
I 

J 

t 
( tl Macintosh~ 

Introduction to 
Programming 

Beta Draft 

Mitchell Gass 

Macintosh 
Environments 

Developer Technical Publications 

March 20, 1989 

Apple Confidential 

C Apple Computer, Inc., 1989 



S APPLE COMPUI'ER, INC. 
This manual is copyrighted, with all 
rights reserved. Under the copyright 
laws, this manual may not be copied, 
in whole or in pa.rt, without written 
consent of Apple. 
© Apple Computer, Inc., 1989 
20525 Mariani Avenue 
Cupertino, CA 95014 
(408) 996-1010 

Beta Draft 

Apple, the Apple logo, AppleTalk, 
A/UX, HyperCard, MacApp, 
Macintosh, and SANE are registered 
trademarks of Apple Computer, Inc. 
APDA, Hypetralk, MacWorlcStation, 
MPW, MultiFinder, and ResEdit are 
trademarks of Apple Computer, Inc. 
Adobe Illustrator is a trademark of 
Adobe Systems Incorporated. 
ITC Garamond and ITC Zapf 
Dingbats are registered trademarks of 
International Typeface Corporation. 
Language Systems FORTRAN is a 
trademark of Language Systems Corp. 
Llghtspeed is a registered trademark of 
Llghtspeed, Inc. 
MacFortan/MPW is a trademark of 
Absoft. 
Microsoft is a registered trademark of 
Microsoft Corporation. 
POSTSCRIPT is a registered trademark 
of Adobe Systems Incorporated. 
SNA is a registered trademark of 
International Business Machines 
Corporation. 
Symantec is a registered trademark of 
Symantec Corporation. 
THINK's LlghtspeedC and THINK's 
Llghtspeed Pascal are trademarks of 
Symantec Corporation. 
TML Pascal is a trademark of TML 
Systems, Inc. 
UNIX is a registered trademark of 
AT&T Information Systems. 
Simultaneously published in the 
United States and Canada. 

n 



• 
Beta Draft 

Contents 

Preface Jx 

Chapter 1 Programming for the Macintosh Family 1 
A standardized user interface 2 
Event-driven prograrm 2 
The User Interface Toolbox 5 
Resources 6 

Chapter 2 A Quick Look at Available Development Environments 9 
Choosing a development environment 10 

HyperCard 10 
MacWorkStation 10 
MacApp 10 
Other development environments 11 
MPW 11 

Chapter 3 HyperCard 13 
About HyperCard 14 
Advantages of HyperCard 14 

Easy to learn 14 
Speeds development 14 
Provides a rich environment 15 
Universal availability 15 
Extensibility 15 

Disadvantages of HyperCard 15 
Can only be used to develop stacks 15 
Fewer features than other programming languages 16 
No direct access to the Toolbox 16 

Using HyperCard 16 
Creating objects 16 
Writing scripts 19 

lii 



Beta Draft 

Chapter 4 MacWorkStation 21 
About MacWorkStation 22 
Advantages of MacWorkStation 22 

Provides the full power of the Macintosh 22 
Eliminates Macintosh programming 23 
Doesn't require host processing time 23 
Speeds application development 23 
Is extensible 23 

Disadvantages of MacWorkStation 23 
Using MacWorkStation 24 

Writing the client application 24 
Selecting a communication method 24 
Writing additional code 24 
Writing the log-on and log-off scripts 25 
Creating the MacWorkStation document 25 

Chapter 5 MacApp 27 
About MacApp . 28 
Advantages of MacApp 28 

Reduces coding required for applications 28 
Speeds application development 28 
Provides excellent code 28 
Provides benefits of object-oriented programming 29 
Helps applications conform to human-interface guidelines 29 
Assures compatibility with future systems 29 
Includes source code 29 
Includes necessary makefiles 29 

Disadvantages of MacApp 30 
Requires time to learn 30 
Can only be used to develop applications 30 
Umited choice of languages 30 
Requires MPW 30 

Using MacApp 31 
Starting with a sample application 31 
Building a sample application 31 
Creating your own application 32 
Adding functionality 32 
Adding resources 33 
Debugging your application 33 

CONTENTS iv 



Beta Draft 

Chapter 6 The Macintosh Programmer's Workshop 35 
About MPW 36 

( Advantages of MPW 36 
Provides a full-featured development environment 36 
Provides an integrated development environment 37 
Supports large development projects 37 
Creates any kind of program 37 
Reflects latest development at Apple 37 
Lets you create your own environment 38 
Supports object-oriented programming 38 
Works with MacApp 39 

Disadvantages of MPW 39 
Complexity 39 
Slow compiling and linking 39 
Hardware requirements 40 
No choice of text editors 40 

UsingMPW 40 
Starting with a sample program 41 
Building the sample program 42 
Expanding the program 42 

Using Projector 43 
Adding build commands 44 

( 
Debugging the program 45 
Measuring the program's performance 45 

Chapter 7 Other Development Environments, Languages, and Tools 47 
Development Environments 48 

AIUX 48 
languages 49 

languages for MPW 49 
Tools 50 
Comparisons of popular programming languages 50 

lightspeedC and Lightspeed Pascal 50 
Fast compiler and linker 50 
Easy to learn 50 
Integrated environment 51 
Project management 51 
Automatic Toolbox initialization 51 
Can be used to develop any kind of program 51 
Inexpensive 51 

Benchmarks 51 

CONTENTS v 



Beta Draft 

Chapter 8 Information for Software Developers S3 
Introductory information 54 
General references 54 
MPW 55 
MacApp 56 
HypetCard 56 
MacWorkStation 58 
Guides to other development products 58 
APDA 59 
Apple Developer Program.5 59 

CONTENTS vi 



( 

( 

(.·. 

j 

Beta Draft 

Figures and tables 

1 Programming for the Macintosh Family 3 
Figure 1-1 Types of events 
Figure 1-2 Flow of control in an event loop 
Figure 1-3 Relationship of Toolbox calls to Operating System calls 6 

3 Hypercard 13 
Figure 3-1 HyperCard objects 17 
Figure 3-2 The Objects menu 18 
Figure 3-3 Button Info dialog box 18 
Figure 3-2 Script editor box 20 

5 MacApp 27 
Figure 5-1 An Inspector window 34 

6 The Macintosh Programmer's Workshop 35 
Figure 6-1 Developing Software with MPW 41 
Figure 6-2 The Build menu 42 
Figure 6-3 A New Project window 43 
Figure 6-4 The Check Out and Check In windows 44 
Figure 6-5 The CreateMake dialog box 44 

CONTENTS vii 



Beta Draft 

CONTENTS vlli 



( 

Beta Draft 

Pref ace 

PROGRAMMING ENVIRONMENTS ARE COll.ECTIONS of tools and other facilities for 
developing computer software. This manual provides the information you need 
to choose a programming environment for the Apple® Macintosh® family of 
computers. It answers these important questions: 

• How is developing software for the Macintosh family different from 
developing software for other computers? 

• What are the advantages and disadvantages of available software 
development environments for the Macintosh family? What is it like to use 
each development environment? 

• Where can I find the information I need to develop Macintosh software? 

Introduction to Macintosh Programming Environments is written for anyone 
interested in developing software for the Macintosh family of computers, 
including 

• professional software developers 

• managers responsible for software development projects 

• computer enthusiasts 

It assumes that readers have programmed at least one other computer and that 
they are familiar with the Macintosh desktop interface. If you haven't yet used a 
Macintosh computer, you should become familiar with one or more Macintosh 
applications before reading this booklet. • 

ix 



. 
Beta Draft 

x 



• 

( 

( 

Beta Draft 

Chapter 1 Programming for the 
Macintosh Family 

SOFTWARE FOR THE MACINI'OSH FAMILY is fundamentally different from software 
for other computers. This chapter describes these differences-a standardized 
user interface, event-driven program.5, the User Interface Toolbox, and 
resources-and explains how they benefit software developers. 

CHAPTER 1 Programming for the Macintosh Family 1 



Beta Draft 

A standardized user interface 

The Macintosh user interface is the single most important reason for the success of the 
Macintosh family. It provides a set easy-to-learn, intuitive techniques that make using 
the Macintosh a pleasure rather than a chore. For example, users needn't memorize 
commands; instead, they simply pull down menus to see the commands that are available. 
A variety of direct manipulation techniques, such as moving a file by dragging the file's 
icon, let users see the results of their actions. 

A key advantage of the Macintosh user interface is its consistency: Once users are familiar 
with one Macintosh application, they can use the same skills in almost any other 
application. As a result, learning time and frustration are dramatically decreased. 

The standard user-interface elements and their correct use in programs are described in an 
extremely useful book, Human Interface Guidelines: 1he Apple Desktop Interface. This 
book distills years of research and user testing into practical guidelines for program 
design. ·By following the guidelines, you will ensure that your programs are both easy and 
efficient to use. 

Event-driven programs 

In all well-written Macintosh programs, the user is in charge. The user guides the 
interaction with the computer-using the available menus, windows, dialog boxes, and 
other controls-rather than the other way around. This responsiveness to the user 
distinguishes Macintosh programs from conventional programs. 

The actions a user performs to control the Macintosh-such as a press of the mouse 
button or a key on the keyboard-are known as events. To respond to these events, 
Macintosh programs must be event-driven: they need to constantly check for incoming 
events, determine the significance of each even~ and respond as necessary. 

Events include keyboard events, mouse events, and disk-insertion events. Activity on a 
communications network can also generate events. These events are shown in Figure 1-1. 

CHAPTER 1 Programming for the Macintosh Family 2 



• 

(~ 

( 

Beta Draft 

• Figure 1-1 Types of events 
..... 

@ . 

• Q 3ii(I 

\ ] 

Activate and update events 

Disk-inserted events 

Keyboard events Mouse-down events 

At the core of each Macintosh program is an event loop that handles incoming events. 
Figure 1-2 illustrates what happens in a typical event loop. 

CHAPTER 1 Programming for the Macintosh Family 3 



Beta Draft 

Flow of control in an event loop 

make standard initialization calls 
put up window 
fff begin main event loop fff 

...--41~ wait for events 
key-down event'? 

Command key down'? 
yes: do a command 
no: accept typing from user 

mouse-down event'? 
where is the mouse'? 

is it the front window'? 
no: bring it to the front 
yes: user is selecting something 

in a desk accessory window'? 
pass event to the Desk Manager 

in the menu bar'? 
call Menu Manager, then do command 

in the window's title bar'? 
call Window Manager to drag the window 

in the window's size box'? 
call Window Manager to resize the window 

in a control (button, scroll bar, ..• ) 
call Control Manager to find out which 

control 
then act on that control 

activate event'? (a new window is being activated) 
enable some menu items, disable others, etc. 

update event'? (part of a window needs to be redrawn) 
redraw the window 

repeat until the user chooses "Quit" from the File menu 

Because the events a Macint~h program must respond to are almost always the same, an 
event loop is an easily reused piece of code. This means that you never need to write a 
Macintosh program from scratch; if you don't have a good example of the kind of 
program you're writing, you begin with an already-written event loop. 

CHAPTER 1 Programming for the Macintosh Family 4 

,r 
"'-'. 



Beta Draft 

The User Interface Toolbox 

The designers of the Macintosh realized that the easiest way to get programmers to use 
the standard Macintosh user interface was to give them all the code they need to 
implement it. This code is known as the User Interface Toolbox. The Toolbox provides 
routines for creating menus, windows, dialog boxes, and all of the other standard elements 
of the Macintosh user interface. It also provides support for handling events. Thanks to 
the Toolbox, it's much easier to implement the standard Macintosh interface than to 
create a non-standard interface of your own. 

Because Toolbox routines are highly optimized, using them also saves execution time 
over equivalent routines you'd write yourself. Another advantage of using the Toolbox is 
that the routines are guaranteed to work in future versions of the Macintosh. Thus, using 
Toolbox routines whenever possible helps to ensure the future compatibility of your 
programs. 

Most of the Toolbox routines are stored in the Macintosh ROM, while the remaining 
Toolbox routines are loaded into RAM when the Macintosh starts up. The routines can be 
called from any programming language that provides the appropriate interfaces. In tum, 
the Toolbox routines call lower-level routines in the Macintosh Operating System to 
perform specific tasks. This relationship is illustrated in Figure 1-3. 

CHAPTER 1 Programming for the Macintosh Family 5 



Beta Draft 

• Figure 1-3 Relationship of Toolbox calls to Operating System calls 
User 

Application program 

User Interface Toolbox 

Operating System 

Resources 

A resource is a chunk of data that is used by a Macintosh program. For example, the 
definitions for a program's menus, windows, and icons are nonnally stored as resources. 
Any information that is used by a program can be stored as a resource; in fact, even the 
pieces of code that make up a program are resources. You can thus think of a Macintosh 
program as a collection of resources. 

CHAPTER 1 Programming for the Macintosh Family 6 

,{ 



Beta Draft 

The advantage of resources is that they allow the data used by a program to be stored 
separately from the program's code. This makes it possible to change a program's data 
without changing its code. For example, suppose you want to create a French version of a 
program that was originally written for English speakers. You open all the resources that 
contain text for the program, such as the text in the program's menu and dialog box 
resources, replace the text with French, and voild, you've created a French version without 
ever touching the code. Moreover, easy-to-use tools like ResEdit, a Macintosh resource 
editor, let ordinary users change a program's resources. This gives users more control over 
the programs they use and lets non-programmers perform routine program maintenance. 

There are many standard types of resources that you can use in your programs. These 
include the menu, window, icon, and text resources mentioned above. You can also 
create new resource types for data that is specific to a program. 

CHAPTER 1 Programming for the Macintosh Family 7 



Beta Draft 

( ! . 
'_,// 

CHAPTER 1 Programming for the Macintosh Family 8 



( 

( 

Beta Draft 

Chapter 2 A Quick Look at Available 
Development Environments 

THIS CHAPTER PROVIDES BRIEF DESCRIYilONS of the most widely used Macintosh 
development environments; Read it to find one or more environments that are 
appropriate for your needs and then tum to the following chapters for more 
complete descriptions of those environments. • 

CHAPTER 2 A Quick Look at Available Development Environments 9 



Beta Draft 

Choosing a development environment 

The environments described in the following sections are arranged in order of ease of use. 
The easiest of these, HyperCard®, allows even a beginner to create useful program.5 in just 
a few hours. The most sophisticated environmen~ the Macintosh Programmer's 
Workshop (MPW™), is most appropriate for professional programmers who are already 
familiar with other full-featured development environments. 

HyperCard 

Of the software development environments for the Macintosh, HyperCard is by far the 
easiest to use. It is ideal for beginning programmers and programmers who need quick 
results. It can also be used to develop user-interface "front ends" for other applications, 
including applications that run on other computers. Avoid HyperCard if your application 
needs user-interface features that HyperCard doesn't provide, such as multiple windows 
and color displays, or if your application perfofIIl.5 "number crunching" or other processor­
intensive tasks. 

MacWorkStation 

MacWorkStation™ is used for applications in which a Macintosh is connected to another 
computer. It lets you build applications that combine the best features of the Macintosh, 
such as its forgiving user interface, with the capabilities provided by the remote 
computer. Moreover, you don't have to know how to program the Macintosh to use 
MacWorkStation. The program you write for the remote computer send messages to 
request Macintosh services. The MacWorkStation program running on the Macintosh 
receives these messages and makes the appropriate User Interface Toolbox calls to fulfill 
each request. 

MacApp 

MacApp® is an object-oriented application framework that simplifies the creation of 
full-featured Macintosh applications. Although it requires time to learn, this time is 
quickly repaid when you create your first application. It can only be used to create 
applications, however; to create other kinds of program.5, such as desk accessories and 
device drivers, you must use another programming environment. 

CHAPTER 2 A Quick Look at Available Development Environments 10 



( 

Beta Draft 

Other devdopment environments 

There are many other development environments for the Macintosh. Among them are 
LightspeedC and Lightspeed Pascal, two popular environments that you can use to create 
any kind of Macintosh program. Macintosh implementations of the USP, Pro log, 
Smalltalk, and FORTII programming languages include their own integrated development 
environments. A!UX®, a version of the AT&T UNIX operating system, is also available. 

MPW 

The Macintosh Programmer's Workshop (MPW) is the most powerful and versatile 
development environment currently available for the Macintosh. You can use MPW to 
write any kind of program for the Macintosh, including desk accessories, device drivers, 
programming tools, and standalone code resources. In addition, MPW provides a variety 
of useful features, such as shell scripts and support for multilingual programs, that aren't 
available in other Macintosh development environments. 

CHAPTER 2 A Quick Look at Available Development Environments 11 



Beta Draft • 

CHAPTER 2 A Quick Look at Available Development Environments 12 



Beta Draft 

Chapter 3 HyperCard 

OF THE SOFTWARE DEVELOPMENT ENVIRONMENTS FOR THE MACINTOSH, HyperCard 
is by far the easiest to use. It is ideal for beginning programmers and 
programmers who need quick results. It can also be used to develop user­
interface "front ends" for other applications, including applications that run on 
other computers. Avoid HyperCard if your application needs user-interface 
features not provided by HyperCard, such as multiple windows and color 
displays, or if it performs "number crunching" or other processor-intensive 
tasks. • 

CHAPTER 3 HyperCard 13 



Beta Draft 

About HyperCard 

Bill Atkinson, the creator of HyperCard, describes his creation as "an attempt to bridge 
the gap between the priesthood of programmers and the Macintosh mouse clickers." By 
any measure, the attempt is a wild success. In a matter of hours, almost anyone can learn 
to create useful HyperCard programs. 

HyperCard is an application for storing and retrieving information. In a HyperCard 
program, known as a stack, any piece of information-which can be text, graphics, or 
sound-can be linked to any other piece of information. It's also a kind of software 
"erector set" that lets you assemble objects, the building blocks of HyperCard, to create 
programs. If you haven't seen HyperCard in action, be sure to visit a Macintosh owner or 
dealer and get a demonstration of its power and versatility. 

Included with HyperCard is an easy-to-use programming language known as HypcrTalk™. 
In this chapter, you'll learn about the special advantages of HyperCard and Hypetfalk as a 
prograffiming environment and get a taste of what it's like to develop HyperCard stacks. 

Advantages of HyperCard 

If you've used HyperCard, you know how useful it can be for end users. It can also be a 
very productive environment for programmers. 

F.asy to learn 

Hypetfalk, the programming language included with HyperCard, is one of the easiest 
programming languages to learn. learning how to create a HyperCard stack requires only a 
fraction of the time needed to learn any of the other programming environments 
described in this booklet. 

Speeds development 

HyperCard handles nearly all of the work that goes into creating the user interface for a 
stack. This means that you can concentrate on what you want in a stack rather than the 
details of how to create the windows and other features, as you would with a conventional 
programming language. 

Because of the ease of HyperCard development, HyperCard can also be used to develop 
quick prototypes for other programs. 

CHAPTER 3 HyperCard 14 



( 

( 

Beta Draft 

Provides a rich environment 

HyperCard provides easy access to the text, graphics, and sound capabilities of the 
Macintosh family. Some of the best features of the Macintosh are now available to 
anyone who learns Hyper'f alk. 

Universal availability 

HyperCard is now "standard equipment" for Macintosh computers. A copy of HyperCard 
is bundled with all new Macintosh computers now being shipped. In addition, users with 
older Macintosh computers can obtain HyperCard for a very modest price. Because of 
this, the potential audience for HyperCard stacks is very large. 

Extensibility 

You can use conventional programming languages to add functionality to HyperCard 
stacks. A stack can call external commands (known as XCMDs) and external functions 
(known as XFCNs) which contain executable code written in other programming 
languages. This approach gives you the best of both: the power and flexibility of 
conventional programming together with the simplicity and speed of HyperCard 
development. 

The extensibility of HyperCard also allows it to be used as the user-interface "front end" 
for other progra~. 

Disadvantages of HyperCard 

There is, of course, a price to pay for the ease of HyperCard development: Hyper'f alk is 
not as powerful or versatile as conventional programming languages. 

Can only be used to develop stacks 

Hyper'falk is not a general-purpose programming tool. To develop Macintosh 
applications and other kinds of progra~, you must use a conventional programming 
language. 

CHAPTER 3 HyperCard lS 



Beta Draft 

Fewer features than other programming Janguages 

Hypeffalk is easy to use because it is a simple language. It does not provide the wealth of 
data types, data structures, and control constructs available in most programming 
languages. 

No dJrect access to the Toolbox 

HyperCard stacks cannot make direct calls to Macintosh Operating System and User 
Interface Toolbox routines. To use these routines, you must create standalone code 
resources known as external commands (XCMDs) and external functions (XFCNs) that 
make the necessary calls. These resources, which you write using a conventional 
programming environment such as MPW, can be called by stacks in the same way that they 
call HyperCard's built-in commands and functions. 

Using HyperCard 

Because the power of HyperCard is so accessible, creating HyperCard stacks is less like 
programming and more like the work done by writers and artists. You spend less time 
wrestling with the computer and more time thinking about how to organize information 
and how to present it creatively. 

HyperCard is a flexible tool that lets you develop stacks in a number of ways. Beginners 
can modify existing stacks or assemble stacks from pieces of other stacks. Large stacks, 
on the other hand, lend themselves to collaborative work by teams of specialists, such as 
stack designers, artists, writers, and HyperTalk programmers. The following sections 
describe the two tasks that are com.roon to all stack development: creating objects and 
writing scripts. 

Creating objects 

A Hypeffalk stack is composed of objects. These objects include the stack itself, the 
cards that make up the stack, and the backgrounds, fields, and buttons for cards. These 
objects are illustrated in Figure 3-1: 

CHAPTER 3 HyperCard 16 



. 
( 

( 

( "',, 

~--· 

Beta Draft 

• Figure 3·1 HyperCard objects 

~on -----( Push ) 

tield ___________ ._ ........................... . 

Card ~-------------

The first step in creating your stack is to specify the objects that make up the stack. You 
create the necessary artwork for backgrounds, collect sounds to be used in the stack, and 
determine the contents and layout of the cards. 

To create objects, you first enable HyperCard's programming facilities by clicking the 
Scripting button on the User Preferences card in the Home stack. You can then create an 
object by selecting one of the "New" menu items from the Objects menu: 

CHAPTER 3 HyperCard 17 



• .Figure 3·2 The Objects menu 

Objects 

Uu11 on ln1"<J ... 
r h:>h1 t n to ... 
Card Info ••• 
Bkgnd Info ••• 
Stack Info ••• 

fh·in~J Cl<•~•:>r ~le~• 

s •:> n 11 1= <n-1 h <ff ~le~ ·· 

New Button 
New Field 
New Background 

Beta Draft 

If you select an object and choose the appropriate Info item from the Objects menu, you 
can see and change the attributes of the object. For example, here is the dialog box that 
appears when you choose the Button Info menu item: 

• Figure 3·3 Button Info dialog box 

Button Name:'-======== 
card button number: 21 

Card button ID: 83 

~Show name 

0 Ruto hlllte 

Style: 
0 transparent 
Qopeque 
0 rectangle 
Qshadow 
®round rect 

( Icon... ) O check box 

[ J O radio button 
~inkTo ... 

( Scr1pt... ) ._( _o_K_,,,I ( cancel 

CHAPTER 3 HyperCard 18 

... / 



( 

( 

(~, 

/ ,' 

Beta Draft 

Writing scrip~ 

Once you've created the objects for a stack, the next task in creating your stack is 
specifying the relationships between objects. For example, you decide that clicking a 
particular button causes the next card in the stack to appear and that clicking a button in 
that card plays a reggae version of "Yankee Doodle Dandy." These relationships are 
sometimes called a navigational model; they specify how the user moves through the 
stack. For a stack of any size, careful planning is essential: you need to have a clear 
picture of the entire stack and its operation before you implement it. 

To define the navigational model, you write scripts. Scripts are sets of handlers which 
specify what happens when messages are received by an object. In tum, handlers are 
composed of HyperTalk statements. For example, suppose a user points to a HyperCard 
button and clicks the mouse button. When the user releases the mouse button, HyperCard 
sends a mouseup message to the button. The script for the button contains the 
following handler for the mouseup message: 

on mouseUp 
go to next card 

end mouseUp 

This handler displays the next card in the stack. 

To see or change the script for an object, you select the objec~ choose the appropriate 
Info menu item from the Objects menu, and then select the Script button. This invokes 
the script editor: 

CHAPTER 3 HyperCard 19 



Beta Draft 

• Figure 3-4 Script editor box 

Scrtpt of 11t11:9nd ltUtton Id 75 • •11ome • .. _.. 
111-1 •ff9Ct 1,.1• cl-

:Q 

90 -end -..USO 

CHAPTER 3 HyperCard 20 



Beta Draft 

Chapter 4 MacWorkStation 

MACWORKSTATION LETS YOU PUT A MACINTOSH "FACE" on an application running on 
another computer. Use it to build applications that combine the best features of 
the Macintosh with the capabilities provided by mainframes and 
minicomputers. 

CHAPTER 4 MacWorkStation 21 



Beta Draft 

About MacWorkStation 

MacWorkStation is one of a family of products from Apple that lets Macintosh computers 
work with other computers, including mainframes, minicomputers, and other personal 
computers. MacWorkStation allows a Macintosh user and a program running on a remote 
computer-known as a host application-to interact through the Macintosh user 
interface. It provides support for all the familiar features of the Macintosh user interface, 
including pull-down menus, windows, and dialog boxes. Thus, you can create a host 
application that, to a Macintosh user, looks and works like any other Macintosh 
application. 

Like MacApp, MacWorkStation is not a programming environment in itself, but is instead 
a set of tools for developing applications. It includes a Macintosh application that 
controls the user interface for the application, communication modules that support a 
variety of data-communication standards, and protocols for communication between. the 
host application and the Macintosh application. 

Advantages of MacWorkStation 

MacWorkStation is exceptionally useful for many kinds of applications. Its main 
advantages are described in the following sections. 

Provides the full power of the Macintosh 

MacWorkStation delivers the most important feature of the Macintosh: the Macintosh 
user interface. Host applications are no longer limited to the line-oriented interface 
provided by terminal emulation programs. Instead, they can include pull-down menus, 
windows, and all the other user-interface features that Macintosh users expect. 
MacWorkStation can also handle such tasks as printing from the Macintosh and local file 
management. Applications developed with MacWorkStation can also include code that 
performs local processing of data on the Macintosh, including code that takes advantage 
of Macintosh graphics, sound, and other features. 

CHAPTER 4 MacWorkStation 22 



Beta Draft 

Eliminates Macintosh programming 

The MacWorkStation application that runs on the Macintosh handles all the standard 
features that MacWorkStation provides. You don't need to write any Macintosh code to 

take advantage of these features, nor do you have to understand the details of the 
Macintosh Operating System or User Interface Toolbox routines. 

Doesn't require host proceMing time 

All of the processing required for MacWorkStation features, including the management of 
the Macintosh user interface, is performed on the Macintosh. The host application is 
freed to perform other tasks. 

Speeds application development 

Because MacWorkStation takes care of so many of the tasks associated with application 
development, you can develop sizable applications in weeks rather than months. 

Is extensible 

Applications developed with MacWorkStation can include executable code modules that 
run on the Macintosh. These modules-which are similar in purpose to HyperCard 
XCMDs-provide access to any features of the Macintosh. They can perform local 
processing of data, transform incoming data to graphic form for display on the 
Macintosh, or gain access to any of the Macintosh Operating System or User Interface 
Toolbox routines. 

You can also create custom communication modules for MacWorkStation that can handle 
new networks and protocols. 

Disadvantages of MacWorkStation 

Although you can use the underlying power of the Macintosh Operating System and User 
Interface Toolbox routines with MacWorkStation, you are forced to use a conventional 
programming language to create routines that are called by MacWorkStation. By itself, 
MacWorkStation does not provide access to Macintosh Operating System or User 
Interface Toolbox routines. 

CHAPTER 4 MacWorkStation 23 



Beta Draft 

Using MacWorkStation 

Every MacWorkStation application has two components: a client application that runs 
on a remote computer and the MacWorkStation server application that runs on a 
Macintosh. The server serves the client by making the features of the Macintosh user 
interface (and, optionally, local processing of data) available to the client. The following 
sections describe how you create these two components and get them to work together. 

Writing the client application 

The client application has three responsibilities: 

• acting on messages it receives from MacWorkStation 

• processing data on the host computer 

• sending messages to MacWorkStation to request the Macintosh services it needs 

For example, suppose you're using MacWorkStation to let Macintosh users retrieve 
information from a remote database. When the user chooses the Retrieve Info menu 
item, MacWorkStation sends a message to the client to let it know that the menu item has 
been chosen. The client application interprets the message and acts on it by reading the 
required data from the database. To display the information, the client sends 
MacWorkStation a message to open a window on the Macintosh Desktop. When 
MacWorkStation receives the message, it calls the necessary Macintosh Operating System 
and User Interface Toolbox routines to open the window. 

Selecting a communication method 

You can use any of a number of networks to connect the client and server, including serial, 
SNA, AppleTalk®, and Ethernet. To communicate over the network, you specify a 
communication module to handle low-level data transport between the client and 
server. This module hides the details of session management from your application. 

MacWorkStation provides three standard communication modules that work with a wide 
variety of computers. You can also write your own communication modules. 

Writing additional code 

More elaborate applications can include Macintosh code modules that perform additional 
processing. To create these executable code modules, you can use any Macintosh 
development that can generate standalone code resources. 

CHAPTER 4 MacWorkStation 24 

~·. 
:~_j 



( 

(-

(
···•· 
/ 

Beta Draft 

Writing the log-on and log-off scripts 

You next write scripts that allow the user to automatically log on to and log off of the host 
computer. You write these scripts in Communications Command Language (CO.), a 
special-purpose language provided with MacWorkStation. 

Creating the MacWorkStation document 

The last step in writing a MacWorkStation application is creating a MacWorkStatlon 
document. Like other Macintosh documents, this document appears as an icon on the 
Desktop. Users can run the finished application by opening its document. 

The document contains 

• the log-on and log-off scripts 

• the communication module used by the application 

• the resources used by the application, such as menu, window, and dialog box 
resources 

The document can also contain any executable code modules used by the application. 

CHAPTER 4 MacWorkStation 2S 



Beta Draft 

CHAPTER 4 MacWorkStation 26 



( 

( 

Beta Draft 

Chapter 5 MacApp 

MACAPP SIMPUFIES THE CREATION OF FULL-FEATIJRED MACINTOSH APPLICATIONS. 
Although it requires time to learn, this time is quickly repaid when you create your 
first application. It can only be used to create applications, however; to create 
other kinds of programs, such as desk accessories and device drivers, you must 
use another programming environment. • 

CHAPTER 5 MacApp 



Beta Draft 

About MacApp 

MacApp, the Expandable Macintosh Application, is designed to make creating a 
Macintosh application as efficient as possible. It is a generic application, built using 
object-oriented techniques, that contains all the user-interface features of a desirable 
Macintosh application: menus, windows, dialog boxes, and more. When you create an 
application with MacApp, nearly all the work required for the user interface is already 
complete. This frees you to create the parts of your application that are unique. 

MacApp is not a programming environment in itself. It must be used with MPW or another 
programming environment that supports it. 

Advantages of MacApp 

Of all the development tools available to Macintosh programmers, MacApp may be the 
most valuable. The following sections explain why. 

Reduces coding required for applications 

By providing all the code needed for standard application elements, such as windows, 
menus, and dialog boxes, MacApp eliminates nearly all of the coding required to develop 
the user interface for an application. The closer an application conforms to the ideal user 
interface that is built into MacApp, the less coding is required. 

Speeds application development 

Once you understand MacApp and object-oriented programming, you can develop 
significant applications in weeks rather than months. 

Provides excellent code 

All the code used in MacApp is highly optimized and comparable to the best code used in 
commercial applications. 

CHAPTER 5 MacApp 



Beta Draft 

Provides benefits of object-oriented programming 

Object-Oriented programming techniques give MacApp much of its power. MacApp is 
built using Object Pascal-better known as MPW Pascal-which adds object-Oriented 
extensions to standard Pascal. To create your own application with MacApp, you must 
use an object-Oriented language such as Object Pascal or TML Pascal. 

Object-Oriented programming offers many important benefits. These include better 
management of program complexity (due, in part, to the way objects encapsulate data 
and procedures associated with the data), an increase in the ability to reuse code (due to 
the property of inheritance in object-oriented systems), and increased productivity. 

Helps applications conform to human-interface guidelines 

As provided, the MacApp application conforms closely to the Apple human-interface 
standard. In general, the less work you do to change this interface (which includes the 
user-interface features required by nearly all applications), the more closely the resulting 
application will conform to the standard. 

Assures compatibility with future systems 

The features included in MacApp are guaranteed to work with all future versions of 
Macintosh and A/UX system software. Support for MultiFinder and for other important 
Macintosh features is already built in. Using MacApp is the best insurance that future 
changes and enhancements to the system software will not affect your application. 

Includes source code 

MacApp includes complete source code for all its components. The code serves both to 
document applications built with MacApp and as a learning tool for MacApp 
programmers. 

Includes necessary makefiles 

To make creating your application as easy as possible, MacApp includes the MPW 
makefiles needed to generate object code for your application. This reduces the burden 
of learning MPW that is required of MacApp users. 

CHAPTER 5 MacApp 29 



Beta Draft 

Disadvantages of MacApp 

For all its advantages, MacApp does have some significant drawbacks. These drawbacks 
are described in the following sections. 

Requires time to learn 

Leaming MacApp requires a considerable investment of time. You must gain a knowledge 
of MacApp, an object-oriented programming language, and the MPW development 
environment that underlies MacApp. This time is typically repaid-with interest-when 
developing your first application with MacApp. 

can only be used to develop applications 

MacApp can only be used to develop applications. To develop other kinds of programs, 
such as desk accessories and device drivers, you must use another programming 
environment. 

limited choice of languages 

The only high-level programming languages you can currently use with MacApp are MPW 
Pascal and TML Pascal II. For code where speed is essential, you can use MPW assembly 
language together with the object-oriented macros it includes. 

Requires MPW 

At present, the only software development environment that supports MacApp is MPW. 
All of the programming languages listed in the previous section, including TML Pascal II, 
require MPW. 

CHAPTER 5 MacApp 30 

• 

,/ 



.. 

( 

( .\ 

/ 

Beta Draft 

Using MacApp 

If you've used an object-oriented programming language, such as Smalltalk or C++, the 
fundamentals of MacApp will already be familiar to you. The building blocks for MacApp 
applications are objects, packages that contain both data and routines, known as 
methods, for operating on the data. You define a class of objects by specifying the 
data type for each of the data fields, known as Instance variables, and defining each of 
the class's methods. An individual object is an Instance of an object class; its instance 
variables and methods are the same as those for all other objects that belong to the same 
class. 

Much of the power of object-oriented programming derives from the properties of 
objects. Objects, by combining data and procedures, let you build complex programs 
out of small, easily managed units. Another property, known as Inheritance, allows the 
fields and methods of an object class to be derived from other class. For example, 
suppose that there is an object class called Animal. Another class, Mammal, has the same 
instance variables and methods as the Animal class but changes the definitions for a few 
of the methods. In this way, defining the Mammal class, which is a subclass of Animal, is 
very simple: you say that it is inherited from Animal and redefine only those methods that 
need to be different from Animal. Moreover, inheritance makes it easy to reuse code: 
when you define a method for a class, the same method is available in any subclasses of 
the class. 

Starting with a sample application 

A number of sample programs are provided with MacApp. The simplest of these, Nothing, 
includes the standard features of a Macintosh application, such as a window and menus, 
but does nothing more than display a word in the window. It is an ideal foundation for 
your own programs. Other sample programs show how you can use MacApp to create fully 
functional applications. 

Building a sample application 

There are five source files for the each sample application: 

• The main program (such as MNothing.p) 

• The Object Pascal interface for the object classes (such as UNothing.p) 

• The implementation of the object classes (such as MNothing.p) 

• The resource definition file (such as UNothing.r) 

• An MPW make file that contains instructions for building the application (such as 
UNothing.make) 

CHAPTER 5 MacApp 31 



Beta Draft 

To build the application, you run an MPW script known as MABuild. For example, you can 
build the Nothing application by entering 

MABuild Nothing 

The MABuild script, which is included with MacApp, creates a finished application. After 
you build an application, you can run it by simply entering its name in an MPW Shell 
window and pressing Enter. 

Creating your own application 

To create your own program with MacApp, you first copy the five files for the Nothing 
application and change the identifiers containing Nothing (such as the filename 
UNothing.p) to equivalent identifiers containing your program name. You now have all 
the files for your new application. 

You next initialize the Toolbox, which makes User Interface Toolbox calls available to 
your application. You also initialize any of the additional services available from 
MacApp, such as printing, that are needed by your application. 

You then create your first object, the application object, which dispatches the events 
that are received by the application. The application passes some of these events to 
MacApp for handling, while others are handled by the application object itself. To create 
the application object, you begin with a class provided by MacApp called TApplication 
and create a subclass of that class. This subclass provides the exact functionality required 
by your application. In the subclass, you override one of TApplication's methods, 
replacing the method with one you write yourself. You then create an instance of the class 
which becomes a component of the application. Finally, you call one of the object's 
methods to initialize the object. 

Adding functionality 

To add functionality to a MacApp application, you often perform the steps described for 
creating an application object: you begin with a predefined class, create a subclass that 
meets the specific needs of your application, and then create an object which is an 
instance of the new subclass. For example, you normally create one or more document 
objects which contain the data produced by the application. You use the IDocument 
class provided by MacApp as the basis for your own subclass and then create an instance 
of the new subclass. 

Among the other objects you add for a typical application are objects for 

CHAPTER 5 MacApp 32 

• 



• 

( 

Beta Draft 

• windows 

• scroll bars for windows 

• the contents of windows 

• menu commands 
• mouse tracking commands 

Adding resources 

You add other components of your application, such as menus, menu items, and icons, by 
adding definitions to your application's resource definition file. When you build the 
application, the MABuild script invokes Rez, the MPW resource compiler, to create the 
resources. 

Debugging your application 

To debug your application, you use the Inspector tool that is provided with MacApp. A 
sample Inspector window is shown in Figure 5-1. 

CHAPTER 5 MacApp 



BetaIJraft 

• Figure s-1 · An Inspector window 

ID Inspector 1 E!J1 
TDESKSCR APVIE\\' $2E3 A30: Of T'w' IN 

TPRINTHANDLER 
TSCROLLER 
TSSCROLLBAR 
TTEST APPLICATION 
T'w' INDO'w' 

$2E3924: OfTDOC 

$2E3860: Of TSCR 
$2E3850: Of TSCR 
$2E3844: Of TVIE 

TL IST $2E3878 Of TV IE'w' 
TList 

fSiH: 
fFirstOffs.t : 
ft>• l•tions : 
fE~chL•vel: 
fOb jClus ID : 
.At[1]: 
.At[2]: 
.At[3]: 

TObj•ct 
Ob jCl~ss ID : 
Size in blJtH: 

3 
14 
0 
0 
TVIE'w' 
$002E3884 
$002E3870 
$002E385C 

10 
26 

In the upper left comer of the Inspector window is a class list, a list of all the classes in 
your application for which there are instances. Clicking on an entry in the class list 
displays an instance list in the upper-right comer of the window. This list contains the 
name and address of each instance of the selected class. Clicking on an instance in this list 
displays the values of the instance's fields (shown here in the bottom portion of the 
window), including the values of any fields that it has inherited. 

CHAPTER 5 MacApp 

• 



• 

( 

Beta Draft 

Chapter 6 The Macintosh Programmer's 
Workshop 

THE MACINTOSH PROGRAMMER'S WORKSHOP (MPW) is the most powerful and 
versatile development environment currently available for the Macintosh. You 
can use MPW to write any kind of program for the Macintosh, including desk 
accessories, device drivers, programming tools, and standalone code resources. 
In addition, MPW provides a variety of useful features, such as shell scripts and 
support for multilingual progra~, that aren't available in other Macintosh 
development environments. • 

CHAPTER 6 The Macintosh Programmer's Workshop 35 



Beta Draft 

About MPW 

The Macintosh Programmer's Workshop (MPW) is the most powerful and versatile of the 
software development environments for the Macintosh. Written by Apple Computer for 
its own software development, MPW is now available to all developers. This chapter 
provides a brief overview of MPW, describes its advantages and disadvantages, and gives 
you a taste of using MPW and its many features. 

MPW is a direct descendant of earlier software-development environments for the 
Macintosh, in particular the Llsa Workshop. It is a robust, full-featured development 
environment designed to meet the needs of professional software developers. 

In its design and underlying philosophy, MPW owes much to the UNIX development 
environment. MPW and UNIX share such features as a command shell, support for aliases 
and shell variables, I/O redirection, pipes, shell scripts, command histories, and regular 
expressions. In addition, both environments can be extended to suit the needs of those 
using them. 

Advantages of MPW 

MPW offers many important advantages for both professional developers and 
enthusiasts. These advantages are described in the following sections. 

Provides a full-featured development environment 

MPW provides an extremely wide range of tools and facilities to help you develop 
software. It includes a project management system (Projector), a linker and librarian, a 
Make utility to streamline the rebuilding of programs generated from multiple files, a 
resource compiler (Rez) and a decompiler (DeRez), and performance-measurement tools. 
Also provided with MPW are three programming utilities that can be used with any 
programming environment: a resource editor (ResEdit™), a debugger for high-level 
languages (SADE), and a debugger for assembly language (MacsBug). 

A variety of programming languages is available for MPW. Languages available from Apple 
include Pascal, C, and assembly language. All three of these languages include complete 
interface libraries for the Macintosh Operating System and User Interface Toolbox. Other 
vendors provide their own versions of C and Pascal as well as languages such as Modula-2 
and FORTRAN. 

CHAPTER 6 The Macintosh Programmer's Workshop 36 



( 

( 

Beta Draft 

Programs developed with MPW be "multilingual." For example, you can write the bulk of a 
program in a high-level language like C or Pascal, write any routines where speed is critical 
in assembly language, and then link the components together to create a finished 
program. 

MPW also provides a variety of features designed to make programming easier and more 
productive. For example, you can include segmentation controls anywhere within a file, 
allowing you to organize your code according to its logical structure rather than the 
desired segmentation. 

Provides an integrated development environment 

The MPW Shell integrates the features of a command interpreter and a full-screen editor. 
All the components of MPW can be used within the MPW Shell environment. In addition, 
you can quickly move from the Shell to general-purpose programming utilities such as 
ResEdit and SADE by using MultiFinder™. 

Supports large development projects 

MPW was written with large development projects in mind. It can easily handle projects with teams 
of programmers, hundreds of files, and many thousands of lines of source code. The current version 
includes Projector, an integrated project-management system that maintains revision histories and 
other information needed to keep big projects on track. 

Creates any kind of program 

With MPW, you can create any kind of programs for the Macintosh, including 
applications, desk accessories, MPW tools, device drivers, the external commands 
(XCMDs) and external functions (XFCNs) used by HyperCard, and other standalone code 
resources. If it will run on the Macintosh, you can create it with MPW. 

Reflects latest development at Apple 

All Macintosh system software is developed with MPW. This means that MPW is kept up­
to-date and reflects the latest product development at Apple. 

CHAPTER 6 The Macintosh Programmer's Workshop 37 



Beta Draft 

Lets you create your own environment 

You can easily tailor MPW to fit your needs and style of working. For example, you can 
add menus and menu items (complete with keyboard equivalents), write command 
scripts to perform common tasks, alter existing scripts (including the startup and user 
startup scripts used to configure the MPW environment), and create aliases for existing 
commands. 

The ability to create Shell scripts-a feature missing from other development 
environments-can be extremely useful for repetitive tasks and for processing large files. 
Scripting allows you to combine pieces of code to create useful utilities. For example, the 
following three-line script adds a menu item to the MPW Find menu, opens a dialog box 
when the menu item is chosen, searches all your source files for the text string you enter in 
the dialog box, displays any matches in the MPW Worksheet window, and disposes of any 
error messages: 

add.menu Find I Search sources for ... I a 
I (Search /"'Request "Look for what in source files?"'"/ a 
"{mpw}mysources:"== >> "{Worksheet}") ~ dev:null ' 

You can also use MPW to build your own programming tools. These tools, known as MPW 
tools, are special programs that run within the MPW environment. Most of the MPW Shell 
commands are, in fact, MPW tools; when you add a new tool, it becomes part of the MPW 
environment. 

Because the MPW Shell takes care of the user interface for MPW tools, developing an 
MPW tool is much easier and faster than creating an equivalent Macintosh application. 
Moreover, tools created for UNIX or other development environments can typically be 
ported to MPW with very little modification. You can also choose from a variety of MPW 
tools, including compilers and debuggers, that are offered by other companies. 

Supports object-oriented programming 

Object-oriented programming is a relatively new approach to programming, first 
popularized by the Smalltalk development environmen~ that uses objects-data 
structures with associated procedures-as the building blocks for programs. Object­
oriented programming offers important benefits, including better management of 
program complexity, an increase in the ability to reuse code, and increased productivity. 
MPW Pascal and assembly language include extensions that support object-oriented 
programming. 

CHAPTER 6 The Macintosh Programmer's Workshop 38 



( 

Beta Draft 

Works with MacApp 

MacApp (described in Chapter 5) is an object-oriented framework for creating new 
applications. It is an application shell, written in MPW Pascal, with all the standard 
features of a Macintosh application-windows, menus, dialog boxes, and more-built in. 
To create a new application, you remove any features you don't need, write the code 
needed to fill the windows, and handle any processing that is independent of the user 
interface. As a result, creating an application with MacApp typically takes a fraction of 
the time it would take without MacApp. 

At present, you must have both MPW and either MPW Pascal or TML Pascal to use 
MacApp. MPW Pascal provides a number of optimizations that are included specifically 
for MacApp and object-oriented programs. In the future, other development systems are 
likely to include support for MacApp. 

Disadvantages of MPW 

MPW has a few important disadvantages, which are described in the following sections. 

Complexity 

Because of its wealth of features, MPW takes longer to learn than many other 
development environments. This extra investment in time is repaid, however, for those 
undertaking large or complex programming tasks. Moreover, MacApp users can ignore 
many of the details of MPW, such as the build process, that are taken care of 
automatically by MacApp. 

Slow compiling and llnklng 

Compiling and linking typically takes longer in MPW than in other development 
environments. This is due in part to optimization performed by MPW compilers (for such 
features as method-table lookup used in object-oriented programs) and to Linker 
optimizations such as the automatic removal of unused code. 

CHAPTER 6 The Macintosh Programmer's Workshop 39 



Beta Draft 

Hardware requirements 

To use all the features of MPW, you must have a Macintosh with at least two megabytes of 
memory and a hard disk. To use MPW together with SADE under MultiFinder, or to use 
MacApp with MPW, you need four megabytes of memory. In contrast, a number of other 
development environments can run well on a less fully configured Macintosh. 

No choice of text editors 

Because the MPW text editor is so tightly integrated with the rest of the MPW 
environment, it is difficult to use another text editor with which you may be more 
familiar. Moreover, the MPW text editor lacks many of the features-such as 
programmability-that are provided by Emacs and other widely used editors. The MPW 
editor is both flexible and easy to learn, however, and for most programmers its 
advantages outweigh these disadvantages. 

Using MPW 

The following sections provide a brief description of working with MPW. While not 
exhaustive, these sections do give you a taste of using MPW and what it can do for you. 
As you read, you'll also learn about many of the components of MPW. 

Figure 6-1 illustrates the steps involved in developing software with MPW. 

CHAPTER 6 The Macintosh Programmer's Workshop 40 

' 



(-

( 

Beta Draft 

• Figure 6-1 Developing software with MPW 

Shell editor 

.a .p .c 
'TEXT' 

Compiler or Asserrbler 

Object 
files 
.o 

'OBJ I 

.code 
'APPL' 

Linker 

Libraries 
.o 

'OBJ I 

Starting with a sample program 

ResEdit 

Resource 
files 

.rsrc 

Rez 
Source files 

.r 
'TEXT' 

When you create a program with MPW, you never need to start from scratch. Provided 
with MPW are sample applications, desk accessories, and MPW tools written in C, Pascal, 
and assembly language. You simply copy an appropriate sample and use it as a model for 
your own program. 

CHAPTER 6 The Macintosh Programmer's Workshop 41 



Beta Draft 

Building the sample program 

Before you modify one of the sample programs, you'll want to run the program and have a 
look at what it does. To do this, you first build the program by compiling and linking all 
of its components. 

One of the advantages of MPW is the ability to automate the building of programs. For 
example, you can build any of the sample programs provided with MPW in two easy steps. 
First, you select the directory that contains the sample program's files by choosing Set 
Directory from the Directory menu. Once you've a specified the directory, you choose 
Build from the Build menu. This runs all the MPW tools, such as compilers and the linker, 
that are necessary to create the program: 

• Figure 6-2 The Build menu 

Show Build Commands ... 
Show Full Build Commands ... 

To run the finished program, you simply type its name in any MPW Shell window and press 
Enter. 

Expanding the program 

You're now ready to expand and modify the sample program. To create new source files 
for the program, you use the mouse-based text editor that is integrated with the MPW 
Shell. The text editor includes the same cut, paste, search-and-replace, and undo features 
that are available in other Macintosh applications. 

Because of tight integration of the editor with the command interpreter, you can use the 
editor to edit any text in any window. This is true even if the text is the output from a 
previous conunand. You can also select text in any window and execute it as a command 
by pressing Enter. 

CHAPTER 6 The Macintosh Programmer's Workshop 42 



( 

Beta Draft 

Resource description files are typically among the source files you create. These files are 
compiled with Rez, the MPW resource compiler. Rather than create all the resources you 
need from scratch, you can modify existing resources with ResEdit, the general-purpose 
resource editor that is provided with MPW. You can then decompile the resulting 
resources with DeRez, the MPW resource decompiler, to create resource descriptions that 
become part of your program. 

Using Projector 

You next use Projector, an integrated project-management system that maintains 
revision histories and other information about your programs. Projector allows you 
record the changes you make to your program's source files and to keep records of 
alternate versions of your files. If there are several programmers working on the project, 
you can also use Projector to control access to files so that only one person can modify a 
file at the same time. 

To begin using Projector, you create a new project A project contains all the information 
about a program's files and revisions that is maintained by Projector. When you choose 
New Project from the Project menu, a New Project window like the one illustrated in 
Fig\jre 6-3 appears: 

• Figure 6-3 A New Project window 
New Pro ect 

! This pr-oject contains a s.-les of test 
! suites for o..- "Uorld Class Accounting" 
! product. 
! 

I 
I 

'--~~~~~~...=...I.__~~~~~~~~~~~~~ 
I Drh•e ) ( Eject n New Project B 

You then type in the project's name and and a description of the project. 

Once you've created a project, you check out the files you want to work with and check 
them back in when you're done. Figure 6-4 illustrates the windows you use to enter 
information when checking out and checking in files. 

CHAPTER 6 The Macintosh Programmer's Workshop 



Beta Draft 

• Figure 6-4. The Check Our and Check In windows 

£11•1: '" 

1:111111u1 I frDJacl: 11..,,;;,;'• .... t --------'• Ji•rwl PnlJ•t 'I taect•l llc Hm: learrs1ee1111r1111mes 11 U•r;,..Ja.-.f .... r P .... •..,m..,·s.-h _______ .. , IM'list I Ill•: J.rr Rrirrl-.11---------......_., 

I 1l111C:_I --------;==-=.::I Cll•1tln111t•1 I c------------
cSa•ll Cc11111k9uWl*11• I reoe1:: --------· I R111: (lk11k6NI-. _Q!!.!!J!'..!.!..11!!.!!!!!!!! ____ _ 
Ol•t £11•1: In 11m!'Mnl! II I r==-_=-,=:,.==.,,::=,."':-~~tM"'-:-:-=-:--,.~,.,---.----~. "1':1 I 

I lh\...... II 
I IL---------· 
l..._ ___________ u1 1 se111:t n1e1 •• NlnR: 11.,..111111111 

"r===~-.,=~ 0Ta111i. m11111.t1 I' Na• I 
'-INI ... llPH 1r.----~ I";:;;:;::;::;;:;--;:::;::~ [ t ' 

18111M11 ., ,.., I~ 1•11 ••••i I _.._...., ( Clltiit II J U!ID I ~O ~ddl-:._•bltu 11 ~c:.nr(!Sr• hoochl!Ci'. -------112••P•amm1t11, (ft) 11·• .. , I rw .... c 
1r1u1t )( l)oct J iQ~1m i:!!JL_.J Ll:J · tt.. • ( 111att na111• ) I QE11•tt1 

Projector gives you a great deal of control over your projects. For example, you can 
create experimental versions of files and later merge the successful experiments into the 
the project. Projector also keeps all the information needed to recreate any previous 
version of the project. 

Adding build commands 

Whenever you add you new files for a program, you need to add additional build 
commands for the program. You do this by choosing Add Build Commands from the 
Build menu. When you, the CreateMake dialog box illustrated in Figure 6-5 appears: 

• Figure 6-5 The CreateMake dialog box 

r-CreateMake Options 

Program Name I count I ( Source Files ... ) 

r·Program Type··-··-, Creator~ 
I I 
! ® Application · I Type .nn ! 
I Otool I ~-.. -....!-------

Main EntriJ hint I I 
I O Dest Accessory I L..---·· ., 
I O Code Resource J 

Re~ource Typct I ! 
I 

O Symbolic debugger Information 

rcommand line 
~Httl'Wct -.t :£x1mplts:CEx1mpl.s:CN1t.o :£xan,11ts:CEx1mpl.s:C-t.r -o you I 
r-Help ( Cancel ) 
Crtttt a sinlpl9 111aktft1t fr bufldint Ml application, tool, r •sic 
-ssor11. Tht maktftlt ts, .. UH by 1ht Build INllU. c CreateMeke , 

I.! 

CHAPTER 6 The Macintosh Programmer's Workshop 44 

• 



Beta Draft 

You type in the program's name (leaving off any suffixes such as •.a" or ".p") and select a 
radio button to indicate what kind of program it is. You then select the Source Files ... 
button and specify the files that make up the program. When you're done, you can again 
build the program by choosing Build from the Build menu. 

Debugging the program 

Once you've built your program, you can debug it with one of the MPW debugging tools: 
MacsBug, an assembly-language debugger, or SADE (Symbolic Application Debugging 
Environment), a multiwindow symbolic debugger designed for use with high-level 
languages such as Pascal and C. SADE is particularly useful because it allows you to create 
your own debugging scripts. You can use these scripts to automate repetitive tasks and 
to create custom debugging tools. 

Measuring the program's performance 

When your program is working properly, you can check its performance with the 
performance-measuring tools provided with MPW. These tools, which include a set of 
measurement routines and a perfonnance report generator, measure the amount of time a 
program spends executing any piece of code that you specify. You can then isolate 
heavily used or inefficient code and optimize it for speed. 

CHAPTER 6 The Macintosh Programmer's Workshop 45 



Beta Draft 

CHAPTER 6 The Macintosh Programmers Workshop 46 



(~ 

( 

Beta Draft 

Chapter 7 Other Development Environments, 
Languages, and Tools 

THERE ARE MANY MORE SOFI'WARE DEVELOPMENT ENVIRONMENfS, languages, and 
tools for the Macintosh than have been described so far. This chapter provides 
an overview of the many other products that are available. It also includes 
descriptions of the two most widely used programming languages for ~e 
Macintosh, LightspeedC and Lightspeed Pascal, and benchmarks that help you 
compare these and other popular languages. • 

CHAPTER 7 Other Development Environments, Languages, and Tools 47 



Beta Draft 

Development Environments 

There are now Macintosh implementations of many widely known development 
environments. These include the environments for 

• LISP 

• Smalltalk 
• Prolog 

• FORTH 

• UNIX 

These and other environments are described in Apple II and Macintosh Development 
Software: A Guide to Languages and Tools, a brochure produced by the Languages and 
Tools Product Marketing Group at Apple Computer. (For more information about this 
brochure, see Chapter 8.) The version of UNIX for the Macintosh, known as A/UX, is 
described in the next section. 

A/UX 

A/UX is Apple's version of the AT&T UNIX System V operating system. It is fully 
compatible with all System V software and includes many extensions from the Berkeley 
4.2 BSD version of AT&T UNIX. A/UX runs on any member of the Macintosh II family with 
a paged memory-management unit (PMMU), an 80-megabyte or larger ham disk, and at 
least two megabytes of memory. At least four megabytes of memory are required for 
A/UX software development or for use with a network. 

A/UX is an alternative to the usual Macintosh operating system that provides 

• support for multiple users and multitasking 

• a wide range of tools for software development and text processing 

• a variety of command-line interfaces ("shells") and support the X Window windowing 
environment 

• the ability to run Macintosh and UNIX programs in the same environment 

Although you can't use A/UX to write standard Macintosh programs, programs you write 
for A/UX can call a subset of the Macintosh User Interface Toolbox routines. This lets you 
add some of the familiar features of Macintosh programs, such as windows and menus, to 
A/UX programs. 

CHAPTER 7 Other Development Environments, Languages, and Tools 



( 

( 

Beta Draft 

Languages 

There is an extremely wide range of programming languages for the Macintosh. These 
include versions of the Smalltalk, LISP, Prolog, and FORTII languages mentioned earlier 
and several versions of the C and Pascal programming languages. Among the other 
languages are versions of 

• FORTRAN 

• COBOL 

• BASIC 

• Modula-2 

• Logo 

• APL 

• Ada. 

Many of these languages (and all the languages listed in the next section) are described in 
Apple II and Macintosh Development Software: A Guide to Languages and Tools, a brochure 
pro9uced by the Languages and Tools Product Marketing Group at Apple Computer. For 
more information about this brochure, see Chapter 8. 

Languages for MPW 

There are a number of programming languages that can be used with the Macintosh 
Programmer's Workshop (MPW). Available from Apple are versions of Pascal, C, and 
assembly language. Among the languages available from other vendors are 

• Aztec C68k from Mame Software Systems 

• Language Systems FORTRAN from Language Systems Corporation 

• MacFortran/MPW from Absoft 

• TML Modula-2 from TML Systems 

• SemperSoft Modula-2 from Semper Software 

• TML Pascal II from TML Systems 

CHAPTER 7 Other Development Environments, Languages, and Tools 49 



Beta Draft 

Tools 

Just as with programming languages, the range of tools available for Macintosh software 
development is extremely wide. These tools include 

• expert-system development tools 

• application generators 

• debuggers 

• code libraries 

Many of these tools are described in Apple II and Macintosh Development Software: A 
Guide to .languages and Tools, a brochure produced by the Languages and Tools Product 
Marketing Group at Apple Computer. For more information about this brochure, see 
Chapter 8. 

Comparisons of popular programming languages 

The following sections describe LlghtspeedC and Lightspeed Pascal and provide 
benchmarks for these and other widely used languages. 

UghtspeedC and Lightspeed Pascal 

LlghtspeedC and Lightspeed Pascal are the most widely used versions of C and Pascal 
available for the Macintosh. Their popularity is due to several key advantages, which are 
described in the following sections. 

Fast compiler and linker 

Probably the most important advantage of LlghtspeedC.and Lightspeed Pascal is their 
speed. Both compiling and linking are very fast, taking a few seconds or less when you've 
made only small changes. 

Easy to learn 

Both LightspeedC and Lightspeed Pascal are relatively easy to learn and use. The 
languages are particularly valuable for new Macintosh developers and developers working 
alone or in small groups. 

CHAPTER 7 Other Development Environments, Languages, and Tools 50 



( 

Beta Draft 

Integrated environment 

Both LightspeedC and Llghtspeed Pascal include a compiler, a linker, an integrated text 
editor, a Make facility, project management capabilities, and a source-level debugger. 
They also include interfaces to all Macintosh Operating System and User Interface 
Toolbox routines. 

LlghtspeedC includes the standard C library (with full source code) and interfaces to the 
Macintosh Operating System and Toolbox. 

Project management 

LlghtspeedC and Llghtspeed Pascal keep all the files needed to build a program in a single 
unit known as a project The necessary components for each kind of project 
(application, desk accessory, device driver, or code resource) are created automatically 
when the program is built. In addition, information about the dependencies between a 
project's files is maintained automatically. 

Automatic Toolbox initfallzation 

Before calling any User Interface Toolbox routines (described in Chapter 1), a program 
must initialize the Toolbox Managers that contain the routines. Both LightspeedC and 
Llghtspeed Pascal initialize some of the more commonly used Toolbox managers. This 
saves you time and helps you avoid errors that result from initializing the managers in the 
wrong order. 

Can be used to develop any kind of program 

Like MPW, both LightspeedC and Lightspeed Pascal can be used to develop any kinds of 
Macintosh programs, including applications, desk accessories, device drivers, and stand­
alone code resources. 

Inexpensive 

Because a complete development environment is included with LightspeedC and 
Lightspeed Pascal, the total cost of a useful development system is quite small. 

Benchmarks 

[To be provided] 

CHAPTER 7 Other Development Environments, Languages, and Tools 51 



Beta Draft 

CHAPTER 7 Other Development Environments, Languages, and Tools 52 



Beta Draft 

Chapter 8 Information for Software Developers 

THis CHAPTER TELLS WHERE YOU CAN FIND INFORMATION you need to develop 
software for the Macintosh. It lists some of the most useful books, manuals, 
product descriptions, and information services currently available to developers. 
The list is far from complete; many other valuable books, publications, and 
services are also available. 

CHAPTER 8 Information for Software Developers 53 



Beta Draft 

Introductory information 

Before developing software for the Macintosh, you should become familiar with the 
information in these three valuable books: 

• Technical Introduction to the Macintosh Family (published by Addison-Wesley) 
An excellent introduction to the hardware and software design of the Macintosh 
family. It is the first book about Macintosh development you should read. 

• Human Inter/ace Guidelines: 1he Apple Desktop Interface (published by Addison­
Wesley) 
Provides the information you'll need to design easy-to-use programs for the 
Macintosh. 

• Programmer's Introduction to the Macintosh Family (published by Addison-Wesley) 
An introduction to Macintosh software for Macintosh software developers. It 
explains how the programs you'll write will work with the other software components 
of the Macintosh. 

General references 

The following books contain important reference information for Macintosh 
programmers: 

• Inside Macintosh, Volumes I-V (published by Addison-Wesley) 
The essential guide to Macintosh System Software and User Interface Toolbox 
routines. A must for all Macintosh developers. 

• Macintosh Family Hardware Reference (published by Addison-Wesley) 
The definitive guide to Macintosh hardware. Essential for software developers 
working on hardware-related projects. 

• Designing Cards and Drivers for Macintosh ll and Macintosh SE (published by Addison­
Wesley) 
Essential for software developers working on card- or driver-related projects. 

• Inside Macintosh X-Ref (published by Addison-Wesley) 
An index to all of the books listed above, including all five volurres of Inside 
Macintosh. Highly recommended. 

• Programmer's Guide to MultiFinder (published by Addison-Wesley) 
Provides the information necessary to create applications that work with MultiFinder. 
Essential for anyone developing Macintosh applications. 

CHAPTER 8 Information for Software Developers 
/(~, 

\(_/ 



( 

Beta Draft 

• Apple Numerics Manual (published by Addison-Wesley) 
Provides information about SANE®, the Standard Apple Numeric Environment, and 
the data types and operations it provides. Necessary for developers whose programs 
use the numeric data types and numeric processing routines provided by SANE. 

• Macintosh Revealed: Volume 1, Unlocking the Toolbox, 2nd edition 
Macintosh Revealed: Volume 2, Programming with the Toolbox, 2nd edition 
Both by Stephen Chernikoff (published by Hayden Books) 
The best currently available guides to programming the Macintosh family. They 
include many useful programming examples. 

• How to Write Macintosh Software, 2nd edition, by Scott Knaster (published by Hayden 
Books) 
Includes useful discussions of memory management, debugging, and other topics of 
interest to Macintosh programmers. 

• Macintosh Programming Secrets by Scott Knaster (published by Addison-Wesley) 
Provides tips for getting the most out of Macintosh programs, development tools, 
and hardware. 

• Macintosh Technical Notes 
These provide addenda and revisions to Macintosh technical information as well as 

.·documentation for known bugs. They are sent to certified developers by the 
Macintosh Technical Support Group at Apple. Back issues are available from the 
Apple Programmer's and Developer's Association (APDA™). (For more information on 
APDA, see the "ADPA" section later in this chapter.). The notes are available in printed 
form and on disk. 

MPW 

Apple provides a number of reference manuals with MPW. The following manuals are 
included with all versions of MPW: 

• Macintosh Programmer's Workshop Reference, which describes the MPW Shell, Shell 
commands, and other features of MPW 

• ResEdit Reference 

• MacsBug Reference 

• SADE Reference 

The following manuals are included with their respective languages: 

• Macintosh Programmer's Workshop C Reference 

• Macintosh Programmer's Workshop Pascal Reference 

• Macintosh Programmer's Workshop Assembler Reference 

CHAPTER 8 Information for Software Developers 55 



Beta Draft 

There is also an excellent book that describes MPW and Macintosh programming: 

• Programming with Macintosh Programmer's Workshop by Joel West (published by 
Bantam Books) 

MacApp 

Two MacApp manuals are currently available from Apple: 

• Introduction to Object-Oriented Programming With MacApp 2.0 
Explains the principles of object-oriented programming as well as the design and 
structure of MacApp. 

• MacApp 2.0 Tutorial 
A s~ep-by-step guide to creating an application with MacApp. 

• MacApp 2.0 Cookbook 
A how-to guide to the many features of MacApp. 

All of these manuals are included with MacApp. 

HyperCard 

Apple produces two guides to HyperCard: 

• Hypercard User's Guide 
Included with HyperCard. 

• Hypercard Script I.anguage Guide: 1he HyperTalk I.anguage (published by Addison­
Wesley) 
Describes the components of HyperTalk and how to use it to create HyperCard 
scripts. 

There are many other excellent books about HyperCard. These include: 

• 1he Complete HyperCard Handbook, 2nd Edition, by Danny Goodman (published by 
Bantam Books) 
A guide to all aspects of HyperCard, including scripting. 

• Danny Goodman's HyperCard Developer's Guide by Danny Goodman (published by 
Bantam Books) 
Describes how develop HyperCard stacks. 

CHAPTER 8 Information for Software Developers 



( 

Beta Draft 

• HyperCard Power: Techniques and Scripts by Carol Kaehler (published by Addison­
Wesley) 
Provides useful tips for using HyperCard and for creating and modifying scripts. 

• XCMD's for Hypercard by Gary Bond (published by MIS: Press) 
Explains how to write external commands (XCMDs) and external functions (XFCNs) for 
HyperCard. 

Mac Workstation 

Apple produces two manuals for MacWorkStation developers: 

• MacWorkStation Programmer's Guide (available from APDA) 
A tutorial for developers using MacWorkStation. 

• MacWorkStation Programmer's Reference (available from APDA) 
A complete reference to the components of MacWorkStation. 

Guides to other development products 

Apple II and Macintosh Development Software: A Guide to Languages and Tools 
A brochure produced by Languages and Tools Product Marketing at Apple Computer that 
lists all programming languages, development tools, and programming libraries for the 
Macintosh that are available for sale. Copies of this brochure are available from 
[???where???] 

A Guide to Apple's Multivendor Communication Products 
A catalog produced by the Network and Communications Product Marketing Group at 
Apple Compute that lists products that facilitate communication between the Macintosh 
Family and larger computers. Copies of this brochure (Marketing Number M5116) are 
available from Apple Marketing Representatives or the Network and Communications 
Product Marketing Group. 

CHAPTER 8 Information for Software Developers 57 



Beta Draft 

APDA 
The Apple Programmer's and Developer's Association (APDA) is an excellent source for development "'-j 

environments, tools, and reference books, including all of those described in this chapter. 
Membership includes an informative newsletter that is published regularly. For information, contact 

APDA 
Apple Computer, Inc. 
20525 Mariani Avenue, Mailstop 33-G 
Cupertino, CA 95014-6299 
1-800-282-APDA or 1-800-282-2732 
Fax: 408-562-3971 
Applelink: DEV.CHANNELS 

Apple Developer Programs 

If you plan to develop hardware or software products for sale through retail channels, you 
can get valuable support from Apple Developer Programs. Write to 
Apple Computer, Inc. 
20525 Mariani Avenue, Mailstop 51-W 
Cupertino, CA 95014-6299 

CHAPTER 8 Information for Software Developers 58 

) 



( 
THE APPLE PUBLISHING SYSTEM 

This Apple manual was written, 
edited, and co~sed on a 
desktop publishing system 
using Apple 
Macintosh' computers and 
Microsoft' Word. Proof pages 
were created on the Apple 
LaserWriter' II NIX. 
POSTSCRIPT'' the LaserWriter 
page-description language, was 
oeveloped by Adobe Systems 
Incorporated. Some of the 
illustrations were created using 
Adobe Illustrator™. 

Text and display type is ITC 
Garamond® 
(a downloadable font 
distributed by Adobe Systems). 
Bullets are ITC Zapf Dingbats®. 
Some elements, such as program 
listings1 are set in Apple Courier, 
a fixea-width font. 

I 



\, 

f-"-c 


