
(C++ Technical Notes-Number 1

H. Kanner

Development Systems Group

29 February 1988

This is the first of a series of technical notes on the C++ language. Because there is as yet only one
book on the language, TM C++ Programming Language by Bjarne Stroustrup, and many sections of the
book have been written in a difficult to follow style, I felt that it might be of use to write some notes on
various aspects of the language with which I initially had difficulty. By the way, the cited book will be
refeITed to here and henceforth as The Book.

It has often been said that the ultimate definition of a programming language is the official compiler.
That is, the semantics of a piece of source code is really understood by inspecting the output of the
compiler. In the case of the AT&T C++ compiler, this task is made easier by the fact that this output is C
code. I cannot too strongly recommend to readers that they try to clear up linguistic obscurities by con­
sttucting the simplest possible test cases, running them through cfront, and looking at the output. One
warning: do not try this with an inliM function.

This fust note deals with references. I anticipate a minimum of two more notes, to be published
when I feel I understand the subjects sufticiendy. They will respectively cover constructors and destn1etors,
with emphasis on their storage management aspects, and overloaded opezators, with emphasis on the dis­
tinction between defining them as TMmbers or friends.

I had a little difficulty understanding why references had been introduced into C++. They are an
exception to the symmetry of the terrible C notation for declarations, in which one can at least say that
operators such as •, Q,_311d D have the same meaning when used in a declaration as when used in an expres­
sion. That is,

char *s;
char* t;
char c • *t;

all use the * to denote dereferencing a pointer. The first of the above three lines should literally be read: "If
you were to dereferences, you would get a char." It is ttue that the compiler does not care where the
white space is, and Bjame prefers the style of the second line, which he likes to state as "t is a pointer to
char," as if char* represented the type "pointer to char." This is very informal. In fact he cautions
that if you wril8 ._

chait"* s,t,u;

only the first~ dlele will be a poinrer to char; the second two will be declared as char.

A reference uses the & symbol. But int& means reference to int, &x means address of x, and
neither of

int& x;
int &x;

can be interpreted as "If you were to take the address of x,. you would get an int."

,./

I now whet the reader's interest by making a promise. By the end of this note, I will have illustrated
that references make it possible for the following to be perfectly legal C++:

int i;
f(i) - 10;

I introduce references by exploring to the point of tediousness what we really mean when we say
int i. The symbol i is regarded as a synonym for the address, to be determined at some fuwre time, of a
bucket that can hold an int. The binding of i to this hypothetical and not yet known address occurs at
declaration time and is permanent for the scope of i. Every subsequent use of i in the code implies an
automatic dereferencing of i. That is, a use of it on the right side of an assignment means "fetch from the
address it represents," and a use of it on the left side means "store into that address." This behavior is so
intuitive that most language definitions do not formalize it; Algol 68 is a notable exception. However, it
must be kept in mind if references are to be understood.

Now, to introduce the concept

int i;
int& r • i;

means that r is declared to be a reference to int, and initialized to be equivalent to i. That is, r is another
synonym for the same address as is represented by i. Like any other variable identifier, it is automatically
dereferenced as described in the paragraph above. Therefore, any subsequent use of r in the left or right side
of an assignment means, respectively, a store to or fetch from i. So

r • 2; II puts 2 into i
int j • r II now puts 2 into j by fetching it from i, and
r++; II increments i. Finally,

II &r is a pointer to (the dereferenced) r,
II that is, it is identical to &i.

Note that initialization of the reference variable is mandatory. It is illegal to write

int& r;

On page 56 of The Book is inttoduced a complication. What would be the meaning of

int& sillyref • 5;

Bjame gives a C equivalent as

intip. *sillyrefp;
in~temp

temp - 5;
sillyrefp • &temp;

that is, a temporary is al1ocared to hold the literal. and the reference variable is initialized to the address of
this temporary. If any reader can find a use for this, please let me know. My theory is that since an
initializer is defined grammatically to be a constant expression, the consttuct is legal and it was easier to
define hannless semantics for it than to figure out how to disallow iL

2

(

(

The next tQpic, an interesting one, is the use of references as formal parameters for functions. In The
Book it is stated in several places that the semantics of parameter passing is the same as that of initial­
ization. In one place, The Book goes further and states that the same semantics also applies to the return­
ing of a value by a function. The Book is clearly distinguishing the above operations from assignment.
These are the kind of statements that are prone to go into one eye and out the other. After all, it is hard to
discern a semantic difference between

int i .. 7;

int i;
i = 7;

When explicitly defining initialization and assignment for classes, the distinctions between the two may be
subtle. However, as has already been shown, initialization of a reference is a permanent setting of the
reference to the address of the initializer, and assignment to a reference consists of assigning into the
bucket denoted by that address. This distinction is not subtle in the leasL Therefore, if a formal parameter
of a function is a reference, then at call time, that parameter is permanently set (permanently for the dura­
tion of execution of the function, of course) to the address of the corresponding actual parameter. In the
code of the function, any use of the formal parameter causes an automatic dereferencing, so that the code can
directly fetch from and store into the actual parameter. Let us compare to C. If we are so evil as to wish p
to be an output parameter of function f, we must write, for example:

void f(int *p)
{

*p = 17;

and call the function by

int i;
f (&i);

Note how this works. The address of i is passed as a value parameter, and inside of the function an
assignment is made through that address by use of the dereferencing operator. In C++, an equivalent func­
tion could be written:

and called by

void f(int& p)
{

int i;
f(if._;

'i

p - 17;

Any Pascal programmer will immediately see that this is equivalent to making p a var parameter.
Despite this being routine usage in many languages, B jame is nervous about using it, and recommends

. against iL His argument is that it makes code hard to read, because one cannot tell from the formal
parameter prototype alone whedler pis an input parameter, an output parameter, or both. So he recom­
mends that output from functions be obtained only from return values or explicit pointers, as it would be
done in C. In fact, if a reference is used only to conserve storage, as when passing a large array as an input
parameter, he recommends making it clear that die function will not write to the array by writing the func­
tion header as

function(const arraytype& arg),

indicating that the function regards arg as a reference to a read-only variable.

3

I

t

'
One mighl wonder, in view of the recommendations just quoted, why references were introduced into

C++. One immediate answer is in their application to overloaded operators. If the + operator is to be
extended to apply to members of a newly defined class, say matrix, one wants to be able to write

a - b + c;

where all three of the above are instances of matrix. In order to be able to do this and yet avoid physically
copying the arguments, the operator definition, which is that of a function, must have matrix& as the
typeS of its arguments and return value. The declaration would be:

friend matrix operator+(matrix&, matrix&);

If the language did not have references, it would be necessary to write the very ugly

a "" &b + &c;

This topic will be discussed further in the forthcoming Technical Note on operator overloading.

I am now ready to keep the promise made earlier in this Note. I will show you how to define a func­
tion set that can be used as follows:

main()
{

int i;

set(i) • 10;

where the effect of the function call is the same as the assignment

i - 10;

The function definition is

int& set(int& p)
{

return p; ·

I do not claim that this function is useful. It was chosen as the simplest function that illustrates the
poinL For a useful example, see pages 57-58 of The Book.

Here is a sanitized version of the C code generated by the C++ compiler for the example above. I
have changed only the names. not. as the phrase goes. "to protect the innocent." but to increase clarity:

int{°*set(int *ptr)
{

main()
{

return ptr;

int i;

(*set ((int *) (&i))) • 10;

4

•

f

,/

. '
(

C'
/

C++ Technical Notes-Number 2

H. Kanner

Development Systems Group

14 March 1988

1. Introduction

The subject matter of this note is the pair of special functions called constructors and destructors­
why they exist, how they are represented in C code, and some of the arcana of using them.

Section 2 begins with a discussion of why they were invented in the first place (my opinion, of
course), and some of the details regarding the implicit calls that are made to them. An example is presented
of the C code produced by a small C++ program that has. cJasses with constructors and destructors. As was
done in the previous Technical Note, the simplest examples I can devise are used to illustrate the mecha­
nisms. That these examples may be useless is irrelevant. . This is in conttast to the style in The Book,
where the examples in general do something useful.> but anreonsequendy harder to read. In fact, now that l
have been working with the source to tbe C++ campiler~ lnotiee that some of the examples in The Book
look strangely familiar and realize that they have been abstracted from the compiler. The reader who is
already familiar with the basic concept$ lllay '\flith to skip secQgn 2 •

. ." . ":·· <:· .···· .. ::::::::::::.::·:\:
Section 3 discusses the passing of parallletetl tO t~j)Js for class objects that "ride along" with

the object being allocated. There are tWO· cases: ·a derived~wliose base class has a constructor requiring
parameters, and a class containing at least one membet tield'i:batiiS:i.tself a class having a constructor that
requires parameters. An example is givenof~pallsll!gdn the case of multiple inheritance, as
supported in Release 2.0. · · ·. · · · · · ·. ·. · ··· · · ·.· .. · ·

Section 4 deals with the techniques for writing a constructor/destructor pair in which one does one's
own storage management-a useful technique when generating and releasing large numbers of small
objects. Because a change in the facilities for doing this has been implemented in Release 2.0, both the old
and new techniques are illustrared.

Please note that AT&T reqmres that our usage of Release 2~0 be. kept confidential. Therefore, this
Technical Note has been classified Apple Confidential. .· ·

· .. ·.::'.: ·-.· -: ·.· :~~c- :-.·:-·:·
2. Why and ii&. : .

The purpose of a constructor can be stated as selective initialization of fields of a class object. This
may include sange allocation if any of these fields are pointers to areas requiring allocation. The purpose
of a destructor can be even more glibly stated as that of undoing, when necessary, whatever was done by the
corresponding constructor. This usually means storage deallocation.

Let us look at a simple example:

struct silly {
int x;
int y;

} simplestruct = { 1, 2 };

(

(~,,

Well. the structure has been declared, and fully initialized. So what more might we need? In the first place,
if you try this example on any current release of C++ from AT&T and if sirnplestruct is an automatic
variable, you will get the diagnostic: "Sorry, not implemented." Secondly, suppose the structure had, say,
twenty fields and you only wished to initialize one or two of them that are in the middle. You would have
to write an unnecessarily long initializer. Finally, if the structure becomes a class and the data fields are in
the private part, then direct assignment to them is forbidden, and you would be forced to invent a (public)
member function that does the initialization for you. That is all that a constructor is. It is a function that
has the same name as the class or structure name and in the case of a class is declared as a public member
function. There is a syntactic requirement that no return type be given in its declaration and definition. If.
as is often the case, it is a ttivially simple function, it is useful to write its definition at the point of decla­
ration, which makes it compile as an in-lint function. The magic thing ab.out a constructor is that it is
called automatically at the point in execution at which storage for the created object is to be allocated. This
will be explained further after the next example. Almost everything which has been said about constructors
applies also to clestructors; The syntactic differences are that the name of a destructor is the class name
p~ed by the symbol "-" and that a destructor must be parameterless. A destructor is automatically called
at the point in execution at which the storage for the object is to be cleallocated.

Let us now look at an example which illustrates all of the simple cases: a structure that has neither a
constructor or destructor, one that has both, and instances of each created respectively as automatic variables
and via dynamic allocation.

struct a
int x;

} ;

struct b

} ;

int y;
b (int);
-b ();

b: : b (int yy)
{

y - yy;

it could have been
the generated C code would

hard to read.

b: :-b() {} II Obviously, the same comment applies to
II this empty function.

rnainC)0

{
·a obja;'
b objb(S);

._. a* aptr;
~ b* bptr;

II This i.$ shorthand for: b objb • b(S);

aptr • new a;
bpt r • new b (6) ;
delete aptr;
delete bptr;

2

(

Several observations should be made about this example before displaying the C code generated from it.
The in-line fonn of the declaration for the constructor would read:

b(intyy) {y•yy;}

The notation b (5) , when used as a tenn in an expression, as in the comment opposite b obj b (s) ,
represents a literal which is an instance of class b, with its internal variable initialized to the value 5. The
destructor is written as a null function, because the objective here is to illustrate some implicit actions of
destructors. Of course, a programmer is free to write any code he wishes in a constructor or destructor; it
does not even have to be relevant. In fact, when studying this business, I was prone to write destructors
whose entire body was print£ ("destructor called now\n"); ! To end on a more realistic
note, a destructor is useful only to delete objects which were dynamically allocated by code within the body
of a ~orresponding constructor.

The following C code corresponds to the C++ example just given. It has been edited to remove irrel­
evant material, to make simplifications and clarifications without changing the semantics, and to use the
same identifiers as in the original source instead of the encoded identifiers produced by cfront.

struct a {
int x;

} ;

struct b {
int y;

} ;

extern void *_new(J; l* library function */
l* that calls malloc () *I

extern void _delete(}; /* iibt'a.:ry function *I
I* that calls free () *I

struct b *b constructor(this, yy)
struct b *this;
int yy;
{

if (this 0-)

this• (struct b *):....new((long) sizeof(structb));
thb->y<• yy;
return this ;

,.. .
void b destructor(this, free)
struct-b *this;
int free;
{

if (this)
if (free)

_delete((void*) this);

int main ()
{

struct a obja;
struct b objb;

3

struct a *aptr;
struct b bptr;

b constructor(&objb, 5);
aptr = (struct a*) new((long) sizeof (struct a));
bptr - (struct b *)b constructor((struct b *) O, 6);
_delete((void *) apt~)
b destructor(bptr, 1) ;
b=destructor(&objb, (int) 0);

The above code tells us a number of things about constructors and destructors. We see that when an
object of a class or structure that has a constructor is allocated by declaration, there is a call of the construc­
tor prior to any other code, and the (implicit) first parameter of the constructor is the address of the allocated
objest We also see that although a constructor returns a pointer to its class, in this case the return value is
discarded. We next see that when an object is allocated by use in the C++ source of the new operator, the
constructor is called with the first parameter being zero, and the constructor returns the pointer to the allo­
cated object. Compare this to the case of a class/structure without a constructor, where the effect of the
new operator is to generate a call to the _new () function. Next, looking at the code of the constructor
itself, we see that prior to the execution of any code wriuen by the user, it has a conditional call of the

new<) function, this call taking place if and only if the first parameter is zero. Some similar facts
emerge about destructors. A destructor is called implicitly when an object that was allocated by declaration
goes out of scope. In this case its second parameter is zero. Ifa dynamically allocated object is released by
use of the C++ free operator, the destructor is called with the: second parameter having the value 1. In
both cases, the first parameter is a pointer to the objct. No\l!t'Oooking at the code of the destructor itself,
we see that it has a call to the delete 0 .Junction that is conditioned on both parameters being non-zero.
That it requires the first parameter to be non-zero is: rilel'Cly an inhibition against "destructing" a null object.
This does not protect programmers panicularl)'.becausethet'eis nothing to keep them from making a
fatally destructive modification of a pointer to an object prior the ~tion that invokes the destructor.

The code that follows is what Release 2.0 of cfront actually tbnerates. By comparing to the previ­
ously shown code, one can see that identifiers exceptf6r SU'llcWte or class names have been extended, and
that tricky names have been invented for co~ desiJ'uctors, and the allocation and deallocation func­
tions. Also, there appears to be a redundant test of_Othis in the destructor code (reference to line 16).
In actuality, if the destructor had a body, the the first test would determine whether the body is to be exe­
cuted (don't do anything if the pointer is zero), and the second test would be relevant if the pointer was not
zero to start with, but was zeroed by the body itself (don't delete via a zero pointer).

There is one majc:>r point illusttated by this code which requires explanation. At the start of the defi­
nition of the main program (reference to line 19). thereis an extra 4' (" before the declarations. and this is
preceded by a call to a filnctioft calfed _ma in (h This. all has to dO wiih what are called in the trade static
constructors. As was already seen.. if an. object 1s ·allocated by declaration, its constructor must be called
before any further code is executed. TbiS implies that if the object is static; that is its corpus is not on the
stack, the Constrgttor must be called before any code in its scope can be executed. The way this has been
handled is to anange fdlF1he call of all such consttuctors before any code whatsoever is executed. The func­
tion _main () conraidi, as pointas to fimctions, a list all these constructors imbedded in a/or loop. Thus
executing this loop will call each such constructor once. The way in which cfront builds the contents of
_main () will not be discussed here other than to say that AT&T has provided two techniques, one of
them machine independent but time consuming (compile time). We have implemented our own machine
dependent technique. .

4

(

(~.:

/

tline 1 "constrl.c"

/* <<cfront 2.0 (beta) 12/15/87>> */

tline l "constrl.c"
void* vec new ();
#line 1 "constrl.c"
void _vec_delete ();
typedef int (*_vptp) ();

tline l "constrl.c"
struct indirect { /*sizeof indirect 2 */
short indirect_dumm.y_Sindirect
} ;
struct b { /* sizeof b """" 4 */

#line 6 "constrl.c"
int y_lb
} ;

#line 9 "constrl. c"
extern void *_nw rt Or

!!!~~n9 v:~~nst~ . .;~~ ii~ / .
:~;~~t l~ :_c_o~~~~:· ;2~~~i~[-~~ayy l
tline 11 "constrl,;¢, ..
struct b * Othis ; .• >
int Oyy ;

tline 12 "constrl.c"
{ if (Othis •• 0) Othis • (struct b *)_nw_Fl ((long
) (sizeof (struct b))) ;
_Othis -> y_lb "" _Oyy ;
return _Othis r

... ·. l
··'

tline 16 "constrl. c"
void dt lbFv (_Othis ,
fl~el6 "Constrl.c"
st~ct b *_Othis ;

tline 16 "constrl.c"
int 0 free ;

0 free
-:··~

{ if7<° -Othis)if (_Othis)if (_O_free _dl_FPv ((void
*)_Othis) ;
}

struct a { /* sizeof a •• 4 */

tline 2 "constrl.c"
int x_la ;
} ;

5

tline 19
int main
tline 20
{

tline 21
struct a
struct b
struct a
struct b

"constrl.c"
() { _main() ;
"constrl.c"

"constrl.c"
lobja ;

=lobjb ;
*_laptr
*_lbptr ;

tline 22 "constrl.c"
_ct_lbFi (& _lobjb , 5) ;
#line 26 "constrl.c"
_laptr - (((struct a *)_nw_Fl
)))));

_lbptr - (struct b *)_ct_lbFi
_dl_FPv ((void *)_laptr)
_dt_lbFv (_lbptr , 1) ;
_dt_lbFv (& _lobjb , (int)0

} ;

#line 30 "constri.c~

I* the end */

3. Further parameter passing
..... '' '.

(long) (sizeof (struct a

(struct b *)0 , 6) ;

There is another way in which parameters: maybe ~fucimstructors, a mechanism described in the
syntax as a base-initializer. Two circumstance.freqUire th~ ~of this mechanism. The first is that of a
class member which is itself a class that contains aoonstnicilit/ The (mandatory) constructor for the outer
class contains as part of its definition a parameter list for the member's constructor. The second is that of a
base class which has a constructor. A constructor is mandatory for any derived class, and the latter contains
as part of its definition a parameter list for the base's construcur.

Here is an example of the first case:

clasf:I inner A
int yf

public: . .
iririer(int);

)}; t"
class outer {

int x;
inner aninner;
inner anotherinner;

putlic:
outer (int) ;

} ;

outer::outer(int xx)
x = xx;

anotherinner(xx+l), aninner(xx-1) {

6

(

(

inner::inner(int yy) {
y .. yy;

The class outer has two fields that are instances of the class inner. The new material between
outer: : outer (int xx) and the { are respectively parameter values for the constructors that initialize
the instances another inner and aninner of the class inner. It is suggested that the reader add to
the above example a function that declares an instance of outer and compile the example. This can most
simple be done by executing something like:

cfront < input.c > output

By now, the reader should be able to make sense of the generated C code. This exercise will show that the
constructor for outer actually calls the constructors for the two instances of inner before proceeding
with .its own body. If destructors had been defined for the classes in the example, they would be called, on
exit, in just the opposite order from that in which the constructors were called, that is, the destructor for
outer would execute its explicit body before calling the desttuctors for the instances of inner.

Here, now, is an example of the second case, a hierarchy of classes where the base class has a
constructor.

class base {
int x;

public:
base(intJ;

} ;

class derived :public
int y;

public:
derived(

} ;

base: :base (int

derived::derived(int yy) : (yy-1) {y = yy * 2;}

Look now at the definition of the constructor for derived. The item (yy-1) , a parameter list not
preceded by a variable name, is the parameter value to be given to the constructor for the base. Experiment
shows that the compiler also accep1$ the form base {yy-1 >. i.e •• the parameter. list preceded by the name
of the base class. One poiittnot mentioned in The Book: it appears that iJl a multi•level class hierarchy, if
the immediate parent class does not have a constructot, the parameter applies to the nearest ancestor that
does have one. Fmally~ a word about the order of events; If a const:rlletor for a derived class haS parameters
both for a base class and for irs own members, then the base constructor is called first, followed by the
member constructors i!'the order of their parameter lists, finally followed by the body of the constructor for
the derived class. I !uggest reading of section 4 of The Evolution of C++: 1985 to 1987 by Bjame
Stroustrup for a mac complete description of the order of execution of constructors.

7

(
The extension to multiple inheritance is straightforward. The parameters must be preceded by the

class names in order to identify them. Experiment shows that even if only one of the multiple base classes
has a consuuctor, the parameter must nevertheless be named. Here is an example:

class basel {
int x;

public:
basel(int);
} ;

class base2 f
int y;
int z;

public:
base2(int, int);
} i

class derived : public basel, public base2 {
int w;

public:
derived (int);

} ;

basel: :basel (

base2: : base2
{

y ""
z

de r .tved: : derived (int
{

w • ww;

void f ()
{

derived a(Z);

.. :-: .. · -_ .·. .

), base2(ww-l, ww * 3)

Here, the declaration der i'_,.d a .(2); ···causes the consttuctor for ·derived to be called with parameter
value 2. Before ~ bQily of the constructor can be executed, there are calls respectively to the constructors
for basel, Wilb piaraJieter value 3, and base2, with parameter values l, 6.

4. Homemade storage management

In The Boole, section 5.5.6, there is discussion of a technique for improving performance when many
small objects of the same class are to be allocated. The example used is a simplified version of some code
that is actually to be found in the C++ compiler. Because Bjarne considers the technique to be a "hack,"
and will in time disallow it in favor of a new technique that has become available in Release 2.0, namely
redefining of the new and delete operators, I feel it is instructive to further simplify his example, and
use it as a vehicle for comparing the techniques.

8

(

c:,

Consider the following complete program. The purpose of the function main () is to exercise the
memory manager by numerous requests for creation and deletion of instances of the class name, in fact, to
exercise it sufficiently so that execution can be timed.

struct name {

} ;

char* string;
name* next; // This field will be used later,
name(char*); //that is, in the next example.

name::name(char* s)
{

main()
{

string '"' s;

con st COUNT ... lOOOOJ ·• · .. ·.· ··••· · · ·.

~=; !:!p~r(~~~]; 4~ ~~~:Y of pointers

for (int j ~ 9~ j < db~i j++) {

fo~linti~O; WQiTER; i++)
~ptr(il e ne~•·name ("Herb");

to name

/* construc:to;: a41siijn;~,..!t:trb" to field "string"*/

for (iE ~; f ~ ~~~k; i++)
delete nameptr[i];

When executing the abOve code, each instance of new name results· in a call.to thelibraryfunction that
correspondS to the ne~ operaror~ and this funcli0n in turn calls mal loc ()> Similarly~ each use of
delete results in a call to free .. Woulcbl~t it bemceif wecouldinsblad can the fmt timeforallocation
of enough memOQ" f<>r a reasonabte number· of inStances of'. name; lirik an but one of them tcigether by
means of the~ field next, and return to the caller a pointer to the remaining one? Then, subsequent
requests for JnsamiCes bld be handled by nonnal list processing techniques. The operator delete would
merely lint die ins1all& back on the list of available instances.

The next stretch of code shows how the constructor and destructor for name can be modified to
provide do-it-yourself storage allocation. This is the technique which is u.sed in the C++ compiler, is still
supported in Release 2.0, and which will eventually be disallowed. The function ma in is not shown in the
next two examples because it suffers no change.

9

(

struct name

} ;

char* string;
name* next;
name(char*);
-name();

canst NALL = 128;
name.* nfree; 11 the free list header, a global variable

name::name(char* s) II the constructor does its own
II storage allocation

name* p = nfree;

if (p)
nfree • p->next;: 1 I get the next free one

else { II allocate 128>(NALL) of them

this

name* q • (name*)new char[NALL * sizeof(name)];
for (p'."'nfree==&qJNALL'.""ll; q<p; p--)

. p.,.>next.·il~lt:
(p+ll->ri.Xt • ·Ot <·····•·•·············

P'· /I ·~;.. d• ~ t•mick, a hack
string • s;••

name,,•na..o() /I ~~~~~~c•.eturns the item to the
11 f•re:e Ii~t.x . > /···

next .. nfree;
nfree • this;
this• 0; II also a gimmick, but not a hack

I* oefinitioh of mainO .sh!>ul.d f.ollow .. here.*J.

Note now that~ ~~in ttie aboveW·resu·nf~e•. \VJUCh ~ ~ ll19bal V~ble is lnIBatized to
zero. So, thefu#·ume•theeons1rUCtoriS called, space·for NALL iltstances isallocated, andNALL'-1 of
them are chaine4~. with nf ree poiltling to the start C)f the chain. The address of the remaining one
is assigned tO this. ~.the back is that the C++ compiler, which ordinarily generates a conditional call
to the "new" funcdon.~a call conditioned on this beiltg zero, is inhibited from generating this call if there
is an assignment 1D this in the code. Therefore, the implicit call of the memory allocator is not made. A
similar thing happens in the destructor code, which obviously returns the "deleted" instance to the free liSL
The assignment of zero to this prevents the call of the "delete" function. However, there is no hack here.
The normally generated call to "delete," which is done at the poiltt of exit from the destructor, is conditioned
on this being non-zero.

Finally, we come to the recommended method, which consists of defining private new and delete
operators as members of the class name. Overloading of operatorS is planned to be the subject of the next
Technical Note, but this particular case fits exactly into the present discussion. The code is:

10

(

struct name

} ;

char* string;
name* next;
name(char*);
void* operator new(long);
void operator delete(name*);

canst NALL = 128;
name* nfree;

void* name: : operator new (long n)
{

name* p • nfree;

if (p)
nfree = p->next;

else {
name* q - (name*{new char[NALL * n];
for (p•nfree•&q[NALL-1]; q<p; p--)

p->next • p~l;.

<p+1r"">l1.ext ., Qr <-·

void name' 'operllt6~ •de!~!\~J)Pt
{

p->next • -rt~l::Mi>.>- · } >··---­

nf ree - p;

name::name(char* s)
{

strin<J • s;

... · .· . .·· ·. · ..

I will endeavorbtie.OeipJm'tbe ~mi~ of n~w ind ~let~ ~Jout~t lfeience ~·the intmne­
diate C code. If.~~ has any difficulty with the explaJ1ation, it is suggested that he create a file, say
cons tr. c~ c0Naint11g the above example, being sure to include the function main () taken from the
first example ia dlis seetion, and execute something like:

cfront < constr.c > constr.cc

Examination of constr. cc should clarify rnauers.

The operator new is a special case in behavior and representation. When an operator is redefmed, one
has a case of overloading, that is the same operator has more than one meaning. The resolution of the
ambiguity is detennined by the type of at least one of its operands. To tell the relevant part of the story, if
an operand is an instance of a class or an instance of a reference to a class, this is sufficient to identify an
overloaded operator which has been redefmed as a class member. In the case of new, the operand is not a
class instance, it is the class name. In fact, the relevant instance does not yet exists; the purpose of new
is to create iL As a member of the class, the redefmition of the operator has the form of a function defini-

11

lion. Inthecaseofnewitreads: void* name: :operator new(long n) { ... }. The reason
for the return void* instead of name* is that one might want this definition of new to be inherited by a
class derived from name, in which case returning a pointer to the base class would be an error. So, a
generic return pointer is used, and casts will appear where needed in the generated C code. The next
anomaly is the formal parameter, n. Normally, a formal parameter in this form of an operator definition
corresponds to the second argument of a binary operator (the first argument is the implicit this, a pointer
to the class object). However; here there is only one argument, the class name. One discovers on looking
at the C code that the call to the function new-the call is found in the code of the constructor-uses as the
actual parameter corresponding ton the expression sizeof (struct name). This code also applies the
cast (struct name *) to the value returned by the function. Note that the operator new that is used
inside the definition of the function new is the plain, vanilJa, system operator. This is determined by the
fact that its argument is a basic type: cha.r. There is no infinite recursion! ·. ·.

Nothing much need be said about delete; ltS argument and the formal parameter of the correspond­
ing tbnction are consistent: pointer to name. Note that a destructor is not needed in this example. If a
dummy destructor is constructed, to wit name : : ~name () { } , then if this destructor is written as an in­
line function, its presence causes no modification of the C code. If it is an explicitly defined function, then
it does nothing but call the redefmed delete function.

The performance on both the Mac II and Mac Plus of ~ examples given here may be of interest. In
order to make the most realistic possible comparison/the following functions were made in-line: the
constructor in the first example, the destructor in the second example, and both the constructor and the
operator delete function in the thiid.example, On botl:l giachines, the two programs in which one
does ones own memory management ran at an eQua1 rate/Oil the Mac Plus, the program using the system
memory management ran a factor of eight slower~ and°':' ftl!~ II, it ran a factor of eleven slower.

12

'

(

(

C++ Technical Notes-Number 3

1. Introduction

H. Kanner

Development Systems Group

Apple Computer Inc.

16 May 1988

The principal subject matter of this note is the redefining of operators. This cannot be discussed
without some mention of the general subject of overloading; it also necessitates some discussion of over­
loaded functions. To say that an operator (or function) is overloaded is to say that it takes differing actions
which are dependent on the types of the arguments (or operands). Overloading, at least for operators, is a
common feature of most programming languages that have arithmetic typing. In C, or Pascal, or
FORTRAN, the"+" symbol is used to denote either integer or floating-point addition, depending on the
types of the things to be added. There is even an instance of a prototype computer having been built in
which data items had some bits dedicated to being type flags, and in which the interpretation of a command
depended on the type of the operand (J. K. Iliffe, Basic Machine Principles, Macdonald Computer Mono­
graphs, 1968). Iliffe put it to me that while context switching in virtual memory schemes protected pro­
grammers from each other, his Basic Machine was designed to protect programmers from themselves!

The reference materials for this note are the book The C++ Programming Language (referred to hence­
forth as The Book) and the paper The Evolution of C++: 1985 to 1987, both by Bjarne Stroustrup. The
second of these describes language changes that have been made since the book was written, and which will
presumably be implemented by AT&T. In style, this note will depend more heavily on examples from the
Stroustrup book than the previous notes, primarily because I feel that some of the examples illustrate the
points as well as any that I could make up. I will enlarge upon these examples by showing the result of
compiling selected portions of them. As before, I will edit the output of the compiler to enhance read­
ability.

As is usual with this language, attempts to explain matters in a logical sequence invariably trap one
in a vicious circle. In this case, I would like to make an early introduction of the selection criteria by
which one of a set of overloaded functions or operators is to be chosen. In order to do that, I have to bring
in user-defined conversions and that cannot be done completely without describing conversion operators,
thus completing the circle because the latter is one of several topics to be discussed in the section on user­
defined operators.

2. Simple function overloading

Consider the function that produces the absolute value of its argument. In the standard C libraries,
there are two such functions, declared in ANSI C as int abs (int), and double fabs (double) .
It would be nice if the programmer could use the same function in both cases, just as the same symbol,
"+,"is used for addition of these respective types. By use of the overloading facility, this indeed can be
done in C++. The following declarations and definitions could do the trick:

overload abs; II in a header
int abs (int);
double abs(double);

int abs(int x)
{

II in a library

return x >= 0 ? x -x;

double abs (double x)
{

return x >= 0 ? x -x;

main()
{

II usage demonstrated here

int i;
double d;

d = -5.0;
d = abs (d);

i -5;
i abs(i);

This produces C code that when edited for readability would look something like this:

int abs_l(x)
int x;
{

return (x >= 0) ? x

double abs_2(x)
double x;
{

return (x >= 0) ? x

int main ()
{

int i;
double d;

d = -5.0;
d = abs_2 (d);

i = -5;
i abs __ l (i);

(- x) ;

(- x);

Note that the two incarnations of the overloaded abs function are distinguished in the C code by the names
abs_l and abs_2 • The actual output of cfront produces much more complicated names, which
contain enough infonnation to deduce from the name the numbers and respective types of the function's
arguments.

'
2

\., .
~.,,,.r

(

In real life, one would choose to define the functions as inline, i.e.:

inline int abs(int x)
{

return x >= 0 ? x -x;

inline double abs (double x)
{

return x >= 0 ? x : -x;

producing the following C code for the function main:

int main ()
{

int i;
double d;

d = -5.0;
d = (d >=
i -5;
i = (i >=

3. Simple operator overloading

0) ? d

0) ? i

-d;

-i;

The idea of providing a facility in programming languages for redefining operators so that they can be
applied to user-defined types is not a new one. After all, in a language in which representations for matri­
ces, vectors and complex numbers can be defined by the programmer, and in a world in which some of the
ordinary arithmetic operators may be applied to these entities, it is a natural desire to want to be able to
extend the meaning of said operators because such extensions may yield more readable programs. For
example, I define a complex number type as:

struct complex {
double re;
double im;

} ;

I can then define a function that returns the sum of two complex variables as:

complex sum(complex a, complex b)
{

complex temp;

temp.re = a.re + b.re;
temp.im = a.im + b.im;
return temp;

and perform the addition by calling the function, as in

3

complex a, b, c;

a = sum(b, c);

I can even declare complex as a class, and make sum a friend of the class. But, wouldn't it be lovely
tobeabletowritea = b + c; ?

This,can be done by the-provided methods for overloading an operator. The notation is simple. For
the operator"+," one simply defines, as a member or friend of the class, a function whose name is
operator+. For the simple example above, one would write:

class complex {
double re, im;

public:

} ;

and define the operator by:

complex(double r, double i) // the constructor
{

re = r; im = i

friend complex operator+(complex, complex);

inline complex operator+(complex a, complex b)
{

return complex(a.re + b.re, a.im + b.im);

The use of a constructor in the above definition shortens the source code; the code shown previously as the

f

4 •

definition of the function sum could have been used instead. \, /

4. General rules

• The language does not provide for the creation of new operators. Only a large subset of the exist­
ing operators can be redefined.

• The syntax rules for the use of a redefined operator do not change. A binary operator remains a
binary operator. A prefix operator remains a prefix operator. An operator which has both a binary
and unary definition, e.g."-," may be redefmed independently in each form. The precedence of an
operator cannot be changed. There is no provision in the methodology for redefining operators to
indicate whether a unary operator is prefix or postfix. Therefore, a redefinition of the operators
"--"and"++" cannot distinguish between prefix and postfix usage.

• The effect of the application of operators to basic typeS cannot be altered. Therefore a redefined
(overloaded) operator must be defined as a member of a class (or structure), or must have at least
one argument that is a class (or structure) object or a reference to a class (or structure). Note that I
say reference, not pointer. The operators new and delete are exceptions to this rule; they were
discussed in the previous Technical Note. Three other operators: [] , C) , and - > are exceptions
in that they must be class (or structure) members.

(

(

• The operators which may not be redefined are

sizeof & (as a unary operator) * (as a unary operator)

() (as a cast) ?

• With the exception of [], (), ->,and a category, to be described in Section 5 below, called
conversion operators, all redefined operators map to functions in the following way:

A unary operator@, used in the context @x if it is a prefix operator and the context x@ if
it is postfix, where x is an object of the class for which @ has been redefined, is inter­
preted as x. operator@ () if operator@ has been defined as a class member, and as
operator@ (x) if operator@ has been defined as a friend of the class. (Remember
that this, the pointer to the object, is an implicit argument of operator@ when that
function is a class member.)

A binary operator@, used in the context x@y, is interpreted as x. operator@ (y), if
operator@ has been defined as a class member and x is an object of that class. If
operator@ has instead been defined as a friend of the class, then at least one of the
arguments x and y must be an object of that class, and the interpretation is
operator@(x, y).

With respect to the above rules, for any argument which must be a class object, the corresponding
formal parameter in the operator definition may be either the class itself or a reference to the class. It is
time now for a more complete example. What follows is a subset of the material that would normally be
in a header file called complex. h. In the real header, the constructor and all of the operator definitions
are declared as inline. Because of the total unintelligibility of the C code produced from inline expansions, I
have modified the source so that nothing is inline.

class complex {
double re, im;

public:

} ;

complex (doubler= 0.0, double i = 0.0);
friend double real(const complex);
friend double imag(const complex);
friend complex operator+(complex, complex);
void operator+=(complex);

complex::complex(double r, double i)
{

re = r;
im = i;

double real(const complex a)
{

return a.re;

double imag(const complex a)
{

return a.im;

5

complex operator+(complex x, complex y)
{

return complex(x.re + y.re, x.im + y.im);

void complex::operator+=(complex x)
{

re += x.re;
im += x. im;

The C produced by the above code, modified for readability, is:

struct complex {
double re;
double im;

} ;

struct complex *_complex_constructor(_this, r, i)
struct complex *_this;
double r;
double i;

if (_this == 0)
this = (struct complex *)

_new((long) sizeof (struct complex));
this->re = r;

-this->im = i;
return _this;

double _real(a)
struct complex a;
{

return a.re;

double _imag(a)
struct complex a;
{

return a.im;

struct complex _plus(x, y)
struct complex x;
struct complex y;
{

struct complex _temp;

_complex_constructor(& _temp, x.re + y.re,
x . im + y . im) ;

return _temp;

6 •

void _complex_plus_assign_op(_this, x)
struct complex *_this;
struct complex x;
{

this->re += x.re;
=this->im += x.im;

Let us now use these definitions in a short program:

void f ()
{

which compiles to:

void
{

complex x, y(3,4), z;
double d;

x = complex(l,2);
d real (x);
z x + y;
z += x;

f()

struct complex x;
struct complex y;
struct complex z;
double d;

_complex_constructor(&x, (double) 0.0, (double) 0.0);
_complex_constructor(&y, (double) 3, (double) 4);
_complex_constructor(&z, (double) 0.0, (double) 0.0);

struct complex _temp;

_complex_constructor(&_temp,
(double) 1, (double) 2);

x = _temp;
}

d _real (x)
z = _plus(x, y);
_complex_plus_assign(&z, x);

Note particularly the treatment of the "+=" operator, which is the one instance of an operator which has
been defined as a member function. In the expression z += x, the call, in C++ terms, is to the member
function operator+= for the class object z, and the single argument is x. In the C expansion, the
implicit parameter this (pointer to class object) appears as an added first argument, and in the call of the
function is given as the address of z • A second point about an overloaded assignment operator is that
overloaded versions of= and an operator @ do not have to conform to the equivalence relation that holds for
the default operators, to wit: that a == a @ b is equivalent to a @= b.

7

5. User-defined conversions

The exact rules for conversions and the rules governing their application are singularly hard to find in
The Book. Conversions may be explicit or implicit: implicit conversions are exemplified by those
described in Section 6.6 of the Reference Manual in The Book. e.g. the conversion of an int to a
double in an arithmetic expression that has both kinds of operands; explicit conversions are those spelled
out by use of a cast. We are concerned here with two aspects of this general subject: the extension of the
language by conversions that coerce operands in either direction between basic types and user-defined types.
and the use of those and other conversions in deciding which instance of a group of overloaded functions is
to be called.

A constructor that takes a single argument can be regarded as a conversion operator. or cast, that
converts the type of the argument to the type of the class of which the constructor is a member. For
example, the constructor for complex given in Section 4 above has defaults for its two arguments. and
therefore certainly can be called with only one argument. The constructor called with one argument can be
regarded as a conversion operator that converts a double to a complex. Thus, the same effect is
produced by the following three statements:

complex z = complex(ll, 0);
complex z = complex(ll); and
complex z = 11;

In the last of the above, the conversion takes place implicitly. Note that for all of the three, a previous
implicit conversion first had to take place. The int 11 had to be converted to the double 11. 0
before the conversion to complex could be invoked. This demonstrates that once such a constructor has
been defined. mixed expressions containing int. double. and complex can be written without the need
for any casts.

The reverse conversion. that from a user-defined type to a basic type, is performed by a new animal,
one called a conversion operator. The syntax for it is that of a unary operator that is a member function of

8

the class, where the symbol representing the operator is the name of the basic type, delimited on the left by "· ...
at least one space. Thus. a class member defining a conversion to int would be declared
operator int () • This is well illustrated by the class "tiny," to be found in Section 6.3.2 of the
book. A slightly modified version is reproduced below with the inline function definitions rewritten. and a
small program using it is shown. The purpose of the class is to describe objects that are integers in the
range 0 to 63, and to provide range checking after arithmetic operations wherever necessary.

class tiny {
char v;
int assign(int);

public:

} ;

tiny(int); II constructor: convert an int to a tiny
tiny(tiny&); II constructor: one tiny

II initializes another
int operator=(tiny&);
int operator=(int);
operator int();

/~
'. I,

\\._j

(

C'
/

tiny::assign(int i)// this private member does range
//checking

if (i & -63)

else

printf("range error\n");
exit(l);

return v i;

tiny::tiny(int i) //construct from integer;
{ //must check range

assign(i);

tiny::tiny(tiny& t)// construct from instance of tiny;
{ // range check unnecessary

v = t.v;

int tiny::operator=(tiny& t)// assign tiny to tiny;
{ // range check unnecessary

return v = t.v;

int tiny::operator=(int i)// assign int to tiny;
{ //must check range

return assign(i);

tiny::operator int()
{

return v;

Here is a cleaned-up version of the C code produced from the above.

extern int printf ();
extern int exit ();

struct tiny
char v;
} ;

int tiny assign(this , i)
struct tiny * this;
int i; -
{

else

if (i & -64){
print("range error\n")
exit(l);

return (int) this->v i);

9

struct tiny* tiny constructor 1(this, i)
struct tiny *=this; - -
int i;
{

if (this ==• 0)
- this = (struct tiny *j _new((long) sizeof

(struct
tiny assign(this, i);

return _this;-

struct tiny *_tiny_constructor_2(_this, t)
struct tiny *_this;
struct tiny *_t;
{

if (this === 0)
_this= (struct tiny *) _new((long) (sizeof

(struct tiny)) ;
this->v = (*t) .v;

return _this;

int tiny as 1(this, t)
struct tiny * this;
struct tiny *"°"t ;
{

return (int)_this->v

int _tiny_as_2(_this, i)
struct tiny *_this;
int i;

(*t) .v;

return _tiny_assign(_this, i);

int tiny int(this)
struct tiny * this
{

return (int) _this->v;

In looking at the above code, and the C++ source from which it was produced, I was briefly puzzled as to
why the uSignment operatOr was defined as returning an int, particularly because the very next example in
The Book defines an overloaded assignment operator as returning void. The reason undoubtedly is to
permit nesting, i.e. to provide for multiple assignment statements.

The reader should study the examples of the application of tiny given in Section 6.3.2. I will
analyze only one of these in order to illustrate the significance of the conversion operator operator
int. The example is the declaration: "tiny c3 = c2 - cl;", where c2 and cl are objects of class
tiny . Compilation of this declaration produces:

tiny constructor l(& c3, tiny int(&c2)
- - -- _tiny_Int(&cl));

10 •

,;{'~"'

'~;

(

(

Let us analyze this example. The constructor tiny constructor 1 is the one which takes an inte­
ger argument. The presence of a minus sign on the rlght hand side of the quoted C++ declaration causes
implicit call of the operator that converts an instance of tiny to an int. The difference between the two
integers so obtained becomes the argument given to the constructor. Thus, by implicitly converting to
int when faced with arithmetic operators wanting int operands, it becomes unnecessary to redefine the
arithmetic operators for tiny.

The rules for choosing which one of a set of overloaded operators or functions is to be called can now
be stated (I quote from Section 8.9 of the Reference Manual):

In the order stated-

• Look for an exact match and use it if found.

• Look for a match using standard conversion and use any one found.

• Look for a match using user-defined conversions. If a unique set of conversions is found use it.

We are are talking here about a match between the types of the actual arguments and the types used in the
operator or function declaration. The terms used in the above rules require some explanation. The Book
states that a zero, a char, or a short are to be considered as exact matches to a formal parameter of type
int, that a float is similarly regarded as an exact match to a requested double, and that the only
standard conversions to be used are int to long, int to double, and the pointer and reference conver­
sions given in Sections 6.7 and 6.8 of the Reference Manual. Section 6.3.3 of the main portion of The
Book contains a discussion of the rationale for the above rules and a number of examples. It is emphasized
that only one level of user-defined conversion is accepted, so an instance of an overloaded function/operator
cannot be chosen via a chain of user-defined conversions.

6. Assignment and initialization

We have already seen instances of an overloaded assignment operator and initialization by overloaded
constructor in the class tiny, where the type of the parameter determined whether range checking was
required. Here we look at a more subtle requirement for these functions. This is illustrated quite capably in
Section 6.6 of The Book. Basically, the scenario is one of a class which contains a field that is a pointer
and a constructor which dynamically allocates the space to which that pointer refers. The class definition,
as described to this point, is:

struct string
char* p;

} ;

int size;
string(int);
-string();

string::string(int sz)
{

p =new char[size sz];

string: : -string()
{

delete p;

11

It is shown that with merely the above definition, neither assignment nor initialization will work properly
with respect to construction and destruction. The rule that you only destroy that which has been
constructed, and only do it once, is violated. The cure is to add to the class the members:

void string::operator=(string& a) //assignment operator
{

if (this == &a)
return;

delete p;
p =new char[size =a.size];
strcpy(p, a.p);

string::string(string& a) //constructor taking
{ // reference to string as argument

p =new char[size =a.size];
strcpy (p, a .p);

The assignment operator would be implicitly called upon assignment of one instance of string to
another, both having been previously declared. The constructor would be implicitly called upon initializa­
tion of a freshly-declared string by a previously-declared and initialized one. The reader should extend the
class string as I have just indicated, and look at the C code produced by compiling it together with the
sample program:

void f ()
{

string sl(l0);
string s2(20);
string s3 = sl; // this will call string(string&)
s2 = sl; // this will call operator=(string&)

A more difficult case to follow, which I will now demonstrate, involves parameter passing and
function return. A persistent refrain throughout The Book is that the semantics of parameter passing is
identical to that of initialization. Since this statement is significant only when initialization has different
semantics from that of simple assignment, it follows that it is significant only when the formal parameter
of an initialization function is a reference. In Section 6.6, it is stated that function return also has the
semantics of initialization. This means that if a constructor of the form string (string&) has been
defined, this constructor will be implicitly called when passing a parameter of type string or returning a
value of that type. This is demonstrated with the program:

string ss(lO);

int g(string str){ return sizeof str;}

string h(){ return ss; }

main()
{

int i;
string s(S);

i g(s);
s h ();

12

/(~···~"-.\

__/

(
which, when considerably massaged after compilation, would look something like this:

struct string ss

void g (str)
struct string *str;
{

return sizeof *str;

void h(result)
struct string *_result;
{

/*

*/

The call below is to the constructor that
takes a reference to a string as an argument.
The function h is passed an address, "_result,"
and, by calling the constructor, causes allocation
and copying so that the string whose address is in
result becomes a true copy of the string ss.

string constructor 2(result,
- (struct string*) &ss);

int main ()
{

int i;
struct string s;

I*

*/

the call below is to the constructor that
takes an integer argument

_string_constructor_l(&s, 5);
{

struct string _templ;

/*

*/

The constructor, which is the argument
of g, causes the string _templ to be a
true copy of s, and returns the address
of _templ.

i = g(string constructor 2(& templ,
- - (struct-string *)&s));

13

7. The special cases

struct string _temp2;

I*
The call of h causes _temp2 to become a
copy of ss. Then the call of the string
assignment operator makes the assignment
from temp2 to s.

*/ -

h (& temp2);
_string_as(&s, (struct string*) &_temp2);

/*

*I

Finally, destructors are called to get
rid of _templ, _temp2, and s.

string destructor(& temp2, (int) 0);
-string-destructor(&-templ, (int) 0);
=string=destructor(&s, (int) 0);

The Book describes overloading of the subscription operator [J and the function call operator () .
The paper cited in the introduction to this note describes the proposed overloading of the operator - > . All
three of these must be defined as member functions of that class for which an instance thereof is to be their
left-hand operand

This section will be mercifully short. The Book gives adequate examples of the application of over­
loading for the first two of the three operators. Only a brief synopsis of them will be presented here.

Two kinds of application of the subscription operator are presented. The first is simply to provide
range checking. That is, if a class is defined such that a class member is an array. with other class members
giving the upper and lower bounds of legal subscripts, then a subscription operator can be defined that
checks the bounds, aborts with an error message if a given subscript is out of range, and otherwise does a
normal subscription relative to the lower bound. The syntax is straightforward. If in a class called alpha
the subscription operator is declared as a member, e.g. by the declaration int& opera tor [J (int) ; ,
then this overloaded instance of the operator is implicitly invoked by alphavar [5 J. where alphavar
is an instance of alpha. The only interesting thing about this is that the operator has been declared as
returning a reference to an int. This is to permit the subscripted variable to appear on the left side of
an assignment. The other example, and a very interesting one it is, is given in Section 6. 7 of The Book.
It shows how an associative array can be set up and addressed Each array element consists of a
string/integer pair. Given that this array is a class member and that the subscription operator is declared for
the class, then a call might look like vec ["Herb" J • where vec is an instance of the given class. The
operator returns a reference to the associated integer if the string is found in the array. If the string is not
found, the array is extended with a new element containing the stting and an initialized value (zero) for the
integer. In The Book, this is used to produce a count of the number of appearances of each of a set of
strings in a buffer. Each time a given string is found, the count is bumped; again, this can be done because
the return value is a reference. The application of associative arrays to symbol table maintenance is
obvious.

14 ~

,,/

(

(

The function call operator, (),does not add any new capability to the language; it is purely cosmetic
in nature. I will illustrate its use by taking the example of the iterator, Section 6.8 of The Book, and
rewriting the declaration so that the call is to a member function instead of using an overloaded function call
operator. Then I will show the alternate way of writing the same declaration and call, using an overloaded
() operator. All that needs to be recalled from the previous paragraph is that the array of string/integer

pairs is the private data of a class, to be called assoc. The object of the iterator is to return a pointer to
such a data pair, and to bump an index so that the next time it is called it produces a pointer to the next
pair. The iterator is a class, called assoc iterator. Its private data are an index and a pointer to an
object of assoc. The declaration of assoc must declare assoc iterator as a friend. Now here is
what this class might look like: -

class assoc_iterator {

/* private data */

public:

} ;

assoc iterator(assoc&); //constructor
pair*-iterate(); //this one does the real work

II "pair" is the type of the
II associative array members

and the code fragment that calls the iterator would look like:

assoc vec(512) // construct vec, an object of assoc

assoc iterator next(vec) // construct next, an object
II of assoc_iterator

pair* p;
p =next.iterate(); //call the iterate function

Since the only member function of assoc iterator, aside from its constructor, is iterate, the use
of the function name might be regarded as a bit redundant. The ability to overload the () operator allows
us to eliminate this name. The declaration _changes to:

class assoc_iterator {

/* private data */

public:

} ;

and the call changes to:

assoc iterator(assoc&); //constructor
pair*-operator() (); //this one does the real work

II "pair" is the type of the
II associative array members

assoc vec(512) //construct vec, an object of assoc

assoc iterator next(vec) // construct next, an object
II of assoc iterator

pair* p;
p =next(); //call the iterate function

15

The last operator to be considered in this group of special cases is - > . Having been described in The
Evolution of C++: 1985 to 1987, I anticipate that it will appear in the same release of the C++ compiler
that implements other features, such as multiple inheritance, that are described in the paper. It differs from
the other cases of operator overloading in that activation of the function corresponding to -> starts a two­
step process. For the expression x->m, where x is an object of a class having as a member the function
operator-> (),the function is first called. It must return a pointer to an object that has a member
named m. Call this pointerp. The original expression x->m is now replaced by p->m. This definition
has the following implications:

Given a class X in which P* operator-> () is defined as a member, and given x as an
instance of or reference to x, then for x->m to be valid, the function operator-> () must
return p, where the type of pis P*, where P has a field named m, where p is in the scope of the
function operator-> () , and where p->m is in scope at the place where x->m appears.

The example below illustrates the simplest application of a redefined - >; it can be thought of as a
vanilla - > with arbitrary side effects.

struct test{
int i;
test* operator->();

} ;

test* test::operator->()
{

main ()
{

printf("hi\n");
return this;

test* ptest
int ii;
test& testx

testx->i = 5;

new test;

*ptest;

ii = testx->i;
printf("%d\n", ii);

This, when executed, should print

hi
hi
5

Each "hi" is a side effect of the overloaded operator.

For a second example, I modify slightly the example in the cited paper in order to demonstrate the
generality of the overloaded operator.

16 >

(

(_/

struct Y {
int m;

} ;

Y* p; II The modification is that I have made p a global.
II In the paper, it is a member of class X.

class x {
public:

Y* operator->();
} ;

Y* X::operator->()

printf("hi\n");
return p;

void f(X x)
{

printf("%d\n", x->m);

main()
{

y yy;
X xx;

p = &yy;
yy.m = 5;
f (xx);

This, when execut.ed, should print

hi
5

I want to conclude this section by clarifying a point in the paper which I found confusing. After the
example that is much like the one above, the paper continues:

void f(X x, X& xr, X* xp)
{

x->m;
xr->m;
xp->m;

II x.p->m
II xr.p->m
II error: X does not have a member m

The comment on the erroneous line is correct, but fails to make the important point, which is that the
overloaded operator is not invoked in attempting to evaluate xp->m. This is because the left-hand operand
of - > is not the class x; it is a pointer variable, and as such does not have any members, much less the
member function operator->() • Therefore, xp->mbecomes (*xp) .m, for which the error comment
is true.

17

