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This is the first of a series of technical notes on the C++ language. Because there is as yet only one 
book on the language, TM C++ Programming Language by Bjarne Stroustrup, and many sections of the 
book have been written in a difficult to follow style, I felt that it might be of use to write some notes on 
various aspects of the language with which I initially had difficulty. By the way, the cited book will be 
refeITed to here and henceforth as The Book. 

It has often been said that the ultimate definition of a programming language is the official compiler. 
That is, the semantics of a piece of source code is really understood by inspecting the output of the 
compiler. In the case of the AT&T C++ compiler, this task is made easier by the fact that this output is C 
code. I cannot too strongly recommend to readers that they try to clear up linguistic obscurities by con­
sttucting the simplest possible test cases, running them through cfront, and looking at the output. One 
warning: do not try this with an inliM function. 

This fust note deals with references. I anticipate a minimum of two more notes, to be published 
when I feel I understand the subjects sufticiendy. They will respectively cover constructors and destn1etors, 
with emphasis on their storage management aspects, and overloaded opezators, with emphasis on the dis­
tinction between defining them as TMmbers or friends. 

I had a little difficulty understanding why references had been introduced into C++. They are an 
exception to the symmetry of the terrible C notation for declarations, in which one can at least say that 
operators such as •, Q,_311d D have the same meaning when used in a declaration as when used in an expres­
sion. That is, 

char *s; 
char* t; 
char c • *t; 

all use the * to denote dereferencing a pointer. The first of the above three lines should literally be read: "If 
you were to dereferences, you would get a char." It is ttue that the compiler does not care where the 
white space is, and Bjame prefers the style of the second line, which he likes to state as "t is a pointer to 
char," as if char* represented the type "pointer to char." This is very informal. In fact he cautions 
that if you wril8 ._ 

chait"* s,t,u; 

only the first~ dlele will be a poinrer to char; the second two will be declared as char. 

A reference uses the & symbol. But int& means reference to int, &x means address of x, and 
neither of 

int& x; 
int &x; 

can be interpreted as "If you were to take the address of x,. you would get an int." 
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I now whet the reader's interest by making a promise. By the end of this note, I will have illustrated 
that references make it possible for the following to be perfectly legal C++: 

int i; 
f(i) - 10; 

I introduce references by exploring to the point of tediousness what we really mean when we say 
int i. The symbol i is regarded as a synonym for the address, to be determined at some fuwre time, of a 
bucket that can hold an int. The binding of i to this hypothetical and not yet known address occurs at 
declaration time and is permanent for the scope of i. Every subsequent use of i in the code implies an 
automatic dereferencing of i. That is, a use of it on the right side of an assignment means "fetch from the 
address it represents," and a use of it on the left side means "store into that address." This behavior is so 
intuitive that most language definitions do not formalize it; Algol 68 is a notable exception. However, it 
must be kept in mind if references are to be understood. 

Now, to introduce the concept 

int i; 
int& r • i; 

means that r is declared to be a reference to int, and initialized to be equivalent to i. That is, r is another 
synonym for the same address as is represented by i. Like any other variable identifier, it is automatically 
dereferenced as described in the paragraph above. Therefore, any subsequent use of r in the left or right side 
of an assignment means, respectively, a store to or fetch from i. So 

r • 2; II puts 2 into i 
int j • r II now puts 2 into j by fetching it from i, and 
r++; II increments i. Finally, 

II &r is a pointer to (the dereferenced) r, 
II that is, it is identical to &i. 

Note that initialization of the reference variable is mandatory. It is illegal to write 

int& r; 

On page 56 of The Book is inttoduced a complication. What would be the meaning of 

int& sillyref • 5; 

Bjame gives a C equivalent as 

intip. *sillyrefp; 
in~temp 

temp - 5; 
sillyrefp • &temp; 

that is, a temporary is al1ocared to hold the literal. and the reference variable is initialized to the address of 
this temporary. If any reader can find a use for this, please let me know. My theory is that since an 
initializer is defined grammatically to be a constant expression, the consttuct is legal and it was easier to 
define hannless semantics for it than to figure out how to disallow iL 
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The next tQpic, an interesting one, is the use of references as formal parameters for functions. In The 
Book it is stated in several places that the semantics of parameter passing is the same as that of initial­
ization. In one place, The Book goes further and states that the same semantics also applies to the return­
ing of a value by a function. The Book is clearly distinguishing the above operations from assignment. 
These are the kind of statements that are prone to go into one eye and out the other. After all, it is hard to 
discern a semantic difference between 

int i .. 7; 

int i; 
i = 7; 

When explicitly defining initialization and assignment for classes, the distinctions between the two may be 
subtle. However, as has already been shown, initialization of a reference is a permanent setting of the 
reference to the address of the initializer, and assignment to a reference consists of assigning into the 
bucket denoted by that address. This distinction is not subtle in the leasL Therefore, if a formal parameter 
of a function is a reference, then at call time, that parameter is permanently set (permanently for the dura­
tion of execution of the function, of course) to the address of the corresponding actual parameter. In the 
code of the function, any use of the formal parameter causes an automatic dereferencing, so that the code can 
directly fetch from and store into the actual parameter. Let us compare to C. If we are so evil as to wish p 
to be an output parameter of function f, we must write, for example: 

void f(int *p) 
{ 

*p = 17; 

and call the function by 

int i; 
f (&i); 

Note how this works. The address of i is passed as a value parameter, and inside of the function an 
assignment is made through that address by use of the dereferencing operator. In C++, an equivalent func­
tion could be written: 

and called by 

void f(int& p) 
{ 

int i; 
f(if._; 

'i 

p - 17; 

Any Pascal programmer will immediately see that this is equivalent to making p a var parameter. 
Despite this being routine usage in many languages, B jame is nervous about using it, and recommends 

. against iL His argument is that it makes code hard to read, because one cannot tell from the formal 
parameter prototype alone whedler pis an input parameter, an output parameter, or both. So he recom­
mends that output from functions be obtained only from return values or explicit pointers, as it would be 
done in C. In fact, if a reference is used only to conserve storage, as when passing a large array as an input 
parameter, he recommends making it clear that die function will not write to the array by writing the func­
tion header as 

function(const arraytype& arg), 

indicating that the function regards arg as a reference to a read-only variable. 
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One mighl wonder, in view of the recommendations just quoted, why references were introduced into 

C++. One immediate answer is in their application to overloaded operators. If the + operator is to be 
extended to apply to members of a newly defined class, say matrix, one wants to be able to write 

a - b + c; 

where all three of the above are instances of matrix. In order to be able to do this and yet avoid physically 
copying the arguments, the operator definition, which is that of a function, must have matrix& as the 
typeS of its arguments and return value. The declaration would be: 

friend matrix operator+(matrix&, matrix&); 

If the language did not have references, it would be necessary to write the very ugly 

a "" &b + &c; 

This topic will be discussed further in the forthcoming Technical Note on operator overloading. 

I am now ready to keep the promise made earlier in this Note. I will show you how to define a func­
tion set that can be used as follows: 

main() 
{ 

int i; 

set(i) • 10; 

where the effect of the function call is the same as the assignment 

i - 10; 

The function definition is 

int& set(int& p) 
{ 

return p; · 

I do not claim that this function is useful. It was chosen as the simplest function that illustrates the 
poinL For a useful example, see pages 57-58 of The Book. 

Here is a sanitized version of the C code generated by the C++ compiler for the example above. I 
have changed only the names. not. as the phrase goes. "to protect the innocent." but to increase clarity: 

int{°*set(int *ptr) 
{ 

main() 
{ 

return ptr; 

int i; 

(*set ( (int *) (&i) ) ) • 10; 
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1. Introduction 

The subject matter of this note is the pair of special functions called constructors and destructors­
why they exist, how they are represented in C code, and some of the arcana of using them. 

Section 2 begins with a discussion of why they were invented in the first place (my opinion, of 
course), and some of the details regarding the implicit calls that are made to them. An example is presented 
of the C code produced by a small C++ program that has. cJasses with constructors and destructors. As was 
done in the previous Technical Note, the simplest examples I can devise are used to illustrate the mecha­
nisms. That these examples may be useless is irrelevant. . This is in conttast to the style in The Book, 
where the examples in general do something useful.> but anreonsequendy harder to read. In fact, now that l 
have been working with the source to tbe C++ campiler~ lnotiee that some of the examples in The Book 
look strangely familiar and realize that they have been abstracted from the compiler. The reader who is 
already familiar with the basic concept$ lllay '\flith to skip secQgn 2 • 

. ." . ":·· <:· .···· .. ::::::::::::.::·:\: 
Section 3 discusses the passing of parallletetl tO t~j)Js for class objects that "ride along" with 

the object being allocated. There are tWO· cases: ·a derived~wliose base class has a constructor requiring 
parameters, and a class containing at least one membet tield'i:batiiS:i.tself a class having a constructor that 
requires parameters. An example is givenof~pallsll!gdn the case of multiple inheritance, as 
supported in Release 2.0. · · ·. · · · · · ·. ·. · ··· · · ·.· .. · · 

Section 4 deals with the techniques for writing a constructor/destructor pair in which one does one's 
own storage management-a useful technique when generating and releasing large numbers of small 
objects. Because a change in the facilities for doing this has been implemented in Release 2.0, both the old 
and new techniques are illustrared. 

Please note that AT&T reqmres that our usage of Release 2~0 be. kept confidential. Therefore, this 
Technical Note has been classified Apple Confidential. .· · 

· .. ·.::'.: ·-.· -: ·.· :~~c- :-.·:-·:· 
2. Why and ii&. : . 

The purpose of a constructor can be stated as selective initialization of fields of a class object. This 
may include sange allocation if any of these fields are pointers to areas requiring allocation. The purpose 
of a destructor can be even more glibly stated as that of undoing, when necessary, whatever was done by the 
corresponding constructor. This usually means storage deallocation. 

Let us look at a simple example: 

struct silly { 
int x; 
int y; 

} simplestruct = { 1, 2 }; 
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Well. the structure has been declared, and fully initialized. So what more might we need? In the first place, 
if you try this example on any current release of C++ from AT&T and if sirnplestruct is an automatic 
variable, you will get the diagnostic: "Sorry, not implemented." Secondly, suppose the structure had, say, 
twenty fields and you only wished to initialize one or two of them that are in the middle. You would have 
to write an unnecessarily long initializer. Finally, if the structure becomes a class and the data fields are in 
the private part, then direct assignment to them is forbidden, and you would be forced to invent a (public) 
member function that does the initialization for you. That is all that a constructor is. It is a function that 
has the same name as the class or structure name and in the case of a class is declared as a public member 
function. There is a syntactic requirement that no return type be given in its declaration and definition. If. 
as is often the case, it is a ttivially simple function, it is useful to write its definition at the point of decla­
ration, which makes it compile as an in-lint function. The magic thing ab.out a constructor is that it is 
called automatically at the point in execution at which storage for the created object is to be allocated. This 
will be explained further after the next example. Almost everything which has been said about constructors 
applies also to clestructors; The syntactic differences are that the name of a destructor is the class name 
p~ed by the symbol "-" and that a destructor must be parameterless. A destructor is automatically called 
at the point in execution at which the storage for the object is to be cleallocated. 

Let us now look at an example which illustrates all of the simple cases: a structure that has neither a 
constructor or destructor, one that has both, and instances of each created respectively as automatic variables 
and via dynamic allocation. 

struct a 
int x; 

} ; 

struct b 

} ; 

int y; 
b (int); 
-b (); 

b: : b (int yy) 
{ 

y - yy; 

it could have been 
the generated C code would 

hard to read. 

b: :-b() {} II Obviously, the same comment applies to 
II this empty function. 

rnainC )0 

{ 
·a obja;' 
b objb(S); 

._. a* aptr; 
~ b* bptr; 

II This i.$ shorthand for: b objb • b(S); 

aptr • new a; 
bpt r • new b ( 6) ; 
delete aptr; 
delete bptr; 
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Several observations should be made about this example before displaying the C code generated from it. 
The in-line fonn of the declaration for the constructor would read: 

b(intyy) {y•yy;} 

The notation b ( 5 ) , when used as a tenn in an expression, as in the comment opposite b obj b ( s) , 
represents a literal which is an instance of class b, with its internal variable initialized to the value 5. The 
destructor is written as a null function, because the objective here is to illustrate some implicit actions of 
destructors. Of course, a programmer is free to write any code he wishes in a constructor or destructor; it 
does not even have to be relevant. In fact, when studying this business, I was prone to write destructors 
whose entire body was print£ ("destructor called now\n"); ! To end on a more realistic 
note, a destructor is useful only to delete objects which were dynamically allocated by code within the body 
of a ~orresponding constructor. 

The following C code corresponds to the C++ example just given. It has been edited to remove irrel­
evant material, to make simplifications and clarifications without changing the semantics, and to use the 
same identifiers as in the original source instead of the encoded identifiers produced by cfront. 

struct a { 
int x; 

} ; 

struct b { 
int y; 

} ; 

extern void *_new(J; l* library function */ 
l* that calls malloc () *I 

extern void _delete(}; /* iibt'a.:ry function *I 
I* that calls free () *I 

struct b *b constructor(this, yy) 
struct b *this; 
int yy; 
{ 

if (this .... 0-) 

this• (struct b *):....new( (long) sizeof(structb)); 
thb->y<• yy; 
return this ; 

,.. . 
void b destructor(this, free ) 
struct-b *this; 
int free; 
{ 

if (this) 
if (free) 

_delete( (void*) this); 

int main () 
{ 

struct a obja; 
struct b objb; 
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struct a *aptr; 
struct b bptr; 

b constructor(&objb, 5); 
aptr = (struct a*) new( (long) sizeof (struct a)); 
bptr - (struct b *)b constructor( (struct b *) O, 6); 
_delete((void *) apt~) 
b destructor(bptr, 1) ; 
b=destructor(&objb, (int) 0); 

The above code tells us a number of things about constructors and destructors. We see that when an 
object of a class or structure that has a constructor is allocated by declaration, there is a call of the construc­
tor prior to any other code, and the (implicit) first parameter of the constructor is the address of the allocated 
objest We also see that although a constructor returns a pointer to its class, in this case the return value is 
discarded. We next see that when an object is allocated by use in the C++ source of the new operator, the 
constructor is called with the first parameter being zero, and the constructor returns the pointer to the allo­
cated object. Compare this to the case of a class/structure without a constructor, where the effect of the 
new operator is to generate a call to the _new () function. Next, looking at the code of the constructor 
itself, we see that prior to the execution of any code wriuen by the user, it has a conditional call of the 

new<) function, this call taking place if and only if the first parameter is zero. Some similar facts 
emerge about destructors. A destructor is called implicitly when an object that was allocated by declaration 
goes out of scope. In this case its second parameter is zero. Ifa dynamically allocated object is released by 
use of the C++ free operator, the destructor is called with the: second parameter having the value 1. In 
both cases, the first parameter is a pointer to the objct. No\l!t'Oooking at the code of the destructor itself, 
we see that it has a call to the delete 0 .Junction that is conditioned on both parameters being non-zero. 
That it requires the first parameter to be non-zero is: rilel'Cly an inhibition against "destructing" a null object. 
This does not protect programmers panicularl)'.becausethet'eis nothing to keep them from making a 
fatally destructive modification of a pointer to an object prior the ~tion that invokes the destructor. 

The code that follows is what Release 2.0 of cfront actually tbnerates. By comparing to the previ­
ously shown code, one can see that identifiers exceptf6r SU'llcWte or class names have been extended, and 
that tricky names have been invented for co~ desiJ'uctors, and the allocation and deallocation func­
tions. Also, there appears to be a redundant test of_Othis in the destructor code (reference to line 16). 
In actuality, if the destructor had a body, the the first test would determine whether the body is to be exe­
cuted (don't do anything if the pointer is zero), and the second test would be relevant if the pointer was not 
zero to start with, but was zeroed by the body itself (don't delete via a zero pointer). 

There is one majc:>r point illusttated by this code which requires explanation. At the start of the defi­
nition of the main program (reference to line 19). thereis an extra 4' (" before the declarations. and this is 
preceded by a call to a filnctioft calfed _ma in ( h This. all has to dO wiih what are called in the trade static 
constructors. As was already seen.. if an. object 1s ·allocated by declaration, its constructor must be called 
before any further code is executed. TbiS implies that if the object is static; that is its corpus is not on the 
stack, the Constrgttor must be called before any code in its scope can be executed. The way this has been 
handled is to anange fdlF1he call of all such consttuctors before any code whatsoever is executed. The func­
tion _main () conraidi, as pointas to fimctions, a list all these constructors imbedded in a/or loop. Thus 
executing this loop will call each such constructor once. The way in which cfront builds the contents of 
_main () will not be discussed here other than to say that AT&T has provided two techniques, one of 
them machine independent but time consuming (compile time). We have implemented our own machine 
dependent technique. . 
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tline 1 "constrl.c" 

/* <<cfront 2.0 (beta) 12/15/87>> */ 

tline l "constrl.c" 
void* vec new (); 
#line 1 "constrl.c" 
void _vec_delete (); 
typedef int ( *_vptp) (); 

tline l "constrl.c" 
struct indirect { /*sizeof indirect .... 2 */ 
short indirect_dumm.y_Sindirect 
} ; 
struct b { /* sizeof b """" 4 */ 

#line 6 "constrl.c" 
int y_lb 
} ; 

#line 9 "constrl. c" . . ..... 
extern void *_nw rt Or 

!!!~~n9 v:~~nst~ . .;~~ ii~ / . 
:~;~~t l~ :_c_o~~~~:· ;2~~~i~[ -~~ayy l 
tline 11 "constrl,;¢, .. 
struct b * Othis ; .• > 
int Oyy ; 

tline 12 "constrl.c" 
{ if ( Othis •• 0 ) Othis • (struct b *)_nw_Fl ( (long 
) (sizeof (struct b))) ; 
_Othis -> y_lb "" _Oyy ; 
return _Othis r 

... ·. l 
··' 

tline 16 "constrl. c" 
void dt lbFv (_Othis , 
fl~el6 "Constrl.c" 
st~ct b *_Othis ; 

tline 16 "constrl.c" 
int 0 free ; 

0 free 
-:··~ 

{ if7<° -Othis )if (_Othis )if (_O_free _dl_FPv ( (void 
*)_Othis ) ; 
} 

struct a { /* sizeof a •• 4 */ 

tline 2 "constrl.c" 
int x_la ; 
} ; 
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tline 19 
int main 
tline 20 
{ 

tline 21 
struct a 
struct b 
struct a 
struct b 

"constrl.c" 
() { _main() ; 
"constrl.c" 

"constrl.c" 
lobja ; 

=lobjb ; 
*_laptr 
*_lbptr ; 

tline 22 "constrl.c" 
_ct_lbFi ( & _lobjb , 5 ) ; 
#line 26 "constrl.c" 
_laptr - (((struct a *)_nw_Fl 
))) )); 

_lbptr - (struct b *)_ct_lbFi 
_dl_FPv ( (void *)_laptr ) 
_dt_lbFv ( _lbptr , 1) ; 
_dt_lbFv ( & _lobjb , (int )0 

} ; 

#line 30 "constri.c~ 

I* the end */ 

3. Further parameter passing 
..... '' ..... '. 

(long ) (sizeof (struct a 

(struct b *)0 , 6 ) ; 

There is another way in which parameters: maybe ~fucimstructors, a mechanism described in the 
syntax as a base-initializer. Two circumstance.freqUire th~ ~of this mechanism. The first is that of a 
class member which is itself a class that contains aoonstnicilit/ The (mandatory) constructor for the outer 
class contains as part of its definition a parameter list for the member's constructor. The second is that of a 
base class which has a constructor. A constructor is mandatory for any derived class, and the latter contains 
as part of its definition a parameter list for the base's construcur. 

Here is an example of the first case: 

clasf:I inner A 
int yf 

public: . . 
iririer(int); 

)}; t" 
class outer { 

int x; 
inner aninner; 
inner anotherinner; 

putlic: 
outer (int) ; 

} ; 

outer::outer(int xx) 
x = xx; 

anotherinner(xx+l), aninner(xx-1) { 
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inner::inner(int yy) { 
y .. yy; 

The class outer has two fields that are instances of the class inner. The new material between 
outer: : outer (int xx) and the { are respectively parameter values for the constructors that initialize 
the instances another inner and aninner of the class inner. It is suggested that the reader add to 
the above example a function that declares an instance of outer and compile the example. This can most 
simple be done by executing something like: 

cfront < input.c > output 

By now, the reader should be able to make sense of the generated C code. This exercise will show that the 
constructor for outer actually calls the constructors for the two instances of inner before proceeding 
with .its own body. If destructors had been defined for the classes in the example, they would be called, on 
exit, in just the opposite order from that in which the constructors were called, that is, the destructor for 
outer would execute its explicit body before calling the desttuctors for the instances of inner. 

Here, now, is an example of the second case, a hierarchy of classes where the base class has a 
constructor. 

class base { 
int x; 

public: 
base(intJ; 

} ; 

class derived :public 
int y; 

public: 
derived( 

} ; 

base: :base (int 

derived::derived(int yy) : (yy-1) {y = yy * 2;} 

Look now at the definition of the constructor for derived. The item ( yy-1) , a parameter list not 
preceded by a variable name, is the parameter value to be given to the constructor for the base. Experiment 
shows that the compiler also accep1$ the form base {yy-1 >. i.e •• the parameter. list preceded by the name 
of the base class. One poiittnot mentioned in The Book: it appears that iJl a multi•level class hierarchy, if 
the immediate parent class does not have a constructot, the parameter applies to the nearest ancestor that 
does have one. Fmally~ a word about the order of events; If a const:rlletor for a derived class haS parameters 
both for a base class and for irs own members, then the base constructor is called first, followed by the 
member constructors i!'the order of their parameter lists, finally followed by the body of the constructor for 
the derived class. I !uggest reading of section 4 of The Evolution of C++: 1985 to 1987 by Bjame 
Stroustrup for a mac complete description of the order of execution of constructors. 
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The extension to multiple inheritance is straightforward. The parameters must be preceded by the 

class names in order to identify them. Experiment shows that even if only one of the multiple base classes 
has a consuuctor, the parameter must nevertheless be named. Here is an example: 

class basel { 
int x; 

public: 
basel(int); 
} ; 

class base2 f 
int y; 
int z; 

public: 
base2(int, int); 
} i 

class derived : public basel, public base2 { 
int w; 

public: 
derived (int); 

} ; 

basel: :basel ( 

base2: : base2 
{ 

y "" 
z 

de r .tved: : derived (int 
{ 

w • ww; 

void f () 
{ 

derived a(Z); 

.. :-: .. · -_ .·. . 

), base2(ww-l, ww * 3) 

Here, the declaration der i'_,.d a .(2); ···causes the consttuctor for ·derived to be called with parameter 
value 2. Before ~ bQily of the constructor can be executed, there are calls respectively to the constructors 
for basel, Wilb piaraJieter value 3, and base2, with parameter values l, 6. 

4. Homemade storage management 

In The Boole, section 5.5.6, there is discussion of a technique for improving performance when many 
small objects of the same class are to be allocated. The example used is a simplified version of some code 
that is actually to be found in the C++ compiler. Because Bjarne considers the technique to be a "hack," 
and will in time disallow it in favor of a new technique that has become available in Release 2.0, namely 
redefining of the new and delete operators, I feel it is instructive to further simplify his example, and 
use it as a vehicle for comparing the techniques. 
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Consider the following complete program. The purpose of the function main () is to exercise the 
memory manager by numerous requests for creation and deletion of instances of the class name, in fact, to 
exercise it sufficiently so that execution can be timed. 

struct name { 

} ; 

char* string; 
name* next; // This field will be used later, 
name(char*); //that is, in the next example. 

name::name(char* s) 
{ 

main() 
{ 

string '"' s; 

con st COUNT ... lOOOOJ ·• · .. ·.· ··••· · · ·. 

~=; !:!p~r(~~~]; 4~ ~~~:Y of pointers 

for (int j ~ 9~ j < db~i j++) { 

fo~linti~O; WQiTER; i++) 
~ptr(il e ne~•·name ("Herb"); 

to name 

/* construc:to;: a41siijn;~,..!t:trb" to field "string"*/ 

for (iE ~; f ~ ~~~k; i++) 
delete nameptr[i]; 

When executing the abOve code, each instance of new name results· in a call.to thelibraryfunction that 
correspondS to the ne~ operaror~ and this funcli0n in turn calls mal loc ( )> Similarly~ each use of 
delete results in a call to free .. Woulcbl~t it bemceif wecouldinsblad can the fmt timeforallocation 
of enough memOQ" f<>r a reasonabte number· of inStances of'. name; lirik an but one of them tcigether by 
means of the~ field next, and return to the caller a pointer to the remaining one? Then, subsequent 
requests for JnsamiCes bld be handled by nonnal list processing techniques. The operator delete would 
merely lint die ins1all& back on the list of available instances. 

The next stretch of code shows how the constructor and destructor for name can be modified to 
provide do-it-yourself storage allocation. This is the technique which is u.sed in the C++ compiler, is still 
supported in Release 2.0, and which will eventually be disallowed. The function ma in is not shown in the 
next two examples because it suffers no change. 
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struct name 

} ; 

char* string; 
name* next; 
name(char*); 
-name(); 

canst NALL = 128; 
name.* nfree; 11 the free list header, a global variable 

name::name(char* s) II the constructor does its own 
II storage allocation 

name* p = nfree; 

if (p) 
nfree • p->next;: 1 I get the next free one 

else { II allocate 128>(NALL) of them 

this 

name* q • (name*)new char[NALL * sizeof(name)]; 
for (p'."'nfree==&qJNALL'.""ll; q<p; p--) 

. p.,.>next.·il~lt: 
(p+ll->ri.Xt • ·Ot <·····•·•············· 

P'· /I ·~;.. d• ~ t•mick, a hack 
string • s;•• 

name,,•na..o() /I ~~~~~~c•.eturns the item to the 
11 f•re:e Ii~t.x . > /··· 

next .. nfree; 
nfree • this; 
this• 0; II also a gimmick, but not a hack 

I* oefinitioh of mainO .sh!>ul.d f.ollow .. here.*J. 

Note now that~ ~~in ttie aboveW·resu·nf~e•. \VJUCh ~ ~ ll19bal V~ble is lnIBatized to 
zero. So, thefu#·ume•theeons1rUCtoriS called, space·for NALL iltstances isallocated, andNALL'-1 of 
them are chaine4~. with nf ree poiltling to the start C)f the chain. The address of the remaining one 
is assigned tO this. ~.the back is that the C++ compiler, which ordinarily generates a conditional call 
to the "new" funcdon.~a call conditioned on this beiltg zero, is inhibited from generating this call if there 
is an assignment 1D this in the code. Therefore, the implicit call of the memory allocator is not made. A 
similar thing happens in the destructor code, which obviously returns the "deleted" instance to the free liSL 
The assignment of zero to this prevents the call of the "delete" function. However, there is no hack here. 
The normally generated call to "delete," which is done at the poiltt of exit from the destructor, is conditioned 
on this being non-zero. 

Finally, we come to the recommended method, which consists of defining private new and delete 
operators as members of the class name. Overloading of operatorS is planned to be the subject of the next 
Technical Note, but this particular case fits exactly into the present discussion. The code is: 
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struct name 

} ; 

char* string; 
name* next; 
name(char*); 
void* operator new(long); 
void operator delete(name*); 

canst NALL = 128; 
name* nfree; 

void* name: : operator new (long n) 
{ 

name* p • nfree; 

if (p) 
nfree = p->next; 

else { 
name* q - (name*{new char[NALL * n]; 
for (p•nfree•&q[NALL-1]; q<p; p--) 

p->next • p~l;. 

<p+1r"">l1.ext ., Qr <-· 

void name' 'operllt6~ •de!~!\~J)Pt 
{ 

p->next • -rt~l::Mi>.>- · } >··---­

nf ree - p; 

name::name(char* s) 
{ 

strin<J • s; 

... · .· . .·· .. .. . . . ·. .. .. . .. · .. 

I will endeavorbtie.OeipJm'tbe ~mi~ of n~w ind ~let~ ~Jout~t lfeience ~·the intmne­
diate C code. If.~~ has any difficulty with the explaJ1ation, it is suggested that he create a file, say 
cons tr. c~ c0Naint11g the above example, being sure to include the function main () taken from the 
first example ia dlis seetion, and execute something like: 

cfront < constr.c > constr.cc 

Examination of constr. cc should clarify rnauers. 

The operator new is a special case in behavior and representation. When an operator is redefmed, one 
has a case of overloading, that is the same operator has more than one meaning. The resolution of the 
ambiguity is detennined by the type of at least one of its operands. To tell the relevant part of the story, if 
an operand is an instance of a class or an instance of a reference to a class, this is sufficient to identify an 
overloaded operator which has been redefmed as a class member. In the case of new, the operand is not a 
class instance, it is the class name. In fact, the relevant instance does not yet exists; the purpose of new 
is to create iL As a member of the class, the redefmition of the operator has the form of a function defini-
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lion. Inthecaseofnewitreads: void* name: :operator new(long n) { ... }. The reason 
for the return void* instead of name* is that one might want this definition of new to be inherited by a 
class derived from name, in which case returning a pointer to the base class would be an error. So, a 
generic return pointer is used, and casts will appear where needed in the generated C code. The next 
anomaly is the formal parameter, n. Normally, a formal parameter in this form of an operator definition 
corresponds to the second argument of a binary operator (the first argument is the implicit this, a pointer 
to the class object). However; here there is only one argument, the class name. One discovers on looking 
at the C code that the call to the function new-the call is found in the code of the constructor-uses as the 
actual parameter corresponding ton the expression sizeof ( struct name). This code also applies the 
cast (struct name *) to the value returned by the function. Note that the operator new that is used 
inside the definition of the function new is the plain, vanilJa, system operator. This is determined by the 
fact that its argument is a basic type: cha.r. There is no infinite recursion! ·. ·. 

Nothing much need be said about delete; ltS argument and the formal parameter of the correspond­
ing tbnction are consistent: pointer to name. Note that a destructor is not needed in this example. If a 
dummy destructor is constructed, to wit name : : ~name () { } , then if this destructor is written as an in­
line function, its presence causes no modification of the C code. If it is an explicitly defined function, then 
it does nothing but call the redefmed delete function. 

The performance on both the Mac II and Mac Plus of ~ examples given here may be of interest. In 
order to make the most realistic possible comparison/the following functions were made in-line: the 
constructor in the first example, the destructor in the second example, and both the constructor and the 
operator delete function in the thiid.example, On botl:l giachines, the two programs in which one 
does ones own memory management ran at an eQua1 rate/Oil the Mac Plus, the program using the system 
memory management ran a factor of eight slower~ and°':' ftl!~ II, it ran a factor of eleven slower. 
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C++ Technical Notes-Number 3 

1. Introduction 

H. Kanner 

Development Systems Group 

Apple Computer Inc. 

16 May 1988 

The principal subject matter of this note is the redefining of operators. This cannot be discussed 
without some mention of the general subject of overloading; it also necessitates some discussion of over­
loaded functions. To say that an operator (or function) is overloaded is to say that it takes differing actions 
which are dependent on the types of the arguments (or operands). Overloading, at least for operators, is a 
common feature of most programming languages that have arithmetic typing. In C, or Pascal, or 
FORTRAN, the"+" symbol is used to denote either integer or floating-point addition, depending on the 
types of the things to be added. There is even an instance of a prototype computer having been built in 
which data items had some bits dedicated to being type flags, and in which the interpretation of a command 
depended on the type of the operand (J. K. Iliffe, Basic Machine Principles, Macdonald Computer Mono­
graphs, 1968). Iliffe put it to me that while context switching in virtual memory schemes protected pro­
grammers from each other, his Basic Machine was designed to protect programmers from themselves! 

The reference materials for this note are the book The C++ Programming Language (referred to hence­
forth as The Book) and the paper The Evolution of C++: 1985 to 1987, both by Bjarne Stroustrup. The 
second of these describes language changes that have been made since the book was written, and which will 
presumably be implemented by AT&T. In style, this note will depend more heavily on examples from the 
Stroustrup book than the previous notes, primarily because I feel that some of the examples illustrate the 
points as well as any that I could make up. I will enlarge upon these examples by showing the result of 
compiling selected portions of them. As before, I will edit the output of the compiler to enhance read­
ability. 

As is usual with this language, attempts to explain matters in a logical sequence invariably trap one 
in a vicious circle. In this case, I would like to make an early introduction of the selection criteria by 
which one of a set of overloaded functions or operators is to be chosen. In order to do that, I have to bring 
in user-defined conversions and that cannot be done completely without describing conversion operators, 
thus completing the circle because the latter is one of several topics to be discussed in the section on user­
defined operators. 

2. Simple function overloading 

Consider the function that produces the absolute value of its argument. In the standard C libraries, 
there are two such functions, declared in ANSI C as int abs (int), and double fabs (double) . 
It would be nice if the programmer could use the same function in both cases, just as the same symbol, 
"+,"is used for addition of these respective types. By use of the overloading facility, this indeed can be 
done in C++. The following declarations and definitions could do the trick: 



overload abs; II in a header 
int abs (int); 
double abs(double); 

int abs(int x) 
{ 

II in a library 

return x >= 0 ? x -x; 

double abs (double x) 
{ 

return x >= 0 ? x -x; 

main() 
{ 

II usage demonstrated here 

int i; 
double d; 

d = -5.0; 
d = abs (d); 

i -5; 
i abs(i); 

This produces C code that when edited for readability would look something like this: 

int abs_l(x) 
int x; 
{ 

return (x >= 0 ) ? x 

double abs_2(x) 
double x; 
{ 

return (x >= 0 ) ? x 

int main () 
{ 

int i; 
double d; 

d = -5.0; 
d = abs_2 (d); 

i = -5; 
i abs __ l (i); 

(- x ) ; 

(- x ); 

Note that the two incarnations of the overloaded abs function are distinguished in the C code by the names 
abs_l and abs_2 • The actual output of cfront produces much more complicated names, which 
contain enough infonnation to deduce from the name the numbers and respective types of the function's 
arguments. 
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In real life, one would choose to define the functions as inline, i.e.: 

inline int abs(int x) 
{ 

return x >= 0 ? x -x; 

inline double abs (double x) 
{ 

return x >= 0 ? x : -x; 

producing the following C code for the function main: 

int main () 
{ 

int i; 
double d; 

d = -5.0; 
d = (d >= 
i -5; 
i = (i >= 

3. Simple operator overloading 

0) ? d 

0) ? i 

-d; 

-i; 

The idea of providing a facility in programming languages for redefining operators so that they can be 
applied to user-defined types is not a new one. After all, in a language in which representations for matri­
ces, vectors and complex numbers can be defined by the programmer, and in a world in which some of the 
ordinary arithmetic operators may be applied to these entities, it is a natural desire to want to be able to 
extend the meaning of said operators because such extensions may yield more readable programs. For 
example, I define a complex number type as: 

struct complex { 
double re; 
double im; 

} ; 

I can then define a function that returns the sum of two complex variables as: 

complex sum(complex a, complex b) 
{ 

complex temp; 

temp.re = a.re + b.re; 
temp.im = a.im + b.im; 
return temp; 

and perform the addition by calling the function, as in 
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complex a, b, c; 

a = sum(b, c); 

I can even declare complex as a class, and make sum a friend of the class. But, wouldn't it be lovely 
tobeabletowritea = b + c; ? 

This,can be done by the-provided methods for overloading an operator. The notation is simple. For 
the operator"+," one simply defines, as a member or friend of the class, a function whose name is 
operator+. For the simple example above, one would write: 

class complex { 
double re, im; 

public: 

} ; 

and define the operator by: 

complex(double r, double i) // the constructor 
{ 

re = r; im = i 

friend complex operator+(complex, complex); 

inline complex operator+(complex a, complex b) 
{ 

return complex(a.re + b.re, a.im + b.im); 

The use of a constructor in the above definition shortens the source code; the code shown previously as the 

f 
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definition of the function sum could have been used instead. \, / 

4. General rules 

• The language does not provide for the creation of new operators. Only a large subset of the exist­
ing operators can be redefined. 

• The syntax rules for the use of a redefined operator do not change. A binary operator remains a 
binary operator. A prefix operator remains a prefix operator. An operator which has both a binary 
and unary definition, e.g."-," may be redefmed independently in each form. The precedence of an 
operator cannot be changed. There is no provision in the methodology for redefining operators to 
indicate whether a unary operator is prefix or postfix. Therefore, a redefinition of the operators 
"--"and"++" cannot distinguish between prefix and postfix usage. 

• The effect of the application of operators to basic typeS cannot be altered. Therefore a redefined 
(overloaded) operator must be defined as a member of a class (or structure), or must have at least 
one argument that is a class (or structure) object or a reference to a class (or structure). Note that I 
say reference, not pointer. The operators new and delete are exceptions to this rule; they were 
discussed in the previous Technical Note. Three other operators: [ ] , C ) , and - > are exceptions 
in that they must be class (or structure) members. 
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• The operators which may not be redefined are 

sizeof & (as a unary operator) * (as a unary operator) 

() (as a cast) ? 

• With the exception of [], (), ->,and a category, to be described in Section 5 below, called 
conversion operators, all redefined operators map to functions in the following way: 

A unary operator@, used in the context @x if it is a prefix operator and the context x@ if 
it is postfix, where x is an object of the class for which @ has been redefined, is inter­
preted as x. operator@ () if operator@ has been defined as a class member, and as 
operator@ (x) if operator@ has been defined as a friend of the class. (Remember 
that this, the pointer to the object, is an implicit argument of operator@ when that 
function is a class member.) 

A binary operator@, used in the context x@y, is interpreted as x. operator@ (y), if 
operator@ has been defined as a class member and x is an object of that class. If 
operator@ has instead been defined as a friend of the class, then at least one of the 
arguments x and y must be an object of that class, and the interpretation is 
operator@(x, y). 

With respect to the above rules, for any argument which must be a class object, the corresponding 
formal parameter in the operator definition may be either the class itself or a reference to the class. It is 
time now for a more complete example. What follows is a subset of the material that would normally be 
in a header file called complex. h. In the real header, the constructor and all of the operator definitions 
are declared as inline. Because of the total unintelligibility of the C code produced from inline expansions, I 
have modified the source so that nothing is inline. 

class complex { 
double re, im; 

public: 

} ; 

complex (doubler= 0.0, double i = 0.0); 
friend double real(const complex); 
friend double imag(const complex); 
friend complex operator+(complex, complex); 
void operator+=(complex); 

complex::complex(double r, double i) 
{ 

re = r; 
im = i; 

double real(const complex a) 
{ 

return a.re; 

double imag(const complex a) 
{ 

return a.im; 
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complex operator+(complex x, complex y) 
{ 

return complex(x.re + y.re, x.im + y.im); 

void complex::operator+=(complex x) 
{ 

re += x.re; 
im += x. im; 

The C produced by the above code, modified for readability, is: 

struct complex { 
double re; 
double im; 

} ; 

struct complex *_complex_constructor(_this, r, i) 
struct complex *_this; 
double r; 
double i; 

if (_this == 0 ) 
this = (struct complex *) 

_new( (long) sizeof (struct complex)); 
this->re = r; 

-this->im = i; 
return _this; 

double _real(a) 
struct complex a; 
{ 

return a.re; 

double _imag(a) 
struct complex a; 
{ 

return a.im; 

struct complex _plus(x, y) 
struct complex x; 
struct complex y; 
{ 

struct complex _temp; 

_complex_constructor(& _temp, x.re + y.re, 
x . im + y . im) ; 

return _temp; 
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void _complex_plus_assign_op(_this, x) 
struct complex *_this; 
struct complex x; 
{ 

this->re += x.re; 
=this->im += x.im; 

Let us now use these definitions in a short program: 

void f () 
{ 

which compiles to: 

void 
{ 

complex x, y(3,4), z; 
double d; 

x = complex(l,2); 
d real (x); 
z x + y; 
z += x; 

f() 

struct complex x; 
struct complex y; 
struct complex z; 
double d; 

_complex_constructor(&x, (double) 0.0, (double) 0.0); 
_complex_constructor(&y, (double) 3, (double) 4); 
_complex_constructor(&z, (double) 0.0, (double) 0.0); 

struct complex _temp; 

_complex_constructor( &_temp, 
(double) 1, (double) 2); 

x = _temp; 
} 

d _real (x) 
z = _plus(x, y); 
_complex_plus_assign(&z, x); 

Note particularly the treatment of the "+=" operator, which is the one instance of an operator which has 
been defined as a member function. In the expression z += x, the call, in C++ terms, is to the member 
function operator+= for the class object z, and the single argument is x. In the C expansion, the 
implicit parameter this (pointer to class object) appears as an added first argument, and in the call of the 
function is given as the address of z • A second point about an overloaded assignment operator is that 
overloaded versions of= and an operator @ do not have to conform to the equivalence relation that holds for 
the default operators, to wit: that a == a @ b is equivalent to a @= b. 
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5. User-defined conversions 

The exact rules for conversions and the rules governing their application are singularly hard to find in 
The Book. Conversions may be explicit or implicit: implicit conversions are exemplified by those 
described in Section 6.6 of the Reference Manual in The Book. e.g. the conversion of an int to a 
double in an arithmetic expression that has both kinds of operands; explicit conversions are those spelled 
out by use of a cast. We are concerned here with two aspects of this general subject: the extension of the 
language by conversions that coerce operands in either direction between basic types and user-defined types. 
and the use of those and other conversions in deciding which instance of a group of overloaded functions is 
to be called. 

A constructor that takes a single argument can be regarded as a conversion operator. or cast, that 
converts the type of the argument to the type of the class of which the constructor is a member. For 
example, the constructor for complex given in Section 4 above has defaults for its two arguments. and 
therefore certainly can be called with only one argument. The constructor called with one argument can be 
regarded as a conversion operator that converts a double to a complex. Thus, the same effect is 
produced by the following three statements: 

complex z = complex(ll, 0); 
complex z = complex(ll); and 
complex z = 11; 

In the last of the above, the conversion takes place implicitly. Note that for all of the three, a previous 
implicit conversion first had to take place. The int 11 had to be converted to the double 11. 0 
before the conversion to complex could be invoked. This demonstrates that once such a constructor has 
been defined. mixed expressions containing int. double. and complex can be written without the need 
for any casts. 

The reverse conversion. that from a user-defined type to a basic type, is performed by a new animal, 
one called a conversion operator. The syntax for it is that of a unary operator that is a member function of 
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the class, where the symbol representing the operator is the name of the basic type, delimited on the left by "· ... 
at least one space. Thus. a class member defining a conversion to int would be declared 
operator int () • This is well illustrated by the class "tiny," to be found in Section 6.3.2 of the 
book. A slightly modified version is reproduced below with the inline function definitions rewritten. and a 
small program using it is shown. The purpose of the class is to describe objects that are integers in the 
range 0 to 63, and to provide range checking after arithmetic operations wherever necessary. 

class tiny { 
char v; 
int assign(int); 

public: 

} ; 

tiny(int); II constructor: convert an int to a tiny 
tiny(tiny&); II constructor: one tiny 

II initializes another 
int operator=(tiny&); 
int operator=(int); 
operator int(); 

/~ ........ 
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tiny::assign(int i)// this private member does range 
//checking 

if (i & -63) 

else 

printf("range error\n"); 
exit(l); 

return v i; 

tiny::tiny(int i) //construct from integer; 
{ //must check range 

assign(i); 

tiny::tiny(tiny& t)// construct from instance of tiny; 
{ // range check unnecessary 

v = t.v; 

int tiny::operator=(tiny& t)// assign tiny to tiny; 
{ // range check unnecessary 

return v = t.v; 

int tiny::operator=(int i)// assign int to tiny; 
{ //must check range 

return assign(i); 

tiny::operator int() 
{ 

return v; 

Here is a cleaned-up version of the C code produced from the above. 

extern int printf (); 
extern int exit (); 

struct tiny 
char v; 
} ; 

int tiny assign( this , i) 
struct tiny * this; 
int i; -
{ 

else 

if (i & -64){ 
print("range error\n") 
exit(l); 

return (int) this->v i); 
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struct tiny* tiny constructor 1( this, i) 
struct tiny *=this; - -
int i; 
{ 

if ( this ==• 0) 
- this = (struct tiny *j _new( (long) sizeof 

(struct 
tiny assign( this, i); 

return _this;-

struct tiny *_tiny_constructor_2(_this, t) 
struct tiny *_this; 
struct tiny *_t; 
{ 

if ( this === 0) 
_this= (struct tiny *) _new( (long) (sizeof 

(struct tiny) ) ; 
this->v = (*t) .v; 

return _this; 

int tiny as 1( this, t) 
struct tiny * this; 
struct tiny *"°"t ; 
{ 

return (int )_this->v 

int _tiny_as_2(_this, i) 
struct tiny *_this; 
int i; 

(*t) .v; 

return _tiny_assign(_this, i); 

int tiny int( this) 
struct tiny * this 
{ 

return (int) _this->v; 

In looking at the above code, and the C++ source from which it was produced, I was briefly puzzled as to 
why the uSignment operatOr was defined as returning an int, particularly because the very next example in 
The Book defines an overloaded assignment operator as returning void. The reason undoubtedly is to 
permit nesting, i.e. to provide for multiple assignment statements. 

The reader should study the examples of the application of tiny given in Section 6.3.2. I will 
analyze only one of these in order to illustrate the significance of the conversion operator operator 
int. The example is the declaration: "tiny c3 = c2 - cl;", where c2 and cl are objects of class 
tiny . Compilation of this declaration produces: 

tiny constructor l(& c3, tiny int(&c2) 
- - -- _tiny_Int(&cl)); 
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Let us analyze this example. The constructor tiny constructor 1 is the one which takes an inte­
ger argument. The presence of a minus sign on the rlght hand side of the quoted C++ declaration causes 
implicit call of the operator that converts an instance of tiny to an int. The difference between the two 
integers so obtained becomes the argument given to the constructor. Thus, by implicitly converting to 
int when faced with arithmetic operators wanting int operands, it becomes unnecessary to redefine the 
arithmetic operators for tiny. 

The rules for choosing which one of a set of overloaded operators or functions is to be called can now 
be stated (I quote from Section 8.9 of the Reference Manual): 

In the order stated-

• Look for an exact match and use it if found. 

• Look for a match using standard conversion and use any one found. 

• Look for a match using user-defined conversions. If a unique set of conversions is found use it. 

We are are talking here about a match between the types of the actual arguments and the types used in the 
operator or function declaration. The terms used in the above rules require some explanation. The Book 
states that a zero, a char, or a short are to be considered as exact matches to a formal parameter of type 
int, that a float is similarly regarded as an exact match to a requested double, and that the only 
standard conversions to be used are int to long, int to double, and the pointer and reference conver­
sions given in Sections 6.7 and 6.8 of the Reference Manual. Section 6.3.3 of the main portion of The 
Book contains a discussion of the rationale for the above rules and a number of examples. It is emphasized 
that only one level of user-defined conversion is accepted, so an instance of an overloaded function/operator 
cannot be chosen via a chain of user-defined conversions. 

6. Assignment and initialization 

We have already seen instances of an overloaded assignment operator and initialization by overloaded 
constructor in the class tiny, where the type of the parameter determined whether range checking was 
required. Here we look at a more subtle requirement for these functions. This is illustrated quite capably in 
Section 6.6 of The Book. Basically, the scenario is one of a class which contains a field that is a pointer 
and a constructor which dynamically allocates the space to which that pointer refers. The class definition, 
as described to this point, is: 

struct string 
char* p; 

} ; 

int size; 
string(int); 
-string(); 

string::string(int sz) 
{ 

p =new char[size sz]; 

string: : -string() 
{ 

delete p; 
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It is shown that with merely the above definition, neither assignment nor initialization will work properly 
with respect to construction and destruction. The rule that you only destroy that which has been 
constructed, and only do it once, is violated. The cure is to add to the class the members: 

void string::operator=(string& a) //assignment operator 
{ 

if (this == &a) 
return; 

delete p; 
p =new char[size =a.size]; 
strcpy(p, a.p); 

string::string(string& a) //constructor taking 
{ // reference to string as argument 

p =new char[size =a.size]; 
strcpy (p, a .p); 

The assignment operator would be implicitly called upon assignment of one instance of string to 
another, both having been previously declared. The constructor would be implicitly called upon initializa­
tion of a freshly-declared string by a previously-declared and initialized one. The reader should extend the 
class string as I have just indicated, and look at the C code produced by compiling it together with the 
sample program: 

void f () 
{ 

string sl(l0); 
string s2(20); 
string s3 = sl; // this will call string(string&) 
s2 = sl; // this will call operator=(string&) 

A more difficult case to follow, which I will now demonstrate, involves parameter passing and 
function return. A persistent refrain throughout The Book is that the semantics of parameter passing is 
identical to that of initialization. Since this statement is significant only when initialization has different 
semantics from that of simple assignment, it follows that it is significant only when the formal parameter 
of an initialization function is a reference. In Section 6.6, it is stated that function return also has the 
semantics of initialization. This means that if a constructor of the form string (string&) has been 
defined, this constructor will be implicitly called when passing a parameter of type string or returning a 
value of that type. This is demonstrated with the program: 

string ss(lO); 

int g(string str){ return sizeof str;} 

string h(){ return ss; } 

main() 
{ 

int i; 
string s(S); 

i g(s); 
s h (); 
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( 
which, when considerably massaged after compilation, would look something like this: 

struct string ss 

void g (str) 
struct string *str; 
{ 

return sizeof *str; 

void h( result) 
struct string *_result; 
{ 

/* 

*/ 

The call below is to the constructor that 
takes a reference to a string as an argument. 
The function h is passed an address, "_result," 
and, by calling the constructor, causes allocation 
and copying so that the string whose address is in 
result becomes a true copy of the string ss. 

string constructor 2( result, 
- (struct string*) &ss); 

int main () 
{ 

int i; 
struct string s; 

I* 

*/ 

the call below is to the constructor that 
takes an integer argument 

_string_constructor_l(&s, 5); 
{ 

struct string _templ; 

/* 

*/ 

The constructor, which is the argument 
of g, causes the string _templ to be a 
true copy of s, and returns the address 
of _templ. 

i = g( string constructor 2(& templ, 
- - (struct-string *)&s)); 

13 



7. The special cases 

struct string _temp2; 

I* 
The call of h causes _temp2 to become a 
copy of ss. Then the call of the string 
assignment operator makes the assignment 
from temp2 to s. 

*/ -

h (& temp2); 
_string_as(&s, (struct string*) &_temp2); 

/* 

*I 

Finally, destructors are called to get 
rid of _templ, _temp2, and s. 

string destructor(& temp2, (int) 0); 
-string-destructor(&-templ, (int) 0); 
=string=destructor(&s, (int) 0); 

The Book describes overloading of the subscription operator [ J and the function call operator ( ) . 
The paper cited in the introduction to this note describes the proposed overloading of the operator - > . All 
three of these must be defined as member functions of that class for which an instance thereof is to be their 
left-hand operand 

This section will be mercifully short. The Book gives adequate examples of the application of over­
loading for the first two of the three operators. Only a brief synopsis of them will be presented here. 

Two kinds of application of the subscription operator are presented. The first is simply to provide 
range checking. That is, if a class is defined such that a class member is an array. with other class members 
giving the upper and lower bounds of legal subscripts, then a subscription operator can be defined that 
checks the bounds, aborts with an error message if a given subscript is out of range, and otherwise does a 
normal subscription relative to the lower bound. The syntax is straightforward. If in a class called alpha 
the subscription operator is declared as a member, e.g. by the declaration int& opera tor [ J (int) ; , 
then this overloaded instance of the operator is implicitly invoked by alphavar [ 5 J. where alphavar 
is an instance of alpha. The only interesting thing about this is that the operator has been declared as 
returning a reference to an int. This is to permit the subscripted variable to appear on the left side of 
an assignment. The other example, and a very interesting one it is, is given in Section 6. 7 of The Book. 
It shows how an associative array can be set up and addressed Each array element consists of a 
string/integer pair. Given that this array is a class member and that the subscription operator is declared for 
the class, then a call might look like vec [ "Herb" J • where vec is an instance of the given class. The 
operator returns a reference to the associated integer if the string is found in the array. If the string is not 
found, the array is extended with a new element containing the stting and an initialized value (zero) for the 
integer. In The Book, this is used to produce a count of the number of appearances of each of a set of 
strings in a buffer. Each time a given string is found, the count is bumped; again, this can be done because 
the return value is a reference. The application of associative arrays to symbol table maintenance is 
obvious. 
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The function call operator, (),does not add any new capability to the language; it is purely cosmetic 
in nature. I will illustrate its use by taking the example of the iterator, Section 6.8 of The Book, and 
rewriting the declaration so that the call is to a member function instead of using an overloaded function call 
operator. Then I will show the alternate way of writing the same declaration and call, using an overloaded 
( ) operator. All that needs to be recalled from the previous paragraph is that the array of string/integer 

pairs is the private data of a class, to be called assoc. The object of the iterator is to return a pointer to 
such a data pair, and to bump an index so that the next time it is called it produces a pointer to the next 
pair. The iterator is a class, called assoc iterator. Its private data are an index and a pointer to an 
object of assoc. The declaration of assoc must declare assoc iterator as a friend. Now here is 
what this class might look like: -

class assoc_iterator { 

/* private data */ 

public: 

} ; 

assoc iterator(assoc&); //constructor 
pair*-iterate(); //this one does the real work 

II "pair" is the type of the 
II associative array members 

and the code fragment that calls the iterator would look like: 

assoc vec(512) // construct vec, an object of assoc 

assoc iterator next(vec) // construct next, an object 
II of assoc_iterator 

pair* p; 
p =next.iterate(); //call the iterate function 

Since the only member function of assoc iterator, aside from its constructor, is iterate, the use 
of the function name might be regarded as a bit redundant. The ability to overload the ( ) operator allows 
us to eliminate this name. The declaration _changes to: 

class assoc_iterator { 

/* private data */ 

public: 

} ; 

and the call changes to: 

assoc iterator(assoc&); //constructor 
pair*-operator() (); //this one does the real work 

II "pair" is the type of the 
II associative array members 

assoc vec(512) //construct vec, an object of assoc 

assoc iterator next(vec) // construct next, an object 
II of assoc iterator 

pair* p; 
p =next(); //call the iterate function 
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The last operator to be considered in this group of special cases is - > . Having been described in The 
Evolution of C++: 1985 to 1987, I anticipate that it will appear in the same release of the C++ compiler 
that implements other features, such as multiple inheritance, that are described in the paper. It differs from 
the other cases of operator overloading in that activation of the function corresponding to -> starts a two­
step process. For the expression x->m, where x is an object of a class having as a member the function 
operator-> (),the function is first called. It must return a pointer to an object that has a member 
named m. Call this pointerp. The original expression x->m is now replaced by p->m. This definition 
has the following implications: 

Given a class X in which P* operator-> () is defined as a member, and given x as an 
instance of or reference to x, then for x->m to be valid, the function operator-> () must 
return p, where the type of pis P*, where P has a field named m, where p is in the scope of the 
function operator-> ( ) , and where p->m is in scope at the place where x->m appears. 

The example below illustrates the simplest application of a redefined - >; it can be thought of as a 
vanilla - > with arbitrary side effects. 

struct test{ 
int i; 
test* operator->(); 

} ; 

test* test::operator->() 
{ 

main () 
{ 

printf("hi\n"); 
return this; 

test* ptest 
int ii; 
test& testx 

testx->i = 5; 

new test; 

*ptest; 

ii = testx->i; 
printf("%d\n", ii); 

This, when executed, should print 

hi 
hi 
5 

Each "hi" is a side effect of the overloaded operator. 

For a second example, I modify slightly the example in the cited paper in order to demonstrate the 
generality of the overloaded operator. 
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struct Y { 
int m; 

} ; 

Y* p; II The modification is that I have made p a global. 
II In the paper, it is a member of class X. 

class x { 
public: 

Y* operator->(); 
} ; 

Y* X::operator->() 

printf("hi\n"); 
return p; 

void f(X x) 
{ 

printf("%d\n", x->m); 

main() 
{ 

y yy; 
X xx; 

p = &yy; 
yy.m = 5; 
f (xx); 

This, when execut.ed, should print 

hi 
5 

I want to conclude this section by clarifying a point in the paper which I found confusing. After the 
example that is much like the one above, the paper continues: 

void f(X x, X& xr, X* xp) 
{ 

x->m; 
xr->m; 
xp->m; 

II x.p->m 
II xr.p->m 
II error: X does not have a member m 

The comment on the erroneous line is correct, but fails to make the important point, which is that the 
overloaded operator is not invoked in attempting to evaluate xp->m. This is because the left-hand operand 
of - > is not the class x; it is a pointer variable, and as such does not have any members, much less the 
member function operator->() • Therefore, xp->mbecomes (*xp) .m, for which the error comment 
is true. 
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