 as each new process is started on the system. When
you quit from an application, however, its process number isn't reassigned; the next
process started will have a new process ID number.

The example below shows a number of processes that were running when Eventlog was
suspended. The suspended process is indicated by a bullet (•).

Basic Debugger Operations Working Draft 2 4-13

Process# ·Loaded'? FileName
8 Loaded "Event log"
5 Loaded "SADE"
4 Loaded "Microsoft Word 3.01"
2 Loaded "Finder"

For breakpoints and tracepoints, List displays the location and the symbolic representation
for the location when sufficient symbolic debug information is present. If the traps or
addrs modifiers are present,the list will be restricted to the specified class of breakpoint.
For trap breakpoints, the names of traps (or ranges of traps) with breakpoints set are
displayed.

4-14 Working Drott 2 Basic Debugger Operations

(
Special-purpose Displays

The SADE memory display commands listed in this section provide special-purpose
displays. These include disassembly of instructions, dumping memory, and displaying
stack frames.

The Dlsasm...Command

The Disasm command disassembles instructions and displays the off set, address, hex
representation, and the assembly code for each instruction. Its format is:

disasm [addr [count]]

or

disasm [addr range]

The default behavior when no address is specified is to begin disassembling at the end of
the last disassembly. If the value of the program counter has changed since the last
disassembly, the program counter (PC) is used as the starting address. You can also
specify a particular location to begin disassembly by using addr or addr range. If no range
or count is specified, the number of instructions (not lines) disassembled defaults to 20.

Each line of the disassembly output is divided into four fields or areas. The initial value for
DisAsmFormat is "OAXC". This means that the initial order of the fields shown during
disassembly is offset, address, hex representation, and finally the assembly code. Their
display (both order and presence) is controlled by the DisAsmFormat builtin variable as
described in Chapter 3.

For example, to diassemble 5 instructions starting at the eighth statement of the DisplayText
routine, enter:

disasm DisplayText. (8) 5

DisplayText

+0040 003191A8 2F20 FE64

+0044 003191AC 2F2D FE78

+0048 00319180 4E8A FE26

+004C 00319184 4860 FE48

+0050 00319188 4E8A OOCO

MOVE.L

MOVE.L

JSR

-$019C(A5),-(A7)

-$0188(A5),-(A7)

FlushDWindow

PEA -$0188(A5)

JSR DisplayString

Compare this with the output of the Dump command, shown in the next section.

The Dump Command

00318FD8

0031927A

The Dump command displays a portion of memory at the specified location within a
program. Jllst entering "dump" with no parameters will display the instruction in memory
at the current program counter location. You can also display the locations specified by

Basic Debugger Operations Working Draft 2 4· 15

addr or addr range. The memory is displayed in hexadecimal and ACSII characters
according to the specified grouping, which may be byte, word, or long. The default
grouping is word.

For example, to display some of the memory area from the DisplayText routine, using the
default word grouping, use Dump as shown below:

dump DisplayText. (0) .. DisplayText. (8)

00319168 4E56 FFF2 48E7 OF18 286E 0008 4AAD FE60 NV .. H ... (n .. J .. '

0319178
00319188

00319198
003191A8

6700 OOES 486E FFFC A874 2F2D FE60 A873
2F2D FE60 4EBA F606 2660 FE74 2053 3028

003C 48CO 222E OOOC 0280 B2AD FE68 6Fl4

2F

g ••. Hn ••• t I - . ' . s

I - . ' N ••• &m. t S 0 (

. <H." ho.

I

The Stack Command

A look at the stack can help you detennine what procedures had been called at the time your
application was interrupted. To display a list of the stack frames for the current target
application, use the Stack command. Its format is:

stack [count] [at addr]

The stack frames displayed are based on register A6 or addr if at is specified. For each
stack frame, the contents of the frame pointer indicated where the frame starts. The frame
owner corresponds to the portion of the program that allocated the frame. The procedure
that called the frame is listed with an offset if needed.

If an explicit count is specified, then at most that many stack frames will be displayed.

For example, the stack frame for the "Eventlog" sample program when it is interrupted at
the DisplayText procedure is:

launch ":Eventlog"
go til DisplayText

stack
Frame Addr

<main>
$0032BC24
$0032BB2C
$0032BBOC
$0032BADC
$0032BACC

Frame Owner
CMain
main
SkelMain
LogEvent
Report Update
DisplayText

Called From

CMain+$0028
main. (51)
SkelMain. (13)+$0012
LogEvent. (50)+$0004
ReportUpdate. (1)+$0004

This shows that the last stack frame used was from the procedure ReportUpdate, which is
part of the "Eventlog" program.

4-16 Working Draft 2 Basic Debugger Operations

(

(

Displaying and Checking the Heap

This section describes the SADE heap commands, which act upon the current application
heap zone. The application heap is where the bulk of your program code resides. The heap
is divided into a number of blocks, each with a master pointer. There are a number of
conditions that can apply to each block on the heap: it may be free or in use, relocatable or
nonrelocatable, locked or unlocked, purgeable or nonpurgeable, and may or may not
contain resources. Each of these conditions have implications for the application's
performance. A complete discussion of the application heap zone can be found in several
different books, including Inside Macintosh.

The SADE heap commands let you display this wealth of heap information or check the
blocks on the heap for consistency. The Heap [display] command can be used to give a
complete snapshot of the heap at the time your application was interrupted. Its format is:

heap [display] [addr] [, blocktype]

where
addr is an address expression
b/ockrype is a string expression, of which only the first 4 characters are
significant It must be one of the following values:

'purgeable' will limit the display to purgeable blocks
'nonreloc[atable]' will limit the display to nonrelocatable blocks.
'reloc[atable]' will limit the display to relocatable blocks
'free' will limit the display to free blocks.

'lock[ed]' will limit the display to locked blocks.
'res[ource] will limit the display to resources
'restype type' will limit the display to the specified resource type

If desired, you can display the heap that starts at addr. The default is to display the heap
pointed at by theZone. By default, the information displayed is:

the address of the beginning of the heap block

the address of the master pointer if it's a relocatable block
an asterisk if the object is locked or nonrelocatable,
the value of the tag byte (for relocatables)

for a resource, the reference number of the file it's in, and the resource type
and ID of the resource

To display a subset of the heap objects, you can specify one of the block types. The
blockrype must be one of the following values: purgeable, non-relocatable, relocatable,
free. locked, resource, or a particular resource type.

Using the "Eventlog" example, only resources of type 'MENU' are displayed when the
Heap display command is used as follows:

Basic Debugger Operations Working Draft 2 4-17

Heap display-restype 'MENU'

BlkAddr BlkLength Typ MasterPtr Flags RType Rid RFRef R.Name

$00316590 $00000098 H $0031452C R MENU 1000 $0584 "File"

$00316838 $00000050 H $00314528 R MENU 1001 $0584 "Edit"

$00316888 $000000F4 H $00314524 R MENU 1002 $0584 "Log"

The Heap totals command provides a way to display summary information about the heap.
Its format is!

heap totals [addr] [, blockrype]

where
addr is an address expression
blockrype is a string expression, of which only the first 4 characters are significant.

The type information follows the same rules as the Heap command. The summary shown
is for the heap that starts at addr for blocks of type blockrype . The summary information
is given for free, nonrelocatable, and relocatable objects in the heap unless blockrype is
specified. If blocktype is specified, the summary information is limited to the indicated
type of object.

For instance, the summary information for purgeable blocks within the "Eventlog" sample
program provides the following display:

heap totals purgeable

Total Blks Total Size
Purgeable 8 8816

To check the consistency of the heap for the current target program, use the Heap check
command. Its format is:

heap check [addr]

The Heap check command checks the consistency of the heap . If desired, you can check
only that part of the heap that starts at addr. The default is to display the heap pointed at by
theZone.

The Heap check command performs range checking to make sure all pointers are even and
non-Nll..., and that block sizes are within the range of the heap. It then makes sure that the
self-relative handle points to a master pointer referring to the same block. For non­
relocatable blocks, it checks if the heap zone pointer points to the zone where the block
exists. The command also verifies that the total amount of free space is equal to the amount
specified in the heap zone header, that all pointers in the free master pointer list are in
master pointer blocks, and does other header validation .

. 4-18 Working Draft 2 Basic Debugger Operations

(

(

Displaying and Checking Resources

No Macintosh debugging system would be complete without a way to display resources. In
SADE, the Resource command is used to display and check the resource map for an
application. This command has two formats: Resource display and Resource check. The
format for displaying resource maps is:

resuurce [display] [addr] [restype 'type']

If an address expression is not specified in addr , the default is to display all resource maps
for the target application. The information displayed for each resource map includes: its
location, the refnum of the resource file, and a list of the instances of each type. For each
resource type displayed within the map, the following information is displayed: the
resource ID, the resource type, the value of the master pointer, whether the resource is
locked or unlocked, and the resource name.

The following example from the "Eventlog" program shows a partial resource map, using
only the resources of restype 'WIND'.

resource restype 'WIND'
Resource Map at $00316EF8

Res Id RType MasterPtr Locked'? Name
1000 WIND $00316BE4 Unlocked
1001 WIND $00316C08 Unlocked
1002 WIND $00316484 Unlocked
1003 WIND $00316488 Unlocked
1004 WIND $00316408 Unlocked

Resource Map at $0002Bl9C
Res Id RType MasterPtr Locked'? Name

-16000 WIND Not Loaded
-15968 WIND Not Loaded
-15840 WIND Not Loaded

You can check the resource map for consistency using the Resource check command. Its
syntax is:

resource check [addr]

If an address expression is not specified in addr , the default is to validate all resource maps
for the application. If an inconsistency is found, the command displays a diagnostic
message specifying the problem.

Finding Program Locations
To find an expression within a program, use the Find command. It evaluates the supplied
numeric or string expression, searches for the target, and displays the- result. Its syntax is:

Basic Debugger Operations Working Draft 2 4-19

find [count] target[,n] [addr range [mask]]
or
find [count] target[,n] [addr [count] [mask]]

The Find command normally counts or searches all of a program's available code for
occurrences of the target. As options, you may stan at the specified address and look up to
count bytes beyond, or limit the search to addr range. The default range is HeapStan to
MemTop. ·

-
The mask parameter is an optional numeric or string expression that is logically ANDed to
the contents of each memory location before the comparison is done. The n parameter is an
integer expression that specifies the minimum number of occurrences to ignore. In other
words, the first n-1 occurrences may be ignored in the search. The default for n is 1; in
this case, SADE will find the first occurrence. For example, by specifying 3 for n, you
could find the third occurrence

For example, to find the string "mystring" in your program, enter:

find 'mystring'

Setting Memory Values
After you have found and displayed a particular program location, you may want to modify
its contents. The typical modifications a programmer may make are:

• Modifying a program variable

• Changing a procedure parameter

However, any ti.me you change a program location, you are altering your program and
could run into unexpected trouble when you resume execution. It's always a.good idea to
save the value of whatever variable or parameter you want to change in a debugger
variable.

For example, you can change the program variable named "len" (type long) to have a value
of 10,000 with an assignment as shown below. First, save the current value of "len" in a
debugger variable named saver. Then do the assignment.

saver :=- len

len :• 10000

4-20 Working Draft 2 Basic Debugger Operations

(',

~j

(~

Chapter 5

Program Control

Resume Program Execution ... 5-2
Stepping Through a Program .. 5-3
Suspending Program Execution ... 5-5

Address Breakpoints .. 5-5
Trap Breakpoints ... 5-5 ·
Break Actions .. 5-7
Unbreak Command .. 5-7
Stop Command ... 5-8
Abort Command ... 5-8

Monitoring Program Execution ... 5-8
Trace Command .. 5-8
Untrace Command ... 5-9

Program Control Working Draft 2 5-1

This chapter provides an introduction to the SADE's program control functions. After you
have launched your program, you can always interrupt it by pushing the NMI key.
However, this method is often unsatisfactory, since you normally have no way of knowing
exactly where you were in the program at the time you pushed the key. The OnEntry
message usually displays the name of a procedure, but you can't tell if that was the third or
the thirty-third time the procedure was called. Since these kinds of details are important in
debugging, you need to be able to interrupt your program at one or several chosen places in
the code, and examine the results.

The SADE program control commands include the following features:

• The Go command resumes program execution, with the option of using a
temporary breakpoint or a conditional statement to halt the program later.

• The Step command executes the program one instruction or one line at a time.

• The Break command sets breakpoints on one or more addresses, on trap ranges, or
on all traps. A break action may be associated with a breakpoint; this command or
group of commands will be executed when the breakpoint is reached.

• The Stop and Abort commands can be used to stop the debugger during break
actions.

• The Trace command monitors program execution by writing a message to standard
output each time a specified trap or address is reached. Program execution
continues during a trace operation.

• The Unbreak and Untrace commands can be used to clear breakpoints and
tracepoints.

These program control commands are described in the following sections. The sample
program "Eventlog" is used throughout this chapter to show the effect of these commands
on a program.

If you have enabled source level debugging on your system through use of the
Standard.Entry proc in the SADEStartup file, you can also perform some program control
operations by selecting items from the SourceCmds menu. See Chapter 8 for more
information on source level debugging.

Resume Program Execution
If you've been following the sample program used in previous chapters, you've already
seen one way to resume program execution. The Go [til addr], form of the Go command is
extremely useful for executing your program up to the point you want to examine, then
halting it The breakpoint set with Go [til addr] is temporary.

5-2 Working Draft 2 Program Control

Of course, you don't always know exactly what program location you need to examine.
You can make your program resume execution at the current program counter by entering
the Go command as follows:

go

After using the Go command like this, the program will keep running until something
interrupts it. The "something" may be a bug, or it may be a breakpoint or tracepoint that
you have set, using the other commands in this chapter.

The complete syntax for the Go command is:

go [til addr], ..

or

go [while expr]

or

go [until expr]

The Go command resumes execution of the target program until a breakpoint is reached, a
while condition becomes false, or an until condition becomes true. At this point, the
debugger is entered and control returns to the user.

When you use the Go [til addr] format, the debugger sets temporary breakpoints at any
addresses you specified When the breakpoint is encountered, the debugger is reentered
and the breakpoint is removed If the address is in ROM, the debugger will warn you that
it can't set a temporary breakpoint in ROM. To set a trap breakpoint, use the Break
command as described later in this chapter.

Similarly, if a condition expression is specified, the debugger will run the application in
trace mode until the until condition is met or or the while condition is broken (whichever
is appropriate). The choice of while or until allows you to reverse the sense of the test,
but it doesn't affect when the test occurs. During trace mode, program execution
continues, but SADE checks to see if the conditional expression is satisfied

Stepping Through .a Program
When you step through a program, you are able to examine the effect of each statement.
SADE gives you the option of stepping through one instruction at a time, or stepping
through one line of source at a time. The Step command format is: ·

step [{asml~}] [into]

If line (the default) is specified,~ihe debugger will execute all of the instructions associated
with the current source line. If into is used with the line option, each call to a subroutine
will cause the debugger to be reentered at the first line of the called routine. Otherwise,

Program Control Working Draft 2 5-3

routines called by JSRs and BSRs will be treated as single instructions. Trap calls are
always stepped over.

If asm is specified, the debugger executes the instruction at the current PC location. The
debugger is reentered after the instruction executes. If into is specified, calling
subroutines will cause the debugger to be reentered at the first instruction of the called
routine. Otherwise, routines called by JSRs and BSRs will be treated as single
instructions.

If you have source level debugging enabled (using the StandardEntry proc in the
SADEStartup file), you may display the source window during a step operation. The
window containing the current line is displayed, with the next line to be executed
highlighted. See Figure 5-1 for an example of this display.

In addition, the Step command can be executed from a selected point within the source file,
using the SourceCmds menu item Step. More information on source level debugging is
contained in Chapter 8.

"' • File Edit find Mark Window SourceCmds

amazing:MPW:SflDE A I :SADE Worksheet
90 ti I Boclt91"'0Ul'ld
,st119 I i"e

amezlng:MPW:Debu ers:old SAOE:Euentlo .c

Bacltqrouncl procedlre. Check '"°"t •il'ICIOtl, ,..set edit ..,,.. if •il'ICIOtl
chC1n9es fro- °" application •il'ICIOtl to a "°"·appl icati°" eil'ICIOtl.
Disable the Edit ..,,.. ~ °" application wil'ICIOtl is acti11e,
.,....,I• il other-wise.
Also called........,_.. it is......,_ that the acti11e •il"ldo9 has charlqwcl.

Back9'"ounc1 < >
(

fuqi tldl•< >;

1• Calculate tM PW'C.,t of Pf'OCH- ti .. - stol.,. ,,..,. ~ !'lei_. •/
while «TlcltC-l< > - .,...r; .. > c 0.-.tUll)

Figure 5-1.
Source Window otter Step Command

5-4 Working Draft 2 Program Control

(

(~

C,

Suspending Program Execution
SADE allows you to set a breakpoint in one or more program locations, which can be
referenced as an expression or an address. The two types of breakpoints used in SADE are
known as address breakpoints and trap breakpoints. Both kinds of breakpoints are set
using the Brc:ak command, and may be optionally be followed by a break action. The
breakpoint types and break actions are described in the following sections.

After the desired breakpoints are set, you can then resume program execution. In the
simplest cases, the program will run until it reaches the first available breakpoint, and then
the debugger will stop program execution. At this point control normally passes back to
SADE.

SADE breakpoints and break actions can interact in many different ways with other SADE
commands. It's difficult to make a general statement that applies to all uses of breakpoints
and break actions. The simplest kind of breakpoint to use is an address breakpoint with no
break action. The most complex situations occur when a number of trap breakpoints are
set, each having a break action. Break actions themselves may be either simple or may
consist of a series of commands grouped with Begin .. end.

The commands within a program also have an effect on SADE's breakpoint interpretation.
If the last program execution command was in a structured statement, and no break action
was specified for the breakpoint, the commands immediately following the program
execution command are also executed.

Address Breakpoints

An address breakpoint can be set anywhere within program code by specifying a RAM
address. Address breakpoints may also be set using symbolic references; in this case the
code may not yet be in memory at the time the breakpoint is set The form of the Break
command used for address breakpoints is:

break addr , ... [break action]

A break action may be a single debugger command, a debugger proc call, or group of
commands delimited by Begin .. end. Break actions, and their interaction with other SADE
commands, are described below.

Trap Breakpoints

Trap breakpoints may be set on a range of traps, or on all traps. For trap ranges, either the
trap name or the trap number can be used in a range expression. Trap numbers are prefixed
with a "t". The two forms of the Break command used to set:tra.p breakpoints are:

break trap range [from addr range] [break action]

Program Control Working Draft 2 5-5

or

break all traps [from addr range] [break action]

The break action may a single debugger command, a debugger proc call, or group of
commands delimited by Begin .. end, as described below. The trap range is a address range
beginning and ending with trap names of the form t$Axxx .. t$Axxx.

The same trap may have a breakpoint set on it by its name alone, as a member of a trap
range, or as a trap within a specified address range. Each of these trap breakpoints will
have a separate breakpoint record created for it; you can see what breakpoints are set using
the List break command

The same trap can be specified in multiple break commands. This can happen in one of two
ways: either overlapping trap ranges are specified, or different address ranges are specified.
Consider the following examples where multiple break commands are set with overlapping
ranges:

NOTE: These examples have not been tested and· may not work on your
program!

break all traps action! # break on any trap called from any address

break tSA996 .. tSA9AO action2 #break on _OpenResFile (and other traps)
called from any address

Break _OpenResFile from applZone .. applZone" action3 #break on
_OpenResFile only if called from application heap

break _OpenResFile from ROMBase .. ROMBase+256K action4
#break on _OpenResFile only if called from ROM

With the above trap breakpoints set, the program's calls to _OpenResFile would be handled
as follows:

address call

$10000 _OpenResFile

myproc+$100 _ OpenResFile

action

action 2 is interpreted SADE first looked for breaks
on _OpenResFile only, but the address fell outside of
the specified ranges. It then found the first (most
recently specified) trap range that inclµded
_OpenResFile.

action3 is interpreted. This call
occUITed within the application heap

SADE uses a search rule when finding an instance of a trap call that satisfies the conditions
for a specified breakpoint For any breakpoint that specifies a trap name, SADE first
attempts to find a call within the program that exactly matches that name. Once it finds the
trap, SADE checks to see if it falls into the address range if one was specified

5-6 Working Draft 2 Program Control

;-",
~)

(The next step is to check any trap ranges that might contain the trap. SADE accepts the
most recently defined trap range it finds that contains the trap, even if another trap range
defined earlier also contains the trap. Once a trap range satisfying the description is found,
SADE then checks to see if the range falls within the address range if one was specified.

The Break all traps option sets a trap breakpoint on all traps in a continguous range. If addr
range is specified, the debugger will break on traps called from the specified memory
range.

Breck Actions

A break action is one or more SADE commands that are meant to be interpreted after the
breakpoint is reached. Normally, once SADE has performed the commands within the
break action, program execution will continue. However, using a Stop or Abort command
as part of the break action may halt subsequent program execution.

If a Stop command is contained in a break action, and the most recent program execution
command was in a structured statement, the commands immediately following the program
execution command are also executed.

If an Abort command is encountered in a break action, all pending program execution
commands are aborted. The debugger is entered immediately.

Note that the commands specified in the breakpoint action are saved and not interpreted
until the.time when the breakpoint is reached. Consequently, any SADE variable references

" used in a break action should use global variables only. Local variables defined in a break
action won't exist at the point when the breakpoint is reached and the break action is
invoked.

Unbreok Commend

To clear a break on traps within the specified addresses or range of traps, use the U nbreak
command. This will also remove their associated break actions. The command format is:

un break addr , ...

or
unbreak trap range, ...

or
unbreak all [{traps I addrs}]

The addr is an address expression, and the trap range is a range of trap locations. The all
form will clear all breaks, optionally restricted to just traps or addresses if the traps or
addrs modifiers are present.

{~ For example, to undo a break on the GetResource trap, enter:

unbreak _GetResource

Program Control Working Draft 2 5-7

Stop Command

To return control to SADE while a program is executing, use the Stop command. Its syntax
is simply:

stop

The Stop command terminates any debugger commands already in progress. This
command can be used to stop the debugger during the execution of break actions. See the
section on "Break Actions" for more info~tion about the use of Stop.

Abort Command

The Abort command terminates the cUITent break action, causes the debugger to be fully
entered, and cancels any debugger commands pending. This means that when the previous
execution was in a structured statement, the pending commands are canceled. The
command syntax is simply: .

abort

See the section on "Break Actions" for more infonnation about the use of Abort. See also
the Stop command, which terminates the break action without cancelling other pending
commands.

Monitoring Program Execution
Tracepoints allow you to monitor addresses or traps during program execution, without
halting the program. When the tracepoint is encountered, a message is written to standard
output reporting the address or trap being traced, or the symbolic representation of the
address if available. This section describes the commands for setting and undoing
tracepoints.

Trace Command

The Trace command sets tracepoints on the specined address or traps within the target
application. After setting the tracepoints, you can resume program execution. When the
tracepoint is encountered in the executing program, a message is displayed on the current
standard output, reporting the address or trap being traced, and optionally the symbolic
representation of the address. The command fonnat is:

trace addr , ...

or
trace trap range [from addr range] , ..

5-8 Working Draft 2 Program Control

,,.~

('·

~/

('.

(\

./

or
trace all traps [from addr range]

If addr range is specified, the message will be written only if the trap was called from the
specified memory range. In any case, execution is resumed after the message is displayed.

For trap ranges, either the trap name or the trap number can be used in a range expression.
Trap numbers may be prefixed with a "t"; for example, the range from the system trap

. _ OpenResFile to _ GetResource could be specified as

t$A997 .. t$A9AO

_For example, to use a trap range with the Trace command, you can enter:

trace _ OpenResFile .. _ GetResource

Unfrace Command

The Untrace command clears the tracepoint for the specified addresses or traps. Its format
is:

untrace addr , ...

or
untrace trap range ,

or
untrace all [(traps I add rs}]

The addr is an address expression, and the trap range is a range of trap locations. The all
form will clear all tracepoints, optionally restricted to just traps or addresses if the traps or
addrs modifiers are present

For example, to undo a trace on the _GetResource trap, enter:

untrace _GetResource

Program Control Working Draft 2 5-9

Chapter 6

Debugger Command Flow
co·ntrol

Debugger ColllIDand Flow Control. ... 6-1
Grouping ColllIDands .. 6-2
Conditional ColllIDands .. 6-4
Looping ColllIDands .. 6-5

For ColllIDand .. 6-6
While Coll1IDand ... 6-6
Repeat Coll1IDand : 6-7
Loop and Leave Commands .. 6-8
Cycle Command ... 6-9

Debugger Command Flow Control Working Draft 2 6-1

This chapter provides an introduction to the SADE execution flow control commands.
These commands are used in conjunction with other SADE commands to control the
sequence of debugger execution. Flow control commands are useful for automating your
debugging session: you can execute a group of commands as one unit, specify alternate
actions depending on the values within your program, or repeat debugger actions for a
specified number of times. With flow control, the tests you set for your program code will
only be performed under the conditions you specify.

The flow control commands can be divided into three groups:

• Grouping commands, which include the Begin ... end construct.

• Conditional execution commands, including the lf...end construct, with the optional
Else and Elseif commands.

• Looping commands, including the For, While, Repeat, Loop, Cycle, and Leave
commands.

The syntax of these commands is similar to that of the structured statements found in high­
level programming languages: a Begin must be followed by an End, a For is used with a
control variable, and an If can have alternate conditions using an Elseif or Else. You can
find many examples of flow control commands in the command files in the SADEScripts
folder.

Grouping Commands
The grouping commands, Begin ... end, allow a series of commands to be interpreted by
SADE as a single unit. All of the commands within the Begin .. end construct are ·evaluated
before SADE executes any of them. The component commands are executed in the same
sequence as they are written .. The command format is:

begin

commands # all commands are evaluated before execution

end

The SADE Worksheet includes an example of the difference between commmands executed
separately and those that are executed as a group.

J with a target suspended, select and execute the following statements
begin

step asm over
printf "this statement will execute when Sade is reentered\n"

end

6-2 Working Draft 2 Debugger Command Flow Control

[~'

~j

(

(

note the different behavior if the following statements are executed
instead

step asm over
printf "this statement will not be executed when Sade is reentered\n"

this difference may change in the next release

One use ofthe Begin .. end construct is the specification of breakpoint actions which consist
of more than one command or procedure invocation. If you don't use a Begin ... end
grouping, you can only specify one command or one procedure invocation after your
breakpoint. For instance, the following example is a breakpoint set on the procedure
DisplayText. The StandardEntry proc is the break action .when SADE is entered.

break DisplayText StandardEntry # use proc from the SADEStartup file

However, when you use Begin .. end, you can use any number of commands following a
breakpoint:

break DisplayText begin

printf "watch out for bugs" # print a message to yourself

list symbol t list local symbols for this procedure

resource restype 'WIND' t display 'WIND' resources

end

The Stop and Abort commands, described in the previous chapter, may be used within a
Begin .. end construct to halt execution of the break action. The example below shows a
Begin .. end construct used with the If and Stop commands. If the condition specified in the
If statement is true, the break action will halt execution.

break DisplayString. (4) begin

str := theStr~ t save value of parameter in debug variable str

if str ~ '***' then stop # halt break action if this condition is true

printf "%t\n", str t otherwise continue break action execution

end

Debugger Command Flow Control Working Draft 2 6-3

Conditional Commands
Conditional execution of debugger commands allows you to specify a number of alternate \,__/
actions, each based upon the the evaluation of a boolean expression. If the boolean
expression produces the value true, the commands that follow can then be executed. The
If .. end command format is:

if b_ooleanexpr [then]
command

[elseif booleanexpr [then]
commands ..]* .•.

[else
commands ...] ...

end

Each If command must be followed by an End command. Elseif and Else commands are
optional, but must appear between the If..end commands in the order indicated above.
More than one Elseif may appear (indicated above by the [...]*); but at most one Else may
appear.

When an If ... end construct is evaluated, each of the statements is checked in order of
appearance. When the first If condition (a boolean expression) is true, the statements
controlled by the If are executed and the remainder of the contruct to the End is skipped. If
the condition is false, the statements controlled by the If are skipped and the next (Elseif)
condition is checked, if present. If an Elseif condition is evaluated and is true, the
commands it controls are executed and the remainder of the If construct is skipped. If no
previous conditions were evaluated as true when the Else command is reached (if present),
the commands controlled by the Else are then executed; otherwise they are skipped.

The commands controlled by an If extend to the corresponding End, or to the first Elseif or
Else, whichever comes first The commands controlled by an Elseif extend to the next
Elseif, Else or End, whichever comes first. The commands controlled by an Else extend to
the corresponding End.

IL.end constructs may be nested. They may also be used in combination with the other
flow control commands, as seen below. This example is from the file DisplayMemory in
the SADEScripts folder.

6-4 Working Draft 2 Debugger Command Flow Control

/("~-\

'<L_j

·('J

c

proc dm a,n # display memory from address a for n bytes

define i, j, b, s := • •
If undef(n) then

n := 16
end
for i := l to n do

if (i mod 16) = l then
if s <> ' ' then

end

printf " '%t'", s
end
if i <> l then

printf "\n"
end
printf "%.8X: ", a
S := I I

b :• hunsigned.Byte(a)~
printf "%.2X ", b
if (b < $20) I (b > $7E) then

s := concat(s, '. ')
else

s := concat(s, cChar(b))
end
a :• a + l

end
if s <> I I then

if i > 16 then
i :• i mod 16
if i <> 0 then

for j := i to 15 do
printf " n

end
end

end
printf " I %t I II, s

end
printf "\n"

end.

start with nulls

[default n = 16]

outer for loop
outer if statement
t lst nested if

2nd nested if

end of outer if

t if .. else construct

t end of for loop
t outer if statement
t lst nested if

t 2nd nested if
t nested for loop

t end of 2nd nested
t end of lst nested

t end of outer if

t end of proc

To use this proc, supply a memory location and the number of bytes to be displayed:

dm $319168,16

if
if

00319168: 4E 56 FF F2 48 E7 OF 18 28 6E 00 08 4A AD FE 60 'NV .. H ... (n .. J .. ''

This performs the same operation as:

dump byte $319168

Looping Commands
This section describes SADE's looping commands, which allow you to execute one or
more SADE commands repeatedly. You can loop for a specified number of times with For,

Debugger Command Flow Control Working Draft 2 6-5

loop unconditionally with Loop, or loop with a test at the beginning(While) or the end
(Repeat). The Cycle command allows you to execute within a loop construct.

For Command

The For command allows you to repeat a one or more SADE commands repeatedly, using a
control variable to specify the number of repetitions. The command format is:

for for clause [do]

commands

end

The commands enclosed in the For .. end construct are executed until the control variable
has taken on each successive value in the range expressed by the/or clause. The/or clause
is composed of debugger variables and expressions. It may have one of the following
forms:

var = expr to expr The first expression is the initial value, and the second
expression is the final value. The commands are executed once
for every value in this range.

var := expr down to expr With downto, the value of the control variable is
decremented by one for each repetition, starting with the initial
value and conclusing at the final value.

var := expr , ... A list of expressions may be used. Execution continues until the
control variable has taken the value of each of the listed
expressions.

See Chapter 3 for more information on the proper format for debugger variables.

For example, to perform SADE commands starting with a control variable of x equal to 10
until the control variable equals 5, use:

for x :a 10 downto 5 do

(commands) t these commands will execute 5 times

end

For .. end commands may be nested. They may also be used with other flow control
constructs, as well as in break actions.

While Command

A While statement contains an boolean expression at the beginning of the construct, which
is evaluated before execution takes place. The commands contained in the While ... end
construct will only execute when the expression is true. If the expression is false, the

6-6 Working Draft 2 Debugger Command Flow Control

enclosed comIIiands are skipped, and execution resumes following the end. The command
format is:

while boolean expr [do]
commands

end

While .. end.constructs may be nested.

The following example is from SADEScripts:MiscProcs. It uses a While .. end construct to
check each window in the window list, and stops when the NIT.. pointer at the end of the
window list is encountered

proc displaywindowlist;
t displays the address and title of each window in the window list.

define nextwindow;

define wTitleoffset :• $86;

define wTitle;

nextwindow :• windowlist;

#used to contain the pointer to each
t window record in turn
#from ToolEqu.a. the offset into the
t window record to the handle to the
t window title.
tused internally to point to the window
t title.

t start at the first window, pointed to
t from low memory.

while (nextwindow <> 0) do t a NIL terminated list.
wTitle :• (nextwindow+wTitleoffset);

t point at the window's title
printf ("next window: $%. 8X Window Title • o
\"%p\"\n",nextwindow,"pstring(wTitle""")");

t write the information out.

nextwindow := (nextwindow+$90)";
t point at the next in the list.

end; t while

end; # displaywindowlist

Repeat Command

To repeat a group of commands with a conditional test at the end of the loop, use the
Repeat command The SADE commands enclosed by the Repeat.until construct are
executed until boolean expr is evaluated as true. This ensures that the enclosed commands
are executed at least once.Repeat constructs may be nested

Debugger Command Flow Control Working Draft 2 6-7

The command format is:

repeat

commands

until boolean ex.pr

For example, to use a Repeat .. unril construct that tests the value of variable x:

repeat
<supply commands here>

until x • S

The SADEScripts:ResVerify command file contains a Repeat.until construct that executes
once for each resource map. It stops execution when there are no more resource maps to
check. A portion of the Res Verify proc appears below:

proc ResVerify
t verifies all resource maps in the resource chain
t and all loaded resources

<definitions for local variables>

repeat

NEXTresFile :• nextResHndlA
< commands here to check resource maps and display results>
nextResHndl := (NEXTresFile + 16)A
t check next resource map

until (nextResHndl = 0) t until no more resource maps to check
end t proc ResVerify

Loop and Leave Commands

The Loop .. end construct provides unconditional looping. Its format is:

loop

commands

end

The enclosed SADE commands are executed repeatedly. Loop .. end constructs may be
nested.

To exit the loop use the Leave command. Its format is simply:

leave

Working Draft 2 Debugger Command Flow Control

(For example, you could use Loop and Leave as shown below:

loop

end

< execute commands here>
leave if i .. 5
< otherwise execute more commands>

Cycle Command

The Cycle command can be used with any of the While, Repeat, Loop, or For constructs.
It causes execution to continue from the top of the currently enclosing construct. Its format
is:

cycle [if boolean expr]

If the optional If clause is present, the cycle action will happen only if the boolean expr is
true; otherwise execution will continue following the Cycle command. To continue
execution within one of the other looping constucts, use the Cycle command.

For example, to use Cycle within a For construct:

for x := 10 downto 5 do
<commands>
cycle if x < 2

<more commands> # executed only when expression is false

end

Debugger Command Flow Control Working Draft 2 6-9

Chapter 7

Customizing the Debugging
Environment

Customizing the Debugging Environment .. 7-1
Executing a Debugger Command File .. 7-2
User-defined Macros ... 7-3
User-defined procedures ... 7 -4
User-defined Functions .. 7 -5
Customizing your Startup File .. 7-7

The OnEntry Command ... 7 -7
User-Defined Menus and Alens .. 7-8

AddMenu Command ... 7-8
DeleteMenu Command ... 7 -8
Alen Command ... 7 -8

Customizing the Debugging Environment Working Draft 2 7-1

One of the most powerful aspects of SADE is the extent to which you can customize your
debugging sessions. In earlier chapters, you've seen how SADE commands include many .4~-
options that allow you to display information in the format you specify, or to execute '--./
debugger commands in the sequence you choose. This chapter describes some of the ways
you can customiz.e the SADE user interface-the menus that appear, the messages that are
displayed when you enter the debugger, and the functions and procedures that perform
specialized tasks.

Ymi can extend SADE's capabilities in one or all of the areas listed below:

• Create a SADE file, fill it with a series of SADE commands, and execute those
commands by invoking the command file name.

• Define a function or procedure in the SADE command language. These functions and
procedures can be called from within a SADE command file. Function and procedure
names, and any variables defined within them, are interpreted according to the scope
guidelines in Chapter 3.

• Create abbreviations for command names with user-defined macros. You can choose an
identifier that will stand for for any string expression you specify.

• Customize the SADEStartup file to include the initialization information you want when
you launch your SADE debugging session.

• Supply OnEntry actions that will be executed each ti.me the Debugger is entered.

• Add menus and menu items, allowing you to select which debugger coinmands are
available from the SADE menu bar. You can delete those menu items which aren't
useful to you.

• Add alert boxes to i~orm you when selected debugger operations have occurred

The SADEScripts folder contains a number of SADE command files; these will give you an
idea of some of the ways that SADE commands can work together to provide a customized
debugging environment As you read this chapter, you'll see several examples of SADE
procs, funcs, and macros; these examples can also be found in the SADE Worksheet and
the SADEStartup file. "

Executing a Debugger Command File
If a file pr window contains executable commands, the Execute command can be used with
the filename to execute those commands. Any file that contains a group of SADE
commands can be used as a command file. The commands within the file can be executed
simply by using the Execute command with the filename as a parameter. The syntax of the
Execute command is:

execute filename

7-2 . Working Draft 2 Customizing the Debugging Environment

(The filename is. a string expression. The Execute command can't be used in any structured
statement. such as a Begin .. end construct.

If you have a set of coIIll_Ilands in your worksheet that you wish to save for later use, you
can open a new SADE file, and place the commands you want to save into the new file.
Later, you can use the Execute command to repeat the operations you saved See Figure 7-
1 for an example.

,,. 9 File Edit find Merk Window SourceCmds

amazing:MPW:SAOE A I :SAOEScripts:newfile
red1r•ct • rlldir•cts output back lo the ""''" Llorksh .. t
define slr
break Oisplay5trin<J.C4> b..;1n

str :" th.Str• • save value of pGP'-ter in d9buq variable slr
printf "str • lt\n" ,str
stop
end

90

amazin :MPW:SAOE Al:SAOE Worksheet

str • 7

Figure 7-1.
Creating a new command file for execution

User-defined Macros
The Macro command allows you to define a macro, which associates a string of characters
with a named identifier. When SADE encounters these characters, it interprets the macro as
if it was dealing with the identifier. For instance, when the macro is used in place of a
command, SADE temporarily redirects input to the command that fonns the macro's actual
value.

The command syntax is:

macro name string expr

Customizing the Debugging Environment Working Draft 2 7-3

References to a-macro may appear anywhere a token could appear in the debugger input
stream. Macro definitions are limited to a length of 254 characters. Macros allow you to
create abbreviations, which could be used to change the debugger language to a more terse,
Macsbug-like language. (See the example below, which is from the SADEStartup file.)

macro br 'break'
macro clr 'unbreak all'

To suppress a macro call, you can use an identifier preceded by a "et". Macro definitions
can be nested; that is, a macro definition can contain references to other macros. Macro
definitions are not recursive; references in a macro definition to the macro being expanded
aren't treated as macro calls. A macro definition is not allowed in any structured statement.

Macros may be redefined. You can remove a macro definition with the Undefine command.
This is occasionally necessary if your program contains a variable or procedure name
identical to one of the macros defined in the SADEStartup file.

User-defined procedures
Procedure definitions in the debugger language are delimited by the Proc and end
commands. The Proc command identifies the procedure's name and optional parameter
list Its format is:

proc name [arg name , ...]
body

end
or
proc name ([arg name, ...])

body
end

The name is a string expression, the arg name is a SADE identifier, and the body is
composed of one or more SADE commands.

A debugger proc is called by beginning a debugger command with the name of the proc,
followed by the optional actual parameter list. The parameter list follows the prototype
parameters from the proc's definition, with the actual parameter values substituted for the
parameter names. When the proc executes, the actual parameter values will be matched
positionally with the formal parameter names.

The number of actual parameters need not match the number of formal parameters in the
proc definition. If too few actual parameters are specified, the formal parameters for which
there were no corresponding actual parameters will be assigned a special undefined value.
Extra actual parameters have no corresponding formal name, but can be referenced through
the predefined debugger array variable Arg (See Chapter 3). This allows the parameters of
a proc to be accessed positionally with references of the form "arg[n]". The number of the

7-4 Working Draft 2 Customizing tne Debugging Environment

(_

C' ':

last actual parameter specified is contained in the predefined debugger variable NArgs. The
values of these predefined debugger variables represent the parameter state of the currently
active proc and are not defined when debugger execution is not in a proc.

If a parameter list is used with the Proc command, it identifies parameters by name only.
Parameters are not typed within Proc definitions; instead, they take on the types of their
actual parameter values at the point of call.

The parameter list may optionally be enclosed in parentheses. If the parentheses are
included in the proc definition, they must be included when the proc is called as well.
Similarly, if the definition was not parenthesized, then invocations of the proc must not be
parenthesized.

Procs may be redefined. A proc must have been defined before a call to it is processed (so
that the proc name can be recognized as a debugger symbol). Thus, if mutually recursive
procs are desired, one proc must be defined first with a dummy proc definition, so that the
second proc can refer to it, and then the first proc can be redefined, referencing the second
proc. The minimal dummy proc definition is: "proc foo; end;". Proc definitions may also
be removed with the Undefine command.

Proc calls may be nested. The Return command may be used with Proc definitions; see the
section which follows for more information.

The following example is from the SADE Worksheet:

proc factorial n, file t the proc Factorial is called with
t two arguments

define i

if nargs > 1 then

redirect file

end

for i := 1 to n do

printf("fact(%.2d)

end

if nargs > 1 then

redirect

end

%19.l9g\nq, i, fact(i))
t this line calls the SADE function fact

end t end of proc Factorial

User-defined Functions
Function definitions in the SADE language are delimited by the Func .. end construct Aside
from these delimiters, procedure and function definitions are essentially·the same. The
format for a function definition is:

func name ([param name , ...])

Customizing the Debugging Environment Working Draft 2 7-5

body

end

The name is the function name, the param name is the parameter name, and the body is the
code that makes up the function. A function definition must have a Return command, with
a return value specified, as the last executable statement. See the syntax for the Return
command below.

The function type isn't specified in the function definition. The function takes on the type
of the value specified in the return statement that was executed to leave the function . This
means that functions are not limited to returning results of a single type.

A debugger func is called using conventional functional notation, with the function name
followed by the optional actual parameters in a parenthesiz.ed list in the format of the
prototype established in the func definition. Fune parameters are handled in the same
fashion as Proc parameters, and the predefined debugger variables Arg and NArgs may
also be used.(See Chapter 3). User-defined functions may be called anywhere an expr is
allowed. ·

Function names can be removed as SADE symbols through use of the Undefine
command.

The following example of a function definition is found in the SADE Worksheet:

func fact (n)

if n <a l.O then

return l.O

else

t supply one argument

return n * fact(n-l) t return the result

end

end

The Return command causes the debugger to exit the a debugger procedure or function
currently in execution. If returning from a function, an expression must be specified for
the function value. When returning from procedures there should be no return value.

The command fonnat is:

return [expr]

Customizing your Startup File
The commands within the SADEStartup file are executed every time you launch the SADE
program. You can, if you wish, edit this file, and change the contents to suit your

7-6 Working Drott 2 Customlzlng the Debugging Environment

debugging needs. There are a number of different ways that you can customize the
SADEStanup file. You can, of course, define your own SADE procs, funcs, and macros,
as described above, and place these definitions in the stanup file. Or you may place the
definitions in command files, and execute the various command files from SADEStartup.

Alternatively, you can leave SADEStanup as it is, and create your own Stanup file. For
instance, you could name your startup file "UserStanup'', and place your procs, funcs, and
macros there. To execute "UserStanup" each time SADE is launched. use the Execute
command as follows:

execute 'UserStanup'

You also have the option of changing the default source file display interface that is
established in SADEStanup. The commands used to implement ~e source file display are
described in the sections that follow. These include the OnEntry command, which controls
SADE's behavior each ti.me the debugger is entered The Addmenu and DeleteMenu
commands let you customize SADE's menu interface. The Alert command gives you the
ability to display an alert box whenever you think you need it Using one or more of these
commands, you can substantially affect how SADE will work for you.

The OnEntry Command
The OnEntry command can be used to execute one simple or compound SADE command
each ti.me SADE is entered It is typically used within a stanup file to provide a source
display each time SADE is entered Break actions specified using OnEntry may also be
used when entering SADE from a breakpoint The command syntax is:

onEntry [break action]

The break action may be one simple SADE command, as shown below:

onEntry printf "%.8X\n",pc

If more than one command or procedure invocation is needed within the break action, the
Begin .. end constuct should be used to group a sequence of commands. A compound
command formed in this way is interpreted by SADE as one unit

In the SADEStanup file, the "Standard.Entry" proc is the default argument to the OnEntry
command This procedure provides for source display of the current program colinter (PC)
on entry into the debugger. If you wish to change the behavior of the source display when
the debugger is entered, you can write your own SADE procedure, and use its name as the
argument to OnEntry.

User-Defined Menus and Alerts
Menu items may be added to, or deleted from, the standard SADE menus File, Edit, Find,
Mark, and Window. Within the SADEStanup file, the SourceCmds menu is implemented
with a list of Addmenu commands. You may wish to change the contents of the

Customizing the Debugging Environment Working Drott 2 7-7

SourceCmds menu, or to create your own menu containing a different set of debugger
commands. The Addmenu and Deletement commands are described below.

The default source display interface uses an alen box to infonn you when it has reached a
source break. This alen box is implemented with an Alen command in the SADEStanup
file. If you wish to change this behavior, or to call alen boxes from your own debugger
command files, you can use the Alen command as described below.

AddMenu 'Command

The Add.Menu command associates commands with menu items. Its syntax is:

addmenu [menuname [itemname [command]]]

The menuname is a string expression containing the name of the menu to which to add the
item. If a menu of menuname docsn 't exist, a new menu by that name will be created. The
itemname is a string expression that includes a command key equivalent and the name of
the menu item. If a menu item with the same name exists, it is replaced; otherwise a new
menu item is created. A command is a string expression, containing a single debugger
command that will be submitted to the command interpreter when this item is selected.

If any of the optional parameters are not supplied. the current values of menus from the
specified level down are displayed.

DeleteMenu Command

The DeleteMenu command removes menus or menu items. Its syntax is·:

deletemenu [menuname [itemname]]

The menuname is a string expression containing the name of the menu from which to delete
the item. The itemname is a string expression that contains the name of the menu item.

If only menuname is specified, and it contains no menu items, the menu is deleted. If a
menu item with the same name specified in itemname exists, it is deleted.

Caution: If both menuname and iremname are omitted, all user-defined items are deleted.

Alert Command

The Alen command displays an alen box containing the specified message. The alen is
displayed until the OK button is clicked. If beep is specified, a sound is generated when
the alen box appears.

7-8 Working Draft 2 CustomiZlng the Debugging Environment

(
' \,.___ ..

(

(J

The command syntax is:

alert [beep] message

The message is a string expression that will be displayed in the alen box, as in the example
below:

alen "watch out for bugs"

Figure 7-2 shows the how the alen box is positioned on the screen.

,. S File Edit Find Mark Window SourceCmds

amazin :MPW:SADE Al :SADEScripts:newfile
redir..:t • redirects output back to the ""'in llorksheet
define str
break OisploySt,.ir.==:::::====================;i

st,. • theStr
pr-intf "st,. • watch out for bugs
stop
end

Figure 7·2.
Position of a SADE alert box

Customizing the Debugging Environment Working Draft 2 7-9

(

Chapter 8

Source-Level Debugging

Source-Level Debugging .. 1
TO BE SUPPLIED

(~····· ...

Source-Level Debugging Working Draft 2 8,-1

This chapter describes source-level debugging in SADE. It will include examples of how
the user can set up his own source-level debugging world. There will be a number of
screens showing the appearance of source windows and menus, including the sourceCmds
menu.

• TO BE SUPPLIED

The Sou:-ceCmds menu

Right now this menu is also described in Appendix A with the other SADE menus.

8-2 Working Draft 2 Source-Level Debugging

(

SADE Menus

Appendix A

SADE Menus

Working Draft 2 A-1

This chapter describes the SADE menus. They are similar in most respects to the MPW
Apple, File, Edit, Find, Mark. and Window menus. **list any differences here***

***The following sections are the same as in the MPW manual - please check to see that
this information is also true of SADE. I'm sure this appendix will need extensive
renovation!***

Apple Menu

About SADE Displays version and copyright information.

File Menu
Each of the items in the SADE File menu is described below.

New... XN
Open... XO
llt>P.n Sele< Uon :•:D

[ll>Se :e;Ut
Seue XS
Scn•e a~ •••
Seue 11 Copy •••
Reuert to Saued

OuJt XO

Figure A-1
File menu

•••NEED TO FIX THIS SCREEN DUMP•••

New ...

A-2

Displays the New dialog box, shown in Figure A-2.
The SADE New dialog box allows you to enter a name
and select a directory location for the document The
Command-key equivalent is Command-N.

Working Draft 1 SADE Menus

(

(

Open ...

JOMPW!

Cl REHompl81
Cl Rlncludes
Cl Rppllcotlon1
Cl CEHDmples
OClncludH
Cl Cllbrortes

Open document

Figure A-2
New dialog box

ciHD

[ject

D11L1e

New

(Cancel

Displays an Open dialog box (similar to that in Figure
A-2) chat allows you to open any TEXT file on the
disk. When you open a file for the first time, the
selection point is at the top of the file. When you open
the file again, it reappears in the same state in which it
was saved; that is, the previous selection or insertion
point is preserved unless the file has been modified
outside the editor. The Command-key equivalent is
Command-0.

Note: If you try to open a document that's already open
in another window, that window will be brought to the
front.

Open Selection Not used in SADE.

Close Closes the active (frontmost) window. The Command­
key equivalent is Command-W.

Save Not used in SADE.

Save as... Displays a Save As dialog box, allowing you to change
the name and directory location of the active window.
Saves the current contents of the window as the "Save
As" file, and allows you to continue editing the new
file. The old file is closed without saving, under its
original name.

Save a Copy... Saves the current state of the active window to a new
file on the disk. You can then continue editing the old
file.

Reven to Saved Not used in SADE.

Quit Returns to the Finder, first allowing you to save the
current state of all open files. The Command-key
equivalent is Command-Q.

Edit Menu

SADE Menus Working Draft l A-3

See Appendix C for more infonnation ori using the commands on this menu.

Undo XZ

Cut :l(cH
(Ol>IJ :!<[

PHte XU
Cleor

Select All XR
Show Clipboard

Format... XY

Rllgn
Shift Left X(
Shirt RI ht XI

Figure A-3
Edit menu

Undo

Cut

Copy

Paste

Qear

Select All

Undoes the most recent changes to text in the active
window (but n.ot changes to resources such as font or
tab settings). You can select Undo again to redo
changes. The Command-key equivalent is Command­
Z.
Copies the current selection in the active window to
the Clipboard. and then deletes it from its original
location. The Command-key equivalent is Command­
X.
Copies the current selection in the active window to
the Clipboard. The Command-key equivalent is
Command-C.

Replaces the contents of the current selection in the
active window with the contents of the Clipboard. The
Command-key equivalent is Command-V.

Deletes the current selection in the active window.

Selects the entire contents of the active window. The
Command-key equivalent is Command-A.

Show Clipboard Opens a window displaying the contents of the

Format ...

A-4

Clipboard, if any.

Displays the Format dialog box offering a selection of
fonts and sizes. The Command-key equivalent is
Command-Y. This dialog box is shown in Figure A-4.

Working Draft 1 SADE Menus

r\·
\,"--/'

(

Tabs

Auto Indent

Font Size

Chicago ~ ml CiSJ Auto Indent
Courter

~I
0 Show lnulslbles

Ganaue

I

Tabs: LI Heluetlca

Timas 1 I OK J
Cancel

Figure A·4
Dialog box of the Format menu Item

Sets the number of spaces that a tab character will
signify for the active window. (The default tab setting
is ***???***)

Toggles Auto Indent on and off. When Auto Indent is
on, pressing Return lines up text with the previous
line. (A check mark indicates that Auto Indent is on.)

Show Invisibles Displays the invisible characters as follows:

Tab il
Space 0
Return,
All other control characters l

The rest of the dialog box consists of a selection of the fonts installed in your System file.
Available font sizes are displayed in the dialog window.

• Note: Selecting a font and font size affects the entire active window, not just the current
selection in that window.

Align

Shift Left,
Shift Right

Aligns the currently selected text with the top line of the
selection.

These commands move selected text left or right by one tab
stop. You can thus move a block of text while maintaining
indentation. Shift Left adds a tab at the beginning of each
line. The Command-key equivalent is Command-[. Shift
Right removes a tab, or the equivalent number of spaces,
from the beginning of each line. The Command-key
equivalent is Command-]. If you hold down the Shift key
while using these menu items, the selection will be shifted
by one space, rather than by one tab.

Find Menu

SADE Menus Working Draft l A-5

Each of the items in the Find menu is described below.

xr
XG

f Incl Selet:tlon >IH
Display Selection , _____ _
Replace... _ XR
Replace same XT

Figure A-5
Find menu

Find... Displays a Find dialog box and finds the string you
specify. By default, the Editor searches forward
from the current selection in the active window (and
does not wrap around). The Command-key
equivalent is Command-F. This dialog box is very
similar to the Find-and-Replace dialog box described
below; the explanation of the radio controls and
check boxes applies to both dialog boxes.

Find Same Repeats the last Find operation, on the active
window. The Command-key equivalent is
Command-G.

Find Selection Finds the next occurrence of the current selection in
the active window. The Command-key equivalent is
Command-H.

Display Selection Scrolls the current selection in the active window into
view.

Replace ...

Replace Same

A-6

Displays the Find-and-Replace dialog box shown in
Figure A-6 and explained below. The Command-key
equivalent is Command-R.

Repeats the last Replace operation. The Command­
key equivalent is Command-T.

Find what string?

®Literal O Case Sensmue
O Entire Word O seerch Bac1cward1
O Selection EHpresslon

(Find J (Cancel I

Figure A-6
Dialog box of the Replace ... menu Item

Working Draft 1 SADE Menus

(The operation of this dialog box is very similar to that of the Find dialog box, except that
selected strings can be located and replaced with a different string throughout a file. Both
dialog boxes have three radio buttons offering you one of three mutually exclusive options:

Literal

Entire Word

Selection
Expression

Finds the exact string (without regard for case) that
you specify, wherever it may appear, even if part of
other words or expressions.

Finds the specified string only when it occurs as a
single word. To the Editor, a word is composed of
the characters a-z, A-Z, 0-9, and the underscore
character (_). (You can change these default values
can you?-see "Predefined Variables" in
Chapter 3.)

Enables full selection and regular expression syntax,
used with the command language and described in
Chapter 3. These expressions allow powerful
selection and pattern matching capabilities that use a
special set of metacharacters introduced below.

Any combination of the three check boxes may be selected:

Case Sensitive Searching is nonnally case insensitive; selecting this
menu item specifies case-sensitive searching. (It does
this ***how???***.)

Search Backward Search backward, from the current selection to the
beginning of the file. (Normally, searching is
forward, and stops at the end of the file.)

Wrap-Around
Search

Searches forward to the end of file, then wraps
around and searches from the beginning of the file to
the location of the cursor when the search was
initiated. (Direction of search is reversed if Search
Backward is also checked.)

• Note: For Find and Find-and-Replace operations, a beep indicates that the selection was
not found..

Selection expressions

When the Find-and-Replace dialog's "Selection Expression'' switch is selected, you can
use a special set of expression operators to specify selections and text patterns. This section
introduces a commonly used subset of these selection operators. Many more capabilities are
available, and a full discussion can be found in Appendix C.

Selection by line number: A number given by itself specifies a line number. In the
figure below, for example, the command selects line number 30 in the active window.

SADE Menus Working Draft 1 A-7

Find what talectlon eHpresslon?

O Literal
O Entire Word
® Selection EHpresslon

(Find j

Figure A·7
Selection by line number

O Case Sensltlue
0 Sean h Boclcu•c1rd•
O Wrap-Around Search

Cancel

Wildcard operators: The same wildcard operators used in filename generation can also
be used to specify text patterns for Find commands:

?
...

[characterlist]

Any single character (other than Return).
Any string of 0 or more characters, not containing a
Return. (To get the ... character, press Option-X.)

Any character in the list
Note: The brackets must be typed; they don't indicate
an optional syntax element.

[-,characterlist] Any character not in the list (To get the..., character,
press Option·L.)

These pattern matching operators are part of a larger set called regular expression
operators. A regular expression consists of literal characters and/or regular expression
operators, and must be enclosed in slashes(/ ... /). The figure below shows an example.

Find what selection eHpresslon?

I llnn-11

O Literal
O Entire Word
®Selection EHprasslon

I Find I

Figure A·8

O Case Sensltlue
O search Boele u•ard•
O Wrap-Around Search

Cancel

Example of a regular expression

This command finds and selects any string that begins with "init" and is followed by any
characters other than a return. Figure A-9 shows the result of this command.

A-8 Working Draft 1 SADE Menus

,-' .,

(0 HD:MPW:PEH11mples:S11mple.p
1'EP..t..(t..nll) ;
EllD;

olev<:....a&: TEll•l•t•(tutl[);
EID; (ot it- CASli:) ~i

~,i,1
iriil"

EID; (ot M:i.tlll)

EID; (ot .. ,.,. CASE)
lfilil:e&D'G(0) ;

EllD; (ot Do<"oeeeod)

IEGIJ'

<'MM'MN!>
lla.l.oa4S.~9-Dat&Im.t);
Interat(eturort.);
Int.Fonts;
Flas.bE••ats(•••rrE••at, O);

1'1'11' SMO

(to :LJMlioat• co11pl•t1oa ot ~.) Jjflj
(call Ir.a• tfauc;wr to anla:l.¢li;l>t .. a,. !jlJI

(11:1.;llli;l>tff bf !1al\a.Sel ... t))

1ij.J

(9Ua pr"91' ..) l~i
<r~•• 4ata 1111t1a1~t1oa cote 11etor ;~ri!
(iA:l.tialis• O'a:l.cllllrH) 1~'
(iAitial.i:H l'ol\t tlaN.111tr) 1 :f
(call OS beat - to Usoar4 anr pre

Jl!.l'!lii!.t!lllii!!.

Figure A-9
Text selected with the Find command
need to change to a different display for SADE

Mark Menu
A marker is a text selection that has been given a name. Markers are useful for navigating
within a window, and they can simplify many selection expressions. The upper half of the
Mark menu contains the commands Mark and Unmark and the lower half lists all existing
markers. To jump to the location of a marker you simply choose the name of the marker
you want from the Mark menu, shown in Figure A-10 (only the marker "Here" has been
created in this example).

For a detailed discussion of the syntax, characteristics, and programmatic use of markers,
see Appendix C and Part II.

•lL

Marte... XM
Unman: •••

Here

Figure A-10
Mark menu

Mark ...

SADE Menus

To create a new marker interactively, first select the text you
want to mark, then choose "Mark" from the Mark menu. A
dialog box like that in Figure 3-11 appears, asking for the
name you want the marker to have. The editable text field in
the dialog box is initialized to the first word (that is,
whatever you would select by a double-click) in the
selection. If you click Cancel in the dialog box, the selection
is unchanged and no new marker is created. If you click OK
a new marker is created with the specified name and the new
marker's name is added to the list of marker names displayed
by the Mark menu.

Working Draft l A-9

Marte the selection with whet name?

I OK J. Cancel

Figure A-11
_Mark dialog box

If you try to create a new marker using the name of an
already existing marker, a dialog box will appear, giving you
the chance either to delete the old marker and add the new
(OK), or to forget about adding the new marker (Cancel).

Unmark ... If you choose the Unmark menu item from the Mark menu,
you'll see a dialog box, like that in Figure A-12, that
contains a list of currently defined markers and the two
buttons Delete and Cancel. If a marker is currently selected,
its name is highlighted in the marker list You can select any
number of marker names from the list. If you click Delete,
every marker selected in the list is deleted. If you click
Cancel, the selection remains unchanged and no markers are
deleted.

Delete which martcers?

Here
There
Euerywhere

l Delete J

Figure A-12
U nmark dialog box

Window Menu

Cancel

The upper half of the Window menu contains the two commands Tile Windows and Stack
Windows; the lower half lists all open windows, as shown in Figure A-13. Selecting a
window from the menu brings that window to the front, that is, superimposes it over
anything else on your display. A check indicates that the window is currently the "active"
window, that is, the frontmost A bullet (•) indicates that the window is the "target"
window, that is, the second to the front. Underlining indicates that a window contains
changes that have not yet been saved.

A-10 Working Draft 1 SADE Menus

(
Tiie Windows
Steck Windows

.;'ff0 :MPW:Worlcsheet

Figure A-13
Wmdowmenu

Tile Windows Use this command to arrange windows in a tile pattern
on the screen so that each window's contents are
visible. Then choose a window and click its zoom box
to enlarge it to full screen size.

Stack Windows Use this command to arrange windows in a diagonally
staggered pattern on your screen. This is the "open file
folder" way to see several windows at once.

Worksheet The Worksheet window always appears first in the
Window menu. The menu item lists the full pathname of
the worksheet.

SourceCmds Menu
The SourceCmds menu contains a group of commands implemented in the SADEStartup
file. This menu is easy to customize by adding menus and menu items, following the
guidelines in Chapter 8. For these menu commands to work, SADE must be able to locate
the source files for your application. If the source files are not in the same directory as the
application, use the Sourcepath command to specify their location.

The default contents of the SourceCmds menu include:

Break

Unbreak

Step

SADE Menus

This menu item executes the SADE proc
setSourceBreak, which exists in the SADEStartup file.
This proc uses the SourceToAddr function to locate the
address associated with the selected location in the
source file. The debugger then executes a breakpoint
when the source location is reached. The Command-key
equivalent is Command-B.

This menu item removes breakpoints set within the
source file by executing the unSetSourceBreak proc.
This proc exists in the SADEStartup file.The
Command-key equivalent is Command-U.

This command executes a single line from the source
file, then halts execution. Trap calls and routines called
by JSRs and BSRs will be treated as single instructions
The Command-key equivalent is Command-L.

Working Draft 1 A-11

Step Into

Go

Where PC'?-

This command executes a single line from the source
file, then halts execution. Each call to a ROM routine or
subroutine will cause the debugger to be reentered at the
first line of the called routine. The Command-key
equivalent is Command--,.

This command causes the application program to
resume execution. The Command-key equivalent is
Command-P.

This menu item highlights the line in the source file that
represents the current location of the program counter.
If the source file is not available, it displays an alen box
with the message "Cannot find source for PC". The
Command-key equivalent is Command-I.\

(***See Release Notes for current release - more options have been
added, including display of variable values and
switching between source level and assembly level
debugging.***)

Figure A-14
SourceCmds menu

A-12 Working Draft 1 SADE Menus

(

Sample Program

Appendix B

Sample Program

Working Draft 2 B-1

here provide listing of sample program Eventlog

B-2 Working Draft 2 Sample Program

,('\
'____/

(

(

Editing in SADE

Appendix C

Editing in SADE

Working Draft 2 C· l

This chapter covers what you'll need use SADE editing functions. Editing within the SADE ./.: ~
worksheet is similar, although not identical, to the editing functions provided by the MPW (. .
worksheet. The major difference is that in SADE the editing functions are not scriptable; ~
they are confined to the functions available from the SADE Edit menu. This chapter also
includes a list of some editing shortcuts that you might like to try.

Basic editing functions are available as menu commands. You can open a file with the Open
command, or by selecting its name on the screen and choosing the Open Selection
command (Command-D) from the File menu. You can select andedit text with the usual
Macintosh editing techniques, using menu commands to cut, copy, and paste selected text.
The menu commands are described in Appendix A.

Entering Commands
By default, command output and any error messages appear in the window immediately
below the executed command line. Commands are not case sensitive. You can have
multiple open files, and you can enter commands in any window.

The simplest commands consist of the command name only. For example, type the
command

version

and press the Enter key (without pressing Return first-that is, the insertion point must be
on the same line as the command when you press Enter). This command outputs SADE
version plus a times.tamp:

Debugger (Ver 0.419) - 14:39:48 13-Apr-88

Commands typed into a window are referred to as standard input. When the results of
the command(s) are then displayed in the same window (the normal, default setting) they
are called standard output. Any window that is used to enter standard input and display
standard output is referred to as the console.

SADE Shortcuts

Table C-1 lists some SADE shoncuts that make editing and entering commands quicker and
easier. These shoncuts work in any SADE window. You can also see this list by using the
SADE Help command as follows:

help shortcuts

C-2 Working Draft 2 Editing in SADE

/

(

Table C-1. SADE Shortcuts

Command

Double click
Triple click
Double clicking
before any quote(',", or')

Double clicking
before or after { } D ()

UpArrow
DownArrow
RightArrow
LeftArrow

CMD-Shift-UpArrow
CMD-Shift-DownArrow
CMD-DownArrow
CMD-RightArrow
CMD-UpArrow
CMD-LeftArrow
C:MD-Backspace

Action

select word
select line
select until
the matching quote

select until
the matching character

move selection point one line above current selection
move selection point one line below current selection
move selection point one character to the right
move selection point one character to the left

move selection point to top of file
move selection point to bottom of file
move selection point down one screen size
move selection point to right edge of current line
move selection point up one screen size
move selection point to left edge of current line
delete from current selection to end of file

ln Dialogs without an Edittext item
'l 'les
N No
CMD-. Cancel

Editing In SADE Working Draft 2 C-3

(

(

Symbol File Format

Appendix D

Symbol File Format

Working Draft 2 0-1

here provide symbol file format

D-2 Working Draft 2 Symbol File Format

(

Appendix E

Object File Format

(

c
. Object File Format Working Draft 2 E-1

here provide explanation of compiler output

,rf',......~~,,[.

/' ,_,/
E-2 Working Drott 2 Object File Format

abort
add.menu
alert
begin .. end

(_
break
case
close
cycle
define

deletemenu
di.rectory
disasm
dump
execute

find
for .. end
func .. end

go
heap [display]
heap check
heap totals

help
if.. end
kill
launch
leave c; list
loop.

Part II - SADE Command
Pages

terminate break action and pending commands
associates commands with menu items
display an alert box
group commands together

set breakpoint in program code
control case sensitivity of symbol name lookup
close a window
continue execution within construct
declare a debugger variable

deletes menu items
write or set the default di.rectory
disassemble and display ccxie
display unstructured memory
execute debugger commands in a file

search for a target
looping with a control variable
define a function in the debugger language

resume execution
display heap information
verify the consistency of the heap
display summary information for the heap

get help on SADE topics or commands
conditional execution of commands
kills an application or tool
launches an application
exit from a Loop, For, While, or Repeat construct
lists symbols, processes, address or trap breakpoints, or tracepoints
repeat commands until Leave

Working Draft 2 11-1

11-2

macro ... end
onEntry
open
printf

proc ... end
quit
redirect

associate characters with an identifier
set commands for debugger entry
open file in window
sends formatted output to file or window

define a procedure in the debugger language
gets out of debugger
redirect standard output

repeat :-.until conditional looping with end test
resource [display] display the resource map
resource check check the resource map
return exit from a proc or func

save
shutdown

sourcepath
stack
step
stop
symbols

target
trace
unbreak
undefine
untrace

version
while .. end

save specified windows
shuts down system (with restart
option)
identify search path for source files
display stack frame
single step execution
terminate break action
control symbolic display

select program target and identify symbol file
sets tracepoint
removes breakpoints.
remove definition of SADE proc, func, macros, or local variable
clears tracepoints

display current SADE version
repeat commands zero or more times under condition

Working Draft 2

Syntax

Description

Example

See also

("

Working Draft 2

Abort - terminate break action and pending
commands

abort

The abort command terminates the current break action, causes the debugger to be
fully entered, and cancels any debugger commands pending. This means that when
the previous execution was in a structured statement, the pending commands are
canceled. See also the Stop command, which terminates the break action without
cancelling other pending commands.

abort

stop, break

Abort 11-3

Syntax

Description

!Example

I

See also

AddMenu - create a menu or menu items

·-add.menu [menuname [itemname [command 111

where

menuname is a string expression containing the name of the menu that will include
the item.

itemname is a string expression containing the name of the menu item. The
itemname may include a Command-key equivalent by listing the command key
after a backslash C-\ n) at the end of the string.

command is a string expression containing a debugger command

The add.menu command allows you to create a menu or menu items that, when
seleaed, will execute SADE commands. The add.menu parameters associate SADE
commands with menu items. If a menu of menuname does not exist, a new menu is
created. If a menu item with the same name exists, it is replaced; otherwise a new
menu item is created.

The debugger command contained in the command parameter is submitted to the
command interpreter for execution when the corresponding menu item is seleaed.

If any of the optional parameters are not supplied, the current values of menus from
the specified level down are displayed

addmenu 'Debug' 'Disasm/l' 'disasm'

addmenu 'Debug' 'Code Resources' 'heap restype "CODE"'

DeleteMenu

4 Add Menu Working Draft 2
y-·-,·--.

~-/

(

Syntax

Description

Example

See also

Working Draft 2

Alert- display an alert box

- alert [beep] message

where

message is a string expression that will be displayed in the alert box.

The alert command displays an alert box containing the specified message. The alert
is displayed until the OK button is clicked. If beep is specified, a sound is generatd
when the alert box appears.

alert "watch out for bugs"

- displays a special message

to be supplied

Alert 11-5

Syntax

Description

!Example

I
I
I
I
I
I

See also

Begin ... End - group commands

~begin

commands

end

where

commands are one or more SADE commands

The begin and end commands allow a sequence of commands to be bracketed or
grouped together. One use of this construct is the specification of breakpoint actions
which consist of more than one command or procedure invocation, as shown in the
example below.

Output redirection applied to a begin. •• end construct will redirect the output of all
the grouped commands.

break OisplayString. (4) begin

str :• theStrA # save value of parameter in debug

variable str

if str = '***' then

stop

end

end

break, stop

11-6 Begln ... End Working Draft 2

c

Break - set a breakpoint in program code

Syntax - break addr, .. . [break action I

Description

Working Draft 2

or

break trap range [from addr range I [break action I

or

break all traps [from addr range I [break action I

where

addr is an address expression

break action is a single debugger command, a debugger proc call, or group of
commands delimited by begin ... end.
addr range is a range expression

trap range is a address range beginning and ending with trap names of the form
StSAxxx .. tSAxxx

The break command sets one or more breakpoints within a target program's code.
There are two distinct types of breakpoint: address breakpoints, and trap
breakpoints. Both kinds of beakpoint may be optionally be followed by a break
action, as described below.

After the desired breakpoints are set, you can then resume program execution. The
program will run until it reaches the first available breakpoint, and then the
debugger will stop program execution. At this point control passes back to SADE.

If the last program execution command was in a strucrured statement, and no break
action was spetjfied for the breakpoint, the commands immediately following the
program execution command are also executed.

Address breakpoints: These can be set anywhere within program code by
specifying a RA.t'lvi address. Address breakpoints may also be set using symbolic
references; in this case the code may not yet be in memory at the time the
breakpoint is set.

Trap breakpoints: For trap ranges, either the trap name or the trap number can
be used in a range expression. Trap numbers are prefixed with a "t"; for example,
the range from the system.trap _OpenResfile to _GetResource could be specified as

tSA997 .. tSA9AO

Break 11-7

11-8 Break

The same trap may have a breakpoint set on it by its name alone, as a member of a
trap range, or as a trap within a specified address range. Each of these trap
breakpoints will have a separate breakpoint record created for it; you can see what
breakpoints are set using the list break command.

The same trap can be specified in multiple break commands. This can happen in
one of two ways: either overlapping trap ranges are specified, or different address
ranges are specified.

Consider the following examples where multiple break commands are set with
overlapping ranges:

break all traps action!

break tSA996 .. tSA9AO action2

11 break on any trap called from any address

11 break on _OpenResFile (and other craps)
11 called from any address

break _OpenResFile from applZone .. applZone" action3
• break on _OpenResFile only if called from
11 application heap

break _OpenResFile from RomBase .. RomBase+256K action4
11 break on _OpenResFile only if called from
11 ROM

With the above trap breakpoints set, the program's calls to _OpenResFile would be
handled as follows:

address

$10000

call actjon

_OpenResFile action2 is interpreted. SADE first looked for breaks
on _OpenResFile only, but the address fell outside of
the specified ranges. It then found the first (most
recently specified) trap range that included
_ OpenResFile.

myproc+$100 _OpenResFile action3 is interpreted. This call
occurred within the application heap

SADE uses a search rule when finding an instance of a trap call that satisfies the
conditions for a specified breakpoint. For any breakpoint that specifies a trap
name, SADE first attempts to find a call within the program that exactly matches
that name. Once it finds the trap, SADE checks co see if it falls into the address
range if one was specified.

The next step is to check any trap ranges that might contain the trap. SADE accepts
the most recently defined trap range that contains the trap, even if another trap
range defined earlier also contains the trap. Once a trap range satisfying the
description is found, SADE then checks to see if the range falls within the address
range if one was specified.

Working Draft 2

Example

See also

Working Draft 2

The break all traps option sets a trap breakpoint on all traps in a continguous
range. If addr range is specified, the debugger will break on traps called from the
specified memory range.

Break actions: A break action can be one or more SADE commands that are
meant to be interpreted after the breakpoint is reached. Normally, once SADE has
performed the commands within the break action, program execution will continue.
However, using a stop or abort command as part of the break action may halt
subsequent program execution.

If a stop command is contained in a break action, and the most recent program
execution command was in a structured statement, the commands immediately
following the program execution command are also executed.

If an abort command is encountered in a break action, all pending program
execution commands are aborted. The debugger is entered immediately.

Note that the commands specified in the breakpoint action are saved and not
interpreted until the time when the breakpoint is reached. Consequently, any SADE
variable references used in a break action should use global variables only. Local
variables defined in a break action won't exist at the point when the breakpoint is
reached and the break action is invoked.

break myproc. (0) #breaka on initial atatement of myproc

break GetReaource #break on _GetReaource trap

break t$A997 #another way to break on GetReaource trap

break _OpenReaFile .. _GetReaource #uae a trap range

break t$A997 .. t$A9AO #use a trap range

break all trapa from DisplayText. (1) .. DisplayText. (5) #breaks
#on all traps called from# DisplayText. (1) .. DisplayText. (5)

break all traps from applZone .. applZoneA #breaks on all traps

called from application heap

onentry, stop, abort

Break 11-9

Case - control ease sensitivity of symbol name lookup

I Syntax . case { on I oft'}

Description The case command lets you control case sensitivity when SADE is searching for
symbol names. The case command used with the on I oft' parameters works like a
toggle switch to cum case sensitivity on or off .. By default, case sensitivity is turned
on. Using the case command with no parameters will display the current case
sensitivity.

I Example case on

I -make the SADE symbol lookup case sensitive

See also to be supplied

11-10 Case Working Dra~ 2

(

(

Syntax

Description

Example

Close - close c window

· close [all I windowName J

where

windowName is a string expression specifying the file pathname of a SADE
window.

The close command closes the window for the specified file or all files. If the contents
of the window are unsaved, a confirmation dialog will ask if they should be saved.

close "myFile"

- close the file named "myFile"

See also open

Working Draft 2 Close 11-11

Syntax

Description

I Example

I
I
I

See also

Cycle - continue execution within construct

-- cycle [if boolean expr l

where

boolean expr is an expression

The cycle command will cause execution to continue from the top of the currently
enclosing while, repeat, loop, or for construct. If the optional if clause is present,
the cycle action will happen only if the boolean expris true, otherwise execution will
continue following the cycle command.

for x :• 10 downto 5 do

<commands>

cycle if x < 2

end

leave

11-12 Cycle Working Draft 2

(

Syntax

Description

(\

~, /

Working Draft 2

Define - declare a debugger variable

define [global] var declaration [, ...]

where

var declaration has the form

name [[dimension] l [:• init value l

where

. name must follow the rules for valid debugger identifiers, and must be
unique in the current debugger scope unless declared global. The name
may optionally be followed by an array specifier Ca dimension expr
enclosed in brackers).

dimension is an expr

init value is either an expr for the initial value of simple types, or a list of
the following form for structured types:

([exprof l tnit value, ..)

where the optional of clause allows for replication of a value or set of values.

The define command is used to define one or more debugger variables. Each
debugger variable must be defined before it is used. A debugger variable declaration
identifies the name, scope, and (optionally) the initial value of the variable. One or
more variables may be declared in a single define command by having one or more
var declaration's separated by commas.

The scope of a variable may be either global or local to the enclosing debugger proc
or func. If a variable is declared at the outer level (not inside of a proc or func) then
its scope is automatically global. Global variables are known both at the outer level,
and inside each proc or func. If a variable is declared inside a debugger proc or func,
then its scope is local unless the define command includes the global keyword. If a
global and a local variable exist with the same name, then the local symbol overrides
the global.

Redefining global variables replaces the previous definition with one exception: If
the definition is within a proc or func, and the new definition matches the existing
definition, the existing definition is retained. For example, a global variable
definition within a proc or func creates the variable the first time the proc is invoked;
subsequent invocations can make use of the value left in the variable by the preceding
invocation. To remove a variable definition, use the undeflne command.

Define 11-13

Example

See also

11-14

Debugger variables are dynamically typed, that is, their type is determined on
assignment (and may be changed by new assignments). The only type information
supplied at definition time is whether the variable is an array or a scalar. Debugger
array variables may contain a heterogeneous set of values; that is, the elements may

- contain values of different types.

Define

A initial value for simple types may optionally be specified by an e.xprfollowing an
assignment operator(:=). If the item being declared is an array, a list of initial values
may be specified as the values of the array elements.

define x := 5

- define a debugger variable x with value equal to 5

undefine

Working Draft 2

(

Syntax

Description

Example

See also

C)
/

Working Draft 2

DeleteMenu - delete user-defined menus or menu
items

deletemenu menuname [itemname J

where

menuname is a string expression that is the name of the menu from which to delete
the item.

itemname is a string expression that is the name of a menu item.

The deleteMenu command deletes menus and (or) menu items. If only menuname
is specified, and it contains no menu items, the menu is deleted. If a user-defined
menu item with the name specified by itemname exists, it is deleted. (The standard
SADE menu items can't be deleted.)

Caution: If both menuname and itemname are omitted, all user-def med items are
deleted.

deletemenu "special" "launchapp"

- deletes the item launchapp from the special menu

add.Menu

Delete Menu 11-15

Syntax

Description

I Example

I

See also

Directory - set or write the default directory

·· directory [direcioryname 1

where

directoryname is a string expression

The dJrectory command sets the default directory to the specified directory. If no
directory is specified, the current default directory is written to standard output.

directory "myOtherOir"

- sets default directory to myOtherDir

source path

11-16 Directory Working Draft 2

Syntax

Description

(

Working Draft 2

Disasm - disassemble and display code

-- dJsa-;m [addr [count l l

or

dJsasm [addr range l

where

addr is an address expression

count is an integer expression

addr range is a range expression

The dJsa-;m command disassembles instructions starting at the location specified by
addror addr range. The default behavior when no address is specified is to begin
disassembling at the end of the last disassembly. If the value of the program counter
has changed since the last disassembly, the program counter (PC) is used as the
starting address. If no range or count is specified, the number of instructions (not
lines) disassembled defaults to 20.

Each line of the disassembly output is divided into four fields or areas. Their display
(both order and presence) is controlled by the DisAsmformat built-in variable as
follows:

• The offset field-<:ontains an module offset if there is one otherwise it is blank.
This field is controlled by the flags 'o' and '0'.

0

0
==>
=-=>

display offset field in decimal.
display offset field in hexadecimal

• The address field-contains the address of the instruction being disassembled.
This field is controlled by the flags 'a' or 'A' (both have the same meaning).

~

A =,. > display the address

• The hex code field-<:ontains the hexadecimal encoding for the instruction at
the corresponding address. This field is controlled by the flags 'x' or 'X' (both
have the same meaning).

x ==> display the hex code representation

• The assembly code field-contains the opcode, operand, and comment
disassembly for the instruction at the corresponding address. This field is
controlled by the flags 'c' and 'C'.

c = = > truncate the assembly code if necessary to a uniform length
C = = > show entire assembly code no matter how long

Dlsosm 11-17

!Example

I
I
I
I
I
I

I
See also

11-18

The DisAsmFormat variable may also contain a'$' flag in front of the '0', 'a', or 'A'
flags to generate a "$"character in front of the offset and/or address field values.

_ disasm DisplayText. (8) 5

DisplayText

+0040 003191A8 2F2D FE64 MOVE.L -$019C(A5),-(A7)

+0044 003191AC 2F2D FE78 MOVE.L -$0188(A5),-(A7)

+0048 00319180 4EBA FE26 JSR FlushDWindow 00318FD8

+004C 00319184 486D FE48 PEA -$0188(A5)

+0050 00319188 4E8A ooco JSR DisplayString ; 0031927A

- diassembles 5 instructions in standard format, starting at the eighth statement of the
DisplayText routine

dump

Dlsasm Working Draft 2

(

Syntax

Description

(Example

See also

Working Draft 2

Dump - display unstructured memory

~ dump ({byte I l¥2Id I long}] (addr (count I l

or

dump ({byte I Elnl I long}] (addr range I

where

addr is an address expression

count is an integer expression

addr range is a range expression

The dump command displays a portion of memory at the location specified by addr
or addr range. The memory is displayed in hexadecimal and ACSII characters
according to the specified grouping, which may be byte, word, or long. The default
grouping is word.

dump DisplayText. (0) .. DisplayText. (8)

00319168 4E56 FFF2 48E7 OF18 286E 0008 4AAD FE60 NV .. H ... (n .. J ..

00319178 6700 OOE8 486E FFFC A874 2F2D FE60 A873 g ... Hn ... :/-.· .s

00319188 2F2D FE60 4EBA F606 266D FE74 2053 3028 I- .. N ... &m. t SC (

00319198 003C 48CO 222E oooc D280 B2AD FE68 6Fl4 . <H. " f' .. o .

003191A8 2F I

- dump memory area from within the DisplayText routine, using default word
grouping

disasm

Dump 11-19

Syntax

Description

Example

See also

Execute - execute commands in a file

· execute filename

where

filename is a string expression.

The execute command lets you execute any commands contained in the specified
file. An execute command can't be used within any structured statement

execute "myDebugCommands"

to be supplied

11-20 Execute Working Draft 2

(

{~\

Syntax

Description

Example

Find - search for a target

-- find [count) targeA., nl [addr range C mask I I
or

find [count) targeA., nl [addr [count! [mask I I

where

target is a numeric or string expression

addr range is a range expression

n is an integer expression

count is an integer expression

mask is an optional numeric expression

The find command counts or searches program code for occurrences of a target,
which may be a numeric or string expression. As options, you may start at the
specified address and look up to count bytes beyond, or limit the search to addr
range. The default range is HeapStart to MemTop.

The mask parameter is an optional numeric or string expression that is logically
ANDed to the contents of each memory location before the comparison is done. The
n parameter is an integer expression that specifies the minimum number of
occurrences to ignore. In other words, the first 11-l occurrences may be ignored in
the search. The default for n is 1; in this case, SADE will find the first occurrence. For
example, by specifying 3 for n, you could find the third occurrence

find 'mystring'

- searches for the string expression 'mystring'

See also case

Working Draft 2 Find 11-21

Syntax

Description

!Example

I
I
I

See also

11-22 For

For - looping with control variables

-- for for clause [do I
commands

end

where for clause may have one of the following forms:

var:• exprto expr
var:• exprdownto expr
var :• expr, ...

where

var is the name of a previously declared debugger variable.

expr is an expression. In the first two for clause forms, expr is an integer value. For
the third form, expr should match the list element type of the debugger variable
used.

The for ... end construct provides looping with an control variable. The enclosed
commands are executed until the control variable has taken on each successive value
in the range expressed by the for clause.

For commands may be nested.

For x := downto 5 do

(commands)

end

- do commands starting with x equal to 10 until the control variable equals 5

to be supplied

Working Draft 2

Syntax

Description

Example

See also

Working Draft 2

Fune - user-defined function

- t\Jnc name ([arg name, ... I)
body

end

where

name is the function name

atg name is the argument name

body is the code that makes up the function

Function definitions in the debugger language are delimited by the func and end
commands. Aside from these delimiters procedure and function definitions are
essentially the same. Function definitions have the additional requirement that their
last statement to be executed must be a return command with a return value
specified. The type of a function is not specified in the function definition but takes
on the type of the value specified in the return statement which was executed to leave
the function (which means that functions are not limited to returning results of a single
type).

A func is called using conventional functional notation, with the function name
followed by the optional actual parameters in a parenthesized list in the format of the
prototype established in the func definition. Fune parameters are handled in the
same fashion as proc parameters, and the predefined debugger variables Arg and
NA.rgs may also be used. User-defined functions may be called anywhere an expr is
allowed.

func fact (nl
if n <=- l. O then

return 1. 0
else

end
end

return n * fact(n-l)

- define a .function factorial

return

Fune 11-23

I Syntax

I
I
I
I

Description

I Example

Go - resume execution

- go [til addr], ..

or

go [while~)

or

go [until e:x:pr I

where

addr is an address expression

e:x:pr is an expression

The go command allows the debugger to resume program exeaition at the airrent
program counter. The debugger sets temporary breakpoints at the specified
addresses, if any. When the breakpoint is encountered, the debugger is reentered
and the breakpoint is removed If the address is in ROM, the debugger will warn you
that it can't set a breakpoint in ROM. Similarly, if a condition expression is specified,
the debugger will use Trace mode until the condition is met or proken (whichever is
appropriate).

The debugger will be entered and control will return to the user when a breakpoint is
reached, when a while condition becomes false, or when an until condition
becomes true.

go til DisplayText. (2)

- resume exeaition until the program reaches the second statement in the
DisplayText routine

See also stop

11-24 Go Working Draft 2

Syntax

Description

Example

See also

c\ / Working Draft 2

Heap - display information from heap

heap [display I [addrl [, blocktype I

where

addr is an address expression

b/ocktype is a string expression, of which only the first 4 characters are
significant It must be one of the following values:

'purgeable' will limit the display to purgeable blocks

'nonrelodatable)' will limit the display to nonrelocatable blocks.

'relodatablel' will limit the display to relocatable blocks

'free' will limit the display to free blocks.

'lock[edl' will limit the display to locked blocks.

'res(ourcel will limit the display to resources

'restype type' will limit the display to a resource type specified

The heap command displays information about the specified heap objects in the
current heap. If desired, you can display the heap that starts at addr. The default is to
display the heap pointed at by theZone. By default, the information displayed is:

the address of the beginning of the heap block

the address of the master pointer if it's a relocatable block

an asterisk if the object is locked or nonrelocatable,

the value of che tag byte (for relocatables)

for a resource, the reference number of the file it's in, and the resource type
and ID of the resource

You can specify one of the block types to display a subset of the heap objects. The
b/ocktype must be one of the following values: purgeable, non-relocatable,
relocatable, free, locked, resource, or a particular resource type.

Heap display restype 'MENU'
BlkAddr BlkLength Typ MasterPtr Flags RType Rid RFRef RNarne

$00316590 $00000098 H $0031452C R MENU 1000 $0584 "File"

$00316838 $00000050 H $00314528 R MENU 1001 $0584 "Edit:"

$00316888 $000000F4 H $00314524 R MENU 1002 $0584 "Log"

heap check

Heap 11-25

Syntax

Description

Example

See also

Heap check - check consistency of the heap

- heap check [addr l

where

addr is an address expression

The heap check command checks the consistency of the heap for the current
target program. If desired, you can check only that part of the heap that starts at
addr. The default is to display the heap pointed at by theZone.

The heap check command performs range checking to make sure all pointers are
even and non-NIL, and that block sizes are within the range of the heap. It then
makes sure that the self-relative handle points to a master pointer referring co the
same block. For non-relocatable blocks, it checks if the heap zone pointer points to
the zone where the block exists. The command also verifies that the total amount
of free space is equal co the amount specified in the heap zone header, that all
pointers in the free master pointer list are in master pointer blocks, and does other
header validation.

heap check

- checks current heap

heap display

11-26 Heap Check Working Draft 2

(

Heap totals - display heap summary

Syntax - heap totals [addr I [, blocktype I

where

addr is an address expression

blocktype is a string expression, of which only the first 4 characters are significant.
It must be one of the following values:

'purgeable' will limit the display to purgeable blocks

'nonrelodatable]' will limit the display to nonrelocatable blocks.

'relodatablel' will limit the display to relocatable blocks

'free' will limit the display to free blocks.

'lockledl' will limit the display to loCked blocks.

'res[ourcel will limit the display to resource blocks.

'restype type will limit the display to a particular resource type

Description The heap totals command displays summary information for the current heap. If

Example

See also

Working Draft 2

· desired, you may display only that part of the heap that starts at addr. The default is to
display the heap pointed at by theZone. The summary information is given for free,
nonrelocatable, and relocatable objects in the heap unless blocktype is specified. If
blocktype is specified, according to the rules shown above, the summary information
is limited to the indicated type of objea.

heap totals
Total Bl ks Total Size

Free 23 49080
Nonrelocatable 7 1348
Relocatable 89 21232

Locked & NonPurgeable 2 5796
Locked & Purgeable 2 8136
UnLocked & Purge able 6 680
UnLocked & NonPurgeable 79 6620

Heap (total) 119 71660

heap display

Heap totals 11-27

Syntax

Description

Example

See also

Help - Get help with SADE commands

- help l identtfter, ... I

where

identifier is a SADE identifier

The help command writes information about specified commands to standard
output. If no command is specified, information about the help command is written
to standard output. The search rules for the help file and the format of the help file
follow those described in The MPW Reference Manual.

help

SADE 1.0 Help Summaries

Help summaries are available for each of the SADE commands.
To see the list of commands enter "Help Commands". In addition,
brief descriptions of Variables, Constants, Expressions, built
in functions, and. Shortcuts are also included.

to be supplied

11-28 Help Working Draft 2

(

Syntax

Description

lf ... End - conditional execution of commands

- if boolean expr [then I
commands

[elseif boolean exp [then I
commands .. .]• ..

[else

commands ...] ...

end

where

boolean exp is an expression

commands are SADE commands

The if ... end construa allows for conditional execution of sequences of debugger
commands. Each if command must be followed by an end command. Elseif and
else commands are optional, but must appear between the if and end commands in
the order indicated above. More than one elseif may appear (indicated above by
the[...)•); but at most one else may appear.

The commands controlled by an if extend to the corresponding end, or to the first
elseif or else, whichever comes first The commands controlled by an elseif extend

· to the next elseif, else or end, whichever comes first The commands controlled by
an else extend to the corresponding end.

When an if ... end construa is evaluated, if the first if condition (boolean expi'J is
true then the statements controlled by the if are executed and the remainder of the ·
contrua to the end is skipped. If the condition is false the statements controlled by
the if are skipped and the next (eJSeif) condition is checked, if present If an elseif
condition is evaluated and is true, then the commands it controls are executed and
the remainder of the if construa is skipped. If no conditions were evaluated as true
when the else command is reached (if present) then the commands controlled by the
else are executed, otherwise they are skipped.

If ... end constructs may be nested.

Working Draft 2 If... End 11-29

I
I
I
I

Example

See also

11-30

if x > 5 then

<commands>

- eiseif x < 5 then

<commands>

else <more commands>

end

- perform operations using an if ... end contruct

to be supplied

If... End Working Draft 2

Syntax

Description

Example

See also

(.. ·

() Working Draft 2

Kill - Kill an application or tool

- kill filename

where

filename is a string expression

The kill command hairs the execution of the tool application specified by .filename.
Only those processes that are already suspended may be killed. This command is
inherently dangerous, since an application killed with this command doesn't have the
chance to perform its usual exit routines. There is no guarantee that the application's
data will be saved, so use this at your own risk.

kill "myownfile"

launch

Kiii 11-31

Syntax

Description

Example

See also

Launch - Launch an application

- launch ftlename

where

filename is a string expression

The launch command launches the tool or application specified by .filename, a
string expression. This command does nothing if the filecype of the specified file is
not 'APPL'. You may need to use the directory command before launching an
application, so that SADE can locate the application.

launch "myownf ile"

kill

11-32 Launch Working Draft 2

Syntax

Description

Example

See also

(_

c; Working Draft 2

Leave - exit from a Loop, For, While, or Repeat
command

leave [if boolean e:x:pr I
where

boolean e:x:pr is a boolean expression

The leave command will cause execution to continue after the end of the currently
enclosing loop, while, repeat, or for construct If the optional if clause is present,
the leave action will happen only if the boolean expris true; otherwise execution will
continue following the leave command.

leave if i = 5

loop, while, repeat, for

Leave 11-33

Syntax

I Description

I Example
I
I
I
I
I
I
I
I

11-34 List

List - list processes, symbols, and breakpoints

- list process

or

list symbols

or

list break [(traps I add.rs} I

or

list trace [(traps I addrs} J

The list command can be used to display a list of current processes or local program
symbols, as well as to display a list of address and trap breakpoints (or tracepoints).

For processes, the display includes the following information: a process number, a
"loaded" or "unloaded" designation, and the filename for the process. The process
numbers are incremented up to a value of 16 as each new process is started on the
system. When you quit from an application, however, its process number isn't
reassigned; the next process started will have a new process ID number. (See example
below.)

For program symbols, the display includes the local procedure, the parent
procedure, the locally-defined variables, any procedures called by the local
procedure, and any types defined in the local procedure. Note that in this display,
the term "module" denotes a procedure within a program.

For breakpoints and tracepoints, list displays the location and the symbolic
representation for the location when sufficient symbolic debug information is
present. If the traps or add.rs modifiers are present the list will be restricted to the
specified class of breakpoint. For trap breakpoints, the names of traps (or ranges of
traps) with breakpoints set are displayed.

list break
DisplayText. (2) ($31917C)
DisplayText. (0) ($319168)

- display breaks currently set

go til DisplayText. (2)
list symbol
Module DisplayText. (0)

Parent Module

<break action>

Working Draft 2

(

See also

(

Working Draft 2

TransDisplay
Variables

theText
len

Contained Modules
None.

Types
None.

-display symbols in local procedure DisplayText

list process
Process#

6
5

Loaded'?
Loaded
Loaded

FileName
"SADE"
"Microsoft Word 3.01"

2 Loaded "Finder"
-processes 3 and 4 have already been killed

trace, break

List 11-35

Syntax

Description

Example

Loop - repeat commands until Leave

-loop

commands

end

where

commands are SADE commands

The loop ... end construct provides unconditional looping. The enclosed
commands are executed repeatedly. To exit the loop use the leave command.

Loop constructs may be nested.

loop

(add commands here)

leave if i • 5

end

See also leave

11-36 Working Draft 2 Loop

(

Syntax

Description

(

Example

See also

Working Draft 2

Mocro - define o mocro

macro name string expr

where

name is an identifier

string expr is a string of characters

The macro command allows you to define a macro, which associates a string of
characters with a named identifier. When SADE encounters these characters, it
interprets the macro as if it was dealing with the identifier. For instance, when the
macro is used in place of a command, SADE temporarily redirects input to the
command that forms the macro's actual value.

References to a macro may appear anywhere a token could appear in the debugger
input stream. Macros allow the user to create abbreviations, which could be used to

change the debugger language to a more terse, Macsbug-like language. (See the
example below.)

Macro definitions can be nested; that is, a macro definition can contain references to
other macros. Macro definitions are not recursive; references in a macro definition
to the macro being expanded aren't treated as macro calls. Macros may be
redefined. A macro definition is not allowed in any structured statement Macro
definitions are limited to a length of 254 characters.

macro br 'break'
macro clr 'unbreak all'

to be supplied

Macro 11-37

Syntax

Description

Example

See also

OnEntry - set commands for debugger entry

onEntry [break action I ·

where

break action is one simple or compound SADE command

The onEntry command can be used to exeOJte one simple or compound SADE
command each time SADE is entered It is typically used within a startup file to
provide a source display each time SADE is entered For instance, in the SADEStartup
file, the •standardEntry" proc is the argument to the onEntry command. This ·
procedure provides for source display of the OJrrent program counter (PC) on entry
into the debugger. ·

Break actions specified using onEntry may also be used when entering SADE from a
breakpoint. If more than one command or procedure invocation is needed within the
break action, the begin ... end consrua should be used to group a sequence of
commands. A compound command formed in this way is interpreted by SADE as
one unit.

onEntry printf "%.SX\n",pc

- when you enter the debugger, this displays the address of the next instruction to be
exeOJted

break, begin

11-38 On Entry Working Drott 2

(

Syntax

Description

Example

See also

(

Working Draft 2

Open - open file in window

open [source J [behind l filename

where

filename is a string expression.

The open command opens the specified file. The file must be of type 'TEXT'. If
behind is specified, the window is opened as the window behind the frontmost SADE
window, otherwise, it is opened as the frontmost window. The optional source
modifier indicates that the window is to be treated as a special purpose source window
as opposed to a general purpose text window.

open "rnyFile"

close, save

Open 11-39

Syntax

Description

11-40 Prfntf

Printf - print formatted output

printf {format[, arg l ...)

or

printf ({format [, arg I ... I)
where

format is a format string with values as listed below

arg are parameters used to specify values

The printf command places formatted output on the current output file or window.
You can control SADE output using a number of different parameters with the
printf command. These include the arg parameters and the format parameters.
The arg parameters specify values to be displayed or used under control of the
format string specified as the first parameter. If no format and arg parameters are
specified, any buffered output is displayed.

The format string contains characters to be copied •as isn to the output and
conversion specifications. Each of the format string characters applies to zero or
more arg parameters. If the format is exhausted while arg parameters remain, the
extra arg parameters are ignored. If there are insufficient arg parameters called for
by the format, then the rest of the format string is ignored.

To distinguish a conversion specification from characters to be copied "as is" in
the format string, precede it with a •0/o" character followed by a sequence of fields
that describe how to format the arg value:

% [flags) [widthl [precision] op

flags An optional sequence of characters which modify the meaning of the main
conversion specification:

Left-justify within the field width rather than right-justify if the converted
value has fewer characters than the specified minimum field width.

+ Always generate a"+" or"-" sign when converting signed arg values.
Note, that negative values are always preceded by a"-'' regardless of
whether the •+• flag is specified..

space Generate a space for positive values and "-" for negative values. This
space is independent of any padding used to left or right-justify the
value. The•+• flag has precedence over the space flag.

• Modify the main conversion operation. The modifications performed
are described in conjunction with the relevant main conversion
operations discussed later.

Working Draft 2

,,.,.~ '

\, ___ ,.-.

Working Draft 2

width An optional minimum field width, specified as a decimal integer constant
(that doesn't begin with a "0") or an •••. In the latter case a corresponding arg
parameter specifies the minimum field width. If the converted value has fewer
characters than the width, it will be padded to the width on the left (default) or
right (if the "-" flag is specified) with spaces (default). If the converted value
has more characters than the width, the width is increased to accommodate it.
For O/ot conversions, the width specifies the minimum width to reserve for
RECORD type field names.

prec1s1on The optional precision is specified as a "." followed by an optional
decimal integer or as an •••. In the latter case a corresponding arg parameter
specifies the repetition count. If the decimal integer or "*" following the ".'' is
omitted, the precision is assumed to be 0. Precision is used to control the
number of digits to be output for numeric conversions or characters for string
conversions. Omitting the precision has a default value which is a function of
the main conversion to be performed.

op The required main conversion operation specified as one of the following
single characters:

d The corresponding arg parameter is converted to a signed decimal value
(floating point values will be truncated).

prec1s1on The precision specifies the minimum number of digits to
appear.· If the value can be represented with fewer digits, leading
zeros are added up to the specified precision. The result of
converting a 0 value with a precision of 0 is a null. The default
precision is 1.

flags
+

space

left-justify
explicit "+" or "-"
space for positive value
ignored

u The corresponding arg parameter is converted to an unsigned decimal
value (floating point values will be truncated).

precision The precision specifies the minimum number of digits to

appear. If the value can be represented with fewer digits, leading
zeros are added up to the specified precision. The result of
converting a 0 value with a precision of 0 is a null. The default
precision is 1.

flags
+
space

left-justify
ignored
ignored
ignored

Prlntf 11-41

11-42 Prlntf

X The corresponding arg parameter is converted to an unsigned
hexadecimal value. The number of bytes converted is a function of the
arg's type. The letters abcdef are used for x conversion and ABCDEF are
used for X conversion.

preclSlon The precision specifies the minimum number of digirs to
appear. If the value can be represented with fewer digirs, leading
zeros are added up to the specified precision. The result of
converting a 0 value with a precision of 0 is a null. The default
precision is 1.

flags left-justify
+ ignored
space ignored
prefix converted value with a "$"

b The corresponding arg parameter is converted to an unsigned binary
value. The number of bytes converted is a function of the arg's type.

prec1s1on The precision specifies the minimum number of digirs to

appear. If the value can be represented with fewer digirs, leading
zeros are added up to the specified precision. The result of
converting a 0 value with a precision of 0 is a null. The default
precision is 1.

flags
+
space

left-justify
ignored
ignored
ignored

o The corresponding arg parameter is converted to an unsigned octal
value. The number of bytes converted is a function of the arg's type.

prec1s1on The precision specifies the minimum number of digirs to

appear. If the value can be represented with fewer digits, leading
zeros are added up to the specified precision. The result of
converting a 0 value with a precision of 0 is a null. The default
precision is 1.

flags
+

space

left-justify
ignored
ignored
prefix converted value with a "0"

f The corresponding arg parameter is converted to a signed decimal
floating point value. The value is converted to the forrn "{-]ddd.ddd", "[­
]INF", or •[-JNAN(ddd)" (where ddd is the NAN code) depending on the
value.

Working Draft 2

(

Working Draft 2

prec1s1on The precision specifies the number of digits after the
decimal point. If the precision is 0, no decimal point appears
(which can be overridden with the "*" flag). The default
precision is 6.

flags
+
space

left-justify
explicit •+• or •-•
space for positive value
force decimal point in the case where no digits
follow it

E The corresponding arg parameter is converted to a signed decimal
floating point value. The value is converted to the form "[-]d.ddde±dd"
(for e conversion), "[-]d.dddE±dd" (for E conversion), "[-]INF", or "[­
]NA.."l(ddd)" (where ddd is the NAN code) depending on the value. The
exponent will always contain at least two digits.

prec1s1on The precision specifies the number of digits after the
decimal point. If the precision is 0, no decimal point appears
(which can be overridden with the "•" flag). The default
precision is 6.

flags
+
space

left-justify
explicit •+• or "-"
space for positive value
force decimal point in the case where no digits
follow it

G The corresponding arg parameter is converted to a signed decimal
floating point value. The value is converted using f ore conversion (or
in the style for E conversion when G is specified). The form of
conversion depends on the value being converted; e or E conversion is
performed only if the exponent resulting from the conversion is less
than -4 or greater than the precision. Trailing zeros are removed from
the result (which can be overridden with the "•" flag). A decimal point
appears only if it is followed by a digit (which can be overridden with
the "•" flag)

prec1s1on The precision specifies the total number of significant digits.

flags

If the precision is less than 1, then 1 is assumed. The default
precision is 6.

+
space

left-justify
explicit •+• or •-•
space for positive value
force decimal point in the case where no digits
follow it and keep trailing zeros

c The corresponding arg parameter is converted to a character (the value
mod 256 is used).

Prlntf 11-43

11-44 Prtntf

precision ignored

flags

space

ignored
ignored
ignored
tgnored

s Unless the "#n flag is used, the corresponding arg parameter must be a
string type (or a pointer) and the value is copied to the output as is. C
strings and as is (Pascal packed array of char) strings are copied until a
null is encountered (for C strings) or the number of characters specified
at the precision is reached. Pascal strings may be processed if the type
of the arg is a Pascal string. When the "#n flag is used, the corresponding
parameter is treated as an unsigned long, and printed as if it contains 4
characters.

prec1s1on The precision specifies the maximum number of characters
to output The default precision is assumed to be infinite. In
that case a C and as is strings will be output up co but not
including a terminating null character and entire Pascal strings
will be output

flags left-justify
+ ignored
space ignored
the corresponding parameter is treated as an

unsigned long, and printed as if it contains 4
characters

P Unless the "#n flag is used, the corresponding arg parameter must be a
Pascal string type (or a pointer) and the value is copied to the output as
is. When the "#n flag is used, the corresponding parameter is treated as
an unsigned long, and printed as if it contains 4 characters.

prec1s1on The precision specifies the maximum number of characters
to output. The default precision is assumed to be infinite. In
that case the entire Pascal string will be output.

flags

space

left-justify
ignored
ignored
the corresponding parameter is treated as an
unsigned long, and printed as if it contains 4
characters

Note: You must use an upper-case o/oP as shown to output a Pascal string
type. If you use a lower-case o/op argument, the value displayed will be
output as a pointer type, which is a hexadecimal number optionally
preceded by OX.

Working Draft 2

('

Example

See also

c Working Draft 2

The corresponding arg parameter is converted as a function of its type
as follows:

a base type

non-base type

flags

+

space

u, d, g, p, or s as appropriate to the type with the
precision and flags interpreted as a function of these
format codes.

The value(s) are displayed using a pseudo-Pascal
type specification format appropriate to the type of
the parameter (e.g. a RECORD/struct type is
displayed using a Pascal-like RECORD notation).
The flags control some of the aspects of the
formatted output.

Note, that the corresponding arg parameter need
not specify a value and instead may specify only a
type. In this case, the type definition is displayed,
again using the same pseudo-Pascal type
specification format.

display only the type even if corresponding arg
parameter specifies a value. The type is to be
displayed exhaustively, i.e., display every type down
to its base type.

display only the type even if corresponding arg
parameter specifies a value.

show record/struct field offsets
show all values and offsets in hexadecimal

% A single "o/o" is output; no arg is used.

precision ignored

flags

define i :• 5

+
space

printf("fact(%.2d)

fact(05) ,.

to be supplied

left-justify
ignored
ignored
ignored

%19.19g\n", ·i, fact(i))

120

Prtntt 11-45

Syntax

Description

Proc - define a debugger procedure

_ proc name [atg name, ... J

body

end

proc name ([atg name, ... 1)
body

end
where

name is a string expression

atg name is a SADE identifier

body is one or more SADE commands

Procedure definitions in the debugger language are delimited by the proc and end
commands. The proc command identifies the procedure's name and and an
optional parameter list

If present, the parameter list identifies parameters by name only. Parameters are not
assigned a type in proc definitions; instead, they take on the types of their actual
parameter values when the proc is called.

The parameter list may optionally be enclosed in parentheses. If the parentheses are
included in the proc definition, they must be included when the proc is called as well.
Similarly, if the definition was not parenthesized, then invocations of the proc must
not be parenthesized.

Procs may be redefined A proc must be defined before a call to it may be processed
(so that the proc name can be recognized as such). Thus, if mutually recursive procs
are desired, one proc must be defined first with a dummy proc definition so that the
second proc can refer to ic, and then the first proc can be redefined, referencing the
second proc. The minimal dummy proc definition is: •proc foo; end;".

A proc is called by beginning a debugger command with the name of the proc
followed by the optional actual ·parameter .list, following the prototype in the proc's
definition with the actual parameter values substituted for the parameter names. The
actual parameter values will be matched positionally with the formal parameter
names.

11-46 Proc Working Drott 2

ff~".

~-j

(

Example

The number of actual parameters need not match the number of formal parameters in
the proc definition. If too few actual parameters are specified, the formal parameters
for which there were no corresponding actual parameters will be assigned a special
undefined value. Extra actual parameters have no corresponding formal name but

.. can be referenced through the predefined debugger Arg array variable, which allows
the parameters of a proc to be accessed positionally with references of the form
"arg{nl". The number of the last actual parameter specified is contained in the
predefined debugger variable NA.rg.s. The values of these predefined debugger
variables represent the parameter state of the currently active proc and are not
defined outside cf the proc.

Proc calls may be nested.

proc factorial n, file
define i
if nargs > 1 then

redirect file
end
for i :• 1 to n do

printf("fact(%.2d) = %19.19g\n", i, fact(i))
end
if nargs > 1 then

redirect
end
end

See also func

Working Draft 2 Pree 11-47

Quit - quit SADE

Syntax - quit

Description The quit command causes the debugger to be terminated. Control returns to a
process as determined by MultiFinder. Quit will display a dialog asking the user if it's
all right to kill any suspended applications.

Example quit

See also shutdown

11-48 Quit Working. Draft 2

(

Syntax

Description

Example

See also

Working Draft 2

Redirect - redirect output to file and/or window

redirect [append I filename

or
redirect [pop I [all I
where

filename is a string expression

The redirect command redirects the output from SADE commands to the
specified file. If you specify the append parameter, the output will be appended to
the end of the file.

You may nest Redirect commands to as many as 10 different files; SADE will
maintain the names of these files as a last-in first-out queue. If you use the pop
parameter, or if you use no parameters at all with the Redirect command, the
output from SADE commands is redirected to the file at the head of the queue. If
all or pop all is specified, standard output is redirected to the SADE Worksheet.

Note: any error conditions cause SADE to perform an implicit pop all for any
redirected files. This ensures that output will return to the SADE WorkSheet.

redirect "myOutputFile"

- redirect stdout to myOutputFile

to be supplied

Redirect 11-49

Syntax

Description

Example

Repeat ... until - conditionally repeat commands

_repeat

commands
until boolean expr

where

commands are SADE commands

boolean expr is an expression

The repeat ... until construct provides conditional looping with a test at the end of
the loop. The enclosed commands are executed until boolean expr is true. The
enclosed commands are executed at least once.

Repeat constructs may be nested.

repeat

(supply commands here)

until x = 5

See also leave

11-50 Working Draft 2 Repeat

[~',

~"'

(

(

c,,

Syntax .

Description

Example

See also

Resource - Display the resource map

. resource [display l [addr I [res type 'type' I

where

addr is an address expression

type is a valid resource type

The resource command displays the resource map at addr. The default, if no
address is specified, is to display all resource maps for the target application. The
information displayed for each map includes: its location, the refnum of the
resource file, and a list of the instances of each type. For each resource type
displayed within the map, the following information is displayed: the resource ID,
the resource type, the value of the master pointer, whether the resource is locked or
unlocked, and the resource name.

You can also restrict the resource display to a particular resource type, using the
restype 'type' designation. See the example below.

resource restype 'WIND'
Resource Map at $0.0316EE'8

Res Id RType Masterl?tr Locked'? Name
1000 WIND $00316BE4 Unlocked
1001 WIND $00316C08 Unlocked
1002 WIND $00316484 Unlocked
1003 WIND $00316488 Unlocked
1004 WIND $00316408 Unlocked

Resource Map at $0002Bl9C
Res Id RType Masterl?tr Locked'? Name

-16000 WIND NotLoaded
-15968 WIND Not Loaded
-15840 WIND Not Loaded

resource check

Working Draft 2 Resource display 11·51

Syntax

Description

Example

See also

Resource check - check the resource map

- resource check [addr I

where

addr is an address expression

The resource check command checks the resource map at addr for consistency.
The default, when no address is specified, is to validate all resource maps for the
target application. If an inconsistency is found, the command displays a diagnostic
message specifying the problem.

resource check

Resource map is okay.

resource display

11-52 Working Draft 2 Resource check

(

(

Syntax

Description

Example

See also

Return - exit from c procedure or function

- return [expr I

where

expr is a function value

The return command causes the debugger to exit the debugger procedure or
function currently in execution. When return is used to return from a function, an
expression must be specified for the function value. When rerurning from procedures
there should be no return value.

return

func, proc

Working Draft 2 Return 11-53

Syntax

Description

Example

See also

Save - save specified window(s)

- save [all I filename l

where

.filename is a string expression.

The save command saves the specified file or, if all is specified, saves all files. The
default file is the currently selected window. If the file was not modified since the last
time it was saved, nothing within the file is affected by this command.

save "myFile"

open, close

11-54 Save Working Draft 2

(

(

Shutdown - power down or restcrt the mcchine

Syntax __ shutdown [restart I

Description The shutdown command lers you shut down your system from within SADE. When
you use the shutdown command, it first causes the debugger process to be terminated,
which is the same as issuing a quit command. In addition, the shutdown command
calls the ShutDown Manager, which in turns closes all other applications and shuts
down the system. If restart is specified as an option, the Macintosh will be restarted.

Example shutdown

See also quit

Working Draft 2 Shutdown 11-55

Syntax

Description

Example

See also

Sourcepath - identify search path for source file
display

sourcepath [[add I delete) I dtrectoryname, ... l

where

dtrectoryname is a string expression

The sourcepath command is used co affect the search path of direaories used for
source file display. The specified dtrectoryname indicates where the AddrToSource
function should look to find mes for source display. You can use a list of direaory
names to allow the use of source mes in more than one directory. If no directory is
specified, the current search path of direaories is written to standard output. The add
and delete options allow particular directories to be added (to the end) and removed
from the search path.

sourcepath 'srcdir', :myotherdir'. t sources in more than one

t directory

sourcepa~h add ":samples"

directory

t add the directory Samples

t to the search path

11-56 Sourcepath Working Draft 2

(

(

Stack - display stack frames

Syntax _ stack [count I [at addr I

Description

Example

See also

Working Draft 2

where

count is an expression

addr is an address expression

The stack command displays a list of the stack frames for the current target
application. The stack frames displayed are based on register A6 or addrif at is
specified.

For each stack frame, the location of the frame pointer is indicated by the frame
address. The frame owner corresponds to the portion of the program that used the
frame. The procedure that called the frame is listed with an offset if needed.

If an explicit count is specified, then at most that many stack frames will be displayed.

stack at DisplayText. (6)
stack

Frame Addr Frame Owner Called From
<main> CMain
$0032BC24 main CMain+$0028
$0032BB2C SkelMain main.(51)
$0032BBOC LogEvent SkelMain. (13)+$0012
$0032BADC Report Update LogEvent. (50)+$0004
$0032BACC DisplayText ReportUpdate. (1)+$0004

to be supplied

Stack 11-57

Step - single step execution

Syntax - step [{asm I liw:} I [into J

Description The step command is used for single step execution of the target program. This
allows the user to exeeute one line of code at a time. If line (the default) is specified,
the debugger will execute all of the instructions associated with the current source line.
If into is specified, each call to a ROM routine or subroutine will cause che debugger to
be reentered at the first instruction (line) of the called routine. Otherwise, trap calls
and routines called by JSRs and BSRs will be treated as single instructions.

Example

See also

11-58 Step

If asm is specified, the debugger executes the instruction at the current program
counter location. The debugger is reentered after the instruction executes.

If the source window containing the current line is displayed, the next line to be
executed is indicated graphically.

step

to be supplied

Working Draft 2

(

Stop - terminate break action

Syntax - stop

Description The stop command terminates the current break action in an executing application
program. If the previous execution was in a structured statement, the command
following the execution command is completed See also the Abort command, which
terminates the break action and all other pending commands as well.

Example stop

See also abort, quit, break

Working Draft 2 Stop 11-59

Symbols - control symbol display

Syntax - symbols ({on I offl I

Description The symbols command pennits control over symbol display within SADE windows.
By defaulc, debugger command output is always displayed symbolically whenever
possible. Setting symbols off will disable attempts to display symbolic
representations of debugger command outputs. This might be desirable for speed. If
the symbol command is used with no argument, the current state is written to standard
output.

Example symbols on

- turns symbols on

See also to be supplied

11-60 Working Draft 2 Symbols

(

Syntax

Description

Example

See also

(

Working Draft 2

Target - select program and identify symbol file

_target progname [using symbolfilename l
where

progname is a string expression

symbolfilename is a string expression

The target command selects the program for which all subsequent SADE commands
and symbolic references are intended. The optional using parameter should be
specified if the name of the symbol file for the program is not progname.sym in the
same directory as the program.

target "myProgram" using ":anotherdir:myprogram.sym"

to be supplied

Target 11-61

Trace - set tracepoints

Syntax ·- trace addr, ...

Description

!Example

I

See also

11-62 Trace

or
trace trap range [from addr range I , ..

or
trace all traps [from addr range I

where

addr is an address expression

trap range is a range expression of the form t$Axxx .. t$Axxx

addr range is a range of address locations

The trace command sets tracepoints on the specified address or traps within the
target application. After setting the tracepoints, you can resume program
execution. When the tracepoint is encountered in the executing program, a message
is displayed on the current standard output, reporting the address or trap being
traced, and optionally the symbolic representation of the address. If addr range is
specified, the message will be displayed only if the trap was called from the
specified memory range. In any case, program execution is resumed after the
message is displayed.

For trap ranges, either the trap name or the trap number can be used in a range
expression. Trap numbers may be prefixed with a "t"; for example, the range from
the system trap _OpenResFile to _GetResource could be specified as

tSA997 .. t$A9AO

trace _OpenResFile .. _GetResource

trace tSA997 .. tSA9AO

untrace

#use a trap range

tuse a trap range

Working Draft 2

Unbreak - remove breakpoints

Syntax - unbreak addr, ...

Description

Example

See also

Working Draft 2

or
unbreak trap range , ...

or
unbreak all ({traps I addrs}]

where

addr is an address expression

trap range is a range of trap locations

The unbreak command clears the breakpoint set for the specified address or
addresses, or for a range of traps. In addition, it removes any break actions
associated with cleared breakpoints. The all form of the command clears all breaks
set in the target program. The break all form can optionally restricted to just traps or ·
addresses if the traps or addrs modifiers are present

unbreak _GetResource #undo break on GetResource.trap

break, break all traps

Unbreak 11-63

Syntax

Description

Example

See also

Undefine - remove definitions of SADE procs, tunes, or
macros

undeflne identifer, ...

where

identifier is a SADE identifier representing a proc, func, or macro name

The undeflne command removes the definition of the specified global SADE
variable, proc, func, or macro. A list of identifers can also be used to remove more
than one definition. This command allows you to get rid of a global SADE variable,
proc, func, or macro name that is no longer needed. Note that this doesn't remove
variables defined within a SADE proc or func.

If you wane to redefine a variable, proc, func, or macro name, you don't need to use
undefine; you can just assign a new value to the existing name.

undefine id #remove the macro definition for id (diassemble)

proc, fun'c, macro, define

11-64 Undeflne Working Draft 2

(

Untrace - remove tracepoints

Syntax - u~trace addr , ...

Description

Example

or
untrace trap range ,

or
untrace all [{traps I addrsl I

where

addr is an address expression

trap range is a range of trap locations

The untrace command clears the tracepoint at the specified addresses or traps.
The all form clears all tracepoints within the target program. The untrace all form
can optionally be restricted to just traps or addresses if the traps or addrs
modifiers are present.

untrace GetResource #undo trace on _GetResource trap

See also trace

Working Draft 2 Untrace 11·65

Version - Display SADE version information

Syntax _ version

Description The version command displays the current SADE version number and the current
time and date.

Example version

Debugger (Ver 0.419) - 11:37 16-Mar-88

See also to be supplied

11-66 Working Drott 2 Version

(

Syntax

Description

Example

While ... End - repeat commands zero or more times
under condition

while boolean expr [do I

commands

end

where

boolean expr is a boolean expression

commands are SADE commands

The while ... end construct provides conditional looping. The enclosed commands
are executed as long as boolean expr is true. If the condition is false, the enclosed
commands are skipped and execution resumes followirig the end.

While constructs may be nested.

while i .. 5 do

(sup.ply commands here 1
end

See also leave

Working Draft 2 Whlle 11-67

(

c

,
7/14/88 10:30 AM A2 Libraries

Changes from MPW 3.0Al

Pascal

CLib

Bug fixes for heap management and text file I/O.

printf and scanf now conform to ANSI standard:
tp now means write (read) the value of a pointer.
Pascal strings are now written (read) by the tP specifier.
tn means to write into the specified location the number of characters written
(read) so far.

Page 1

Extend::td values are read by using the character 'L' as_ a modifier with te, tf, or tg.
'n' is no longer supported for this purpose; i.e. use tLe instead of tne, etc.
ti is now implemented for both printf and scanf. In printf, it is equivalent to td.
In scanf, it reads an octal, hexadecimal, or decimal integer; it determines the base
using the normal C conventions. (For example, 10, 010, and OxlO correspond to base ~O

values of 10, 8, and 16, respectively.)

Known bugs and limitations:
The new ANSI header file limits.h was inadvertently omitted from this release.

ANSI functions new in this release are:
§ 4.10.4.5 system()
§ 4.10.7.1 mblen ()
§ 4.10.7.2 mbtowc()
§ 4.10.7.3 wctomb()
§ 4.10.8.1 mbstowcs ()
§ 4.10.8.2 wcstombs ()
§ 4.11.2.2 memmove()
§ 4.11.5.7 strstr ()

The following descriptions of ANSI functions are taken from the May 13, 1988,_draft of the standard.

4.10.4.5 The system function

Synopsis

tinclude <stdlib.h>
int system(const char *string);

Description

The system function passes the string pointed to by string to the host environment to be
executed by a command processor in an implementation-defined manner. A null pointer may be
used for string to inquire whether a command processor exists.

Returns

If the argument is a null pointer, the system function nonzero only if a command
processor is available. If the ~rgument is not a null pointer, the system function returns an
implementation-defined value.

4.10.7.1 The mblen function

Synopsis

tinclude <stdlib.h>
int mblen(~onst char *s, size_t n);

Description

r7/14/88 10:30 AM A2 Libraries Page 2

If s is not a null pointer, the m.blen function determines the number of bytes comprising the
multibyte character pointed to by s. Except that the shift state of the mbtowc function ·is not
affected, it is equivalent to

m.btowc ((wchar_t *l O, s, nl;

The implementation shall behave as if no library function calls the m.blen function.

Returns

If s is a null pointer, the m.blen function returns a nonzero or zero value, if multibyte
character encodings, respectively, do or do not have state-dependent encodings. If s is not a null
polnter, the m.blen-function either returns 0 (ifs points to the null character), or returns the
number of bytes that comprise the multibyte character. (if the next n or fewer bytes form a valid
multibyte character), or returns -l (if they do not form a valid multibyte character).

4.10.7.2 The mbtowc function

Synopsis

t±nclude <stdlib.h>
int m.btowc(wchar_t *pwc, const char *s, size_t nl;

Description

If s is not a null pointer, the m.btowc function determines the number of bytes that comprise
the multibyte character pointed to by s. It then determines the code for value of type wchar_t
that corresponds to that multibyte character. (The value of the code corresponding to the null
character is zero.) If the multibyte character is valid and pwc is not a null pointer, the mbtowc
function stores the code in the object pointed to by pwc. At most n bytes of the array pointed to
by s will pe examined.

The implementation shall behave as if no library function calls the m.btowc function.

Returns

If s is a null pointer, the mbtowc function returns a nonzero or zero value, if multibyte
character encodings, respectively, do or do not have state-dependent encodings. If s is not a null
pointer, the mbtowc function either returns 0 (ifs points to the null character), or returns the
number of bytes that comprise the converted multibyte character (if the next n or fewer bytes
form a valid multibyte character), or returns -1 (if they do not form a valid multibyte charac:er).

In no case will the value returned by greater than n or the value of the MB_CUR_MAX macro.

4.l0.7.3 The wctomb function

Synopsis

tinclude <stdlib.h>
int wctomb(char *s, wchar_t wcharl;

Description

The wctomb function determines the number of bytes needed to represent the multibyte
character corresponding to the code whose value is wchar (including any change in shift state) .
It stores the multibyte character representation in the array object pointed to by s (if s is not a
null pointer) • At most MB_CUR_MAX characters are stored. If the value of wchar is zero, the
wctomb function is left in the initial shift state.

The implementation shall behave as if no library function calls the wctomb function.

Returns

(

('

0

r7/14/88 10:30 AM A2 Libraries Page 3

If s is a null pointer, the wctomb function returns a nonzero or zero value, if multibyte
character encodings, respectively, do or do not have state-dependent encodings. If s is not a null
pointer, the wctomb function returns -1 if the value of wchar does not correspond to a valid
multibyte character, or returns the number of bytes that comprise the multibyte, character
corresponding to the value of wchar.

In no case will the value returned by greater than n or the value of the MB_CUR_MAX macro.

4.10.8.1 The mbstowcs function

Synopsis

tinclude <stdlib.h>
size t mbstowcs(wchar_t *pwcs, canst char *s, size_t n);

Description

The mbstowcs function converts a sequence of multibyte characters that begins in the initial
shift state from the array pointed to by s into a sequence of corresponding codes and stores not
more than n codes into the array pointed to by pwcs. No multibyte characters that follow a null
character (which is converted into a code with value zero) will be examined or converted. Each
multibyte character is converted as if by a call to bye mbtowc function, except that the shift state
of the mbtowc function is not affected.

No more than n elements will be modified in the array pointed to by pwcs. If copying takes
place between objects that overlap, the behavior is undefined.

Returns

If an invalid multibyte character is encountered, the mbstowcs function returns
(size_t) -1. Otherwise, the mbstowcs function returns the number of array elements
modified, not including a terminating zero code, if any.

[footnote: The array will not be null- or zero-terminated if the value returned is n.]

4.10.8.2 The wcstombs function

Synopsis

tinclude <stdlib.h>
size t wcstombs(char *s, canst wchar t *pwcs, size_t nl;

Description

The wcstombs function converts a sequence of codes that correspond to multibyte characters
from the array pointed to by pwcs into a sequence of multibyte characters that begins in the
initial shift state and stores these multibyte characters into the array pointed to by s, stopping if a
multibyte character would exceed the limit of n total bytes or if a null character is stored. Each
code is converted as if by a call to the wctomb function except that the shift state of the
wctomb function is not affected.

No more than n bytes will be modified in the array pointed to by s. If copying takes place
between objects that overlap, the behavior is undefined.

Returns

If a code is encountered that does not correspond to a valid multibyte character, the
wcstombs function returns (size_t) -1. Otherwise, the wcstombs function returns the
number of bytes modified, not including a terminating null character, if any.

r
7/14/88 10:30 AM A2 Libraries Page 4

[footnote: The array will not be null- or zero-terminated if the va1ue returned is n.J

4.11.2.2 The memmove function

Synopsis

#include <string.h>
void memmove(void *sl, const void *s2, size_t n);

Description

The memmove function copies n characters from the object pointed to by s2 into the object
pointed to by sl. Copying takes place as if the n characters from the object pointed to by s2
are first copied into a temporary array of n characters that does not overlap the objects pointed to
by sl and s2, and then the n characters from the temporary array are copied into the object
pointed to by sl.

Returns

The memmove function returns t•he value of sl.

4.11.5.7 The strstr function

Synopsis

#include <string.h>
char *strstr(const char *sl, const void *s2);

Description

The strstr function locates the first occurrence in the string pointed to by sl of the
sequence of characters (excluding the terminating null character) in the string pointed to by s2.

Returns

The strstr function returns a pointer to the located string, or a null pointer if the string is
not found. If s2 points to a string with zero length, the function returns sl.

;("­

~~ ·

(~

(

r
7/14/88 10:30 AM Pre-A2 Libraries

The C Libraries have the following changes from the ERS.

Text and Binary Streams
Text streams are not yet supported; all files are opened as if binary mode had been requested.
This feature will not be implemented pending a resolution of the \n vs. \r controversy.

New ANSI. functions implemented in t.his release; manual pages for these functions appear below.
• remove (l
• rename ()
• tmpnam()
• vfpr int f ()
• vprintf ()
• vs pr int f (l
• fgetpos ()
• fsetpos()
• perror ()
• bsearch ()
• strerror ()

Functions/facilities changed for ANSI compatibility
VarArgs.h changed to StdArg.h; portable mechanism for using optional arguments changed.

Pre-ANSI style:
/*

*
*
*/

Sample function declaration taking 2 or more arguments.
Key macro definitions are in VarArgs.h.

*include <VarArgs.h>

/*

* By convention, the function declaration uses va_alist as the name

* of the first optional argument. The header file VarArgs.h defines the
* macro va_dcl, which is used as the declaration of va_alist. Note that

no semicolon follows va dcl.
*/

int foo(argl, arg2, va_alist)
char *argl;
int arg2;
va dcl

/*

*
*

"I

A local variable, nextArg, is used to indicate the current position
in the list of optional arguments. The type, va list is defined in
the header file StdArg.h.

va list nextArg;

/*

*
*

The macro va_start, defined in VarArgs.h, initializes its argument to refer to
the first optional argument passed to the function.

*/

va_start(nextArg);

/*

*
*
*
"I

To refer to each optional argument in turn, both the current position and
the type of the argument must be passed to the macro va_arg, which is defined
(of course) in VarArgs.h.

va_arg(nextArg, int);

Page 1

/'
7/14/88 10:30 AM Pre-A2 Libraries

/*
* The macro va_end does any necessary cleanup from using optional arguments.
* It is defined, to our great surprise, in VarArgs.h.
*/

va_end(nextArg);

ANSI style:
/*
* · Sample·-function declaration taking 2 or more arguments.
* Key macro definitions are in StdArg.h.
*/

#include <StdArg.h>

/*
* ANSI function declarations use •,
* of the first optional argument.
*I

' to indicate the position

int foo(argl, arg2, ..•)
char *argl;
int arg2;
(

/*

*
*
*
*/

A local variable, nextArg, is used
in the list of optional arguments.
the header file StdArg.h.

to indicate the current position
The type, va_list is defined in

va_list nextArg;

/*

*
*
*
*/

The macro va_start, defined in StdArg.h, takes two arguments: the
variable used to refer to the optional arguments, and the name of
the last named argument passed to the function.

va_start(nextArg, arg2);

/*

*
*
*
*/

To refer to each optional argument in turn; both the current position and
the type of the argument must be passed to the macro va_arg, which is defined
(of course) in StdArg.h.

va_arg(nextArg, int);

/*

*
*

The macro va_end does any necessary cleanup from using optional arguments.
It is defined, to our great surprise, in StdArg.h.

*/

va_end(nextArg) ;

' Page 2

Descriptions of the newly-implemented ANSI functions, taken from the January, 1988, draft proposed
standard.

("'····-~

\{._ __ /

4. 9. 4 .1 The remove function

(

(

~
7/14/88 10:30 AM Pre-A2 Libraries

Synopsis

iinclude <stdio.h>
int remove(const noalias char *filename);

Description

The remove function causes the file whose name is the string pointed to by
filename to be no longer accessible by that name. A subsequent attempt to open that

Page 3

file using that name will fail, unless it is created anew. If the file is open, the behavior of
the remove function is implementation-defined.

Returns

The remove function returns zero if the operation succeeds, nonzero if it fails.

4.9.4.2 The rename function

Synopsis

tinclude <stdio.h>
int rename(const noalias char *old, const noalias char *new);

Description

The rename function causes the file whose name is the string pointed to by old to be
henceforth known by the name given by the string pointed to by new. The file named
old is effectively removed. If a file named by the string pointed to by new exists prior to
the call to the rename function, the behavior is implementation-defined.

Returns

The rename function returns zero if the operation succeeds, nonzero if it fails, in
which case if the file existed previously it is still known by its original name.

(footnote omitted]

q. 9. 4. 4 The tmpnam function

Synopsis

iinclude <stdio.h>
char *tmpnam(noalias char ~s);

Description

The tmpnam function generates a string that is not the same as the name of an
existing file.

The tmpnam function generates a different string each time it is called, up to
TMP_MAX times. If it is called more than TMP MAX times, the behavior is
implementation-defined.

The implementation shall behave as if no library function calls the tmpnam function.

Returns

Ii the argument is a null pointer, the tmpnam function leaves its result in an internal
static object and returns a pointer to that objBct. Subsequent calls to the tmpnam
function may modify the same object. If the argument is not a null pointer, it is assumed
to point to an array of at least L_tmpnam characters; the tmpnam function writes its

'

r7/14/88 10:30 AM Pre-A2 Libraries Page 4

result in that array and returns the argument as its value.

Environmental limits

The value of the macro TMP_MAX shall be at least 25. [In our implementation, TMP MAX is 17576.]

[footnote omitted]

4.9.6.7 The vfprintf function

Synopsis

tinclude <stdarg.h>
tinclude <stdio.h>
int vfprintf(FILE *stream, const noalias char *format,

va_list arg) ;

Description

The vfprintf function is equivalent to fprintf, with the variable argument list•
replaced by arg, which has been initialized by the va_start macro (and possibly
subsequent va_arg calls). The vfprintf function does not invoke the va_end macro.

Returns

The vfprintf function returns the number of characters transmitted, or a negative
value if an output error occurred.

[example omitted]

4.9.6.8 The vprintf function

Synopsis

tinclude <stdarg.h>
tinclude <stdio.h>
int vprintf(const noalias char *format, va list arg);

Description

The vprintf function is equivalent to printf, with the variable argument list
replaced by arg, which has been initialized by the va_start macro (and possibly
subsequent va_arg calls). The vprintf function does not invoke the va_end macro.

Returns

The vprintf function returns the number of characters transmitted, or a negative
value if an output error occurred.

4.9.6.8 The vsprintf function

Synopsis

tinclude <stdarg.h>
tinclude <stdio.h>
int vsprintf(noalias char *s, const noalias char *format,

va list arg) ;

Description

(

(

~
7/14/88 10:30 AM Pre-A2 Libraries

The vsprintf function is
replaced by arg, which has
subsequent va_arg calls).

equivalent to sprintf, with the variable argument list
been initialized by the va_start macro (and possibly
The vsprintf function does not invoke the va_end macro.

Returns

The vsprintf function returns the number of characters written in the array, not
counting the terminating null character.

4.9.9.1 The fgetpos function

Synopsis

tinclude <stdio.h>
int fgetpos(FILE *stream, noalias fpos_t *pos);

Description

The fgetpos function stores the current value of the .file position indicator for the
stream pointed to by stream in the object pointed to by' pos. The value stored contains
unspecified information usable by the fsetpos function for repositioning the stream to
its position at the time of the call to the fgetpos function.

Returns

If successful, the fgetpos function returns zero; on failure, the fgetpos function
returns nonzero and stores an implementation-defined positive value in errno.

4.9.9.3 The fsetpos function

Synopsis

~include <stdio.h>

int fsetpos(FILE *stream, const noalias fpos_t *pos);

Description

The fsetpos function sets the file position indicator for the stream pointed to by
stream according to the value of the object pointed to by pos, which shall be a value
returned by an earlier call to the fgetpos function on the same stream.

A successful call to the fsetpos function clears the end-of-file indicator for the
stream and undoes any effects of the ungetc function on the same stream. After an
fsetpos call, the next operation on an update stream may be either input or output.

Returns

If successful, the fsetpos function returns zero; on failure. the fsetpos function
returns nonzero and stores an implementation-defined positive value in errno.

4.9.10.4 The perror function

Synopsis

tinclude <stdio.h>

void perror(const noalias char *s);

Description

The perror function maps the error number in the integer expression errno to an

Page 5

r
7/14/88 10:30 AM Pre-A2 Libraries

error message. It writes a line to the standard error stream thus: first (if s is not a null
pointer and the character pointed to bys is not the null character), the string pointed to
by s followed by a colon and a space; then an appropriate error message string followed
by a new-line character. The contents of the error message strings are the same as those
returned by the strerror function with argument errno, which are implementation-
defined.

Returns

The perror function returns no value.

4.10.5.1 The bsearch function

Synopsis

Unclude <stdl.ib.h>
void *bsearch(const noalias void *key,

const noalias void *base,
size_t nmemb, size_t size,

Description

int (*comparl (const noalias void *,
const noalias void*));

The bsearch function searches an array of nmemb objects, the initial member of
which is pointed to by base, for a member that matches the object pointed to by key.
The size of each member of the array is specified by size.

The contents of the array shall be in ascending sorted order according to a comparison
function pointed to by compar, which is called with two arguments that point to the
key object and to an array member, in that order. The function shall return an integer
less than, equal to, or greater than zero if the key object is considered, respectively, to be
less than, to match, or to be greater than the array member.

Returns

The bsearch function returns a pointer to a matching member of the array, or a null
pointer if no match is found. If two members compare as equal, which member is
matched is unspecified.

[footnote omitted]

4.11.6.2 The strerror function

Synopsis

tinclude <string.h>
char* strerror(int errnum);

Description

The strerror function maps the error number in errnum to an error message string.

Returns

The strerror function returns a pointer to the string, the contents of which .are
implementation-defined. The array pointed to shall not be modified by the program, but
may be overwritten by a subsequent call to the strerror function.

Page 6

,;f~ '·
I .
1,_,,;

Releas~ Notes for MPW 3.0A2 - Linker and related tools

Link
A2Features
• Added -ad size and -ac size options to align data and code modules on

power-of-two boundaries. The size argument must be a power of two
(checked). Note that Pascal emits global variables as entry points in a large
modiile, so typically only the last variable in the source (the variable with
the largest AS-offset) will be aligned as specified.

• The output of "-rt", other than CODE=O, is limited to one resource. It's an
error to generate more than one segment if there is no jump table.

• A crude form of type equivalence now takes place. Two types are
considered identical (and are coelesced) if they have the same type name
and were defined in the same location in the same source file .. Before this,
if you had #included, say, QuickDraw.h in each of your 80 C source files,
there would have been 80 copies of the QuickDraw type information in the
symbolic output file. · ·
It's possible to confuse the equivalence requirements, but the situtations
appear unlikely. For instance: ·

type.h
struct bar {

XXX field;
} ;

filel.c
tdef ine XXX short
tinclude "type.h"

fi le2.c

tdef ine XXX long
tinclude "type.h"

The body of the structure "bar" is determined by a macro expansion,
which results in two different types with the same name and source
location.

• Object files containing symbolic information must have a version number
of 3 in the First record. Link and Lib will emit warnings (for Beta) and
errors (for Final) if symbolics are encountered in version 1 or 2 files.

Pre-A2 Features
• The Linker has been enhanced to support SADE information in the form of

a symbolic information file. This file will be named "filename.SYM" where
filename is the name of the linker output file.

• A new option -SYM has been added to the Linker for SADE support. If this
option is specified, one or more parameters must also be supplied.

• The available parameters are ON, OFF, FULL, NOV ARS, NOLWES, and
NOTYPES. Parameters are processed left to right, and if thus may interact
unfavourably since there is currently no consistency check done.

• ON and FULL are currently equivalent and are provided solely to conform
to specifications provided by the SADE team. NOV ARS will suppress the
symbolic information for variables, NOLWES will suppress source
statement information, and NOTYPES will suppress type description
information.

• In a subsequent release, FULL in juxtaposition with NO ... will generate an
error.

• If -SYM is not specified, symbolic information will not be processed.
• The OMF has been changed substantially to accomodate symbolic

debugging information. (See the OMF appendix in the manual.)
• Other Option Changes

Both the -LA and the -LF options now imply -L.
The -B, -BF and -BS options have become obsolete and should be removed
from build scripts. They are flagged as warnings with the Alpha release
but.will generate errors on future releases.

• Large Global Data Areas
In response to popular demand the MPW 3.0 Linker supports global data
segments> 321<.
Not so fast! In order to use large data areas, it is necessary for the object
code emitted by compilers/ assemblers to reference global data with 32-bit
AS offsets. (In MPW 3.0 C this is accomplished by specifying "-fx 1" on the
command line.) Unfortunately, libraries are built using 16 bit offsets. It
becomes the responsibility of the user to order the link input so that data
which are referenced with 16 bit offsets are within 32K of AS.
Since the linker allocates data from the bottom up the data modules
encountered first are allocated furthest from AS - with one exception: a
data module with the "main module" bit set will be located next to AS.
So - caveat user.

Lib

In addition, if the data segment is to be larger than 32k , this release
requires that the "-ss" option be used to specify the allowable size of the
largest segment.

• Understands symbolic information (it's no longer stripped). The default is
to keep symbolics ("-Sym On"). You can strip symbolic information
completely by specifying "-Sym Off', or you can strip subsets of the
information (e.g. "-Sym No Vars"). Object files without symbolic
information are unaffected.
[You can't strip types in A2 because of a bug in "-Sym NoTypes". Beta.]

• The-B, -BF, -BS options are now obsolete. They will be removed in
subsequent releases, so change scripts to remove these options.

DumpObj
• If -m is given the name of an entry point, DumpObj backs up to the

beginning of the Module in which the entry point is defined before
dumping or disassembling.

• In the disassembled code, the display now resolves references to show
actual reference names when possible, and also appends the ID number
parenthetically following ID names. Furthermore, the anachronistic block
and byte offsets produced with the-L option has been changed to reflect
MPW file offsets.

• Of course, D~mpObj now supports the display of the symbolic debugging
records and also supports the-SYM option in order to suppress the display
of various debugging records. (For details on the -SYM option refer to the
Linker above. The default is FULL.)

,ti--·.
\._i

(DumpCode·
• Dumpcode output has been improved cosmetically.

(

Converting Between pre-3.0 Str255's and 3.0 Str255's
Tom Taylor
16Mar88

The definition of Str255 (and all of its derivatives like Str63, Str27, etc.) was
changed in MPW 3.0. The pre-3.0 definition was a structure with two
elements, a byte length, and an array of text. The new definition of Str255 is:

typedef ~nsigned char Str255[256];

The new definition is not backward compatible with the old version. If you
use Str255's in your code or use structures that have Str255's (or derivatives)
imbedded in them (such as SFReply's), you will have to make source code
changes.

Here are a few examples:

Pre-3.0 Source

Str255 string;

string.length
string.text
&string
&string.length

changes to 3.0 Source

Str255 string;

*string or string[O]
&string[l]
string
string

(

(

~7/14/88 10:04 AM

MPW 3.0a2 Interface Release Notes:
24 June 1988

Interface Release Notes

These release notes reflect the differances between MPW 3.0al and
MPW 3.0a2.

Pinterfaces:

The major news in Pinterfaces is that we have made the individual little
files able to be included or used in any order now.

The unfortunate side affect of this is that the new Pascal compiler must
be used with these interfaces. You cannot use a previous version of Pascal
when trying to isolate bugs introduced either by the compiler output or
new interfaces.

AppleTalk.p:
In routines: DDPOpenSocket, DDPCloseSocket, ATPOpenSocket & ATPCloseSocket

SignedByte's changed to Byte.
Diskinit.p:

Type HFSDefaults corrected to be unpacked record.
The function: DIBadMount was corrected to return an OSErr. However, it

can in fact return other values as well, so it will be changed back to
integer for MPW 3.0.

Errors.p:
Added constant: nmTypErr.
Removed constants: iTabPurgErr, noColMatch, qAllocErr, tblAllocErr,

overRun, noRoomErr, seOutOfRange, seProtErr, i2CRangeErr, gdBadDev,
reRangeErr, seinvRequest, seNoMemErr & smFHBlkDispErr.

Files.p:
Added to cases to HParamBlockRec: AccessParam, ObjParam, CopyParam &

WDParam.
Moved to OSUtils.p: ParamBlkType, QTypes, Finfo, VCB, DrvQEl, ParamBlockRec,

VBLTask, EvQEl, QHdr & QElem.
Added constants & types for SetVersion: developStage, alphaStage,

betaStage & finalStage; & NumVersion & VersRec.
Lists.p:

ListRec.cellArray corrected to be ARRAY (1 .. 1] OF INTEGER;
Memory.p:

Menus.p:

Function SystemZone changed to be inline.
Added routine: MFTopMem.

Added array: MCTable.
Setitemicon & Getitemicon corrected to use Byte.

OSEvents.p:
The definition of PPostEvent in "Inside Macintosh" was wrong. The

value returned by the ROM routine for qEl is a pointer, now EvQElPtr.
OSintf.p:

Added include of Sound.p:
OSUtils.p:

Added constant: curSysEnvVers.
Moved from Files.p: ParamBlkType, QTypes, Finfo, VCB, DrvQEl, ParamBlockRec,

VBLTask, EvQEl, QHdr & QElem.
Added new calls: SetCurrentAS & SetAS.

Packages.p:
Added constants: zeroCycle, myd, dym, ydm, longDay, longWeek, longMonth,

longYear, supDay, supWeek, supMonth, supYear, verireland, verKorea, verChina,
verTaiwan, verThailand, minCountry & maxCountry.

Palettes.p:
Added calls: CopyPalette & NSetPalette.
Added constants for NSetPalette: pmNoUpdates, pmBkUpdates, pmFgUpdates

Page 1

r7/14/88 10:04 AM Interface Release Notes

'

& pmAllUpdates
Colorinfo.ciFlags & Colorinfo.ciPrivate fields have been combined into

Colorinfo.ciDataFields. This will change in "Inside Macintosh".
Palette record has been changed to agree with "Inside Macintosh".

Picker.p:
GetColor: removed VAR from prompt parameter.

Printing.p:
TLong varient record finished.

Quickdraw.p:
Added arithmatic transfer mode constants: blend, addPin, addOver, subPin,

addMax, subOver, adMin & transparent.
Added ;onstant: pHiliteBit.
Type ColorTable corrected to be unpacked record.
Routine ScalePt corrected to declare pt as a VAR.
Routine CalcCMask corrected inline code.
Added definition for: CWindowPtr.

ROMDefs.p:
Removed constant: drHwGM.
Added constant: date.

Script.p:

SCSI.p:

Sound.p:

Added constants: smCharLeft & smCharRight.

Partition.pmProcessor corrected to be array of CHAR.
SCSIComplete wait parameter corrected to be: LONGINT.

Corrected value of constant: noteSynth.
Removed constant: midiSynth.
Added constants: midiSynthin, midiSynthOut, midiinitChanFilter &

midiinitRawMode. Notice constants start with lower case "midi" rather
than upper case as in "Inside Macintosh".

TextEdit.p:
STElement corrected to be unpacked record.

ToolUtils.p:
ScreenRes parameter scrnVRes corrected to be VAR.

Traps.p:
Corrected _PurgeSpace trap number.

Types .p::
Added type: Str31.

Windows.p:
Added types: CWindowRecord & CWindowPeek.
Routines NewCWindow & GetNewCWindow were changed to use CWindowPtr•s.

THIS WILL BE CHANGED BACK TO REGULAR WindowPtr's AT THE NEXT RELEASE!

Cincludes:
The flag for use by C++ has been changed from our original "c_plusplus" to

the official "_cplusplus". Also, since C++ may construct new names for functions
when compiling, functions are now bounded by a "_safe_link" flag to keep this
from happening in the Macintosh interfaces.

With the change of string definitions from structs to character arrays,
there were many parameters which still had *Str255. These have now been
corrected to Str255 only.

Desk.h:
Added constant: .g.0odbye.

Devices.h:
Control call corrected: * removed from csParamPtr parameter.

Dialogs.h:
GetAlrtStage & ResetAlrtStage now inline.

DisAsmLookUp.h:
Use void * for C type checking in: validMacsBugSymbol, endOfModule &

showMacsBugSymbol.

Page 2

c:·

(

/"
7/14/88 10:04 AM Interface Release Notes

Errors.h:
Added constant: nmTypErr.
Removed constants: iTabPurqErr, noColMatch, qAllocErr, tblAllocErr,

overRun, noRoomErr, seOutOfRanqe, seProtErr, i2CRanqeErr, qdBadDev,
reRanqeErr, seinvRequest, seNoMemErr & smFHBlkDispErr.

Events.h:
GetDblTime & GetCaretTime now inline.

Files.h:
Added to cases to HParamBlockRec: AccessParam, ObjParam, CopyParam &

WDParam.
Moved t:_o OSUtils.p: ParamBlkType, QTypes, Finfo, VCB, DrvQEl, ParamBlockRec,

VBLTask, EvQEl, QHdr & QElem.
Added constants & types for SetVersion: developStaqe, alphaStaqe,

betaStaqe & finalStaqe; & Numversion & VersRec.
In function unmountvol, parameter vRefNum corrected.

Fonts.h:
Added structs: WidEntry, WidTable, AsscEntry, FontAssoc, StyleTable,

NameTable, KernPair, KernEntry & KernTable.
Function qetfnum: familyID parameter corrected.

Graf3D.h:
Function InitGrf3d: port parameter corrected.

Lists.h:
Added array: DataArray.

Memory.h:
Functions GetApplLimit, SystemZone, ApplicZone, GZSaveHnd & TopMem

chanqed to be inline.
Added routine: MFTopMem.

OSEvents.h:
The definition of PPostEvent in "Inside Macintosh" was wronq. The

value returned by the ROM routine for qEl is a pointer, now EvQElPtr.
OSUtils.h:

Added constants: curSysEnvVers, sortsBefore, sortsEqual & sortsAfter.
Functions GetTrapAddress, SetTrapAddress, NGetTrapAddress & NSetTrapAddress

chanqed to use longs per "Inside Macintosh", even thouqh ProcPtr is more correct.
Added new functions: SetCurrentAS & SetAS.

Packages.h:
Added constants: zeroCycle, myd, dym, ydm, lonqDay, longWeek, longMonth,

longYear, supDay, supWeek, supMonth, supYear, verireland, verKorea, verChina,
verTaiwan, verThailand, minCountry & maxCountry.

Palettes.h:
Added functions: CopyPalette & NSetPalette.
Added constants for NSetPalette: pmNoUpdates, pmBkUpdates, pmFgUpdates

& pmAllUpdates
Colorinfo.ciFlags & Colorinfo.ciPrivate fields have been combined into

Colorinfo.ciDataFields. This will change in "Inside Macintosh".
Palette record has been changed to agree with "Inside Macintosh".

Picker.h:
Corrected functions HSV2RGB & RGB2HSV to use HSVColor

Printing.h:
Added constants: iPrPgFst, iPrPgMax, iPrRelease, lPrLFStd, iFMgrCtl,

iMemFullErr, iIOAbort, pPrGlobals, bUserlLoop, bUser2Loop, lHiScreenBits,
lHiPaintBits, iPrEvtCtl, lPrEvtAll & lPrEvtTop.

Added structs: TPrVars, TPfHeader & TPrDlg.
Corrected struct from TSetRslBk to TSetRslBlk
Capitalization corrected on fields: TGetRslBlk.xRslRg & TGetRslBlk.yRslRg.
Field corrected from TDftBitsBlk.iE to TDftBitsBlk.iError .

. PrintTraps.h:
Added constants: iPrPgFst, iPrPgMax, iPrRelease, pPrGlobals, bUserlLoop,

bUser2Loop, fNewRunBit, fHiResOK, fWeOpenedRF, lPrLFStd, iFMgrCtl, iMscCtl,
iPvtCtl, iMemFullErr, lHiScreenBits, lHiPaintBits, iPrEvtCtl, lPrEvtAll & lPrEvtTop.

Added structs: TPrVars, TPfHeader & TPfPgDir.
Capitalization corrected on fields: TGetRslBlk.xRslRg & TGetRslBlk.yRslRg.
Corrected struct from TSetRslBk to TSetRslBlk ·

Page 3

7/14/88 10:04 AM Interface Release Notes

Field corrected from TDftBitsBlk.iE to TDftBitsBlk.iError.
Quickdraw.h:

Added arithmatic transfer mode constants: blend, add.Pin, addOver, subPin,
addMax, subOver, adMin & transparent.

Added constant: pHiliteBit.
Region.rgnData & Picture.picData fields removed to match "Inside Macintosh".
CGrafPort.rgnSave & CGrafPort.polySave changed to Handle to agree with

"Inside Macintosh".
Added definition for: CWindowPtr.
Routine ScalePt corrected to declare pt as a VAR.
Routine CalcCMask corrected inline code.
Routine InitGraf globalPtr parameter now void * for C type checking.

ROMDefs.h:
Added constant: date.

Script.h:

SCSI.h:
Added constants: smCharLeft, smCharRight & emCurVersion.

Field BlockO.pad renamed BlockO.dd.Pad.
SCSIComplete wait parameter corrected to be: long.

SegLoad.h:
OnloadSeg now unloads void * for c typechecking.

Serial.h:

Slots.h:

Sound.h:

Added constants: ainRefNum, aoutRefNum, binRefNum & boutRefNum.

FHeaderRec corrected to be struct.

Corrected value of constant: noteSynth.
Removed constant: midiSynth.
Added constants: midiSynthin, midi$ynth0ut, midiinitChanFilter &

midiinitRawMode. Notice constants start with lower case "midi" rather
than upper case as in "Inside Macintosh".

SoundHeader corrected to be struct.
Capitalization corrected on struct: ModRef.
Added function: SndAddModifier.

StdDef.h:
Changed definition of NOLL from OL to just 0 for C++.

SysEqu.h:
Removed DeskCPat & DeskPatDisable.
Added ABusVars & ABusDCE.

ToolUtils.h:

Traps.h:

Types.h:

ScreenRes parameter scrnVRes corrected to be VAR.

Corrected capitalization of _Dequeue & _Enqueue.
Added _LoadScrap & _OnloadScrap (in addition to _LodeScrap & _OnlodeScrap) .
Corrected _PurgeSpace trap number.
Added _NMinstall & _NMRemove.

Changed definition of NOLL from OL to just 0 for C++.
Added type: StrJl.

Windows.h:
Added types: CWindowRecord & CWindowPeek.
Fields AuxWinRec.awFlags & AuxWinRec.awResrv corrected to right type.
Routines NewCWindow, newcwindow & GetNeWCWindow were changed to use

CWindowPtr's. THIS WILL BE CHANGED BACK TO REGULAR WindowPtr's AT THE NEXT
RELEASE!

Aincludes:
ATalkEqu.a:

Moved to SysEqu.a:: AbusVars & AbusDCE.
PackMacs.a:

Added constants: zeroCycle, myd, dym, ydm, longDay, longWeek, longMonth,
longYear, supDay, supWeek, supMonth & supYear.

' Page 4

(

c:

I'
7/14/88 10:04 AM Interface Release Notes

PrEqu.a:
Updated values of: lPrEvtAll & lPrEvtTop.

QuickEqu.a:
Added arithmatic transfer mode constants: blend, addPin, addOver, subPin,

addMax, subOver, adMin & transparent.
ROMEqu.a:

Removed constant: drHwGM.
SysEqu.a:

Moved from ATalkEqu.a:: AbusVars & AbusDCE.
SysErr.a:

Added constant: nmTypErr.
Removed' constants: iTabPurgErr, noColMatch, qAllocErr, tblAllocErr,

overRun, noRoomErr, seOutOfRange, seProtErr, i2CRangeErr, gdBadDev,
reRangeErr, seinvRequest & seNoMemErr.

TimeEqu.a:
Constant changed: msQSize.

Traps.a:
Added new traps: NMinstall & NMRemove.

Interface.a:
Removed glue for SystemZone, GetApplLimit, ApplicZone, GZSaveHnd,

TopMem, GetAlrtStage, ResetAlrtStage, GetDblTime & GetCaretTime which are
now provided inline.

Cinterface.o:
The function rename was changed to fsrename to avoid ANSI conflict.

Page 5

r
7/14/88 10:35 AM

INTRODUCTION:

Pre-A2 Interfaces

MPW 3.0al INTERFACE RELEASE NOTES
20 April 1988
by Keithen Hayenga

Interfaces and libraries to the Macintosh system and toolbox calls for
MPW 3.0al were changed in 3 major ways: The Pascal interfaces were broken up
into many smaller interface files corresponding to "Inside Macintosh". The C
header files, Cinc~µdes, had major syntax changes made possible or necessitated
by new c and C++ compilers. Reflecting the changes in the C compilers and the
C header files, Cinterface.o became much smaller.

PINTERFACES:

A major proposal for the MPW 3.0 interfaces is that all constants, record
definitions, and function declarations in assembler, c, and Pascal will be
organized by manager as defined in Inside Macintosh. This will make it easier
to find documentation for any interfaces or, conversely, know where the
declarations can be found for any documented calls. It will also improve the
maintainability and accuracy of the interfaces if the same information can be
found in corresponding files for all target languages. The main impact of this
reorganization has been to Pascal. Pascal interfaces now consist of many smaller
files which match the file names found in Cincludes rather than the ubiquitous
OSintf.p and Toolintf.p:

AppleTalk.p Controls.p Desk.p DeskBus.p
Devices.p Dialogs.p Diskinit.p Disks.p
Events.p Files .p Fonts.p Graf3D.p
Lists .p Memory.p Menus.p OSEvents.p
OSUtils.p Packages.p Palettes.p Picker.p
Printing.p PrintTraps.p Quickdraw.p Resources.p
Retrace.p ROMDefs.p Scrap.p Script.p
SCSI.p SeqLoad.p Serial.p ShutOown.p
Slots .p Sound.p Start.p TextEdit.p
Timer.p ToolOtils.p Types.p Video.p
Windows.p

In order to not break existing code, all pre 3.0 Pinterface files not
listed above must also be available. The files listed below are units of the
same name which include the proper smaller files listed above.

MacPrint.p
PaletteMgr.p
Videointf.p

MemTypes.p
Pickerintf.p

OSintf.p
SCSIIntf .p

Packintf.p
Toolintf.p

In addition, error numbers which used to be distributed throughout the
Pascal interfaces are now collected in Errors.p. Also added is a Traps.p
file, which is useful to check for unimplemented traps.

CINCLUDES:

There were two major changes to the contents of the Cinclude files:
1. The structure of pascal-style strings has been redefined to be an array of.
unsigned char instead of a structure with a length byte. 2. The upper/lower case
spelling conventions for functions using strings and points has been changed from
MPW 2.0 to MPW 3.0. TO CONVERT SOURCE FILES TO USE THE NEW Cincludes, USE THE CCvt
script utility!

Page 1

""· .. /

r
7/14/88 10:35 AM Pre-A2 Interfaces

All callable functions are now declared within the Cincludes files. Those
which work as described in "Inside Macintosh" are now spelled exactly the same
as in the book. They are declared to be of type pascal, which allows the use of
multiple inline syntax or linkage to the all upper-case glue found in Interface.a.
This produces more efficient, easier to maintain code. Those functions which use
Points, Cells, or strings (including Str255's) exist in two varieties: Those
which pass the Points and Cells by value and accept Pascal style strings were
introduced in MPW 2.0 with all upper-case spellings. Since these correspond to
the method of accessing the ROMs described in "Inside Macintosh", they are now
spelled with the same mixed case. Those calls which were formerly spelled with
mixed case passed Points and Cells by address and required glue to convert null
terminated c strinqs to Pascal strings and back. These calls are now spelled
with the more "C-like", all lower case spelling and require glue found in
Cinterface.o. The actual letters making up the names of these routines have
remained the same as before with only one exception: Rename. The routine which
passes a C string to the Macintosh file system call would collide with the
standard C rename function if it we~e spelled the same with only case change.
To avoid this, this version of the call to the Mac file system has been renamed:
fsrename.

Another big change for Cincludes is that type checking has come to the C
world in the form of C++. In order to allow the use of string literals as
parameters for calls that took Str255's, it was necessary to redefine it from
a struct with seperate length byte to an array of unsigned char! THIS WILL
PROBABLY REQUIRE CHANGES TO YOUR SOURCES FILES. See the paper titled "Str255"
for more information.

The actual files contained within the Cincludes folder has also changed:

With the addition of the ANSI C specified Time.h header file, the Macintosh
Time Manager header file was renamed Timer.h.

The Palette Manager contains a Palette structure. In the Pascal world, we
could not have units and records with the same name, so the file was renamed
Palettes.p. For consistancy, the corresponding file in C, Palette.h, has also
been renamed Palettes.h. A Palette.h file still remains in Cincludes, but now
simply includes Palettes.h.

The much requested low memory equates have finally been added to the
Cincludes. They are in a new file: SysEqu.h.

AINCLUDES:

There are no major changes in the Aincludes for MPW 3.0 alpha.

INTERFACE .0:

There are no major changes in Interface.a for MPW 3.0 alpha.

CINTERFACE. 0:

Since the new C header files contain multiple inline statements which no
longer require glue or which link with existing glue in Interface.a, many less
calls must be maintained in Cinterface.o. This library now contains only the C
specific code required to convert null terminated (C stings) to Pascal style or
dereference addresses of Points or Cells. All the entry points in Cinterface.o
are lower case only to match the convention of the Cincludes.

In the event of precompiled object modules which require linking with
older, mixed case glue to convert strings or points, it is possible to also

'

Page 2

r7/14/88 10:35 AM Pre-A2 Interfaces

link with an older version of Cinterface.o. The mixed case calls will not
conflict with the all upper case calls of Interface.o or the all lower case
calls of the new Cinterface.o.

C CONVERSION SCRIPT:

To convert C source code from MPW 2.0 standards for functions using strings
or points to the MPW 3.0 conventions, a script, CCvt, is provided. As of MPW 3.0
alpha, CCvt now has a -p, progress, option and accepts full shell expression for
file name input. It also uses the finalized canon dictionaries: CCvtUMx.dict and
CCvtMxL.dict

Page 3

(

(

Macintosh Technical Notes DR~FT c
#2xx: Setting and Restoring AS

See also: Operating System Utilities
Technical Note #135
Technical Note #180

Written by: Andrew Shebanow 6/15/88

The routines SetupAS and RestoreAS do not work properly when used with
some optimizing Pascal and C compilers. Two new routines, SetCurrentAS
and SetAS, are provided here which should work with any compiler.

Introduction

The inline glue routines SetupAS and RestoreAS are often used by completion routines,
VBL tasks and interrupt handlers written in C and Pascal to get access to an application's
global variables. (Note: please see Tech Note #180 for guidelines on accessing AS-relative
data under MultiFinder.) Unfortunately, these routines play fast and loose with the stack
pointer.

Newer, more sophisticated, optimizing compilers (for instance, MPW C 3.0) will often leave
function parameters on the stack across multiple function calls, removing the arguments for
several functions with a single instruction. This significantly reduces code size and
execution time, at the expense of a small amount of additional stack usage. As a side
effect, this optimization breaks the SetupAS and RestoreAS glue.

This Tech Note describes a pair of inline glue routines which have more functionality than
SetupA5/RestoreA5, without making assumptions about a compiler's stack handling. These
routines are provided as a standard part of the MPW Pascal 3.0 and MPW C 3.0 packages,
in the files "osutil.p" and "osutil.h", respectively.

The Old Way

The INLINE code for SetupAS was:

MOVE.L AS,-(A7)
MOVE.L CurrentAS,AS

; leave old AS on stack: Danger Will Robinson!
; set current AS

{ ' The INLINE code for RestoreAS was:

MOVE.L (A7)+,AS

Technical Note #2xx
****!Ql!Rl~l?'ii****

pop old AS off stack

page 1 of 3 Setting and Restoring AS

The problem here is that SetupAS leaves the old value of AS on the stack, and RestoreA5
assumes that the stack pointer is still valid. If the programmer mistakenly calls RestoreA5
within a called subroutine, the value that is popped off the stack and stored in AS will be
garbage. Of course, the "garbage" could be something moderately useful like a return
address. Even if the calls are at the same level, the current top of stack cannot be guaran°
teed with an optimizing compiler. The MPW C compiler, for example, often pushes argu­
ments on the stack, calls a function, pushes more arguments on the stack, calls another
function, and then adjusts the stack in one fell swoop.

The New, Totally Cool Way

The solution to this distressing problem is provided by two new functions, SetCurrentA5
and SetA5. Both of these functions return the old value of AS to the caller as a result, which
can be stored off and restored at some time in the not-too-distant future.

The interface for .SetCurrentAS, along with its corresponding implementation as a
subroutine call, is:

FUNCTION SetCurrentAS LONGINT;
INLINE $2E8D, $2A78, $0904;

pascal long SetCurrentAS(void) =
{ Ox2E8D, Ox2A78, Ox0904 };

/* MPW Pascal */

I* MPW C (3.0 only) */

Subroutine version for those who aren't using a compiler capable
of handling multiple word INLINE functions:

SetCurrentAS PROC EXPORT
MOVE.L AS,4(A7) store old AS as function result
MOVE.L CurrentAS,AS set AS to real value
RTS
ENDPROC

When you want to restore the old value of AS, or just want to change AS to some other
value, you can use the routine:

FUNCTION SetAS (newAS : LONGINT) : LONGINT;
INLINE $2F4D, $0004, $2ASF; /* MPW Pascal */

pascal long SetAS (long newAS) =
{ Ox2F4D, Ox0004, Ox2ASF }; /* MPW C (3.0 only) */

; Subroutine version for those who aren't using a compiler capable
; of handling multiple word INLINE functions:
SetAS PROC EXPORT

Technical Note #2xx
**••@[RI~"

MOVE.L (A7)+,AO
MOVE . L AS, 4 (A 7)
MOVE.L (A7)+,AS
JMP .L (AO)
ENDPROC

page 2 of 3

save return address
store old AS as function result
set AS to passed value, pop argument

Setting and Restoring AS

Here is a small piece of sample code, written in ANSI C, which demonstrates a typical use
of these routines:

#include <Types.h>
#include <Files.h>

extern int aGlobal; /* a global variable */

I*
* MyComp!etionRoutine:

*
* This routine is called by an assembly language stub that
* takes its parameters out of DO and AO.
*I

void MyCompletionRoutine(ParrnBlkPtr pb, OSErr result)
{

long oldAS;

oldAS = SetCurrentAS();
aGlobal = -1;

/* set current as */
/*do some work ... */

(void) SetAS(oldAS); /* restore previous as */

We recommend that you switch over to the new routines as soon as possible, no matter
what development system you use.

Technical Note #2xx
····@~£!).!Fu**-*

page 3 of 3 Setting and Restoring AS

Macintosh Programmers Workshop 3.0
Shell ERS

Authors: Dan Allen, John Dance, Jeff Parrish, Peter Potrebic
Date: March 7, 1988

Changes in ERS

This section lists changes in the ERS document since the last printing.

• The syntax for TileWindows and StackWindows has changed

• A new shell variable {lgnoreCmdPeriod}

• Delimeter selection will not beep when no match is found.

• New shell variables {NewWindowRect} and {ZoomWindowRect}.

• The TileWindows and StackWindows menu commands provide more
options using {TileOptions} and {StackOptions}.

• Shift will modify the direction of Find and Find and Replace also.

• User defined delimiters (the {Delimiter} variable) will not be
supported.

Introduction

This document is intended to specify all of the enhancements that will be made to the
Shell/Editor for MPW 3.0. By necessity, the number of enhancements will be small. Many
of the enhancements will be made to suppon other, more strategic parts of the MPW 3.0
project such as Projector (project/source code control system). Enhancements which would
require architectural changes were avoided. For the most pan, this release is viewed as a
chance to make the Shell functionally complete. Our goal was to simplify difficult or
impossible tasks. For example: we will be adding a command to find out the size and
location of a window because there is currently no way to find out this information from a
script. ·

The 3.0 Shell will have the same software and hardware requirements as the 2.0 Shell: it
will run on any of the machines in the Macintosh family so long as they have at least one
megabyte of memory and 128K or larger ROMs with System 4.1 or later.

For the remainder of this document, the word "shell" will refer to the half of the MPW
Shell which provides the command interpreter for scripts, runtime memory management,
resource caching, etc. The word "editor" will, as you might guess, refer to the half of the
MPW Shell which provides all the editing services which you have probably come to know

Apple Computer Inc. 1 Confidential

(.
and cherish. This document applies to both the shell, and editor halves of the MPW 3.0
Shell.

Items marked by a .. _,, are enhancements that we would really like to include but may not
be able to due to time constraints.

Please feel free to direct your comments to any member of the Shell team: Dan Allen
(x2801), John Dance (x2232), Jeff Parrish (x2395), or Peter Potrebic (x6494).

Enhancements to the Shell

Enhancements, other than performance improvements, that will be made to the shell fall
roughly into one of two categories: additions to existing commands, and support for
MultiFinder™ and Projector.

Additions to Existing Commands

• The Date command will have more output formats. For more details, see the attached
manual pages.

• Std.out and stderr will be directed to the same place with the I. (opti.on-w) character.
"The summation of all output ... " The syntax will be as follows:

I. name Standard output and diagnostic output replace the contents of name. File
name is created if it doesn't exist

I.I. name Standard output and diagnostic output are appended to name. File name is
created if it doesn't exist

• A "directory path" variable (similar to the {Commands} variable) for changing current
directories will be added. See the Directory manual page for more information.

• Numeric variables will be added to the Shell command language. The manual page for
the Evaluate command describes numeric variables in detail.

• Evaluate will be enhanced to allow output in different radices. See the Evaluate manual
page for more information.

Support for Multlflnder™ and Projector

• SpinCursor will be modified to allow background operation of MPW.

• Open projector windows will be listed at the end of the Window menu. The projector
windows will be separated from the normal windows by a disabled line. Selecting a
projector window in the list will bring that window to the front.

Enhancements to the Editor

Apple Computer Inc. 2 Confidential

Enhancements to the editor will be made to: add new commands, extend existing
commands, remove existing restrictions, extend the user interface, and suppon
Multi.Finder™ and Projector.

New or Extended Commands

• A -q (quiet) option will be added to the Request command. This option allows the
Request commands to not return an error message, thus allowing a script to continue its
execution regardless of user input. See the manual page for more details.

• A -c (cancel) option will be added to the Close command. This option allows the user
to cancel a close operation. (Normally this would only be useful from a script when the
user wanted to close all files that had not been modified) See the manual page for
more details. ·

• The faccess interface will be extended to allow Tool access to the current selection and
window size and position. The routine faccess will be modified to allow the
examination and modification of the current selection, the top of window position
within a file, and the window size and position.

The current selection is described by a pair of long integer values for the staning and
ending position and another long value for the character that will be displayed on the
first line of the window. These positions are offsets from the beginning of the file,
with the first position in the file being 0. This information is communicated with
faccess in the following format:

struct SelectionRecord {
long startingPos;
long endingPos;

};
long dispayTop

The current window size and position is a rectangle in global coordinates.

The new commands to faccess will be: F _GSELINFO, F _SSELINFO,
F _ GWININFO, and F _SWININFO. F _ GSELINFO gets the selection information for
the MPW text file filename, arg is a pointer to a selection record. F _SSELINFO sets
the selection information for the MPW text file filename, arg is a pointer to a selection
record. Faccess works on both windows and files. The display will start on the line
that contains the character displayTop. DisplayTop does not have to be the first
character in a line. The window will not automatically scroll horizontally to display the
actual character specified It is invalid to set startingPos less than zero, greater than
endingPos or greater than the length of the file. It is also invalid to set displayTop to a ·
value greater than the length of the file. If displayTop is negative, it will be ignored,
and only startingPos and endingPos will be used If any invalid positions are specified
with F _SSELINFO, faccess returns -1, and the global ermo will contain the "invalid
parameter" code. F _GWININFO gets the current window position. The parameter arg
is a pointer to a rectangle to store the information. The rectangle is in global
coordinates. F _SWININFO sets the current window position, arg is a pointer to a
rectangle specifying the new size and position. If the window size is invalid, or the
rectangle is completely off the screen, faccess returns -1 and the global ermo will
contain the "invalid parameter" code. (For more information about faccess see Chapter
3, The Standard C Library in The MPW C Reference Manual.) Note: This change

Apple Computer Inc. 3 Confidential

''---.

requires changing the MPW C, Pascal, and ASM Reference Manuals, and the file
control interface files (FCntl.h, IntEnv.p, IntEnv.a) in Clncludes, Plnterfaces, and
Alncludes directory.

• The direction of the Find Same, Find Selection, and Replace Same commands may
be modified by holding down the shift key when the menu or command key is selected.
This modifies the direction for the current command only. It also does not have any
effect on the shell search variables. This will allow the user to easily search both
forward and backwards through a file. The direction of Find and Find and Replace
may be modified by holding down the shift key when the dialog is closed with the
Find, Replace, or Replace All buttons.

• A read-only check box will be added to the "Open ... " dialog. This enhancement
will allow a file to be opened read-only interactively through the S tdFile GetFile dialog
box. The check box will be placed under the cluster of buttons already in GetFile. The
dialog will look something like this:

Cl Docs
Cl MPW
Cl OS
Cl Sources
Cl Utilities

le:> sci

D Read Only

G::::) s c

(t: j<H t)
(Ori v <~)

..

~ Open D
(Cancel)

• You will be able to inquire a window's size, etc.from a script. The Move Window and
Size Window commands will be extended to provide this information. If Move Window
and Size Window are entered without any coordinates, then they return the upper-left
corner position and the window's size respectively. For mote details see the attached
new manual pages.

• Tile Windows and StackWindows will be improved to make them more useful by
allowing more options for the layering of windows. See the attached new manual
pages for details. The Tile Windows and StackWindows menu commands may be used
to tile or stack windows. The variables { TileOptions} and { StackOptions} are used by
the TileWindows and StackWindows menu commands. Initially, the two variables are
undefined. If the option key is held down while selecting either menu item, the
worksheet will be included in the tile or stacking operation. (You may always include

Apple Computer Inc. 4 Confidential

the worksheet in tiling or stacking without holding the option key by putting "-i" in the
{ TileOptions} and { S tackOptions} variables.)

• Two new variables will help with windows on large screens. There variables are
{NewWindowRect} and {Z.OOmWindowRect}. {NewWindowRect} will be used as
the window rectangle when a new window is created. {Z.OOmWindowRect} will be
used when a window is zoomed to "full screen". Both of these rectangles must be
visible. If the rectangles specified are not totally visible they will be ignored, and the
default rectangles will be used The coordiates (0,0) are located at the left side of the
screen ai the bottom of the menu bar. The format of both rectangles are given in
top,left,bottom,right order. For example, to create all new windows in the top left
comer of the screen 400 pixels wide and 200 pixels high, use the command: Set
NewWindowRect 0,0,200,400

• There will be a method to rotate between windows (i.e. send the top window to the
bottom). A built-in command will be implemented that rotates between the active MPW
windows. For more details see the attached manual pages.

• A Fonnat command will be added to give scripts access to all the features of the Format
dialog. This will provide access to the current font, font size, tab size, and the auto
indentation and invisible options. For more information see the attached manual pages.
Note: The Tab and Font commands will be removed. Any scripts using these
commands will have to be changed.

• New variables will be created to support user defined document defaults. The
variables will allow all fonnatting options (except display invisibles) to be pre-defined
by the user. There variables will be (Font}, { FontSize}, (Tab}, and { Autolndent}.
(The variable {Tab} is already in MPW.) While the Format command and the format
menu change the format of a open window. These variables provide default settings
for new windows. The definitions are as follows:

•

•

{Font}
{FontSize}
{Tab}
{Auto Indent}

Specifies the font for a new window.
Specifies the font size for a new window.
Specifies the tab size for a new window.
Specifies the setting for automatic indenting.
(If greater than 0, automatic indenting will be done.)

The pre-defined values are:

{Font}
(FontSize}
{Tab}
{Auto Indent}

'Monaco'
9
4
1

The format of a locked file can not change. When a locked file is opened, it will be
displayed in the default format

Three new variables will be pre-defined to provide access to the current search options .
(The variable { CaseSensitive} is already defined.) These are:

{Search Wrap}
{ SearchBackward}
{SearchType}

If greater than 0, searching will wrap around.
If greater than 0, searching will go backward.
0 = literal, 1 = word, 2 = regular expression

Apple Computer Inc. 5 Confidential

(

(

The values of these variables will be predefined as follows:

{ CaseSensitive} 0
{Search Wrap} 0
{SearchBackward} 0
{SearchType} 0

• You may now set up scripts to ignore command period. This is useful for critical
sections of a script. Command period may be ignored by setting the variable
{ IgnoreCmdPeriod}. If this variable is defined to a nonzero number, command period
will be ignored. {IgnoreCmdPeriod} has a scope just like all other variables, so if you
want to ignore command period in inner scopes, you must export the variable. Inner
scripts can then allow command period by using Unset. Tools run in the scope that has
{ IgnoreCmd.Period} defin\!d will also ignore command period. This overrides any
signal handler defined in the tool itself. {IgnoreCmdPeriod} is undefined at startup.
Use it with caution.

• The current line number, beginning of selection, and end of selection will be made
available by means of the new "Position" command For details, please refer to the
accompanying manual pages in part two of this document.

Remove Existing Restrictions

• The limit on Tab size will be increased. Currently the Editor has an upper limit on the
size of Tabs of 20 characters. It is proposed that this limit be increased to 100
characters.

• The allowable length of lines in the Editor will be increased. Currently the Editor has a
line length limit of 132 characters: It is not possible to scroll past the 132nd character in
a line reliably. It is proposed that this limit be lengthened to 256 characters.

Extend the User Interface

• Different aspects of selecting text by matching delimeters (i.e.: {}, (), D} will change .
. Rather than selecting the rest of the document when a matching character is not found,
the delimeter at the position of the double-click will be selected. During the search, the
user may abort by pressing command-period.

• Option-Enter will invoke Commando.

• The amount scrolled horizontally per click will be Increased.

• Opening windows on different screen sizes will be handled better. If a window is in
the zoomed out state, it will open to the size of the current screen. Therefore, a zoomed
out window will be zoomed out on both a Mac SE and Mac II.

• A new and improved "About Box" will be created.

Apple Computer Inc. 6 Confidential

Part II-Manual Pages

Apple Computer Inc. 7 Confidential

(

(

Close---close specified windows

Syntax

Description

Input

·Output

Diagnostics

Status

Options

Examples

Apple Computer Inc.

Close [-y I -n I -c] [-a !windows ...]

Close the window or windows specified by windows. If no
window is specified, the target window is closed. If changes to
the window have not been saved, a dialog requests confirmation
of the Close. In scripts you may use the -y, -nor -c options to
avoid this interaction. Use the -a option instead of windows to
close all of the open windows (other than the WorkSheet.)

None.

None.

Errors are written to diagnostic output

Close may return the following status values:

0 No errors
1 Syntax error
2 Any error such as "Window not found."
4 User specified Cancel

-a Close all open Shell windows (except for the
WorkSheet, which cannot be closed). This
option cannot be specified when any windows
are specified.

-n Answer "No" to any confirmation dialogs,
causing all of the specified windows to be
closed without saving any changes.

-y Answer "Yes" to any confirmation dialogs,
causing all of the specified windows to be
saved before closing them.

-c Answer "Cancel" to any confirmation dialogs,
effectively causing any modified windows to
be left open.

Close

Closes the target window, prompting the user with a confirmation
dialog box if needed.

Close -a -y

8 Confidential

See also

Apple Computer Inc.

Saves and closes all open windows.

Close -n Test.a Test.r

Coses the windows Test.a and Testr without saving any of the
changes.

The "File Menu", in Chapter 3.

9 Confidential

(

Date-write the date and time

Syntax Date [[-a 1-s] [-d 1-t] [-c num]] I [-n]

DescriJ,?tion Writes the current date and time to standard output in a variety of
standard and user specified formats. Date arithmetic is supported
with the -n and -c options that work with the number of seconds
since January l, 1904.

Type Miscellaneous.

Input None.

Output The full date is written to standard output.

Diagnostics Errors are written to diagnostic output

Status Date may return the following status values:

Options

Apple Computer Inc.

0
1

No error.
Syntax error.

- a Abbreviated date. Three-character abbreviations are used
for the month and day of the week. For example, Wed,
Aug 26, 1987 12:36:48 PM.

-d Write the date only.

-s Short date form .. Numeric values are used for the date.
The day of the week is not given. For example, 8/26/87
12:36:48 PM.

-t Write the time only.

10 Confidential

Apple Computer Inc.

-n Returns a numeric value of the current date and time as the
number of seconds since midnight on January 1st, 1904.

-c num Write the date corresponding to num, which is
interpreted as the number of seconds since
midnight on January 1st 1904. The other output
fomiat options may be used with this to specify
the output format

11 Confidential

(

(

Directory-set or write the default directory

Syntax

Description

Input

Output

Directory [-q I directory]

If specified, directory becomes the new default directory;
otherwise the pathname of the current default directory is written
to standard output.

If directory is a leafname, the command searches for directory in
the directories listed in the Shell variable {DirectoryPath}. If the
variable is undefined then the command looks in the current
directory.

Note: To display a directory's contents, .use the Files command.

None.

If no directory is specified, the default directory pathname is
written to standard output.

Diagnostics Errors are written to diagnostic output.

Status

Option

Examples

Apple Computer Inc.

Status code 0 is returned if the command succeeded; otherwise 1
is returned.

-q Don't quote the pathname that is written to
standard output. (Normally, a directory name is
quoted if it contains spaces or other special
characters.) ·

Directory

Write the pathname of the current directory to standard output.

Directory HD:MPW:AExamples:

Set the default directory to the folder AExamples in the folder
MPW on the volume HD. The final colon is optional.

Directory Reports:

Set the default directory to the volume Reports. (Note that volume
names must end in a colon.)

Directory :Include:Pascal:

12 Confidential

See also

Apple Computer Inc.

Set the default directory to the folder Pascal in the folder Include
in the cUITent default directory.

Set DirectoryPath ":,{MPW}, {MPW}Projects:"
Directory Tools

Set the directory to the Tools directory. The cUITent directory is
searched first, followed by the {MPW} directory, and finally the
{ MPW} Projects directory.

"File and Window Names" in Chapter 3
Files and NewFolder commands

13

'--c,.

Confidential

Evaluate-Evaluate an expression

Syntax

Descriµtion

Apple Computer Inc.

Evaluate [-h 1-o 1-b] [word ...]
Evaluate name [binary operator]= [word.S' .. .]

The list of words is taken as an expression. After evaluation, the
result is written to standard output. Missing or null parameters are
taken as zero. You should quote string operands that contain
blanks or any of the characters listed in the table below.
The operators and precedence are mostly those of the C language;
they're described below.
As an extention to this command assignments can be made to
variables. The second form of the evaluate command evaluates
the list of words and assigns the result to the variable name. ·The
result of the expression is not written to standard output in this
case. C sytle operations of the form"+=","-=", etc. are
supported. If name is undefined at the time of execution it is
interpreted as zero.

Different radices may be used in the input expression, and the
result may be output in a different radix by using the -h, -o, or -
b options. The default radix is decimal.
Expressions: An expression can include any of the following
operators. (In some cases, two or three different symbols can be
used for the same operation.) The operators are listed in order of
precedence-within each group, operators have the same
precedence.

1.

2.

3.

4.

5.

6.

7.

8.

Operator

(expr)

*
+
%
+

<<
>>
<
<=
>
>=

!=
=-
!­
&

NOT ..,

DN
MOD

<>

14

Operation

Parentheses are used to group
expressions.

Unary negation
Bitwise negation
Logical NOT
Multiplication
Division
Modulus division
Addition
Subtraction
Shift left
Shift right
Less than
Less than or equal
Greater than
Greater than or equal
Equal
Not equal
Equal-regular expression
Not equal-regular expression
Bitwise AND

Confiden tia.l.

Input

Output

9.
10.
11.
12.

/\

I
&.& AND
II OR

Bitwise XOR
Bitwise OR
Logical AND
Logical OR

All operators group from left to right Parentheses can be used to
override the operator precedence. Null or missing operands are
interpreted as zero. The result of an expression is always a string
representing a number in the specified radix (default decimal).

The logical operators!, NOT,....,,&&, AND, 11. and OR
interpret null and zero operands as false and nonzero operands as
true. Relational operators return the value 1 when the relation is
true, and the value 0 when the relation is false.
The string operators==,!=,= , and!- compare their operands
as strings. All others operate on numbers. Numbers may be either
decimal, hexadecimal, octal, or binary integers representable by a
32-bit signed value. Hexadecimal numbers begin with either$ or
Ox, octal numbers begin with a 0 (leading zero), binary numbers
begin with a Ob. Every expression is computed as a 32-bit signed
value. Overflows are ignored.

The pattern-matching operators=- and!- are like== and!=
except that the right-hand side is a regular expression which is
matched against the left-hand operand. Regular expressions must
be enclosed within the regular expression delimiters/ .. ./. Regular
expressions are summarized in Appendix B ..

Note: There is one difference between using regular expressions
after=- and !- and using them in editing commands-when
evaluating an expression that contains the tagging operator,®,
the Shell creates variables of the form { ®n}, containing the
matched substrings for each ® operator. (See the examples
below.)

Filename generation, conditional execution, pipe specifications,
and input/output specifications are disabled within expressions, to
allow the use of many special characters that would otherwise
have to be quoted.

Expressions are also used in the If, Else, Break, Continue, and
Exit commands.

None.

The result of the expression is written to standard output. Logical
operators return the values 0 (false) and 1 (true).

Note: To redirect Evaluate's output (or diagnostic output), you'll
need to enclose the Evaluate command in parentheses; otherwise,
the > or ~ symbols will be interpreted as expression operators,
and an error will occur. (See the third example below.)

Diagnostics Errors are written to diagnostic output.

Apple Computer Inc. 15 Confidential

(
Status

Options

Examples

(

See also

Apple Computer Inc.

Format may return the following status values:

0 Valid expression
1 Invalid expression

-h Output the result in hexidecimal. The number
will be prefixed with a Ox.

-o Output the result in octal. The number will be
prefixed with a 0.

-b Output the result in binary. The number will be
prefixed with a Ob.

Evaluate (1+2) * (3+4)

Do the computation and write the result to standard output.

Evaluate -h 8 + 8

Do the computation and write the result to standard output in
hexidecimal (Ox.10).

Evaluate lines += 1 # new way

The Evaluate command increments the value of the Shell variable
(lines} by 1. If (Lines} was undefined before executing the
command, {Lines} would be 1 after execution.

(Evaluate " { aPathname}" =-
/ (([-,:] +:) *) ®l:::/) > Dev:Null Echo {@l}

These commands examine a pathname contained in the variable
{ aPathname}, and return the directory prefix portion of the name.
In this case, Evaluate is used for its side effect of enabling regular
expression processing of a filename pattern. The right-hand side
of the expression (/(([-,:]+:)*)® 1:::/) is a regular expression that
matches everything in a pathname up to the last colon, and
remembers it as the Shell variable (®1 }. Evaluate's actual output
is not of interest, so it's redirected to the bit bucket, Dev:Null.
(See "Pseudo-filenames" in Chapter 3.) Note that the use of I/O
redirection means that the Evaluate command must be enclosed in
parentheses so that the output redirection symbol,>, is not taken
as an expression operator.
This is a complex, but useful, example of implementing a
"substring" function. For a similar example, see the Rename
command.

"Structured Commands" in Chapter 5

16 Confidential

Apple Computer Inc.

"Pattern Matching (Using Regular Expressions)" in Chapter 6
and Appendix B

17 Confidential

(~ Format-set or view the window format

Syntax Format [-f fontname] [-s fontsize] [-t tabsize] [-a attributes] [-x
formatting] [window ...]

Description This is a script.able form of the format option in the Edit menu. It
can be used to set the format of the specified list of windows. If
no window is specified, the command operates on the target
window. If no options are specified (other than -x), the current
format settings are written to standard output.

Input

Output

Note: The Format command (and the Format ... menu item)
modify the format of an existing window. The format related
variables such as {Tab} and {Font} are used to initialize the
format of a new window.

None.

If the optional parameters are omitted, or the -x option specified,
the current format settings are written to standard output.

Diagnostics Errors are written to diagnostic output.

Status

Options

Apple Computer Inc.

Format may return the following status values:

0 No errors
1 Syntax error (error in parameters)
2 All other errors

-f fontname

-s f ontsize

-t tabsize

-a attributes

Changes the font in the specified windows to
fontname.

Changes the font size in the specified windows
to fontsize.

Changes the tab size in the specified windows to
tabsize.

Set or clear the invisible and auto-indent states.
Attributes is a string composed of the characters
listed below. Attributes that aren't listed remain
unchanged.

A autoindent
I show invisibles

Uppercase letters set the attribute to on,
lowercase tum off the attribute.

18 Confidential

Examples

See also

Apple Computer Inc.

-x formatting This option is used to specify the output format
when the cUITent settings are displayed. This
option is ignored if any other option is specified ..
The parameter formatting is a string composed
of the following letters, (in any order) where the
order determines the field's position in the
output The values specified will be output
separated by spaces.

f fontname
s fontsize
t tabsize
a autoindent and show invisibles state

Format -f Monaco -t 8 -a A "{target}"

Sets the font, tab size, and autoindent in the target window. The
font size and invisible settings are not changed.

Format -s 12 MyWindow

Changes the font size in MyWindow to 12 point

Format "{Target}"
Format -f Monaco -s 9 -t 8 -a Ai

After executing the format statement above, another format command
with no options will display current settings. This output format may
be selected and executed.

Format -x tsf
4 9 Monaco

Displays only the values of the specified options. This option would
be used for easily retrieving one or two values and assigning them to
shell variables for latter use.

The "Edit Menu", in Chapter 3. "Variables", in Chapter 5.

19 Confidential

[~'

!

~~7

(

MoveWindow-move window to h,v location

Syntax MoveWindow [h v] [window]

Description Moves the upper-left comer of the specified window to the
location (h,v) where hand v are horizontal and vertical integers.
The coordinates (0,0) are located at the left side of the screen just
below the menu bar. If the location specified would place the
window's title bar off the visible screen, an error will be
returned. If no window is specified, the target window (the
second window from $e top) is assumed. If no location is
specified, the specified window's location is returned without
any effect on the window.

Type Miscellaneous.

Input None.

Output If the h and v pair is not supplied Move Window returns the
current location of the specified window.

Diagnostics Errors are written to diagnostic output

Status Move Window may return the following status values:

0 No errors
1 Syntax error (error in parameters)
2 The specified window does not exist.
3 The h v location specified is invalid, that is, not on the
screen.

Options None.

Examples MoveWindow 72 72

Moves the target window's upper-left comer to a point approximately
one inch in and down from the upper-left comer of the screen.

Apple Computer Inc.

MoveWindow

Returns Move Window 7 2 7 2 when executed after the above
example.

MoveWindow 0 0 "{Worksheet}"

20 Confidential

See also

Apple Computer Inc.

Moves the Worksheet window to the upper-left corner of the screen.

Size Window, Zoom Window, Stack Windows and Tile Windows
commands.

21 Confidential

(

(.•,,.,

I

,:--"

Position-list position of selection in window

Syntax Position [-c] [-1] [window ...]

Description Displays the position of the selection in each of the windows
specified. If no window is specified, the position of the selection
in the Target window is given. By default, the position is
displayed as both the line number of the start of the selection and
the character positions of the start and end of the selection. The -c
option can be used to display only the character positions of the
selection. Similarly, the -1 option can be used to display only the
line number. ·

Type Miscellaneous.

Input None.

Output The position information is written to standard output.

Diagnostics Syntax errors are written to diagnostic output.

Status

Options

Examples

Position may return the following status values:

0 No errors.
1 Syntax error.
2 Any other error.

-1 Display just the line number of the start of the selection.

-c Display just the character positions of the start and end of
the selection.

Position "{Target}" file2

Displays the position of the selection in both the Target and file2 in
the following form:

See also

Apple Computer Inc.

578 23129,23140
211 8440,8440

Find command.

22 Confidential

Request-request text from a dialog box

Syntax Request [-q] [-d default] [message ...]

Description Displays an editable text dialog box with OK and Cancel buttons
and the prompt message. If the OK button is selected, then all
text that the user typed into the dialog box is written to standard
output. The ·d option lets you set a default response to the
requc:~t.

Type Miscellaneous.

In put Reads standard input for the message if no parameters are
specified

Output Text from the dialog is written to standard output

Diagnostics Syntax errors are written to diagnostic output.

Status Request may return the following status values:

Options

See also

Apple Computer Inc.

0 The OK button was selected.
1 Syntax error.
4 The Cancel button was selected.

-d def au 1 t The editable text field of the dialog box is
initialized to default.

-q Makes Request quiet, that is, Request always
returns a status of either zero or one. This is
useful in scripts.

Confirm command

Confidential

;f~,,,

(

\;.,__/

RotateWindows-rotate between windows

Syntax Rotate Windows

Description Puts the front MPW window in the back, and brings the second
window to the front Multiple calls to Rotate Windows will rotate
through all open MPW windows. Rotate Windows will only
bring MPW windows to the front. (Desk accessory windows
will not be rotated.) This command would usually be added to a
menu with a command key equivalent. For example: AddMenu
'Extras' 'Rotate Windows/®' 'Rotate Windows'

Input None.

Output None.

Diagnostics None.

Status RotateWindows returns the following status values:

Options

Examples

0
1

No errors
Syntax error (error in parameters)

None.

RotateWindows

Puts the front MPW window in back, and brings the target MPW
window to the front.

See also

Apple Computer Inc.

StackWindows, Size Window, Move Window and ZoomWindow
cominands

24 Confidential

SizeWindow-set a window's size

Syntax SizeWindow [h v] [window]

Description Sets the size of the specified window to be h by v pixels, where
h and v are non-negative integers refCITing to the horizontal and
vertical dimensions respectively. The default window is the
target (the second window from the top); a specific window can
optionally be specified. If no size is specified, the current size of
the specified window is returned and the window size is not
effected.

Type Miscellaneous.

Input None.

Output If no size is specified, Size Window returns the current size of the
window specified.

Diagnostics Errors are written to diagnostic output

Status

Options

Examples

Apple Computer Inc.

Size Window may return the folloWing status values:

0 No errors
1 Syntax error (error in parameters)
2 The specified window does not exist.
3 The h v size specified is invalid.

None.

SizeWindow 200 200

Makes the target window 200 pixels square in size.

Sizewindow

Returns Si z ew indow 2 0 0 2 0 0 when executed after the above
example.

SizeWindow 500 100 "{Worksheet}"

Makes the Worksheet window 500 by 100 pixels in size.

25

~ •.•... ·

,r''

Confidential

(See also

Apple Computer Inc.

MoveWindow, ZoomWindow, StackWindows, and Tile Windows
commands.

Confidential

Stack Windows-arrange windows

Syntax StackWindows [-i] [-h num] [-r t,l,b,r] [-v num] [windows ...]

Description Automatically sizes and moves all of the specified Shell windows
(except the Worksheet) such that they are stacked up slightly
staggered and overlapping. If no windows are specified, then all
open Shell windows are stacked up. Additionally the user may
specify the horizontal and vertical staggering constants, otherwise
it defaults to 5 pixels horizontally and 20 pixels vertically.

Input None.

Output None.

Diagnostics Errors are written to diagnostic output

Status StackWindows returns the following status values:

Options

Examples

Apple Computer Inc.

0 No errors
1 Syntax error (error in parameters)

-i

-hnum

-r t,l,b,r

-vnum

StackWindows

Include the Worksheet window when stacking
if there is no list of windows specified.

Stack the specified windows with num pixel
horizontal spacing. The default is 5 pixels
wide. Negative values are not allowed and
return a syntax error.

Stack the specified windows within the
specified rectangle. The rectangle is specified
in top, left, bottom, right order. The default
rectangle is the entire screen less the menu bar.
The coordinates of the rectangle are separated
by commas. If spaces are included, then the
rectangle must be inclosed in quotes, such as
"10, 10, 500, 300".

Stack the specified windows with num pixel
vertical spacing. The default is 20 pixels
high-the height of a window's title bar.
Negative values are not allowed and return a
syntax error.

27 Confidential

(

See also

(

Apple Computer Inc.

Stacks all of the Shell windows in a neat and orderly fashion.

StackWindows -h 10 "{active}" "{target}"

Stacks the top two windows (not including the Worksheet) with a
vertical spacing of 20 pixels and a horizontal spacing of 10 pixels.

Tile Windows, Size Window, Move Window and Zoom Window
commands

28 Confidential

Tile Windows-arrange windows

Syntax Tile Windows [-i] [-h 1-v] [-r top,left,bottom,right] [window ...]

Description Automatically sizes and moves the specified Shell windows
(except the Worksheet) such that they are all visible on the screen
at once. If no windows are specified then all windows by default
are tiled.

Input None.

Output None.

Diagnostics Errors are written to diagnostic output

Status Tile Windows returns the following status values:

Options

Examples

Apple Computer Inc.

0 No errors
1 Syntax error (error in parameters)

-i

-h

- r t,l,b,r

-v

TileWindows

Include the Worksheet window when tiling if
no list of windows is specified.

Tile the specified windows in a horizontal
fashion allowing the full width of the screen to
be used in viewing a file.

Tile the specified windows within the specified
rectangle. The rectangle is specified in top,
left, bottom, right order. The default rectangle
is the entire screen less the menu bar. The
coordinates of the rectangle are separated by
commas. If spaces are included, then the
rectangle must be inclosed in quotes such as
"10, 10, 500, 300".

Tile the specified windows in a vertical fashion
in order to see more lines of a document

Arranges all of the Shell windows in a neat and orderly fashion.

TileWindows -h hd:new:main.c hd:new:foo.c

Arranges the specified windows as two long horizontal strips.

29 Conficlential

See also

(

(

Apple Computer Inc.

TileWindows -i -v "{active}" "{target}"

Arranges the top two windows (including the Worksheet) vertically.

StackWindows, SizeWindow, MoveWindow and ZoomWindow
commands

30 Confidential ·

Commando's Built-In Editor
and other new features

Starting with version 2003, Commando has a built-in editor that allows you to
I move and size controls and edit text labels and help messages. This feature will

hopefully make designing, redesigning, and fine-tuning Commando dialogs
much easier. Presently, Commando can only move and size controls. Controls
cannot be created, duplicated, or deleted. This means that you still have to
manually create the Commando resource, but don't have to worry so much
about the coordinates and sizes of the controls. Once the Commando resource
has been created, you can simply run Commando, arrange all the controls to
your liking, and then simply DeRez the cmdo resource.

Enabling Commando's Editor

In order to enable Commando's built-in editor, the command key must be held
down immediately after Commando is launched until the watch cursor appears.

Editing Controls

When Commando is launched with the built-in editor enabled, there are two
different Commando modes: 1) normal mode where Commando works just as it

·always did, and 2) edit mode where controls can be dragged and sized. Holding
down the option key puts Commando in edit mode. The option key must be
held down to do any selecting, dragging, or growing operation.

Selecting Controls

To select a control, simply press the option key and click on a control. To select
multiple controls, press the option and shift keys together and click each control

I to be selected or click and drag a marquee around a group of controls. Clicking
a selected control with the shift (and option) key down, unselects that control.
Basically, selecting controls works exactly like ~lecting icons in the Finder with

I one exception: you must hold down the option key in Commando.

The Commando editor will not allow you to select controls outside of the user
control area. For that reason, the coordinates you give when manually creating
the Commando resource should fall within the user area.

Moving Controls

Moving controls works as you would probably suspect: simply click and drag a
control or selected group of controls. The Commando editor will not allow
controls to be dragged outside (actually, no closer than 2 pixels to) the user

(-
control area. ·

Selected controls can be moved one pixel at a time by holding down the option
key and pressing the appropriate arrow key.

The top-left comer of the control can be aligned (snapped) to a four pixel grid by
holding down the command key while dragging. If a selected group of controls
is dragged . .with the command key down, each of the selected controls' top-left
comers will be aligned to the grid.

Sizing Controls

Controls are sized by clicking and dragging the small gray rectangle in the lower
left comer of a control. Of course, the option key must be held down to size a
control.

Holding down the command key while sizing a control will size the control's
height to the recommended Commando height (remember in the Commando
documentation that each control has a height that works and looks best). Also,
the right edge will be aligned to a four pixel grid. Simply clicking a selected
control's grow handle with the option and command keys held down will size
the control. Llst and MultiRegularEntry controls will be sized to the nearest
whole line.

Some controls, such as Redirection controls, cannot be resized and have no grow
handles.

Hints and Kinks

As mentioned in the Commando documentation, lines and boxes surrounding
other controls must be declared later in the Commando resource than the
controls they surround. You may encounter situations where you will have to
move a control out of the way in order to select a control underneath.

Controls sized and/or moved in nested dialogs do not go back to their original
size/position when the nested cancel button is clicked.

Editing Labels

To edit a text title label, simply select it the same way as selecting a control. You
can change the text the same way as you would change the text for an icon in the
Finder. Once the title is selected, you don't hold down the option key to change
the text.

Apple Computer Confidential
-2-

Editing Help Messages

Whenever you select a control, the control's help message gets '1ocked" in the
help window. You can edit the help message like a regular text edit field (note
that you don't hold down the option key when editing the help message). The
help message stays locked until another control is selected (and then the new
control's help is locked) or until all the controls are unselected.

Saving the Modified Commando Dialog

Once any control is sized or moved and the main cancel or do it button is clicked,
Commando will prompt you with a save dialog. The save dialog has three
options: 1) save the resource, 2) don't save the resource, or 3)-cancel the save
dialog and go back to Commando for more editing.

When Commando saves the resource, it simply replaces the original resource,
wherever it came from. The next time you run Commando on the changed
resource, the control positions and sizes will be where you last left them. You
can then DeRez the cmdo resource to get the actual coordinates or to simply
generate the .r file that will be used in a build.

Version Item in Commando Dialogs

Commando allows you to put a version string in your commando dialogs. The
string is centered below the "do it" button. Here is the declaration for
VersionDialog:

case V ersionDialog: /* Display a dialog when the version# is clicked•/
key byte = V ersionDialogID;
switch {

};

case V ersionString: /* Version string embedded right here • /
keybyte=O;
cstring;

case V ersionResource:
key byte= l;
literal longint;
integer;

/*Version string of tool (e.g. V2.0) •/

/* Versions string comes from another resource • /

/* resource type of pascal string containing version string • t
/* resource id of version string • /

cstring;
align word;

/* Version text for help window • /

integer noDialog;/* Rsrc id of 'DLOG" • t
I* NOTE • l: if there is no modal dialog to display when the version

string is clicked. set the me id to zero (noDialog).

NOTE •2: if the version string comes from another resource (V ersionResource),
the string must be the first thing in the resource and the string must be
a pascal-style string. A 'STR 'resource is an example of a resource that
fits the bill.

NOTE • 3: if the modal dialog is to have a filter proc, the proc

Apple Computer Confidential
-3-

(·must be linked as a 'fltt' resource with the same resource id
as the dialog.•/

J ._(!!iii!!i!!Ci!!8i!!nc9e91 -~)
K Rez B

2.0

Version String

The version string may be embedded in the commando resource using the
"VersionString'' case or the version string may come from a resource using the
''VersionResource" case. If the version comes from a resource, the resource must
simply contain a rez-style pstring. This can be used with the SetVersion tool to
read the 'MPST resource.

As usual, the help string is a string that is displayed when the version string is
clicked. Typically, this help string contains more detailed author/version
information.

For extra flair, a dialog may be zoomed out when the version string is clicked. If
a dialog is specified, you must give the resource id of the DLOG resource (found
in your tool or script) to display. Commando simply calls ModalDialog() with
that dialog. If you want to have a custom filter proc, you must compile the filter
proc as a standalone resource with a resource type of 'fl.tr' and with the same id
as the DLOG resource. The visible/invisible flag in the DLOG resource should
be set to invisible. Commando will move the DLOG window so that the bounds
rect specified in the DLOG is relative to the bounds of the Commando dialog.

NOTE: if you do not specify a VersionDialog commando item, Commando will
attempt to add one for you by looking for a 'vers' resource with an id of 1. If
found, Commando will display the short version string under the "do it" button.
When the version string is clicked, Commando will display the long version
string in the help window. If a 'vers' (1) resource is not found, Commando will
look for a 'vers' (2) resource. If not found, no version string will be displayed.

Strings and Shell Variables

It is possible to dynamically change strings in Commando dialogs by having
those strings come from shell variables. To make strings come from shell vari­
ables, simply make the string like this:

"{shell variable}"

The string must begin with a'{' and end with a'}'. No leading or trailing spaces
are allowed. The shell variable must be an exported variable. If the variable is

Apple Computer Confidential
-4-

undefined at the time the Commando dialog is envoked, the variable name with
braces will be displayed.

This feature is used in some of Projector's Commando dialogs to display the cur­
rent user:

User Tom Taylor.~-.....

Or {{-1}}, ReqularEntry

} ,

"User",
{81, 78, 96, 113},
{ 81, 120, 97-; 294},

"{User}", t-------------­
iqnoreCase,
"-u",
"Enter the name of° the current user. If no name is"
" entered, the name in {User} is used."

Note #1: when Commando is envoked with its built-in editor, shell variable
strings will not be expanded to the shell variable values. This is so the strings
can be edited and then saved as shell variables and not as the values of shell
variables.

Note #2: any string in the Commando resource can be a shell variable. This in­
cludes option strings, help strings, titles, etc.

Apple Computer Confidential
-5-

Syntax

Description

('

SetVersion-maintain version and revision number

.~ Setversion [optton . . . 1 file

Version and revision numbers for an application or MPW tool specified by file are
assumed to be maintained in the form "ver.retl', where veris considered a version
number and rev a revision number. These values may be displayed by an
application's •about box" or when an MPW tool's -p option is used. Use SetVersion
to independently maintain the version and revision numbers as a resource in the
application or tool. Optionally, SetVersion can update a version and revision string
in a source file. Pascal, C, and Rez source files are supported.

The current version and revision values are always assumed to be in the specified
file's resource fork as a string resource with the resource type 'MPST' and a resource
ID of 0 (you can use the -t and -i options to specify another resource type and ID
number if desired). The resource will be created by SetVersion if it is not already
there. The string always contains the characters "Version ver.ret/', where verand
rev are digits. The version may optionally be prefixed with an arbitrary string (­
prefix), and the revision may be similarly suffixed with an arbitrary string (-suffi.-.c)
for more complex version numbering (such as "Version xl.2382").

SetVersion can perform the following functions on the version and revision values:

o Increment the version number by 1 (-v).

o Set the version number to a specific value (-sv).

o Increment the revision number by 1 (-r).

o Sec the revision number to a specific value (-sr).

The 'MPST' resource attached to the application or tool is considered the location
of the version and revision. If you attach the 'MPST' resource to the actual
application or tool, it will "go" wherever the application or tool goes! Thus the
application or tool filename is a required parameter to SetVersion. However, the
values contained in the 'MPST' resource can be used to set a corresponding string
constant in a source file used to generate the application or tool. This feature is
optional, but it should be used for two reasons. First, it explicitly allows the source
to reflect the version and revision numbers in the 'MPST' resource. Second, if, for
any reason, the 'MPST' resource cannot be accessed, the constant can be used.

SetVersion

Type

Input

Output

Diagnostics

Status

11-2

The following Pascal code fragment illustrates how the 'MPST resource and its
corresponding source string constant can be used to access the version and
revision of an MPW tool. First, in the case of Pascal, the source constant is assumed
to be declared as follows (all the formats are discussed under •options" below):

-CONST
Version• '1.2'; {ver.rev string const.}

The following procedure can now be used to get the current version and revision
numbers:

PROCEDURE GetVerRev(VAR VerRev: Str255);

VAR
H: StringHandle;
i: Integer;

BEGIN {GetVerRev - get current nver.rev")
H :• StringHandle(GetResource('MPST', 011: {Get 'MPST' rsrc
IF a• NIL THEN {Use string const.}

VerRev :• Version {if not found l
ELSE

BEGIN
i :=- Pos('Version', H""'I + 8; {Start of ver.rev l
VerRev :• Copy(HAA, i, Length(HAA)-i+ll: {Extract from rsrc}
END;

END; {GetVerRev)

Normally, SetVersion is used with its -r option as part of a makefile to automatically
increment the revision number each time the application or tool is rebuilt. For
each (major) release the version number should be incremented and the revision
reset to 0. Note that when SetVersion modifies the application or tool, or updates a
source file, the modification date is not changed. Therefore, makefiles will not be
affected by the use of SetVersion.

Tool.

The file parameter specifies the filename of an application or tool containing the
'MPST string resource.

None.

Errors are written to the diagnosti_c file.

The following status values may be returned:

SetVerslon

0 Normal termination
1 Parameter or option error
2 Execution terminated

c~,

SetVersion

Options

11-4

-csource file

-d

-fmt nf.mf

Update the string constant in the C source specified by the file.
The constant is set to be the same as that specified by the 'MPST'
resource string in the application or tool. It is assumed that the
constant is defined as a string constant in a #define, somewhere in
the first 12800 characters (25 512-byte blocks) of the file, as
follows:

idef ine6.Version "ver. rev"""""""""""!* some comment" I

The A's indicate required spaces. There may be any number of
spaces before the required comment. However, because
SetVersion edits the line in-place, there must be enough room to
allow for changes in the size of the version and revision values­
otherwise an error will be reported to the diagnostic file. Case is
ignored, and C comments are skipped, when searching for the
characters "#define.6Version• in the source. The -verid may be
used to search for a different #define identifier if desired.

Write the (updated) version and revision values contained in the
'MPST resource string to the diagnostic output file.

Format the version and revision values according to the .specified
format The format of the resource is changed only if the version
and/or revision is actually changed (-sv, -v, -sr, -r). The format is
specified as nf.mf, where f is either of the letters D or Z, and n
and m are integer values from 1 to 10, which specify the field
widths of the version and revision numbers respectively. If the
version or revision value is larger than the specified field width,
the width is enlarged to contain the entire value. Each field is
independently padded up to the specified width with leading
zeros or blanks according to the setting off. "D" indicates
leading blanks, and "Z" indicates leading zeros. For example, a
format of 1Z.3Z for a version/revision value of 10.2 would be
formatted as dl0.002. The default format is lZ. lZ. Only the
version format (nf) or revision format (.mf, the period is
required) need be specified, allowing the other value to format
according to the default

SetVerslon

(

.-SaWarslon Opt1on1----------:--:_-_-:_-_-:_-_-:_-:_-:_-:_-:_-:_-:_-_-:_-_-:_-.,• ,__ _____________ '"'.-Options-
(Rppllcatlon or MPW Tool Name] O Dl'plag O Increment uerslon
.-Source Flies-======~ O ProgrHs D Increment rPulslon
Pase al Sou re e I I Se1 l•enlonO Se1 Re1.1l,lonl !
c Soun e -1 I .-layout Ir
Rez Soun e I I ~ PrenH I J
c.:..:.::..:.:......:._.....!:=====~ fo1ma1 ~ Sutt114 I I
.-Resource Rttr1butes-
Resour< e 'hjpe I MP~T I
Resoun e Ill fQi

l~ersion Id
II IJerslon

En·or I --,;..._---u

~Help J [Cancel
ool w "llllllutien yorsloft/r...Wilf'I _..,. c·-r..,•) -----.

Oelw'atH/....,m.irls • :rtnlt , .. _"•tool w .,,HMtioll. f Se tUerslon J
!...---------------------

SetVersion

11-6

-i resid The 'MPST resource ID is the specified resid. The default is to use
a resource ID of 0. ('The -t option may be used to specify the
resource type.)

-p Write SetVersion's version number and the contents of the 'MPST
resource to the diagnostic output file. (You can use the -d option
just to output the 'MPST information to the diagnostic output file.)

-pre.fix prefix Set the prefix string on the version. The prefix may be any
sequence of characters that does not end with a digit (0-9) or a
blank.CA blank could be inserted by choosing an appropriate -
fmt format with leading blanks for the version number.) Once the
prefix is set, you can chang~ it only by specifying another -prefix
string. Altema'.tively, you can remove the prefix by specifying the
prefix as a period (.).

-[p]source file Update the string constant in the Pascal source specified by the
file. The constant is set to be the same as that specified by the
'MPST resource string in the application or tool. It is assumed

-r

that the constant is defined in a CONST section somewhere in the
first 12800 characters (25 512-byte blocks) of the file as follows:

Version = 'ver. rev•; AAAAAAAAAAOMOM4 {some comment}

The .cl's indicate required spaces (Spaces or tabs may surround
the ·=·). There may be any number of spaces before the required
comment However, because SetVersion edits the line in-place,
there must be enough room to allow for chaf?.ges in the size of the
version and revision values-otherwise an error will be reported
to the diagnostic file. Case is ignored, and Pascal comments are
skipped, when searching for the "Version• identifier in the source.
The -verid may be used to search for a different identifier if
desired.

Increment the revision by 1.

SetVerslon

.r­
\,_~/

-re7.Source file Update the 'MPST' resource definition in the Resource Compiler
source specified by the file. The definition is set to be the same as
that specified by the 'MPST' resource string in the application or
tool. It is assumed that the definition is somewhere in the first
12800 characters (25 512-byte blocks) of the file and is specified as
follows:

-sr revision

-suffix suffix

-sv version

-t type

-v

-verid identifier

type 'MPST' as 'ST~';

resource~'MPST' (0) {

"Version ver. rev"""""""""""""""!* some comment* I
) ;

The l1's indicate required spaces. There may be any number of
spaces before the T'equired comment. However, because
SetVersion edits the line in-place, there must be enough room to
allow for changes in the size of the version and revision values-­
otherwise an error will be reported to the diagnostic file. Case is
ignored, and Rez comments are skipped, when searching for the
characters "resourcel1'MPST'" in the source. Note that, because
this is a resource definition and destined to be placed in the
application's or tool's resource fork, this option defines the actual
string resource that SetVersion will seek in the application or tool.
The "Version" in the string here is fixed, and not controlled by
me .
-verid option.

Set the revision to the specified revision integer value.

Set the suffix string on the revision. The suffix may be any
sequence of characters that does not begin with a digit (0-9). Once
the suffix is set, it can be changed only by specifying another -
suffix string, or removed by specifying the suffu: as a period (.).

Set the version to the specified version integer value.

Use the specified resource type instead of 'MPST'. (The -i option
can be used to specify the resource ID.)

Increment the version by 1.

Use the specified constant identifer when searching for the
-[plsource CONST identifier or -csource #define identifier.

SetVersion

Example

11-8

setversion -d -sv 1 -r Asm -psource GlobalDcls -rezsource Asm.r

Increments the revision for the MPW Assembler (-r) in the resource fork of the file
Asm. The version is fixed at 1 (-sv), so that Asm will display the version and
revision as "I.rev" The Pascal include file, GlobalDcls, co~ntains the Assembler's

·-global declarations, including the Version string. This include file is updated to
match the 'MPST resource (-psource). The resource definitions for the Assembler,
in Asm.r, will be similarily updated (·reDC>urce). Finally, this command displays
the new version of the diagnostic output file (-d).

SetVerslon

(

(;
/

Choose --- choose or list network volumes and printers

Syntax Choose [options ...] name ...

Description Choose non-interactively mounts or lists the specified AppleShare volumes or printers.

Input

Output

Each name takes the form:

[zone]: [server [:volume]]

("Server" means any file or printer server). The zone name is always optional, and
defaults to the current zone. A server name must be preceeded by (at least) a colon.
Volume names are only applicable to file servers.

When mounting file server volumes, a server name is required. If a volume name is
specified then only that volume is mounted. If the volume name is omitted, or if it is the
wildcard character •,,.•, then all volumes on the server are mounted:

[zone] :server:volume
[zone] : server [:=]

When -list is specified, the wildcard character • ... • may be used in place of names in all
of the fields: •,..• in the zone field expands to all zones; • ... • in the server field expands to
all servers in the specified zones; "=" in the volume-name field expands to volumes on
the specified servers Oisting volumes on a server requires a server login, i.e. as a user with
a valid password or as a guest).

-list also expands the next unspecified item in a name. A zone name followed by
nothing else will expand to a list of servers in that zone, and a server name followed by
nothing else will expand to a list of volumes on the server.

If a"=", •:•or •a• character appears in a server, volume or zone name, it may be quoted
with the quote character •a•. This quoting mechanism is in addition to quoting already
performed by the shell.

Any number of volumes may be mounted (though there is actually a system-dependent
limit on the number of active server connections). Only one printer may be chosen at a
time, since only one printer can be active.

Server and volume passwords are case-sensitive. More than one server and volume may
be mounted with a single command, but the server and volume passwords must be the
same for each, since at most one password of each type may be specified on the
command line.

None.

If -list is specified, the names of zones, servers and volumes on file servers are printed in
a form suitable for re-input to Choose command lines. If -c is specified, the name of the
tool (plus appropriate options) appears on each output line.

If -v is specified, the names of volumes that were mounted are printed .

If -cp is specified, the name,type and driver of the currently chosen prin~r is printed.

Diagnostics Errors are written to diagnostic output.

-2-

Status

Options

Various confusing messages (such as "No AFPLogin call has been successfully made for
this session") are usually the result of a missing or mis-typed password.

The following status codes are returned:
0 no errors
1 syntax error on command line
2 abort (Command-.)
3 any other error

- -list Print information about the specified network entities.

-c Preceed each line of -list output with the name of the Choose tool (i.e. output
Choose commands).

-type typename
This option sets the type of the network object to choose or list. The type name
is not case sensitive. For mounting or listing volumes, the type name defaults co
'AFPServer'; for choosing or listing printers, it defaults to the name of the current
printer driver (e.g. 'La.serWriter'). Use this option to choose or list network
entities of other types.

A type name of • .. • or •=• matches all network entity types. It is possible to list
or attempt to mount network entities that are not chooseable. For instance, it is
not possible to mount or list volumes on servers of types other than 'AFPServer'.

-p Writes Choose's version number and blow-by-blow progress information to
standard output. This is reassuring when doing listings which can take several
minutes (e.g. every server on the internet).

The following options are applicable to file servers only, and may not be specified in
conjunction with any printer options:

-u name
Specify the user name for the server log-in. This option has precedence over the
shell variable "{User}", which in turn has precedence over the user name string in
the system resource file ('STR' -16o96). If no valid user name is found in any of
the above locations, then -guest is assumed.

-guest Log-in as a "guest" instead of with a user name.

-pwpassword
Specify the server log-in password. The server password defaults to the value of
the shell variable "{ServerPassword}".

-vp password
Specify the volume log-in password. The volume password defaults co the value
of the shell variable "(VolumePassword}".

-v Print the volume names (only) of any volumes mounted. Colons are appended
to each volume name. This is useful in shell scripts when volume names are not
known ahead of time.

- 3 -

(The following options are applicable to printers only, and may not be specified in
conjunction with any file server options:

-pr Specify that a printer is being chosen or listed.

<p Print the name and type of the currently chosen printer on standard output. This
occurs before any new printer is chosen.

-dr drivername
Specify the driver name of the printer to choose. This is the name of a printer
driver in the system folder (e.g. "lmageWriter").

Examples Choose :Linker:Sources

See also

Mount the volume "Sources" on the server "Linker", which is located in the current zone,
using the default user name, server password and volume password.

Choose -v -guest 'Systems:Sources:Doc' 'Systems:Games:='

Mount the volume "Doc" on the server "Sources" and every volume on ;he server
"Games" in the zone "Systems" as a guest Print the names of the volumes that are
mounted by the command.

Choose -list 'Whale Zone:~' 'Whale Zone:Moby Dick:=' '=:'

List all file servers in the zone "Whale Zone", all volumes on the file server "Moby Dick"
in that zone (after logging-in with the default user name and server password). List the
names of all zones.

Choose -pr -list ':='
Choose -cp -pr "Zarf:Kitchen Sink"

List all printers of the current type in the current zone. Print the name of the currently
selected printer, then select the printer called "Kitchen Sink" in the zone "Zad''.

Choose -list -type "Fortune Cookie Server" '=:='

List all network entities of type "Fortune Cookie Server" in all zones.

Unmount and Volumes commands.

-4-

Changes to Choose (vet'Sion 1.0 D3) 15-Jan-1987

1. Most of the switches have been renamed (for brevity and consistency with other tools).

2 The "{UserName}" variable has been renamed to "{User}" for consistency with Projector.

3. The naming syntax for network entities has been completely changed. The new syntax
("zone:volume:server" instead of "server:volume@zone") also permits "wildcard" expansion for
listing and mounting, eliminating the need for shell loops to list entities in different zones or
servers.

If you have any shell scripts that used the original version of Choose (1.0 Dl) you will have edit
them a little before they'll work again.

4. Printer support is included (-pr, -cp and -dr options).

Known Bugs and Features

1. Choose will work only with AppleShare 1.1; when the network group releases AppleShare 2.0 some
minor changes will be made.

2 You cannot choose non-AppleTalk printers (e.g. ImageWriters) yet

- 1 -

(

(

Dumpfile - display contents of an arbitrary file

Syntax DumpFile [option ... l filename

Description DumpFile permits the user to display the contents of the resource fork
or the data fork of a file in a variety of formats.

Input

Output

DumpObj does not read standard input.

DumpObj writes formatted object file records and disassembled code to
standard output.

Diagnostics Errors and warnings are written to diagnostic output. Progress
information is also written to diagnostic output with the -p option.

Status

Options

Examples

DumpObj may return the following status values:
O No problem
2 Fatal error
3 User interrupt

-rf
-a

-h
-o
-wnn
-gnn
-p

display the resource fork of the file. (Default is data fork.)
Suppress display of ASCII character values.
Suppress display of hexadecimal characters.
Suppress display of file offsets.
Width - display nn bytes on each line of output.
Group nn bytes together without intervening spaces.
Write progress information (such as the name of the file
being dumped and the version of DumpFile) to diagnostic
output.

-r bytel[,byteN] Display only the byte range from bytel to byteN.

DumpFile -p ATestFile

Formats the data fork of the file ATestFile and writes its contents to
standard output. This output has the following format:

DumpFile -p ATestFile
MPW File Display Utility Version 3.0Al Release April 15, 1988 Start: 1:24:0(~.,,

Copyright Apple Computer, Inc. 1985-1988
All Rights Reserved.

File : ATestFile
Data Fork Length : 20
Resource Fork Length : 382
Dumping Data Fork from off set 0 to 20

O: 54 68 69 73 20 69 73 20 61 20 74 65 73 74 20 66 This.is.a.test.f
10: 69 6C 65 2E ile.

DumpFile completed normally

Execution r.equired O seconds.

DurnpFile -w 12 -g 4 ATestFile

Formats the data fork of the flle ATestFile and writes its contents to
standard output, grouping four bytes at a time and displaying 12 bytes
per line. This output has the following format:

File : ATestFile
Data Fork Length : 20
Resource Fork Length : 382
Dumping Data Fork from off set 0 to 20

0: 54686973 20697320 '61207465 This.is.a.ta
C: 73742066 696C652E st .file.

DumpFile -rf -r 0,30 -g 4 ATestFile

Formats the resource fork of the file ATestFi/e and writes the contents of
bytes 0 through 30 to standard output in four byte groups. This output
has the following format:

File : ATestFile
Data Fork Length : 20
Resource Fork Length : 382
Dumping Resource Fork from off set O to 30

0: 00000100 0000014C 0000004C 00000032 L ... L ... 2
10: 696C652E 6F127920 2227227B 646972 ile.ory."'"{dir

\ •. .
~r··

(
Wherels~search for files in directory tree

Change History
Changed-m option to -c for "completely match".
Made -d option include rather than exclude directories. The default is
now_files only.

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Wherels [-c] [-d] [-v] [-s dir] pattern

Find the location of all files that contain pattern as part of their file name.
Wherels can be used to find files hidden in the directory tree. Pattern is
a full or partial file name. For example, a pattern of "test" will match
TestProg.c, testc, and Work:OutputTest. Wherels will start searching
in the root directory of the default volume and search the entire disk. To
constrain the search to a portion of a disk, or to specify different disks,
or multiple disks, use the -s option. To list any directories contain
pattern, use the -d option. To constrain the search to files that
completely match pattern, use the -c option. The -v option will print the
number of items matched with pattern. Matching is not case sensitive,
and regular expressions are not supported.

Wherels will list the fuU path name of all files and directories found.
Files that contain special characters will be quoted.

File Management

None.

The full path name of any file that contains pattern is written to standard
output. Also, the total number of files and directories found is written to
standard output.

Errors are written to diagnostic output.

Wherels may return the following status values:

0 No errors
1 Syntax error
2 File system error during processing
3 No matches were found

-c

-d

-v

List only files that match pattern completely. (In other
words, treat pattern as a filename.)

Match directories also.

Print a summary line that counts the number of items
matched.

Examples

. -s dir

Whereis test

Normally, Wherels starts searching in the root
directory of the default volume. This option constrains
the search to start in dir. Multiple starting directories
may be specified. (Each directory must be preceded
by -s.) Since searching a large hard disk may take
several minutes, this option can be used to speed up
the search when you know the general location of a
file.

Find all files that have "test" in their file name. The output would be
something like:

HD:MPW:test.c
HD:MPW:test.c.o
HD:MPW:TestMenu.c
HD:MPW:TestProg.p

Whereis -c test.c

Find files named testc. The output (with the same files as the example
above) would be:

HD:MPW:test.c

Whereis -d test

Find all files or directories that have "test" in their leaf name. The output
would be:

HD:MPW:TestDir:
HD:MPW:test.c
HD:MPW:test.c.o
HD:MPW:TestMenu.c
HD:MPW:TestProg.p

Whereis -s HD:MPW -s Disk2:Work test

Find all files that have "test" in their path name. Search for the files starting
in HD:MPW and also in Disk2:Work.

('•

(,

Sort -sort or merge lines of text

Syntax Sort [opttons ... J (files ...]

Description Sort sorts or merges the specified files and prints the result on the standard output. If no
input files are specified, standard input is assumed.

Fields and Field Specifications
-' The -f option (see "Options• below) is followed by a comma-seperated list of field

specifications. Lines are sorted by extracting and comparing the fields in the order
specified until a comparison yeilds inequality. If a field exists in one line, but not the
other, the line that possesses the field "wins". If neither line has a field, the lines are
considered equal. Fields not sorted on will be output in "random" order (Sort is not a
stable sort).

Each of the field specifications takes one of the forms:

(F] (. C] (-K] (modifie7S]
(F] (.C] (+N] (modifie7S]

'F' is a field number, '. C' and '-K' are column numbers, and '+N' is a character count.
Any of the items may be omitted, as long as at least one item appears. '-K' and '+N' are
mutually exclusive. Spaces may appear anywhere in the specification (except within
numbers), but they will require shell quoting.

Fields are numbered from 1. A field is a string of characters surrounded by newlines or
field seperator characters (usually whitespace; see the -fs option). Typically field 1 would
be the first word on the line, field 2 the second word, and so on. Field 0 represents the
entire line, and is the default if a field number is not specified. Field seperator characters
are treated as normal text (not seperators) in field 0.

Columns are numbered from 1. If ' . C' is specified, it represents a starting offset into the
field, taking into account the (file-dependent) varying width of tab characters, if
necessary. '. C' defaults to 1 if it is not specified

If 1-K' is specified it represents the last column to be included in the field. It defaults to
"infinity" (the maximum K possible) if not specified Except for field 0, fields are always
terminated by field-seperator characters, so a large K does not mean "the rest of the
line".

If '+N' is specified, it represents the number of characters to be included in the field ·(this
differs from '-K' in that tabs are always counted as single characters). It defaults to
"infinity" (the maximum N possible) if not specified.

- 1 -

Input

Output

Here is a short description of all possible field specifications:

F
F.C
F.C·K
F.C+N
F·K
F+N
. c
• C-K
• C+N
-K
+N

The entirety of field F.
Columns C ... oo in field F.
Columns C ... K in field F.
N characters starting at column C in field F.
Columns 1.. .K in field F.
The first N characters in field F.
Columns C in the whole line .
Columns C ... K in the whole line .
N characters starting at column C in the whole line .
Columns 1. .. K in the whole line.
The first N characters of the whole line.

A field specification may be followed by one or more modifier characters:

r
b
q .
dxtlu

Reverse order of comparison (reverses -r).
Ignore leading blanks (reverses -b).
Interpret quotes when extracting field (reverses -quote).
Treat field as decimal (d), hexadecimal (x), normal text (t),
lowercase text CD or uppercase text (u). These modifiers are
mutually exclusive.

These modifiers override the corresponding command line options on a field-by-field
basis Cr, q and b flip the meaning of -r, -quote and -b).

When sorting multiple files, each file may have its own tab setting. When comparing
column-aligned fields, Sort correctly handles varying-width tabs, even when comparing
records from different files.

The specified files, or standard input if no files are specified.

If sorting or merging, the concatentation of all specified input files, sorted by the
specified fields.

If -check is specified, no output is generated; the exit code of the tool indicates if the
input was pre-sorted or not

Diagnostics Errors are written to diagnostic output

Status

Options

The following status codes are returned:
0 no errors
1 syntax error on command line
2 abort (Command-period)
3 any other error
4 out of memory
5 input is not sorted

-b Skip leading blanks in each field.

-check Do not sort, but check if the input is already sorted. Exit with status 0 if the
input is sorted, exit with status 5 if the input is not sorted. No output is generated

-d Sort fields as decimal numbers. The numbers can be of arbitrary length.

-f fieldl[Jield2 ...]
Specify fields to sort by. The default field specification is to sort entire lines as
text. (See the discussion on field specifications above).

- 2 -

Examples

-fs· string
Specify the field seperator characters. The default field seperators are space, tab,
backspace and form-feed. Fields may not cross newlines. This switch completely
replaces the default set of seperators with the specified set.

-1 Convert characters to lowercase before comparing them.

-merge Assume each input file is already sorted, and merge the input files into
the output file. If one or more of the input files is not sorted, .the output will not
be sorted.

-o file Specify the output file (default is standard output). With this option it is possible
to sort (though not to merge) a file "in place"; the output file may be one of the
input files.

-p Print version and progress information.

-quote Field extraction is modified by ignoring field seperators enclosed in single and
double quotation marks. Characters preceeded by the shell quote character Ca)
are properly escaped Quotation marks themselves are ignored -in comparisons,
and sets of alternating quotes (e.g. ' " ' ... stuff ... ' " ') may be nested to any
depth. If a quote "dangles" (there is no matching quote before the end of the
line) then the field extends to the end of the line.

-stdin This option serves as a place-holder for the standard input, making it possible to
sort or merge standard input with other files.

-r Reverse order of comparison.

-t Sort fields as text (default).

-u Convert characters to uppercase before comparing them.

-unique
Output lines that are identical (with respect to the fields specified with the -f
option) are printed only once.

-x Sort fields as hexadecimal numbers (upper or lower case). The numbers can be
of arbitrary length. A leading dollar sign ($) or 'Ox' is ignored as whitespace.

Sort able -std.in baker -o output

Sort the files "able", "baker" and the standard input, with output to file "output".

Sort -x -f '2.2+8, ltr' frog

Sort the file "frog•. The first key to sort on consists of eight characters starting at the
second column of the second field, treated as a hexadecimal number. The second key to
sort on is merely the text of the first field, in reverse order.

Sort -p -merge -u one two three infinity

Merge the specified files, treating lowercase characters as uppercase. Print version and
progress information.

-3-

Macintosh• Programmer's• Workshop

3.0

Rez & DeRez
ERS

Tom Taylor
October 8, 1987

(

Introduction

With the development of the Macintosh II and color QuickDraw came new resources that
have a structure that cannot be fully expressed in the Rez language. The goal of this ERS is
to present extensions to the Rez language that would enable these new resources to be fully

supported in.MPW 3.0.

At this point. Rez is the only scriptable resource maniputation tool supported by MPW.
Some resource operations, needed by those "internationalizing" system disks and
applications, requiring deleting resources and changing resource attributes. Presently, the

only way to do this is with ResEdit. or by some other means. This ERS presents simple
extensions to Rez to support deleting resources and changing resourc~ attributes.

Supporting the New Resources

In order to support the new color QuickDraw resources, the concept of labels must be

incorporated in the Rez language. Labels allow offsets to be calculated and allow accessing
of data at a label.

Labels

Labels have a syntax definition like this:

label ::= character {alphanum}* '·'
character · ·= '_' I A I B I C ...

number : : = O I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9
alphanum : : = character number

Labeled statements are valid only within a resource type declaration. A single label may
appear on any statement

Labels may be used in expressions. When labels are used in expressions, only the

identifier portion of the label (everything up to, but excluding, the colon) is used (see the
section Labels jn Arrays for more information). The value of a label is always the

off set, in bits, between the beginning of the resource and the position where the label

occurs when mapped to the resource data. For example:

Macintosh • Progranuner's •Workshop 3.0 -- Rez & DeRez ERS .,

type 'cool' {

cstring;
endOfString:

integer = endOfString;
} ;

resource 'cool' (8) {

"Neato"

In this example, the integer following the cstring would contain: (len("Neato") [5] +
null byte [1]) * 8 [bits per byte] = 48.

In some cases, it is desireable to access the actual resource data that a label points to.

Several new built-in functions allow access to that data:

$$BitField(1abe1, startingPosition, numberOfBits)
Returns the nwnberOjBits (maximum of 32) bitstring found startingPosition

bits from label.

$$Byte (label)

Returns the byte found at label.

$$Word (label)

Returns the word found at label.

$$Long (label)

Returns the longword found at label.

For example, the resource type 'S1R ' could be redefined without using a pstring:

type 'STR ' {

len: byte = (stop - len) I 8 - l;

string[$$Byte(len)];

stop:

} ;

Labels jn Arrays

Macintosh• Programmer's •Workshop 3.0 -- Rez & DeRez ERS

3

(

f

c \

Labels declared inside arrays can have many values. For every element in
the array, there is a corresponding value for each label defined inside the
array. To access the individual values of these labels, array subscripts are
used. The subscript values range from 1 to n where n is the number of
elements in the array. ·Labels within arrays nested in other arrays require
multidimensional subscripts. Each level of nesting adds another subscript.
The rightmost subscript various most quickly. For example:

type 'test ' {

foo:

} i

integer = $$Count0f (arrayl);
array arrayl {

} ;

integer = $$Count0f(array2);
array array2 {

integer;
} ;

resource 'test' (128) {

{

{1,2,3},
{4,5}

}

} ;

In the example above, the label foo would take on these values:
foo[l,1] = 32 $$Word(foo[l,l]) = 1
foo[l,2] = 48 $$Word(foo[l,2]) = 2
foo[l,3] = 64 $$Word(foo[l,3]) = 3
foo[2,1] = 96 $$Word(foo[2,1]) = 4
foo[2,2] = 112 $$Word(foo[2,2]) = 5

A new built-in function may be helpful in using labels within arrays:

$$Arrayindex(arrayname)
Returns the current array index of the array arrayname. An error
will occur if this function is used anywhere outside the scope of
the array arrayname.

Macintosh• Programmer's •Workshop 3.0 -- Rez & DeRez ERS
A

Label Ljmitatiops

Understanding the fact that Rez and DeRez are basically one-pass compilers
will help [.OU understand some of the limitations of labels:

• In order to derez a given type, that type must not contain any expressions
that contain more than one undefined label. An undefined label is a label
that occurs lexically after the expression. Using a label in an expression
before the label is defined, will define the label. The example belows
demonstrate~ how expression can only have only one undefined variable:

type 'teat' f

/* In th• expreaaion beiov, atart i• defined, next ia undefined. */

at art: integer • next - atart;

/* In th• expreaaion beiov, next ia defined bec:auae it vaa uaed

in a previoua expreaaion, but finai ia undefined. */

m.iddie: integer • finai - next;

next: integer;

finai:

} ;

Actually, Rez can compile types that have expressions containing more than
one undefined variable, but DeRez will W21 be able to decompile those
resources and will simply generate data resource statements.

• The label specified in $$BitField(), $$Byte(), $$Word(), and $$Long()
expression lDJlli occur lexically before the expression, otherwise an error is
generated.

Examples

Example #1

This is the modified 'ppat' declaration using the; proposed Rez labels (everything that is

changed is bold). Previously, the whole end section of the resource had to be combined

into a single hex string (everything below the PixelData label). Using labels, the complete
'ppat' definition can now be expressed in Rez.

Macintosh• Progranuner's •Workshop 3.0-- Rez & DeRez ERS

5

(<

(

c

type 'ppat' {

/* PixPat record */

integer oldPattern,

newPattern,

ditherPattern;

unsigned longint = PixMap I 8;

unsigned longint = PixelData I 8;

fill long;

fill word;

fill long;

hex string [8];

/* PixMap record */

PixMap:

fill long;

unsigned bitstring[l] = l;

.unsigned bitstring[2] = O;

unsigned bitstring[13];

rect;

integer;

integer unpacked;

unsigned longint;

unsigned hex longint;

unsigned hex longint;

integer

integer;

integer;

integer;

chunky, chunkyPlanar, planar;

unsigned longint;

unsigned longint • ColorTa.ble I 8;

fill long;

PixelData:

/* Pattern type */

/* Offset to pixmap */

/* Off set to data */

/* Expanded pixel image */

I* Pattern valid flag */

/* expanded pattern */

/* old-style pattern */

/* Base address */

/* New pixMap flag */

/* Must be O */

/* Offset to next row */

/* Bitmap bounds */

/* pixMap vers number */

/* Packing format */

/* size of pixel data */

/* h. resolution (ppi) (fixed)

/* v. resolution (ppi) (fixed)

/* Pixel storage format */

/* # bits in pixel */

/* # components in pixel */

/* it bits per field "I

/* Offset to next plane "I

/* Offset to color table */

/* Reserved "I

hex atrinq [(ColorTable PixelData) I BJ;

ColorTable:

unaiqned hex lonqint;

inteqer;

/* ctSeed

/* tranaindex

Macintosh• Programmer's• Workshop 3.0 -- Rez & DeRez ERS

*I

*I

*/

*/

} ;

inteqer • $$Countof(ColorSpec)

wide array ColorSpec

} ;

inteqer;

unaiqned inteqer;

unaiqned inteqer;

unaiqned inteqer;

Example #2

1; I* ctSize

/* value

I* RGB: red

I*
I*

qreen

blue

*I

*I
*I
*I
*I

This is another example of a new resource definition with the new features in bold. This
example uses the $$BitField0 function to access information store in the resource to
calculate the size of the various data areas tacked onto the end of the resource. Previously,
all of data had to be combined into one hex string.

type 'cicn' {

/* IconPMap (pixMap) record */

fill lonq; /* Base address */

unsiqned bitstrinq[l] l; /* New pixMap flaq •/

unsiqned bitstrinq[2] - 0; /* Must 0e o */

pMapRovBytea: unsiqned bitstrinq [13]; /* Offset to next row */

Bound•: rect; /* Bitmap bounds */

inteqer; /* pixMap vers number */

inteqerunpacked; /* Packinq format */

unsiqned lonqint; /* Size of pixel data */

unsiqned hex lonqint; /* h. resolution (ppi) (fixed)

unsiqned hex lonqint; /* v. resolution (ppi) (fixed)

inteqer chunky, chunkyPlanar, planar; /* Pixel storaqe format */

inteqer; /* i bits in pixel */

inteqer; /* i components in pixel */

inteqer; /* i bits per field */

unsiqned lonqint; /* Offset to next plane */

unsiqned lonqint; /* Offset to color table */

fill lonq; /* Reserved *I

/* IconMask CbitMapJ record */

fill .long; /* Base address */

maaJcRovByt!l•: integer; /* Row bytes */

rect; /* Bitmap bounds •/

Macintosh• Programmer's• Workshop 3.0-- Rez & DeRez ERS

7

*I

*/

/'

' "-·o·'

(

(

(~

/* IconBMap (bitMap) record */

fill long;

iconBMapRowBytea: integer;

/* Base address

/* Row bytes

} ;

rect; /* Bitmap bounds

fill long; /* Handle placeholder

/* Maak data *I
hex atrinq [$$Word(maakRowBytea) * ($$BitF1eld(Bounda, 32, 16) /*bottom~/

$$BitField(Bounda, 0, 16) /*top*/)];

/* BitMap data */

hex atrinq [$$Word(iconBMapRowBytea) * ($$BitField(Bounds, 32, 16) /*bottom*/

$$BitField(Bounda, 0, 16) /* top */)];

I* Color 'I' able *I
unaiqned hex lonqint; I* ct Seed

inteqer; I* trans Index

intaqe:r; - $$Countof(ColorSpec) 1; I* ctSize

wide array ColorSpec

inteqer; I* value

unaiqned integer; I* RGB: red

unaiqned integer; I* qrean

unaiqned integer; I* blue

} ;

I* PixelMap data */

hex atrinq [$$BitField(pMapRowBytea, 0, 13) *

($$BitField(Bounda, 32, 16) /* bottom */

$$BitField(Bounda, 0, 16) /*top*/)];

*/

*/

*/

*I
*/

*I
*/

Making Rez a More General Resource Manipulator

Macintosh • Progranuner's • Workshop 3.0 -- Rez & DeRez ERS

Right now, Rez is just a resource compiler and a resource mover. By adding two simple
functions, Rez can be a more general purpose resource manipulator.

The first new function is the ability to delete resources from an existing resource file.

NOTE: It must be stated right off that these two new functions are only valid
when the -append option is specified. It makes no sense to delete resources while
creating a new resource file from scratch.

The syntax of the delete statement is this:

delete resource-type [' ('resource-name I ID [:I.OJ') '];

Delete the resource of type resource-type from the output file with the specified
resource name or resource ID range. If the resource name or ID is omitted, all
resources of type resource-type are deleted.

The second new function is the ability to change a resource's attributes. The syntax of the
change statement is this:

change resource-typel ['('resource-name! ID[:ID] ') '] to
resource-type2 ' ('ID [, resource-name] [,attributes ...] ') ';

Change the resource of type resource-typel from the output file with the specified
resource name or resource ID range to a resource of type resource-type2 with the
specified ID. You can optionally specify a resource name and resource attributes. If
the resource name or attributes are not specified, the name and attributes are not
changed.

Macintosh• Progranuner's • Workshop 3.0 -- Rez & DeRez ERS

9

(

ti~ Macintosh~ ResEdit Reference

Beta Version
18 July, 1988

Apple® Technical Publications

This document contains
preliminary information. It does
not include

• final technical information
•a glossary

© Apple Computer, 1988

C APPLE COMPtrrER, INC.

This manual and the software
described in it are copyrighted,
with all rights reserved. Under
the copyright laws, this m1Ulual
or the software may not be
copied, in whole or in part,
without written consent of
Apple, except in the normal use
of the software or to make a
backup copy of the software. The
same proprietary and copyright
notices must be affixed to any
permitted copies as were affixed
to the original. This exception
does not allow copies to be
made for others, whether or
not sold, but all of the material
purchased (with all backup
copies) may be sold, given,
or loaned to another person.
Under the law, copying includes
translating into another lan­
guage or format

You may use the software on any
computer owned by you, but
extra copies cannot be made for
this purpose.

©Apple Computer, Inc., 1988
20525 Mariani Avenue
Cupertino, CA 95014
(408) 996-1010

Apple, the Apple logo,
LaserWriter, and Macintosh are
registered trademarks of Apple
Computer, Inc.

ITC Avant Garde Gothic, ITC
Garamond, and ITC Zapf
Dingbats are registered trade­
marks of International Typeface
Corporation.

Microsoft is a registered trade­
mark of Microsoft Corporation.

POSTSCRIPT is a registered
trademark of Adobe Systems
Incorporated.

Simultaneously published in the
United States and Canada.

2/21/88

(:

Contents

Contents

Chapter 1: ResEdH Overview 1
Uses 2
Extensibility 2
The resource development cycle 3

Overview of resource types S
Resource ID Numbers S

Chapter 2: GetHng Started 7
Installing ResEdit 8
Invoking ResEdit 8
Working With Files 9

Working within a file 10
Working within a resource type 12

Chapter 3: EdHing Individual Resources 1 s
'WIND' (window) resources 17
'ALR'I' and 'DLOG' resources 18
•om• (dialog item list) resources 19
'CURS' (cursor) resources 21
'ICON' resources 22
'ICN#' resources 23
'SICN' (sm;dl icon) resources 25
'FONT resources 26
'PAT ' resources 28
'PAT*' (pattern list) resources 29
Hints and kinks 30

'PICT resource from bitmap 30
PigMode 30
A Suggestion 30

iii

iv

Chapter 4: Making Your Own ResEdit Templates 31

Chapter 5: Extending ResEdit 35
Using the ResEd unit 35
Pickers and editors 36
Writing a ResEdit extension in Pascal 37
The ResEd interface 37

Contents

Data strucrures 37
The resource map entry 37
The parent record 38
The picker record 38

Launcher routines 38
The GiveEBirth procedure 38

Information-passing routines 39
The CaJlinfoUpdate procedure 39
The PassMenu procedure 39

Window utilities 39
The WindAlloc function 39
The WindFree procedure 39
The WindLlst function 40
The WindOrigin procedure 40
The WindSetup function 40

Resource utilities 40
The CurrentRes function 41
The GetlMapEnuy procedure 41
The GeellMapEnuy procedure 41
The GetResLoad function 41
The RevertResource function 41

Miscellaneous utilities 42
The AbleMenu procedure 42
The AddNewRes function 42
The AppRes procedure 42
The BubbleUp procedure 42
The BuildType function 42
The ClearHand procedure 42
The ConcatStr procedure 43
The CopyRes function 43
The DoListEvt procedure 43
The DupPick function 43
The ErrorCheck function 43
The FileNewType function 43
The FixHand procedure 44
The HandleCheck function 44
The MecaKeys procedure 44
The NewRes function 44
The PickEvent procedure 44
The PicklnfoUp procedure 44
The PickMenu procedure 45
The RCalcMask procedure 45

('

(

C· '
Contents

The ResEdID function 45
The ResEdicRes function 45
The ResEverest procedure 45
The RSeedFill procedure 45
The ScrapCopy procedure 45
The ScrapEmpcy procedure 46
The ScrapPaste procedure 46
The SetETitle procedure 46
The SecResChanged procedure 46
The Showinfo procedure 46

v

Chapter 1

ResEdit Overview

Titis chapter in~oduces ResEdit™, a stand-alone application for editing resources.

ResEdit is an interactive, graphically based application for manipulating the various resources in a
Macintosh® file. (Some Macintosh files don't have any resources, but all applications and most of
the System Folder files do.) If you are used to other computers, you will rapidly discover that
resources are handled very differently on the Macintosh computer. They are kept distinct from data
in a special part of the file (the resource fork) and are separated from each other in small packages
so that individual resources can be examined and edited easily.

There are many different types of resources, and you can create your own with ResEdit if you don't
fmd the type you need. It lets you create and edit all standard resource types except 'NFN"T' and
'snd ', and copy and paste all resource types (including 'NFNT' and 'snd '). ResEdit actually includes
a number of different resource editors: There is a general resource editor for editing any resource in
hex and ASCil format, and there are several individual resource editors for specific resource types.
Many resource templates are predefmed. You can also create your own resource editors or
templates to use with ResEdit. Thus, for example, you could build a template that would permit you
to do some editing of 'snd ' resources. It is not particularly useful to build a template for 'snd '
resources; nor is attempting to edit 'CODE' resources with the general resource editor - there are
better ways to accomplish these ends!

Uses

ResEdit is especially useful for creating and changing graphic resources such as dialog boxes and
icons. For example, you can use ResEdit to put together a quick prototype of a user interface and
cry out different formats and presentations of resources. Anyone can quickly learn to use ResEdit for
translating resources into languages other than English without having co recompile programs. You
can use ResEdic co modify a program's resources at any stage in the process of program
development.

Extensibility

A key feature of Res Edit is its extensibility. Because it can't anticipate the formats of all the different
types of resources that you may use, ResEdic is designed so that you can teach it co recognize and
parse new resource types.

There are two ways that y.ou can extend ResEdit to handle new types:

o You can create templates for your own resource types. ResEdit lees you edit most resource
types by filling in the fields of a dialog box-this is the way you edit 'BNDL' and 'FREF'
resources, for example. The layout of these dialog boxes is determined by a template in
ResEdit's resource file, and you can add templates to edit new resource types. Resource
templates are described later in this manual.

o You can program your own special-purpose resource picker or editor (or both), and then add it
to ResEdit. The resource ptckeris the code that displays all the resources of one type in the

ResEdit Reference Beta Version 2

resource type window. The editor is the code that displays and allows you to edit a particular
resource. These pieces of code are separate from the main code of ResEdit. A set of Pascal or C
routines, called ResEd, is available for this purpose-see Chapter 5 for information.

The resource development cycle

ResEdit is often used with Macintosh Programmer's Workshop (MPW) and other program
development systems. Once you have created or modified a resource with ResEdit, you can use
MPW's Resource Decompiler, DeRez, to convert the resource to a textual representation that can be
processed by the Resource Compiler, Rez. You can then add comments to this text file or otherwise
modify it with the MPW Shell editor or another text editor. (Rez and DeRez are fully described in
the MPW Reference.) Figure 1-1 shows how ResEdit fits into the development process with MPW.

ResEdit Reference Beta Version

~.··

3

-----II II -------MPW Shell
Stuff.R

Rez

D . -••••••

ResEdit stuff.rsrc DeRez

·I
Figure 1-1
The resource development cycle

(\
/

ResEdit Reference Beta Version

Overview .of resource types

Consider, within the context of ResEdit, that there are three kinds of resources on the Macintosh.
Some resources are accessed with individual pickers and edited with individual editors that are part
of ResEdil These resources are described in some detail in Chapter 3.

Within the ftrSt category are several pictorial resource types ('ICON', 'ICN#', 'PAT', and so on). All
of the editors for these pictorial resources behave very much like FacBits, but only one (the 'FONT'
Editor) offei:s several tools; for the rest, the cursor acrs like the pencil tool in MacPaint In the
'ICON', 'ICN#', and 'CURS' editors, holding down the Shift key allows you to use the Marquee tool,
but only to move part of the picture. In this (1.2bl) release you cannot yet cut, copy, or paste with
the Marquee tool.

Other resources are edited as templates. Some information on templates is included in this version
of the ResEdU Reference, but there wasn't time to include a full description.

Still other resources are edited with thegeneral editor (the HEXA Editor), unless you write your own
templates or editors for them. Again, there is not much discussion of this third category in this
version of the ResEdU Reference.

Resource ID numbers

Within a given resource type, resource ID numbers must be unique. Resources can, in general, have
any ID number between -32768 and +32767, but you should be aware of che following restrictions,
which apply to most resources:

o ID numbers from -32768 to-16385 are reserved. Do not use them!

o ID numbers from-16384 to-1 are used for system resources that are
owned by other system resources.

o ID numbers from 0 to 127 are used for system resources.

o ID numbers from 128 to 32767 are available to you for your uses.

Some system resources own others. The •owner• contains code that reads the •owned• resource
into memory. For example, desk accessories ('DRVR' resources) can have their own patterns,
strings, and so on. Please see Chapter 5 of Instde Macintosb, Volume I, for more information.

For 'FONT resources, che ID number for a particular resource is the family ID number multiplied by
128, to which.is then added the point size of che fonl Thus, font 268 is New York (family ID 2) 12
point The family ID is the ID number of the associated 'FOND' resource. Note that for 'FOND'
fonts, the family ID cannot exceed 255. This relationship is quite different for 'NFNT fonts; there,
the ID number of the 'NFNT resource is arbitrary, so there is no particular connection between the
'FOND' ID number (the family ID) and the ID numbers of the corresponding 'NFNT resources.
('Ihis decoupling facilitates resolution of conflicting ID numbers, which is performed automatically
by the Font/DA Mover.) Fonts of type 'NFNT can be moved and deleted, but not modified, with
ResEdil (Version 3.8 or later of the Font /DA Mover also moves and deletes type 'NFNT.) 'NFNT'
fonts can contain and display more than one bit per pixel, and can be assigned absolute colors with
a corresponding 'fctb' resource, which is a ColorTable record. (Fonc ColorTable records are

ResEdic Reference Beta Version 5

(discussed in Instde Macintosh, Volume V, in the section on the Color Manager. The Font Manager is
discussed in some detail in Inside Macintosh, Volumes IV and V.)

In general, it is a good idea to use the same ID for an 'ALRT or 'DLOG' and ics associated 'DITI',
though this is not required

ResEdit Reference Beta Version 6

C'\
;

ResEdit Reference

Chapter 2

Getting Started

Beta Version 7

(

()

If you are new ~o Res Edit, you will want to proceed. with some caution, as Res Edit is remarkably
powerful and can easily damage or destroy your files. It is a good idea to edit spare copies of files
rather than originals, and to avoid editing the contenrs of the System Folder on the current startup
volume. (Under MultiFinder™, you cannot use ResEdit to open the current Finder™ or desktop file.)

If you are using ResEdit in conjunction with MPW, please read the relevant material in the MPW
Reference.

Installing ResEdit

If you will be using ResEdit within the MPW Shell, copy ResEdit into the Applications folder or
elsewhere in the search path defined by the {Commands} variable. If you will not, the location of
ResEdit is not important

Invoking ResEdit

From the Finder, you can select and open the ResEdit icon. From the MPW Shell, you can start
ResEdit by entering either of these commands:

ResEdit

ResEdit filel file2 _

The latter command causes ResEdit to open the named files automatically.

ResEdit displays a window that lists the files and folders for each disk volume currently mounted
(Figure 2-1).

~ HD
0~ MPW
4t CAEicmnplea
4t CAlncludH
4t CAppllcettona
4t CCExemplea
O CClncludas
0 CCLlbrar1es
O CCommendo
II O Debuggers ac am:Jrs

CLlbrenas

Figure 2-1

Disk volume windows

ResEdit Reference

]

Beta Version 8

Working with files

To list the resource types in a file, select and open the filename from the list. (You can select a
filename by clicking on it or by typing one or more characrers of the filename.) To select more chan
one item, hold down the Command key while clicking the individual items, or click an item at the
beginning of che range you want to select, hold down the Shift key, and click the item at the end of
the range. (You can, of course, continue to select or deselect individual items with the Command
key.)

-
When a directory window is the active window, the File menu command.$ act as follows:

New

Open

Close

Save

Get Info

Creares a new me.

Opens the selected file or folder. (Choosing this command has
the same effect as double-clicking the. mename or pressing the
Return key or the Enter key.)

Closes the volume window. (Using this command has the same
effect as clicking the close box.) If the volume is a 3.5-inch
disk, the disk is ejected

Not usable at this level.

Displays file or folder information and allows you to change it
Figure 2-2 is an example of the File Info window.

When that A1>rtlle

Figure 2-2

File I
Type ._TE_KT _ __, Creator ._I M_P_s_

0 Locked 0 lnuisible 0 Bundle
0 On Dasie 0 Bozo 0 Busy
O Shared O No lnits r8l lnlted
0 Always switch launch

0System
0Chenged

O Fiie Busy O File lock O Fiie Protect
O Resource map Is reed only
0 Prlnter'drluer Is MultlFlnder compatible

Created 4/12/88 11: I 5:49 RM

Modified S/26188 6:52:17 PM

Resource fork size • 382 bytes
Date fork size • 4420 bytes

A File Info window

ResEdit Reference Beta Version 9

(

Transfer ... Allows you to transfer to an application other than the
application that launched ResEdit

Quit Quits ResEdit and returns to the Finder (or the MPW Shell,
HyperCard, or whatever program launched ResEdit).

Warning

You con edit any file shown in the window, Including the System file end ResEdlt Itself
(though there are some restrictions uider Mul11Flnder). It's dangerous, though.
to edit c tile that's curren1ty In use. Edit a copy of the file Instead.

ResEdit recognizes a new disk when it's inserted, and handles multiple disk drives. Note that you
can also use ResEdit to delete files:

o To delete a file, select the file and choose Clear from the Edit menu.

o To copy a resource file, you must select all of its resources and copy them. Then
paste them into a new file. (File attributes are not automatically copied by this
operation-you must set them via the Get Info command) ResEdtt cannot copy
a data fork.

Working within a file

When you open a file, a window displays a list of all the resource types in that file (Figure 2-3).
While this window is the active window, you can create new resources, copy or delete existing
resources, and paste resources from other files.

Note: The resources are displayed by a resource picker. The general resource
picker displays the resources by type, name, and ID number; there are also
special resource pickers for some resource types. (See Chapter 3 for a detailed
discussion of some of these resources.)

HO]
Cl MPW]
~ Cl .. MPW Shell
~ Cl ecur ~ ~ Cl BNDL
~ Cl cmdo j:

Cl~ Cl CODE Ii:

Cl 0 CURS '
0 Cl OITL

:::
I

lil ~ ~ DLOG
~c FREF !.

!... ftSZ
HEXA

Figure 2-3

A ResEdlt file window

ResEdit Reference Beta Version 10

When a file window is the active window, the File menu commands have the following effects:

New

Open

Creates a new resource in the open file.

Opens a window displaying all resources of the resource type
selected. (Select the resource type by clicking on it or by typing
irs first character, if that's unique, or first two characters.)

-> Note: If you hold down the Option key while opening a resource type, the
resource window will open with the general resource picker.

Open general

Close

Save

Opens the general resource picker.

Closes the file window and asks if you want to save the
changes you have made.

Saves the changes you have made.

•:• Note: If you've made changes, you should not reboot before closing. Under
ordinary circumstances, pressing the programmer's switch is the only way to
reboot from inside ResEdit, so most ResEdit users are unlikely co have any
problems related to this issue.

Revert

Wcmlng

Changes the resource file back co the version that was last
saved to disk.

If you have cut or cleared an lndlvldual resource. this level Is the only level at which
choosing Revert will accurately restore the fllel

Transfer ...

Quit

Quirs ResEdit, allowing you co transfer control to another
application.

Quits ResEdit If you have made any changes, ResEdit asks
whether you wane co save them.

When a file window is the active window, the Edit menu commands have the following effects:

Cuc

Copy

Paste

ResEdit Reference

Removes all resources of the resource types selected, placing
them in the ResEdit scrap.

Copies all resources of the resource types selected into the
ResEdit scrap (not the Clipboard).

Copies the resources from the ResEdit scrap into the file
window's resource type list.

Beta Version 11

c)

Clear

Duplicate

Removes all resources of the resource type selected, without
placing them in the ResEdit scrap.

Not usable here.

Working within a resource type

Opening a resource type produces a window that lists each resource of that type in the file
(Figure 2-4):-Titis list will take different forms, depending on the particular resource picker; if you
hold down the Option key during the open, the general resource picker is invoked.

KO

FlgU"e 2-4
A resource type window (with custom picker)

When a resource type window is the active window, the File menu commands have the following
effects:

New Creates a new resource and opens its editor.

Open Opens the appropriate editor for the resource you selected.

Open As Lets you open a resource using a template you specify.

Open general Opens the general (HEXA) resource editor.

Close Closes the resource type window.

Save Saves the changes you have made to the file.

Revert Changes all resources of the open type back to what they were
before you opened the resource type window,
unless you have cut or cleared a resource.
Ot will restore all but the ones that were cut or cleared.)

Get Info Displays resource information and allows you to change it.
Figure 2-5 is an example.

ResEdit Reference Beta Version 12

Transfer ...

Quit

Quirs ResEdit, allowing you to transfer control to another
application.

Quirs ResEdit. If you have made any changes, ResEdit asks
whether you want to save them.

HD

Info for ICN# 128 from MPW Shell

ICN# Size: 256

Name:

I''''"* . I 2I owner type ID:

Attributes:
0 System Heep O Locked CJPreloed
O Purgeeble O Protected

Figure 2-5

An 'ICN#' Get Info window

When a resource type window is the active window, the Edit menu commands have the following
effecrs:

Undo

Cut

Copy

Paste

Clear

Duplicate

Not usable.

Removes the resources that are selected, placing them in the
ResEdit scrap.

Copies all the resources that are selected into the ResEdit scrap.

Copies the resources from the ResEdit scrap into the resource
type window.

Removes the resources that are selected, without placing them
in the ResEdit scrap.

Creates a duplicate of the selected resources and assigns a
unique resource ID number to each new resource.

When you choose Open A:s, a list of templates is displayed, and you can pick the one you want to
use.

ResEdit Reference Beta Version 13

(•:• Note: Using a cemplate with a resource that does not match its definition is
improper.

•:• Note: If you hold down the Option and Command keys while opening a
resource, the effea is the same as choosing Open As.

ResEdit Reference Beta Version 14

Chapter 3

Editing Individual Resources

()

ResEdit Reference Beta Version 15

(Some of ResEd.irs resource editors are discussed in this chapter. The use of the editors not
discussed here should be apparent when you run them.

To open an editor for a particular resource, either double-click the resource or select it and choose
Open from the File menu. One or more auxiliary menus may appear, depending on the type of
resource you're editing. Some editors, such as the 'DITI.' editor, allow you to open additional editors
for the elements within the resource. All the editors use File and Ed.it menus similar to those
described above, but operate on individual resources or individual elements of a resource, and
hence vary !n their appearance and function as explained in this chapter.

If you hold down the Option key while opening a resource, the general data editor (HE.."'<A Editor)
is invoked This editor allows you to edit the resource as hexadecimal or ASCII data.

+ Note: The general data editor can now edit resources larger than 255K bytes; if
a resource is between 256 and 51 lK, each click in the up or down scroll
arrows scroll 2 lines; if between 512 and 767K, each click scrolls 3 lines, and
so on. ('The scroll bars keep track of position with an integer.)

If you hold down the Option and Command keys while opening a resource, a list of templates is
displayed. You may then select the template that is appropriate for the resource you are opening.

ResEdit Reference Beta Version 16

'WIND' resources

A 'WIND' resource defines a window on the screen. When you open a 'WIND' resource, ResEdit
displays a small picture of the saeen with the window shown in its usual size and location, to scale.
You can move the window by clicking anywhere except in the lower-right comer, and size it by
using its lower-right comer. Moving or sizing a window changes the default values when the ·
window is actually displayed. To change the name of the window, selea Display as Text from the
WIND menu. (When the window appears on the screen in normal operation, the name may be
displayed. If it is displayed, it shows up as a title, in the title bar.)

Firgure 3-1 shows a 'WIND' resource open for editing.

• File Edit WINO

Cl Gomes/Demos/Fun
Almond Bread

Mendet881

Figure 3·1
Editing a WIND' resource

ResEdit Reference Beta Version 17

'ALRT' and 'DLOG' resources

'ALR'I" and 'DLOG' resources display dialog boxes on the screen. Editing them is much like editing
'WIND' resources, except that if you double-click on the picture of the dialog box after opening the
resource, the corresponding •om• resource is automatiq1lly opened. (See the next section.) When
you display an individual 'AI.RT or 'DLOG' resource, a corresponding menu appears. It has only
one item, Display as Text In the text view, the resource ID of the associated 'DITI.' can be changed.

Figure 3-2 shows an 'ALR'I" open for editing. You can see the ALRT menu header in the menu bar.

9 File Edit RLRT

Figw.3-2

Editing an 'ALI<r resollce

ResEdit Reference

&emes/Demos/Fun

Diatom

RLRTI from Diatom
30

Beta Version

37
49

18

'DITL' resources

Because they are linked, the 'DITI' (dialog item list) resource for a given item is usually given the
same ID number as the parent 'DLOG' or 'ALRT.

For 'DITI' resources, the editor displays an image of the item list as your program would display it
in a dialog nr alert box. When you select an item, a size box appears in the lower-right comer of its
enclosing rectangle so that you can change the size of the rectangle. You can move an item by
dragging it with the mouse.

If you open an item within the dialog box, the editor associated with the item is invoked; for an
'ICON', for example, the icon editor is invoked. If you hold down the Option key while opening a
'CNTI..', 'ICON', or 'PICT, the general data editor is invoked. If you hold down the Command key
while opening a 'CNTI..', 'ICON', or 'PICT, the om Item Editor (the same editor used for buttons,
static text, and so on) is invoked

Figure 3-3 shows the 'DITI' corresponding to the 'ALRT from Figure 3-2. The ALRT menu has been
replaced by the om menu.

e Fiie Edit Din

Wide Uncles
Games/Demos

Die tom

Flg1.n3-3

Editing a 'DITL' reSOLJ'Ce

The om menu contains the following commands:

ResEdit Reference Beta Version 19

(

("

Bring to Front Allows you to change the order of icems in the item list.
Bring to Front causes the selected item to become the last
(highest numbered) item in the list The aaual number of the
icem is shown by the 'Din' Item Editor. (Since it is drawn
last, it becomes the front icem.)

Send to Back Like Bring to Front, except that it makes the selected icem
the first item in the list-that is, icem number 1. (Since it is
drawn first, it becomes the back item.)

Set Icem Nurnber Allows you to specify a new number for the selecced item.

Select Item Number Allows you to select an icem by specifying its number.

Align to Grid Aligns the item on an invisible 8-pixel by 8-pixel grid. If you
change the icem location while Align to Grid is on, the
location will be adjusced such that the upper-left comer lies
on the nearest grid point above and to the left of the
location you gave it If you change the size, it will be made a
multiple of 8 pixels in both dimensions.

Use RSRC Rectangle Restores the enclosing rectangle to the rectangle size stored
in the underlying resource. Note that this command works
on 'ICON', 'PICT', and 'CNTL' icems only; the other items
have no underlying resources.

Use Full Window Adjusts the window size so that all icems in the item list are
visible in the window.

Use Owner Window Changes the •om• back to the size specified in the parent
'DLOG' or 'ALRT. The algorithm u~d to find the parent is as
follows:

1. Check for a 'DLOG' with the same ID;
2. Check for an 'ALRT with the same ID;
3. Check for any 'DLOG'; ·
4. Check for any 'ALRT;
5. Use Full Window.

ResEdit Reference Beta Version 20

'CURS' resources

For 'CURS' resources, the editor displays three images of the cursor (Figure 3-4). You can
manipulate all three images with the mouse.

HD
CJ MPW
~ t:Cl~---M-PW-5-he_l_I __ ..__,

~ or-.,...------------------~~~---.
~ CJ
~ Cl
CJ Cl
CJ Cl
CJ CJ
~ ~
CJ Cl

Cunor ·euucunor• ID • 132 from MPW Shell

1'11 I---··
ID l.1!m1:nml

r1·:··:·1 . -·-··-
Figure 3-4

Editing a 'CURS' resource

••••••• • •• • • • • ·-········· • • • • • • . ····-······· •••••••••••••• ••• •• •• • • • • • • • • •• • ••••••••••

In Figure 3-4, the left image shows how the bulldozer cursor will appear. The middle image is the
mask for the cursor, which affects how the cursor appears on various backgrounds. The right image
shows a gray picture of the cursor with a single point in black. This point is the cursor's "hot spot"
Cits active region).

The Cursor menu contains the following commands:

Try Cursor Lets you try out the cursor by having it become the cursor in use.

Restore Arrow Restores the standard arrow cursor.

Data -> Mask Makes a filled-in copy of the cursor in the mask editing area.

ResEd.it Reference Beta Version 21

(

(~

(~

'ICON' resources

For 'ICON' resources, the editor displays one panel in the window (Figure 3-5). The left side of this
panel shows an enlargement of the icon, and is an editing area. The right side of the panel shows
the icon at full scale. Ed.it as if you were in FatBits.

ti File Edit

EHcellent Birds]
Cl Tiie Dreemln_g_] '!Y_perCard]
Cl Cl Sad Lise J ii { ~erCard 1.1 J Cl Cl It'! DeskTop · 1 1~~~ Icons from l!Jl.PerCard 1.1 li1 Cl
Cl Cl

ClGemes/Derio ICON "MlcroflOPPJl." ID - 26991 from Hj

r:J (\ Cl -n--"1--Cl Cl I ~:::~:~~-=-~~ ·1 Cl Cl
Cl fl!

I •-======~===er • ~ a Cl

'= ~

I ·--··· - I I ····- !
I I --· ·· i I ·--·-• •-! • mm=-H••••!-1

Figure 3-5

Editing an 'ICON' resource

ResEdit Reference Beta Version 22

'ICN#' resources

For 'ICN#' resources, the editor displays two panels· in the window (Figure 3-6). The upper panel is
used to edit the icon. It contains an enlargement of the icon on the left, and an enlargement of the
icon's mask on the right The lower panel shows, from left to right, how the icon will look
unselected, selected, and open on both a white and a gray background. It also shows how the icon
will appear unselected, selected, and open in the Finder's small icon view.

In recent versions of the Finder, 'ICN#' resources are displayed on the screen as follows: First the
mask is used to blank an area of the screen. Then an OR is perfonned, using the icon as data, in
the same screen area. (When a highlighted icon is displayed, the foreground and background colors
are swapped before the OR operation is perfonned on the data.) If the mask is not the same shape
as the outline of the icon, the results will in general be unaesthetic unless the background is black.

The Cursor menu contains the following commands:

Data-> Mask Makes a filled-in copy of the icon in the mask
editing area.

Display using old method Lets you display the icon in the lower panel,
using the method that was used by pre-6.0
finders. If the mask is just a filled-in copy of the
icon, you probably won't see a difference
between the old and new displays.

S Fiie Edit ICN#

There was
Cl R Yaun Man Res[dlt
c::i~ =--i---------.... --------........ ~'pom--------------------. .._. Of SI. Bees ICN•'s from Res£dit
ClQc:~~~~~------~--~--~------~~~~~--,
Cl - ICN# "Euins• OreadEdlt" ID• 128 from ResEdit =ii
qi

0
0

. i1
0
qi

- -··-· ... - =====-=== .::· -- ·-- :::...:: •••• ·:·"1 :-- -;-· · .. !·.-
:.U-1·11··· •I
I I r" I ~!:.-,

.• I I • • • • • • • •
== == . ··-·· . • • • • I . ··- . • • • • • • ···-···I

4 •
Figure 3-6
editing an 'ICN#' resource

ResEdit Reference

.
•

Beta Version 23

(

(

An ICN# editing example
If you have written an application, and you want to install a new icon for it when you already have
an old one in the Finder's des~top file, follow these steps:

1. Open the file called DeskTop. You cannot do this under MultiFinder! If you are
using MultiFinder, restart your Macintosh while holding down the Command
key, to disable MultiFinder temporarily.

2. Open type 'BNDL' and find the bundle that belongs to your application. (This

is the une that has your owner name in it.) Look through the bundle and mark
down the types ('ICN#', 'FREP) and resource IDs of the resources bundled
together by the bundle.

3. Go back to the DeskTop window and remove these resources along with your
'BNDL' and signature resource (the resource whose type is your application's
signature).

4. Close the DeskTop window, save changes, and quit ResEdit Your new icon
will be installed if you have the proper 'BNDL', 'FREF, and 'ICN#' resource
numberings.

+ Note: To see how 'BNOL', 'FREP, and 'ICN#' resources are interrelated, use
ResEdit to look at those resources in an existing application.

Alternatively, you can rebuild the DeskTop file by holding down the Option and Command keys
when entering the Finder. (This method is faster and easier, but destroys Finder "Get Infon
comments. On a non-HFS volume, it also destroys folder names.)

ResEdit Reference Beta Version 24

'SICN' resources

'SIC'l"' (small icon) resources are edited much as other piaorial resources are, but
unlike 'ICON' or 'ICN.11' resources, they can occur in groups. A typical display is
shown in Figure 3-7. The upper panel is enlarged, and shows the icon currently
being edited. The lower panel shows three icons at full scale. The one shown in
the upper p~el is enclosed in a box in the lower panel. To get to a different icon,
click on its piaure in the lower panel. If the one you want to edit is not currently
visible, click on either the righthand or lefthand picture, as appropriare, until it
appears.

A new icon can be added before (to the left oO the currently seleaed icon by
selecting the New command from the File menu. Commands on the Edit menu can
be used to cut copy, casre, clear, or duplicate icons.

9 Fiie Edit

Who Wat Stu'!.!l.]
c On the Rrrn J ~stem Folder]
c c ~RWesp il system c J c El OaskTop c pp SICNs from ~stam il c C Gemes/Demos/Fun il c c • 1;~ C Cl!IO<Qc= c c . ! RC Cl c~ • c c~ Cl SICN ID• -15744 I
c a~ a. c~ ••• •• •• a. ·= • .ai=.:ii ••• .

!o~c=I

Figure 3·7
Editing a 'SICN' resource

ResEdit Reference Beta Version 25

0

'FONT' resources

The 'FOND' resource is not well described in rhis preliminary manual. It is intimately related to rhe
'FONT' resource. Kerning tables and orher important information about a font are stored in rhe
'FOND' rhat corresponds to the 'FONT.

For 'FONT' .resources, rhe editing window is divided into four panels: a character editing panel, a
sample text panel, a character selection panel, and a typical set of graphics tools. These panels are
shown in Figure 3-8.

• Fiie Edit

When The Asked

Cl Does It Hurt s stem Folder
Cl Cl .Applallnlc. s stem
Cl Cl NtlclcO DI Fonts from s stem
o,i;::i.~1.LLIO.ll.A~~~.c:a....""'=""'=.1.,,...Jlli:L.IL.-.1.._ __ ~~~~~~~~~===
ClJf.ii;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;=:==:==:=;;;;;;;;=:===N=e=w==Yo•rk===l=8=====================ri
~ Beauty is momentary in
~ the mind - I The fitful
~ tracing of a portal I But

111 in the rtesh it is

ASCII
65

Figure 3-8

11 I! i mmorta11_. - .. ·-··i

.I.········.·.•... 1
1

1
1·

Locat1aft
203

@ I A I B
[___ ,,_, .. ,_...l

•••

Editing a 'FONr resolJ'ce

The character edtttng panel on the left side of the window, shows an enlargement of the selected
character. You can edit it, as with FatBits, by clicking bits on and off. Drag rhe black triangles at the
bottom of the character editing panel to set the left and right bounds (rhat is, the character width).
Two of the three triangles at the left side of the panel control the ascent and descent The third
shows the location of the baseline, which is fixed and is displayed only for reference. Below the
panel are the ASCII value of rhe character and the character's offset, width, and location, all in
decimal notation.

ResEdit Reference Beta Version 26

Warning

Changing the ascent or descent of a character changes the ascent or descent for
the entire font.

The sample text panel, at the upper right, displays a sample of text in the font currently being
edited. CT au can change this text by clicking in the text panel and using normal Macintosh editing
techniques.)-

The character selection panel is below the text panel. You can select a character to edit by typing it
(using the Shift and Option keys if necessary), or by clicking on it in the row of three characters
shown. To move upward through the ASCII range, click on the right character in the row; click on
the left character to move downward The character you select is boxed in the center of the row.
(To scroll quickly, click on the right or left character, hold the mouse button down, and move the
pointer outside the selection panel, to the right or left.)

The graphic tools panel, directly below the character selection panel, offers several familiar graphics­
manipulation tools, including the pencil, eraser, circles, and rectangles.

Any changes you make in the character editing panel are reflected in the text panel and the
character selection panel.

You can also change the name of a font The font name is stored in two places: as the name of the
'FOND' resource of that font family, and as the name of the size 0 'FONT' resource. To change the
font name, select the individual 'FOND' resource with the name you wish to change, and choose
Get Info from the File menu. To maintain consistency, you should also change the name of the 0
point 'FONT resource; this resource does not show up in the normal display of all fonts in a file. To
display it, hold down the Option key while you open the 'FONT' type from the file window. You
will see a generic list of fonts. Select the font with the name you wish to change, and choose Get
Info.

ResEdit Reference Beta Version

(

(~

'PAT · resources

The 'PAT' resource editor is shown in Figure 3-9. It displays a single panel, with the pattern shown
around a central editing area. This area shows the pattern, enlarged. The outer area shows the
pattern at full scale, as you edit the central area as if you were using FatBits.

• Fiie Edit

He Replied
D No It Doesn't
D O .ApplaUnk.
O OA1tsys4 o o~..._..._ ____ ..___...,
D !0! Pattern ID • - 5808

~ j :::111:1::::.~:::::mm:1
Cl Cl...... • :

Cl ·"""" • : •

Figure 3-9

Editing a 'PAT' reSOU(Ce

ResEdit Reference

....
nHnn

Iii'!
0;-'7----P-a-tt•e•m-1_f_r_o_m_S __ s-te-m-..__,
liil
ii
I
ii
liil
li'I
i'I

~HHH~
:::;:;.;

ii pp
PP"'°----------.-....

Beta Version 28

'PAT#' resources

The 'PAT#' editor is much like the 'SICN' editor, and is shown in Figure 3-10. Instead of displaying a
single enlarged picture of the pattern being edited, it shows two. The one on the left is for editing,
and is in FatBits; the one on the right shows the resulting pacrem at full scale.

6 Fiie Edit

I'm Just Glad

0 It Wasn't
0 CJ R llometl
CJ CJ I Desktop
~ CJ liil Siem Cuisine
!il ~ q. Stuffl'"!CJ!!!=....,..p-Rf_# __ _

Clo
q. 0
Dfi'l
CJ CJ

CJ

-----l[i] •
Figure 3-10

Editing a 'PAT#' resource

ResEdit Reference

s

11111111 · · 1111rm11m:=-:-=1

Beta Version 29

(

(

Hints and kinks

(In the final version of this book, there will be a "ResEdit Hints and Kinksn chapter. For the
moment, however, this section is not long enough to take an entire chapter.)

o 'PICT' resource from bitmap. The bitmap image, possibly a screen snapshot or some
arl"iork, is in the data fork of a MacPaint® file (for example), and is not directly accessible
to ResEdit. Select and copy (or cut) the part you want. The image is stored in the Clipboard
as a 'PICT', which you can paste with ResEdit. For longer-lasting storage, paste it into the
Scrapbook, where it is also stored as a 'PICT".

o Pig mode. If you hold down the Command, Option, and Shift keys while selecting
About ResEdit from the Apple menu, you can toggle a special stress testing mode. In this
mode, ResEdit performs a compact-memory operation and a purge-memory operation each
time it receives an event from the queue, excepting null events. This is, clearly, something
most people will never have any use for.

o A Suggestion. It is probably a good idea to choose Get Info for ResEdit and increase
Application Memory Size to at least 512K. (If you are editing very large resources, even
512K is not sufficient.)

ResEdit Reference Beta Version 30

(

C':
,! .

ResEdic Reference

Chapter4

Making Your Own ResEdit
Templates

Bera Version 31

(
The generic way of editing a resource is to fill in the fields of a dialog box-for example, this is the
way you edit 'FREF', 'BNDL', and 'STR#' resources. The layout of these dialog boxes is set by a
template in ResEdit's resource .file. The template specifies the format of the resource and also
specifies what labels should be put beside the editText items in the dialog box that's used for
editing the resource. You can find these templates by opening the ResEdit file and then opening the
type window for 'TMPL' resources. For example, if you open the template for 'WIND' resources (the
'TMPL' with name WIND), you'll see the template shown in Figure 4-1.

s File Edit

Uncle Bezoer ResEdlt
Cl
Cl
Cl
Iii
Cl
<111

Cl
Cl
Cl
CJ

•••••
Lebel

Type

•••••
Lebel

Type

•••••
label

Type

•••••

Figure 4·1

z H w Uuts M TMPls from ResEdlt
TMPL "WINO" ID • 1 rram ResEdlt

I boundsRact

RECT I
lproclD

lowRo

luisible

laoot

WIND' template data

The window template consists of the following elements:

1. A RECT (4 words) specifying the boundary of the window.

2. A word that is the procID for the window. (DWRD tells ResEdit to display the
word in decimal as opposed to hex.)

3. A Boolean indicating whether or not the window is visible. (BOOL is 2 bytes
in the resource but is displayed as a radio button in the dialog window used
for editing.)

4. Another Boolean indicating whether or not the window has a close box.

5. A long word that is the reference value (refCon) for the window. (DLNG
indicates that it should be displayed in the editor as a decimal number.)

6. A Pascal string (PSTR), the title of the window.

ResEdit Reference Beta Version 32

You can look through the other templates and compare them with the structure of those resources
to get a feel for how you might define your own resource template. ('These templates are equivalent
to the resource type declarations contained in the {Rlncludesl directory-refer also to the DeRez
command in the MPW Reference, and the appropriate chapters of Inside Macintosh.)

These are the types you have to choose from for your editable data fields:

DBYT, DWRD, DLNG

HBYT, HWRD, HI.NG

AWRD,AL'iG

FBYT, FWRD, FLNG

HEID

PSTR

LSTR

WSTR

ESTR, OSTR

CSTR

ECST, OCST

BOOL

BBIT

TN.Ai\1

CHAR

RECT

Hnnn

Decimal byte, word, long word

Hex byte, word, long word

Word , long align

Byte, word, long fill

Hex dump of remaining bytes in resource

Pascal string Oength byte followed by the characters)

Long string Oength long followed by the characters)

Same as LSTR, but a word rather than a long word

Pascal string padded to even or odd length (needed for
mn resources)

C string (characters followed by a null)

Even-padded C string, or odd-padded C string (padded
with nulls)

Boolean

Binary bit

Type name (4 characters, like OSType and ResType)

A single character

An 8-byte rectangle

A 3-digit hex number (where nnn < $900); displays
nnn bytes in hex format

ResEdit does the appropriate type checking for you when you put the editing dialog window away.

The template mechanism is flexible enough to describe a repeating sequence of
items within a resource, as in 'STR#', 'Din', and 'MENU' resources. You can also
have repeating sequences within repeating sequences, as in 'BNDL' resources. To
terminate a repeating sequence, put the appropriate code in the template as
follows.

ResEdit Reference Beta Version 33

I.STZ

I.STE List ZercrList End. Terminated by a 0 byte (as in 'MENU' resources).

ZCI'l'T

I.STC

I.STE Zero Count/List Counl-List End. Terminated by a zero-based word count
that starts the sequence (as in •om• resources).

OCNT

I.STC

I.STE One Count/List Coun~List End. Terminated by a one-based word count
that starts the sequence (as in 'STR*' resources).

I.STB

I.STE Ends at the end of the resource. (As in 'acur' and 'APPL' resources.)

The "list-begin" code begins the repeating sequence of items, and the I.STE code is the end. Labels
for these codes are usually set to the string ·•• ••• •. Both of these codes are required.

To create your own template, follow these steps:

1. Open the ResEdit file window.

2. Open the 'TMPL' type window.

3. Choose New from the File menu.

4. Select the list separator(•••••) by clicking it with the mouse.

5. Choose New from the File menu. You may now begin entering the labe4type
pairs that define the template. Before closing the template editing window,
choose Get Info from the File menu and set the name of the template to the 4-
characcer name of your resource type.

6. Close the ResEdit file window and save changes.

The next time you try to edit or create a resource of this new type, you'll get the dialog box in the
format you have specified.

ResEdit Reference Beta Version 34

ResEdit Reference

Chapter 5

Extending ResEdit

Beta Version 35

(·. ResEdit handles all standard resource types (except as noted in Chapter 1). However, you may wane
to create and edit your own types of resources. You can write extensions to ResEdit in Pascal or C,
substituting your own program for parts of its code. This chapter tells you how to do it in Pascal.
The final version of this book will contain further information on C language extensions to ResEdic.
Some calls have been added to ResEd; there was not sufficient time to document them for this
release. They will be included in the final version of this book.

Using ResEd

The program you write must be a Pascal unit or C header file and library. Its interface with ResEdit,
if it is written in Pascal, is established by the MPW unit ResEd, contained in the file Res Ed. p. Your
unit must begin with a USES declaration for this unit

The assembly-language code that "opens up• ResEdit and activates your program is contained in the
file ResEd68k.a. It must be linked with your Pascal or C module. When you open a resource of your
type, ResEdit will jump to this code.

To install your new editor after it is compiled, place it in ResEdit's file (using ResEdit icse!O with the
type 'RSSC' and a unique ID number. (You can use ResEdit co check the ResEdit file to see which
ID numbers are already taken.) Your editor's name in the ResEdit file must be of the form @ABCD,
where ABCD is the name you have assigned co the new type it edits. Install your picker (also of
type 'RSSC') with the name ABCD (without the commercial "at• sign.).

Pickers and editors

When ResEdit uses your program, it looks for two general capabilities: a picker and an editor.
Pickers and editors are separate from the main code of ResEdit and hence may be supplied by user­
written software.

The ptcker is the part that displays all the resources of your type in the resource type window. It is

given the resource type and should display all resources of that type in the current resource file,
using a suitable display format If the picker is given an open call and there's a suitable editor, it
should launch the editor.

The editor is the code that displays and lees you edit a particular resource. The editor is given a
handle to the resource object and should open an edit window (or windows) for you.

Note that pickers and editors can be opened from anywhere. For instance, a dialog editor might
open an icon picker so that you could choose an appropriate icon. While using the icon picker, you
could open the icon editor if you wanted to create a new icon.

ResEdit Reference Beta Version 36

Writing a ResEdit extension in Pascal

A sample ResEdic extension program is given in the file "Res.)COOredp". In this sample, XXXX
represents your resource cype.

The sample program is called by means of the Edi tBirth routine when a resource of type XXXX
must be edited This routine is passed two handles: a handle to the resource to be edited (the same
handle that would be received by using a GetResource call) and a handle back to che picker chat
has launche~ chis editor. The Edi tBirth routine and other necessary routines will be described in
more detail in che full release of this reference.

The program chen creates a window and sets up any data structures needed to operate. Because it
may be loaded in and ouc of memory during any given session and because it doesn'c have access
to global variables, it aeates a handle to a data structure to hold all data that needs to be preserved
between calls. It stores che handle in the edit data structure rXXXXrec. Note thac the handle to che
edit data structure is stored in the window's refCon parameter. ResEdit uses this co identify which
subprogram is to receive a given call.

ResEdit will determine which editor should receive which events, so you need to do very little
event decoding in your editor. During an update event, the BeqinUpdate and EndUpdate calls
are done by ResEdit, not by the extension program.

Here are two chings to remember when writing a ResEdit extension:

o Always know which resource you are requesting and where it will come from .
. Many resource files may be open at any given time. Whenever a resource is
needed, ma:ke sure which resource file you are accessing by using
UseResFile or similar operations.

o Your editor may be called wich an empty handle in order to create an entirely
new instance of the type you edit

The ResEd interface

The ResEd unit contains data structures, procedures, and functions that you can access from your
extension program. They are descnbed in the remainder of this chapter.

Data structures

The ResEd unit declares che data structures described in this section, which provide communication
between extension programs and ResEdit

The resource map entry

ResMapEntry • RECORD
rID: integer;
rNameOff: integer;
rLocn: longint;
rHndl: Handle

END; {ResMapEntry}

ResEdit Reference Beta Version 37

The resource map entry record accesses the contents of a resource map directly. It is used by the
routines GetlMapEntry and GetlIMapEntry, described later in this chapter.

The parent record
Each picker or editor has its own objea hand.le. This hand.le must start with a hand.le to its parent's
object, followed by the name distinguishing the father. This name will be part of the son's window
title. The next field should be the window of the objea, which may be used by the son to get back
to the father:, through the ref Con field in the windowRec record The rest of the handle can be of
any format.

ParentPtr • AParentRec:
ParentHandle • AParentPtr:
ParentRec • RECORD

father: ParentHand.le;
name: Str64;
wind: WindowPeek;
rebuild: boolean {flag set by son to indicate}

{that world has changed so}
{father should rebuild list}

END: {ParentRec}

The picker record
The standard picker record has this structure:

PickPtr • APickRec:
PickHandle • APickPtr;
PickRec • RECORD

father: ParentHandle;
fName: Str64;
wind: WindowPtr:
rebuild: boolean;
pickID: integer;
rType: ResType;
rNum: integer;
rSize: longint;
ninsts: integer:
instances: ListHandle;
drawProc: Ptr;
scroll: ControlHandle

END; {PickRec}

Launcher routines

{Any type is OK here.}

{back ptr to dad}

{picker window}

{resource ID of picker}
{type for picker}
{resfile number}
{size of a null resource}
{number of instances}
{list of instances}
{list draw procedure}
{scroll bar}

The GiveEBirth procedure is used to launch your editor.

The GiveEBirth procedure

PROCEDURE GiveEBirth (h: Handle;pic.e:PickHandle);

GiveEBirth launches an editor for a specific resource. The par_amecer bis the hand.le to that
resource as rerurned by GetResource; pick is the hand.le to your own picker record

ResEdit Reference Beta Version 38

There are four other routines, CallI?Birth and CallEBirth, CallEvent, and CallMenu, that
are included in the ResEd unit, the use of which is not recommended unless your editor invokes
another editor (as, for example, the DLOG editor invokes the Dm editor).

Information-passing routines

The four routines desaibed in chis section are used to pass information between ResEdit and your
program. CallEvent and CallMenu are rarely used.

The CalllnfoUpdate procedure

PROCEDURE CallinfoUpdate (old/D, new!D: inteqer; object: lonqint; id: inteqer):

CallinfoUpdate tells the picker that launched your editor that an ID or name has been changed,
added, or deleted, ma.king it necessary to rebuild the picker list. The parameter object identifies the
resource and editor; id identifies the resource ID of the objea.

The PassMenu procedure

PROCEDURE PassMenu (menu, it.em: inteqer; father. ParentHandle);

PassMenu passes menu selections on to any son pickers or editors that you have launched with
Show Info. Here is an example of its use:

PassMenu(file, close, myObj); {Tell all subsidiary windows to close.}

Window utilities

The five ResEdit window-handling routines desaibed in chis section are available to your program.

The WindAlloc function

FONCTION Wind.Alloc: WindowPtr;

WindAlloc returns a pointer to a window record to be used by your editor. Using this routine
instead of allocating your own window pointer can help reduce heap fragmentation. WindAlloc
has no parameters.

The WlndFree procedure

PROCEDURE WindFree (111: WindowPtr);

WindFree releases the window pointer allocated by WindAlloc. Use this when you terminate
your editor and you are finished with its window, but only if you used WindowAlloc to create the
window.

ResEdit Reference Beta Version 39

f

(

The WindUs1 function

FUNCTION Wind.List (w: WindowPtr; nA.cross: integer; pt: Point; drawProc: integer):
ListHandle;

WindList creates a new empty list and returns a handle to that list. For more information on lists
and a description of the WindList parameters, see the List Manager chapter in Inside Macintosh,
Volume IV.

The WindOrigin procedure

PROCEDURE WindOrigin(w:WindowPtr);

WindOrigin moves the window pointed to by wto a position down and to the right of the
current front window.

The WindSetup function

FUNCTION WindSetup (width, height: integer; t, s: Str255) : WindowPtr;

WindSet up creates and automatically positions a new window with the given width and height
and displays a title formed by ConcatStr (t, s). It returns a pointer to the window.

Resource utilities

The five ResEd routines listed in Table 5-1 act the same as the Macintosh Resource Manager
routines, but operate orily on the currently selected resource file. For further information about
these routines and their parameters, see Instde Mactntosb, Volume IV, Chapter 3. Six additional
resource utility routines available in ResEd are described below.

ResEdit Reference Beta Version 40

Table 5-1
Resource Manager calls

ResEd routtne

FUNCTION CountlType
PROCEDURE_ GetlindxType
FUNCTION CountlRes
FUNCTION Getlindex
FUNCTION GetlRes

The CurrentRes function

FUNCTION CurrentRes: integer;

Corresponding Macintosh routtne

CountlTypes
GetlindType
CountlResources
GetlindResource
GetlResource

CurrentRes returns the ID number of the currently selected resource file.

The Getl MapEntry procedure

PROCEDURE GetlMapEntry (VAR tbeEntry: ResMapEntry; t: ResType; id: integer):

GetlMapEntry accesses the resource map for a resource of cype tand ID number id, placing the
result in tbeEntry. For a description of resource maps, see "Format of a Resource File" in Inside
Macintosh, Volume I, Chapter 5.

The Getl IMapEntry procedure

PROCEDURE GetlIMapEntry (VAR theEntry: ResMapEntry; t: Restype; index: integer);

GetlIMapEntry acts like GetlMapEntry, described above, except that it refers to its resource
by index instead of ID number.

The GetResload function

FUNCTION GetResLoad: boolean;

GetResLoad returns the current value set by the Macintosh procedure SetResLoad.

The RevertResource function

FUNCTION RevertResource(b: Handle): boolean;

RevertResource restores a resource being edited to the state it was in before editing started. The
parameter bis a handle to the resource. RevertResource returns a value of false if the
resource was n~wly added by ResEdit (and, therefore, no longer exists after the reversion), true
otherwise.

ResEdit Reference Beta Version 41

c

Miscellaneous utilities

The ResEd routines described in this section perform miscellaneous tasks in a ResEdit extension
program. They are listed in alphabetical order.

The AbleMenu procedure

PROCEDURE AbleMenu(menu: inteqer; enab~: lonqint);

AbleMenu en?-bles and disables menu items. The parameter menu is a menu ID; enable is a mask.
AbleMenu differs from the Resource Manager routines Enable Item and Cisableitem in that it
acts on the entire menu. (Values for the mask have changed recently, and are available in ResEd.)

The AddNewRes function

FUNCTION AddNewRes(bNew: Handle; t: ResType; idNew: inteqer; s: Str255): boolean;

Add.NewRes has the same parameters and performs the same action as the Macintosh procedure
AddResource, with the addition that it returns true if it is successful and false otherwise. For
information about AddResource, see Instde Mactntosb, Volume I, Chapter S.

The AppRes procedure

PROCEDURE AppRes;

AppRes performs the action ofuseResFile on ResEdit itself. It is useful if you need to get a
resource from the resource editor, such as an ICON or DITL, for your editor to use.

The BubbleUp procedure

PROCEDURE BubbleUp(h: Handle);

BubbleUp sets up the correct heap zone, and then performs the Memory Manager routine
MoveHHi. For information about MoveHHi, see Instde Mactntosb, Volume II, Chapter 1.

The BuildType function

FUNCTION BuildType (t: ResType; I: ListHandle): inteqer;

Given a list that has been initialized with no rows, BuildType builds a list of all resources of type
t from the current resource file. (See the WindList routine described above.) If
SetResLoad (true) has been called, all the resources will be loaded in also. BuildType returns
a count of the number of instances currently in the list.

The ClearHand procedure

PROCEDURE ClearHand(b: Handle);

Clear Hand clears the resource referenced by the handle b to all zeros.

ResEdit Reference Beta Version 42

The ConcatStr procedure

PROCEDURE ConcatStr(VARs~Z: Str255; str2: Str255);

ConcatStr concatenates str2to strl, leaving the result in strl.

Wamlng
This routine does not check for aggregate s1rlng length In excess of 255 characters. Please be
careful I

The CopyRes function

FUNCTION CopyRes (VAR b: Handle; ma/tte/D: boolean; refNum: inteqer) : Handle;

Given a handle b to a resource, CopyRes makes a copy of the resource to the resource file
specified by refNum. Note that the handle is changed, so you can't keep track of your resource by
saving its handle before using CopyRes. If makeID is true, a unique ID will be assigned to the
copy; otherwise, it retains the ID of the original. CopyRes returns a handle to the new copy (in the
new file).

The DoUstEvt procedure

PROCEDURE DoListEvt(e: EventRecord; I: ListHandle);

Given an event e and a list l, DoListEvt does the standard dispatch to the List Manager. (See
lnstde Macintosh, Volume IV.) The port must be set to the window that owns the event.
DoListEvt also enables the File menu and draws controls in the window.

The DupPlck function

FUNCTION DupPick(h: Handle; c: cell;pz'ck: PickHandle): Handle;

Dupl?ick duplicates a resource referenced by b, adds it to the picker list referenced by pick, and
performs an InvalRect action on tbePort for the new cell c. It also makes the new cell the
selection.

The ErrorCheck function

FUNCTION ErrorCheck(e;,., msg/D: integer): boolean;

Given a result code errand a message ID number msg/D, ErrorCheck brings up an error dialog
box if err is nonzero. If msg/D is negative, the box displays a fatal error message retrieved from
STRt resource ID 128; otherwise, it displays a message reUieved from STR# resource ID 129.
ErrorCheck returns true if successful, false otherwise. When creating new strings for use by
ErrorCheck, be sure to add them to the end of the existing list in the STRt resource.

The FileNewType function

FUNCTION FileNewType(types: ListHandle;VARs: Str255): boolean;

ResEdit Reference Beta Version 43

("~ '

'(_/

(

c

E'ileNewType puts up a dialog box containing a list of the types of resources that can be edited.
The list is referenced by types. FileNewType then returns true ifthe user selects a type, false
if Cancel is clicked. The selected type is returned in s.

The FixHand procedure

PROCEDURE FixHand (s: longint; b: Handle);

E' ixHand makes sure the object to which b is a handle is s byres long. If it's longer, E' ixHand
shrinks it; if it's shorter, E'ixHand expands it and fills the extension with zeros.

The HandleCheck function

FUNCTION HandleCheck (b: Handle; msg/D: integer): boolean;

HandleCheck checks to see if the handle bis nil or empty. If it is either, HandleCheck returns
false; otherwise, it returns true. The parameter msgIDis the ID from'STR# resource ID 129. If
this function fails, it calls ErrorCheck.

The MetaKeys procedure

PROCEDURE MetaKeys (VAR cmd, shift, opt: boolean);

MetaKeys accesses the modifier flags for the last event, returning their values in cmd, shift, and
opt. For further information about modifier flags, see Inside Mact~osb, Volume I, Chapter 8.

The NewRes function

FUNCTION NewRes (s: longint; t: ResType; l: ListHandle; VAR n: integer) : Handle;

Given a sizes, NewRes allocates a new handle, clears it, adds it to the current resource file as a
resource of type t, adds it to the list l, and returns a handle to the new resource. The parameter n is
the item number in the list L If this function fails, it returns a nil handle.

The PickEvent procedure

PROCEDURE PickEvent (VAR eut: EventRecord; piclt: PickHandle);

PickEvent handles an event contained in evtfor a standard picker referenced by pick. Call
PickEvent from your picker's event procedure.

The PicklnfoUp procedure

PROCEDURE PickinfoUp(old/D, new/D: integer; piclc: PickHandle);

PickinfoUp handles an information update (identified by old.ID and newID) for a standard picker
referenced by pick. Call PickinfoUp from your picker's DoinfoUpdate procedure. If the ID has
not changed, oldID and new ID will, of course, be identical.

ResEdit Reference Beta Version 44

lhe PickMenu procedure

PROCEDURE PickMenu(menu, item: integer; pick: PickHandle);

l? ickMenu handles a menu selection (identified by menu and item) for a standard picker
referenced by pick. Call PickMenu from your picker's DoMenu procedure.

lhe RCalcMask procedure

PROCEDURE ycalcMa:slc (srcPtr, dstPtr: Ptr; srcRow, dslR.ow, height, words: integer);

RCalcMask calculates a mask for the given source bit image and puts it into the destination bit
image. The parameters srcPtrand d.stPtrreference the source and destination bit images; srcRow,
d.stRow, height, and words define the area on which RCalcMask operates. For further information
about bit images, see Instde Mactntosb, Volume I, Chapter 6.

lhe ResEdlD function

FUNCTION ResEdID: integer;

ResEdID returns the resource ID of the editor or picker that calls it

lhe ResEditRes function

FUNCTION ResEditRes: integer;

ResEditRes returns-the resource ID of the resource editor.

lhe ResEverest procedure

PROCEDURE ResEverest;

ResEverest sets the current resource file to the last one opened.

lhe RSeedFill procedure

PROCEDURE RSeed.Fill (srcl'tr, dstPtr: Ptr; srcRow, dstRow, height, words: integer; seedH, seedV:
integer);

Given a source bit image, a destination bit image, and a seed location, RSeedFill fills the bits in
the destination with black. The parameters srcPtrand d.stPtrreference the source and destination bit
images; srcRow, d.stRow, height, and words define the area on which RSeedF ill operates; seedH
and seedVdefine the seed location. For further information about bit images, see Inside Macintosh,
Volume I, Chapter 6.

lhe ScrapCopy procedure

PROCEDURE ScrapCopy(VAR b: Handle);

ScrapCopy copies the ResEdit scrap into the resource identified by h.

ResEdit Reference Beta Version 45

(- ·The ScrapEmpty procedure

PROCEDURE SerapEmpty;

ScrapEmpty empties the ResEdit scrap. Call it before doing a Cut or Copy operation.

The ScrapPaste procedure

PROCEDURE SerapPaste(nrsFile: integer);

ScrapPaste pastes the resources from the ResEdit scrap to the file identified by the ID number
resFi/e.

The SetETitle procedure

PROCEDURE SetETitle (b: Handle; VAR str: Str255);

Given a handle b to a resource, SetETi tle concatenates the resource's ID with its name and
places the result into str.

The SetResChanged procedure

PROCEDURE SetResChanged(b: Handle);

SetResChanqed marks the resource b as changed so that it will be updated when your program
terminates.

The Showlnfo procedure

PROCEDURE Showinfo(b: Handle; dad: ParentHandle);

Showinfo puts up a Getlnfo window for the resource referenced by b that belongs to the father
object referenced by dad.

ResEc:lit Reference Beta Version 46

A

@ABCO 36
AbleMenu procedure 42
AddNewRes function 42
Align to Grid 20
'ALRT 6, 18, 19
AppRes procedure 42
ascent27

8

BeginUpdate 37
'BNOL' 2, 24, 33
BOOL32
Bring to Front 20
BubbleUp procedure 42
BuildType function 42

c

CallEBirth 39
CallEvent 39
CalllnfoUpdate procedure 39
CallMenu 39
CallPBirth 39
character editing panel 26
character selection panel 27
Clear 12, 13
ClearHand procedure 42
Close 9, 11, 12
'CNTI' 19, 20
'CODE' 2
Coloffable record 5
Command key 14
ConcatStr procedure 43
Copy 11, 13
CopyRes function 43
CurrentRes function 42
'CURS' 21
Cut 11, 13

ResEdit Reference

Index

D

Data-> Mask 21
data fork. 10
OeRez3, 33
descent 27
desktop 8, 24
dialog box 2
Display as Text 17
Display using old method 23
•om• 6, 16, 19, 33
•om• associated with 'ALRT

or'OLOG' 18
OLNG 32
'DLOG' 6, 18, 19
OolnfoUpdate 44
OoListEvt procedure 43
'DRVR' 5
Duplicate 12, 13
OupPick function 43
DWR032

E

EditBirth 37
editor 2, 36
EndUpdate 37
ErrorCheck 44
ErrorCheck function 43

F

'fctb' 5

G

general data editor 16
general editor 5
Getlnfo9, 12
GetlIMapEntry 38
GetlIMapEntry procedure 41
GetlMapEntry 38
GetlMapEntry procedure 41
GetResLoad function 41
GiveEBirth procedure 38
graphic tools panel 27

H

HandleCheck function 44
HEXA Editor 5, 16

'ICN#' editing example 24
'ICN#' 5, 23
mask23
'ICON' 5, 19, 20, 22
icons 2

J

K

FUeNewType function 43
Finder8, 23
Finder "Get Info• comments 24 L
FixHand procedure 44
'FON0' 5, 26
'FONT 5, 26
Font /DA Mover 5
Font family IO number 5
'PREF 2, 24 .

Beta Version

list separator 34

M

Macintosh Programmer's
Workshop 3, 8

'MENU' 33
MetaKeys procedure 44

47

MPW3,8 Revert 11, 12
MPWShel18 RevertResource function 41
MultiFinder 8 Rez 3 x

RSeedFill procedure 45
1RSSC1 36

N
y

New 9, 11, 12, 25 s
NewRes function 44
'NFNT 2, 5 sample text panel 27

Save 9, 11, 12 z
ScrapCopy procedure 45

0 ScrapEmpty procedure 46
ScrapPaste procedure 46

Open 9, 11, 12 Select Item Number 20
Open As 12, 13 Send to Back 20
Open general 11, 12 Set Item Number 20
Option key 14, 16 SetETitle procedure 46

SetResChanged procedure 46
Showinfo 39

p Showinfo procedure 46
'SIC.'l'' 25

parent record 38 'snd' 2
PassMenu procedure 39 'STR*' 33
Paste 11, 13
'PAT' 5, 28
'PAT#' 29 T
picker 36
picker record 38 templates 2, 13
PickEvent procedure 44 "IMPL' 32
PickinfoUp procedure 44 Transfer ... 10, 11, 13
PickMenu procedure 45 Try Cursor 21
'PICT 19, 20, 30 type checking 33
Pig mode 30
PSTR (Pascal string) 32

u

Q Undo 13
Use Full Window 20

Quit IO, 11, 13 Use Owner Window 20
Use RSRC Rectangle 20
UseResFile 37

R USES declaration 36

RCalcMask procedure 45
RECT32 v
refCon 32, 38
refCon parameter 37
ResEd 3, 36
ResEdID function 45 w
ResEditRes function 45
ResEverest procedure 45 'WIND' 17
resource editors 16 WindAlloc function 39
resource ID numbers 5 WindFree procedure 39
resource map entry 3 7 WindList function 40
resource picker 2, 10, 12 WindOrigin procedure 4-0
resource template 2 Window Alloc 39
Restore Arrow 21 windowRec 38
restrictions 5 WindSetup function 4-0

ResEdit Reference Beta Version 48

TI-IE APPLE PUBUSHING SYSTEM

This Apple manual was written,
edited, and composed on a
de~ktop publishing system using
Apple MacintoshllD computers and
MicrosoftilD Word. Proof pages
were created on .. the Apple
LaserWriterilD Plus. Posrscru~
the LaserWriter page-description
language, was developed by
Adobe Systems Incorporated.

Text type is ITC GaramondilD
(a downloadable font distributed
by Adobe Systems). Display type
is ITC Avant Garde GothicilD
Bullets are ITC Zapf DingbatsilD
Some elements, such as program
listings, are set in Apple Courier,
a fixed-width font.

2/21/88

ERS

LLlGENERATOR
MPW LL(l) Parse table generator

Page 1 - 7 /12/88

MPW LL(l) PARSE TABLE GENERATOR
[I..LlGENERATOR]

Development Systems Group

Version 0.3 -- November 1987

Copyright© 1987 Apple Computer, Inc. All rights reserved ..
CONFIDENTIAL

(' LLlGENERATOR
MPW LL(l) Parse table generator

Page 2 - 7/12/88

Modification History

0.00 919/8r Eagle I. Berns -First Specification release
0.1 9/22/87 Eagle I. Berns -Removed restriction to read in Terminal, non

Terminal, and action names. They are now
embedded in production syntax.

-Added ability to insert initialization
data/programs between %{ line and %} line.
Allowed names to be up to 31 chars.

'

-Allowed comments between /* and * /. Gen-
eralized form of input for productions.

-Allowed a (option-d) as an escape character.

-Fixed bugs.

f 0.2 10/9/87 .Eagle I. Berns -Added '-C' option to LL to produce C-type
inclusion files for drivers.

-Included a C equivalent version of the existing
pascal sample driver.

-Added initialization capability through the
"OTIIERWISE/default" capability within the ac-
tions.

-Added %{token ... facility to allow assignment
by user of terminal token values.

-Changed the naming convention on the in-
eluded/generated files.

-Fixed problems arising from "end" conditions
(such as at End-of-line, EOF, etc.)

0.3 11/2/87 Eagle I. Berns -Added -d options to create 11.definitions file
with #defines or CONST symbols for terminal
productions - for use with users own parser.

0 Copyright© 1987 Apple Computer, I.nc. All rights reserved.
CONFIDENTIAL

LLlGENERATOR
MPW LL(l) Parse table generator

Page 3 - 7 /12/88

-Allow terminal definitions Without- numeric
value equates so quotes don't have to be used in
the production definitions for terminals.

-Converted error message form to look like
pascal error messages and allow clicking on
error message file/line to go direct to problem.

-Changed tool name to LLlPARSERGENERAOR

-fixed general bugs.

Copyright© 1987 Apple Computer, Inc. All rights reserved.
CONFIDENTIAL

(

Project Identification

Product Name

MPW LL(l) Grammar Parser - LLlGENERATOR

Related Documents

LLlGENERATOR
MPW LL(l) Parse table generator

Page 4 - 7 /12/88

Compiler Construction, Waite/Goos, Springer-Verlang, 1984.

Syntax of Pro~ramming Languages, Theory and Practice, Roland C. Backhouse, 1979.

Compiler Constrnction: Theory and Practice, William A. ·Barrett & John D. Couch, SRA,
1979.

Compilers, Principles, Techniques, and Tools (the "dragon book''), Aho, Sethi, & Ullman,
Addison Wesley, 1986.

The Design and Construction of Compilers, Robin Hunter, John Wiley & Sons, 1981.

Compiler Design Theory, (Tbe systems programming series), P.M. Lewis II, D.J. Rosenkrantz,
R.E. Stearns, Addison Wesley, 1976.

Product Abstract

The MPW LL(l) Grammar Parser is composed of two distinct parts: The LLlPARSER­
GENERATOR tool, and the PGP or PGC tool. The LLlGENERATOR tool takes in the
definition of a language which must be a well defined LL(l) Grammar, along with any
embedded actions, and optionally the source code for those actions, and produces a
series of three files containing the parsing tables, the action code processor, and the
initialization constants. A script which is included with the product, merges these files,
and compiles a version of the PGP or PGC tool, which is tailored to the original input
grammar. This newly created tool may be invoked from MPW, the input will be
"executed" by the tool, and any pre-specified actions will be performed. A sample
grammar is included to show a straight forward application of the tool to write a simple
calculator tool. The references listed above provide more than adequate description of
the definition of an LL(l) grammar.

Copyright © 1987 Apple Computer, Inc. All rights reserved.
CONFIDENTIAL

User Environment

LLlGENERATOR
MPW LL(l) Parse table generator

Page 5 - 7/12/88

These tools will run on a Mac+, Mac SE, or MAC II, in the MPW shell environment.

File Identification

There are a number of files generated and/or used by this product. Many can be used
without involvement by the programmer, although all are accessible to them, including the
source of the driver program (but not the source of the LL(l) grammar table generator).
These files, their types, and use are described in the following table.

file name File type
LLlGENERATOR MPW tool

LL.RESOURCE MPW rez input

LL.INITIAUZE MPW Source text file

LL.ACTIONS MPW Source text file

LL.DEFINITIONS MPW Source text file

Us;me
This is the tool which creates the actual ta­
bles.

LLlGENERATOR creates this file which is
suitable for input to REZ and contains all
tables that are needed by the driver
program.

LLlGENERATO.R creates this file which
contains the constants which need to be
initialized by the driver.

LLlGENERATOR creates this file which
contains the routine invoked when an action
was specified. The routine contains the
users on action source.

LLlGENERATOR creates this file which
contains a file of CONST or #define
constants when the -d option is used. The
items included are the internal terminal
symbol id's or those which the user has
specified in the "%{token" segment of the
source (see below).

Copyright © 1987 Apple Computer, Inc. All rights reserved.
CONFIDENTIAL

(

PGP.P-PGC.C MPW Source text file

PGP.R-PGC.R MPW Rez file

PGM MPW make file

filename.X MPW tool

LLlGENERATOR
MPW LL(l) Parse table generator

Page 6 - 7 /12/88

This is the source used as the skeleton for
the inclusion of the files created above. The
script below compiles this, and places the
results in a user file. One is Pascal source,
the other is the equivalent code written in C.

This contains the resources used by PGP.P
and PGC.C

This file will create the end user tool by
compiling, and linking the source of PGP.P,
or PGC.C and the user files.

This is the final user MPW tool. It's argu­
ments/usage are explained below.

Copyright © 1987 Apple Computer, Inc. All rights reserved.
CONFIDENTIAL

Program Usage

LLlGENERATOR
MPW LL(l) Parse table generator

Page 7 - 7/12/88

Syntax LL1 GENERA TOR [option] filename

Description LLlGENERATOR processes a source file (filename) containing the
definitions for grammar presented to it. The form of the input is
described below.

Type Tool.

Input The Input file filename contains the source for the grammar. The data
may begin immediately with the productions. The start symbol must be
the Left-Hand-Side of the first production. (The form of the pro­
ductions is shown below. Alternatively, you may begin the input with a
line containing%{. If you do, all lines read until a line containing%} is
found will be copied into the LL.INITIALIZE file mentioned above. Af­
ter the productions, a line with % must be placed, if the source for the
actions to be performed follows.

The Source of actions are "CASE" statement alternatives for PASCAL, or
"switch" statement alternatives for C. (See below the example for
PASCAL) LLlGENERATOR will surround the code with the appropriate
CASE/SWITCH statement and procedure body needed for use in the
PGP and PGC statement. Examining the LL.ACTIONS file once you've
executed the LLlGENERATOR command will show what is produced.

An additional type of input input is available: the %{TOKEN ••• %} in­
put. The data between these lines must be composed of triplets of texts
in the following form: A terminal symbol used in the grammar, one or
more blanks; an optional separator symbol of some form (usually
"EQU" or "•"); one or more blanks; and finally a numeric value. For
example:

+ EQU 8
EQU 9

++ EQU 18

Copyright © 1987 Apple Computer, Inc. All rights r.eserved.
CONFIDENTIAL

C'
/

Output

LLl GENERA TOR
MPW LL(l) Parse table generator

Page 8 - 7 /12/88
If this form of the input precedes the grammar definition, it will have two
effects. First, It will not be necessary to surround the terminal symbols with
the single quote character('). And second, and this is primary purpose of
the option, all output tables generated will use the numeric values specified
rather than the sequential numbering scheme normally generated by

·' LLlGENERATOR. Identification numbers generated internally for the non­
terminals will begin with a numeric value one higher than the largest value
specified in the section above. NOTE: if this option is used. it is assumed
that the user will have their own driver 9rogram for 9rocessing terminal
symbols - the PGP and PGC programs are not designed to use this mode.
(although, a few simple modifications could be made to do so). This option
is primarily provided for those who may already have their own scanner
defined. One additional warning: If the tokens ar~ pre-:-defined with the
above mechanism, any terminal symbols other than those which have been
defined will be considered to be an error, and the program will terminate.
An optional form of token input is to NOT specify anything but a list of the
terminal names to be used The user will thus not be required to quote the
items in the productions, and this system will assign its own internal numeric
values. Examples of the various forms are shown in the section describing
the LLDEFINITIONS file itself.

The LL.INITIALIZE, LL.RESOURCE, LL.ACTIONS, and LL.DEFINITIONS files
described above are generated.

Diagnostics Errors are written to diagnostic output.

Status

Options

Example

The following status values may be returned:

0 No Error
1 Syntax Error

-p Write progress information to diagnostic output.
-c Generate output files for inclusion in a "C" driver vs. Pascal.
-d Generate output file LL.DEFINITIONS with the appropriate

form for constants that were specified as terminals with the
internal id's specified by the system or those generated by
the "%{token" field

LLlGENERATOR CALCP.LL {see the complete example described below}

limitations LLlGENERATOR will ONLY work on well formed LL(l) Grammars.

Copyright © 1987 Apple Computer, Inc. All rights reserved.
CONFIDENTIAL

LLlGENERATOR
MPW LL(l) Parse table generator

Page 9 - 7 /12/88

COMPLETE SAMPLE PROGRAM

The file CALCP .U contains the following data:

%{
VAR

%}

%{tokens
$EOL
+

•
I
(
)

Stack:
tos:

$VAR
$NUMBER

%}

p

Pl
P2
E
El

T
Tl

F

TEl;

FTI;·

P2 Pl;

P2 Pl;
E (pulnsho} '$EOL' ;

+ T (pulnadd} El

ARRA Y{0 .. 500] OF integer;
INTEGER;

I - T {pulnsub} El ;

• F {pulrunlt} Tl
I I F {pulndiv} Tl ;

'(' E ')'
'$VAR'

I '$NUMBER' {pshnum} ;
/• these null non terminals are needed • /
Pl
Tl
El
%

•I

•I

•I

Copyright© 1987 Apple Computer, Inc. All rights reserved.
CONFIDENTIAL

(

(.

PshNum:

LLl GENERA TOR
MPW LL(l) Parse table generator

Page 10 - 7/12/88

BEGIN

END;
PulNAdd:

tos:•tos+l;
stack[tos]:•NumSymbol; {"Numsymbol" is defined in the Drivers

GetNextSymbol Routine}

BEGIN
stack[tos-11:-stack[tos-l]+stack[tos];
tos:•tos-1;

END;
PulNSub:

BEGIN

END;
PulNMlt:

stack[tos-1]: •stack[tos-1]-stack[tosl;
tos:•tos-1;

BEGIN

END;
PulNDiv:

stack[tos-1]:•stack[tos-1]•stack[tos];
tos:•tos-1;

BEGIN

END;
PulNSho:

stack[tos-ll:·stack[tos-1] DIV stack[tos];
tos:•tos-1;

BEGIN
Writeln(stack[tos]:O);
tos: •tos-1;

END;
OTHERWISE tos:•O; {init stage does this}

A Few things that are important to notice in the above input data are the fol­
lowing: Tenninal signals are denoted by enclosing them in single quote marks;
Actions are identified by surrounding them with curly braces; Comments may
go anywhere; the a (option-d) symbol may be used to allow the following
character to stand for itself (to allow for example, single quotes and curly braces
in the grammar); Multiple LHS declarations may use the OR (I) symbol to
avoided repeating its name; Productions are terminated by a semi-colon (;) ;
Finally, notice that there are some special terminal symbols $EOL, $NUMBER,
and $VAR. These symbols are recognized as special by the parser included in

Copyright © 1987 Apple Computer, Inc. All rights res.erved.
CONFIDENTIAL

LLl GENERA TOR
MPW LL(l) Parse table generator

Page 11 - 7112188
the sample (obviously, the person designing the GE1NEXTSYMBOL routine
may, or may not choose to use this). $EOL is generated whenever there is an
End Of Line read on input of the string to be parsed. $NUMBER will "chew-up"
a sequence of digits from 0 to 9 and make one integer value from them. $VAR
will "chew-up" a series of letters and/or numbers which start with a letter.
These can be-omitted if the user wishes and they may use actual letter or
number terminals. Since the source of PGP and PGC is included, a user may add
additional special types, and handle them in the "GETNEXTSYMBOL" routine.

When LLlGENERATOR is run with the above input data, the following output is
generated in the files specified:

LL.INITIALIZE
(Note that some of the output shown below is produced by the LLlGENERATOR program
icself.)

VAR

CONST
pulmho
pulnadd
pulnsub
pulnmlt
pulndiv
pshnum

NTF • 10;
TI. - 9;
NI1. - 17;

Stack:
tos:

LL.RESOURCE

- -100;
- -101;
- -102;
- -103;
- -104;

- -105;

Resource 'PROD' (1000) {
{

/• 0 •/ {11,12},
/* '1 •/ {11,12},
/• 2 •; {13,-100,1},
/* 3 •/ {14,15},
/* 4 •; {2,14,-101,15},
/• 5 •/ {3,14,-102,15},
/• 6 •; {16,17},

.... : - /* 7 •/ {4,16,-103,17},

ARRAY[0 .. 500] OF integer;
INTEGER;

Copyright© 1987 Apple Computer, Inc. All rights reserved.
CONFIDENTIAL

(',

/* 8 •/ {5,16,-104,17},
/* 9 •/ {6,13,7},
/* 10 •/ {8},
/* 11 •/ {9,-105},
/* 12 •/ 0,
/* 13 •/ 0,
/• 14 •/ 0
}

};

Resource 'GIDX' (1000) {
{

1,4,7,11,14,19,24,27,32,37,41,43,46,47,48
}

};

Resource 'TERM' (1000) {
{
!' 0•/ 11EOF
!' 1 •/ 11$EOL
!' 2 ·1 "+
t 3 •/ 11-

/* 4 */II•

/* 5 •/ "/
!' 6 •/ "(
/* 7 •; ")
/* 8 */"$VAR
/* 9 •/ "$NUMBER
}

};

Resource 'NTRM' (1000) {
{

/* 10 •/ "P
/* 11 •/ "P2
/* 12 •/"Pl
!' 13 •/ "E
!' 14 •/ ''T
/* 15 */"El
/* 16•/ 11F
!' 17 •/ ''11
}

};

II

II

' II ,
II ,
II ,
II

II ,
11·

" ' II

' II

" ' "

"
' II

'
"

II

II

LLlGENERATOR
MPW LL(l) Parse table generator

Page 12 - 7 /12/88

Copyright© 1987 Apple Computer, Inc. All rights reserved.
CONFIDENTIAL

Resource 'AC1N' (1000) {
{

/* -100 •I "pulnsho
/* -101 •I "pulnadd
/* -102 •I "puhisub
/* -103 •I "puln.mlt
/* -104 •/ "pulndiv
/* -105 •/ "pshnum
}

};

Resource 'PNAM' (1000) {
{

/* 0 *I "P
/* 1 */"Pl
/*·2 */ "P2
/* 3 */ "E
/* 4 */"El
/* 5 */"El
/*6*/''T
/* 7 •/''TI
/* 8 ·1 ''TI
/*9*/"F
/* 10 */ "F
/* 11 •/ "F
/* 12 */"Pl
/* 13 •/''TI
/* 14 */"El
}

};

Resource 'GRAM' (1000) {

" ' II

'
"
" ' " ' "
n
' " ' II

" ' " ' " '
"
"
"
'
'

" '
" ' " '
" ' " ' "

LLlGENERATOR
MPW LL(l) Parse table generator

Page 13 - 7 /12/88

/*Triplets: row,column,production no. •/

{
/• Gramrnar->M[row,colurnn] :•production no.; */

10,6,0,
10,8,0,
10,9,0,
11,6,2,
11,8,2,
11,9,2,
12,0,12,
12,6,1,

Copyright© 1987 Apple Computer, Inc. All rights reserved.
CONFIDENTIAL

(-.

C·. \
'

/

}
};

12,8,1,
12,9,1,
13,6,3,
13,8,3,
13,9,3,
14,6,6,
14,8,6,
14,9,6,
15,1,14,
15,7,14,
15,3,5,
15,2,4,
16,9,11,
16,8,10,
16,6,9,
17,1,13,
17,2,13,
17,3,13,
17,7,13,
17,5,8,
17,4,7

LL.ACTIONS

LLl GENERATOR
MPW LL(l) Parse table generator

Page 14 - 7 /12/88

PROCEDURE ActionProc(actionNumber:integer);
BEGIN
CASE ActionNurnber 0 F

PshNum:
BEGIN

tos:•tos+l;
stack[tos]:•NumSymbol; {"Numsymbol" is defined in the Drivers

GetNextSymbol Routine}
END;

PulNAdd:
BEGIN

END;

stack[tos-ll:•stack[tos-1]+stack[tos];
tos: •tos-1;

Copyright© 1987 Apple Computer, Inc. All rights reserved.
CONFIDENTIAL

PulNSub:
BEGIN

LLlGENERATOR
MPW LL(l) Parse table generator

Page 15 - 7 /12/88

stack[tos-l]: •stack[tos-1]-stack[tos];
· tos:•tos-1;

END;
PulNMlt:

BEGIN
stack[tos-l]:•stack[tos-l]*stack[tos];
tos:•tos-1;

END;
PulNDiv:

BEGIN
stack[tos-l]:•stack[tos-1] DIV stack[tos];
tos:•tos-1;

END;
PulNSho:

BEGIN
Writeln(stack[tos]:O);
tos:•tos-1;

END;
OTHERWISE tos:•O;{init stage does this}

END;
END· 7

LL.DEFINITIONS

If the -d options had been specified, this file would have been created and would have
contained the following:

CONST
$EOL • 1;
+ • 2;
- - 3;
• • 4;
I .. S;
(•6;
) • 7;
$VAR• 8;
$NUMBER• 9;
EOF • O;

Copyright© 1987 Apple Computer, Inc. All rights reserved.
CONFIDENTIAL

(

(:'

LLlGENERATOR
MPW LL(l) Parse table generator

Page 16 - 7 /12/88

Note that this makes no sense for pascal, nor would it for the "C" version, and would not
be specified if the terminal symbols were constants such as those shown.
But had the %{token field been used with data such as:

%{token

%}

$EOL
PLUS
MINUS
TIMES
DIV
LPAREN
RPAREN
$VAR
$NUMBER

equ 1
equ 2
equ 3
equ 4
equ 5
equ 6
equ 7
equ 8
equ 9

... the CONST section would have been as follows:

CONST
$EOL
PLUS
MINUS
TIMES
DIV
LPAREN
RPAREN
$VAR
$NUMBER
EOF

= 1;
= 2;
= 3;
= 4;
= 5;
= 6;
= 7;
= 8;
= 9;
= 0;

(of course, this assumes that these symbols were then used in the
grammar, such as PLUS instead of'+', etc.)

The same result would have occurred had the use NOT placed any "equ" values in
the token section (as shown below) since this is the sequence that
ill GENERATOR would have generated internally. i.e.
%{token

%}

$EOL
PLUS
MINUS
TIMES
DIV
LPAREN
RPAREN
$VAR
$NUMBER

Copyright © 1987 Apple Computer, Inc. All rights reserved.
CONFIDENTIAL

LLl GENERATOR
MPW LL(l) Parse table generator

Page 17 - 7 /12/88
Had the user inserted their own equ id values they, of course, would have been the ones
used for LL.DEFINITIONS.

Once this portion of the process is completed, the PGP or PGC program, under control
of the Make file PGM can be executed. Th.is Make file simple does a PASCAL or C
compile, linl{, and rez, to generate an MPW tool with the name CALCP .LL.X. The form of
the PGM call is PGMfilename and additionally the letter, C if a C form of generation is
required. Once completed, the tool created may be called in the following manner:

CAI..CP.LL.X [-P] [filename]

The -P puts out progress information during the parsing of each input line, which may
come either from the console, or from the file filename. An example of what is pro­
duced from CALCP.LL.X is shown below (although it is quite trivial).

CALCP.LL.X
1 +2*3-4*5+6*(8-5) <enter>
5
3+4*5 <enter>
23
<command-.>

all done.

The file CALCP.LL is available to test the working of the two tools. Keep in mind, that
you may change PGP.P and PGC.C as much (or as little) as you need to accommodate the
parsing needs of your particular grammar. Usually, this takes the form of replacing the
GETNEXTSYMBOL routine, and/or adding additional constants, and variables used by the
grammars actions.

Copyright © 1987 Apple Computer, Inc. All rights reserved.
CONFIDENTIAL

(

()
i

tilD Macintosh® MacsBug Ref ere nee

APDA Final Draft
llJuly 1988
Developer Products Publications

- -

©Apple Computer, Inc. 1988

(

C APPLE COMPt.rrER, INC.

This manual is copyrighted by
Apple or by Apple's suppliers,
with all rights reserved. Under
the copyright laws, this manual
may not be copied, in whole or
in part, without the written
consent of Apple Computer,
Inc. This exception does not
allow copies to be made for
others, whether or not sold, but
all of the material purchased
may be sold, given, or lent to
another person. Under the law,
copying includes translating into
another language.

~Apple Computer, Inc., 1988
20525 Mariani Avenue
Cupertino, CA 95014
(408) 996-1010

Apple, the Apple logo,
LaserWriter, and Macintosh are
registered trademarks of Apple
Computer, Inc.

ITC Avant Garde Gothic, ITC
Garamond, and ITC Zapf
Dingbats are registered trade­
marks of International Typeface
Corporation.

Microsoft is a registered trade­
mark of Microsoft Corporation.

POSTSCRIPT is a registered
trademark of Adobe Systems
Incorporated.

Varityper is a registered trade­
mark, and vr600 is a trademark,
of AM International, Inc.

Simultaneously published in the
United States and Canada.

2/21/88

r'­
~J

(

(

Preface

Chapter 1

Chapter 2

Chapter 3

Appendix A
Appendix B
Appendix C
AppendixD
AppendixE
Appendix F
Appendix G
Index

Contents

About This Manual ... v
Notation conventions vi

MacsBug Overview : .1
About MacsBug .. 2
Macintosh debugging 2
MacsBug files ... 3

Debugging With MacsBug 5
Getting started ... 6
Specifying things ... 8
How did I get here? .. 9
Controlling program execution 10
Stopping at a particular place l 0
Watching for memory to change l l
Displaying and setting memory 12
Checking the heap .. 12
Exercising your program 12
The dot address ... 13

MacsBug Commands 15
Command syntax ... 16

Values .. 16
Operators ... 1 7

Command descriptions 17

Command Summary 85
Error Messages .. 89
MacsBug Internals .. 93
Debugger and DebugStr 97
MacsBug 6.0 Highlights 101
Did You Know? .. l 09
Procedure Definition 111
.. 115

Final draft iii

\

(

(

iv Final draft

Preface

About This Manual

Final draft v

(

Welcome to MacsBug 6.0. MacsBug has been around for a long time. If you 're already a
MacsBug user, you'll be glad to know that it's new and improved. Not only does it have
lots of new features, it's been completely rewritten so that it makes more sense and can
grow. A summary of what"s new and what's changed is given in Appendix E: you'll
probably want to start there.

MacsBug is Apple's assembly-language debugger for Macintosh programmers. If you
have written, or are trying to write, a program for the Macintosh, you'll find MacsBug a
powerful debugger with many unique capabilities. If you aren't actually writing a
program, but have a good basic understanding of Inside Macintosh, you'll find MacsBug a
helpful tool for learning more about the Macintosh. (In fact, MacsBug was used frequently
in the writing of Inside Macintosh to determine how particular routines actually worked.)

Chapter 1 provides an overview of MacsBug. This includes a description of the hardware
and software configurations MacsBug works with, what kind of debugger MacsBug is,
and the files on the MacsBug disk.

Chapter 2 introduces the MacsBug commands and how they fit into various debugging
strategies.

Chapter 3 provides a complete specification of the MacsBug command language, including
command syntax, operation, and examples.

Appendix A contains a summary of all MacsBug commands.

Appendix B list the error messages returned by MacsBug.

Appendix C describes MacsBug internals for advanced programmers.

Appendix D details how you can call MacsBug from within your program.

Appendix E outlines the differences between MacsBug version 5.5 and MacsBug 6.0.

Appendix F provides tips, shoncuts, and interesting facts about MacsBug.

Appendix G covers procedure name definition for advanced programmers.

Notation conventions
The following notation conventions are used to describe MacsBug commands:

literal

variable

[optional]

vi

Plain text indicates a word that must appear in the command exactly as
shown. Special symbols(-, §,&,and so on) must also be entered exactly
as shown.

Items in italics can be replaced by anything that matches their definition.

Square brackets mean that the enclosed elements are optional.

·Final draft

(.

(

repeated... An ellipsis(...) indicates that the preceding item can be repeated one or
· more times.

either I or A vertical bar (I) indicates an either/or choice.

(grouping) Parentheses indicate grouping and are used when both items of a choice can
be specified and repeated; that is, (paraml I param2 ...).

{ Return } Brackets are used in examples to indicate that the specified key should be
pressed. They are also used to enclose comments.

Command names and filenames are not sensitive to case.

Final draft vii

C\
/

viii Final draft

(

Chapter 1

MacsBug Overview

About MacsBug ~ 2
Macintosh debugging 2
MacsBug files ... 3

(

Final draft

About MacsBug
MacsBug is a Motorola 68000-family assembly-language debugger customized for the
entire Macintosh® family of computers. First introduced in 1981, MacsBug has continued
to evolve along with the Macintosh. Version 6.0 represents a new generation for
MacsBug. While compatibility with earlier versions has been maintained-vinually all of
the old commands are supponed-MacsBug has been completely rewritten to take full
advantage of the power and sophistication of the new machines.

MacsBug 6.0 runs on the Macintosh Plus, Macintosh SE, and Macintosh II, and is
designed to suppon future members of the 68000 family. It handles the MC6888 l
floating-point coprocessor and the MC68851 Memory Management Unit (MMU). It also
suppons external displays on the Macintosh Plus and Macintosh SE, as well as various
screen sizes and bit depths on Macintosh II displays. There's no need to customize
MacsBug for particular configurations since it determines the attributes of the machine at
system startup.

MacsBug 6.0 works with all versions of Macintosh system software, and is compatible
with Multi.Finder™.

MacsBug 6.0 does not work with the 64K ROMs, nor does it run on the Macintosh XL.

Macintosh debugging
MacsBug uses as little of the Macintosh system software as possible. This lets systems
programmers debug their software without having to worry about the debugger using the
code they're debugging. But MacsBug isn't only a systems-level debugger. The high
degree of interaction between a Macintosh application and the system also makes Macs Bug
a powerful tool for debugging applications.

MacsBug is an assembly-language debugger. If you're writing programs in a high-level
language like C or Pascal, you'll more often want to use the Symbolic Application
Debugging Environment (SADE™). SADE lets you debug your program at the source­
code level, which means you don't need to know assembly language or map object code
back to your program's source-level instructions. If you need to, SADE lets you monitor
program execution at the machine level as well.

SADE does have its limitations, however, and high-level programmers will find that
MacsBug picks up where SADE leaves off. Specifically:

•

2

SADE uses the Macintosh system software extensively, and in the case of a severe
crash may not be operable. MacsBug lets you examine the remains to try to determine
what went wrong.

Final draft

(• If RAM is severely limited, you may not be able to run SADE. MacsBug is lean and
mean.

MacsBug is loaded at system startup and sits quietly in RA..\1 until it's invoked. Unlike
debuggers that expect a target program to work with, MacsBug lets you look at practically
anything running on the Macintosh-toolbox and operating system routines, applications,
desk accessories, and so on.

You can suspend program execution at any point, either manually (by pressing the interrupt
switch or a-key that you define) or programmatically (by calling special traps from within
your program). And since MacsBug needs so little of the system to operate, it can be used
even in the case of fatal system errors. Whenever the System Error Handler is called, or
when a 68000 exception occurs, MacsBug takes control and lets you look around.

Once MacsBug has been invoked, you can enter commands to

• Display and set memory and registers .
. • Disassemble memory.
• Set execution breakpoints.
• Step and trace through both RAM and ROM.
• Monitor' system traps.
• Display and check the system and application heaps.

The next chapter introduces the MacsBug features and how they fit into various debugging
strategies. Chapter 3 provides a complete specification of the MacsBug command
language, including command syntax, operation, and examples.

MacsBug files
MacsBug is shipped on its own 3.5-inch disk. Included on this disk are files than can be
used with the Macintosh Programmer's Workshop (MPW™) and with ResEditni to
customize MacsBug. Details are provided in later chapters, and each file includes specific
instructions for creating your own MacsBug resources.

Final draft 3

4 Final draft

Chapter 2

Debugging With MacsBug

Getting started ... 6
Specifying things, 8
How did I get here? .. 8
Controlling program execution 9
Stopping at a particular place 10
Watching for memory to change 10
Displaying and setting memory 11
Checking the heap .. 11
Exercising your program 12
The dot address ... 12

(

Final draft 5

Getting started
MacsBug is installed at system startup and resides in RAM until shutdown. In order to be
recognized at boot time, the MacsBug file must be in the System Folder on the stanup disk.

The system stanup code identifies the MacsBug file by name. To prevent MacsBug
installatioaindefinitely, you can rename the MacsBug file, or move the file from the
System Folder. To override MacsBug installation for a single session only, simply hold
down the mouse button during stanup.

After a successful installation, the message "MacsBug installed" is displayed below the
"Welcome to Macintosh" message. The stanup application (typically the FinderrM) is then
launched.

The.simplest way to invoke MacsBug is by pressing the interrupt switch; this generates an
NMI exception and suspends program execution. MacsBug takes control and displays a
screen like that shown in Figure 1.

Status region output region
J.

s~ •
09438489

89 0ee0e1e:4
84 0047Ee22
88 09084EF9
BC 0042F81A
99 09984EF9
94 ff42F898
98 06984e:F9
9C 0942F88C
Ae 06984EF9
A4 0942F8E2
AS 00984EF9
AC 0942F966
89 00984EF9
94 0042F986
es eeeB4EF9
BC 0042F988
ca eeee4EF9
C4 0042FA24
ca 0ee&4EF9 Uur br•ak at Uariabl9Mcae+eee6 CC 0042FA89 Oosasse•bl '"9 froe e641788A 00 aeee4EF9 Var1abl.tlanl<t
04 0e42FAFC •0996 01M1788A •8~ s Class.U..-1a0l•+eee8 01M17842 I 6136

Heap
•0008 0041788C urt.J(A6 I 4E"5E
•eeeA 01M1788E ATS I 4E7'5

SysZone 0841781E CC.I.I $11882
'

.... I 0092

SR Int 0e417828 CC.I.I 11234 . •4' I 1234
UartClbleMcne

S111:1mzvc 8 +eeee 96417822 LI1'1K A6,•saeae I 4ES6 eeee

00 0947C09R +9994 94M17820 B~ c1ass.Ucr1CIOl•+eee8 88417888 I 6199 0099
•0898 9941782A Ul't.J(A6 I 4E5£ 01 00'438452 •eeeA ee41782C MOUEA.L <A7H",A8 I 20SF 02 4EF988'42 +eeec 0941782£ Jr? <Ae> I 4E09

03 F19C0998 0941783£ CC.I.I $8092 I eee2
04 4EF908'42 084178411 CC.I.I $1234 . •4' I 123'4
05 FJ78999B Class.Uariael• 06 4EF98842 .eeee 99417842 LINK A6,•seeee I .. ~ eeee
07 F396899B +ee&4 89417846 BSR.S Fixed+e9ee ' 8941785E I 0116

Ae 0047CoeA •0996 08417848 Ul't.,J(A6 I 4ESE:
+eee8 8941784A ATS I 4E7'

Al 0940C476 8941785C CC.14 seeee ' ... I 8998
A2 4EF99042 Fix•d A3 F63A008B •eeee 0941785E Lil'1K Ae •seeee I 4E56 eeee A4 4EF99842

PC Var~~~~a;:41?88A A5 90439088
•8~ s Class.Variable+eeee 89417842 I 6136

Ae 89438498
A7 0841.e..488 I _t_

I
Commend line PC region

Figure 1. MacsBug Display

6 Final draft

('\
/

Note: Another way to invoke MacsBug is to define an 'FKEY' resource containing the
two instructions needed-Debugger ($A9FF) and RTS ($4E75).

To see the application screen again, press the tilde key(-) or the escape key (esc). To
return to the MacsBug display, press any character key.

If you have multiple screens, MacsBug uses the "Welcome to Macintosh" screen by
default. You'll probably want your application on the larger screen and MacsBug on the
smaller screen. To select a different screen for the MacsBug display, press the Option key
while clicking on the Monitor icon from the Control Panel and then drag the Macintosh icon
to the desired screen.

At the bottom of the MacsBug display is the command line, indicated by a flashing bar
cursor. MacsBug accepts the standard editing keys (Delete, Left Arrow, Right Arrow), as
well as several special functions:

Command-Left Arrow
Command-Right Arrow
Command-Delete
Command-V

Move cursor left one word.
. Move cursor right one word.
Delete the word to the left of the cursor.
Restore previous command line(s) for editing.

Multiple commands, separated by semicolons, can be entered on the command line. To
execute the command(s) on the command line, press Return or Enter. Pressing Return
without entering a command repeats the last command.

The Return key can be also used as a toggle to pause and resume the execution of a
command. To cancel the execution of a command, press any other key. (Note, however,
that execution cannot then be resumed.)

Thorough on-line help information that includes the syntax of all commands can be
displayed with the HELP command.

The largest area of the screen is the output region. MacsBug output falls into three
categories, indicated by three levels of indentation:

• The reason for the break. MacsBug tells which 68000 exception, Macintosh system
error, or user-specified break caused MacsBug to be invoked.

• Messages. For each command you enter, MacsBug gives a message either confirming
execution or explaining a failure.

• Command output.

Output scrolls up (and eventually off) the screen as new commands are executed. The
LOG command lets you save all MacsBug output, to either a file or an Image Writer®
printer.

Immediately above the command line is the PC (program counter) region; it shows the
address of the next insmiction to be executed, along with the disassembly of that
insm.iction. In the case of a fatal error, it shows the last insmiction executed (in other
words, the insmiction that caused the crash).

Finol draft 7

The area on the left side of the screen, known as the status region, displays information
about the system. At the top is the address contained in the stack pointer (register A 7),
followed by the bytes at the top of the stack. The number of bytes displayed varies with
the screen size and the fonnat of the display. The SHOW command lets you specify the
display in word, long word, and ASCII fonnat; it also lets you specify another area of
memory for display.

Below the stack data is the name of the current heap; by default it's the application heap.
You can change the current heap with the HX (Heap Exchange) command. The HZ (Heap
Zones) command tells you all known heap zones, and works with MultiFinder.

The rest of the status region shows the contents of the CPU registers. Several commands
give additional register information. The 1F (Total Floating-Point) and TM (Total MMU)
commands show the contents of the floating-point and MMU registers respectively. The
TD (Total Display) command displays the CPU registers in the output region. Since the
CPU registers are constantly updated and displayed in the status region, the TD command
is useful for remembering register values between commands.

There are several ways to leave MacsBug. The simplest way is with the G (Go) command;
program execution resumes at the current program counter. If MacsBug was invoked due
to an unexpected error condition, it may not be possible to resume program execution.
Depending on the severity of the error condition, it may be necessary to relaunch the
application (EA command), relaunch the shell (ES command), restart the system (RS
command), or reboot the machine (RB command).

Specifying things
Most of the MacsBug operations--setting breakpoints, displaying memory, disassembling
code-need an actual address to work with. To make life easier, MacsBug provides a
number of different alternatives to specifying hard addresses.

Whenever possible, MacsBug accepts and returns symbols in place of addresses.
Procedure names are the most common example of this. Most compilers for the Macintosh
have the option of embedding character names after the code generated for each procedure
or function. (Compiler writers will want to see Appendix G for details on procedure name
definition.) If you've used this option, you can specify a procedure name and offset
whenever MacsBug wants an address. Conversely, MacsBug returns addresses as offsets
from procedures whenever it can. For instance, if the instruction shown in the PC is part
of a valid procedure, the PC window gives the name and offset of that instruction.

Several commands work specifically with symbols. The WH (Where) command provides
mapping between symbols and addresses. When given an address or a symbol name,
MacsBug gives you the other item. You can display a list of all procedures known to
MacsBug with the SD (Symbol Display) command. You can also use the SD command to
display a list of trap names. You can disassemble any of your application's procedures
with the IR command.

8 Final draft

(

(

To translate a symbol name into an address, MacsBug must search the current heap. Since
this search process can be slow, MacsBug provides the SX (Symbol Exchange) command
for disabling the use of symbol names.

Note: Advanced. programmers may find themselves dealing with multiple files (code
segments, for instance) having the same symbol names. The RN (Resource Number)
command lets you restrict symbol matching to a file with a given reference number.

MacsBug also allows the creation of macros. Macros are simple text string substitutions.
and can be-used to create command name aliases, reference global variables, and name
common expressions. Macros are expanded. before the command line is executed, and can
thus contain anything you can type in a command line.

You can create macros on the fly with the MC command, or include them in a resource file.
(See the MC command for details.) The MCD command lists the macros known to
MacsBug, and the MCC command clears one or all macros.

How did I get here?
When your program crashes unexpectedly, you '11 start with several clues. MacsBug tells
you what 68000 exception or system error ID caused the crash. The PC area gives you the
instruction that caused the crash. The location of the instruction, whether in ROM or at an
offset from a procedure, is also given. You can examine the code immediately preceding
the crash by using the IP command.

One approach is to examine the stack for the procedure call history. If your program uses
the LINK A6 procedure prolog, the SC6 command returns the calling history. If it
doesn't, or if you are in a part of the ROM that doesn't use A6 links, you'll need to use the
SC7 command. This command finds possible return addresses on the stack. You can use
these addresses to examine the stack yourself. You can also use the addresses in other
MacsBug commands .. Be aware, though, that the SC7 command will almost cenainly
include old or invalid values (in other words, addresses not in the current calling chain),
since local stack variables can change the stack top without changing the contents.

Another way to find out where a program has been is by recording the A-trap calls it
makes, using the A TR (A-Trap Record) command. When recording has been turned on,
MacsBug records all trap calls in a circular buffer. When the buffer is full, the oldest calls
will be overwritten by new calls. You can define the size of the buffer and thereby the
number of traps recorded. (See the A TR command for details.) You may want to consider
always enabling trap recording; the performance cost isn't very great. To see the
information recorded, use the ATP (A-Trap Playback) command.

In the same way that trap recording lets you build a trap history in a buffer. the A TT
command lets you direct that history to the screen or to a log file. Tracing to the screen is
useful if you have two screens. MacsBug can take over one screen and display the history
as your program executes on the other screen. In cases where the program crashes so
badly that MacsBug cannot be invoked, you '11 still have a trap history available.

Final draft 9

Enabling logging with the LOG command and tracing to a file is useful if you want to
record a large number of calls and can't afford to dedicate the memory for the trap
recording buff er. Another _benefit of log files is that you can use your editor to help
examine the data.

Controlling program execution
MacsBug provides a set of commands that let you control and watch the execution of your
program. Two commands let you execute insttUctions one at a time. The S (Step)
command executes a single 68000 insttUction, stops at the next instruction, and returns to
MacsBug. The contents of the program counter-in other words, the next instruction to be
executed-are disassembled and displayed. You can also step through a specified number
of instructions, or until a condition is met (for instance, when a register contains a
particular value).

When the S command reaches a subroutine or an A-trap call, it steps right in. Particularly
with ROM routines, which are often very long and typically not of interest, you'll probably
want to use the SO (Step Over) command instead. The SO command works exactly like
the S command except that it treats A-trap calls and subroutines as a single instruction,
stopping at the first insttUction after the A-trap or subroutine returns. (With traps having
the auto-pop bit set, MacsBug returns to the address on the top of the stack at the time of
the trap call.)

While stepping through code, MacsBug decodes conditional statements (DBcc, Bee, and
Sec insttUctions) to determine whether branches will be taken or will fall through. This
information is shown to the right of the PC information.

If you've stepped into a procedure with the S command and want to get out, you can use
the .MR (Magic Return) to move to the end of the procedure. The MR command needs to
know where the return address is; for this reason, it's a good idea to use the LINK A6
prolog for your procedures.

If you're stepping through your program and find you want to move past some code, you
can use the GT (Go Till) command to resume execution until a specified address is reached.

Stopping at a particular place
Once you've narrowed down the location of a bug, you may want MacsBug to stop when a
particular point in your program is reached. There are several ways of doing this.

The A TB (A-Trap Break) command lets you specify a break when A-traps are encountered.
You can specify individual traps or a range of traps, as well as conditions that must be met.
For instance, you could specify a break when the HFSDispatch trap is encountered and the
value of register DO is 6 (which is the routine selector for the DirCreate routine). You can

10 Final draft

(.

(~

0

also specify commands to be executed once MacsBug has been invoked, making life a little
easier.

Another way to stop program execution is to set a breakpoint at a specified address, using
the BR command. The address can be given as an actual address, or as an offset from a
procedure name. This information will have been found by disassembling or stepping
through your code. The BR command also lets you specify commands to be executed
when the breakpoint is reached. You can specify multiple breakpoints; MacsBug stores
this information in a table, which you can see at any time with the BRD command.
Breakpoints remain set until you clear them with the BRC command.

The BR command can be useful in working with A-traps as well as with your own code.
With some ROM routines, the actual trap is often preceded by glue code that sets up the
parameters. Whereas the ATB command stops right before the trap is made, the BR
command can be used to stop at the point where your program calls the routine, letting you
examine what goes on with the glue code.

An advantage of using breakpoints 1s that they don't require changes to your source code,
and can be used after the application has been built. However, breakpoints cannot be set in
a procedure until the segment containing that procedure is loaded and the address
determined. One way around this problem is to specify a break from within your
procedure by using the traps Debugger ($A9FF) and DebugStr ($ABFF). Debugger is a
system trap that invokes MacsBug and displays the message "User break at <addr>."
DebugStr additionally lets you supply a custom message for display, as well as MacsBug
commands for execution. (For a description of how to declare and use these traps, see
Appendix D.)

The DX (Debugger Exchange) command lets you disable breaks from the Debugger and
DebugStr traps without having to go in and remove them from your program.

Watching for memory to change
Several commands let you determine when and where a particular area of memory is being
changed. One common problem is when a program inadvenently changes the contents of a
memory location. You can detect when a range of memory changes by using the SS (Step
Spy) command. This command checksums a given range and then executes instructions
one at a time until the checksum changes. The SS command can slow down a program
considerably, so MacsBug treats a long word as a special case and optimizes for speed. If
you suspect a certain range of memory is being altered, you usually don't need to check the
whole range but can check just a long word within the range. If you must check a long
range, you'll probably want to use a hardware emulator. (You can also use the SS
command as a· way of slowing down cenain routines, those that draw to the screen, for
instance, so you can actually watch how they work.)

A variation on the SS command, the ATSS (A-Trap Step Spy) command lets you
check.sum a memory range before specified A-traps are executed.

Final draft 11

The CS (Checksum) command lets you monitor whether a range of memory has changed.
The flI'St time you execute the CS command, you specify a range and MacsBug computes a
checksum. Subsequent C~ commands compute the checksum and compare it with the
previous value.

Displaying and setting memory
The DB, DW, DL, and DP commands display respectively a byte, word, long word, and
page (128 bytes) of memory. With the DM (Display Memory) command, you can specify
a number of bytes to be displayed. Often you'll want to look at the contents of a data
structure consisting of fields of various different sizes. The DM command lets you specify
templates for displaying memory in a structured fonnat.

The TMP command lists the names of all templates known to MacsBug. See the
description of this command for instructions on defming your own templates.

The SB, SW, and SL commands let you set bytes, words, and long words in memory.
The SM command lets you assign values of varying size; the size of the assignment is
determined by the value.

Checking the heap
Several commands let you examine and monitor heap zones. The HD (Heap Dump)
command displays information about all blocks in the current heap, as well as a summary
of the heap allocation. If you want only the summary information, you can use the HT
(Heap Totals) command.

One of the more common bugs is dereferencing a handle to a block that has moved,
potentially corrupting the heap. Two commands are useful in detecting this problem. The
HC (Heap Check) command checks the current heap and reports any errors. If the problem
is reproducible, the A 1HC (A-Trap Heap Check) command can be used to check the heap
before trap calls.

Exercising your program
It's possible to simulate a worst-case memory situation to exercise your application. The
HS (Heap Scramble) command moves all relocatable blocks whenever they might be
moved, in other words, whenever the NewPtr, NewHandle, ReallocHandle, SetPtrSize, or
SetHandleSize traps are called. (With SetPtrSize and SetHandleSize, the heap is scrambled
only if the block size is being.increased.) ·

12 Final draft

~ .. ·

(,

The DSC command turns on the Extended Discipline™ utility. This program examines
parameters before A-traps are called and checks results after the calls complete. If
Extended Discipline detects an error, MacsBug is invoked. (See the Extended Discipline
manual for details.) ·

The dot address
MacsBug provides a way of saving and specifying addresses between successive
commands; it's so useful that it deserves a separate section.

MacsBug maintains a variable, known as "dot," that contains the last address of interest
from cenain commands. The"." character refers to this address and can be used in any
command that expects an address. The commands that set the "dot address" are ones that
are often followed by another command using the same address ..

Dot is used primarily as a shorthand notation between one command and the next. For
instance, you might type WH name to find a particular procedure. The WH command sets
dot to the address returned, letting you then type IL • to disassemble code, or BR • to set a
breakpoint at the start of the procedure.

Dot can also be used as a placeholder. For instance, the OM command displays memory
starting from a specified address and sets dot to that address. You can resume execution,
reenter MacsBug later, and type OM • to display the same memory. This technique is
useful for watching for an area of memory to change.

The commands that set dot are as follows:

• The commands for displaying memory-OM, DP, DB, DW, and DL-all set dot to the
address of the first byte displayed.

• The commands for setting memory---SM, SB, SW, and SL-set dot to the address of
the first byte changed. These commands also set the last command to the D M
command. This means that after setting memory you can simply press Return to
display the memory just set

• The WH command sets dot to the address of the procedure or trap located.

• The F command sets dot to the first byte of the string that was found.

• The ~ IP, and ID commands set dot to the address of the first instruction
disassembled.

• The dot address is also used in connection with heap commands. Any command that
scans the heap-HD, HC, and SD, for instance-can receive a heap error. If the error
concerns a particular block (as opposed to the entire heap), MacsBug sets dot to the
address of the block header. Typing OM • will display the block in question. MacsB ug
also scans resource maps while examining resource blocks in the heap. Resource map
errors set dot to the address of the bad map.

Final draft 13

14 Final draft

Chapter 3·

MacsBug Commands

Command syntax ~ 16
Values .. 16
Operators ... 17

Command descriptions 17

(,.

()

Final draft 15

Command sy·ntax
MacsBug commands have the following format:

COMMAND required parameters [optional parameters]

Parameters can be numbers, text literals, symbols, or expressions combining these
elements. MacsBug provides full command line evaluation, so any parameter can be
entered as an expression. The general form of an expression is:

value 1 [operator value2]

Parentheses can be used to control the order of evaluation. Expressions always evaluate to
a 32-bit value unless . w or . B follows the specified value (in which case the word or byte is

. sign-extended to 32 bits). Expressions can evaluate to either a numeric or a Boolean value
depending on the operators used. The operation of cenain commands varies depending on
the type of expression. For instance, the BR command will break after n times if the given
expression is nwneric, or when a cenain condition is met if the expression is Boolean.

Values

Depending on the command, there are a variety of different ways to specify values:

registers All 68000-family registers use their Motorola names. MMU 64-bit registers
and floating-point registers are not allowed in expressions.

numbers Numbers are hexadecimal by default, but can be preceded by the"$"
character in the case of conflicts with registers An and Dn. Numbers are
decimal if preceded by the"#" character. The unary operators"+" and"-"
can precede any number, but must appear before the "#" or"$" characters.

symbols Symbols are found by searching the heap, and evaluate to an address. (See
Appendix G for details on procedure name definition.) Partial name
matching is supponed. If you enter so My, for instance, all symbols that
start with "My" are shown.

traps A-traps are specified by trap number in the range AOOO to ABFF or by trap
name. Trap names can be preceded by the "t" character (Option-T) in the
case of conflicts with symbol names.

strings Strings are sequences of characters surrounded by single (') or double (")
quotation marks. There is no padding to word or long word boundaries;
each character in the string is 1 byte.

16 Final draft

(

(

The"." character specifies the dot address; see Chapter 2 for a detailed
discussion on using this character.

The":" character indicates the address of the start of the procedure shown in
the program counter window. This character is not valid if no procedure
name exists for PC.

Operators

These are the operators allowed in expressions. in order of precedence:

() Grouping
@ (prefix) " (postfix) Address indirection

' NOT Bitwise or Boolean NOT
* Multiplication
I MOD Division
+ Addition

Subtraction
= -- Equal
<> != Not equal
< Less than
<= Less than or equal
> Greater than
>= Greater than or equal
& AND Bitwise or Boolean AND
I OR Bitwise or Boolean OR
XOR Bitwise or Boolean XOR

Note: @addr is the same as addr". Addr" . s or addr". w fetch only a byte or word
from addr, the value is then sign-extended to 32 bits.

Command descriptions
This section contains descriptions of all MacsBug commands, arranged alphabetically. For
each command, the parameters are given and the operation of the command discussed.
Where appropriate, examples are provided. A list of the entire set of commands can be
found in Appendix A.

Final draft 17

Syntax

Description

Examples

ATB

ATB - A-Trap Break

ATS{A] [trap[trap]J [n I exprj [';cmdsJ

The A TB command sets a breakpoint at the specified A-crap(s). Traps can
be specified by either trap number or trap name. Appending the letter A to
the A TB command tells MacsBug to break only when the given trap is
called from the application heap. (Note that this means the current
application heap at the time the ATB command was entered.) Specifying
two traps indicates a range of traps; MacsBug breaks at every trap
encountered within this range. If no traps are specified, a default range of
AOOO through ABFF is used.

If n is specified, MacsBug breaks only after a given trap has been
encountered n times. If expr is specified, MacsBug breaks only when a
given trap has been encountered and expr is TRUE. If neither n nor expr
is given, MacsBug breaks each time the trap is encountered. You can also
supply one or more commands to be executed once the break conditions
are satisfied; each command must be preceded by a semicolon and
enclosed in quotation marks.

You can set multiple trap breaks with different break conditions or
commands. MacsBug checks the table until an entry satisfies the break
conditions. The break commands for this entry are executed. Later
entries in the table (that also satisfy the break conditions) are ignored.

Be aware that MacsBug stores the information for breakpoints, step
commands, and A-trap commands in a single table. New entries are
entered at the end of the table. It's possible to receive the error message
"Entry will not fit in the table" while entering an A TB command if step
commands, BR commands, and other A-trap commands have already
filled this table.

(break: on all craps}
ATS GetNext.Event
ATS AOOO AOlO

{break:
{break:

on
on

Get.Next.Event. crap}
craps Open chrough Allocace}

ATS HrSDispatch DO.W • 6 (Ji::C::eate1' {break on HFSDispacch when :egisce:: :J0=6
ATB SizeWindow ';DM (51?+6) A WindowRecord' (break on SizeWindow, ::nen cisp~ay :

{ Erom Che contents oE t!'le ~o:-:g ·.io::d :
{ 6 bytes above che scacl< poi.1:er }
{ using Che WindowRecord :ernpl.a:e}

For a display of the trap table after having set these actions, see the A ID command.

See also ATC, AID

18 Final drott

(

C)
f

Syntax

Description

Example

ATC -A-Trap Clear

ATC [trap [trap)]

The ATC command clears all actions on the specified traps; in other
words, it cancels the A TB, A TI, A THC, and A TSS commands. Traps
can be specified by either trap number or trap ~ame. Specifying two traps
indicates a range of traps; MacsBug cancels actions for all traps within this
range. If no traps are specified, all trap actions for all traps are cleared.

The A TC command comes in handy when you want to set an action for
most, but not all, of the traps in a particular range. For instance, you may
think you want to break at all toolbox traps but soon find that you can do
without a break at every call to GetNextEvent. One way around this is co
set two ranges around GetNextEvent with the A TB command. An easier
way is to set the action on the whole range and use the A TC command to
exclude the GetNextEvent trap. Be aware, however, that MacsBug
accomplishes this by doing the diny work for you, itself setting two new
ranges around GetNextEvent. This means that, even though you are
ostensibly clearing a trap action, you are actually creating an additional
entry in the A-trap table, and could conceivably receive the error message
"Entry will not fit in the table."

Assume the trap table (displayed by using the A TD command) looks like this:

A-Trap actions Erom System or Application
Trap Range Action Cur/Max or Expression Commands
AOOO ABFF Break 00000000 I 00000001

After you enter the command:

AT:: GetNextEvent

the trap table looks like this:

A-Trap actions from System or Application
Trap Range Action Cur/Max or Expression Commands
AOOO A96F Break 00000000 I 00000001
A971 ABFF Break 00000000 I 00000001

See also ATB, ATD, ATIIC, ATSS, ATI

Final draft 19

Syntax

Description

Example

ATC - A-Trap Display

ATD

The A ID command displays the A-trap table(s), which list all actions set
with the ATB, AIT, A1HC, and ATSS commands. Two A-trap tables
may be displayed, depending on which actions have been set. One table
lists all actions restricted to the application heap (using the A parameter),
and another lists actions that apply to either the system heap or the
application heap.

Both tables have the same format The trap range for the action is shown
in the first column and the type of action is shown in the second column:
If a number of iterations (n) was specified with the action, it's shown in
the third column, preceded by the actual number of iterations so far. If a
logical expression was entered instead, it's shown in the third column.
The founh column shows any commands that were specified for
execution upon breaking into MacsBug.

In this example, the following trap breaks were set previously with the ATB command:

ATB
ATB GetNext:Event
ATB AOOO AOlO
ATB HFSDispatch DO.W - 6
A:B SizeWindow '; DM (51?•6) - WindowRecord'

The trap table displayed by the A ID command is given below. Note that traps are
represented by trap number, you can determine the corresponding trap name by using the
WHcommand.

ATD
A-Trap actions from

Trap Range Action
AOOO ABFF Break

A970 Break
AOOO AOlO Break

A060
A91D

·Break
Break

System or Application
Cur/Max or Expression
00000000 I 00000001
00000000 I 00000001
00000000 I 00000001

DO.W • 6
00000000 I 00000001

See also ATB,ATC,ATHC,ATSS,AIT,WH

20 Final draft

Commands

;OM (51?+6) - WindowRecord

(·.

Syntax

Description

(.· .. See also

ATHC -A-Trap Heap Check

ATHC[A] [trap [trap]] [n I exprj

The A TI:IC command checks the consistency of the heap before executing
the specified A-trap(s). If the heap is found to have been corrupted,
MacsBug is invoked and an error is displayed; see the HC command for a
list of possible errors.

Traps can be specified by either trap number or trap name. Appending
the letter A to the ATI:IC command tells MacsBug to check only when the
given trap is called from the application heap. (Note that this means the
current application heap at the time the A TI:IC command was entered.)
Specifying two traps indicates a range of traps; MacsBug checks for every
trap encountered within this range. If no traps are specified, a default
range of AOOO through ABFF is used.

If n is specified, MacsBug checks only after a given trap has been
encountered n times. If expr is specified, MacsBug checks only when a
given trap has been encountered and expr is TRUE. If neither n nor expr
is given, MacsBug checks each time the trap is encountered.

ATC,ATD, HC

Final draft 21

ATP- A-Trap Playback

Syntax ATP

Description The ATP command plays back the information saved while crap recording
is on. (For details on trap recording, see the A TR command.) This
information includes the trap name and the contents of the program
counter (PC). For operating-system craps. the value of registers AO and
DO are shown, as well as the 8 bytes pointed to by register AO. For
toolbox craps, ATP shows the value of register A 7 and the 8 bytes to
which it points.

Example

In the example below, SetPon is the most-recently executed crap.

AT.I?
Trap calls in the order in which they occurred

AOJO OSEventAvail
J?C "' 004C7346
AO "' 00487lf8 OOJA lf34 2000 0048 DO "' OOOOFFfF

A970 Get Next Event
J?C "' 004C2BCA
A7 "' 0048724C 0048 7290 FFFF 0020

AOJO OSEventAvail
J?C = 004C7346
AO - 004871DC 004C 1684 004D OlJC DO "' 00000000

A031 GetOSEvent
J?C = 004C7334
AO .. 00487290 0000 0000 0000 OOOA DO .. 00000000

A9B4 System'J:ask
PC = 004C2800
A7 - 00487lFO 0000 FFFF 0048 7290

A874 Get!?ort
PC ,. 40815150
A7 "' 00487lC4 0048 71C8 0048 7290

A924 Front Window
!?C = 40815154
A7 = 004871C4 0000 0000 OOJA 1040

A873 Setl?ort
J?C a 408151AE
A7 a 004871C8 OOJA 1040 0040 OlJC

See also ATR

22 Final draft

Syntax

Description

See also

ATR- A· Trap Record

ATR[A] [ON I OFF]

The A TR command turns trap recording on and off; if no parameter is
passed, the command toggles between modes. Trap recording saves
information about then most recently executed traps. By default.
MacsBug records the last eight traps. You can, however, specify any
number by using the resource type 'mxbr' with a resource ID of 100. The
format of this resource is simply an Integer. Since the traps are saved in a
circular buffer, space is the only penalty for recording more than eight
traps; time is not a factor.

Appending the letter A to the A TR command tells MacsB ug to record
information only for traps called from the application heap. (Note that this
means the current application heap at the time the A TR command was
entered.)

The information saved, which can be displayed with the ATP co_mrnand.
includes the trap name and the contents of the program counter (PC). For
operating-system traps, the value of registers AO and DO are saved. as
well as the eight bytes pointed to by register AO. For toolbox traps, A TR
saves the value of register A 7 and the 8 bytes to which it points.

ATP

Final draft 23

Syntax

Description

See also

24

ATSS - A-Trap Step Spy

ATSS[A] (trap{trap]] [n I exptt, addr1[addr2J

The ATSS command calculates the checksum for the given memory range
before executing the specified A-trap(s). If the checksum value changes,
MacsBug is invoked. Ifaddr2 is omitted, A TSS waits for the long word
at addr I to change. The ATSS command is optimized for speed with a
long word; longer checksum ranges can be slow ..

Traps can be specified.by either trap number or trap name. Appending
the letter A to the ATSS command tells MacsBug to check only when the
given trap is called from the application heap. (Note that this means the
current application heap at the time the ATSS command was entered.)
Specifying two traps indicates a range of traps; MacsBug checks for every
trap encountered within this range. If no traps are specified, a default
range of AOOO through ABFF is used.

If n is specified, MacsBug checks only after a given trap has been
encountered n times. If expr is specified, MacsBug checks only when a
given trap has been encountered and expr is TRUE. If neither n nor expr
is given, MacsBug checks each time the trap is encountered.

ATC,ATD, SS

Final draft

(. · ATT - A-Trap Trace

C'~
/ .

Syntax A TT'[A) [trap [trap)) [n I exptj

Description The A TI command displays information about the execution of the
specified A-trap(s). Traps can be specified by either trap number or trap
name. Appending the letter A to the A TI command tells MacsBug to
display information only when the given trap is called from the application
heap. (Note that this means the current application heap at the time the

Example

ATT HideCursor

A TI command was entered.) Specifying two traps indicates a range of
traps; MacsBug displays information for every trap encountered within
this range. If no traps are specified, a default range of AOOO through
ABFF is used.

If n is specified, MacsBug displays information only after a given trap has
been encountered n times. If expr is specified, MacsB ug displays
information only when a given trap has been encountered and expr is
TRUE. If neither n nor expr is given, MacsBug displays information
each time the trap is encountered.

HideCursor PC • OOOOA6F8 DO "' 00570070 Ai • 004A6ECO

See also ATC, AID

Final draft 25

Syntax

Description

Examples

BR - Breakpoint

BR addr[n I exprj [';cmds1

The BR command sets a breakpoint at the specified address. If n is
specified, MacsBug breaks only after addr has been reached n times. If
expr is specified, MacsBug breaks only when addr has been reached and
expr is TRUE. If neither n nor expr is given, MacsBug breaks each time
addr is reached. You can also supply one or more commands to be
executed once the break conditions are satisfied; each command must be
preceded by a semicolon.

Entering BR without any parameters displays the breakpoint table, a list of
all breakpoints in the order in which they were set; see the description of
the BRO command for details.

Warning: Setting a breakpoint at a ROM address will cause execution to
be slow since MacsBug must trace through each instruction until che
breakpoint address is reached.

Warning: You should be sure that the given address contains an
instruction. MacsBug implements breakpoints by placing a TRAP #F

instruction in the word at addr. If addr points to the middle of an
instruction, the substituted TRAP #F instruction will be treated as part of
the instruction, possibly causing an error.

Be aware that MacsBug stores the information for breakpoints, step
commands, and A-trap commands in a single table. New entries are
entered at the end of the table. It's possible to receive the error message
"Entry will not fit in the table" while entering a BR command if step
commands, A-trap commands, and other BR commands have already
filled this table.

If you set a breakpoint in a relocatable block, MacsB ug stores the
breakpoint as a handle to the breakpoint address. This means that if the
block moves, the breakpoint is updated automatically.

aR Testl?roc+ 10 (break when TestProc+ 10 is reached}
SR TestProc+20 3 (break when TestProc+20 is reached 3 times·}
BR TestProc+30 DO "' l (break when Test.l?roc+30 is reached and regist.er DO=c 1
SR Test.Proc+40 AO<> 0 ';DM AO 40' (break when Testl?roc+40 is reached and}

(regist.er AO is not. equal to 0: then ct.:..splay
(memory at. address in AO tor 40 bytes;

For a display of the breakpoint table with these breakpoints set, see the BRD command.

See also BRC, BRD

26 Final draft

Syntax

Description

See also

(

BRC - Breakpoint Clear

BRC [addt1

The BRC command clears the specified breakpoint; if no parameters are
specified, all breakpoints are cleared.

BR, BRD

Final draft 27

Syntax

Description

Example

BRO

BRO - Breckpoint Displcy

BRO

The BRD command displays the breakpoint table, a list of all breakpoints
in the order in which they were set.

If the BR command that set a breakpoint specified a break only after
reaching the address n times, n is shown in the third column, preceded by
the number of times the address has been reached so far. If an expression
was entered instead, it's shown in the third column. The founh column
shows any commands that were specified for execution upon breaking
into MacsBug.

Note: MacsBug implements the GT command by setting a temporary
breakpoint. If you enter MacsBug by some other means and execute the
BRD command, this breakpoint remains set and you'll see an entry for it
in the breakpoint table.

In the example below, the following breakpoints were set with the BR
command:
BR Testl?roc+lO
BR Testl?roc+20 3
BR Testl?roc+30 DO • 1
BR Testl?roc+40 AO <> 0 ';OM AO 40'

Breakpoint table
Address Module name
004635EO Testl?roc+lO
004635FO Testl?roc+20
00463600 Testl?roc+30
00463610 TestProc+40

Cur/Max or Expression Commands
00000000 I 00000001
00000000 I 00000003

DO • 1
AO <> 0 ; :JM AO 4 0

See also BR, BRC

28 Final draft

(.

Syntax

Description

CS - Checksum

CS [addr1 [addr2]]

The CS command computes a checksum for the memory range from
addrl through addr2 and saves the result. If addr2 is omitted, it
checksums the long word at addr I.

Subsequent CS commands without parameters recompute the checksum
and compare it with the previous value. If no address range has been
previously specified, entering CS without parameters will return the error
message "Address range must be entered before comparisons."

Final draft 29

Syntax

Description

Example

DB 0
(Return!

DB - Display Byte

DB [add!J

The DB command displays the byte at the specified address. If addr is
omitted, DB displays the byte at the dot address. Pressing Return
displays the next byte. The dot address is al ways set to the address of the
byte displayed.

Byte at: 00000000 • $40
Syt:e at: 00000001 • $81

64 64
129 -127

'@'
I • I

See also DL, DM, DP, DW

30 Final draft

(.

('

Syntax

Description

Example

DH 4E56 0000

OH - Oisgssemble Hexadecimal

DH expr ...

The DH command disassembles the given expressions as a sequence of
16-bit opcodes. This command is useful in converting hexadecimal
values to assembler mnemonics.

::lisassembling hex value
00308AB6 LINK A6,ltSOOOO ' 4::56

Final draft 31

Syntax

Description

Example

DL 0
(Recurn)

DL - Display Long

DL [addtj

The DL command displays the long word at the specified address. If addr
is omitted, DL displays the long word at the dot address. Pressing Return
displays the next long word. The dot address is always set to the address
of the long word displayed..

Long ac 00000000 = $40810000
Long ac 00000004 = S40802Al4

1082195968
1082141204

1082195968
1082141204

See also DB, DM, DP, DW

32 Final draft

(·· .. ·.
/

Syntax

Description

Examples

:JM 0

DM - Display Memory

OM [addr[n I templatelbasic type])

The OM command displays memory starting from the specified address
and continuing for n bytes. If n is omitted. 16 bytes are displayed. If
both addr and n are omitted, OM displays 16 bytes beginning at the dot
address. Pressing Return displays the next 16 bytes. The dot address is
always set to the address of the first byte displayed.

Instead of specifying a number of bytes, you can specify the name of a
template or one of the basic types used in creating .a template. See the
TMP command for details.

Displayinq memory from O
00000000 4091 0000 4090 2Al4 004F 6306 4090 20FC @• .. @••• •Oc•@• •

Note that the "•"character represents nonprintable characters. In the next example,
windowList is a macro defining a low memory global variable, and WindowRecord is a
template.

DM windowList:A WindowRecord

Displayinq Window Record at: 003A0Bl4
003AOB24 port:Rect: 0000 0000 0183 027A
003AOB2C visRqn 003A3E99
003AOB30 clipRqn 003A4570
003AOB80 windowKind 0045
003AOB82 visible TRUE
003AOB83 hilit:ed TRUE
003AOB84 goAwayFlaq TRUE
OCJAOB85 spareFlaq TRUE
003AOB86 st:rucRqn 003A4594
003AOB8A cont:Rqn 003A4599
003AOB8E updat:eRqn 003A45AC
003AOB92 windowOefl?roc 20832A5C
003AOB96 dat:aHandle 003A6154
003AOB9A titleHandle HD:Examples
003AOB9E titleWidth 0052
003AOBAO cont: rolList 003A4610
003AOBA4 next Window 003A05E8
003AOBA8 windowPic NIL
003AOBAC refCon 003A07EO

See also DB. DL. DP, OW

Final draft 33

Syntax

Description

Example

:JP 0

Displaying
00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070

See also

34

DP - Display Page

DP [addtf

The DP command displays a page, or 128 bytes, of memory, starring
from the specified address. If addr is omitted. DP displays bytes
beginning at the dot address. Pressing Return displays the next 128
bytes. The dot address is always set to the address of the first byte
displayed.

memory from 0
4081 0000 4080 2Al4 004F 6306 4080 20FC @•••@••••Cc•@• .
4080 20FE 4080 2100 4080 2102 4080 2104 (!• •@•! •@• ! •@•!•
4080 2106 4080 2108 4080 64BA 4080 210C @· ! ·@· ! ·@·d·@· ! •

4080 210E 4080 210E 4080 210E 4080 210E @•!•@•!•@•~•@e~•

4080 210E 4080 210E 4080 210E 4080 210E @· ! •@• ! •@• ! .,~. ! •

4080 2lOE 4080 210E 4080 210E 4080 210E @•!•@•!•@•!•@•!•

4080 210E 0000 BOlO 4080 622E 4080 622E @•!•••••@•b.@•b.
4080 6000 4080 612C 0040 0456 0040 0456 @··•@•a, •M•V•M•V

DB, DL, DM, DW

Final draft

Syntax

Description

DSC - Extended Discipline

DSC[ONIOFF]

The DSC command turns the Extended Discipline utility on and off; if no
parameter is passed, the command acts as a toggle. This utility examines
parameters before traps are called and checks results after the calls
complete. If Extended Discipline detects an error, MacsBug is invoked.
See the Extended Discipline manual for more details.

Final draft 35

Syntax

Description

Example

DV

DV - Display Version

ov

The DV command displays the version number of MacsBug currently in
use.

MacsBuq version 6.0
Copyriqht Apple Computer, Inc. 1981-1988

36 Final draft

\'-., ,,

(

Syntax

Description

Example

OW 0
{Recurn}

OW - Display Word

DW [addrj

The DW command displays the word at the specified address. If addr is
omitted, DW displays the word at the dot address. Pressing Return
displays the next word. The dot address is always set to the address of
the word displayed.

Word ac 00000000 = S4081
Word ac 00000002 = soooo

16513
0

16513 '@•'
0 I e • I

See also DB, DL, DM, DP

Final draft 37

Syntax

Description

38

OX-DebuggerExchange

DX[ON I OFF]

By default, two traps, Debugger ($A9FF) and DebugStr ($ABFF), let
you enter MacsBug from within your program. The DX command lets
you turn these "user breaks" on and off; without parameters, it acts as a
toggle.

Note: Even when user breaks are disabled, messages specified by
DebugStt will still be displayed; commands associated with DebugStr,
however, are ignored. Also, the DX command does not affect
breakpoints, exceptions, or other A-traps.

Final draft

Syntax

Description

See also -

EA - Exit to Application

EA

The EA command attempts to launch the current application again. The
current application heap is freed and reallocated.

ES

Final draft 39

Syntax

Description

See also

40

e!ii!!e!ii!!e!ii!!E!ii!!e!ii!!e!ii!!e!ii!!e!ii!!!!!55!!!!55!!!!55!!!!55!!!!55!!!!55!!!!55!!!!55!!!!55!============== r
ES - Exit to Shell '~=

ES

The ES command allows you to exit from the current application. It
executes the ExitToShell trap, which launches the current shell (typically
the Finder).

Note: The ES command may not work with applications that override
system traps. ExitToShell initializes the application heap, usually
destroying any system patches located there.

EA

Final draft

Syntax

Description

Example

F- Find

F addr n expr I 'string

The F command searches the range addr to addr+n.-1 for the specified
pattern. When passing a string, be aware that case is significant. If expr
is given. the width of the pattern is the smallest unit (byte, word, or long
word) that will contain the value. Pressing Return repeats the search for
the next n bytes. The F command sets the dot address to the first byte of
the pattern found.

In the example below, the string isn't found the first time. Pressing
Return repeats the command and finds it. The dot address is set to 2E 1.

F' O 200 'F'inder'
(Recurn)

Searching for 'F'inder' from 00000000 to OOOOOlFF
Noc found

Searching !or 'Finder' from 00000200 to OOOOOJFF
000002E:l 4669 6E64 6572 2020 2020 2020 2020 2000 F'inder

Final draft 41

Syntax

Description

See also

42

G-Go

G [addtl

The G command is used to leave MacsBug and resume program
execution. This command is most frequently used without an address to
resume execution where you left off; in other words, at the current
program counter. If addr is given, execution resumes at that address.

Command-G is provided as a shoncut. Note that any commands sitting in
the command line are .ignored.

GT,MR

Final draft

(

Syntax

Description

(
See also

GT- Go Till

GT addr

The GT command sets a breakpoint at addr and resumes execution until
the program counter reaches that address.

Warning: Setting a breakpoint at a ROM address will cause execution to
be slow since MacsBug must trace through each instruction until the
breakpoint address is reached.

Note: MacsBug implements the GT command by setting a temporary
breakpoint. If you enter MacsBug by some other means, this breakpoint
remains set (In fact. you can see an entry for it in the breakpoint table if
you enter the BRD command.) Executing the G command will resume
execution until the breakpoint is reached or another exception occurs.

MacsBug 6.0 comes with a predefined macro 'GTO • that expands to
•GT : + • . This macro is useful for executing code until an offset in the
current procedure. For instance, typing GTO 22 expands to GT : +22,
with the colon expanding to the current procedure name.

G,MR

Final draft 43

Syntax

Description

See also

44

HC - Heap Check

HC

The HC command checks the consistency of the current heap and reports
any errors. Heap integrity cannot be checked rigorously but is examined
for certain telltale signs of corruption. The possible error conditions are
given below.

Note that all the heap commands check the heap as they execute; if a heap
error is detected. they cancel the operation and return the same error
message that the HC command would return.

"Zone pointer is bad": The zone pointer for the current heap (SysZone,
ApplZone, or user address) must be even and in RAM. In addition, the
bkLim field of the header must be even and in RAM, and must point after
the header.

"Free master pointer list is bad": Free master pointers in the heap are
chained together. starting with the hFstFree field in the zone header and
terminated by a Nil.. pointer.

"BlkLim does not agree with heap length": Walking through the heap
block by block must terminate at the start of the trailer block, as defined
by the blkLim field of the zone header.

"Block length is bad": The block header address plus the block length
must be less than or equal to the trailer block address. Also, the trailer
block must be a fixed length.

"Nonrelocatable block: Pointer to zone is bad": Block headers of
nonrelocatable blocks must contain a pointer to the zone header.

"Relative handle is bad": The relative handle in the header of a relocatable
block must point to a master pointer.

"Master pointer does not point at a block": The master pointer for a
relocatable block must point at a block in the heap.

"Free bytes in heap do not match zone header": The zcbFree field in the
zone header must match the total size of all the free blocks in the heap.

ATiiC,HD

Final draft

Syntax

Description

HD - Heap Display

HD [qualifiet1

The HD command displays information about blocks in the current heap.
The following qualifiers can be specified:

F:
N:
R=
L:
P:
RS:
TYPE:

Free blocks
Nonrelocatable blocks
Relocatable blocks
Locked blocks
Purgeable blocks
Resource blocks
Resource blocks of this type only

If no qualifier is specified, information about all blocks is displayed. If
you specify F, N, or R, MacsBug checks the tag byte of the block headers
for blocks with the appropriate bit set. If you specify L, P, or RS,
MacsBug checks the master pointers for blocks with the lock, purge, or
resource bits set. (For more details, see the Memory Manager chapter of
Inside Macintosh.)

You can also request information about resource blocks of a panicular
resource type only (for instance, 'CODE', 'CRSR', and so on) simply by
specifying the type. It's not necessary to quote the resource type, unless
you want MacsBug to distinguish between uppercase and lowercase
characters.

If no blocks of a specified type are found, the HD command returns the
message "No blocks of this type found."

An example of the heap display is provided below.

Final draft 45

Example

HD

For each block, the first column (start) of the display gives the start of
the data in the block, and the second column (Length) gives the length of
the block, not including the header. Blocks that cannot be moved
(nonrelocatable or locked) are indicated by a"•" character before the start
address.

The third column (Tag) indicates the status of the block as free (F),
nonrelocatable (N), or relocatable (R). For relocatable blocks, the fourth
column contains the master pointer, while the fifth and sixth columns
indicate whether the block is locked (L) or purgeable (P).

For resource blocks, the resource type, resource ID, file reference number
and resource name (if specified) are shown.

A summary of the heap is displayed when all heap blocks have been
processed. The totals are the same regardless of whether or not a qualifier

. was specified. (Note that to display only the summary information, you
can use the HT command.)

Displaying the Application heap
start Length Tag Ms tr Ptr Lock Purge Type ID File Name

•0046321C 00000100 N
•00463324 00000004 R 00463318 L
•00463330 00000070 R 0046330C L CODE. 0001 02 94 ~ain

004633A8 00000008 F'
00463388 00000058 R 00463310
00463418 00000078 R 00463314
00463498 00000018 R 004 63308 CODE coco 02 94
'.:C4 63488 00000004 R 00463304
004634C4 00001518 F'

Total blocks Total size
free 00000002 00001530
Non relocatable 00000001 00000108
Relocatable 00000006 00000188

Locked 00000002 0000007C
?urgeable and not locked 00000001 00000020

Heap size 00000009 000017CO

See also HC

46 Final draft

(

Syntax

Description

Examples

HELP

HELP- Help

HELP [cmd I section]

The HELP command displays information about the given command or
section. If no parameter is passed. a list of section headings is displayed.
Pressing Return displays each section in turn.

Note: The HELP information is contained in a resource of type 'mxbh'
that's approximately lOK in size. If space is especially tight, you can
remove this resource, thereby disabling the HELP command. Do not ever
modify the resource, however, since the HELP command expects the
information in a particular format.

Ret:urn shows sect:ions sequent:ially. "HELP name" shows Chat: secc.:.on.
Edit:ing
Expressions
Values
Operat:ors
Flow control
Breakpoint:s
A-craps
Disassembly
Heaps
Symbols
St:ack
Memory
Regist:ers
Macros
Miscellaneous

HELP Stack

Stack
SC6 (addr I

SC7

Show the calling chain based on A6 links. If no addr then the
chain st:art:s with with A6. If addr then the chain st:art:s at addr.

Show possible return addresses on the stack. A ret:urn address .:.s
an even address that points after a JSR, BSR or A-trap.

HELP SO

SD (t J (name I
Display all symbols in the current: heap that: partially match name.
If 't • then display all. trap names that: part:ially match name. If
no name then display all symbols or traps.

Syntax

Description

HS - Heap Scramble

HS [addtj

The HS command toggles heap scrambling on or off. When heap
scrambling is on, all relocatable blocks in the heap will be moved (if
possible) whenever the following traps are encountered: NewPtr,
NewHandle, ReallocHandle, SetPtrSize, or SetHandleSize. With
SetPtrSize and SetHandleSize, the heap is scrambled only if the block size
is being increased.

The only blocks not moved are single blocks between two stationary
blocks. The heap is checked before scrambling; if it has been corrupted,
MacsBug breaks and reports the error. (See the HC command for a list of
possible errors.) Heap scrambling is automatically turned off when a bad
heap is detected.

You can specify the address of the heap to be scrambled; if you don't, the
address contained in the global variable ApplZone (the beginning of the
application heap) is used.

See also HC

48 Final draft

(

HT - Heap Totals

Syntax HT

Oescriptic;m For the current heap, the HT command displays the total number of each
type of block, the heap size, and the free space in the heap.

Example

HT

'.)isplaying the Application heap
Total blocks Total size

free 00000002 00001088
Nonrelocatable
Relocatable

Locked
Purgeable and not locked

Heap size

See also HD

00000001
00000007
00000003

00000001
OOOOOOOA

00000108
00000600
00000404
00000028
000017CO

Syntax

Description

See also

so

HX - Heap Exchange

HX [addf1

The HX command sets the current heap for the other heap commands.
The address of a heap zone can be specified by addr. If no parameter is
specified, the HX command cycles between the application heap, the
system heap, and any other heap specified by a previous HX command.

Note: The name (or address) of the current heap is shown in the status
region of the MacsBug display.

HC,HD,HT,HZ

Final draft

(

Syntax

Description

See also

HZ - Heap Zones

HZ

In a system running MultiFinder, there will be an application heap for
each application. The HZ command displays the addresses of all known
heap zones. It identifies heaps by doing a heap check on each block in the
MultiFinder heap; if the block passes, it's assumed to be a heap. The HZ
command will not display heap zones stored on the stack or in the system
heap, nor will it find heap zones that don't start at the beginning of a heap
block.

HC,HD,HT,HX

Final draft 51

Syntax

Description

See also

52

ID - Disassemble One Line

10 [ackttl

The ID command disassembles one line, staning at the specified address.
If addr is omitted, the program counter is used. Pressing Return
disassembles the next line. The dot address is set to the address specified.

IL, IP, IR

Final draft

(

('
,-''

Syntax

·Description

Example

:L

IL - Disassemble From Address

IL [addr[nJ]

The IL command disassembles n lines, starting at the specified address.
If addr is omitted, the program counter is used. If n is omitted, half a
screen of code is displayed. Pressing Return disassembles the next n
lines (if n was specified initially) or the next half screen (if n was
omitted). The dot address is always set to the address specified.

The procedure name and offsets are given in the first column, followed by
the actual addresses. A "•" character after the address indicates that a
breakpoint is set at that instruction. The next two fields contain the
opcode and operand; a"*" character before the opcode indicates the
current PC.

The comment field(;) gives the target of a IMP, JSR, or BSR instruction
or the trap number of a trap. The last field shows the actual hexadecimal
words of the instruction; if there are too many words, an ellipsis(...) is
shown. Note that this last field is shown only on larger displays, but can
be always be seen by sending the output to a file or printer with the LOG
command.

Disassembling from 00308A96
~ain

+OCOC 00308A96 •JSR
+0010 00308A9A JSR
+0014 00308A9E . JSR
+0018 00308AA2 RTS
+OOlA 00308AA4 ONLK
+OOlC 00308AA6 RTS

00308AB4 DC.W
RT I nit -

+0000 00308AB6 LINK
+0004 00308ABA MCVEM.L
+0008 00308ABE MCVE.L
+OOOC 00308AC2 JSR
+0010 00308AC6 MCVEA.L
+0014 00308ACA MOVE.L
+0018 00308ACE MOVEQ
+OOlA 00308ADO MOVEA.L

0316
+0020 00308AD6 TST.L
+0022 00308AD8 BEQ.S
+0024 00308ADA MOVEA.L

0316
+002A 00308AEO MOVEQ
+002C 00308AE2 AND.L

See also ID, IP, IR

?RCCATLEVELl+OOOO
"+50312
•+S0314

A6

soooo

A6,JSOOOO
D3/D6/D7/A3/A4,-(A7)
S0018!A6),06
$002A(A5)
-SOOAA(A5) ,AO
$0008 !A6J, (AO)
ilSOl,00
tS00000316,AO

(AO)
RTinit+OOSA

tS00000316,AO

11$01,Dl
(AO), 01

Final draft

00308A6A
C03C8DAC
O:JJC8C32

t e e I

4::: 7 s

I 4A90
00308810 6736

! 72~:

I C2 30

53

Syntax

Description

Example

:?

IP - Disassemble Around Address

IP (addtf

The IP command displays half a screen of disassembled code, centered
around the instruction specified by addr. Pressing Return disassembles
the next half screen. If addr is omitted, the program counter is used. The
dot address is set to the first address displayed.

The procedure name and offsets are given in the first column, followed by
the actual addresses. A"•" character after the address indicates that a
breakpoint is set at that instruction. The next two fields contain the
opcode and operand; a "*" character before the opcode indicates the
current PC.

The comment field(;) gives the target of a JMP, JSR. or BSR instruction
or the trap number of a trap. The last field shows the actual hexadecimal
words of the instruction; if there are too many words, an ellipsis(...) is
shown. Note that this last field is shown only on larger displays, but can
be always be seen by sending the output to a file or printer with the LOO
command.

Disassembling from 00308A7C
No procedure name

00308A7C ADDQ.W tS2,A4 ::::; . ,..,_
..... "1 "1

00308A7E oc.w $4556 ?? ?'? ' 4556
00308A80 DC.W S454C ???? I 454C
00308A82 MOVE.W 00,-(AO) i J:co
00308A84 DC.W SOOOO,S4EBA ,,,...,...,...

\,J vvv

00308A88 DC.W S02FE ???? 02:::
Main

+COCO 00308A8A LINK A6,tSOOOO ~ ::s 6
+0004 00308A8E MOVEA. L (A7) +, A6 I 2 ,-. -=:. ;"'

"'~"
+0006 00308A90 JSR •+$02f8 ; 00308088 '10:3A
+OOOA 00308A94 _Debugger ; A9FF ,;9;;
+OOOC 00308A96 •JSR PROCATLEVELl+OOOO 00308A6A l 4~3A

+0010 00308A9A JSR •+$0312 003080AC I 40:3A
+0014 00308A9E . JSR •+$0314 ; 00308082 i 4S3A
+0018 00308AA2 RTS I 4E75
+OOlA 00308AA4 ONLK A6 I 4 ::s::
+OOlC 00308AA6 RTS 4Ei5

00308AB4 DC.W $0000 I • • • I coco
~Tinit -

+0000 00308AB6 L:NK A6,tSOOOO I 4E.56
+0004 00308ABA MOVEM.L D3/D6/D7/A3/A4,-(A7) 4 8 S7

See also ID, IL, IR

54 F!nal draft

4 ::3..;

..;,J..;,.J

'-J '-: c

::~.;

'"I
"".J ... v

:: J: 2

:J:a

(

Syntax

o·escriptloE

Example

IR :

IR - Disassemble Until End of Procedure

IA (aoof1

The IR command disassembles code beginning from the instruction
specified by addr, if no address is given, the program counter is used.
This command assumes that the specified instruction is pan of a
procedure. Code is disassembled until the end of the procedure. The dot
address is set to the address specified.

The procedure name and offsets are given in the first column, followed by
the actual addresses. A "•" character after the address indicates that a
breakpoint is set at that instruction. The next two fields contain the
opcode and operand; a "*" character before the opcode indicates the
current PC.

The comment field(;) gives the target of a JMP, JSR, or BSR instruction
or the trap number of a trap. The last field shows the actual hexadecimal
words of the instruction; if there are too many words, an ellipsis (...) is
shown. Note that this last field is shown only on larger displays, but can
be always be seen by sending the output to a file or printer with the LOG
command.

Disassembling from ·:
Main

+0000 00308A8A LINK
+0004 00308A8E MOVEA.L
+0006 00308A90 JSR
+OOOA 00308A94 _Debugger
+OOOC 00308A96 •JSR
+0010 00308A9A JSR
+0014 00308A9E . JSR
+0018 00308AA2 RTS
+OOlA 00308AA4 UNLK
+-OOlC 00308AA6 RTS

See also ID, IL, IP

A6, 1$0000
(A7) +,A6
•+S02F8

PROCATLEVELl+OOOO
•+$0312
• .,.$0314

A6

Fln<it rlrntt

;

; OOJCSDSS
A9FF
C03C8A6A
003C8DAC
C03C8~82

~ ::s 6
I 2CSF

~S3A

,; 9::
r 4=:3A

~i:3A

.; i:3A
4 ::- s
4::S:::
4:: 7 s

..,, ..., ,_, v

""L.: ..,

: -;: ""L

: 3 :-:
..,, j ""'4

Syntax

Description

56

LOG - Log to a printer or file

LOG [pathname I printer)

The LOG command sends MacsBug output to a text file specified by
pathname or to an ImageWriter printer via the serial pon. MacsBug
follows the hierarchical file system conventions; if you don't specify a
pathname, it assumes the cU1TCnt directory. If the specified file doesn't
already exist, it's created as an MPW text file, which can be opened from
word processing applications as well as from MPW. If the specified file
already exists and is of type "Text", LOG appends MacsBug output to
what's already there. To tum logging off, simply type LOG without
parameters.

Note: The LOG command does not work with the LaserWriter® driver,
so you can't send MacsBug output directly to a LaserWriter. You can, of
course, send the output to a file and then print it on a LaserWriter.

Warning: MacsBug, by design, uses as little of the system as possible;
the LOG command violates this design criterion. Logging may not work
depending on the state of the file system during your debugging session.
Also, logging enables interrupts briefly while executing its low-level calls.
If your program depends on interrupts being completely disabled, you
should not use the LOG command.

Warning: If you log to a file while MPW is running, or while an
application is running under MultiFinder, be aware that the log file will be
closed when you leave MPW or quit the application.

Final draft

Syntax

Description

Examples

MC-Macro

MC name' expt I expr

The MC command creates a macro with the given name that expands to
'expr' or to the current value of expr. If expr is not quoted, it is evaluated
and convened to a string before being entered.

Macros are expanded before the command line is executed; thus they can
contain anything you can type in a command line. You can use macros to
create command name aliases, reference global variables, and name
common expressions.

Warning: MacsBug expands all macros on the command line before
interpreting any c.ommands. You cannot define a macro and then
reference it on the same line since the reference will be undefined at the
time the macro is expanded.

MacsBug lets you define your own set of macros as resources of type
'mxbm' to be loaded at boot time. MacsBug reserves resource IDs 100
and 101 for its standard macros, which include macros for several
. hundred common global variables. The file Macros.r, included on the
MacsBug disk, can be used as a model for building your own 'mxbm'
resources.

Two macro names have been predefined by MacsBug for customizing the
debugging environment. If there are cenain commands you want
executed the first time MacsBug is entered (such as SHOW, SWAP,
LOG, SX, HX, and DX), define them as a macro called FirstTime in an
'mxbm' resource. (Remember that multiple commands must be separated
by semicolons.) When MacsBug is first invoked, it loads the specified
commands into the command line and executes them. This lets you
configure MacsBug using your preferred settings. A second macro,
called EvcryTime, can be defined in a resource file or on the fly with the
MC command. The commands specified by this macro will be executed
each time, except the first time, MacsBug is invoked.

MacsBug treats commands defined by macros just like commands that
you enter explicitly. If you create an EveryTime macro, be aware that the
last command executed by that macro is set as the default command; this
command will be repeated if you press Return.

MC Frame • A6+10 •

This example gets the current value of register A6 each time the Frame macro is expanded,
and adds 10 to it.

Final draft 57

MC Save CurrentAS

This example remembers the current value of this global variable. You could change it :ind
then restore it by typing:

SL CurrentAS Save

See also _ MCC,MCD

sa Final draft

(

Syntax

Description

See also

(,

MCC - Macro Clear

MCC [name)

The MCC command clears the macro with the given name. If no name is
specified. all macros are cleared.

MC.MCD

~:--1 _.&&.

Syntax

Description

Example

MCD Cur
Macro Table

MCD - Macro Display

MCD [name)

The MCD command lists those macros that match the given name. If no
name is specified. all macros are listed, including both predefined macros
loaded from resource files and macros defined during the current
debugging session. MacsBug provides partial name matching, returning
all macros that begin with the specified name. If you enter MCD cu=. for
instance, all names that stan with "Cur'' are shown.

~ame Expansion
Cur Activate A64
CurApName 910
CurApRefNum 900
CurDeactive A68
CurDirStore 398
CurJTOffset 934
Cur Map ASA
CurPaqeOption 936
CurPitch 280
CurrentAS 904
CurStackBase 908

See also MC, MCC

60 Final draft

(

Syntax

Description

Examples

MR - Magic Return

MR [offset I addtl

If you've stepped into a procedure and want to get out. you can use the·
MR command. It sets a temporary breakpoint at the first insrruction after
the call to the current procedure by replacing the return address on the
stack with a MacsBug address. When the procedure returns, MacsB ug
gets control. It then performs an RTS in trace mode, breaking at the
instruction after the call.

If no parameter is specified, the return address is assumed to be on the top
of the stack. If specified, the parameter is interpreted relative either to
register A 7 or A6. If the parameter is less than the contents of A6,
MacsBug assumes that it's an offset from register A 7. If the parameter is ·
equal to register A6, it's assumed to be a frame pointer for the current
procedure. If the parameter is greater than register A6, it's interpreted as
an offset for a procedure higher on the stack.

If the specified address is not in the range between A 7 and CurStackBase,
the error message "This address is not a stack address" is returned. Also,
MacsBug checks that the specified address is in_ fact a valid return
address, in other words, that it immediately follows a JSR, BSR, or A­
trap instruction. If this is not the case, the error message "The address on
the stack is not a return address" is returned.

If you are at the first instruction in a procedure, simply typing MR will break when the
procedure is done.

If you are past the LINK A6 instruction, MR A6 will break when the procedure is done.
With nested procedures, MR A6" will break when the procedure that called the procedure
you are in is done.

See also G,GT

Final draft Al

Syntax

Description

See also

62

RB - Reboot

RB

The RB command unmounts the boot volume and reboots the system.

EA, ES, RS

Final draft

(

Syntax

Oeseriptlc;i

Registers

registerName [• I :=expr)

Entering a register name displays the register's value. Values can be
assigned to registers by using either the"=" or the":=" operator.

MacsBug uses the Motorola names for all registers; a list of these names is
given below.

68000 Registers

Dn Data Register n
An Address Register n
PC Program Counter
SR Status Register
SP Stack Pointer
SSP Supervisor Stack Pointer

68020 Registers

ISP
MSP
VBR
SFC
DFC
CACR
CAAR

Interrupt Stack Pointer
Master Stack Pointer
Vector Base Register
Source Function Code Register
Destination Function Code Register
Cache Control Register
Cache Address Register

68030/ 68851 Registers

CRP CPU Root Pointer
SRP Supervisor Root Pointer
TC Translation Control Register
PSR PMMU Status Register

68881 Registers

FPn
FPCR
FPSR
FPIAR

Floating-Point Data Register n
Floating-Point Control Register
Floating-Point Status Register
Floating-Point Instruction Address Register

Syntax

Description

See also

64

RN - Set Reference Number

RN [explj

The RN command lets you restrict symbol references to the file whose
reference number is specified by e:cpr. The reference number can be
found with either the HD or SD commands. If no expression is specified,
the reference number of the current resource file, contained in the global
variable CurMap, is used.

The RN command is useful when you're dealing with multiple files with
the same symbol names. When you're working with MPW tools, for
instance, there may be multiple code segments with the same name. Once
you've specified a reference number with the RN command, subsequent
symbol references are restricted to the file with a matching reference
number.

Specifying 0 for e:cpr restores the default situation where all symbols
match.

SD, SX

Final draft

(

Syntax

Description

See also

0

RS - Restart

RS

The RS command restarts the system as if the Restart menu item had been
selected from the Finder.

EA, ES, RB

Final draft 65

Syntax

Description

See also

66

·s-step

S [n I explj

The S command steps through the next n instructions or until the specified
expression is TRUE. If neither parameter is specified, the S command
simply steps through the next instruction. In contrast to the SO
command. the S command will actually trace into the ROM when a trap is
encountered.

An S command entered with a specified range or number of instructions
(for instances 10) might encounter a breakpoint while executing. If rhis
happens, the break into MacsBug terminates the S command.

Command·S is provided as a shoncut Note that any commands sitting in
the command line are ignored.

Warning: Stepping through certain MMU instructions can cause
MacsBug to hang. If you're doing MMU programming, be aware that
MacsBug executes many instruction while executing an S command and
expects a valid memory mapping.

so

Final draft

(

Syntax

Description

Example

SB - Set Byte

SB addr (expr I · stt' ...)

The SB command assigns values to bytes, starting at addr. Expressions
are evaluated to 32-bit values, and the low-order byte is used. Strings of
any length (limited only by the length of the command line) can also be
specified; the characters are placed in successive bytes. The dot address is
set to the address of the first byte set.

In addition to setting the dot address, the SB command sets DM as the
default command; pressing Return after having executed an SB command
will display the memory just set

SB 0 l 222 JJJJJ
(Return}

:-!emery set starting at 00000000
00000000 0122 3300 0000 0000 0000 0000 0000 0000 ... 3

See also SL, SW

Syntax

DescriptiQD

Example

SC6 - Stack Crawl (A6)

SCS [add'1

The SC6 command displays the stack frame and address of the current
procedure and all procedures above it in the calling order.

The SC6 and SC7 commands must have a range of memory to constrain
the search for frames or return addresses. They assume that register A 7 is
even and points to the top of the staclc, and that the global variable
CurStack.Basc points to the bottom of the stack. If any of these conditions
is not met. the following error message is retlmled: "Damaged stack: A 7
must be even and<= CurStack.Base." '

The SC6 command also assumes that register A6 or the parameter is the
address of a frame on the stack and that it points within the range between
register A7 and CurStack.Base. If these conditions aren't met, the error
message "A6 does not point to a stack frame" is returned.

Note: For historical reasons, SC is provided as an alias for the SC6
command.

In this example, 4CEDE4 was the value of A6 at the time ProcAtLevell called ProcAtLevel2.
4CEDDC was the value of A6 at the time ProcAtLevel2 called ProcAtLevel3. The current
value of A6 defines the stack frame for Proc:AtLevel3.

SC6

Callinq chain using A6 linl<.s
A6 F::-ame Caller

<main> 00041FAA MAINPROC+OOOC
004CEDE4 00041F82 PROCATLEVEL1+0004
004CEDDC 00041F66 PROCATLEVEL2+0004

See also SC7

SC7 - Stack Crawl (A7)

Syntax SC7

Oescriptiol'.1 The SC7 command displays a possible calling chain with the stack
addresses that contain each caller's return address. A return address must
be even and a valid RAM or ROM address, and it must point immediately
after a JSR, BSR, or A-trap instruction.

The SC7 command will almost certainly include old or invalid values (in
other words, addresses not in the current calling chain), since local stack
variables can change the stack top without changing the contents. You
can use the frame and return addresses to examine the stack yourself; you
can also use the addresses in other MacsBug commands.

The SC6 and SC7 commands must have a range of memory to constrain
the search for frames or return addresses. They assume that register A 7 is
even and points to the top of the stack, and that the global variable
CurStac.kBase points to the bottom of the stack. If any of these conditions
is not met, the following error message is returned: "Damaged stack: A 7
must be even and<= CurStackBase."

The first column shows possible return addresses. The second column
shows the addresses of possible A6 frame values.

A frame address can be used as a parameter to SC6 to tell it where the A6
links start. For instance, typing sc6 4CEDD4 will show the same calling
chain as in the SC6 example. This is useful while debugging routines that
don't use the standard A6 frame conventions.

SC7 shows a superset of the calling chain. SC6 can then be used to show
the true calling chain at the point where SC7 finds the first valid frame.

Example

SC7

Return addresses on the stack
Stack Addr Frame Addr Caller

004CEDEC 4080DSCC Chain+Ol4E
004CEDE8 00041FAA MAINPROC+OOOC
004CEDEO 004CEDDC 00041F82 PROCATLEVEL1+0004
004CEDD8 004CEDD4 00041F66 PROCATLEVEL2+0004

See also SC6

SD - Symbol Display

Syntax SD [t] [name]

Description The SD command Qisplays a list of trap names or symbols in the current
heap. MacsBug provides partial name matching, returning traps and
symbols that begin with the specified name. If you enter so Sys, for
instance, all names that Stan with "Sys" are shown. Depending on the
parameters supplied, the following information is displayed:

Command
SD name
SDt name
SD
SDt

Examples

SD tSys

Displaying trap
Trap Address
A090 OOOOD2DO
A982 004D027E

names
Name
SysEnvirons
SystemEvent
SystemClick
SystemTask
SystemMenu
Sys Edit

A983
A984
A9BS
A9C2
A9C8
A9C9

SD Sys

00400276
004D028E
408151BA
004D026E
40805DCA
0040045E

Sys Beep
SysError

Visplaying symbols from the
Type ID File Address
CODE 0003 0236 00394808
CODE 0004 0236 0039C6B8
CODE 0004 0236 0039C748
CODE 0004 0236 0039CB56
CODE 0004 0236 0039CFAC
CODE 0004 0236 0039E90C
CODE 0006 0236 003Cll3A
CODE 0002 0236 00479886

See also RN, SX

70

Effect
Shows all symbols that partially match name
Shows all traps that partially match name
Shows all symbols
Shows all traps

Application heap
Proc name
SysMessage
SYSGROWZONE
sys Launch
sys Run
sys Signal
sys Term
sysSuspend
sysinit

Final draft

(

Syntax

Description

Examples

SHOW 'A6+8'

SHOW-Show

SHOW ackir I 'addt [L I W I A]

By default, MacsBug displays the stack pointer at the top of the status
region, as well as the bytes starting at that address. The address is
evaluated each time the display is updated. The number of bytes
displayed varies with the screen size and the format of the display. The
SHOW command lets you specify the display in word, long word, and
ASCII format, by passing W, L, or A respectively.

The SHOW command also lets you specify another area of memory for
display. When addr is quoted, the specified address is evaluated each
time the display is updated. If addr is not quoted, the address is evaluated
once and the resulting address is always shown.

To restore the default display, enter SHOW 'SP' L.

This example shows the stack above the previous A6 value and return address; for routines
using LINK A6, this will be the routine parameters.

SHOW curApName A

This example will always show the data at the address defined by the macro curApName.

Final draft 71

Syntax

Description

Example

SL - Set Long

SL acttr (expr I 'stf ...)

The SL command assigns values to long wordS. staning at addr.
Expressions are evaluated to 32-bit values. Strings of any length (limited
only by the length of the command line) can also be specified; the
characters are placed in successive bytes. The dot address is set to the
address of the first long word set.

In addition to setting the dot address. the SL command sets DM as the
default command; pressing Return after having executed the SL command
will display the memory just set.

SL 0 1 222 33333
!Return!

Memory set startinq at 00000000
00000000 0000 0001 0000 0222 0003 3333 0000 0000 ••• ••••"••33• •••

SL O 12 'Test'
{Return}

Memory set startinq at 00000000
00000000 0000 0012 5465 7374 0000 0000 0000 0000 ••••Test••••••••

See also SB, SW

72 Final draft

('··. , .

j

Syntax

Description

Examples

SM - Set Memory

SM acttr (expr I 'stt ...)

The SM command assigns values to memory staning at addr. The size of
each assignment is detennined by the value. Specific assignment sizes
can be set by using the SB, SW, and SL commands.

In addition to setting the dot address, the SM command sets D M as the
default command; pressing Return after having executed the SM command
will display the memory just set.

SM 0 1 222 33333
{Reeurn}

Memory set starting at 00000000
00000000 0102 2200 0333 3300 0000 0000 0000 0000 ••"••33• ••••••••

SM 0 4 'Test'
(Return}

Memory set starting at 00000000
00000000 0454 6573 7400 0000 0000 0000 0000 0000 •Test•••••••••••

See also SB, SL, SW

Final draft 73

Syntax

Description

See also

74

SO - Step Over

SO [n I expf1

The SO command steps through the next n instructions or until the
specified expression is TRUE. If neither parameter is specified. the SO
command simply steps through the next instruction. In contrast to the S
command, SO steps over traps, JSRs, and BSRs, treating them as a
single instruction.

When stepping over a toolbox trap with the auto-pop bit set, MacsBug
correctly returns to the address on the top of the stack at the time of the
trap call (instead of to the address immediately after the trap).

An SO command entered with a specified range or number of instructions
(for instance so 10) might encounter a breakpoint or some other
exception while executing. If this happens, the break into MacsBug
tenninates the SO command. The SO command cannot be terminated if a
trap, JSR, or BSR is being stepped over. In this case, MacsBug displays
a warning and prevents the user from entering another step command until
this one is completed.

Note: For historical reasons, T (for Trace) is provided as an alias for the
SO command. In addition, Command-T is provided as a shortcut; note
that any commands sitting in the command line are ignored.

Warning: Stepping through certain MMU instructions can cause
MacsBug to hang. If you're doing MMU programming, be aware that
MacsBug executes many instructions while executing an SO command
and expects a valid memory mapping.

s

Final draft

(

Syntax

Oescripticn

Example

SS - Step Spy

SS addr1[addr2J

The SS command is a variation on the S command that lets you keep track
of a particular area of memory. For the range between addr 1 and addr2,
the SS command calculates a checksum before executing the next
instruction. If the checksum value changes, MacsBug is invoked. If
addr2 is omitted, SS waits for the long word at addrl to change.

The SS command is terminated on the next entry into MacsB ug.

The SS command is optimized for speed with a long word; with longer
checksum ranges, it can be slow. Programmers needing to watch large
ranges may want to use a hardware emulator.

You can also use the SS command as a way of slowing down certain
routines, those that draw to the screen, for instance, so you can actually
watch how they work.

This example specifies a range that will not change and can be used to watch drawing to
screen.

See also CS

Syntax

Description

Example

SW - s·et Word

SW ad1r (expr I 'stt ...)

The SW command assigns values to words starting at addr. Expressions
are evaluated to 32-bit values, and the low-order word is used. Strings of
any length (limited only by the length of the command line) can also be
specified; the characters are placed in successive bytes. The dot address is
set to the address of the first word set.

In addition to setting the dot address, the SW command sets DM as the
default command; pressing Return after having executed the SW
command will display the memory just set.

SW 0 1 222 33333
(Return I

Memory set starting at 00000000
00000000 0001 0222 3333 0000 0000 0000 0000 0000 •••"33

SW O 12 'Test'
(Return I

Memory set starting at 00000000
00000000 0012 5465 7374 0000 0000 0000 0000 0000 ••Test••••••••••

See also SB,SL

76 Final draft

Syntax

Description

SWAP - Swap Frequency

SWAP

The SW AP command controls the frequency of display swapping
between MacsBug and the application, depending on whether the system
is configured for a single screen or for multiple screens.

For single screens, the SW AP command toggles between drawing step
and A-trap trace information to the MacsBug display without swapping
the screen, and drawing the information and swapping each time.

For multiple screens, the SW AP command toggles between having the
MacsBug screen always visible, and having the MacsBug screen visible
only at break.

With multiple screens, MacsBug uses the "Welcome to Macintosh" screen
by default You'll probably want your application on the larger screen
and MacsBug on the smaller screen. To select a different screen for the
MacsBug display, press the Option key while clicking on the Monitor icon
from the Control Panel and then drag the Macintosh icon to the desired
screen.

Final drctt ..,..,

Syntax

Descriptio~

See also

78

SX - Symbol Exchange

SX[ON !OFF]

The SX command toggles between allowing and not allowing symbol
names in place of addresses. By default, symbol names can be used
anywhere an address is used as a command line parameter. MacsBug
translates this name into an address by searching the current heap for a
matching procedure name. MacsBug also displays disassembled code as
offsets relative to a procedure. Since this search process can be slow,
MacsBug provides a way to disable it

IL. RN. SD

Final draft

(

(~~

TD - Total Display

Syntax TO

Descriptio,, The TD command displays all CPU registers in the command region.
Since most 68000 registers are constantly displayed in the status region,
this command is useful for remembering the register values between
commands.

To display the 68030 MMU registers, use the TM command.

Examples

TD (on a Macintosh. Plus}
68000 Registers

DO .. 00000000 AO
Dl - 00000006 Al
02 "' FFFF0040 A2
DJ - 00000000 AJ
D4 - 00000000 A4
DS "' 00000000 AS
06 .. 00000000 A6
D7 - 00000000 A7

TD (on a Macintosh. II}

68020 Registers
DO - 00000000 AO
01 = 00000006 Al
D2 = FFFF280C A2
03 .. 00000000 AJ
D4 .. 0048FFFF A4
DS .. 00000000 AS
iJ6 .. 004D013C A6
07 .. 00000000 A7

See also TF,TM

• E002S470
.. OOOCC7B2
.. OOOCC7B2 .. OOOCC7B2

= 00021382 .. OOOCDS94 .. OOOCC6E4
• OOOCC6CA

• E0017EA8
- 00487290
.. 00487290
- 00487290
.. 004872D2
"' 004D013C - 004871D6
.. 004871C6

OSP • FFFFFFFF
SSP • OOOCC6CA

PC • E002S47E
SR • Smxnzvc

OSP • D72BSFFA
MSP "' 234B30CD
ISi? .. 004871C6
VBR - 00000000
CACR • 00000001
CAAR "' 08281ESS
PC "' E0017EB6
SR .. SmXnzvc

!nt = O

SE'C .. 7
OE'C = 7

Int = 0

Syntax

Description

Example

TF - Total Floating-Point

TF

The 1F command displays all 68881 registers. (These registers are not
shown in the status region.)

TF !on a machine with a 68881}
68881 Registers

fPO ,. 7FFF rFFFFFFF FFFFFFFF NAN (255)
FPl - 7FFF FFFFFFFF FFFFFFFF NAN (255)
fi?2 = 7FFF F'FFFFFFF FFFFFFFF NAN (255)
FPJ -7F'FF FFFFFFFF FFFFFFFF NAN <255)
FP4 = 7FFF FFFFFFFF FFFFFFFF NAN(255)
F'PS = 7FFF FFFFFFFF FFFFFFFF NAN (255)
FP6 - 7FFF FFFFFFFF FFFFFFFF NAN(255l
FP7 "' 7FFF FFFFF'FFF FFFFFFFF NAN (255)

EE MC cc QT ES AE
fPCR • 00 00 FPSR = 00 00 00 00 FPIAR • 00000000

See also TD,TM

80 Final draft

(
TM - Total MMU

Syntax TM

Descriptf on The TM command displays the MMU registers common to the 68851 and
68030. (These registers are not shown in the status region.)

Example

TM {on a machine with a 6885 l}
~U Reqisters

CRP • 7FFF020240800050 TC ,. 80F84500
SRP • 7F55027300000l00 PSR • 2216

See also TD, 1F

Flnal draft 81

Syntax

Description

82

TMP - .Templates

TMP[name]

The TMP command lists every template whose name matches the
specified name. If no name is specified, all loaded templates are displayed
by name. MacsBug provides partial name matching, returning all
templates that begin with the specified name. If you enter TMP My, for
instance, all names that stan with "My" are shown.

MacsBug lets you define your own templates as resources of type 'mxwt'
to be loaded at boot time. MacsBug reserves resource ID 100 for its
standard templates. There are two ways of creating your own 'rnxwt'
resources. You can use the file Templates.r, included on the MacsBug
disk, as a model for building a resource with MPW (and the Rez tool).
You can also use ResEdit; a file called ResEdit Templates contains
ResEdit templates for creating 'mxwt' resources.

Note: The 'mx.bt' resource type is also supponed. It's preferable to use
the 'mxwt' type, however, since it can be created with either MPW or
ResEdit and allows more template fields than the 'mxbt' type.

Templates are composed of fields. Each field consists of a name, a. type,
and a count The basic types are:

Byte
Word
l..Qng
SignedByte
SignedWord
SignedLong
U nsignedB yte
UnsignedWord
UnsignedLong
Boolean
pString
cString

Display in hexadecimal
Display in hexadecimal
Display in hexadecimal
Display in decimal
Display in decimal
Display in decimal
Display in decimal
Display in decimal
Display in decimal
Display byte as TRUE (nonzero) or FALSE (0)
Display a Pascal string
Display a C string (zero-terminated)

For all of the basic types except pString, the count indicates the number of
·items of that type to display. For instance, a type of Word with a count of

4 can be used to display a Rectangle on one line. With pSttings, the count
indicates the maximum string size and is used to compute the next field
address. If the string is only as long as the actual number of characters,
specify 0 for count and MacsBug will use the length byte to determine the
end of the string.

Final draft

The basic types listed above can also be used individually with the DM
command. Several additional field types are used only in templates:

Text

Skip
Align
Handle

"Type

""Type

Display a text string for count bytes. (Resource types, for
instance, can be shown with the Text type and a count of 4.)
Skips over the next count bytes without displaying.
Aligns to a word boundary (used after C or Pascal strings).
Dereferences and display in hex. This type is used to show
the address of a data structure, rather than its contents.
Dereferences a pointer and displays using the specified. basic
type or template. The display is indented 2 spaces.
Dereferences a handle and displays using the specified basic
type or template. The display is indented 2 spaces.

If a template named Temp contains a field type of "Temp or ""Temp,
MacsBug assumes the field is a link to another data structure of the same
type. For instance, the Window Record template (provided in
Templates.r) uses a field type of "Window Record to dereference the
pointer contained in the nextWindow field of the window Record.
Pressing Return displays the next window in the window list.

Linked lists are zero-terminated. If a template contains than one field
specifying a link, MacsBug uses the last field found.

l=lnnl rlrritt Q 'l

Syntax

Description

Example

'flH

WH-Where

WH [ad::frl tra,ol

The WH command returns infonnation about the location of a given trap,
symbol, or address. If no parameter is specified, the program counter is
used. Given an address that's in ROM, WH looks for the trap nearest to
and before that address, and returns the trap name as well as an offset
from the start of the trap. If the address is in the system heap or
application heap, WH returns the symbol (name and offset).

MacsBug will also attempt to map a given address to low memory global
names. It does this by trying to conven macro values into numbers. If
the.value is a legal number and matches the given address, the macro
name is returned.

If a trap name or number is specified, the WH command returns the trap
name, the trap number, and the address of the trap. If a symbol name is
specified, WH returns the address.

The WH command sets the dot address; thus WH name followed by IL •
will disassemble the code at name.

In the example below, typing WH gets information about the PC. It is in
the procedure MainProc at offset OOOC. The heap block where this
procedure was found is also shown. (See the HD command for details.)

Address 000£7036 is in the Application heap at MainProc+OOOC
re is in this heap block:

Start Length Taq Mstr !?tr Lock l?urqe Type :::0 file
•OOOE7CC8 00000300 R OOOE7CAC L CODE 0001 0236

84 Final draft

(

Appendix A

Command Summary

Final draft 85

Flow Control
G-Go
GT-Go Till
S -Step
SO - Step Over
SS-Step Spy
MR- Magic Return

Breakpoints
BR - Breakpoint
BRC - Breakpoint Clear
BRD - Breakpoint Display

A-Traps
A TB -A-Trap Break
A TI-A-Trap Trace
ATIIC-A-Trap Heap Check
ATSS-A-Trap Step Spy
ATC - A-Trap Clear
A ID - A-Trap Display
ATR-A-Trap Record
ATP-A-Trap Playback
DSC-. Extended Discipline

Disassembly Commands
IL - Disassemble From Address
IP - Disassemble Around Address
ID - Disassemble One Line
IR- Disassemble Until End of Procedure
DH - Disassemble Hexadecimal

Heap Commands
HX - Heap Exchange
HZ - Heap Zone
HD - Heap Display
HT- Heap Totals
HC-Heap Check
HS - Heap Scramble

Symbol Commands
RN - Resource Number
SD - Symbol Display .
SX - Symbol Exchange

86 Final draft

(

(

Stack Commands
SC6 - Stack Crawl (A6)
SC7-Stack Crawl (A7)

Memory Commands
OM-Display Memory
TMP - Display all loaded templates
DP-Display Page
DB - Display Byte
OW - Display Word
DL - Display Long
SM- Set Memory
SB-SetByte
SW-Set Word
SL-Set Long

Register Commands
ID-Total Display
TF- Total Floating-Point
TM-Total~

Macro Commands
MC- Macro Create
MCC - Macro Oear
MCD - Macro Display

Miscellaneous Commands
RB-Reboot
RS-Restart
ES - Exit to Shell
EA- Exit to Application
WR-Where
F-Find
CS - Checksum
LOG-LOO (output to file or printer)
SHOW - Show (memory in the sidebar)
DV- Display Version
DX - Debugger Exchange
HELP - Display list of MacsBug commands
SW AP- Swap (screen display)

88

Appendix B

Error Messages

Flnol draft 89

This appendix lists most of the error messages MacsBug can return.

"Unable to access that address"
"Addresses must be even" ·

Any command that takes an address parameter can get one of these errors. The first is a
68000 bus error exception, and the second is an address error exception.

"Value expected"
Some commands will supply default parameters when no parameter is specified. This
error cari be returned by commands that require cenain parameters.

"Unrecognized symbol"
Any command that takes a symbol as parameter can receive this error if a valid symbol
name could not be found in the heap and the name is not a valid trap name.

"Divide by zero error''
This error is retnrned when an expression attempts to divide.a number by zero.

"Count must be greater than zero"
Any command that takes a count (BR, A TB) requires it to be greater than 0.

"Entry will not fit in the table"
MacsBug stores information about breakpoints, step commands, and A-trap commands
in a single table. Note that it's possible to receive this message while entering one type
of action for the first time (a breakpoint for instance), since other types of actions may
have already filled this table.

"Damaged stack: A7 must be even and<= CurStackBase"
The stack commands (SC6, SC7) must have a memory range to constrain the search for
frames or return addresses. They assume that register A 7 is even and points to the top
of the stack, and that the global variable CurStackBase points to the bottom of the stack.

"A6 does not point to a stack frame"
The SC6 command assumes tfiat register A6, or the parameter if specified, is the address
of the first frame on the stack. It must point within the range specified by register A 7
and Curs tackBase.

"This address is not a stack address"
The MR command can optionally take a parameter specifying where on the stack the
return address for the current procedure is located. This address must be even and
within the range specified by register A 7 and CurStackBase.

"The address on the stack is not a return address"

90

The MR command must know where the return address for the current procedure is
located on the stack, since it replaces this address with an internal MacsBug address.
MacsBug checks that the address it replaces is in fact a return address. A return address
is defined as an address immediately following a JSR, BSR, or A-trap instruction. (All
forms of JSR and BSR are recognized.)

Final draft

("Floating-point not allowed in expressions"
"64-bit registers not allowed in expressions"

All expressions are evaluated as unsigned 32-bit values; floating-point registers and
some MMU registers cannot be evaluated in this context.

"No blocks of this type found"
The HD command was instructed to display only blocks of a specific kind and none
were found.

"Address range must be entered before comparisons"
The CS command remembers a range of memory to checksum; subsequent CS
commands compute the checksum and compare it against the previous value. If no
address range has been previously specified, entering CS without parameters will return
this message.

"Low address must be less than or equal to high address"
The CS command requires an ordered address range.

"MMU not installed"
The TM command functions only if the system has a 68851 or 68030 installed. This
error also occurs if you try to display or set an individual MMU register.

"68881 not installed"
The TF command functions only if the system has a 68881 installed. This error also
occurs if you try to display or set an individual floating-point register.

"Macro expansion exceeds maximum command line length"
Macros are expanded in the command line buffer. This is a fixed-length buffer
determined by the width of the command line on the current display.

"The template contains an unrecognized basic type"
The field of the template currently being displayed is not a valid basic type; see the
description of the TMP command for a list of all possible types.

"Templates cannot expand more than 8 levels"
Template definitions can themselves contain template definitions, and so on. Expansion
is limited to eight levels. Since it's unlikely that a strucrure would contain this many
levels, this message may indicate a template definition that contains a recursive path.

"PC is not inside a procedure"
The":" character can be used to represent the address of the start of the procedure
displayed in the program counter window. If you enter":" and no symbol information
can be found for the program counter, this error message will be displayed.

"Zone pointer is bad"
The zone pointer for the current heap (SysZone, ApplZone, or user address) must be
even and in RAM. In addition, the bkLim field of the header must be even and in RAM,
and must point after the header.

Final draft 91

"Free master pointer list is bad"
Free master pointers in the heap are chained together, staning with the hFstFree field in
the zone header and terminated by a Nil.. pointer.

"BlkLim does not agree with heap length"
Walking through the heap block by block must terminate at the start of the trailer block,
as defined by the bl.kLim field of the zone header.

"Block length is bad"
The block header address plus the block length must be less than or equal to the trailer
block address. Also, the trailer block must be a fixed length.

"Non.relocatable block: Pointer to zone is bad"
Block headers of non.relocatable blocks must contain a pointer to the zone header.

"Relative handle is bad"
The relative handle in the header of a relocatable block must point to a master pointer.

"Master pointer does not point at a block"
The master pointer for a relocatable block must point at a block in the heap.

"Free bytes in heap do not match zone header"
The zcbFree field in the zone header must match the total size of all the free blocks in the
heap.

"Syntax error''
This is a "catch all" error message; it's used in cases where the error is obvious given the
context of the command. Possibilities include:

• An expression contains a value, an operator, but no second value.
• A nested expression does not have matching parentheses.
• An address qualifier other than . a, . w, or . L has been given.
• An illegal character is in the command line.
• The A TSS command does not include an address range.
• The format parameter for the SHOW command is other than L, W, or A.
• The F command does not have the correct number of parameters.
• The value being assigned to a floating·point register is illegal.
• A toggle command has been passed a parameter other than ON and OFF.
• The HD command qualifier is not valid.

92 Final draft

(

AppendixC

MacsBug Internals

Fino! draft 93

MacsBug uses as little of the system as possible. In addition, when MacsBug gets control.
it effectively halts the processor by disabling interrupts. This appendix gives details on the
MacsBug implementation.

Beginning with the 128K ROM. support for debuggers is provided. When a system error
or 6800) exception occurs, the ROM code examines the global variable MacJ mp to see if a
debugger is installed. The high-order byte of MacJmp is used to contain the following
information:

Bit Meaning
7 Set if debugger is running.
6 Set if debugger can handle system errors.
5 Set if debugger is installed.
4 Set if debugger can support the Extended Discipline utility.

If a debugger is installed, the register set is saved in the global variable SEVars, and a call
is made to the address in the low-order 3 bytes of MacJmp. When the debugger returns,
the register set is restored and execution returns at the address in the program counter.

While active, MacsBug installs a bus error handler to catch any illegal memory references.
MacsBug does not install an address error handler since it can check if addresses are even
before accessing them.

MacsBug itself forces two kinds of exceptions. The first is used in setting breakpoints.
MacsBug replaces the first word in an instruction with a TRAP #F instruction; when the
program reaches this point, an exception is generated. The second is used in tracing
instruction execution while single-stepping. MacsBug forces an exception by setting the
Trace bit of the status register before executing an instruction.

MacsBug installs its own trace exception handler whenever.

• At least one ROM breakpoint is set.
• A breakpoint was set at the PC when execution resumed. The instruction must be

executed before the breakpoint can be reinstalled.
• A step command is in progress.
• A step spy command is in progress.

The SO command steps over JSR and BSR instructions by executing the call with the Trace
bit set. replacing the return address with an address inside MacsBug and then proceeding
normally. Stepping over a trap call is done by copying the trap instruction into MacsBug
and proceeding from that point.

MacsBug installs its own A-trap exception handler whenever.

• An A-trap command is active.
• The Extended Discipline utility is enabled.
• Heap scrambling is enabled.
• It steps into a trap call.

Since interrupts are turned off, MacsBug gets keys by polling for a keyboard interrupt and
then calling the interrupt routine at Lvl IDT +8. MacsBug fields the event by temporarily
installing its own PostEvent handler.

94 l=inal draft

c ' '

MacsBug assumes the display on a Macintosh Plus or SE is at address $3FA700,
accomodating external monitors that change ScmBase. MacsBug always appears on the
internal display.

On a Macintosh II, MacsBug uses the first item in the gDevList as its display. The device
must suppon 1-bit mode, and the display is limited to 640 by 480 to conserve memory.

While swapping the user and MacsBug displays on multi-bit displays, MacsBug calls
SetMode and SetEntt'ies (using the Control trap) to set a bit depth of 1, and a
black-and-white color table.

Flnol draft 95

96 Final draft

(.. ·

•

Appendix D

Debugger and DebugStr

Final draft 97

This appendix shows how to declare and use the Debugger and DebugStr macros on a per
language basis.

Assembly language

Declaration

_Debugger

_DebugStr

OJ? WORD

OJ? WORD

Example calls

_Debugger

STRING PASCAL

SA9FF
SABFF

PEA •'Entered main loop•

_DebugStr

Pascal

Declaration

predefined in Che file Tool Traps. a
not: predefined - define yourself

ent:ers MacsBug and displays user brea.< r:iessa::;e

Asm directive to make sure to push a

Pascal string

push address of string on st:ack

ent:ers MacsBug and displays message

(Defined in OSintf.p (MJ?W version 2.0) or Types.p (MJ?W 3.0)}

PROCEDURE Debugger; INLINE SA9FF;

i?ROCEOURE DebugStr(st:r: str255l; INLINE SABFF;

Example calls

Debugger; (enters Macs8ug and displays user breai< :'.'.essa::;el

DebugStr (•Entered main loop') ; {Enters Macs Bug and displays message l

MPW C

Declaration

/*Defined in Strinqs.h (Ml?W version 2.0) or Types.h (Ml?W 3.0)*/

98 Final draft

(tinclude <strings. h> I• Requi :ed for c2pst: () •I

pascal void Debugger () e.xtern CxA9FF:
pascal void DebugStr (aStringl char •astring; extern CxABFF;

Example calls

Debugger(); /•enters MacsBug and displays· user b:eaic ~essage• I

DebuqStr ("-\pEntered main loop");
/•enters Macs Bug and displays message• I

c
Final draft 99

100 Final draft

(..... . ,
,.·

Appendix E

MacsBug 6.0 Highlights

Final draft 101

For those already familiar with MacsBug, this appendix summarizes the differences
between MacsBug version 5.5 and MacsBug 6.0.

Flow control
In MacsBug 5.5, the T command stepped through code, stepping over A-traps. MacsBug
6.0 steps over BSR and JSR instructions as well. The T command has been renamed SO
(Step Over) to more clearly indicate its function; Tis, however, still supported as an alias.
In addition, Command-T is provided as a shoncut.

The ST command, which traced through instructions until reaching a specifie.d address, has
been removed. The GT command now performs this function. When passed an address in
RAM, a breakpoint is set; when passed an address in ROM, GT traces through each
instruction until the given address is reached.

Breakpoints
The BRD command displays the breakpoint table. Although using the BR command
without parameters will still display the table, the BRD command was added to distinguish
between the two operations of setting and displaying breakpoints.

The CL command, while still supponed as an alias, has been replaced by the BRC
command for mnemonic consistency with the BRD command.

A-traps
The A-trap commands have undergone the most modification in version 6.0. Several
commands have been added, the existing commands have all been renamed for
consistency, and the parameters and operation of certain commands have changed.

The names all begin with AT (for A-trap), followed by additional letters indicating the
action, where B =Break, T =Trace, R =Record, P =Playback, HC =Heap Check, and
SS= Step Spy. Appending the letter A to the A TB, A TIIC, A TT, A TSS, and A TR
commands restricts the command's action to traps in the application heap. Note that this
means the current application heap at the time the trap command was entered.

102 Final draft

The old A-trap commands and the new commands that replace them are as follows:

Old command New command
AB ATB
BA ATBA
AT ATI
AA ATIA
AH A1HC
* A1HCA
AS ATSS
* ATSSA
AR A1R
* ATRA
AX ATC
* AID
* A1P
* DSC

The parameters for the ATB, ATHC, ATT, and ATSS commands have changed. The trap
ranges remain the same, except that MacsBug 6.0 adds support for multiple discontinuous
ranges. The address range parameters have been replaced by a conditional expression. For
instance, you can now enter ATB ttrsoispatch oo. W•6 to specify a break at the File
Manager trap HFSDispatch only when the low-order word of register DO (which contains
the routine selector) has the value 6 (meaning DirCreate). Conditional breaks allow more
flexibility, while still allowing the specification of an address range (for instance,
(addrl<=l?C) AND (l?C<•addr2>. In the same way, the DO parameters have been
removed, since the value of a register can be checked with an expression as well.

The old AX command cleared all A-trap actions; the new ATC command lets you clear one
or all A-trap actions.

The DSC command lets you tum the Extended Discipline utility on and off; this utility
(soon to be available from APDA) examines the parameters passed to, and the results of,
traps executed.

Disassembly
Two new commands let you selectively disassemble code. The IP command disassembles
half a page of code, centered around a specified address. The IR command is provided for
disassembling code until the end of a routine. Given an address, the IR command
disassembles until it reaches the end of the module.

When disassembling code, MacsBug 6.0 displays negative register offsets as signed
numbers. For instance, $FFF8(A5) is now -$0008(A5). Thus, to display this word with
the DM command, you would now type DM AS-8 instead of DM <FFE'8+A5.

Note: With this new display, the primary use for the"<" character as a sign extension
operator is gone. Since this usage of the symbol also conflicted with its usage as a "less
than" operator in expressions, it is no longer accepted for sign extension.

Flnal draft 103

Disassembled trap names now decode the Sys, Immed, and AutoPop bits.

Heaps
The HS command has been improved. In MacsBug 5.5, this command called the
CompactMem routine to scramble the heap. MacsBug 6.0 uses a custom scrambling
routine. The only blocks not moved by this command are single, relocatable blocks
between two stationary blocks.

The HZ command displays all heap zones; this command is useful when you 're running
under MultiFinder. The HZ command will not find heaps created on stacks or in the
system heap.

Symbols
The RN command lets you specify a file reference number in order to limit the search for
symbols to a particular resource file. This command is especially useful when debugging
MPW tools.

Stack
The SC command has been renamed SC6 to differentiate it from the new SC7 command.
SC is still supponed as an alias for SC6.

The SC7 command shows all possible return addresses on the stack, with their frames.

Memory
The OW~ DL, and DP commands display respectively a word, long word, and page (128
bytes) of memory. The SW and SL commands let you set words and long words in
memory.

The TMP command displays the names of all templates currently loaded. See the
description of the TMP command in Chapter 3 for details on creating templates.

104 Flnal draft

C\. !
/

Registers
In MacsBug 5.5, the address and data registers were referred to as RAn and RDn, and the
floating-point control registers were specified by Fl, FC, and FS. MacsBug 6.0 uses the
Motorola names for all registers. For instance, data register 3 is now specified as 03
(instead of RD3) and the floating-point control register is specified as FPCR (instead of
FC). A list of Motorola register names is given in Chapter 3 under "Registers."

Note: The use of An and Dn for registers presents a conflict when you want to specify the
hexadecimal numbers AO through A 7 and DO through D7; in such cases, express· the
number explicitly as $An or $Dn. (Since registers are used much more frequently than
these 16 hexadecimal numbers, the designers opted for this ttadeoff.)

The contents of the CPU registers are always displayed in the starus region of the MacsBug
6.0 display. The 1D command, which displays the CPU registers in the command region,
remains useful for comparing register contents between commands. ·nie 68881 registers,
not shown in the starus region, can still be displayed with the 1F command. The new TM
command displays the contents of the MMU registers common to the 68851 and 68030.

Macros
Macros are a new fearure of MacsBug 6.0. Macros are simple text string substitutions.
They're expanded before the command line is executed, and can thus contain anything you
can type in a command line. You can use macros to create command name aliases,
reference global variables, and name common expressions.

Macros can be created on the fly with the MC command or they can be included in a
resource or type 'mxbm' that's loaded at boot time. MacsBug reserves resource IDs 100
and 101 for its standard macros, which include macros for several hundred common global
variables. The file Macros.r, included on the MacsBug disk, can be used as a model for
building your own 'mxbm' resources.

Two macro names have been predefined by MacsBug for customizing the debugging
environment If there are cenain commands you want executed the first time MacsBug is
entered (such as SHOW, SW AP, LOG, SX, HX, and DX), define them as a macro called
FirstTime in an 'mxbm' resource. (Remember that multiple commands must be separated
by semicolons.) When MacsBug is first invoked, it loads the specified commands into the
command line and executes them. This lets you configure MacsBug using your preferred
settings. A second macro, called EveryTime, can be defined in a resource file or on the fly
with the MC command. The commands specified by this macro will be executed each time
MacsBug is invoked.

Final draft 105

The MCD command displays a table listing all macros defined, including both those loaded
at boot time and those defined with the MC command. The MCC command clears one or \~.
all macros.

Miscellaneous ·-·
Warning: In the past, a popular way to generate an exception was to add a line such as

DC.W $FECE ; generate a line 1111 exception

at the point in your program where you wanted MacsBug to get control. (Any value $FOOO
through $FFFF could have been used.) This method should no longer be used. as these
instructions have been reserved by Motorola for use in their coprocessor interface for the
68020 microprocessor. ·

Command-G. S, and Tare provided as shortcuts for executing the G, S, and SO
commands respectively.

The F command now takes different parameters. The search range is specified by a starting
address and the number of bytes to be searched. (An ending address can no longer be
used.) In addition, a mask is no longer specified. The F command can be repeated for the
next n bytes by simply pressing Return.

The CV command, used to evaluate expressions, has been removed. MacsBug 6.0
evaluates anything on a command line that does not st.an with a command name.

The HELP command provides information on MacsBug commands. You can specify a
single command or a group of commands, or simply browse through the entire HELP file.

The LOG command lets you send MacsBug output to a file or to an Image Writer printer via
the serial port.

Using the RS command has the same effect as selecting the Restan item from the Finder.

The SHOW command displays a specified area of memory in the status region of the
MacsBug display.

The SW AP command lets you control the frequency of display swapping between
MacsBug and the current application, depending on whether the system is configured for a
single screen or for multiple screens.

MacsBug 6.0 adds the symbol """ as a postfix indirection operator.

The 1P command has been replaced by a macro named thePort; this macro is defined as DM
ASAA WindowRecord.

As an overview, a table showing the old commands that have been replaced, as well as the
new commands, is given below.

106 Final draft

<:··

C'
'

Old command New command or functionality

M
AB
AH
AR
AS
AT
AX
BA
a..
CV
SC
T
ST
TP
?

ATIA
ATB
A1HC
A1R
ATSS
ATI
ATC
ATBA
BRC
command line expression evaluation
SC6
so
GT
thePort macro
HELP

AID
ATiiCA
ATP
A1RA
ATSSA
BRD
DL
DP
ow
DSC
IP
IR
HZ
LOO
MC
MCC
MCD
RN
RS
SC7

SHOW
SWAP
SL
SW
1M
TMP

Display A-trap table
A-crap heap check (application heap)
Playback A-craps
A-crap record (application heap)
A-crap step spy (application heap)
Display breakpoint table
Display long word
Display 128 bytes
Display word
Toggle Discipline utility
Disassemble half-page centered around address
Disassemble until routine ends
List heaps
Send output to file or Image Writer
Define macro
Clear macro(s)
Display macros
Resource file number filter for symbols
Restart
Give procedure's possible calling chain and
return addresses
Display address in sidebar
Toggle screen display
Set long word
Set word
Display 68851 or 68030 MMU registers
List templates

Flnal draft 107

108 Final draft

Appendix F

Did You Know ... ?

c

()

Final draft 109

This appendix contains tips, shortcuts, and interesting facts about MacsBug. Did you
know that. ..

• Holding down the Control key forces a break into MacsBug immediately after it's
loaded. This feature works only on Macintosh computers equipped with the Apple
Desktop Bus™ (ADB) interface; the Control key was chosen since it's found only on
ADB machines. On machines without ADB, the keyboard is loaded after MacsBug, so
it make! no sense to break into MacsBug.

• The DebugStt routine with an argument of •; HC; G • is a useful way to determine where
in your program the heap may become corrupted. The HC command performs a heap
check; if the heap is corrupted, MacsBug stops and reports the error. If the heap is in
order, the G command is executed and program execution resumes. Sprinkling such
calls to DebugStr throughout your program lets you hone in on memory culprits.

• A related technique is to use the A TIIC command, which checks the heap prior co each
trap call. Using this technique means that you don't need to modify your program, but
it does have the disadvantage that you can't choose the frequency and location of the
checks. ·

• In the same way that passing • ; HC; G • with DebugStr checks the heap, passing
• ;CS;G' checksums a block of memory. If the block has changed, MacsBug takes
over; otherwise program execution continues. Remember that the range must be set up
with an initial CS command before subsequent CS commands can compare the ·
checksum.

• You can create a custom A-trap trace by executing the A TB command with an
associated action. For instance, you can specify the commands •;TD; G • for execution
upon break. Whereas the A TI command shows only select registers, this action
displays all registers. You could further customize the trace by displaying memory
based on the content of panicular registers.

110 Final draft

(

(:

Appendix G

Procedure Definition

Final draft 111

/
Whenever possible, MacsBug accepts and returns address as procedure names and offsets. '"-..
Names are found by scanning relocatable heap blocks for valid procedure definitions. A
procedure definition in the simplest case consists of a return instruction followed by the
procedure's name.

A procedure is defined as:

[LIN,K A6]
Procedure code
RTS or JMP(AO) or RID
procedure name
procedure constants

The LINK A6 instruction is optional; if missing, the stan of the procedure is assumed to be
immediately after the preceding procedure, or at the stan of the heap block.

The procedure name can be a fixed length of 8 or 16 bytes, or of variable length. Valid
characters for procedure names are "a"-"z", "A"-"Z", "0"-"9", "_", "%",".",and space.
The space character is allowed only to pad fixed-length names to the maximum length.

With fixed-length format, the first byte is in the range $20 through $7F. The high-order bit
may or may not be set The high-order bit of the second byte is set for 16-character names,
clear for 8-character names. Fixed-length 16-character names are used in object Pascal to
show class.method names instead of procedure names. The method name is contained in · · ,
the first 8 bytes and the class name is in the second 8 bytes. MacsBug swaps the order and
inserts the period before displaying the name.

With variable-length format, the first byte is in the range $80 to $9F. Stripping the high­
order bit produces a length in the range $00 through $ lF. If the length is 0, the next byte
contains the actual length, in the range $01 through $FF. Data after the name starts on a
word boundary. Compilers can place a procedure's constant data immediately after the
procedure in memory. The fJISt word after the name specifies how many bytes of constant
data are present. If there are no constants, a length of 0 must be given.

Examples of valid assembly-language procedure definitions are given below.

; Variable lenqth name with no constant data.

l?rocl PROC
LINK A6, tO
ONLK A6
RTS
DC.B $8C, 'VariableName•
DC.W $0000
ENDP

; Fixed a~character name.

l?roc2 PROC
LINK A6, to
ONLK A6
RTS
DC.B sao + , F', 'ixed
ENDP

112 Flnol draft

Fixed 16-character name.

l?roc3 l?ROC
LINK A6, to
UNLK A6
RTS
DC.B sao + 'M', sao + •e•, 'thod Class
ENDP

~lnnl rlrnft 11 "l

114 Final draft

(~·

C>

Cast of Characters

•

@

&

character 53, 54
dot address 13, 17
operator 17
operator 17
operator 17
operator 17

() operator 17
character 53, 54
operator 17
operator 17
operator 17
operator 17
operator 17
operator 17
operator 17
operator 17
operator 17, 65
operator 65
operator 17
operator 17
operator 17
operator 17

•

I
<
<•
<>

..
>
>•
/\

A

A-trap call 9, 10
address indirection 17
addresses 8
AND 17
application heap 8, 20, 48, 50
AppIZone 48
ATB (A-Trap Break) command 10,

18
ATC (A-Trap Qe:ar) command 19
AID (A-Trap Display) comm2Ild 20
ATHC (A-Trap Heap Oieck)

command 12, 21 ·
ATP (A-Trap Playback) command

9, 22
ATR (A-Trap Record) command 9,

23
ATSS (A-Trap Step Spy) command

11, 24
ATT (A-Trap Trace) command 9,

25

Index

B

BlkLim 44
blocks 45

OV (Display Version) command 36
OW (Display Word) command 12, 37
DX (Debugger Exchange)

block length 44
boot time 6
BR (Breakpoint) command 11, 16, E

26

command 11, 38

branches 10 EA (Exit to Application) command
BRC (Breakpoint Clear) command 8, 39

11, 27 editing keys 7
BRO (Bre:akpoint Display) command ellipsis ... 54, 55

11, 28 ES (Exit to Shell) command 8, 40
breakpoint 11, 26 expressions 16

Extended Disciplinen1 utility 12, 35

c

C language 2
calling history 9, 68, 69
case: upper and lower vii
checksum 11, 29, 75
code segments 9
command line 7
command syntax 16
conditional statements 10
corrupting the heap 12, 44
CPU registers 8
CS (Checksum) command 12, 29
CurMap64

D

F

F (Find) command 13, 41
fatal system errors 3, 7
Finder"" 6
FKEY resource 7
floating-point register 8
free blocks 45
free bytes in heap 44
free master pointer 44

G

G (Go) command 8, 42
GetNextEvent 19
glue code 11

OB (Display Byte) command 12, 30 GT (Go Till) command 1.0, 28, 43
Debugger (SA9FF) 7, 11
DebugStr (SABFF) 11
dereferencing a handle 12
OH (Display Hexadecimal)

command 31
H

OirCre:ate routine 10 HC (Heap Check) command 12, 44
displaying memory 12, 13 HD (Heap Display) command 12,
DL (Display Long) command 12, 32 4 5
OM (Di.splay Memory) command 12, he:ap 8, l2

13, 33 heap error 13, 44
dot address 13, 17 heap scrambling 12, 48
OP (Display Page? ~~mand 12, 34 HELP (Help) command 47
DSC (Extended Disc1phne) help information 7

command 12, 35 HFSDispatch trap 10

Index (Final draft) 115

high-level language 2
HS (Heap Scramble) command t2,

48
HT (Heap Totals) command 12, 49
HX (Heap Exchange) command 8,

mxwt resource 82
mxbr resource 23

50 N
HZ (Heap Zones) command 8, 51

ID (Disassemble One
Line)command 13, 52

IL (Disassemble From Address)
command 13, 53

Inside Macintosh, vi
interrupt switch 3, 6
IP (Disassemble Around

Address)command 9, 13, 54
IR (Disassemble Until End of

Procedure) command 8, 55

L

LaserWrite~ driver 56
leaving MacsBug 8
LINK A6 procedure prolog 9 ·
locked blocks 45
LOG (Log to a printer on file)

command 10, 56
log files 10

M

NewHandle 12
NewPtr 12
NMI exception 6
nonrelocatable block 44, 45
NOT 17
notation convention vi
numbers 16

0

operators 17
OR 17
order of precedence 17
output region 7

p

parameters 16
Pascal 2
pausing execution 7
PC (program counter) region 7, 9
postfix 17
prefix 17
procedure names 8
purgeable blocks 45

Macintosh Programmer's Workshop ~
(MPWTV)3

Macintosh XL 2 RB (Reboot) command 8, 62
macros 9 ReallocHandle 12
Macros.r 57 reboot 8
MacsBug installed message 6 register 16, 63
master pointer 44 register A7 8
MC (Macro) command 9, 57 relative handle 44
MC68851 Memory Management Unit relaunch 8

<MMlJ) 2 relocatable blocks 45
MC68881 floating-point coprocessor ResEdit 3, 82

2 resource blocks 45
MCC (Macro Clear) command 9, 59 resource map error 13
MCD (Macro Display) command 9, restart 8

60 resuming execution 7
memory changes 11 return addre.sse.s 9

s

S (Step) command 10, 66
SB (Set Byte) command 12, 67
SC6 (Stack Crawl (A6)) command 9,

68
SC7 command 9
SD (Symbol Display) command 8,

70
SetHandleSize 12
SetPtrSize 12
setting memory 13
SHOW (Show) command 8, 71
shutdown 6
64K ROMs 2
680oo exception 3, 9
SL (Set Long) command 12, 72
SM (Set Memory) command 12, 73
SO (Step Over) command 10, 74
SS (Step Spy) command 11, 75
stack 9
stack pointer 8
status region 8
step 10
strings 16
SW (Set Word) command 12, 76
SW AP (Swap Frequency) command

77
SX (Symbol Exchange) command

9, 78
Symbolic Application Debugging

Environment (SADE™) 2
symbols 8, 16
System Error Handler 3
system error ID 9
system heap 20
system software 2
system startup 6

T

TD (Total Display) command 8, i9
templates 12
TF (Total Floating-Point) 8
TM (Total MMU) command 8, 79, 81
TMP (Template) command 12, 82
trailer block 44 ·
trap history 9
trap names 8
traps 16

M.\1U register 8, 74 RN (Resource Number) command U
MOD 17 9
Motorola 68(X)() 2 RN-Set Reference Number
MPW Pascal 56, 64, 82 command 64
MR (Magic Return) command 10, 61 RS (Restart) command 8, 65
MultiFinder 2, 8, 56 RTS ($4E75) 7
multiple files 9, 64
multiple screens 7
mxbm resource 57

116 Index (Final draft)

unexpected error condition 8
User break at <addr> 11

c

v

Values 16

w

WH (Where) command 8, 13, 84

x

XOR 17

z

zcbFree field 44
zone pointer 44

Index (Final draft) 117

